Science.gov

Sample records for cord injured cats

  1. Retraining the injured spinal cord

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Leon, R. D.; Harkema, S. J.; Hodgson, J. A.; London, N.; Reinkensmeyer, D. J.; Roy, R. R.; Talmadge, R. J.; Tillakaratne, N. J.; Timoszyk, W.; Tobin, A.

    2001-01-01

    The present review presents a series of concepts that may be useful in developing rehabilitative strategies to enhance recovery of posture and locomotion following spinal cord injury. First, the loss of supraspinal input results in a marked change in the functional efficacy of the remaining synapses and neurons of intraspinal and peripheral afferent (dorsal root ganglion) origin. Second, following a complete transection the lumbrosacral spinal cord can recover greater levels of motor performance if it has been exposed to the afferent and intraspinal activation patterns that are associated with standing and stepping. Third, the spinal cord can more readily reacquire the ability to stand and step following spinal cord transection with repetitive exposure to standing and stepping. Fourth, robotic assistive devices can be used to guide the kinematics of the limbs and thus expose the spinal cord to the new normal activity patterns associated with a particular motor task following spinal cord injury. In addition, such robotic assistive devices can provide immediate quantification of the limb kinematics. Fifth, the behavioural and physiological effects of spinal cord transection are reflected in adaptations in most, if not all, neurotransmitter systems in the lumbosacral spinal cord. Evidence is presented that both the GABAergic and glycinergic inhibitory systems are up-regulated following complete spinal cord transection and that step training results in some aspects of these transmitter systems being down-regulated towards control levels. These concepts and observations demonstrate that (a) the spinal cord can interpret complex afferent information and generate the appropriate motor task; and (b) motor ability can be defined to a large degree by training.

  2. Personal Adjustment Training for the Spinal Cord Injured

    ERIC Educational Resources Information Center

    Roessler, Richard; And Others

    1976-01-01

    This article describes experiences with Personal Achievement Skills (PAS), a group counseling process in a spinal cord injury project, emphasizing training in communication and goal setting in the context of group process. Issues in conducting such training and providing comprehensive service to the spinal cord injured are discussed in detail.…

  3. Augmentation by 4-aminopyridine of vestibulospinal free fall responses in chronic spinal-injured cats.

    PubMed

    Blight, A R; Gruner, J A

    1987-12-01

    This study examines the effect of the potassium channel blocker 4-aminopyridine (4-AP) on free fall responses (FFR) in the hindlimb muscles of chronically spinal injured cats. The thoracic spinal cord of 7 adult female cats was injured by a standardized contusion method. At 3-7 months post-injury the FFR in 6 hindlimb muscles was recorded electromyographically in each animal, under ketamine sedation. The normal short-latency response to a sudden drop was severely attenuated in all injured animals and practically undetectable in 2 cases. Within 15 min following intravenous administration of 1 mg/kg 4-AP, there was profound augmentation of the amplitude of the FFR and a tendency toward normalization of latency in all animals, though the normal amplitude range was not attained. The same 4-AP dose produced a relatively small increase of FFR amplitude in only 2 of 4 normal, uninjured animals tested. The data are consistent with previous observations that low doses of 4-AP restore conduction in some critically demyelinated axons, and provide support for the hypothesis that conduction block in surviving axons is responsible for a proportion of the dysfunction in chronic spinal injury. Augmentation of FFR in injured animals may also result partly from increased transmitter release in both spinal cord and periphery, due to the presynaptic effects of 4-AP. PMID:2831307

  4. The Rehabilitation of the Spinal Cord-Injured Street Person.

    ERIC Educational Resources Information Center

    Coven, Arnold B.; Glazeroff, Herbert

    1978-01-01

    The spinal cord-injured street person is especially resistant to rehabilitation. His life style is characterized by the use of physical power and mobility to survive and gain respect. He loses this main form of control and attempts to manipulate the treatment environment to care for him while he avoids confronting his disability. (Author)

  5. Efficacy of a metalloproteinase inhibitor in spinal cord injured dogs.

    PubMed

    Levine, Jonathan M; Cohen, Noah D; Heller, Michael; Fajt, Virginia R; Levine, Gwendolyn J; Kerwin, Sharon C; Trivedi, Alpa A; Fandel, Thomas M; Werb, Zena; Modestino, Augusta; Noble-Haeusslein, Linda J

    2014-01-01

    Matrix metalloproteinase-9 is elevated within the acutely injured murine spinal cord and blockade of this early proteolytic activity with GM6001, a broad-spectrum matrix metalloproteinase inhibitor, results in improved recovery after spinal cord injury. As matrix metalloproteinase-9 is likewise acutely elevated in dogs with naturally occurring spinal cord injuries, we evaluated efficacy of GM6001 solubilized in dimethyl sulfoxide in this second species. Safety and pharmacokinetic studies were conducted in naïve dogs. After confirming safety, subsequent pharmacokinetic analyses demonstrated that a 100 mg/kg subcutaneous dose of GM6001 resulted in plasma concentrations that peaked shortly after administration and were sustained for at least 4 days at levels that produced robust in vitro inhibition of matrix metalloproteinase-9. A randomized, blinded, placebo-controlled study was then conducted to assess efficacy of GM6001 given within 48 hours of spinal cord injury. Dogs were enrolled in 3 groups: GM6001 dissolved in dimethyl sulfoxide (n = 35), dimethyl sulfoxide (n = 37), or saline (n = 41). Matrix metalloproteinase activity was increased in the serum of injured dogs and GM6001 reduced this serum protease activity compared to the other two groups. To assess recovery, dogs were a priori stratified into a severely injured group and a mild-to-moderate injured group, using a Modified Frankel Scale. The Texas Spinal Cord Injury Score was then used to assess long-term motor/sensory function. In dogs with severe spinal cord injuries, those treated with saline had a mean motor score of 2 (95% CI 0-4.0) that was significantly (P<0.05; generalized linear model) less than the estimated mean motor score for dogs receiving dimethyl sulfoxide (mean, 5; 95% CI 2.0-8.0) or GM6001 (mean, 5; 95% CI 2.0-8.0). As there was no independent effect of GM6001, we attribute improved neurological outcomes to dimethyl sulfoxide, a pleotropic agent that may target diverse secondary pathogenic

  6. Spinal cord response to laser treatment of injured peripheral nerve

    SciTech Connect

    Rochkind, S.; Vogler, I.; Barr-Nea, L. )

    1990-01-01

    The authors describe the changes occurring in the spinal cord of rats subjected to crush injury of the sciatic nerve followed by low-power laser irradiation of the injured nerve. Such laser treatment of the crushed peripheral nerve has been found to mitigate the degenerative changes in the corresponding neurons of the spinal cord and induce proliferation of neuroglia both in astrocytes and oligodendrocytes. This suggests a higher metabolism in neurons and a better ability for myelin production under the influence of laser treatment.

  7. Macrophage and microglial plasticity in the injured spinal cord.

    PubMed

    David, S; Greenhalgh, A D; Kroner, A

    2015-10-29

    Macrophages in the injured spinal cord arise from resident microglia and from infiltrating peripheral myeloid cells. Microglia respond within minutes after central nervous system (CNS) injury and along with other CNS cells signal the influx of their peripheral counterpart. Although some of the functions they carry out are similar, they appear to be specialized to perform particular roles after CNS injury. Microglia and macrophages are very plastic cells that can change their phenotype drastically in response to in vitro and in vivo conditions. They can change from pro-inflammatory, cytotoxic cells to anti-inflammatory, pro-repair phenotypes. The microenvironment of the injured CNS importantly influences macrophage plasticity. This review discusses the phagocytosis and cytokine-mediated effects on macrophage plasticity in the context of spinal cord injury. PMID:26342747

  8. Employment among Spinal Cord Injured Patients Living in Turkey: A Cross-Sectional Study

    ERIC Educational Resources Information Center

    Gunduz, Berrin; Erhan, Belgin; Bardak, Ayse Nur

    2010-01-01

    The aim of this study was to determine the rate of employment and to establish the factors affecting vocational status in spinal cord injured patients living in Turkey. One hundred and fifty-two traumatic spinal cord injured patients older than 18 years with injury duration of at least 1 year and living in the community were included in the study;…

  9. Management of sexual disorders in spinal cord injured patients.

    PubMed

    Rahimi-Movaghar, Vafa; Vaccaro, Alexander R

    2012-01-01

    Spinal cord injured (SCI) patients have sexual disorders including erectile dysfunction (ED), impotence, priapism, ejaculatory dysfunction and infertility. Treatments for erectile dysfunction include four steps. Step 1 involves smoking cessation, weight loss, and increasing physical activity. Step 2 is phosphodiesterase type 5 inhibitors (PDE5I) such as Sildenafil (Viagra), intracavernous injections of Papaverine or prostaglandins, and vacuum constriction devices. Step 3 is a penile prosthesis, and Step 4 is sacral neuromodulation (SNM). Priapism can be resolved spontaneously if there is no ischemia found on blood gas measurement or by Phenylephrine. For anejaculatory dysfunction, massage, vibrator, electrical stimulation and direct surgical biopsy can be used to obtain sperm which can then be used for intra-uterine or in-vitro fertilization. Infertility treatment in male SCI patients involves a combination of the above treatments for erectile and anejaculatory dysfunctions. The basic approach to and management of sexual dysfunction in female SCI patients are similar as for men but do not require treatment for erectile or ejaculatory problems. PMID:22837080

  10. Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles

    NASA Astrophysics Data System (ADS)

    Shi, Yunzhou; Kim, Sungwon; Huff, Terry B.; Borgens, Richard B.; Park, Kinam; Shi, Riyi; Cheng, Ji-Xin

    2010-01-01

    Spinal cord injury results in immediate disruption of neuronal membranes, followed by extensive secondary neurodegenerative processes. A key approach for repairing injured spinal cord is to seal the damaged membranes at an early stage. Here, we show that axonal membranes injured by compression can be effectively repaired using self-assembled monomethoxy poly(ethylene glycol)-poly(D,L-lactic acid) di-block copolymer micelles. Injured spinal tissue incubated with micelles (60 nm diameter) showed rapid restoration of compound action potential and reduced calcium influx into axons for micelle concentrations much lower than the concentrations of polyethylene glycol, a known sealing agent for early-stage spinal cord injury. Intravenously injected micelles effectively recovered locomotor function and reduced the volume and inflammatory response of the lesion in injured rats, without any adverse effects. Our results show that copolymer micelles can interrupt the spread of primary spinal cord injury damage with minimal toxicity.

  11. Tamoxifen Promotes Axonal Preservation and Gait Locomotion Recovery after Spinal Cord Injury in Cats.

    PubMed

    de la Torre Valdovinos, Braniff; Duenas Jimenez, Judith Marcela; Estrada, Ismael Jimenez; Banuelos Pineda, Jacinto; Franco Rodriguez, Nancy Elizabeth; Lopez Ruiz, Jose Roberto; Osuna Carrasco, Laura Paulina; Candanedo Arellano, Ahiezer; Duenas Jimenez, Sergio Horacio

    2016-01-01

    We performed experiments in cats with a spinal cord penetrating hemisection at T13-L1 level, with and without tamoxifen treatment. The results showed that the numbers of the ipsilateral and contralateral ventral horn neurons were reduced to less than half in the nontreated animals compared with the treated ones. Also, axons myelin sheet was preserved to almost normal values in treated cats. On the contrary, in the untreated animals, their myelin sheet was reduced to 28% at 30 days after injury (DAI), in both the ipsilateral and contralateral regions of the spinal cord. Additionally, we made hindlimb kinematics experiments to study the effects of tamoxifen on cat locomotion after the injury: at 4, 16, and 30 DAI. We observed that the ipsilateral hindlimb angular displacement (AD) of the pendulum-like movements (PLM) during gait locomotion was recovered to almost normal values in treated cats. Contralateral PLM acquired similar values to those obtained in intact cats. At 4 DAI, untreated animals showed a compensatory increment of PLM occurring in the contralateral hindlimb, which was partially recovered at 30 DAI. Our findings indicate that tamoxifen exerts a neuroprotective effect and preserves or produces myelinated axons, which could benefit the locomotion recovery in injured cats. PMID:27006979

  12. Tamoxifen Promotes Axonal Preservation and Gait Locomotion Recovery after Spinal Cord Injury in Cats

    PubMed Central

    de la Torre Valdovinos, Braniff; Duenas Jimenez, Judith Marcela; Estrada, Ismael Jimenez; Banuelos Pineda, Jacinto; Franco Rodriguez, Nancy Elizabeth; Lopez Ruiz, Jose Roberto; Osuna Carrasco, Laura Paulina; Candanedo Arellano, Ahiezer; Duenas Jimenez, Sergio Horacio

    2016-01-01

    We performed experiments in cats with a spinal cord penetrating hemisection at T13-L1 level, with and without tamoxifen treatment. The results showed that the numbers of the ipsilateral and contralateral ventral horn neurons were reduced to less than half in the nontreated animals compared with the treated ones. Also, axons myelin sheet was preserved to almost normal values in treated cats. On the contrary, in the untreated animals, their myelin sheet was reduced to 28% at 30 days after injury (DAI), in both the ipsilateral and contralateral regions of the spinal cord. Additionally, we made hindlimb kinematics experiments to study the effects of tamoxifen on cat locomotion after the injury: at 4, 16, and 30 DAI. We observed that the ipsilateral hindlimb angular displacement (AD) of the pendulum-like movements (PLM) during gait locomotion was recovered to almost normal values in treated cats. Contralateral PLM acquired similar values to those obtained in intact cats. At 4 DAI, untreated animals showed a compensatory increment of PLM occurring in the contralateral hindlimb, which was partially recovered at 30 DAI. Our findings indicate that tamoxifen exerts a neuroprotective effect and preserves or produces myelinated axons, which could benefit the locomotion recovery in injured cats. PMID:27006979

  13. A clinical report of entangled neonates' umbilical cord with queen's fur in Persian cat

    PubMed Central

    Azari, O; Akhtardanesh, B

    2011-01-01

    A 3-year-old Persian queen was referred to Teaching Veterinary Hospital while 3 neonates' umbilical cords were entangled with the queen's tail hair. Close inspection of the cat showed that the umbilical cords of 3 kittens had twisted around together and entangled with the moms' hairs in the base of tail region. Also this complex has been warped around the left tarsus of one of the involved kittens and caused swelling and skin darkness in the involved limb. Operation was carried out urgently. After cutting the queen's involved hairs the kittens were released. Then the twisted umbilical cords and the hairs were isolated from the umbilical cord and the involved leg was released from the umbilical cords and the twisted umbilical cords were separated from each other. During one week follow up, dry gangrene occurred in the distal extremity of the injured limb and consequently, amputation was performed on the distal part of tibia. Our clinical findings suggest that long hair coats of queens could be a maternal life threatening factor for neonates' life. PMID:23569823

  14. Australian Institute of Sport and the Australian Paralympic Committee position statement: urinary tract infection in spinal cord injured athletes.

    PubMed

    Compton, Stacey; Trease, Larissa; Cunningham, Corey; Hughes, David

    2015-10-01

    Patients with spinal cord injuries are at increased risk of developing symptomatic urinary tract infections. Current evidence-based knowledge regarding prevention and treatment of urinary tract infection in the spinal cord injured population is limited. There are currently no urinary tract infection prevention and management guidelines specifically targeted towards elite spinal cord injured athletes. This position statement represents a set of recommendations intended to provide clinical guidelines for sport and exercise medicine physicians and other healthcare providers for the prevention and treatment of urinary tract infection in spinal cord injured athletes. It has been endorsed by the Australian Institute of Sport (AIS) and the Australian Paralympic Committee (APC). PMID:25869093

  15. Demographic Profile and Athletic Identity of Traumatic Spinal Cord Injured Wheelchair Basketball Athletes in Greece

    ERIC Educational Resources Information Center

    Vasiliadis, Angelo; Evaggelinou, Christina; Avourdiadou, Sevastia; Grekinis, Petros

    2010-01-01

    An epidemiological study conducted across the country of Greece was conducted in order to determine the profile and the athletic identity of spinal cord injured (SCI) wheelchair basketball athletes who participated to the 13th Greek Wheelchair Basketball Championship and Cup. The Disability Sport Participation questionnaire was used for data…

  16. Postservice Psychosocial Adjustment of Former Spinal Cord Injured Rehabilitation Clients. Research Report.

    ERIC Educational Resources Information Center

    Cook, Daniel W.

    A study examined the long-term adjustment of spinal cord-injured vocational rehabilitation clients by isolating major dimensions of postservice adjustment, correlating preservice status with adjustment followup, and by measuring client pre- to postservice psychological change. Three self-report instruments (a needs satisfaction inventory, a goal…

  17. Efficient delivery of small interfering RNA into injured spinal cords in rats by photomechanical waves

    NASA Astrophysics Data System (ADS)

    Ando, Takahiro; Sato, Shunichi; Toyooka, Terushige; Kobayashi, Hiroaki; Nawashiro, Hiroshi; Ashida, Hiroshi; Obara, Minoru

    2011-03-01

    In the central nervous system, lack of axonal regeneration leads to permanent functional disabilities. In spinal cord injury (SCI), the over-expressions of intermediate filament (IF) proteins, such as glial fibrillary acidic protein (GFAP) and vimentin, are mainly involved in glial scar formation; these proteins work as both physical and biochemical barriers to axonal regeneration. Thus, silencing of these IF proteins would be an attractive strategy to treat SCI. In this study, we first attempted to deliver fluorescent probe-labeled siRNAs into injured spinal cords in rats by applying photomechanical waves (PMWs) to examine the capability of PMWs as a tool for siRNA delivery. Intense fluorescence from siRNAs was observed in much broader regions in the spinal cords with PMW application when compared with those with siRNA injection alone. Based on this result, we delivered siRNAs for GFAP and vimentin into injured spinal tissues in rats by applying PMWs. The treatment resulted in efficient silencing of the proteins at five days after SCI and a decrease of the cavity area in the injured tissue at three weeks after SCI when compared with those with siRNA injection alone. These results demonstrate the capability of PMWs for efficient delivery of siRNAs into injured spinal cords and treatment of SCIs.

  18. Peripheral Nerve Grafts after Cervical Spinal Cord Injury in Adult Cats

    PubMed Central

    Côté, Marie-Pascale; Hanna, Amgad; Lemay, Michel A.; Ollivier-Lanvin, Karen; Santi, Lauren; Miller, Kassi; Monaghan, Rebecca; Houlé, John D.

    2010-01-01

    Peripheral nerve grafts (PNG) into the rat spinal cord support axon regeneration after acute or chronic injury, with synaptic reconnection across the lesion site and some level of behavioral recovery. Here, we grafted a peripheral nerve into the injured spinal cord of cats as a preclinical treatment approach to promote regeneration for eventual translational use. Adult female cats received a partial hemisection lesion at the cervical level (C7) and immediate apposition of an autologous tibial nerve segment to the lesion site. Five weeks later, a dorsal quadrant lesion was performed caudally (T1), the lesion site treated with Chondroitinase ABC two days later to digest growth inhibiting extracellular matrix molecules, and the distal end of the PNG apposed to the injury site. After 4–20 weeks, the grafts survived in 10/12 animals with several thousand myelinated axons present in each graft. The distal end of 9/10 grafts was well apposed to the spinal cord and numerous axons extended beyond the lesion site. Intraspinal stimulation evoked compound action potentials in the graft with an appropriate latency illustrating normal axonal conduction of the regenerated axons. Although stimulation of the PNG failed to elicit responses in the spinal cord distal to the lesion site, the presence of c-Fos immunoreactive neurons close to the distal apposition site indicates that regenerated axons formed functional synapses with host neurons. This study demonstrates the successful application of a nerve grafting approach to promote regeneration after spinal cord injury in a non-rodent, large animal model. PMID:20599980

  19. Plasma glutamine concentration in spinal cord injured patients.

    PubMed

    Rogeri, P S; Costa Rosa, L F B P

    2005-09-23

    Glutamine, a non-essential amino acid, is the most important source of energy for macrophages and lymphocytes. Reduction in its plasma concentration is related with loss of immune function, as leukocyte proliferation and cytokine production. It is well known that glutamine is largely produced by the skeletal muscle which is severely compromised as a consequence of the paralysis due to the damage of the spinal cord. In spinal cord injury (SCI) patients, infections, such as pneumonia and sepsis in general, are a major cause of morbidity and mortality. In comparison with the control group, a 54% decrease in plasma glutamine concentration was observed as well as a decrease in the production of TNF and IL-1 by peripheral blood mononuclear cells cultivated for 48 h in SCI patients. Therefore, we propose that a decrease in plasma glutamine concentration is an important contributor to the immunosuppression seen in SCI patients. PMID:16024049

  20. Pharmacological approaches to repair the injured spinal cord.

    PubMed

    Baptiste, Darryl C; Fehlings, Michael G

    2006-01-01

    Acute traumatic spinal cord injury (SCI) results in a devastating loss of neurological function below the level of injury and adversely affects multiple systems within the body. The pathobiology of SCI involves a primary mechanical insult to the spinal cord and activation of a delayed secondary cascade of events, which ultimately causes progressive degeneration of the spinal cord. Whereas cell death from the mechanical injury is predominated by necrosis, secondary injury events trigger a continuum of necrotic and apoptotic cell death mechanisms. These secondary events include vascular abnormalities, ischemia-reperfusion, glutamate excitotoxicity and disturbances in ionic homeostasis, oxidative cell injury, and a robust inflammatory response. No gold standard therapy for SCI has been established, although clinical trials with methylprednisolone (NASCIS II and III) and GM-1 ganglioside (Maryland and Sygen) have demonstrated modest, albeit potentially important therapeutic benefits. In light of the overwhelming impact of SCI on the individual, other therapeutic interventions are urgently needed. A number of promising pharmacological therapies are currently under investigation for neuroprotective abilities in animal models of SCI. These include the sodium (Na+) channel blocker riluzole, the tetracycline derivative minocycline, the fusogen copolymer polyethylene glycol (PEG), and the tissue-protective hormone erythropoietin (EPO). Moreover, clinical trials investigating the putative neuroprotective and neuroregenerative properties ascribed to the Rho pathway antagonist, Cethrin (BioAxone Therapeutic, Inc.), and implantation of activated autologous macrophages (ProCord; Proneuron Biotechnologies) in patients with thoracic and cervical SCI are now underway. We anticipate that these studies will harken an era of renewed interest in translational clinical trials. Ultimately, due to the multi-factorial pathophysiology of traumatic SCI, effective therapies will require

  1. [The spinal cord injured patient: semen quality and management by Assisted Reproductive Technology].

    PubMed

    Perrin, J; Saïas-Magnan, J; Thiry-Escudié, I; Gamerre, M; Serment, G; Grillo, J-M; Guillemain, C; Karsenty, G

    2010-09-01

    Men with spinal cord injury present a unique infertile population. Only 10 % of them can father children without medical assistance, owing to potential impairments in erection, ejaculation and semen quality. The algorithm typically followed is to retrieve semen by Penile Vibratory Stimulation, in case of failure by Electro Ejaculation. Most of these patients have normal sperm concentrations but abnormally low sperm motility and vitality in the ejaculate. The reasons for poor semen quality in spinal cord injured men are reviewed. If semen cannot be obtained by Electro Ejaculation, or if the ejaculate from Penile Vibratory Stimulation or Electro Ejaculation contains an insufficient quantity or quality of sperm for in vitro fertilization with intracytoplasmic sperm injection, then retrieval of sperm from reproductive tissues is attempted. Despite abnormal semen quality, successful pregnancies with sperm from spinal cord injured male partners have occurred by intravaginal insemination, intrauterine insemination, and in vitro fertilization with intracytoplasmic sperm injection. The prevailing pregnancy and fecundity rates in couples with a spinal cord injured male partner are reviewed. PMID:20705499

  2. Expansion Duroplasty Improves Intraspinal Pressure, Spinal Cord Perfusion Pressure, and Vascular Pressure Reactivity Index in Patients with Traumatic Spinal Cord Injury: Injured Spinal Cord Pressure Evaluation Study

    PubMed Central

    Phang, Isaac; Werndle, Melissa C.; Saadoun, Samira; Varsos, Georgios; Czosnyka, Marek; Zoumprouli, Argyro

    2015-01-01

    Abstract We recently showed that, after traumatic spinal cord injury (TSCI), laminectomy does not improve intraspinal pressure (ISP), spinal cord perfusion pressure (SCPP), or the vascular pressure reactivity index (sPRx) at the injury site sufficiently because of dural compression. This is an open label, prospective trial comparing combined bony and dural decompression versus laminectomy. Twenty-one patients with acute severe TSCI had re-alignment of the fracture and surgical fixation; 11 had laminectomy alone (laminectomy group) and 10 had laminectomy and duroplasty (laminectomy+duroplasty group). Primary outcomes were magnetic resonance imaging evidence of spinal cord decompression (increase in intradural space, cerebrospinal fluid around the injured cord) and spinal cord physiology (ISP, SCPP, sPRx). The laminectomy and laminectomy+duroplasty groups were well matched. Compared with the laminectomy group, the laminectomy+duroplasty group had greater increase in intradural space at the injury site and more effective decompression of the injured cord. In the laminectomy+duroplasty group, ISP was lower, SCPP higher, and sPRx lower, (i.e., improved vascular pressure reactivity), compared with the laminectomy group. Laminectomy+duroplasty caused cerebrospinal fluid leak that settled with lumbar drain in one patient and pseudomeningocele that resolved completely in five patients. We conclude that, after TSCI, laminectomy+duroplasty improves spinal cord radiological and physiological parameters more effectively than laminectomy alone. PMID:25705999

  3. Transcutaneous minoxidil in the treatment of erectile dysfunctions in spinal cord injured men.

    PubMed

    Beretta, G; Saltarelli, O; Marzotto, M; Zanollo, A; Re, B

    1993-01-01

    We have tested the erectile effect of a topical applied drug (Minoxidil) in 15 spinal cord injured men. Minoxidil exerts a direct relaxant effect on arterial smooth muscles. This topical vasodilatory agent (1 ml of a 2% solution) was applied on the skin of the penile shaft. Increases in diameter and rigidity were measured with the RigiScan device (Dacomed Minneapolis, Minnesota). A total of 4 paraplegic men with a complete dorsal level lesion reported a positive erectile response. 3 of these 4 patients preferred to continue with this noninvasive treatment compared to prostaglandin E1 intracavernous injections. In our study no side effects were emerged and minoxidil proved to be well tolerated at the cutaneous level of the penis. Our results indicate that this treatment should be tested in spinal cord injured men before a invasive therapy is initiated. PMID:8303971

  4. Regional lung perfusion and ventilation with radioisotopes in cervical cord-injured patients

    SciTech Connect

    Hiraizumi, Y.; Fujimaki, E.; Hishida, T.; Maruyama, T.; Takeuchi, M.

    1986-05-01

    In general, cervical cord-injured patients present with restrictive pulmonary dysfunction resulting from paralysis of the intercostal muscles. Vital capacity frequently decreases below 50% of that in normal subjects, and their respiratory pattern frequently includes paradoxical movement in which the intercostal spaces sink and the abdomen distends at inspiration. Ventilation scintigraphy using Xe-133 and pulmonary perfusion scintigraphy using Tc-99m macroaggregated albumin (MAA) were performed on nine cervical cord-injured patients and four normal subjects to investigate regional lung functions in the cervical cord-injured patients. Pulmonary perfusion scintigraphy, in which measurement was made in the supine position, revealed no differences between the patients and the normal subjects. The inhomogeneous ventilation/perfusion distribution was presumed to have resulted from change in regional intrapleural pressure due to paradoxical movement of the thoracic cage. Washing and washout times were prolonged by paralysis of the intercostal muscles. These phenomena were particularly apparent in the upper and middle lung regions where compensating action by movement of the diaphragm is small.

  5. Functional Electrical Stimulation Helps Replenish Progenitor Cells in the Injured Spinal Cord of Adult Rats

    PubMed Central

    Becker, Daniel; Gary, Devin S.; Rosenzweig, Ephron S.; Grill, Warren M.; McDonald, John W.

    2010-01-01

    Functional electrical stimulation (FES) can restore control and offset atrophy to muscles after neurological injury. However, FES has not been considered as a method for enhancing CNS regeneration. This paper demonstrates that FES dramatically enhanced progenitor cell birth in the spinal cord of rats with a chronic spinal cord injury (SCI). A complete SCI at thoracic level 8/9 was performed on 12 rats. Three weeks later, a FES device to stimulate hindlimb movement was implanted into these rats. Twelve identically-injured rats received inactive FES implants. An additional control group of uninjured rats were also examined. Ten days after FES implantation, dividing cells were marked with bromodeoxyuridine (BrdU). The ‘cell birth’ subgroup (half the animals in each group) was sacrificed immediately after completion of BrdU administration, and the ‘cell survival’ subgroup was sacrificed 7 days later. In the injured ‘cell birth’ subgroup, FES induced an 82-86 % increase in cell birth in the lumbar spinal cord. In the injured ‘cell survival’ subgroup, the increased lumbar newborn cell counts persisted. FES doubled the proportion of the newly-born cells which expressed nestin and other markers suggestive of tripotential progenitors. In uninjured rats, FES had no effect on cell birth/survival. This report suggests that controlled electrical activation of the CNS may enhance spontaneous regeneration after neurological injuries. PMID:20059998

  6. The Rheb-mTOR pathway is upregulated in reactive astrocytes of the injured spinal cord

    PubMed Central

    Codeluppi, Simone; Svensson, Camilla I.; Hefferan, Michael P.; Valencia, Fatima; Silldorff, Morgan D.; Marsala, Martin; Pasquale, Elena B.

    2009-01-01

    Astrocytes in the central nervous system respond to tissue damage by becoming reactive. They migrate, undergo hypertrophy, and form a glial scar that inhibits axon regeneration. Therefore, limiting astrocytic responses represents a potential therapeutic strategy to improve functional recovery. It was recently shown that the epidermal growth factor (EGF) receptor is upregulated in astrocytes after injury and promotes their transformation into reactive astrocytes. Furthermore, EGF receptor inhibitors were shown to enhance axon regeneration in the injured optic nerve and promote recovery after spinal cord injury. However, the signaling pathways involved were not elucidated. Here we show that in cultures of adult spinal cord astrocytes EGF activates the mTOR pathway, a key regulator of astrocyte physiology. This occurs through Akt-mediated phosphorylation of the GTPase-activating protein Tuberin, which inhibits Tuberin’s ability to inactivate the small GTPase Rheb. Indeed, we found that Rheb is required for EGF-dependent mTOR activation in spinal cord astrocytes, whereas the Ras-MAP kinase pathway does not appear to be involved. Moreover, astrocyte growth and EGF-dependent chemoattraction were inhibited by the mTOR-selective drug rapamycin. We also detected elevated levels of activated EGF receptor and mTOR signaling in reactive astrocytes in vivo in an ischemic model of spinal cord injury. Furthermore, increased Rheb expression likely contributes to mTOR activation in the injured spinal cord. Interestingly, injured rats treated with rapamycin showed reduced signs of reactive gliosis, suggesting that rapamycin could be used to harness astrocytic responses in the damaged nervous system to promote an environment more permissive to axon regeneration. PMID:19176818

  7. The Rheb-mTOR pathway is upregulated in reactive astrocytes of the injured spinal cord.

    PubMed

    Codeluppi, Simone; Svensson, Camilla I; Hefferan, Michael P; Valencia, Fatima; Silldorff, Morgan D; Oshiro, Masakatsu; Marsala, Martin; Pasquale, Elena B

    2009-01-28

    Astrocytes in the CNS respond to tissue damage by becoming reactive. They migrate, undergo hypertrophy, and form a glial scar that inhibits axon regeneration. Therefore, limiting astrocytic responses represents a potential therapeutic strategy to improve functional recovery. It was recently shown that the epidermal growth factor (EGF) receptor is upregulated in astrocytes after injury and promotes their transformation into reactive astrocytes. Furthermore, EGF receptor inhibitors were shown to enhance axon regeneration in the injured optic nerve and promote recovery after spinal cord injury. However, the signaling pathways involved were not elucidated. Here we show that in cultures of adult spinal cord astrocytes EGF activates the mTOR pathway, a key regulator of astrocyte physiology. This occurs through Akt-mediated phosphorylation of the GTPase-activating protein Tuberin, which inhibits Tuberin's ability to inactivate the small GTPase Rheb. Indeed, we found that Rheb is required for EGF-dependent mTOR activation in spinal cord astrocytes, whereas the Ras-MAP kinase pathway does not appear to be involved. Moreover, astrocyte growth and EGF-dependent chemoattraction were inhibited by the mTOR-selective drug rapamycin. We also detected elevated levels of activated EGF receptor and mTOR signaling in reactive astrocytes in vivo in an ischemic model of spinal cord injury. Furthermore, increased Rheb expression likely contributes to mTOR activation in the injured spinal cord. Interestingly, injured rats treated with rapamycin showed reduced signs of reactive gliosis, suggesting that rapamycin could be used to harness astrocytic responses in the damaged nervous system to promote an environment more permissive to axon regeneration. PMID:19176818

  8. Suspension Matrices for Improved Schwann-Cell Survival after Implantation into the Injured Rat Spinal Cord

    PubMed Central

    Patel, Vivek; Joseph, Gravil; Patel, Amit; Patel, Samik; Bustin, Devin; Mawson, David; Tuesta, Luis M.; Puentes, Rocio; Ghosh, Mousumi

    2010-01-01

    Abstract Trauma to the spinal cord produces endogenously irreversible tissue and functional loss, requiring the application of therapeutic approaches to achieve meaningful restoration. Cellular strategies, in particular Schwann-cell implantation, have shown promise in overcoming many of the obstacles facing successful repair of the injured spinal cord. Here, we show that the implantation of Schwann cells as cell suspensions with in-situ gelling laminin:collagen matrices after spinal-cord contusion significantly enhances long-term cell survival but not proliferation, as well as improves graft vascularization and the degree of axonal in-growth over the standard implantation vehicle, minimal media. The use of a matrix to suspend cells prior to implantation should be an important consideration for achieving improved survival and effectiveness of cellular therapies for future clinical application. PMID:20144012

  9. Morphometry of an Ischemic Lesion of Cat Spinal Cord

    PubMed Central

    Shay, Jonathan

    1973-01-01

    Profiles in random electron micrographs of anterior gray matter of normal and ischemic cat spinal cord were measured with a planimetric computer. Analysis of 5600 area measurements revealed the following differences. Mitochondria of neuron cell bodies, axons, axon terminals and astrocytic processes were two to three times larger after ischemia. However, only 15% of mitochondria of axons and axon terminals and 5% of astrocytic processes lost their matrix density and pattern of cristae, compared to 49% of mitochondria of neuron cell bodies. Ischemia caused no significant changes in mean sizes of axons or axon terminals. Lysosomes in neurons were unchanged. The mean size of astrocytic processes increased more than threefold. PMID:4728890

  10. Modeling of spontaneous zero-lag synchronization and wave propagation in cat spinal cord

    NASA Astrophysics Data System (ADS)

    Kato, H.; Cuellar, C. A.; Delgado-Lezama, R.; Rudomin, P.; Jiménez, I.; Manjarrez, E.; Mirasso, C. R.

    2013-01-01

    In this study, we proposed a simple but physiologically plausible network model that can reproduce both the sinusoidal electrical wave propagation and the spontaneous zero-lag synchronization experimentally observed in the cat spinal cord. Our model enhances the hypothesis of the coexistence of two alternative assemblies in the cat spinal cord.

  11. Membrane lipid changes in laminectomized and traumatized cat spinal cord.

    PubMed Central

    Demediuk, P; Saunders, R D; Anderson, D K; Means, E D; Horrocks, L A

    1985-01-01

    Free fatty acid (FFA), diacylglycerol (acyl2Gro), icosanoid, phospholipid, and cholesterol levels were measured in samples of cat spinal cord (L2) that were frozen in situ with vertebrae intact, at various times after laminectomy, and at various times after laminectomy with compression trauma to the spinal cord. Tissue samples either were grossly dissected into gray and white portions prior to FFA and acyl2Gro analysis or were used whole for the other lipid types. Gray matter total FFA and acyl2Gro values were abnormally high in samples frozen with vertebrae intact and in those frozen 10 min after laminectomy. This indicates that the surgical procedures resulted in some perturbation of spinal cord lipid metabolism. If the experimental animals were allowed to recover for 90 min after laminectomy, the gray matter FFA and acyl2Gro levels were greatly reduced. Compression of the spinal cord with a 170-g weight for 1, 3, or 5 min (following 90 min of recovery after laminectomy) caused significant elevations of total FFA, acyl2Gro, icosanoids, and phosphatidic acid and significant decreases in ethanolamine plasmalogens and cholesterol. Among the total FFA, arachidonic acid was found to have the largest relative increase. Comparisons of gray and white matter demonstrate that, in general, changes in white matter FFA and acyl2Gro were similar to those seen in gray matter. However, the increases in white matter levels of FFA and acyl2Gro were delayed, occurring after the elevations in gray matter. For some FFA (e.g., arachidonate), the rise in white matter occurred as gray matter levels were decreasing. This suggests that the initial alteration in spinal cord lipid metabolism after trauma was in gray matter but, with time, spread radially into white matter. PMID:3863139

  12. Transplantation of choroid plexus epithelial cells into contusion-injured spinal cord of rats

    PubMed Central

    Kanekiyo, Kenji; Nakano, Norihiko; Noda, Toru; Yamada, Yoshihiro; Suzuki, Yoshihisa; Ohta, Masayoshi; Yokota, Atsushi; Fukushima, Masanori; Ide, Chizuka

    2016-01-01

    Purpose: The effect of the transplantation of choroid plexus epithelial cells (CPECs) on locomotor improvement and tissue repair including axonal extension in spinal cord lesions was examined in rats with spinal cord injury (SCI). Methods: CPECs were cultured from the choroid plexus of green fluorescent protein (GFP)-transgenic rats, and transplanted directly into the contusion-injured spinal cord lesions of rats of the same strain. Locomotor behaviors were evaluated based on BBB scores every week after transplantation until 4 weeks after transplantation. Histological and immunohistochemical examinations were performed at 2 days, and every week until 5 weeks after transplantation. Results: Locomotor behaviors evaluated by the BBB score were significantly improved in cell-transplanted rats. Numerous axons grew, with occasional interactions with CPECs, through the astrocyte-devoid areas. These axons exhibited structural characteristics of peripheral nerves. GAP-43-positive axons were found at the border of the lesion 2 days after transplantation. Cavity formation was more reduced in cell-transplanted than control spinal cords. CPECs were found within the spinal cord lesion, and sometimes in association with astrocytes at the border of the lesion until 2 weeks after transplantation. Conclusion: The transplantation of CPECs enhanced locomotor improvement and tissue recovery, including axonal regeneration, in rats with SCI. PMID:26923614

  13. Time-related effects of general functional training in spinal cord-injured rats

    PubMed Central

    Miranda, Taisa Amoroso Bortolato; Vicente, Juliana Mendes Yule; Marcon, Raphael Martus; Cristante, Alexandre Fogaça; Morya, Edgard; do Valle, Angela Cristina

    2012-01-01

    OBJECTIVES: This prospective, randomized, experimental study with rats aimed to investigate the influence of general treatment strategies on the motor recovery of Wistar rats with moderate contusive spinal cord injury. METHODS: A total of 51 Wistar rats were randomized into five groups: control, maze, ramp, runway, and sham (laminectomy only). The rats underwent spinal cord injury at the T9-T10 levels using the NYU-Impactor. Each group was trained for 12 minutes twice a week for two weeks before and five weeks after the spinal cord injury, except for the control group. Functional motor recovery was assessed with the Basso, Beattie, and Bresnahan Scale on the first postoperative day and then once a week for five weeks. The animals were euthanized, and the spinal cords were collected for histological analysis. RESULTS: Ramp and maze groups showed an earlier and greater functional improvement effect than the control and runway groups. However, over time, unexpectedly, all of the groups showed similar effects as the control group, with spontaneous recovery. There were no histological differences in the injured area between the trained and control groups. CONCLUSION: Short-term benefits can be associated with a specific training regime; however, the same training was ineffective at maintaining superior long-term recovery. These results might support new considerations before hospital discharge of patients with spinal cord injuries. PMID:22892926

  14. Imaging corticospinal tract connectivity in injured rat spinal cord using manganese-enhanced MRI

    PubMed Central

    Bilgen, Mehmet

    2006-01-01

    Background Manganese-enhanced MRI (MEI) offers a novel neuroimaging modality to trace corticospinal tract (CST) in live animals. This paper expands this capability further and tests the utility of MEI to image axonal fiber connectivity in CST of injured spinal cord (SC). Methods A rat was injured at the thoracic T4 level of the SC. The CST was labeled with manganese (Mn) injected intracortically at two weeks post injury. Next day, the injured SC was imaged using MEI and diffusion tensor imaging (DTI) modalities. Results In vivo MEI data obtained from cervical SC confirmed that CST was successfully labeled with Mn. Ex vivo MEI data obtained from excised SC depicted Mn labeling of the CST in SC sections caudal to the lesion, which meant that Mn was transported through the injury, possibly mediated by viable CST fibers present at the injury site. Examining the ex vivo data from the injury epicenter closely revealed a thin strip of signal enhancement located ventrally between the dorsal horns. This enhancement was presumably associated with the Mn accumulation in these intact fibers projecting caudally as part of the CST. Additional measurements with DTI supported this view. Conclusion Combining these preliminary results collectively demonstrated the feasibility of imaging fiber connectivity in experimentally injured SC using MEI. This approach may play important role in future investigations aimed at understanding the neuroplasticity in experimental SCI research. PMID:17112375

  15. A psychological study of spinal cord injured patients involved in the Madras Paraplegia Project.

    PubMed

    Somasundaram, O; Balakrishnan, S; Ravindran, O S; Shanmugasundaram, T K

    1992-11-01

    The psychological features of spinal cord injured (SCI) patients involved in the Madras Paraplegia Project are described. Three hundred and twenty-eight patients were studied. Based on personality tests, 11% were extroverts, 14% were introverts and 76% were neither extroverts nor introverts. Twenty-four percent of the subjects were neurotic, 11% had a depressive illness, and 26% had pathological anxiety. The study has highlighted the psychological status of SCI patients, and the usefulness of a psychiatric team in the multidisciplinary care of such patients. This is probably the first large psychological study of SCI patients from a developing country. PMID:1484733

  16. Multidisciplinary approach to sex education of spinal cord-injured patients.

    PubMed

    Evans, R L; Halar, E M; DeFreece, A B; Larsen, G L

    1976-05-01

    The need for sex education of spinal cord-injured patients is often unmet by current rehabilitation programs. In the programs which do exist, therapeutic objectives vary widely, indicating a need for clarity and communication among professionals. An interdisciplinary approach to evaluating and treating sexual dysfunction is described which provides information to patients and families about sexual disorders related to spinal injury and offers counseling services to patients experiencing problems in their altered sex relations. Physiological, psychological, and social aspects of human sexuality as they are integrated into a multidisciplinary sex education program are discussed with specific recommendations for content which should be included in the information-giving counseling process. PMID:1265117

  17. Victims of gun shootings. A retrospective study of 36 spinal cord injured adolescents.

    PubMed

    Graham, P M; Weingarden, S I

    1989-11-01

    Interpersonal violence with a handgun is the primary cause of spinal cord injuries (SCI) among teenagers in the population served by the Southeastern Michigan Spinal Cord Injury System (SEMSCIS). As part of a community-wide effort to reduce the injury and death rate from acts of violence, SEMSCIS selected the victim, rather than the perpetrator or the sociocultural environment, as its segment of a prevention program. A retrospective study of demographic data, causal statements, medical information from the medical records of 36 injured adolescents, and telephone conversations with the victims identified "risk taking" as the pre-event behavior that had made them vulnerable to violence. This study led to the production of a powerful video, "Wasted Dreams," in which disabled teenagers tell their peers about their injury and how to avoid becoming a victim. PMID:2606753

  18. Behavioral and Histopathological Study of Changes in Spinal Cord Injured Rats Supplemented with Spirulina platensis

    PubMed Central

    Che Ramli, Muhammad Danial

    2014-01-01

    Spinal cord injury (SCI) is a devastating disease that leads to permanent disability and causes great suffering. The resulting neurological dysfunction and paralysis is proportional to the severity of the trauma itself. Spirulina is widely used as a nutritional supplement due to its high protein and antioxidant content. In the present study, the protective effect of the Spirulina treatment on locomotor function and morphological damage after SCI was investigated. Seventy Sprague-Dawley (SD) rats were divided into three groups: Sham (laminectomy alone), Control (laminectomy with SCI), and Experimental (laminectomy with SCI +180 mg/kg per day Spirulina platensis). A laminectomy was performed at T12 and an Inox No.2 modified forceps was used to perform a partial crush injury on the spinal cord. The rats were then perfused at 3, 7, 14, 21, and 28 days after injury for morphological investigations. The injured rat spinal cord indicated a presence of hemorrhage, cavity, and necrosis. Pretreatment with Spirulina significantly improved the locomotor function and showed a significant reduction on the histological changes. The experimental results observed in this study suggest that treatment with Spirulina platensis possesses potential benefits in improving hind limb locomotor function and reducing morphological damage to the spinal cord. PMID:25152764

  19. Understanding physical activity participation in spinal cord injured populations: Three narrative types for consideration.

    PubMed

    Papathomas, Anthony; Williams, Toni L; Smith, Brett

    2015-01-01

    The aim of this study was to identity the types of physical activity narratives drawn upon by active spinal injured people. More than 50 h of semi-structured life-story interview data, collected as part of larger interdisciplinary program of disability lifestyle research, was analysed for 30 physically active male and female spinal cord injury (SCI) participants. A structural narrative analysis of data identified three narrative types which people with SCI draw on: (1) exercise is restitution, (2) exercise is medicine, and (3) exercise is progressive redemption. These insights contribute new knowledge by adding a unique narrative perspective to existing cognitive understanding of physical activity behaviour in the spinal cord injured population. The implications of this narrative typology for developing effective positive behavioural change interventions are critically discussed. It is concluded that the identified narratives types may be constitutive, as well as reflective, of physical activity experiences and therefore may be a useful tool on which to base physical activity promotion initiatives. PMID:26282868

  20. Understanding physical activity participation in spinal cord injured populations: Three narrative types for consideration

    PubMed Central

    Papathomas, Anthony; Williams, Toni L.; Smith, Brett

    2015-01-01

    The aim of this study was to identity the types of physical activity narratives drawn upon by active spinal injured people. More than 50 h of semi-structured life-story interview data, collected as part of larger interdisciplinary program of disability lifestyle research, was analysed for 30 physically active male and female spinal cord injury (SCI) participants. A structural narrative analysis of data identified three narrative types which people with SCI draw on: (1) exercise is restitution, (2) exercise is medicine, and (3) exercise is progressive redemption. These insights contribute new knowledge by adding a unique narrative perspective to existing cognitive understanding of physical activity behaviour in the spinal cord injured population. The implications of this narrative typology for developing effective positive behavioural change interventions are critically discussed. It is concluded that the identified narratives types may be constitutive, as well as reflective, of physical activity experiences and therefore may be a useful tool on which to base physical activity promotion initiatives. PMID:26282868

  1. Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals.

    PubMed

    Jasiewicz, Jan M; Allum, John H J; Middleton, James W; Barriskill, Andrew; Condie, Peter; Purcell, Brendan; Li, Raymond Che Tin

    2006-12-01

    We report on three different methods of gait event detection (toe-off and heel strike) using miniature linear accelerometers and angular velocity transducers in comparison to using standard pressure-sensitive foot switches. Detection was performed with normal and spinal-cord injured subjects. The detection of end contact (EC), normally toe-off, and initial contact (IC) normally, heel strike was based on either foot linear accelerations or foot sagittal angular velocity or shank sagittal angular velocity. The results showed that all three methods were as accurate as foot switches in estimating times of IC and EC for normal gait patterns. In spinal-cord injured subjects, shank angular velocity was significantly less accurate (p<0.02). We conclude that detection based on foot linear accelerations or foot angular velocity can correctly identify the timing of IC and EC events in both normal and spinal-cord injured subjects. PMID:16500102

  2. Evaluation of optimal electrode configurations for epidural spinal cord stimulation in cervical spinal cord injured rats

    PubMed Central

    Alam, Monzurul; Garcia-Alias, Guillermo; Shah, Prithvi K.; Gerasimenko, Yury; Zhong, Hui; Roy, Roland R.; Edgerton, V. Reggie

    2015-01-01

    Background Epidural spinal cord stimulation is a promising technique for modulating the level of excitability and reactivation of dormant spinal neuronal circuits after spinal cord injury (SCI). We examined the ability of chronically implanted epidural stimulation electrodes within the cervical spinal cord to (1) directly elicit spinal motor evoked potentials (sMEPs) in forelimb muscles and (2) determine whether these sMEPs can serve as a biomarker of forelimb motor function after SCI. New method We implanted EMG electrodes in forelimb muscles and epidural stimulation electrodes at C6 and C8 in adult rats. After recovering from a dorsal funiculi crush (C4), rats were tested with different stimulation configurations and current intensities to elicit sMEPs and determined forelimb grip strength. Results: sMEPs were evoked in all muscles tested and their characteristics were dependent on electrode configurations and current intensities. C6(−) stimulation elicited more robust sMEPs than stimulation at C8(−). Stimulating C6 and C8 simultaneously produced better muscle recruitment and higher grip strengths than stimulation at one site. Comparison with existing method(s) Classical method to select the most optimal stimulation configuration is to empirically test each combination individually for every subject and relate to functional improvements. This approach is impractical, requiring extensively long experimental time to determine the more effective stimulation parameters. Our proposed method is fast and physiologically sound. Conclusions Results suggest that sMEPs from forelimb muscles can be useful biomarkers for identifying optimal parameters for epidural stimulation of the cervical spinal cord after SCI. PMID:25791014

  3. Temporal kinetics of macrophage polarization in the injured rat spinal cord.

    PubMed

    Chen, Yue-Juan; Zhu, Hai; Zhang, Nan; Shen, Lin; Wang, Rui; Zhou, Jian-Sheng; Hu, Jian-Guo; Lü, He-Zuo

    2015-10-01

    Local activated macrophages derived from infiltrating monocytes play an important role in the damage and repair process of spinal cord injury (SCI). The present study investigates the dynamic change of classically activated proinflammatory (M1) and alternatively activated anti-inflammatory (M2) cells in a rat model with contusive SCI by flow cytometry (FCM) and immunohistochemistry. The macrophage subsets were immunophenotyped by using antibodies against cluster of differentiation (CD)-68, C-C chemokine receptor type 7 (CCR7), CD163, and arginase 1 (Arg1). The CD68(+) CD163(-) and CD68(+) CCR7(+) cells were determined to be M1 subsets, whereas the CD68(+) CD163(+) and CD68(+) Arg1(+) cell subpopulations represented M2 cells. The subsets of macrophages in the injured spinal cord at 1, 3, 5, 7, 14, and 28 days postinjury (dpi) were examined. In the sham-opened spinal cord, few M1 or M2 cells were found. After SCI, the phenotypes of both M1 and M2 cells were rapidly induced. However, M1 cells were detected and maintained at a high level for up to 28 dpi (the longest time evaluated in this study). In contrast, M2 cells were transiently detected at high levels before 7 dpi and returned to preinjury levels at 14 dpi. These results indicate that M1 cell response is rapidly induced and sustained, whereas M2 induction is transient after SCI in rat. Increasing the fraction of M2 cells and prolonging their residence time in the injured local microenvironment is a promising strategy for the repair of SCI. PMID:26096572

  4. A novel device for studying weight supported, quadrupedal overground locomotion in spinal cord injured rats

    PubMed Central

    Hamlin, Marvin; Traughber, Terrance; Reinkensmeyer, David J.; de Leon, Ray D.

    2015-01-01

    Background Providing weight support facilitates locomotion in spinal cord injured animals. To control weight support, robotic systems have been developed for treadmill stepping and more recently for overground walking. New Method We developed a novel device, the body weight supported ambulatory rodent trainer (i.e. BART). It has a small pneumatic cylinder that moves along a linear track above the rat. When air is supplied to the cylinder, the rats are lifted as they perform overground walking. We tested the BART device in rats that received a moderate spinal cord contusion injury and in normal rats. Locomotor training with the BART device was not performed. Results All of the rats learned to walk in the BART device. In the contused rats, significantly greater paw dragging and dorsal stepping occurred in the hindlimbs compared to normal. Providing weight support significantly raised hip position and significantly reduced locomotor deficits. Hindlimb stepping was tightly coupled to forelimb stepping but only when the contused rats stepped without weight support. Three weeks after the contused rats received a complete spinal cord transection, significantly fewer hindlimb steps were performed. Comparison with Existing Methods Relative to rodent robotic systems, the BART device is a simpler system for studying overground locomotion. The BART device lacks sophisticated control and sensing capability, but it can be assembled relatively easily and cheaply. Conclusions These findings suggest that the BART device is a useful tool for assessing quadrupedal, overground locomotion which is a more natural form of locomotion relative to treadmill locomotion. PMID:25794460

  5. Guiding migration of transplanted glial progenitor cells in the injured spinal cord

    PubMed Central

    Yuan, Xiao-bing; Jin, Ying; Haas, Christopher; Yao, Lihua; Hayakawa, Kazuo; Wang, Yue; Wang, Chunlei; Fischer, Itzhak

    2016-01-01

    Transplantation of glial-restricted progenitors (GRPs) is a promising strategy for generating a supportive environment for axon growth in the injured spinal cord. Here we explored the possibility of producing a migratory stream of GRPs via directional cues to create a supportive pathway for axon regeneration. We found that the axon growth inhibitor chondroitin sulfate proteoglycan (CSPG) strongly inhibited the adhesion and migration of GRPs, an effect that could be modulated by the adhesion molecule laminin. Digesting glycosaminoglycan side chains of CSPG with chondroitinase improved GRP migration on stripes of CSPG printed on cover glass, although GRPs were still responsive to the remaining repulsive signals of CSPG. Of all factors tested, the basic fibroblast growth factor (bFGF) had the most significant effect in promoting the migration of cultured GRPs. When GRPs were transplanted into either normal spinal cord of adult rats or the injury site in a dorsal column hemisection model of spinal cord injury, a population of transplanted cells migrated toward the region that was injected with the lentivirus expressing chondroitinase or bFGF. These findings suggest that removing CSPG-mediated inhibition, in combination with guidance by attractive factors, can be a promising strategy to produce a migratory stream of supportive GRPs. PMID:26971438

  6. Chronic Expression of PPAR-δ by Oligodendrocyte Lineage Cells in the Injured Rat Spinal Cord

    PubMed Central

    Almad, Akshata; McTigue, Dana M.

    2014-01-01

    The transcription factor peroxisome proliferator-activated receptor (PPAR)-δ promotes oligodendrocyte differentiation and myelin formation in vitro and is prevalent throughout the brain and spinal cord. Its expression after injury, however, has not been examined. Thus, we used a spinal contusion model to examine the spatiotemporal expression of PPAR-δ in naïve and injured spinal cords from adult rats. As previously reported, PPAR-δ was expressed by neurons and oligodendrocytes in uninjured spinal cords; PPAR-δ was also detected in NG2 cells (potential oligodendrocyte progenitors) within the white matter and gray matter. After spinal cord injury (SCI), PPAR-δ mRNA and protein were present early and increased over time. Overall PPAR-δ+ cell numbers declined at 1 day post injury (dpi), likely reflecting neuron loss, and then rose through 14 dpi. A large proportion of NG2 cells expressed PPAR-δ after SCI, especially along lesion borders. PPAR-δ+ NG2 cell numbers were significantly higher than naive by 7 dpi and remained elevated through at least 28 dpi. PPAR-δ+ oligodendrocyte numbers declined at 1 dpi and then increased over time such that >20% of oligodendrocytes expressed PPAR-δ after SCI compared with ~10% in uninjured tissue. The most prominent increase in PPAR-δ+ oligodendrocytes was along lesion borders where at least a portion of newly generated oligodendrocytes (bromode-oxyuridine +) were PPAR-δ+. Consistent with its role in cellular differentiation, the early rise in PPAR-δ+ NG2 cells followed by an increase in new PPAR-δ+ oligodendrocytes suggests that this transcription factor may be involved in the robust oligodendrogenesis detected previously along SCI lesion borders. PMID:20058304

  7. Mapping Lipid Alterations in Traumatically Injured Rat Spinal Cord by Desorption Electrospray Ionization Imaging Mass Spectrometry

    PubMed Central

    Girod, Marion; Shi, Yunzhou; Cheng, Ji-Xin; Cooks, R. Graham

    2010-01-01

    Desorption electrospray ionization (DESI) mass spectrometry is used in an imaging mode to interrogate the lipid profiles of 15 µm thin tissues cross sections of injured rat spinal cord and normal healthy tissue. Increased relative intensities of fatty acids, diacylglycerols and lysolipids (between +120% and +240%) as well as a small decrease in intensities of lipids (−30%) were visualized in the lesion epi-center and adjacent areas after spinal cord injury. This indicates the hydrolysis of lipids during the demyelination process due to activation of phospholipase A2 enzyme. In addition, signals corresponding to oxidative degradation products, such as prostaglandin and hydroxyeicosatetraenoic acid, exhibited increased signal intensity by a factor of two in the negative ion mode in lesions relative to the normal healthy tissue. Analysis of malondialdehyde, a product of lipid peroxidation and marker of oxidative stress, was accomplished in the ambient environment using reactive DESI mass spectrometry imaging. This was achieved by electrospraying reagent solution containing dinitrophenylhydrazine as high velocity charged droplets onto the tissue section. The hydrazine reacts selectively and rapidly with the carbonyl groups of malondialdehyde and signal intensity of twice the intensity was detected in the lesions compared to healthy spinal cord. With a small amount of tissue sample, DESI-MS imaging provides information on the composition and distribution of specific compounds (limited by the occurrence of isomeric lipids with very similar fragmentation patterns) in lesions after spinal cord injury in comparison with normal healthy tissue allowing identification of the extent of the lesion and its repair. PMID:21142140

  8. Altered differentiation of CNS neural progenitor cells after transplantation into the injured adult rat spinal cord.

    PubMed

    Onifer, S M; Cannon, A B; Whittemore, S R

    1997-01-01

    Denervation of CNS neurons and peripheral organs is a consequence of traumatic SCI. Intraspinal transplantation of embryonic CNS neurons is a potential strategy for reinnervating these targets. Neural progenitor cell lines are being investigated as alternates to embryonic CNS neurons. RN33B is an immortalized neural progenitor cell line derived from embryonic rat raphe nuclei following infection with a retrovirus encoding the temperature-sensitive mutant of SV40 large T-antigen. Transplantation studies have shown that local epigenetic signals in intact or partially neuron-depleted adult rat hippocampal formation or striatum direct RN33B cell differentiation to complex multipolar morphologies resembling endogenous neurons. After transplantation into neuron-depleted regions of the hippocampal formation or striatum, RN33B cells were relatively undifferentiated or differentiated with bipolar morphologies. The present study examines RN33B cell differentiation after transplantation into normal spinal cord and under different lesion conditions. Adult rats underwent either unilateral lesion of lumbar spinal neurons by intraspinal injection of kainic acid or complete transection at the T10 spinal segment. Neonatal rats underwent either unilateral lesion of lumbar motoneurons by sciatic nerve crush or complete transection at the T10 segment. At 2 or 6-7 wk postinjury, lacZ-labeled RN33B cells were transplanted into the lumbar enlargement of injured and age-matched normal rats. At 2 wk posttransplantation, bipolar and some multipolar RN33B cells were found throughout normal rat gray matter. In contrast, only bipolar RN33B cells were seen in gray matter of kainic acid lesioned, sciatic nerve crush, or transection rats. These observations suggest that RN33B cell multipolar morphological differentiation in normal adult spinal cord is mediated by direct cell-cell interaction through surface molecules on endogenous neurons and may be suppressed by molecules released after SCI

  9. Inhibiting cortical protein kinase A in spinal cord injured rats enhances efficacy of rehabilitative training.

    PubMed

    Wei, David; Hurd, Caitlin; Galleguillos, Danny; Singh, Jyoti; Fenrich, Keith K; Webber, Christine A; Sipione, Simonetta; Fouad, Karim

    2016-09-01

    Elevated levels of the second messenger molecule cyclic adenosine monophosphate (cAMP) are often associated with neuron sprouting and neurite extension (i.e., neuroplasticity). Phosphokinase A (PKA) is a prominent downstream target of cAMP that has been associated with neurite outgrowth. We hypothesized that rehabilitative motor training following spinal cord injuries promotes neuroplasticity via PKA activation. However, in two independent experiments, inhibition of cortical PKA using Rp-cAMPS throughout rehabilitative training robustly increased functional recovery and collateral sprouting of injured corticospinal tract axons, an indicator of neuroplasticity. Consistent with these in vivo findings, using cultured STHdh neurons, we found that Rp-cAMPS had no effect on the phosphorylation of CREB (cAMP response element-binding protein), a prominent downstream target of PKA, even with the concomitant application of the adenylate cyclase agonist forskolin to increase cAMP levels. Conversely, when cAMP levels were increased using the phosphodiesterase inhibitor IBMX, Rp-cAMPS potently inhibited CREB phosphorylation. Taken together, our results suggest that an alternate cAMP dependent pathway was involved in increasing CREB phosphorylation and neuroplasticity. This idea was supported by an in vitro neurite outgrowth assay, where inhibiting PKA did enhance neurite outgrowth. However, when PKA inhibition was combined with inhibition of EPAC2 (exchange protein directly activated by cAMP), another downstream target of cAMP in neurons, neurite outgrowth was significantly reduced. In conclusion, blocking PKA in cortical neurons of spinal cord injured rats increases neurite outgrowth of the lesioned corticospinal tract fibres and the efficacy of rehabilitative training, likely via EPAC. PMID:27401133

  10. Calpain inhibitor attenuates ER stress-induced apoptosis in injured spinal cord after bone mesenchymal stem cells transplantation.

    PubMed

    Wang, Chao; Shi, Dongling; Song, Xinghui; Chen, Yingying; Wang, Linlin; Zhang, Xiaoming

    2016-07-01

    Bone marrow mesenchymal stem cells (BMSCs) therapy for tissue repair is limited by low survival of cells transplanted in the recipient sites after spinal cord injury (SCI). Here, we investigated the effects of a calpain inhibitor (MDL28170) on BMSCs survival by a rat model of spinal cord injury in vitro and in vivo. Conditioned medium from hypoxia injured VSC4.1 motor neurons (Hypoxia-CM) were collected to mimic the micro-environment of injured spinal cord. Tunicamycin was also applied to induce endoplasmic reticulum (ER) stress in BMSCs. The CCK-8 assay, LDH leakage assay and flow cytometer assay demonstrated that MDL28170 could enhance BMSCs survival in response to Hypoxia-CM and tunicamycin. Moreover, MDL28170 significantly enhanced GFP-positive BMSCs survival in vivo after transplantation into the contused spinal cord of SCI rats. The protective effects of MDL28170 on BMSCs survival may inhibit the activation of calpain and the downstream ER stress-induced apoptosis. The present results suggested for the first time that MDL28170 with BMSCs transplant helped to rescue cells in injured spinal cord by modulating the ER stress-induced apoptosis. The calpain inhibitor, MDL28170 may have the promising new strategies for promoting the survival of transplanted BMSCs on cell-based regenerative medicine. PMID:27137651

  11. Is neuroinflammation in the injured spinal cord different than in the brain? Examining intrinsic differences between the brain and spinal cord.

    PubMed

    Zhang, B; Gensel, J C

    2014-08-01

    The field of neuroimmunology is rapidly advancing. There is a growing appreciation for heterogeneity, both in inflammatory composition and region-specific inflammatory responses. This understanding underscores the importance of developing targeted immunomodulatory therapies for treating neurological disorders. Concerning neurotrauma, there is a dearth of publications directly comparing inflammatory responses in the brain and spinal cord after injury. The question therefore remains as to whether inflammatory cells responding to spinal cord vs. brain injury adopt similar functions and are therefore amenable to common therapies. In this review, we address this question while revisiting and modernizing the conclusions from publications that have directly compared inflammation across brain and spinal cord injuries. By examining molecular differences, anatomical variations, and inflammatory cell phenotypes between the injured brain and spinal cord, we provide insight into how neuroinflammation relates to neurotrauma and into fundamental differences between the brain and spinal cord. PMID:25017892

  12. Near infrared Raman spectroscopic study of reactive gliosis and the glial scar in injured rat spinal cords

    NASA Astrophysics Data System (ADS)

    Saxena, Tarun; Deng, Bin; Lewis-Clark, Eric; Hoellger, Kyle; Stelzner, Dennis; Hasenwinkel, Julie; Chaiken, Joseph

    2010-02-01

    Comparative Raman spectra of ex vivo, saline-perfused, injured and healthy rat spinal cord as well as experiments using enzymatic digestion suggest that proteoglycan over expression may be observable in injured tissue. Comparison with authentic materials in vitro suggest the occurrence of side reactions between products of cord digestion with chondroitinase (cABC) that produce lactones and similar species with distinct Raman features that are often not overlapped with Raman features from other chemical species. Since the glial scar is thought to be a biochemical and physical barrier to nerve regeneration, this observation suggests the possibility of using near infrared Raman spectroscopy to study disease progression and explore potential treatments ex vivo and if potential treatments can be designed, perhaps to monitor potential remedial treatments within the spinal cord in vivo.

  13. Functional recovery in spinal cord injured rats using polypyrrole/iodine implants and treadmill training.

    PubMed

    Alvarez-Mejia, Laura; Morales, Juan; Cruz, Guillermo J; Olayo, María-Guadalupe; Olayo, Roberto; Díaz-Ruíz, Araceli; Ríos, Camilo; Mondragón-Lozano, Rodrigo; Sánchez-Torres, Stephanie; Morales-Guadarrama, Axayacatl; Fabela-Sánchez, Omar; Salgado-Ceballos, Hermelinda

    2015-07-01

    Currently, there is no universally accepted treatment for traumatic spinal cord injury (TSCI), a pathology that can cause paraplegia or quadriplegia. Due to the complexity of TSCI, more than one therapeutic strategy may be necessary to regain lost functions. Therefore, the present study proposes the use of implants of mesoparticles (MPs) of polypyrrole/iodine (PPy/I) synthesized by plasma for neuroprotection promotion and functional recovery in combination with treadmill training (TT) for neuroplasticity promotion and maintenance of muscle tone. PPy/I films were synthesized by plasma and pulverized to obtain MPs. Rats with a TSCI produced by the NYU impactor were divided into four groups: Vehicle (saline solution); MPs (PPy/I implant); Vehicle-TT (saline solution + TT); and MPs-TT (PPy/I implant + TT). The vehicle or MPs (30 μL) were injected into the lesion site 48 h after a TSCI. Four days later, TT was carried out 5 days a week for 2 months. Functional recovery was evaluated weekly using the BBB motor scale for 9 weeks and tissue protection using histological and morphometric analysis thereafter. Although the MPs of PPy/I increased nerve tissue preservation (P = 0.03) and promoted functional recovery (P = 0.015), combination with TT did not produce better neuroprotection, but significantly improved functional results (P = 0.000) when comparing with the vehicle group. So, use these therapeutic strategies by separately could stimulate specific mechanisms of neuroprotection and neuroregeneration, but when using together they could mainly potentiate different mechanisms of neuronal plasticity in the preserved spinal cord tissue after a TSCI and produce a significant functional recovery. The implant of mesoparticles of polypyrrole/iodine into the injured spinal cord displayed good integration into the nervous tissue without a response of rejection, as well as an increased in the amount of preserved tissue and a better functional recovery than the group without

  14. Robot-Assisted Arm Assessments in Spinal Cord Injured Patients: A Consideration of Concept Study

    PubMed Central

    Albisser, Urs; Rudhe, Claudia; Curt, Armin; Riener, Robert; Klamroth-Marganska, Verena

    2015-01-01

    Robotic assistance is increasingly used in neurological rehabilitation for enhanced training. Furthermore, therapy robots have the potential for accurate assessment of motor function in order to diagnose the patient status, to measure therapy progress or to feedback the movement performance to the patient and therapist in real time. We investigated whether a set of robot-based assessments that encompasses kinematic, kinetic and timing metrics is applicable, safe, reliable and comparable to clinical metrics for measurement of arm motor function. Twenty-four healthy subjects and five patients after spinal cord injury underwent robot-based assessments using the exoskeleton robot ARMin. Five different tasks were performed with aid of a visual display. Ten kinematic, kinetic and timing assessment parameters were extracted on joint- and end-effector level (active and passive range of motion, cubic reaching volume, movement time, distance-path ratio, precision, smoothness, reaction time, joint torques and joint stiffness). For cubic volume, joint torques and the range of motion for most joints, good inter- and intra-rater reliability were found whereas precision, movement time, distance-path ratio and smoothness showed weak to moderate reliability. A comparison with clinical scores revealed good correlations between robot-based joint torques and the Manual Muscle Test. Reaction time and distance-path ratio showed good correlation with the “Graded and Redefined Assessment of Strength, Sensibility and Prehension” (GRASSP) and the Van Lieshout Test (VLT) for movements towards a predefined position in the center of the frontal plane. In conclusion, the therapy robot ARMin provides a comprehensive set of assessments that are applicable and safe. The first results with spinal cord injured patients and healthy subjects suggest that the measurements are widely reliable and comparable to clinical scales for arm motor function. The methods applied and results can serve as a

  15. Biocompatibility of a Coacervate-Based Controlled Release System for Protein Delivery to the Injured Spinal Cord

    PubMed Central

    Rauck, Britta M.; Novosat, Tabitha L.; Oudega, Martin; Wang, Yadong

    2014-01-01

    The efficacy of protein-based therapies for treating injured nervous tissue is limited by the short half-life of free proteins in the body. Affinity-based biomaterial delivery systems provide sustained release of proteins, thereby extending the efficacy of such therapies. Here, we investigated the biocompatibility of a novel coacervate delivery system based on poly(ethylene argininylaspartate diglyceride) (PEAD) and heparin in the damaged spinal cord. We found that the presence of the [PEAD:heparin] coacervate did not affect the macrophage response, glial scarring, or nervous tissue loss, which are hallmarks of spinal cord injury. Moreover, the density of axons, including serotonergic axons, at the injury site and the recovery of motor and sensorimotor function were comparable in rats with and without the coacervate. These results revealed the biocompatibility of our delivery system and supported its potential to deliver therapeutic proteins to the injured nervous system. PMID:25266504

  16. Long-term use of computerized bicycle ergometry for spinal cord injured subjects.

    PubMed

    Sipski, M L; Alexander, C J; Harris, M

    1993-03-01

    Twenty-eight spinal cord injured subjects who participated in an electrical stimulation bicycle ergometry home program were surveyed to determine perceived benefits, home exercise adherence, and predictors of continued home exercise with electrical stimulation. Subjects were classified as users or nonusers depending upon if they used the electrical stimulation ergometry on a regular basis in the home during the past four months. Nineteen subjects qualified as users and nine were nonusers. Ninety-five percent of the users cycled at least twice per week whereas the majority of the nonusers stopped regular home exercise within one month postclinic discharge. All subjects generally perceived increases in muscle bulk and endurance. Users and nonusers perceived inconsistent results related to spasticity. Minimal effects were noted with neurogenic pain and swelling. Adherence to the home exercise program was significantly related to sex of subject and pre-injury exercise habits. Results are discussed in relation to the costs and benefits of electrical stimulation bicycle ergometry in the home. PMID:8439248

  17. Respiratory interneurones in the thoracic spinal cord of the cat.

    PubMed Central

    Kirkwood, P A; Munson, J B; Sears, T A; Westgaard, R H

    1988-01-01

    1. The discharges of spontaneously firing neurones, whose activity was modulated in phase with the central respiratory cycle, were recorded in the thoracic ventral horn (T3-T9) of anaesthetized, paralysed cats. 2. Out of 310 neurones, forty-six were positively identified as motoneurones by antidromic activation or spike-triggered averaging, fifty-four were positively identified as interneurones by antidromic activation from other spinal cord segments and ninety were indirectly identified as interneurones by virtue of their positions or firing rates as compared to the motoneurones. 3. Units were classified as inspiratory (64%), expiratory (25%) or post-inspiratory (7%) according to the times of their maximum firing rates. The remaining 4% consisted of units whose discharges were either strongly locked to the respiratory pump cycle or did not fit into the other categories. All but one of the motoneurones were classified as inspiratory or expiratory. 4. Inspiratory and expiratory units were further classified as early, late or tonic according to the starting times of their discharges in the respiratory cycle. The interneurones (both positively and indirectly identified) included more of the early and tonic categories and more fast-firing units than did the motoneurones in both the inspiratory and expiratory groups. 5. The locations of the motoneurones corresponded to the known positions of the intercostal and interchondral motor nuclei, including clear segregation of inspiratory and expiratory populations. The locations of neither the interneurones nor the unidentified units were segregated according to their firing patterns. These neurones were concentrated in the medial half of the ventral horn and were found generally more dorsally than the positions of the motoneurones, though their positions overlapped considerably with this group. 6. The axons of the positively identified interneurones were identified from one to five segments caudally and mostly contralaterally

  18. Pregnancy results from a vibrator application, electroejaculation, and a vas aspiration programme in spinal-cord injured men.

    PubMed

    Dahlberg, A; Ruutu, M; Hovatta, O

    1995-09-01

    In an infertility treatment programme for spinal-cord injured men, vibrator application was primarily used in cases of upper motor neurone lesion and electroejaculation in men with lower lesions, or when vibrator application failed to induce ejaculation. Spermatozoa were obtained by these methods from 29 out of 35 men who desired infertility treatment. No ejaculate was obtained from six men. Three of these men plus two others with very poor sperm quality with electroejaculation underwent micro-surgical sperm aspiration from the vas deferens for invitro fertilization (IVF), and spermatozoa were obtained from all of them. Thus it was possible to obtain spermatozoa from almost every spinal-cord injured man who had ongoing spermatogenesis using these three methods. Insemination was the primary infertility treatment used with all the couples where there was successful ejaculation. In all, 12 pregnancies resulted from home vaginal inseminations, eight from intrauterine inseminations, two from IVF with ejaculated spermatozoa, and two from IVF with spermatozoa aspirated from the vas. Three couples had children from donor inseminations (not counted in the results); 12 are still in the programme. From 24 pregnancies, 22 children have now been born to 18 couples out of the original 35 (51%), and there were four abortions. Hence, overall, infertility treatment of spinal-cord injured men has given good results. PMID:8530657

  19. The Dual Cyclooxygenase/5-Lipoxygenase Inhibitor Licofelone Attenuates P-Glycoprotein-Mediated Drug Resistance in the Injured Spinal Cord

    PubMed Central

    Dulin, Jennifer N.; Moore, Meredith L.

    2013-01-01

    Abstract There are currently no proven effective treatments that can improve recovery of function in spinal cord injury (SCI) patients. Many therapeutic compounds have shown promise in pre-clinical studies, but clinical trials have been largely unsuccessful. P-glycoprotein (Pgp, Abcb1b) is a drug efflux transporter of the blood–spinal cord barrier that limits spinal cord penetration of blood-borne xenobiotics. Pathological Pgp upregulation in diseases such as cancer causes heightened resistance to a broad variety of therapeutic drugs. Importantly, several drugs that have been evaluated for the treatment of SCI, such as riluzole, are known substrates of Pgp. We therefore examined whether Pgp-mediated pharmacoresistance diminishes delivery of riluzole to the injured spinal cord. Following moderate contusion injury at T10 in male Sprague–Dawley rats, we observed a progressive, spatial spread of increased Pgp expression from 3 days to 10 months post-SCI. Spinal cord uptake of i.p.-delivered riluzole was significantly reduced following SCI in wild type but not Abcb1a-knockout rats, highlighting a critical role for Pgp in mediating drug resistance following SCI. Because inflammation can drive Pgp upregulation, we evaluated the ability of the new generation dual anti-inflammatory drug licofelone to promote spinal cord delivery of riluzole following SCI. We found that licofelone both reduced Pgp expression and enhanced riluzole bioavailability within the lesion site at 72 h post-SCI. This work highlights Pgp-mediated drug resistance as an important obstacle to therapeutic drug delivery for SCI, and suggests licofelone as a novel combinatorial treatment strategy to enhance therapeutic drug delivery to the injured spinal cord. PMID:22947335

  20. Plasticity in ascending long propriospinal and descending supraspinal pathways in chronic cervical spinal cord injured rats

    PubMed Central

    Côté, Marie-Pascale; Detloff, Megan R.; Wade, Rodel E.; Lemay, Michel A.; Houlé, John D.

    2012-01-01

    The high clinical relevance of models of incomplete cervical spinal cord injury (SCI) creates a need to address the spontaneous neuroplasticity that underlies changes in functional activity that occur over time after SCI. There is accumulating evidence supporting long projecting propriospinal neurons as suitable targets for therapeutic intervention after SCI, but focus has remained primarily oriented toward study of descending pathways. Long ascending axons from propriospinal neurons at lower thoracic and lumbar levels that form inter-enlargement pathways are involved in forelimb-hindlimb coordination during locomotion and are capable of modulating cervical motor output. We used non-invasive magnetic stimulation to assess how a unilateral cervical (C5) spinal contusion might affect transmission in intact, long ascending propriospinal pathways, and influence spinal cord plasticity. Our results show that transmission is facilitated in this pathway on the ipsilesional side as early as 1 week post-SCI. We also probed for descending magnetic motor evoked potentials (MMEPs) and found them absent or greatly reduced on the ipsilesional side as expected. The frequency-dependent depression (FDD) of the H-reflex recorded from the forelimb triceps brachii was bilaterally decreased although Hmax/Mmax was increased only on the ipsilesional side. Behaviorally, stepping recovered, but there were deficits in forelimb–hindlimb coordination as detected by BBB and CatWalk measures. Importantly, epicenter sparing correlated to the amplitude of the MMEPs and locomotor recovery but it was not significantly associated with the inter-enlargement or segmental H-reflex. In summary, our results indicate that complex plasticity occurs after a C5 hemicontusion injury, leading to differential changes in ascending vs. descending pathways, ipsi- vs. contralesional sides even though the lesion was unilateral as well as cervical vs. lumbar local spinal networks. PMID:22934078

  1. Plasticity in ascending long propriospinal and descending supraspinal pathways in chronic cervical spinal cord injured rats.

    PubMed

    Côté, Marie-Pascale; Detloff, Megan R; Wade, Rodel E; Lemay, Michel A; Houlé, John D

    2012-01-01

    The high clinical relevance of models of incomplete cervical spinal cord injury (SCI) creates a need to address the spontaneous neuroplasticity that underlies changes in functional activity that occur over time after SCI. There is accumulating evidence supporting long projecting propriospinal neurons as suitable targets for therapeutic intervention after SCI, but focus has remained primarily oriented toward study of descending pathways. Long ascending axons from propriospinal neurons at lower thoracic and lumbar levels that form inter-enlargement pathways are involved in forelimb-hindlimb coordination during locomotion and are capable of modulating cervical motor output. We used non-invasive magnetic stimulation to assess how a unilateral cervical (C5) spinal contusion might affect transmission in intact, long ascending propriospinal pathways, and influence spinal cord plasticity. Our results show that transmission is facilitated in this pathway on the ipsilesional side as early as 1 week post-SCI. We also probed for descending magnetic motor evoked potentials (MMEPs) and found them absent or greatly reduced on the ipsilesional side as expected. The frequency-dependent depression (FDD) of the H-reflex recorded from the forelimb triceps brachii was bilaterally decreased although H(max)/M(max) was increased only on the ipsilesional side. Behaviorally, stepping recovered, but there were deficits in forelimb-hindlimb coordination as detected by BBB and CatWalk measures. Importantly, epicenter sparing correlated to the amplitude of the MMEPs and locomotor recovery but it was not significantly associated with the inter-enlargement or segmental H-reflex. In summary, our results indicate that complex plasticity occurs after a C5 hemicontusion injury, leading to differential changes in ascending vs. descending pathways, ipsi- vs. contralesional sides even though the lesion was unilateral as well as cervical vs. lumbar local spinal networks. PMID:22934078

  2. Investigations on spinal cord fMRI of cats under ketamine.

    PubMed

    Cohen-Adad, J; Hoge, R D; Leblond, H; Xie, G; Beaudoin, G; Song, A W; Krueger, G; Doyon, J; Benali, H; Rossignol, S

    2009-01-15

    Functional magnetic resonance imaging (fMRI) of the spinal cord has been the subject of intense research for the last ten years. An important motivation for this technique is its ability to detect non-invasively neuronal activity in the spinal cord related to sensorimotor functions in various conditions, such as after spinal cord lesions. Although promising results of spinal cord fMRI have arisen from previous studies, the poor reproducibility of BOLD activations and their characteristics remain a major drawback. In the present study we investigated the reproducibility of BOLD fMRI in the spinal cord of cats (N=9) by repeating the same stimulation protocol over a long period (approximately 2 h). Cats were anaesthetized with ketamine, and spinal cord activity was induced by electrical stimulation of cutaneous nerves of the hind limbs. As a result, task-related signals were detected in most cats with relatively good spatial specificity. However, BOLD response significantly varied within and between cats. This variability was notably attributed to the moderate intensity of the stimulus producing a low amplitude haemodynamic response, variation in end-tidal CO(2) during the session, low signal-to-noise ratio (SNR) in spinal fMRI time series and animal-specific vascular anatomy. Original contributions of the present study are: (i) first spinal fMRI experiment in ketamine-anaesthetized animals, (ii) extensive study of intra- and inter-subject variability of activation, (iii) characterisation of static and temporal SNR in the spinal cord and (iv) investigation on the impact of CO(2) end-tidal level on the amplitude of BOLD response. PMID:18938251

  3. Increasing blood flow before exercise in spinal cord-injured individuals does not alter muscle fatigue.

    PubMed

    Olive, Jennifer L; Slade, Jill M; Bickel, C Scott; Dudley, Gary A; McCully, Kevin K

    2004-02-01

    Previous studies have shown increased fatigue in paralyzed muscle of spinal cord-injured (SCI) patients (Castro M, Apple D Jr, Hillegass E, and Dudley GA. Eur J Appl Physiol 80: 373-378, 1999; Gerrits H, Hopman MTE, Sargeant A, and de Haan A. Clin Physiol 21: 105-113, 2001). Our purpose was to determine whether the increased muscle fatigue could be due to a delayed rise in blood flow at the onset of exercise in SCI individuals. Isometric electrical stimulation was used to induce fatigue in the quadriceps femoris muscle of seven male, chronic (>1 yr postinjury), complete (American Spinal Injury Association, category A) SCI subjects. Cuff occlusion was used to elevate blood flow before electrical stimulation, and the magnitude of fatigue was compared with a control condition of electrical stimulation without prior cuff occlusion. Blood flow was measured in the femoral artery by Doppler ultrasound. Prior cuff occlusion increased blood flow in the first 30 s of stimulation compared with the No-Cuff condition (1,350 vs. 680 ml/min, respectively; P < 0.001), although blood flow at the end of stimulation was the same between conditions (1,260 +/- 140 vs. 1,160 +/- 370 ml/min, Cuff and No-Cuff condition, respectively; P = 0.511). Muscle fatigue was not significantly different between prior cuff occlusion and the control condition (32 +/- 13 vs. 35 +/- 10%; P = 0.670). In conclusion, increased muscle fatigue in SCI individuals is not associated with the prolonged time for blood flow to increase at the onset of exercise. PMID:14506095

  4. Human Mesenchymal Cells from Adipose Tissue Deposit Laminin and Promote Regeneration of Injured Spinal Cord in Rats

    PubMed Central

    Menezes, Karla; Nascimento, Marcos Assis; Gonçalves, Juliana Pena; Cruz, Aline Silva; Lopes, Daiana Vieira; Curzio, Bianca; Bonamino, Martin; de Menezes, João Ricardo Lacerda; Borojevic, Radovan; Rossi, Maria Isabel Doria; Coelho-Sampaio, Tatiana

    2014-01-01

    Cell therapy is a promising strategy to pursue the unmet need for treatment of spinal cord injury (SCI). Although several studies have shown that adult mesenchymal cells contribute to improve the outcomes of SCI, a descripton of the pro-regenerative events triggered by these cells is still lacking. Here we investigated the regenerative properties of human adipose tissue derived stromal cells (hADSCs) in a rat model of spinal cord compression. Cells were delivered directly into the spinal parenchyma immediately after injury. Human ADSCs promoted functional recovery, tissue preservation, and axonal regeneration. Analysis of the cord tissue showed an abundant deposition of laminin of human origin at the lesion site and spinal midline; the appearance of cell clusters composed of neural precursors in the areas of laminin deposition, and the appearance of blood vessels with separated basement membranes along the spinal axis. These effects were also observed after injection of hADSCs into non-injured spinal cord. Considering that laminin is a well-known inducer of axonal growth, as well a component of the extracellular matrix associated to neural progenitors, we propose that it can be the paracrine factor mediating the pro-regenerative effects of hADSCs in spinal cord injury. PMID:24830794

  5. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization

    PubMed Central

    Lv, Xue-man; Liu, Yan; Wu, Fei; Yuan, Yi; Luo, Min

    2016-01-01

    The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery. PMID:27212930

  6. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization.

    PubMed

    Lv, Xue-Man; Liu, Yan; Wu, Fei; Yuan, Yi; Luo, Min

    2016-04-01

    The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 10(6) human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery. PMID:27212930

  7. Locomotor recovery after spinal cord hemisection/contusion injures in bonnet monkeys: footprint testing--a minireview.

    PubMed

    Rangasamy, Suresh Babu

    2013-07-01

    Spinal cord injuries usually produce loss or impairment of sensory, motor and reflex function below the level of damage. In the absence of functional regeneration or manipulations that promote regeneration, spontaneous improvements in motor functions occur due to the activation of multiple compensatory mechanisms in animals and humans following the partial spinal cord injury. Many studies were performed on quantitative evaluation of locomotor recovery after induced spinal cord injury in animals using behavioral tests and scoring techniques. Although few studies on rodents have led to clinical trials, it would appear imperative to use nonhuman primates such as macaque monkeys in order to relate the research outcomes to recovery of functions in humans. In this review, we will discuss some of our research evidences concerning the degree of spontaneous recovery in bipedal locomotor functions of bonnet monkeys that underwent spinal cord hemisection/contusion lesions. To our knowledge, this is the first report to discuss on the extent of spontaneous recovery in bipedal locomotion of macaque monkeys through the application of footprint analyzing technique. In addition, the results obtained were compared with the published data on recovery of quadrupedal locomotion of spinally injured rodents. We propose that the mechanisms underlying spontaneous recovery of functions in spinal cord lesioned monkeys may be correlated to the mature function of spinal pattern generator for locomotion under the impact of residual descending and afferent connections. Moreover, based on analysis of motor functions observed in locomotion in these subjected monkeys, we understand that spinal automatism and development of responses by afferent stimuli from outside the cord could possibly contribute to recovery of paralyzed hindlimbs. This report also emphasizes the functional contribution of progressive strengthening of undamaged nerve fibers through a collateral sprouts/synaptic plasticity formed

  8. Knowledge acquisition and decision-making: spinal cord injured individuals perceptions of caring during rehabilitation.

    PubMed

    Lucke, K T

    1997-09-01

    Nurses and other healthcare providers have little research to guide them on specific interventions and attitudes which expedite the attainment of rehabilitation outcomes by spinal cord injured (SCI) individuals and their successful return to the community (Fuhrer, 1994; Whiteneck, 1994). Acquisition of knowledge is required during rehabilitation to learn self-care and decision-making which is essential to long term survival following SCI. However, skills that patients and families are able to accomplish in rehabilitation are often not able to be translated into the home environment (White & Holloway, 1990). The process of learning self-care and decision-making needs to be more clearly elucidated, so more effective interventions can be designed which can improve problem-solving and lead to enhanced well-being and quality of life. The purpose of this qualitative study was to describe the meaning, process and consequences of caring during rehabilitation from the perspective of the SCI individual. This paper will report on the findings from one research question: How is the process of a developing caring relationship perceived by SCI individuals during rehabilitation? The theoretical foundation of caring for this study was synthesized from philosophical, ethical, feminist, and nursing literature. A purposive sample of adults with traumatic SCI were interviewed at least once during their initial rehabilitation stay. Twenty interviews were conducted with fifteen participants at various times during their rehabilitation stay over a six month period. The core category of "getting back together" or reintegration of self, which was the major work of rehabilitation, was accomplished with nurses and therapists who were perceived as caring. The process of a developing caring relationship was conceptualized, from participants' descriptions in three phases: learning the other, learning what I need to know, and letting me find out. During each phase reciprocal behaviors occurred

  9. Evaluation of Injured Axons Using Two-Photon Excited Fluorescence Microscopy after Spinal Cord Contusion Injury in YFP-H Line Mice

    PubMed Central

    Horiuchi, Hideki; Oshima, Yusuke; Ogata, Tadanori; Morino, Tadao; Matsuda, Seiji; Miura, Hiromasa; Imamura, Takeshi

    2015-01-01

    Elucidation of the process of degeneration of injured axons is important for the development of therapeutic modules for the treatment of spinal cord injuries. The aim of this study was to establish a method for time-lapse observation of injured axons in living animals after spinal cord contusion injury. YFP (yellow fluorescent protein)-H transgenic mice, which we used in this study, express fluorescence in their nerve fibers. Contusion damage to the spinal cord at the 11th vertebra was performed by IH (Infinite Horizon) impactor, which applied a pressure of 50 kdyn. The damaged spinal cords were re-exposed during the observation period under anesthesia, and then observed by two-photon excited fluorescence microscopy, which can observe deep regions of tissues including spinal cord axons. No significant morphological change of injured axons was observed immediately after injury. Three days after injury, the number of axons decreased, and residual axons were fragmented. Seven days after injury, only fragments were present in the damaged tissue. No hind-limb movement was observed during the observation period after injury. Despite the immediate paresis of hind-limbs following the contusion injury, the morphological degeneration of injured axons was delayed. This method may help clarification of pathophysiology of axon degeneration and development of therapeutic modules for the treatment of spinal cord injury. PMID:26184175

  10. Basic electrophysiological properties of spinal cord motoneurons during old age in the cat.

    PubMed

    Morales, F R; Boxer, P A; Fung, S J; Chase, M H

    1987-07-01

    1. The electrophysiological properties of alpha-motoneurons in old cats (14-15 yr) were compared with those of adult cats (1-3 yr). These properties were measured utilizing intracellular recording and stimulating techniques. 2. Unaltered in the old cat motoneurons were the membrane potential, action potential amplitude, and slopes of the initial segment (IS) and soma dendritic (SD) spikes, as well as the duration and amplitude of the action potential's afterhyperpolarization. 3. In contrast, the following changes in the electrophysiological properties of lumbar motoneurons were found in the old cats: a decrease in axonal conduction velocity, a shortening of the IS-SD delay, an increase in input resistance, and a decrease in rheobase. 4. In spite of these considerable changes in motoneuron properties in the old cat, normal correlations between different electrophysiological properties were maintained. The following key relationships, among others, were the same in adult and old cat motoneurons: membrane potential polarization versus action potential amplitude, duration of the afterhyperpolarization versus motor axon conduction velocity, and rheobase versus input conductance. 5. A review of the existing literature reveals that neither chronic spinal cord section nor deafferentation (13, 21) in adult animals produce the changes observed in old cats. Thus we consider it unlikely that a loss of synaptic contacts was responsible for the modifications in electrophysiological properties observed in old cat motoneurons. 6. We conclude that during old age there are significant changes in the soma-dendritic portion of cat motoneurons, as indicated by the modifications found in input resistance, rheobase, and IS-SD delay, as well as significant changes in their axons, as indicated by a decrease in conduction velocity. PMID:3612223

  11. Functional and structural recovery of the injured spinal cord in rats treated with gonadotropin-releasing hormone.

    PubMed

    Calderón-Vallejo, Denisse; Quintanar-Stephano, Andrés; Hernández-Jasso, Irma; Jiménez-Hernández, Violeta; Ruiz-Ornelas, Jannet; Jiménez, Ismael; Quintanar, J Luis

    2015-03-01

    Several studies have shown that gonadotropin-releasing hormone (GnRH) have extra-pituitary roles, including neurotrophic effects. This study was to evaluate the effects of GnRH treatment on the spinal cord injury (SCI) of rats. Ovariectomized rats were divided into: sham SCI surgery (Sham), SCI treated with saline solution (SCI + SS), and SCI treated with GnRH (SCI + GnRH). The SCI was induced by compression. One day after the lesion, SCI + GnRH group was injected with GnRH (60 µg/kg/twice/day; i.m.) for 15 days and the other groups with saline solution. To kinematic gait analysis, length and velocity of the stride were measured. In spinal cord, axonal morphometry and spared white and gray matter were analyzed by histochemistry. Protein expression of spinophilin was evaluated by western blot. The results showed that, 5 weeks after the injury, the group of animals treated with GnRH, significantly increased the length and velocity of the stride compared to SCI + SS group and they were similar to Sham group. In spinal cord, GnRH treatment increased the number and caliber of nerve axons and in the case of white matter, spared tissue was significantly higher than those animals treated with saline solution. The expression of spinophilin in spinal cord of SCI + GnRH group was slightly increased with respect to those not treated. In conclusion, GnRH treatment improves recovery of gait and decreases histopathological damage in the injured spinal cord of rat. These findings suggest that GnRH acts as a neurotrophic factor and can be used as a potential therapeutic agent for treatment of SCI. PMID:25618391

  12. Effects of magnetic nanoparticle-incorporated human bone marrow-derived mesenchymal stem cells exposed to pulsed electromagnetic fields on injured rat spinal cord.

    PubMed

    Cho, Hyunjin; Choi, Yun-Kyong; Lee, Dong Heon; Park, Hee Jung; Seo, Young-Kwon; Jung, Hyun; Kim, Soo-Chan; Kim, Sung-Min; Park, Jung-Keug

    2013-01-01

    Transplanting mesenchymal stem cells into injured lesions is currently under study as a therapeutic approach for spinal cord injury. In this study, the effects of a pulsed electromagnetic field (PEMF) on injured rat spinal cord were investigated in magnetic nanoparticle (MNP)-incorporated human bone marrow-derived mesenchymal stem cells (hBM-MSCs). A histological analysis revealed significant differences in MNP-incorporated cell distribution near the injured site under the PEMF in comparison with that in the control group. We confirmed that MNP-incorporated cells were widely distributed in the lesions under PEMF. The results suggest that MNP-incorporated hBM-MSCs were guided by the PEMF near the injured site, and that PEMF exposure for 8 H per day over 4 weeks promoted behavioral recovery in spinal cord injured rats. The results show that rats with MNP-incorporated hBM-MSCs under a PEMF were more effective on the Basso, Beattie, and Bresnahan behavioral test and suggest that the PEMF enhanced the action of transplanted cells for recovery of the injured lesion. PMID:24033637

  13. Migration of Bone Marrow-Derived Very Small Embryonic-Like Stem Cells toward An Injured Spinal Cord

    PubMed Central

    Golipoor, Zoleikha; Mehraein, Fereshteh; Zafari, Fariba; Alizadeh, Akram; Ababzadeh, Shima; Baazm, Maryam

    2016-01-01

    Objective Bone marrow (BM) is one of the major hematopoietic organs in postnatal life that consists of a heterogeneous population of stem cells which have been previously described. Recently, a rare population of stem cells that are called very small embryonic-like (VSEL) stem cells has been found in the BM. These cells express several developmental markers of pluri- potent stem cells and can be mobilized into peripheral blood (PB) in response to tissue injury. In this study we have attempted to investigate the ability of these cells to migrate toward an injured spinal cord after transplantation through the tail vein in a rat model. Materials and Methods In this experimental study, VSELs were isolated from total BM cells using a fluorescent activated cell sorting (FACS) system and sca1 and stage specific embryonic antigen (SSEA-1) antibodies. After isolation, VSELs were cultured for 7 days on C2C12 as the feeder layer. Then, VSELs were labeled with 1,1´-dioctadecyl-3,3,3´,3´- tetramethylindocarbocyanine perchlorate (DiI) and transplanted into the rat spinal cord injury (SCI) model via the tail vein. Finally, we sought to determine the presence of VSELs in the lesion site. Results We isolated a high number of VSELs from the BM. After cultivation, the VSELs colonies were positive for SSEA-1, Oct4 and Sca1. At one month after transplantation, real-time polymerase chain reaction analysis confirmed a significantly increased expres- sion level of Oct4 and SSEA-1 positive cells at the injury site. Conclusion VSELs have the capability to migrate and localize in an injured spinal cord after transplantation. PMID:26862523

  14. Preclinical evidence supporting the clinical development of central pattern generator-modulating therapies for chronic spinal cord-injured patients

    PubMed Central

    2014-01-01

    Ambulation or walking is one of the main gaits of locomotion. In terrestrial animals, it may be defined as a series of rhythmic and bilaterally coordinated movement of the limbs which creates a forward movement of the body. This applies regardless of the number of limbs—from arthropods with six or more limbs to bipedal primates. These fundamental similarities among species may explain why comparable neural systems and cellular properties have been found, thus far, to control in similar ways locomotor rhythm generation in most animal models. The aim of this article is to provide a comprehensive review of the known structural and functional features associated with central nervous system (CNS) networks that are involved in the control of ambulation and other stereotyped motor patterns—specifically Central Pattern Generators (CPGs) that produce basic rhythmic patterned outputs for locomotion, micturition, ejaculation, and defecation. Although there is compelling evidence of their existence in humans, CPGs have been most studied in reduced models including in vitro isolated preparations, genetically-engineered mice and spinal cord-transected animals. Compared with other structures of the CNS, the spinal cord is generally considered as being well-preserved phylogenetically. As such, most animal models of spinal cord-injured (SCI) should be considered as valuable tools for the development of novel pharmacological strategies aimed at modulating spinal activity and restoring corresponding functions in chronic SCI patients. PMID:24910602

  15. A randomized controlled trial to assess the efficacy and cost-effectiveness of urinary catheters with silver alloy coating in spinal cord injured patients: trial protocol

    PubMed Central

    2013-01-01

    Background Patients with non-acute spinal cord injury that carry indwelling urinary catheters have an increased risk of urinary tract infection (UTIs). Antiseptic Silver Alloy-Coated Silicone Urinary Catheters seems to be a promising intervention to reduce UTIs; however, actual evidence cannot be extrapolated to spinal cord injured patients. The aim of this trial is to make a comparison between the use of antiseptic silver alloy-coated silicone urinary catheters and the use of standard urinary catheters in spinal cord injured patients to prevent UTIs. Methods/Design The study will consist in an open, randomized, multicentre, and parallel clinical trial with blinded assessment. The study will include 742 spinal cord injured patients who require at least seven days of urethral catheterization as a method of bladder voiding. Participants will be online centrally randomized and allocated to one of the two study arms (silver alloy-coated or standard catheters). Catheters will be used for a maximum period of 30 days or removed earlier if the clinician considers it necessary. The main outcome will be the incidence of UTIs by the time of catheter removal or at day 30 after catheterization, the event that occurs first. Intention-to-treat analysis will be performed, as well as a primary analysis of all patients. Discussion The aim of this study is to assess whether silver alloy-coated silicone urinary catheters improve ITUs in spinal cord injured patients. ESCALE is intended to be the first study to evaluate the efficacy of the silver alloy-coated catheters in spinal cord injured patients. Trial registration NCT01803919 PMID:23895463

  16. Leuprolide acetate induces structural and functional recovery of injured spinal cord in rats.

    PubMed

    Díaz Galindo, Carmen; Gómez-González, Beatriz; Salinas, Eva; Calderón-Vallejo, Denisse; Hernández-Jasso, Irma; Bautista, Eduardo; Quintanar, J Luis

    2015-11-01

    Gonadotropin-releasing hormone (GnRH) and its synthetic analog leuprolide acetate, a GnRH agonist, have neurotrophic properties. This study was designed to determine whether administration of leuprolide acetate can improve locomotor behavior, gait, micturition reflex, spinal cord morphology and the amount of microglia in the lesion epicenter after spinal cord injury in rats. Rats with spinal cord compression injury were administered leuprolide acetate or saline solution for 5 weeks. At the 5(th) week, leuprolide acetate-treated rats showed locomotor activity recovery by 38%, had improvement in kinematic gait and exhibited voiding reflex recovery by 60%, as compared with the 1(st) week. By contrast, saline solution-treated rats showed locomotor activity recovery only by 7%, but voiding reflex did not recover. More importantly, leuprolide acetate treatment reduced microglial immunological reaction and induced a trend towards greater area of white and gray matter in the spinal cord. Therefore, leuprolide acetate has great potential to repair spinal cord injury. PMID:26807118

  17. Longitudinal Evaluation of Residual Cortical and Subcortical Motor Evoked Potentials in Spinal Cord Injured Rats.

    PubMed

    Redondo-Castro, Elena; Navarro, Xavier; García-Alías, Guillermo

    2016-05-15

    We have applied transcranial electrical stimulation to rats with spinal cord injury and selectively tested the motor evoked potentials (MEPs) conveyed by descending motor pathways with cortical and subcortical origin. MEPs were elicited by electrical stimulation to the brain and recorded on the tibialis anterior muscles. Stimulation parameters were characterized and changes in MEP responses tested in uninjured rats, in rats with mild or moderate contusion, and in animals with complete transection of the spinal cord. All injuries were located at the T8 vertebral level. Two peaks, termed N1 and N2, were obtained when changing from single pulse stimulation to trains of 9 pulses at 9 Hz. Selective injuries to the brain or spinal cord funiculi evidenced the subcortical origin of N1 and the cortical origin of N2. Animals with mild contusion showed small behavioral deficits and abolished N1 but maintained small amplitude N2 MEPs. Substantial motor deficits developed in rats with moderate contusion, and these rats had completely eliminated N1 and N2 MEPs. Animals with complete cord transection had abolished N1 and N2 and showed severe impairment of locomotion. The results indicate the reliability of MEP testing to longitudinally evaluate over time the degree of impairment of cortical and subcortical spinal pathways after spinal cord injuries of different severity. PMID:26560177

  18. Leuprolide acetate induces structural and functional recovery of injured spinal cord in rats

    PubMed Central

    Díaz Galindo, Carmen; Gómez-González, Beatriz; Salinas, Eva; Calderón-Vallejo, Denisse; Hernández-Jasso, Irma; Bautista, Eduardo; Quintanar, J Luis

    2015-01-01

    Gonadotropin-releasing hormone (GnRH) and its synthetic analog leuprolide acetate, a GnRH agonist, have neurotrophic properties. This study was designed to determine whether administration of leuprolide acetate can improve locomotor behavior, gait, micturition reflex, spinal cord morphology and the amount of microglia in the lesion epicenter after spinal cord injury in rats. Rats with spinal cord compression injury were administered leuprolide acetate or saline solution for 5 weeks. At the 5th week, leuprolide acetate-treated rats showed locomotor activity recovery by 38%, had improvement in kinematic gait and exhibited voiding reflex recovery by 60%, as compared with the 1st week. By contrast, saline solution-treated rats showed locomotor activity recovery only by 7%, but voiding reflex did not recover. More importantly, leuprolide acetate treatment reduced microglial immunological reaction and induced a trend towards greater area of white and gray matter in the spinal cord. Therefore, leuprolide acetate has great potential to repair spinal cord injury. PMID:26807118

  19. Spinal cord microstimulation generates functional limb movements in chronically implanted cats.

    PubMed

    Mushahwar, V K; Collins, D F; Prochazka, A

    2000-06-01

    Spinal cord injuries disrupt the communication between the brain and peripheral nerves, but leave motoneurons and networks of interneurons below the level of the lesion intact. It is therefore possible to restore some function following injury by providing an artificial stimulus to the surviving neurons below the level of the lesion. We report here on a novel approach for generating functional movements by electrically stimulating the spinal cord through chronically implanted ultrafine, hair-like electrodes. Six to 12 microwires were implanted in the lumbar enlargement of intact cats for 6 months. Twice a week, trains of stimuli were delivered through each microwire and the evoked electromyographic and torque responses were recorded. Strong coordinated hindlimb movements were obtained by stimulating through individual electrodes. The joint torques elicited were capable of supporting the animals' hindquarters. The responses were stable over time and the contractions caused no apparent discomfort to the animals. No obvious motor deficits were seen throughout the 6-month duration of implantation. The results demonstrate that microwires implanted in the spinal cord remain stably in place and stimulation through these electrodes produces strong, controllable movements. This provides a promising basis for the use of spinal cord neuroprostheses in restoring mobility following spinal cord injury. PMID:10833317

  20. Salvianolic acid B protects the myelin sheath around injured spinal cord axons.

    PubMed

    Zhu, Zhe; Ding, Lu; Qiu, Wen-Feng; Wu, Hong-Fu; Li, Rui

    2016-03-01

    Salvianolic acid B, an active pharmaceutical compound present in Salvia miltiorrhiza, exerts a neuroprotective effect in animal models of brain and spinal cord injury. Salvianolic acid B can promote recovery of neurological function; however, its protective effect on the myelin sheath after spinal cord injury remains poorly understood. Thus, in this study, in vitro tests showed that salvianolic acid B contributed to oligodendrocyte precursor cell differentiation, and the most effective dose was 20 μg/mL. For in vivo investigation, rats with spinal cord injury were intraperitoneally injected with 20 mg/kg salvianolic acid B for 8 weeks. The amount of myelin sheath and the number of regenerating axons increased, neurological function recovered, and caspase-3 expression was decreased in the spinal cord of salvianolic acid B-treated animals compared with untreated control rats. These results indicate that salvianolic acid B can protect axons and the myelin sheath, and can promote the recovery of neurological function. Its mechanism of action is likely to be associated with inhibiting apoptosis and promoting the differentiation and maturation of oligodendrocyte precursor cells. PMID:27127491

  1. Salvianolic acid B protects the myelin sheath around injured spinal cord axons

    PubMed Central

    Zhu, Zhe; Ding, Lu; Qiu, Wen-feng; Wu, Hong-fu; Li, Rui

    2016-01-01

    Salvianolic acid B, an active pharmaceutical compound present in Salvia miltiorrhiza, exerts a neuroprotective effect in animal models of brain and spinal cord injury. Salvianolic acid B can promote recovery of neurological function; however, its protective effect on the myelin sheath after spinal cord injury remains poorly understood. Thus, in this study, in vitro tests showed that salvianolic acid B contributed to oligodendrocyte precursor cell differentiation, and the most effective dose was 20 μg/mL. For in vivo investigation, rats with spinal cord injury were intraperitoneally injected with 20 mg/kg salvianolic acid B for 8 weeks. The amount of myelin sheath and the number of regenerating axons increased, neurological function recovered, and caspase-3 expression was decreased in the spinal cord of salvianolic acid B-treated animals compared with untreated control rats. These results indicate that salvianolic acid B can protect axons and the myelin sheath, and can promote the recovery of neurological function. Its mechanism of action is likely to be associated with inhibiting apoptosis and promoting the differentiation and maturation of oligodendrocyte precursor cells. PMID:27127491

  2. Using Mixed Methods to Build Research Capacity within the Spinal Cord Injured Population of New Zealand

    ERIC Educational Resources Information Center

    Sullivan, Martin; Derrett, Sarah; Paul, Charlotte; Beaver, Carolyn; Stace, Hilary

    2014-01-01

    In 2007, a 4-year longitudinal study of all people admitted to the two New Zealand spinal units commenced. It aims to (a) explore interrelationship(s) of body, self, and society for people with spinal cord injury (SCI) and (b) investigate how entitlement to rehabilitation and compensation through New Zealand's Accident Compensation…

  3. Ameliorative Effects of p75NTR-ED-Fc on Axonal Regeneration and Functional Recovery in Spinal Cord-Injured Rats.

    PubMed

    Wang, Yong-Tang; Lu, Xiu-Min; Zhu, Feng; Huang, Peng; Yu, Ying; Long, Zai-Yun; Wu, Ya-Min

    2015-12-01

    As a co-receptor of Nogo-66 receptor (NgR) and a critical receptor for paired immunoglobulin-like receptor (PirB), p75 neurotrophin receptor (p75NTR) mediates the inhibitory effects of myelin-associated inhibitors on axonal regeneration after spinal cord injury. Therefore, the p75NTR antagonist, such as recombinant p75NTR protein or its homogenates may block the inhibitory effects of myelin and promote the axonal regeneration and functional recovery. The purposes of this study are to subclone and express the extracellular domain gene of human p75NTR with IgG-Fc (hp75NTR-ED-Fc) in prokaryotic expression system and investigate the effects of the recombinant protein on axonal regeneration and functional recovery in spinal cord-injured rats. The hp75NTR-ED-Fc coding sequence was amplified from pcDNA-hp75NTR-ED-Fc by polymerase chain reaction (PCR) and subcloned into vector pET32a (+), then the effects of the purified recombinant protein on neurite outgrowth of dorsal root ganglion (DRG) neurons cultured with myelin-associated glycoprotein (MAG) were determined, and the effects of the fusion protein on axonal regeneration, functional recovery, and its possible mechanisms in spinal cord-injured rats were further investigated. The results indicated that the purified infusion protein could promote neurite outgrowth of DRG neurons, promote axonal regeneration and functional recovery, and decrease RhoA activation in spinal cord-injured rats. Taken together, the findings revealed that p75NTR still may be a potential and novel target for therapeutic intervention for spinal cord injury and that the hp75NTR-ED-Fc fusion protein treatment enhances functional recovery by limiting tissue loss and stimulating axonal growth in spinal cord-injured rats, which may result from decreasing the activation of RhoA. PMID:25394381

  4. The PPAR alpha agonist gemfibrozil is an ineffective treatment for spinal cord injured mice.

    PubMed

    Almad, Akshata; Lash, A Todd; Wei, Ping; Lovett-Racke, Amy E; McTigue, Dana M

    2011-12-01

    Peroxisome Proliferator Activated Receptor (PPAR)-α is a key regulator of lipid metabolism and recent studies reveal it also regulates inflammation in several different disease models. Gemfibrozil, an agonist of PPAR-α, is a FDA approved drug for hyperlipidemia and has been shown to inhibit clinical signs in a rodent model of multiple sclerosis. Since many studies have shown improved outcome from spinal cord injury (SCI) by anti-inflammatory and neuroprotective agents, we tested the efficacy of oral gemfibrozil given before or after SCI for promoting tissue preservation and behavioral recovery after spinal contusion injury in mice. Unfortunately, the results were contrary to our hypothesis; in our first attempt, gemfibrozil treatment exacerbated locomotor deficits and increased tissue pathology after SCI. In subsequent experiments, the behavioral effects were not replicated but histological outcomes again were worse. We also tested the efficacy of a different PPAR-α agonist, fenofibrate, which also modulates immune responses and is beneficial in several neurodegenerative disease models. Fenofibrate treatment did not improve recovery, although there was a slight trend for a modest increase in histological tissue sparing. Based on our results, we conclude that PPAR-α agonists yield either no effect or worsen recovery from spinal cord injury, at least at the doses and the time points of drug delivery tested here. Further, patients sustaining spinal cord injury while taking gemfibrozil might be prone to exacerbated tissue damage. PMID:21963672

  5. Early progressive changes in tissue viability in the seated spinal cord injured subject.

    PubMed

    Bogie, K M; Nuseibeh, I; Bader, D L

    1995-03-01

    The patient with spinal cord injury is at high risk of tissue breakdown at all times due to a number of adverse factors, such as reduced mobility and anaesthesia. It is therefore essential that each patient is prescribed appropriate support media during initial rehabilitation. In this study, the effectiveness of prescribed wheelchair cushions has been assessed in terms of tissue response at the ischial tuberosities. A total of 42 subjects who had sustained traumatic spinal cord injury within 1 year were monitored on at least two occasions during initial rehabilitation. Changes in transcutaneous gas response (TcPO2 and TcPCO2) were monitored concurrently with regional interface pressures. A series of six transcutaneous gas variables were established, as markers of tissue viability. Non-parametric statistical analyses revealed some significant correlations between these variables. The results of this study also indicate that (1) spinal cord injury subjects with lesions below T6 show a progressive decrease in ability to maintain blood flow in sitting on prescribed support cushions and (2) SCI subjects with lesions above T6 show a progressive improvement in tissue viability status at the seating support interface. Therefore results imply that paraplegics are at a potentially higher risk of tissue breakdown than tetraplegics and thus require effective support cushions with strict adherence to a pressure relief regime. PMID:7784116

  6. Whole-body vibration improves functional recovery in spinal cord injured rats.

    PubMed

    Wirth, Felicitas; Schempf, Greta; Stein, Gregor; Wellmann, Katharina; Manthou, Marilena; Scholl, Carolin; Sidorenko, Malina; Semler, Oliver; Eisel, Leonie; Harrach, Rachida; Angelova, Srebrina; Jaminet, Patrick; Ankerne, Janina; Ashrafi, Mahak; Ozsoy, Ozlem; Ozsoy, Umut; Schubert, Harald; Abdulla, Diana; Dunlop, Sarah A; Angelov, Doychin N; Irintchev, Andrey; Schönau, Eckhard

    2013-03-15

    Whole-body vibration (WBV) is a relatively novel form of exercise used to improve neuromuscular performance in healthy individuals. Its usefulness as a therapy for patients with neurological disorders, in particular spinal cord injury (SCI), has received little attention in clinical settings and, surprisingly, even less in animal SCI models. We performed severe compression SCI at a low-thoracic level in Wistar rats followed by daily WBV starting 7 (10 rats) or 14 (10 rats) days after injury (WBV7 and WBV14, respectively) and continued over a 12-week post-injury period. Rats with SCI but no WBV training (sham, 10 rats) and intact animals (10 rats) served as controls. Compared to sham-treated rats, WBV did not improve BBB score, plantar stepping, or ladder stepping during the 12-week period. Accordingly, WBV did not significantly alter plantar H-reflex, lesion volume, serotonergic input to the lumbar spinal cord, nor cholinergic or glutamatergic inputs to lumbar motoneurons at 12 weeks after SCI. However, compared to sham, WBV14, but not WBV7, significantly improved body weight support (rump-height index) during overground locomotion and overall recovery between 6-12 weeks and also restored the density of synaptic terminals in the lumbar spinal cord at 12 weeks. Most remarkably, WBV14 led to a significant improvement of bladder function at 6-12 weeks after injury. These findings provide the first evidence for functional benefits of WBV in an animal SCI model and warrant further preclinical investigations to determine mechanisms underpinning this noninvasive, inexpensive, and easily delivered potential rehabilitation therapy for SCI. PMID:23157611

  7. Spasticity in spinal cord injured patients: 2. Initial measures and long-term effects of surface electrical stimulation.

    PubMed

    Robinson, C J; Kett, N A; Bolam, J M

    1988-10-01

    Electrical stimulation of paralyzed muscles has been shown to affect their spasticity, especially in patients with hemiplegia. But little has been reported on the long-term effects of such stimulation on individuals with spinal cord injury. This paper documents initial quadriceps spasticity in 31 spinal cord injured subjects, and the effect of four to eight weeks of reconditioning using electrical stimulation. Spasticity was quantified through the use of a normalized relaxation index (R2n) obtained from a pendulum drop test. The reconditioning protocol consisted of twice daily 20-minute exercise sessions at least four hours apart, six days per week. Spasticity and stimulated quadriceps torque were measured during one to three evaluations performed at least one day apart at the beginning of the program, and at four and eight weeks. There was no significant difference in average initial measures of spasticity between left and right legs and no effect of time since injury on average R2n values. Significant differences were seen for right leg average baseline R2n values when grouped by lesion level or completeness. Quadriplegic individuals were more spastic than paraplegic individuals, and subjects with incomplete lesions were more spastic than those with complete lesions. These findings are interrelated since most of the quadriplegic subjects (14 of 16) had incomplete lesions. Most participants had increased spasticity after four weeks of reconditioning but not after eight weeks. However, only eight subjects completed eight weeks of reconditioning. Subjects who had the greatest increases in spasticity also had the greatest gains in stimulated torque, both after four and eight weeks.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3263102

  8. Design of the advanced commode-shower chair for spinal cord-injured individuals.

    PubMed

    Malassigné, P; Nelson, A L; Cors, M W; Amerson, T L

    2000-01-01

    The purpose of this development project was to design a new commode-shower chair that can be safely used by individuals with spinal cord injuries (SCI) and their caregivers. The need for this new design was consumer-driven. Patients and caregivers identified the following fatal flaws in the commode-shower chairs used in Spinal Cord Injury (SCI) centers: 1) risk for patient falls during transfers, propelling, and while leaning over for showering; 2) risk for pressure ulcers due to inadequate padding and seat positioning for lengthy bowel care regimes; 3) inadequate caregiver access to the perianal area of the patient to perform bowel care procedures; and, 4) wheel-related inability to properly position the chair directly over the toilet. The new, self-propelled chair addresses each of these concerns. Lockable, swing-away, pivoting armrests and improved, lever-activated brakes were designed to facilitate safe transfers. An innovative foot-lift was invented to facilitate washing of feet. Larger handrims were designed to aid in propulsion in wet environments. To prevent pressure ulcers, a chair frame and padding combination was designed to facilitate a seating position that optimally distributes body weight to prevent the development of pressure ulcers in the sacral and ischial areas. To address the common risk of heel ulcers, footrests, featuring edgeless, rounded heel cups, were designed. A new tubular chair frame, a new seat and smaller wheels were designed to enhance caregiver access and ensure proper chair positioning over the toilet. Following its successful clinical evaluation at the Milwaukee and Tampa VA Medical SCI Centers, the Advanced commode-shower chair is being patented by the Department of Veterans Affairs (VA). The VA has partnered with Everest & Jennings, to make this chair available commercially. PMID:10917269

  9. Intraspinal stimulation for bladder voiding in cats before and after chronic spinal cord injury.

    PubMed

    Pikov, Victor; Bullara, Leo; McCreery, Douglas B

    2007-12-01

    The long-term objective of this study is to develop neural prostheses for people with spinal cord injuries who are unable to voluntarily control their bladder. This feasibility study was performed in 22 adult cats. We implanted an array of microelectrodes into locations in the sacral spinal cord that are involved in the control of micturition reflexes. The effect of microelectrode stimulation was studied under light Propofol anesthesia at monthly intervals for up to 14 months. We found that electrical stimulation in the sacral parasympathetic nucleus at S(2) level or in adjacent ventrolateral white matter produced bladder contractions insufficient for inducing voiding, while stimulation at or immediately dorsal to the dorsal gray commissure at S(1) level produced strong (at least 20 mmHg) bladder contractions as well as strong (at least 40 mm Hg) external urethral sphincter relaxation, resulting in bladder voiding in 14 animals. In a subset of three animals, spinal cord transection was performed. For several months after the transection, intraspinal stimulation continued to be similarly or even more effective in inducing the bladder voiding as before the transection. We speculate that in the absence of the supraspinal connections, the plasticity in the local spinal circuitry played a role in the improved responsiveness to intraspinal stimulation. PMID:18057503

  10. Intraspinal stimulation for bladder voiding in cats before and after chronic spinal cord injury

    NASA Astrophysics Data System (ADS)

    Pikov, Victor; Bullara, Leo; McCreery, Douglas B.

    2007-12-01

    The long-term objective of this study is to develop neural prostheses for people with spinal cord injuries who are unable to voluntarily control their bladder. This feasibility study was performed in 22 adult cats. We implanted an array of microelectrodes into locations in the sacral spinal cord that are involved in the control of micturition reflexes. The effect of microelectrode stimulation was studied under light Propofol anesthesia at monthly intervals for up to 14 months. We found that electrical stimulation in the sacral parasympathetic nucleus at S2 level or in adjacent ventrolateral white matter produced bladder contractions insufficient for inducing voiding, while stimulation at or immediately dorsal to the dorsal gray commissure at S1 level produced strong (at least 20 mmHg) bladder contractions as well as strong (at least 40 mm Hg) external urethral sphincter relaxation, resulting in bladder voiding in 14 animals. In a subset of three animals, spinal cord transection was performed. For several months after the transection, intraspinal stimulation continued to be similarly or even more effective in inducing the bladder voiding as before the transection. We speculate that in the absence of the supraspinal connections, the plasticity in the local spinal circuitry played a role in the improved responsiveness to intraspinal stimulation.

  11. Comparing the Induced Muscle Fatigue Between Asynchronous and Synchronous Electrical Stimulation in Able-Bodied and Spinal Cord Injured Populations.

    PubMed

    Downey, Ryan J; Bellman, Matthew J; Kawai, Hiroyuki; Gregory, Chris M; Dixon, Warren E

    2015-11-01

    Neuromuscular electrical stimulation (NMES) has been shown to impart a number of health benefits and can be used to produce functional outcomes. However, one limitation of NMES is the onset of NMES-induced fatigue. Multi-channel asynchronous stimulation has been shown to reduce NMES-induced fatigue compared to conventional single-channel stimulation. However, in previous studies in man, the effect of stimulation frequency on the NMES-induced fatigue has not been examined for asynchronous stimulation. Low stimulation frequencies are known to reduce fatigue during conventional stimulation. Therefore, the aim of this study was to examine the fatigue characteristics of high- and low-frequency asynchronous stimulation as well as high- and low-frequency conventional stimulation. Experiments were performed in both able-bodied and spinal cord injured populations. Low frequency asynchronous stimulation is found to have significant fatigue benefits over high frequency asynchronous stimulation as well as high- and low-frequency conventional stimulation, motivating its use for rehabilitation and functional electrical stimulation (FES). PMID:25350934

  12. Extracellular vimentin is a novel axonal growth facilitator for functional recovery in spinal cord-injured mice

    PubMed Central

    Shigyo, Michiko; Tohda, Chihiro

    2016-01-01

    Vimentin, an intermediate filament protein, is an intracellular protein that is involved in various cellular processes. Several groups have recently reported that vimentin also appears in the extracellular space and shows novel protein activity. We previously reported that denosomin improved motor dysfunction in mice with a contusive spinal cord injury (SCI). At the injured area, astrocytes expressing and secreting vimentin were specifically increased, and axonal growth occurred in a vimentin-dependent manner in denosomin-treated mice. However, the axonal growth that was induced by extracellular vimentin was only investigated in vitro in the previous study. Here, we sought to clarify whether increased extracellular vimentin can promote the axonal extension related to motor improvement after SCI in vivo. Extracellular vimentin treatment in SCI mice significantly ameliorated motor dysfunction. In vimentin-treated mice, 5-HT-positive axons increased significantly at the rostral and central areas of the lesion, and the total axonal densities increased in the central and caudal parts of the lesioned area. This finding suggests that increased axonal density may contribute to motor improvement in vimentin-treated mice. Thus, our in vivo data indicate that extracellular vimentin may be a novel neurotrophic factor that enhances axonal growth activity and motor function recovery after SCI. PMID:27323867

  13. Human astrocytes derived from glial restricted progenitors support regeneration of the injured spinal cord.

    PubMed

    Haas, Christopher; Fischer, Itzhak

    2013-06-15

    Cellular transplantation using neural stem cells and progenitors is a promising therapeutic strategy that has the potential to replace lost cells, modulate the injury environment, and create a permissive environment for the regeneration of injured host axons. Our research has focused on the use of human glial restricted progenitors (hGRP) and derived astrocytes. In the current study, we examined the morphological and phenotypic properties of hGRP prepared from the fetal central nervous system by clinically-approved protocols, compared with astrocytes derived from hGRP prepared by treatment with ciliary neurotrophic factor or bone morphogenetic protein 4. These differentiation protocols generated astrocytes that showed morphological differences and could be classified along an immature to mature spectrum, respectively. Despite these differences, the cells retained morphological and phenotypic plasticity upon a challenge with an alternate differentiation protocol. Importantly, when hGRP and derived astrocytes were transplanted acutely into a cervical dorsal column lesion, they survived and promoted regeneration of long ascending host sensory axons into the graft/lesion site, with no differences among the groups. Further, hGRP taken directly from frozen stocks behaved similarly and also supported regeneration of host axons into the lesion. Our results underscore the dynamic and permissive properties of human fetal astrocytes to promote axonal regeneration. They also suggest that a time-consuming process of pre-differentiation may not be necessary for therapeutic efficacy, and that the banking of large quantities of readily available hGRP can be an appropriate source of permissive cells for transplantation. PMID:23635322

  14. Human Astrocytes Derived from Glial Restricted Progenitors Support Regeneration of the Injured Spinal Cord

    PubMed Central

    Haas, Christopher

    2013-01-01

    Abstract Cellular transplantation using neural stem cells and progenitors is a promising therapeutic strategy that has the potential to replace lost cells, modulate the injury environment, and create a permissive environment for the regeneration of injured host axons. Our research has focused on the use of human glial restricted progenitors (hGRP) and derived astrocytes. In the current study, we examined the morphological and phenotypic properties of hGRP prepared from the fetal central nervous system by clinically-approved protocols, compared with astrocytes derived from hGRP prepared by treatment with ciliary neurotrophic factor or bone morphogenetic protein 4. These differentiation protocols generated astrocytes that showed morphological differences and could be classified along an immature to mature spectrum, respectively. Despite these differences, the cells retained morphological and phenotypic plasticity upon a challenge with an alternate differentiation protocol. Importantly, when hGRP and derived astrocytes were transplanted acutely into a cervical dorsal column lesion, they survived and promoted regeneration of long ascending host sensory axons into the graft/lesion site, with no differences among the groups. Further, hGRP taken directly from frozen stocks behaved similarly and also supported regeneration of host axons into the lesion. Our results underscore the dynamic and permissive properties of human fetal astrocytes to promote axonal regeneration. They also suggest that a time-consuming process of pre-differentiation may not be necessary for therapeutic efficacy, and that the banking of large quantities of readily available hGRP can be an appropriate source of permissive cells for transplantation. PMID:23635322

  15. Low level laser therapy accelerates bone healing in spinal cord injured rats.

    PubMed

    Medalha, Carla Christina; Santos, Ana Lúcia Yaeko Silva; Veronez, Suellen de Oliveira; Fernandes, Kelly Rossetti; Magri, Angela Maria Paiva; Renno, Ana Claudia Muniz

    2016-06-01

    Bone loss occurs rapidly and consistently after the occurrence of a spinal cord injury (SCI), leading to a decrease in bone mineral density (BMD) and a higher risk of fractures. In this context, the stimulatory effects of low level laser therapy (LLLT) also known as photobiomodulation (PBM) have been highlighted, mainly due to its osteogenic potential. The aim of the present study was to evaluate the effects of LLLT on bone healing using an experimental model of tibial bone defect in SCI rats. Twenty-four female Wistar rats were randomly divided into 3 groups: Sham group (SG), SCI control group (SC) and SCI laser treated group (SL). Two weeks after the induction of the SCI, animals were submitted to surgery to induce a tibial bone defect. Treatment was performed 3days a week, for 2weeks, at a single point over the area of the injury, using an 808nm laser (30mW, 100J/cm(2); 0.028cm(2), 1.7W/cm², 2.8J). The results of the histological and morphometric evaluation demonstrated that the SL group showed a larger amount of newly formed bone compared to the SC group. Moreover, a significant immunoexpression of runt-related transcription factor 2 (RUNX2) was observed in the SL group. There was no statistical difference in the biomechanical evaluation. In conclusion, the results suggest that LLLT accelerated the process of bone repair in rats with complete SCI. PMID:27077555

  16. Spinal-Cord-Injured Individual's Experiences of Having a Partner: A Phenomenological-Hermeneutic Study.

    PubMed

    Angel, Sanne

    2015-06-01

    Having a partner is a strong factor in adaptation to the new life situation with a spinal cord injury (SCI). Still, more knowledge in detail about the partner's influences according to the experiences of individuals with SCI could contribute to the understanding of the situation after an injury. The aim of this phenomenological-hermeneutic article is to achieve a deeper understanding of nine individuals' experiences the first 2 years after SCI. In rehabilitation after SCI, the partner supported the SCI individual's life spirit by not giving up and by still seeing possibilities in the future. The partner reinforced the SCI individual's commitment to life by sharing experiences; providing love, trust, and hope; and giving priority to the best things in life for the SCI individual. This implied cohabitation providing concrete help and an intimacy that helped to cope with problems and anxieties and allowed SCI individuals the ability to self-realize. This promoted feelings of profound gratitude but also dependency. Thus, the SCI individual benefitted from the partner's support mentally and physically, which enabled a life that would not otherwise be possible. PMID:25944001

  17. Acceptance of chronic neuropathic pain in spinal cord injured persons: a qualitative approach.

    PubMed

    Henwood, Penelope; Ellis, Jacqueline; Logan, Jo; Dubouloz, Claire-Jehanne; D'Eon, Joyce

    2012-12-01

    Chronic neuropathic pain (CNP) in spinal cord injury (SCI) is a significant problem that has physical, functional, and psychosocial repercussions beyond the consequences of SCI. The notion that acceptance may be a viable alternative to suffering when resolution of pain is unattainable was explored. Studies indicate that acceptance of pain is associated with lower pain intensity, less pain-related anxiety and avoidance, less depression, less physical and psychosocial disability, more daily active time, and improved work status in patients who have other types of chronic pain. This exploratory qualitative study examined acceptance of pain in SCI individuals who have CNP. Grounded theory was used to develop a conceptual framework to describe acceptance in people with CNP and SCI. Data were obtained from in-depth interviews with seven SCI individuals. Six phases were identified, including: "comprehending the perplexity of CNP," "seeking pain resolution," "acknowledging pain permanence," "redefining core values," "learning to live with the pain," and "integrating pain." Two driving forces, "increasing independence" and "evolving pain view," were noted to move the process of acceptance forward. The findings in this study suggest that acceptance of pain appeared to be beneficial in terms of reducing suffering and facilitating a more satisfying and fulfilling life in these SCI individuals. A decreased emphasis on continued searching for a cure for CNP and movement toward a self-management approach was associated with increased pain coping for these SCI individuals. Clinical implications suggest that early intervention to facilitate effective coping and an exploration of the notion of acceptance could be beneficial. PMID:23158703

  18. Novel Multi-System Functional Gains via Task Specific Training in Spinal Cord Injured Male Rats

    PubMed Central

    Ward, Patricia J.; Herrity, April N.; Smith, Rebecca R.; Willhite, Andrea; Harrison, Benjamin J.; Petruska, Jeffrey C.; Harkema, Susan J.

    2014-01-01

    Abstract Locomotor training (LT) after spinal cord injury (SCI) is a rehabilitative therapy used to enhance locomotor recovery. There is evidence, primarily anecdotal, also associating LT with improvements in bladder function and reduction in some types of SCI-related pain. In the present study, we determined if a step training paradigm could improve outcome measures of locomotion, bladder function, and pain/allodynia. After a T10 contusive SCI trained animals (adult male Wistar rats), trained animals began quadrupedal step training beginning 2 weeks post-SCI for 1 h/day. End of study experiments (3 months of training) revealed significant changes in limb kinematics, gait, and hindlimb flexor-extensor bursting patterns relative to non-trained controls. Importantly, micturition function, evaluated with terminal transvesical cystometry, was significantly improved in the step trained group (increased voiding efficiency, intercontraction interval, and contraction amplitude). Because both SCI and LT affect neurotrophin signaling, and neurotrophins are involved with post-SCI plasticity in micturition pathways, we measured bladder neurotrophin mRNA. Training regulated the expression of nerve growth factor (NGF) but not BDNF or NT3. Bladder NGF mRNA levels were inversely related to bladder function in the trained group. Monitoring of overground locomotion and neuropathic pain throughout the study revealed significant improvements, beginning after 3 weeks of training, which in both cases remained consistent for the study duration. These novel findings, improving non-locomotor in addition to locomotor functions, demonstrate that step training post-SCI could contribute to multiple quality of life gains, targeting patient-centered high priority deficits. PMID:24294909

  19. Anatomical correlates of recovery in single pellet reaching in spinal cord injured rats.

    PubMed

    Hurd, C; Weishaupt, N; Fouad, K

    2013-09-01

    Modeling spinal cord injury (SCI) in animals is challenging because an appropriate combination of lesion location, lesion severity and behavioral testing is essential to analyze recovery of motor function. For particular tests such as single pellet reaching, the contribution of individual descending tracts to recovery has been investigated using specific tract ablation or graded lesions. However, it has not been established whether single pellet reaching is sufficiently sensitive for assessing the efficacy of treatments for cervical SCI (e.g., one of the currently most successful treatment approaches: rehabilitative training). To address this issue, we trained adult rats in single pellet reaching before and after a cervical (C4) spinal lesion. Animals with lesions of increasing severity were grouped into categories based on damage to anatomical structures such as the corticospinal tract (CST) and the rubrospinal tract (RST), two descending motor tracts that have been implicated in fine motor control of the forelimb. We related lesion extent to spontaneous recovery and plasticity-promoting post injury training and found that reaching performance was not correlated with lesion size or the extent of CST or RST injury. Interestingly, the dorsolateral quadrant (DLQ) lesion category, in which the unilateral dorsal CST and most of the unilateral RST are lesioned, was the only category that showed a clear effect of plasticity-promoting treatment (i.e., training), indicating its usefulness as a lesion model for this testing paradigm. The DLQ lesion likely strikes a balance between tissue sparing and functional impairment and is, therefore, best suited to maximize the potential to observe treatment effects of plasticity-promoting treatments using single pellet reaching. Because of the specific lesion size that is necessary to observe treatment effects, the single pellet skilled reaching task can be considered a stringent behavioral test and therefore may be useful for

  20. The Effects of Body Mass Composition and Cushion Type on Seat-Interface Pressure in Spinal Cord Injured Patients

    PubMed Central

    Cho, Kang Hee; Beom, Jaewon; Yuk, Jee Hyun

    2015-01-01

    Objective To investigate the effects of body mass composition and cushion type on seat-interface pressure in spinal cord injured (SCI) patients and healthy subjects. Methods Twenty SCI patients and control subjects were included and their body mass composition measured. Seat-interface pressure was measured with participants in an upright sitting posture on a wheelchair with three kinds of seat cushion and without a seat cushion. We also measured the pressure with each participant in three kinds of sitting postures on each air-filled cushion. We used repeated measure ANOVA, the Mann-Whitney test, and Spearman correlation coefficient for statistical analysis. Results The total skeletal muscle mass and body water in the lower extremities were significantly higher in the control group, whilst body fat was significantly higher in the SCI group. However, the seat-interface pressure and body mass composition were not significantly correlated in both groups. Each of the three types of seat cushion resulted in significant reduction in the seat-interface pressure. The SCI group had significantly higher seatinterface pressure than the control group regardless of cushion type or sitting posture. The three kinds of sitting posture did not result in a significant reduction of seat-interface pressure. Conclusion We confirmed that the body mass composition does not have a direct effect on seat-interface pressure. However, a reduction of skeletal muscle mass and body water can influence the occurrence of pressure ulcers. Furthermore, in order to minimize seat-interface pressure, it is necessary to apply a method fitted to each individual rather than a uniform method. PMID:26798612

  1. Mesenchymal stromal cells integrate and form longitudinally-aligned layers when delivered to injured spinal cord via a novel fibrin scaffold

    PubMed Central

    Hyatt, Alex J.T.; Wang, Difei; van Oterendorp, Christian; Fawcett, James W.; Martin, Keith R.

    2014-01-01

    Mesenchymal stromal cells (MSCs) have been shown to promote healing and regeneration in a number of CNS injury models and therefore there is much interest in the clinical use of these cells. For spinal cord injuries, a standard delivery method for MSCs is intraspinal injection, but this can result in additional injury and provides little control over how the cells integrate into the tissue. The present study examines the use of a novel fibrin scaffold as a new method of delivering MSCs to injured spinal cord. Use of the fibrin scaffold resulted in the formation of longitudinally-aligned layers of MSCs growing over the spinal cord lesion site. Host neurites were able to migrate into this MSC architecture and grow longitudinally. The length of the MSC bridge corresponded to the length of the fibrin scaffold. MSCs that were delivered via intraspinal injection were mainly oriented perpendicular to the plane of the spinal cord and remained largely restricted to the lesion site. Host neurites within the injected MSC graft were also oriented perpendicular to the plane of the spinal cord. PMID:24680849

  2. Bone marrow stem cells delivered into the subarachnoid space via cisterna magna improve repair of injured rat spinal cord white matter

    PubMed Central

    Marcol, Wiesław; Slusarczyk, Wojciech; Sieroń, Aleksander L; Koryciak-Komarska, Halina; Lewin-Kowalik, Joanna

    2015-01-01

    The influence of bone marrow stem cells on regeneration of spinal cord in rats was investigated. Young adult male Wistar rats were used (n=22). Focal injury of spinal cord white matter at Th10 level was produced using our original non-laminectomy method by means of high-pressured air stream. Cells from tibial and femoral bone marrow of 1-month old rats (n=3) were cultured, labeled with BrdU/Hoechst and injected into cisterna magna (experimental group) three times: immediately after spinal cord injury and 3 as well as 7 days later. Neurons in brain stem and motor cortex were labeled with FluoroGold (FG) delivered caudally from the injury site a week before the end of experiment. Functional outcome and morphological features of regeneration were analyzed during 12-week follow-up. The lesions were characterized by means of MRI. Maximal distance of expansion of implanted cells in the spinal cord was measured and the number of FG-positive neurons in the brain was counted. Rats treated with stem cells presented significant improvement of locomotor performance and spinal cord morphology when compared to the control group. Distance covered by stem cells was 7 mm from the epicenter of the injury. Number of brain stem and motor cortex FG-positive neurons in experimental group was significantly higher than in control. Obtained data showed that bone marrow stem cells are able to induce the repair of injured spinal cord white matter. The route of cells application via cisterna magna appeared to be useful for their delivery in spinal cord injury therapy. PMID:26628950

  3. Adenoviral gene transfer into the normal and injured spinal cord: enhanced transgene stability by combined administration of temperature-sensitive virus and transient immune blockade.

    PubMed

    Romero, M I; Smith, G M

    1998-12-01

    This study characterized gene transfer into both normal and injured adult rat dorsal spinal cord using first (E1-/E3-) or second (E1-/E2A125/E3-, temperature-sensitive; ts) generation of replication-defective adenoviral (Ad) vectors. A novel immunosuppressive regimen aimed at blocking CD4/CD45 lymphocytic receptors was tested for improving transgene persistence. In addition, the effect of gene transfer on nociception was also evaluated. Seven days after treatment, numerous LacZ-positive cells were observed after transfection with either viral vector. By 21 days after transfection, beta-galactosidase staining was reduced and suggestive of ongoing cytopathology in both Ad-treated groups, despite the fact that the immunogenicity of LacZ/Adts appeared less when compared with that elicited by the LacZ/Ad vector. In contrast, immunosuppressed animals showed a significant (P < or = 0.05) increase in the number of LacZ-positive cells not displaying cytopathology. In these animals, a concomitant reduction in numbers of macrophages/microglia and CD4 and CD8 lymphocytes was observed. Only animals that received LacZ/Adts and immunosuppression showed transgene expression after 60 days. Similar results were observed in animals in which the L4-L5 dorsal roots were lesioned before transfection. Gene transfer into the dorsal spinal cord did not affect nociception, independent of the adenovirus vector. These results indicate that immune blockade of the CD4/CD45 lymphocytic receptors enhanced transgene stability in adult animals with normal or injured spinal cords and that persistent transgene expression in the spinal cord does not interfere with normal neural function. PMID:10023440

  4. Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord.

    PubMed

    Karimi-Abdolrezaee, Soheila; Eftekharpour, Eftekhar; Wang, Jian; Schut, Desiree; Fehlings, Michael G

    2010-02-01

    The transplantation of neural stem/progenitor cells (NPCs) is a promising therapeutic strategy for spinal cord injury (SCI). However, to date NPC transplantation has exhibited only limited success in the treatment of chronic SCI. Here, we show that chondroitin sulfate proteoglycans (CSPGs) in the glial scar around the site of chronic SCI negatively influence the long-term survival and integration of transplanted NPCs and their therapeutic potential for promoting functional repair and plasticity. We targeted CSPGs in the chronically injured spinal cord by sustained infusion of chondroitinase ABC (ChABC). One week later, the same rats were treated with transplants of NPCs and transient infusion of growth factors, EGF, bFGF, and PDGF-AA. We demonstrate that perturbing CSPGs dramatically optimizes NPC transplantation in chronic SCI. Engrafted NPCs successfully integrate and extensively migrate within the host spinal cord and principally differentiate into oligodendrocytes. Furthermore, this combined strategy promoted the axonal integrity and plasticity of the corticospinal tract and enhanced the plasticity of descending serotonergic pathways. These neuroanatomical changes were also associated with significantly improved neurobehavioral recovery after chronic SCI. Importantly, this strategy did not enhance the aberrant synaptic connectivity of pain afferents, nor did it exacerbate posttraumatic neuropathic pain. For the first time, we demonstrate key biological and functional benefits for the combined use of ChABC, growth factors, and NPCs to repair the chronically injured spinal cord. These findings could potentially bring us closer to the application of NPCs for patients suffering from chronic SCI or other conditions characterized by the formation of a glial scar. PMID:20130176

  5. Distribution of 28 kDa Calbindin-Immunopositive Neurons in the Cat Spinal Cord

    PubMed Central

    Merkulyeva, Natalia; Veshchitskii, Aleksandr; Makarov, Felix; Gerasimenko, Yury; Musienko, Pavel

    2016-01-01

    The distribution of vitamin D-dependent calcium-binding protein (28 kDa calbindin) was investigated in cat lumbar and sacral spinal cord segments (L1-S3). We observed specific multi-dimensional distributions over the spinal segments for small immunopositive cells in Rexed laminae II-III and medium-to-large cells of varying morphology in lamina I and laminae V-VIII. The small neurons in laminae II-III were clustered into the columns along the dorsal horn curvature. The medium-to-large cells were grouped into four assemblages that were located in (1) the most lateral region of lamina VII at the L1-L4 level; (2) the laminae IV-V boundary at the L5-L7 level; (3) the lamina VII dorsal border at the L5-L7 level; and (4) the lamina VIII at the L5-S3 level. The data obtained suggest that the morphological and physiological heterogeneity of calbindin immunolabeling cells formed morpho-functional clusters over the gray matter. A significant portion of the lumbosacral enlargement had immunopositive neurons within all Rexed laminae, suggesting an important functional role within and among the spinal networks that control hindlimb movements. PMID:26858610

  6. Cardio Respiratory Adaptations with Long Term Personalized Exercise Program in a T12 Spinal Cord Injured Person

    ERIC Educational Resources Information Center

    Vasiliadis, Angelo; Christoulas, Kosmas; Evaggelinou, Christina; Vrabas, Ioannis

    2009-01-01

    The purpose of this study was to investigate the physiological adaptations in cardio respiratory endurance with a personalized exercise program with arm-cranking exercise in a paraplegic person (incomplete T12 spinal cord injury). A 32 year-old man with spinal cord injury (T12) participated in the present study performing 30 minutes arm cranking…

  7. Experimental Strategies to Bridge Large Tissue Gaps in the Injured Spinal Cord after Acute and Chronic Lesion.

    PubMed

    Brazda, Nicole; Estrada, Veronica; Voss, Christian; Seide, Klaus; Trieu, Hoc Khiem; Müller, Hans Werner

    2016-01-01

    After a spinal cord injury (SCI) a scar forms in the lesion core which hinders axonal regeneration. Bridging the site of injury after an insult to the spinal cord, tumor resections, or tissue defects resulting from traumatic accidents can aid in facilitating general tissue repair as well as regenerative growth of nerve fibers into and beyond the affected area. Two experimental treatment strategies are presented: (1) implantation of a novel microconnector device into an acutely and completely transected thoracic rat spinal cord to readapt severed spinal cord tissue stumps, and (2) polyethylene glycol filling of the SCI site in chronically lesioned rats after scar resection. The chronic spinal cord lesion in this model is a complete spinal cord transection which was inflicted 5 weeks before treatment. Both methods have recently achieved very promising outcomes and promoted axonal regrowth, beneficial cellular invasion and functional improvements in rodent models of spinal cord injury. The mechanical microconnector system (mMS) is a multi-channel system composed of polymethylmethacrylate (PMMA) with an outlet tubing system to apply negative pressure to the mMS lumen thus pulling the spinal cord stumps into the honeycomb-structured holes. After its implantation into the 1 mm tissue gap the tissue is sucked into the device. Furthermore, the inner walls of the mMS are microstructured for better tissue adhesion. In the case of the chronic spinal cord injury approach, spinal cord tissue - including the scar-filled lesion area - is resected over an area of 4 mm in length. After the microsurgical scar resection the resulting cavity is filled with polyethylene glycol (PEG 600) which was found to provide an excellent substratum for cellular invasion, revascularization, axonal regeneration and even compact remyelination in vivo. PMID:27077921

  8. Differential effects of myelin basic protein-activated Th1 and Th2 cells on the local immune microenvironment of injured spinal cord.

    PubMed

    Hu, Jian-Guo; Shi, Ling-Ling; Chen, Yue-Juan; Xie, Xiu-Mei; Zhang, Nan; Zhu, An-You; Jiang, Zheng-Song; Feng, Yi-Fan; Zhang, Chen; Xi, Jin; Lü, He-Zuo

    2016-03-01

    Myelin basic protein (MBP) activated T cells (MBP-T) play an important role in the damage and repair process of the central nervous system (CNS). However, whether these cells play a beneficial or detrimental role is still a matter of debate. Although some studies showed that MBP-T cells are mainly helper T (Th) cells, their subtypes are still not very clear. One possible explanation for MBP-T immunization leading to conflicting results may be the different subtypes of T cells are responsible for distinct effects. In this study, the Th1 and Th2 type MBP-T cells (MBP-Th1 and -Th2) were polarized in vitro, and their effects on the local immune microenvironment and tissue repair of spinal cord injury (SCI) after adoptive immunization were investigated. In MBP-Th1 cell transferred rats, the high levels of pro-inflammatory cells (Th1 cells and M1 macrophages) and cytokines (IFN-γ, TNF-α, -β, IL-1β) were detected in the injured spinal cord; however, the anti-inflammatory cells (Th2 cells, regulatory T cells, and M2 macrophages) and cytokines (IL-4, -10, and -13) were found in MBP-Th2 cell transferred animals. MBP-Th2 cell transfer resulted in decreased lesion volume, increased myelination of axons, and preservation of neurons. This was accompanied by significant locomotor improvement. These results indicate that MBP-Th2 adoptive transfer has beneficial effects on the injured spinal cord, in which the increased number of Th2 cells may alter the local microenvironment from one primarily populated by Th1 and M1 cells to another dominated by Th2, Treg, and M2 cells and is conducive for SCI repair. PMID:26772636

  9. New serum-derived albumin scaffold seeded with adipose-derived stem cells and olfactory ensheathing cells used to treat spinal cord injured rats.

    PubMed

    Ferrero-Gutierrez, A; Menendez-Menendez, Y; Alvarez-Viejo, M; Meana, A; Otero, J

    2013-01-01

    Recent advances in spinal cord injury (SCI) research and cell culture techniques and biomaterials predict promising new treatments for patients with SCI or other nerve injuries. Biomaterial scaffolds form a substrate within which cells are instructed to form a tissue in a controlled manner. This study was designed to assess axon regeneration and locomotor recovery in rats with spinal cord injury treated with a novel serum-derived albumin scaffold seeded with adipose derived stem cells (ADSCs) and olfactory ensheathing cells (OECs). OECs are considered promising candidates for the treatment of SCI, and ADSCs have the ability to differentiate into neural lineages. In vitro experiments revealed that ADSCs and OECs adhered to the scaffold, remained viable and expressed specific markers of their cell types when cultured in the scaffold. Rats treated with scaffold plus cells showed locomotor skills at several time points from 45 days post-injury that were improved over those recorded in control injured, untreated animals. Astrocytic scars and tissue regeneration, identified using histological and immunohistochemical techniques, revealed that although the scaffold itself appeared to play a significant role in reducing glial scar formation and filling of the lesion cavity with cells, the presence of ADSCs and OECs in the scaffold led to the appearance of cells expressing markers of neurons and axons at the injury site. Our findings point to the clinical feasibility of an albumin scaffold seeded with ADSCs and OECs as a treatment candidate for use in spinal cord injury repair studies. PMID:23233062

  10. Cats

    MedlinePlus

    ... found on the skin of people and animals. Methicillin-resistant Staphylococcus aureus (MRSA) is the same bacterium that has become resistant to some antibiotics. Cats and other animals often can carry MRSA ...

  11. Direct and indirect pathways to lamina I in the medulla oblongata and spinal cord of the cat

    NASA Technical Reports Server (NTRS)

    Holstege, Gert

    1988-01-01

    The pathways to lamina I in the medulla oblongata and spinal cord of the cat were traced using horse-radish-peroxidase (HRP) and autoradiographic techniques. The HRP results indicated that several neuronal cell groups in the brain stem and hypothalamus project to the spinal cord throughout its total length. The autoradiographic tracing results demonstrated that the strongest projections to lamina I are derived from the following four areas: the caudal nucleus raphe magnus (NRM), the ventral part of the caudal pontine and NRM, the contralaterally projecting lateral pontine or paralemniscal tegmentum, and the paraventricular nucleus of the hypothalamus. In addition, a limited, especially at lumbosacral levels, distinct projection to lamina I was found to originate in the most caudal part of the medullary tegmentum.

  12. Projections from the rostral mesencephalic reticular formation to the spinal cord - An HRP and autoradiographical tracing study in the cat

    NASA Technical Reports Server (NTRS)

    Holstege, G.; Cowie, R. J.

    1989-01-01

    Horseradish peroxidase was injected, or implanted unilaterally, into various levels of the spinal cord of anesthetized cats, to trace the distribution of projections to the spinal cord, of neurons in Field H of Forel, including the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF), and the interstitial nucleus of Cajal with adjacent reticular formation (INC-RF). Results indicate that, unlike the neurons projecting to the extraocular muscle motoneurons, the major portion of the spinally projecting neurons are not located in the riMLF or INC proper, but in adjacent areas, i.e., the ventral and lateral parts of the caudal third of the Field H of Forel and in the INC-RF. Neurons in caudal Field H of Forel, project, via the ventral part of the ventral funicululs, to the lateral part of the upper cervical ventral horn.

  13. Electroacupuncture promotes the recovery of motor neuron function in the anterior horn of the injured spinal cord

    PubMed Central

    Yang, Jian-hui; Lv, Jian-guo; Wang, Hui; Nie, Hui-yong

    2015-01-01

    Acupuncture has been shown to lessen the inflammatory reaction after acute spinal cord injury and reduce secondary injury. However, the mechanism of action remains unclear. In this study, a rat model of spinal cord injury was established by compressing the T8–9 segments using a modified Nystrom method. Twenty-four hours after injury, Zusanli (ST36), Xuanzhong (GB39), Futu (ST32) and Sanyinjiao (SP6) were stimulated with electroacupuncture. Rats with spinal cord injury alone were used as controls. At 2, 4 and 6 weeks after injury, acetylcholinesterase (AChE) activity at the site of injury, the number of medium and large neurons in the spinal cord anterior horn, glial cell line-derived neurotrophic factor (GDNF) mRNA expression, and Basso, Beattie and Bresnahan locomotor rating scale scores were greater in the electroacupuncture group compared with the control group. These results demonstrate that electroacupuncture increases AChE activity, up-regulates GDNF mRNA expression, and promotes the recovery of motor neuron function in the anterior horn after spinal cord injury. PMID:26889195

  14. Spinal Cord Diseases

    MedlinePlus

    Your spinal cord is a bundle of nerves that runs down the middle of your back. It carries signals back ... of the spine, this can also injure the spinal cord. Other spinal cord problems include Tumors Infections such ...

  15. Synaptic excitation in the thoracic spinal cord from expiratory bulbospinal neurones in the cat.

    PubMed Central

    Kirkwood, P A

    1995-01-01

    1. Synaptic actions in the thoracic spinal cord of individual expiratory bulbospinal neurones were studied in anaesthetized cats by the use of two techniques: (i) the monosynaptic connections to motoneurones were assessed by cross-correlations between the discharges of the neurones and efferent discharges in the internal intercostal nerves of several segments bilaterally; and (ii) distributions of terminal and focal synaptic potentials were measured by extracellular spike-triggered averaging in the thoracic ventral horn. 2. Monosynaptic connections were identified by both the durations and timings of observed cross-correlation peaks, taking into account accurate conduction velocity measurements derived from collision tests and from spike-triggered averaging. Discrimination was made against peaks resulting from presynaptic synchronization. 3. Monosynaptic connections to motoneurones were identified for twenty-three out of twenty-seven neurones. The connections to nerves on the side ipsilateral to the cell somata were, on average, about 36% of the strength of those on the contralateral side. The overall strength of the connections was about twice as strong as previous estimates for similar connections from inspiratory bulbospinal neurones to phrenic motoneurones. The monosynaptic pathway was calculated to be able to provide most of the depolarization for the motoneurones concerned and therefore was likely to be the main determinant of their firing patterns under the conditions of these experiments. 4. However, taking into account previous measurements it is considered possible that these connections may only involve a minority of motoneurones, perhaps only 10% of the expiratory population. Thus, in general, the control of the whole pool of expiratory motoneurones, despite the strong monosynaptic connections measured here, is suggested to be mainly dependent on spinal interneurones, as has been concluded previously for inspiratory motoneurones. 5. Spike

  16. Inhibition of spinal c-Jun-NH2-terminal kinase (JNK) improves locomotor activity of spinal cord injured rats.

    PubMed

    Martini, Alessandra C; Forner, Stefânia; Koepp, Janice; Rae, Giles Alexander

    2016-05-16

    Mitogen-activated protein kinases (MAPKs) have been implicated in central nervous system injuries, yet the roles within neurodegeneration following spinal cord injury (SCI) still remain partially elucidated. We aimed to investigate the changes in expression of the three MAPKs following SCI and the role of spinal c-jun-NH2-terminal kinase (JNK) in motor impairment following the lesion. SCI induced at the T9 level resulted in enhanced expression of phosphorylated MAPKs shortly after trauma. SCI increased spinal cord myeloperoxidase levels, indicating a local neutrophil infiltration, and elevated the number of spinal apoptotic cells. Intrathecal administration of a specific inhibitor of JNK phosphorylation, SP600125, given at 1 and 4h after SCI, reduced the p-JNK expression, the number of spinal apoptotic cells and many of the histological signs of spinal injury. Notably, restoration of locomotor performance was clearly ameliorated by SP600125 treatment. Altogether, the results demonstrate that SCI induces activation of spinal MAPKs and that JNK plays a major role in mediating the deleterious consequences of spinal injury, not only at the spinal level, but also those regarding locomotor function. Therefore, inhibition of JNK activation in the spinal cord shortly after trauma might constitute a feasible therapeutic strategy for the functional recovery from SCI. PMID:27080425

  17. Altered content of AMP-activated protein kinase isoforms in skeletal muscle from spinal cord injured subjects.

    PubMed

    Kostovski, Emil; Boon, Hanneke; Hjeltnes, Nils; Lundell, Leonidas S; Ahlsén, Maria; Chibalin, Alexander V; Krook, Anna; Iversen, Per Ole; Widegren, Ulrika

    2013-11-01

    AMP-activated protein kinase (AMPK) is a pivotal regulator of energy homeostasis. Although downstream targets of AMPK are widely characterized, the physiological factors governing isoform expression of this protein kinase are largely unknown. Nerve/contractile activity has a major impact on the metabolic phenotype of skeletal muscle, therefore likely to influence AMPK isoform expression. Spinal cord injury represents an extreme form of physical inactivity, with concomitant changes in skeletal muscle metabolism. We assessed the influence of longstanding and recent spinal cord injury on protein abundance of AMPK isoforms in human skeletal muscle. We also determined muscle fiber type as a marker of glycolytic or oxidative metabolism. In subjects with longstanding complete injury, protein abundance of the AMPKγ3 subunit, as well as myosin heavy chain (MHC) IIa and IIx, were increased, whereas abundance of the AMPKγ1 subunit and MHC I were decreased. Similarly, abundance of AMPKγ3 and MHC IIa proteins were increased, whereas AMPKα2, -β1, and -γ1 subunits and MHC I abundance was decreased during the first year following injury, reflecting a more glycolytic phenotype of the skeletal muscle. However, in incomplete cervical lesions, partial recovery of muscle function attenuated the changes in the isoform profile of AMPK and MHC. Furthermore, exercise training (electrically stimulated leg cycling) partly normalized mRNA expression of AMPK isoforms. Thus, physical activity affects the relative expression of AMPK isoforms. In conclusion, skeletal muscle abundance of AMPK isoforms is related to physical activity and/or muscle fiber type. Thus, physical/neuromuscular activity is an important determinant of isoform abundance of AMPK and MCH. This further underscores the need for physical activity as part of a treatment regimen after spinal cord injury to maintain skeletal muscle metabolism. PMID:24022865

  18. Recruitment of Beneficial M2 Macrophages to Injured Spinal Cord Is Orchestrated by Remote Brain Choroid Plexus

    PubMed Central

    Shechter, Ravid; Miller, Omer; Yovel, Gili; Rosenzweig, Neta; London, Anat; Ruckh, Julia; Kim, Ki-Wook; Klein, Eugenia; Kalchenko, Vyacheslav; Bendel, Peter; Lira, Sergio A.; Jung, Steffen; Schwartz, Michal

    2014-01-01

    SUMMARY Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although of common origin, the homing of proinflammatory (M1) and the “alternatively activated” anti-inflammatory (M2) macrophages to traumatized spinal cord (SC) was distinctly regulated, neither being through breached blood-brain barrier. The M1 macrophages (Ly6chiCX3CR1lo) derived from monocytes homed in a CCL2 chemokine-dependent manner through the adjacent SC leptomeninges. The resolving M2 macrophages (Ly6cloCX3CR1hi) derived from monocytes trafficked through a remote blood-cerebrospinal-fluid (CSF) barrier, the brain-ventricular choroid plexus (CP), via VCAM-1-VLA-4 adhesion molecules and epithelial CD73 enzyme for extravasation and epithelial transmigration. Blockage of these determinants, or mechanical CSF flow obstruction, inhibited M2 macrophage recruitment and impaired motor-function recovery. The CP, along with the CSF and the central canal, provided an anti-inflammatory supporting milieu, potentially priming the trafficking monocytes. Overall, our finding demonstrates that the route of monocyte entry to central nervous system provides an instructional environment to shape their function. PMID:23477737

  19. A Calpain Inhibitor Enhances the Survival of Schwann Cells In Vitro and after Transplantation into the Injured Spinal Cord

    PubMed Central

    Guller, Yelena; Raffa, Scott J.; Hurtado, Andres; Bunge, Mary Bartlett

    2010-01-01

    Abstract Despite the diversity of cells available for transplantation into sites of spinal cord injury (SCI), and the known ability of transplanted cells to integrate into host tissue, functional improvement associated with cellular transplantation has been limited. One factor potentially limiting the efficacy of transplanted cells is poor cell survival. Recently we demonstrated rapid and early death of Schwann cells (SCs) within the first 24 h after transplantation, by both necrosis and apoptosis, which results in fewer than 20% of the cells surviving beyond 1 week. To enhance SC transplant survival, in vitro and in vivo models to rapidly screen compounds for their ability to promote SC survival are needed. The current study utilized in vitro models of apoptosis and necrosis, and based on withdrawal of serum and mitogens and the application of hydrogen peroxide, we screened several inhibitors of apoptosis and necrosis. Of the compounds tested, the calpain inhibitor MDL28170 enhanced SC survival both in vitro in response to oxidative stress induced by application of H2O2, and in vivo following delayed transplantation into the moderately contused spinal cord. The results support the use of calpain inhibitors as a promising new treatment for promoting the survival of transplanted cells. They also suggest that in vitro assays for cell survival may be useful for establishing new compounds that can then be tested in vivo for their ability to promote transplanted SC survival. PMID:20568964

  20. HDAC6 Regulates the Chaperone-Mediated Autophagy to Prevent Oxidative Damage in Injured Neurons after Experimental Spinal Cord Injury

    PubMed Central

    Su, Min; Guan, Huaqing; Zhang, Fan; Gao, Yarong; Teng, Xiaomei; Yang, Weixin

    2016-01-01

    Hypoxia-ischemia- (HI-) induced oxidative stress plays a role in secondary pathocellular processes of acute spinal cord injury (SCI) due to HI from many kinds of mechanical trauma. Increasing evidence suggests that the histone deacetylase-6 (HDAC6) plays an important role in cell homeostasis in both physiological and abnormal, stressful, pathological conditions. This paper found that inhibition of HDAC6 accelerated reactive oxygen species (ROS) generation and cell apoptosis in response to the HI. Deficiency of HDAC6 hindered the chaperone-mediated autophagy (CMA) activity to resistance of HI-induced oxidative stress. Furthermore, this study provided the experimental evidence for the potential role of HDAC6 in the regulation of CMA by affecting HSP90 acetylation. Therefore, HDAC6 plays an important role in the function of CMA pathway under the HI stress induced by SCI and it may be a potential therapeutic target in acute SCI model. PMID:26649145

  1. Longitudinal in vivo coherent anti-Stokes Raman scattering imaging of demyelination and remyelination in injured spinal cord

    NASA Astrophysics Data System (ADS)

    Shi, Yunzhou; Zhang, Delong; Huff, Terry B.; Wang, Xiaofei; Shi, Riyi; Xu, Xiao-Ming; Cheng, Ji-Xin

    2011-10-01

    In vivo imaging of white matter is important for the mechanistic understanding of demyelination and evaluation of remyelination therapies. Although white matter can be visualized by a strong coherent anti-Stokes Raman scattering (CARS) signal from axonal myelin, in vivo repetitive CARS imaging of the spinal cord remains a challenge due to complexities induced by the laminectomy surgery. We present a careful experimental design that enabled longitudinal CARS imaging of de- and remyelination at single axon level in live rats. In vivo CARS imaging of secretory phospholipase A2 induced myelin vesiculation, macrophage uptake of myelin debris, and spontaneous remyelination by Schwann cells are sequentially monitored over a 3 week period. Longitudinal visualization of de- and remyelination at a single axon level provides a novel platform for rational design of therapies aimed at promoting myelin plasticity and repair.

  2. Cell size and geometry of spinal cord motoneurons in the adult cat following the intramuscular injection of adriamycin: comparison with data from aged cats.

    PubMed

    Liu, R H; Yamuy, J; Engelhardt, J K; Xi, M C; Morales, F R; Chase, M H

    1996-10-28

    of neurons on the control side. We conclude that significant geometrical changes were induced in lumbar motoneurons of adult cats after ADM was injected to their muscles. In old cats, spinal cord motoneurons exhibit similar patterns of changes in their electrophysiological characteristics which have also been suggested to be correlated with changes in cell geometry. The question then arises as to whether the response of motoneurons to ADM and the aging process reflects a stereotypic reaction of motoneurons to a variety of insults or whether the response to ADM mirrors specific aspects of the aging process. PMID:8949934

  3. Age-related changes in soma size of neurons in the spinal cord motor column of the cat.

    PubMed

    Liu, R H; Bertolotto, C; Engelhardt, J K; Chase, M H

    1996-06-28

    The present study was undertaken to examine the effect of the aging process on the soma size and number of motoneurons and interneurons in the motor column of the spinal cord of old cats. Neurons in the motor column were divided into small and large populations based on a bimodal distribution of their soma cross-sectional areas. A 17% decrease in the cross-sectional area of small neurons was observed, this decrease was statistically significant (P < 0.0001). The cross-sectional area of large neurons decreased by only 6%, which was statistically significant (P < 0.05). On the other hand, there was no significant difference in the number of large, small or of these combined population of ventral horn neurons in the aged cats compared with the control animals. This data suggest that neurons in the motor column are not uniformly affected by the aging process because morphological changes are proportionally greater in small neurons than in large neurons. PMID:8817566

  4. The Impact of Living in a Care Home on the Health and Wellbeing of Spinal Cord Injured People

    PubMed Central

    Smith, Brett; Caddick, Nick

    2015-01-01

    In the UK, 20% of people with spinal cord injury (SCI) are discharged from rehabilitation into an elderly care home. Despite this, and knowledge that the home is central to health and wellbeing, little research has examined the impact of being in care homes on the health and wellbeing of people with SCI. The purpose of this study was to address this gap. Twenty adults who lived in care homes or had done so recently for over two years were interviewed in-depth. Qualitative data were analyzed using inductive thematic analysis. Analyses revealed that living in a care home environment severely damages quality of life, physical health and psychological wellbeing in the short and long-term. Reasons why quality of life, health, and wellbeing were damaged are identified. These included a lack of freedom, control, and flexibility, inability to participate in community life, inability to sustain relationships, safety problems, restricted participation in work and leisure time physical activity, lack of meaning, self-expression, and a future, loneliness, difficulties with the re-housing process, depression, and suicidal thoughts and actions. It is concluded that for people with SCI, the care home environment violates social dignity, is oppressive, and denies human rights. Implications for housing and health care policies are also offered. PMID:25884273

  5. The impact of living in a care home on the health and wellbeing of spinal cord injured people.

    PubMed

    Smith, Brett; Caddick, Nick

    2015-04-01

    In the UK, 20% of people with spinal cord injury (SCI) are discharged from rehabilitation into an elderly care home. Despite this, and knowledge that the home is central to health and wellbeing, little research has examined the impact of being in care homes on the health and wellbeing of people with SCI. The purpose of this study was to address this gap. Twenty adults who lived in care homes or had done so recently for over two years were interviewed in-depth. Qualitative data were analyzed using inductive thematic analysis. Analyses revealed that living in a care home environment severely damages quality of life, physical health and psychological wellbeing in the short and long-term. Reasons why quality of life, health, and wellbeing were damaged are identified. These included a lack of freedom, control, and flexibility, inability to participate in community life, inability to sustain relationships, safety problems, restricted participation in work and leisure time physical activity, lack of meaning, self-expression, and a future, loneliness, difficulties with the re-housing process, depression, and suicidal thoughts and actions. It is concluded that for people with SCI, the care home environment violates social dignity, is oppressive, and denies human rights. Implications for housing and health care policies are also offered. PMID:25884273

  6. Effects of Pain and Pain Management on Motor Recovery of Spinal Cord-Injured Patients: A Longitudinal Study.

    PubMed

    Cragg, Jacquelyn J; Haefeli, Jenny; Jutzeler, Catherine R; Röhrich, Frank; Weidner, Norbert; Saur, Marion; Maier, Doris D; Kalke, Yorck B; Schuld, Christian; Curt, Armin; Kramer, John K

    2016-09-01

    Background Approximately 60% of patients suffering from acute spinal cord injury (SCI) develop pain within days to weeks after injury, which ultimately persists into chronic stages. To date, the consequences of pain after SCI have been largely examined in terms of interfering with quality of life. Objective The objective of this study was to examine the effects of pain and pain management on neurological recovery after SCI. Methods We analyzed clinical data in a prospective multicenter observational cohort study in patients with SCI. Using mixed effects regression techniques, total motor and sensory scores were modelled at 1, 3, 6, and 12 months postinjury. Results A total of 225 individuals were included in the study (mean age: 45.8 ± 18 years, 80% male). At 1 month postinjury, 28% of individuals with SCI reported at- or below-level neuropathic pain. While pain classification showed no effect on neurological outcomes, individuals administered anticonvulsant medications at 1 month postinjury showed significant reductions in pain intensity (2 points over 1 year; P < .05) and greater recovery in total motor scores (7.3 points over 1 year; P < .05). This drug effect on motor recovery remained significant after adjustment for injury level and injury severity, pain classification, and pain intensity. Conclusion While initial pain classification and intensity did not reveal an effect on motor recovery following acute SCI, anticonvulsants conferred a significant beneficial effect on motor outcomes. Early intervention with anticonvulsants may have effects beyond pain management and warrant further studies to evaluate the therapeutic effectiveness in human SCI. PMID:26747127

  7. Lower limb conduit artery endothelial responses to acute upper limb exercise in spinal cord injured and able-bodied men

    PubMed Central

    Totosy de Zepetnek, Julia O; Au, Jason S; Ditor, David S; MacDonald, Maureen J

    2015-01-01

    Vascular improvements in the nonactive regions during exercise are likely primarily mediated by increased shear rate (SR). Individuals with spinal cord injury (SCI) experience sublesional vascular deconditioning and could potentially benefit from upper body exercise-induced increases in lower body SR. The present study utilized a single bout of incremental arm-crank exercise to generate exercise-induced SR changes in the superficial femoral artery in an effort to evaluate the acute postexercise impact on superficial femoral artery endothelial function via flow-mediated dilation (FMD), and determine regulatory factors in the nonactive legs of individuals with and without SCI. Eight individuals with SCI and eight age, sex, and waist-circumference-matched able-bodied (AB) controls participated. Nine minutes of incremental arm-crank exercise increased superficial femoral artery anterograde SR (P = 0.02 and P < 0.01), retrograde SR (P < 0.01 and P < 0.01), and oscillatory shear index (OSI) (P < 0.001 and P < 0.001) in both SCI and AB, respectively. However, these SR alterations resulted in acute postexercise increases in FMD in the AB group only (SCI 6.0 ± 1.2% to 6.3 ± 2.7%, P = 0.74; AB 7.5 ± 1.4% to 11.2 ± 1.4%, P = 0.03). While arm exercise has many cardiovascular benefits and results in changes in SR patterns in the nonactive legs, these changes are not sufficient to induce acute changes in FMD among individuals with SCI, and therefore are less likely to stimulate exercise training-associated improvements in nonactive limb endothelial function. Understanding the role of SR patterns on FMD brings us closer to designing effective strategies to combat impaired vascular function in both healthy and clinical populations. PMID:25847920

  8. Promoting the recovery of injured liver with poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) scaffolds loaded with umbilical cord-derived mesenchymal stem cells.

    PubMed

    Li, Pengshan; Zhang, Jin; Liu, Jing; Ma, Huan; Liu, Jie; Lie, Puchang; Wang, Yuechun; Liu, Gexiu; Zeng, Huilan; Li, Zhizhong; Wei, Xing

    2015-02-01

    Cell-based therapies are major focus of current research for treatment of liver diseases. In this study, mesenchymal stem cells were isolated from human umbilical cord Wharton's jelly (WJ-MSCs). Results confirmed that WJ-MSCs isolated in this study could express the typical MSC-specific markers and be induced to differentiate into adipocytes, osteoblasts, and chondrocytes. They could also be induced to differentiate into hepatocyte-like cells. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PHBVHHx) is a new member of polyhydroxyalkanoate family and biodegradable polyester produced by bacteria. PHBVHHx scaffolds showed much higher cell attachment and viability than the other polymers tested. PHBVHHx scaffolds loaded with WJ-MSCs were transplanted into liver-injured mice. Liver morphology improved after 30 days of transplantation and looked similar to normal liver. Concentrations of serum alanine aminotransferase and total bilirubin were significantly lower, and albumin was significantly higher on days 14 and 30 in the WJ-MSCs+scaffold group than in the carbon tetrachloride (CCl4) group. Hematoxylin-eosin staining showed that liver had similar structure of normal liver lobules and similar size and shape of normal hepatic cells, and Masson staining demonstrated that liver had less blue staining for collagen after 30 days of transplantation. Real-time reverse transcription-polymerase chain reaction (RT-PCR) showed that the expression of the bile duct epithelial cell gene CK-19 in mouse liver is significantly lower on days 14 and 30 in the WJ-MSCs+scaffold group than in the CCl4 group. Real-time RT-PCR, immunocytochemistry, and periodic acid-Schiff staining showed that WJ-MSCs in scaffolds differentiated into hepatocyte-like cells on days 14 and 30 in the WJ-MSCs+scaffold group. Real-time RT-PCR also demonstrated that WJ-MSCs in scaffolds expressed endothelial cell genes Flk-1, vWF, and VE-cadherin on days 14 and 30 in the WJ-MSCs+scaffold group

  9. Spinal Cord Diseases

    MedlinePlus

    ... this can also injure the spinal cord. Other spinal cord problems include Tumors Infections such as meningitis and polio Inflammatory diseases Autoimmune diseases Degenerative diseases such as amyotrophic lateral ...

  10. Anesthetic requirements and stress hormone responses in chronic spinal cord-injured patients undergoing surgery below the level of injury: nitrous oxide vs remifentanil

    PubMed Central

    Kang, Dong Ho; Lee, Seong-Heon; Kim, Seok Jai; Choi, Jeong-Il; Jeong, Cheol-Won; Jeong, Seong Wook

    2013-01-01

    Background Nitrous oxide (N2O) and remifentanil both have anesthetic-reducing and antinociceptive effects. We aimed to determine the anesthetic requirements and stress hormone responses in spinal cord-injured (SCI) patients undergoing surgery under sevoflurane anesthesia with or without pharmacodynamically equivalent doses of N2O or remifentanil. Methods Forty-five chronic, complete SCI patients undergoing surgery below the level of injury were randomly allocated to receive sevoflurane alone (control, n = 15), or in combination with 67% N2O (n = 15) or target-controlled infusion of 1.37 ng/ml remifentanil (n = 15). Sevoflurane concentrations were titrated to maintain a Bispectral Index (BIS) value between 40 and 50. Measurements included end-tidal sevoflurane concentrations, mean arterial blood pressure (MAP), heart rate (HR), and plasma catecholamine and cortisol concentrations. Results During surgery, MAP, HR, and BIS did not differ among the groups. Sevoflurane concentrations were lower in the N2O group (0.94 ± 0.30%) and the remifentanil group (1.06 ± 0.29%) than in the control group (1.55 ± 0.34%) (P < 0.001, both). Plasma concentrations of norepinephrine remained unchanged compared to baseline values in each group, with no significant differences among groups throughout the study. Cortisol levels decreased during surgery as compared to baseline values, and returned to levels higher than baseline at 1 h after surgery (P < 0.05) without inter-group differences. Conclusions Remifentanil (1.37 ng/ml) and N2O (67%) reduced the sevoflurane requirements similarly by 31-39%, with no significant differences in hemodynamic and neuroendocrine responses. Either remifentanil or N2O can be used as an anesthetic adjuvant during sevoflurane anesthesia in SCI patients undergoing surgery below the level of injury. PMID:24427459

  11. The hetero-transplantation of human bone marrow stromal cells carried by hydrogel unexpectedly demonstrates a significant role in the functional recovery in the injured spinal cord of rats.

    PubMed

    Raynald; Li, Yanbin; Yu, Hao; Huang, Hua; Guo, Muyao; Hua, Rongrong; Jiang, Fenjun; Zhang, Kaihua; Li, Hailong; Wang, Fei; Li, Lusheng; Cui, FuZhai; An, Yihua

    2016-03-01

    Spinal cord injury (SCI) often causes a disturbance in the microenvironment in the lesion site resulting in sudden loss of sensory and motor function. Transplantation of stem cells provides a promising strategy in the treatment of SCI. But limited growth and immunological incompatibility of the stem cells with the host limits the application of this strategy. In order to get better survival and integration with the host, we employed a hyaluronic acid (HA) based scaffold covalently modified by poly-l-Lysine (PLL) as a vehicle to deliver the human bone marrow stromal cells (BMSCs) to the injured spinal cord of rats. The BMSCs were chosen as an ideal candidate for its advantage of low expression of major histocompatibility complex II. The data unexpectedly showed that the hetero-transplanted cells survived well in the lesion site even at 8 weeks post injury. Both the immunofluorescent and the electrophysiological assay indicated better survival of the transplanted cells and improved axonal growth in SCI rats transplanted with BMSCs in HA-PLL in contrast to the groups without either BMSCs or the HA scaffold transplantation. These promotions may account for the functional recovery assessed by Basso-Beattie-Bresnahan (BBB) locomotor rating scale in the HA-PLL seeded with BMSCs group. These data suggests that hetero-transplantation of human BMSCs delivered by HA scaffold demonstrates a significant role in the functional recovery in the injured spinal cord of rats. PMID:26523673

  12. Somatotopic organization of single primary afferent axon projections to cat spinal cord dorsal horn.

    PubMed

    Brown, P B; Gladfelter, W E; Culberson, J C; Covalt-Dunning, D; Sonty, R V; Pubols, L M; Millecchia, R J

    1991-01-01

    Horseradish peroxidase injection of identified low threshold cutaneous mechanoreceptor (LTCM) primary afferent axons was used to assess the somatotopic organization of hindlimb projections to laminae III and IV of cat dorsal horn. Multiple injections in the same animals were used to assess bilateral symmetry and precision. Thirty-one axons were injected, with more than 1 axon injected in each of 8 animals (25 axons). Somatotopic relations between their receptive field (RF) centers and the centers of their dorsal horn projections were similar to the somatotopic relations between dorsal horn cell RF centers and cell locations. Very few reversals of mediolateral somatotopic gradients (proximodistal RF location as a function of mediolateral projection center) were observed. Two afferents with nearly identical RFs in 1 animal had nearly identical projections. These observations held for many different combinations of receptor types. A simple mathematical model was used to demonstrate that assembly of dorsal horn cell RFs via passive sampling of the presynaptic neuropil by dorsal horn cell dendrites cannot account for the sizes of dorsal horn cell LTCM RFs. Hypothesized mechanisms for assembly of dorsal horn cell RFs must take into account the functional selectivity of connections required to produce RFs smaller than those predicted by the passive assembly model. PMID:1702466

  13. Effect of urethral infusion of atracurium besylate on manual bladder expression in dogs and cats with spinal cord injuries: a randomised trial.

    PubMed

    Galluzzi, F; De Rensis, F; Saleri, R; Spattini, G

    2015-05-23

    The aim of this randomised trial was to assess the effect of urethral infusion of atracurium besylate in dogs and cats with signs of urinary retention secondary to lesions affecting spinal cord segments T3-L3. Eighteen dogs and six cats with urinary retention were examined and scored before treatment on the degree of difficulty of inducing bladder emptying by manual bladder compression. Animals were subsequently treated in a blinded fashion by the same operator with urethral infusion of 2-4 ml of either a solution of 0.5 mg/ml of atracurium (treatment group) or placebo (control group) and, after five minutes, a second attempt was made to induce bladder emptying by manual compression and a post-treatment score assigned. Pretreatment scores did not differ between the treatment and control groups (5.6±0.8 v 6.2±0.7, respectively; P=0.22); however, post-treatment scores were significantly lower in the treatment group compared with the control group (2.9±0.4 v 5.9±0.3; P<0.05). Urethral infusion of atracurium facilitates manual bladder expression in dogs and cats with urinary retention secondary to spinal cord injuries. No side effects were recognised. PMID:25920417

  14. Deafferentation causes a loss of presynaptic bombesin receptors and supersensitivity of substance P receptors in the dorsal horn of the cat spinal cord.

    PubMed

    Massari, V J; Shults, C W; Park, C H; Tizabi, Y; Moody, T W; Chronwall, B M; Culver, M; Chase, T N

    1985-09-23

    Bombesin (BN)- and substance P (SP)-containing neurons are found in the dorsal root ganglia, and project to the dorsal horn of the spinal cord. The present study was undertaken to determine if chronic deafferentation of the cat spinal cord would affect BN or SP receptors in the spinal cord. Ten and 30 days after a unilateral lumbosacral dorsal rhizotomy, BN and SP receptor binding was evaluated autoradiographically using iodinated ligands to bind to these receptors in vitro. The normal distribution of BN receptors detected by this method was restricted to the head of the dorsal horn. Deafferentation caused a 38% and 22% decline in BN receptor binding in laminae I-IV at 10 or 30 days postoperatively, respectively. These data suggest that 'presynaptic' BN receptors are found on the central nervous system terminals of primary sensory afferents. Normal SP receptor distribution was most dense in lamina X, not in the superficial laminae of the dorsal horn. Deafferentation caused an initial decline in SP receptor binding in laminae I-II, followed by a 14% increase at 30 days in comparison to the unoperated side of the spinal cord. This delayed supersensitivity of SP receptors was confirmed in a separate experiment using a homogenate binding assay. These data are discussed with respect to the potential roles of receptor supersensitivity or subsensitivity in the development of deafferentation-induced changes in reactivity of dorsal horn neurons to nociceptive and non-nociceptive stimuli. PMID:2413960

  15. Vocational Rehabilitation of Persons with Spinal Cord Injuries

    ERIC Educational Resources Information Center

    Poor, Charles R.

    1975-01-01

    Reviews historical development of organized vocational rehabilitation programming for the spinal cord injured in the United States. Significant factors that affect vocational rehabilitation outcomes with spinal cord injured persons are listed and discussed. (Author)

  16. Modeling zero-lag synchronization of dorsal horn neurons during the traveling of electrical waves in the cat spinal cord

    PubMed Central

    Kato, Hideyuki; Cuellar, Carlos A; Delgado-Lezama, Rodolfo; Rudomin, Pablo; Jimenez-Estrada, Ismael; Manjarrez, Elias; Mirasso, Claudio R

    2013-01-01

    The first electrophysiological evidence of the phenomenon of traveling electrical waves produced by populations of interneurons within the spinal cord was reported by our interdisciplinary research group. Two interesting observations derive from this study: first, the negative spontaneous cord dorsum potentials (CDPs) that are superimposed on the propagating sinusoidal electrical waves are not correlated with any scratching phase; second, these CDPs do not propagate along the lumbosacral spinal segments, but they appear almost simultaneously at different spinal segments. The aim of this study was to provide experimental data and a mathematical model to explain the simultaneous occurrence of traveling waves and the zero-lag synchronization of some CDPs. PMID:24303110

  17. Motoneurons of the adult marmoset can grow axons and reform motor endplates through a peripheral nerve bridge joining the locally injured cervical spinal cord to the denervated biceps brachii muscle.

    PubMed

    Emery, E; Rhrich-Haddout, F; Kassar-Duchossoy, L; Lyoussi, B; Tadié, M; Horvat, J C

    2000-12-15

    Reconnection of the injured spinal cord (SC) of the marmoset with the denervated biceps brachii muscle (BB) was obtained by using a peripheral nerve (PN) bridge. In 13 adult males, a 45 mm segment of the peroneal nerve was removed: one end was implanted unilaterally into the cervical SC of the same animal (autograft), determining a local injury, although the other end was either directly inserted into the BB (Group A) or, alternatively, sutured to its transected motor nerve, the musculocutaneous nerve (Group B). From 2-4 months post-surgery, eight out of the 10 surviving animals responded by a contraction of the BB to electrical stimulations of the PN bridge. All ten were then processed for a morphological study. As documented by retrograde axonal tracing studies using horse radish peroxidase or Fast Blue (FB), a mean number of 314 (Group A) or 45 (Group B) spinal neurons, mainly located close to the site of injury and grafting, re-expressed a capacity to grow and extend axons into the PN bridge. Most of these regenerated axons were able to grow up to the BB and form or reform functional motor endplates. Many of the spinal neurons that were retrogradely labeled with FB simultaneously displayed immunoreactivity for choline acetyl-transferase and consequently were assumed to be motoneurons. Reinnervation and regeneration of the BB were documented by methods revealing axon terminals, endplates and myofibrillary ATPase activity. Our results indicate that motoneurons of the focally injured SC of a small-sized primate can, following the example of the adult rat, re-establish a lost motor function by extending new axons all the way through a PN bridge connected to a denervated skeletal muscle. PMID:11107167

  18. Schwann cells generated from neonatal skin-derived precursors or neonatal peripheral nerve improve functional recovery after acute transplantation into the partially injured cervical spinal cord of the rat.

    PubMed

    Sparling, Joseph S; Bretzner, Frederic; Biernaskie, Jeff; Assinck, Peggy; Jiang, Yuan; Arisato, Hiroki; Plunet, Ward T; Borisoff, Jaimie; Liu, Jie; Miller, Freda D; Tetzlaff, Wolfram

    2015-04-29

    The transplantation of Schwann cells (SCs) holds considerable promise as a therapy for spinal cord injury, but the optimal source of these cells and the best timing for intervention remains debatable. Previously, we demonstrated that delayed transplantation of SCs generated from neonatal mouse skin-derived precursors (SKP-SCs) promoted repair and functional recovery in rats with thoracic contusions. Here, we conducted two experiments using neonatal rat cells and an incomplete cervical injury model to examine the efficacy of acute SKP-SC transplantation versus media control (Experiment 1) and versus nerve-derived SC or dermal fibroblast (Fibro) transplantation (Experiment 2). Despite limited graft survival, by 10 weeks after injury, rats that received SCs from either source showed improved functional recovery compared with media- or fibroblast-treated animals. Compared with media treatment, SKP-SC-transplanted rats showed enhanced rubrospinal tract (RST) sparing/plasticity in the gray matter (GM) rostral to injury, particularly in the absence of immunosuppression. The functional benefits of SC transplantations over fibroblast treatment correlated with the enhanced preservation of host tissue, reduced RST atrophy, and/or increased RST sparing/plasticity in the GM. In summary, our results indicate that: (1) early transplantation of neonatal SCs generated from skin or nerve promotes repair and functional recovery after incomplete cervical crush injury; (2) either of these cell types is preferable to Fibros for these purposes; and (3) age-matched SCs from these two sources do not differ in terms of their reparative effects or functional efficacy after transplantation into the injured cervical spinal cord. PMID:25926450

  19. Pre-Hospital Care Management of a Potential Spinal Cord Injured Patient: A Systematic Review of the Literature and Evidence-Based Guidelines

    PubMed Central

    Ahn, Henry; Singh, Jeffrey; Nathens, Avery; MacDonald, Russell D.; Travers, Andrew; Tallon, John; Fehlings, Michael G.

    2011-01-01

    Abstract An interdisciplinary expert panel of medical and surgical specialists involved in the management of patients with potential spinal cord injuries (SCI) was assembled. Four key questions were created that were of significant interest. These were: (1) what is the optimal type and duration of pre-hospital spinal immobilization in patients with acute SCI?; (2) during airway manipulation in the pre-hospital setting, what is the ideal method of spinal immobilization?; (3) what is the impact of pre-hospital transport time to definitive care on the outcomes of patients with acute spinal cord injury?; and (4) what is the role of pre-hospital care providers in cervical spine clearance and immobilization? A systematic review utilizing multiple databases was performed to determine the current evidence about the specific questions, and each article was independently reviewed and assessed by two reviewers based on inclusion and exclusion criteria. Guidelines were then created related to the questions by a national Canadian expert panel using the Delphi method for reviewing the evidence-based guidelines about each question. Recommendations about the key questions included: the pre-hospital immobilization of patients using a cervical collar, head immobilization, and a spinal board; utilization of padded boards or inflatable bean bag boards to reduce pressure; transfer of patients off of spine boards as soon as feasible, including transfer of patients off spinal boards while awaiting transfer from one hospital institution to another hospital center for definitive care; inclusion of manual in-line cervical spine traction for airway management in patients requiring intubation in the pre-hospital setting; transport of patients with acute traumatic SCI to the definitive hospital center for care within 24 h of injury; and training of emergency medical personnel in the pre-hospital setting to apply criteria to clear patients of cervical spinal injuries, and immobilize patients

  20. Intermittent hypoxia promotes recovery of respiratory motor function in spinal cord-injured mice depleted of serotonin in the central nervous system.

    PubMed

    Komnenov, Dragana; Solarewicz, Julia Z; Afzal, Fareeza; Nantwi, Kwaku D; Kuhn, Donald M; Mateika, Jason H

    2016-08-01

    We examined the effect of repeated daily exposure to intermittent hypoxia (IH) on the recovery of respiratory and limb motor function in mice genetically depleted of central nervous system serotonin. Electroencephalography, diaphragm activity, ventilation, core body temperature, and limb mobility were measured in spontaneously breathing wild-type (Tph2(+/+)) and tryptophan hydroxylase 2 knockout (Tph2(-/-)) mice. Following a C2 hemisection, the mice were exposed daily to IH (i.e., twelve 4-min episodes of 10% oxygen interspersed with 4-min normoxic periods followed by a 90-min end-recovery period) or normoxia (i.e., sham protocol, 21% oxygen) for 10 consecutive days. Diaphragm activity recovered to prehemisection levels in the Tph2(+/+) and Tph2(-/-) mice following exposure to IH but not normoxia [Tph2(+/+) 1.3 ± 0.2 (SE) vs. 0.3 ± 0.2; Tph2(-/-) 1.06 ± 0.1 vs. 0.3 ± 0.1, standardized to prehemisection values, P < 0.01]. Likewise, recovery of tidal volume and breathing frequency was evident, although breathing frequency values did not return to prehemisection levels within the time frame of the protocol. Partial recovery of limb motor function was also evident 2 wk after spinal cord hemisection. However, recovery was not dependent on IH or the presence of serotonin in the central nervous system. We conclude that IH promotes recovery of respiratory function but not basic motor tasks. Moreover, we conclude that spontaneous or treatment-induced recovery of respiratory and motor limb function is not dependent on serotonin in the central nervous system in a mouse model of spinal cord injury. PMID:27402561

  1. Spinal Cord Injury Model System Information Network

    MedlinePlus

    ... Go New to Website Managing Bowel Function After Spinal Cord Injury Resilience, Depression and Bouncing Back after SCI Getting ... the UAB-SCIMS Contact the UAB-SCIMS UAB Spinal Cord Injury Model System Newly Injured Health Daily Living Consumer ...

  2. Clinical Efficacy and Changes of Urothelial Dysfunction after Repeated Detrusor Botulinum Toxin A Injections in Chronic Spinal Cord-Injured Bladder

    PubMed Central

    Chen, Sheng-Fu; Chang, Chia-Hwei; Kuo, Hann-Chorng

    2016-01-01

    Chornic spinal cord injury (SCI) will induce bladder urothelium dysfunction. This study investigated the therapeutic effects on urothelial dysfunction after repeated detrusor injections of onabotulinumtoxinA (BoNT-A) in SCI patients with neurogenic detrusor overactivity (NDO). Twenty chronic suprasacral SCI patients with NDO were enrolled. The patients received 300 U BoNT-A injection into the detrusor every six months. The urothelium was assessed by cystoscopic biopsy at baseline and six months after each BoNT-A treatment. Immunofluorescence staining for urothelial dysfunction, including E-cadherin, zonula occludens-1 (ZO-1), tryptase for mast cell activity, and urothelial apoptosis were investigated. The outcome of urothelial dysfunction parameters after BoNT-A injection were compared between baseline and six months after each treatment. Repeated 300 U BoNT-A injections showed a sustained decrease of detrusor pressure compared with baseline. After three repeated BoNT-A detrusor injections, significantly greater distributions of E-cadherin (p = 0.042) and ZO-1 (p = 0.003) expressions, but no significant changes, of urothelial apoptosis and mast cell activation were found after repeated BoNT-A therapy. Urothelial dysfunction, such as adhesive and junction protein concentrations in SCI patients’ bladders, recovered after three repeated cycles of BoNT-A treatment. The therapeutic effects sustained. However, urothelial inflammation and apoptosis after SCI were not significantly improved after three repeated BoNT-A injections. PMID:27249005

  3. 2', 3'-Cyclic nucleotide 3'-phosphodiesterase cells derived from transplanted marrow stromal cells and host tissue contribute to perineurial compartment formation in injured rat spinal cord.

    PubMed

    Cao, Qiong; Ding, Peng; Lu, Jia; Dheen, S Thameem; Moochhala, Shabbir; Ling, Eng-Ang

    2007-01-01

    Transdifferentiation of transplanted marrow stromal cells (MSCs) and reactive changes of glial cells in a completely transected rat spinal cord were examined. Marrow stromal cells exhibited 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) at the plasma membrane and this has allowed their identification after transplantation by immunoelectron microscopy. In the control rats, the lesion site showed activated microglia/neural macrophages and some elongated cells, whose cytoplasm was immunoreactive for CNP. Cells designated as CNP1 and apparently host-derived expressed CXCR4. In experimental rats receiving MSCs transplantation, CNP1 cells were increased noticeably. This was coupled with the occurrence of a different subset of CNP cells whose plasma membrane was CNP-immunoreactive and expressed CXCR4. These cells, designated as CNP2, enclosed both myelinated and unmyelinated neurites thus assuming a spatial configuration resembling that of Schwann cells. A remarkable feature was the extensive ramifications of CNP1 cells with long filopodia processes delineating the CNP2 cells and their associated neurites, forming many perineurial-like compartments. Present results have shown that CNP2 cells considered to be MSCs-derived can transform into cells resembling Schwann cells based on their spatial relation with the regenerating nerve fibers, whereas the CNP1 glial cells participate in formation of perineurial compartments, probably serving as conduits to guide the nerve fiber growth. The chemotactic migration of CNP cells either derived from host tissue or MSCs bearing CXCR4 may be attracted by stromal derived factor-1alpha (SDF-1alpha) produced locally. The coordinated cellular interaction between transplanted MSCs and local glial cells may promote the growth of nerve fibers through the lesion site. PMID:17061258

  4. Bipolar spinal cord stimulation attenuates mechanical hypersensitivity at an intensity that activates a small portion of A-fiber afferents in spinal nerve-injured rats.

    PubMed

    Yang, F; Carteret, A F; Wacnik, P W; Chung, C-Y; Xing, L; Dong, X; Meyer, R A; Raja, S N; Guan, Y

    2011-12-29

    Spinal cord stimulation (SCS) is used clinically to treat neuropathic pain states, but the precise mechanism by which it attenuates neuropathic pain remains to be established. The profile of afferent fiber activation during SCS and how it may correlate with the efficacy of SCS-induced analgesia are unclear. After subjecting rats to an L5 spinal nerve ligation (SNL), we implanted a miniature quadripolar electrode similar to that used clinically. Our goal was to determine the population and number of afferent fibers retrogradely activated by SCS in SNL rats by recording the antidromic compound action potential (AP) at the sciatic nerve after examining the ability of bipolar epidural SCS to alleviate mechanical hypersensitivity in this model. Notably, we compared the profiles of afferent fiber activation to SCS between SNL rats that exhibited good SCS-induced analgesia (responders) and those that did not (nonresponders). Additionally, we examined how different contact configurations affect the motor threshold (MoT) and compound AP threshold. Results showed that three consecutive days of SCS treatment (50 Hz, 0.2 ms, 30 min, 80-90% of MoT), but not sham stimulation, gradually alleviated mechanical hypersensitivity in SNL rats. The MoT obtained in the animal behavioral study was significantly less than the Aα/β-threshold of the compound AP determined during electrophysiological recording, suggesting that SCS could attenuate mechanical hypersensitivity with a stimulus intensity that recruits only a small fraction of the A-fiber population in SNL rats. Although both the MoT and compound AP threshold were similar between responders and nonresponders, the size of the compound AP waveform at higher stimulation intensities was larger in the responders, indicating a more efficient activation of the dorsal column structure in responders. PMID:22001681

  5. Neuronal network analysis based on arrival times of active-sleep specific inhibitory postsynaptic potentials in spinal cord motoneurons of the cat.

    PubMed

    Engelhardt, J K; Chase, M H

    2001-07-20

    The neuronal network responsible for motoneuron inhibition and loss of muscle tone during active (REM) sleep can be activated by the injection of the cholinergic agonist carbachol into a circumscribed region of the brainstem reticular formation. In the present report, we studied the arrival times of inhibitory postsynaptic potentials (IPSPs) observed in intracellular recordings from cat spinal cord motoneurons. These recordings were obtained during episodes of motor inhibition induced by carbachol or during motor inhibition associated with naturally occurring active sleep. When the observed IPSP arrival times were analyzed as a superposition of renewal processes occurring in a pool of pre-motor inhibitory interneurons, it was possible to estimate the following parameters: (1) the number of independent sources of the IPSPs; (2) the rate at which each source was bombarded with excitatory postsynaptic potentials (EPSPs); and (3) the number of EPSPs required to bring each source to threshold. From the data based upon the preceding parameters and the unusually large amplitudes of the active sleep-specific IPSPs, we suggest that each source is a cluster of synchronously discharging pre-motor inhibitory interneurons. The analysis of IPSP arrival times as a superposition of renewal processes, therefore, provides quantitative information regarding neuronal activity that is as far as two synapses upstream from the site of the recording electrode. Consequently, we suggest that a study of the temporal evolution of these parameters could provide a basis for dynamic analyses of this neuronal network and, in the future, for other neuronal networks as well. PMID:11457433

  6. Passive electrophysiological properties of aged and axotomized cat spinal cord motoneurons: the effect of cell size and electrode shunt.

    PubMed

    Engelhardt, J K; Chase, M H

    1992-07-01

    Intracellular recordings were obtained from intact and axotomized lumbar motoneurons of aged cats. The sub-threshold electrical properties of these cells were measured, including input resistance, resting membrane potential, and the first two equalizing time constants as well as their associated amplitude constants. These data were used in a semi-infinite cable model of the motoneuron to estimate the size of the shunt resistance (Rshunt) which is created when the electrode penetrates the cell membrane. The average Rshunt for intact aged cells was 5.35 +/- 1.01 M omega, while that for the axotomized aged cells was 8.93 +/- 1.20 M omega. The statistically significant difference in mean shunt magnitude did not affect the measurements of membrane time constant because this constant is independent of the shunt in this model of the motoneuron. However, the determination of cell input resistance, which is not independent of the shunt, was shown to underestimate the real cell input resistance by 23-29%. We therefore conclude that the shunt resistance is an important factor which should be taken into account when measuring input resistance. PMID:1508398

  7. The Effects of NMDA Antagonists on Neuronal Activity in Cat Spinal Cord Evoked by Acute Inflammation in the Knee Joint.

    PubMed

    Schaible, Hans-Georg; Grubb, Blair D.; Neugebauer, Volker; Oppmann, Maria

    1991-01-01

    In alpha-chloralose-anaesthetized, spinalized cats we examined the effects of NMDA antagonists on the discharges of 71 spinal neurons which had afferent input from the knee joint. These neurons were rendered hyperexcitable by acute arthritis in the knee induced by kaolin and carrageenan. They were located in the deep dorsal and ventral horn and some of them had ascending axons. The N-methyl-d-aspartate (NMDA) antagonists ketamine and d-2-amino-5-phosphonovalerate (AP5), were administered ionophoretically, and ketamine was also administered intravenously. In some of the experiments the antagonists were tested against the agonists NMDA and quisqualate. The effects of the NMDA antagonists consisted of a significant reduction in the resting activity of neurons and/or the responses of the same neurons to mechanical stimulation of the inflamed knee. Intravenous ketamine was most effective in suppressing the resting and mechanically evoked activity in 25 of 26 neurons tested. Ionophoretically applied ketamine had a suppressive effect in 11 of 21 neurons, and AP5 decreased activity in 17 of 24 cells. The reduction in the resting and/or the mechanically evoked discharges was achieved with doses of the antagonists which suppressed the responses to NMDA but not those to quisqualate. These results suggest that NMDA receptors are involved in the enhanced responses and basal activity of spinal neurons induced by inflammation in the periphery. PMID:12106256

  8. Formation of the central canal and dorsal glial septum in the spinal cord of the domestic cat.

    PubMed Central

    Böhme, G

    1988-01-01

    Development of the neural tube results in a relative reduction of its lumen accompanied by an increasing thickness of its wall. The central canal measures only about one fifth of that of the former neural canal. This has been said to be the result of an obliteration or fusion of a part of the lumen. This transformation of the central canal takes place between fetal days 28 and 34 in the cat and is characterised by an elongation and shifting of the dorsal ependymal matrix cells and by an apposition of the lateral walls in the same region. It is suggested that the increase in size of the dorsal funiculi causes the elongation of the ependymal cells, the basal processes of which remain to form the dorsal glial septum. The proliferation of neurons and the resultant growth of the dorsal grey horns is believed to be responsible for the narrowing of the lumen. The lumen-contacting matrix cells are displaced from the former surface. These 'blast' cells develop into neurons or glial cells. Until two or three months after birth there is a small wedge-shaped area in the dorsal wall of the central canal which consists of fetal matrix cells with long tapering basal processes extending into the glial septum. After this date the matrix is exhausted and the ependyma forms the complete lining of the surface of the central canal. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 11 Fig. 12 PMID:3248971

  9. Feline lost: making microchipping compulsory for domestic cats.

    PubMed

    Roberts, M

    2016-08-13

    The independent nature of cats means that they are more likely to become lost or injured than dogs. Maggie Roberts believes that microchipping of cats should be compulsory in the UK as is the case with dogs. PMID:27516564

  10. Locomotor-activated neurons of the cat. II. Noradrenergic innervation and colocalization with NEα1a or NEα2b receptors in the thoraco-lumbar spinal cord

    PubMed Central

    Johnson, Dawn M. G.; Riesgo, Mirta I.; Pinzon, Alberto

    2011-01-01

    Norepinephrine (NE) is a strong modulator and/or activator of spinal locomotor networks. Thus noradrenergic fibers likely contact neurons involved in generating locomotion. The aim of the present study was to investigate the noradrenergic innervation of functionally related, locomotor-activated neurons within the thoraco-lumbar spinal cord. This was accomplished by immunohistochemical colocalization of noradrenergic fibers using dopamine-β-hydroxylase or NEα1A and NEα2B receptors with cells expressing the c-fos gene activity-dependent marker Fos. Experiments were performed on paralyzed, precollicular-postmamillary decerebrate cats, in which locomotion was induced by electrical stimulation of the mesencephalic locomotor region. The majority of Fos labeled neurons, especially abundant in laminae VII and VIII throughout the thoraco-lumbar (T13-L7) region of locomotor animals, showed close contacts with multiple noradrenergic boutons. A small percentage (10–40%) of Fos neurons in the T7-L7 segments showed colocalization with NEα1A receptors. In contrast, NEα2B receptor immunoreactivity was observed in 70–90% of Fos cells, with no obvious rostrocaudal gradient. In comparison with results obtained from our previous study on the same animals, a significantly smaller proportion of Fos labeled neurons were innervated by noradrenergic than serotonergic fibers, with significant differences observed for laminae VII and VIII in some segments. In lamina VII of the lumbar segments, the degree of monoaminergic receptor subtype/Fos colocalization examined statistically generally fell into the following order: NEα2B = 5-HT2A ≥ 5-HT7 = 5-HT1A > NEα1A. These results suggest that noradrenergic modulation of locomotion involves NEα1A/NEα2B receptors on noradrenergic-innervated locomotor-activated neurons within laminae VII and VIII of thoraco-lumbar segments. Further study of the functional role of these receptors in locomotion is warranted. PMID:21307324

  11. Lack of effect of microinjection of noradrenaline or medetomidine on stimulus-evoked release of substance P in the spinal cord of the cat: a study with antibody microprobes.

    PubMed Central

    Lang, C. W.; Hope, P. J.; Grubb, B. D.; Duggan, A. W.

    1994-01-01

    1. Experiments were performed on barbiturate anaesthetized, spinalized cats to investigate the effect of microinjected noradrenaline or medetomidine on the release of immunoreactive substance P in the dorsal spinal cord following peripheral nerve stimulation. The presence of immunoreactive substance P was assessed with microprobes bearing C-terminus-directed antibodies to substance P. 2. Noradrenaline or medetomidine were microinjected into the grey matter of the spinal cord, near microprobe insertion sites, at depths of 2.5, 2.0, 1.5 and 1.0 mm below the spinal cord surface with volumes of approximately 0.125 microliters and a concentration of 10(-3) M. 3. In the untreated spinal cord, electrical stimulation of the ipsilateral tibial nerve (suprathreshold for C-fibres) elicited release of immunoreactive substance P which was centred in and around lamina II. Neither noradrenaline nor medetomidine administration in the manner described produced significant alterations in this pattern of nerve stimulus-evoked release. 4. In agreement with recent ultrastructural studies these results do not support a control of substance P release by catecholamines released from sites near to the central terminals of small diameter primary afferent fibres. PMID:7522862

  12. Psychological Aspects of Spinal Cord Injury

    ERIC Educational Resources Information Center

    Cook, Daniel W.

    1976-01-01

    Reviewing literature on the psychological impact of spinal cord injury suggests: (a) depression may not be a precondition for injury adjustment; (b) many persons sustaining cord injury may have experienced psychological disruption prior to injury; and (c) indexes of rehabilitation success need to be developed for the spinal cord injured. (Author)

  13. Intervertebral disc extrusion in six cats.

    PubMed

    Knipe, M F; Vernau, K M; Hornof, W J; LeCouteur, R A

    2001-09-01

    Existing reports concerning intervertebral disc disease (IVDD) have focused almost exclusively on dogs, although a small number of individual case reports of IVDD of cats has been published. The medical records of six cats with IVDD were reviewed. Radiographic studies confirmed narrowed intervertebral disc spaces, mineralised intervertebral discs, and one or more extradural compressive lesions of the spinal cord in each cat. All disc extrusions were located in the thoracolumbar region. Surgical decompression of the spinal cord was achieved in all cats by means of hemilaminectomy and removal of compressive extradural material confirmed to be degenerative disc material. Good to excellent neurological recovery was noted in five of the six cats included in this report. Based on this review, it appears that IVDD of cats has many similarities to IVDD of dogs, and that healthy cats with acute intervertebral disc extrusion(s) respond favourably to surgical decompression of the spinal cord. PMID:11876633

  14. Distribution of 125I-galanin binding sites, immunoreactive galanin, and its coexistence with 5-hydroxytryptamine in the cat spinal cord: Biochemical, histochemical, and experimental studies at the light and electron microscopic level

    SciTech Connect

    Arvidsson, U.; Ulfhake, B.; Cullheim, S.; Bergstrand, A.; Theodorson, E.; Hoekfelt, T. )

    1991-06-01

    The distribution of galanin-like immunoreactivity (GAL-LI) in the spinal cord of the cat was studied by use of indirect histochemistry and the peroxidase-antiperoxidase (PAP) technique. In the ventral horn GAL-immunoreactive (IR) axonal fibers and terminals were most frequent in the ventral part of the motor nucleus. The GAL-IR axons also contained 5-hydroxytryptamine (5-HT)-LI, and they disappeared after spinal cord transection. It was concluded that these GAL-IR fibers belong to the serotoninergic bublospinal pathway. In the medulla oblongata from normal cats, scattered GAL-IR cell bodies were encountered within the nucleus raphe obscurus and nucleus raphe pallidus. Electron microscopic observations revealed that the fine structure of the GAL-IR axonal boutons in the motor nucleus was similar to that of 5-HT-IR boutons with a varying number of immunoreactive large dense core vesicles. The postsynaptic element in all cases studied was a dendrite. A dense GAL-IR axonal plexus was found in the superficial laminae I-II of the dorsal horn. Coexistence was found between the GAL- and substance P-LI in fibers within the dorsal horn plexus. Spinal cord transection did not alter the pattern of GAL-LI in the dorsal horn, while the vast majority of GAL-IR axonal swellings disappeared following dorsal root sectioning. Electron microscopic observations in lamina II (substantia gelatinosa) revealed that the GAL-IR axonal terminals could be divided into two main groups. One with small to medium-sized axonal boutons formed synaptic contacts with both dendritic and axonal profiles. The other formed the central axon terminals of glomeruli, suggesting that GAL-LI may be present in C-type primary afferents. Numerous small GAL-IR cell bodies were encountered in laminae II and III. GAL-IR cell bodies were also observed in lamina X.

  15. Nutrition of People with Spinal Cord Injuries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This conference proceeding summarizes current knowledge about the nutritional status and needs of the spinal cord injured patient. Topics covered include the aspects of spinal cord injury that influence nutrient intakes and status, and the nutrients most likely to be problematic in this diverse gro...

  16. Acute renal failure in four cats treated with paromomycin.

    PubMed

    Gookin, J L; Riviere, J E; Gilger, B C; Papich, M G

    1999-12-15

    Acute renal failure was diagnosed in 4 cats receiving paromomycin orally for treatment of infectious enteritis. All 4 cats responded to fluid therapy and recovered normal or near-normal renal function; however, 3 of the cats subsequently became deaf and developed cataracts. Toxicoses were attributed to a combination of an excessive dosage of paromomycin and absorption of the drug across injured intestinal mucosal epithelium. Pharmacokinetic studies are needed to further define the disposition of paromomycin after oral administration to cats. PMID:10613215

  17. Afferent projections to the Bötzinger complex from the upper cervical cord and other respiratory related structures in the brainstem in cats: retrograde WGA-HRP tracing.

    PubMed

    Gang, S; Sato, Y; Kohama, I; Aoki, M

    1995-12-01

    Following injection of WGA-HRP (30-60 nl, 5%) into the Bötzinger complex (Böt.c), a group of expiratory neurons in the vicinity of the retrofacial nucleus, a number of labeled neurons were observed, predominantly ipsilaterally, in the intermediate zone of the upper cervical cord at the C1 and C2 segments, the retrotrapezoid nucleus (RTN) in the ventrolateral medulla and the parabrachial-Kölliker-Fuse nuclear complex in the rostral pons. In addition, clusters of labeled cells were also observed in and around the solitary tract nucleus, nuclei ambiguus and retroambiguus, and nucleus raphe magnus. Control injections into the magnocellular tegmental field adjacent to the Böt.c resulted in a diffuse distribution of labeled neurons in the reticular formation. These results demonstrate that the Böt.c receives convergent monosynaptic axonal projections from the upper cervical spinal cord, the pontine pneumotaxic area, the RTN and several other respiratory related structures in the medulla. PMID:8786271

  18. Acute care management of spinal cord injuries.

    PubMed

    Mitcho, K; Yanko, J R

    1999-08-01

    Meeting the health care needs of the spinal cord-injured patient is an immense challenge for the acute care multidisciplinary team. The critical care nurse clinician, as well as other members of the team, needs to maintain a comprehensive knowledge base to provide the care management that is essential to the care of the spinal cord-injured patient. With the active participation of the patient and family in care delivery decisions, the health care professionals can help to meet the psychosocial and physical needs of the patient/family unit. This article provides an evidence-based, comprehensive review of the needs of the spinal cord-injured patient in the acute care setting including optimal patient outcomes, methods to prevent complications, and a plan that provides an expeditious transition to rehabilitation. PMID:10646444

  19. Dental Apical Papilla as Therapy for Spinal Cord Injury.

    PubMed

    De Berdt, P; Vanacker, J; Ucakar, B; Elens, L; Diogenes, A; Leprince, J G; Deumens, R; des Rieux, A

    2015-11-01

    Stem cells of the apical papilla (SCAP) represent great promise regarding treatment of neural tissue damage, such as spinal cord injury (SCI). They derive from the neural crest, express numerous neurogenic markers, and mediate neurite outgrowth and axonal targeting. The goal of the present work was to investigate for the first time their potential to promote motor recovery after SCI in a rat hemisection model when delivered in their original stem cell niche-that is, by transplantation of the human apical papilla tissue itself into the lesion. Control groups consisted of animals subjected to laminectomy only (shams) and to lesion either untreated or injected with a fibrin hydrogel with or without human SCAP. Basso-Beattie-Bresnahan locomotor scores at 1 and 3 d postsurgery confirmed early functional decline in all SCI groups. This significant impairment was reversed, as seen in CatWalk analyses, after transplantation of apical papilla into the injured spinal cord wound, whereas the other groups demonstrated persistent functional impairment. Moreover, tactile allodynia did not develop as an unwanted side effect in any of the groups, even though the SCAP hydrogel group showed higher expression of the microglial marker Iba-1, which has been frequently associated with allodynia. Notably, the apical papilla transplant group presented with reduced Iba-1 expression level. Masson trichrome and human mitochondria staining showed the preservation of the apical papilla integrity and the presence of numerous human cells, while human cells could no longer be detected in the SCAP hydrogel group at the 6-wk postsurgery time point. Altogether, our data suggest that the transplantation of a human apical papilla at the lesion site improves gait in spinally injured rats and reduces glial reactivity. It also underlines the potential interest for the application of delivering SCAP in their original niche, as compared with use of a fibrin hydrogel. PMID:26341974

  20. Electrical stimulation of the sural cutaneous afferent nerve controls the amplitude and onset of the swing phase of locomotion in the spinal cat

    PubMed Central

    Ollivier-Lanvin, Karen; Krupka, Alexander J.; AuYong, Nicholas; Miller, Kassi; Prilutsky, Boris I.

    2011-01-01

    Sensory feedback plays a crucial role in the control of locomotion and in the recovery of function after spinal cord injury. Investigations in reduced preparations have shown that the locomotor cycle can be modified through the activation of afferent feedback at various phases of the gait cycle. We investigated the effect of phase-dependent electrical stimulation of a cutaneous afferent nerve on the locomotor pattern of trained spinal cord-injured cats. Animals were first implanted with chronic nerve cuffs on the sural and sciatic nerves and electromyographic electrodes in different hindlimb muscles. Cats were then transected at T12 and trained daily to locomote on a treadmill. We found that electrical stimulation of the sural nerve can enhance the ongoing flexion phase, producing higher (+129%) and longer (+17.4%) swing phases of gait even at very low threshold of stimulation. Sural nerve stimulation can also terminate an ongoing extension and initiate a flexion phase. A higher prevalence of early switching to the flexion phase was observed at higher stimulation levels and if stimulation was applied in the late stance phase. All flexor muscles were activated by the stimulation. These results suggest that electrical stimulation of the sural nerve may be used to increase the magnitude of the swing phase and control the timing of its onset after spinal cord injury and locomotor training. PMID:21389308

  1. Electrical stimulation of the sural cutaneous afferent nerve controls the amplitude and onset of the swing phase of locomotion in the spinal cat.

    PubMed

    Ollivier-Lanvin, Karen; Krupka, Alexander J; AuYong, Nicholas; Miller, Kassi; Prilutsky, Boris I; Lemay, Michel A

    2011-05-01

    Sensory feedback plays a crucial role in the control of locomotion and in the recovery of function after spinal cord injury. Investigations in reduced preparations have shown that the locomotor cycle can be modified through the activation of afferent feedback at various phases of the gait cycle. We investigated the effect of phase-dependent electrical stimulation of a cutaneous afferent nerve on the locomotor pattern of trained spinal cord-injured cats. Animals were first implanted with chronic nerve cuffs on the sural and sciatic nerves and electromyographic electrodes in different hindlimb muscles. Cats were then transected at T12 and trained daily to locomote on a treadmill. We found that electrical stimulation of the sural nerve can enhance the ongoing flexion phase, producing higher (+129%) and longer (+17.4%) swing phases of gait even at very low threshold of stimulation. Sural nerve stimulation can also terminate an ongoing extension and initiate a flexion phase. A higher prevalence of early switching to the flexion phase was observed at higher stimulation levels and if stimulation was applied in the late stance phase. All flexor muscles were activated by the stimulation. These results suggest that electrical stimulation of the sural nerve may be used to increase the magnitude of the swing phase and control the timing of its onset after spinal cord injury and locomotor training. PMID:21389308

  2. Cat Batiks.

    ERIC Educational Resources Information Center

    Buban, Marcia H.

    1998-01-01

    Discusses an art activity where fourth-grade students created backgrounds using melted paraffin and a variety of paints for their cat batik/collage. Explains that after the students created their backgrounds, they assembled their paper cats for the collage using smaller shapes glued together and wax to add texture for fur. (CMK)

  3. The injured eye

    PubMed Central

    Scott, Robert

    2011-01-01

    Eye injuries come at a high cost to society and are avoidable. Ocular blast injuries can be primary, from the blast wave itself; secondary, from fragments carried by the blast wind; tertiary; due to structural collapse or being thrown against a fixed object; or quaternary, from burns and indirect injuries. Ballistic eye protection significantly reduces the incidence of eye injuries and should be encouraged from an early stage in Military training. Management of an injured eye requires meticulous history taking, evaluation of vision that measures the acuity and if there is a relative pupillary defect as well as careful inspection of the eyes, under anaesthetic if necessary. A lateral canthotomy with cantholysis should be performed immediately if there is a sight-threatening retrobulbar haemorrhage. Systemic antibiotics should be prescribed if there is a suspected penetrating or perforating injury. A ruptured globe should be protected by an eye shield. Primary repair of ruptured globes should be performed in a timely fashion. Secondary procedures will often be required at a later date to achieve sight preservation. A poor initial visual acuity is not a guarantee of a poor final result. The final result can be predicted after approximately 3–4 weeks. Future research in eye injuries attempts to reduce scarring and neuronal damage as well as to promote photoreceptor rescue, using post-transcriptional inhibition of cell death pathways and vaccination to promote neural recovery. Where the sight has been lost sensory substitution of a picture from a spectacle mounted video camera to the touch receptors of the tongue can be used to achieve appreciation of the outside world. PMID:21149360

  4. Cord Blood and Transplants

    MedlinePlus

    ... Ways to give How your gift saves lives Donate cord blood Cord blood is changing lives Federal cord blood ... Cord blood options Sibling directed donation How to donate cord blood Participating hospitals Cord blood FAQs Learn if you ...

  5. Feline ischemic myelopathy and encephalopathy secondary to hyaline arteriopathy in five cats.

    PubMed

    Rylander, Helena; Eminaga, Salih; Palus, Viktor; Steinberg, Howard; Caine, Abby; Summers, Brian A; Gehrke, Joshua; West, Chad; Fox, Philip R; Donovan, Taryn; Cherubini, Giunio Bruto

    2014-10-01

    Five cats presented with acute-onset neurological signs. Magnetic resonance imaging in four cats showed a T2-weighted hyperintense spinal cord lesion that was mildly contrast-enhancing in three cats. Owing to inflammatory cerebrospinal fluid changes three cats were treated with immunosuppression. One cat was treated with antibiotics. All cats improved initially, but were eventually euthanased owing to the recurrence of neurological signs. Histopathology in all cats showed hyaline degeneration of the ventral spinal artery, basilar artery or associated branches with aneurysmal dilation, thrombosis and ischemic degeneration and necrosis of the spinal cord and brain. Two cats also had similar vascular changes in meningeal vessels. Vascular hyaline degeneration resulting in vascular aneurysmal dilation and thrombosis should be a differential diagnosis in cats presenting with acute central nervous system signs. PMID:24518252

  6. Dural tear and myelomalacia caused by an airgun pellet in a cat

    PubMed Central

    de la Fuente, Cristian; Ródenas, Sergio; Pumarola, Martí; Añor, Sònia

    2013-01-01

    An 8-year-old cat was presented with severe neurological deficits secondary to a traumatic cervical spinal cord injury caused by an airgun pellet. This report describes, for the first time, the myelographic findings of a dural rupture in a cat and also describes a bilateral Horner’s syndrome in a cat. PMID:24155462

  7. Dural tear and myelomalacia caused by an airgun pellet in a cat.

    PubMed

    de la Fuente, Cristian; Ródenas, Sergio; Pumarola, Martí; Añor, Sònia

    2013-07-01

    An 8-year-old cat was presented with severe neurological deficits secondary to a traumatic cervical spinal cord injury caused by an airgun pellet. This report describes, for the first time, the myelographic findings of a dural rupture in a cat and also describes a bilateral Horner's syndrome in a cat. PMID:24155462

  8. Learning from the spinal cord

    PubMed Central

    Loeb, Gerald E

    2001-01-01

    The graceful control of multiarticulated limbs equipped with slow, non-linear actuators (muscles) is a difficult problem for which robotic engineering affords no general solution. The vertebrate spinal cord provides an existence proof that such control is, indeed, possible. The biological solution is complex and incompletely known, despite a century of meticulous neurophysiological research, celebrated in part by this symposium. This is frustrating for those who would reanimate paralysed limbs either through promoting regeneration of the injured spinal cord or by functional electrical stimulation. The importance of and general role played by the spinal cord might be more easily recognized by analogy to marionette puppets, another system in which a brain (the puppeteer's) must cope with a large number of partially redundant actuators (strings) moving a mechanical linkage with complex intrinsic properties. PMID:11351019

  9. Experimental cochlear hydrops in cats.

    PubMed

    Eby, T L

    1986-11-01

    An experimental model of cochlear hydrops was created in cats. Ten cats underwent surgical procedures to obliterate the saccule, and their temporal bones were studied by light microscopy after sacrifice at 10 weeks. In one group the saccules were destroyed by maceration and aspiration. However, in these ears the saccular lumens were not obliterated and endolymphatic hydrops did not develop. Obliteration of the saccules was achieved in the second group after fascia was introduced into the area of the injured saccules. Cochlear endolymphatic hydrops was a consistent finding in these ears except when a fistula of the membranous labyrinth was present. However, in addition to fibrosis and new bone formation in the vestibules there were also degenerative changes in the hair cells, tectorial membranes, and striae vasculares of these cochleae. The results supported the longitudinal flow theory of endolymph and are consistent with the reported examples of cochlear endolymphatic hydrops in man. PMID:3812642

  10. Nocturnal penile tumescence studies in spinal cord injured males.

    PubMed

    Lamid, S

    1986-02-01

    Traditional methods of evaluating sexual function in disabled individuals using neurological examinations, interviews, and psychological screening has been well established. A patient's ability to have erections and ejaculations are recorded through interviews with the patient and his partner. Therefore, to obtain a more objective view of the patient's sexual function, we used a nocturnal penile tumescence monitor in 12 tetraplegics and 12 paraplegics. Patients were interviewed for sexual histories before and after the injury. Their penile size was monitored during sleeping time using two strain gauges attached to each end of the penile shaft. The bridge output from these strain gauges was amplified to a single channel recorder. The spontaneous increase of penile circumference and its duration was recorded. The result showed that: tetraplegics had a greater increase of penile size and longer duration of erection than paraplegics, there is no correlation between incompleteness of spinal lesion and erection, there is no correlation between the presence of bulbocavernosus reflex and erection, and there is no correlation between sex dreams and erections. PMID:3960587

  11. Cat scratch disease (image)

    MedlinePlus

    Cat scratch disease is an infectious illness associated with cat scratches, bites, or exposure to cat saliva, causing chronic swelling of the lymph nodes. Cat scratch disease is possibly the most common cause of ...

  12. Cat Scratch Disease

    MedlinePlus

    Cat scratch disease (CSD) is an illness caused by the bacterium Bartonella henselae. Almost half of all cats carry ... infection does not make cats sick. However, the scratch or bite of an infected cat can cause ...

  13. Cat scratch disease (image)

    MedlinePlus

    Cat scratch disease is an infectious illness associated with cat scratches, bites, or exposure to cat saliva, causing chronic swelling of the lymph nodes. Cat scratch disease is possibly the most common cause of chronic ...

  14. Stressors experienced by injured athletes.

    PubMed

    Evans, Lynne; Wadey, Ross; Hanton, Sheldon; Mitchell, Ian

    2012-05-01

    The purpose of this study was twofold: (a) to examine the stressors experienced by injured athletes during three phases of their recovery from sport injury, and (b) to explore the differences in the stressors experienced by team as compared to individual-sport athletes. Participants comprised previously injured high-level rugby union players (n = 5) and golfers (n = 5). Semi-structured interviews were used to explore the stressors participants experienced during three phases of injury (onset, rehabilitation and return to competitive sport). Within- and cross-case analyses showed that athletes experienced sport, medical/physical, social and financial stressors. There were a number of differences in the stressors experienced across the three phases and between team and individual-sport athletes. Findings have important implications for the design and implementation of interventions aimed at managing the potentially stressful sport injury experience and facilitating injured athletes' return to competitive sport. PMID:22551525

  15. Spinal cord trauma

    MedlinePlus

    Spinal cord injury; Compression of spinal cord; SCI; Cord compression ... them more likely to fall may also have spinal cord injury. ... vary depending on the location of the injury. Spinal cord injury causes weakness and loss of feeling at, and ...

  16. INJURED COLIFORMS IN DRINKING WATER

    EPA Science Inventory

    Coliforms were enumerated by using m-Endo agar LES and m-T7 agar in 102 routine samples of drinking water from three New England community water systems to investigate the occurrence and significance of injured coliforms. Samples included water collected immediately after convent...

  17. Wnt/β-catenin signaling promotes regeneration after adult zebrafish spinal cord injury.

    PubMed

    Strand, Nicholas S; Hoi, Kimberly K; Phan, Tien M T; Ray, Catherine A; Berndt, Jason D; Moon, Randall T

    2016-09-01

    Unlike mammals, zebrafish can regenerate their injured spinal cord and regain control of caudal tissues. It was recently shown that Wnt/β-catenin signaling is necessary for spinal cord regeneration in the larval zebrafish. However, the molecular mechanisms of regeneration may or may not be conserved between larval and adult zebrafish. To test this, we assessed the role of Wnt/β-catenin signaling after spinal cord injury in the adult zebrafish. We show that Wnt/β-catenin signaling is increased after spinal cord injury in the adult zebrafish. Moreover, overexpression of Dkk1b inhibited Wnt/β-catenin signaling in the regenerating spinal cord of adult zebrafish. Dkk1b overexpression also inhibited locomotor recovery, axon regeneration, and glial bridge formation in the injured spinal cord. Thus, our data illustrate a conserved role for Wnt/β-catenin signaling in adult and larval zebrafish spinal cord regeneration. PMID:27387232

  18. Pain and the injured worker.

    PubMed

    Robinson, James P; Glass, Lee S

    2015-05-01

    Physicians who treat injured workers with painful conditions face complex challenges that require skills beyond those of a clinician. To address these challenges effectively, physicians need to understand the logic of workers' compensation systems and the interests of the various participants in the systems. They must be prepared to interface constructively between their patients and the workers' compensation carrier and attend to a multitude of administrative issues. In the present article, the authors provide an extended case history with commentary to illustrate the challenges that physicians face and the ways they can respond to these challenges. PMID:25952072

  19. Cat-Scratch Disease

    MedlinePlus

    ... and how do people get it? Cat-scratch disease is an infection caused by a type of bacteria (germs) carried in cat saliva. This bacteria is called Bartonella henselae and can be passed from a cat to a human. Doctors and ... from fleas. Cat-scratch disease is not a severe illness in people who ...

  20. Cat and Dog Bites

    MedlinePlus

    MENU Return to Web version Cat and Dog Bites Cat and Dog Bites How should I take care of a bite from a cat or a dog? Whether from a family pet or a neighborhood stray, cat and dog bites are common. Here are some ...

  1. Disordered cardiovascular control after spinal cord injury.

    PubMed

    Weaver, Lynne C; Fleming, Jennifer C; Mathias, Christopher J; Krassioukov, Andrei V

    2012-01-01

    Damage to the spinal cord disrupts autonomic pathways, perturbing cardiovascular homeostasis. Cardiovascular dysfunction increases with higher levels of injury and greater severity. Disordered blood pressure control after spinal cord injury (SCI) has significant ramifications as cord-injured people have an increased risk of developing heart disease and stroke; cardiovascular dysfunction is currently a leading cause of death among those with SCI. Despite the clinical significance of abnormal cardiovascular control following SCI, this problem has been generally neglected by both the clinical and research community. Both autonomic dysreflexia and orthostatic hypotension are known to prevent and delay rehabilitation, and significantly impair the overall quality of life after SCI. Starting with neurogenic shock immediately after a higher SCI, ensuing cardiovascular dysfunctions include orthostatic hypotension, autonomic dysreflexia and cardiac arrhythmias. Disordered temperature regulation accompanies these autonomic dysfunctions. This chapter reviews the human and animal studies that have furthered our understanding of the pathophysiology and mechanisms of orthostatic hypotension, autonomic dysreflexia and cardiac arrhythmias. The cardiovascular dysfunction that occurs during sexual function and exercise is elaborated. New awareness of cardiovascular dysfunction after SCI has led to progress toward inclusion of this important autonomic problem in the overall assessment of the neurological condition of cord-injured people. PMID:23098715

  2. Endpoints of Resuscitation of Critically Injured Patients: Normal or Supranormal?

    PubMed Central

    Velmahos, George C.; Demetriades, Demetrios; Shoemaker, William C.; Chan, Linda S.; Tatevossian, Raymond; Wo, Charles C. J.; Vassiliu, Pantelis; Cornwell, Edward E.; Murray, James A.; Roth, Bradley; Belzberg, Howard; Asensio, Juan A.; Berne, Thomas V.

    2000-01-01

    Objective To evaluate the effect of early optimization in the survival of severely injured patients. Summary Background Data It is unclear whether supranormal (“optimal”) hemodynamic values should serve as endpoints of resuscitation or simply as markers of the physiologic reserve of critically injured patients. The failure of optimization to produce improved survival in some randomized controlled trials may be associated with delays in starting the attempt to reach optimal goals. There are limited controlled data on trauma patients. Methods Seventy-five consecutive severely injured patients with shock resulting from bleeding and without major intracranial or spinal cord trauma were randomized to resuscitation, starting immediately after admission, to either normal values of systolic blood pressure, urine output, base deficit, hemoglobin, and cardiac index (control group, 35 patients) or optimal values (cardiac index >4.5 L/min/m2, ratio of transcutaneous oxygen tension to fractional inspired oxygen >200, oxygen delivery index >600 mL/min/m2, and oxygen consumption index >170 mL/min/m2; optimal group, 40 patients). Initial cardiac output monitoring was done noninvasively by bioimpedance and, subsequently, invasively by thermodilution. Crystalloids, colloids, blood, inotropes, and vasopressors were used by predetermined algorithms. Results Optimal values were reached intentionally by 70% of the optimal patients and spontaneously by 40% of the control patients. There was no difference in rates of death (15% optimal vs. 11% control), organ failure, sepsis, or the length of intensive care unit or hospital stay between the two groups. Patients from both groups who achieved optimal values had better outcomes than patients who did not. The death rate was 0% among patients who achieved optimal values compared with 30% among patients who did not. Age younger than 40 years was the only independent predictive factor of the ability to reach optimal values. Conclusions

  3. Wounded, Ill, and Injured Challenges.

    PubMed

    Jones, Stephen L

    2016-01-01

    The Washington Post articles of February 2007 led to a close examination of the care provided Wounded Warriors at Walter Reed Army Medical Center. Subsequent reports by the President's Commission, Independent Review Group, and Defense Health Board all recommended ways to improve care. Joint Task Force National Capital Region Medical was established to implement the recommended improvements in Warrior care, and the recommendations of the Base Realignment and Closure Commission to close Walter Reed and realign the staff into a new Walter Reed National Military Medical Center and Fort Belvoir Community Hospital. It accomplished these tasks, maintained existing wounded, ill, and injured care, and safely transferred patients during the height of the fighting season in Afghanistan. It successfully accomplished its mission through engaged leadership, establishing an appropriate environment for Warrior care, careful management of casualty flow, and robust communication with all parties affected by the changes. The lessons learned in Warrior care should be considered when planning future military medical operations. PMID:27215871

  4. A Comparative Study of Visual Depth Perception of Brain-Injured and Nonbrain-Injured Boys

    ERIC Educational Resources Information Center

    Blankenship, Elise

    1972-01-01

    The brain-injured group performed with greater error scores and required more time to complete the tasks; although the brain-injured group took more time on the binocular tasks, their performance scores were similar to the nonbrain-injured group scores. (Author)

  5. Malnutrition in spinal cord injury: more than nutritional deficiency.

    PubMed

    Dionyssiotis, Yannis

    2012-08-01

    Denervation of the spinal cord below the level of injury leads to complications producing malnutrition. Nutritional status affects mortality and pathology of injured subjects and it has been reported that two thirds of individuals enrolled in rehabilitation units are malnourished. Therefore, the aim should be either to maintain an optimal nutritional status, or supplement these subjects in order to overcome deficiencies in nutrients or prevent obesity. This paper reviews methods of nutritional assessment and describes the physiopathological mechanisms of malnutrition based on the assumption that spinal cord injured subjects need to receive adequate nutrition to promote optimal recovery, placing nutrition as a first line treatment and not an afterthought in the rehabilitation of spinal cord injury. PMID:22870169

  6. Macrophage activation and its role in repair and pathology after spinal cord injury.

    PubMed

    Gensel, John C; Zhang, Bei

    2015-09-01

    The injured spinal cord does not heal properly. In contrast, tissue repair and functional recovery occur after skin or muscle injuries. The reason for this dichotomy in wound repair is unclear but inflammation, and specifically macrophage activation, likely plays a key role. Macrophages have the ability to promote the repair of injured tissue by regulating transitions through different phase of the healing response. In the current review we compare and contrast the healing and inflammatory responses between spinal cord injuries and tissues that undergo complete wound resolution. Through this comparison, we identify key macrophage phenotypes that are inaptly triggered or absent after spinal cord injury and discuss spinal cord stimuli that contribute to this maladaptive response. Sequential activation of classic, pro-inflammatory, M1 macrophages and alternatively activated, M2a, M2b, and M2c macrophages occurs during normal healing and facilitates transitions through the inflammatory, proliferative, and remodeling phases of repair. In contrast, in the injured spinal cord, pro-inflammatory macrophages potentiate a prolonged inflammatory phase and remodeling is not properly initiated. The desynchronized macrophage activation after spinal cord injury is reminiscent of the inflammation present in chronic, non-healing wounds. By refining the role macrophages play in spinal cord injury repair we bring to light important areas for future neuroinflammation and neurotrauma research. This article is part of a Special Issue entitled SI: Spinal cord injury. PMID:25578260

  7. Cat Scratch Disease

    MedlinePlus

    Cat scratch disease (CSD) is an illness caused by the bacterium Bartonella henselae. Almost half of all cats carry the infection ... symptoms of CSD, call your doctor. Centers for Disease Control and Prevention

  8. Cat-Scratch Disease

    MedlinePlus

    ... Patients Infants and Young Children Publications & Materials Announcements Cat-Scratch Disease Recommend on Facebook Tweet Share Compartir ( ... play and learn how to attack prey. How cats and people become infected Kitten playing with a ...

  9. Getting a CAT Scan

    MedlinePlus

    ... Here's Help White House Lunch Recipes Getting a CAT Scan (Video) KidsHealth > For Kids > Getting a CAT Scan (Video) Print A A A Text Size en español Obtención de una tomografía computada (video) CAT stands for "computerized axial tomography." Translated, that means ...

  10. Electroacupuncture in the repair of spinal cord injury: inhibiting the Notch signaling pathway and promoting neural stem cell proliferation

    PubMed Central

    Geng, Xin; Sun, Tao; Li, Jing-hui; Zhao, Ning; Wang, Yong; Yu, Hua-lin

    2015-01-01

    Electroacupuncture for the treatment of spinal cord injury has a good clinical curative effect, but the underlying mechanism is unclear. In our experiments, the spinal cord of adult Sprague-Dawley rats was clamped for 60 seconds. Dazhui (GV14) and Mingmen (GV4) acupoints of rats were subjected to electroacupuncture. Enzyme-linked immunosorbent assay revealed that the expression of serum inflammatory factors was apparently downregulated in rat models of spinal cord injury after electroacupuncture. Hematoxylin-eosin staining and immunohistochemistry results demonstrated that electroacupuncture contributed to the proliferation of neural stem cells in rat injured spinal cord, and suppressed their differentiation into astrocytes. Real-time quantitative PCR and western blot assays showed that electroacupuncture inhibited activation of the Notch signaling pathway induced by spinal cord injury. These findings indicate that electroacupuncture repaired the injured spinal cord by suppressing the Notch signaling pathway and promoting the proliferation of endogenous neural stem cells. PMID:25878587

  11. Spinal Cord Injuries

    MedlinePlus

    Your spinal cord is a bundle of nerves that runs down the middle of your back. It carries signals back ... forth between your body and your brain. A spinal cord injury disrupts the signals. Spinal cord injuries usually ...

  12. Tethered Spinal Cord Syndrome

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Tethered Spinal Cord Syndrome Information Page Table of Contents (click to ... being done? Clinical Trials Organizations What is Tethered Spinal Cord Syndrome? Tethered spinal cord syndrome is a neurological ...

  13. Spinal Cord Infarction

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Spinal Cord Infarction Information Page Table of Contents (click to ... Organizations Related NINDS Publications and Information What is Spinal Cord Infarction? Spinal cord infarction is a stroke either ...

  14. [Blessings of technology? The severely injured skier--a result of technical equipment on the ski slope].

    PubMed

    Erhart, S; Furrer, M; Frutiger, A; Bereiter, H; von Frank, E; Rüedi, T; Leutenegger, A

    1994-04-01

    In a retrospective manner we studied the injury pattern of 2053 patients following a skiing accident that required hospital admission in the year 1984-1992. Of these 361 or 18% were categorised as severely injured according to the AIS/ISS scoring system. 31% of these 361 skiers were injured by colliding at considerable speed with either a moving object (other skier, snow cat, ski-lift, etc) or fixed obstacles (trees, rocks, pilons, etc) along the ski slopes. As the most extensive injuries seem to result from collisions with the latter, fixed obstacles, it should be requested that more protective measures are being taken to prevent such severe accidents. PMID:8031632

  15. Pulmonary thromboembolism in cats.

    PubMed

    Schermerhorn, Thomas; Pembleton-Corbett, Julie R; Kornreich, Bruce

    2004-01-01

    Pulmonary thromboembolism (PTE) is rarely diagnosed in cats, and the clinical features of the disease are not well known. PTE was diagnosed at postmortem examination in 17 cats, a prevalence of 0.06% over a 24-year period. The age of affected cats ranged from 10 months to 18 years, although young (<4 years) and old (>10 years) cats were more commonly affected than were middle-aged cats. Males and females were equally affected. The majority of cats with PTE (n = 16) had concurrent disease, which was often severe. The most common diseases identified in association with PTE were neoplasia, anemia of unidentified cause, and pancreatitis. Cats with glomerulonephritis, encephalitis, pneumonia, heart disease, and hepatic lipidosis were also represented in this study. Most cats with PTE demonstrated dyspnea and respiratory distress before death or euthanasia, but PTE was not recognized ante mortem in any cat studied. In conclusion, PTE can affect cats of any age and is associated with a variety of systemic and inflammatory disorders. It is recommended that the same clinical criteria used to increase the suspicion of PTE in dogs should also be applied to cats. PMID:15320593

  16. Spinal cord injury in youth.

    PubMed

    Apple, D F; Anson, C A; Hunter, J D; Bell, R B

    1995-02-01

    To identify special characteristics of the pediatric spinal cord-injured (SCI) population, we analyzed a database of 1,770 traumatic SCI patients; 88 (5%) fell into the two pediatric subgroups: 0-12 years (n = 26) and 13-15 years (n = 62) at time of injury. Differences between age groups were identified with regard to demographics, neurologic characteristics, associated injuries and complications, and management. Mode level of bony injury was C2 in preteens, C4 in teens, and C4-C5 in adults. Scoliosis developed far more frequently in children, particularly preteens (23%), than in adults (5%). Violent etiologies, predominantly gunshots, accounted for a disproportionate share of injuries to preteens (19%) and African-Americans (28%), as compared with adults (12%) and Caucasians (7%). This last finding underscores the urgent need to mount a response to the nationwide proliferation of gunshot-related SCI in children and minorities. PMID:7729113

  17. Features of spinal cord injury in Taiwan (1977-1989).

    PubMed

    Yeh, Y S; Lee, S T; Lui, T N; Fairholm, D J; Chen, W J; Wong, M K

    1993-09-01

    In order to establish an etiological and statistical base for spinal cord injuries, 1,617 spinal cord injured patients admitted to the Chang Gung Memorial Hospital in Taiwan during the period of 1977 to 1989 were reviewed. The most common causes of injury were pedestrian (29.31%) and motorcycle (28.88%) accidents. The greatest incidence of injury was in the 26-35 year age group. The complete tetraplegic patients had the highest mortality rate (26.5%). Additional features studied were the time of occurrence and pattern of injury. Information gathered from this study suggest the need to establish a Spinal Cord Injury Prevention Program, to develop a Prehospital Care System and set up comprehensive Spinal Cord Injury Units in Taiwan. We expect this study to be adaptable to other similar developing countries. PMID:8221290

  18. Clinical and Experimental Advances in Regeneration of Spinal Cord Injury

    PubMed Central

    Hyun, Jung Keun; Kim, Hae-Won

    2010-01-01

    Spinal cord injury (SCI) is one of the major disabilities dealt with in clinical rehabilitation settings and is multifactorial in that the patients suffer from motor and sensory impairments as well as many other complications throughout their lifetimes. Many clinical trials have been documented during the last two decades to restore damaged spinal cords. However, only a few pharmacological therapies used in clinical settings which still have only limited effects on the regeneration, recovery speed, or retraining of the spinal cord. In this paper, we will introduce recent clinical trials, which performed pharmacological treatments and cell transplantations for patients with SCI, and evaluate recent in vivo studies for the regeneration of injured spinal cord, including stem-cell transplantation, application of neurotrophic factors and suppressor of inhibiting factors, development of biomaterial scaffolds and delivery systems, rehabilitation, and the combinations of these therapies to evaluate what can be appropriately applied in the future to the patients with SCI. PMID:21350645

  19. Aquaporin 1 - a novel player in spinal cord injury.

    PubMed

    Nesic, O; Lee, J; Unabia, G C; Johnson, K; Ye, Z; Vergara, L; Hulsebosch, C E; Perez-Polo, J R

    2008-05-01

    The role of water channel aquaporin 1 (AQP-1) in uninjured or injured spinal cords is unknown. AQP-1 is weakly expressed in neurons and gray matter astrocytes, and more so in white matter astrocytes in uninjured spinal cords, a novel finding. As reported before, AQP-1 is also present in ependymal cells, but most abundantly in small diameter sensory fibers of the dorsal horn. Rat contusion spinal cord injury (SCI) induced persistent and significant four- to eightfold increases in AQP-1 levels at the site of injury (T10) persisting up to 11 months post-contusion, a novel finding. Delayed AQP-1 increases were also found in cervical and lumbar segments, suggesting the spreading of AQP-1 changes over time after SCI. Given that the antioxidant melatonin significantly decreased SCI-induced AQP-1 increases and that hypoxia inducible factor-1alpha was increased in acutely and chronically injured spinal cords, we propose that chronic hypoxia contributes to persistent AQP-1 increases after SCI. Interestingly; AQP-1 levels were not affected by long-lasting hypertonicity that significantly increased astrocytic AQP-4, suggesting that the primary role of AQP-1 is not regulating isotonicity in spinal cords. Based on our results we propose possible novel roles for AQP-1 in the injured spinal cords: (i) in neuronal and astrocytic swelling, as AQP-1 was increased in all surviving neurons and reactive astrocytes after SCI and (ii) in the development of the neuropathic pain after SCI. We have shown that decreased AQP-1 in melatonin-treated SCI rats correlated with decreased AQP-1 immunolabeling in the dorsal horns sensory afferents, and with significantly decreased mechanical allodynia, suggesting a possible link between AQP-1 and chronic neuropathic pain after SCI. PMID:18248364

  20. Aquaporin 1 – a novel player in spinal cord injury

    PubMed Central

    Nesic, O.; Lee, J.; Unabia, G. C.; Johnson, K.; Ye, Z.; Vergara, L.; Hulsebosch, C. E.; Perez-Polo, J. R.

    2008-01-01

    The role of water channel aquaporin 1 (AQP-1) in uninjured or injured spinal cords is unknown. AQP-1 is weakly expressed in neurons and gray matter astrocytes, and more so in white matter astrocytes in uninjured spinal cords, a novel finding. As reported before, AQP-1 is also present in ependymal cells, but most abundantly in small diameter sensory fibers of the dorsal horn. Rat contusion spinal cord injury (SCI) induced persistent and significant four- to eightfold increases in AQP-1 levels at the site of injury (T10) persisting up to 11 months post-contusion, a novel finding. Delayed AQP-1 increases were also found in cervical and lumbar segments, suggesting the spreading of AQP-1 changes over time after SCI. Given that the antioxidant melatonin significantly decreased SCI-induced AQP-1 increases and that hypoxia inducible factor-1α was increased in acutely and chronically injured spinal cords, we propose that chronic hypoxia contributes to persistent AQP-1 increases after SCI. Interestingly; AQP-1 levels were not affected by long-lasting hypertonicity that significantly increased astrocytic AQP-4, suggesting that the primary role of AQP-1 is not regulating isotonicity in spinal cords. Based on our results we propose possible novel roles for AQP-1 in the injured spinal cords: (i) in neuronal and astrocytic swelling, as AQP-1 was increased in all surviving neurons and reactive astrocytes after SCI and (ii) in the development of the neuropathic pain after SCI. We have shown that decreased AQP-1 in melatonin-treated SCI rats correlated with decreased AQP-1 immunolabeling in the dorsal horns sensory afferents, and with significantly decreased mechanical allodynia, suggesting a possible link between AQP-1 and chronic neuropathic pain after SCI. PMID:18248364

  1. Pain analgesia among adolescent self-injurers.

    PubMed

    Glenn, Jeffrey J; Michel, Bethany D; Franklin, Joseph C; Hooley, Jill M; Nock, Matthew K

    2014-12-30

    Although non-suicidal self-injury (NSSI) involves self-inflicted physical harm, many self-injurers report feeling little or no pain during the act. Here we test: (1) whether the pain analgesia effects observed among adult self-injurers are also present among adolescents, and (2) three potential explanatory models proposing that habituation, dissociation, and/or self-criticism help explain the association between NSSI and pain analgesia among adolescents. Participants were 79 adolescents (12-19 years) recruited from the community who took part in a laboratory-based pain study. Results revealed that adolescent self-injurers have a higher pain threshold and greater pain endurance than non-injurers. Statistical mediation models revealed that the habituation and dissociation models were not supported; however, a self-critical style does mediate the association between NSSI and pain analgesia. The present findings extend earlier work by highlighting that a self-critical style may help to explain why self-injurers exhibit pain analgesia. Specifically, the tendency to experience self-critical thoughts in response to stressful events may represent a third variable that increases the likelihood of both NSSI and pain analgesia. Prospective experimental studies are needed to replicate and tease apart the direction of these associations, and may provide valuable leads in the development of effective treatments for this dangerous behavior problem. PMID:25172611

  2. Narrating the self-injured body

    PubMed Central

    Chandler, Amy

    2014-01-01

    Illness narratives have traditionally been used as a conceptual tool for exploring experiences of chronic illness or disease. In this paper, I suggest that Frank's typology of illness narratives (chaos, restitution and quest) also offers an illuminating approach to analysing accounts of self-injury, demonstrating the diverse ways in which self-injury is practiced, experienced and narrated. Drawing on 24 narrative interviews with 12 people who had self-injured, I focus on participants’ accounts of their self-injured bodies. The approach is phenomenological, and concerned with talk about the experience of living with and in a body that has been marked by self-injury. Thus, the act of self-injury is not the sole focus, and particular attention is paid to accounts of the bodily aftermath: scars, marks and wounds. Scars left by self-injury can be seen as communicative, and the analysis developed here demonstrates some of the various ways that these marks may be read. Attending to these diverse narratives can contribute to the provision of compassionate, non-judgemental care for patients who have self-injured. Further, highlighting the existence of different ways of narrating the self-injured body may offer an optimistic resource for people who have self-injured. PMID:24812335

  3. Strengthening care of injured children globally

    PubMed Central

    Abantanga, Francis; Goosen, Jacques; Joshipura, Manjul; Juillard, Catherine

    2009-01-01

    Abstract Part of the solution to the growing problem of child injury is to strengthen the care that injured children receive. This paper will point out the potential health gains to be made by doing this and will then review recent advances in the care of injured children in individual institutions and countries. It will discuss how these individual efforts have been aided by increased international attention to trauma care. Although there are no major, well-funded global programmes to improve trauma care, recent guidance documents developed by WHO and a broad network of collaborators have stimulated increased global attention to improving planning and resources for trauma care. This has in turn led to increased attention to strengthening trauma care capabilities in countries, including needs assessments and implementation of WHO recommendations in national policy. Most of these global efforts, however, have not yet specifically addressed children. Given the special needs of the injured child and the high burden of injury-related death and disability among children, clearly greater emphasis on childhood trauma care is needed. Trauma care needs assessments being conducted in a growing number of countries need to focus more on capabilities for care of injured children. Trauma care policy development needs to better encompass childhood trauma care. More broadly, the growing network of individuals and groups collaborating to strengthen trauma care globally needs to engage a broader range of stakeholders who will focus on and champion the improvement of care for injured children. PMID:19551257

  4. Blood supply and vascular reactivity of the spinal cord under normal and pathological conditions.

    PubMed

    Martirosyan, Nikolay L; Feuerstein, Jeanne S; Theodore, Nicholas; Cavalcanti, Daniel D; Spetzler, Robert F; Preul, Mark C

    2011-09-01

    The authors present a review of spinal cord blood supply, discussing the anatomy of the vascular system and physiological aspects of blood flow regulation in normal and injured spinal cords. Unique anatomical functional properties of vessels and blood supply determine the susceptibility of the spinal cord to damage, especially ischemia. Spinal cord injury (SCI), for example, complicating thoracoabdominal aortic aneurysm repair is associated with ischemic trauma. The rate of this devastating complication has been decreased significantly by instituting physiological methods of protection. Traumatic SCI causes complex changes in spinal cord blood flow, which are closely related to the severity of injury. Manipulating physiological parameters such as mean arterial blood pressure and intrathecal pressure may be beneficial for patients with an SCI. Studying the physiopathological processes of the spinal cord under vascular compromise remains challenging because of its central role in almost all of the body's hemodynamic and neurofunctional processes. PMID:21663407

  5. Early Management of the Critically Injured

    PubMed Central

    Currie, Donald J.

    1966-01-01

    A plan for the early management of the critically injured patient is described with emphasis on the priorities of management of injuries to certain organ-systems. The most important priorities are the establishment and maintenance of adequate ventilation and adequate circulation. The general surgeon is best qualified to assume full responsibility for the proper care of the critically injured, of patients with multiple injuries, and of patients in traumatic shock. He must assume the risk of transfusing unmatched whole blood and of deferring non-essential radiographs. The emergency and radiology departments may have to be by-passed to save the life of the critically injured patient. The measures required to establish a clear airway, to treat complications which can impair ventilation, to manage shock and hemorrhage and the possible complications of massive transfusions of blood are reviewed. PMID:5922504

  6. That Fat Cat

    ERIC Educational Resources Information Center

    Lambert, Phyllis Gilchrist

    2012-01-01

    This activity began with a picture book, Nurit Karlin's "Fat Cat On a Mat" (HarperCollins; 1998). The author and her students started their project with a 5-inch circular template for the head of their cats. They reviewed shapes as they drew the head and then added the ears and nose, which were triangles. Details to the face were added when…

  7. Diseases Transmitted by Cats.

    PubMed

    Goldstein, Ellie J C; Abrahamian, Fredrick M

    2015-10-01

    Humans and cats have shared a close relationship since ancient times. Millions of cats are kept as household pets, and 34% of households have cats. There are numerous diseases that may be transmitted from cats to humans. General modes of transmission, with some overlapping features, can occur through inhalation (e.g., bordetellosis); vector-borne spread (e.g., ehrlichiosis); fecal-oral route (e.g., campylobacteriosis); bite, scratch, or puncture (e.g., rabies); soil-borne spread (e.g., histoplasmosis); and direct contact (e.g., scabies). It is also likely that the domestic cat can potentially act as a reservoir for many other zoonoses that are not yet recognized. The microbiology of cat bite wound infections in humans is often polymicrobial with a broad mixture of aerobic (e.g., Pasteurella, Streptococcus, Staphylococcus) and anaerobic (e.g., Fusobacterium, Porphyromonas, Bacteroides) microorganisms. Bacteria recovered from infected cat bite wounds are most often reflective of the oral flora of the cat, which can also be influenced by the microbiome of their ingested prey and other foods. Bacteria may also originate from the victim's own skin or the physical environment at the time of injury. PMID:26542039

  8. Hyperbaric oxygen therapy improves local microenvironment after spinal cord injury

    PubMed Central

    Wang, Yang; Zhang, Shuquan; Luo, Min; Li, Yajun

    2014-01-01

    Clinical studies have shown that hyperbaric oxygen therapy improves motor function in patients with spinal cord injury. In the present study, we explored the mechanisms associated with the recovery of neurological function after hyperbaric oxygen therapy in a rat model of spinal cord injury. We established an acute spinal cord injury model using a modification of the free-falling object method, and treated the animals with oxygen at 0.2 MPa for 45 minutes, 4 hours after injury. The treatment was administered four times per day, for 3 days. Compared with model rats that did not receive the treatment, rats exposed to hyperbaric oxygen had fewer apoptotic cells in spinal cord tissue, lower expression levels of aquaporin 4/9 mRNA and protein, and more NF-200 positive nerve fibers. Furthermore, they had smaller spinal cord cavities, rapid recovery of somatosensory and motor evoked potentials, and notably better recovery of hindlimb motor function than model rats. Our findings indicate that hyperbaric oxygen therapy reduces apoptosis, downregulates aquaporin 4/9 mRNA and protein expression in injured spinal cord tissue, improves the local microenvironment for nerve regeneration, and protects and repairs the spinal cord after injury. PMID:25657740

  9. Sodium Hydrosulfide Relieves Neuropathic Pain in Chronic Constriction Injured Rats

    PubMed Central

    Lin, Jian-qing; Luo, Hui-qin; Lin, Cai-zhu; Chen, Jin-zhuan; Lin, Xian-zhong

    2014-01-01

    Aberrant neuronal activity in injured peripheral nerves is believed to be an important factor in the development of neuropathic pain (NPP). Channel protein pCREB of that activity has been shown to mitigate the onset of associated molecular events in the nervous system, and sodium hydrosulfide (NaHS) could inhibit the expression of pCREB. However, whether NaHS could relieve the pain, it needs further experimental research. Furthermore, the clinical potential that NaHS was used to relieve pain was limited so it would be required. To address these issues, the rats of sciatic nerve chronic constriction injury (CCI) were given intraperitoneal injection of NaHS containing hydrogen sulfide (H2S). The experimental results showed that NaHS inhibited the reduction of paw withdrawal thermal latency (PWTL), mechanical withdrawal threshold (MWT), and the level of pCREB in CCI rats in a dose-dependent manner and they were greatly decreased in NaHSM group (P < 0.05). NaHS alleviates chronic neuropathic pain by inhibiting expression of pCREB in the spinal cord of Sprague-Dawley rats. PMID:25506383

  10. Therapeutic Potential of HGF-Expressing Human Umbilical Cord Mesenchymal Stem Cells in Mice with Acute Liver Failure

    PubMed Central

    Tang, Yunxia; Li, Qiongshu; Meng, Fanwei; Huang, Xingyu; Li, Chan; Zhou, Xin; Zeng, Xiaoping; He, Yixin; Liu, Jia; Hu, Xiang; Hu, Ji-Fan; Li, Tao

    2016-01-01

    Human umbilical cord-derived mesenchymal stem cells (UCMSCs) are particularly attractive cells for cellular and gene therapy in acute liver failure (ALF). However, the efficacy of this cell therapy in animal studies needs to be significantly improved before it can be translated into clinics. In this study, we investigated the therapeutic potential of UCMSCs that overexpress hepatocyte growth factor (HGF) in an acetaminophen-induced acute liver failure mouse model. We found that the HGF-UCMSC cell therapy protected animals from acute liver failure by reducing liver damage and prolonging animal survival. The therapeutic effect of HGF-UCMSCs was associated with the increment in serum glutathione (GSH) and hepatic enzymes that maintain redox homeostasis, including γ-glutamylcysteine synthetase (γ-GCS), superoxide dismutase (SOD), and catalase (CAT). Immunohistochemical staining confirmed that HGF-UCMSCs were mobilized to the injured areas of the liver. Additionally, HGF-UCMSCs modulated apoptosis by upregulating the antiapoptotic Bcl2 and downregulating proapoptotic genes, including Bax and TNFα. Taken together, these data suggest that ectopic expression of HGF in UCMSCs protects animals from acetaminophen-induced acute liver failure through antiapoptosis and antioxidation mechanisms. PMID:27057357

  11. Spinal cord stimulation

    MedlinePlus

    Spinal cord stimulation is a treatment for pain that uses a mild electric current to block nerve impulses ... stretched into the space on top of your spinal cord. These wires will be connected to a small ...

  12. Spinal Cord Injury Map

    MedlinePlus

    ... on the severity of the injury. Tap this spinal column to see how the level of injury affects loss of function and control. Learn more about spinal cord injuries. A spinal cord injury affects the ...

  13. Spinal cord injury I: A synopsis of the basic science

    PubMed Central

    Webb, Aubrey A.; Ngan, Sybil; Fowler, J. David

    2010-01-01

    Substantial knowledge has been gained in the pathological findings following naturally occurring spinal cord injury (SCI) in dogs and cats. The molecular mechanisms involved in failure of neural regeneration within the central nervous system, potential therapeutics including cellular transplantation therapy, neural plasticity, and prognostic indicators of recovery from SCI have been studied. This 2-part review summarizes 1) basic science perspectives regarding treating and curing spinal cord injury, 2) recent studies that shed light on prognosis and recovery from SCI, 3) current thinking regarding standards of care for dogs with SCI, 4) experimental approaches in the laboratory setting, and 5) current clinical trials being conducted in veterinary medicine. Part I presents timely information on the pathophysiology of spinal cord injury, challenges associated with promoting regeneration of neurons of the central nervous system, and experimental approaches aimed at developing treatments for spinal cord injury. PMID:20676289

  14. Spinal Cord Injuries

    MedlinePlus

    ... forth between your body and your brain. A spinal cord injury disrupts the signals. Spinal cord injuries usually begin with a blow that fractures or ... down on the nerve parts that carry signals. Spinal cord injuries can be complete or incomplete. With a complete ...

  15. Fewer Injured Workers Getting Opioid Prescriptions in Some States

    MedlinePlus

    ... nih.gov/medlineplus/news/fullstory_159337.html Fewer Injured Workers Getting Opioid Prescriptions in Some States Study finding ... also be useful for insurance companies and people working with injured workers, Thumula said in an institute news release. ...

  16. Exercise Preconditioning Protects against Spinal Cord Injury in Rats by Upregulating Neuronal and Astroglial Heat Shock Protein 72

    PubMed Central

    Chang, Cheng-Kuei; Chou, Willy; Lin, Hung-Jung; Huang, Yi-Ching; Tang, Ling-Yu; Lin, Mao-Tsun; Chang, Ching-Ping

    2014-01-01

    The heat shock protein 72 (HSP 72) is a universal marker of stress protein whose expression can be induced by physical exercise. Here we report that, in a localized model of spinal cord injury (SCI), exercised rats (given pre-SCI exercise) had significantly higher levels of neuronal and astroglial HSP 72, a lower functional deficit, fewer spinal cord contusions, and fewer apoptotic cells than did non-exercised rats. pSUPER plasmid expressing HSP 72 small interfering RNA (SiRNA-HSP 72) was injected into the injured spinal cords. In addition to reducing neuronal and astroglial HSP 72, the (SiRNA-HSP 72) significantly attenuated the beneficial effects of exercise preconditioning in reducing functional deficits as well as spinal cord contusion and apoptosis. Because exercise preconditioning induces increased neuronal and astroglial levels of HSP 72 in the gray matter of normal spinal cord tissue, exercise preconditioning promoted functional recovery in rats after SCI by upregulating neuronal and astroglial HSP 72 in the gray matter of the injured spinal cord. We reveal an important function of neuronal and astroglial HSP 72 in protecting neuronal and astroglial apoptosis in the injured spinal cord. We conclude that HSP 72-mediated exercise preconditioning is a promising strategy for facilitating functional recovery from SCI. PMID:25334068

  17. Respiration following Spinal Cord Injury: Evidence for Human Neuroplasticity

    PubMed Central

    Hoh, Daniel J.; Mercier, Lynne M.; Hussey, Shaunn P.; Lane, Michael A.

    2013-01-01

    Respiratory dysfunction is one of the most devastating consequences of cervical spinal cord injury (SCI) with impaired breathing being a leading cause of morbidity and mortality in this population. However, there is mounting experimental and clinical evidence for moderate spontaneous respiratory recovery, or “plasticity”, after some spinal cord injuries. Pre-clinical models of respiratory dysfunction following SCI have demonstrated plasticity at neural and behavioral levels that result in progressive recovery of function. Temporal changes in respiration after human SCI have revealed some functional improvements suggesting plasticity paralleling that seen in experimental models – a concept that has been previously under-appreciated. While the extent of spontaneous recovery remains limited, it is possible that enhancing or facilitating neuroplastic mechanisms may have significant therapeutic potential. The next generation of treatment strategies for SCI and related respiratory dysfunction should aim to optimize these recovery processes of the injured spinal cord for lasting functional restoration. PMID:23891679

  18. Legal considerations in treating the injured athlete.

    PubMed

    Mitten, M J; Mitten, R J

    1995-01-01

    This article is intended to inform physical therapists about legal considerations impacting the practice of sports physical therapy. Our objective is to generate an awareness of these issues to enhance the quality of physical therapy provided to injured athletes and to minimize potential legal liability. Three areas in which physical therapists who treat injured athletes need to be particularly careful are: 1) providing treatment designed to enable continued play with an injury before it is fully healed, 2) informing an athlete of the potential health risks of continued athletic activity in his or her physical condition, and 3) evaluating and advising an athlete concerning his or her ability to resume athletic activity. Based on the parallels between industrial rehabilitation and sports physical therapy, the authors propose that consensus objective criteria and guidelines should be established to assist therapists in advising referring physicians and athletes whether return to play is appropriate under the circumstances. PMID:7889031

  19. Recovery of airway protective behaviors after spinal cord injury

    PubMed Central

    Bolser, Donald C.; Jefferson, Stephanie C.; Rose, Melanie J.; Tester, Nicole J.; Reier, Paul J.; Fuller, David D.; Davenport, Paul W.; Howland, Dena R.

    2009-01-01

    Pulmonary morbidity is high following spinal cord injury and is due, in part, to impairment of airway protective behaviors. These airway protective behaviors include augmented breaths, the cough reflex, and expiration reflexes. Functional recovery of these behaviors has been reported after spinal cord injury. In humans, evidence for functional recovery is restricted to alterations in motor strategy and changes in the frequency of occurrence of these behaviors. In animal models, compensatory alterations in motor strategy have been identified. Crossed descending respiratory motor pathways at the thoracic spinal cord levels exist that are composed of crossed premotor axons, local circuit interneurons, and propriospinal neurons. These pathways can collectively form a substrate that supports maintenance and/or recovery of function, especially after asymmetric spinal cord injury. Local sprouting of premotor axons in the thoracic spinal cord also can occur following chronic spinal cord injury. These mechanisms may contribute to functional resiliency of the cough reflex that has been observed following chronic spinal cord injury in the cat. PMID:19635591

  20. Inhibition of Epidermal Growth Factor Receptor Improves Myelination and Attenuates Tissue Damage of Spinal Cord Injury.

    PubMed

    Zhang, Si; Ju, Peijun; Tjandra, Editha; Yeap, Yeeshan; Owlanj, Hamed; Feng, Zhiwei

    2016-10-01

    Preventing demyelination and promoting remyelination of denuded axons are promising therapeutic strategies for spinal cord injury (SCI). Epidermal growth factor receptor (EGFR) inhibition was reported to benefit the neural functional recovery and the axon regeneration after SCI. However, its role in de- and remyelination of axons in injured spinal cord is unclear. In the present study, we evaluated the effects of EGFR inhibitor, PD168393 (PD), on the myelination in mouse contusive SCI model. We found that expression of myelin basic protein (MBP) in the injured spinal cords of PD treated mice was remarkably elevated. The density of glial precursor cells and oligodendrocytes (OLs) was increased and the cell apoptosis in lesions was attenuated after PD168393 treatment. Moreover, PD168393 treatment reduced both the numbers of OX42 + microglial cells and glial fibrillary acidic protein + astrocytes in damaged area of spinal cords. We thus conclude that the therapeutic effects of EGFR inhibition after SCI involves facilitating remyelination of the injured spinal cord, increasing of oligodendrocyte precursor cells and OLs, as well as suppressing the activation of astrocytes and microglia/macrophages. PMID:26883518

  1. Examining the properties and therapeutic potential of glial restricted precursors in spinal cord injury.

    PubMed

    Hayakawa, Kazuo; Haas, Christopher; Fischer, Itzhak

    2016-04-01

    In the aftermath of spinal cord injury, glial restricted precursors (GRPs) and immature astrocytes offer the potential to modulate the inflammatory environment of the injured spinal cord and promote host axon regeneration. Nevertheless clinical application of cellular therapy for the repair of spinal cord injury requires strict quality-assured protocols for large-scale production and preservation that necessitates long-term in vitro expansion. Importantly, such processes have the potential to alter the phenotypic and functional properties and thus therapeutic potential of these cells. Furthermore, clinical use of cellular therapies may be limited by the inflammatory microenvironment of the injured spinal cord, altering the phenotypic and functional properties of grafted cells. This report simulates the process of large-scale GRP production and demonstrates the permissive properties of GRP following long-term in vitro culture. Furthermore, we defined the phenotypic and functional properties of GRP in the presence of inflammatory factors, and call attention to the importance of the microenvironment of grafted cells, underscoring the importance of modulating the environment of the injured spinal cord. PMID:27212899

  2. Examining the properties and therapeutic potential of glial restricted precursors in spinal cord injury

    PubMed Central

    Hayakawa, Kazuo; Haas, Christopher; Fischer, Itzhak

    2016-01-01

    In the aftermath of spinal cord injury, glial restricted precursors (GRPs) and immature astrocytes offer the potential to modulate the inflammatory environment of the injured spinal cord and promote host axon regeneration. Nevertheless clinical application of cellular therapy for the repair of spinal cord injury requires strict quality-assured protocols for large-scale production and preservation that necessitates long-term in vitro expansion. Importantly, such processes have the potential to alter the phenotypic and functional properties and thus therapeutic potential of these cells. Furthermore, clinical use of cellular therapies may be limited by the inflammatory microenvironment of the injured spinal cord, altering the phenotypic and functional properties of grafted cells. This report simulates the process of large-scale GRP production and demonstrates the permissive properties of GRP following long-term in vitro culture. Furthermore, we defined the phenotypic and functional properties of GRP in the presence of inflammatory factors, and call attention to the importance of the microenvironment of grafted cells, underscoring the importance of modulating the environment of the injured spinal cord. PMID:27212899

  3. Damage control in the injured patient

    PubMed Central

    Hsu, Jeremy M.; Pham, Tam N.

    2011-01-01

    The damage control concept is an essential component in the management of severely injured patients. The principles in sequence are as follows: (1) abbreviated surgical procedures limited to haemorrhage and contamination control; (2) correction of physiological derangements; (3) definitive surgical procedures. Although originally described in the management of major abdominal injuries, the concept has been extended to include thoracic, vascular, orthopedic, and neurosurgical procedures, as well as anesthesia and resuscitative strategies. PMID:22096776

  4. Delayed riluzole treatment is able to rescue injured rat spinal motoneurons.

    PubMed

    Nógrádi, A; Szabó, A; Pintér, S; Vrbová, G

    2007-01-19

    The effect of delayed 2-amino-6-trifluoromethoxy-benzothiazole (riluzole) treatment on injured motoneurons was studied. The L4 ventral root of adult rats was avulsed and reimplanted into the spinal cord. Immediately after the operation or with a delay of 5, 10, 14 or 16 days animals were treated with riluzole (n=5 in each group) while another four animals remained untreated. Three months after the operation the fluorescent dye Fast Blue was applied to the proximal end of the cut ventral ramus of the L4 spinal nerve to retrogradely label reinnervating neurons. Three days later the spinal cords were processed for counting the retrogradely labeled cells and choline acetyltransferase immunohistochemistry was performed to reveal the cholinergic cells in the spinal cords. In untreated animals there were 20.4+/-1.6 (+/-S.E.M.) retrogradely labeled neurons while in animals treated with riluzole immediately or 5 and 10 days after ventral root avulsion the number of labeled motoneurons ranged between 763+/-36 and 815+/-50 (S.E.M.). Riluzole treatment starting at 14 and 16 days after injury resulted in significantly lower number of reinnervating motoneurons (67+/-4 and 52+/-3 S.E.M., respectively). Thus, riluzole dramatically enhanced the survival and reinnervating capacity of injured motoneurons not only when treatment started immediately after injury but also in cases when riluzole treatment was delayed for up to 10 days. These results suggest that motoneurons destined to die after ventral root avulsion are programmed to survive for some time after injury and riluzole is able to rescue them during this period of time. PMID:17084537

  5. Traumatically injured astrocytes release a proteomic signature modulated by STAT3-dependent cell survival.

    PubMed

    Levine, Jaclynn; Kwon, Eunice; Paez, Pablo; Yan, Weihong; Czerwieniec, Gregg; Loo, Joseph A; Sofroniew, Michael V; Wanner, Ina-Beate

    2016-05-01

    Molecular markers associated with CNS injury are of diagnostic interest. Mechanical trauma generates cellular deformation associated with membrane permeability with unknown molecular consequences. We used an in vitro model of stretch-injury and proteomic analyses to determine protein changes in murine astrocytes and their surrounding fluids. Abrupt pressure-pulse stretching resulted in the rapid release of 59 astrocytic proteins with profiles reflecting cell injury and cell death, i.e., mechanoporation and cell lysis. This acute trauma-release proteome was overrepresented with metabolic proteins compared with the uninjured cellular proteome, bearing relevance for post-traumatic metabolic depression. Astrocyte-specific deletion of signal transducer and activator of transcription 3 (STAT3-CKO) resulted in reduced stretch-injury tolerance, elevated necrosis and increased protein release. Consistent with more lysed cells, more protein complexes, nuclear and transport proteins were released from STAT3-CKO versus nontransgenic astrocytes. STAT3-CKO astrocytes had reduced basal expression of GFAP, lactate dehydrogenase B (LDHB), aldolase C (ALDOC), and astrocytic phosphoprotein 15 (PEA15), and elevated levels of tropomyosin (TPM4) and α actinin 4 (ACTN4). Stretching caused STAT3-dependent cellular depletion of PEA15 and GFAP, and its filament disassembly in subpopulations of injured astrocytes. PEA15 and ALDOC signals were low in injured astrocytes acutely after mouse spinal cord crush injury and were robustly expressed in reactive astrocytes 1 day postinjury. In contrast, α crystallin (CRYAB) was present in acutely injured astrocytes, and absent from uninjured and reactive astrocytes, demonstrating novel marker differences among postinjury astrocytes. These findings reveal a proteomic signature of traumatically-injured astrocytes reflecting STAT3-dependent cellular survival with potential diagnostic value. GLIA 2016;64:668-694. PMID:26683444

  6. Oscillating field stimulation in the treatment of spinal cord injury.

    PubMed

    Walters, Beverly C

    2010-12-01

    The application of electrical current to injured tissue is known to promote healing. The use of this modality in healing the injured spinal cord to promote neurologic recovery has been introduced as a potential treatment for patients who previously had minimal hope of recovery. In in vitro and in vivo experiments, neural regeneration has been seen to occur, especially when an oscillating field is used. With this modality, an electrical current is applied in which the polarity changes direction on a periodic basis, preventing the "die-back" phenomenon of severed neural pathways. This mechanism of recovery has been demonstrated in several species in which sacrifice has been undertaken and spinal cords examined. In a study of humans, a small number of patients participated in a single phase Ia trial in which the safety of an implantable device was demonstrated, with indications of probable benefit, consistent with laboratory and animal studies. In addition, a number of additional patients were treated, and their results were examined along with the original cohort and were compared with historical control subjects. The device used in this mode of treatment has not been approved for use in the general spinal cord-injured population, pending further study. A larger multi-institutional trial needs to be done to further demonstrate efficacy and effectiveness, and outcomes will need to be agreed upon by spinal cord injury researchers, patients, and regulators before widespread use will be permitted. Unfortunately, some subtle changes experienced and valued by patients are not recognized as important or desirable by regulators or by all researchers. PMID:21172690

  7. Cats protecting birds revisited.

    PubMed

    Fan, Meng; Kuang, Yang; Feng, Zhilan

    2005-09-01

    In this paper, we revisit the dynamical interaction among prey (bird), mesopredator (rat), and superpredator (cat) discussed in [Courchamp, F., Langlais, M., Sugihara, G., 1999. Cats protecting birds: modelling the mesopredator release effect. Journal of Animal Ecology 68, 282-292]. First, we develop a prey-mesopredator-superpredator (i.e., bird-rat-cat, briefly, BRC) model, where the predator's functional responses are derived based on the classical Holling's time budget arguments. Our BRC model overcomes several model construction problems in Courchamp et al. (1999), and admits richer, reasonable and realistic dynamics. We explore the possible control strategies to save or restore the bird by controlling or eliminating the rat or the cat when the bird is endangered. We establish the existence of two types of mesopredator release phenomena: severe mesopredator release, where once superpredators are suppressed, a burst of mesopredators follows which leads their shared prey to extinction; and mild mesopredator release, where the mesopredator release could assert more negative impact on the endemic prey but does not lead the endemic prey to extinction. A sharp sufficient criterion is established for the occurrence of severe mesopredator release. We also show that, in a prey-mesopredator-superpredator trophic food web, eradication of introduced superpredators such as feral domestic cats in the BRC model, is not always the best solution to protect endemic insular prey. The presence of a superpredator may have a beneficial effect in such systems. PMID:15998496

  8. Altered glycosaminoglycan metabolism in injured arterial wall

    SciTech Connect

    Salisbury, B.G.; Hajjar, D.P.; Minick, C.R.

    1985-06-01

    Glycosaminoglycans (GAG) are believed to be important in the pathogenesis of atherosclerosis. We have previously demonstrated that areas of injured aorta that have been re-endothelialized accumulate increased amounts of lipid and GAG when compared to areas remaining de-endothelialized. We have now examined the net incorporation of labeled precursors into the individual GAG present in both re-endothelialized and de-endothelialized areas of rabbit aorta. Aortic tissue was examined at 2-3 and 10-14 weeks after a denuding injury by incubating tissue minces with (/sup 3/H)glucosamine and sodium (/sup 35/S)sulfate for 24 hr. Following incubation, the aortic GAG were isolated and assayed for uronic acid concentration and radioactivity. Results indicate that the total GAG concentration was significantly greater in the re-endothelialized as compared to de-endothelialized areas. The concentration in uninjured aorta was 9.01. The difference between the injured tissues was attributable to increased concentrations of sulfated GAG. Hyaluronic acid and chondroitin sulfate were the most metabolically active of the GAG in either uninjured or injured aorta, together accounting for over 75% of the /sup 3/H label. The /sup 3/H specific radioactivities of the four GAG in the short-term, re-endothelialized subgroup were all increased nearly twice that found in uninjured and de-endothelialized tissues. With the exception of heparan sulfate, no significant differences were noted in the /sup 3/H specific radioactivities between the re-endothelialized and de-endothelialized areas in the long-term subgroup. These results indicate that, relative to adjacent areas of de-endothelialization, GAG preferentially accumulate in re-endothelialized areas even as early as 2-3 weeks following a denuding injury.

  9. Parasite meningomyelitis in cats in Uruguay.

    PubMed

    Rivero, Rodolfo; Matto, Carolina; Adrien, María de Lourdes; Nan, Fernando; Bell, Todd; Gardiner, Christopher

    2011-01-01

    Two outbreaks of progressive hind limb paresis in cats (Felis catus) caused by parasitic meningomyelitis in Uruguay are reported. The case studies occurred in 2008 and 2009 respectively, in the rural areas of Fray Bentos (33° 07' 40.39'' S) and were characterized by hindquarter paralysis. This paralysis was progressive and had a chronic progression of approximately 12 months until the death or euthanasia of the animals. Clinical symptoms started with ataxia of the hindquarters with lateral side-to-side swaying and culminated in total paralysis. Two animals were sent for necropsy in 2009. The main histopathological findings were severe myelitis in the lumbar spinal cord with perivascular cuffing and white matter necrosis, severe nonsuppurative meningitis with thrombi in subarachnoid blood vessels, and intravascular presence of multiple adult parasites. From the morphological characteristics of the parasites and location in the leptomeninges, the parasite was identified as the nematode Gurltia paralysans. PMID:21961761

  10. Extensive Neuronal Differentiation of Human Neural Stem Cell Grafts in Adult Rat Spinal Cord

    PubMed Central

    Yan, Jun; Xu, Leyan; Welsh, Annie M; Hatfield, Glen; Hazel, Thomas; Johe, Karl; Koliatsos, Vassilis E

    2007-01-01

    Background Effective treatments for degenerative and traumatic diseases of the nervous system are not currently available. The support or replacement of injured neurons with neural grafts, already an established approach in experimental therapeutics, has been recently invigorated with the addition of neural and embryonic stem-derived precursors as inexhaustible, self-propagating alternatives to fetal tissues. The adult spinal cord, i.e., the site of common devastating injuries and motor neuron disease, has been an especially challenging target for stem cell therapies. In most cases, neural stem cell (NSC) transplants have shown either poor differentiation or a preferential choice of glial lineages. Methods and Findings In the present investigation, we grafted NSCs from human fetal spinal cord grown in monolayer into the lumbar cord of normal or injured adult nude rats and observed large-scale differentiation of these cells into neurons that formed axons and synapses and established extensive contacts with host motor neurons. Spinal cord microenvironment appeared to influence fate choice, with centrally located cells taking on a predominant neuronal path, and cells located under the pia membrane persisting as NSCs or presenting with astrocytic phenotypes. Slightly fewer than one-tenth of grafted neurons differentiated into oligodendrocytes. The presence of lesions increased the frequency of astrocytic phenotypes in the white matter. Conclusions NSC grafts can show substantial neuronal differentiation in the normal and injured adult spinal cord with good potential of integration into host neural circuits. In view of recent similar findings from other laboratories, the extent of neuronal differentiation observed here disputes the notion of a spinal cord that is constitutively unfavorable to neuronal repair. Restoration of spinal cord circuitry in traumatic and degenerative diseases may be more realistic than previously thought, although major challenges remain

  11. Membranous nephropathy in sibling cats.

    PubMed

    Nash, A S; Wright, N G

    1983-08-20

    Membranous nephropathy was diagnosed in two sibling cats from the same household. Both cases presented with the nephrotic syndrome but 33 months elapsed before the second cat became ill, by which time the first cat had been in full clinical remission for over a year. PMID:6623883

  12. Cat Scratch Disease (For Parents)

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Cat Scratch Disease KidsHealth > For Parents > Cat Scratch Disease Print A A A Text Size ... Doctor en español Enfermedad por arañazo de gato Cat scratch disease is a bacterial infection that a ...

  13. CAT altitude avoidance system

    NASA Technical Reports Server (NTRS)

    Gary, B. L. (Inventor)

    1982-01-01

    A method and apparatus are provided for indicating the altitude of the tropopause or of an inversion layer wherein clear air turbulence (CAT) may occur, and the likely severity of any such CAT, includes directing a passive microwave radiometer on the aircraft at different angles with respect to the horizon. The microwave radiation measured at a frequency of about 55 GHz represents the temperature of the air at an ""average'' range of about 3 kilometers, so that the sine of the angle of the radiometer times 3 kilometers equals the approximate altitude of the air whose temperature is measured. A plot of altitude (with respect to the aircraft) versus temperature of the air at that altitude, can indicate when an inversion layer is present and can indicate the altitude of the tropopause or of such an inversion layer. The plot can also indicate the severity of any CAT in an inversion layer. If CAT has been detected in the general area, then the aircraft can be flown at an altitude to avoid the tropopause or inversion layer.

  14. Vibrational Schroedinger Cats

    NASA Technical Reports Server (NTRS)

    Kis, Z.; Janszky, J.; Vinogradov, An. V.; Kobayashi, T.

    1996-01-01

    The optical Schroedinger cat states are simple realizations of quantum states having nonclassical features. It is shown that vibrational analogues of such states can be realized in an experiment of double pulse excitation of vibrionic transitions. To track the evolution of the vibrational wave packet we derive a non-unitary time evolution operator so that calculations are made in a quasi Heisenberg picture.

  15. Child Passengers Injured in Motor Vehicle Crashes

    PubMed Central

    Romano, Eduardo; Kelley-Baker, Tara

    2015-01-01

    Introduction—During 2010, 171,000 children aged 0-14 were injured in motor vehicle crashes. Despite the severity of the problem, research has been limited, and most of what we know about these children emanates from fatal crash databases. Method—Using information from the General Estimates System, this effort examines the occurrence of non-fatal crashes among children aged 0-14 over the last decade. Results—We found about 1% of the non-injured children in the file had been driven by a driver who was positive for alcohol. This percentage climbed to about 2% among children who had suffered injuries. Compared with the proportion of alcohol-positive drivers at the time of the crash, the proportion of drivers who sped or failed to obey a traffic signal were significantly higher. Practical Applications—The finding that drinking and driving with children did not decrease over time questions the adequacy of the extant child endangerment laws. PMID:25662876

  16. Blood pressure in head‐injured patients

    PubMed Central

    Mitchell, Patrick; Gregson, Barbara A; Piper, Ian; Citerio, Giuseppe; Mendelow, A David; Chambers, Iain R

    2007-01-01

    Objective To determine the statistical characteristics of blood pressure (BP) readings from a large number of head‐injured patients. Methods The BrainIT group has collected high time‐resolution physiological and clinical data from head‐injured patients who require intracranial pressure (ICP) monitoring. The statistical features of this dataset of BP measurements with time resolution of 1 min from 200 patients is examined. The distributions of BP measurements and their relationship with simultaneous ICP measurements are described. Results The distributions of mean, systolic and diastolic readings are close to normal with modest skewing towards higher values. There is a trend towards an increase in blood pressure with advancing age, but this is not significant. Simultaneous blood pressure and ICP values suggest a triphasic relationship with a BP rising at 0.28 mm Hg/mm Hg of ICP, for ICP up to 32 mm Hg, and 0.9 mm Hg/mm Hg of ICP for ICP from 33 to 55 mm Hg, and falling sharply with rising ICP for ICP >55 mm Hg. Conclusions Patients with head injury appear to have a near normal distribution of blood pressure readings that are skewed towards higher values. The relationship between BP and ICP may be triphasic. PMID:17138594

  17. Stem cell therapy in spinal cord injuries: current concepts.

    PubMed

    Chhabra, H S

    2012-05-01

    The list of experimental therapies that have been developed in animal models to improve functional outcomes after spinal cord injury is extensive. Though preclinical trials have shown a good potential for cellular therapies in spinal cord injury, there is no documentary proof as of now that any form of cellular therapy definitely improves outcome in management of human spinal cord injury. The adverse effects of many such therapies are well-documented. There is a need to conduct proper clinical trials. Some early-stage spinal cord injury clinical trials have recently been done and some have been started. However, some experimental therapies have been introduced into clinical practice without a clinical trial being completed. Undue hype by the media and claims by professionals have a profound psychological effect on the spinal cord injured and interferes in their rehabilitation. While we know that the future holds a good promise, this should not prevent patients from aggressively pursuing rehabilitation since we are not sure when a clinical breakthrough will be achieved. PMID:23155794

  18. Vascular Endothelial Growth Factor and Spinal Cord Injury Pain

    PubMed Central

    Sundberg, Laura M.; Herrera, Juan J.; Mokkapati, Venkata U.L.; Lee, Julieann; Narayana, Ponnada A.

    2010-01-01

    Abstract Vascular endothelial growth factor (VEGF)-A mRNA was previously identified as one of the significantly upregulated transcripts in spinal cord injured tissue from adult rats that developed allodynia. To characterize the role of VEGF-A in the development of pain in spinal cord injury (SCI), we analyzed mechanical allodynia in SCI rats that were treated with either vehicle, VEGF-A isoform 165 (VEGF165), or neutralizing VEGF165-specific antibody. We have observed that exogenous administration of VEGF165 increased both the number of SCI rats that develop persistent mechanical allodynia, and the level of hypersensitivity to mechanical stimuli. Our analysis identified excessive and aberrant growth of myelinated axons in dorsal horns and dorsal columns of chronically injured spinal cords as possible mechanisms for both SCI pain and VEGF165-induced amplification of SCI pain, suggesting that elevated endogenous VEGF165 may have a role in the development of allodynia after SCI. However, the neutralizing VEGF165 antibody showed no effect on allodynia or axonal sprouting after SCI. It is possible that another endogenous VEGF isoform activates the same signaling pathway as the exogenously-administered 165 isoform and contributes to SCI pain. Our transcriptional analysis revealed that endogenous VEGF188 is likely to be the isoform involved in the development of allodynia after SCI. To the best of our knowledge, this is the first study to suggest a possible link between VEGF, nonspecific sprouting of myelinated axons, and mechanical allodynia following SCI. PMID:20698758

  19. Aging of motoneurons and synaptic processes in the cat.

    PubMed

    Chase, M H; Morales, F R; Boxer, P A; Fung, S J

    1985-11-01

    The aging of spinal cord alpha motoneurons was explored in old cats with intracellular recording techniques to determine the basic membrane properties of these neurons and their monosynaptic response following activation of group Ia afferent fibers. The conduction velocity of the motoneurons' axons decreased in old animals (14 to 15 years of age) compared with adult controls (1 to 3 years of age). The input resistance of the motoneurons increased in the old cats; no change occurred in the resting membrane potential or spike amplitude. There was a reduction in the delay between the initial segment and the somadendritic components of the antidromic spike. The half-width duration of the monosynaptic EPSP in the old cats increased, but its amplitude did not change. These data indicate that a host of different membrane properties of spinal cord motoneurons and their Ia-monosynaptic input are affected by the aging process. Analysis of the results suggests that the degradation of neuronal processes occurs in all motoneurons rather than preferentially affecting a specific population of motoneurons. PMID:2996926

  20. Spinal Cord Injury Project: A Project to Improve and Expand Spinal Cord Injury Services at the West Virginia Rehabilitation Center. Final Report. July 1, 1979 to June 30, 1982.

    ERIC Educational Resources Information Center

    West Virginia State Dept. of Education, Charleston. Div. of Vocational Rehabilitation.

    The primary purpose of this project was to establish a structured multi-disciplinary and interdisciplinary program of services for the traumatically spinal cord injured (SCI) clients at the West Virginia Rehabilitation Center. The program, conducted from July 1, 1979 to June 30, 1982, included services ranging from physical and mental restoration…

  1. Gene therapy approaches for spinal cord injury

    NASA Astrophysics Data System (ADS)

    Bright, Corinne

    As the biomedical engineering field expands, combination technologies are demonstrating enormous potential for treating human disease. In particular, intersections between the rapidly developing fields of gene therapy and tissue engineering hold promise to achieve tissue regeneration. Nonviral gene therapy uses plasmid DNA to deliver therapeutic proteins in vivo for extended periods of time. Tissue engineering employs biomedical materials, such as polymers, to support the regrowth of injured tissue. In this thesis, a combination strategy to deliver genes and drugs in a polymeric scaffold was applied to a spinal cord injury model. In order to develop a platform technology to treat spinal cord injury, several nonviral gene delivery systems and polymeric scaffolds were evaluated in vitro and in vivo. Nonviral vector trafficking was evaluated in primary neuronal culture to develop an understanding of the barriers to gene transfer in neurons and their supporting glia. Although the most efficient gene carrier in vitro differed from the optimal gene carrier in vivo, confocal and electron microscopy of these nonviral vectors provided insights into the interaction of these vectors with the nucleus. A novel pathway for delivering nanoparticles into the nuclei of neurons and Schwann cells via vesicle trafficking was observed in this study. Reporter gene expression levels were evaluated after direct and remote delivery to the spinal cord, and the optimal nonviral vector, dose, and delivery strategy were applied to deliver the gene encoding the basic fibroblast growth factor (bFGF) to the spinal cord. An injectable and biocompatible gel, composed of the amphiphillic polymer poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) was evaluated as a drug and gene delivery system in vitro, and combined with the optimized nonviral gene delivery system to treat spinal cord injury. Plasmid DNA encoding the bFGF gene and the therapeutic NEP1--40 peptide

  2. Hyperbaric oxygen preconditioning induces tolerance against spinal cord ischemia by upregulation of antioxidant enzymes in rabbits.

    PubMed

    Nie, Huang; Xiong, Lize; Lao, Ning; Chen, Shaoyang; Xu, Ning; Zhu, Zhenghua

    2006-05-01

    The present study examined the hypothesis that spinal cord ischemic tolerance induced by hyperbaric oxygen (HBO) preconditioning is triggered by an initial oxidative stress and is associated with an increase of antioxidant enzyme activities as one effector of the neuroprotection. New Zealand White rabbits were subjected to HBO preconditioning, hyperbaric air (HBA) preconditioning, or sham pretreatment once daily for five consecutive days before spinal cord ischemia. Activities of catalase (CAT) and superoxide dismutase were increased in spinal cord tissue in the HBO group 24 h after the last pretreatment and reached a higher level after spinal cord ischemia for 20 mins followed by reperfusion for 24 or 48 h, in comparison with those in control and HBA groups. The spinal cord ischemic tolerance induced by HBO preconditioning was attenuated when a CAT inhibitor, 3-amino-1,2,4-triazole,1 g/kg, was administered intraperitoneally 1 h before ischemia. In addition, administration of a free radical scavenger, dimethylthiourea, 500 mg/kg, intravenous, 1 h before each day's preconditioning, reversed the increase of the activities of both enzymes in spinal cord tissue. The results indicate that an initial oxidative stress, as a trigger to upregulate the antioxidant enzyme activities, plays an important role in the formation of the tolerance against spinal cord ischemia by HBO preconditioning. PMID:16136055

  3. Descriptions of Community by People with Spinal Cord Injuries: Concepts to Inform Community Integration and Community Rehabilitation

    ERIC Educational Resources Information Center

    Kuipers, Pim; Kendall, Melissa B.; Amsters, Delena; Pershouse, Kiley; Schuurs, Sarita

    2011-01-01

    Effective measurement and optimization of re-entry into the community after injury depends on a degree of understanding of how those injured persons actually perceive their community. In light of the limited research about foundational concepts regarding community integration after spinal cord injury, this study investigated how a large number of…

  4. Lipid peroxidation in brain or spinal cord mitochondria after injury.

    PubMed

    Hall, Edward D; Wang, Juan A; Bosken, Jeffrey M; Singh, Indrapal N

    2016-04-01

    Extensive evidence has demonstrated an important role of oxygen radical formation (i.e., oxidative stress) as a mediator of the secondary injury process that occurs following primary mechanical injury to the brain or spinal cord. The predominant form of oxygen radical-induced oxidative damage that occurs in injured nervous tissue is lipid peroxidation (LP). Much of the oxidative stress in injured nerve cells initially begins in mitochondria via the generation of the reactive nitrogen species peroxynitrite (PN) which then can generate multiple highly reactive free radicals including nitrogen dioxide (•NO2), hydroxyl radical (•OH) and carbonate radical (•CO3). Each can readily induce LP within the phospholipid membranes of the mitochondrion leading to respiratory dysfunction, calcium buffering impairment, mitochondrial permeability transition and cell death. Validation of the role of LP in central nervous system secondary injury has been provided by the mitochondrial and neuroprotective effects of multiple antioxidant agents which are briefly reviewed. PMID:25595872

  5. Evaluation for Occult Fractures in Injured Children

    PubMed Central

    French, Benjamin; Song, Lihai; Feudtner, Chris

    2015-01-01

    OBJECTIVES: To examine variation across US hospitals in evaluation for occult fractures in (1) children <2 years old diagnosed with physical abuse and (2) infants <1 year old with injuries associated with a high likelihood of abuse and to identify factors associated with such variation. METHODS: We performed a retrospective study in children <2 years old with a diagnosis of physical abuse and in infants <1 year old with non-motor vehicle crash–related traumatic brain injury or femur fractures discharged from 366 hospitals in the Premier database from 2009 to 2013. We examined across-hospital variation and identified child- and hospital-level factors associated with evaluation for occult fractures. RESULTS: Evaluations for occult fractures were performed in 48% of the 2502 children with an abuse diagnosis, in 51% of the 1574 infants with traumatic brain injury, and in 53% of the 859 infants with femur fractures. Hospitals varied substantially with regard to their rates of evaluation for occult fractures in all 3 groups. Occult fracture evaluations were more likely to be performed at teaching hospitals than at nonteaching hospitals (all P < .001). The hospital-level annual volume of young, injured children was associated with the probability of occult fracture evaluation, such that hospitals treating more young, injured patients were more likely to evaluate for occult fractures (all P < .001). CONCLUSIONS: Substantial variation in evaluation for occult fractures among young children with a diagnosis of abuse or injuries associated with a high likelihood of abuse highlights opportunities for quality improvement in this vulnerable population. PMID:26169425

  6. Modeling spinal cord biomechanics

    NASA Astrophysics Data System (ADS)

    Luna, Carlos; Shah, Sameer; Cohen, Avis; Aranda-Espinoza, Helim

    2012-02-01

    Regeneration after spinal cord injury is a serious health issue and there is no treatment for ailing patients. To understand regeneration of the spinal cord we used a system where regeneration occurs naturally, such as the lamprey. In this work, we analyzed the stress response of the spinal cord to tensile loading and obtained the mechanical properties of the cord both in vitro and in vivo. Physiological measurements showed that the spinal cord is pre-stressed to a strain of 10%, and during sinusoidal swimming, there is a local strain of 5% concentrated evenly at the mid-body and caudal sections. We found that the mechanical properties are homogeneous along the body and independent of the meninges. The mechanical behavior of the spinal cord can be characterized by a non-linear viscoelastic model, described by a modulus of 20 KPa for strains up to 15% and a modulus of 0.5 MPa for strains above 15%, in agreement with experimental data. However, this model does not offer a full understanding of the behavior of the spinal cord fibers. Using polymer physics we developed a model that relates the stress response as a function of the number of fibers.

  7. Cat scratch disease.

    PubMed

    Bozhkov, V; Madjov, R; Plachkov, I; Arnaudov, P; Chernopolsky, P; Krasnaliev, I

    2014-01-01

    Approximately 24,000 people are infected with cat scratch disease (CSD) every year. CSD is caused by the bacteria Bartonella henselae, a gram-negative bacteria most often transmitted to humans through a bite or scratch from an infected cat or kitten. Although CSD is often a benign and self-limiting condition, it can affect any major organ system in the body, manifesting in different ways and sometimes leading to lifelong sequelae. It is a disease that is often overlooked in primary care because of the wide range of symptom presentation and relative rarity of serious complications. It is important for health care providers to recognize patients at risk for CSD, know what laboratory testing and treatments are available, and be aware of complications that may arise from this disease in the future. PMID:25199244

  8. The square cat

    NASA Astrophysics Data System (ADS)

    Putterman, E.; Raz, O.

    2008-11-01

    We present a simple two-dimensional model of a "cat"—a body with zero angular momentum that can rotate itself with no external forces. The model is used to explain the nature of a gauge theory and to illustrate the importance of noncommutative operators. We compare the free-space cat in Newtonian mechanics and the same problem in Aristotelian mechanics at low Reynolds numbers (with the velocity proportional to the force rather than to the acceleration). This example shows the analogy between (angular) momentum in Newtonian mechanics and (torque) force in Aristotelian mechanics. We discuss a topological invariant common to the model in free space and at low Reynolds number.

  9. Big cat genomics.

    PubMed

    O'Brien, Stephen J; Johnson, Warren E

    2005-01-01

    Advances in population and quantitative genomics, aided by the computational algorithms that employ genetic theory and practice, are now being applied to biological questions that surround free-ranging species not traditionally suitable for genetic enquiry. Here we review how applications of molecular genetic tools have been used to describe the natural history, present status, and future disposition of wild cat species. Insight into phylogenetic hierarchy, demographic contractions, geographic population substructure, behavioral ecology, and infectious diseases have revealed strategies for survival and adaptation of these fascinating predators. Conservation, stabilization, and management of the big cats are important areas that derive benefit from the genome resources expanded and applied to highly successful species, imperiled by an expanding human population. PMID:16124868

  10. Robust axonal regeneration occurs in the injured CAST/Ei mouse central nervous system

    PubMed Central

    Omura, Takao; Omura, Kumiko; Tedeschi, Andrea; Riva, Priscilla; Painter, Michio W; Rojas, Leticia; Martin, Joshua; Lisi, Véronique; Huebner, Eric A; Latremoliere, Alban; Yin, Yuqin; Barrett, Lee; Singh, Bhagat; Lee, Stella; Crisman, Tom; Gao, Fuying; Li, Songlin; Kapur, Kush; Geschwind, Daniel H; Kosik, Kenneth S; Coppola, Giovanni; He, Zhigang; Carmichael, S Thomas; Benowitz, Larry I; Costigan, Michael; Woolf, Clifford J

    2015-01-01

    SUMMARY Axon regeneration in the central nervous system (CNS) requires reactivating injured neurons’ intrinsic growth state and enabling growth in an inhibitory environment. Using an inbred mouse neuronal phenotypic screen, we find that CAST/Ei mouse adult dorsal root ganglion neurons extend axons more on CNS myelin than the other eight strains tested, especially when pre-injured. Injury-primed CAST/Ei neurons also regenerate markedly in the spinal cord and optic nerve more than those from C57BL/6 mice and show greater spouting following ischemic stroke. Heritability estimates indicate that extended growth in CAST/Ei neurons on myelin is genetically determined, and two whole-genome expression screens yield the Activin transcript Inhba as most correlated with this ability. Inhibition of Activin signaling in CAST/Ei mice diminishes their CNS regenerative capacity whereas its activation in C57BL/6 animals boosts regeneration. This screen demonstrates that mammalian CNS regeneration can occur and reveals a molecular pathway that contributes to this ability. PMID:26004914

  11. Robust Axonal Regeneration Occurs in the Injured CAST/Ei Mouse CNS.

    PubMed

    Omura, Takao; Omura, Kumiko; Tedeschi, Andrea; Riva, Priscilla; Painter, Michio W; Rojas, Leticia; Martin, Joshua; Lisi, Véronique; Huebner, Eric A; Latremoliere, Alban; Yin, Yuqin; Barrett, Lee B; Singh, Bhagat; Lee, Stella; Crisman, Tom; Gao, Fuying; Li, Songlin; Kapur, Kush; Geschwind, Daniel H; Kosik, Kenneth S; Coppola, Giovanni; He, Zhigang; Carmichael, S Thomas; Benowitz, Larry I; Costigan, Michael; Woolf, Clifford J

    2015-06-01

    Axon regeneration in the CNS requires reactivating injured neurons' intrinsic growth state and enabling growth in an inhibitory environment. Using an inbred mouse neuronal phenotypic screen, we find that CAST/Ei mouse adult dorsal root ganglion neurons extend axons more on CNS myelin than the other eight strains tested, especially when pre-injured. Injury-primed CAST/Ei neurons also regenerate markedly in the spinal cord and optic nerve more than those from C57BL/6 mice and show greater sprouting following ischemic stroke. Heritability estimates indicate that extended growth in CAST/Ei neurons on myelin is genetically determined, and two whole-genome expression screens yield the Activin transcript Inhba as most correlated with this ability. Inhibition of Activin signaling in CAST/Ei mice diminishes their CNS regenerative capacity, whereas its activation in C57BL/6 animals boosts regeneration. This screen demonstrates that mammalian CNS regeneration can occur and reveals a molecular pathway that contributes to this ability. PMID:26004914

  12. Injured sensory neuron-derived CSF1 induces microglia proliferation and DAP12-dependent pain

    PubMed Central

    Guan, Zhonghui; Kuhn, Julia A.; Wang, Xidao; Colquitt, Bradley; Solorzano, Carlos; Vaman, Smitha; Guan, Andrew K.; Evans-Reinsch, Zoe; Braz, Joao; Devor, Marshall; Abboud-Werner, Sherry L.; Lanier, Lewis L.; Lomvardas, Stavros; Basbaum, Allan I.

    2015-01-01

    SUMMARY Although microglia are implicated in nerve injury-induced neuropathic pain, how injured sensory neurons engage microglia is unclear. Here we demonstrate that peripheral nerve injury induces de novo expression of colony-stimulating factor 1 (CSF1) in injured sensory neurons. The CSF1 is transported to the spinal cord where it targets the microglial CSF1 receptor (CSF1R). Cre-mediated sensory neuron deletion of Csf1 completely prevented nerve injury-induced mechanical hypersensitivity and reduced microglia activation and proliferation. In contrast, intrathecal injection of CSF1 induces mechanical hypersensitivity and microglial proliferation. Nerve injury also upregulated CSF1 in motoneurons, where it is required for ventral horn microglial activation and proliferation. Downstream of CSF1R, we found that the microglial membrane adapter protein DAP12 is required for both nerve injury- and intrathecal CSF1-induced upregulation of pain-related microglial genes and the ensuing pain, but not for microglia proliferation. Thus, both CSF1 and DAP12 are potential targets for the pharmacotherapy of neuropathic pain. PMID:26642091

  13. FK1706, a novel non-immunosuppressant neurophilin ligand, ameliorates motor dysfunction following spinal cord injury through its neuroregenerative action.

    PubMed

    Yamaji, Takayuki; Yamazaki, Shunji; Li, Jiyao; Price, Raymond D; Matsuoka, Nobuya; Mutoh, Seitaro

    2008-09-01

    Injured spinal cord axons fail to regenerate in part due to a lack of trophic support. While various methods for replacing neurotrophins have been pursued, clinical uses of these methods face significant barriers. FK1706, a non-immunosuppressant neurophilin ligand, potentiates nerve growth factor signaling, suggesting therapeutic potential for functional deficits following spinal cord injury. Here, we demonstrate that FK1706 significantly improves behavioral outcomes in animal models of spinal cord hemisection and contusion injuries in rats. Furthermore, we show that FK1706 is effective even if administration is delayed until 1 week after injury, suggesting that FK1706 has a reasonable therapeutic time-window. Morphological analysis of injured axons in the dorsal corticospinal tract showed an increase in the radius and perimeter of stained axons, which were reduced by FK1706 treatment, suggesting that axonal swelling and retraction balls observed in injured spinal cord were improved by the neurotrophic effect of FK1706. Taken together, FK1706 improves both behavioral motor function and the underlying morphological changes, suggesting that FK1706 may have therapeutic potential in meeting the significant unmet needs in spinal cord injury. PMID:18602914

  14. How Brain-Injured Children Learn to Read.

    ERIC Educational Resources Information Center

    Doman, Glenn

    This paper discusses the place of reading instruction in the education of brain-injured children and presents some arguments for early reading instruction for children in general. Reading instruction is especially suitable for brain-injured children because reading presents an additional means of stimulating the brain. Meaning is attached to…

  15. A STUDY OF DIAGNOSTIC SERVICES FOR BRAIN-INJURED CHILDREN.

    ERIC Educational Resources Information Center

    HENNESSY, ERNA

    THE PURPOSES OF THIS STUDY WERE (1) TO INVESTIGATE THE EARLY RECOGNITION OF BRAIN INJURY SYMPTOMS BY PARENTS, (2) TO EXPLORE THE DIAGNOSTIC PROBLEMS AND HISTORIES OF BRAIN INJURED CHILDREN AND THEIR PARENTS, AND (3) TO REVIEW THE EXISTING AND NEEDED FACILITIES FOR BRAIN INJURED CHILDREN IN NEW JERSEY. IN 1964, A QUESTIONNAIRE ELICITING…

  16. Diagnosing pelvic osteomyelitis beneath pressure ulcers in spinal cord injured patients: a prospective study.

    PubMed

    Brunel, A-S; Lamy, B; Cyteval, C; Perrochia, H; Téot, L; Masson, R; Bertet, H; Bourdon, A; Morquin, D; Reynes, J; Le Moing, V

    2016-03-01

    There is no consensus on a diagnostic strategy for osteomyelitis underlying pressure ulcers. We conducted a prospective study to assess the accuracy of multiple bone biopsies and imaging to diagnose pelvic osteomyelitis. Patients with clinically suspected osteomyelitis beneath pelvic pressure ulcers were enrolled. Bone magnetic resonance imaging (MRI) and surgical bone biopsies (three or more for microbiology and one for histology per ulcer) were performed. Bacterial osteomyelitis diagnosis relied upon the association of positive histology and microbiology (at least one positive culture for non-commensal microorganisms or three or more for commensal microorganisms of the skin). From 2011 to 2014, 34 patients with 44 pressure ulcers were included. Bacterial osteomyelitis was diagnosed for 28 (82.3%) patients and 35 (79.5%) ulcers according to the composite criterion. Discrepancy was observed between histology and microbiology for 5 (11.4%) ulcers. Most common isolates were Staphylococcus aureus (77.1%), Peptostreptococcus (48.6%) and Bacteroides (40%), cultured in three or more samples in 42.9% of ulcers for S. aureus and ≥20% for anaerobes. Only 2.8% of ulcers had three or more positive specimens with coagulase-negative staphylococci, group B Streptococcus, and nil with enterococci and Pseudomonas aeruginosa. Staphylococcus aureus, Proteus and group milleri Streptococcus were recovered from one sample in 22.8%, 11.4% and 11.4% of ulcers, respectively. Agreement was poor between biopsies and MRI (κ 0.2). Sensitivity of MRI was 94.3% and specificity was 22.2%. The diagnosis of pelvic osteomyelitis relies on multiple surgical bone biopsies with microbiological and histological analyses. At least three bone samples allows the detection of pathogens and exclusion of contaminants. MRI is not routinely useful for diagnosis. PMID:26620686

  17. Large granular lymphocyte leukemia/lymphoma in six cats.

    PubMed

    Darbès, J; Majzoub, M; Breuer, W; Hermanns, W

    1998-09-01

    This report describes six cases of feline large granular lymphocyte lymphoma identified by light microscopy on the basis of their characteristic azurophilic granulation in Giemsa-stained plastic sections and by electron microscopy on the basis of their typical granules. Although the granules of all the tumor cells were negative for peroxidase activity, they all demonstrated chloroacetate-esterase and acid phosphatase activity. All the tumors reacted with cross-reacting antibodies against the CD3 antigen (epsilon chain) and did not react with a cross-reacting monoclonal antibody directed against epitopes on cytoplasmic domains of the CD20 antigen. Three tumors had a positive reaction with a monoclonal human CD57-like antibody. This is highly suggestive of either a cytotoxic T cell or a natural killer cell origin of the neoplasias. In three cats, although other abdominal organs were affected to a variable extent, the main neoplastic lesions were localized in the gastrointestinal tract and the jejunal lymph nodes. In contrast, in the other three cats, organ involvement was more widespread, affecting the lung (two), myocardium (two), precardiac mediastinum (one), salivary gland (one), and spinal cord (one); in addition, leukemia was present in two of these cats. The data presented indicate that tumors made up of large granular lymphocytes occur more frequently in cats than previously assumed and that they share many characteristic features with specific subtypes of clonal disorders of large granular lymphocytes in humans. PMID:9754542

  18. Practical Approach to the Management of the Severely Injured.

    PubMed

    Adekoya-Cole, T O; Enweluzo, G O; Oguche, O E; Akinmokun, O I

    2013-01-01

    Events associated with severely injured victims are common occurrences. These injured patients should be properly managed to achieve good outcome. Trauma algorithm protocols are known to improve therapeutic process and outcome. However, most hospitals in our subregion that attend to severely injured patients are yet to develop an algorithm treatment protocols for the management of these patients. The ambulance system in Nigeria is still un-coordinated and unsupervised. Most of the existing ambulances are not well equipped and usually not manned by experienced paramedics. Therefore, transfer of severely injured victims is fraught with danger during transit. Communication link to inform the trauma centres ahead of transfer is virtually non-existent. Upgrading of the trauma systems in Nigeria is necessary to prevent unnecessary mortality among the resourceful age group that are mostly affected by events causing severely injured patients . PMID:27276761

  19. Spinal cord abscess

    MedlinePlus

    ... abscess is caused by an infection inside the spine. An abscess of the spinal cord itself is ... by a staphylococcus infection that spreads through the spine. It may be caused by tuberculosis in some ...

  20. Spinal Cord Injury

    MedlinePlus

    ... Dramatically Improves Function After Spinal Cord Injury in Rats May 2004 press release on an experimental treatment ... NINDS). Signaling Molecule Improves Nerve Cell Regeneration in Rats August 2002 news summary on a signaling molecule ...

  1. Spinal Cord Injury 101

    MedlinePlus Videos and Cool Tools

    ... Braingate" research? What is the status of stem-cell research? How would stem-cell therapies work in the treatment of spinal cord injuries? What does stem-cell research on animals tell us? When can we ...

  2. Cord-Blood Banking

    MedlinePlus

    ... cord blood mainly because of the promise that stem cell research holds for the future. Most of us would have little use for stem cells now, but research into using them to treat diseases is ongoing — ...

  3. Hypereosinophilic syndrome in two cats.

    PubMed

    Takeuchi, Yoshinori; Matsuura, Shinobu; Fujino, Yasuhito; Nakajima, Mayumi; Takahashi, Masashi; Nakashima, Ko; Sakai, Yusuke; Uetsuka, Koji; Ohno, Koichi; Nakayama, Hiroyuki; Tsujimoto, Hajime

    2008-10-01

    Two cats showing chronic vomiting, diarrhea and weight loss were found to have leukocytosis with marked eosinophilia. Both cats were diagnosed with hypereosinophilic syndrome by the findings of increased eosinophils and their precursors in the bone marrow, eosinophilic infiltration into multiple organs, and exclusion of other causes for eosinophilia. Although cytoreductive chemotherapy with hydroxycarbamide and prednisolone was performed, these two cats died 48 days and 91 days after the initial presentation. PMID:18981665

  4. Autonomic consequences of spinal cord injury.

    PubMed

    Hou, Shaoping; Rabchevsky, Alexander G

    2014-10-01

    Spinal cord injury (SCI) results not only in motor and sensory deficits but also in autonomic dysfunctions. The disruption of connections between higher brain centers and the spinal cord, or the impaired autonomic nervous system itself, manifests a broad range of autonomic abnormalities. This includes compromised cardiovascular, respiratory, urinary, gastrointestinal, thermoregulatory, and sexual activities. These disabilities evoke potentially life-threatening symptoms that severely interfere with the daily living of those with SCI. In particular, high thoracic or cervical SCI often causes disordered hemodynamics due to deregulated sympathetic outflow. Episodic hypertension associated with autonomic dysreflexia develops as a result of massive sympathetic discharge often triggered by unpleasant visceral or sensory stimuli below the injury level. In the pelvic floor, bladder and urethral dysfunctions are classified according to upper motor neuron versus lower motor neuron injuries; this is dependent on the level of lesion. Most impairments of the lower urinary tract manifest in two interrelated complications: bladder storage and emptying. Inadequate or excessive detrusor and sphincter functions as well as detrusor-sphincter dyssynergia are examples of micturition abnormalities stemming from SCI. Gastrointestinal motility disorders in spinal cord injured-individuals are comprised of gastric dilation, delayed gastric emptying, and diminished propulsive transit along the entire gastrointestinal tract. As a critical consequence of SCI, neurogenic bowel dysfunction exhibits constipation and/or incontinence. Thus, it is essential to recognize neural mechanisms and pathophysiology underlying various complications of autonomic dysfunctions after SCI. This overview provides both vital information for better understanding these disorders and guides to pursue novel therapeutic approaches to alleviate secondary complications. PMID:25428850

  5. Collagen-omental graft in experimental spinal cord transection.

    PubMed

    de la Torre, J C; Goldsmith, H S

    1990-01-01

    Spinal cord transection was induced in 3 groups of cats. The gap was surgically reconstructed using a collagen matrix bridge (Group COL), collagen matrix + pedicled omentum graft (Group COM), or gelfoam (Group GEF). After a variable observation period, animals underwent distal cord horse-radish peroxidase (HRP) injections, somatosensory evoked potentials recordings and polarographic measurement of local spinal cord blood flow (1SCBF) using the hydrogen clearance technique. The cord tissue was removed for histologic and immunohistochemical analysis. Results showed retrograde HRP labelling of proximal segmental cord neurons and somatosensory evoked potentials were present in group COM but not in COL or GEF treated animals. Local SCBF was 66% and 87% higher in COM than COL or GEF animals respectively but this increase could be reversed if flow from the pedicled omentum was clamped-off. Histologic examination of cord tissue after 45 days revealed the presence of catecholaminergic axons distal to the transection site in COM but not COL or GEF groups. Moreover, after 90 days, the rate and density of tyrosine hydroxylase immunoreactive (TH-IR) axons was 10-fold higher in COM than COL group and this was accompanied by a proportionate increase in the vascular density between the two groups. GEF treated animals showed no regeneration of transected fibers and poor blood flow pattern. These findings indicate that the placement of a pedicled omentum on a collagen matrix bridge results in near restoration of normal SCBF to the reconstructed cord region and is associated with marked regeneration of axons below the lesion site. PMID:2336984

  6. Nogo-A expression dynamically varies after spinal cord injury

    PubMed Central

    Wang, Jian-wei; Yang, Jun-feng; Ma, Yong; Hua, Zhen; Guo, Yang; Gu, Xiao-lin; Zhang, Ya-feng

    2015-01-01

    The mechanism involved in neural regeneration after spinal cord injury is unclear. The myelin-derived protein Nogo-A, which is specific to the central nervous system, has been identified to negatively affect the cytoskeleton and growth program of axotomized neurons. Studies have shown that Nogo-A exerts immediate and chronic inhibitory effects on neurite outgrowth. In vivo, inhibitors of Nogo-A have been shown to lead to a marked enhancement of regenerative axon extension. We established a spinal cord injury model in rats using a free-falling weight drop device to subsequently investigate Nogo-A expression. Nogo-A mRNA and protein expression and immunoreactivity were detected in spinal cord tissue using real-time quantitative PCR, immunohistochemistry and western blot analysis. At 24 hours after spinal cord injury, Nogo-A protein and mRNA expression was low in the injured group compared with control and sham-operated groups. The levels then continued to drop further and were at their lowest at 3 days, rapidly rose to a peak after 7 days, and then gradually declined again after 14 days. These changes were observed at both the mRNA and protein level. The transient decrease observed early after injury followed by high levels for a few days indicates Nogo-A expression is time dependent. This may contribute to the lack of regeneration in the central nervous system after spinal cord injury. The dynamic variation of Nogo-A should be taken into account in the treatment of spinal cord injury. PMID:25883620

  7. Stem cell salvage of injured peripheral nerve.

    PubMed

    Grimoldi, Nadia; Colleoni, Federica; Tiberio, Francesca; Vetrano, Ignazio G; Cappellari, Alberto; Costa, Antonella; Belicchi, Marzia; Razini, Paola; Giordano, Rosaria; Spagnoli, Diego; Pluderi, Mauro; Gatti, Stefano; Morbin, Michela; Gaini, Sergio M; Rebulla, Paolo; Bresolin, Nereo; Torrente, Yvan

    2015-01-01

    We previously developed a collagen tube filled with autologous skin-derived stem cells (SDSCs) for bridging long rat sciatic nerve gaps. Here we present a case report describing a compassionate use of this graft for repairing the polyinjured motor and sensory nerves of the upper arms of a patient. Preclinical assessment was performed with collagen/SDSC implantation in rats after sectioning the sciatic nerve. For the patient, during the 3-year follow-up period, functional recovery of injured median and ulnar nerves was assessed by pinch gauge test and static two-point discrimination and touch test with monofilaments, along with electrophysiological and MRI examinations. Preclinical experiments in rats revealed rescue of sciatic nerve and no side effects of patient-derived SDSC transplantation (30 and 180 days of treatment). In the patient treatment, motor and sensory functions of the median nerve demonstrated ongoing recovery postimplantation during the follow-up period. The results indicate that the collagen/SDSC artificial nerve graft could be used for surgical repair of larger defects in major lesions of peripheral nerves, increasing patient quality of life by saving the upper arms from amputation. PMID:24268028

  8. [Morphometric differences in the normal and low-intensity laser-irradiated spinal neurons of the cat].

    PubMed

    Rusakov, D A; Klering, P G; Savich, V I

    1987-01-01

    Structural parameters of neurons of normal and low-intensity Ge-Ne laser irradiated cat spinal cords were investigated by the morphometrical technique. Observed statistical alterations of the soma volume and nuclear surface values as well as cellular nuclear space relations were associated with the evoked changes in the cell metabolism. PMID:3448495

  9. [Treatment of inter-specific aggression in cats with the selective serotonin reuptake inhibitor fluvoxamine. A case report].

    PubMed

    Sprauer, S

    2012-01-01

    The article describes the redirected, inter-specific aggression of a Maine Coon cat, which was principally directed towards the owners. The cat reacted towards different, nonspecific sounds with abrupt aggressive behaviour and injured the victims at this juncture with moderate scratching and biting. Exclusively using behaviour therapy did not achieve the desired result, thus the therapy was supported with pharmaceuticals. The cat orally received the selective serotonin re-uptake inhibitor fluvoxamine at an initial dosage of 0.5mg/kg BW once daily. After 4 weeks the application rate was increased to 1.0 mg/kg BW once daily. The medication did not cause any side effects. Together with the behaviour-modulating therapy, carried out parallel to the medication therapy, the aggressive behaviour problem of the cat was resolved. After administration for a period of 63 weeks the fluvoxamine therapy was discontinued by gradually reducing the dose without recurrence of the aggressive behaviour. PMID:23242225

  10. Umbilical cord avulsion in waterbirth.

    PubMed

    Schafer, Robyn

    2014-01-01

    Umbilical cord avulsion (or "cord snapping") is often cited as a risk associated with waterbirth. This article discusses a case study in which a cord avulsed during a waterbirth and uses it as a basis to explore the incidence, etiology, and associated risk factors of umbilical cord avulsion. The diagnosis, clinical presentation, and management of cord avulsion in waterbirth is presented along with a thorough review of the literature and relevant professional standards. This article offers recommendations for clinical practice to minimize the risk of a cord avulsion and highlights the need for additional research and provider education to ensure optimal care of women and newborns. PMID:24588881

  11. Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris

    PubMed Central

    Wang, Xi; Cao, Kai; Sun, Xin; Chen, Yongxiong; Duan, Zhaoxia; Sun, Li; Guo, Lei; Bai, Paul; Sun, Dongming; Fan, Jianqing; He, Xijing; Young, Wise; Ren, Yi

    2014-01-01

    Macrophage activation and persistent inflammation contribute to the pathological process of spinal cord injury (SCI). It was reported that M2 macrophages were induced at 3–7 days after SCI but M2 markers were reduced or eliminated after 1 week. By contrast, M1 macrophage response is rapidly induced and then maintained at injured spinal cord. However, factors that modulate macrophage phenotype and function are poorly understood. We developed a model to distinguished bone marrow derived macrophages (BMDMs) from residential microglia and explored how BMDMs change their phenotype and functions in response to the lesion-related factors in injured spinal cord. Infiltrating BMDMs expressing higher Mac-2 and lower CX3CR1 migrate to the epicenter of injury, while microglia expressing lower Mac-2 but higher CX3CR1 distribute to the edges of lesion. Myelin debris at the lesion site switches BMDMs from M2 phenotype towards M1-like phenotype. Myelin debris activate ATP-binding cassette transporter A1 (ABCA1) for cholesterol efflux in response to myelin debris loading in vitro. However, this homeostatic mechanism in injured site is overwhelmed, leading to the development of foamy macrophages and lipid plaque in the lesion site. The persistence of these cells indicates a pro-inflammatory environment, associated with enhanced neurotoxicity and impaired wound healing. These foamy macrophages have poor capacity to phagocytose apoptotic neutrophils resulting in uningested neutrophils releasing their toxic contents and further tissue damage. In conclusion, these data demonstrate for the first time that myelin debris generated in injured spinal cord modulates macrophage activation. Lipid accumulation following macrophage phenotype switch contributes to SCI pathology. PMID:25452166

  12. Three-dimensional imaging of microvasculature in the rat spinal cord following injury

    PubMed Central

    Cao, Yong; Wu, Tianding; yuan, Zhou; Li, Dongzhe; Ni, Shuangfei; Hu, Jianzhong; Lu, Hongbin

    2015-01-01

    Research studies on the three-dimensional (3D) morphological alterations of the spinal cord microvasculature after injury provide insight into the pathology of spinal cord injury (SCI). Knowledge in this field has been hampered in the past by imaging technologies that provided only two-dimensional (2D) information on the vascular reactions to trauma. The aim of our study is to investigate the 3D microstructural changes of the rat spinal cord microvasculature on day 1 post-injury using synchrotron radiation micro-tomography (SRμCT). This technology provides high-resolution 3D images of microvasculature in both normal and injured spinal cords, and the smallest vessel detected is approximately 7.4 μm. Moreover, we optimized the 3D vascular visualization with color coding and accurately calculated quantitative changes in vascular architecture after SCI. Compared to the control spinal cord, the damaged spinal cord vessel numbers decreased significantly following injury. Furthermore, the area of injury did not remain concentrated at the epicenter; rather, the signs of damage expanded rostrally and caudally along the spinal cord in 3D. The observed pathological changes were also confirmed by histological tests. These results demonstrate that SRμCT is an effective technology platform for imaging pathological changes in small arteries in neurovascular disease and for evaluating therapeutic interventions. PMID:26220842

  13. Ultrasound, color - normal umbilical cord (image)

    MedlinePlus

    ... is a normal color Doppler ultrasound of the umbilical cord performed at 30 weeks gestation. The cord ... the cord, two arteries and one vein. The umbilical cord is connected to the placenta, located in ...

  14. Phenylbutyrate prevents disruption of blood-spinal cord barrier by inhibiting endoplasmic reticulum stress after spinal cord injury

    PubMed Central

    Zhou, Yulong; Ye, Libing; Zheng, Binbin; Zhu, Sipin; Shi, Hongxue; Zhang, Hongyu; Wang, Zhouguang; Wei, Xiaojie; Chen, Daqing; Li, Xiaokun; Xu, Huazi; Xiao, Jian

    2016-01-01

    This study aims to investigate the role of endocytoplasmic reticulum (ER) stress induced by spinal cord injury (SCI) in blood-spinal cord barrier (BSCB) disruption and the effect of phenylbutyrate (PBA) on BSCB disruption after SCI. After a moderate contusion injury at the T9 level of spinal cord with a vascular clip, PBA was immediately administered into injured rat via intraperitoneal injection (100 mg/kg) and then further treated once a day for 2 weeks for behavior test. Spinal cord was collected at 1 day post-injury for evaluation of the effects of ER stress and PBA on BSCB disruption after SCI. PBA significantly attenuated BSCB permeability and degradation of tight junction molecules such as P120, β-catenin, Occludin and Claudin5 at 1 day after injury and improved functional recovery in the rat model of trauma. The BSCB protective effect of PBA is related to the inhibition of ER stress induced by SCI. In addition, PBA significantly inhibited the increase of ER stress markers and prevents loss of tight junction and adherens junction proteins in TG-treated human brain microvascular endothelial cells (HBMEC). Taken together, our data demonstrate that therapeutic strategies targeting ER stress may be suitable for the therapy of preserving BSCB integrity after SCI. PBA may be a new candidate as a therapeutic agent for protecting SCI by a compromised BSCB. PMID:27186310

  15. Towards a miniaturized brain-machine-spinal cord interface (BMSI) for restoration of function after spinal cord injury.

    PubMed

    Shahdoost, Shahab; Frost, Shawn; Van Acker, Gustaf; DeJong, Stacey; Dunham, Caleb; Barbay, Scott; Nudo, Randolph; Mohseni, Pedram

    2014-01-01

    Nearly 6 million people in the United States are currently living with paralysis in which 23% of the cases are related to spinal cord injury (SCI). Miniaturized closed-loop neural interfaces have the potential for restoring function and mobility lost to debilitating neural injuries such as SCI by leveraging recent advancements in bioelectronics and a better understanding of the processes that underlie functional and anatomical reorganization in an injured nervous system. This paper describes our current progress towards developing a miniaturized brain-machine-spinal cord interface (BMSI) that is envisioned to convert in real time the neural command signals recorded from the brain to electrical stimuli delivered to the spinal cord below the injury level. Specifically, the paper reports on a corticospinal interface integrated circuit (IC) as a core building block for such a BMSI that is capable of low-noise recording of extracellular neural spikes from the cerebral cortex as well as muscle activation using intraspinal microstimulation (ISMS) in a rat with contusion injury to the thoracic spinal cord. The paper further presents results from a neurobiological study conducted in both normal and SCI rats to investigate the effect of various ISMS parameters on movement thresholds in the rat hindlimb. Coupled with proper signal-processing algorithms in the future for the transformation between the cortically recorded data and ISMS parameters, such a BMSI has the potential to facilitate functional recovery after an SCI by re-establishing corticospinal communication channels lost due to the injury. PMID:25570002

  16. Knockdown of Nogo gene by short hairpin RNA interference promotes functional recovery of spinal cord injury in a rat model.

    PubMed

    Liu, Guo-Min; Luo, Yun-Gang; Li, Juan; Xu, Kun

    2016-05-01

    The specific myelin component Nogo protein is one of the major inhibitory molecules of spinal cord axonal outgrowth following spinal cord injury. The present study aimed to investigate the effects of silencing Nogo protein with shRNA interference on the promotion of functional recovery in a rat model with spinal cord hemisection. Nogo-A short hairpin RNAs (Nogo shRNAs) were constructed and transfected into rats with spinal cord hemisection by adenovirus-mediated transfection. Reverse transcription‑polymerase chain reaction and western blotting were performed to analyze the expression of Nogo-A and Growth Associated Protein 43 (GAP-43). In addition, Basso Beattie Bresnahan (BBB) scores were used to assess the functional recovery of rats following spinal cord injury. The results demonstrated that expression of the Nogo‑A gene was observed to be downregulated following transfection and GAP‑43 expression was observed to increase. The BBB scores were increased following treatment with Nogo shRNAs, indicating functional recovery of the injured nerves. Thus, Nogo-A shRNA interference can knockdown Nogo gene expression and upregulate GAP-43 to promote the functional recovery of spinal cord injury in rats. This finding may advance progress toward assisting the regeneration of injured neurons through the use of Nogo-A shRNA. PMID:27035338

  17. CLINICAL AND RADIOGRAPHIC EVALUATION OF ELBOWS FROM SPINAL CORD INJURIED PATIENTS

    PubMed Central

    Casimiro, Fabiana de Godoy; de Oliveira, Gabriel Faria; Tenório, Pedro Henrique de Magalhães; Gagliardi, Isabella da Costa; Zoppi, Américo; Cliquet, Alberto

    2016-01-01

    Objectives : To evaluate clinically and radiologically the elbows of spinal cord injured patients and compare them to the control group. Methods : Twenty patients (10 paraplegics and 10 tetraplegics) were clinically evaluated through assessment of pain scale, measurement of active and passive range of motion, degree of muscle strength and MEPS score. They were also submitted to bilateral plain radiography of the elbows. Both groups were compared to the control group. Results : Four paraplegic and three tetraplegic patients referred mild to moderate, sporadic and motion related pain. The control group was asymptomatic. No statistic significant difference was found in passive range of motion among the three groups. The tetraplegic group showed a lower active range of motion as well as lower MEPS score as compared to the control group. Equal number of patients in the spinal cord injured patients had radiological abnormalities, but those were more severe in the tetraplegic group. Conclusion : Spinal cord injured patients presented clinical and radiological elbow abnormalities, which were more evident on tetraplegics. Level of Evidence III, Case Control. PMID:26981040

  18. [Glomerulonephritis in dogs and cats].

    PubMed

    Reinacher, M; Frese, K

    1991-04-01

    Immunohistology and special staining of plastic sections allow diagnosis and differentiation of subtypes of glomerulonephritis in dogs. Frequency and clinical importance of these forms of glomerulonephritis vary significantly. In cats, glomerulonephritis occurs frequently in FIV-positive cats but is rare in animals suffering from persistent FeLV infection or FIP. PMID:2068715

  19. College Students and Their Cats

    ERIC Educational Resources Information Center

    Weinstein, Lawrence; Alexander, Ralph

    2010-01-01

    Twenty-two Siamese and 32 mixed breed cats' personalities were rated by their respective college student owners and compared. Further, the owners' self rated personality traits were correlated with the pets'; significant Siamese and Mixed differences and correlations were obtained. These are the first data to examine breed of cat on a personality…

  20. CONTRACT ADMINISTRATIVE TRACKING SYSTEM (CATS)

    EPA Science Inventory

    The Contract Administrative Tracking System (CATS) was developed in response to an ORD NHEERL, Mid-Continent Ecology Division (MED)-recognized need for an automated tracking and retrieval system for Cost Reimbursable Level of Effort (CR/LOE) Contracts. CATS is an Oracle-based app...

  1. The Asparaginyl Endopeptidase Legumain Is Essential for Functional Recovery after Spinal Cord Injury in Adult Zebrafish

    PubMed Central

    Ma, Liping; Shen, Yan-Qin; Khatri, Harsh P.; Schachner, Melitta

    2014-01-01

    Unlike mammals, adult zebrafish are capable of regenerating severed axons and regaining locomotor function after spinal cord injury. A key factor for this regenerative capacity is the innate ability of neurons to re-express growth-associated genes and regrow their axons after injury in a permissive environment. By microarray analysis, we have previously shown that the expression of legumain (also known as asparaginyl endopeptidase) is upregulated after complete transection of the spinal cord. In situ hybridization showed upregulation of legumain expression in neurons of regenerative nuclei during the phase of axon regrowth/sprouting after spinal cord injury. Upregulation of Legumain protein expression was confirmed by immunohistochemistry. Interestingly, upregulation of legumain expression was also observed in macrophages/microglia and neurons in the spinal cord caudal to the lesion site after injury. The role of legumain in locomotor function after spinal cord injury was tested by reducing Legumain expression by application of anti-sense morpholino oligonucleotides. Using two independent anti-sense morpholinos, locomotor recovery and axonal regrowth were impaired when compared with a standard control morpholino. We conclude that upregulation of legumain expression after spinal cord injury in the adult zebrafish is an essential component of the capacity of injured neurons to regrow their axons. Another feature contributing to functional recovery implicates upregulation of legumain expression in the spinal cord caudal to the injury site. In conclusion, we established for the first time a function for an unusual protease, the asparaginyl endopeptidase, in the nervous system. This study is also the first to demonstrate the importance of legumain for repair of an injured adult central nervous system of a spontaneously regenerating vertebrate and is expected to yield insights into its potential in nervous system regeneration in mammals. PMID:24747977

  2. Racial disparities in survival among injured drivers.

    PubMed

    Haskins, Amy E; Clark, David E; Travis, Lori L

    2013-03-01

    Prior studies on racial and ethnic disparities in survival after motor vehicle crashes have examined only population-based death rates or have been restricted to hospitalized patients. In the current study, we examined 3 components of crash survival by race/ethnicity: survival overall, survival to reach a hospital, and survival among those hospitalized. Nine years of data (from 2000 through 2008) from the National Automotive Sampling System Crashworthiness Data System were used to examine white non-Hispanic, black non-Hispanic, and Hispanic drivers aged ≥ 15 years with serious injuries (injury severity scores of ≥ 9). By using multivariable logistic regression, we found that a driver's race/ethnicity was not significantly associated with overall survival after being injured in a crash (for blacks, odds ratio (OR) = 0.69, 95% confidence interval (CI): 0.36, 1.32; for Hispanics, OR = 1.00, 95% CI: 0.59, 1.72), and blacks and Hispanics were equally likely to survive to be treated at a hospital compared with whites (for blacks, OR = 1.00, 95% CI: 0.52, 1.93; for Hispanics, OR = 1.13, 95% CI: 0.71, 1.79). However, among patients who were treated at a hospital, blacks were 50% less likely to survive 30 days compared with whites (OR = 0.50, 95% CI: 0.33, 0.76). The disparity in survival after serious traffic injuries among blacks appears to occur after hospitalization, not in prehospital survival. PMID:23371352

  3. Racial Disparities in Survival Among Injured Drivers

    PubMed Central

    Haskins, Amy E.; Clark, David E.; Travis, Lori L.

    2013-01-01

    Prior studies on racial and ethnic disparities in survival after motor vehicle crashes have examined only population-based death rates or have been restricted to hospitalized patients. In the current study, we examined 3 components of crash survival by race/ethnicity: survival overall, survival to reach a hospital, and survival among those hospitalized. Nine years of data (from 2000 through 2008) from the National Automotive Sampling System Crashworthiness Data System were used to examine white non-Hispanic, black non-Hispanic, and Hispanic drivers aged ≥15 years with serious injuries (injury severity scores of ≥9). By using multivariable logistic regression, we found that a driver's race/ethnicity was not significantly associated with overall survival after being injured in a crash (for blacks, odds ratio (OR) = 0.69, 95% confidence interval (CI): 0.36, 1.32; for Hispanics, OR = 1.00, 95% CI: 0.59, 1.72), and blacks and Hispanics were equally likely to survive to be treated at a hospital compared with whites (for blacks, OR = 1.00, 95% CI: 0.52, 1.93; for Hispanics, OR = 1.13, 95% CI: 0.71, 1.79). However, among patients who were treated at a hospital, blacks were 50% less likely to survive 30 days compared with whites (OR = 0.50, 95% CI: 0.33, 0.76). The disparity in survival after serious traffic injuries among blacks appears to occur after hospitalization, not in prehospital survival. PMID:23371352

  4. Quantitative test of responses to thermal stimulation in spinally injured rats using a Peltier thermode: a new approach to study cold allodynia.

    PubMed

    Gao, Tianle; Hao, Jing-Xia; Wiesenfeld-Hallin, Zsuzsanna; Xu, Xiao-Jun

    2013-01-30

    In this work, we described a method of testing of responses of spinally injured rats to thermal stimulation (heating and cooling) to the flank area using a Peltier thermode. With a baseline holding temperature at 32°C and the temperature change rate of 0.5°C/s, we measured vocalization thresholds of rats to thermal stimulation in the flank area. While normal rats did not vocalize to temperatures changes ranging from 6°C to 50°C, the spinally injured rats exhibited significantly increased response to cooling with average response temperature above 15°C through the 70 day observation period after spinal cord injury. The response temperature to cooling in spinally injured rats is correlated with the magnitude of responses to cold stimulation scored after ethyl chloride spray and with the response threshold to mechanical stimulation. In contrast, we did not observe an increase in response to warm/heat stimuli. The results showed that ischemic spinal cord injury produced cold, but not heat, allodynia in rats. Furthermore, we showed that it is possible to quantitatively measure response of rats to thermal stimulation on the body using temperature as end points which may aid further studies on mechanisms and treatments of thermal stimulation, particularly cold, evoked pain. PMID:23183015

  5. Umbilical cord care in newborns

    MedlinePlus

    ... the stump clean with gauze and water only. Sponge bathe the rest of your baby, as well. ... Neonatal care - umbilical cord Images Umbilical cord healing Sponge bath References Carlo WA, Ambalavanan N. The umbilicus. ...

  6. Spinal-cord injuries in Australian footballers, 1960-1985.

    PubMed

    Taylor, T K; Coolican, M R

    1987-08-01

    A review of 107 footballers who suffered a spinal-cord injury between 1960 and 1985 has been undertaken. Since 1977, the number of such injuries in Rugby Union, Rugby League and Australian Rules has increased, from an average of about two injuries a year before 1977 to over eight injuries a year since then. Rugby Union is clearly the most dangerous game, particularly for schoolboys; all of the injuries in schoolboy games for this code have occurred since 1977. This study has shown that collision at scrum engagement, and not at scrum collapse, is the way in which the majority of scrum injuries are sustained. These injuries are largely preventable, and suggestions for rule changes are made. Half the injured players recovered to Frankel grades D or E. The financial entitlements of those injured were grossly inadequate; this warrants action. A national register for spinal-cord injuries from football should be established to monitor the effects of desirable rule changes in Rugby Union and Rugby League. PMID:3600465

  7. A new extra-vertebral treatment model for incomplete spinal cord injuries.

    PubMed

    Krishnan, R V

    2003-02-01

    Advances made in recent times in spinal cord injury repair research will soon take us toward a cure in paraplegics. But what are the prospects for quadriplegics? Certain fundamental issues make treatment approaches to quadriplegia different and difficult. Injury at cervical region poses additional problems for any surgical intervention with life-threatening risks of i) endangering respiratory function, ii) cavitation, cysts, and syringomyelia formation extending cephalad to the injury, and iii) mid-lower cervical injuries, lower motor neuron death, and the resultant degeneration of brachial plexus axons would still leave the upper limbs denervated and paralyzed even as treatment procedures might successfully salvage the lower limbs. With these apparently insurmountable impediments in quadriplegic cord repair, it would be wise to turn to alternative treatment strategies. Conventional treatment models since the days of Ralph Gerard (1940) have all used intra-vertebral procedures. We present here a plausible extra-vertebral repair model suitable for incomplete cord injuries at cervical, thoracic, and lumbar levels. The procedure consists of identifying the extent of viable grey-white matter in the injured area and to utilize it efficiently as a "neural tissue bridge." Next, labile state is induced by using botulinum toxin/colchicine (Krishnan, 1983, 1991; Krishnan et al., 2001 a,b) and Ca+ channel blockers in the motorsensory nerve terminals of polisegmentally innervated skeletal muscles that "bridge" the injured cord segments. This would retrogradely induce a redundant state of intra-spinal growth of nerve terminals and new synaptic connections within those viable neural tissues, as well as promote effective relinking of the injured cord ends and enhance motor-sensory recovery. PMID:12751430

  8. Fewer Injured Workers Getting Opioid Prescriptions in Some States

    MedlinePlus

    ... opioids in the 25 states in the study. Simultaneous use of opioids and sedating medications called benzodiazepines ... 1 percent to 9 percent of injured workers. Simultaneous use of opioids and muscle relaxants occurred among ...

  9. Prevent Tipping Furniture from Injuring or Killing Young Children

    MedlinePlus

    ... Emergencies Prevent Tipping Furniture from Injuring or Killing Young Children The nation’s emergency physicians handle tragic situations ... Emergency Physicians. “Every parent or guardian of a young child should look around their homes and imagine ...

  10. Spinal cord injury pain.

    PubMed

    Beric, Aleksandar

    2003-01-01

    Awareness that SCI pain is common emerged during the past decade. However, there are a number of unresolved issues. There is a need for variety of experimental models to reflect diversity of SCI pains. Current classification is not as user-friendly as it should be. More attention should be given to a condition of the spinal cord below and above the SCI lesion. A consensus for what is an optimal SCI functional assessment for patients with sensory complaints and pain should be developed. Further extensive SCI pain research is needed prior to spinal cord regeneration trials in order to be able to cope with a potential for newly developed pains that may appear during incomplete spinal cord regenerative attempts. PMID:12821403

  11. Spinal cord schistosomiasis

    PubMed Central

    Adeel, Ahmed Awad

    2015-01-01

    Acute myelopathy is increasingly being recognized as a common neurological complication of schistosomiasis. Schistosome eggs reach the spinal cord either as egg emboli or as eggs produced by ectopic worms. This leads to inflammatory reaction and granuloma formation around the eggs. Patients with spinal schistosomiasis may not have clinical evidence of schistosomiasis. The typical clinical picture is that of lumbar pain preceded by other symptoms by hours or up to 3 weeks. Patients may present with paraparesis, urinary retention or paraplegia. Definitive diagnosis of spinal cord schistosomiasis is by detection of the eggs in a spinal cord biopsy or at autopsy. However, most cases are diagnosed based on a presumptive diagnosis that depends on a suggestive clinical picture, history or evidence of active schistosomiasis and exclusion of other conditions. Investigations include stools and urine examination for schistosome eggs, blood tests, magnetic resonance imaging (MRI) and examination of the cerebrospinal fluid. Treatment of cases is mainly by praziquantel, corticosteroids, surgical intervention and rehabilitation.

  12. Histochemical study of posterior cricoarytenoid muscle reinnervation by a nerve-muscle pedicle in the cat.

    PubMed

    Fata, J J; Malmgren, L T; Gacek, R R; Dum, R; Woo, P

    1987-01-01

    Reinnervation of the posterior cricoarytenoid (PCA) muscle with a nerve-muscle pedicle (NMP) has been proposed for patients with bilateral abductor vocal cord paralysis. Since its success has been controversial, a glycogen depletion histochemical technique was used to examine reinnervation. An ansa cervicalis NMP was implanted into the denervated PCA in nine cats. Eight months later, vocal cord activity was evaluated. The NMP nerve was stimulated extensively in seven cats (experimental group). Optical densities of NMP-supplied PCA muscle fibers from experimental and control groups were compared to detect differences in glycogen content. The results demonstrated quantitative evidence of reinnervation in two experimental animals. Electrical stimulation of the NMP produced abduction in one of these two animals, but was never observed during spontaneous respiration or airway occlusion. These observations indicate that reinnervation can occur but abduction requires electrical stimulation. The NMP technique may be more successful with an electrical pacer. PMID:3674642

  13. Learning with the Spinal Cord.

    PubMed

    Robinson, Richard

    2015-06-01

    To what extent does the spinal cord play a role in the learning of motor tasks? A new study that simultaneously images the brain and spinal cord shows that the spinal cord is actively and independently involved in the earliest stages of motor learning. PMID:26125625

  14. An In Vivo Characterization of Trophic Factor Production Following Neural Precursor Cell or Bone Marrow Stromal Cell Transplantation for Spinal Cord Injury

    PubMed Central

    Hawryluk, Gregory W.J.; Mothe, Andrea; Wang, Jian; Wang, Shelly; Tator, Charles

    2012-01-01

    Cellular transplantation strategies for repairing the injured spinal cord have shown consistent benefit in preclinical models, and human clinical trials have begun. Interactions between transplanted cells and host tissue remain poorly understood. Trophic factor secretion is postulated a primary or supplementary mechanism of action for many transplanted cells, however, there is little direct evidence to support trophin production by transplanted cells in situ. In the present study, trophic factor expression was characterized in uninjured, injured-untreated, injured-treated with transplanted cells, and corresponding control tissue from the adult rat spinal cord. Candidate trophic factors were identified in a literature search, and primers were designed for these genes. We examined in vivo trophin expression in 3 paradigms involving transplantation of either brain or spinal cord-derived neural precursor cells (NPCs) or bone marrow stromal cells (BMSCs). Injury without further treatment led to a significant elevation of nerve growth factor (NGF), leukemia inhibitory factor (LIF), insulin-like growth factor-1 (IGF-1), and transforming growth factor-β1 (TGF-β1), and lower expression of vascular endothelial growth factor isoform A (VEGF-A) and platelet-derived growth factor-A (PDGF-A). Transplantation of NPCs led to modest changes in trophin expression, and the co-administration of intrathecal trophins resulted in significant elevation of the neurotrophins, glial-derived neurotrophic factor (GDNF), LIF, and basic fibroblast growth factor (bFGF). BMSCs transplantation upregulated NGF, LIF, and IGF-1. NPCs isolated after transplantation into the injured spinal cord expressed the neurotrophins, ciliary neurotrophic factor (CNTF), epidermal growth factor (EGF), and bFGF at higher levels than host cord. These data show that trophin expression in the spinal cord is influenced by injury and cell transplantation, particularly when combined with intrathecal trophin infusion

  15. Neurolymphomatosis in a cat

    PubMed Central

    SAKURAI, Masashi; AZUMA, Kazushi; NAGAI, Arata; FUJIOKA, Toru; SUNDEN, Yuji; SHIMADA, Akinori; MORITA, Takehito

    2016-01-01

    A 9-year-old male mixed breed cat showed chronic progressive neurological symptoms, which are represented by ataxia and seizures. At necropsy, spinal roots and spinal ganglions at the level of sixth cervical nerve to second thoracic nerve were bilaterally swollen and replaced by white mass lesions. Right brachial plexus and cranial nerves (III, V and VII) were also swollen. A mass lesion was found in the right frontal lobe of the cerebrum. Histologically, neoplastic lymphocytes extensively involved the peripheral nerves, and they infiltrated into the cerebral and spinal parenchyma according to the peripheral nerve tract. Immunohistochemically, most neoplastic lymphocytes were positive for CD20. The clinical and histological features in this case resemble those of neurolymphomatosis in humans. PMID:26960326

  16. Like herding cats.

    PubMed

    Muller-Smith, P

    1997-12-01

    In an effort to be a good manager, it is easy to lose sight of the fact that knowledge workers require a unique approach from their manager. Because nurses are independent and capable individuals that prosper in an environment that recognizes them as knowledge workers, nurse managers often find that traditional management techniques are not sufficient. Trying to manage all of the nurses on a unit as a single group is much like trying to herd cats. It might be less frustrating for the nurse manager to lead gently rather than manage with a firm hand. Warren Bennis suggests that this approach may provide a valuable key to successfully managing in a world of constant change. PMID:9464034

  17. Neurolymphomatosis in a cat.

    PubMed

    Sakurai, Masashi; Azuma, Kazushi; Nagai, Arata; Fujioka, Toru; Sunden, Yuji; Shimada, Akinori; Morita, Takehito

    2016-07-01

    A 9-year-old male mixed breed cat showed chronic progressive neurological symptoms, which are represented by ataxia and seizures. At necropsy, spinal roots and spinal ganglions at the level of sixth cervical nerve to second thoracic nerve were bilaterally swollen and replaced by white mass lesions. Right brachial plexus and cranial nerves (III, V and VII) were also swollen. A mass lesion was found in the right frontal lobe of the cerebrum. Histologically, neoplastic lymphocytes extensively involved the peripheral nerves, and they infiltrated into the cerebral and spinal parenchyma according to the peripheral nerve tract. Immunohistochemically, most neoplastic lymphocytes were positive for CD20. The clinical and histological features in this case resemble those of neurolymphomatosis in humans. PMID:26960326

  18. Experimental and Clinical Advances in Immunotherapy Strategies for Spinal Cord Injury Target on MAIs and Their Receptors.

    PubMed

    Lu, Xiu-Min; Wei, Jing-Xiang; Xiao, Lan; Shu, Ya-Hai; Wang, Yong-Tang

    2016-01-01

    In the injured adult mammalian central nervous system (CNS), the failure of axonal regeneration is thought to be attributed, at least in part, to various myelin-associated inhibitors (MAIs), such as Nogo, myelinassociated glycoprotein (MAG), and oligodendrocyte-myelin glycoprotein (OMgp) around the damaged site. Interestingly, these three structurally different inhibitors share two common receptors, Nogo-66 receptor (NgR) and paired immunoglobulin-like receptor B (PirB), and transduce the inhibitory signal into neurons via their complex combinant and co-receptors, such as p75 neurotrophin receptor (p75NTR), Nogo receptor-interacting protein 1 (LINGO-1), and TROY. Accordingly, targeting of the whole myelin or just portions by immunization has been proved to be neuroprotective and is able to promote regeneration in the injured spinal cords. In the past few years, vaccine approaches were initially achieved and could induce the production of antibodies against inhibitors in myelin to block the inhibitory effects and promote functional recovery in spinal cord injury (SCI) models by immunizing with MAIs, such as purified myelin, spinal cord homogenates, or their receptors with the concept of protective autoimmunity formulated. However, for safety consideration, further work is necessary before the immunotherapy strategies can be adopted to treat human injured spinal cords. PMID:26635269

  19. Health significance and occurrence of injured bacteria in drinking water

    NASA Technical Reports Server (NTRS)

    McFeters, G. A.; LeChevallier, M. W.; Singh, A.; Kippin, J. S.

    1986-01-01

    Enteropathogenic and indicator bacteria become injured in drinking water with exposure to sublethal levels of various biological, chemical and physical factors. One manifestation of this injury is the inability to grow and form colonies on selective media containing surfactants. The resulting underestimation of indicator bacteria can lead to a false estimation of water potability. m-T7 medium was developed specifically for the recovery of injured coliforms (both "total" and fecal) in drinking water. The m-T7 method was used to survey operating drinking water treatment and distribution systems for the presence of injured coliforms that were undetected with currently used media. The mean recovery with m-Endo LES medium was less than 1/100 ml while it ranged between 6 and 68/100ml with m-T7 agar. The majority of samples giving positive results with m-T7 medium yielded no detectable coliforms with m-Endo LES agar. Over 95% of the coliform bacteria in these samples were injured. Laboratory experiments were also done to ascribe the virulence of injured waterborne pathogens. Enteropathogens including Salmonella typhimurium, Yersinia enterocolitica and Shigella spp. required up to 20 times the chlorine levels to produce the same injury in enterotoxigenic Escherichia coli (ETEC) and nonpathogenic coliforms. Similar results were seen with Y. enterocolitica exposed to copper. The recovery of ETEC was followed by delayed enterotoxin production, both in vitro and in the gut of experimental animals. This indicates that injured waterborne enteropathogenic bacteria can be virulent.

  20. Ischemic Neuromyopathy Associated with Steel Pellet BB Shot Aortic Obstruction in a Cat.

    PubMed

    Langelier, K M

    1982-06-01

    An adult female calico cat was presented with clinical signs of posterior paresis. A steel pellet was seen radiographically lodged in the caudal aorta ventral to the fourth lumbar vertebra. Aortotomy was performed and the pellet was removed. Due to the severe spinal cord damage euthanasia was performed 25 days later. A discussion of the postmortem findings and similarities between this case and thromboembolic aortic obstruction follows. PMID:17422151

  1. Ischemic Neuromyopathy Associated with Steel Pellet BB Shot Aortic Obstruction in a Cat

    PubMed Central

    Langelier, K. M.

    1982-01-01

    An adult female calico cat was presented with clinical signs of posterior paresis. A steel pellet was seen radiographically lodged in the caudal aorta ventral to the fourth lumbar vertebra. Aortotomy was performed and the pellet was removed. Due to the severe spinal cord damage euthanasia was performed 25 days later. A discussion of the postmortem findings and similarities between this case and thromboembolic aortic obstruction follows. PMID:17422151

  2. Macrophage-Colony Stimulating Factor Derived from Injured Primary Afferent Induces Proliferation of Spinal Microglia and Neuropathic Pain in Rats.

    PubMed

    Okubo, Masamichi; Yamanaka, Hiroki; Kobayashi, Kimiko; Dai, Yi; Kanda, Hirosato; Yagi, Hideshi; Noguchi, Koichi

    2016-01-01

    Peripheral nerve injury induces proliferation of microglia in the spinal cord, which can contribute to neuropathic pain conditions. However, candidate molecules for proliferation of spinal microglia after injury in rats remain unclear. We focused on the colony-stimulating factors (CSFs) and interleukin-34 (IL-34) that are involved in the proliferation of the mononuclear phagocyte lineage. We examined the expression of mRNAs for macrophage-CSF (M-CSF), granulocyte macrophage-CSF (GM-CSF), granulocyte-CSF (G-CSF) and IL-34 in the dorsal root ganglion (DRG) and spinal cord after spared nerve injury (SNI) in rats. RT-PCR and in situ hybridization revealed that M-CSF and IL-34, but not GM- or G-CSF, mRNAs were constitutively expressed in the DRG, and M-CSF robustly increased in injured-DRG neurons. M-CSF receptor mRNA was expressed in naive rats and increased in spinal microglia following SNI. Intrathecal injection of M-CSF receptor inhibitor partially but significantly reversed the proliferation of spinal microglia and in early phase of neuropathic pain induced by SNI. Furthermore, intrathecal injection of recombinant M-CSF induced microglial proliferation and mechanical allodynia. Here, we demonstrate that M-CSF is a candidate molecule derived from primary afferents that induces proliferation of microglia in the spinal cord and leads to induction of neuropathic pain after peripheral nerve injury in rats. PMID:27071004

  3. Macrophage-Colony Stimulating Factor Derived from Injured Primary Afferent Induces Proliferation of Spinal Microglia and Neuropathic Pain in Rats

    PubMed Central

    Okubo, Masamichi; Yamanaka, Hiroki; Kobayashi, Kimiko; Dai, Yi; Kanda, Hirosato; Yagi, Hideshi; Noguchi, Koichi

    2016-01-01

    Peripheral nerve injury induces proliferation of microglia in the spinal cord, which can contribute to neuropathic pain conditions. However, candidate molecules for proliferation of spinal microglia after injury in rats remain unclear. We focused on the colony-stimulating factors (CSFs) and interleukin-34 (IL-34) that are involved in the proliferation of the mononuclear phagocyte lineage. We examined the expression of mRNAs for macrophage-CSF (M-CSF), granulocyte macrophage-CSF (GM-CSF), granulocyte-CSF (G-CSF) and IL-34 in the dorsal root ganglion (DRG) and spinal cord after spared nerve injury (SNI) in rats. RT-PCR and in situ hybridization revealed that M-CSF and IL-34, but not GM- or G-CSF, mRNAs were constitutively expressed in the DRG, and M-CSF robustly increased in injured-DRG neurons. M-CSF receptor mRNA was expressed in naive rats and increased in spinal microglia following SNI. Intrathecal injection of M-CSF receptor inhibitor partially but significantly reversed the proliferation of spinal microglia and in early phase of neuropathic pain induced by SNI. Furthermore, intrathecal injection of recombinant M-CSF induced microglial proliferation and mechanical allodynia. Here, we demonstrate that M-CSF is a candidate molecule derived from primary afferents that induces proliferation of microglia in the spinal cord and leads to induction of neuropathic pain after peripheral nerve injury in rats. PMID:27071004

  4. Altered Obstacle Negotiation after Low Thoracic Hemisection in the Cat

    PubMed Central

    Doperalski, Adele E.; Tester, Nicole J.; Jefferson, Stephanie C.

    2011-01-01

    Abstract Following a lateralized spinal cord injury (SCI) in humans, substantial walking recovery occurs; however, deficits persist in adaptive features of locomotion critical for community ambulation, including obstacle negotiation. Normal obstacle negotiation is accomplished by an increase in flexion during swing. If an object is unanticipated or supraspinal input is absent, obstacle negotiation may involve the spinally organized stumbling corrective response. How these voluntary and reflex components are affected following partial SCI is not well studied. This study is the first to characterize recovery of obstacle negotiation following low-thoracic spinal hemisection in the cat. Cats were trained pre- and post-injury to cross a runway with an obstacle. Assessments focused on the hindlimb ipsilateral to the lesion. Pre-injury, cats efficiently cleared an obstacle by increasing knee flexion during swing. Post-injury, obstacle clearance permanently changed. At 2 weeks, when basic overground walking ability been recovered, the hindlimb was dragged over the obstacle (∼90%). Surprisingly, the stumbling corrective response was not elicited until after 2 weeks. Despite a notable increase, between 4 and 8 weeks, in the ability to modify limb trajectory when approaching an obstacle, limb lift during obstacle approach was insufficient during ∼50% of encounters and continued to evoke the stumbling corrective response even at 16 weeks. A post-injury lead limb bias identified during negotiations with complete clearance, suggests a potential training strategy to increase the number of successful clearances. Therefore, following complete severing of half of the spinal cord, the ability to modify ipsilateral hindlimb trajectory shows significant recovery and by 16 weeks permits effective clearing of an obstacle, without contact, ∼50% of the time. Although this suggests plasticity of supporting circuitry, it is insufficient to support consistent clearance. This

  5. Enhanced Functional Recovery in MRL/MpJ Mice after Spinal Cord Dorsal Hemisection

    PubMed Central

    Thuret, Sandrine; Thallmair, Michaela; Horky, Laura L.; Gage, Fred H.

    2012-01-01

    Adult MRL/MpJ mice have been shown to possess unique regeneration capabilities. They are able to heal an ear-punched hole or an injured heart with normal tissue architecture and without scar formation. Here we present functional and histological evidence for enhanced recovery following spinal cord injury (SCI) in MRL/MpJ mice. A control group (C57BL/6 mice) and MRL/MpJ mice underwent a dorsal hemisection at T9 (thoracic vertebra 9). Our data show that MRL/MpJ mice recovered motor function significantly faster and more completely. We observed enhanced regeneration of the corticospinal tract (CST). Furthermore, we observed a reduced astrocytic response and fewer micro-cavities at the injury site, which appear to create a more growth-permissive environment for the injured axons. Our data suggest that the reduced astrocytic response is in part due to a lower lesion-induced increase of cell proliferation post-SCI, and a reduced astrocytic differentiation of the proliferating cells. Interestingly, we also found an increased number of proliferating microglia, which could be involved in the MRL/MpJ spinal cord repair mechanisms. Finally, to evaluate the molecular basis of faster spinal cord repair, we examined the difference in gene expression changes in MRL/MpJ and C57BL/6 mice after SCI. Our microarray data support our histological findings and reveal a transcriptional profile associated with a more efficient spinal cord repair in MRL/MpJ mice. PMID:22348029

  6. Repetitive magnetic stimulation affects the microenvironment of nerve regeneration and evoked potentials after spinal cord injury

    PubMed Central

    Jiang, Jin-lan; Guo, Xu-dong; Zhang, Shu-quan; Wang, Xin-gang; Wu, Shi-feng

    2016-01-01

    Repetitive magnetic stimulation has been shown to alter local blood flow of the brain, excite the corticospinal tract and muscle, and induce motor function recovery. We established a rat model of acute spinal cord injury using the modified Allen's method. After 4 hours of injury, rat models received repetitive magnetic stimulation, with a stimulus intensity of 35% maximum output intensity, 5-Hz frequency, 5 seconds for each sequence, and an interval of 2 minutes. This was repeated for a total of 10 sequences, once a day, 5 days in a week, for 2 consecutive weeks. After repetitive magnetic stimulation, the number of apoptotic cells decreased, matrix metalloproteinase 9/2 gene and protein expression decreased, nestin expression increased, somatosensory and motor-evoked potentials recovered, and motor function recovered in the injured spinal cord. These findings confirm that repetitive magnetic stimulation of the spinal cord improved the microenvironment of neural regeneration, reduced neuronal apoptosis, and induced neuroprotective and repair effects on the injured spinal cord. PMID:27335567

  7. Advances in the management of infertility in men with spinal cord injury.

    PubMed

    Ibrahim, Emad; Brackett, Nancy L; Lynne, Charles M

    2016-01-01

    Couples with a spinal cord injured male partner require assisted ejaculation techniques to collect semen that can then be further used in various assisted reproductive technology methods to achieve a pregnancy. The majority of men sustaining a spinal cord injury regardless of the cause or the level of injury cannot ejaculate during sexual intercourse. Only a small minority can ejaculate by masturbation. Penile vibratory stimulation and electroejaculation are the two most common methods used to retrieve sperm. Other techniques such as prostatic massage and the adjunct application of other medications can be used, but the results are inconsistent. Surgical sperm retrieval should be considered as a last resort if all other methods fail. Special attention must be paid to patients with T6 and rostral levels of injury due to the risk of autonomic dysreflexia resulting from stimulation below the level of injury. Bladder preparation should be performed before stimulation if retrograde ejaculation is anticipated. Erectile dysfunction is ubiquitous in the spinal cord injured population but is usually easily managed and does not pose a barrier to semen retrieval in these men. Semen analysis parameters of men with spinal cord injury are unique for this population regardless of the method of retrieval, generally presenting as normal sperm concentration but abnormally low sperm motility and viability. When sperm retrieval is desired in this population, emphasis should be placed on initially trying the simple methods of penile vibratory stimulation or electroejaculation before resorting to more advanced and invasive surgical procedures. PMID:27048781

  8. Advances in the management of infertility in men with spinal cord injury

    PubMed Central

    Ibrahim, Emad; Brackett, Nancy L; Lynne, Charles M

    2016-01-01

    Couples with a spinal cord injured male partner require assisted ejaculation techniques to collect semen that can then be further used in various assisted reproductive technology methods to achieve a pregnancy. The majority of men sustaining a spinal cord injury regardless of the cause or the level of injury cannot ejaculate during sexual intercourse. Only a small minority can ejaculate by masturbation. Penile vibratory stimulation and electroejaculation are the two most common methods used to retrieve sperm. Other techniques such as prostatic massage and the adjunct application of other medications can be used, but the results are inconsistent. Surgical sperm retrieval should be considered as a last resort if all other methods fail. Special attention must be paid to patients with T6 and rostral levels of injury due to the risk of autonomic dysreflexia resulting from stimulation below the level of injury. Bladder preparation should be performed before stimulation if retrograde ejaculation is anticipated. Erectile dysfunction is ubiquitous in the spinal cord injured population but is usually easily managed and does not pose a barrier to semen retrieval in these men. Semen analysis parameters of men with spinal cord injury are unique for this population regardless of the method of retrieval, generally presenting as normal sperm concentration but abnormally low sperm motility and viability. When sperm retrieval is desired in this population, emphasis should be placed on initially trying the simple methods of penile vibratory stimulation or electroejaculation before resorting to more advanced and invasive surgical procedures. PMID:27048781

  9. Neuroprotective effect of functionalized multi-walled carbon nanotubes on spinal cord injury in rats

    PubMed Central

    Ding, Shenghao; Bao, Yinghui; Lin, Yong; Pan, Yaohua; Fan, Yiling; Wan, Jieqing; Jiang, Jiyao

    2015-01-01

    Traumatic injuries to the brain and spinal cord affect a large percentage of the world’s population. However, there are currently no effective treatments for these central nervous system (CNS) injuries. In our study, we evaluated the neuroprotective role of functionalized multi-walled carbon nanotubes (MWCNTs) carrying brain derived neurotrophic factor (BNDF), nogo-66 receptor (NgR) and Ras homolog gene family member A (RhoA) in spinal cord injury (SCI). Our results showed that transfection into rat cortical neurons with BDNF-DNA significantly elevated the expression of BDNF both in vitro and in vivo. Meanwhile, transfection with NgR-siRNA and RhoA-siRNA resulted in an obvious down-regulation of NgR and RhoA in neuron cells and in injured spinal cords. In addition, the functionalized MWCNTs carrying BDNF-DNA, NgR-siRNA and RhoA-siRNA exhibited remarkable therapeutic effects on injured spinal cord. Taken together, our study demonstrates that functionalized MWCNTs have a potential therapeutic application on repair and regeneration of the CNS. PMID:26884846

  10. Raman spectroscopic investigation of spinal cord injury in a rat model

    NASA Astrophysics Data System (ADS)

    Saxena, Tarun; Deng, Bin; Stelzner, Dennis; Hasenwinkel, Julie; Chaiken, Joseph

    2011-02-01

    Raman spectroscopy was used to study temporal molecular changes associated with spinal cord injury (SCI) in a rat model. Raman spectra of saline-perfused, injured, and healthy rat spinal cords were obtained and compared. Two injury models, a lateral hemisection and a moderate contusion were investigated. The net fluorescence and the Raman spectra showed clear differences between the injured and healthy spinal cords. Based on extensive histological and biochemical characterization of SCI available in the literature, these differences were hypothesized to be due to cell death, demyelination, and changes in the extracellular matrix composition, such as increased expression of proteoglycans and hyaluronic acid, at the site of injury where the glial scar forms. Further, analysis of difference spectra indicated the presence of carbonyl containing compounds, hypothesized to be products of lipid peroxidation and acid catalyzed hydrolysis of glycosaminoglycan moieties. These results compared well with in vitro experiments conducted on chondroitin sulfate sugars. Since the glial scar is thought to be a potent biochemical barrier to nerve regeneration, this observation suggests the possibility of using near infrared Raman spectroscopy to study injury progression and explore potential treatments ex vivo, and ultimately monitor potential remedial treatments within the spinal cord in vivo.

  11. Pain management in a patient with intractable spinal cord injury pain: a case report and literature review.

    PubMed

    Que, Jocelyn C; Siddall, Philip J; Cousins, Michael J

    2007-11-01

    Chronic pain is one of the more disturbing sequelae of spinal cord injury, often interfering with the basic activities, effective rehabilitation, and quality of life of the patient. Pain in the cord-injured patient is often recalcitrant to treatment. This dilemma is amplified by the limited availability of effective pharmacological and nonpharmacological treatment options. We identified relevant articles regarding pain after spinal cord injury from the Medline database from 1975 to 2005 using the search terms "spinal cord injury" or "spinal cord injuries" and "pain" or "spasticity or "muscle spasms." We also searched by hand the review articles in a recently published book from the International Association for the Study of Pain Press on spinal cord injury pain, and identified relevant articles through reference lists. We present a patient with intractable spinal cord injury pain who was successfully treated with a pain management plan that addressed the various aspects of spinal cord injury pain. The evidence for treatment options is reviewed. PMID:17959984

  12. Spinal Cord Injury

    MedlinePlus

    ... How much do you know about taking good care of yourself? Links to more information girlshealth glossary girlshealth.gov home http://www.girlshealth.gov/ Home Illness & disability Types of ... Spinal cord injury Read advice from Dr. Jeffrey Rabin , a pediatric rehabilitation specialist at the Children’s National Medical Center. ...

  13. Allodynia-like effects in rat after ischaemic spinal cord injury photochemically induced by laser irradiation.

    PubMed

    Hao, J X; Xu, X J; Aldskogius, H; Seiger, A; Wiesenfeld-Hallin, Z

    1991-05-01

    We report behaviours suggesting the presence of allodynia elicited by non-noxious brushing and mechanical pressure following photochemically induced ischaemic spinal cord injury in the rat. Female rats were intravenously injected with Erythrosin B and the T10 vertebra was irradiated with a laser beam for 1, 5 or 10 min. These procedures initiated an intravascular photochemical reaction, resulting in ischaemic spinal cord injury. After irradiation a clear allodynia was observed in most rats. The animals vocalized intensely to light touch during gentle handling and were clearly agitated to light brushing of the flanks. The vocalization threshold in response to the mechanical pressure measured with von Frey hairs was markedly decreased during this period. In some animals the existence of spontaneous pain was suggested by spontaneous vocalization. The duration of the allodynia varied among animals from several hours to several days. The severity and duration of allodynia seemed not to be related to the duration of irradiation. In sham-operated rats a slight, transient allodynia was also noted around the wound within a few hours after surgery, which was effectively relieved by systemic morphine (2 mg/kg, i.p.). Morphine (2 mg/kg, i.p.) also partially relieved the allodynia in spinally injured rats 4 h after irradiation. However, morphine, even at a higher dose (5 mg/kg, i.p.), failed to alleviate the allodynia in spinally injured rats 24-48 h after the injury. Systemic injection of the GABAB agonist baclofen (0.01-0.1 mg/kg, i.p.), but not the GABAA agonist muscimol (1 mg/kg, i.p.), effectively relieved allodynia during this period. Pretreatment with guanethidine 24 h and just prior to the irradiation (20 mg/kg, s.c.) did not prevent the occurrence of allodynia in spinal cord injured rats. The present observation is the first to show that ischaemic spinal cord injury could result in cutaneous mechanical allodynia. This phenomenon is resistant to morphine and may not

  14. A Neonatal Mouse Spinal Cord Compression Injury Model.

    PubMed

    Züchner, Mark; Glover, Joel C; Boulland, Jean-Luc

    2016-01-01

    Spinal cord injury (SCI) typically causes devastating neurological deficits, particularly through damage to fibers descending from the brain to the spinal cord. A major current area of research is focused on the mechanisms of adaptive plasticity that underlie spontaneous or induced functional recovery following SCI. Spontaneous functional recovery is reported to be greater early in life, raising interesting questions about how adaptive plasticity changes as the spinal cord develops. To facilitate investigation of this dynamic, we have developed a SCI model in the neonatal mouse. The model has relevance for pediatric SCI, which is too little studied. Because neural plasticity in the adult involves some of the same mechanisms as neural plasticity in early life(1), this model may potentially have some relevance also for adult SCI. Here we describe the entire procedure for generating a reproducible spinal cord compression (SCC) injury in the neonatal mouse as early as postnatal (P) day 1. SCC is achieved by performing a laminectomy at a given spinal level (here described at thoracic levels 9-11) and then using a modified Yasargil aneurysm mini-clip to rapidly compress and decompress the spinal cord. As previously described, the injured neonatal mice can be tested for behavioral deficits or sacrificed for ex vivo physiological analysis of synaptic connectivity using electrophysiological and high-throughput optical recording techniques(1). Earlier and ongoing studies using behavioral and physiological assessment have demonstrated a dramatic, acute impairment of hindlimb motility followed by a complete functional recovery within 2 weeks, and the first evidence of changes in functional circuitry at the level of identified descending synaptic connections(1). PMID:27078037

  15. Transcutaneous electrical spinal-cord stimulation in humans

    PubMed Central

    Gerasimenko, Yury; Gorodnichev, Ruslan; Moshonkina, Tatiana; Sayenko, Dimitry; Gad, Parag; Edgerton, V. Reggie

    2016-01-01

    Locomotor behavior is controlled by specific neural circuits called central pattern generators primarily located at the lumbosacral spinal cord. These locomotor-related neuronal circuits have a high level of automaticity; that is, they can produce a “stepping” movement pattern also seen on electromyography (EMG) in the absence of supraspinal and/or peripheral afferent inputs. These circuits can be modulated by epidural spinal-cord stimulation and/or pharmacological intervention. Such interventions have been used to neuromodulate the neuronal circuits in patients with motor-complete spinal-cord injury (SCI) to facilitate postural and locomotor adjustments and to regain voluntary motor control. Here, we describe a novel non-invasive stimulation strategy of painless transcutaneous electrical enabling motor control (pcEmc) to neuromodulate the physiological state of the spinal cord. The technique can facilitate a stepping performance in non-injured subjects with legs placed in a gravity-neutral position. The stepping movements were induced more effectively with multi-site than single-site spinal-cord stimulation. From these results, a multielectrode surface array technology was developed. Our preliminary data indicate that use of the multielectrode surface array can fine-tune the control of the locomotor behavior. As well, the pcEmc strategy combined with exoskeleton technology is effective for improving motor function in paralyzed patients with SCI. The potential impact of using pcEmc to neuromodulate the spinal circuitry has significant implications for furthering our understanding of the mechanisms controlling locomotion and for rehabilitating sensorimotor function even after severe SCI. PMID:26205686

  16. Activated spinal cord ependymal stem cells rescue neurological function.

    PubMed

    Moreno-Manzano, Victoria; Rodríguez-Jiménez, Francisco Javier; García-Roselló, Mireia; Laínez, Sergio; Erceg, Slaven; Calvo, Maria Teresa; Ronaghi, Mohammad; Lloret, Maria; Planells-Cases, Rosa; Sánchez-Puelles, Jose María; Stojkovic, Miodrag

    2009-03-01

    Spinal cord injury (SCI) is a major cause of paralysis. Currently, there are no effective therapies to reverse this disabling condition. The presence of ependymal stem/progenitor cells (epSPCs) in the adult spinal cord suggests that endogenous stem cell-associated mechanisms might be exploited to repair spinal cord lesions. epSPC cells that proliferate after SCI are recruited by the injured zone, and can be modulated by innate and adaptive immune responses. Here we demonstrate that when epSPCs are cultured from rats with a SCI (ependymal stem/progenitor cells injury [epSPCi]), these cells proliferate 10 times faster in vitro than epSPC derived from control animals and display enhanced self renewal. Genetic profile analysis revealed an important influence of inflammation on signaling pathways in epSPCi after injury, including the upregulation of Jak/Stat and mitogen activated protein kinase pathways. Although neurospheres derived from either epSPCs or epSPCi differentiated efficiently to oligodendrocites and functional spinal motoneurons, a better yield of differentiated cells was consistently obtained from epSPCi cultures. Acute transplantation of undifferentiated epSPCi or the resulting oligodendrocyte precursor cells into a rat model of severe spinal cord contusion produced a significant recovery of motor activity 1 week after injury. These transplanted cells migrated long distances from the rostral and caudal regions of the transplant to the neurofilament-labeled axons in and around the lesion zone. Our findings demonstrate that modulation of endogenous epSPCs represents a viable cell-based strategy for restoring neuronal dysfunction in patients with spinal cord damage. PMID:19259940

  17. Pleural tissue repair with cord blood platelet gel

    PubMed Central

    Rosso, Lorenzo; Parazzi, Valentina; Damarco, Francesco; Righi, Ilaria; Santambrogio, Luigi; Rebulla, Paolo; Gatti, Stefano; Ferrero, Stefano; Nosotti, Mario; Lazzari, Lorenza

    2014-01-01

    Background Prolonged air leak is the major cause of morbidity after pulmonary resection. In this study we used in vitro and in vivo experiments to investigate an innovative approach based on the use of human umbilical cord blood platelet gel. Materials and methods In vitro, a scratch assay was performed to test the tissue repair capability mediated by cord blood platelet gel compared to the standard culture conditions using human primary mesothelial cells. In vivo, an iatrogenic injury was made to the left lung of 54 Wistar rats. Cord blood platelet gel was placed on the injured area only in treated animals and at different times histological changes and the presence of pleural adhesions were evaluated. In addition, changes in the pattern of soluble inflammatory factors were investigated using a multiplex proteome array. Results In vitro, mesothelial cell damage was repaired in a shorter time by cord blood platelet gel than in the control condition (24 versus 35 hours, respectively). In vivo, formation of new mesothelial tissue and complete tissue recovery were observed at 45±1 and 75±1 hours in treated animals and at 130±2.5 and 160±6 hours in controls, respectively. Pleural adhesions were evident in 43% of treated animals compared to 17% of controls. No complications were observed. Interestingly, some crucial soluble factors involved in inflammation were significantly reduced in treated animals. Discussion Cord blood platelet gel accelerates the repair of pleural damage and stimulates the development of pleural adhesions. Both properties could be particularly useful in the management of prolonged air leak, and to reduce inflammation. PMID:23736928

  18. A Neonatal Mouse Spinal Cord Compression Injury Model

    PubMed Central

    Züchner, Mark; Glover, Joel C.; Boulland, Jean-Luc

    2016-01-01

    Spinal cord injury (SCI) typically causes devastating neurological deficits, particularly through damage to fibers descending from the brain to the spinal cord. A major current area of research is focused on the mechanisms of adaptive plasticity that underlie spontaneous or induced functional recovery following SCI. Spontaneous functional recovery is reported to be greater early in life, raising interesting questions about how adaptive plasticity changes as the spinal cord develops. To facilitate investigation of this dynamic, we have developed a SCI model in the neonatal mouse. The model has relevance for pediatric SCI, which is too little studied. Because neural plasticity in the adult involves some of the same mechanisms as neural plasticity in early life1, this model may potentially have some relevance also for adult SCI. Here we describe the entire procedure for generating a reproducible spinal cord compression (SCC) injury in the neonatal mouse as early as postnatal (P) day 1. SCC is achieved by performing a laminectomy at a given spinal level (here described at thoracic levels 9-11) and then using a modified Yasargil aneurysm mini-clip to rapidly compress and decompress the spinal cord. As previously described, the injured neonatal mice can be tested for behavioral deficits or sacrificed for ex vivo physiological analysis of synaptic connectivity using electrophysiological and high-throughput optical recording techniques1. Earlier and ongoing studies using behavioral and physiological assessment have demonstrated a dramatic, acute impairment of hindlimb motility followed by a complete functional recovery within 2 weeks, and the first evidence of changes in functional circuitry at the level of identified descending synaptic connections1. PMID:27078037

  19. Increased oxidative activity in human blood neutrophils and monocytes after spinal cord injury.

    PubMed

    Bao, Feng; Bailey, Christopher S; Gurr, Kevin R; Bailey, Stewart I; Rosas-Arellano, M Patricia; Dekaban, Gregory A; Weaver, Lynne C

    2009-02-01

    Traumatic injury can cause a systemic inflammatory response, increasing oxidative activity of circulating leukocytes and potentially exacerbating the original injury, as well as causing damage to initially unaffected organs. Although the importance of intraspinal inflammation after human spinal cord injury is appreciated, the role of the systemic inflammatory response to this injury is not widely recognised. We investigated oxidative activity of blood leukocytes from nine cord-injured subjects and six trauma controls (bone fractures without CNS injury) at 6 h-2 weeks after injury, comparing values to those of ten uninjured subjects. Neutrophil and monocyte free radical production, evaluated by flow cytometry, increased significantly more in cord injury subjects than in trauma controls (6-fold vs 50% increases). In leukocyte homogenates, the concentration of free radicals increased significantly more in cord injury subjects (2-fold) than in the trauma controls (1.6-fold) as did activity of myeloperoxidase (2.3-fold vs. 1.7-fold). Moreover, in homogenates and blood smears, expression of the NADPH oxidase subunit gp91(phox) and of the oxidative enzyme, inducible nitric oxide synthetase was 20-25% greater in cord injury subjects than in trauma controls. Expression of the pro-inflammatory transcription factor NF-kappaB and of cyclooxygenase-2 increased similarly after both injuries. Finally, aldehyde products of tissue-damaging lipid peroxidation also increased significantly more in the plasma of spinal cord injury subjects than in trauma controls (2.6 fold vs. 1.9-fold). Spinal cord injury causes a particularly intense systemic inflammatory response. Limiting this response briefly after cord injury should protect the spinal cord and tissues/organs outside the CNS from secondary damage. PMID:19056384

  20. FGF-2 in Astroglial Cells During Vertebrate Spinal Cord Recovery

    PubMed Central

    Fahmy, Gehan H.; Moftah, Marie Z.

    2010-01-01

    Fibroblast growth factor-2 is a pleiotrophic cytokine with neurotrophic and gliogenic properties. It is known to regulate CNS injury responses, which include transformation of reactive astrocytes, neurogenesis, and promotion of neurotrophic activities. In the brain, it is localized in astrocytes and discrete neuronal populations. Following both central and peripheral nervous system injury, astrocytes become reactive. These activated cells undergo hypertrophy. A key indicator of astrocyte activation is the increased accumulation of intermediate filaments composed of glial fibrillary acidic protein (GFAP). Following physical insult of brain or spinal cord, reactive astrocytes show increased FGF-2 immunoreactivity. Thus, FGF-2 appears to participate in astrocytic differentiation and proliferation and a good candidate for astrocytic function regulation in healthy, injured, or diseased CNS. To further investigate the cellular mechanisms underlying FGF-2 restorative actions and to analyze the changes within astroglial cells, we studied the localization of GFAP and FGF-2 in adult intact and injured Pleurodeles CNS. Our results show that spinal cord injury triggers a significant increase in FGF-2 immunoreactivity in reactive astrocytes at sites of insult. In addition, these results were time-dependent. Increase in FGF-2 immunoreactivity along the CNS axis, starting 1-week post-injury, was long-lasting extending to 6 weeks. This increase was accompanied by an increase in GFAP immunoreactivity in the same spatial pattern except in SC3 where its level was almost similar to sham-operated animals. Therefore, we suggest that FGF-2 may be involved in cell proliferation and/or astroglial cells differentiation after body spinal cord transection, and could thus play an important role in locomotion recovery. PMID:21119776

  1. NT3-chitosan elicits robust endogenous neurogenesis to enable functional recovery after spinal cord injury.

    PubMed

    Yang, Zhaoyang; Zhang, Aifeng; Duan, Hongmei; Zhang, Sa; Hao, Peng; Ye, Keqiang; Sun, Yi E; Li, Xiaoguang

    2015-10-27

    Neural stem cells (NSCs) in the adult mammalian central nervous system (CNS) hold the key to neural regeneration through proper activation, differentiation, and maturation, to establish nascent neural networks, which can be integrated into damaged neural circuits to repair function. However, the CNS injury microenvironment is often inhibitory and inflammatory, limiting the ability of activated NSCs to differentiate into neurons and form nascent circuits. Here we report that neurotrophin-3 (NT3)-coupled chitosan biomaterial, when inserted into a 5-mm gap of completely transected and excised rat thoracic spinal cord, elicited robust activation of endogenous NSCs in the injured spinal cord. Through slow release of NT3, the biomaterial attracted NSCs to migrate into the lesion area, differentiate into neurons, and form functional neural networks, which interconnected severed ascending and descending axons, resulting in sensory and motor behavioral recovery. Our study suggests that enhancing endogenous neurogenesis could be a novel strategy for treatment of spinal cord injury. PMID:26460015

  2. Anterior spinal cord syndrome of unknown etiology

    PubMed Central

    Klakeel, Merrine; Thompson, Justin; McDonald, Frank

    2015-01-01

    A spinal cord injury encompasses a physical insult to the spinal cord. In the case of anterior spinal cord syndrome, the insult is a vascular lesion at the anterior spinal artery. We present the cases of two 13-year-old boys with anterior spinal cord syndrome, along with a review of the anatomy and vasculature of the spinal cord and an explanation of how a lesion in the cord corresponds to anterior spinal cord syndrome. PMID:25552812

  3. A role for bombesin in sensory processing in the spinal cord.

    PubMed

    O'Donohue, T L; Massari, V J; Pazoles, C J; Chronwall, B M; Shults, C W; Quirion, R; Chase, T N; Moody, T W

    1984-12-01

    Bombesin (BN)-containing neuronal processes were demonstrated in laminae I and II of the dorsal horn of the cat, rat, and mouse spinal cord by immunocytochemistry and radioimmunoassay. Dorsal rhizotomy in the cat resulted in a marked decrease in BN immunoreactivity in the dorsal horn indicating that BN is contained in primary sensory afferents. BN-binding sites were also localized in superficial laminae of the dorsal horn. The presence of both BN and BN-binding sites in the dorsal horn suggested that BN may be involved in sensory processing in the spinal cord. Consistent with this hypothesis, it was demonstrated that an injection of BN into the spinal cord caused a biting and scratching response indicative of sensory stimulation. The effect was similar to that observed after injection of substance P into the cord with the exception that the BN effect lasted about 100 times longer than that induced by substance P. Taken together, these data indicate that BN may be a neurotransmitter of primary sensory afferents to the spinal cord. PMID:6094746

  4. Beneficial effects of secretory leukocyte protease inhibitor after spinal cord injury

    PubMed Central

    Ghasemlou, Nader; Bouhy, Delphine; Yang, Jingxuan; López-Vales, Rubèn; Haber, Michael; Thuraisingam, Thusanth; He, Guoan; Radzioch, Danuta; Ding, Aihao

    2010-01-01

    Secretory leukocyte protease inhibitor is a serine protease inhibitor produced by various cell types, including neutrophils and activated macrophages, and has anti-inflammatory properties. It has been shown to promote wound healing in the skin and other non-neural tissues, however, its role in central nervous system injury was not known. We now report a beneficial role for secretory leukocyte protease inhibitor after spinal cord injury. After spinal cord contusion injury in mice, secretory leukocyte protease inhibitor is expressed primarily by astrocytes and neutrophils but not macrophages. We show, using transgenic mice over-expressing secretory leukocyte protease inhibitor, that this molecule has an early protective effect after spinal cord contusion injury. Furthermore, wild-type mice treated for the first week after spinal cord contusion injury with recombinant secretory leukocyte protease inhibitor exhibit sustained improvement in locomotor control and reduced secondary tissue damage. Recombinant secretory leukocyte protease inhibitor injected intraperitoneally localizes to the nucleus of circulating leukocytes, is detected in the injured spinal cord, reduces activation of nuclear factor-κB and expression of tumour necrosis factor-α. Administration of recombinant secretory leukocyte protease inhibitor might therefore be useful for the treatment of acute spinal cord injury. PMID:20047904

  5. Descending pathways to the cutaneus trunci muscle motoneuronal cell group in the cat

    NASA Technical Reports Server (NTRS)

    Holstege, Gert; Blok, Bertil F.

    1989-01-01

    The descending pathways to the motoneuronal cell group of the cutaneous trunci muscle (CTM) of the cat were investigated by injecting H-3-labeled lucine into the brain stem, the diencephalon, or the C1, C2, C6, and C8 segments of the spinal cord, and examining fixed autoradiographic sections of the spinal cord and brain regions. Results demonstrate presence of specific supraspinal projectons to the CTM motor nucleus originating in the contralateral nucleus retroambiguous and the ipsilateral dorsolateral pontine tegmentum. Results also suggest that propriospinal pathways to the CTM motor nucleus originating in the cervical cord do not exist, although these propriospinal projections to all other motoneuronal cell groups surrounding the CTM nucleus are very strong.

  6. Descending pathways to the cutaneus trunci muscle motoneuronal cell group in the cat

    NASA Technical Reports Server (NTRS)

    Holstege, Gert; Blok, Bertil F.

    1989-01-01

    Pathways involved in the cutaneous trunci muscle (CTM) reflex in the cat were investigated. Experimental animals were injected with tritium-labeled L-leucine into their spinal cord, brain stem, or diencephalon and, after six weeks, perfused with 10-percent formalin. The brains and spinal cords were postfixed in formalin and were cut into transverse 25-micron-thick frozen sections for autoradiography. Results based on injections in the C1, C2, C6, and C8 segments suggest that propriospinal pathways to the CTM motor nucleus originating in the cervical cord do no exist, although these propriospinal projections are very strong to all other motoneuronal cell groups surrounding the CTM motor nucleus. The results also demonstrate presence of specific supraspinal projections to the CTM motor nucleus, originating in the contralateral nucleus retroambiguous and the ipsilateral dorsolateral pontine tegmentum.

  7. Safety of intrathecal administration of cytosine arabinoside and methotrexate in dogs and cats.

    PubMed

    Genoni, S; Palus, V; Eminaga, S; Cherubini, G B

    2016-09-01

    The objective of the study was to retrospectively evaluate the short-term safety of intrathecal administration of cytosine arabinoside alone or in combination with methotrexate in dogs and cats. One hundred and twelve dogs and eight cats admitted between September 2008 and December 2013, diagnosed with suspected inflammatory (meningoencephalomyelitis of unknown aetiology) or neoplastic disease affecting brain or spinal cord and treated with an intrathecal administration of cytosine arabinoside alone or in combination with methotrexate were included in the study. Recorded information regarding possible adverse events during administration while recovering from anaesthesia and during hospitalization period were evaluated. The results showed that one patient developed generalized tonic-clonic seizure activity after administration of cytosine arabinoside and methotrexate during recovery from anaesthesia, however responded to intravenous administration of diazepam. On the base of our results we can conclude that intrathecal administration of cytosine arabinoside alone or in combination with methotrexate is a safe procedure in dogs and cats. PMID:25041580

  8. Care of post-traumatic spinal cord injury patients in India: An analysis

    PubMed Central

    Pandey, VK; Nigam, V; Goyal, T D; Chhabra, HS

    2007-01-01

    Background: The spinal cord injured patients if congregated early in spinal units where better facilities and dedicated expert care exist the outcome of treatment and rehabilitation, can be improved. The objective of this study is to find out the various factors responsible for a delay in the presentation of spinal injury patients to the specialized spinal trauma units and to suggest steps to improve the quality of care of the spinal trauma patients in the Indian setup. Materials and Methods: Sixty patients of traumatic spinal cord injury admitted for rehabilitation between August 2005 and May 2006 were enrolled into the study and their data was analyzed. Results: Eighty-five per cent of the spinal cord injured patients were males and the mean age was 34 years (range 13-56 years). Twenty-nine (48.33%) of the spinal injuries occurred due to fall from height. There was an average of 45 days (range 0-188 days) of delay in presentation to a specialized spinal unit and most of the time the cause for the delay was unawareness on the part of patients and/or doctors regarding specialized spinal units. In 38 (62.5%) cases the mode of transportation of the spinal cord injured patient to the first visited hospital was by their own conveyance and the attendants of the patients did not have any idea about precautions essential to prevent neurological deterioration. Seventeen (28.33%) patients were given injection solumedrol with conservative treatment, 35 (60%) patients were given only conservative treatment and seven patients were operated (11.66%) upon at initially visited hospital. Of the seven patients operated five were fixed with posterior Harrington instrumentation (71.42%) and two (28.57%) were operated by short segment posterior pedicle screw fixation. None of the patients were subjected to physiotherapy-assisted transfers or wheel chair skills or even basic postural training, proper bladder/ bowel training program and sitting balance. Conclusion: Awareness on the part

  9. [Effect of narcotic analgesics on excitatory transmission in the spinal cord].

    PubMed

    Chichenkov, O N; Molodavkin, G M

    1978-02-01

    As demonstrated on nonanesthetized curare-immobilized spinal cats morphine, promedol and fentanyl failed to alter the amplitude of induced potentials in the ventro-lateral columns of the lumbar spinal cord, evoked by a single or repetitive stimulation of the cutaneous or pelvic nerves. In some experiments the same drugs inhibited the nerurons of the posterior horns of the spinal cord activated by the nociceptive stimulation of the peripheral receptors in intraarterial administration of bradykinin. It is suggested that a spinal component was involved in the action of hypnotic analgetics. PMID:24487

  10. Acquired retinal folds in the cat.

    PubMed

    MacMillan, A D

    1976-06-01

    Retinal folds were found in 5 cats. The apparent cause of the folding was varied: in 1 cat the folds appeared after a localized retinal detachment; in 2 cats the condition accompanied other intraocular abnormalities associated with feline infectious peritonitis; 1 cat had active keratitis, and the retinal changes were thought to have been injury related; and 1 cat, bilaterally affected, had chronic glomerulonephritis. PMID:945253

  11. An ex vivo laser-induced spinal cord injury model to assess mechanisms of axonal degeneration in real-time.

    PubMed

    Okada, Starlyn L M; Stivers, Nicole S; Stys, Peter K; Stirling, David P

    2014-01-01

    Injured CNS axons fail to regenerate and often retract away from the injury site. Axons spared from the initial injury may later undergo secondary axonal degeneration. Lack of growth cone formation, regeneration, and loss of additional myelinated axonal projections within the spinal cord greatly limits neurological recovery following injury. To assess how central myelinated axons of the spinal cord respond to injury, we developed an ex vivo living spinal cord model utilizing transgenic mice that express yellow fluorescent protein in axons and a focal and highly reproducible laser-induced spinal cord injury to document the fate of axons and myelin (lipophilic fluorescent dye Nile Red) over time using two-photon excitation time-lapse microscopy. Dynamic processes such as acute axonal injury, axonal retraction, and myelin degeneration are best studied in real-time. However, the non-focal nature of contusion-based injuries and movement artifacts encountered during in vivo spinal cord imaging make differentiating primary and secondary axonal injury responses using high resolution microscopy challenging. The ex vivo spinal cord model described here mimics several aspects of clinically relevant contusion/compression-induced axonal pathologies including axonal swelling, spheroid formation, axonal transection, and peri-axonal swelling providing a useful model to study these dynamic processes in real-time. Major advantages of this model are excellent spatiotemporal resolution that allows differentiation between the primary insult that directly injures axons and secondary injury mechanisms; controlled infusion of reagents directly to the perfusate bathing the cord; precise alterations of the environmental milieu (e.g., calcium, sodium ions, known contributors to axonal injury, but near impossible to manipulate in vivo); and murine models also offer an advantage as they provide an opportunity to visualize and manipulate genetically identified cell populations and subcellular

  12. Primary hypoadrenocorticism in ten cats.

    PubMed

    Peterson, M E; Greco, D S; Orth, D N

    1989-01-01

    Primary hypoadrenocorticism was diagnosed in ten young to middle-aged cats of mixed breeding. Five of the cats were male, and five were female. Historic signs included lethargy (n = 10), anorexia (n = 10), weight loss (n = 9), vomiting (n = 4), and polyuria (n = 3). Dehydration (n = 9), hypothermia (n = 8), prolonged capillary refill time (n = 5), weak pulse (n = 5), collapse (n = 3), and sinus bradycardia (n = 2) were found on physical examination. Results of initial laboratory tests revealed anemia (n = 3), absolute lymphocytosis (n = 2), absolute eosinophilia (n = 1), and azotemia and hyperphosphatemia (n = 10). Serum electrolyte changes included hyponatremia (n = 10), hyperkalemia (n = 9), hypochloremia (n = 9), and hypercalcemia (n = 1). The diagnosis of primary adrenocortical insufficiency was established on the basis of results of adrenocorticotropic hormone (ACTH) stimulation tests (n = 10) and endogenous plasma ACTH determinations (n = 7). Initial therapy for hypoadrenocorticism included intravenous administration of 0.9% saline and dexamethasone and intramuscular administration of desoxycorticosterone acetate in oil. Three cats were euthanatized shortly after diagnosis because of poor clinical response. Results of necropsy examination were unremarkable except for complete destruction of both adrenal cortices. Seven cats were treated chronically with oral prednisone or intramuscular methylprednisolone acetate for glucocorticoid supplementation and with oral fludrocortisone acetate or intramuscular injections of repository desoxycorticosterone pivalate for mineralocorticoid replacement. One cat died after 47 days of therapy from unknown causes; the other six cats are still alive and well after 3 to 70 months of treatment. PMID:2469793

  13. Neuronal glycosylation differentials in normal, injured and chondroitinase-treated environments

    SciTech Connect

    Kilcoyne, Michelle; Sharma, Shashank; McDevitt, Niamh; O'Leary, Claire; Joshi, Lokesh; McMahon, Siobhan S.

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Carbohydrates are important in the CNS and ChABC has been used for spinal cord injury (SCI) treatment. Black-Right-Pointing-Pointer Neuronal glycosylation in injury and after ChABC treatment is unknown. Black-Right-Pointing-Pointer In silico mining verified that glyco-related genes were differentially regulated after SCI. Black-Right-Pointing-Pointer In vitro model system revealed abnormal sialylation in an injured environment. Black-Right-Pointing-Pointer The model indicated a return to normal neuronal glycosylation after ChABC treatment. -- Abstract: Glycosylation is found ubiquitously throughout the central nervous system (CNS). Chondroitin sulphate proteoglycans (CSPGs) are a group of molecules heavily substituted with glycosaminoglycans (GAGs) and are found in the extracellular matrix (ECM) and cell surfaces. Upon CNS injury, a glial scar is formed, which is inhibitory for axon regeneration. Several CSPGs are up-regulated within the glial scar, including NG2, and these CSPGs are key inhibitory molecules of axonal regeneration. Treatment with chondroitinase ABC (ChABC) can neutralise the inhibitory nature of NG2. A gene expression dataset was mined in silico to verify differentially regulated glycosylation-related genes in neurons after spinal cord injury and identify potential targets for further investigation. To establish the glycosylation differential of neurons that grow in a healthy, inhibitory and ChABC-treated environment, we established an indirect co-culture system where PC12 neurons were grown with primary astrocytes, Neu7 astrocytes (which overexpress NG2) and Neu7 astrocytes treated with ChABC. After 1, 4 and 8 days culture, lectin cytochemistry of the neurons was performed using five fluorescently-labelled lectins (ECA MAA, PNA, SNA-I and WFA). Usually {alpha}-(2,6)-linked sialylation scarcely occurs in the CNS but this motif was observed on the neurons in the injured environment only at day 8. Treatment

  14. Electrospun Fibers for Spinal Cord Injury Research and Regeneration.

    PubMed

    Schaub, Nicholas J; Johnson, Christopher D; Cooper, Blair; Gilbert, Ryan J

    2016-08-01

    Electrospinning is the process by which a scaffold containing micrometer and nanometer diameter fibers are drawn from a polymer solution or melt using a large voltage gradient between a polymer emitting source and a grounded collector. Ramakrishna and colleagues first investigated electrospun fibers for neural applications in 2004. After this initial study, electrospun fibers are increasingly investigated for neural tissue engineering applications. Electrospun fibers robustly support axonal regeneration within in vivo rodent models of spinal cord injury. These findings suggest the possibility of their eventual use within patients. Indeed, both spinal cord and peripheral nervous system regeneration research over the last several years shows that physical guidance cues induce recovery of limb, respiration, or bladder control in rodent models. Electrospun fibers may be an alternative to the peripheral nerve graft (PNG), because PNG autografts injure the patient and are limited in supply, and allografts risk host rejection. In addition, electrospun fibers can be engineered easily to confront new therapeutic challenges. Fibers can be modified to release therapies locally or can be physically modified to direct neural stem cell differentiation. This review summarizes the major findings and trends in the last decade of research, with a particular focus on spinal cord injury. This review also demonstrates how electrospun fibers can be used to study the central nervous system in vitro. PMID:26650778

  15. Effects of microtubule-associated protein tau expression on neural stem cell migration after spinal cord injury

    PubMed Central

    Qi, Zhi-ping; Wang, Guo-xiang; Xia, Peng; Hou, Ting-ting; Zhou, Hong-li; Wang, Tie-jun; Yang, Xiao-yu

    2016-01-01

    Our preliminary proteomics analysis suggested that expression of microtubule-associated protein tau is elevated in the spinal cord after injury. Therefore, the first aim of the present study was to examine tau expression in the injured spinal cord. The second aim was to determine whether tau can regulate neural stem cell migration, a critical factor in the successful treatment of spinal cord injury. We established rat models of spinal cord injury and injected them with mouse hippocampal neural stem cells through the tail vein. We used immunohistochemistry to show that the expression of tau protein and the number of migrated neural stem cells were markedly increased in the injured spinal cord. Furthermore, using a Transwell assay, we showed that neural stem cell migration was not affected by an elevated tau concentration in the outer chamber, but it was decreased by changes in intracellular tau phosphorylation state. These results demonstrate that neural stem cells have targeted migration capability at the site of injury, and that although tau is not a chemokine for targeted migration of neural stem cells, intracellular tau phosphorylation/dephosphorylation can inhibit cell migration. PMID:27073389

  16. Mesenchymal Stem Cell Graft Improves Recovery after Spinal Cord Injury in Adult Rats through Neurotrophic and Pro-Angiogenic Actions

    PubMed Central

    Botman, Olivier; Sid, Selim; Schoenen, Jean; Franzen, Rachelle

    2012-01-01

    Numerous strategies have been managed to improve functional recovery after spinal cord injury (SCI) but an optimal strategy doesn't exist yet. Actually, it is the complexity of the injured spinal cord pathophysiology that begets the multifactorial approaches assessed to favour tissue protection, axonal regrowth and functional recovery. In this context, it appears that mesenchymal stem cells (MSCs) could take an interesting part. The aim of this study is to graft MSCs after a spinal cord compression injury in adult rat to assess their effect on functional recovery and to highlight their mechanisms of action. We found that in intravenously grafted animals, MSCs induce, as early as 1 week after the graft, an improvement of their open field and grid navigation scores compared to control animals. At the histological analysis of their dissected spinal cord, no MSCs were found within the host despite their BrdU labelling performed before the graft, whatever the delay observed: 7, 14 or 21 days. However, a cytokine array performed on spinal cord extracts 3 days after MSC graft reveals a significant increase of NGF expression in the injured tissue. Also, a significant tissue sparing effect of MSC graft was observed. Finally, we also show that MSCs promote vascularisation, as the density of blood vessels within the lesioned area was higher in grafted rats. In conclusion, we bring here some new evidences that MSCs most likely act throughout their secretions and not via their own integration/differentiation within the host tissue. PMID:22745769

  17. Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds☆

    PubMed Central

    Madigan, Nicolas N.; McMahon, Siobhan; O’Brien, Timothy; Yaszemski, Michael J.; Windebank, Anthony J.

    2010-01-01

    This review highlights current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury. The concept of developing 3-dimensional polymer scaffolds for placement into a spinal cord transection model has recently been more extensively explored as a solution for restoring neurologic function after injury. Given the patient morbidity associated with respiratory compromise, the discrete tracts in the spinal cord conveying innervation for breathing represent an important and achievable therapeutic target. The aim is to derive new neuronal tissue from the surrounding, healthy cord that will be guided by the polymer implant through the injured area to make functional reconnections. A variety of naturally derived and synthetic biomaterial polymers have been developed for placement in the injured spinal cord. Axonal growth is supported by inherent properties of the selected polymer, the architecture of the scaffold, permissive microstructures such as pores, grooves or polymer fibres, and surface modifications to provide improved adherence and growth directionality. Structural support of axonal regeneration is combined with integrated polymeric and cellular delivery systems for therapeutic drugs and for neurotrophic molecules to regionalize growth of specific nerve populations. PMID:19737633

  18. Intraoperative clinical use of low-power laser irradiation following surgical treatment of the tethered spinal cord

    NASA Astrophysics Data System (ADS)

    Rochkind, S.; Alon, M.; Ouaknine, G. E.; Weiss, S.; Avram, J.; Razon, Nisim; Lubart, Rachel; Friedmann, Harry

    1991-05-01

    Based on previous experimental investigations which indicated that low-power laser irradiation has a significant therapeutic effect and treatment potential on the injured nerve tissue, the authors began using this method in clinical practice. This data represents the first clinical results in the treatment of four patients with tethered spinal cord resulting from fibrous adhesions at the site of previous myelomeningocele and lypomyelomeningocele repair, thickened filum terminale and spinal lipoma. After surgical release of the tethered spinal cord, stable evoked responses were recorded and the conus medullaris was subjected to direct laser irradiation (CW He-Ne laser, 632.8nm, 7Jcm2). The findings show intraoperative laser treatment increases evoked responses from 15-52% (mean 26.7%). In a previous work, it was shown that direct laser irradiation promotes restoration of the electrophysiological activity of the severely injured peripheral nerve, prevents degenerative changes in neurons of the spinal cord and induces proliferation of astrocytes and oligodendrocytes. This suggested a higher metabolism in neurons and improved ability for myelin production under the influence of laser treatment. It is well known that tethering of the spinal cord causes mechanical damage to neuronal cell membranes leading to metabolic disturbances in the neurons. For this reason, the authors believe that using low-power laser irradiation may improve neuronal metabolism, prevent neuronal degeneration and promote improved spinal cord function and repair.

  19. Prevention of deep venous thrombosis in patients with acute spinal cord injuries: use of rotating treatment tables

    SciTech Connect

    Becker, D.M.; Gonzalez, M.; Gentili, A.; Eismont, F.; Green, B.A.

    1987-05-01

    A randomized clinical trial of 15 patients with acute spinal cord injuries was performed to test the hypothesis that rotating treatment tables prevent deep venous thrombosis in this population. Four of 5 control (nonrotated) patients developed distal and proximal thrombi, assessed by /sup 125/I fibrinogen leg scans and impedance plethysmography. In comparison, only 1 of 10 treated (rotated) patients developed both distal and proximal thrombosis. These results suggest but do not prove that rotating treatment tables prevent the development of proximal deep venous thrombosis in spinal cord-injured patients. Larger clinical trials are needed to confirm this heretofore undocumented benefit of rotating treatment tables.

  20. Functional and electrophysiological changes after graded traumatic spinal cord injury in adult rat.

    PubMed

    Cao, Qilin; Zhang, Yi Ping; Iannotti, Christopher; DeVries, William H; Xu, Xiao-Ming; Shields, Christopher B; Whittemore, Scott R

    2005-02-01

    A graded contusion spinal cord injury (SCI) was created in the adult rat spinal cord using the Infinite Horizons (IH) impactor to study the correlation between injury severity and anatomical, behavioral, and electrophysiological outcomes. Adult Fisher rats were equally divided into five groups and received contusion injuries at the ninth thoracic level (T9) with 100, 125, 150, 175, or 200 kdyn impact forces, respectively. Transcranial magnetic motor-evoked potentials (tcMMEPs) and BBB open-field locomotor analyses were performed weekly for 4 weeks postinjury. Our results demonstrated that hindlimb locomotor function decreased in accordance with an increase in injury severity. The locomotor deficits were proportional to the amount of damage to the ventral and lateral white matter (WM). Locomotor function was strongly correlated to the amount of spared WM, which contains the reticulospinal and propriospinal tracts. Normal tcMMEP latencies were recorded in control, all of 100-kdyn-injured and half of 125-kdyn-injured animals. Delayed latency responses were recorded in some of 125-kdyn-injured and all of 150-kdyn-injured animals. No tcMMEP responses were recorded in 175- and 200-kdyn-injured animals. Comparison of tcMMEP responses with areas of WM loss or demyelination identified the medial ventrolateral funiculus (VLF) as the location of the tcMMEP pathway. Immunohistochemical and electromicroscopic (EM) analyses showed the presence of demyelinated axons in WM tracts surrounding the lesion cavities at 28 days postinjury. These data support the notion that widespread WM damage in the ventral and lateral funiculi may be a major cause for locomotor deficits and lack of tcMMEP responses after SCI. PMID:15629760

  1. Connexin 50 Expression in Ependymal Stem Progenitor Cells after Spinal Cord Injury Activation

    PubMed Central

    Rodriguez-Jimenez, Francisco Javier; Alastrue-Agudo, Ana; Stojkovic, Miodrag; Erceg, Slaven; Moreno-Manzano, Victoria

    2015-01-01

    Ion channels included in the family of Connexins (Cx) help to control cell proliferation and differentiation of neuronal progenitors. Here we explored the role of Connexin 50 (Cx50) in cell fate modulation of adult spinal cord derived neural precursors located in the ependymal canal (epSPC). epSPC from non-injured animals showed high expression levels of Cx50 compared to epSPC from animals with spinal cord injury (SCI) (epSPCi). When epSPC or epSPCi were induced to spontaneously differentiate in vitro we found that Cx50 favors glial cell fate, since higher expression levels, endogenous or by over-expression of Cx50, augmented the expression of the astrocyte marker GFAP and impaired the neuronal marker Tuj1. Cx50 was found in both the cytoplasm and nucleus of glial cells, astrocytes and oligodendrocyte-derived cells. Similar expression patterns were found in primary cultures of mature astrocytes. In addition, opposite expression profile for nuclear Cx50 was observed when epSPC and activated epSPCi were conducted to differentiate into mature oligodendrocytes, suggesting a different role for this ion channel in spinal cord beyond cell-to-cell communication. In vivo detection of Cx50 by immunohistochemistry showed a defined location in gray matter in non-injured tissues and at the epicenter of the injury after SCI. epSPCi transplantation, which accelerates locomotion regeneration by a neuroprotective effect after acute SCI is associated with a lower signal of Cx50 within the injured area, suggesting a minor or detrimental contribution of this ion channel in spinal cord regeneration by activated epSPCi. PMID:26561800

  2. Connexin 50 Expression in Ependymal Stem Progenitor Cells after Spinal Cord Injury Activation.

    PubMed

    Rodriguez-Jimenez, Francisco Javier; Alastrue-Agudo, Ana; Stojkovic, Miodrag; Erceg, Slaven; Moreno-Manzano, Victoria

    2015-01-01

    Ion channels included in the family of Connexins (Cx) help to control cell proliferation and differentiation of neuronal progenitors. Here we explored the role of Connexin 50 (Cx50) in cell fate modulation of adult spinal cord derived neural precursors located in the ependymal canal (epSPC). epSPC from non-injured animals showed high expression levels of Cx50 compared to epSPC from animals with spinal cord injury (SCI) (epSPCi). When epSPC or epSPCi were induced to spontaneously differentiate in vitro we found that Cx50 favors glial cell fate, since higher expression levels, endogenous or by over-expression of Cx50, augmented the expression of the astrocyte marker GFAP and impaired the neuronal marker Tuj1. Cx50 was found in both the cytoplasm and nucleus of glial cells, astrocytes and oligodendrocyte-derived cells. Similar expression patterns were found in primary cultures of mature astrocytes. In addition, opposite expression profile for nuclear Cx50 was observed when epSPC and activated epSPCi were conducted to differentiate into mature oligodendrocytes, suggesting a different role for this ion channel in spinal cord beyond cell-to-cell communication. In vivo detection of Cx50 by immunohistochemistry showed a defined location in gray matter in non-injured tissues and at the epicenter of the injury after SCI. epSPCi transplantation, which accelerates locomotion regeneration by a neuroprotective effect after acute SCI is associated with a lower signal of Cx50 within the injured area, suggesting a minor or detrimental contribution of this ion channel in spinal cord regeneration by activated epSPCi. PMID:26561800

  3. Cat Ownership Perception and Caretaking Explored in an Internet Survey of People Associated with Cats.

    PubMed

    Zito, Sarah; Vankan, Dianne; Bennett, Pauleen; Paterson, Mandy; Phillips, Clive J C

    2015-01-01

    People who feed cats that they do not perceive they own (sometimes called semi-owners) are thought to make a considerable contribution to unwanted cat numbers because the cats they support are generally not sterilized. Understanding people's perception of cat ownership and the psychology underlying cat semi-ownership could inform approaches to mitigate the negative effects of cat semi-ownership. The primary aims of this study were to investigate cat ownership perception and to examine its association with human-cat interactions and caretaking behaviours. A secondary aim was to evaluate a definition of cat semi-ownership (including an association time of ≥1 month and frequent feeding), revised from a previous definition proposed in the literature to distinguish cat semi-ownership from casual interactions with unowned cats. Cat owners and semi-owners displayed similar types of interactions and caretaking behaviours. Nevertheless, caretaking behaviours were more commonly displayed towards owned cats than semi-owned cats, and semi-owned cats were more likely to have produced kittens (p<0.01). All interactions and caretaking behaviours were more likely to be displayed towards cats in semi-ownership relationships compared to casual interaction relationships. Determinants of cat ownership perception were identified (p<0.05) and included association time, attachment, perceived cat friendliness and health, and feelings about unowned cats, including the acceptability of feeding unowned cats. Encouraging semi-owners to have the cats they care for sterilized may assist in reducing the number of unwanted kittens and could be a valuable alternative to trying to prevent semi-ownership entirely. Highly accessible semi-owner "gatekeepers" could help to deliver education messages and facilitate the provision of cat sterilization services to semi-owners. This research enabled semi-ownership to be distinguished from casual interaction relationships and can assist welfare and

  4. Perceptions of Supervision Among Injured and Non-Injured Teens Working in the Retail or Service Industry.

    PubMed

    Zierold, Kristina M

    2016-04-01

    According to the National Institute for Occupational Safety and Health (NIOSH), a teen is injured every 9 minutes at work. Workplace supervision may affect whether teens are injured on the job. Because research on workplace supervision among teens is limited, the objectives of this study were to characterize the perceptions of supervision among injured and non-injured teen workers and assess the characteristics and perceptions of supervisors that may be associated with work-related injuries. In 2011, a cross-sectional survey was conducted among high school students. Teens who worked in retail or service industries (n= 270) were included in the sample. Non-injured teens were more likely to have reported that their supervisors cared about their safety, were helpful, listened well, and ensured that teen workers understood workplace safety. Most teens (70%) did not feel comfortable talking about safety issues with their supervisors. The importance of supervision and how supervisors are perceived in the workplace may be significant in creating a safety culture that leaves a lasting impression. PMID:26563967

  5. The Cat's Eye Nebula

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This NASA Hubble Space Telescope image shows one of the most complex planetary nebulae ever seen, NGC 6543, nicknamed the 'Cat's Eye Nebula.' Hubble reveals surprisingly intricate structures including concentric gas shells, jets of high-speed gas and unusual shock-induced knots of gas. Estimated to be 1,000 years old, the nebula is a visual 'fossil record' of the dynamics and late evolution of a dying star. A preliminary interpretation suggests that the star might be a double-star system. The suspected companion star also might be responsible for a pair of high-speed jets of gas that lie at right angles to this equatorial ring. If the companion were pulling in material from a neighboring star, jets escaping along the companion's rotation axis could be produced. These jets would explain several puzzling features along the periphery of the gas lobes. Like a stream of water hitting a sand pile, the jets compress gas ahead of them, creating the 'curlicue' features and bright arcs near the outer edge of the lobes. The twin jets are now pointing in different directions than these features. This suggests the jets are wobbling, or precessing, and turning on and off episodically. This color picture, taken with the Wide Field Planetary Camera-2, is a composite of three images taken at different wavelengths. (red, hydrogen-alpha; blue, neutral oxygen, 6300 angstroms; green, ionized nitrogen, 6584 angstroms). The image was taken on September 18, 1994. NGC 6543 is 3,000 light- years away in the northern constellation Draco. The term planetary nebula is a misnomer; dying stars create these cocoons when they lose outer layers of gas. The process has nothing to do with planet formation, which is predicted to happen early in a star's life.

  6. Cooling athletes with a spinal cord injury.

    PubMed

    Griggs, Katy E; Price, Michael J; Goosey-Tolfrey, Victoria L

    2015-01-01

    Cooling strategies that help prevent a reduction in exercise capacity whilst exercising in the heat have received considerable research interest over the past 3 decades, especially in the lead up to a relatively hot Olympic and Paralympic Games. Progressing into the next Olympic/Paralympic cycle, the host, Rio de Janeiro, could again present an environmental challenge for competing athletes. Despite the interest and vast array of research into cooling strategies for the able-bodied athlete, less is known regarding the application of these cooling strategies in the thermoregulatory impaired spinal cord injured (SCI) athletic population. Individuals with a spinal cord injury (SCI) have a reduced afferent input to the thermoregulatory centre and a loss of both sweating capacity and vasomotor control below the level of the spinal cord lesion. The magnitude of this thermoregulatory impairment is proportional to the level of the lesion. For instance, individuals with high-level lesions (tetraplegia) are at a greater risk of heat illness than individuals with lower-level lesions (paraplegia) at a given exercise intensity. Therefore, cooling strategies may be highly beneficial in this population group, even in moderate ambient conditions (~21 °C). This review was undertaken to examine the scientific literature that addresses the application of cooling strategies in individuals with an SCI. Each method is discussed in regards to the practical issues associated with the method and the potential underlying mechanism. For instance, site-specific cooling would be more suitable for an athlete with an SCI than whole body water immersion, due to the practical difficulties of administering this method in this population group. From the studies reviewed, wearing an ice vest during intermittent sprint exercise has been shown to decrease thermal strain and improve performance. These garments have also been shown to be effective during exercise in the able-bodied. Drawing on

  7. B-RAF kinase drives developmental axon growth and promotes axon regeneration in the injured mature CNS

    PubMed Central

    O’Donovan, Kevin J.; Ma, Kaijie; Guo, Hengchang; Wang, Chen; Sun, Fang; Han, Seung Baek; Kim, Hyukmin; Wong, Jamie K.; Charron, Jean; Zou, Hongyan; Son, Young-Jin; He, Zhigang

    2014-01-01

    Activation of intrinsic growth programs that promote developmental axon growth may also facilitate axon regeneration in injured adult neurons. Here, we demonstrate that conditional activation of B-RAF kinase alone in mouse embryonic neurons is sufficient to drive the growth of long-range peripheral sensory axon projections in vivo in the absence of upstream neurotrophin signaling. We further show that activated B-RAF signaling enables robust regenerative growth of sensory axons into the spinal cord after a dorsal root crush as well as substantial axon regrowth in the crush-lesioned optic nerve. Finally, the combination of B-RAF gain-of-function and PTEN loss-of-function promotes optic nerve axon extension beyond what would be predicted for a simple additive effect. We conclude that cell-intrinsic RAF signaling is a crucial pathway promoting developmental and regenerative axon growth in the peripheral and central nervous systems. PMID:24733831

  8. Novel aspects of spinal cord evoked potentials (SCEPs) in the evaluation of dorso-ventral and lateral mechanical impacts on the spinal cord

    NASA Astrophysics Data System (ADS)

    Rad, Iman; Kouhzaei, Sogolie; Mobasheri, Hamid; Saberi, Hooshang

    2015-02-01

    Objectives. The aim of the current study was to mimic mechanical impacts on the spinal cord by manifesting the effects of dorsoventral (DVMP) and lateral (LMP) mechanical pressure on neural activity to address points to be considered during surgery for different purposes, including spinal cord decompression. Approaches. Spinal cords of anesthetized rats were compressed at T13. Different characteristics of axons, including vulnerability, excitability, and conduction velocity (CV), in response to promptness, severity, and duration of pressure were assessed by spinal cord evoked potentials (SCEPs). Real-time SCEPs recorded at L4-5 revealed N1, N2, and N3 peaks that were used to represent the activity of injured sensory afferents, interneurons, and MN fibers. The averaged SCEP recordings were fitted by trust-region algorithm to find the equivalent Gaussian and polynomial equations. Main results. The pyramidal and extrapyramidal pathways possessed CVs of 3-11 and 16-80 m s-1, respectively. DVMP decreased the excitability of myelinated neural fibers in antidromic and orthodromic pathways. The excitability of fibers in extrapyramidal and pyramidal pathways of lateral corticospinal (LCS) and anterior corticospinal (ACS) tracts decreased following LMP. A significant drop in the amplitude of N3 and its conduction velocity (CV) revealed higher susceptibility of less-myelinated fibers to both DVMP and LMP. The best parametric fitting model for triplet healthy spinal cord CAP was a six-term Gaussian equation (G6) that fell into a five-term equation (G5) at the complete compression stage. Significance. The spinal cord is more susceptible to dorsoventral than lateral mechanical pressures, and this should be considered in spinal cord operations. SCEPs have shown promising capabilities for evaluating the severity of SCI and thus can be applied for diagnostic or prognostic intraoperative monitoring (IOM).

  9. The current state-of-the-art of spinal cord imaging: Applications

    PubMed Central

    Wheeler-Kingshott, C.A.; Stroman, P.W.; Schwab, J.M.; Bacon, M.; Bosma, R.; Brooks, J.; Cadotte, D.W.; Carlstedt, T.; Ciccarelli, O.; Cohen-Adad, J.; Curt, A.; Evangelou, N.; Fehlings, M.G.; Filippi, M.; Kelley, B.J.; Kollias, S.; Mackay, A.; Porro, C.A.; Smith, S.; Strittmatter, S.M.; Summers, P.; Thompson, A.J.; Tracey, I.

    2015-01-01

    A first-ever spinal cord imaging meeting was sponsored by the International Spinal Research Trust and the Wings for Life Foundation with the aim of identifying the current state-of-the-art of spinal cord imaging, the current greatest challenges, and greatest needs for future development. This meeting was attended by a small group of invited experts spanning all aspects of spinal cord imaging from basic research to clinical practice. The greatest current challenges for spinal cord imaging were identified as arising from the imaging environment itself; difficult imaging environment created by the bone surrounding the spinal canal, physiological motion of the cord and adjacent tissues, and small crosssectional dimensions of the spinal cord, exacerbated by metallic implants often present in injured patients. Challenges were also identified as a result of a lack of “critical mass” of researchers taking on the development of spinal cord imaging, affecting both the rate of progress in the field, and the demand for equipment and software to manufacturers to produce the necessary tools. Here we define the current state-of-the-art of spinal cord imaging, discuss the underlying theory and challenges, and present the evidence for the current and potential power of these methods. In two review papers (part I and part II), we propose that the challenges can be overcome with advances in methods, improving availability and effectiveness of methods, and linking existing researchers to create the necessary scientific and clinical network to advance the rate of progress and impact of the research. PMID:23859923

  10. Effect of melatonin on the functional recovery from experimental traumatic compression of the spinal cord

    PubMed Central

    Schiaveto-de-Souza, A.; da-Silva, C.A.; Defino, H.L.A.; Bel, E.A.Del

    2013-01-01

    Spinal cord injury is an extremely severe condition with no available effective therapies. We examined the effect of melatonin on traumatic compression of the spinal cord. Sixty male adult Wistar rats were divided into three groups: sham-operated animals and animals with 35 and 50% spinal cord compression with a polycarbonate rod spacer. Each group was divided into two subgroups, each receiving an injection of vehicle or melatonin (2.5 mg/kg, intraperitoneal) 5 min prior to and 1, 2, 3, and 4 h after injury. Functional recovery was monitored weekly by the open-field test, the Basso, Beattie and Bresnahan locomotor scale and the inclined plane test. Histological changes of the spinal cord were examined 35 days after injury. Motor scores were progressively lower as spacer size increased according to the motor scale and inclined plane test evaluation at all times of assessment. The results of the two tests were correlated. The open-field test presented similar results with a less pronounced difference between the 35 and 50% compression groups. The injured groups presented functional recovery that was more evident in the first and second weeks. Animals receiving melatonin treatment presented more pronounced functional recovery than vehicle-treated animals as measured by the motor scale or inclined plane. NADPH-d histochemistry revealed integrity of the spinal cord thoracic segment in sham-operated animals and confirmed the severity of the lesion after spinal cord narrowing. The results obtained after experimental compression of the spinal cord support the hypothesis that melatonin may be considered for use in clinical practice because of its protective effect on the secondary wave of neuronal death following the primary wave after spinal cord injury. PMID:23579633

  11. Genetic testing in domestic cats

    PubMed Central

    Lyons, Leslie A.

    2012-01-01

    Varieties of genetic tests are currently available for the domestic cat that support veterinary health care, breed management, species identification, and forensic investigations. Approximately thirty-five genes contain over fifty mutations that cause feline health problems or alterations in the cat’s appearance. Specific genes, such as sweet and drug receptors, have been knocked-out of Felidae during evolution and can be used along with mtDNA markers for species identification. Both STR and SNP panels differentiate cat race, breed, and individual identity, as well as gender-specific markers to determine sex of an individual. Cat genetic tests are common offerings for commercial laboratories, allowing both the veterinary clinician and the private owner to obtain DNA test results. This article will review the genetic tests for the domestic cat, and their various applications in different fields of science. Highlighted are genetic tests specific to the individual cat, which are a part of the cat’s genome. PMID:22546621

  12. FAQs about Spinal Cord Injury (SCI)

    MedlinePlus

    ... Website Managing Bowel Function After Spinal Cord Injury Resilience, Depression and Bouncing Back after SCI Getting to ... a “complete” and “incomplete” spinal cord injury? What recovery is expected following spinal cord injury? Where is ...

  13. Inhibition of hydrogen peroxide induced injuring on human skin fibroblast by Ulva prolifera polysaccharide.

    PubMed

    Cai, Chuner; Guo, Ziye; Yang, Yayun; Geng, Zhonglei; Tang, Langlang; Zhao, Minglin; Qiu, Yuyan; Chen, Yifan; He, Peimin

    2016-10-01

    Ulva prolifera can protect human skin fibroblast from being injured by hydrogen peroxide. This work studied the composition of Ulva prolifera polysaccharide and identified its physicochemical properties. The results showed that the cell proliferation of 0.5mg/mL crude polysaccharide was 154.4% of that in negative control group. Moreover, ROS detection indices, including DCFH-DA, GSH-PX, MDA and CAT, indicated that crude polysaccharide could improve cellular ability to scavenge free radical and decrease the injury on human skin fibroblast by hydrogen peroxide. In purified polysaccharide, the activity of fraction P1-1 was the highest, with 174.6% of that in negative control group. The average molecular weight of P1-1 was 137kD with 18.0% of sulfate content. This work showed the inhibition of hydrogen peroxide induced injuries on human skin fibroblast by Ulva prolifera polysaccharide, which may further evaluate the application of U. prolifera on cosmetics. PMID:27211299

  14. Mild hypothermia combined with a scaffold of NgR-silenced neural stem cells/Schwann cells to treat spinal cord injury

    PubMed Central

    Wang, Dong; Liang, Jinhua; Zhang, Jianjun; Liu, Shuhong; Sun, Wenwen

    2014-01-01

    Because the inhibition of Nogo proteins can promote neurite growth and nerve cell differentiation, a cell-scaffold complex seeded with Nogo receptor (NgR)-silenced neural stem cells and Schwann cells may be able to improve the microenvironment for spinal cord injury repair. Previous studies have found that mild hypothermia helps to attenuate secondary damage in the spinal cord and exerts a neuroprotective effect. Here, we constructed a cell-scaffold complex consisting of a poly(D,L-lactide-co-glycolic acid) (PLGA) scaffold seeded with NgR-silenced neural stem cells and Schwann cells, and determined the effects of mild hypothermia combined with the cell-scaffold complexes on the spinal cord hemi-transection injury in the T9 segment in rats. Compared with the PLGA group and the NgR-silencing cells + PLGA group, hindlimb motor function and nerve electrophysiological function were clearly improved, pathological changes in the injured spinal cord were attenuated, and the number of surviving cells and nerve fibers were increased in the group treated with the NgR-silenced cell scaffold + mild hypothermia at 34°C for 6 hours. Furthermore, fewer pathological changes to the injured spinal cord and more surviving cells and nerve fibers were found after mild hypothermia therapy than in injuries not treated with mild hypothermia. These experimental results indicate that mild hypothermia combined with NgR gene-silenced cells in a PLGA scaffold may be an effective therapy for treating spinal cord injury. PMID:25657741

  15. Contralateral Metabolic Activation Related to Plastic Changes in the Spinal Cord after Peripheral Nerve Injury in Rats

    PubMed Central

    Won, Ran; Lee, Bae Hwan

    2015-01-01

    We have previously reported the crossed-withdrawal reflex in which the rats with nerve injury developed behavioral pain responses of the injured paw to stimuli applied to the contralateral uninjured paw. This reflex indicates that contralateral plastic changes may occur in the spinal cord after unilateral nerve injury. The present study was performed to elucidate the mechanisms and morphological correlates underlying the crossed-withdrawal reflex by using quantitative 14C-2-deoxyglucose (2-DG) autoradiography which can examine metabolic activities and spatial patterns simultaneously. Under pentobarbital anesthesia, rats were subjected to unilateral nerve injury. Mechanical allodynia was tested for two weeks after nerve injury. After nerve injury, neuropathic pain behaviors developed progressively. The crossed-withdrawal reflex was observed at two weeks postoperatively. Contralateral enhancement of 2-DG uptake in the ventral horn of the spinal cord to electrical stimulation of the uninjured paw was observed. These results suggest that the facilitation of information processing from the uninjured side to the injured side may contribute to the crossed-withdrawal reflex by plastic changes in the spinal cord of nerve-injured rats. PMID:26491570

  16. Contralateral Metabolic Activation Related to Plastic Changes in the Spinal Cord after Peripheral Nerve Injury in Rats.

    PubMed

    Won, Ran; Lee, Bae Hwan

    2015-01-01

    We have previously reported the crossed-withdrawal reflex in which the rats with nerve injury developed behavioral pain responses of the injured paw to stimuli applied to the contralateral uninjured paw. This reflex indicates that contralateral plastic changes may occur in the spinal cord after unilateral nerve injury. The present study was performed to elucidate the mechanisms and morphological correlates underlying the crossed-withdrawal reflex by using quantitative (14)C-2-deoxyglucose (2-DG) autoradiography which can examine metabolic activities and spatial patterns simultaneously. Under pentobarbital anesthesia, rats were subjected to unilateral nerve injury. Mechanical allodynia was tested for two weeks after nerve injury. After nerve injury, neuropathic pain behaviors developed progressively. The crossed-withdrawal reflex was observed at two weeks postoperatively. Contralateral enhancement of 2-DG uptake in the ventral horn of the spinal cord to electrical stimulation of the uninjured paw was observed. These results suggest that the facilitation of information processing from the uninjured side to the injured side may contribute to the crossed-withdrawal reflex by plastic changes in the spinal cord of nerve-injured rats. PMID:26491570

  17. The Unintentional Injurer: Results From the Boston Youth Survey

    PubMed Central

    Solnick, Sara J.

    2011-01-01

    Objectives. We sought to provide additional information about the characteristics of adolescents who were most likely to cause unintentional injury to other people. Methods. In 2008, as part of a randomized survey of high-school students in the Boston Public School system, more than 1800 respondents answered questions about unintentionally causing an injury to someone else in the past year. Results. More than 20% of boys and 13% of girls reported unintentionally injuring another person in the past year. Being male, exercising, participating in organized activities, and having carried a knife were risk factors for unintentionally causing an injury during sports. Using illegal drugs, having friends who are a bad influence, and having carried a knife were risk factors for unintentionally causing an injury not associated with sports. Conclusions. Unintentionally injuring another person is a fairly common event for high-school students. Characteristics differ between adolescents who unintentionally injure others during sports versus those who unintentionally injure others during nonsports activities. Many of the risk factors for causing unintentional injury unrelated to sports are similar to those for intentionally causing injury. PMID:21389291

  18. Working with Clients Who Self-Injure: Providing Alternatives

    ERIC Educational Resources Information Center

    Wester, Kelly L.; Trepal, Heather C.

    2005-01-01

    The topic of self-injurious behavior (SIB) has been gaining widespread attention. Although college counselors engage in various types of treatments in order to uncover the underlying reasons for a client's SIB, there is another step in treatment that might be helpful to clients who self-injure. This step involves alternatives to self-injury. The…

  19. MMPI--2 Code-Type Congruence of Injured Workers

    ERIC Educational Resources Information Center

    Livingston, Ronald B.; Jennings, Earl; Colotla, Victor A.; Reynolds, Cecil R.; Shercliffe, Regan J.

    2006-01-01

    In this study, the authors examined the stability of Minnesota Multiphasic Personality Inventory--2 (J. N. Butcher, W. G. Dahlstrom, J. R. Graham, A. Tellegen, & B. Kaemmer, 1989) code types in a sample of 94 injured workers with a mean test-retest interval of 21.3 months (SD = 14.1). Congruence rates for undefined code types were 34% for…

  20. Recovery of Sublethally Injured Bacteria Using Selective Agar Overlays.

    ERIC Educational Resources Information Center

    McKillip, John L.

    2001-01-01

    This experiment subjects bacteria in a food sample and an environmental sample to conditions of sublethal stress in order to assess the effectiveness of the agar overlay method to recover sublethally injured cells compared to direct plating onto the appropriate selective medium. (SAH)

  1. RECREATION AND SOCIALIZATION FOR THE BRAIN INJURED CHILD.

    ERIC Educational Resources Information Center

    GOLUB, RISA S.; GORDON, SOL

    DESIGNED FOR PARENTS AND SPECIALISTS PLANNING THERAPEUTICALLY ORIENTED RECREATIONAL AND SOCIALIZATION PROGRAMS FOR BRAIN INJURED CHILDREN, THIS DOCUMENT CONTAINS 13 CHAPTERS BY DIFFERENT AUTHORS. ACTIVITIES DISCUSSED ARE GENERALLY NONCOMPETITIVE, EMPHASIZING STRUCTURE AND LIMIT. DISCUSSED ARE (1) THE ROLE OF THE OPTOMETRIST WITH THE INADEQUATE…

  2. A new model of tethered cord syndrome produced by slow traction.

    PubMed

    Huang, Sheng-Li; Peng, Jun; Yuan, Guo-Lian; Ding, Xiao-Yan; He, Xi-Jing; Lan, Bin-Shang

    2015-01-01

    The development of a suitable animal model is important for clarifying the pathogenesis of tethered cord syndrome (TCS). This study was undertaken to develop a new animal model for investigating the pathogenesis and therapeutic strategies for TCS. A traction device, a filum terminale tractor, was designed exclusively for this experiment. A TCS model was produced in cats using the tractor to fixate the filum terminale to the dorsal aspect of the second sacrum. The responses to tethering were evaluated by electron microscopy and electromyography for detection of somatosensory evoked potentials (SEPs) and motor evoked potentials (MEPs) at designated time points. Progressive swaying gait and lameness in clinical performance were observed with cord traction. Histopathological examination revealed an association between the increasing traction in the spinal cord and the increase in impaired nerve cells. No changes of SEPs and MEPs were detected in the untethered cats, while the latencies of SEPs and MEPs significantly increased in the tethered cats. The TCS model established in this study is simple and reproducible, in which varying degrees of tension could be applied to the neural elements. PMID:25766487

  3. Spatial Stream Segregation by Cats.

    PubMed

    Javier, Lauren K; McGuire, Elizabeth A; Middlebrooks, John C

    2016-06-01

    Listeners can perceive interleaved sequences of sounds from two or more sources as segregated streams. In humans, physical separation of sound sources is a major factor enabling such stream segregation. Here, we examine spatial stream segregation with a psychophysical measure in domestic cats. Cats depressed a pedal to initiate a target sequence of brief sound bursts in a particular rhythm and then released the pedal when the rhythm changed. The target bursts were interleaved with a competing sequence of bursts that could differ in source location but otherwise were identical to the target bursts. This task was possible only when the sources were heard as segregated streams. When the sound bursts had broad spectra, cats could detect the rhythm change when target and competing sources were separated by as little as 9.4°. Essentially equal levels of performance were observed when frequencies were restricted to a high, 4-to-25-kHz, band in which the principal spatial cues presumably were related to sound levels. When the stimulus band was restricted from 0.4 to 1.6 kHz, leaving interaural time differences as the principal spatial cue, performance was severely degraded. The frequency sensitivity of cats in this task contrasts with that of humans, who show better spatial stream segregation with low- than with high-frequency sounds. Possible explanations for the species difference includes the smaller interaural delays available to cats due to smaller sizes of their heads and the potentially greater sound-level cues available due to the cat's frontally directed pinnae and higher audible frequency range. PMID:26993807

  4. Psychoactive substances in seriously injured drivers in Denmark.

    PubMed

    Wiese Simonsen, K; Steentoft, A; Bernhoft, I M; Hels, T; Rasmussen, B S; Linnet, K

    2013-01-10

    This study assesses the presence of a number of psychoactive substances, including alcohol, based on blood samples from 840 seriously injured drivers admitted to five selected hospitals located in five different regions of Denmark. The study was a part of the EU 6th framework program DRUID (Driving Under the Influence of Drugs, Alcohol and Medicines). Blood samples were screened for 30 illegal and legal psychoactive substances and metabolites as well as ethanol. Danish legal limits were used to evaluate the frequency of drivers violating the Danish legislation while limit of quantification (LOQ) was used for monitoring positive drivers. Tramadol is not included in the Danish legislation therefore the general cut off, as decided in the DRUID project was used. Overall, ethanol (18%) was the most frequently identified compound (alone or in combination with other drugs) exceeding the legal limit, which is 0.53g/l in Denmark. The percentage of seriously injured drivers testing positive for medicinal drugs at levels above the Danish legal limit was 6.8%. Benzodiazepines and Z-drugs (6.4%) comprised the majority of this group. One or more illegal drugs (primarily amphetamines and cannabis) were found to be above the Danish legal limit in 4.9% of injured drivers. Young men (median age 31 years) were over-represented among injured drivers who violated Danish law for alcohol and drugs. Diazepam (4.4%), tramadol (3.2%), and clonazepam (3.0%) were the medicinal drugs most frequently detected at levels above LOQ, whereas amphetamines (5.4%) (amphetamine [5.2%] and methamphetamine [1.5%]), tetrahydrocannabinol (3.7%), and cocaine (3.3%), including the metabolite benzoylecgonine, were the most frequently detected illegal drugs. A driver could be positive for more than one substance; therefore, percentages are not mutually exclusive. Poly-drug use was observed in 112 (13%) seriously injured drivers. Tramadol was detected above DRUID cutoffs in 2.1% of seriously injured drivers

  5. The paradox of Schrodinger's cat

    NASA Astrophysics Data System (ADS)

    Villars, C. N.

    1986-07-01

    Erwin Schrodinger first described the thought-experiment which has since become known as 'the paradox of Schrodinger's cat' 51 years ago. In recent years, popular accounts of quantum mechanics have tended to adopt one or other of the philosophically most extreme solutions to this paradox, i.e. the consciousness hypothesis or the many worlds interpretation. The author attempts to redress the balance by describing what he takes to be the orthodox solution to the paradox which explains the paradox, without recourse to such counterintuitive notions as a cat simultaneously dead and alive or a universe continually splitting into multiple worlds, as being due to a misapplication of the quantum formalism.

  6. Unusual hyperparathyroidism in a cat.

    PubMed

    Gnudi, G; Bertoni, G; Luppi, A; Cantoni, A M

    2001-01-01

    A 5 month-old, male, domestic short hair cat was presented with inappetence and vomiting. it was depressed and reluctant to move. The cat had difficulties in keeping the standing position and grossly deformed thighs. Lytic changes and disruption of normal architecture of the bone were observed, involving mainly the femoral diaphyses. An inverse Ca/P ratio and kidney failure were diagnosed. The possibility of whether the bone changes could have been related to primary or secondary renal hyperparathyroidism is discussed. PMID:11405269

  7. Lentivirus-mediated PGC-1α overexpression protects against traumatic spinal cord injury in rats.

    PubMed

    Hu, Jianzhong; Lang, Ye; Zhang, Tao; Ni, Shuangfei; Lu, Hongbin

    2016-07-22

    Peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC-1α) is a crucial neuronal regulator in the brain. However, its role in the spinal cord and the underlying regulating mechanisms remain poorly understood. Our previous study demonstrated that PGC-1α is significantly down-regulated following acute spinal cord injury (SCI) in rats. The current study aimed to explore the effects of PGC-1α overexpression on the injured spinal cord by establishing a contusive SCI model in adult Sprague-Dawley rats, followed by immediate intraspinal injection of lentiviral vectors at rostral and caudal sites 3mm from the lesion epicenter. Hindlimb motor function was monitored using the Basso-Beattie-Bresnahan Locomotor Rating Scale (BBB scores), and cords were collected. Transfection efficiency analysis showed that lentivirus successfully induced enhanced PGC-1α expression. This resulted in attenuated apoptotic changes and a greater number of surviving spinal neurons, as determined by transmission electron microscopy and Nissl staining, respectively. Western blot and immunofluorescence analyses revealed increased growth-associated protein 43 and 5-hydroxytryptamine expression, two key markers of axonal regeneration. Importantly, BBB scores showed improved hindlimb motor functional recovery. Moreover, quantitative real-time polymerase chain reaction analysis demonstrated significantly inhibited RhoA, ROCK1, and ROCK2 mRNA expression, revealing a potential mechanism of PGC-1α overexpression following traumatic SCI. Altogether, these results suggest that gene delivery of PGC-1α exerts a significant neuroprotective effect following traumatic SCI, which could serve as a promising treatment for repair of the injured cord, and RhoA-ROCK pathway inhibition may partially underlie this neuroprotection. PMID:27132229

  8. Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury.

    PubMed

    Cao, Qilin; He, Qian; Wang, Yaping; Cheng, Xiaoxin; Howard, Russell M; Zhang, Yiping; DeVries, William H; Shields, Christopher B; Magnuson, David S K; Xu, Xiao-Ming; Kim, Dong H; Whittemore, Scott R

    2010-02-24

    Demyelination contributes to the dysfunction after traumatic spinal cord injury (SCI). We explored whether the combination of neurotrophic factors and transplantation of adult rat spinal cord oligodendrocyte precursor cells (OPCs) could enhance remyelination and functional recovery after SCI. Ciliary neurotrophic factor (CNTF) was the most effective neurotrophic factor to promote oligodendrocyte (OL) differentiation and survival of OPCs in vitro. OPCs were infected with retroviruses expressing enhanced green fluorescent protein (EGFP) or CNTF and transplanted into the contused adult thoracic spinal cord 9 d after injury. Seven weeks after transplantation, the grafted OPCs survived and integrated into the injured spinal cord. The survival of grafted CNTF-OPCs increased fourfold compared with EGFP-OPCs. The grafted OPCs differentiated into adenomatus polyposis coli (APC(+)) OLs, and CNTF significantly increased the percentage of APC(+) OLs from grafted OPCs. Immunofluorescent and immunoelectron microscopic analyses showed that the grafted OPCs formed central myelin sheaths around the axons in the injured spinal cord. The number of OL-remyelinated axons in ventrolateral funiculus (VLF) or lateral funiculus (LF) at the injured epicenter was significantly increased in animals that received CNTF-OPC grafts compared with all other groups. Importantly, 75% of rats receiving CNTF-OPC grafts recovered transcranial magnetic motor-evoked potential and magnetic interenlargement reflex responses, indicating that conduction through the demyelinated axons in VLF or LF, respectively, was partially restored. More importantly, recovery of hindlimb locomotor function was significantly enhanced in animals receiving grafts of CNTF-OPCs. Thus, combined treatment with OPC grafts expressing CNTF can enhance remyelination and facilitate functional recovery after traumatic SCI. PMID:20181596

  9. Transplantation of CNTF-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury

    PubMed Central

    Cao, Qilin; He, Qian; Wang, Yaping; Cheng, Xiaoxin; Howard, Russell M.; Zhang, Yiping; DeVries, William H.; Shields, Christopher B.; Magnuson, David S.K.; Xu, Xiaoming; Kim, Dong H.; Whittemore, Scott R.

    2010-01-01

    Demyelination contributes to the dysfunction after traumatic spinal cord injury (SCI). We explored whether the combination of neurotrophic factors and transplantation of adult rat spinal cord oligodendrocyte precursor cells (OPCs) could enhance remyelination and functional recovery after SCI. Ciliary neurotrophic factor (CNTF) was the most effective neurotrophic factor to promote oligodendrocyte (OL) differentiation and survival of OPCs in vitro. OPCs were infected with retroviruses expressing EGFP or CNTF and transplanted into the contused adult thoracic spinal cord 9 days post-injury. Seven weeks after transplantation, the grafted OPCs survived and integrated into the injured spinal cord. The survival of grafted CNTF-OPCs increased 4-fold compared to EGFP-OPCs. The grafted OPCs differentiated into adenomatus polyposis coli (APC+) OLs and CNTF significantly increased the percentage of APC+ OLs from grafted OPCs. Immunofluoresent and immuno-electron microscopic analyses showed that the grafted OPCs formed central myelin sheaths around the axons in the injured spinal cord. The number of OL-remyelinated axons in ventrolateral funiculus (VLF) or lateral funiculus (LF) at the injured epiecenter was significantly increased in animals that received CNTF-OPC grafts compared to all other groups. Importantly, 75% of rats receiving CNTF-OPC grafts recovered transcranial magnetic motor-evoked potential (tcMMEP) and magnetic inter-englargement reflex (MIER) responses, indicating that conduction through the demyelinated axons in VLF or LF, respectively, was partially restored. More importantly, recovery of hindlimb locomotor function was significantly enhanced in animals receiving grafts of CNTF-OPCs. Thus, combined treatment with OPC grafts expressing CNTF can enhance remyelination and facilitate functional recovery after traumatic SCI. PMID:20181596

  10. The regenerating spinal cord of gecko maintains unaltered expression of β-catenin following tail amputation.

    PubMed

    Song, Honghua; Man, Lili; Wang, Yingjie; Bai, Xue; Wei, Sumei; Liu, Yan; Liu, Mei; Gu, Xiaosong; Wang, Yongjun

    2015-03-01

    The Wingless/Integrated (Wnt) signaling pathway plays important roles in central nervous system (CNS) development and regeneration, and β-catenin, the central component, has been considered in association with adult neurogenesis. To decipher its roles on spontaneous spinal cord regeneration, we cloned β-catenin from Gekko japonicus and examined its function in regenerating spinal cord. The protein was localized in the neurons and oligodendrocytes and maintained a stable expression levels during the spinal cord regeneration. The temporal pattern of expression has been found to be completely distinct with those of glycogen synthase kinase 3β (GSK3β). Experiments of gain-of-function by overexpression of full length β-catenin or stabilized ΔN90-β-catenin revealed that the accumulated protein attenuates the elongation of neurites and oligodendrocyte process. Knockdown of endogenous β-catenin, however, decreased proliferation of oligodendrocytes by affecting expression of downstream lef1 and c-jun. The upregulated extracellular matrix fibronectin in injured cord was found to be inefficient in regulation of β-catenin expression. Our results suggest that a tightly regulated stable expression of β-catenin is required for the spontaneous spinal cord regeneration. PMID:25178821

  11. Co-Ultramicronized Palmitoylethanolamide/Luteolin Promotes Neuronal Regeneration after Spinal Cord Injury

    PubMed Central

    Crupi, Rosalia; Impellizzeri, Daniela; Bruschetta, Giuseppe; Cordaro, Marika; Paterniti, Irene; Siracusa, Rosalba; Cuzzocrea, Salvatore; Esposito, Emanuela

    2016-01-01

    Spinal cord injury (SCI) stimulates activation of astrocytes and infiltration of immune cells at the lesion site; however, the mechanism that promotes the birth of new neurons is still under debate. Neuronal regeneration is restricted after spinal cord injury, but can be stimulated by experimental intervention. Previously we demonstrated that treatment co-ultramicronized palmitoylethanolamide and luteolin, namely co-ultraPEALut, reduced inflammation. The present study was designed to explore the neuroregenerative properties of co-ultraPEALut in an estabished murine model of SCI. A vascular clip was applied to the spinal cord dura at T5–T8 to provoke injury. Mice were treated with co-ultraPEALut (1 mg/kg, intraperitoneally) daily for 72 h after SCI. Co-ultraPEALut increased the numbers of both bromodeoxyuridine-positive nuclei and doublecortin-immunoreactive cells in the spinal cord of injured mice. To correlate neuronal development with synaptic plasticity a Golgi method was employed to analyze dendritic spine density. Co-ultraPEALut administration stimulated expression of the neurotrophic factors brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, nerve growth factor, and neurotrophin-3. These findings show a prominent effect of co-ultraPEALut administration in the management of survival and differentiation of new neurons and spine maturation, and may represent a therapeutic treatment for spinal cord and other traumatic diseases. PMID:27014061

  12. Assessment of corticospinal function in spinal cord injury using transcranial motor cortex stimulation: a review.

    PubMed

    McKay, W B; Stokic, D S; Dimitrijevic, M R

    1997-08-01

    Other than clinical examination, few methods exist for assessing the functional condition of descending long tracts of the spinal cord in humans. This review covers neurophysiological examination of the corticospinal system using transcranial electrical and magnetic motor cortex stimulation. The neurophysiological basis for the motor evoked potentials (MEPs) and the differences between the two methods are discussed followed by a review of their use in individuals with spinal cord injury (SCI). Transcranial motor cortex stimulation is used to monitor descending spinal cord tract condition during spinal surgeries and could be useful for assessing central nervous system trauma, especially in the unconscious multitrauma patient. In the chronic phase of SCI, recordings of MEPs have enabled the estimation of central conduction times that relate to the condition of axons passing through the injured segment of the spinal cord. They were found to correlate well with clinical examination scores but as predictors of outcome, the reports have been mixed. The use of transcranial motor cortex stimulation to modify segmental reflexes and in combination with volitional attempts have also provided evidence of conduction across the lesion in paralyzed SCI subjects. However, MEPs can be absent in some SCI individuals who may be able to volitionally activate muscles below the level of the spinal cord lesion. Such findings are useful in elucidating the neural mechanisms underlying the performance of a volitional movement and may serve to guide and monitor the effects of future treatments for paralysis in SCI and other neurological disorders. PMID:9300564

  13. Beneficial effects of αB-crystallin in spinal cord contusion injury.

    PubMed

    Klopstein, Armelle; Santos-Nogueira, Eva; Francos-Quijorna, Isaac; Redensek, Adriana; David, Samuel; Navarro, Xavier; López-Vales, Rubèn

    2012-10-17

    αB-crystallin is a member of the heat shock protein family that exerts cell protection under several stress-related conditions. Recent studies have revealed that αB-crystallin plays a beneficial role in a mouse model of multiple sclerosis, brain ischemia, and Alexander disease. Whether αB-crystallin plays a role in modulating the secondary damage after CNS trauma is not known. We report here that αB-crystallin mediates protective effects after spinal cord injury. The levels of αB-crystallin are reduced in spinal cord tissue following contusion lesion. In addition, administration of recombinant human αB-crystallin for the first week after contusion injury leads to sustained improvement in locomotor skills and amelioration of secondary tissue damage. We also provide evidence that recombinant human αB-crystallin modulates the inflammatory response in the injured spinal cord, leading to increased infiltration of granulocytes and reduced recruitment of inflammatory macrophages. Furthermore, the delivery of recombinant human αB-crystallin promotes greater locomotor recovery even when the treatment is initiated 6 h after spinal cord injury. Our findings suggest that administration of recombinant human αB-crystallin may be a good therapeutic approach for treating acute spinal cord injury, for which there is currently no effective treatment. PMID:23077034

  14. Cell elimination as a strategy for repair in acute spinal cord injury.

    PubMed

    Kalderon, Nurit

    2005-01-01

    Following injury, as part of the wound-healing process, cell proliferation occurs mostly to replace damaged cells and to reconstitute the tissue back to normal condition/function. In the spinal cord some of the dividing cells following injury interfere with the repair processes. This interference occurs at the later stages of wound healing (the third week after injury) triggering chronic inflammation and progressive tissue decay that is the characteristic pathology of spinal cord injury. Specific cell elimination within a critical time window after injury can lead to repair in the acutely injured spinal cord. Cell proliferation events can be manipulated/modified by x-irradiation. Clinically, numerous radiation protocols (i.e., radiation therapy) have been developed that specifically eliminate the rapidly dividing cells without causing any noticeable/significant damage to the tissue as a whole. Radiation therapy when applied within the critical time window after injury prevents the onset of chronic inflammation thus leading to repair of structure and function. Various aspects of the development of this cell-elimination strategy for repair in acute spinal cord injury by utilizing radiation therapy are being reviewed. Topics reviewed here: identifying the window of opportunity; and the beneficial repair effects of radiation therapy in a transection injury model and in a model relevant to human injury, the contusion injury model. The possible involvement of cellular components of the blood-spinal cord barrier as the trigger of chronic inflammation and/or target of the radiation therapy is discussed. PMID:15853680

  15. In vivo imaging of spinal cord in contusion injury model mice by multi-photon microscopy

    NASA Astrophysics Data System (ADS)

    Oshima, Y.; Horiuchi, H.; Ogata, T.; Hikita, A.; Miura, H.; Imamura, T.

    2014-03-01

    Fluorescent imaging technique is a promising method and has been developed for in vivo applications in cellular biology. In particular, nonlinear optical imaging technique, multi-photon microscopy has make it possible to analyze deep portion of tissues in living animals such as axons of spinal code. Traumatic spinal cord injuries (SCIs) are usually caused by contusion damages. Therefore, observation of spinal cord tissue after the contusion injury is necessary for understanding cellular dynamics in response to traumatic SCI and development of the treatment for traumatic SCI. Our goal is elucidation of mechanism for degeneration of axons after contusion injuries by establishing SCI model and chronic observation of injured axons in the living animals. Firstly we generated and observed acute SCI model by contusion injury. By using a multi-photon microscope, axons in dorsal cord were visualized approximately 140 micron in depth from the surface. Immediately after injury, minimal morphological change of spinal cord was observed. At 3 days after injury, spinal cord was swelling and the axons seem to be fragmented. At 7 days after injury, increased degradation of axons could be observed, although the image was blurred due to accumulation of the connective tissue. In the present study, we successfully observed axon degeneration after the contusion SCI in a living animal in vivo. Our final goal is to understand molecular mechanisms and cellular dynamics in response to traumatic SCIs in acute and chronic stage.

  16. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    PubMed Central

    Zhang, Rui-ping; Xu, Cheng; Liu, Yin; Li, Jian-ding; Xie, Jun

    2015-01-01

    An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T7-8. Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesenchymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB) locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guidance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury. PMID:25878588

  17. Regulation of IL-10 by chondroitinase ABC promotes a distinct immune response following spinal cord injury.

    PubMed

    Didangelos, Athanasios; Iberl, Michaela; Vinsland, Elin; Bartus, Katalin; Bradbury, Elizabeth J

    2014-12-01

    Chondroitinase ABC (ChABC) has striking effects on promoting neuronal plasticity after spinal cord injury (SCI), but little is known about its involvement in other pathological mechanisms. Recent work showed that ChABC might also modulate the immune response by promoting M2 macrophage polarization. Here we investigate in detail the immunoregulatory effects of ChABC after SCI in rats. Initially, we examined the expression profile of 16 M1/M2 macrophage polarization markers at 3 h and 7 d postinjury. ChABC treatment had a clear effect on the immune signature after SCI. More specifically, ChABC increased the expression of the anti-inflammatory cytokine IL-10, accompanied by a reduction in the proinflammatory cytokine IL-12B in injured spinal tissue. These effects were associated with a distinct, IL-10-mediated anti-inflammatory response in ChABC-treated spinal cords. Mechanistically, we show that IL-10 expression is driven by tissue injury and macrophage infiltration, while the p38 MAPK is the central regulator of IL-10 expression in vivo. These findings provide novel insights into the effects of ChABC in the injured spinal cord and explain its immunoregulatory activity. PMID:25471580

  18. Adjustment to Spinal Cord Injury

    MedlinePlus

    ... of injury are alive and easily get educational information on the Internet. Web happy. sites such as the National Spinal Cord Injury Association (www.spinalcord.org) and SPINAL CORD Injury ♦ “Because of my injury, it is now impossible for me Information Network (www.spinalcord.uab.edu) have to ever ...

  19. Progesterone Reduces Secondary Damage, Preserves White Matter, and Improves Locomotor Outcome after Spinal Cord Contusion

    PubMed Central

    Garcia-Ovejero, Daniel; González, Susana; Paniagua-Torija, Beatriz; Lima, Analía; Molina-Holgado, Eduardo; De Nicola, Alejandro F.

    2014-01-01

    Abstract Progesterone is an anti-inflammatory and promyelinating agent after spinal cord injury, but its effectiveness on functional recovery is still controversial. In the current study, we tested the effects of chronic progesterone administration on tissue preservation and functional recovery in a clinically relevant model of spinal cord lesion (thoracic contusion). Using magnetic resonance imaging, we observed that progesterone reduced both volume and rostrocaudal extension of the lesion at 60 days post-injury. In addition, progesterone increased the number of total mature oligodendrocytes, myelin basic protein immunoreactivity, and the number of axonal profiles at the epicenter of the lesion. Further, progesterone treatment significantly improved motor outcome as assessed using the Basso-Bresnahan-Beattie scale for locomotion and CatWalk gait analysis. These data suggest that progesterone could be considered a promising therapeutical candidate for spinal cord injury. PMID:24460450

  20. [Traumatic spinal cord injury in children; early and late effects].

    PubMed

    Peters, Jeroen P M; Kramer, William L M

    2013-01-01

    Spinal cord injuries (SCIs) have physical, emotional, psychological and economic consequences for patients. Although SCIs in children are rare, they have to cope with the consequences for the rest of their lives. In this article, three children who presented at our emergency department are discussed. These children had suffered SCIs from different etiologies. Most SCIs are caused by trauma and more males than females suffer SCIs. The younger children are, the more likely they will sustain cervical SCIs, which can be attributed to several distinct anatomical differences in the juvenile spine. Depending on the level of the spine injured, multiple secondary problems can occur. In this article, we paint a picture of the complex and multidisciplinary treatment and rehabilitation of young SCI patients and emphasise the need for treatment to take place in a specialised (children's) rehabilitation unit. PMID:23838399

  1. Hindlimb Movement in the Cat Induced by Amplitude-Modulated Stimulation Using Extra-Spinal Electrodes

    PubMed Central

    Tai, Changfeng; Wang, Jicheng; Shen, Bing; Wang, Xianchun; Roppolo, James R.; de Groat, William C.

    2010-01-01

    Hindlimb movement in the cat induced by electrical stimulation with an amplitude-modulated waveform of the dorsal surface of L5-S1 spinal cord or the L5-S1 dorsal/ventral roots was investigated before and after acute spinal cord transection at the T13-L1 level. Stimulation of the spinal cord or dorsal/ventral root at the same spinal segment induced similar movements including coordinated multi-joint flexion or extension. The induced movements changed from flexion to extension when the stimulation was moved from rostral (L5) to caudal (S1) spinal segments. Stimulation of a dorsal or ventral root on one side induced only ipsilateral hindlimb movement. However, stimulation on the dorsal surface of the spinal cord along the midline or across the spinal cord induced bilateral movements. The extension induced by stimulation of L7 dorsal root produced the largest ground reaction force that was strong enough to support body weight. Dorsal root stimulation induced a larger ground reaction force than ventral root stimulation and produced a more graded recruitment curve. Stepping at different speeds could be generated by combined stimulation of the rostral (L5) and the caudal (L6/L7) spinal segments with an appropriate timing between the different stimulation channels. Acute transection of the spinal cord did not change the responses indicating that the induced movements did not require the involvement of the supraspinal locomotor centers. The methods and the stimulation strategy developed in this study might be utilized to restore locomotor function after spinal cord injury. PMID:18369283

  2. Hindlimb movement in the cat induced by amplitude-modulated stimulation using extra-spinal electrodes

    NASA Astrophysics Data System (ADS)

    Tai, Changfeng; Wang, Jicheng; Shen, Bing; Wang, Xianchun; Roppolo, James R.; de Groat, William C.

    2008-06-01

    Hindlimb movement in the cat induced by electrical stimulation with an amplitude-modulated waveform of the dorsal surface of the L5-S1 spinal cord or the L5-S1 dorsal/ventral roots was investigated before and after acute spinal cord transection at the T13-L1 level. Stimulation of the spinal cord or dorsal/ventral root at the same spinal segment induced similar movements including coordinated multi-joint flexion or extension. The induced movements changed from flexion to extension when the stimulation was moved from rostral (L5) to caudal (S1) spinal segments. Stimulation of a dorsal or ventral root on one side induced only ipsilateral hindlimb movement. However, stimulation on the dorsal surface of the spinal cord along the midline or across the spinal cord induced bilateral movements. The extension induced by stimulation of L7 dorsal root produced the largest ground reaction force that was strong enough to support body weight. Dorsal root stimulation induced a larger ground reaction force than ventral root stimulation and produced a more graded recruitment curve. Stepping at different speeds could be generated by combined stimulation of the rostral (L5) and the caudal (L6/L7) spinal segments with an appropriate timing between the different stimulation channels. Acute transection of the spinal cord did not change the responses indicating that the induced movements did not require the involvement of the supraspinal locomotor centers. The methods and the stimulation strategy developed in this study might be utilized to restore locomotor function after spinal cord injury.

  3. Toxoplasmosis: An Important Message for Cat Owners

    MedlinePlus

    ... a s t is O : wAnneIrmsportant What role do cats play in the spread of toxoplasmosis? Cats get Toxoplasma infection by eating infected rodents, birds ... animals, or anything contaminated with feces from another cat that is shedding the microscopic parasite in its ...

  4. Dipylidium (Dog and Cat Flea Tapeworm) FAQs

    MedlinePlus

    ... the most common kind of tapeworm dogs and cats get? The most common tapeworm of dogs and cats in the United States is called Dipylidium caninum . ... infected with a tapeworm larvae. A dog or cat may swallow a flea while self-grooming. Once ...

  5. Nanocarrier-mediated inhibition of macrophage migration inhibitory factor attenuates secondary injury after spinal cord injury.

    PubMed

    Saxena, Tarun; Loomis, Kristin H; Pai, S Balakrishna; Karumbaiah, Lohitash; Gaupp, Eric; Patil, Ketki; Patkar, Radhika; Bellamkonda, Ravi V

    2015-02-24

    Spinal cord injury (SCI) can lead to permanent motor and sensory deficits. Following the initial traumatic insult, secondary injury mechanisms characterized by persistent heightened inflammation are initiated and lead to continued and pervasive cell death and tissue damage. Anti-inflammatory drugs such as methylprednisolone (MP) used clinically have ambiguous benefits with debilitating side effects. Typically, these drugs are administered systemically at high doses, resulting in toxicity and paradoxically increased inflammation. Furthermore, these drugs have a small time window postinjury (few hours) during which they need to be infused to be effective. As an alternative to MP, we investigated the effect of a small molecule inhibitor (Chicago sky blue, CSB) of macrophage migration inhibitory factor (MIF) for treating SCI. The pleiotropic cytokine MIF is known to contribute to upregulation of several pro-inflammatory cytokines in various disease and injury states. In vitro, CSB administration alleviated endotoxin-mediated inflammation in primary microglia and macrophages. Nanocarriers such as liposomes can potentially alleviate systemic side effects of high-dose therapy by enabling site-specific drug delivery to the spinal cord. However, the therapeutic window of 100 nm scale nanoparticle localization to the spinal cord after contusion injury is not fully known. Thus, we first investigated the ability of nanocarriers of different sizes to localize to the injured spinal cord up to 2 weeks postinjury. Results from the study showed that nanocarriers as large as 200 nm in diameter could extravasate into the injured spinal cord up to 96 h postinjury. We then formulated nanocarriers (liposomes) encapsulating CSB and administered them intravenously 48 h postinjury, within the previously determined 96 h therapeutic window. In vivo, in this clinically relevant contusion injury model in rats, CSB administration led to preservation of vascular and white matter integrity

  6. A strange cat in Dublin

    NASA Astrophysics Data System (ADS)

    O'Raifeartaigh, Cormac

    2012-11-01

    Not many life stories in physics involve Nazis, illicit sex, a strange cat and the genetic code. Thus, a new biography of the great Austrian physicist Erwin Schrödinger is always of interest, and with Erwin Schrödinger and the Quantum Revolution, veteran science writer John Gribbin does not disappoint.

  7. Lessons from the Cheshire Cat

    ERIC Educational Resources Information Center

    Tinberg, Donna

    2012-01-01

    "If you don't know where you're going, any road will take you there." This oft-cited but not-quite-accurate quote is from the Lewis Carroll's classic children's tale, Alice in Wonderland. In Carroll's altered reality, the conversation between the disoriented Alice and the mysterious Cheshire Cat actually went like this: "Would you tell me, please,…

  8. Chyloabdomen in a mature cat.

    PubMed Central

    Nelson, K L

    2001-01-01

    A mature, castrated male cat presented with progressive lethargy and a severely distended abdomen. Abdominal radiographs, abdominocentesis, and evaluation of the fluid obtained led to a diagnosis of chyloabdomen. The underlying pathology, etiology, diagnosis, and treatment associated with this disease are discussed. PMID:11360862

  9. Assessing CAT Test Security Severity

    ERIC Educational Resources Information Center

    Yi, Qing; Zhang, Jinming; Chang, Hua-Hua

    2006-01-01

    In addition to its precision superiority over nonadaptive tests, another known advantage of computerized adaptive tests (CATs) is that they can be offered on a continuous basis. This is advantageous to examinees in terms of flexibility of test scheduling, as well as advantageous to schools and other testing centers in terms of both space and…

  10. CATS Data and Information Page

    Atmospheric Science Data Center

    2015-10-05

    ... of atmospheric aerosols and clouds from the International Space Station (ISS).   CATS will provide vertical profiles at three ... with nearly a three-day repeat cycle.  For the first time, it will allow scientist to study diurnal (day-to-night) changes in cloud ...

  11. A CAT scan for cells

    SciTech Connect

    2009-01-01

    Recently, a team of scientists from Berkeley Lab, Stanford University, and the University of California, San Francisco used Berkeley Lab's National Center for X-ray Tomography to capture the changes that occur when Candida albicans is exposed to a new and promising antifungal therapy. http://newscenter.lbl.gov/feature-stories/2009/12/10/cat-scan-cells/

  12. Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment

    PubMed Central

    Beck, Kevin D.; Nguyen, Hal X.; Galvan, Manuel D.; Salazar, Desirée L.; Woodruff, Trent M.

    2010-01-01

    Traumatic injury to the central nervous system results in the disruption of the blood brain/spinal barrier, followed by the invasion of cells and other components of the immune system that can aggravate injury and affect subsequent repair and regeneration. Although studies of chronic neuroinflammation in the injured spinal cord of animals are clinically relevant to most patients living with traumatic injury to the brain or spinal cord, very little is known about chronic neuroinflammation, though several studies have tested the role of neuroinflammation in the acute period after injury. The present study characterizes a novel cell preparation method that assesses, quickly and effectively, the changes in the principal immune cell types by flow cytometry in the injured spinal cord, daily for the first 10 days and periodically up to 180 days after spinal cord injury. These data quantitatively demonstrate a novel time-dependent multiphasic response of cellular inflammation in the spinal cord after spinal cord injury and are verified by quantitative stereology of immunolabelled spinal cord sections at selected time points. The early phase of cellular inflammation is comprised principally of neutrophils (peaking 1 day post-injury), macrophages/microglia (peaking 7 days post-injury) and T cells (peaking 9 days post-injury). The late phase of cellular inflammation was detected after 14 days post-injury, peaked after 60 days post-injury and remained detectable throughout 180 days post-injury for all three cell types. Furthermore, the late phase of cellular inflammation (14–180 days post-injury) did not coincide with either further improvements, or new decrements, in open-field locomotor function after spinal cord injury. However, blockade of chemoattractant C5a-mediated inflammation after 14 days post-injury reduced locomotor recovery and myelination in the injured spinal cord, suggesting that the late inflammatory response serves a reparative function. Together, these

  13. Audiogenic reflex seizures in cats

    PubMed Central

    Lowrie, Mark; Bessant, Claire; Harvey, Robert J; Sparkes, Andrew; Garosi, Laurent

    2015-01-01

    Objectives This study aimed to characterise feline audiogenic reflex seizures (FARS). Methods An online questionnaire was developed to capture information from owners with cats suffering from FARS. This was collated with the medical records from the primary veterinarian. Ninety-six cats were included. Results Myoclonic seizures were one of the cardinal signs of this syndrome (90/96), frequently occurring prior to generalised tonic–clonic seizures (GTCSs) in this population. Other features include a late onset (median 15 years) and absence seizures (6/96), with most seizures triggered by high-frequency sounds amid occasional spontaneous seizures (up to 20%). Half the population (48/96) had hearing impairment or were deaf. One-third of cats (35/96) had concurrent diseases, most likely reflecting the age distribution. Birmans were strongly represented (30/96). Levetiracetam gave good seizure control. The course of the epilepsy was non-progressive in the majority (68/96), with an improvement over time in some (23/96). Only 33/96 and 11/90 owners, respectively, felt the GTCSs and myoclonic seizures affected their cat’s quality of life (QoL). Despite this, many owners (50/96) reported a slow decline in their cat’s health, becoming less responsive (43/50), not jumping (41/50), becoming uncoordinated or weak in the pelvic limbs (24/50) and exhibiting dramatic weight loss (39/50). These signs were exclusively reported in cats experiencing seizures for >2 years, with 42/50 owners stating these signs affected their cat’s QoL. Conclusions and relevance In gathering data on audiogenic seizures in cats, we have identified a new epilepsy syndrome named FARS with a geriatric onset. Further studies are warranted to investigate potential genetic predispositions to this condition. PMID:25916687

  14. Head Position and Football Equipment Influence Cervical Spinal-Cord Space During Immobilization.

    PubMed

    Tierney, Ryan T; Mattacola, Carl G; Sitler, Michael R; Maldjian, Catherine

    2002-06-01

    OBJECTIVE: To assess the effect of head position and football equipment (ie, helmet and shoulder pads) on cervical spinal cord space in individuals lying supine on a spine board. DESIGN AND SETTING: The independent variables were head position (0-cm, 2-cm, and 4-cm occiput elevation with no helmet and shoulder pads and with helmet and shoulder pads) and cervical spine level (C3, C4, C5, C6, and C7). The 3 dependent variables were sagittal space available for the cord (SAC) (mm), sagittal spinal-cord diameter (mm), and cervical-thoracic angle ( degrees ), determined via magnetic resonance imaging. SUBJECTS: Twelve men (age = 24.3 +/- 2.1 years; height = 181.1 +/- 5.7 cm; weight = 93.9 +/- 3.6 kg). MEASUREMENTS: Sagittal space available for the cord was determined by subtracting the sagittal spinal-cord diameter from the corresponding sagittal spinal-canal diameter. The spinal-canal diameter was measured as the shortest distance from the vertebral body to the spinolaminar line at each of the spinal levels. Each measurement was taken 3 times, and the 3 measurements were averaged. RESULTS: Sagittal space available for the cord was significantly greater (P <.01) for 0-cm (mean = 5.50 mm) than for 2-cm (mean = 4.86 mm) and 4-cm (mean = 5.07 mm) occiput elevation. SAC was also significantly greater (P <.01) for the equipment condition (mean = 5.34 mm) than for the 2-cm and 4-cm elevation levels. No significant difference (P =.093) in SAC existed between 0-cm elevation and the equipment condition. CONCLUSIONS: The helmet and shoulder pads should be left on during spine-board immobilization of the injured football player. Similarly, during spine-board immobilization of an individual without football helmet and shoulder pads, the head should be maintained at 0 cm of occiput elevation. Sagittal spinal-cord space is optimized in both of these conditions. PMID:12937433

  15. A prospective evaluation of a pressure ulcer prevention and management E-Learning Program for adults with spinal cord injury.

    PubMed

    Brace, Jacalyn A; Schubart, Jane R

    2010-08-01

    Pressure ulcers are a common complication of spinal cord injury (SCI). Pressure ulcer education programs for spinal cord injured individuals have been found to have a positive effect on care protocol adherence. A prospective study was conducted among hospitalized spinal cord-injured men and women to determine if viewing the Pressure Ulcer Prevention and Management Education for Adults with Spinal Cord Injury: E-Learning Program affects their knowledge scores. A 20-question multiple-choice pre-/post learning test was developed and validated by 12 rehabilitation nurses. Twenty (20) patients (13 men, seven women; mean age 49 years, [SD: 18.26] with injuries to the cervical [seven], thoracic [six], and lumbar [six] regions) volunteered. Most (42%) had completed high school and time since SCI ranged from 2 weeks to 27 years. Eighteen (18) participants completed both the pre- and post test. Of those, 16 showed improvement in pressure ulcer knowledge scores. The median scores improved from 65 (range 25 to 100) pre-program to 92.5 (range 75 to 100) post-program. Descriptive statistics, Student's t-test, and analysis of variance (ANOVA) were used to analyze the data. The results suggest that a single viewing of this e-learning program could improve pressure ulcer knowledge of hospitalized adults with SCI. Research to ascertain the effects of this and other educational programs on pressure ulcer rates is needed. PMID:20729562

  16. The protective effects of 15-deoxy-delta-(12,14)-prostaglandin J2 in spinal cord injury.

    PubMed

    Kerr, Bradley J; Girolami, Elizabeth I; Ghasemlou, Nader; Jeong, Suh Young; David, Samuel

    2008-03-01

    Secondary tissue damage that occurs within days after spinal cord injury contributes significantly to permanent paralysis, sensory loss, and other functional disabilities. The acute inflammatory response is thought to contribute largely to this secondary damage. We show here that 15-deoxy-delta-12,14-prostaglandin J2 (15d-PGJ2), a metabolite of prostaglandin D2 (PGD2) that has anti-inflammatory actions, given daily for the first 2 weeks after spinal cord contusion injury in mice, results in significant improvement of sensory and locomotor function. 15d-PGJ2-treated mice also show diminished signs of microglia/macrophage activation, increased neuronal survival, greater serotonergic innervation, and reduced demyelination in the injured spinal cord. These changes are accompanied by a reduction in chemokine and pro-inflammatory cytokine expression. Our results also indicate that 15d-PGJ2 is likely to reduce inflammation in the injured spinal cord by attenuating multiple signaling pathways: reducing activation of NF-kappa B; enhancing expression of suppressor of cytokine signaling1 and reducing the activation of Janus activated Kinase 2. PMID:18205174

  17. Human umbilical cord Wharton's jelly-derived oligodendrocyte precursor-like cells for axon and myelin sheath regeneration★

    PubMed Central

    Chen, Hong; Zhang, Yan; Yang, Zhijun; Zhang, Hongtian

    2013-01-01

    Human umbilical mesenchymal stem cells from Wharton's jelly of the umbilical cord were induced to differentiate into oligodendrocyte precursor-like cells in vitro. Oligodendrocyte precursor cells were transplanted into contused rat spinal cords. Immunofluorescence double staining indicated that transplanted cells survived in injured spinal cord, and differentiated into mature and immature oligodendrocyte precursor cells. Biotinylated dextran amine tracing results showed that cell transplantation promoted a higher density of the corticospinal tract in the central and caudal parts of the injured spinal cord. Luxol fast blue and toluidine blue staining showed that the volume of residual myelin was significantly increased at 1 and 2 mm rostral and caudal to the lesion epicenter after cell transplantation. Furthermore, immunofluorescence staining verified that the newly regenerated myelin sheath was derived from the central nervous system. Basso, Beattie and Bresnahan testing showed an evident behavioral recovery. These results suggest that human umbilical mesenchymal stem cell-derived oligodendrocyte precursor cells promote the regeneration of spinal axons and myelin sheaths. PMID:25206380

  18. Parallel Climate Analysis Toolkit (ParCAT)

    Energy Science and Technology Software Center (ESTSC)

    2013-06-30

    The parallel analysis toolkit (ParCAT) provides parallel statistical processing of large climate model simulation datasets. ParCAT provides parallel point-wise average calculations, frequency distributions, sum/differences of two datasets, and difference-of-average and average-of-difference for two datasets for arbitrary subsets of simulation time. ParCAT is a command-line utility that can be easily integrated in scripts or embedded in other application. ParCAT supports CMIP5 post-processed datasets as well as non-CMIP5 post-processed datasets. ParCAT reads and writes standard netCDF files.

  19. Attitudes Towards Individuals with Spinal Cord Injuries

    ERIC Educational Resources Information Center

    Conway, Cassandra Sligh D.; Gooden, Randy; Nowell, Jennifer; Wilson, Navodda

    2010-01-01

    This paper will shed light on the lives of persons with spinal cord injuries by revealing the literature on spinal cord injuries that focuses on research that can shed light on attitudes towards persons with spinal cord injuries. The background literature related to incidences, the definition of spinal cord injury, and vocational opportunities are…

  20. Acute and Perioperative Care of the Burn-Injured Patient

    PubMed Central

    Bittner, Edward A.; Shank, Erik; Woodson, Lee; Martyn, J.A. Jeevendra

    2016-01-01

    Care of burn-injured patients requires knowledge of the pathophysiologic changes affecting virtually all organs from the onset of injury until wounds are healed. Massive airway and/or lung edema can occur rapidly and unpredictably after burn and/or inhalation injury. Hemodynamics in the early phase of severe burn injury are characterized by a reduction in cardiac output, increased systemic and pulmonary vascular resistance. Approximately 2–5 days after major burn injury, a hyperdynamic and hypermetabolic state develops. Electrical burns result in morbidity much higher than expected based on burn size alone. Formulae for fluid resuscitation should serve only as guideline; fluids should be titrated to physiologic end points. Burn injury is associated basal and procedural pain requiring higher than normal opioid and sedative doses. Operating room concerns for the burn-injured patient include airway abnormalities, impaired lung function, vascular access, deceptively large and rapid blood loss, hypothermia and altered pharmacology. PMID:25485468

  1. Caring for the injured child in settings of limited resource.

    PubMed

    Stephenson, Jacob

    2016-02-01

    Children represent the most vulnerable members of our global society, a truth that is magnified when they are physically wounded. In much of the developed world, society has responded by offering protection in the form of law, injury prevention guidelines, and effective trauma systems to provide care for the injured child. Much of our world, though, remains afflicted by poverty and a lack of protective measures. As the globe becomes smaller by way of ease of travel and technology, surgeons are increasingly able to meet these children where they live and in doing so offer their hands and voices to care and protect these young ones. This article is intended as an overview of current issues in pediatric trauma care in the developing world as well as to offer some tips for the volunteer surgeon who may be involved in the care of the injured child in a setting of limited resource availability. PMID:26831134

  2. Thalamic neuronal activity in rats with mechanical allodynia following contusive spinal cord injury.

    PubMed

    Gerke, M B; Duggan, A W; Xu, L; Siddall, P J

    2003-01-01

    Pain and allodynia following spinal cord injury are poorly understood and difficult to treat. Since there is evidence that supraspinal mechanisms are important in such pain, we have studied the role of the thalamus in an experimental model of spinal injury. Extracellular recordings were obtained from neurones of the thalamic nucleus ventralis postero-lateralis (VPL) in normal rats and those which had sustained a contusive spinal cord injury to the thoraco-lumbar junction 7 days previously. Behavioural testing with von Frey hairs established that 11 spinally injured rats showed exaggerated vocal responses to normally innocuous mechanical stimulation (allodynia) whereas eight were non-allodynic. Thalamic VPL neurones in spinally injured rats (both allodynic and non-allodynic) exhibited a dysrhythmia in that a significantly higher proportion fired spontaneously in an oscillatory mode when compared with neurones in uninjured rats. Thus this dysrhythmia was linked to spinal injury, not to allodynia. The evoked responses of VPL thalamic neurones to brushing the skin, however, were significantly elevated in allodynic rats when compared with those in uninjured rats and neuronal afterdischarges to these stimuli (which were absent in uninjured rats) were more common in allodynic than in non-allodynic rats. We have previously reported that a proportion of spinal neurones in allodynic spinally injured rats show increased evoked responses and afterdischarges following brushing the skin and hence the enhanced thalamic responses may reflect a greater spinal input. In view of the increasing evidence that thalamo-cortical rhythmical firing is linked to sensorimotor and cognitive brain functions, we propose that pain following brushing the skin results from an exaggerated spinal input being processed by a dysrhythmic thalamus. Thus both spinal and thalamic mechanisms may be important in the genesis of pain and allodynia following spinal cord injury. PMID:12617975

  3. Effects of polarization in low-level laser therapy of spinal cord injury in rats

    NASA Astrophysics Data System (ADS)

    Ando, Takahiro; Sato, Shunichi; Kobayashi, Hiroaki; Nawashiro, Hiroshi; Ashida, Hiroshi; Hamblin, Michael R.; Obara, Minoru

    2012-03-01

    Low-level laser therapy (LLLT) is a promising approach to treat the spinal cord injury (SCI). Since nerve fibers have optical anisotropy, propagation of light in the spinal tissue might be affected by its polarization direction. However, the effect of polarization on the efficacy of LLLT has not been elucidated. In the present study, we investigated the effect of polarization on the efficacy of near-infrared LLLT for SCI. Rat spinal cord was injured with a weight-drop device. The lesion site was irradiated with an 808-nm diode laser beam that was transmitted through a polarizing filter immediately after injury and daily for five consecutive days. The laser power at the injured spinal cord surface was 25 mW, and the dosage per day was 9.6 J/cm2 (spot diameter, 2 cm; irradiation duration, 1200 s). Functional recovery was assessed daily by an open-field test. The results showed that the functional scores of the SCI rats that were treated with 808-nm laser irradiation were significantly higher than those of the SCI alone group (Group 1) from day 5 after injury, regardless of the polarization direction. Importantly, as compared to the locomotive function of the SCI rats that were treated with the perpendicularly-polarized laser parallel to the spinal column (Group 2), that of the SCI rats that were irradiated with the linearly aligned polarization (Group 3) was significantly improved from day 10 after injury. In addition, the ATP contents in the injured spinal tissue of Group 3, which were measured immediately after laser irradiation, were moderately higher than those of Group 2. These observations are attributable to the deeper penetration of the parallelpolarized light in the anisotropic spinal tissue, suggesting that polarization direction significantly affects the efficacy of LLLT for SCI.

  4. Evaluation of the electroencephalogram in young cats

    PubMed Central

    Lewis, Melissa J.; Williams, D. Colette; Vite, Charles H.

    2013-01-01

    Objective To characterize the electroencephalogram (EEG) in young cats. Animals 23 clinically normal cats. Procedures Cats were sedated with medetomidine hydrochloride and butorphanol tartrate at 2, 4, 6, 8, 12, 16, 20, and 24 weeks of age and an EEG was recorded. Recordings were visually inspected for electrical continuity, interhemispheric synchrony, amplitude and frequency of background electrical activity, and frequency of transient activity. Computer-aided analysis was used to perform frequency spectral analysis and to calculate absolute and relative power of the background activity at each age. Results Electrical continuity was evident in cats ≥ 4 weeks old, and interhemispheric synchrony was evident in cats at all ages evaluated. Analysis of amplitude of background activity and absolute power revealed significant elevations in 6-week-old cats, compared with results for 2-, 20-, and 24-week-old cats. No association between age and relative power or frequency was identified. Transient activity, consisting of sleep spindles and K complexes, was evident at all ages, but spike and spike or wave discharges were observed in cats at 2 weeks of age. Conclusions and Clinical Relevance Medetomidine and butorphanol were administered in accordance with a sedation protocol that allowed investigators to repeatedly obtain EEG data from cats. Age was an important consideration when interpreting EEG data. These data on EEG development in clinically normal cats may be used for comparison in future studies conducted to examine EEGs in young cats with diseases that affect the cerebral cortex. PMID:21355743

  5. Risk prediction score for death of traumatised and injured children

    PubMed Central

    2014-01-01

    Background Injury prediction scores facilitate the development of clinical management protocols to decrease mortality. However, most of the previously developed scores are limited in scope and are non-specific for use in children. We aimed to develop and validate a risk prediction model of death for injured and Traumatised Thai children. Methods Our cross-sectional study included 43,516 injured children from 34 emergency services. A risk prediction model was derived using a logistic regression analysis that included 15 predictors. Model performance was assessed using the concordance statistic (C-statistic) and the observed per expected (O/E) ratio. Internal validation of the model was performed using a 200-repetition bootstrap analysis. Results Death occurred in 1.7% of the injured children (95% confidence interval [95% CI]: 1.57–1.82). Ten predictors (i.e., age, airway intervention, physical injury mechanism, three injured body regions, the Glasgow Coma Scale, and three vital signs) were significantly associated with death. The C-statistic and the O/E ratio were 0.938 (95% CI: 0.929–0.947) and 0.86 (95% CI: 0.70–1.02), respectively. The scoring scheme classified three risk stratifications with respective likelihood ratios of 1.26 (95% CI: 1.25–1.27), 2.45 (95% CI: 2.42–2.52), and 4.72 (95% CI: 4.57–4.88) for low, intermediate, and high risks of death. Internal validation showed good model performance (C-statistic = 0.938, 95% CI: 0.926–0.952) and a small calibration bias of 0.002 (95% CI: 0.0005–0.003). Conclusions We developed a simplified Thai pediatric injury death prediction score with satisfactory calibrated and discriminative performance in emergency room settings. PMID:24575982

  6. 4-hydroxynonenal, a lipid peroxidation product, rapidly accumulates following traumatic spinal cord injury and inhibits glutamate uptake.

    PubMed

    Springer, J E; Azbill, R D; Mark, R J; Begley, J G; Waeg, G; Mattson, M P

    1997-06-01

    Traumatic injury to the spinal cord initiates a host of pathophysiological events that are secondary to the initial insult. One such event is the accumulation of free radicals that damage lipids, proteins, and nucleic acids. A major reactive product formed following lipid peroxidation is the aldehyde, 4-hydroxynonenal (HNE), which cross-links to side chain amino acids and inhibits the function of several key metabolic enzymes. In the present study, we used immunocytochemical and immunoblotting techniques to examine the accumulation of protein-bound HNE, and synaptosomal preparations to study the effects of spinal cord injury and HNE formation on glutamate uptake. Protein-bound HNE increased in content in the damaged spinal cord at early times following injury (1-24 h) and was found to accumulate in myelinated fibers distant to the site of injury. Immunoblots revealed that protein-bound HNE levels increased dramatically over the same postinjury interval. Glutamate uptake in synaptosomal preparations from injured spinal cords was decreased by 65% at 24 h following injury. Treatment of control spinal cord synaptosomes with HNE was found to decrease significantly, in a dose-dependent fashion, glutamate uptake, an effect that was mimicked by inducers of lipid peroxidation. Taken together, these findings demonstrate that the lipid peroxidation product HNE rapidly accumulates in the spinal cord following injury and that a major consequence of HNE accumulation is a decrease in glutamate uptake, which may potentiate neuronal cell dysfunction and death through excitotoxic mechanisms. PMID:9166741

  7. Spermatic Cord Leiomyosarcoma Rare Case.

    PubMed

    Frigerio, Pamela; Muruato-Araiza, Jesus Sebastian; Marcos-Morales, Selim; Cepeda-Nieto, Ana Cecilia; Berdeal-Fernandez, Eliseo; Zepeda-Contreras, Sebastián

    2016-05-01

    Case description of a male patient of 64 years who presents a left groin-scrotum painless tumor, growing, from several months of evolution. Physical examination demonstrated the existence of a mass effect of the left distal spermatic cord, and was later confirmed by ultrasound and CT. Laboratory parameters were normal. The performed surgery consisted in a radical orchiectomy with high ligation of the left cord. In conclusion, preoperative diagnosis of spermatic cord leiomyosarcoma is difficult we need the combination of present illness, physical examination, exams and the gold standard histopathological and immunohistochemical studies allowed a definitive diagnosis. PMID:27169019

  8. Nitric oxide and superoxide anion differentially activate poly(ADP-ribose) polymerase-1 and Bax to induce nuclear translocation of apoptosis-inducing factor and mitochondrial release of cytochrome c after spinal cord injury.

    PubMed

    Wu, Kay L H; Hsu, Chin; Chan, Julie Y H

    2009-07-01

    We reported previously that complete spinal cord transection (SCT) results in depression of mitochondrial respiratory chain enzyme activity that triggers apoptosis via sequential activations of apoptosis-inducing factor (AIF)- and caspase-dependent cascades in the injured spinal cord. This study tested the hypothesis that nitric oxide (NO) and superoxide anion (O(2)(.-)) serve as the interposing signals between SCT and impaired mitochondrial respiratory functions. Adult Sprague-Dawley rats manifested a significant increase in NO or O(2)(.-) level in the injured spinal cord during the first 3 days after SCT. The augmented O(2)(.-) production, along with concomitant reduction in mitochondrial respiratory chain enzyme activity or ATP level, nuclear translocation of AIF, cytosolic release of cytochrome c, and DNA fragmentation were reversed by osmotic minipump infusion of a NO trapping agent, carboxy-PTIO, or a superoxide dismutase mimetic, tempol, into the epicenter of the transected spinal cord. Intriguingly, carboxy-PTIO significantly suppressed upregulation of poly(ADP-ribose) polymerase-1 (PARP-1) in the nucleus, attenuated nuclear translocation of AIF, inhibited mitochondrial translocation of Bax and antagonized mitochondrial release of cytochrome c; whereas tempol only inhibited the later two cellular events after SCT. We conclude that overproduction of NO and O(2)(.-) in the injured spinal cord promulgates mitochondrial dysfunction and triggers AIF- and caspase-dependent apoptotic signaling cascades via differential upregulation of nuclear PARP-1 and mitochondrial translocation of Bax. PMID:19473058

  9. The Fecal Microbiome in Cats with Diarrhea

    PubMed Central

    Suchodolski, Jan S.; Foster, Mary L.; Sohail, Muhammad U.; Leutenegger, Christian; Queen, Erica V.; Steiner, Jörg M.; Marks, Stanley L.

    2015-01-01

    Recent studies have revealed that microbes play an important role in the pathogenesis of gastrointestinal (GI) diseases in various animal species, but only limited data is available about the microbiome in cats with GI disease. The aim of this study was to evaluate the fecal microbiome in cats with diarrhea. Fecal samples were obtained from healthy cats (n = 21) and cats with acute (n = 19) or chronic diarrhea (n = 29) and analyzed by sequencing of 16S rRNA genes, and PICRUSt was used to predict the functional gene content of the microbiome. Linear discriminant analysis (LDA) effect size (LEfSe) revealed significant differences in bacterial groups between healthy cats and cats with diarrhea. The order Burkholderiales, the families Enterobacteriaceae, and the genera Streptococcus and Collinsella were significantly increased in diarrheic cats. In contrast the order Campylobacterales, the family Bacteroidaceae, and the genera Megamonas, Helicobacter, and Roseburia were significantly increased in healthy cats. Phylum Bacteroidetes was significantly decreased in cats with chronic diarrhea (>21 days duration), while the class Erysipelotrichi and the genus Lactobacillus were significantly decreased in cats with acute diarrhea. The observed changes in bacterial groups were accompanied by significant differences in functional gene contents: metabolism of fatty acids, biosynthesis of glycosphingolipids, metabolism of biotin, metabolism of tryptophan, and ascorbate and aldarate metabolism, were all significantly (p<0.001) altered in cats with diarrhea. In conclusion, significant differences in the fecal microbiomes between healthy cats and cats with diarrhea were identified. This dysbiosis was accompanied by changes in bacterial functional gene categories. Future studies are warranted to evaluate if these microbial changes correlate with changes in fecal concentrations of microbial metabolites in cats with diarrhea for the identification of potential diagnostic or therapeutic

  10. [Experimental vocal cord abduction impairment with an artificial vocal cord].

    PubMed

    Isozaki, Eiji; Tobisawa, Shinsuke; Nishizawa, Misato; Nakayama, Hideto; Fukui, Kotaro; Takanishi, Asuo

    2009-07-01

    Non-invasive positive pressure ventilation (NPPV) has recently been applied to the patients with multiple system atrophy (MSA) with various respiratory complications including vocal cord abduction impairment and respiratory disturbance by the central origin. Any consensus guidelines on setting up the inspiratory positive airway pressure (IPAP) and expiratory one (EPAP), however, have not been raised yet. To investigate this problem, we made the upper airway tract model with moderately and severely narrow glottis using a training/test lung and the artificial vocal cord which was developed for a humanoid talking robot in Waseda University. The artificial vocal cord was molded out of a high performance thermoplastic rubber in imitation of the human larynx. Previous studies using with a high-speed camera and a sound analyzer showed that the artificial vocal cord resembled human larynx closely both morphologically and functionally. The opening and closing movements of the artificial vocal cord were observed fiberscopically under various conditions of IPAP (4-20 cmH2O) and EPAP (4-10 cmH2O). The maximal glottic width during inspiration and expiration were measured by a pair of calipers on the video-monitored display. Both of the moderately and the severely narrow artificial vocal cords without non-paralytic factors showed typical paradoxical movement showing adduction in inspiration and abduction in expiration, which is characteristic to vocal cord abductor impairment seen in MSA. In the model with moderately severe narrow glottis, this paradoxical movement was released under any positive pressures of continuous (CPAP) and bilevel (Bilevel PAP) modes. In the model with severely narrow glottis, however, there existed a threshold in setting up the optimal EPAP to release the paradoxical movement. In conclusion, EPAP-leading procedure seems to be preferable to IPAP-leading procedure to dilate the narrow glottis as a pneumatic splint in the managements of the patients with

  11. Autologous olfactory mucosal cell transplants in clinical spinal cord injury: a randomized double-blinded trial in a canine translational model

    PubMed Central

    Granger, Nicolas; Blamires, Helen; Franklin, Robin J. M.

    2012-01-01

    This study was designed to determine whether an intervention proven effective in the laboratory to ameliorate the effects of experimental spinal cord injury could provide sufficient benefit to be of value to clinical cases. Intraspinal olfactory ensheathing cell transplantation improves locomotor outcome after spinal cord injury in ‘proof of principle’ experiments in rodents, suggesting the possibility of efficacy in human patients. However, laboratory animal spinal cord injury cannot accurately model the inherent heterogeneity of clinical patient cohorts, nor are all aspects of their spinal cord function readily amenable to objective evaluation. Here, we measured the effects of intraspinal transplantation of cells derived from olfactory mucosal cultures (containing a mean of ∼50% olfactory ensheathing cells) in a population of spinal cord–injured companion dogs that accurately model many of the potential obstacles involved in transition from laboratory to clinic. Dogs with severe chronic thoracolumbar spinal cord injuries (equivalent to ASIA grade ‘A’ human patients at ∼12 months after injury) were entered into a randomized double-blinded clinical trial in which they were allocated to receive either intraspinal autologous cells derived from olfactory mucosal cultures or injection of cell transport medium alone. Recipients of olfactory mucosal cell transplants gained significantly better fore–hind coordination than those dogs receiving cell transport medium alone. There were no significant differences in outcome between treatment groups in measures of long tract functionality. We conclude that intraspinal olfactory mucosal cell transplantation improves communication across the damaged region of the injured spinal cord, even in chronically injured individuals. However, we find no evidence for concomitant improvement in long tract function. PMID:23169917

  12. Intrathecal Injection of 3-Methyladenine Reduces Neuronal Damage and Promotes Functional Recovery via Autophagy Attenuation after Spinal Cord Ischemia/Reperfusion Injury in Rats.

    PubMed

    Wei, Xing; Zhou, Zhentao; Li, Lingyun; Gu, Jun; Wang, Chen; Xu, Fuqi; Dong, Qirong; Zhou, Xiaozhong

    2016-01-01

    The present study aimed to determine the occurrence of autophagy following ischemia/reperfusion (I/R) injury in the rat spinal cord and whether autophagy inhibition contributes to neural tissue damage and locomotor impairment. A spinal cord I/R model was induced via descending thoracic aorta occlusion for 10 min using systemic hypotension (40 mmHg) in adult male Sprague-Dawley rats. Then, 600 nmol 3-methyladenine (3-MA) or vehicle was intrathecally administered. Ultrastructural spinal cord changes were observed via transmission electron microscopy (TEM) and immunofluorescent double-labeling. Western blots were used to determine the protein expression of microtubule-associated protein light chain 3 (LC3) and Beclin 1. Autophagy was activated after spinal cord I/R injury as demonstrated by significantly increased LC3 and Beclin 1 expression at 3-48 h after injury. Furthermore, TEM images indicated the presence of autophagosomes and autolysosomes in the injured spinal cord. 3-MA significantly decreased LC3 and Beclin 1 expression and the number of LC3-positive cells in spinal cord of I/R versus vehicle groups. Moreover, the 3-MA-treated rats exhibited better neurobehavioral scores compared with control rats. These findings suggest activation of autophagy leading to neuronal cell death in the I/R injured spinal cord. These effects were significantly inhibited by intrathecal 3-MA administration. Thus intrathecal 3-MA administration may represent a novel treatment target following spinal cord I/R injury. PMID:27150140

  13. Electro-acupuncture promotes survival, differentiation of the bone marrow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats

    PubMed Central

    Ding, Ying; Yan, Qing; Ruan, Jing-Wen; Zhang, Yan-Qing; Li, Wen-Jie; Zhang, Yu-Jiao; Li, Yan; Dong, Hongxin; Zeng, Yuan-Shan

    2009-01-01

    Background Bone marrow mesenchymal stem cells (MSCs) are one of the potential tools for treatment of the spinal cord injury; however, the survival and differentiation of MSCs in an injured spinal cord still need to be improved. In the present study, we investigated whether Governor Vessel electro-acupuncture (EA) could efficiently promote bone marrow mesenchymal stem cells (MSCs) survival and differentiation, axonal regeneration and finally, functional recovery in the transected spinal cord. Results The spinal cords of adult Sprague-Dawley (SD) rats were completely transected at T10, five experimental groups were performed: 1. sham operated control (Sham-control); 2. operated control (Op-control); 3. electro-acupuncture treatment (EA); 4. MSCs transplantation (MSCs); and 5. MSCs transplantation combined with electro-acupuncture (MSCs+EA). After 2-8 weeks of MSCs transplantation plus EA treatment, we found that the neurotrophin-3 (NT-3), cAMP level, the differentiation of MSCs, the 5-HT positive and CGRP positive nerve fibers in the lesion site and nearby tissue of injured spinal cord were significantly increased in the MSCs+EA group as compared to the group of the MSCs transplantation or the EA treated alone. Furthermore, behavioral test and spinal cord evoked potentials detection demonstrated a significantly functional recovery in the MSCs +EA group. Conclusion These results suggest that EA treatment may promote grafted MSCs survival and differentiation; MSCs transplantation combined with EA treatment could promote axonal regeneration and partial locomotor functional recovery in the transected spinal cord in rats and indicate a promising avenue of treatment of spinal cord injury. PMID:19374777

  14. Methylprednisolone for acute spinal cord injury: an increasingly philosophical debate.

    PubMed

    Bowers, Christian A; Kundu, Bornali; Hawryluk, Gregory W J

    2016-06-01

    Following publication of NASCIS II, methylprednisolone sodium succinate (MPSS) was hailed as a breakthrough for patients with acute spinal cord injury (SCI). MPSS use for SCI has since become very controversial and it is our opinion that additional evidence is unlikely to break the stalemate amongst clinicians. Patient opinion has the potential to break this stalemate and we review our recent findings which reported that spinal cord injured patients informed of the risks and benefits of MPSS reported a preference for MPSS administration. We discuss the implications of the current MPSS debate on translational research and seek to address some misconceptions which have evolved. As science has failed to resolve the MPSS debate we argue that the debate is an increasingly philosophical one. We question whether SCI might be viewed as a serious condition like cancer where serious side effects of therapeutics are tolerated even when benefits may be small. We also draw attention to the similarity between the side effects of MPSS and isotretinoin which is prescribed for the cosmetic disorder acne vulgaris. Ultimately we question how patient autonomy should be weighed in the context of current SCI guidelines and MPSS's status as a historical standard of care. PMID:27482201

  15. Microglial Activation in Rat Experimental Spinal Cord Injury Model

    PubMed Central

    Abdanipour, Alireza; Tiraihi, Taki; Taheri, Taher; Kazemi, Hadi

    2013-01-01

    Background: The present study was designed to evaluate the secondary microglial activation processes after spinal cord injury (SCI). Methods: A quantitative histological study was performed to determine ED-1 positive cells, glial cell density, and cavitation size in untreated SCI rats at days 1, 2, and 4, and weeks 1, 2, 3, and 4. Results: The results of glial cell quantification along the 4900-µm long injured spinal cord showed a significant increase in glial cell density percentage at day 2 as compared to other days. Whereas the highest increase in ED-1 immunoreactive cells (monocyte/phagocyte marker in rats) was observed at day 2 (23.15%) post-injury. Evaluation of cavity percentage showed a significant difference between weeks 3 and 4 post-injury groups. Conclusions: This study provides a new insight into the multiphase immune response to SCI, including cellular inflammation, macrophages/microglia activation, glial cell density, and cavitation. Better understanding of the inflammatory processes associated with acute SCI would permit the development of better therapeutic strategies. PMID:23999718

  16. Training a Spinal Cord Injury Rehabilitation Team in Motivational Interviewing

    PubMed Central

    Lusilla-Palacios, Pilar; Castellano-Tejedor, Carmina

    2015-01-01

    Background. An acute spinal cord injury (ASCI) is a severe condition that requires extensive and very specialized management of both physical and psychological dimensions of injured patients. Objective. The aim of the part of the study reported here was twofold: (1) to describe burnout, empathy, and satisfaction at work of these professionals and (2) to explore whether a tailored program based on motivational interviewing (MI) techniques modifies and improves such features. Methods. This paper presents findings from an intervention study into a tailored training for professionals (N = 45) working in a spinal cord injury (SCI) unit from a general hospital. Rehabilitation professionals' empathy skills were measured with the Jefferson Scale of Physician Empathy (JSPE), burnout was measured with the Maslach Burnout Inventory (MBI), and additional numeric scales were used to assess the perceived job-related stress and perceived satisfaction with job. Results. Findings suggest that professionals are performing quite well and they refer to satisfactory empathy, satisfaction at work, and no signs of burnout or significant stress both before and after the training. Conclusions. No training effect was observed in the variables considered in the study. Some possible explanations for these results and future research directions are discussed in depth in this paper. The full protocol of this study is registered in ClinicalTrials.gov (identifier: NCT01889940). PMID:26770827

  17. Methylprednisolone for acute spinal cord injury: an increasingly philosophical debate

    PubMed Central

    Bowers, Christian A.; Kundu, Bornali; Hawryluk, Gregory W. J.

    2016-01-01

    Following publication of NASCIS II, methylprednisolone sodium succinate (MPSS) was hailed as a breakthrough for patients with acute spinal cord injury (SCI). MPSS use for SCI has since become very controversial and it is our opinion that additional evidence is unlikely to break the stalemate amongst clinicians. Patient opinion has the potential to break this stalemate and we review our recent findings which reported that spinal cord injured patients informed of the risks and benefits of MPSS reported a preference for MPSS administration. We discuss the implications of the current MPSS debate on translational research and seek to address some misconceptions which have evolved. As science has failed to resolve the MPSS debate we argue that the debate is an increasingly philosophical one. We question whether SCI might be viewed as a serious condition like cancer where serious side effects of therapeutics are tolerated even when benefits may be small. We also draw attention to the similarity between the side effects of MPSS and isotretinoin which is prescribed for the cosmetic disorder acne vulgaris. Ultimately we question how patient autonomy should be weighed in the context of current SCI guidelines and MPSS's status as a historical standard of care. PMID:27482201

  18. Differences between vocalization evoked by social stimuli in feral cats and house cats.

    PubMed

    Yeon, Seong C; Kim, Young K; Park, Se J; Lee, Scott S; Lee, Seung Y; Suh, Euy H; Houpt, Katherine A; Chang, Hong H; Lee, Hee C; Yang, Byung G; Lee, Hyo J

    2011-06-01

    To investigate how socialization can affect the types and characteristics of vocalization produced by cats, feral cats (n=25) and house cats (n=13) were used as subjects, allowing a comparison between cats socialized to people and non-socialized cats. To record vocalization and assess the cats' responses to behavioural stimuli, five test situations were used: approach by a familiar caretaker, by a threatening stranger, by a large doll, by a stranger with a dog and by a stranger with a cat. Feral cats showed extremely aggressive and defensive behaviour in most test situations, and produced higher call rates than those of house cats in the test situations, which could be attributed to less socialization to other animals and to more sensitivity to fearful situations. Differences were observed in the acoustic parameters of feral cats in comparison to those of house cats. The feral cat produced significantly higher frequency in fundamental frequency, peak frequency, 1st quartile frequency, 3rd quartile frequency of growls and hisses in agonistic test situations. In contrast to the growls and hisses, in meow, all acoustic parameters like fundamental frequency, first formant, peak frequency, 1st quartile frequency, and 3rd quartile frequency of house cats were of significantly higher frequency than those of feral cats. Also, house cats produced calls of significantly shorter in duration than feral cats in agonistic test situations. These results support the conclusion that a lack of socialization may affect usage of types of vocalizations, and the vocal characteristics, so that the proper socialization of cat may be essential to be a suitable companion house cat. PMID:21443933

  19. Eosinophilic leukaemia in a cat.

    PubMed

    Sharifi, Hassan; Nassiri, Seyed Mahdi; Esmaelli, Hossein; Khoshnegah, Javad

    2007-12-01

    A 14-year-old female domestic shorthair cat was presented to Tehran University Veterinary Teaching Hospital for a persistent fever, anorexia, intermittent vomiting, weight loss and weakness. The main clinical signs were pale mucous membranes, dehydration and splenomegaly. The complete blood count and serum biochemistry tests revealed non-regenerative anaemia, thrombocytopenia and increased alkaline phosphatase (ALP) activity. An enzyme-linked immunosorbent assay (ELISA) test for feline leukaemia virus was negative. Blood film and bone marrow examination revealed a large number of immature eosinophils with variable sizes and numbers of faintly azurophilic granules. Cytochemical staining of blood film demonstrated 70% positive cells for ALP activity. Four percent CD34 positive cells were detected by flow cytometry. As eosinophilic leukaemia is difficult to identify by light microscopy, well-defined diagnostic criteria and the use of flow cytometry and cytochemical staining can improve the ability to correctly diagnose this type of leukaemia in cats. PMID:17669677

  20. Retinoic acid receptor beta2 promotes functional regeneration of sensory axons in the spinal cord.

    PubMed

    Wong, Liang-Fong; Yip, Ping K; Battaglia, Anna; Grist, John; Corcoran, Jonathan; Maden, Malcolm; Azzouz, Mimoun; Kingsman, Susan M; Kingsman, Alan J; Mazarakis, Nicholas D; McMahon, Stephen B

    2006-02-01

    The embryonic CNS readily undergoes regeneration, unlike the adult CNS, which has limited axonal repair after injury. Here we tested the hypothesis that retinoic acid receptor beta2 (RARbeta2), critical in development for neuronal growth, may enable adult neurons to grow in an inhibitory environment. Overexpression of RARbeta2 in adult rat dorsal root ganglion cultures increased intracellular levels of cyclic AMP and stimulated neurite outgrowth. Stable RARbeta2 expression in DRG neurons in vitro and in vivo enabled their axons to regenerate across the inhibitory dorsal root entry zone and project into the gray matter of the spinal cord. The regenerated neurons enhanced second-order neuronal activity in the spinal cord, and RARbeta2-treated rats showed highly significant improvement in sensorimotor tasks. These findings show that RARbeta2 induces axonal regeneration programs within injured neurons and may thus offer new therapeutic opportunities for CNS regeneration. PMID:16388307

  1. Hyperbaric oxygen therapy reduces apoptosis after spinal cord injury in rats

    PubMed Central

    Long, Ying; Liang, Fang; Gao, Chunjin; Li, Zhuo; Yang, Jing

    2014-01-01

    Hyperbaric oxygen therapy (HBOT) protects brain tissue from inflammatory injury by suppressing mitochondrial apoptotic pathways. However, its neuroprotective mechanism via anti-apoptosis in spinal cord injury (SCI) is still unclear. In our study, Male Sprague-Dawley rats were randomly divided into three groups: sham-operated (SH), SCI model, and SCI + HBOT. Rats in each group were randomly divided into four sub-groups in a time-dependent manner (1 day, 3 days, 7 days and 14 days after surgery). Expression of adaptor molecule apoptosis-associated speck-like protein (ASC) and caspase-3 was evaluated at the indicated time after injury. Our data showed that HBOT downregulated expression of ASC in SCI rats at the mRNA and protein levels. HBOT mitigated caspase-3 release in injured spinal cord tissue. We conclude that HBOT prevents inflammation apoptosis after SCI, likely through suppression of ASC and caspase-3. PMID:25550916

  2. Long-Distance Growth and Connectivity of Neural Stem Cells After Severe Spinal Cord Injury

    PubMed Central

    Lu, Paul; Wang, Yaozhi; Graham, Lori; McHale, Karla; Gao, Mingyong; Wu, Di; Brock, John; Blesch, Armin; Rosenzweig, Ephron S.; Havton, Leif A.; Zheng, Binhai; Conner, James M.; Marsala, Martin; Tuszynski, Mark H.

    2012-01-01

    SUMMARY Neural stem cells (NSCs) expressing GFP were embedded into fibrin matrices containing growth factor cocktails and grafted to sites of severe spinal cord injury. Grafted cells differentiated into multiple cellular phenotypes, including neurons, which extended large numbers of axons over remarkable distances. Extending axons formed abundant synapses with host cells. Axonal growth was partially dependent on mammalian target of rapamycin (mTOR) but not Nogo signaling. Grafted neurons supported formation of electrophysiological relays across sites of complete spinal transection, resulting in functional recovery. Two human stem cell lines (566RSC and HUES7) embedded in growth factor-containing fibrin exhibited similar growth, and 566RSC cells supported functional recovery. Thus, properties intrinsic to early stage neurons can overcome the inhibitory milieu of the injured adult spinal cord to mount remarkable axonal growth resulting in formation of novel relay circuits that significantly improve function. These therapeutic properties extend across stem cell sources and species. PMID:22980985

  3. Overview of Spinal Cord Disorders

    MedlinePlus

    ... temperature from the body to the spinal cord. Did You Know... Doctors can often tell where the ... on symptoms and results of a physical examination. Did You Know... Nerves from the lowest parts of ...

  4. What Is Spinal Cord Injury?

    MedlinePlus

    ... lowest point on the spinal cord below which sensory feeling and motor movement diminish or disappear. The ... injury is so severe that almost all feeling (sensory function) and all ability to control movement (motor ...

  5. Cat Ownership Perception and Caretaking Explored in an Internet Survey of People Associated with Cats

    PubMed Central

    Zito, Sarah; Vankan, Dianne

    2015-01-01

    People who feed cats that they do not perceive they own (sometimes called semi-owners) are thought to make a considerable contribution to unwanted cat numbers because the cats they support are generally not sterilized. Understanding people’s perception of cat ownership and the psychology underlying cat semi-ownership could inform approaches to mitigate the negative effects of cat semi-ownership. The primary aims of this study were to investigate cat ownership perception and to examine its association with human-cat interactions and caretaking behaviours. A secondary aim was to evaluate a definition of cat semi-ownership (including an association time of ≥1 month and frequent feeding), revised from a previous definition proposed in the literature to distinguish cat semi-ownership from casual interactions with unowned cats. Cat owners and semi-owners displayed similar types of interactions and caretaking behaviours. Nevertheless, caretaking behaviours were more commonly displayed towards owned cats than semi-owned cats, and semi-owned cats were more likely to have produced kittens (p<0.01). All interactions and caretaking behaviours were more likely to be displayed towards cats in semi-ownership relationships compared to casual interaction relationships. Determinants of cat ownership perception were identified (p<0.05) and included association time, attachment, perceived cat friendliness and health, and feelings about unowned cats, including the acceptability of feeding unowned cats. Encouraging semi-owners to have the cats they care for sterilized may assist in reducing the number of unwanted kittens and could be a valuable alternative to trying to prevent semi-ownership entirely. Highly accessible semi-owner “gatekeepers” could help to deliver education messages and facilitate the provision of cat sterilization services to semi-owners. This research enabled semi-ownership to be distinguished from casual interaction relationships and can assist welfare and

  6. Radioactive iodine therapy in cats with hyperthyroidism

    SciTech Connect

    Turrel, J.M.; Feldman, E.C.; Hays, M.; Hornof, W.J.

    1984-03-01

    Eleven cats with hyperthyroidism were treated with radioactive iodine (/sup 131/I). Previous unsuccessful treatments for hyperthyroidism included hemithyroidectomy (2 cats) and an antithyroid drug (7 cats). Two cats had no prior treatment. Thyroid scans, using technetium 99m, showed enlargement and increased radionuclide accumulation in 1 thyroid lobe in 5 cats and in both lobes in 6 cats. Serum thyroxine concentrations were high and ranged from 4.7 to 18 micrograms/dl. Radioactive iodine tracer studies were used to determine peak radioactive iodine uptake (RAIU) and effective and biological half-lives. Activity of /sup 131/I administered was calculated from peak RAIU, effective half-life, and estimated thyroid gland weight. Activity of /sup 131/I administered ranged from 1.0 to 5.9 mCi. The treatment goal was to deliver 20,000 rad to hyperactive thyroid tissue. However, retrospective calculations based on peak RAIU and effective half-life obtained during the treatment period showed that radiation doses actually ranged from 7,100 to 64,900 rad. Complete ablation of the hyperfunctioning thyroid tissue and a return to euthyroidism were seen in 7 cats. Partial responses were seen in 2 cats, and 2 cats became hypothyroid. It was concluded that /sup 131/I ablation of thyroid tumors was a reasonable alternative in the treatment of hyperthyroidism in cats. The optimal method of dosimetry remains to be determined.

  7. Ultrasonographic percutaneous anatomy of the atlanto-occipital region and indirect ultrasound-guided cisternal puncture in the dog and the cat.

    PubMed

    Etienne, A-L; Audigié, F; Peeters, D; Gabriel, A; Busoni, V

    2015-04-01

    Cisternal puncture in dogs and cats is commonly carried out. This article describes the percutaneous ultrasound anatomy of the cisternal region in the dog and the cat and an indirect technique for ultrasound-guided cisternal puncture. Ultrasound images obtained ex vivo and in vivo were compared with anatomic sections and used to identify the landmarks for ultrasound-guided cisternal puncture. The ultrasound-guided procedure was established in cadavers and then applied in vivo in seven dogs and two cats. The anatomic landmarks for the ultrasound-guided puncture are the cisterna magna, the spinal cord, the two occipital condyles on transverse images, the external occipital crest and the dorsal arch of the first cervical vertebra on longitudinal images. Using these ultrasound anatomic landmarks, an indirect ultrasound-guided technique for cisternal puncture is applicable in the dog and the cat. PMID:24712312

  8. Characterizing phospholipase A2-induced spinal cord injury-a comparison with contusive spinal cord injury in adult rats.

    PubMed

    Liu, Nai-Kui; Titsworth, William Lee; Zhang, Yi Ping; Xhafa, Aurela I; Shields, Christopher B; Xu, Xiao-Ming

    2011-12-01

    To assess whether phospholipase A2 (PLA2) plays a role in the pathogenesis of spinal cord injury (SCI), we compared lesions either induced by PLA2 alone or by a contusive SCI. At 24-h post-injury, both methods induced a focal hemorrhagic pathology. The PLA2 injury was mainly confined within the ventrolateral white matter, whereas the contusion injury widely affected both the gray and white matter. A prominent difference between the two models was that PLA2 induced a massive demyelination with axons remaining in the lesion area, whereas the contusion injury induced axonal damage and myelin breakdown. At 4 weeks, no cavitation was found within the PLA2 lesion, and numerous axons were myelinated by host-migrated Schwann cells. Among them, 45% of animals had early transcranial magnetic motor-evoked potential (tcMMEP) responses. In contrast, the contusive SCI induced a typical centralized cavity with reactive astrocytes forming a glial border. Only 15% of rats had early tcMMEP responses after the contusion. BBB scores were similarly reduced in both models. Our study indicates that PLA2 may play a unique role in mediating secondary SCI likely by targeting glial cells, particularly those of oligodendrocytes. This lesion model could also be used for studying demyelination and remyelination in the injured spinal cord associated with PLA2-mediated secondary SCI. PMID:23585818

  9. Characterizing Phospholipase A2-Induced Spinal Cord Injury—A Comparison with Contusive Spinal Cord Injury in Adult Rats

    PubMed Central

    Liu, Nai-Kui; Titsworth, William Lee; Zhang, Yi Ping; Xhafa, Aurela I.; Shields, Christopher B.

    2012-01-01

    To assess whether phospholipase A2 (PLA2) plays a role in the pathogenesis of spinal cord injury (SCI), we compared lesions either induced by PLA2 alone or by a contusive SCI. At 24-h post-injury, both methods induced a focal hemorrhagic pathology. The PLA2 injury was mainly confined within the ventrolateral white matter, whereas the contusion injury widely affected both the gray and white matter. A prominent difference between the two models was that PLA2 induced a massive demyelination with axons remaining in the lesion area, whereas the contusion injury induced axonal damage and myelin breakdown. At 4 weeks, no cavitation was found within the PLA2 lesion, and numerous axons were myelinated by host-migrated Schwann cells. Among them, 45% of animals had early transcranial magnetic motor-evoked potential (tcMMEP) responses. In contrast, the contusive SCI induced a typical centralized cavity with reactive astrocytes forming a glial border. Only 15% of rats had early tcMMEP responses after the contusion. BBB scores were similarly reduced in both models. Our study indicates that PLA2 may play a unique role in mediating secondary SCI likely by targeting glial cells, particularly those of oligodendrocytes. This lesion model could also be used for studying demyelination and remyelination in the injured spinal cord associated with PLA2-mediated secondary SCI. PMID:23585818

  10. Surgical techniques of anterior decompression and fusion for spinal cord injuries.

    PubMed

    Bohlman, H H; Eismont, F J

    1981-01-01

    Many patients who have static or only slowly improving neurologic deficits and significant compression of the spinal cord and nerve roots can benefit from anterior decompression. The improvement ranges from partial root recovery to very dramatic improvement in upper as well as lower extremities in the patient with quadriparesis. Intrinsic damage or contusion of the spinal cord cannot be reversed by decompression. Patients with motor sparing preoperatively attain a better functional improvement than those patients who have only slight distal sensory function initially. The same can be said of patients with spinal cord injuries treated with surgery, but we believe the ultimate degree of functional recovery of incomplete cord injuries is greater following anterior than posterior decompression when the operation is indicated. An early accurate diagnosis must be made concerning whether a patient has a complete or an incomplete spinal cord injury. The mechanical compressive lesion must be well documented by myelography, laminography, or CAT scan. The patient should not be neurologically harmed by a posterior laminectomy approach to anterior pathology which additionally removes all posterior stability. An anterior compressive block is best removed through an anterior approach. PMID:7471590

  11. Control of abdominal muscles by brain stem respiratory neurons in the cat

    NASA Technical Reports Server (NTRS)

    Miller, Alan D.; Ezure, Kazuhisa; Suzuki, Ichiro

    1985-01-01

    The nature of the control of abdominal muscles by the brain stem respiratory neurons was investigated in decerebrate unanesthetized cats. First, it was determined which of the brain stem respiratory neurons project to the lumbar cord (from which the abdominal muscles receive part of their innervation), by stimulating the neurons monopolarly. In a second part of the study, it was determined if lumbar-projecting respiratory neurons make monosynaptic connections with abdominal motoneurons; in these experiments, discriminate spontaneous spikes of antidromically acivated expiratory (E) neurons were used to trigger activity from both L1 and L2 nerves. A large projection was observed from E neurons in the caudal ventral respiratory group to the contralateral upper lumber cord. However, cross-correlation experiments found only two (out of 47 neuron pairs tested) strong monosynaptic connections between brain stem neurons and abdominal motoneurons.

  12. Radiofrequency cordotomy for the relief of spasticity in decerebrate cats1

    PubMed Central

    Soriano, Daniel; Herman, Richard

    1971-01-01

    The effectiveness of radiofrequency (RF) cordotomy of segmental motoneurone pools of the lumbosacral cord in reducing spasticity of decerebrate cats is evaluated. The need for a new form of therapy for clinical spasticity is based upon the limitations of contemporary methods, including surgical and pharmacological techniques. In man, spasticity of spinal origin may be treated effectively by intrathecal administration of hyperbaric phenol solutions. The advantages and disadvantages are described. Difficulty in controlling the lesion is emphasized. Tension and EMG-length curves of the spastic triceps surae muscle in acute and chronic animals show that RF lesions (fixed amperage and duration) of the segmental motoneurone pools reduces myotatic reflex activity in accordance with the number of segments cordotomized. Clinical examination including cinematography and electromyography complement the physiological interpretation. RF lesions of the internuncial pool induce spontaneous EMG discharges. This finding is related to similar observations of EMG discharges and alterations in muscle tone after asphyxiation of the spinal cord. Images PMID:5287593

  13. Neuroprotective effects of sulforaphane after contusive spinal cord injury.

    PubMed

    Benedict, Andrea L; Mountney, Andrea; Hurtado, Andres; Bryan, Kelley E; Schnaar, Ronald L; Dinkova-Kostova, Albena T; Talalay, Paul

    2012-11-01

    Traumatic spinal cord injury (SCI) leads to oxidative stress, calcium mobilization, glutamate toxicity, the release of proinflammatory factors, and depletion of reduced glutathione (GSH) at the site of injury. Induction of the Keap1/Nrf2/ARE pathway can alleviate neurotoxicity by protecting against GSH depletion, oxidation, intracellular calcium overload, mitochondrial dysfunction, and excitotoxicity. Sulforaphane (SF), an isothiocyanate derived from broccoli, is a potent naturally-occurring inducer of the Keap1/Nrf2/ARE pathway, leading to upregulation of genes encoding cytoprotective proteins such as NAD(P)H: quinone oxidoreductase 1, and GSH-regulatory enzymes. Additionally, SF can attenuate inflammation by inhibiting the nuclear factor-κB (NF-κB) pathway, and the enzymatic activity of the proinflammatory cytokine macrophage inhibitory factor (MIF). Our study examined systemic administration of SF in a rat model of contusion SCI, in an effort to utilize its indirect antioxidant and anti-inflammatory properties to decrease secondary injury. Two doses of SF (10 or 50 mg/kg) were administered at 10 min and 72 h after contusion SCI. SF (50 mg/kg) treatment resulted in both acute and long-term beneficial effects, including upregulation of the phase 2 antioxidant response at the injury site, decreased mRNA levels of inflammatory cytokines (i.e., MMP-9) in the injured spinal cord, inactivation of urinary MIF tautomerase activity, enhanced hindlimb locomotor function, and an increased number of serotonergic axons caudal to the lesion site. These findings demonstrate that SF provides neuroprotective effects in the spinal cord after injury, and could be a candidate for therapy of SCI. PMID:22853439

  14. Adoptive transfer of M2 macrophages promotes locomotor recovery in adult rats after spinal cord injury.

    PubMed

    Ma, Shan-Feng; Chen, Yue-Juan; Zhang, Jing-Xing; Shen, Lin; Wang, Rui; Zhou, Jian-Sheng; Hu, Jian-Guo; Lü, He-Zuo

    2015-03-01

    Classically activated pro-inflammatory (M1) and alternatively activated anti-inflammatory (M2) macrophages populate the local microenvironment after spinal cord injury (SCI). The former type is neurotoxic while the latter has positive effects on neuroregeneration and is less toxic. In addition, while the M1 macrophage response is rapidly induced and sustained, M2 induction is transient. A promising strategy for the repair of SCI is to increase the fraction of M2 cells and prolong their residence time. This study investigated the effect of M2 macrophages induced from bone marrow-derived macrophages on the local microenvironment and their possible role in neuroprotection after SCI. M2 macrophages produced anti-inflammatory cytokines such as interleukin (IL)-10 and transforming growth factor β and infiltrated into the injured spinal cord, stimulated M2 and helper T (Th)2 cells, and produced high levels of IL-10 and -13 at the site of injury. M2 cell transfer decreased spinal cord lesion volume and resulted in increased myelination of axons and preservation of neurons. This was accompanied by significant locomotor improvement as revealed by Basso, Beattie and Bresnahan locomotor rating scale, grid walk and footprint analyses. These results indicate that M2 adoptive transfer has beneficial effects for the injured spinal cord, in which the increased number of M2 macrophages causes a shift in the immunological response from Th1- to Th2-dominated through the production of anti-inflammatory cytokines, which in turn induces the polarization of local microglia and/or macrophages to the M2 subtype, and creates a local microenvironment that is conducive to the rescue of residual myelin and neurons and preservation of neuronal function. PMID:25476600

  15. Predifferentiated GABAergic Neural Precursor Transplants for Alleviation of Dysesthetic Central Pain Following Excitotoxic Spinal Cord Injury

    PubMed Central

    Lee, Jeung Woon; Jergova, Stanislava; Furmanski, Orion; Gajavelli, Shyam; Sagen, Jacqueline

    2012-01-01

    Intraspinal quisqualic acid (QUIS) injury induce (i) mechanical and thermal hyperalgesia, (ii) progressive self-injurious overgrooming of the affected dermatome. The latter is thought to resemble painful dysesthesia observed in spinal cord injury (SCI) patients. We have reported previously loss of endogenous GABA immunoreactive (IR) cells in the superficial dorsal horn of QUIS rats 2 weeks post injury. Further histological evaluation showed that GABA-, glycine-, and synaptic vesicular transporter VIAAT-IR persisted but were substantially decreased in the injured spinal cord. In this study, partially differentiated GABA-IR embryonic neural precursor cells (NPCs) were transplanted into the spinal cord of QUIS rats to reverse overgrooming by replenishing lost inhibitory circuitry. Rat E14 NPCs were predifferentiated in 0.1 ng/ml FGF-2 for 4 h prior to transplantation. In vitro immunocytochemistry of transplant cohort showed large population of GABA-IR NPCs that double labeled with nestin but few colocalized with NeuN, indicating partial maturation. Two weeks following QUIS lesion at T12-L1, and following the onset of overgrooming, NPCs were transplanted into the QUIS lesion sites; bovine adrenal fibroblast cells were used as control. Overgrooming was reduced in >55.5% of NPC grafted animals, with inverse relationship between the number of surviving GABA-IR cells and the size of overgrooming. Fibroblast-control animals showed a progressive worsening of overgrooming. At 3 weeks post-transplantation, numerous GABA-, nestin-, and GFAP-IR cells were present in the lesion site. Surviving grafted GABA-IR NPCs were NeuN+ and GFAP−. These results indicate that partially differentiated NPCs survive and differentiate in vivo into neuronal cells following transplantation into an injured spinal cord. GABA-IR NPC transplants can restore lost dorsal horn inhibitory signaling and are useful in alleviating central pain following SCI. PMID:22754531

  16. Effects of Visual and Auditory Background on Reading Achievement Test Performance of Brain-Injured and Non Brain-Injured Children.

    ERIC Educational Resources Information Center

    Carter, John L.

    Forty-two brain injured boys and 42 non brain injured boys (aged 11-6 to 12-6) were tested to determine the effects of increasing amounts of visual and auditory distraction on reading performance. The Stanford Achievement Reading Comprehension Test was administered with three degrees of distraction. The visual distraction consisted of either very…

  17. Absence of gliosis in a teleost model of spinal cord regeneration.

    PubMed

    Vitalo, Antonia G; Sîrbulescu, Ruxandra F; Ilieş, Iulian; Zupanc, Günther K H

    2016-06-01

    Among the cellular processes that follow injury to the central nervous system, glial scar formation is thought to be one of the major factors that prevent regeneration. In regeneration-competent organisms, glial scar formation has been a matter of controversy. We addressed this issue by examining the glial population after spinal cord injury in a model of regeneration competency, the knifefish Apteronotus leptorhynchus. Analysis of spinal cord sections immunostained against the glial markers glial fibrillary acidic protein, vimentin, or chondroitin sulfate proteoglycan failed to produce any evidence for the formation of a glial scar in the area of the lesion at post-injury survival times ranging from 5 to 185 days. This result was independent of the lesion paradigm applied-amputation of the caudal part of the spinal cord or hemisection lesioning-and similar after examination of transverse and longitudinal sections. We hypothesize that the well-developed network of radial glia in both the intact and the injured spinal cord provides a support system for regeneration of tissue lost to injury. This glial network is likely also involved in the generation of new cells, as indicated by the large subset of glial fibrillary acidic protein-labeled glia that express the stem cell marker Sox2. PMID:27225982

  18. Induced pluripotent stem cell-derived neural stem cell therapies for spinal cord injury.

    PubMed

    Lee-Kubli, Corinne A; Lu, Paul

    2015-01-01

    The greatest challenge to successful treatment of spinal cord injury is the limited regenerative capacity of the central nervous system and its inability to replace lost neurons and severed axons following injury. Neural stem cell grafts derived from fetal central nervous system tissue or embryonic stem cells have shown therapeutic promise by differentiation into neurons and glia that have the potential to form functional neuronal relays across injured spinal cord segments. However, implementation of fetal-derived or embryonic stem cell-derived neural stem cell therapies for patients with spinal cord injury raises ethical concerns. Induced pluripotent stem cells can be generated from adult somatic cells and differentiated into neural stem cells suitable for therapeutic use, thereby providing an ethical source of implantable cells that can be made in an autologous fashion to avoid problems of immune rejection. This review discusses the therapeutic potential of human induced pluripotent stem cell-derived neural stem cell transplantation for treatment of spinal cord injury, as well as addressing potential mechanisms, future perspectives and challenges. PMID:25788906

  19. Permissive Schwann cell graft/spinal cord interfaces for axon regeneration.

    PubMed

    Williams, Ryan R; Henao, Martha; Pearse, Damien D; Bunge, Mary Bartlett

    2015-01-01

    The transplantation of autologous Schwann cells (SCs) to repair the injured spinal cord is currently being evaluated in a clinical trial. In support, this study determined properties of spinal cord/SC bridge interfaces that enabled regenerated brainstem axons to cross them, possibly leading to improvement in rat hindlimb movement. Fluid bridges of SCs and Matrigel were placed in complete spinal cord transections. Compared to pregelled bridges of SCs and Matrigel, they improved regeneration of brainstem axons across the rostral interface. The regenerating brainstem axons formed synaptophysin(+) bouton-like terminals and contacted MAP2A(+) dendrites at the caudal interface. Brainstem axon regeneration was directly associated with glial fibrillary acidic protein (GFAP(+)) astrocyte processes that elongated into the SC bridge. Electron microscopy revealed that axons, SCs, and astrocytes were enclosed together within tunnels bounded by a continuous basal lamina. Neuroglycan (NG2) expression was associated with these tunnels. One week after injury, the GFAP(+) processes coexpressed nestin and brain lipid-binding protein, and the tips of GFAP(+)/NG2(+) processes extended into the bridges together with the regenerating brainstem axons. Both brainstem axon regeneration and number of GFAP(+) processes in the bridges correlated with improvement in hindlimb locomotion. Following SCI, astrocytes may enter a reactive state that prohibits axon regeneration. Elongation of astrocyte processes into SC bridges, however, and formation of NG2(+) tunnels enable brainstem axon regeneration and improvement in function. It is important for spinal cord repair to define conditions that favor elongation of astrocytes into lesions/transplants. PMID:24152553

  20. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish

    PubMed Central

    Hui, Subhra Prakash; Nag, Tapas Chandra; Ghosh, Sukla

    2015-01-01

    Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration. PMID:26630262

  1. Temporal course of motor recovery after Brown-Sequard spinal cord injuries.

    PubMed

    Little, J W; Halar, E

    1985-02-01

    Recovery of voluntary motor function after incomplete spinal cord injuries is attributed to a variety of physiological mechanisms, such as resolution of conduction block in injured axons, and neuroplasticity mechanisms in spared axons. To better understand these recovery mechanisms, we have examined motor recovery in one type of incomplete cord injury, the Brown-Sequard Syndrome. This syndrome is observed in patients with unilateral injury of the spinal cord and is manifested as asymmetric weakness and pain/temperature sensory loss contralateral to the weakest extremity. We have followed the course of motor recovery in two patients and reviewed the literature in an additional 59. Common features of this motor recovery include: 1) recovery of ipsilateral proximal extensor muscles before ipsilateral distal flexors, 2) recovery of any weakness in the extremity with pain/temperature sensory loss before the opposite extremity, and 3) recovery of voluntary motor strength and a functional gait by 1 to 6 months. We discuss these observations with respect to three hypotheses to explain motor recovery and suggest that neuroplasticity mechanisms functioning in spared descending axons may mediate much of the observed recovery after Brown-Sequard cord lesions. PMID:3982846

  2. Artificial Gravity as a Countermeasure of Cardiovascular Deconditioning in Spinal Cord Injury

    NASA Technical Reports Server (NTRS)

    Cardus, David

    1999-01-01

    An essential item in the development of this project was the availability of the artificial gravity simulator (AGS). At the termination of that grant in 1994, the AGS was dismantled and transferred to NASA Johnson Space Center. It took over two years for the AGS to be re-assembled and re-certified for use. As a consequence of the non-availability of the AGS for two years, there was a considerable delay in implementing the various phases of the project. The subjects involved in the study were eight healthy able bodied subjects and twelve with spinal cord injury. After analysis of the data collected on these subjects, six of the healthy able bodied subjects and three of the sub ects with spinal cord injury were found to qualify for the study. This report gives the results of four subjects only, two healthy able bodied and two spinal cord injured subjects because the period of the grant (1 year) and its extension (1 year) expired before additional subjects could be studied. The principal objective of the study was to conduct a series of experiments to demonstrate the feasibility of utilizing artificial gravity to assist in the physical rehabilitation of persons with spinal cord injuries.

  3. [Macrophages promote the migration of neural stem cells into mouse spinal cord injury site].

    PubMed

    Cheng, Zhijian; Zhu, Wen; Li, Haopeng; He, Xijing

    2016-09-01

    Objective To explore the role of macrophages in the migration of neural stem cells (NSCs) in vivo and in vitro . Methods NSCs with green fluorescent protein (GFP) were isolated from GFP transgenic mice and the immunofluorescence cytochemical staining of nestin was used to identify NSCs. After spinal cord injury was induced, the tissue level of macrophage chemotactic protein-1 (MCP-1) mRNA was detected using quantitative real time PCR. The migration of GFP-NSCs was investigated 1 week after GFP-NSCs were injected into both sides of the damaged area. The effect of macrophage on the migration of NSCs in vitro was tested by Transwell(TM) system and the content of MCP-1 was detected by ELISA. Results NSCs highly expressed nestin. Compared with the control group, the level of MCP-1 mRNA significantly increased in the spinal cord injury group. The NSCs which were injected into the spinal cord migrated into the center of the injured site where F4/80 was highly expressed. Macrophages significantly increased the number of migrating NSCs in vitro and the secretion of MCP-1. Conclusion Macrophages induce NSC migrating into the spinal cord injury site possibly through promoting the secretion of MCP-1. PMID:27609570

  4. A review of feral cat control.

    PubMed

    Robertson, Sheilah A

    2008-08-01

    Animal overpopulation including feral cats is an important global problem. There are many stakeholders involved in the feral cat debate over 'what to do about the problem', including those who consider them a nuisance, the public at risk from zoonotic disease, people who are concerned about the welfare of feral cats, those concerned with wildlife impacts, and the cats themselves. How best to control this population is controversial and has ranged from culling, relocation, and more recently 'trap neuter return' (TNR) methods. Data support the success of TNR in reducing cat populations, but to have a large impact it will have to be adopted on a far greater scale than it is currently practised. Non-surgical contraception is a realistic future goal. Because the feral cat problem was created by humans, concerted educational efforts on responsible pet ownership and the intrinsic value of animals is an integral part of a solution. PMID:17913531

  5. Molecular Detection of Rickettsia felis in Humans, Cats, and Cat Fleas in Bangladesh, 2013-2014.

    PubMed

    Ahmed, Rajib; Paul, Shyamal Kumar; Hossain, Muhammad Akram; Ahmed, Salma; Mahmud, Muhammad Chand; Nasreen, Syeda Anjuman; Ferdouse, Faria; Sharmi, Rumana Hasan; Ahamed, Farid; Ghosh, Souvik; Urushibara, Noriko; Aung, Meiji Soe; Kobayashi, Nobumichi

    2016-05-01

    High prevalence of Rickettsia felis in patients with fever of unknown origin was revealed in the north-central Bangladesh from 2012 to 2013. Subsequently, in this study, prevalence of R. felis in cats and cat fleas (Ctenocephalides felis), together with febrile patients, was studied by PCR detection of 17 kDa antigen gene and DNA sequencing. R. felis was detected in 28% (28/100) and 21% (14/68) of cat blood and cat flea samples, respectively, whereas 42% (21/50) of patients were positive for R. felis. R. felis-positive cat fleas were detected at significantly higher rate on R. felis-positive cats. The results suggested a potential role of cats and cat fleas for transmission of R. felis to humans in Bangladesh. PMID:26901499

  6. Axial pattern skin flaps in cats.

    PubMed

    Remedios, A M; Bauer, M S; Bowen, C V; Fowler, J D

    1991-01-01

    The major direct cutaneous vessels identified in the cat include the omocervical, thoracodorsal, deep circumflex iliac, and caudal superficial epigastric arteries. Axial pattern skin flaps based on the thoracodorsal and caudal superficial epigastric arteries have been developed in cats. Rotation of these flaps as islands allows skin coverage to the carpus and metatarsus, respectively. The thoracodorsal and caudal superficial epigastric flaps provide a practical, one-step option in the reconstruction of large skin defects involving the distal extremities of cats. PMID:2011063

  7. Incidence of pyometra in Swedish insured cats.

    PubMed

    Hagman, Ragnvi; Ström Holst, Bodil; Möller, Lotta; Egenvall, Agneta

    2014-07-01

    Pyometra is a clinically relevant problem in intact female cats and dogs. The etiology is similar in both animal species, with the disease caused by bacterial infection of a progesterone-sensitized uterus. Here, we studied pyometra in cats with the aim to describe the incidence and probability of developing pyometra based on age and breed. The data used were reimbursed claims for veterinary care insurance or life insurance claims or both in cats insured in a Swedish insurance database from 1999 to 2006. The mean incidence rate (IR) for pyometra was about 17 cats per 10,000 cat years at risk (CYAR). Cats with pyometra were diagnosed at a median age of 4 years and a significant breed effect was observed. The breed with the highest IR (433 cats per 10,000 CYAR) was the Sphynx, and other breeds with IR over 60 cats per 10,000 CYAR were Siberian cat, Ocicat, Korat, Siamese, Ragdoll, Maine coon, and Bengal. Pyometra was more commonly diagnosed with increasing age, with a marked increase in cats older than 7 years. The mean case fatality rate in all cats was 5.7%, which is slightly higher than corresponding reports in dogs of 3% to 4%. Geographical location (urban or rural) did not affect the risk of developing the disease. The present study provides information of incidence and probability of developing pyometra based on age, breed, and urban or rural geographical location. These data may be useful for designing cat breeding programs in high-risk breeds and for future studies of the genetic background of the disease. PMID:24726694

  8. Cats and Toxoplasma: implications for public health.

    PubMed

    Dabritz, H A; Conrad, P A

    2010-02-01

    Cats are popular as pets worldwide because they are easy to care for and provide companionship that enriches the lives of human beings. Little attention has been focused on their potential to contaminate the environment with zoonotic pathogens. One such pathogen, the protozoan parasite Toxoplasma gondii, rarely causes clinical manifestations in cats or immunocompetent humans; however, it can have serious adverse effects on human foetuses and immunocompromised patients. Many human infections are believed to be acquired from eating undercooked or raw meat, such as pork and lamb (Tenter et al. Int. J. Parasitol., 30, 2000, 1217; Dubey et al. J. Parasitol. 91, 2005, 1082). However, the prevalence of T. gondii infection in human populations that do not consume meat or eat it well-cooked suggests that the acquisition of infection from the environment, via oocysts in soil, water or on uncooked vegetables, is also important (Rawal. Trans. Royal Soc. Trop. Med. Hyg., 53, 1959, 61; Roghmann et al. Am. J. Trop. Med. Hyg., 60, 1999, 790; Chacin-Bonilla et al. Am. J. Trop. Med. Hyg., 65, 2001, 131). In the past 20 years, two changes occurred that significantly increased the size of the cat population in the USA. Pet cat ownership grew from 50 million to 90 million animals, and animal welfare activists created feeding stations for abandoned and free-roaming cats. As many cat owners allow their cats to deposit faeces outside and cats maintained in colonies always defecate outside, ample opportunity exists for T. gondii oocysts to enter the environment and be transmitted to humans. Prevention efforts should focus on educating cat owners about the importance of collecting cat faeces in litter boxes, spaying owned cats to reduce overpopulation, reducing the numbers of feral cats and promoting rigorous hand hygiene after gardening or soil contact. PMID:19744306

  9. 42 CFR 71.51 - Dogs and cats.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Dogs and cats. 71.51 Section 71.51 Public Health... QUARANTINE Importations § 71.51 Dogs and cats. (a) Definitions. As used in this section the term: Cat means all domestic cats. Confinement means restriction of a dog or cat to a building or other enclosure at...

  10. 42 CFR 71.51 - Dogs and cats.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Dogs and cats. 71.51 Section 71.51 Public Health... QUARANTINE Importations § 71.51 Dogs and cats. (a) Definitions. As used in this section the term: Cat means all domestic cats. Confinement means restriction of a dog or cat to a building or other enclosure at...

  11. 42 CFR 71.51 - Dogs and cats.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Dogs and cats. 71.51 Section 71.51 Public Health... QUARANTINE Importations § 71.51 Dogs and cats. (a) Definitions. As used in this section the term: Cat means all domestic cats. Confinement means restriction of a dog or cat to a building or other enclosure at...

  12. 42 CFR 71.51 - Dogs and cats.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Dogs and cats. 71.51 Section 71.51 Public Health... QUARANTINE Importations § 71.51 Dogs and cats. (a) Definitions. As used in this section the term: Cat means all domestic cats. Confinement means restriction of a dog or cat to a building or other enclosure at...

  13. 42 CFR 71.51 - Dogs and cats.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Dogs and cats. 71.51 Section 71.51 Public Health... QUARANTINE Importations § 71.51 Dogs and cats. (a) Definitions. As used in this section the term: Cat means all domestic cats. Confinement means restriction of a dog or cat to a building or other enclosure at...

  14. [Case Report: prehospital treatment on a major injured motorcycle driver].

    PubMed

    Gräsner, Jan-Thorsten; Knacke, Peer G; Heller, Gilbert; Naguschewski, Jörg; Scholz, Jens

    2008-09-01

    This case report describes the prehospital care of a 42-year-old person damaged by a severe motorcycle accident in a rural scene. The injured person was unconscious, one pupil was dilated and rib fractures were palpable. Purposeful therapy without delay was necessary. The prehospital therapy took 35 minutes in total. The time benefit by using a rescue helicopter is illustrated: time to initial treatment is minimized and duration of transport as well - direct transport to a trauma center is possible. PMID:18792860

  15. Transcranial Photoacoustic Measurements of Cold-Injured Brains in Rats

    NASA Astrophysics Data System (ADS)

    Ueda, Yoshinori; Sato, Shunichi; Hasegawa, Makoto; Nawashiro, Hiroshi; Saitoh, Daizoh; Shima, Katsuji; Ashida, Hiroshi; Obara, Minoru

    2005-09-01

    We performed transcranial photoacoustic measurements of cold-injured brains in rats. Before inducing injury, a signal peak was observed at two locations corresponding to the surfaces of the skull and brain, while after injury, a third peak appeared at a location corresponding to the back surface of the skull; the third peak was found to be caused by subdural hematoma. The signal peak for the brain surface shifted to a deeper region with elapse of time after injury, indicating deformation of the brain. These findings suggest that small hemorrhage and morphological change of the brain can be transcranially detected by photoacoustic measurement.

  16. Three-dimensional analysis of the vascular system in the rat spinal cord with scanning electron microscopy of vascular corrosion casts. Part 2: Acute spinal cord injury.

    PubMed

    Koyanagi, I; Tator, C H; Lea, P J

    1993-08-01

    The purpose of this study was to investigate the vascular mechanisms involved in the pathophysiology of acute spinal cord injury. Vascular corrosion casts of traumatized rat spinal cords at C7-T1 were inspected by scanning electron microscopy. Nineteen rats were subjected to a 51g acute clip compression at C8-T1 and then underwent transcardial perfusion with polyester resin at 15 minutes, 4 hours, or 24 hours after injury. The injured spinal cord appeared almost avascular at the compression site, although the large vessels on the surface of the spinal cord were all intact. The sulcal arteries at the injury site frequently showed constriction, and the impressions of endothelial nuclei were more slender and less distinct in the constricted arterial casts. Extravasation of the injected resin at the injury site was observed most frequently in the 15-minute group. Poorly filled distal branches of the sulcal arteries were seen at the injury site in every group. Indeed, it was concluded that the disruption and occlusion of the sulcal arteries and their branches accounted for a considerable amount of the posttraumatic ischemia of the cord. Occlusion of the sulcal arteries in the anterior median sulcus at the injury site was more frequently observed in the 24-hour group than in earlier groups. This observation suggests that there was a progressive circulatory disturbance of the damaged sulcal arteries at the injury site. The 4- and 24-hour groups showed avascular areas extending longitudinally from the injury site in the posterior columns, probably the result of hemorrhage and venous obstruction. PMID:8367052

  17. Minimal change glomerulopathy in a cat.

    PubMed

    Backlund, Brianna; Cianciolo, Rachel E; Cook, Audrey K; Clubb, Fred J; Lees, George E

    2011-04-01

    A 6-year-old domestic shorthair male castrated cat was evaluated for sudden onset of vomiting and anorexia. A diagnosis of hypereosinophilic syndrome (HES) was made, and the cat was treated with imatinib mesylate. The cat had an initial clinical improvement with the normalization of the peripheral eosinophil count. After approximately 8 weeks of treatment, lethargy and anorexia recurred despite the normal eosinophil count and a significant proteinuric nephropathy was identified. Treatment with imatinib was discontinued. Ultrasound guided renal biopsies exhibited histologic, ultrastructural, and immunostaining changes indicative of a minimal change glomerulopathy (MCG) which has not previously been reported in the literature in a cat. The proteinuria and HES initially improved while the cat was treated with more traditional medications; however, both the problems persisted for 30 months that the cat was followed subsequently. Previous studies demonstrating the safety and efficacy of imatinib in cats do not report any glomerular injury or significant adverse drug reactions, and the exact cause of this cat's proteinuric nephropathy is uncertain. Nonetheless, the possibility of an adverse drug reaction causing proteinuria should be considered when initiating treatment with imatinib in a cat. PMID:21414552

  18. Proteinuria in dogs and cats

    PubMed Central

    Harley, Leyenda; Langston, Cathy

    2012-01-01

    Proteinuria is defined as the presence of protein in the urine. Normally, circulating serum proteins are blocked by the glomerulus due to size and/or charge. Any small proteins that pass through a healthy glomerulus are reabsorbed by the renal tubules or broken down by renal tubular epithelial cells. Persistent proteinuria, in the absence of lower urinary tract disease or reproductive tract disease, is usually an indication of renal damage or dysfunction. Less commonly persistent proteinuria can be caused by increased circulating levels of low molecular weight proteins. This article reviews mechanisms of proteinuria in dogs and cats and discusses the importance of screening for and ultimately treating proteinuria. PMID:23204582

  19. Proteinuria in dogs and cats.

    PubMed

    Harley, Leyenda; Langston, Cathy

    2012-06-01

    Proteinuria is defined as the presence of protein in the urine. Normally, circulating serum proteins are blocked by the glomerulus due to size and/or charge. Any small proteins that pass through a healthy glomerulus are reabsorbed by the renal tubules or broken down by renal tubular epithelial cells. Persistent proteinuria, in the absence of lower urinary tract disease or reproductive tract disease, is usually an indication of renal damage or dysfunction. Less commonly persistent proteinuria can be caused by increased circulating levels of low molecular weight proteins. This article reviews mechanisms of proteinuria in dogs and cats and discusses the importance of screening for and ultimately treating proteinuria. PMID:23204582

  20. Immunoendocrine responses of male spinal cord injured athletes to 1-hour self-paced exercise: pilot study.

    PubMed

    Allgrove, Judith E; Chapman, Mark; Christides, Tatiana; Smith, Paul M

    2012-01-01

    This study examined the effect of a 1 h, self-paced handcycling time trial on blood leukocytes, mucosal immunity, and markers of stress in paraplegic athletes. Nine male paraplegic athletes (spinal injury level thoracic 4-lumbar 2) performed 1 h of handcycling exercise on a standard 400 m athletics track. Heart rate (HR) was measured continuously during exercise, and a retrospective rating of perceived exertion (RPE) was obtained immediately after. Venous blood and saliva samples were collected immediately before exercise (Pre-Ex), after exercise (End-Ex), and 1 h postexercise (1-h Post). The athletes completed mean +/- standard error of mean 22.4 +/- 1.1 km cycling at HR 165 +/- 2 beats/min, RPE 15 +/- 1, and blood lactate 7.9 +/- 2.5 mmol/L. Total leukocytes increased 72% and neutrophils increased 74% End-Ex; both remained elevated at 1-h Post (both p < 0.05). Lymphocytes increased 53% and natural killer cells increased 175% End-Ex (both p < 0.05), but returned to near baseline levels 1-h Post. Increases (p < 0.05) were observed End-Ex in alpha-amylase activity (p < 0.05), which returned to baseline at 1-h Post, but there was no significant change in saliva flow rate, salivary immunoglobulin A, or cortisol. These data confirm that 1 h of handcycling exercise elevated circulating leukocytes but had a minimal effect on mucosal immunity. These changes appear to be associated with alpha-amylase rather than cortisol. PMID:23299262

  1. Reconciling actual and perceived rates of predation by domestic cats.

    PubMed

    McDonald, Jennifer L; Maclean, Mairead; Evans, Matthew R; Hodgson, Dave J

    2015-07-01

    The predation of wildlife by domestic cats (Felis catus) is a complex problem: Cats are popular companion animals in modern society but are also acknowledged predators of birds, herpetofauna, invertebrates, and small mammals. A comprehensive understanding of this conservation issue demands an understanding of both the ecological consequence of owning a domestic cat and the attitudes of cat owners. Here, we determine whether cat owners are aware of the predatory behavior of their cats, using data collected from 86 cats in two UK villages. We examine whether the amount of prey their cat returns influences the attitudes of 45 cat owners toward the broader issue of domestic cat predation. We also contribute to the wider understanding of physiological, spatial, and behavioral drivers of prey returns among cats. We find an association between actual prey returns and owner predictions at the coarse scale of predatory/nonpredatory behavior, but no correlation between the observed and predicted prey-return rates among predatory cats. Cat owners generally disagreed with the statement that cats are harmful to wildlife, and disfavored all mitigation options apart from neutering. These attitudes were uncorrelated with the predatory behavior of their cats. Cat owners failed to perceive the magnitude of their cats' impacts on wildlife and were not influenced by ecological information. Management options for the mitigation of cat predation appear unlikely to work if they focus on "predation awareness" campaigns or restrictions of cat freedom. PMID:26306163

  2. Coagulation disorders in severely and critically injured patients.

    PubMed

    Avikainen, V

    1977-01-01

    Forty-five patients with multiple injuries treated at an intensive care unit were studied prospectively. The patients were divided into two groups: the severely injured (no mortality) and critically injured (56% mortality). Treatment was started within two hours from the accident in all cases. The following coagulation parameters were measured for eight days: euglobulin lysis time (ELT), thromboelastography (TEG), vecalcification time (RECA), partial thromboplastin time (PTT), factor V, factor VIII, Normotest, Thrombotest, thrombin time, fibrinogen and platelets. Severe coagulation disorders were observed in one-third of the patients 12-48 hours after trauma. The abnormalities were more pronounced in patients who had sustained very severe injuries and arrived in a state of shock. The ELT was shortened 0-6 hours after the accident and accelerated coagulation was indicated simultaneously by decreased PTT, RECA, and r-values as well as by elevated Thrombotest and factor VIII values. The factor V and fibrinogen levels were initially lowered. Low platelet values at 2-4 days, prolonged thrombin and r-times, secondary decrease of fibrinogen FV, FVIII, and low Thrombotest values suggested disseminated intravascular coagulation associated with complications, such as fat embolism and "shock lung" syndromes. General bleeding tendency with high mortality was observed in 16% of the patients. PMID:603216

  3. ATP Released by Injured Neurons Activates Schwann Cells

    PubMed Central

    Negro, Samuele; Bergamin, Elisanna; Rodella, Umberto; Duregotti, Elisa; Scorzeto, Michele; Jalink, Kees; Montecucco, Cesare; Rigoni, Michela

    2016-01-01

    Injured nerve terminals of neuromuscular junctions (NMJs) can regenerate. This remarkable and complex response is governed by molecular signals that are exchanged among the cellular components of this synapse: motor axon nerve terminal (MAT), perisynaptic Schwann cells (PSCs), and muscle fiber. The nature of signals that govern MAT regeneration is ill-known. In the present study the spider toxin α-latrotoxin has been used as tool to investigate the mechanisms underlying peripheral neuroregeneration. Indeed this neurotoxin induces an acute, specific, localized and fully reversible damage of the presynaptic nerve terminal, and its action mimics the cascade of events that leads to nerve terminal degeneration in injured patients and in many neurodegenerative conditions. Here we provide evidence of an early release by degenerating neurons of adenosine triphosphate as alarm messenger, that contributes to the activation of a series of intracellular pathways within Schwann cells that are crucial for nerve regeneration: Ca2+, cAMP, ERK1/2, and CREB. These results contribute to define the cross-talk taking place among degenerating nerve terminals and PSCs, involved in the functional recovery of the NMJ. PMID:27242443

  4. Experimental proliferative glomerulonephritis in the cat.

    PubMed

    Bishop, S A; Stokes, C R; Lucke, V M

    1992-01-01

    A model of chronic serum sickness was used to induce immune-complex glomerulonephritis in seven experimental cats, by daily intravenous inoculation of an increasing dose (5 to 35 mg) of human serum albumin (HSA). At week four, two of the seven animals developed anterior uveitis. At week 23, two different animals developed the subcutaneous oedema characteristic of the nephrotic syndrome (NS), whilst the other five cats appeared clinically normal. The kidneys were examined at necropsy by light microscopy and by transmission electron microscopy. The glomeruli of four animals (three with both proteinuria and uraemia, and one with proteinuria only) showed morphological changes under light microscopy. The abnormalities suggested that a diffuse mesangial proliferative glomerulonephritis (GN) had been induced in three cats and diffuse membranoproliferative GN induced in another. Ultrastructural studies revealed electron-dense deposits (immune-complexes) in six of the seven cats. Two cats without glomerular abnormalities by light microscopy had mesangial deposits and three cats with mesangial proliferative GN had deposits at mesangial, subendothelial and/or subepithelial sites. The single cat with membranoproliferative GN had deposits at mesangial, subendothelial, subepithelial and intramembranous sites. Immunohistological examination (peroxidase-antiperoxidase technique) showed that HSA and immunoglobulin (IgG and IgM) were deposited in the glomeruli of these cats. Deposits were the most dense in cats with more severe renal lesions. Deposits of IgM were most abundant. An extensive cellular infiltrate, comprising macrophages, neutrophils and plasma cells, was observed only in the four animals which showed abnormalities in glomerular ultrastructure. The disease induced in these cats thus appears to differ from the membranous nephropathy previously described in the cat and bears a close resemblance to immune complex (IC) disease in man. In view of the relatively few specific

  5. Adrenocortical suppression in cats given megestrol acetate.

    PubMed

    Chastain, C B; Graham, C L; Nichols, C E

    1981-12-01

    Megestrol acetate was given orally to 8 cats at a dose of 2.5 mg every other day for 2 weeks and to 8 cats at a dose of 5.0 mg every day for 2 weeks. Four cats were designated nontreated controls. Pre-ACTH-stimulated plasma concentrations of cortisol (hydrocortisone) and ACTH-stimulated cortisol and tolerance to large-dose glucose infusion (IV) were determined on each of the 20 cats given megestrol acetate. Cats were restrained with acepromazine maleate and ketamine hydrochloride during blood sample collection and large-dose glucose infusion. Adrenocortical function and tolerance to large-dose glucose infusion were reevaluated for 4 weeks--after 1st and 2nd weeks of megestrol acetate treatment of the treated groups, and after 1st and 2nd weeks when treatment was stopped (ie, experiment weeks 3 and 4). Each week a cat from the control group and 2 cats from the 2 treated groups were selected to determine the changes occurring during the experiment for that week; after collection of plasma samples, each week's 5 selected cats were euthanatized and necropsied. Significant impairment of adrenocortical function and alteration of adrenocortical morphology occurred with both treated groups. The most severe adrenocortical alterations occurred in the cats 1 week after megestrol acetate was no longer given (ie, experiment week 3). Megestrol acetate-induced adrenocortical suppression contributed to the death of 1 cat. It was concluded that if stress occurs to cats on treatment or soon after treatment with megestrol acetate, glucocorticoids should be supplemented. The effects of megestrol acetate on glucose tolerance were overshadowed by the unforeseen intolerance caused by chemical restraint with acepromazine maleate and ketamine hydrochloride. PMID:6280517

  6. Respiratory nematodes in cat populations of Italy.

    PubMed

    Di Cesare, Angela; Veronesi, Fabrizia; Grillotti, Eleonora; Manzocchi, Simone; Perrucci, Stefania; Beraldo, Paola; Cazzin, Stefania; De Liberato, Claudio; Barros, Luciano A; Simonato, Giulia; Traversa, Donato

    2015-12-01

    The occurrence of common respiratory parasites of domestic cats (the metastrongyloid "cat lungworm" Aelurostrongylus abstrusus and the trichuroid Capillaria aerophila) and of neglected respiratory nematodes of felids (Troglostrongylus brevior, Angiostrongylus chabaudi and Oslerus rostratus) was here evaluated in two and three geographical sites of Northern and Central Italy, respectively. In 2014-2015, individual fecal samples of 868 domestic cats were examined microscopically and genetically, and epidemiological data related to parasitic infections were evaluated as possible risk factors by binary logistic regression models. The most common parasite was A. abstrusus in both mono- and poli-specific infections, followed by T. brevior and C. aerophila, while cats scored negative for other parasites. Cats positive for A. abstrusus (1.9-17 % infection rate) and C. aerophila (0.9-4.8 % infection rate) were found in all examined sites, while cats scored positive for T. brevior (1-14.3 % infection rate) in four sites. Also, T. brevior was here found for the first time in a domestic cat from a mountainous area of Northern Italy. The occurrence of lungworms was statistically related to the presence of respiratory signs and more significant in cats with mixed infection by other lungworms and/or intestinal parasites. Cats living in site C of Central Italy resulted statistically more at risk of infection for lungworms than cats living in the other study sites, while animals ageing less than 1 year were at more risk for troglostrongylosis. Finally, the presence of lungworms was more significant in cats with mixed infection by other lungworms and/or intestinal parasites. These results are discussed under epidemiological and clinical points of views. PMID:26319524

  7. Transplant Outcomes (Bone Marrow and Cord Blood)

    MedlinePlus

    ... reports show patient survival and transplant data of bone marrow and umbilical cord blood transplants in the transplant ... Data by Center Report —View the number of bone marrow and cord blood transplants performed at a specific ...

  8. Disabled Vocal Cords: An Occupational Hazard.

    ERIC Educational Resources Information Center

    Kahn, Norma B.

    1987-01-01

    A teacher points out the occupational hazard that can result from the misuse of the voice and ensuing vocal cord damage. Presents discussion of ways to avoid misusing the voice and prevent vocal cord damage. (MD)

  9. Percutaneous umbilical cord blood sampling - series (image)

    MedlinePlus

    ... or blood disorder, your doctor may recommend percutaneous umbilical cord blood sampling (PUBS), which is performed at ... sample of the fetus' blood directly from the umbilical cord. The sample is then analyzed for genetic ...

  10. Assessing the socioeconomic impact of improved treatment of head and spinal cord injuries.

    PubMed

    Berkowitz, M

    1993-01-01

    Assessment of improved treatment of neurotrauma presents two basic challenges: 1) measurement of the medical effects of treatment, and 2) evaluation of these effects in socioeconomic terms. A nationwide survey was conducted in 1988 to estimate the prevalence of persons in the United States who suffered traumatic spinal cord injury and to calculate its economic consequences. Seven hundred fifty-eight persons weighted to be representative of the spinal cord injury population were interviewed. The prevalence rate was found to be 721 cases per million people. Conservative calculations for 1988 showed that the average direct costs per person were $103,000 for hospitalization and home modifications during the first 2 years postinjury and $14,000 per year thereafter for medical care. Losses in earnings and homemaker services averaged $12,726 per year. Total aggregate costs for 1 year were estimated at $5.6 billion. Lifetime costs for a representative person with complete paraplegia injured at age 33 were estimated to be $500,000. For a representative person with complete quadriplegia injured at age 27, these costs amounted to $1 million. These data can be used to estimate cost savings related to decreased disability resulting from improved treatment. PMID:8445206

  11. Axon Guidance Molecules and Neural Circuit Remodeling After Spinal Cord Injury.

    PubMed

    Hollis, Edmund R

    2016-04-01

    …once the development was ended, the founts of growth and regeneration of the axons and dendrites dried up irrevocably. Santiago Ramón y Cajal Cajal's neurotropic theory postulates that the complexity of the nervous system arises from the collaboration of neurotropic signals from neuronal and non-neuronal cells and that once development has ended, a paucity of neurotropic signals means that the pathways of the central nervous system are "fixed, ended, immutable". While the capacity for regeneration and plasticity of the central nervous system may not be quite as paltry as Cajal proposed, regeneration is severely limited in scope as there is no spontaneous regeneration of long-distance projections in mammals and therefore limited opportunity for functional recovery following spinal cord injury. It is not a far stretch from Cajal to hypothesize that reappropriation of the neurotropic programs of development may be an appropriate strategy for reconstitution of injured circuits. It has become clear, however, that a significant number of the molecular cues governing circuit development become re-active after injury and many assume roles that paradoxically obstruct the functional re-wiring of severed neural connections. Therefore, the problem to address is how individual neural circuits respond to specific molecular cues following injury, and what strategies will be necessary for instigating functional repair or remodeling of the injured spinal cord. PMID:26676670

  12. [Proposal for a survey for assisting the family and caregivers of patients with spinal cord injuries].

    PubMed

    Mancussi e Faro, A C

    1999-12-01

    This study proposes a basis survey for assistance to the family and caregivers because we believe there is necessity of family participation on the treatment, trying to understand and share the disease or deficiency situation. We objectified to sketch the relationship degree and the people's gender that accompanied the spinal cord injured hurt medular patient in nursing consultations and to discuss the necessity of basis survey to the assistance family and to the caregiver. 101 nursing consultations were accomplished, in clinic health, to the spinal cord injured patient and his/her relative and 36 patients were totalized, from this number 26 (72.22%) were male and 10 (27.78%), were female. It was verified that the men with medular lesion, in the greater number (27-80.7 O/o), were accompanied with his relatives specially mother and wife, while the women with medular lesion, in the greater number too (7-70%) were accompanied with her relatives of diversified proximity. In reference to the basis survey that comprehend the care at house and the caregiver necessity, we can affirm its relevance, trying to context the family support identified attending the caregivers. PMID:11337805

  13. Spontaneous development of full weight-supported stepping after complete spinal cord transection in the neonatal opossum, Monodelphis domestica.

    PubMed

    Wheaton, Benjamin J; Callaway, Jennifer K; Ek, C Joakim; Dziegielewska, Katarzyna M; Saunders, Norman R

    2011-01-01

    Spinal cord trauma in the adult nervous system usually results in permanent loss of function below the injury level. The immature spinal cord has greater capacity for repair and can develop considerable functionality by adulthood. This study used the marsupial laboratory opossum Monodelphis domestica, which is born at a very early stage of neural development. Complete spinal cord transection was made in the lower-thoracic region of pups at postnatal-day 7 (P7) or P28, and the animals grew to adulthood. Injury at P7 resulted in a dense neuronal tissue bridge that connected the two ends of the cord; retrograde neuronal labelling indicated that supraspinal and propriospinal innervation spanned the injury site. This repair was associated with pronounced behavioural recovery, coordinated gait and an ability to use hindlimbs when swimming. Injury at P28 resulted in a cyst-like cavity encased in scar tissue forming at the injury site. Using retrograde labelling, no labelled brainstem or propriospinal neurons were found above the lesion, indicating that detectable neuronal connectivity had not spanned the injury site. However, these animals could use their hindlimbs to take weight-supporting steps but could not use their hindlimbs when swimming. White matter, demonstrated by Luxol Fast Blue staining, was present in the injury site of P7- but not P28-injured animals. Overall, these studies demonstrated that provided spinal injury occurs early in development, regrowth of supraspinal innervation is possible. This repair appears to lead to improved functional outcomes. At older ages, even without detectable axonal growth spanning the injury site, substantial development of locomotion was still possible. This outcome is discussed in conjunction with preliminary findings of differences in the local propriospinal circuits following spinal cord injury (demonstrated with fluororuby labelling), which may underlie the weight bearing locomotion observed in the apparent absence of

  14. HMGB1 protein does not mediate the inflammatory response in spontaneous spinal cord regeneration: a hint for CNS regeneration.

    PubMed

    Dong, Yingying; Gu, Yun; Huan, Youjuan; Wang, Yingjie; Liu, Yan; Liu, Mei; Ding, Fei; Gu, Xiaosong; Wang, Yongjun

    2013-06-21

    Uncontrolled, excessive inflammation contributes to the secondary tissue damage of traumatic spinal cord, and HMGB1 is highlighted for initiation of a vicious self-propagating inflammatory circle by release from necrotic cells or immune cells. Several regenerative-competent vertebrates have evolved to circumvent the second damages during the spontaneous spinal cord regeneration with an unknown HMGB1 regulatory mechanism. By genomic surveys, we have revealed that two paralogs of HMGB1 are broadly retained from fish in the phylogeny. However, their spatial-temporal expression and effects, as shown in lowest amniote gecko, were tightly controlled in order that limited inflammation was produced in spontaneous regeneration. Two paralogs from gecko HMGB1 (gHMGB1) yielded distinct injury and infectious responses, with gHMGB1b significantly up-regulated in the injured cord. The intracellular gHMGB1b induced less release of inflammatory cytokines than gHMGB1a in macrophages, and the effects could be shifted by exchanging one amino acid in the inflammatory domain. Both intracellular proteins were able to mediate neuronal programmed apoptosis, which has been indicated to produce negligible inflammatory responses. In vivo studies demonstrated that the extracellular proteins could not trigger a cascade of the inflammatory cytokines in the injured spinal cord. Signal transduction analysis found that gHMGB1 proteins could not bind with cell surface receptors TLR2 and TLR4 to activate inflammatory signaling pathway. However, they were able to interact with the receptor for advanced glycation end products to potentiate oligodendrocyte migration by activation of both NFκB and Rac1/Cdc42 signaling. Our results reveal that HMGB1 does not mediate the inflammatory response in spontaneous spinal cord regeneration, but it promotes CNS regeneration. PMID:23649623

  15. Renal leiomyosarcoma in a cat.

    PubMed

    Evans, Dawn; Fowlkes, Natalie

    2016-05-01

    Renal leiomyosarcoma was diagnosed in a 10-year-old Domestic Shorthair cat with a 3-year history of clinically managed, chronic renal disease. Sudden death was preceded by a brief episode of mental dullness and confusion. At postmortem examination, the gross appearance of the left kidney was suggestive of hydronephrosis, and a nephrolith was present in the contralateral kidney. However, histology revealed an infiltrative, poorly differentiated, spindle cell sarcoma bordering the grossly cavitated area. Neoplastic cells were immunoreactive for vimentin and smooth muscle actin, which led to a diagnosis of renal leiomyosarcoma; neoplastic cells were not immunoreactive for desmin. Leiomyosarcoma arising in the kidney is a rare occurrence in humans and an even rarer occurrence in veterinary medicine with no prior cases being reported in cats in the English literature. The macroscopic appearance of the tumor at postmortem examination was misleadingly suggestive of hydronephrosis as a result of the large cavitation and may be similar to particularly unusual cases of renal leiomyosarcomas in humans that have a cystic or cavitated appearance. PMID:26975352

  16. Reproductive patterns of pedigree cats.

    PubMed

    Johnstone, I

    1987-07-01

    A survey of Brisbane catteries was carried out to investigate reproductive patterns of pedigree cats. Eighteen breeders supplied data on 751 litters with a total of 3171 kittens covering the Persian, Chinchilla, Siamese, Burmese and Abyssinian breeds. The overall sex ratio at birth was 100 males to 92 females. There was a significant seasonal effect on sex ratio with litters conceived during the wet season (September to February) producing more males than expected and litters conceived during the dry season producing more females than expected. Litter size and breed had no significant effect on the sex ratio. The average litter size varied with the breed with the most prolific being the Burmese (5.0) then the Siamese (4.5), Persian (3.9), Abyssinian (3.5) and Chinchilla (2.8). The average litter size was smaller for the first litter than for the subsequent 3 litters. The maximum average litter size was reached at 6 years with only a moderate decline thereafter. There was a seasonal fluctuation in births with the greatest numbers being born in spring and the least in late autumn. Longhair cats showed a more marked seasonal distribution of births than the shorthairs which reproduced for most of the year, particularly the Burmese breed. PMID:3675409

  17. Isolated intramedullary spinal cord cysticercosis

    PubMed Central

    Agale, Shubhangi V.; Bhavsar, Shweta; Choudhury, Barnik; Manohar, Vidhya

    2012-01-01

    We report a case of intradural, intramedullary, spinal cord neurocysticercosis at dorsal 10-11 (D10-11) level in a mentally retarded male. A 38-year-old, mentally retarded male presented with weakness and stiffness in both the lower limbs and waist since one year. Magnetic resonance imaging revealed a D10-D11 intradural space occupying lesion with cord compression. Intraoperatively, the tumor was grayish white, soft, cystic, and intramedullary with a well-defined plane with surrounding cord tissue. Gross examination revealed a cystic lesion of 1.5×1×0.8 cm, with a whitish nodule of 0.3 cm in diameter. The cyst wall was thin, shiny, and translucent. Microscopic examination revealed cysticercous cyst. Spinal neurocysticercosis should be considered in differential diagnosis of spinal mass lesion in patients residing in endemic area such as India. PMID:22870160

  18. Responses of spinal neurones to cutaneous and dorsal root stimuli in rats with mechanical allodynia after contusive spinal cord injury.

    PubMed

    Drew, G M; Siddall, P J; Duggan, A W

    2001-03-01

    The firing of neurones in spinal segments adjacent to a contusive T13 spinal cord injury was characterised in anaesthetised rats. Three groups of rats were examined: (1) allodynic spinally injured, (2) non-allodynic spinally injured and (3) normal, uninjured. Spinal cord field potentials evoked by electrical dorsal root stimulation and the responses of 207 dorsal horn neurones to mechanical stimuli applied to the skin were studied. Within the lesioned spinal segment few active neurones were encountered and field potentials were absent. Depolarising field potentials recorded rostral to the lesion were reduced in both allodynic and non-allodynic animals compared to uninjured controls, while those recorded in caudal segments were enhanced in allodynic animals. Neuronal recordings revealed that allodynia was associated with exaggerated responses, including afterdischarges, to innocuous and noxious mechanical stimuli in a proportion of wide dynamic range, but not low threshold, neurones. These changes were observed both rostral and caudal to the site of injury. The results suggest that an increased responsiveness of some dorsal horn neurones in segments neighbouring a contusive spinal cord injury may contribute to the expression of mechanical allodynia. It is proposed that a relative lack of inhibition underlies altered cell responses. PMID:11222993

  19. Taking a bite out of spinal cord injury: do dental stem cells have the teeth for it?

    PubMed

    Bianco, John; De Berdt, Pauline; Deumens, Ronald; des Rieux, Anne

    2016-04-01

    Dental stem cells are an emerging star on a stage that is already quite populated. Recently, there has been a lot of hype concerning these cells in dental therapies, especially in regenerative endodontics. It is fitting that most research is concentrated on dental regeneration, although other uses for these cells need to be explored in more detail. Being a true mesenchymal stem cell, their capacities could also prove beneficial in areas outside their natural environment. One such field is the central nervous system, and in particular, repairing the injured spinal cord. One of the most formidable challenges in regenerative medicine is to restore function to the injured spinal cord, and as yet, a cure for paralysis remains to be discovered. A variety of approaches have already been tested, with graft-based strategies utilising cells harbouring appropriate properties for neural regeneration showing encouraging results. Here we present a review focusing on properties of dental stem cells that endorse their use in regenerative medicine, with particular emphasis on repairing the damaged spinal cord. PMID:26768693

  20. Hypocretinergic control of spinal cord motoneurons.

    PubMed

    Yamuy, Jack; Fung, Simon J; Xi, Mingchu; Chase, Michael H

    2004-06-01

    Hypocretinergic (orexinergic) neurons in the lateral hypothalamus project to motor columns in the lumbar spinal cord. Consequently, we sought to determine whether the hypocretinergic system modulates the electrical activity of motoneurons. Using in vivo intracellular recording techniques, we examined the response of spinal motoneurons in the cat to electrical stimulation of the lateral hypothalamus. In addition, we examined the membrane potential response to orthodromic stimulation and intracellular current injection before and after both hypothalamic stimulation and the juxtacellular application of hypocretin-1. It was found that (1) hypothalamic stimulation produced a complex sequence of depolarizing- hyperpolarizing potentials in spinal motoneurons; (2) the depolarizing potentials decreased in amplitude after the application of SB-334867, a hypocretin type 1 receptor antagonist; (3) the EPSP induced by dorsal root stimulation was not affected by the application of SB-334867; (4) subthreshold stimulation of dorsal roots and intracellular depolarizing current steps produced spike potentials when applied in concert to stimulation of the hypothalamus or after the local application of hypocretin-1; (5) the juxtacellular application of hypocretin-1 induced motoneuron depolarization and, frequently, high-frequency discharge; (6) hypocretin-1 produced a significant decrease in rheobase (36%), membrane time constant (16.4%), and the equalizing time constant (23.3%); (7) in a small number of motoneurons, hypocretin-1 produced an increase in the synaptic noise; and (8) the input resistance was not affected after hypocretin-1. The juxtacellular application of vehicle (saline) and denatured hypocretin-1 did not produce changes in the preceding electrophysiological properties. We conclude that hypothalamic hypocretinergic neurons are capable of modulating the activity of lumbar motoneurons through presynaptic and postsynaptic mechanisms. The lack of hypocretin

  1. Human spinal cord injury: motor unit properties and behaviour.

    PubMed

    Thomas, C K; Bakels, R; Klein, C S; Zijdewind, I

    2014-01-01

    Spinal cord injury (SCI) results in widespread variation in muscle function. Review of motor unit data shows that changes in the amount and balance of excitatory and inhibitory inputs after SCI alter management of motoneurons. Not only are units recruited up to higher than usual relative forces when SCI leaves few units under voluntary control, the force contribution from recruitment increases due to elevation of twitch/tetanic force ratios. Force gradation and precision are also coarser with reduced unit numbers. Maximal unit firing rates are low in hand muscles, limiting voluntary strength, but are low, normal or high in limb muscles. Unit firing rates during spasms can exceed voluntary rates, emphasizing that deficits in descending drive limit force production. SCI also changes muscle properties. Motor unit weakness and fatigability seem universal across muscles and species, increasing the muscle weakness that arises from paralysis of units, motoneuron death and sensory impairment. Motor axon conduction velocity decreases after human SCI. Muscle contractile speed is also reduced, which lowers the stimulation frequencies needed to grade force when paralysed muscles are activated with patterned electrical stimulation. This slowing does not necessarily occur in hind limb muscles after cord transection in cats and rats. The nature, duration and level of SCI underlie some of these species differences, as do variations in muscle function, daily usage, tract control and fibre-type composition. Exploring this diversity is important to promote recovery of the hand, bowel, bladder and locomotor function most wanted by people with SCI. PMID:23901835

  2. Quantum Computer Games: Schrodinger Cat and Hounds

    ERIC Educational Resources Information Center

    Gordon, Michal; Gordon, Goren

    2012-01-01

    The quantum computer game "Schrodinger cat and hounds" is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. "Schrodinger cat and hounds" demonstrates the effects of superposition, destructive and constructive interference, measurements and…

  3. Evaluating "Cat Country": The Humor within Satire

    ERIC Educational Resources Information Center

    Chang, Chung-chien Karen

    2010-01-01

    Satire, as a mode, is not frequently employed in Chinese narratives. "Cat Country," or "Mao Cheng Ji," written by Lao She (pen name of Shu Qing Chun, 1898--1966) has come under much attack of its literary values. Whereas most critics have no doubt that this work sets out to satirize China through the portrayal of a society of cats on Mars, the…

  4. Cool Cats: Feline Fun with Abstract Art.

    ERIC Educational Resources Information Center

    Lambert, Phyllis Gilchrist

    2002-01-01

    Presents a lesson that teaches students about abstract art in a fun way. Explains that students draw cats, learn about the work of Pablo Picasso, and, in the style of Picasso, combine the parts of the cats (tail, legs, head, body) together in unconventional ways. (CMK)

  5. Irradiation effect of polarization direction and intensity of semiconductor laser on injured peripheral nerve

    NASA Astrophysics Data System (ADS)

    Guo-Xin, Xiong; Lei-lei, Xiong

    2016-08-01

    To investigate the irradiation effect of polarization direction and the intensity of a semiconductor laser on the injured peripheral nerve in rabbits, the model of the injured common peroneal nerve was established, the L5,6 spinal segments of the rabbits were irradiated, a uniform rotating polarizer was placed at the laser output which made the polarization direction and intensity of the output laser change according to the 80 Hz cosine law. The experimental results show that irradiating the spinal segment of injured nerves in rabbits with this changeable semiconductor laser can significantly promote the regeneration of injured peripheral nerves and the function recovery.

  6. Evaluation of spinal cord injury animal models

    PubMed Central

    Zhang, Ning; Fang, Marong; Chen, Haohao; Gou, Fangming; Ding, Mingxing

    2014-01-01

    Because there is no curative treatment for spinal cord injury, establishing an ideal animal model is important to identify injury mechanisms and develop therapies for individuals suffering from spinal cord injuries. In this article, we systematically review and analyze various kinds of animal models of spinal cord injury and assess their advantages and disadvantages for further studies. PMID:25598784

  7. 14 CFR 31.57 - Rip cords.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rip cords. 31.57 Section 31.57 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.57 Rip cords. (a) If a rip cord is used...

  8. Analgesia or Addiction?: Implications for Morphine Use after Spinal Cord Injury

    PubMed Central

    Moreno, Georgina L.; Hart, Nigel; Wellman, Paul J.; Grau, James W.; Hook, Michelle A.

    2012-01-01

    Abstract Opioid analgesics are among the most effective agents for treatment of moderate to severe pain. However, the use of morphine after a spinal cord injury (SCI) can potentiate the development of paradoxical pain symptoms, and continuous administration can lead to dependence, tolerance, and addiction. Although some studies suggest that the addictive potential of morphine decreases when it is used to treat neuropathic pain, this has not been studied in a SCI model. Accordingly, the present studies investigated the addictive potential of morphine in a rodent model of SCI using conditioned place preference (CPP) and intravenous self-administration paradigms. A contusion injury significantly increased the expression of a CPP relative to sham and intact controls in the acute phase of injury. However, contused animals self-administered significantly less morphine than sham and intact controls, but this was dose-dependent; at a high concentration, injured rats exhibited an increase in drug-reinforced responses over time. Exposure to a high concentration of morphine impeded weight gain and locomotor recovery. We suggest that the increased preference observed in injured rats reflects a motivational effect linked in part to the drug's anti-nociceptive effect. Further, although injured rats exhibited a suppression of opiate self-administration, when given access to a high concentration, addictive-like behavior emerged and was associated with poor recovery. PMID:22214368

  9. Injury to the Spinal Cord Niche Alters the Engraftment Dynamics of Human Neural Stem Cells

    PubMed Central

    Sontag, Christopher J.; Uchida, Nobuko; Cummings, Brian J.; Anderson, Aileen J.

    2014-01-01

    Summary The microenvironment is a critical mediator of stem cell survival, proliferation, migration, and differentiation. The majority of preclinical studies involving transplantation of neural stem cells (NSCs) into the CNS have focused on injured or degenerating microenvironments, leaving a dearth of information as to how NSCs differentially respond to intact versus damaged CNS. Furthermore, single, terminal histological endpoints predominate, providing limited insight into the spatiotemporal dynamics of NSC engraftment and migration. We investigated the early and long-term engraftment dynamics of human CNS stem cells propagated as neurospheres (hCNS-SCns) following transplantation into uninjured versus subacutely injured spinal cords of immunodeficient NOD-scid mice. We stereologically quantified engraftment, survival, proliferation, migration, and differentiation at 1, 7, 14, 28, and 98 days posttransplantation, and identified injury-dependent alterations. Notably, the injured microenvironment decreased hCNS-SCns survival, delayed and altered the location of proliferation, influenced both total and fate-specific migration, and promoted oligodendrocyte maturation. PMID:24936450

  10. Neuroprotection and Acute Spinal Cord Injury: A Reappraisal

    PubMed Central

    Hall, Edward D.; Springer, Joe E.

    2004-01-01

    Summary: It has long been recognized that much of the post-traumatic degeneration of the spinal cord following injury is caused by a multi-factorial secondary injury process that occurs during the first minutes, hours, and days after spinal cord injury (SCI). A key biochemical event in that process is reactive oxygen-induced lipid peroxidation (LP). In 1990 the results of the Second National Acute Spinal Cord Injury Study (NASCIS II) were published, which showed that the administration of a high-dose regimen of the glucocorticoid steroid methylprednisolone (MP), which had been previously shown to inhibit post-traumatic LP in animal models of SCI, could improve neurological recovery in spinal-cord-injured humans. This resulted in the registration of high-dose MP for acute SCI in several countries, although not in the U.S. Nevertheless, this treatment quickly became the standard of care for acute SCI since the drug was already on the U.S. market for many other indications. Subsequently, it was demonstrated that the non-glucocorticoid 21-aminosteroid tirilazad could duplicate the antioxidant neuroprotective efficacy of MP in SCI models, and evidence of human efficacy was obtained in a third NASCIS trial (NASCIS III). In recent years, the use of high-dose MP in acute SCI has become controversial largely on the basis of the risk of serious adverse effects versus what is perceived to be on average a modest neurological benefit. The opiate receptor antagonist naloxone was also tested in NASCIS II based upon the demonstration of its beneficial effects in SCI models. Although it did not a significant overall effect, some evidence of efficacy was seen in incomplete (i.e., paretic) patients. The monosialoganglioside GM1 has also been examined in a recently completed clinical trial in which the patients first received high-dose MP treatment. However, GM1 failed to show any evidence of a significant enhancement in the extent of neurological recovery over the level afforded by

  11. Reconciling actual and perceived rates of predation by domestic cats

    PubMed Central

    McDonald, Jennifer L; Maclean, Mairead; Evans, Matthew R; Hodgson, Dave J

    2015-01-01

    The predation of wildlife by domestic cats (Felis catus) is a complex problem: Cats are popular companion animals in modern society but are also acknowledged predators of birds, herpetofauna, invertebrates, and small mammals. A comprehensive understanding of this conservation issue demands an understanding of both the ecological consequence of owning a domestic cat and the attitudes of cat owners. Here, we determine whether cat owners are aware of the predatory behavior of their cats, using data collected from 86 cats in two UK villages. We examine whether the amount of prey their cat returns influences the attitudes of 45 cat owners toward the broader issue of domestic cat predation. We also contribute to the wider understanding of physiological, spatial, and behavioral drivers of prey returns among cats. We find an association between actual prey returns and owner predictions at the coarse scale of predatory/nonpredatory behavior, but no correlation between the observed and predicted prey-return rates among predatory cats. Cat owners generally disagreed with the statement that cats are harmful to wildlife, and disfavored all mitigation options apart from neutering. These attitudes were uncorrelated with the predatory behavior of their cats. Cat owners failed to perceive the magnitude of their cats’ impacts on wildlife and were not influenced by ecological information. Management options for the mitigation of cat predation appear unlikely to work if they focus on “predation awareness” campaigns or restrictions of cat freedom. PMID:26306163

  12. Feral Cats: Too Long a Threat to Hawaiian Wildlife

    USGS Publications Warehouse

    Hess, Steven C.; Banko, Paul C.

    2006-01-01

    BACKGROUND Domestic cats (Felis catus) were first brought to Hawai`i aboard sailing ships of European explorers and colonists. The job of these predators was to control mice and rats on the ships during the long voyages. As in other places, cats were taken in and adopted by the families of Hawai`i and soon became household pets known as popoki. But cats have always been very well equipped to live and hunt on their own. On tropical archipelagos like the Hawaiian Islands where no other predatory mammals of comparable size existed, abundant and naive prey were particularly easy game, and cats soon thrived in the wild. Although the details of when cats first came to live in the wild remain little known, adventurers, writers, and naturalists of the day recorded some important observations. Feral cats were observed in remote wilderness around K?ilauea volcano on Hawai`i Island as early as 1840 by explorer William Brackenridge. Mark Twain was so impressed by the great abundance of cats when he visited Honolulu in 1866 that he reported his observations in the Sacramento Union newspaper, which were later reprinted in his book Roughing It: I saw... tame cats, wild cats, singed cats, individual cats, groups of cats, platoons of cats, companies of cats, regiments of cats, armies of cats, multitudes of cats, millions of cats...

  13. Spontaneous occurrence of chromosome abnormality in cats.

    PubMed

    THULINE, H C; NORBY, D W

    1961-08-25

    A syndrome in male cats analogous to chromatin-positive Klinefelter's syndrome in human males has been demonstrated. The physical characteristics which suggested an abnormality of chromosome number in cats were "calico" or "tortoise-shell" coat colors in a male. Buccal mucosal smears were found to have "female-type" patterns in two out of 12 such male cats screened, and these two were found to have a diploid chromosome number of 39 rather than the normal 38. Testicular biopsy performed on one revealed an abnormal pattern; no gonadal tissue was found in the other cat with an abnormal chromosome number. These findings indicate that the cat, in addition to the mouse, is available for experimental study of chromosome number abnormalities. PMID:13776765

  14. Hypernatremia associated with intracranial B-cell lymphoma in a cat.

    PubMed

    Morrison, Jo Ann; Fales-Williams, Amanda

    2006-09-01

    An 8-year-old, spayed female, domestic shorthair cat with a history of hyperthyroidism, anorexia, dehydration, cervical ventroflexion, and behavioral changes was referred to the Iowa State University College of Veterinary Medicine. The cat was obtunded, with severe dehydration (15%) and hypothermia (86 degrees F), and severe muscle atrophy and fasciculations. Serum biochemical abnormalities included severe hypernatremia (195 mmol/L, reference interval 155-165 mmol/L), hyperchloridemia (161 mmol/L, reference interval 123-131 mmol/L), and hypokalemia (3.6 mmol/L, reference interval 4.0-5.7 mmol/L). Calculated osmolality was 418 mOsm/kg (reference interval 280-305 mOsm/kg), attributable to the hypernatremia. The cat was kept warm and given fluid and glucocorticoid therapy and supportive measures but remained unresponsive. Hypernatremia and hyperosmolality improved through day 3, when the cat died suddenly. At necropsy, a 1.25-cm mass was found in the area of the thalamus and interthalamic adhesion that extended to the ventral aspect of the cerebrum. The histologic and immunohistochemical diagnosis was B-cell lymphoma. Hypernatremia and hyperosmolality in this cat were attributed to primary adipsia and hypothalamic dysfunction secondary to effacement of central nervous system tissue by neoplastic lymphocytes. To the authors' knowledge, this is the first reported case of central nervous system lymphoma, confirmed by use of immunohistochemical analysis as a B-cell phenotype, associated with hypernatremia. It also is the first reported case of lymphoma in animals limited to the thalamus, hypothalamus, and cerebrum, with no involvement of the spinal cord. PMID:16967428

  15. Endovascular Cooling Method for Hypothermia in Injured Swine.

    PubMed

    Arnaud, Françoise; Haque, Ashraful; Solomon, Daniel; Kim, Robert B; Pappas, Georgina; Scultetus, Anke H; Auker, Charles; McCarron, Richard

    2016-06-01

    We evaluated an endovascular cooling method to modulate core temperature in trauma swine models with and without fluid support. Anesthetized swine (N = 80) were uninjured (SHAM) or injured through a bone fracture plus soft tissue injury or an uncontrolled hemorrhage and then subdivided to target body temperatures of 38°C (normothermia) or 33°C (hypothermia) by using a Thermogard endovascular cooling device (Zoll Medical). Temperature regulation began simultaneously at onset of injury (T0). Body temperatures were recorded from a rectal probe (Rec Temp) and from a central pulmonary artery catheter (PA Temp). At T15, swine received 500 mL IV Hextend over 30 minutes or no treatment (NONE) with continued monitoring until 3 hours from injury. Hypothermia was attained in 105 ± 39 minutes, at a cooling rate of -0.061°C ± 0.007°C/min for NONE injury groups. Postinjury Hextend administration resulted in faster cooling (-0.080°C ± 0.006°C/min); target temperature was reached in 83 ± 11 minutes (p < 0.05). During active cooling, body temperature measured by the PA Temp was significantly cooler than the Rec Temp due to the probe's closer proximity to the blood-cooling catheter balloons (p < 0.05). This difference was smaller in SHAM and fluid-supported injury groups (1.1°C ± 0.4°C) versus injured NONE groups (2.1°C ± 0.3°C). Target temperatures were correctly maintained thereafter in all groups. In normothermia groups, there was a small initial transient overshoot to maintain 38°C. Despite the noticeable difference between PA Temp and Rec Temp until target temperature was attained, this endovascular method can safely induce moderate hypothermia in anesthetized swine. However, likely due to their compromised hemodynamic state, cooling in hypovolemic and/or injured patients will be different from those without injury or those that also received fluids. PMID:26918281

  16. Unmasking of a neonatal somatovesical reflex in adult cats by the serotonin autoreceptor agonist 5-methoxy-N,N-dimethyltryptamine.

    PubMed

    Thor, K B; Hisamitsu, T; de Groat, W C

    1990-06-01

    In neonatal kittens, micturition is induced by a spinal somatovesical reflex pathway that is activated by the mother cat licking the perigenital region of the kitten. The somatovesical reflex pathway disappears about the time of weaning and is replaced by a vesicovesical reflex pathway that produces micturition via a supraspinal reflex pathway that is activated by distension of the urinary bladder. Furthermore, stimulation of the perigenital region in adult cats actually inhibits the supraspinal vesicovesical micturition reflex. Spinalization prompts the return of the somatovesical reflex, immediately in weaned kittens but over a course of days to weeks in adult cats. The purpose of the present experiments was to determine if the somatovesical reflex could be demonstrated acutely, and reversibly, in adult cats with an intact spinal cord via pharmacological suppression of the serotonergic system. The serotonergic system was suppressed by the intravenous administration of 5-methoxy-N,N-dimethyltryptamine (5-MeODMT), a serotonin agonist that inhibits the firing of serotonergic neurons via activation of inhibitory somatodendritic autoreceptors. 5-MeODMT in low doses (20-50 micrograms/kg) abolished inhibition of the bladder produced by either light tactile stimulation of the perigenital region or by electrical stimulation of the pudendal nerve, which carries the afferent fibers from the perigenital region, in 9 of 10 adult cats. Furthermore, in 8 of the 10 cats, the bladder inhibition was reversed to an excitation of variable amplitudes in each cat. Higher doses of 5-MeODMT (100-1000 micrograms/kg) abolished spontaneous bladder activity but did not inhibit perigenital-induced bladder contractions in those 8 animals in which the drug unmasked the excitatory somatovesical reflex.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2364543

  17. Lesions of structures showing FOS expression to cat presentation: effects on responsivity to a Cat, Cat odor, and nonpredator threat.

    PubMed

    Blanchard, D Caroline; Canteras, Newton S; Markham, Chris M; Pentkowski, Nathan S; Blanchard, Robert J

    2005-01-01

    Exposure of rats to a cat elicits Fos activity in a number of brain areas or structures. Based on hodological relationships of these, Canteras has proposed a medial hypothalamic defense system, with input from several forebrain sites. Both electrolytic and neurotoxic lesions of the dorsal premammillary nucleus, which shows the strongest Fos response to cat exposure, produce striking decrements in a number of defensive behaviors to a cat or to cat odor stimuli, but do not have a major effect on either postshock freezing, or responsivity to the odor of a female in estrus. Neurotoxic lesions of the medial amygdala produce decrements in defensiveness to predator stimuli, particularly odor stimuli, that are consistent with a view of this structure as involved with allomonal cues. While dorsal hippocampal lesions had little effect on responsivity to predator stimuli, neurotoxic lesions of the ventral hippocampus reduced freezing and enhanced a variety of nondefensive behaviors to both cat odor and footshock, with similar reductions in defensiveness during context conditioning tests for cat odor, cat exposure and footshock. These results support the view that the dorsal premammillary nucleus is strongly and selectively involved in control of responsivity to predator stimuli. Structures with important input into the medial hypothalamic defense system appear also to be functionally involved with antipredator defensive behaviors, and these lesion studies may suggest specific hypotheses as to the particular defense functions of different areas. PMID:16084591

  18. Promotion of Survival and Differentiation of Neural Stem Cells with Fibrin and Growth Factor Cocktails after Severe Spinal Cord Injury

    PubMed Central

    Lu, Paul; Graham, Lori; Wang, Yaozhi; Wu, Di; Tuszynski, Mark

    2014-01-01

    Neural stem cells (NSCs) can self-renew and differentiate into neurons and glia. Transplanted NSCs can replace lost neurons and glia after spinal cord injury (SCI), and can form functional relays to re-connect spinal cord segments above and below a lesion. Previous studies grafting neural stem cells have been limited by incomplete graft survival within the spinal cord lesion cavity. Further, tracking of graft cell survival, differentiation, and process extension had not been optimized. Finally, in previous studies, cultured rat NSCs were typically reported to differentiate into glia when grafted to the injured spinal cord, rather than neurons, unless fate was driven to a specific cell type. To address these issues, we developed new methods to improve the survival, integration and differentiation of NSCs to sites of even severe SCI. NSCs were freshly isolated from embryonic day 14 spinal cord (E14) from a stable transgenic Fischer 344 rat line expressing green fluorescent protein (GFP) and were embedded into a fibrin matrix containing growth factors; this formulation aimed to retain grafted cells in the lesion cavity and support cell survival. NSCs in the fibrin/growth factor cocktail were implanted two weeks after thoracic level-3 (T3) complete spinal cord transections, thereby avoiding peak periods of inflammation. Resulting grafts completely filled the lesion cavity and differentiated into both neurons, which extended axons into the host spinal cord over remarkably long distances, and glia. Grafts of cultured human NSCs expressing GFP resulted in similar findings. Thus, methods are defined for improving neural stem cell grafting, survival and analysis of in vivo findings. PMID:25145787

  19. Folic acid in combination with adult neural stem cells for the treatment of spinal cord injury in rats

    PubMed Central

    Zhang, Chen; Shen, Lin

    2015-01-01

    Purpose: To observe the therapeutic effect of folic acid in combination with adult neural stem cells on spinal cord injury and to investigate the possible mechanism. Methods: A total of 120 Wistar rats were randomly assigned to six groups: normal, model, sham-surgery, folic acid injection, adult neural stem cell transplantation, and combination (folic acid injection + adult neural stem cells transplantation) groups. Morphology of neural stem cells was observed by inverted microscopy. Expression of CD105, CD45, CD44, and CD29 were detected by flow cytometry; expression of neuron-specific enolase and glial fibrillary acidic protein were determined by immunofluorescence. Motor coordination and integration capabilities were assessed using BBB scores; Morphology of spinal cord tissues was observed by hematoxylin-eosin staining and 5-bromodeoxyuridine immunohistochemistry. GDNF, BDNF and NT-3 expression in spinal cord tissues were determined by ELISA; while expression of the apoptosis-related proteins BCL-2, Bax and caspase-3 was detected using western blotting. Results: Flow cytometry showed that the isolated cells were positive for CD44 and CD29 and negative for CD105 and CD45. Combination treatment significantly improved the behavior of model rats with spinal cord injury, attenuated inflammatory reaction of spinal cord tissues, restored injured nerve cells, and increased expression of GDNF, BDNF and NT-3 in spinal cord tissues, up regulated BCL-2 expression, and down regulated Bax and caspase-3 expression. Conclusions: Folic acid in combination with adult neural stem cells significantly improved nerve function and plays a key role in maintaining microenvironment homeostasis in the neurons of rats with spinal cord injury. PMID:26379837

  20. Transplantation of mature adipocyte-derived dedifferentiated fat cells promotes locomotor functional recovery by remyelination and glial scar reduction after spinal cord injury in mice.

    PubMed

    Yamada, Hiromi; Ito, Daisuke; Oki, Yoshinao; Kitagawa, Masato; Matsumoto, Taro; Watari, Tosihiro; Kano, Koichiro

    2014-11-14

    Mature adipocyte-derived dedifferentiated fat cells (DFAT) have a potential to be useful as new cell-source for cell-based therapy for spinal cord injury (SCI), but the mechanisms remain unclear. The objective of this study was to examine whether DFAT-induced functional recovery is achieved through remyelination and/or glial scar reduction in a mice model of SCI. To accomplish this we subjected adult female mice (n=22) to SCI. On the 8th day post-injury locomotor tests were performed, and the mice were randomly divided into two groups (control and DFAT). The DFAT group received stereotaxic injection of DFAT, while the controls received DMEM medium. Functional tests were conducted at repeated intervals, until the 36th day, and immunohistochemistry or staining was performed on the spinal cord sections. DFAT transplantation significantly improved locomotor function of their hindlimbs, and promoted remyelination and glial scar reduction, when compared to the controls. There were significant and positive correlations between promotion of remyelination or/and reduction of glial scar, and recovery of locomotor function. Furthermore, transplanted DFAT expressed markers for neuron, astrocyte, and oligodendrocyte, along with neurotrophic factors, within the injured spinal cord. In conclusion, DFAT-induced functional recovery in mice after SCI is probably mediated by both cell-autonomous and cell-non-autonomous effects on remyelination of the injured spinal cord. PMID:25451251