Science.gov

Sample records for core-shell structure preparation

  1. Coordination polymer core/shell structures: Preparation and up/down-conversion luminescence.

    PubMed

    Li, Bingmei; Xu, Hualan; Xiao, Chen; Shuai, Min; Chen, Weimin; Zhong, Shengliang

    2016-10-01

    Coordination polymer (CP) core-shell nanoparticles with Gd-based CP (GdCP) as core and Eu-based CP (EuCP) as shell have been successfully prepared. Allantoin was employed as the organic building block without the assistance of any template. The composition, size and structure of the core-shell nanospheres were well characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TG). Results show that the resultant cores are uniform nanospheres with diameter of approximately 45nm, while the diameters of the core-shell nanospheres are increased to approximately 60nm. The core-shell products show enhanced luminescence efficiency than the core under 980nm laser excitation and decreased down-conversion luminescence when excited at 394nm. PMID:27344485

  2. The multifunctional wound dressing with core-shell structured fibers prepared by coaxial electrospinning

    NASA Astrophysics Data System (ADS)

    Wei, Qilin; Xu, Feiyang; Xu, Xingjian; Geng, Xue; Ye, Lin; Zhang, Aiying; Feng, Zengguo

    2016-04-01

    The non-woven wound dressing with core-shell structured fibers was prepared by coaxial electrospinning. The polycaprolactone (PCL) was electrospun as the fiber's core to provide mechanical strength whereas collagen was fabricated into the shell in order to utilize its good biocompatibility. Simultaneously, the silver nanoparticles (Ag- NPs) as anti-bacterial agent were loaded in the shell whereas the vitamin A palmitate (VA) as healing-promoting drug was encapsulated in the core. Resulting from the fiber's core-shell structure, the VA released from the core and Ag-NPs present in the shell can endow the dressing both heal-promoting and anti-bacteria ability simultaneously, which can greatly enhance the dressing's clinical therapeutic effect. The dressing can maintain high swelling ratio of 190% for 3 d indicating its potential application as wet dressing. Furthermore, the dressing's anti-bacteria ability against Staphylococcus aureus was proved by in vitro anti-bacteria test. The in vitro drug release test showed the sustainable release of VA within 72 h, while the cell attachment showed L929 cells can well attach on the dressing indicating its good biocompatibility. In conclusion, the fabricated nanofibrous dressing possesses multiple functions to benefit wound healing and shows promising potential for clinical application.

  3. The multifunctional wound dressing with core-shell structured fibers prepared by coaxial electrospinning

    NASA Astrophysics Data System (ADS)

    Wei, Qilin; Xu, Feiyang; Xu, Xingjian; Geng, Xue; Ye, Lin; Zhang, Aiying; Feng, Zengguo

    2016-06-01

    The non-woven wound dressing with core-shell structured fibers was prepared by coaxial electrospinning. The polycaprolactone (PCL) was electrospun as the fiber's core to provide mechanical strength whereas collagen was fabricated into the shell in order to utilize its good biocompatibility. Simultaneously, the silver nanoparticles (Ag-NPs) as anti-bacterial agent were loaded in the shell whereas the vitamin A palmitate (VA) as healing-promoting drug was encapsulated in the core. Resulting from the fiber's core-shell structure, the VA released from the core and Ag-NPs present in the shell can endow the dressing both heal-promoting and anti-bacteria ability simultaneously, which can greatly enhance the dressing's clinical therapeutic effect. The dressing can maintain high swelling ratio of 190% for 3 d indicating its potential application as wet dressing. Furthermore, the dressing's anti-bacteria ability against Staphylococcus aureus was proved by in vitro anti-bacteria test. The in vitro drug release test showed the sustainable release of VA within 72 h, while the cell attachment showed L929 cells can well attach on the dressing indicating its good biocompatibility. In conclusion, the fabricated nanofibrous dressing possesses multiple functions to benefit wound healing and shows promising potential for clinical application.

  4. Modulation of protein release from biodegradable core-shell structured fibers prepared by coaxial electrospinning.

    PubMed

    Jiang, Hongliang; Hu, Yingqian; Zhao, Pengcheng; Li, Yan; Zhu, Kangjie

    2006-10-01

    Biodegradable core-shell structured fibers with poly(epsilon-caprolactone) as shell and bovine serum albumin (BSA)-containing dextran as core were prepared by coaxial electrospinning for incorporation and controlled release of proteins. BSA loading percent in the fibers and its release rate could be conveniently varied by the feed rate of the inner dope during electrospinning. With the increase in the feed rate of the inner dope, there was an associated increase in the loading percent and accelerated release of BSA. Poly(ethylene glycol) (PEG) was added to the shell section of the fibers to further finely modulate the release behavior of BSA. It was revealed that the release rate of BSA increased with the PEG percent in the shell section. By varying the feed rate of the inner dope and PEG content, most of BSA could be released from the core-shell structured fibers within the period of time ranging from 1 week to more than 1 month. The effect of the feed rate of the inner dope and addition of PEG into the shell section on the fiber morphology was also examined by scanning electron microscope. PMID:16544305

  5. In situ preparation and protein delivery of silicate–alginate composite microspheres with core-shell structure

    PubMed Central

    Wu, Chengtie; Fan, Wei; Gelinsky, Michael; Xiao, Yin; Chang, Jiang; Friis, Thor; Cuniberti, Gianaurelio

    2011-01-01

    The efficient loading and sustained release of proteins from bioactive microspheres remain a significant challenge. In this study, we have developed bioactive microspheres which can be loaded with protein and then have a controlled rate of protein release into a surrounding medium. This was achieved by preparing a bioactive microsphere system with core-shell structure, combining a calcium silicate (CS) shell with an alginate (A) core by a one-step in situ method. The result was to improve the microspheres' protein adsorption and release, which yielded a highly bioactive material with potential uses in bone repair applications. The composition and the core-shell structure, as well as the formation mechanism of the obtained CS–A microspheres, were investigated by X-ray diffraction, optical microscopy, scanning electron microscopy, energy dispersive spectrometer dot and line-scanning analysis. The protein loading efficiency reached 75 per cent in CS–A microspheres with a core-shell structure by the in situ method. This is significantly higher than that of pure A or CS–A microspheres prepared by non-in situ method, which lack a core-shell structure. CS–A microspheres with a core-shell structure showed a significant decrease in the burst release of proteins, maintaining sustained release profile in phosphate-buffered saline (PBS) at both pH 7.4 and 4.3, compared with the controls. The protein release from CS–A microspheres is predominantly controlled by a Fickian diffusion mechanism. The CS–A microspheres with a core-shell structure were shown to have improved apatite-mineralization in simulated body fluids compared with the controls, most probably owing to the existence of bioactive CS shell on the surface of the microspheres. Our results indicate that the core-shell structure of CS–A microspheres play an important role in enhancing protein delivery and mineralization, which makes these composite materials promising candidates for application in bone

  6. [Preparation and characterization of core-shell structural magnetic molecularly imprinted polymers for nafcillin].

    PubMed

    Chen, Langxing; Liu, Yuxing; He, Xiwen; Zhang, Yukui

    2015-05-01

    The uniform core-shell nanostructured magnetic molecularly imprinted polymers (MIPs) were synthesized using antibiotic nafcillin as a template. In this protocol, the magnetite nanoparticles (NPs) were synthesized by the solvothermal reaction firstly. Subsequently, the vinyl groups were grated onto silica-modified Fe3O4 surface by 3-methacryloyloxypropyltrimethoxysilane via sol-gel method. Finally, the nafcillin-MIPs film was formed on the surface of Fe3O4 @ SiO2 by the copolymerization of vinyl end group with functional monomer, methacrylic acid, cross-linking agent, ethylene glycol dimethacrylate, the initiator azo-bis-isobutyronitrile and template molecule. The morphological and magnetic characteristics of the MIPs were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and vibrating sample magnetometer. The obtained spherical magnetic MIPs with diameters of about 320 nm had good monodispersity. The static binding experiment was carried out to evaluate the properties of magnetic MIPs and non imprinted polymers (NIPs). The results demonstrated that the magnetic MIPs had high adsorption capacity to template and good selectivity. The imprinting factor and the maximum adsorption capacity of Fe3O4 @ MIPs to nafcillin were 2.46 and 50.7 mg/g, respectively. It is expected that the prepared magnetic MIPs could be used for the enrichment of nafcillin in complex samples. PMID:26387205

  7. Engineered Magnetic Core-Shell Structures.

    PubMed

    Alavi Nikje, Mir Mohammad; Vakili, Maryam

    2015-01-01

    In recent years, engineered magnetic core-shell structures are playing an important role in the wide range of various applications. These magnetic core-shell structures have attracted considerable attention because of their unique properties and various applications. Also, the synthesis of engineered magnetic core-shell structures has attracted practical interest because of potential applications in areas such as ferrofluids, medical imaging, drug targeting and delivery, cancer therapy, separations, and catalysis. So far a large number of engineered magnetic core-shell structures have been successfully synthesized. This review article focuses on the recent progress in synthesis and characterization of engineered magnetic core-shell structures. Also, this review gives a brief description of the various application of these structures. It is hoped that this review will play some small part in helping future developments in important field. PMID:26377655

  8. Core-Shell Structured Magnetic Ternary Nanocubes

    SciTech Connect

    Wang, Lingyan; Wang, Xin; Luo, Jin; Wanjala, Bridgid N.; Wang, Chong M.; Chernova, Natalya; Engelhard, Mark H.; Liu, Yao; Bae, In-Tae; Zhong, Chuan-Jian

    2010-12-01

    While transition metal-doped ferrite nanoparticles constitute an important class of soft magnetic nanomaterials with spinel structures, the ability to control the shape and composition would enable a wide range of applications in homogeneous or heterogeneous reactions such as catalysis and magnetic separation of biomolecules. This report describes novel findings of an investigation of core-shell structured MnZn ferrite nanocubes synthesized in organic solvents by manipulating the reaction temperature and capping agent composition in the absence of the conventionally-used reducing agents. The core-shell structure of the highly-monodispersed nanocubes (~20 nm) are shown to consist of an Fe3O4 core and an (Mn0.5Zn0.5)(Fe0.9, Mn1.1)O4 shell. In comparison with Fe3O4 and other binary ferrite nanoparticles, the core-shell structured nanocubes were shown to display magnetic properties regulated by a combination of the core-shell composition, leading to a higher coercivity (~350 Oe) and field-cool/zero-field-cool characteristics drastically different from many regular MnZn ferrite nanoparticles. The findings are discussed in terms of the unique core-shell composition, the understanding of which has important implication to the exploration of this class of soft magnetic nanomaterials in many potential applications such as magnetic resonance imaging, fuel cells, and batteries.

  9. Preparation and characterization of core-shell structured TiO 2-BaCO 3 particles

    NASA Astrophysics Data System (ADS)

    Gablenz, Silvio; Damm, Cornelia; Müller, Franz Werner; Israel, Gunter; Rössel, Michael; Röder, Andreas; Abicht, Hans-Peter

    2001-03-01

    Preparation of core-shell structured TiO 2-BaCO 3 particles as precursor of BaTiO 3 genesis, proceeds using a two step procedure, by first coating the TiO 2 core by Ba(OH) 2 shell followed by conversion of the shell region with CO 2 gas by the formation of BaCO 3. Straightforward experimental results reveal environmental scanning electron microscopy (ESEM) and scanning transmission electron microscopy (STEM) as suitable methods for analytical characterization of the core and shell regions from individual TiO 2-BaCO 3 grains. Evidence of coating the whole ensemble of TiO 2 particles is possible using Photo Electro Motive Force (Photo EMF, PEMF) measurements. This method is able to indicate very sensitively changes of surface properties of TiO 2 after coating with Ba(OH) 2 and BaCO 3, respectively. PEMF measurements were used for the first time with concern to this topic.

  10. Ultra-high-performance core-shell structured Ru@Pt/C catalyst prepared by a facile pulse electrochemical deposition method

    NASA Astrophysics Data System (ADS)

    Chen, Dan; Li, Yuexia; Liao, Shijun; Su, Dong; Song, Huiyu; Li, Yingwei; Yang, Lijun; Li, Can

    2015-08-01

    Core-shell structured catalysts, made by placing either a monolayer or a thin layer of a noble metal on relatively cheap core-metal nanoparticles, are fascinating and promising fuel cell catalysts due to their high utilization of noble metals. Here, we report our development of a core-shell structured catalyst, Ru@Pt/C, generated by a novel and facile pulse electrochemical deposition (PED) approach. We demonstrate that compared with a commercial Pt/C catalyst, this novel catalyst achieves over four times higher mass activity towards the anodic oxidation of methanol, and 3.6 times higher mass activity towards the cathodic reduction of oxygen. Importantly, we find that the intrinsic activity of Pt in this Ru@Pt/C catalyst is doubled due to the formation of the core-shell structure. The catalyst also shows superior stability: even after 2000 scans, it still retains up to 90% of the peak current. Our findings demonstrate that this novel PED approach is a promising method for preparing high-performance core-shell catalysts for fuel cell applications.

  11. Preparation and characterization of polymer electrolyte membranes based on silicon-containing core-shell structured nanocomposite latex particles

    NASA Astrophysics Data System (ADS)

    Zhong, Shuangling; Sun, Chenggang; Gao, Yushan; Cui, Xuejun

    2015-09-01

    A series of silicon-containing core-shell structured polyacrylate/2-acrylamido-2-methyl-1-propanesulfonic acid (SiO2-CS-PA/A) nanocomposite latex particles are prepared by the emulsifier-free emulsion polymerization of acrylate monomers and various amount of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) with colloidal nanosilica particles as seed. The chemical and morphological structures of latex particles with high monomer conversion are determined using Fourier transform infrared (FTIR), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The SiO2-CS-PA/A nanocomposite membranes are fabricated through pouring the latex onto a clean surface of glass and drying at 60 °C for 10 h and 120 °C for 2 h. The nanocomposite membranes possess good thermal and dimensional stability. In addition, in comparison to Nafion® 117, the nanocomposite membranes exhibit moderate proton conductivity, significantly better methanol barrier and selectivity. The methanol diffusion coefficient is in the range of 1.03 × 10-8 to 5.26 × 10-8 cm2 s-1 which is about two orders of magnitude lower than that of Nafion® 117 (2.36 × 10-6 cm2 s-1). The SiO2-CS-PA/A 5 membrane shows the highest selectivity value (2.34 × 105 S cm-3) which is approximately 11.0 times of that (2.13 × 104 S cm-3) of Nafion® 117. These results indicate that the nanocomposite membranes are promising candidates to be used as polymer electrolyte membranes in direct methanol fuel cells.

  12. The preparation of core/shell structured microsphere of multi first-line anti-tuberculosis drugs and evaluation of biological safety

    PubMed Central

    Zeng, Hao; Pang, Xiaoyang; Wang, Shuo; Xu, Zhengquan; Peng, Wei; Zhang, Penghui; Zhang, Yupeng; Liu, Zheng; Luo, Chengke; Wang, Xiyang; Nie, Hemin

    2015-01-01

    To introduce a modified method, namely coaxial electrohydrodynamic atomization for the fabrication of distinct core/shell structured microspheres of four first-line ant-tuberculosis drugs with different characteristics in hydrophilic properties in one single step. In group B, we prepared microspheres in which the core and the shell contain hydrophobic and hydrophilic drugs, respectively. In contrast, in group C, the opposite is prepared. The detection of encapsulation efficiency and in vitro release test were performed to confirm the feasibility of the drug-loaded core/shell structured microspheres. Moreover, cell culture experiments and animal experiments have been carried out to evaluate the biological safety of different microspheres in cell growth, cell viability, osteogenesis and migration of BMSCs in vitro and the bone fusion in a bone deficits model in SD rat. Meanwhile, the distribution of drugs and liver and kidney toxicity were monitored. The release patterns of the two groups are significantly different. The release of drugs from Group B microspheres is rather sequential, whereas group C microspheres release drugs in a parallel (co-release) manner. And various concentrations of carrier materials produces core/shell structured microspheres with different appearance. Moreover, the biological safety of core/shell structured microspheres was testified to be satisfactory. These findings present the advantages and possible application of this kind of multi-drug release system in treating skeletal tuberculosis. Moreover, the characteristic sequential release of multi-drugs can be controlled and adjusted based on treatment need and used in treating other disorders. PMID:26309493

  13. Core-shell-structured silica/polyacrylate particles prepared by Pickering emulsion: influence of the nucleation model on particle interfacial organization and emulsion stability

    PubMed Central

    2014-01-01

    This work reports a new evidence of the versatility of silica sol as a stabilizer for Pickering emulsions. The organization of silica particles at the oil-water interface is a function of the nucleation model. The present results show that nucleation model, together with monomer hydrophobicity, can be used as a trigger to modify the packing density of silica particles at the oil-water interface: Less hydrophobic methylmethacrylate, more wettable with silica particles, favors the formation of core-shell-structured composite when the composite particles are prepared by miniemulsion polymerization in which monomers are fed in batch (droplet nucleation). By contrast, hydrophobic butylacrylate promotes the encapsulating efficiency of silica when monomers are fed dropwise (homogeneous nucleation). The morphologies of polyacrylate-nano-SiO2 composites prepared from different feed ratio of methylmethacrylate/butylacrylate (with different hydrophobicity) and by different feed processes are characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques. The results from SEM and TEM show that the morphologies of the as-prepared polyacrylate/nano-SiO2 composite can be a core-shell structure or a bare acrylic sphere. The stability of resulting emulsions composed of these composite particles is strongly dependent on the surface coverage of silica particles. The emulsion stability is improved by densely silica-packed composite particles. PMID:25313299

  14. Preparation and Biocompatibility of Gold@ Polypyrrole-Chitosan with Core-Shell Nanostructure.

    PubMed

    Wu, Yun; Wang, Yanyan; Chen, Hui; Ge, Shanshan; Zhang, Jinling; Mao, Chun; Ding, Hongyan; Shen, Jian

    2016-03-01

    A two-step method for preparing Au@polypyrrole-chitosan core-shell nanoparticles (Au @ PPy-CS NPs) was fabricated by in situ polymerization of pyrrole monomer on the surface of Au spheres in chitosan solution. Transmission electron microscopy (TEM) images showed the presence of core-shell structure of nanoparticles. Energy-Dispersive Spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy were adopted to verify the shell is polypyrrole-chitosan. Ultraviolet-visible (UV-vis) and X-ray diffraction (XRD) showed that Au was present in the core-shell nanoparticles. The biocompatibility of Au @ PPy-CS NPs was characterized by in vitro for hemolysis assay and cytotoxicity experiments. Results indicated the Au @ PPy-CS NPs had good blood compatibility and low cytotoxicity. The Au @ PPy-CS NPs we proposed provide a promising platform of blood circulation system for early illness diagnosis and therapy. PMID:27455639

  15. Functional properties of BaTiO3-Ni0.5Zn0.5Fe2O4 magnetoelectric ceramics prepared from powders with core-shell structure

    NASA Astrophysics Data System (ADS)

    Curecheriu, L. P.; Buscaglia, M. T.; Buscaglia, V.; Mitoseriu, L.; Postolache, P.; Ianculescu, A.; Nanni, P.

    2010-05-01

    In the present work, diphasic ceramic composites with core-shell nanostructures formed by Ni0.50Zn0.50Fe2O4 core and BaTiO3 shell were investigated. Their properties were compared with those of composites prepared by coprecipitation. The core-shell structure was confirmed by microstructural powder analysis. Homogeneous microstructures with a good phase mixing and percolated dielectric phase by the magnetic one were obtained from coprecipitated powders. Less homogeneous microstructures resulted in ceramics produced from the powder prepared by core-shell method, with isolated small ferrite grains besides large ferrite aggregates embedded into the BaTiO3 matrix. Both the ferroelectric and magnetic phases preserve their basic properties in bulk composite form. However, important differences in the dielectric relaxation and conduction mechanisms were found as result of the microstructural difference. Extrinsic contributions play important roles in modifying the electric properties in both ceramics, causing space charge effect, Maxwell-Wagner relaxations and hopping conductivity, mainly due to the ferrite low resistivity phase. The conductivity and dielectric modulus spectra analysis allowed to identify different polaron contributions associated with the microstructural differences. It results that by using the core-shell method, improved dielectric properties and limited hopping contributions can be realized.

  16. Functional properties of BaTiO{sub 3}-Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} magnetoelectric ceramics prepared from powders with core-shell structure

    SciTech Connect

    Curecheriu, L. P.; Mitoseriu, L.; Postolache, P.; Buscaglia, M. T.; Buscaglia, V.; Ianculescu, A.; Nanni, P.

    2010-05-15

    In the present work, diphasic ceramic composites with core-shell nanostructures formed by Ni{sub 0.50}Zn{sub 0.50}Fe{sub 2}O{sub 4} core and BaTiO{sub 3} shell were investigated. Their properties were compared with those of composites prepared by coprecipitation. The core-shell structure was confirmed by microstructural powder analysis. Homogeneous microstructures with a good phase mixing and percolated dielectric phase by the magnetic one were obtained from coprecipitated powders. Less homogeneous microstructures resulted in ceramics produced from the powder prepared by core-shell method, with isolated small ferrite grains besides large ferrite aggregates embedded into the BaTiO{sub 3} matrix. Both the ferroelectric and magnetic phases preserve their basic properties in bulk composite form. However, important differences in the dielectric relaxation and conduction mechanisms were found as result of the microstructural difference. Extrinsic contributions play important roles in modifying the electric properties in both ceramics, causing space charge effect, Maxwell-Wagner relaxations and hopping conductivity, mainly due to the ferrite low resistivity phase. The conductivity and dielectric modulus spectra analysis allowed to identify different polaron contributions associated with the microstructural differences. It results that by using the core-shell method, improved dielectric properties and limited hopping contributions can be realized.

  17. Preparation of the core-shell structure adriamycin lipiodol microemulsions and their synergistic anti-tumor effects with diethyldithiocarbamate in vivo.

    PubMed

    Daocheng, Wu; Mingxi, Wan

    2010-11-01

    We prepared the core-shell structure adriamycin lipiodol microemulsions (ADM-CSLMs) and evaluated their in vivo antitumor effects in combination with Diethyldithiocarbamate (DDC). Two types of ADM-CSLMs, adriamycin liposome-lipiodol microemulsion(ADM-LLM) and adriamycin microsphere lipiodol microemulsion (ADM-MLM), were prepared through the emulsification method. The drug loading and encapsulation efficiency of ADM-CSLMs were measured by the high-performance liquid chromatograph (HPLC). The size and shape of the ADM-CSLMs were determined by an atom force microscopy (AFM), a transmission electron microscopy (TEM), and a particle size analyzer, respectively. The synergistic effects of DDC and ADM-CSLMs for cancer treatment of carcinoma drug-resistance cell was evaluated by the MTT method, the activation of superoxide dismutase (SOD) was detected by chemiluminescence, and the ADM accumulation in cells was measured by flow cytometry. Walker-256 carcinoma was transplanted to the livers of the male SD rats, ADM-CSLMs were administrated to the livers of the rats by intervention hepatic artery embolization through microsurgery. The tumor growth and animal survival were evaluated. The results show that the average diameter of ADM-LLM and ADM-MLM were 4.23 ± 1.2 μm and 4.67 ± 1.4 μm, respectively, and their ADM encapsulation efficiency were 83.7% and 87.2% with respect to loading efficiency of 82 μg/ml and 91 μg/ml. The tumor growth and animal survival in two of the ADM-CSLMs combined with DDC groups were significantly higher than that of ADM only treatment, ADM liposome combined with DDC (P < 0.01), as well as the ADM microsphere combined with DDC (P < 0.01). Therefore, ADM-CSLMs are useful carriers for the treatment of carcinoma and their anti-tumor effect can be enhanced by DDC in a suitable concentration. PMID:20888179

  18. A scalable route to prepare core-shell structured ZnO@PEDOT nanowires and PEDOT nanotubes and their properties as electrode materials

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Zhang, Xianhong; Yang, Le; Xu, Dehong; Ma, Yuhong; Chen, Dong; Wang, Li; Zhao, Changwen; Yang, Wantai

    2016-05-01

    A composite of a core-shell structured nanowires with ZnO as a core and conductive poly(3,4-ethylenedioxythiophene) (PEDOT) as a shell was prepared. At first, the hexagonal ZnO nanowires, with diameter of about 80-100 nm and length 4-5 μm, were fabricated by hydrothermal synthesis process. Then a thick layer of poly(trifluoroethyl methacrylate)-block-poly(sodium styrene sulfonate) (PTFEMA-b-PSSNa) was grafted from the surface of ZnO nanowires via atom transfer free radical polymerization. At last, with the ZnO@PTFEMA-b-PSSNa as a template and the PSSNa chain as the counterion dopant, PEDOT was precipitated onto the surface of the template to form the composite of ZnO@PEDOT/PSSNa. With the evaluation of the EDOT polymerization, the thickness of the PEDOT layer increased steadily. However, as the ratio of EDOT/ZnO was greater than 1:2, the ZnO nanowires templates were dissolved at last and then PEDOT particles were produced due to increasing of the acidity during the oxidation polymerization of EDOT. In this case, the product was the mixture of the nanotubes and particles of PEDOT/PPSNa. The electrochemical capacitances of the composites with different structures were investigated with cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy techniques with three-electrode cell configuration. The maximum specific capacitance of ZnO@PEDOT electrode can reach 101.34 F/g at 20 mV/s.

  19. Preparations and properties of a tunable void with shell thickness SiO2@SiO2 core-shell structures via activators generated by electron transfer for atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Ren, Yi-xian; Zhou, Guo-wei; Cao, Pei

    2016-02-01

    Core-shell structure nanoparticles are attracting considerable attention because of their applications in drug delivery, catalysis carrier, and nanomedicine. In this study, SiO2@SiO2 core-shell structure with tunable void and shell thickness was successfully prepared for the first time using SiO2-poly(buty acrylate) (PBA)-poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) (SiO2-PBA-b-PDMAEMA) as the template and tetraethoxysilane (TEOS) as the silica source. An amphiphilic copolymer PBA-b-PDMAEMA was first grafted onto the SiO2 nanosphere surface through activators regenerated by electron transfer for atom transfer radical polymerization. TEOS was hydrolyzed along with the PDMAEMA chain through hydrogen bonding, and the core-shell structure of SiO2@SiO2 was obtained through calcination to remove the copolymer. The gradient hydrophilicity of the PBA-b-PDMAEMA copolymer template facilitated the hydrolysis of TEOS molecules along the PDMAEMA to PBA segments, thereby tuning the voids between the SiO2 core and SiO2 shell, as well as the SiO2 shell thickness. The voids were about 10-15 nm and the shell thicknesses were about 4-11 nm when adding different amounts of DMAEMA monomer. SiO2@SiO2 core-shell structures with tunable void and shell thickness were employed as supports for the loading and release of doxorubicin hydrochloride (DOX) in PBS (pH 4.0). The samples demonstrated good loading capacity and controlled release rate of DOX.

  20. Process to make core-shell structured nanoparticles

    DOEpatents

    Luhrs, Claudia; Phillips, Jonathan; Richard, Monique N

    2014-01-07

    Disclosed is a process for making a composite material that contains core-shell structured nanoparticles. The process includes providing a precursor in the form of a powder a liquid and/or a vapor of a liquid that contains a core material and a shell material, and suspending the precursor in an aerosol gas to produce an aerosol containing the precursor. In addition, the process includes providing a plasma that has a hot zone and passing the aerosol through the hot zone of the plasma. As the aerosol passes through the hot zone of the plasma, at least part of the core material and at least part of the shell material in the aerosol is vaporized. Vapor that contains the core material and the shell material that has been vaporized is removed from the hot zone of the plasma and allowed to condense into core-shell structured nanoparticles.

  1. Single-step in situ synthesis of double bond-grafted yttrium-hydroxide nanotube core-shell structures.

    PubMed

    Li, Weijia; Wang, Xun; Li, Yadong

    2004-01-21

    Novel MMA-Y(OH)(3) nanotube core-shell structures have been successfully prepared with double bonds successfully grafted on the surface through a single-step in-situ hydrothermal method. PMID:14737530

  2. Preparation and photocatalytic activity of eccentric Au-titania core-shell nanoparticles by block copolymer templates.

    PubMed

    Li, Xue; Fu, Xiaoning; Yang, Hui

    2011-02-21

    A novel route for a preparation of eccentric Au-titania core-shell nanoparticles using gold nanoparticles (AuNPs) with block copolymer shells as a template is reported. AuNPs with poly(2-vinyl pyridine)-block-poly(ethylene oxide) (PVP-b-PEO) block copolymer shells are first prepared by UV irradiation of the solution of PVP-b-PEO/HAuCl(4) complexes. Then the sol-gel reaction of titanium tetra-isopropoxide (TTIP) selectively on the surfaces of AuNPs leads to Au-titania core-shell composite nanoparticles. The eccentric Au-titania core-shell nanoparticles are obtained from the Au-titania core-shell composite nanoparticles by removal of organic interlayer by UV treatment. Photocatalytic activities of the resulting eccentric core-shell nanoparticles are investigated in terms of the degradation of methylene blue (MB). The results show that the eccentric core-shell structures endow the catalyst with greatly enhanced photocatalytic activity. PMID:21157597

  3. The preparation and properties of monodisperse core-shell silica magnetic microspheres.

    PubMed

    Lou, Min-yi; Jia, Qiu-ling; Wang, De-ping; Liu, Bing; Huang, Wen-hai

    2008-01-01

    The monodisperse core-shell silica magnetic microspheres (MMS) were synthesized by sol-gel method gelling in the emulsion. Optical microscope (OM), field emission scanning electron microscope (FESEM), nitrogen adsorption and desorption Brunauer Emmett Teller Procedure (BET) isotherms and Barrett-Joyner-Halenda (BJH) pore size distribution measurements, X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and vibrating sample magnetometer (VSM) were used to characterize the appearance, size distribution, phase, specific surface area, chemical composition and magnetic property of silica MMS. The results showed that silica MMS prepared through sol-gel method with acid-alkali two-step catalyze and gelling in emulsion exhibited the superior core-shell structure and size distribution of the microspheres concentrated in about 20 mum. The main phase of microspheres was amorphous silica and spinel ferroferric oxide. Meanwhile, the microspheres remained the superparamagnetic behavior and could be used as biomaterials. PMID:17597357

  4. Preparation of Core-Shell Coordination Molecular Assemblies via the Enrichment of Structure-Directing "Codes" of Bridging Ligands and Metathesis of Metal Units

    SciTech Connect

    Park, J; Chen, YP; Perry, Z; Li, JR; Zhou, HC

    2014-12-03

    A series of molybdenum- and copper-based MOPs were synthesized through coordination-driven process of a bridging ligand (3,3'-PDBAD, L-1) and dimetal paddlewheel clusters. Three conformers of the ligand exist with an ideal bridging angle between the two carboxylate groups of 0 degrees (H-2 zeta-L(1)), 120 degrees (H-2 beta-L-1), and of 90 degrees (H-2 beta-L-1), respectively. At ambient or lower temperature, (HL1)-L-2 and Mo-2(OAc)(4) or Cu-2(OAc)(4) were crystallized into a molecular square with ?-L-1 and Mo-2/Cu-2 units. With proper temperature elevation, not only the molecular square with ?-L-1 but also a lantern-shaped cage with a-L-1 formed simultaneously. Similar to how Watson-Crick pairs stabilize the helical structure of duplex DNA, the core-shell molecular assembly possesses favorable H-bonding interaction sites. This is dictated by the ligand conformation in the shell, coding for the formation and providing stabilization of the central lantern shaped core, which was not observed without this complementary interaction. On the basis of the crystallographic implications, a heterobimetallic cage was obtained through a postsynthetic metal ion metathesis, showing different reactivity of coordination bonds in the core and shell. As an innovative synthetic strategy, the site-selective metathesis broadens the structural diversity and properties of coordination assemblies.

  5. Preparation and characterization of chain-like and peanut-like Fe3O4@SiO2 core-shell structure.

    PubMed

    Shi, Haowei; Huang, Yan; Cheng, Chao; Ji, Guoyuan; Yang, Yuxiang; Yuan, Hongming

    2013-10-01

    The size- and shape-controlled Fe3O4@SiO2 nanocomposites were successfully synthesized via the sol-gel method. The results showed that the size, shape, and property of the products were directly influenced by the amount of TEOS, and the concentration of water-based magnetic fluid in the coating process. The morphology and properties of the products were characterized by TEM, SEM, X-ray powder diffraction, IR and EDS. The Fe3O4@SiO2 composites with easily-controlled size arranged from 58 to 835 nm could be synthesized by adjusting the experimental parameters. When TEOS amount is 1 mL and the concentration of magnetic fluid were 30.0 and 10.0 mg/mL respectively, chain-like and peanuts-like well-dispersed Fe3O4@SiO2 particles with clear core-shell structure were obtained. These size- and shape-controlled Fe3O4@SiO2 composites may have potential application in the field of targeted drug delivery and MRI contrast agent. PMID:24245170

  6. Nanocellulose Derivative/Silica Hybrid Core-Shell Chiral Stationary Phase: Preparation and Enantioseparation Performance.

    PubMed

    Zhang, Xiaoli; Wang, Litao; Dong, Shuqing; Zhang, Xia; Wu, Qi; Zhao, Liang; Shi, Yanping

    2016-01-01

    Core-shell silica microspheres with a nanocellulose derivative in the hybrid shell were successfully prepared as a chiral stationary phase by a layer-by-layer self-assembly method. The hybrid shell assembled on the silica core was formed using a surfactant as template by the copolymerization reaction of tetraethyl orthosilicate and the nanocellulose derivative bearing triethoxysilyl and 3,5-dimethylphenyl groups. The resulting nanocellulose hybrid core-shell chiral packing materials (CPMs) were characterized and packed into columns, and their enantioseparation performance was evaluated by high performance liquid chromatography. The results showed that CPMs exhibited uniform surface morphology and core-shell structures. Various types of chiral compounds were efficiently separated under normal and reversed phase mode. Moreover, chloroform and tetrahydrofuran as mobile phase additives could obviously improve the resolution during the chiral separation processes. CPMs still have good chiral separation property when eluted with solvent systems with a high content of tetrahydrofuran and chloroform, which proved the high solvent resistance of this new material. PMID:27153055

  7. Synthesis and properties MFe2O4 (M = Fe, Co) nanoparticles and core-shell structures

    NASA Astrophysics Data System (ADS)

    Yelenich, O. V.; Solopan, S. O.; Greneche, J. M.; Belous, A. G.

    2015-08-01

    Individual Fe3-xO4 and CoFe2O4 nanoparticles, as well as Fe3-xO4/CoFe2O4 core/shell structures were synthesized by the method of co-precipitation from diethylene glycol solutions. Core/shell structure were synthesized with CoFe2O4-shell thickness of 1.0, 2.5 and 3.5 nm. X-ray diffraction patterns of individual nanoparticles and core/shell are similar and indicate that all synthesized samples have a cubic spinel structure. Compares Mössbauer studies of CoFe2O4, Fe3-xO4 nanoparticles indicate superparamagnetic properties at 300 K. It was shown that individual magnetite nanoparticles are transformed into maghemite through oxidation during the synthesis procedure, wherein the smallest nanoparticles are completely oxidized while a magnetite core does occur in the case of the largest nanoparticles. The Mössbauer spectra of core/shell nanoparticles with increasing CoFe2O4-shell thickness show a gradual decrease in the relative intensity of the quadrupole doublet and significant decrease of the mean isomer shift value at both RT and 77 K indicating a decrease of the superparamagnetic relaxation phenomena. Specific loss power for the prepared ferrofluids was experimentally calculated and it was determined that under influence of ac-magnetic field magnetic fluid based on individual CoFe2O4 and Fe3-xO4 particles are characterized by very low heating temperature, when magnetic fluids based on core/shell nanoparticles demonstrate higher heating effect.

  8. Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning.

    PubMed

    Chen, Hongyan; Wang, Nü; Di, Jiancheng; Zhao, Yong; Song, Yanlin; Jiang, Lei

    2010-07-01

    A multifluidic coaxial electrospinning approach is reported here to fabricate core/shell ultrathin fibers with a novel nanowire-in-microtube structure from more optional fluid pairs than routine coaxial electrospinning. The advantage of this approach lies in the fact that it introduces an extra middle fluid between the core and shell fluids of traditional coaxial electrospinning, which can work as an effective spacer to decrease the interaction of the other two fluids. Under the protection of a proper middle fluid, more fluid pairs, even mutually miscible fluids, can be operated to generate "sandwich"-structured ultrathin fibers with a sharp boundary between the core and shell materials. It thereby largely extends the scope of optional materials. Selectively removing the middle layer of the as-prepared fibers results in an interesting nanowire-in-microtube structure. Either homogeneous or heterogeneous fibers with well-tailored sandwich structures have been successfully fabricated. This method is an important extension of traditional co-electrospinning that affords a more universal avenue to preparing core/shell fibers; moreover, the special hollow cavity structure may introduce some extra properties into the conventional core/shell structure, which may find potential applications such as optical applications, microelectronics, and others. PMID:20337483

  9. Magnetization processes in core/shell exchange-spring structures

    NASA Astrophysics Data System (ADS)

    Jiang, J. S.

    2015-05-01

    The magnetization reversal processes in cylindrical and spherical soft core/hard shell exchange-spring structures are investigated via the analytical nucleation theory and are verified with numerical micromagnetic simulations. At small core sizes, the nucleation of magnetic reversal proceeds via the modified bulging mode, where the transverse component of the magnetization is only semi-coherent in direction and the nucleation field contains a contribution from self-demagnetization. For large core sizes, the modified curling mode, where the magnetization configuration is vortex-like, is favored at nucleation. The preference for the modified curling mode is beneficial in that the flux-closure allows cylindrical and spherical core/shell exchange-spring elements to be densely packed into bulk permanent magnets without affecting the nucleation field, thereby offering the potential for high energy product.

  10. TiN/VN composites with core/shell structure for supercapacitors

    SciTech Connect

    Dong, Shanmu; Chen, Xiao; Gu, Lin; Zhou, Xinhong; Wang, Haibo; Liu, Zhihong; Han, Pengxian; Yao, Jianhua; Wang, Li; Cui, Guanglei; Chen, Liquan

    2011-06-15

    Research highlights: {yields} Vanadium and titanium nitride nanocomposite with core-shell structure was prepared. {yields} TiN/VN composites with different V:Ti molar ratios were obtained. {yields} TiN/VN composites can provide promising electronic conductivity and favorable capacity storage. -- Abstract: TiN/VN core-shell composites are prepared by a two-step strategy involving coating of commercial TiN nanoparticles with V{sub 2}O{sub 5}.nH{sub 2}O sols followed by ammonia reduction. The highest specific capacitance of 170 F g{sup -1} is obtained when scanned at 2 mV s{sup -1} and a promising rate capacity performance is maintained at higher voltage sweep rates. These results indicate that these composites with good electronic conductivity can deliver a favorable capacity performance.

  11. Preparation and photocatalytic properties of magnetically reusable Fe3O4@ZnO core/shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Yang, Jinghai; Li, Xiuyan; Wang, Dandan; Wei, Bing; Song, Hang; Li, Xuefei; Fu, Siwei

    2016-01-01

    Fe3O4@ZnO binary nanoparticles were synthesized by a simple two-step chemical method and characterized using various analytical instruments. TEM result proved the binary nanoparticles have core/shell structures and average particle size is 60 nm. Photocatalytic investigation of Fe3O4@ZnO core/shell nanoparticles was carried out using rhodamine B (RhB) solution under UV light. Fe3O4@ZnO core/shell nanoparticles showed enhanced photocatalytic performance in comparison with the as prepared ZnO nanoparticles. The enhanced photocatalytic activity for Fe3O4@ZnO might be resulting from the higher concentration of surface oxygen vacancies and the suppressing effect of the Fe3+ ions on the recombination of photoinduced electron-hole pairs. Magnetization saturation value (5.96 emu/g) of Fe3O4@ZnO core/shell nanoparticles is high enough to be magnetically removed by applying a magnetic field. The core/shell photocatalyst can be easily separated by using a commercial magnet and almost no decrease in photocatalytic efficiency was observed even after recycling six times.

  12. Preparation and electromagnetic properties of core/shell polystyrene@polypyrrole@nickel composite microspheres.

    PubMed

    Li, Wenzhe; Qiu, Teng; Wang, Leilei; Ren, Shanshan; Zhang, Jiangru; He, Lifan; Li, Xiaoyu

    2013-02-01

    Through a novel method, we successfully synthesized electromagnetic (EM) functional polystyrene@polypyrrole@nickel (PS@PPy@Ni) composite microspheres. The PS@PPy spheres with well-defined core/shell structure have been synthesized via an in situ chemical oxidative copolymerization of pyrrole (Py) and N-2-carboxyethylpyrrole (PyCOOH) templated by PS microspheres. The reaction was carried out under heterophase conditions using the mixture of ethanol and water as the continuous phase. Tailored by the carboxyl groups on the surface of microspheres, magnetic nickel layer has been steady deposited onto the P(Py-PyCOOH) layer of the microspheres through an activation-electroless plating technology. The fine PS@P(Py-PyCOOH)@Ni core/shell structures could be obtained with the PyCOOH content up to 50 wt % in the P(Py-PyCOOH) layer. Moreover, the as-prepared PS@P(Py-PyCOOH)@Ni composites are ferromagnetic materials and behave as a good electromagnetic (EM) absorption material due to the coating of Ni layer around the PS@P(Py-PyCOOH) spheres. The PS@P(Py-PyCOOH)@Ni composite spheres show the remarkable EM wave absorption property with the maximum reflection loss (around -20.06 dB) at 10.69 GHz. The EM wave absorption can retained lower than -10 dB within a broad frequency range from 9.16 to 13.75 GHz. PMID:23277287

  13. Preparation, in vitro and in vivo evaluation of budesonide loaded core/shell nanofibers as oral colonic drug delivery system.

    PubMed

    Xu, Qian; Zhang, Niping; Qin, Wei; Liu, Jingjing; Jia, Zhangjun; Liu, Hongxiang

    2013-01-01

    Budesonide (BUD) loaded ethylcellulose (EC)-core/Eudragit S100-shell nanofibers (BUD-core/shell-NFs) have been successfully prepared using a coaxial electrospinning technique. The drug encapsulation efficiency was 90.48%. SEM and TEM analysis showed that fine core-shell structured nanofibers with an average diameter 190 nm and uniform core diameters 74 nm were prepared. The BUD-loaded Eudragit S100/EC composite nanofibers (BUD-NFs) were prepared using a blend electrospinning method and used as a control. In vitro release tests in HCl 0.1 N, phosphate buffer solutions pH 6.8 and 7.4 were studied. Moreover, the colon-specific characteristics were directly proven in vivo by the content of BUD in different segments of the gastrointestinal (GI) tract in rats after oral administration. Taken together, the results confirmed that BUD-core/shell-NFs had desired pH-dependent drug release profile, displayed a sustained and complete drug release in the colon, as well as protected BUD from being released completely in the upper portion of the GI tract. Compared with BUD-NFs, the BUD-core/shell-NFs have much better potential to be developed as oral colon-specific drug delivery system (OCDDS) to overcome the disadvantages of current oral formulations of BUD. PMID:23646710

  14. Band structure of core-shell semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Pistol, Mats-Erik; Pryor, Craig

    2009-03-01

    We present band structures of strained core-shell nanowires composed of zincblende III-V (binary) semiconductors. We consider all combinations of AlN, GaN, InN, and all combinations of AlP, GaP, AlAs, GaAs, InP, InAs, AlSb, GaSb, and InSb. We compute the γ- and X-conduction band minima as well as the valence band maximum, all as functions of the core and shell radii. The calculations were performed using continuum elasticity theory for the strain, eight-band strain-dependent k.p theory for the γ-point energies, and single band approximation for the X-point conduction minima. We identify structures with type-I, type-II and type-III band alignment, as well as systems in which one material becomes metallic due to a negative band-gap. We identify structures that may support exciton crystals with and without photoexcitation. We have also computed the effective masses, from which the confinement energy may be estimated. All the results [Pistol and Pryor, Phys. Rev. B 78, 115319] are available in graphical and tabular form at www.semiconductor.physics.uiowa.edu

  15. Preparation of highly dispersed core/shell-type titania nanocapsules containing a single Ag nanoparticle.

    PubMed

    Sakai, Hideki; Kanda, Takashi; Shibata, Hirobumi; Ohkubo, Takahiro; Abe, Masahiko

    2006-04-19

    Core/shell-type titania nanocapsules containing a single Ag nanoparticle were prepared. Ag nanoparticles were prepared using the reduction of silver nitrate with hydrazine in the presence of cetyltrimethylammonium bromide (CTAB) as protective agent. The sol-gel reaction of titanium tetraisopropoxide (TTIP) was used to prepare core/shell-type titania nanocapsules with CTAB-coated Ag nanoparticles as the core. TEM observations revealed that the size of the core (Ag particle) and the thickness of the shell (titania) of the core/shell particles obtained are about 10 nm and 5-10 nm, respectively. In addition, the nanocapsules were found to be dispersed in the medium as individual particles without aggregation. Moreover, titania coating caused the surface plasmon absorption of Ag nanoparticles to shift toward the longer wavelength side. PMID:16608315

  16. Preparation of gold/titania core-shell nanocomposites with a tunable shell thickness.

    PubMed

    Kanda, Takashi; Komata, Kazuyoshi; Torigoe, Kanjiro; Endo, Takeshi; Sakai, Kenichi; Abe, Masahiko; Sakai, Hideki

    2014-01-01

    Gold/titania nanocomposites with a core-shell structure were prepared by sol-gel reaction of titanium tetrabutoxide (TTBO) with gold nanoparticles, core-stabilized with cetyltrimethylammonium bromide (CTAB), using a ternary mixture of alcohol/acetonitrile/water as solvent. TEM characterization of the resulting constructs revealed spherical nanocomposites, each containing a single gold core. The mean diameter of the gold cores was 13 nm, while the thicknesses of titania shells were readily tuned in the range 4-30 nm by varying the alkyl chain length of the alcohol. In addition, the gold nanoparticles exhibited a deep red color, with an intense extinction peak at 527 nm, owing to their surface plasmon resonance (SPR) properties. When the Au nanoparticles were coated with a titania shell, their color changed to purple and the SPR peak shifted to a higher wavelength of 537 nm. Furthermore, the core-shell nanocomposites were found to display photocatalytic activity for the oxidation of 2-propanol under illumination by visible light (λ=500-560 nm). PMID:24717542

  17. Photonic bandgap of inverse opals prepared from core-shell spheres.

    PubMed

    Liu, Bo-Tau; Lin, Ya-Li; Huang, Shao-Xian

    2012-01-01

    In this study, we synthesized monodispersed polystyrene (PS)-silica core-shell spheres with various shell thicknesses for the fabrication of photonic crystals. The shell thickness of the spheres was controlled by various additions of tetraethyl orthosilicate during the shell growth process. The shrinkage ratio of the inverse opal photonic crystals prepared from the core-shell spheres was significantly reduced from 14.7% to within 3%. We suspected that the improvement resulted from the confinement of silica shell to the contraction of PS space during calcination. Due to the shell effect, the inverse opals prepared from the core-shell spheres have higher filling fraction and larger wavelength of stop band maximum. PMID:22894600

  18. Alloy Cu3Pt nanoframes through the structure evolution in Cu-Pt nanoparticles with a core-shell construction

    PubMed Central

    Han, Lin; Liu, Hui; Cui, Penglei; Peng, Zhijian; Zhang, Suojiang; Yang, Jun

    2014-01-01

    Noble metal nanoparticles with hollow interiors and customizable shell compositions have immense potential for catalysis. Herein, we present an unique structure transformation phenomenon for the fabrication of alloy Cu3Pt nanoframes with polyhedral morphology. This strategy starts with the preparation of polyhedral Cu-Pt nanoparticles with a core-shell construction upon the anisotropic growth of Pt on multiply twinned Cu seed particles, which are subsequently transformed into alloy Cu3Pt nanoframes due to the Kirkendall effect between the Cu core and Pt shell. The as-prepared alloy Cu3Pt nanoframes possess the rhombic dodecahedral morphology of their core-shell parents after the structural evolution. In particular, the resulting alloy Cu3Pt nanoframes are more effective for oxygen reduction reaction but ineffective for methanol oxidation reaction in comparison with their original Cu-Pt core-shell precursors. PMID:25231376

  19. Alloy Cu3Pt nanoframes through the structure evolution in Cu-Pt nanoparticles with a core-shell construction

    NASA Astrophysics Data System (ADS)

    Han, Lin; Liu, Hui; Cui, Penglei; Peng, Zhijian; Zhang, Suojiang; Yang, Jun

    2014-09-01

    Noble metal nanoparticles with hollow interiors and customizable shell compositions have immense potential for catalysis. Herein, we present an unique structure transformation phenomenon for the fabrication of alloy Cu3Pt nanoframes with polyhedral morphology. This strategy starts with the preparation of polyhedral Cu-Pt nanoparticles with a core-shell construction upon the anisotropic growth of Pt on multiply twinned Cu seed particles, which are subsequently transformed into alloy Cu3Pt nanoframes due to the Kirkendall effect between the Cu core and Pt shell. The as-prepared alloy Cu3Pt nanoframes possess the rhombic dodecahedral morphology of their core-shell parents after the structural evolution. In particular, the resulting alloy Cu3Pt nanoframes are more effective for oxygen reduction reaction but ineffective for methanol oxidation reaction in comparison with their original Cu-Pt core-shell precursors.

  20. Facile preparation of hybrid core-shell nanorods for photothermal and radiation combined therapy.

    PubMed

    Deng, Yaoyao; Li, Erdong; Cheng, Xiaju; Zhu, Jing; Lu, Shuanglong; Ge, Cuicui; Gu, Hongwei; Pan, Yue

    2016-02-11

    The hybrid platinum@iron oxide core-shell nanorods with high biocompatibility were synthesized and applied for combined therapy. These hybrid nanorods exhibit a good photothermal effect on cancer cells upon irradiation with a NIR laser. Furthermore, due to the presence of a high atomic number element (platinum core), the hybrid nanorods show a synergistic effect between photothermal and radiation therapy. Therefore, the as-prepared core-shell nanorods could play an important role in facilitating synergistic therapy between photothermal and radiation therapy to achieve better therapeutic efficacy. PMID:26818657

  1. Preparation TiO2 core-shell nanospheres and application as efficiency drug detection sensor

    PubMed Central

    2014-01-01

    In this paper, we report the facile preparation of monodisperse titanium dioxide-diltiazem/tetrachlorobismuth core-shell nanospheres (TiO2@DTMBi), in which, diltiazem (DTM)/tetrachlorobismuth (BiCl4) complexes were employed as electroactive materials. The morphology, size, formation, and structure of the obtained TiO2@DTMBi spheres were investigated by transmission electron microscopy, scanning electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, and X-ray diffraction. The optimal condition of obtained monodisperse 40-nm TiO2@DTMBi spheres was researched. The results of using TiO2@DTMBi nanospheres as proposed drug sensor indicate a wide linear range (10-7 to 10-1 M) and a very low detection limit of 0.20 μg/mL. PMID:25246870

  2. Preparation of core-shell PAN nanofibers encapsulated α-tocopherol acetate and ascorbic acid 2-phosphate for photoprotection.

    PubMed

    Wu, Xiao-Mei; Branford-White, Christopher J; Yu, Deng-Guang; Chatterton, Nicholas P; Zhu, Li-Min

    2011-01-01

    Magnesium l-ascorbic acid 2-phosphate (MAAP) and α-tocopherol acetate (α-TAc), as the stable vitamin C and vitamin E derivative, respectively, are often applied to skin care products for reducing UV damage. The encapsulation of MAAP (0.5%, g/mL) and α-TAc (5%, g/mL) together within the polyacrylonitrile (PAN) nanofibers was demonstrated using a coaxial electrospinning technique. The structure and morphology characterizations of the core-shell fibers MAAP/α-TAc-PAN were investigated by SEM, FTIR and XRD. As a negative control, the blend nanofibers MAAP/α-TAc/PAN were prepared from a normal electrospinning method. The results from SEM indicated that the morphology and diameter of the nanofibers were influenced by concentration of spinning solution, the polymer component of the shell, the carrying agent of the core and the fabricating methods, and the core-shell nanofibers obtained at the concentration of 8% had finer and uniform structure with the average diameters of 200 ± 15nm. From in vitro release studies it could be seen that both different fiber specimens showed a gradual increase in the amount of α-TAc or MAAP released from the nanofibers. Furthermore, α-TAc and MAAP released from the blend nanofibers showed the burst release at the maximum release of ∼15% and ∼40% during the first 6h, respectively, but their release amount from the core-shell nanofibers was only 10-12% during the initial part of the process. These results showed that core-shell nanofibers alleviated the initial burst release and gave better sustainability compared to that of the blend nanofibers. The present study would provide a basis for further optimization of processing conditions to obtain desired structured core-shell nanofibers and release kinetics for practical applications in dermal tissue. PMID:20870398

  3. Formation of core-shell structure in high entropy alloy coating by laser cladding

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Wu, Wanfei; He, Yizhu; Li, Mingxi; Guo, Sheng

    2016-02-01

    The formation of core-shell structure is an interesting phenomenon occurring during the solidification process, due to the liquid phase separation. The formation of core-shell structure in high-entropy alloys, a new class of advanced metallic materials, has not been reported previously, and thus constitutes an intriguing scientific question. Here, we firstly report the formation of core-shell structure in one laser cladded high-entropy alloy, where we show the nanosized-Y2O3 powder addition, serves as the catalyst for the liquid phase separation.

  4. Facile preparation of hybrid core-shell nanorods for photothermal and radiation combined therapy

    NASA Astrophysics Data System (ADS)

    Deng, Yaoyao; Li, Erdong; Cheng, Xiaju; Zhu, Jing; Lu, Shuanglong; Ge, Cuicui; Gu, Hongwei; Pan, Yue

    2016-02-01

    The hybrid platinum@iron oxide core-shell nanorods with high biocompatibility were synthesized and applied for combined therapy. These hybrid nanorods exhibit a good photothermal effect on cancer cells upon irradiation with a NIR laser. Furthermore, due to the presence of a high atomic number element (platinum core), the hybrid nanorods show a synergistic effect between photothermal and radiation therapy. Therefore, the as-prepared core-shell nanorods could play an important role in facilitating synergistic therapy between photothermal and radiation therapy to achieve better therapeutic efficacy.The hybrid platinum@iron oxide core-shell nanorods with high biocompatibility were synthesized and applied for combined therapy. These hybrid nanorods exhibit a good photothermal effect on cancer cells upon irradiation with a NIR laser. Furthermore, due to the presence of a high atomic number element (platinum core), the hybrid nanorods show a synergistic effect between photothermal and radiation therapy. Therefore, the as-prepared core-shell nanorods could play an important role in facilitating synergistic therapy between photothermal and radiation therapy to achieve better therapeutic efficacy. Electronic supplementary information (ESI) available: Details of general experimental procedures. See DOI: 10.1039/c5nr09102k

  5. Hematite homogeneous core/shell hierarchical spheres: Surfactant-free solvothermal preparation and their improved catalytic property of selective oxidation

    SciTech Connect

    Lian Suoyuan; Li Haitao; He Xiaodie; Kang Zhenhui; Liu Yang; Lee, Shuit Tong

    2012-01-15

    Solvothermal synthesis is an efficient synthetic method for preparing nano and micromaterials. Preparation of hematite through alcoholysis of ferric ion under solvothermal condition has been carried out at low concentrations. In this paper, Fe{sub 2}O{sub 3} homogeneous core/shell hierarchical nanostructures were synthesized via solvothermal treatment of FeCl{sub 3}{center_dot}6H{sub 2}O and ethanol. The achievements of such structures can be attributed to two important factors: high temperature and high concentration. Besides, the crystal water and reaction time were also important factors to the synthesis of hematite. The prepared samples were characterized using X-ray powder diffraction, Raman spectra, scanning electron microscopy equipped with an energy-dispersive X-ray spectrometer, transmission electron microscopy and Brunauer-Emmett-Teller surface area and pore size distribution. X-ray photoelectron spectroscopy showed a satellite peak at 719.8 eV, which is the characteristic peak of Fe(III). The formation mechanism of the spheres and the effects of the reactant concentrations and reaction temperatures have been discussed. Moreover, the enhanced catalytic activity of the spheres has also been investigated through oxidation of benzyl alcohol to benzaldehyde with high conversion (42%) and selectivity (95%). - Graphical abstract: Fe{sub 2}O{sub 3} homogeneous core/shell hierarchical microspheres were synthesized by solvothermal method. Owing to the special structure, the synthesized Fe{sub 2}O{sub 3} microspheres exhibit a superior catalytic activity in benzyl oxidation. Highlights: Black-Right-Pointing-Pointer Hierarchical Fe{sub 2}O{sub 3} core/shell microspheres were synthesized. Black-Right-Pointing-Pointer Microspheres were assembled by {beta}-FeOOH. Black-Right-Pointing-Pointer The sample exhibits a superior catalytic activity and selectivity. Black-Right-Pointing-Pointer The high activity and selectivity are due to the hierarchical core/shell structure.

  6. Preparation of core-shell structure Fe3 O4 @SiO2 superparamagnetic microspheres immoblized with iminodiacetic acid as immobilized metal ion affinity adsorbents for His-tag protein purification.

    PubMed

    Ni, Qian; Chen, Bing; Dong, Shaohua; Tian, Lei; Bai, Quan

    2016-04-01

    The core-shell structure Fe3 O4 /SiO2 magnetic microspheres were prepared by a sol-gel method, and immobiled with iminodiacetic acid (IDA) as metal ion affinity ligands for protein adsorption. The size, morphology, magnetic properties and surface modification of magnetic silica nanospheres were characterized by various modern analytical instruments. It was shown that the magnetic silica nanospheres exhibited superparamagnetism with saturation magnetization values of up to 58.1 emu/g. Three divalent metal ions, Cu(2+) , Ni(2+) and Zn(2+) , were chelated on the Fe3 O4 @SiO2 -IDA magnetic microspheres to adsorb lysozyme. The results indicated that Ni(2+) -chelating magnetic microspheres had the maximum adsorption capacity for lysozyme of 51.0 mg/g, adsorption equilibrium could be achieved within 60 min and the adsorbed protein could be easily eluted. Furthermore, the synthesized Fe3 O4 @SiO2 -IDA-Ni(2+) magnetic microspheres were successfully applied for selective enrichment lysozyme from egg white and His-tag recombinant Homer 1a from the inclusion extraction expressed in Escherichia coli. The result indicated that the magnetic microspheres showed unique characteristics of high selective separation behavior of protein mixture, low nonspecific adsorption, and easy handling. This demonstrates that the magnetic silica microspheres can be used efficiently in protein separation or purification and show great potential in the pretreatment of the biological sample. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26268650

  7. Preparation of nanofiber polythiophene layered on Ba x Sr1- x Fe12O19/Fe3O4/polyacrylic acid core-shell structure and its microwave absorption investigation

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Hossein; Moloudi, Maryam

    2015-09-01

    Ba x Sr1- x Fe12O19/Fe3O4/polyacrylic acid/polythiophene (Ba x Sr1- x Fe12O19/Fe3O4/PAA/PTh) nanocomposites with multi-core-shell structure were successfully synthesized by four steps. The samples were characterized by FTIR, X-ray diffraction (XRD), transmission electron microscope (TEM), vibrating sample magnetometer, and radar absorbing material reflectivity far-field radar cross-section method, respectively. XRD and TEM results indicated that the obtained nanoparticles have multi-core-shell morphology. The magnetic properties and microwave absorption analyses reveal that there are interphase interactions at the interface of Ba x Sr1- x Fe12O19, Fe3O4, PAA, and PTh, which can affect the magnetic properties and microwave absorption properties of the samples. The microwave-absorbing properties of nanocomposites were investigated at 8-14 GHz. A typical layer absorber exhibited an excellent microwave absorption with a -26 dB maximum absorption at 14 GHz. Compared with core material, the coercivity and saturation magnetization of multi-core-shell nanocomposites decrease obviously, but the microwave absorption properties of nanocomposites are improved greatly. The results show that these composite could be used as advancing absorption and shielding materials due to their favorable microwave-absorbing properties.

  8. Synthesis, structural characterization and magnetic properties of Fe/Pt core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Pisane, K. L.; Singh, Sobhit; Seehra, M. S.

    2015-05-01

    Structural and magnetic properties of Fe/Pt core-shell nanostructure prepared by a sequential reduction process are reported. Transmission electron microscopy shows nearly spherical particles fitting a lognormal size distribution with Do = 3.0 nm and distribution width λD = 0.31. In x-ray diffraction, Bragg lines only from the Pt shell are clearly identified with line-widths yielding crystallite size = 3.1 nm. Measurements of magnetization M vs. T (2 K-350 K) in magnetic fields up to 90 kOe show a blocking temperature TB = 13 K below which hysteresis loops are observed with coercivity HC increasing with decreasing T reaching HC = 750 Oe at 2 K. Temperature dependence of the ac susceptibilities at frequencies fm = 10 Hz-5 kHz is measured to determine the change in TB with fm using the Vogel-Fulcher law. This analysis shows the presence of significant interparticle interaction, the Neel-Brown relaxation frequency fo = 5.3 × 1010 Hz and anisotropy constant Ka = 3.6 × 106 ergs/cm3. A fit of the M vs. H data up to H = 90 kOe for T > TB to the modified Langevin function taking particle size distribution into account yields magnetic moment per particle consistent with the proposed core-shell structure; Fe core of 2.2 nm diameter and Pt shell of 0.4 nm thickness.

  9. Synthesis of Core-shell Structured Amorphous Si Nanoparticles by Induction Thermal Plasmas

    NASA Astrophysics Data System (ADS)

    Okamoto, Daisuke; Kageyama, Takuya; Tanaka, Manabu; Sone, Hirotaka; Watanabe, Takayuki

    2015-09-01

    Core-shell structured amorphous Si nanoparticles were synthesized by induction thermal plasma. Crystalline Si powder with 3 μm of average diameter was injected into the induction thermal plasma at 4 MHz. The Si raw materials immediately evaporate in the high temperature plasma region and nanoparticles were produced through the quenching process. Counterflow quenching gas was injected from downstream of the torch with its direction against the plasma flow. The effect of the operating parameter such as flow rate of quenching gas and input power was investigated. Collected particles were characterized by X-ray diffraction, transmission electron microscopy, electron energy-loss spectroscopy, and Raman spectroscopy. Obtained results indicate that amorphization degree of the synthesized nanoparticles is more than 90% when additional quenching gas of 20 L/min is injected. The quenching rate of the prepared nanoparticles in the growth region have an important role on determining the amorphization degree. Moreover, EELS and Raman analyses showed the synthesized nanoparticles were coated by the SiO2 shell with thickness of 2-4 nm. These findings indicated that amorphous Si/SiO2 core-shell structured nanoparticles were successfully synthesized by induction thermal plasma in single step.

  10. Focused ion beam fabrication of novel core-shell nanowire structures.

    PubMed

    He, Li; Johansson, Jonas; Murayama, Mitsuhiro; Hull, Robert

    2008-11-01

    A novel method of indirect deposition by means of a focused ion beam (FIB) is utilized to develop metal/insulator/semiconductor nanowire core-shell structures. This method is based upon depositing an annular pattern centered on a nanowire, with secondary deposition then coating the wire. Typical cross-sectional deposition area increments as a function of ion doses are 1.3 × 10(-2) µm(2) nC(-1) for Pt and 3.5 × 10(-2) µm(2) nC(-1) for SiO(2). The structures are examined with a transmission electron microscope (TEM) using a new nanowire TEM sample preparation method that allows direct examinations of individually selected core-shell nanowires fabricated under different indirect FIB deposition conditions. Elemental analyses by means of energy dispersive x-ray spectroscopy and electron energy filtered TEM imaging verify the deposition of SiO(2) and Pt layers. Relatively uniform Pt and SiO(2) coatings on individual GaP nanowires can be achieved with overall thickness deviation of about 10% for deposition up to 25-30 nm thick Pt or SiO(2) shells. It should be possible to extend this approach to any nanowire/nanotube system, and to a wide range of coatings in any desired layer sequences. PMID:21832742

  11. The structure, morphology, and the metal-enhanced fluorescence of nano-Ag/ZnO core-shell structure

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Ding, Yanli; Peng, Xiang; Zhou, Mingtao; Liang, Xiaoyan; Min, Jiahua; Wang, Linjun; Shi, Weimin

    2015-06-01

    Nano-polyc rystalline silver (Ag) particles with the diameter of 60 nm were synthesized by the reducing agent sodium citrate. An amorphous zinc oxide (ZnO) shell layer was then coated on the surface of silver particles using wet chemical method. The Ag/ZnO core-shell structure was characterized by scanning electron microscope, transmission electron microscopy, ultraviolet-visible spectroscopy and fluorescence (FL) measurement. The results showed that nano-Ag/ZnO core-shell particles with an average diameter of ~100 nm were prepared successfully, and the FL intensity of Rhodamine 6G (R6G) mixed with Ag/ZnO nanoparticle was 53 % greater than that of the same amount of R6G without any nanoparticles, which may be related to the effect of surface plasmon resonance.

  12. The structure, morphology, and the metal-enhanced fluorescence of nano-Ag/ZnO core-shell structure

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Ding, Yanli; Peng, Xiang; Zhou, Mingtao; Liang, Xiaoyan; Min, Jiahua; Wang, Linjun; Shi, Weimin

    2014-09-01

    Nano-polyc rystalline silver (Ag) particles with the diameter of 60 nm were synthesized by the reducing agent sodium citrate. An amorphous zinc oxide (ZnO) shell layer was then coated on the surface of silver particles using wet chemical method. The Ag/ZnO core-shell structure was characterized by scanning electron microscope, transmission electron microscopy, ultraviolet-visible spectroscopy and fluorescence (FL) measurement. The results showed that nano-Ag/ZnO core-shell particles with an average diameter of ~100 nm were prepared successfully, and the FL intensity of Rhodamine 6G (R6G) mixed with Ag/ZnO nanoparticle was 53 % greater than that of the same amount of R6G without any nanoparticles, which may be related to the effect of surface plasmon resonance.

  13. Fabrication of nanoporous Cu-Pt(Pd) core/shell structure by galvanic replacement and its application in electrocatalysis.

    PubMed

    Xu, Caixia; Liu, Yunqing; Wang, Jinping; Geng, Haoran; Qiu, Huajun

    2011-12-01

    We describe a general strategy to fabricate a new type of nanoporous core/shell structured bimetallic nanocomposites with controllable metal components. Nanoporous copper (NPC) obtained by dealloying Cu/Al alloy is used as both reducing agent and three-dimensional substrate. Electron microscope and X-ray diffraction characterizations demonstrated that a simply galvanic-replacement reaction with H(2)PtCl(6) aqueous solution can easily generate nanoporous core/shell structure with a thin Pt/Cu alloy shell and Cu (or Pt/Cu alloy) core. The morphology and crystal structure evolution of the nanocomposites are studied and discussed in detail. The as-prepared bimetallic PtCu nanocomposites show greatly enhanced catalytic activity and stability toward methanol electro-oxidation as compared with commercial Pt/C catalyst. This facile in situ preparation strategy is also suitable for large-scale production of this novel and inexpensive catalyst. PMID:22034948

  14. [Scattering properties of core-shell structure of mist wrapped dust particles].

    PubMed

    Feng, Shi-qi; Song, Wei; Wang, Yan; Miao, Xin-hui; Xu, Li-jun; Liu, Yu; Li, Cheng; Li Wen-long; Wang, Yi-ran; Cai, Hong-xing

    2014-12-01

    The authors have investigated the optical properties of core-shell structure of mist wrapped dust particles based on the method of discrete dipole approximation (DDA). The influence on the thickness of the elliptical core-shell structure were calculated which the ratio of long axis and short axis is 2:1, and the change of scattering angle for scattering characteristics. The results shows that the thickness of outer layer increase from 1.2 to 4.8 μm with the scattering and extinction coefficient of double core-shell layers particles decrease from 3.4 and 3.43 to 2.543 and 2.545, when the size of inner core isn't change. And scattering relative strength also increased obviously. The thickness of inner core increase from 0.6 to 2.4 μm with the of scattering and extinction coefficient change from 2.59 and 2.88 to 2.6 and 2.76 when thickness of outer remain constant. Effect of the thickness of visible outer layer on the scattering characteristics of double core-shell layers particles is greater, because of the interaction between scattering light and outer materials. The scattering relative intensity decrease with wavelength increased, while increased with the scale of core-shell structure increase. The results make a promotion on the study of the transportation characteristics of laser and scattering characteristics when the atmospheric aerosol and water mist interact together. PMID:25881412

  15. Open structure ZnO/CdSe core/shell nanoneedle arrays for solar cells

    PubMed Central

    2012-01-01

    Open structure ZnO/CdSe core/shell nanoneedle arrays were prepared on a conducting glass (SnO2:F) substrate by solution deposition and electrochemical techniques. A uniform CdSe shell layer with a grain size of approximately several tens of nanometers was formed on the surface of ZnO nanoneedle cores after annealing at 400°C for 1.5 h. Fabricated solar cells based on these nanostructures exhibited a high short-circuit current density of about 10.5 mA/cm2 and an overall power conversion efficiency of 1.07% with solar illumination of 100 mW/cm2. Incident photo-to-current conversion efficiencies higher than 75% were also obtained. PMID:22995031

  16. Preparation and Characterization of Chitosan-Based Core-Shell Microcapsules Containing Clove Oil.

    PubMed

    Jiang, Ping; Li, Duxin; Xiao, Ya; Yang, Xingxing; Liu, Yuejun

    2015-01-01

    The biodegradable microcapsules based on chitosan for a controlled delivery of clove oil were prepared by the single coagulation process. The effect of chitosan concentration, core to shell ratio, types of emulsifier, flocculating agent and hardening agent on the microcapsule diameter and the particle size distribution of microcapsule were investigated. The optimized conditions for the preparation of microcapsules with well-defined structure and narrow dispersibility were under that (1) the concentration of chitosan was 1.0 wt%, (2) clove oil to chitosan ratio was 75:25, (3) OP-10 and 10 wt% sodium sulfate were used as emulsifier and flocculating agent respectively, and (4) the concentration hardening agent glyoxal was 1 wt% based on the weight of chitosan. The uniform spherical structures with smooth surfaces with a particle size distribution of 1-15 μm were evidenced by SEM images of microcapsules. Core-shell, hetero-structures were confirmed by optical micrograph. The chemical component of the microcapsules was determined by FTIR. Thermal analysis showed the microcapsules were thermally stable below 150 degrees C. It was found that the pH value and temperature play important roles on the release rate of clove oil from the microcapsules. The release volume of clove oil from microcapsules at pH = 7, and pH = 10 were smaller than that at pH = 2. And the release volume of Clove oil from microcapsules at 60 degrees C was smaller than that at 20 degrees C and 40 degrees C, which showed a sustained and prolonged release. PMID:26328411

  17. Preparation, characterization, and photocatalytic performance of pear-shaped ZnO/Ag core-shell submicrospheres

    NASA Astrophysics Data System (ADS)

    Guo, Xiao-Hua; Ma, Jian-Qi; Ge, Hong-Guang

    2013-05-01

    Pear-shaped ZnO/Ag core-shell submicrospheres with good monodispersity were prepared via a seed-mediated particle growth procedure, where metal Ag (by reducing Ag+ with Sn2+) deposited on the as-prepared ZnO submicrospheres served as seeds (nucleation sites) for further growth of Ag nanoparticles. The as-prepared samples were characterized by X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, ultraviolet-visible and photoluminescence spectra. Structure characterization demonstrates that the ZnO/Ag composites are composed of pear-shaped wurtzite ZnO submicrosphere core and Ag nanoparticles (nanoshell). Photoluminescence indicates that Ag nanoshell can effectively inhibit the recombination of the photoinduced electrons and holes of ZnO. This is responsible for the higher photocatalytic activity of the ZnO/Ag core-shell composites. The photocatalytic performance of the prepared ZnO/Ag samples for degradation of Rhodamine B was evaluated with a comparative study. The relationship between the structure of the samples and their photocatalytic performance shows that Ag deposits can significantly enhance the photocatalytic efficiency of ZnO submicrospheres.

  18. Enhanced performance of core-shell structured polyaniline at helical carbon nanotube hybrids for ammonia gas sensor

    SciTech Connect

    Tian, Xin; Wang, Qiang; Chen, Xiangnan; Yang, Weiqing; Xu, Xiaoling E-mail: bihan-2001@163.com; Jiang, Man; Zhou, Zuowan E-mail: bihan-2001@163.com; Wu, Zuquan

    2014-11-17

    A core-shell structured hybrid of polyaniline at helical carbon nanotubes was synthesized using in situ polymerization, which the helical carbon nanotubes were uniformly surrounded by a layer of polyaniline nanorods array. More interestingly, repeatable responses were experimentally observed that the sensitivity to ammonia gas of the as-prepared helical shaped core-shell hybrid displays an enhancement of more than two times compared to those of only polyaniline or helical carbon nanotubes sensors because of the peculiar structures with high surface area. This kind of hybrid comprising nanorod arrays of conductive polymers covering carbon nanotubes and related structures provide a potential in sensors of trace gas detection for environmental monitoring and safety forecasting.

  19. Core-shell structured TiO2@polydopamine for highly active visible-light photocatalysis.

    PubMed

    Mao, Wen-Xin; Lin, Xi-Jie; Zhang, Wei; Chi, Zi-Xiang; Lyu, Rong-Wen; Cao, An-Min; Wan, Li-Jun

    2016-06-01

    This communication reports that the TiO2@polydopamine nanocomposite with a core-shell structure could be a highly active photocatalyst working under visible light. A very thin layer of polydopamine at around 1 nm was found to be critical for the degradation of Rhodamine B. PMID:27165843

  20. Preparation of core-shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization.

    PubMed

    Hou, Chen; Qi, Zhigang; Zhu, Hao

    2015-04-01

    A flexible, biocompatible and bioadhesive enzyme immobilizing material, which was synthesized based on the covalent assembly of biomimetic polymer and oxidized polysaccharide on magnetic nanoparticles (NPs), has been developed in this feasibility study. In this work, the bio-inspired polymer, polydopamine (PDA), was used to modify the well-monodispersed Fe3O4 NPs (mPDA NPs) with a controllable thickness via a dip-coating process, then the alginate di-aldehyde (ADA) was covalently assembled on the mPDA NPs and employed as a naturally occurring linking agent for Candida rugosa lipase (CRL) immobilization. The resulting support material was characterized by means of the transmission electron microscope (TEM), Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), thermogravimetry (TG) analyser, and vibrating sample magnetometer (VSM). It was verified that the prepared mPDA NPs possessed distinct core-shell structure with uniform size and high saturation magnetization. For further application, the mPDA NPs was utilized in CRL immobilizing procedures and demonstrated can facilitate improving the enzyme activities. The optimum amount of lipase was 200 mg g(-1) support, the optimal pH and temperature for the catalyse condition of the immobilized CRL was 7.0 and 40°C, respectively. Moreover, the immobilized CRL kept the high activity at 77% after 12 times of recycling for batch hydrolysis of olive oil emulsion. This magnetic bioadhesive composite with functionalized properties and adhesion strength presents a general strategy for the immobilization of macromolecules. PMID:25784302

  1. A facile route to synthesize core/shell structured carbon/magnetic nanoparticles hybrid and their magnetic properties

    SciTech Connect

    Qi, Xiaosi; Xu, Jianle; Zhong, Wei; Du, Youwei

    2015-07-15

    Graphical abstract: Controllable synthesis of core/shell structured carbon/magnetic nanoparticles hybrid and their tunable magnetic properties. - Highlights: • The paper reports a simple route for core/shell structured carbon/magnetic nanoparticles hybrid. • By controlling the temperature, Fe{sub 3}O{sub 4}@CNCs, Fe@HCNTs and Fe@LCNTs were produced selectively. • The magnetic properties of the obtained core/shell structured hybrid could be tuned effectively. - Abstract: By controlling the pyrolysis temperature, core/shell structured Fe{sub 3}O{sub 4}/carbon nanocages, Fe/helical carbon nanotubes and Fe/low helicity of carbon nanotubes could be synthesized selectively over Fe{sub 2}O{sub 3} nanotubes generated by a hydrothermal method. The transmission electron microscopic and scanning electron microscopic investigations revealed that the efficiency of generating core/shell structured hybrid was high, exceeding 90%. Because of the magnetic nanoparticles tightly wrapped in graphitic layers, the obtained core/shell structured hybrids showed high stability and good magnetic properties. And the magnetic properties of the obtained core/shell structured hybrid could be tuned by the decomposition temperature and time. Therefore, a simple, inexpensive and environment-benign route was proposed to produce magnetism-tunable core/shell structured hybrid in large quantities.

  2. Liquid-liquid phase equilibrium and core-shell structure formation in immiscible Al-Bi-Sn alloys

    NASA Astrophysics Data System (ADS)

    Li, Mingyang; Jia, Peng; Sun, Xiaofei; Geng, Haoran; Zuo, Min; Zhao, Degang

    2016-04-01

    In this paper, the liquid-phase separation of ternary immiscible Al45Bi19.8Sn35.2 and Al60Bi14.4Sn25.6 melts was studied with resistivity and thermal analysis methods at different temperature. The resistivity-temperature curves appear abrupt and anomalously change with rising temperature, corresponding to the anomalous and low peak of melting process in DSC curves, indicative of the occurrence of the liquid-phase separation. The anomalous behavior of the resistivity temperature dependence is attributable to concentration-concentration fluctuations. The effect of composition and melt temperature on the liquid-phase separation and core-shell structure formation in immiscible Al-Bi-Sn alloys was studied. The liquid-phase separation and formation of the core-shell structure in immiscible Al-Bi-Sn alloys are readily acquired when the alloy compositions fall into liquid miscibility gap. What's more, the cross-sectional structure changes from irregular, dispersed to core-type shapes under the actions of Marangoni motion with increasing melt temperature. This study provides some clues for the preparation of core-shell microspheres of immiscible Al-Bi-Sn alloys via liquid-phase separation.

  3. Core/shell-structured nickel/nitrogen-doped onion-like carbon nanocapsules with improved electromagnetic wave absorption properties

    NASA Astrophysics Data System (ADS)

    Wu, Niandu; Liu, Xianguo; Or, Siu Wing

    2016-05-01

    Core/shell-structured nickel/nitrogen-doped onion-like carbon (Ni/(C, N)) nanocapsules are synthesized by a modified arc-discharge method using N2 gas as the source of N atoms. Core/shell-structured Ni/C nanocapsules are also prepared for comparison. The Ni/(C, N) nanocapsules with diameters of 10-80 nm exhibit a clear core/shell structure. The doping of N atoms introduces more lattice defects into the (C, N) shells and creates more disorderly C in the (C, N) shells. This leads to a slight shift in the dielectric resonance peak to the lower frequency side and an increase in the dielectric loss tangent for the Ni/(C, N) nanocapsules in comparison with the Ni/C nanocapsules. The magnetic permeability of both types of nanocapsules remains almost unaltered since the N atoms exist only in the (C, N) shells. The reflection loss (RL) of the Ni/(C, N) nanocapsules not only reaches a high value of -35 dB at 13.6 GHz, but also is generally improved in the low-frequency S and C microwave bands covering 2-8 GHz as a result of the N-doping-induced additional dipolar polarization and dielectric loss from the (C, N) shells.

  4. Biodegradable and magnetic core-shell composite particle prepared by emulsion solvent diffusion method

    NASA Astrophysics Data System (ADS)

    Oka, Chiemi; Ushimaru, Kazunori; Horiishi, Nanao; Tsuge, Takeharu; Kitamoto, Yoshitaka

    2016-02-01

    The present paper describes optimization of preparation conditions of a core-shell composite particle, and its heat generation by alternating magnetic fields. The composite particles are prepared with a modified emulsion solvent diffusion method, which is combined with Pickering emulsion stabilized by magnetic nanoparticles. In this method, the magnetic nanoparticles act as an emulsifier, and its amount and size are crucial to morphology of the composite particles. The magnetic nanoparticles of 8-9 nm would be strongly adsorbed at a liquid-liquid interface rather than the larger nanoparticles. At the optimized concentration of the magnetic nanoparticle’s suspension for the preparation, small and uniform composite particles are obtained since the amount of the nanoparticles is enough to prevent coalescence of droplets during the formation of the composites. The heat generation by alternating magnetic fields emerged certainly. This result suggests the composite particles have a property as a heat-generating carrier for hyperthermia treatment.

  5. Preparation of hollow core/shell microspheres of hematite and its adsorption ability for samarium.

    PubMed

    Yu, Sheng-Hui; Yao, Qi-Zhi; Zhou, Gen-Tao; Fu, Sheng-Quan

    2014-07-01

    Hollow core/shell hematite microspheres with diameter of ca. 1-2 μm have been successfully achieved by calcining the precursor composite microspheres of pyrite and polyvinylpyrrolidone (PVP) in air. The synthesized products were characterized by a wide range of techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), and Brunauer-Emmett-Teller (BET) gas sorptometry. Temperature- and time-dependent experiments unveil that the precursor pyrite-PVP composite microspheres finally transform into hollow core/shell hematite microspheres in air through a multistep process including the oxidation and sulfation of pyrite, combustion of PVP occluded in the precursor, desulfation, aggregation, and fusion of nanosized hematite as well as mass transportation from the interior to the exterior of the microspheres. The formation of the hollow core/shell microspheres dominantly depends on the calcination temperature under current experimental conditions, and the aggregation of hematite nanocrystals and the core shrinking during the oxidation of pyrite are responsible for the formation of the hollow structures. Moreover, the adsorption ability of the hematite for Sm(III) was also tested. The results exhibit that the hematite microspheres have good adsorption activity for trivalent samarium, and that its adsorption capacity strongly depends on the pH of the solution, and the maximum adsorption capacity for Sm(III) is 14.48 mg/g at neutral pH. As samarium is a typical member of the lanthanide series, our results suggest that the hollow hematite microspheres have potential application in removal of rare earth elements (REEs) entering the water environment. PMID:24892188

  6. Preparation of core-shell Ag@CeO2 nanocomposite by LSPR photothermal induced interface reaction

    NASA Astrophysics Data System (ADS)

    Zhong, H. X.; Wei, Y.; Yue, Y. Z.; Zhang, L. H.; Liu, Y.

    2016-04-01

    The core-shell structure of Ag@CeO2 was prepared by a novel and facile method, which was based on the photothermal effect of localized surface plasmon resonance (LSPR). Nanoparticles (NPs) of Ag were dispersed in a solution containing citric acid, ethylene glycol and cerium nitrate, then under irradiation, Ag NPs generated heat from LSPR and the heat-induced polymerization reaction in the interface between Ag and the sol resulted in cerium gel formation only on the surface of the Ag NPs. After calcination, Ag@CeO2 was successfully obtained, then Ag@CeO2/SiO2 was prepared by loading Ag@CeO2 on SiO2. The resultant catalyst exhibited favorable activity and stability for CO oxidation. The preparation method proposed here should be extendable to other composites with metallic cores and oxide shells in which the metallic nanoparticle possesses LSPR properties.

  7. Core/shell structural transformation and brittle-to-ductile transition in nanowires

    NASA Astrophysics Data System (ADS)

    Yuan, Zaoshi; Nomura, Ken-ichi; Nakano, Aiichiro

    2012-04-01

    Nanowires (NWs) exhibit thermo-mechanical properties that are distinct from their bulk properties, and their understanding is critical for the reliability, manufacturability, and optimization of a wide range of devices consisting of NWs. Here, molecular-dynamics simulation reveals a rich size-temperature "phase diagram" for the mechanical response of a zinc-oxide NW under tension. For smaller diameters and higher temperatures, transitions are found from brittle cleavage to structural transformation-mediated brittle cleavage to ductile failure. Atomistic mechanisms of the unique nano-thermo-mechanical behavior are elucidated as a consequence of surface-structural relaxation, which in particular predicts spontaneous formation of a core/shell structure under tension. The nano-thermo-mechanical phase diagram resolves controversies between previous experiments and theory, and the predicted "intrinsic" core/shell structure may find device applications.

  8. Lowering of ground state induced by core-shell structure in strontium titanate

    NASA Astrophysics Data System (ADS)

    Kiat, J. M.; Hehlen, B.; Anoufa, M.; Bogicevic, C.; Curfs, C.; Boyer, B.; Al-Sabbagh, M.; Porcher, F.; Al-Zein, A.

    2016-04-01

    A new ground state of textbook compound strontium titanate (SrTi O3) is obtained by inducing a specific core-shell structure of the particles. Using a combination of high energy synchrotron and neutron diffraction, we demonstrate a lowering of the ferroelastic ground state towards a new antiferrodistortive phase, accompanied with strong shifts of the critical temperature. This new phase is discussed within the Landau theory and compared with the situation in thin films and during pressure experiments. The crucial competition between particle shape anisotropy, surface tension, and shear strain is analyzed. Inducing a specific core-shell structure is therefore an easy way to tailor structural properties and to stabilize new phases that cannot exist in bulk material, just like film deposition on a substrate.

  9. Structural investigations of core-shell nanowires using grazing incidence X-ray diffraction.

    PubMed

    Keplinger, Mario; Mårtensson, Thomas; Stangl, Julian; Wintersberger, Eugen; Mandl, Bernhard; Kriegner, Dominik; Holý, Václav; Bauer, Günther; Deppert, Knut; Samuelson, Lars

    2009-05-01

    The fabrication of core-shell structures is crucial for many nanowire device concepts. For the proper tailoring of their electronic properties, control of structural parameters such as shape, size, diameter of core and shell, their chemical composition, and information on their strain fields is mandatory. Using synchrotron X-ray diffraction studies and finite element simulations, we determined the chemical composition, dimensions, and strain distribution for series of InAs/InAsP core-shell wires grown on Si(111) with systematically varied growth parameters. In particular we detect initiation of plastic relaxation of these structures with increasing shell thickness and/or increasing phosphorus content. We establish a phase diagram, defining the region of parameters leading to pseudomorphic nanowire growth. This is important to avoid extended defects which are detrimental for their electronic properties. PMID:19320494

  10. Vertically aligned P(VDF-TrFE) core-shell structures on flexible pillar arrays

    PubMed Central

    Choi, Yoon-Young; Yun, Tae Gwang; Qaiser, Nadeem; Paik, Haemin; Roh, Hee Seok; Hong, Jongin; Hong, Seungbum; Han, Seung Min; No, Kwangsoo

    2015-01-01

    PVDF and P(VDF-TrFE) nano- and micro- structures have been widely used due to their potential applications in several fields, including sensors, actuators, vital sign transducers, and energy harvesters. In this study, we developed vertically aligned P(VDF-TrFE) core-shell structures using high modulus polyurethane acrylate (PUA) pillars as the support structure to maintain the structural integrity. In addition, we were able to improve the piezoelectric effect by 1.85 times from 40 ± 2 to 74 ± 2 pm/V when compared to the thin film counterpart, which contributes to the more efficient current generation under a given stress, by making an effective use of the P(VDF-TrFE) thin top layer as well as the side walls. We attribute the enhancement of piezoelectric effects to the contributions from the shell component and the strain confinement effect, which was supported by our modeling results. We envision that these organic-based P(VDF-TrFE) core-shell structures will be used widely as 3D sensors and power generators because they are optimized for current generations by utilizing all surface areas, including the side walls of core-shell structures. PMID:26040539

  11. Vertically aligned P(VDF-TrFE) core-shell structures on flexible pillar arrays

    SciTech Connect

    Choi, Yoon-Young; Yun, Tae Gwang; Qaiser, Nadeem; Paik, Haemin; Roh, Hee Seok; Hong, Jongin; Hong, Seungbum; Han, Seung Min; No, Kwangsoo

    2015-06-04

    PVDF and P(VDF-TrFE) nano- and micro- structures are widely used due to their potential applications in several fields, including sensors, actuators, vital sign transducers, and energy harvesters. In this study, we developed vertically aligned P(VDF-TrFE) core-shell structures using high modulus polyurethane acrylate (PUA) pillars as the support structure to maintain the structural integrity. In addition, we were able to improve the piezoelectric effect by 1.85 times from 40 ± 2 to 74 ± 2 pm/V when compared to the thin film counterpart, which contributes to the more efficient current generation under a given stress, by making an effective use of the P(VDF-TrFE) thin top layer as well as the side walls. We attribute the enhancement of piezoelectric effects to the contributions from the shell component and the strain confinement effect, which was supported by our modeling results. We envision that these organic-based P(VDF-TrFE) core-shell structures will be used widely as 3D sensors and power generators because they are optimized for current generations by utilizing all surface areas, including the side walls of core-shell structures.

  12. Vertically aligned P(VDF-TrFE) core-shell structures on flexible pillar arrays

    DOE PAGESBeta

    Choi, Yoon-Young; Yun, Tae Gwang; Qaiser, Nadeem; Paik, Haemin; Roh, Hee Seok; Hong, Jongin; Hong, Seungbum; Han, Seung Min; No, Kwangsoo

    2015-06-04

    PVDF and P(VDF-TrFE) nano- and micro- structures are widely used due to their potential applications in several fields, including sensors, actuators, vital sign transducers, and energy harvesters. In this study, we developed vertically aligned P(VDF-TrFE) core-shell structures using high modulus polyurethane acrylate (PUA) pillars as the support structure to maintain the structural integrity. In addition, we were able to improve the piezoelectric effect by 1.85 times from 40 ± 2 to 74 ± 2 pm/V when compared to the thin film counterpart, which contributes to the more efficient current generation under a given stress, by making an effective use ofmore » the P(VDF-TrFE) thin top layer as well as the side walls. We attribute the enhancement of piezoelectric effects to the contributions from the shell component and the strain confinement effect, which was supported by our modeling results. We envision that these organic-based P(VDF-TrFE) core-shell structures will be used widely as 3D sensors and power generators because they are optimized for current generations by utilizing all surface areas, including the side walls of core-shell structures.« less

  13. Vertically aligned P(VDF-TrFE) core-shell structures on flexible pillar arrays.

    PubMed

    Choi, Yoon-Young; Yun, Tae Gwang; Qaiser, Nadeem; Paik, Haemin; Roh, Hee Seok; Hong, Jongin; Hong, Seungbum; Han, Seung Min; No, Kwangsoo

    2015-01-01

    PVDF and P(VDF-TrFE) nano- and micro- structures have been widely used due to their potential applications in several fields, including sensors, actuators, vital sign transducers, and energy harvesters. In this study, we developed vertically aligned P(VDF-TrFE) core-shell structures using high modulus polyurethane acrylate (PUA) pillars as the support structure to maintain the structural integrity. In addition, we were able to improve the piezoelectric effect by 1.85 times from 40 ± 2 to 74 ± 2 pm/V when compared to the thin film counterpart, which contributes to the more efficient current generation under a given stress, by making an effective use of the P(VDF-TrFE) thin top layer as well as the side walls. We attribute the enhancement of piezoelectric effects to the contributions from the shell component and the strain confinement effect, which was supported by our modeling results. We envision that these organic-based P(VDF-TrFE) core-shell structures will be used widely as 3D sensors and power generators because they are optimized for current generations by utilizing all surface areas, including the side walls of core-shell structures. PMID:26040539

  14. Controllable synthesis of a novel hedgehog-like core/shell structure

    SciTech Connect

    Wang Shumin; Tian Hongwei; Pei Yanhui; Meng Qingnan; Chen Jianli; Wang Huan; Zeng Yi; Zheng Weitao; Liu Yichun

    2012-02-15

    A novel hedgehog-like core/shell structure, consisting of a high density of vertically aligned graphene sheets and a thin graphene shell/a copper core (VGs-GS/CC), has been synthesized via a simple one-step synthesis route using radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD). Scanning and transmission electron microscopy investigations show that the morphology of this core/shell material could be controlled by deposition time. For a short deposition time, only multilayer graphene shell tightly surrounds the copper particle, while as the deposition time is relative long, graphene sheets extend from the surface of GS/CC. The GS can protect CC particles from oxidation. The growth mechanism for the obtained GS/CC and VGs-GS/CC has been revealed. Compared to VGs, VGs-GS/CC material exhibits a better electron field emission property. This investigation opens a possibility for designing a core/shell structure of different carbon-metal hybrid materials for a wide variety of practical applications. - Graphical abstract: With increasing deposition time, graphene sheets extend from the surface of GS/CC, causing the multilayer graphene encapsulated copper to be converted into vertically aligned graphene sheets-graphene shell/copper core structure. Highlights: Black-Right-Pointing-Pointer A novel hedgehog-like core/shell structure has been synthesized. Black-Right-Pointing-Pointer The structure consists of vertical graphene sheets-graphene shell and copper core. Black-Right-Pointing-Pointer The morphology of VGs-GS/CC can be controlled by choosing a proper deposition time. Black-Right-Pointing-Pointer With increasing deposition time, graphene sheets extend from the surface of GS/CC. Black-Right-Pointing-Pointer VGs-GS/CC exhibits a better electron field emission property as compared with VGs.

  15. Synthesis, structural characterization and magnetic properties of Fe/Pt core-shell nanoparticles

    SciTech Connect

    Pisane, K. L.; Singh, Sobhit; Seehra, M. S.

    2015-05-07

    Structural and magnetic properties of Fe/Pt core-shell nanostructure prepared by a sequential reduction process are reported. Transmission electron microscopy shows nearly spherical particles fitting a lognormal size distribution with D{sub o} = 3.0 nm and distribution width λ{sub D} = 0.31. In x-ray diffraction, Bragg lines only from the Pt shell are clearly identified with line-widths yielding crystallite size = 3.1 nm. Measurements of magnetization M vs. T (2 K–350 K) in magnetic fields up to 90 kOe show a blocking temperature T{sub B} = 13 K below which hysteresis loops are observed with coercivity H{sub C} increasing with decreasing T reaching H{sub C} = 750 Oe at 2 K. Temperature dependence of the ac susceptibilities at frequencies f{sub m} = 10 Hz–5 kHz is measured to determine the change in T{sub B} with f{sub m} using the Vogel-Fulcher law. This analysis shows the presence of significant interparticle interaction, the Neel-Brown relaxation frequency f{sub o} = 5.3 × 10{sup 10 }Hz and anisotropy constant K{sub a} = 3.6 × 10{sup 6 }ergs/cm{sup 3}. A fit of the M vs. H data up to H = 90 kOe for T > T{sub B} to the modified Langevin function taking particle size distribution into account yields magnetic moment per particle consistent with the proposed core-shell structure; Fe core of 2.2 nm diameter and Pt shell of 0.4 nm thickness.

  16. Modeling heterogeneous polymer-grafted nanoparticle networks having biomimetic core-shell structure

    NASA Astrophysics Data System (ADS)

    Mbanga, Badel L.; Yashin, Victor V.; Holten-Andersen, Niels; Balazs, Anna C.

    Inspired by the remarkable mechanical properties of such biological structures as mussel adhesive fibers, we use 3D computational modeling to study the behavior of heterogeneous polymer-grafted nanoparticle (PGN) networks under tensile deformation. The building block of a PGN network is a nanoparticle with grafted polymer chains whose free ends' reactive groups can form both permanent and labile bonds with the end chains on the nearby particles. The tunable behavior of cross-linked PGN networks makes them excellent candidates for designing novel materials with enhanced mechanical properties. Here, we consider the PGN networks having the core-shell structures, in which the type and strength of the inter-particle bonds in the outer shell differ from those in the core. Using the computer simulations, we obtain and compare the ultimate tensile properties (strength, toughness, ductility) and the strain recovery properties for the uniform samples and various core-shell structures. We demonstrate that the core-shell structures could be designed to obtain highly resilient self-healing materials

  17. Gap state related blue light emitting boron-carbon core shell structures

    NASA Astrophysics Data System (ADS)

    Singh, Paviter; Kaur, Manpreet; Singh, Bikramjeet; Kaur, Gurpreet; Singh, Kulwinder; Kumar, Manjeet; Bala, Rajni; Thakur, Anup; Kumar, Akshay

    2016-05-01

    Boron- carbon core shell structures have been synthesized by solvo-thermal synthesis route. The synthesized material is highly pure. X-ray diffraction analysis confirms the reduction of reactants in to boron and carbon. Scanning Electron Microscopy (SEM) analysis showed that the shell is uniform with average thickness of 340 nm. Photo luminescence studies showed that the material is blue light emitting with CIE color coordinates: x=0.16085, y=0.07554.

  18. Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers.

    PubMed

    Chen, Lu-Jian; Gong, Ling-Li; Lin, Ya-Li; Jin, Xin-Yi; Li, Han-Ying; Li, Sen-Sen; Che, Kai-Jun; Cai, Zhi-Ping; Yang, Chaoyong James

    2016-04-01

    We report a magnetically transportable microlaser with cholesteric liquid crystal (CLC) core-shell structure, operating in band-edge mode. The dye doped CLC shells as a water-in-oil-in-water (W/O/W) double emulsion were fabricated by microfluidics. Water-dispersible Fe3O4 magnetic nanoparticles were incorporated in the inner aqueous phase by taking advantage of the immiscibility with the middle CLC oil phase. The influence of temperature and shell thickness on laser properties was discussed in detail. The non-invasive manipulation of microlasers was realized under a magnetic field. The dependence of velocity on the viscosity of the carrying fluid and size of the core-shell structure was theoretically analyzed and experimentally investigated using a prototype electromagnetic platform. We also discussed the design principles for this type of DDCLC core-shell structure. Such magnetically transportable microlasers offer promise in in-channel illumination applications requiring active control inside micro-channels. PMID:26923221

  19. Coercivity enhancement in Ce-Fe-B based magnets by core-shell grain structuring

    NASA Astrophysics Data System (ADS)

    Ito, M.; Yano, M.; Sakuma, N.; Kishimoto, H.; Manabe, A.; Shoji, T.; Kato, A.; Dempsey, N. M.; Givord, D.; Zimanyi, G. T.

    2016-05-01

    Ce-based R2Fe14B (R= rare-earth) nano-structured permanent magnets consisting of (Ce,Nd)2Fe14B core-shell grains separated by a non-magnetic grain boundary phase, in which the relative amount of Nd to Ce is higher in the shell of the magnetic grain than in its core, were fabricated by Nd-Cu infiltration into (Ce,Nd)2Fe14B hot-deformed magnets. The coercivity values of infiltrated core-shell structured magnets are superior to those of as-hot-deformed magnets with the same overall Nd content. This is attributed to the higher value of magnetocrystalline anisotropy of the shell phase in the core-shell structured infiltrated magnets compared to the homogeneous R2Fe14B grains of the as-hot-deformed magnets, and to magnetic isolation of R2Fe14B grains by the infiltrated grain boundary phase. First order reversal curve (FORC) diagrams suggest that the higher anisotropy shell suppresses initial magnetization reversal at the edges and corners of the R2Fe14B grains.

  20. MAGNETIC CORE SHELL STRUCTURES: from 0D to 1D assembling.

    PubMed

    Ficai, Denisa; Ficai, Anton; Dinu, Elena; Oprea, Ovidiu; Sonmez, Maria; Keler, Memduh Kagan; Sahin, Yesim Muge; Ekren, Nazmi; Inan, Ahmet Talat; Daglilar, Sibel; Gunduz, Oguzhan

    2015-01-01

    Material research and development studies are focused on different techniques of bringing out nanomaterials with desired characteristics and properties. From the point of view of materials development, nowadays scientists are strongly focused on obtaining materials with predefined characteristics and properties. The morphology control seems to be a determinant factor and increasing attention is devoted to this aspect. At this moment it is possible to engineer the material's features by using different methods and materials combination for both medical and industrial applications. In the applications of chemistry and synthesis, biology, mechanics, optics solar cells and microelectronics tailoring the adjustable parameters of stoichiometry, chemical structure, shape and segregation are evaluated and opens new fields. Because of the magnetic features of nanoparticles and durable particle size, less than 100 nm, this study is aiming to describe their uses in practical applications. That's why the whole hydrodynamic magnetic core shell topic will be reviewed on this paper. Additionally, the properties acting in general sight in solid-state physics are utilized for material selection and for defining issue connecting the core, shell structure and their producing properties. Here, in the study of core/shell nanoparticle various physical and chemical synthesis routes and the effect of electrospun method are briefly discussed. Starting from a real void of the scientific literature, the existent data related to the 1D magnetic electrospun materials are reviewed. The perspectives in the medical, environmental or energetic sector is great and bring some real advantages related to the 0D core@shell structures because both mechanical and biological properties are dependent on the morphology of the materials. PMID:26377653

  1. Potential of electrospun core-shell structured gelatin-chitosan nanofibers for biomedical applications.

    PubMed

    Jalaja, K; Naskar, Deboki; Kundu, Subhas C; James, Nirmala R

    2016-01-20

    Coaxial electrospinning is an upcoming technology that has emerged from the conventional electrospinning process in order to realize the production of nanofibers of less spinnable materials with potential applications. The present work focuses on the production of chitosan nanofibers in a benign route, using natural polymer as core template, mild solvent system and naturally derived cross-linkers. Nanofibers with chitosan as shell are fabricated by coaxial electrospinning with highly spinnable gelatin as core using aqueous acetic acid as solvent. For maintaining the biocompatibility and structural integrity of the core-shell nanofibers, cross-linking is carried out using naturally derived cross-linking agents, dextran aldehyde and sucrose aldehyde. The biological evaluation of gelatin/chitosan mat is carried out using human osteoblast like cells. The results show that the cross-linked core-shell nanofibers are excellent matrices for cell adhesion and proliferation. PMID:26572452

  2. Transforming powder mechanical properties by core/shell structure: compressible sand.

    PubMed

    Shi, Limin; Sun, Changquan Calvin

    2010-11-01

    Some active pharmaceutical ingredients possess poor mechanical properties and are not suitable for tableting. Using fine sand (silicon dioxide), we show that a core/shell structure, where a core particle (sand) is coated with a thin layer of polyvinylpyrrolidone (PVP), can profoundly improve powder compaction properties. Sand coated with 5% PVP could be compressed into intact tablets. Under a given compaction pressure, tablet tensile strength increases dramatically with the amount of coating. This is in sharp contrast to poor compaction properties of physical mixtures, where intact tablets cannot be made when PVP content is 20% or less. The profoundly improved tabletability of core/shell particles is attributed to the formation of a continuous three-dimensional bonding network in the tablet. PMID:20845444

  3. Controllable synthesis of a novel hedgehog-like core/shell structure

    NASA Astrophysics Data System (ADS)

    Wang, Shumin; Tian, Hongwei; Pei, Yanhui; Meng, Qingnan; Chen, Jianli; Wang, Huan; Zeng, Yi; Zheng, Weitao; Liu, Yichun

    2012-02-01

    A novel hedgehog-like core/shell structure, consisting of a high density of vertically aligned graphene sheets and a thin graphene shell/a copper core (VGs-GS/CC), has been synthesized via a simple one-step synthesis route using radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD). Scanning and transmission electron microscopy investigations show that the morphology of this core/shell material could be controlled by deposition time. For a short deposition time, only multilayer graphene shell tightly surrounds the copper particle, while as the deposition time is relative long, graphene sheets extend from the surface of GS/CC. The GS can protect CC particles from oxidation. The growth mechanism for the obtained GS/CC and VGs-GS/CC has been revealed. Compared to VGs, VGs-GS/CC material exhibits a better electron field emission property. This investigation opens a possibility for designing a core/shell structure of different carbon-metal hybrid materials for a wide variety of practical applications.

  4. Exploring meso-/microporous composite molecular sieves with core-shell structures.

    PubMed

    Qian, Xufang F; Li, Bin; Hu, Yuanyuan Y; Niu, Guoxing X; Zhang, D Yahong H; Che, Renchao C; Tang, Yi; Su, Dangsheng S; Asiri, Abdullah M; Zhao, Dongyuan Y

    2012-01-16

    A series of core-shell-structured composite molecular sieves comprising zeolite single crystals (i.e., ZSM-5) as a core and ordered mesoporous silica as a shell were synthesized by means of a surfactant-directed sol-gel process in basic medium by using cetyltrimethylammonium bromide (CTAB) as a template and tetraethylorthosilicate (TEOS) as silica precursor. Through this coating method, uniform mesoporous silica shells closely grow around the anisotropic zeolite single crystals, the shell thickness of which can easily be tuned in the range of 15-100 nm by changing the ratio of TEOS/zeolite. The obtained composite molecular sieves have compact meso-/micropore junctions that form a hierarchical pore structure from ordered mesopore channels (2.4-3.0 nm in diameter) to zeolite micropores (≈0.51 nm). The short-time kinetic diffusion efficiency of benzene molecules within pristine ZSM-5 (≈7.88×10(-19)  m(2)  s(-1)) is almost retainable after covering with 75 nm-thick mesoporous silica shells (≈7.25×10(-19)  m(2)  s(-1)), which reflects the greatly opened junctions between closely connected mesopores (shell) and micropores (core). The core-shell composite shows greatly enhanced adsorption capacity (≈1.35 mmol  g(-1)) for large molecules such as 1,3,5-triisopropylbenzene relative to that of pristine ZSM-5 (≈0.4 mmol  g(-1)) owing to the mesoporous silica shells. When Al species are introduced during the coating process, the core-shell composite molecular sieves demonstrate a graded acidity distribution from weak acidity of mesopores (predominant Lewis acid sites) to accessible strong acidity of zeolite cores (Lewis and Brønsted acid sites). The probe catalytic cracking reaction of n-dodecane shows the superiority of the unique core-shell structure over pristine ZSM-5. Insight into the core-shell composite structure with hierarchical pore and graded acidity distribution show great potential for petroleum catalytic processes. PMID

  5. TEM Study of the Growth Mechanism, Phase Transformation, and Core/shell Structure of Semiconductor Nanowires

    NASA Astrophysics Data System (ADS)

    Wong, Tai Lun

    In this thesis, the fabrication and characterization of one-dimensional nanostructures have been studied systematically to understand the growth mechanism and structure transformation of one-dimensional nanostructures. The growth behavior of the ultrathin ZnSe nanowires with diameter less than 60 nm was found to be different from classical vapor-liquid-solid (VLS) process. The growth rate increases when the diameter of nanowires decreases, in contrast to the classical VLS process in which the growth rate increases with the diameter. The nucleation, initial growth, growth rates, defects, interface structures and growth direction of the nanowires were investigated by high resolution transmission electron microscopy (HRTEM). We found the structure and growth direction of ultra-thin nanowires are highly sensitive to growth temperatures and diameters of nanowires. At a low growth temperature (380°C), the growth direction for most nanowires is along <111>. Planar defects were found throughout the nanowires. At a high growth temperature (530°C), uniform nanowires with diameters around 10nm were grown along <110> and <112> directions, and the nanowires with diameters larger than 20nm were mainly grown along <111> direction. The possible growth mechanism of ultrathin nanowires was proposed by combining the solid catalytic growth with the interface diffusion theory, in order to explain how the growth temperature and the size of the catalysts influent the morphology, growth direction and growth rate of ultrathin nanowires. Structural and phase transformation of a nickel coated Si nanowire to NiSi2/SiC core-shell nanowire heterostructures has been investigated by the in-situ Transmission Electron Microscope (TEM). The phase transformation is a single-site nucleation process and therefore a single crystalline NiSi2 core resulted in the core-shell nanowire heterostructures. The transformation of the Si nanowire to NiSi2/SiC core-shell nanowire heterostructures was extremely

  6. Boronic Acid functionalized core-shell polymer nanoparticles prepared by distillation precipitation polymerization for glycopeptide enrichment.

    PubMed

    Qu, Yanyan; Liu, Jianxi; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2012-07-16

    The boronic acid-functionalized core-shell polymer nanoparticles, poly(N,N-methylenebisacrylamide-co-methacrylic acid)@4-vinylphenylboronic acid (poly(MBA-co-MAA)@VPBA), were successfully synthesized for enriching glycosylated peptides. Such nanoparticles were composed of a hydrophilic polymer core prepared by distillation precipitation polymerization (DPP) and a boronic acid-functionalized shell designed for capturing glycopeptides. Owing to the relatively large amount of residual vinyl groups introduced by DPP on the core surface, the VPBA monomer was coated with high efficiency, working as the shell. Moreover, the overall polymerization route, especially the use of DPP, made the synthesis of nanoparticles facile and time-saving. With the poly(MBA-co-MAA)@VPBA nanoparticles, 18 glycopeptides from horseradish peroxidase (HRP) digest were captured and identified by MALDI-TOF mass spectrometric analysis, relative to eight glycopeptides enriched by using commercially available meta-aminophenylboronic acid agarose under the same conditions. When the concentration of the HRP digest was decreased to as low as 5 nmol, glycopeptides could still be selectively isolated by the prepared nanoparticles. Our results demonstrated that the synthetic poly(MBA-co-MAA)@VPBA nanoparticles might be a promising selective enrichment material for glycoproteome analysis. PMID:22707097

  7. Comparison of electrorheological performance between urea-coated and graphene oxide-wrapped core-shell structured amorphous TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Dong, Xufeng; Huo, Shuang; Qi, Min

    2016-01-01

    Polar molecules and graphene oxide (GO) have been used as the shell materials to prepare core-shell structured particles with enhanced electrorheological (ER) properties. Nevertheless, few studies compared the ER performance and stability of the suspensions with the two kinds of shell. In this study, urea and GO are used as the shell materials to prepare TiO2/urea and TiO2/GO core-shell particles-based ER fluids, respectively. Particle characterization results indicate the two kinds of core-shell structured particles present little change in size, morphology and crystal structure compared with the bare amorphous TiO2. Some polar groups are distributed on the surface of the two kinds of core-shell structured particles, which is responsible for their improved ER performance with respect to the bare TiO2 particles. The TiO2/GO particles-based ER fluid presents higher yield stress, lower leakage current density, better sedimentation stability but lower ER efficiency than the TiO2/urea particles-based sample. The larger surface area, stronger connection with the bare TiO2 particles, and larger number of polar groups of the GO-coating is the possible reason for the different properties of TiO2/GO particles-based ER fluid compared with the TiO2/urea particles-based sample.

  8. Immobilized lipase on core-shell structured Fe3O4-MCM-41 nanocomposites as a magnetically recyclable biocatalyst for interesterification of soybean oil and lard.

    PubMed

    Xie, Wenlei; Zang, Xuezhen

    2016-03-01

    A core-shell structured Fe3O4-MCM-41 nanocomposite was prepared by means of a surfactant-directed sol-gel process. Candida rugosa lipase was then bound to the magnetic core-shell material by using glutaraldehyde as a cross-linking reagent. The as-prepared Fe3O4-MCM-41 support and the immobilized lipase were characterized in detail using enzyme activity assays, TEM, XRD, FTIR, VSM and nitrogen adsorption-desorption techniques. Results showed that the magnetite nanoparticles were coated with the MCM-41 silica with the formation of core-shell structured materials, and the lipase was successfully immobilized on the core-shell structured support. The catalytic performance of the bound lipase was tested in the interesterification of lard and soybean oil. It was shown that the immobilized lipase had a better catalytic activity towards the interesterification reaction. The slip melting point of the final product was lower than that of the original blend, and the interesterification led to an obvious variation in the microstructure of the product. PMID:26471683

  9. Immobilization of cholesterol oxidase on magnetic fluorescent core-shell-structured nanoparticles.

    PubMed

    Huang, Jun; Liu, Huichao; Zhang, Peipei; Zhang, Pengfei; Li, Mengshi; Ding, Liyun

    2015-12-01

    The magnetic fluorescent core-shell structured nanoparticles, Fe3O4@SiO2(F)@meso-SiO2 nanoparticles, were prepared. Cholesterol oxidase (COD) was immobilized on their surface to form Fe3O4@SiO2(F)@meso-SiO2@COD nanoparticles. Optimal immobilization was achieved with 2.5% (v/v) APTES, 2.0% (v/v) GA, 10mg COD (in 15 mg carrier) and solution pH of 7.0. Fe3O4@SiO2(F)@meso-SiO2@COD nanoparticles showed maximal catalytic activity at pH7.0 and 50°C. The thermal, storage and operational stabilities of COD were improved greatly after its immobilization. After the incubation at 50°C for 5h, the nanoparticles and free COD retained 80% and 46% of its initial activity, respectively. After kept at 4°C for 30 days, the nanoparticles and free COD maintained 86% and 65% of initial activity, respectively. The nanoparticles retained 71% of its initial activity after 7 consecutive operations. Since Fe3O4@SiO2(F)@meso-SiO2@COD nanoparticles contained tris(2,2-bipyridyl)dichloro-ruthenium(II) hexahydrate (Ru(bpy)3Cl2) and were optical sensitive to oxygen in solution, it might be used as the sensing material and has the application potential in multi parameter fiber optic biosensor based on enzyme catalysis and oxygen consumption. PMID:26354237

  10. Ising nanowires with simple core-shell structure; Their characteristic phenomena

    NASA Astrophysics Data System (ADS)

    Kaneyoshi, T.

    2016-09-01

    The phase diagrams and magnetizations of Ising nanowires with simple core-shell structure are investigated by the use of the effective field theory with correlations. A lot of characteristic behaviors observed in ferromagnetic and ferrimagnetic materials as well as novel phenomena have been obtained, although one section of the system is consisted of one spin-1/2 surface shell atom and one spin-1/2 core atom and they are coupled with a positive or a negative shell-core exchange interaction.

  11. Optimal design of hollow core-shell structural active materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Jiang, Wenjuan; Li, Tingting; Ma, Zengsheng; Lin, Jianguo; Lu, Chunsheng

    To mitigate mechanical and chemical degradation of active materials, hollow core-shell structures have been applied in lithium ion batteries. Without embedding of lithium ions, the rigid coating shell can constrain the inward volume deformation. In this paper, optimal conditions for the full use of inner hollow space are identified in terms of the critical ratio of shell thickness and inner size and the state of charge. It is shown that the critical ratios are 0.10 and 0.15 for Si particle and tube (0.12 and 0.18 for Sn particle and tube), and above which there is lack of space for further lithiation.

  12. Structural optical correlated properties of SnO2/Al2O3 core@ shell heterostructure

    NASA Astrophysics Data System (ADS)

    Heiba, Zein K.; Imam, N. G.; Bakr Mohamed, Mohamed

    2016-07-01

    Nano size polycrystalline samples of the core@shell heterostructure of SnO2 @ xAl2O3 (x = 0, 25, 50, 75 wt.%) were synthesized by sol-gel technique. The resulting samples were characterized with fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) and X-ray powder diffraction (XRD). The XRD patterns manifest diffraction peaks of SnO2 as main phase with weak peaks corresponding to Al2O3 phase. The formation of core@ shell structure is confirmed by TEM images and Rietveld quantitative phase analysis which revealed that small part of Al2O3 is incorporated into the SnO2 lattice while the main part (shell) remains as a separate phase segregated on the grain boundary surface of SnO2 (core). It is found that the grain size of the mixed oxides SnO2 @ xAl2O3 is below 10 nm while for pure SnO2 it is over 41 nm, indicating that alumina can effectively prevent SnO2 from further growing up in the process of calcination. This is confirmed by the large increase in the specific surface area for mixed oxide samples. The PL emission showed great dependence on the structure properties analyzed by XRD and FTIR. The PL results recommend Al2O3@SnO2 core@shell heterostructure to be a promising short-wavelength luminescent optoelectronic devices for blue, UV, and laser light-emitting diodes.

  13. Nafion covered core-shell structured Fe3O4@graphene nanospheres modified electrode for highly selective detection of dopamine.

    PubMed

    Zhang, Wuxiang; Zheng, Jianzhong; Shi, Jiangu; Lin, Zhongqiu; Huang, Qitong; Zhang, Hanqiang; Wei, Chan; Chen, Jianhua; Hu, Shirong; Hao, Aiyou

    2015-01-01

    Nafion covered core-shell structured Fe3O4@graphene nanospheres (GNs) modified glassy carbon electrode (GCE) was successfully prepared and used for selective detection dopamine. Firstly, the characterizations of hydro-thermal synthesized Fe3O4@GNs were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Then Fe3O4@GNs/Nafion modified electrode exhibited excellent electrocatalytic activity toward the oxidations of dopamine (DA). The interference test showed that the coexisted ascorbic acid (AA) and uric acid (UA) had no electrochemical interference toward DA. Under the optimum conditions, the broad linear relationship was obtained in the experimental concentration from 0.020 μM to 130.0 μM with the detection limit (S/N=3) of 0.007 μM. Furthermore, the core-shell structured Fe3O4@GNs/Nafion/GCE was applied to the determination of DA in real samples and satisfactory results were got, which could provide a promising platform to develop excellent biosensor for detecting DA. PMID:25467470

  14. Core-shell nanostructured catalysts.

    PubMed

    Zhang, Qiao; Lee, Ilkeun; Joo, Ji Bong; Zaera, Francisco; Yin, Yadong

    2013-08-20

    Novel nanotechnologies have allowed great improvements in the syn-thesis of catalysts with well-controlled size, shape, and surface properties. Transition metal nanostructures with specific sizes and shapes, for instance, have shown great promise as catalysts with high selectivities and relative ease of recycling. Researchers have already demonstrated new selective catalysis with solution-dispersed or supported-metal nanocatalysts, in some cases applied to new types of reactions. Several challenges remain, however, particularly in improving the structural stability of the catalytic active phase. Core-shell nanostructures are nanoparticles encapsulated and protected by an outer shell that isolates the nanoparticles and prevents their migration and coalescence during the catalytic reactions. The synthesis and characterization of effective core-shell catalysts has been at the center of our research efforts and is the focus of this Account. Efficient core-shell catalysts require porous shells that allow free access of chemical species from the outside to the surface of nanocatalysts. For this purpose, we have developed a surface-protected etching process to prepare mesoporous silica and titania shells with controllable porosity. In certain cases, we can tune catalytic reaction rates by adjusting the porosity of the outer shell. We also designed and successfully applied a silica-protected calcination method to prepare crystalline shells with high surface area, using anatase titania as a model system. We achieved a high degree of control over the crystallinity and porosity of the anatase shells, allowing for the systematic optimization of their photocatalytic activity. Core-shell nanostructures also provide a great opportunity for controlling the interaction among the different components in ways that might boost structural stability or catalytic activity. For example, we fabricated a SiO₂/Au/N-doped TiO₂ core-shell photocatalyst with a sandwich structure that showed

  15. Au@SiO2 core-shell structure involved with methotrexate: Fabrication, biodegradation process and bioassay explore.

    PubMed

    Huo, Xiaolei; Dai, Chaofan; Tian, Deying; Li, Shuping; Li, Xiaodong

    2015-12-30

    A new strategy is proposed to synthesize a kind of Au@SiO2 core-shell structure with methotrexate (MTX) loaded within it. Firstly, MTX molecules are attracted to the surface and vicinity of Au nanoparticles (NPs). Then the enriched MTX molecules on the surface of Au NPs have a good chance to be wrapped into the core-shell structure when SiO2 is uniformly deposited on the Au core. Secondly, the effect of Au amount and MTX content on the drug-loading capacity is emphatically studied and the result shows that core-shell structure plays a vital role in drug loading. In addition, the biodegradation process is also examined in phosphate buffer solution (PBS) at 37°C. The results show that the biodegradation of Au-MTX@SiO2 core-shell structure can be divided into two stages: the release of drug together with the fragmentation of core-shell structure and the subsequent dissolution of SiO2 layers. Lastly, in vitro bioassay tests give the evidence that obvious tumor inhibition can be achieved in presence of Au-MTX@SiO2 NPs even at low concentration and the efficacy can be greatly enhanced by the photothermal therapy on Au cores. PMID:26516099

  16. Monodisperse core-shell structured up-conversion Yb(OH)CO₃@YbPO₄:Er³+ hollow spheres as drug carriers.

    PubMed

    Xu, Zhenhe; Ma, Ping'an; Li, Chunxia; Hou, Zhiyao; Zhai, Xuefeng; Huang, Shanshan; Lin, Jun

    2011-06-01

    In this work, we report a facile solution-phase synthesis of monodisperse core-shell structured Yb(OH)CO₃@YbPO₄ hollow spheres (size around 380 nm) by utilizing the colloidal sphere of Yb(OH)CO₃ as the sacrificial template via the Kirkendall effect. The Er³+ doped Yb(OH)CO₃@YbPO₄ core-shell hollow spheres can be prepared similarly, which exhibit strong green emission under 980 nm NIR laser excitation even after loading with drug molecules. Most importantly, the sample can be used as an effective drug delivery carrier. The biocompatibility test on L929 fibroblast cells using MTT assay reveals low cytotoxicity of the system. A typical anticancer drug, doxorubicin hydrochloride (DOX), is used for drug loading, and the release properties, cytotoxicity, uptake behavior and therapeutic effects were examined. It is found that DOX is shuttled into cell by core-shell hollow spheres carrier and released inside cells after endocytosis, and the DOX-loaded spheres exhibited greater cytotoxicity than free DOX. These results indicate that the core-shell Er³+ doped Yb(OH)CO₃@YbPO₄ hollow spheres have potential for drug loading and delivery into cancer cells to induce cell death. PMID:21435712

  17. Titania nanocoating on MnCO3 microspheres via liquid-phase deposition for fabrication of template-assisted core-shell- and hollow-structured composites.

    PubMed

    Lee, Hack-Keun; Sakemi, Daisuke; Selyanchyn, Roman; Lee, Cheal-Gyu; Lee, Seung-Woo

    2014-01-01

    A novel class of core-shell- and hollow-structured MnCO3/TiO2 composites was synthesized by titania nanocoating on MnCO3 microspheres via two-step liquid-phase deposition at room temperature. Morphological change from core-shell to hollow microparticles was possible in the prepared samples by controlling prereaction time of MnCO3 and [NH4]2TiF6. Upon the prereaction process, the core of the core-shell MnCO3/TiO2 became highly porous, and a honeycomb-like surface that resembled the orientation of self-assembled MnCO3 nanocrystals was developed. The MnCO3 core was completely removed after 6 h prereaction. Calcination at 600 °C resulted in the transformation of both core-shell- and hollow-structured composites to Mn2O3/TiO2 anatase microspheres that retained their original morphologies. X-ray diffraction, field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and electron probe microanalysis were employed for microsphere characterization. As the first trial for application of the synthesized materials, solid-extraction of organics from aqueous media was examined using methylene blue (MB). Both types of Mn2O3/TiO2 composites showed very fast adsorption of MB with high extraction values of 5.2 and 6.4 μmol g(-1) for the core-shell and hollow structures, respectively. Current work provides a new approach for facile fabrication of titania-metal oxide nanocomposites with unique morphological features and promising application possibilities. PMID:24320871

  18. Highly effective heterogeneous chemosensors of luminescent silica@coordination polymer core-shell micro-structures for metal ion sensing

    NASA Astrophysics Data System (ADS)

    Cho, Won; Lee, Hee Jung; Choi, Sora; Kim, Yoona; Oh, Moonhyun

    2014-10-01

    Heterogeneous solid sensors are regarded as promising next-generation sensor due to their excellent chemical stability, low contamination, and excellent recyclability, despite their low sensitivity and weak signal. The dispersity and signals specifically from the exterior of solid sensors are critical aspects which define the sensing sensitivity and selectivity. A novel strategy for the preparation of ideal heterogeneous sensors based upon luminescent lanthanide coordination polymers (LnCP) has been demonstrated. Ideal heterogeneous sensors are systematically achieved by producing the sensors in small, uniform, and thin core-shell particles (silica@LnCP, Ln = Eu, Tb). Eventually, we found that the extremely small amount of well-structured silica@LnCP microsphere, less than ca. 1/400 compared to the amount of several known coordination polymer-based sensors, was sufficient to achieve a reliable Cu2+ sensing with even much greater sensitivity (ca. 550% improvement).

  19. Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: Core-shell structure formation and property characterization.

    PubMed

    Yue, Yiying; Han, Jingquan; Han, Guangping; French, Alfred D; Qi, Yadong; Wu, Qinglin

    2016-08-20

    Core-shell structured hydrogels consisting of a flexible interpenetrating polymer network (IPN) core and a rigid semi-IPN shell were prepared through chemical crosslinking of polyvinyl alcohol (PVA) and sodium alginate (SA) with Ca(2+) and glutaraldehyde. Short cellulose nanofibers (CNFs) extracted from energycane bagasse were incorporated in the hydrogel. The shell was micro-porous and the core was macro-porous. The hydrogels could be used in multiple adsorption-desorption cycles for dyes, and the maximum methyl blue adsorption capacity had a 10% increase after incorporating CNFs. The homogeneous distribution of CNFs in PVA-SA matrix generated additional hydrogen bonds among the polymer molecular chains, resulting in enhanced density, viscoelasticity, and mechanical strength for the hydrogel. Specifically, the compressive strength of the hydrogel reached 79.5kPa, 3.2 times higher than that of the neat hydrogel. PMID:27178920

  20. Preparation of core/shell and hollow nanostructures of cerium oxide by electrodeposition on a polystyrene sphere template.

    PubMed

    Yamaguchi, Ippei; Watanabe, Mitsuru; Shinagawa, Tsutomu; Chigane, Masaya; Inaba, Minoru; Tasaka, Akimasa; Izaki, Masanobu

    2009-05-01

    Core/shell nanostructures of polystyrene (PS)/CeO2 have been prepared on conductive glass substrates by using a novel electrochemical route consisting of (i) the electrophoretic deposition of a PS sphere monolayer on the substrate and (ii) the following potentiostatic electrodeposition of CeO2 on the PS sphere template in Ce(NO3)3 aqueous solutions. The structural morphologies of the deposit changed drastically depending on the Ce(NO3)3 concentration; i.e., spherical and needlelike shells were deposited. The deposit was formed only on the PS sphere surface because of an interaction between cationic cerium species and a sulfate group that was immobilized on the PS sphere surface. The spherical shell layer was assigned as CeO2, and the needlelike shells were composed of Ce(OH)3 needles formed on the CeO2 layer surface, indicating that the deposit species changes from CeO2 to Ce(OH)3 during electrodeposition only in a 1 mM Ce3+ solution. Deposition of Ce(OH)3 would begin when electrogenerated hydrogen peroxide was consumed by decomposition under reductive conditions and could no longer oxidize Ce3+ ions. The corresponding CeO2 hollow shells were obtained by thermal elimination of the PS sphere core and transformation of Ce(OH)3 into CeO2 while keeping their original shapes. PMID:20355893

  1. Facile preparation of novel core-shell enzyme-Au-polydopamine-Fe₃O₄ magnetic bionanoparticles for glucosesensor.

    PubMed

    Peng, Hua-Ping; Liang, Ru-Ping; Zhang, Li; Qiu, Jian-Ding

    2013-04-15

    In this study, a novel biomolecule immobilization approach has been proposed to the synthesis of multi-functional core-shell glucose oxidase-Au-polydopamine-Fe₃O₄ magnetic bionanoparticles (GOx-Au-PDA-Fe₃O₄ MBNPs) using the one-pot chemical polymerization method. Then, a high performance biosensor has been constructed by effectively attaching the proposed GOx-Au-PDA-Fe₃O₄ MBNPs to the surface of the magnetic glassy carbon electrode. Scanning electron microscope, energy dispersive x-ray spectrometer, UV-vis spectroscopy, and electrochemical methods were used to characterize the GOx-Au-PDA-Fe₃O₄ MBNPs. The resultant GOx-Au-PDA-Fe₃O₄ MBNPs not only have the magnetism of Fe₃O₄ nanoparticles which makes them easily manipulated by an external magnetic field, but also have the excellent biocompatibility of PDA to maintain the native structure of the GOx, and good conductivity of Au nanoparticles which can facilitate the direct electrochemistry of GOx in the biofilm. Hence, the present GOx-Au-PDA-Fe₃O₄ biofilm displays good linear amperometric response to glucose concentration ranging from 0.02 to 1.875 mM. This efficient biomolecule immobilization platform is recommended for the preparation of many other MBNPs with interesting properties and application potentials in many fields, such as biosensing, biocatalysis, biofuel cells, and bioaffinity separation. PMID:23208101

  2. Emergence of cluster structures and collectivity within a no-core shell-model framework

    NASA Astrophysics Data System (ADS)

    Launey, K. D.; Dreyfuss, A. C.; Draayer, J. P.; Dytrych, T.; Baker, R.

    2014-12-01

    An innovative symmetry-guided concept, which capitalizes on partial as well as exact symmetries that underpin the structure of nuclei, is discussed. Within this framework, ab initio applications of the theory to light nuclei reveal the origin of collective modes and the emergence a simple orderly pattern from first principles. This provides a strategy for determining the nature of bound states of nuclei in terms of a relatively small fraction of the complete shell-model space, which, in turn, can be used to explore ultra-large model spaces for a description of alpha-cluster and highly deformed structures together with the associated rotations. We find that by using only a fraction of the model space extended far beyond current no-core shell-model limits and a long-range interaction that respects the symmetries in play, the outcome reproduces characteristic features of the low-lying 0+ states in 12 C (including the elusive Hoyle state and its 2+ excitation) and agrees with ab initio results in smaller spaces. This is achieved by selecting those particle configurations and components of the interaction found to be foremost responsible for the primary physics governing clustering phenomena and large spatial deformation in the ground-state and Hoyle-state rotational bands of 12 C. For these states, we offer a novel perspective emerging out of no-core shell-model considerations, including a discussion of associated nuclear deformation, matter radii, and density distribution. The framework we find is also extensible to negative-parity states (e.g., the 3-1 state in 12C) and beyond, namely, to the low-lying 0+ states of 8Be as well as the ground-state rotational band of Ne, Mg, and Si isotopes. The findings inform key features of the nuclear interaction and point to a new insight into the formation of highly-organized simple patterns in nuclear dynamics.

  3. Exchange coupled magnetic nanocomposites of Sm(Co 1- xFe x) 5 / Fe 3O 4 with core/shell structure

    NASA Astrophysics Data System (ADS)

    Hong, Jung Hoon; Kim, Wan Seop; Lee, Jong In; Hur, Nam Hwi

    2007-03-01

    Magnetic nanocomposites of Sm(Co 1- xFe x) 5/Fe 3O 4 ( x≈0.1) with the core/shell type structure were successfully fabricated using a two-step polyol process, where as-prepared SmCo 5(1- x) nanoparticles were used as seeds for the ferrite coating. The core/shell composites are quite stable in air and show a typical hysteric behavior of single component, yielding an enhanced coercivity of 2.2 kOe with a saturated magnetization of 130 emu/g at 5 T. The magnetization data clearly reveal the presence of effective exchange coupling between the hard-magnetic Sm(Co 1- xFe x) 5 core and soft-magnetic Fe 3O 4 shell, suggestive of a single-phase structure rather than a distinctive two-phase one.

  4. A vascular tissue engineering scaffold with core-shell structured nano-fibers formed by coaxial electrospinning and its biocompatibility evaluation.

    PubMed

    Duan, Nannan; Geng, Xue; Ye, Lin; Zhang, Aiying; Feng, Zengguo; Guo, Lianrui; Gu, Yongquan

    2016-01-01

    In this article, a tubular vascular tissue engineering scaffold with core-shell structured fibers was produced by coaxial electrospinning at an appropriate flow rate ratio between the inner and outer solution. PCL was selected as the core to provide the mechanical property and integrity to the scaffold while collagen was used as the shell to improve the attachment and proliferation of vascular cells due to its excellent biocompatibility. The fine core-shell structured fibers were demonstrated by scanning electron microscope and transmission electron microscope observations. Subsequently, the collagen shell was crosslinked by genipin and further bound with heparin. The crosslinking process was confirmed by the increasing of tensile strength, swelling ratio and thermogravimetric analysis measurements while the surface heparin content was characterized by means of a UV-spectrophotometer and activated partial thromboplastin time tests. Furthermore, the mechanical properties such as stitch strength and bursting pressure of the as-prepared scaffold were measured. Moreover, the biocompatibility of the scaffold was evaluated by cytotoxicity investigation with L929 cells via MTT assay. Endothelial cell adhesion assessments were conducted to reveal the possibility of the formation of an endothelial cell layer on the scaffold surface, while the ability of smooth muscle cell penetration into the scaffold wall was also assessed by confocal laser scanning microscopy. The as-prepared core-shell structured scaffold showed promising potential for use in vascular tissue engineering. PMID:27206161

  5. Preparation and optical properties of silica@Ag Cu alloy core-shell composite colloids

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhui; Liu, Huaiyong; Wang, Zhenlin; Ming, Naiben

    2007-04-01

    The silica@Ag-Cu alloy core-shell composite colloids have been successfully synthesized by an electroless plating approach to explore the possibility of modifying the plasmon resonance at the nanoshell surface by varying the metal nanoshell composition for the first time. The surface plasmon resonance of the composite colloids increases in intensity and shifts towards longer, then shorter wavelengths as the Cu/Ag ratio in the alloy shell is increased. The variations in intensity of the surface plasmon resonance with the Cu/Ag ratio obviously affect the Raman bands of the silica colloid core. The report here may supply a new technique to effectively modify the surface plasmon resonance.

  6. Exploring the structural and magnetic properties of TiO{sub 2}/SnO{sub 2} core/shell nanocomposite: An experimental and density functional study

    SciTech Connect

    Chetri, Pawan; Basyach, Priyanka; Choudhury, Amarjyoti

    2014-12-15

    TiO{sub 2}/SnO{sub 2} core/shell nanocomposite is prepared via a simple sol–gel method and the properties are compared with the individual TiO{sub 2} (core) and SnO{sub 2} (shell). The corresponding characterizations are carried out in terms of structural and magnetic properties of TiO{sub 2}/SnO{sub 2}, TiO{sub 2} and SnO{sub 2} nanosystems. Structural properties are studied via XRD, TEM, Raman spectroscopy, FTIR and XPS. Magnetic characterization is performed by measuring Moment vs. Applied Field for all the samples and Moment vs. Temperature for TiO{sub 2}/SnO{sub 2} core/shell nanocomposite. We also went for a better insight with the help of theoretical measures. First principle calculations have been executed using “Density Functional Theory” (DFT)-based MedeA VASP package to compare the results of TiO{sub 2}/SnO{sub 2} with TiO{sub 2} (1 1 0) and SnO{sub 2} (1 1 0) surface calculations and its effect on the magnetic nature of the specific nanoparticles. XRD, RAMAN and FTIR gave indirect evidence of formation of core shell nanostructure while TEM micrographs provide the direct evidence of formation of core shell nanostructure. The magnetic study shows a higher saturation magnetization for the core/shell nanostructure compared to pristine TiO{sub 2} and SnO{sub 2}. In this report, we have attempted to relate this experimental observation with the results of the first principle calculations. - Graphical abstract: Above pictorial presentation (from left) represents the model for TS, TiO{sub 2} and SnO{sub 2} used for DFT calculation and the obtained magnetic results for all the prepared systems. - Highlights: • Synthesis of TiO{sub 2}/SnO{sub 2} core/shell nanocomposites by a simple sol–gel technique. • The nanocomposites show better magnetic property than pristine nanoparticles. • DFT based calculations also support the experimental evidences.

  7. Synthesis of monodispersed CdS nanoballs through {gamma}-irradiation route and building core-shell structure CdS SiO{sub 2}

    SciTech Connect

    Wang Zhaoxu; Chen Jiafu Xue Xuan; Hu Yong

    2007-12-04

    Monodispersed CdS nanoballs were synthesized through {gamma}-irradiating CdCl{sub 2}, Na{sub 2}S{sub 2}O{sub 3} and polyvinylpyrrolidone aqueous solution at room temperature. With these well monodispersed CdS nanoballs, CdS SiO{sub 2} core-shell structures were prepared under hydrolysis of tetraethylorthosilicate without adding a coupling agent. Field emission scanning electron micrograph, transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, ultraviolet absorption and photoluminescence spectroscopy were used to characterize the products. It is hoped that the core-shell CdS SiO{sub 2} nanoballs would be used as good luminescence detecting material for biological systems, so this may stimulate technological interest and prospect many other applications in materials related fields.

  8. Preparation and characterization of polystyrene/Ag core-shell microspheres--a bio-inspired poly(dopamine) approach.

    PubMed

    Wang, Wencai; Jiang, Yi; Wen, Shipeng; Liu, Li; Zhang, Liqun

    2012-02-15

    A facile and versatile method using a biopolymer as a chelating agent for silver ions and as a reducing agent for the formation of catalytic sites is proposed to prepare polystyrene (PS)/Ag core-shell microspheres. More specifically, the core-shell microspheres were fabricated by electroless plating after the formation of poly(dopamine) (PDA) on the surface of PS microspheres through insitu spontaneous oxidative polymerization of dopamine. The PS-PDA microspheres were characterized by SEM, XPS, and TGA. The results showed that a uniform PDA layer was formed on the PS microsphere surface and the thickness of the PDA layer could be well controlled by varying the concentration of dopamine solution. The PDA layer was used as a chelating agent for silver ions, as a reducing agent for the formation of catalytic sites by reducing the silver ions into silver nanoparticles, and as an adhesion layer between the PS microspheres and silver layer. SEM and XRD results indicate that the diameter of the silver nanoparticles decreased with the increase in the thickness of the PDA layer. The silver nanoparticles could form a continuous and compact silver layer on the surface of the PS microspheres. Furthermore, the PS-PDA/Ag core-shell microspheres showed a good conductivity of 10S/cm and a low effective density of 1.8 g/cm(3), much lower than the corresponding values for block silver. Finally, hollow silver microspheres could be prepared by removing the PS core through calcination. SEM images showed that the hollow Ag microspheres remained unbroken and retained the spherical shape. PMID:22104278

  9. Molecular dynamics study of crater formation by core-shell structured cluster impact

    NASA Astrophysics Data System (ADS)

    Aoki, Takaaki; Seki, Toshio; Matsuo, Jiro

    2012-07-01

    Crater formation processes by the impacts of large clusters with binary atomic species were studied using molecular dynamics (MD) simulations. Argon and xenon atoms are artificially organized in core-shell cluster structures with various component ratios and irradiated on a Si(1 0 0) target surface. When the cluster has Xe1000 core covered with 1000 Ar atoms, and impacts at a total of 20 keV, the core Xe cluster penetrates into the deep area, and a crater with a conical shape is left on the target. On the other hand, in the case of a cluster with the opposite structure, Ar1000 core covered with 1000 Xe atoms, the cluster stops at a shallow area of the target. The incident cluster atoms are mixed and tend to spread in a lateral direction, which results in a square shaped crater with a shallower hole and wider opening. The MD simulations suggest that large cluster impacts cause different irradiation effects by changing the structure, even if the component ratio is the same.

  10. Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties.

    PubMed

    Zhang, Fan; Che, Renchao; Li, Xiaomin; Yao, Chi; Yang, Jianping; Shen, Dengke; Hu, Pan; Li, Wei; Zhao, Dongyuan

    2012-06-13

    Lanthanide-doped upconversion nanoparticles have shown considerable promise in solid-state lasers, three-dimensional flat-panel displays, and solar cells and especially biological labeling and imaging. It has been demonstrated extensively that the epitaxial coating of upconversion (UC) core crystals with a lattice-matched shell can passivate the core and enhance the overall upconversion emission intensity of the materials. However, there are few papers that report a precise link between the shell thickness of core/shell nanoparticles and their optical properties. This is mainly because rare earth fluoride upconversion core/shell structures have only been inferred from indirect measurements to date. Herein, a reproducible method to grow a hexagonal NaGdF(4) shell on NaYF(4):Yb,Er nanocrystals with monolayer control thickness is demonstrated for the first time. On the basis of the cryo-transmission electron microscopy, rigorous electron energy loss spectroscopy, and high-angle annular dark-field investigations on the core/shell structure under a low operation temperature (96 K), direct imaging the NaYF(4):Yb,Er@NaGdF(4) nanocrystal core/shell structure at the subnanometer level was realized for the first time. Furthermore, a strong linear link between the NaGdF(4) shell thickness and the optical response of the hexagonal NaYF(4):Yb,Er@NaGdF(4) core/shell nanocrystals has been established. During the epitaxial growth of the NaGdF(4) shell layer by layer, surface defects of the nanocrystals can be gradually passivated by the homogeneous shell deposition process, which results in the obvious enhancement in overall UC emission intensity and lifetime and is more resistant to quenching by water molecules. PMID:22545710

  11. Structural and electronic properties of CdS/ZnS core/shell nanowires: A first-principles study

    NASA Astrophysics Data System (ADS)

    Kim, Hyo Seok; Kim, Yong-Hoon

    2015-03-01

    Carrying out density functional theory (DFT) calculation, we studied the relative effects of quantum confinement and strain on the electronic structures of II-IV semiconductor compounds with a large lattice-mismatch, CdS and ZnS, in the core/shell nanowire geometry. We considered different core radii and shell thickness of the CdS/ZnS core/shell nanowire, different surface facets, and various defects in the core/shell interface and surface regions. To properly describe the band level alignment at the core/shell boundary, we adopted the self-interaction correction (SIC)-DFT scheme. Implications of our findings in the context of device applications will be also discussed. This work was supported by the Basic Science Research Grant (No. 2012R1A1A2044793), Global Frontier Program (No. 2013-073298), and Nano-Material Technology Development Program (2012M3A7B4049888) of the National Research Foundation funded by the Ministry of Education, Science and Technology of Korea. Corresponding author

  12. Preparation of magnetic core-shell iron oxide@silica@nickel-ethylene glycol microspheres for highly efficient sorption of uranium(VI).

    PubMed

    Tan, Lichao; Zhang, Xiaofei; Liu, Qi; Wang, Jun; Sun, Yanbo; Jing, Xiaoyan; Liu, Jingyuan; Song, Dalei; Liu, Lianhe

    2015-04-21

    We report a facile approach for the formation of magnetic core-shell iron oxide@silica@nickel-ethylene glycol (Fe3O4@SiO2@Ni-L) microspheres. The structure and morphology of Fe3O4@SiO2@Ni-L are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen sorption isotherm. The composite possesses a high specific surface area of 382 m(2) g(-1). The obtained core/shell structure is composed of a superparamagnetic core with a strong response to external fields, which are recovered readily from aqueous solutions by magnetic separation. When used as the adsorbent for uranium(vi) in water, the as-prepared Fe3O4@SiO2@Ni-L multi-structural microspheres exhibit a high adsorption capacity, which is mainly attributed to the large specific surface area and typical mesoporous characteristics of Fe3O4@SiO2@Ni-L microspheres. This work provides a promising approach for the design and synthesis of multifunctional microspheres, which can be used for water treatment, as well as having other potential applications in a variety of biomedical fields including drug delivery and biosensors. PMID:25773512

  13. Real structure of lattice matched GaAs-Fe3Si core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Jenichen, B.; Hilse, M.; Herfort, J.; Trampert, A.

    2015-01-01

    GaAs nanowires and GaAs-Fe3Si core-shell nanowire structures were grown by molecular-beam epitaxy on oxidized Si(111) substrates and characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Ga droplets were formed on the oxide surface, and the semiconducting GaAs nanowires grew epitaxially via the vapor-liquid-solid mechanism as single-crystals from holes in the oxide film. We observed two stages of growth of the GaAs nanowires, first the regular growth and second the residual growth after the Ga supply was finished. The magnetic Fe3Si shells were deposited in an As-free chamber. They completely cover the GaAs cores although they consist of small grains. High-resolution TEM micrographs depict the differently oriented grains in the Fe3Si shells. Selected area diffraction of electrons and XRD gave further evidence that the shells are textured and not single crystals. Facetting of the shells was observed, which lead to thickness inhomogeneities of the shells.

  14. Preparation of core-shell CaCO3 capsules via Pickering emulsion templates.

    PubMed

    Wang, Xiaoli; Zhou, Weizheng; Cao, Jian; Liu, Weichang; Zhu, Shiping

    2012-04-15

    Micron size and food grade pristine CaCO(3) particles were used to stabilize an oil in water Pickering emulsion. The particles also acted as nucleation sites for the subsequent crystallization of CaCO(3) with the addition of CaCl(2) and CO(2) gas as precursors. After the controllable crystallization process, a dense CaCO(3) shell with a few microns in thickness was formed. The CaCO(3) shell was proven to be calcite without the presence of crystallization modifiers. The crystallization speed and the shell integrity were controlled by manipulating the addition of CaCl(2) amount during the different crystallization stages; therefore, the homogeneous nucleation in the bulk was almost inhibited, and the heterogeneous nucleation at the oil-water interface on pristine CaCO(3) particles was the main contribution to the growth of the shell. The encapsulated limonene flavor in CaCO(3) capsules showed a prolonged release in neutral water at 85°C, while a burst release at pH 2 water as expected. The method is a simple and scalable process for creating inorganic core-shell capsules and can be used for producing food grade capsules for controlling the flavor release or masking undesirable taste in mouth. PMID:22318120

  15. Magnetic properties of Co/Ag core/shell nanoparticles prepared by successive reactions in microemulsions

    NASA Astrophysics Data System (ADS)

    Rivas, J.; Garcia-Bastida, A. J.; Lopez-Quintela, M. A.; Ramos, C.

    2006-05-01

    Co nanoparticles with an Ag covering layer have been prepared by successive reactions in microemulsions. Their magnetic behavior was studied as a function of heat treatment. It was confirmed that, under the experimental conditions of this study, the size of the Co nuclei is limited by the reactant concentration, whereas the Ag covering is fixed by microemulsion droplet size. The as-prepared particles contain mainly Co 3O 4 nuclei, and present high effective moments that agree with the spin state of Co 3+. The observed magnetic behaviors were explained taking into account the intra- and inter-particle structural evolution of the particle assemblies annealed under different experimental conditions.

  16. Poly(Glycerol sebacate)/gelatin core/shell fibrous structure for regeneration of myocardial infarction.

    PubMed

    Ravichandran, Rajeswari; Venugopal, Jayarama Reddy; Sundarrajan, Subramanian; Mukherjee, Shayanti; Ramakrishna, Seeram

    2011-05-01

    Heart failure remains the leading cause of death in many industrialized nations owing to the inability of the myocardial tissue to regenerate. The main objective of this work was to develop a cardiac patch that is biocompatible and matches the mechanical properties of the heart muscle for myocardial infarction. The present study was to fabricate poly (glycerol sebacate)/gelatin (PGS/gelatin) core/shell fibers and gelatin fibers alone by electrospinning for cardiac tissue engineering. PGS/gelatin core/shell fibers, PGS used as a core polymer to impart the mechanical properties and gelatin as a shell material to achieve favorable cell adhesion and proliferation. These core/shell fibers were characterized by scanning electron microscopy, contact angle, Fourier transform infrared spectroscopy, and tensile testing. The cell-scaffold interactions were analyzed by cell proliferation, confocal analysis for the expression of marker proteins like actinin, troponin-T, and platelet endothelial cell adhesion molecule, and scanning electron microscopy to analyze cell morphology. Dual immunofluorescent staining was performed to further confirm the cardiogenic differentiation of mesenchymal stem cells by employing mesenchymal stem cell-specific marker protein CD 105 and cardiac-specific marker protein actinin. The results observed that PGS/gelatin core/shell fibers have good potential biocompatibility and mechanical properties for fabricating nanofibrous cardiac patch and would be a prognosticating device for the restoration of myocardium. PMID:21247338

  17. Facile preparation and enhanced microwave absorption properties of core-shell composite spheres composited of Ni cores and TiO2 shells.

    PubMed

    Zhao, Biao; Shao, Gang; Fan, Bingbing; Zhao, Wanyu; Xie, Yajun; Zhang, Rui

    2015-04-14

    Core-shell microspheres with Ni cores and two phases of TiO2 (anatase, rutile) shells have been successfully synthesized. The crystal structure, morphology and microwave absorption properties of the as-prepared composites were analyzed by X-ray diffraction, field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and vector network analysis. The core-shell rutile TiO2-coated Ni exhibits better antioxidation ability than that of pure Ni due to the presence of the rutile TiO2 shell, which is confirmed by the thermal gravimetric analysis (TGA). In comparison with bare Ni, these two composites show better microwave absorption properties. The minimum reflection loss (RL) is -38.0 dB at 11.1 GHz with a thickness of only 1.8 mm for the Ni@TiO2 (rutile) composite. The enhanced absorption capability arises from the efficient complementarities between the magnetic loss and dielectric loss, multiple interfacial polarization, high thermal conductivity of rutile TiO2 and microwave attenuation constant. These results show that the thin high-efficiency rutile TiO2-coated Ni composite is a great potential microwave absorbing material for practical applications. PMID:25745675

  18. Preparation of monodisperse polystyrene/silica core-shell nano-composite abrasive with controllable size and its chemical mechanical polishing performance on copper

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Haibo; Zhang, Zefang; Qin, Fei; Liu, Weili; Song, Zhitang

    2011-11-01

    Monodisperse silica-coated polystyrene (PS) nano-composite abrasives with controllable size were prepared via a two-step process. Monodisperse positively charged PS colloids were synthesized via polymerization of styrene by using a cationic initiator. In the subsequent coating process, silica formed shell on the surfaces of core PS particles via the ammonia-catalyzed hydrolysis and condensation of tetraethoxysilane. Neither centrifugation/water wash/redispersion cycle process nor surface modification or addition surfactant was needed in the whole process. The morphology of the abrasives was characterized by scanning electron microscope. Transmission electron microscope and energy dispersive X-ray analysis results indicated that silica layer was successfully coated onto the surfaces of PS particles. Composite abrasive has a core-shell structure and smooth surface. The chemical mechanical polishing performances of the composite abrasive and conventional colloidal silica abrasive on blanket copper wafers were investigated. The root mean square roughness decreases from 4.27 nm to 0.56 nm using composite abrasive. The PS/SiO2 core-shell composite abrasives exhibited little higher material removal rate than silica abrasives.

  19. A core-shell structured inorganic-organic hybrid nanocomposite for Hg(II) sensing and removal.

    PubMed

    Jiqu, Han; Qixia, Yang

    2015-10-01

    In the present paper, a core-shell structured inorganic-organic hybrid nanocomposite for Hg(II) sensing and removal was designed and fabricated, where the core was composed of superparamagnetic Fe3O4 and the shell consisted of molecular silica sieve MCM-41. A rhodamine derived probe was grafted onto the backbone of MCM-41 through a silane coupling reagent to control its loading content. This probe functionalized core-shell structure was confirmed and characterized by XRD analysis, electron microscopy images, IR spectra, thermogravimetry and N2 adsorption/desorption isotherms. It was found that the emission of this composite increased with increasing Hg(II) concentrations but was immune to other metal ions, showing good selectivity and high sensitivity towards Hg(II) ions. A linear Stern-Volmer curve was observed with short response time. In addition, this composite possessed good Hg(II)-removing and recycling performance. PMID:25978016

  20. Facile synthesis of core-shell structured PANI-Co3O4 nanocomposites with superior electrochemical performance in supercapacitors

    NASA Astrophysics Data System (ADS)

    Hai, Zhenyin; Gao, Libo; Zhang, Qiang; Xu, Hongyan; Cui, Danfeng; Zhang, Zengxing; Tsoukalas, Dimitris; Tang, Jun; Yan, Shubin; Xue, Chenyang

    2016-01-01

    Core-shell structured PANI-Co3O4 nanocomposites for supercapacitor applications were synthesized by combination of carbon-assisted method and in situ polymerization method. The crystalline structure, optical band gap, morphology, and hydrophilic property, as the major factors affecting the performances of supercapacitors, were investigated by X-ray diffraction (XRD), UV-vis spectrophotometry (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and water contact angle (WCA). The core-shell structured PANI-Co3O4 nanocomposites are characterized by amorphous PANI, small bandgaps, large surface area and favorable hydrophilicity, which indicates the superior electrochemical performances of the nanocomposites as electrode material for supercapacitors. Cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) measurements were conducted in 6 M KOH aqueous solution to evaluate the electrochemical performances. The results shows that core-shell structured PANI-Co3O4 nanocomposites exhibit a high specific capacitance of 1184 F g-1 at 1.25 A g-1, excellent cycling stability of a capacitance retention of 84.9% after 1000 galvanostatic charge/discharge cycles, good electrical conductivity and ion diffusion behavior.

  1. A Li4Ti5O12/TiO2@CNT Core/Shell Structure for Rechargeable Li Batteries.

    PubMed

    Chen, Lu; Liu, Jianzhong; Niu, Xiaoying; Chen, Ying; Zhong, Liqiao; Cai, Chennan; Gao, Lijun; Ni, Jiangfeng

    2015-09-01

    Li4Ti5O12 is an important type of anode material for rechargeable Li battery due to its excellent cycling and thermal reliability, but the poor conductivity represents a significant challenge in the scalable application. Here we design a ternary Li4Ti5O12/TiO2@CNT core/shell structure to well mitigate the conductivity issue. The hybrid core/shell structure is fabricated by a facile hydrothermal reaction followed by heat treatment at 600 degrees C. It is comprised of Li4Ti5O12/TiO2 nanocrystals several nanometers in dimension tightly anchored on CNT network. The CNT network provides a fast and robust conductive way for electron transport, while the minor rutile-TiO2 phase improves the kinetics of Li4Ti5O12 toward fast lithium insertion/extraction. The electrochemical results indicate that the core/shell structure displays a high electrochemical activity in terms of reversible capacity and rate capability. The hybrid structure also shows excellent long-term cycling stability when operated at a high rate of 5 C. PMID:26716279

  2. A multi-core-shell structured composite cathode material with a conductive polymer network for Li-S batteries.

    PubMed

    Wang, Mengjia; Wang, Weikun; Wang, Anbang; Yuan, Keguo; Miao, Lixiao; Zhang, Xiaolin; Huang, Yaqin; Yu, Zhongbao; Qiu, Jingyi

    2013-11-11

    A multi-core-shell with a conductive network structured C-PANI-S@PANI composite with high sulfur content up to 87% was synthesized. The composite cathode delivers higher specific capacity and excellent cycle stability, retaining a reversible discharge capacity of 835 mA h g(-1) after 100 cycles when the sulfur loading of the cathode was above 6 mg cm(-2). PMID:23999983

  3. One-step microwave synthesized core-shell structured selenium@carbon spheres as cathode materials for rechargeable lithium batteries.

    PubMed

    Guo, Jing; Wang, Qingsong; Qi, Chao; Jin, Jun; Zhu, Yingjie; Wen, Zhaoyin

    2016-04-12

    A core-shell structured selenium@carbon composite material was obtained by a facile one-step microwave synthesis method. The uniform carbon shells coated on selenium spheres greatly minimized the shuttle effect of Li-Se cells. The morphology analysis of the cathodes after different cycles revealed that the Se cores were perfectly confined inside the unbroken C shells all through the 100 cycles. PMID:27030554

  4. Site-specific carbon deposition for hierarchically ordered core/shell-structured graphitic carbon with remarkable electrochemical performance.

    PubMed

    Lv, Yingying; Wu, Zhangxiong; Qian, Xufang; Fang, Yin; Feng, Dan; Xia, Yongyao; Tu, Bo; Zhao, Dongyuan

    2013-10-01

    A fascinating core-shell-structured graphitic carbon material composed of ordered microporous core and uniform mesoporous shell is fabricated for the first time through a site-specific chemical vapor deposition process by using a nanozeolite@mesostructured silica composite molecular sieve as the template. The mesostructure-directing agent cetyltrimethylammonium bromide in the shell of the template can be either burned off or carbonized so that it is successfully utilized as a pore switch to turn the shell of the template "on" or "off" to allow selective carbon deposition. The preferred carbon deposition process can be performed only in the inner microporous zeolite cores or just within the outer mesoporous shells, resulting in a zeolite-like ordered microporous carbon or a hollow mesoporous carbon. Full carbon deposition in the template leads to the new core-shell-structured microporous@mesoporous carbon with a nanographene-constructed framework for fast electron transport, a microporous nanocore with large surface area for high-capacity storage of lithium ions, a mesoporous shell with highly opened mesopores as a transport layer for lithium ions and electron channels to access inner cores. The ordered micropores are protected by the mesoporous shell, avoiding pore blockage as the formation of solid electrolyte interphase layers. Such a unique core-shell-structured microporous@mesoporous carbon material represents a newly established lithium ion storage model, demonstrating high reversible energy storage, excellent rate capability, and long cyclic stability. PMID:24039038

  5. The interface effect on the band offset of semiconductor nanocrystals with type-I core-shell structure.

    PubMed

    Zhu, Ziming; Ouyang, Gang; Yang, Guowei

    2013-04-21

    In order to pursue the interface effect on the band offset of the semiconductor nanocrystals with the type-I core-shell structure, we have established a theoretical model to elucidate the underlying mechanism based on the atomic-bond-relaxation consideration and continuum mechanics. It was found that the size-dependent interface bond-nature-factor of the core-shell nanocrystals can be deduced on the basis of the proposed model. Taking the typical CdSe-ZnSe nanostructure as an example, we showed that the theoretical results were consistent with the experimental observations. These investigations provided a useful guide in opening up the possibility to engineer nanodevices with special optoelectronic properties. PMID:23474697

  6. Viscoelastic Properties of Core-Shell-Structured, Hemicellulose-Rich Nanofibrillated Cellulose in Dispersion and Wet-Film States.

    PubMed

    Tanaka, Reina; Saito, Tsuguyuki; Hänninen, Tuomas; Ono, Yuko; Hakalahti, Minna; Tammelin, Tekla; Isogai, Akira

    2016-06-13

    We report the viscoelastic properties of core-shell-structured, hemicellulose-rich nanofibrillated cellulose (NFC) in dispersion and wet-film states. The hemicellulose-rich NFC (hemicellulose neutral sugars 23%, carboxylate 0.2 mmol g(-1)), prepared from Japanese persimmons, had a core crystallite thickness of 2.3 nm and unit fibril thickness of 4.2 nm. A carboxylate-rich NFC (hemicellulose neutral sugars 7%, carboxylate 0.9 mmol g(-1)) with crystallite and fibril widths of 2.5 and 3.3 nm, respectively, was used as a reference. The solid-concentration dependencies of the storage moduli of gel-like water dispersions of the hemicellulose-rich NFC were weaker than those of carboxylate-rich NFC, and the dispersions were loosely flocculated even at high salt concentrations and low pH values. The viscoelastic properties of wet NFC films were similar to those of their dispersions; the hemicellulose-rich NFC films were significantly less sensitive to salt concentration and pH and were soft and swollen at high salt concentrations and low pH values. PMID:27142723

  7. A facile green approach to prepare core-shell hybrid PLGA nanoparticles for resveratrol delivery.

    PubMed

    Kumar, Sandeep; Lather, Viney; Pandita, Deepti

    2016-03-01

    Green approach has revolutionized the area of nanoparticles (NPs) synthesis by virtue of eco and health friendly protocols. Advancing this further, the study proposes a captivating solvent free method for the preparation of green PLGA-oil nanohybrids (G-PONHs) using acrysol oil and encapsulation of resveratrol therein. G-PONHs were structurally similar to the standard PONHs, but had larger particle size of 375 nm. Avoidance of organic solvents resulted in the formation of smooth NPs which showed a considerable improvement in drug release profile and antioxidant properties. G-PONHs exhibited superior biocompatibility with normal Vero cells, while the cytotoxicity on breast cancer cells was moderate in comparison to standard NPs owing to their large size. The size of NPs was found to be a critical factor governing the amplitude of cytotoxicity. The comparative high stability of G-PONHs further favors the tremendous potential of this novel preparation method and delivery platform. PMID:26708438

  8. Synthesis of Au/SnO{sub 2} core-shell structure nanoparticles by a microwave-assisted method and their optical properties

    SciTech Connect

    Yu, Yeon-Tae; Dutta, Prabir

    2011-02-15

    Au/SnO{sub 2} core-shell structure nanoparticles were synthesized using the microwave hydrothermal method. The optical and morphological properties of these particles were examined and compared with those obtained by the conventional hydrothermal method. In microwave preparation, the peak position of the UV-visible plasmon absorption band of Au nanoparticles was red-shifted from 520 to 543 nm, due to the formation of an SnO{sub 2} shell. An SnO{sub 2} shell formation was complete within 5 min. The thickness of the SnO{sub 2} shell was 10-12 nm, and the primary particle size of SnO{sub 2} crystallites was 3-5 nm. For the core-shell particles prepared by a conventional hydrothermal method, the shell formed over the entire synthesis period and was not as crystalline as those produced, using the microwave method. The relationship between the morphological and spectroscopic properties and the crystallinity of the SnO{sub 2} shell are discussed. -- Graphical abstract: In microwave preparation, the peak position of UV-visible absorption band of Au nanoparticles was red-shifted from 520 to 543 nm, due to the formation of an SnO{sub 2} shell with high crystallinity. Display Omitted Research highlights: > Au/SnO{sub 2} core-shell structure NPs were synthesized by the microwave-assisted method. > The peak position of an SP band of Au/SnO{sub 2} colloid was red-shifted till 543 nm. > The particles size of an SnO{sub 2} in the shell layer was 3-5 nm. > The crystallinity of an SnO{sub 2} shell was increased by the microwave hydrothermal reaction.

  9. Formation of core-shell-structured Zn2SnO4-carbon microspheres with superior electrochemical properties by one-pot spray pyrolysis.

    PubMed

    Hong, Young Jun; Kang, Yun Chan

    2015-01-14

    Core-shell structured Zn2SnO4-carbon microspheres with different carbon contents are prepared by one-pot spray pyrolysis without any further heating process. A Zn2SnO4-carbon composite microsphere is prepared from one droplet containing Zn and Sn salts and polyvinylpyrrolidone (PVP). Melted PVP moves to the outside of the composite microsphere during the drying stage of the droplet. In addition, melting of the phase separated metal salts forms the dense core. Carbonization of the phase separated PVP forms the textured and porous thick carbon shell. The discharge capacities of the core-shell structured Zn2SnO4-carbon microspheres for the 2(nd) and 120(th) cycles at a current density of 1 A g(-1) are 864 and 770 mA h g(-1), respectively. However, the discharge capacities of the bare Zn2SnO4 microspheres prepared by the same process without PVP for the 2(nd) and 120(th) cycles are 1106 and 81 mA h g(-1), respectively. The stable and reversible discharge capacities of the Zn2SnO4-carbon composite microspheres prepared from the spray solution with 15 g PVP decrease from 894 to 528 mA h g(-1) as current density increases from 0.5 to 5 A g(-1). PMID:25429709

  10. Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery.

    PubMed

    Chen, Yu; Chen, Hangrong; Zeng, Deping; Tian, Yunbo; Chen, Feng; Feng, Jingwei; Shi, Jianlin

    2010-10-26

    A potential platform for simultaneous anticancer drug delivery and MRI cell imaging has been demonstrated by uniform hollow inorganic core/shell structured multifunctional mesoporous nanocapsules, which are composed of functional inorganic (Fe(3)O(4), Au, etc.) nanocrystals as cores, a thin mesoporous silica shell, and a huge cavity in between. The synthetic strategy for the creation of huge cavities between functional core and mesoporous silica shell is based on a structural difference based selective etching method, by which solid silica middle layer of Fe(2)O(3)@SiO(2)@mSiO(2) (or Au@SiO(2)@mSiO(2)) composite nanostructures was selectively etched away while the mesoporous silica shell could be kept relatively intact. The excellent biocompatibility of obtained multifunctional nanocapsules (Fe(3)O(4)@mSiO(2)) was demonstrated by very low cytotoxicity against various cell lines, low hemolyticity against human blood red cells and no significant coagulation effect against blood plasma. The cancer cell uptake and intracellular location of the nanocapsules were observed by confocal laser scanning microscopy and bio-TEM. Importantly, the prepared multifunctional inorganic mesoporous nanocapsules show both high loading capacity (20%) and efficiency (up to 100%) for doxorubicin simultaneously because of the formation of the cavity, enhanced surface area/pore volume and the electrostatic interaction between DOX molecules and mesoporous silica surface. Besides, the capability of Fe(3)O(4)@mSiO(2) nanocapsules as contrast agents of MRI was demonstrated both in vitro and in vivo, indicating the simultaneous imaging and therapeutic multifunctionalities of the composite nanocapsules. Moreover, the concept of multifunctional inorganic nanocapsules was extended to design and prepare Gd-Si-DTPA grafted Au@mSiO(2) nanocapsules for nanomedical applications, further demonstrating the generality of this strategy for the preparation of various multifunctional mesoporous nanocapsules

  11. Crystalline/amorphous tungsten oxide core/shell hierarchical structures and their synergistic effect for optical modulation.

    PubMed

    Zhou, D; Xie, D; Shi, F; Wang, D H; Ge, X; Xia, X H; Wang, X L; Gu, C D; Tu, J P

    2015-12-15

    High-performance electrochromic films with large color contrast and fast switching speed are of great importance for developing advanced smart windows. In this work, crystalline/amorphous WO3 core/shell (c-WO3@a-WO3) nanowire arrays rationally are synthesized by combining hydrothermal and electrodeposition methods. The 1D c-WO3@a-WO3 core/shell hierarchical structures show a synergistic effect for the enhancement of optical modulation, especially in the infrared (IR) region. By optimizing the electrodeposition time of 400s, the core/shell array exhibits a significant optical modulation (70.3% at 750nm, 42.0% at 2000nm and 51.4% at 10μm), fast switching speed (3.5s and 4.8s), high coloration efficiency (43.2cm(2)C(-1) at 750nm) and excellent cycling performance (68.5% after 3000 cycles). The crystalline/amorphous nanostructured film can provide an alternative way for developing high-performance electrochromic materials. PMID:26321573

  12. Preparation of Novel Poly(hydroxyethyl methacrylate-coglycidyl methacrylate)-Grafted Core-Shell Magnetic Chitosan Microspheres and Immobilization of Lactase

    PubMed Central

    Zhao, Wei; Yang, Rui-Jin; Qian, Ting-Ting; Hua, Xiao; Zhang, Wen-Bin; Katiyo, Wendy

    2013-01-01

    Poly(hydroxyethyl methacrylate-co-glycidyl methacrylate)-grafted magnetic chitosan microspheres (HG-MCM) were prepared using reversed-phase suspension polymerization method. The HG-MCM presented a core-shell structure and regular spherical shape with poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) grafted onto the chitosan layer coating the Fe3O4 cores. The average diameter of the magnetic microspheres was 10.67 μm, within a narrow size distribution of 6.6–17.4 μm. The saturation magnetization and retentivity of the magnetic microspheres were 7.0033 emu/g and 0.6273 emu/g, respectively. The application of HG-MCM in immobilization of lactase showed that the immobilized enzyme presented higher storage, pH and thermal stability compared to the free enzyme. This indicates that HG-MCM have potential applications in bio-macromolecule immobilization. PMID:23743822

  13. A facile synthesis of superparamagnetic Fe3O4 supraparticles@MIL-100(Fe) core-shell nanostructures: Preparation, characterization and biocompatibility.

    PubMed

    Yu, Shoushan; Wan, Jiaqi; Chen, Kezheng

    2016-01-01

    Superparamagnetic Fe3O4 supraparticles@MIL-100(Fe) core-shell nanostructure microspheres were successfully constructed by a facile step-by-step method. The polyacrylate formed in situ during the process of the preparation of Fe3O4 supraparticles not only acted as a stabilizer on the Fe3O4 nanoparticles surface, but also played a crucial role as a "bridge" in the initial stage of the framework components selectively assembly on the Fe3O4 supraparticle surfaces. The structure and composition of the obtained microspheres were characterized by SEM, TEM, DLS, XRD, FTIR, and TG analysis. The MPMS results revealed that the introduction of the MOF shells can inhibit the interplay among the neighboring Fe3O4 supraparticles while an external magnetic field applied. The well-dispersed microspheres are biocompatible, which endow the microspheres great potential in drug targeting applications with enhanced efficiency. PMID:26397925

  14. Liprotides made of α-lactalbumin and cis fatty acids form core-shell and multi-layer structures with a common membrane-targeting mechanism.

    PubMed

    Frislev, Henriette S; Jessen, Christian M; Oliveira, Cristiano L P; Pedersen, Jan Skov; Otzen, Daniel E

    2016-07-01

    α-Lactalbumin (aLA) has been shown to form complexes with oleic acid (OA), which may target cancer cells. We recently showed that aLA and several other proteins all form protein-OA complexes called liprotides with a generic structure consisting of a micellar OA core surrounded by a shell of partially denatured protein. Here we report that a heat treatment and an alkaline treatment method both allow us to prepare liprotide complexes composed of aLA and a range of unsaturated fatty acids (FA), provided the FAs contain cis (but not trans) double bonds. All liprotides containing cis-FA form both small and large species, which all consist of partially denatured aLA, though the overall shape of the species differs. Small liprotides have a simple core-shell structure while the larger liprotides are multi-layered, i.e. they have an additional layer of both FA and aLA surrounding the outside of the core-shell structure. All liprotides can transfer their entire FA content to vesicles, releasing aLA as monomers and softening the lipid membrane. The more similar to OA, the more efficiently the different FAs induce hemolysis. We conclude that aLA can take up and transfer a wide variety of FA to membranes, provided they contain a cis-bond. This highlights liprotides as a general class of complexes where both protein and cis-FA component can be varied without departing from a generic (though sometimes multi-layered) core-shell structure. PMID:27068540

  15. Preparation of self-assembled core-shell nano structure of conjugated generation 4.5 poly (amidoamine) dendrimer and monoclonal Anti-IL-6 antibody as bioimaging probe.

    PubMed

    Mekuria, Shewaye Lakew; Tsai, Hsieh-Chih

    2015-11-01

    In this article, interleukin-6 (IL-6)-conjugated anionic generation 4.5 (G4.5) poly(amidoamine) (PAMAM) was synthesized through EDC/NHS coupling chemistry and evaluated for its optical properties in vitro. Conjugation was confirmed using Fourier-transformed infrared spectroscopy (FT-IR) and 2-dimensional nuclear magnetic resonance (2D NMR). After IL-6 conjugation, nanoparticle size increased to approximately 70 nm and zeta potential increased from -56.5 ± 0.2 to -19.1 ± 2.4 mV due to neutralization of negatively charged G4.5. Wide-angle X-ray scattering (WAXS) suggested that a layered nanoparticle structure was formed by the G4.5/IL-6 conjugate. Most interestingly, the intrinsic fluorescence of G4.5 significantly increased after IL-6 conjugation and underwent a blue shift as a result of H-aggregation. Furthermore, the cellular uptake of the conjugates by HeLa cells was significantly enhanced in comparison to free G4.5, as demonstrated by confocal microscopy and flow cytometry. These results indicated that the described system may be a potential bioimaging probe in vitro. PMID:26263213

  16. Morphology-Control Synthesis of a Core-Shell Structured NiCu Alloy with Tunable Electromagnetic-Wave Absorption Capabilities.

    PubMed

    Zhao, Biao; Zhao, Wanyu; Shao, Gang; Fan, Bingbing; Zhang, Rui

    2015-06-17

    In this work, dendritelike and rodlike NiCu alloys were prepared by a one-pot hydrothermal process at various reaction temperatures (120, 140, and 160 °C). The structure and morphology were analyzed by scanning electron microscopy, energy-dispersive spectrometry, X-ray diffraction, and transmission electron microscopy, which that demonstrate NiCu alloys have core-shell heterostructures with Ni as the shell and Cu as the core. The formation mechanism of the core-shell structures was also discussed. The uniform and perfect dendritelike NiCu alloy obtained at 140 °C shows outstanding electromagnetic-wave absorption properties. The lowest reflection loss (RL) of -31.13 dB was observed at 14.3 GHz, and the effective absorption (below -10 dB, 90% attenuation) bandwidth can be adjusted between 4.4 and 18 GHz with a thin absorber thickness in the range of 1.2-4.0 mm. The outstanding electromagnetic-wave-absorbing properties are ascribed to space-charge polarization arising from the heterogeneous structure of the NiCu alloy, interfacial polarization between the alloy and paraffin, and continuous micronetworks and vibrating microcurrent dissipation originating from the uniform and perfect dendritelike shape of NiCu prepared at 140 °C. PMID:26018739

  17. Supersaturation-controlled surface structure evolution of Pd@Pt core-shell nanocrystals: enhancement of the ORR activity at a sub-10 nm scale

    NASA Astrophysics Data System (ADS)

    Qi, Kun; Zheng, Weitao; Cui, Xiaoqiang

    2016-01-01

    Here, we designed and implemented a facile strategy for controlling the surface evolution of Pd@Pt core-shell nanostructures by simply adjusting the volume of OH- to control the reducing ability of ascorbic acid and finally manipulating the supersaturation in the reaction system. The surface structure of the obtained Pd@Pt bimetallic nanocrystals transformed from a Pt {111} facet-exposed island shell to a conformal Pt {100} facet-exposed shell by increasing the pH value. The as-prepared well aligned Pd@Pt core-island shell nanocubes present both significantly enhanced electrocatalytic activity and favorable long-term stability toward the oxygen reduction reaction in alkaline media.Here, we designed and implemented a facile strategy for controlling the surface evolution of Pd@Pt core-shell nanostructures by simply adjusting the volume of OH- to control the reducing ability of ascorbic acid and finally manipulating the supersaturation in the reaction system. The surface structure of the obtained Pd@Pt bimetallic nanocrystals transformed from a Pt {111} facet-exposed island shell to a conformal Pt {100} facet-exposed shell by increasing the pH value. The as-prepared well aligned Pd@Pt core-island shell nanocubes present both significantly enhanced electrocatalytic activity and favorable long-term stability toward the oxygen reduction reaction in alkaline media. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07940c

  18. Scalable synthesis of core-shell structured SiOx/nitrogen-doped carbon composite as a high-performance anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Lu; Wang, Weikun; Wang, Anbang; Yuan, Keguo; Jin, Zhaoqing; Yang, Yusheng

    2016-06-01

    In this work, a novel core-shell structured SiOx/nitrogen-doped carbon composite has been prepared by simply dispersing the SiOx particles, which are synthesized by a thermal evaporation method from an equimolar mixture of Si and SiO2, into the dopamine solution, followed by a carbonization process. The SiOx core is well covered by the conformal and homogeneous nitrogen-doped carbon layer from the pyrolysis of polydopamine. By contrast with the bare SiOx, the electrochemical performance of the as-prepared core-shell structured SiOx/nitrogen-doped carbon composite has been improved significantly. It delivers a reversible capacity of 1514 mA h g-1 after 100 cycles at a current density of 100 mA g-1 and 933 mA h g-1 at 2 A g-1, much higher than those of commercial graphite anodes. The nitrogen-doped carbon layer ensures the excellent electrochemical performance of the SiOx/C composite. In addition, since dopamine can self-polymerize and coat virtually any surface, this versatile, facile and highly efficient coating process may be widely applicable to obtain various composites with uniform nitrogen-doped carbon coating layer.

  19. Au@Pd core-shell nanobricks with concave structures and their catalysis of ethanol oxidation.

    PubMed

    Wang, Wenjin; Zhang, Jie; Yang, Shengchun; Ding, Bingjun; Song, Xiaoping

    2013-10-01

    Au@Pd core-shell nanobricks (CNBs) with concave surfaces and Pd shells with a thickness of approximately 5 nm were synthesized by co-reduction of HAuCl4 and H2 PdCl4 in the presence of Au seeds and Ag ions. These as-synthesized concave CNBs exhibit significantly enhanced catalytic activity for the electrooxidation of ethanol in alkaline media compared to the commercially-used Pd black. The improved performance of the Au@Pd CNBs can be attributed to the exposed stepped surfaces, high-index facets, and the synergistic effects of the core and shell metals. PMID:23929810

  20. Preparation of core-shell nanofibers with selectively localized CNTs from Shish Kebab-like hierarchical composite micelles.

    PubMed

    Liu, Chang-Lei; Wang, Mei-Jia; Wu, Gang; You, Jiao; Chen, Si-Chong; Liu, Ya; Wang, Yu-Zhong

    2014-08-01

    A novel and facile bottom-up strategy for preparing core-shell nanofibers with selectively localized carbon nanotubes is developed using hierarchical composite micelles of crystalline-coil copolymer and carbon nanotubes as the building blocks. An amphiphilic di-block copolymer of poly (p-dioxanone) (PPDO) and PEG (polyethylene glycol) functionalized with pyrene moieties at the chain ends of PPDO blocks (Py-PPDO-b-PEG) is designed for constructing composite micelles with multiwalled carbon nanotubes (MWCNTs). The self-assembly of Py-PPDO-b-PEG and MWCNTs is co-induced by the crystallization of PPDO blocks and the π-π stacking interactions between pyrene moieties and MWCNTs, resulting in composite micelles with "shish kebab"-like nanostructure. A mixture of composite micelles and polyvinyl alcohol (PVA) water solution is then used as the spinning solution for preparing electrospun nanofibers. The morphologies of the nanofibers with different composition are investigated by SEM and TEM. The results suggest that the MWCNTs selectively localized in the core of the nanofibers of MWCNTs/Py-PPDO-b-PEG/PVA. The alignment and interfusion of composite micelles during the formation of nanofibers may confine the carbon nanotubes in the hydrophobic core region. In contrast, the copolymer without pyrene moieties cannot form composite micelles, thus these nanofibers show selective localization of MWCNTs in the PVA shell region. PMID:25048154

  1. Preparation of (Ba,Sr)TiO3@polystrene core-shell nanoparticles by solvent-free surface-initiated atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Xiaowei, Yang; Yanwei, Zeng; Tongxiang, Cai; Zhenxing, Hu

    2012-07-01

    The polystyrene shells have been successfully grown on the barium strontium titanate (BST) nanocrystals, which were synthesized by microwave-activated glycothermal method, via a solvent-free surface-initiated atom transfer radical polymerization (SI-ATRP) after the 2-bromo-2-methylpropionic acid molecules (Br-MPA) were anchored at the surface of BST nanocrystals through ligand exchange with hydroxyl groups on their surfaces. These surface modified BST nanocrystals can then be perfectly dispersed in styrene monomer and act as macroinitiators for ATRP to yield BST@PS core-shell structured nanoparticles, which endow the BST nanocrystals with exceptionally good dispersibility and stability in hydrophobic solvents. The BST@PS core-shell structures were characterized by X-ray diffraction (XRD) technique and transmission electron microscopy (TEM). Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (Raman), differential scanning calorimetry (DSC) and gel permeation chromatography were also employed to probe the Br-MPA and PS on the BST nanocrystals. It has been shown that after the BST nanocrystals are surface-modified with Br-MPA, the polymerization of styrene can steadily occur at the surface of BST nanocrystals to form a uniform polystyrene shell and its thickness can reach ∼10 nm when the polymerization reaction is extended to 36 h, while no changes are found to take place with the BST nanocrystals. Compared with typical high molecular weight PS (Mn = 6700), the as-obtained PS possess a relatively low molecular weight (Mn = 5473) and a lower glass transition temperature (Tg ∼ 93 °C). The research results demonstrate a viable strategy for the preparation of polymer-coated functional metal oxides nanocrystals, potentially useful in biological and nanoelectronic applications.

  2. A Novel Organophosphorus Hybrid with Excellent Thermal Stability: Core-Shell Structure, Hybridization Mechanism, and Application in Flame Retarding Semi-Aromatic Polyamide.

    PubMed

    Lin, Xue-Bao; Du, Shuang-Lan; Long, Jia-Wei; Chen, Li; Wang, Yu-Zhong

    2016-01-13

    An organophosphorous hybrid (BM@Al-PPi) with unique core-shell structure was prepared through hybridization reaction between boehmite (BM) as the inorganic substrate and phenylphosphinic acid (PPiA) as the organic modifier. Fourier transform infrared spectra (FTIR), solid state (31)P and (27)Al magic angle spinning nuclear magnetic resonance, X-ray diffraction, and element analysis were used to investigate the chemical structure of the hybrids, where the microrod-like core was confirmed as Al-PPi aggregates generated from the reaction between BM and PPiA, and those irregular nanoparticles in the shell belonged to residual BM. Compared with the traditional dissolution-precipitation process, a novel analogous suspension reaction mode was proposed to explain the hybridization process and the resulting product. Scanning electronic microscopy further proved the core-shell structure of the hybrids. BM exhibited much higher initial decomposition temperature than that of Al-PPi; therefore, the hybrid showed better thermal stability than Al-PPi, and it met the processing temperature of semi-aromatic polyamide (HTN, for instance) as an additive-type flame retardant. Limiting oxygen index and cone calorimetric analysis suggested the excellent flame-retardant performance and smoke suppressing activity by adding the resulting hybrid into HTN. PMID:26709944

  3. Preparation of kapok-polyacrylonitrile core-shell composite microtube and its application as gold nanoparticles carrier

    NASA Astrophysics Data System (ADS)

    Fan, Haosen; Yu, Xiaolan; Long, Yuhua; Zhang, Xiaoyan; Xiang, Haifan; Duan, Chunting; Zhao, Ning; Zhang, Xiaoli; Xu, Jian

    2012-01-01

    In this article, a new catalyst carrier kapok-polyacrylonitrile (PAN) composite microtube was fabricated based on the natural kapok fiber. Kapok-PAN core-shell composite microtubes were prepared by a cetyltrimethylammonium bromide (CTAB) assisted self-assembly method. The formation mechanism was proposed and the influence of the concentration of acrylonitrile (AN) monomer and CTAB on the morphology of kapok-PAN was investigated. The hydrophilicity and specific surface area of kapok microtubes were improved because of the outside PAN coating constructed by the PAN nanoparticles aggregation. Gold nanoparticles (Au NPs) were immobilized on the surface of kapok-PAN microtubes via in situ reduction of chloroauric acid (HAuCl4) by sodium borohydride (NaBH4). The obtained Au NPs with mean diameter of 3.1 nm were well dispersed without any aggregation. In addition, kapok-PAN-Au composites exhibited excellent catalytic activity and could be recovered easily without apparent decrease of activity, as demonstrated via the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. The kapok-PAN composite microtubes may be one of the promising supporting materials in developing low-cost, high-efficiency catalyst carriers for metal NPs.

  4. Synthesis and characterization of multi-layer core-shell structural LiFeBO3/C as a novel Li-battery cathode material

    NASA Astrophysics Data System (ADS)

    Zhang, Bao; Ming, Lei; Zheng, Jun-chao; Zhang, Jia-feng; Shen, Chao; Han, Ya-dong; Wang, Jian-long; Qin, Shan-e.

    2014-09-01

    A multi-layer core-shell structural LiFeBO3/C has been successfully synthesized via spray-drying and carbothermal method using LiBO2·8H2O, Fe(NO3)3·9H2O, and citric acid as starting materials. The Rietveld refinement results indicate the sample consists of two phases: LiFeBO3 [94(6)% w/w], and LiFeO2 [6(4)% w/w]. SEM images show that the LiFeBO3 powders consist of rough similar-spherical particles with a size distribution ranging from 1 μm to 5 μm. TEM results present that the LiFeBO3 spherical particles are well coated by nano-carbon webs and form a multi-layer core-shell structure. The amount of carbon was determined to be 6.50% by C/S analysis. The prepared LiFeBO3-LiFeO2/C presents an initial discharge capacity of 196.5 mAh g-1 at the current density of 10 mA g-1 between 1.5 and 4.5 V, and it can deliver a discharge capacity of 136.1 mAh g-1 after 30 cycles, presents excellent electrochemical properties, indicating the surface sensitivity in the air was restrained.

  5. Facile aqueous synthesis and electromagnetic properties of novel 3D urchin-like glass/Ni-Ni(3)P/Co(2)P(2)O(7) core/shell/shell composite hollow structures.

    PubMed

    An, Zhenguo; Zhang, Jingjie; Pan, Shunlong

    2010-04-14

    Novel 3D urchin-like glass/Ni-Ni(3)P/Co(2)P(2)O(7) core/shell/shell composite hollow structures are fabricated for the first time by controlled stepwise assembly of granular Ni-Ni(3)P alloy and ribbon-like Co(2)P(2)O(7) nanocrystals on hollow glass spheres in aqueous solutions at mild conditions. It is found that the shell structure and the overall morphology of the products can be tailored by properly tuning the annealing temperature. The as-obtained composite core/shell/shell products possess low density (ca. 1.18 g cm(-3)) and shape-dependent magnetic and microwave absorbing properties, and thus may have some promising applications in the fields of low-density magnetic materials, microwave absorbers, etc. Based on a series of contrast experiments, the probable formation mechanism of the core/shell/shell hierarchical structures is proposed. This work provides an additional strategy to prepare core/shell composite spheres with tailored shell morphology and electromagnetic properties. PMID:20379530

  6. Synthesis and characterization of core@shell (ZnO@γ-Fe2O3) structured nanoparticles with two morphologies

    NASA Astrophysics Data System (ADS)

    Balti, Imen; Smiri, Laila Samia; Rabu, Pierre; Léone, Philippe; Gautron, Eric; Viana, Bruno; Jouini, Noureddine

    2013-03-01

    Core-shell ZnO/γ-Fe2O3 nanoparticles were prepared via a simple method using forced hydrolysis of acetate metallic salts in a polyol medium. Two types of morphologies can be easily obtained: (i) quasi-spherical ZnO core 20 nm in diameter coated with a continuous shell with 3 nm in length, (ii) rod-like ZnO decorated with γ-Fe2O3 nanoparticles. The ZnO nanorods are 80 nm in diameter and 400 nm in length. The maghemite (γ-Fe2O3) nanoparticles with 5 nm in diameter are strongly bonded to ZnO, well separated from each other and form a monolayer on the surface of ZnO nanorods. In both systems, coating ZnO by γ-Fe2O3 inhibits the surface defects and thus enhances the UV luminescence. The two systems present a superparamagnetic behavior with blocking temperature depending on the morphology: the decorated ZnO nanorods present a blocking temperature around 6 K whereas this temperature is significantly higher (300 K) for spherical core-shell nanoparticles.

  7. Nanothermochromics with VO2-based core-shell structures: Calculated luminous and solar optical properties

    NASA Astrophysics Data System (ADS)

    Li, S.-Y.; Niklasson, G. A.; Granqvist, C. G.

    2011-06-01

    Composites including VO2-based thermochromic nanoparticles are able to combine high luminous transmittance Tlum with a significant modulation of the solar energy transmittance ΔTsol at a "critical" temperature in the vicinity of room temperature. Thus nanothermochromics is of much interest for energy efficient fenestration and offers advantages over thermochromic VO2-based thin films. This paper presents calculations based on effective medium theory applied to dilute suspensions of core-shell nanoparticles and demonstrates that, in particular, moderately thin-walled hollow spherical VO2 nanoshells can give significantly higher values of ΔTsol than solid nanoparticles at the expense of a somewhat lowered Tlum. This paper is a sequel to a recent publication [S.-Y. Li, G. A. Niklasson, and C. G. Granqvist, J. Appl. Phys. 108, 063525 (2010)].

  8. Size-Tunable and Functional Core-Shell Structured Silica Nanoparticles for Drug Release

    SciTech Connect

    Chi, Fangli; Guo, Ya Nan; Liu, Jun; Liu, Yunling; Huo, Qisheng

    2010-02-18

    Size-tunable silica cross-linked micellar core-shell nanoparticles (SCMCSNs) were successfully synthesized from a Pluronic nonionic surfactant (F127) template system with organic swelling agents such as 1,3,5-trimethylbenzene (TMB) and octanoic acid at room temperature. The size and morphology of SCMCSNs were directly evidenced by TEM imaging and DLS measurements (up to ~90 nm). Pyrene and coumarin 153 (C153) were used as fluorescent probe molecules to investigate the effect and location of swelling agent molecules. Papaverine as a model drug was used to measure the loading capacity and release property of nanoparticles. The swelling agents can enlarge the nanoparticle size and improve the drug loading capacity of nanoparticles. Moreover, the carboxylic acid group of fatty acid can adjust the release behavior of the nanoparticles.

  9. Core-shell-corona-structured polyelectrolyte brushes-grafting magnetic nanoparticles for water harvesting.

    PubMed

    Liu, Guoqiang; Cai, Meirong; Wang, Xiaolong; Zhou, Feng; Liu, Weimin

    2014-07-23

    A novel superhydrophilic material, charged polymer brushes-grafted magnetic core-shell-corona composite nanoparticles (Fe3O4@SiO2@PSPMA), was developed to harvest water through the hydration effect. Because of both the strong hydration capability and the good swelling performance, the negatively charged polymer brushes, PSPMA brushes, endow the composite nanoparticles with superhydrophilicity and a good water-absorbing performance like a sponge, while the magnetic Fe3O4 cores allow easy separation of Fe3O4@SiO2@PSPMA nanoparticles with absorbed water from oil/water mixture under an external magnetic field. The functional particles have the capability of harvesting water droplets whether floating on an oil surface or in the oil. This water-absorbing material uses selective wettability to harvest water and achieve oil-water separation and may be useful in finding novel approaches for recycling water from sewage and removing water in the petroleum industry. PMID:24955817

  10. A core-shell structured, metal-ceramic composite-supported Ru catalyst for methane steam reforming

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Chul; Potapova, Yulia; Lee, Doohwan

    2012-10-01

    Methane steam reforming on a metal-ceramic composite-supported ruthenium catalyst is studied at high temperatures. The core-shell structured Al2O3@Al composite consisting primarily of an Al metal core with a high surface area γ-Al2O3 overlayer is obtained by hydrothermal oxidation. Under the synthesis condition, primary Al2O3@Al particles aggregate to form a hierarchal secondary structure with macrosize inter-pores. This core-shell composite support enhances the heat conductivity and provides a high surface area for fine dispersion of a catalytic Ru component on the γ-Al2O3 overlayer. The Ru/Al2O3@Al catalyst exhibits significantly higher CH4 conversion than the conventional Ru/Al2O3 catalyst, indicating its superior properties for methane steam reforming at high temperatures contributed due to the fine Ru dispersion and facilitated heat and mass transfer via the unique catalyst structure. This metal-ceramic composite catalyst is stable in the reforming reaction for an extended time, suggesting reasonable stability in its physicochemical properties.

  11. Enhanced Microwave Absorption Properties of Intrinsically Core/shell Structured La0.6Sr0.4MnO3Nanoparticles

    PubMed Central

    2009-01-01

    The intrinsically core/shell structured La0.6Sr0.4MnO3nanoparticles with amorphous shells and ferromagnetic cores have been prepared. The magnetic, dielectric and microwave absorption properties are investigated in the frequency range from 1 to 12 GHz. An optimal reflection loss of −41.1 dB is reached at 8.2 GHz with a matching thickness of 2.2 mm, the bandwidth with a reflection loss less than −10 dB is obtained in the 5.5–11.3 GHz range for absorber thicknesses of 1.5–2.5 mm. The excellent microwave absorption properties are a consequence of the better electromagnetic matching due to the existence of the protective amorphous shells, the ferromagnetic cores, as well as the particular core/shell microstructure. As a result, the La0.6Sr0.4MnO3nanoparticles with amorphous shells and ferromagnetic cores may become attractive candidates for the new types of electromagnetic wave absorption materials. PMID:20596374

  12. Understanding the Metal Distribution in Core-Shell Nanoparticles Prepared in Micellar Media

    NASA Astrophysics Data System (ADS)

    Tojo, Concha; Buceta, David; López-Quintela, M. Arturo

    2015-08-01

    The factors that govern the reaction rate of Au/Pt bimetallic nanoparticles prepared in microemulsions by a one-pot method are examined in the light of a simulation model. Kinetic analysis proves that the intermicellar exchange has a strong effect on the reaction rates of the metal precursors. Relating to Au, reaction rate is controlled by the intermicellar exchange rate whenever concentration is high enough. With respect to Pt, the combination of a slower reduction rate and the confinement of the reactants inside micelles gives rise to an increase of local Pt salt concentration. Two main consequences must be emphasized: On one hand, Pt reduction may continue independently whether or not a new intermicellar exchange takes place. On the other hand, the accumulation of Pt reactants accelerates the reaction. As the reactant accumulation is larger when the exchange rate is faster, the resulting Pt rate increases. This results in a minor difference in the reduction rate of both metals. This difference is reflected in the metal distribution of the bimetallic nanoparticle, which shows a greater degree of mixture as the intermicellar exchange rate is faster.

  13. Structural and photoluminescence properties of doped and core-shell LaPO4:Eu3+ nanocrystals

    NASA Astrophysics Data System (ADS)

    Ghosh, Pushpal; Kar, Arik; Patra, Amitava

    2010-12-01

    Here, we have fabricated of LaPO4:Eu3+ doped and LaPO4/Eu2O3 core-shell nanocrystals using solution based methods. The morphologies, structure, formation mechanism, and photoluminescence properties of these nanocrystals are investigated in detail. The compressive and tensile lattice strains are obtained for hexagonal and monoclinic LaPO4 nanocrystals, respectively. Photoluminescence properties are found to be sensitive to the crystal phase, morphology, and core-shell structures. Judd-Ofelt parameters (Ω2) are calculated to understand the asymmetric nature of the dopant Eu3+ ion in LaPO4 nanocrystals host of various morphologies and crystal phases. It is seen that Ω2 value for nanorod (4.4×10-20 cm2) is higher than the nanoparticles (3.38×10-20 cm2). The quantum yield values increases from 28.27% to 52.4% by changing the crystal phase from hexagonal to monoclinic. The quantum yield of nanorods (58.50%) is higher than nanoparticles (28.68%).

  14. Synthesis and characterization of self-crosslinking fluorinated polyacrylate soap-free latices with core-shell structure

    NASA Astrophysics Data System (ADS)

    Xu, Wei; An, Qiufeng; Hao, Lifen; Zhang, Dan; Zhang, Min

    2013-03-01

    Novel self-crosslinking fluorinated polyacrylate soap-free latices (FMBN) with core-shell structure were synthesized by semicontinuous seeded emulsion polymerization method from dodecafluoroheptyl methacrylate (DFMA), methyl methacrylate (MMA), butyl acrylate (BA), and N-methylolamide (NMA) in the presence of a polymerizable emulsifier-ammonium allyloxtmethylate nonylphenol ethoxylates sulfate (DNS-86). Effects of the DNS-86 and DFMA amounts on stability and properties of the FMBN emulsions were studied. Besides, the latices and their film were characterized by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (1H NMR) spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), laser particle size analyzer, differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), contact angle goniometer, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. FT-IR spectra and 1H NMR spectrum showed that DFMA successfully participated in soap-free emulsion polymerization and monomers formed the fluorinated acrylate copolymer. The resulted latex particles had the core-shell structure. The films formed from the FMBN latices thus had two Tg. Their thermal stability and Tg of the shell phase increased gradually with augment of DFMA amount in polymer. XPS, AFM and hydrophobicity analyses indicated the fluoroalkyl groups had the tendency to enrich at the film-air interface. This enrichment of fluorine at the film-air interface was more evident after the annealing process. Water contact angles of the FMBN film before and after the annealing process could attain 115.5° and 117.5°, individually.

  15. Ag@AgI, core@shell structure in agarose matrix as hybrid: synthesis, characterization, and antimicrobial activity.

    PubMed

    Ghosh, Somnath; Saraswathi, A; Indi, S S; Hoti, S L; Vasan, H N

    2012-06-01

    A novel in situ core@shell structure consisting of nanoparticles of Ag (Ag Nps) and AgI in agarose matrix (Ag@AgI/agarose) has been synthesized as a hybrid, in order to have an efficient antibacterial agent for repetitive usage with no toxicity. The synthesized core@shell structure is very well characterized by XRD, UV-visible, photoluminescence, and TEM. A detailed antibacterial studies including repetitive cycles are carried out on Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria in saline water, both in dark and on exposure to visible light. The hybrid could be recycled for the antibacterial activity and is nontoxic toward human cervical cancer cells (HeLa cells). The water insoluble Ag@AgI in agarose matrix forms a good coating on quartz, having good mechanical strength. EPR and TEM studies are carried out on the Ag@AgI/agarose and the bacteria, respectively, to elucidate a possible mechanism for killing of the bacteria. PMID:22582868

  16. Electronic structure of ZnO/MgxZn1-xO core-shell nanowires in the magnetic field

    NASA Astrophysics Data System (ADS)

    Xiong, Wen; Zhang, Ying

    2013-12-01

    The conduction band and valence band offset of ZnO/MgxZn1-xO core-shell nanowires are determined numerically for the first time, then the six-band k · p effective-mass theory for calculating the electronic structure of the free-standing nanowires is extended to calculate the electronic structure of ZnO/MgxZn1-xO core-shell nanowires. It is found that the degenerate hole states with positive Jh and negative Jh are split by the applied magnetic field, the split energies are affected slightly by changing the radius of ZnO core and the content of magnesium in MgxZn1-xO shell. The order of the hole states will reverse if the radius of ZnO core varies, even so, the optical circularly polarized property of the lowest transition does not change when the radius of ZnO core increases. In addition, the radiative intensity of the lowest transition increases slowly with the increase of the wave vector when the magnetic field, the radius of ZnO core and the content of magnesium are fixed, while the radiative intensity of the lowest transition increases at first, then decreases with the increase of the radius of ZnO core when the wave vector is fixed.

  17. Facile synthesis of hairy core-shell structured magnetic polymer submicrospheres and their adsorption of bovine serum albumin.

    PubMed

    Yan, Xianming; Kong, Juan; Yang, Chongchong; Fu, Guoqi

    2015-05-01

    Highly magnetic polymer submicrospheres with a hairy core-shell structure were facilely synthesized by combining distillation-precipitation polymerization (DPP) with subsequent surface-initiated atom transfer radical polymerization (SI-ATRP), and then investigated for protein adsorption. A robust polymer shell consisting of poly(divinylbenzene-co-chloromethylstyrene) (P(DVB-co-CMS)) was coated on superparamagnetic submicrometer-sized magnetite colloid nanocrystal clusters (MCNCs) via DPP. With the benzyl chloride groups on the shell as initiator, poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) hairs were grafted by SI-ATRP approach. The resulting hairy core-shell structured Fe3O4@ P(DVB-co-CMS)-PDMAEMA microspheres showed pH- and temperature-sensitivity, and high-magnetization. The composite microspheres were further investigated for adsorption of a typical acidic protein, i.e. bovine serum albumin (BSA). They exhibited a high binding capacity up to over 660 mg/g (corresponding to 158 DMAEMA monomer units cooperating for binding one BSA molecule) and could rapidly reach binding equilibrium within 5 min. Moreover, the adsorption of BSA was found to be remarkably dependent on the pH and salt concentration of the protein solutions, and the bound protein could be quantitatively desorbed by washing with a medium with lowered pH or raised salt concentration. PMID:25594881

  18. Formation of core-shell-structured Zn2SnO4-carbon microspheres with superior electrochemical properties by one-pot spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Hong, Young Jun; Kang, Yun Chan

    2014-12-01

    Core-shell structured Zn2SnO4-carbon microspheres with different carbon contents are prepared by one-pot spray pyrolysis without any further heating process. A Zn2SnO4-carbon composite microsphere is prepared from one droplet containing Zn and Sn salts and polyvinylpyrrolidone (PVP). Melted PVP moves to the outside of the composite microsphere during the drying stage of the droplet. In addition, melting of the phase separated metal salts forms the dense core. Carbonization of the phase separated PVP forms the textured and porous thick carbon shell. The discharge capacities of the core-shell structured Zn2SnO4-carbon microspheres for the 2nd and 120th cycles at a current density of 1 A g-1 are 864 and 770 mA h g-1, respectively. However, the discharge capacities of the bare Zn2SnO4 microspheres prepared by the same process without PVP for the 2nd and 120th cycles are 1106 and 81 mA h g-1, respectively. The stable and reversible discharge capacities of the Zn2SnO4-carbon composite microspheres prepared from the spray solution with 15 g PVP decrease from 894 to 528 mA h g-1 as current density increases from 0.5 to 5 A g-1.Core-shell structured Zn2SnO4-carbon microspheres with different carbon contents are prepared by one-pot spray pyrolysis without any further heating process. A Zn2SnO4-carbon composite microsphere is prepared from one droplet containing Zn and Sn salts and polyvinylpyrrolidone (PVP). Melted PVP moves to the outside of the composite microsphere during the drying stage of the droplet. In addition, melting of the phase separated metal salts forms the dense core. Carbonization of the phase separated PVP forms the textured and porous thick carbon shell. The discharge capacities of the core-shell structured Zn2SnO4-carbon microspheres for the 2nd and 120th cycles at a current density of 1 A g-1 are 864 and 770 mA h g-1, respectively. However, the discharge capacities of the bare Zn2SnO4 microspheres prepared by the same process without PVP for the 2nd and

  19. Solvent-surface interactions control the phase structure in laser-generated iron-gold core-shell nanoparticles.

    PubMed

    Wagener, Philipp; Jakobi, Jurij; Rehbock, Christoph; Chakravadhanula, Venkata Sai Kiran; Thede, Claas; Wiedwald, Ulf; Bartsch, Mathias; Kienle, Lorenz; Barcikowski, Stephan

    2016-01-01

    This work highlights a strategy for the one-step synthesis of FeAu nanoparticles by the pulsed laser ablation of alloy targets in the presence of different solvents. This method allows particle generation without the use of additional chemicals; hence, solvent-metal interactions could be studied without cross effects from organic surface ligands. A detailed analysis of generated particles via transmission electron microscopy in combination with EDX elemental mapping could conclusively verify that the nature of the used solvent governs the internal phase structure of the formed nanoparticles. In the presence of acetone or methyl methacrylate, a gold shell covering a non-oxidized iron core was formed, whereas in aqueous media, an Au core with an Fe3O4 shell was generated. This core-shell morphology was the predominant species found in >90% of the examined nanoparticles. These findings indicate that fundamental chemical interactions between the nanoparticle surface and the solvent significantly contribute to phase segregation and elemental distribution in FeAu nanoparticles. A consecutive analysis of resulting Fe@Au core-shell nanoparticles revealed outstanding oxidation resistance and fair magnetic and optical properties. In particular, the combination of these features with high stability magnetism and plasmonics may create new opportunities for this hybrid material in imaging applications. PMID:27004738

  20. Solvent-surface interactions control the phase structure in laser-generated iron-gold core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Wagener, Philipp; Jakobi, Jurij; Rehbock, Christoph; Chakravadhanula, Venkata Sai Kiran; Thede, Claas; Wiedwald, Ulf; Bartsch, Mathias; Kienle, Lorenz; Barcikowski, Stephan

    2016-03-01

    This work highlights a strategy for the one-step synthesis of FeAu nanoparticles by the pulsed laser ablation of alloy targets in the presence of different solvents. This method allows particle generation without the use of additional chemicals; hence, solvent-metal interactions could be studied without cross effects from organic surface ligands. A detailed analysis of generated particles via transmission electron microscopy in combination with EDX elemental mapping could conclusively verify that the nature of the used solvent governs the internal phase structure of the formed nanoparticles. In the presence of acetone or methyl methacrylate, a gold shell covering a non-oxidized iron core was formed, whereas in aqueous media, an Au core with an Fe3O4 shell was generated. This core-shell morphology was the predominant species found in >90% of the examined nanoparticles. These findings indicate that fundamental chemical interactions between the nanoparticle surface and the solvent significantly contribute to phase segregation and elemental distribution in FeAu nanoparticles. A consecutive analysis of resulting Fe@Au core-shell nanoparticles revealed outstanding oxidation resistance and fair magnetic and optical properties. In particular, the combination of these features with high stability magnetism and plasmonics may create new opportunities for this hybrid material in imaging applications.

  1. Solar-photocatalytic disinfection of Vibrio cholerae by using Ag@ZnO core-shell structure nanocomposites.

    PubMed

    Das, Sourav; Sinha, Sayantan; Suar, Mrutyunjay; Yun, Soon-Il; Mishra, Amrita; Tripathy, Suraj K

    2015-01-01

    Disinfection of Gram-negative bacterium Vibrio cholerae 569B in aqueous matrix by solar-photocatalysis mediated by Ag@ZnO core-shell structure nanocomposite particles was investigated. Silver nanoparticles are synthesized by the reduction of silver perchlorate followed by precipitation of zinc oxide shell and are employed in the photocatalytic disinfection of the model pathogen. Effect of photocatalyst loading and reaction temperature on the disinfection kinetics was studied. Disinfection efficiency in laboratory as well as real water samples was compared with that of pure-ZnO and TiO2 (Degussa P25). Nanocomposite system has shown optimum disinfection (≈98%) at 40-60min of sun-light exposure with a catalyst loading of 0.5mg/L of the reaction solution. The reduction of aquatic bacterial densities by photocatalytically active Ag@ZnO core-shell nanocomposite in presence of natural sun-light may have potential ex situ application in water decontamination at ambient conditions. PMID:25523714

  2. Core/shell-structured upconversion nanophosphor and cadmium-free quantum-dot bilayer-based near-infrared photodetectors.

    PubMed

    Hong, A-Ra; Kim, Jungyoon; Kim, Su Yeon; Kim, Seong-Il; Lee, Kwangyeol; Jang, Ho Seong

    2015-11-01

    The core/shell-structured upconversion nanophosphors (UCNPs) and Cd-free CuInS(2)/ZnS quantum dots (QDs) were synthesized via coprecipitation and hot-injection methods, respectively, and they were applied to near infrared (NIR) photodetectors. The β-NaYF(4):Yb,Er/β-NaYF(4) UCNPs emitted intense visible light peaking at 522, 542, and 656 nm via (2)H(11/2), (4)S(3/2), and (4)F(9/2)→(4)I(15/2) transitions under excitation with 980 nm NIR light. The core/shell UCNPs showed 6.4 times higher emission intensity than core UCNPs. Charge carriers can be generated from CuInS(2)/ZnS QDs in the QD-UCNP mixture due to their broad absorption in the visible spectral region shorter than 600 nm. The photodetector devices were fabricated by spin-coating CuInS(2)/ZnS QDs on a SiO(2)/Si substrate with patterned gold electrodes followed by spin-coating UCNPs on the QD layer. The fabricated QD-UCNP-bilayer-based device showed a drastically increased photocurrent (128 μA) compared with the QD-layer-based device under 980 nm NIR light illumination. Additionally, the fabricated device showed stable ON-OFF switching properties against on and off NIR light. PMID:26512493

  3. Solvent-surface interactions control the phase structure in laser-generated iron-gold core-shell nanoparticles

    PubMed Central

    Wagener, Philipp; Jakobi, Jurij; Rehbock, Christoph; Chakravadhanula, Venkata Sai Kiran; Thede, Claas; Wiedwald, Ulf; Bartsch, Mathias; Kienle, Lorenz; Barcikowski, Stephan

    2016-01-01

    This work highlights a strategy for the one-step synthesis of FeAu nanoparticles by the pulsed laser ablation of alloy targets in the presence of different solvents. This method allows particle generation without the use of additional chemicals; hence, solvent-metal interactions could be studied without cross effects from organic surface ligands. A detailed analysis of generated particles via transmission electron microscopy in combination with EDX elemental mapping could conclusively verify that the nature of the used solvent governs the internal phase structure of the formed nanoparticles. In the presence of acetone or methyl methacrylate, a gold shell covering a non-oxidized iron core was formed, whereas in aqueous media, an Au core with an Fe3O4 shell was generated. This core-shell morphology was the predominant species found in >90% of the examined nanoparticles. These findings indicate that fundamental chemical interactions between the nanoparticle surface and the solvent significantly contribute to phase segregation and elemental distribution in FeAu nanoparticles. A consecutive analysis of resulting Fe@Au core-shell nanoparticles revealed outstanding oxidation resistance and fair magnetic and optical properties. In particular, the combination of these features with high stability magnetism and plasmonics may create new opportunities for this hybrid material in imaging applications. PMID:27004738

  4. Fabrication of Cu-Ag core-shell bimetallic superfine powders by eco-friendly reagents and structures characterization

    SciTech Connect

    Zhao Jun; Zhang Dongming; Zhao Jie

    2011-09-15

    Superfine bimetallic Cu-Ag core-shell powders were synthesized by reduction of copper sulfate pentahydrate and silver nitrate with eco-friendly ascorbic acid as a reducing agent and cyclodextrins as a protective agent in an aqueous system. The influence of Ag/Cu ratio on coatings was investigated. Ag was homogeneously distributed on the surface of Cu particles at a mole ratio of Ag/Cu=1. FE-SEM showed an uniformity of Ag coatings on Cu particles. Antioxidation of Cu particles was improved by increasing Ag/Cu ratio. TEM-EDX and UV-vis spectra also revealed that Cu cores were covered by Ag nanoshells on the whole. The surface composition analysis by XPS indicated that only small parts of Cu atoms in the surface were oxidized. It was noted that the hindrance of cyclodextrins chemisorbed on particles plays an important role in forming high quality and good dispersity Cu-Ag (Cu-Ag) core-shell powders. - Graphical abstract: Mechanism of fabricating Cu-Ag particles with good dispersibility using {beta}-CDs as a protective agent was studied because of its special structure. Highlights: > Green supramolecular {beta}-CD used as a protective agent and ascorbic acid(Vc) as a reducing agent to fabricate Cu-Ag powders. > Particles are monodisperse and the diameter is close to nanoscale(100-150 nm). > Resistance of Cu particles to oxidation was higher. > Formation mechanism explained.

  5. Mechanical ball-milling preparation of fullerene/cobalt core/shell nanocomposites with high electrochemical hydrogen storage ability.

    PubMed

    Bao, Di; Gao, Peng; Shen, Xiande; Chang, Cheng; Wang, Longqiang; Wang, Ying; Chen, Yujin; Zhou, Xiaoming; Sun, Shuchao; Li, Guobao; Yang, Piaoping

    2014-02-26

    The design and synthesis of new hydrogen storage nanomaterials with high capacity at low cost is extremely desirable but remains challenging for today's development of hydrogen economy. Because of the special honeycomb structures and excellent physical and chemical characters, fullerenes have been extensively considered as ideal materials for hydrogen storage materials. To take the most advantage of its distinctive symmetrical carbon cage structure, we have uniformly coated C60's surface with metal cobalt in nanoscale to form a core/shell structure through a simple ball-milling process in this work. The X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectra, high-solution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrometry (EDX) elemental mappings, and X-ray photoelectron spectroscopy (XPS) measurements have been conducted to evaluate the size and the composition of the composites. In addition, the blue shift of C60 pentagonal pinch mode demonstrates the formation of Co-C chemical bond, and which enhances the stability of the as-obtained nanocomposites. And their electrochemical experimental results demonstrate that the as-obtained C60/Co composites have excellent electrochemical hydrogen storage cycle reversibility and considerably high hydrogen storage capacities of 907 mAh/g (3.32 wt % hydrogen) under room temperature and ambient pressure, which is very close to the theoretical hydrogen storage capacities of individual metal Co (3.33 wt % hydrogen). Furthermore, their hydrogen storage processes and the mechanism have also been investigated, in which the quasi-reversible C60/Co↔C60/Co-Hx reaction is the dominant cycle process. PMID:24498904

  6. B80 and B101-103 clusters: Remarkable stability of the core-shell structures established by validated density functionalsa)

    NASA Astrophysics Data System (ADS)

    Li, Fengyu; Jin, Peng; Jiang, De-en; Wang, Lu; Zhang, Shengbai B.; Zhao, Jijun; Chen, Zhongfang

    2012-02-01

    Prompted by the very recent claim that the volleyball-shaped B80 fullerene [X. Wang, Phys. Rev. B 82, 153409 (2010), 10.1103/PhysRevB.82.153409] is lower in energy than the B80 buckyball [N. G. Szwacki, A. Sadrzadeh, and B. I. Yakobson, Phys. Rev. Lett. 98, 166804 (2007), 10.1103/PhysRevLett.98.166804] and core-shell structure [J. Zhao, L. Wang, F. Li, and Z. Chen, J. Phys. Chem. A 114, 9969 (2010), 10.1021/jp1018873], and inspired by the most recent finding of another core-shell isomer as the lowest energy B80 isomer [S. De, A. Willand, M. Amsler, P. Pochet, L. Genovese, and S. Goedecher, Phys. Rev. Lett. 106, 225502 (2011), 10.1103/PhysRevLett.106.225502], we carefully evaluated the performance of the density functional methods in the energetics of boron clusters and confirmed that the core-shell construction (stuffed fullerene) is thermodynamically the most favorable structural pattern for B80. Our global minimum search showed that both B101 and B103 also prefer a core-shell structure and that B103 can reach the complete core-shell configuration. We called for great attention to the theoretical community when using density functionals to investigate boron-related nanomaterials.

  7. Self-Assembly of Crystalline Structures of Magnetic Core-Shell Nanoparticles for Fabrication of Nanostructured Materials.

    PubMed

    Xue, Xiaozheng; Wang, Jianchao; Furlani, Edward P

    2015-10-14

    A theoretical study is presented of the template-assisted formation of crystalline superstructures of magnetic-dielectric core-shell particles. The templates produce highly localized gradient fields and a corresponding magnetic force that guides the assembly with nanoscale precision in particle placement. The process is studied using two distinct and complementary computational models that predict the dynamics and energy of the particles, respectively. Both mono- and polydisperse colloids are studied, and the analysis demonstrates for the first time that although the particles self-assemble into ordered crystalline superstructures, the particle formation is not unique. There is a Brownian motion-induced degeneracy in the process wherein various distinct, energetically comparable crystalline structures can form for a given template geometry. The models predict the formation of hexagonal close packed (HCP) and face centered cubic (FCC) structures as well as mixed phase structures due to in-plane stacking disorders, which is consistent with experimental observations. The polydisperse particle structures are less uniform than the monodisperse particle structures because of the irregular packing of different-sized particles. A comparison of self-assembly using soft- and hard-magnetic templates is also presented, the former being magnetized in a uniform field. This analysis shows that soft-magnetic templates enable an order-of-magnitude more rapid assembly and much higher spatial resolution in particle placement than their hard-magnetic counterparts. The self-assembly method discussed is versatile and broadly applies to arbitrary template geometries and multilayered and multifunctional mono- and polydisperse core-shell particles that have at least one magnetic component. As such, the method holds potential for the bottom-up fabrication of functional nanostructured materials for a broad range of applications. This work provides unprecedented insight into the assembly

  8. Optical and Structural Investigations of Manganese Doped ZnS/SiO2 Core-Shell Nanostructure

    NASA Astrophysics Data System (ADS)

    Sana, Prabha; Verma, Shammi; Malik, M. M.

    2015-03-01

    The paper reports room temperature synthesis of wurtzite type manganese doped ZnS nanostructures via colloidal technique. The reaction procedure found to play an important role in the crystal growth of ZnS. Surface encapsulation of ZnS by silica (SiO2) provides effective approach for uniform coating, where 3-Mercaptopropyl Tri methoxysilane (MPS) has been used for silica source as a capping molecule. The obtained silica coated ZnS nanocrystals were well dispersed with hexagonal wurtzite structure of core-shell particles size of about 15 nm. Aggregation of these nanoparticles has been promoted to special shaped structures, which are crystals of 8H wurtzite with prominent pyramidal morphology with curved faces. Growth phenomena of this wurtzite polytype of homologous series 8H is based on screw dislocations and exhibited optimal photoluminescence (PL) spectra.

  9. Supersaturation-controlled surface structure evolution of Pd@Pt core-shell nanocrystals: enhancement of the ORR activity at a sub-10 nm scale.

    PubMed

    Qi, Kun; Zheng, Weitao; Cui, Xiaoqiang

    2016-01-21

    Here, we designed and implemented a facile strategy for controlling the surface evolution of Pd@Pt core-shell nanostructures by simply adjusting the volume of OH(-) to control the reducing ability of ascorbic acid and finally manipulating the supersaturation in the reaction system. The surface structure of the obtained Pd@Pt bimetallic nanocrystals transformed from a Pt {111} facet-exposed island shell to a conformal Pt {100} facet-exposed shell by increasing the pH value. The as-prepared well aligned Pd@Pt core-island shell nanocubes present both significantly enhanced electrocatalytic activity and favorable long-term stability toward the oxygen reduction reaction in alkaline media. PMID:26693587

  10. Rheological properties of magnetorheological suspensions based on core-shell structured polyaniline-coated carbonyl iron particles

    NASA Astrophysics Data System (ADS)

    Sedlačík, M.; Pavlínek, V.; Sáha, P.; Švrčinová, P.; Filip, P.; Stejskal, J.

    2010-11-01

    The sedimentation caused by the high density of suspended particles used in magnetorheological fluids is a significant obstacle for their wider application. In the present paper, core-shell structured carbonyl iron-polyaniline particles in silicone oil were used as a magnetorheological suspension with enhanced dispersion stability. Bare carbonyl iron particles were suspended in silicone oil to create model magnetorheological suspensions of different loading. For a magnetorheological suspension of polyaniline-coated particles the results show a decrease in the base viscosity. Moreover, the polyaniline coating has a negligible influence on the MR properties under an external magnetic field B. The change in the viscoelastic properties of magnetorheological suspensions in the small-strain oscillatory shear flow as a function of the strain amplitude, the frequency and the magnetic flux density was also investigated.

  11. Core-shell structured square mixed-spin 1 and 1/2 Ising nanowire on the Bethe lattice

    NASA Astrophysics Data System (ADS)

    Albayrak, Erhan

    2016-03-01

    The square Ising nanowire is constructed by adding square nanoparticles consisting of one spin-1 at the center and four spin-1/2 at the corners along a straight line in both directions. Therefore, this system may be taken to be equivalent to Bethe lattice of coordination number two and can be solved in terms of the exact recursion relations. This core-shell structured model is studied by using ferromagnetic exchange interactions between surface spins (Js), between core spins (Jc) and between surface and core spins (Jsc) and crystal field interaction (D) at the sites of spin-1. The phase diagrams of the model are obtained in terms of these parameters by varying the temperature on the possible planes. It is found that the model presents both second- and first-order phase transitions and tricritical points for the appropriate values of these parameters.

  12. Insight into the core-shell structures of Cu-In-S microspheres

    NASA Astrophysics Data System (ADS)

    Wochnik, Angela S.; Frank, Anna; Heinzl, Christoph; Häusler, Jonas; Schneider, Julian; Hoffmann, Ramona; Matich, Sonja; Scheu, Christina

    2013-12-01

    In this study we report about the inner and outer structure of CuInS2 microspheres which might be used e.g. in pastes for simple, low-cost solar cell preparation, as well as in electrodes for light-driven water splitting. The microspheres are synthesized via a mild, template-free solvothermal synthesis route and characterised by electron and focused ion beam microscopy, X-ray diffraction, inductively coupled plasma atomic emission and energy dispersive X-ray spectroscopy. The investigations of cross sections prepared by focused ion beam showed that the spheres consist of compact cores and flaky surface structures. Depending on the reaction time, the core possesses a stoichiometric or Cu-rich chemical composition surrounded by an In-rich shell. The flaky surface always comprises a stoichiometric composition in tetragonal chalcopyrite crystal structure, whereas the other areas additionally show minor contributions of CuS, and CuInS2 in hexagonal wurtzite structure. The presence of different phases can be beneficial for future applications since they offer different absorption behaviour in the visible range.

  13. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.

    PubMed

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio

    2016-04-13

    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization. PMID:26948023

  14. Monodisperse and core-shell-structured SiO2@YBO3:Eu3+ spherical particles: synthesis and characterization.

    PubMed

    Lin, Cuikun; Kong, Deyan; Liu, Xiaoming; Wang, Huan; Yu, Min; Lin, Jun

    2007-04-01

    Y0.9Eu0.1BO3 phosphor layers were deposited on monodisperse SiO2 particles of different sizes (300, 570, 900, and 1200 nm) via a sol-gel process, resulting in the formation of core-shell-structured SiO2@Y0.9Eu0.1BO3 particles. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL), and cathodoluminescence (CL) spectra as well as lifetimes were employed to characterize the resulting composite particles. The results of XRD, FE-SEM, and TEM indicate that the 800 degrees C annealed sample consists of crystalline YBO3 shells and amorphous SiO2 cores, in spherical shape with a narrow size distribution. Under UV (240 nm) and VUV (172 nm) light or electron beam (1-6 kV) excitation, these particles show the characteristic 5D0-7F1-4 orange-red emission lines of Eu3+ with a quantum yield ranging from 36% (one-layer Y0.9Eu0.1BO3 on SiO2) to 54% (four-layer Y0.9Eu0.1BO3 on SiO2). The luminescence properties (emission intensity and color coordinates) of Eu3+ ions in the core-shell particles can be tuned by the coating number of Y0.9Eu0.1BO3 layers and SiO2 core particle size to some extent, pointing out the great potential for these particles applied in displaying and lightening fields. PMID:17338518

  15. Study of structural and magnetic properties of superparamagnetic Fe3O4/SiO2 core-shell nanocomposites synthesized with hydrophilic citrate-modified Fe3O4 seeds via a sol-gel approach

    NASA Astrophysics Data System (ADS)

    Farimani, M. Helmi Rashid; Shahtahmasebi, N.; Rezaee Roknabadi, M.; Ghows, N.; Kazemi, A.

    2013-09-01

    This paper describes a simple way for the coating of magnetite nanoparticles (MNPs) with amorphous silica. First, MNPs were synthesized by controlled co-precipitation technique under N2 gas and then their surface was modified with trisodium citrate in order to achieve particles with improved dispersibility. Afterward, magnetite-silica core/shell nanocomposites were prepared by a sol-gel approach, using magnetic fluid including electrostatically stabilized MNPs as seeds. The prepared samples were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, zeta potential analysis and vibrating sample magnetometer (VSM) in order to study their structural and magnetic properties. FT-IR and XRD results imply that resultant nanocomposites are consisted of two compounds; Fe3O4 and SiO2 and TEM images confirm formation of their core/shell structure. TEM images also show increase in silica shell thickness from ∼5 to ∼24 nm with increase in amount of tetraethyl orthosilicate (TEOS) used during the coating process from 0.1 to 0.3 mL. Magnetic studies indicate that Fe3O4 nanoparticles remain superparamagnetic after coating with silica although their Ms values are significantly less than pristine MNPs. These core/shell nanocomposites offer a high potential for different biomedical applications due to having superparamagnetic property of magnetite and unique properties of silica.

  16. Structure and stability of nickel/nickel oxide core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    D'Addato, S.; Grillo, V.; Altieri, S.; Tondi, R.; Valeri, S.; Frabboni, S.

    2011-05-01

    The results of a combined x-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HR-TEM) study of Ni nanoparticles (NP), before and after oxidation, are presented. An experimental set-up was realized for the preparation and study of pre-formed NP films, concentrating the attention on Ni NP in the diameter range between 4 and 8 nm. The XPS data were taken in situ from NPs after different stages of oxidation, including controlled dosing of O2 gas in the experimental system and exposure to the atmosphere. The Ni 2p structure is a combination of spectra from metallic Ni in the NP core and from the oxide shell. The signal from the NP core was observed even for samples after exposure to air. From the comparison of HR-TEM experimental images with theoretical simulations, it was found that the Ni NP core has a regular multitwinned icosahedral structure, composed of single-crystal tetrahedra with (111) faces. The NiO phase is clearly observed forming islands on the NP surface.

  17. Gram-level synthesis of core-shell structured catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Luo, Mingchuan; Wei, Lingli; Wang, Fanghui; Han, Kefei; Zhu, Hong

    2014-12-01

    Over the past decade, Pt based core-shell structured alloys have been studied extensively as oxygen reduction reaction (ORR) catalysts for proton exchange membrane fuel cells (PEMFCs) because of their distinctive electrochemical performance and low Pt loading. In this paper, a facile route based on microwave-assisted polyol method and chemical dealloying process is proposed to synthesize carbon supported core-shell structured nanoparticles (NPs) in gram-level for ORR electrocatalysis in PEMFCs. The obtained samples are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and X-ray photoelectron spectroscopy (XPS). These physical characterization indicate that the final synthesized NPs are highly dispersed on the carbon support, and in a core-shell structure with CuPt alloy as the core and Pt as the shell. Electrochemical measurements, conducted by cyclic voltammetry (CV) and rotating disk electrode (RDE) tests, show the core-shell structured catalyst exhibit a 3× increase in mass activity and a 2× increase in specific activity over the commercial Pt/C catalyst, respectively. These results demonstrate that this route can be a reliable way to synthesize low-Pt catalyst in large-scale for PEMFCs.

  18. Co-electrospinning fabrication and study of structural and electromagnetic interference-shielding effectiveness of TiO2/SiO2 core-shell nanofibers

    NASA Astrophysics Data System (ADS)

    Nakhaei, Omolfajr; Shahtahmassebi, Nasser; Rezaee Roknabadi, Mahmood; Behdani, Mohammad

    2016-05-01

    The present paper reports novel outcome comprising experimental results on electromagnetic interference (EMI) shielding and radar signal absorption characteristics of one-dimensional (1D) TiO2/SiO2 core-shell nanofibers. 1D TiO2/SiO2 core-shell nanofibers with various concentrations of nanoparticles (NPs) were fabricated using a single-nozzle co-electrospinning method. The core-shell structure of polyvinylpyrrolidone/polyacrylonitrile nanofibers with NPs have been electrospun from the homogeneous solution of polyvinylpyrrolidone (PVP and TiO2 NPs, as core) and polyacrylonitrile (PAN and SiO2 NPs, as shell). The morphologies and structures of TiO2/SiO2 core-shell nanofibers were characterized by XRD, FTIR, EDS, and SEM images. Microwave absorption properties of the synthesized nanofibers were studied using a vector network analyzer between 2 and 20 GHz at room temperature. The maximum EMI-shielding effectiveness of 150 dB is obtained with the dominant shielding mechanism of absorption of EM radiation. The excellent microwave absorption properties of the composites nanofibers are attributed to the special 1D fibrous structure and the effective dielectric loss.

  19. Atomic structure and thermal stability of Pt-Fe bimetallic nanoparticles: from alloy to core/shell architectures.

    PubMed

    Huang, Rao; Wen, Yu-Hua; Shao, Gui-Fang; Sun, Shi-Gang

    2016-06-22

    Bimetallic nanoparticles comprising noble metal and non-noble metal have attracted intense interest over the past few decades due to their low cost and significantly enhanced catalytic performances. In this article, we have explored the atomic structure and thermal stability of Pt-Fe alloy and core-shell nanoparticles by molecular dynamics simulations. In Fe-core/Pt-shell nanoparticles, Fe with three different structures, i.e., body-centered cubic (bcc), face-centered cubic (fcc), and amorphous phases, has been considered. Our results show that Pt-Fe alloy is the most stable configuration among the four types of bimetallic nanoparticles. It has been discovered that the amorphous Fe cannot stably exist in the core and preferentially transforms into the fcc phase. The phase transition from bcc to hexagonal close packed (hcp) has also been observed in bcc-Fe-core/Pt-shell nanoparticles. In contrast, Fe with the fcc structure is the most preferred as the core component. These findings are helpful for understanding the structure-property relationships of Pt-Fe bimetallic nanoparticles, and are also of significance to the synthesis and application of noble metal based nanoparticle catalysts. PMID:27297782

  20. New Double-Infiltration Methodology to Prepare PCL-PS Core-Shell Nanocylinders Inside Anodic Aluminum Oxide Templates.

    PubMed

    Sanz, Belén; Blaszczyk-Lezak, Iwona; Mijangos, Carmen; Palacios, Jordana K; Müller, Alejandro J

    2016-08-01

    Melt nanomolding of core-shell nanocylinders of different sizes, employing anodic aluminum oxide (AAO) templates, is reported here for the first time. The core-shell nanostructures are achieved by a new melt double-infiltration technique. During the first infiltration step, polystyrene (PS) nanotubes are produced by an adequate choice of AAO nanopore diameter size. In the second step, PCL is infiltrated inside the PS nanotubes, as its melting point (and infiltration temperature) is lower than the glass transition temperature of PS. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) measurements verified the complete double-infiltration of the polymers. Differential scanning calorimetry (DSC) experiments show that the infiltrated PCL undergoes a confined fractionated crystallization with two crystallization steps located at temperatures that depend on which surface is in contact with the PCL nanocylinders (i.e., alumina or PS). The melt double-infiltration methodology represents a novel approach to study the effect of the surrounding surface on polymer crystallization under confinement. PMID:27420298

  1. Preparation and characterization of core-shell battery materials for Li-ion batteries manufactured by substrate induced coagulation

    NASA Astrophysics Data System (ADS)

    Basch, Angelika; Albering, Jörg H.

    2011-03-01

    In this work Substrate Induced Coagulation (SIC) was used to coat the cathode material LiCoO2, commonly used in Li-ion batteries, with fine nano-sized particulate titania. Substrate Induced Coagulation is a self-assembled dip-coating process capable of coating different surfaces with fine particulate materials from liquid media. A SIC coating consists of thin and rinse-prove layers of solid particles. An advantage of this dip-coating method is that the method is easy and cheap and that the materials can be handled by standard lab equipment. Here, the SIC coating of titania on LiCoO2 is followed by a solid-state reaction forming new inorganic layers and a core-shell material, while keeping the content of active battery material high. This titania based coating was designed to confine the reaction of extensively delithiated (charged) LiCoO2 and the electrolyte. The core-shell materials were characterized by SEM, XPS, XRD and Rietveld analysis.

  2. Diverse melting modes and structural collapse of hollow bimetallic core-shell nanoparticles: a perspective from molecular dynamics simulations.

    PubMed

    Huang, Rao; Shao, Gui-Fang; Zeng, Xiang-Ming; Wen, Yu-Hua

    2014-01-01

    Introducing hollow structures into metallic nanoparticles has become a promising route to improve their catalytic performances. A fundamental understanding of thermal stability of these novel nanostructures is of significance for their syntheses and applications. In this article, molecular dynamics simulations have been employed to offer insights into the thermodynamic evolution of hollow bimetallic core-shell nanoparticles. Our investigation reveals that for hollow Pt-core/Au-shell nanoparticle, premelting originates at the exterior surface, and a typical two-stage melting behavior is exhibited, similar to the solid ones. However, since the interior surface provides facilitation for the premelting initiating at the core, the two-stage melting is also observed in hollow Au-core/Pt-shell nanoparticle, remarkably different from the solid one. Furthermore, the collapse of hollow structure is accompanied with the overall melting of the hollow Pt-core/Au-shell nanoparticle while it occurs prior to that of the hollow Au-core/Pt-shell nanoparticle and leads to the formation of a liquid-core/solid-shell structure, although both of them finally transform into a mixing alloy with Au-dominated surface. Additionally, the existence of stacking faults in the hollow Pt-core/Au-shell nanoparticle distinctly lowers its melting point. This study could be of great importance to the design and development of novel nanocatalysts with both high activity and excellent stability. PMID:25394424

  3. Diverse Melting Modes and Structural Collapse of Hollow Bimetallic Core-Shell Nanoparticles: A Perspective from Molecular Dynamics Simulations

    PubMed Central

    Huang, Rao; Shao, Gui-Fang; Zeng, Xiang-Ming; Wen, Yu-Hua

    2014-01-01

    Introducing hollow structures into metallic nanoparticles has become a promising route to improve their catalytic performances. A fundamental understanding of thermal stability of these novel nanostructures is of significance for their syntheses and applications. In this article, molecular dynamics simulations have been employed to offer insights into the thermodynamic evolution of hollow bimetallic core-shell nanoparticles. Our investigation reveals that for hollow Pt-core/Au-shell nanoparticle, premelting originates at the exterior surface, and a typical two-stage melting behavior is exhibited, similar to the solid ones. However, since the interior surface provides facilitation for the premelting initiating at the core, the two-stage melting is also observed in hollow Au-core/Pt-shell nanoparticle, remarkably different from the solid one. Furthermore, the collapse of hollow structure is accompanied with the overall melting of the hollow Pt-core/Au-shell nanoparticle while it occurs prior to that of the hollow Au-core/Pt-shell nanoparticle and leads to the formation of a liquid-core/solid-shell structure, although both of them finally transform into a mixing alloy with Au-dominated surface. Additionally, the existence of stacking faults in the hollow Pt-core/Au-shell nanoparticle distinctly lowers its melting point. This study could be of great importance to the design and development of novel nanocatalysts with both high activity and excellent stability. PMID:25394424

  4. Chemical protection of ZnO nanorods at ultralow pH To form a hierarchical BiFeO3/ZnO core-shell structure.

    PubMed

    Loh, Leonard; Briscoe, Joe; Dunn, Steve

    2015-01-14

    ZnO is an interesting material for photoactive and optoelectronic devices because of the wide range of available nanostructures and advantageous semiconducting properties. However, a significant drawback of ZnO is the low stability in high or low pH solutions. This has limited the development of ZnO core-shell materials for use in Z-scheme systems or photovoltaics, where any secondary phase is produced using chemical solution processing at low or high pH. Here, we show a simple process to produce an organic capping layer of 3-aminopropyltriethoxysilane that can successfully stabilize nanostructured ZnO for processing below pH 1. We demonstrate that this process can be used to produce a ZnO-BiFeO3 (BFO) core-shell structure by a sol-gel process. Using a range of physical and analytical techniques, we show that BFO is highly crystalline and produces a conformal coating with a thickness of 2.5 nm. X-ray photoelectron spectroscopy and X-ray diffraction confirm the phase and expected chemical composition of BFO. Finally we are able to demonstrate that diodes produced using the ZnO-BFO core-shell structure have improved performance with a rectification ratio at ±3 V of 2800 because of the reduction in reverse current typically associated with surface recombination on ZnO. Our process opens a route to producing a range of hitherto prohibited ZnO core-shell structures that may have applications ranging from photovoltaic devices to core-shell photocatalysts. PMID:25247787

  5. Core-shell palladium nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions.

    PubMed

    Zhao, Meiting; Deng, Ke; He, Liangcan; Liu, Yong; Li, Guodong; Zhao, Huijun; Tang, Zhiyong

    2014-02-01

    Uniform core-shell Pd@IRMOF-3 nanostructures, where single Pd nanoparticle core is surrounded by amino-functionalized IRMOF-3 shell, are prepared by a facile mixed solvothermal method. When used as multifunctional catalysts, the Pd@IRMOF-3 nanocomposites exhibit high activity, enhanced selectivity, and excellent stability in the cascade reaction. Both experimental evidence and theoretical calculations reveal that the high catalytic performance of Pd@IRMOF-3 nanocomposites originates from their unique core-shell structures. PMID:24437922

  6. HPC-enabled Nuclear Structure Studies - Description and Applications of the Symmetry-adapted No-Core Shell Model

    NASA Astrophysics Data System (ADS)

    Draayer, J. P.; Dytrych, T.; Launey, K. D.; Dreyfuss, A. C.; Langr, D.

    2015-02-01

    By exploiting symmetries that enable the accounting of vital collective correlations in nuclei, we achieve significantly reduced dimensions for equivalent ultra-large model spaces, and hence resolve the scale explosion problem in nuclear structure calculations, i.e, the explosive growth in computational resource demands with increasing number of particles and size of the spaces in which they reside. As a result, we provide - with the help of High Performance Computing (HPC) resources - first solutions for selected benchmark calculations with remarkable findings of large-deformation and low-spin dominance in low-lying nuclear states. In the framework of a complementary symmetry-adapted study, one is able, facilitated by symmetry-preserving pieces of the inter-nucleon interaction, to accommodate unprecedented shell-model spaces critical to capture the physics governing the Hoyle state in 12C, thereby addressing a 60-year-old puzzle on the emergence of cluster substructures within a no-core shell model framework. All of these findings underline the key role of symmetries in nuclear structure studies.

  7. Growth control, structure, chemical state, and photoresponse of CuO-CdS core-shell heterostructure nanowires.

    PubMed

    El Mel, A A; Buffière, M; Bouts, N; Gautron, E; Tessier, P Y; Henzler, K; Guttmann, P; Konstantinidis, S; Bittencourt, C; Snyders, R

    2013-07-01

    The growth of single-crystal CuO nanowires by thermal annealing of copper thin films in air is studied. We show that the density, length, and diameter of the nanowires can be controlled by tuning the morphology and structure of the copper thin films deposited by DC magnetron sputtering. After identifying the optimal conditions for the growth of CuO nanowires, chemical bath deposition is employed to coat the CuO nanowires with CdS in order to form p-n nanojunction arrays. As revealed by high-resolution TEM analysis, the thickness of the polycrystalline CdS shell increases when decreasing the diameter of the CuO core for a given time of CdS deposition. Near-edge x-ray absorption fine-structure spectroscopy combined with transmission x-ray microscopy allows the chemical analysis of isolated nanowires. The absence of modification in the spectra at the Cu L and O K edges after the deposition of CdS on the CuO nanowires indicates that neither Cd nor S diffuse into the CuO phase. We further demonstrate that the core-shell nanowires exhibit the I-V characteristic of a resistor instead of a diode. The electrical behavior of the device was found to be photosensitive, since increasing the incident light intensity induces an increase in the collected electrical current. PMID:23732175

  8. Preparation and characterization of WO3 nanoparticles, WO3/TiO2 core/shell nanocomposites and PEDOT:PSS/WO3 composite thin films for photocatalytic and electrochromic applications

    NASA Astrophysics Data System (ADS)

    Boyadjiev, Stefan I.; Santos, Gustavo dos Lopes; Szżcs, Júlia; Szilágyi, Imre M.

    2016-03-01

    In this study, monoclinic WO3 nanoparticles were obtained by thermal decomposition of (NH4)xWO3 in air at 600 °C. On them by atomic layer deposition (ALD) TiO2 films were deposited, and thus core/shell WO3/TiO2 nanocomposites were prepared. We prepared composites of WO3 nanoparticles with conductive polymer as PEDOT:PSS, and deposited thin films of them on glass and ITO substrates by spin coating. The formation, morphology, composition and structure of the as-prepared pure and composite nanoparticles, as well thin films, were studied by TEM, SEM-EDX and XRD. The photocatalytic activity of both the WO3 and core/shell WO3/TiO2 nanoparticles was studied by decomposing methyl orange in aqueous solution under UV light irradiation. Cyclic voltammetry measurements were performed on the composite PEDOT:PSS/WO3 thin films, and the coloring and bleaching states were studied.

  9. Enhanced photoluminescence properties of methylene blue dye encapsulated in nanosized hydroxyapatite/silica particles with core-shell structure

    NASA Astrophysics Data System (ADS)

    Ge, Xiaolu; Li, Chengfeng; Fan, Chengyu; Feng, Xiaoxing; Cao, Bingqiang

    2013-11-01

    Organic dye of methylene blue (MB) was encapsulated in core-shell structured hydroxyapatite/silica particles (HAp/silica-MB) through a modified Stöber method with the addition of polyvinylpyrrolidone molecules. It was found that MB molecules were released from HAp/silica-MB at a slower rate than those from silica-MB in deionized water. In phosphate buffered saline (pH: 7.2-7.4) and acidic solutions (pH: 1.5-1.6), the penetration of ions in the interface influenced the interaction between HAp and MB molecules, which resulted in the rapid release of MB molecules from HAp/silica-MB. From the UV-Vis absorbance spectra, one could see that MB molecules in HAp/silica-MB were weakly aggregated in comparison with those in silica-MB. For HAp/silica-MB, enhanced luminescence properties were observed in the photoluminescence spectra and dual luminescence with two emission peaks were caused by the presence of monomers and dimers. Contrarily, no photoluminescence emission was detected for samples of free MB and silica-MB under the same excitation condition because of the self-quenching effect. It was the adsorption of MB molecules on HAp that had resulted in the enlargement of intramolecular distance and the reduction of self-quenching effect. These hybrid particles with enhanced luminescent properties might find wide applications in the field of bioanalysis, bioseparation, and biomedical imaging.

  10. Generation of core-shell structures and segregation of dopants in Si/SiO2 nanowires

    NASA Astrophysics Data System (ADS)

    Kim, Sunghyun; Park, Ji-Sang; Chang, K. J.

    2013-03-01

    Oxidized Si nanowires (SiNWs) are usually synthesized by subsequent thermal annealing of as-grown SiNWs. It has been observed that B diffusivity is enhanced during thermal annealing in SiNWs, similar to the phenomena called transient enhanced diffusion or oxidation enhanced diffusion in planar Si/SiO2 interfaces. However, previous theoretical studies have been focused on hydrogen or hydroxyl terminated SiNWs. In this work, we generate realistic atomic models for oxidized SiNWs in which crystalline Si core is sheathed by amorphous SiO2 by using a combined approach of classical molecular dynamics simulations with first-principles density functional calculations. For realistic core-shell structures, we investigate the stability and segregation behavior of B and P dopants. A single substitutional B is more stable in the Si core, with a very small energy variation with the radial position of B. On the other hand, B dopants easily segregate to the oxide shell with the aid of Si self-interstitials generated during thermal oxidation. In contrast to B dopants, P dopants prefer to reside in the Si core even in the presence of Si self-interstitials but tend to aggregate in the Si region near the interface, forming nearest-neighbor donor pairs which are electrically inactive.

  11. Light-stimulated cargo release from a core-shell structured nanocomposite for site-specific delivery

    NASA Astrophysics Data System (ADS)

    Cai, Yun; Ling, Li; Li, Xiaofang; Chen, Meng; Su, Likai

    2015-03-01

    This paper reported a core-shell structured site-specific delivery system with a light switch triggered by low energy light (λ=510 nm). Its core was composed of supermagnetic Fe3O4 nanoparticles for magnetic guiding and targeting. Its outer shell consisted of mesoporous silica molecular sieve MCM-41 which offered highly ordered hexagonal tunnels for cargo capacity. A light switch N1-(4aH-cyclopenta[1,2-b:5,4-b‧]dipyridin-5(5aH)-ylidene)benzene-1,4-diamine (CBD) was covalently grafted into these hexagonal tunnels, serving as light stimuli acceptor with loading content of 1.1 μM/g. This composite was fully characterized and confirmed by SEM, TEM, XRD patterns, N2 adsorption/desorption, thermogravimetric analysis, IR, UV-vis absorption and emission spectra. Experimental data suggested that this composite had a core as wide as 150 nm and could be magnetically guided to specific sites. Its hexagonal tunnels were as long as 180 nm. Upon light stimuli of "on" and "off" states, controllable release was observed with short release time of ~900 s (90% capacity).

  12. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts.

    PubMed

    Wang, Deli; Xin, Huolin L; Hovden, Robert; Wang, Hongsen; Yu, Yingchao; Muller, David A; DiSalvo, Francis J; Abruña, Héctor D

    2013-01-01

    To enhance and optimize nanocatalyst performance and durability for the oxygen reduction reaction in fuel-cell applications, we look beyond Pt-metal disordered alloys and describe a new class of Pt-Co nanocatalysts composed of ordered Pt(3)Co intermetallic cores with a 2-3 atomic-layer-thick platinum shell. These nanocatalysts exhibited over 200% increase in mass activity and over 300% increase in specific activity when compared with the disordered Pt(3)Co alloy nanoparticles as well as Pt/C. So far, this mass activity for the oxygen reduction reaction is the highest among the Pt-Co systems reported in the literature under similar testing conditions. Stability tests showed a minimal loss of activity after 5,000 potential cycles and the ordered core-shell structure was maintained virtually intact, as established by atomic-scale elemental mapping. The high activity and stability are attributed to the Pt-rich shell and the stable intermetallic Pt(3)Co core arrangement. These ordered nanoparticles provide a new direction for catalyst performance optimization for next-generation fuel cells. PMID:23104154

  13. A core-shell-structured molecularly imprinted polymer on upconverting nanoparticles for selective and sensitive fluorescence sensing of sulfamethazine.

    PubMed

    Tian, Jinghan; Bai, Jialei; Peng, Yuan; Qie, Zhiwei; Zhao, Yufeng; Ning, Baoan; Xiao, Dan; Gao, Zhixian

    2015-08-01

    A core-shell structured molecularly imprinted polymer on upconverting nanoparticles (UCNPs@MIP) was synthesized for the fluorescence (FL) sensing of sulfamethazine (SMZ). Hexagonal UCNPs were synthesized by the solvothermal method, then coated with a thin silica shell and modified with vinyl groups. Finally, surface polymerization was initiated among the vinyl groups, the functional monomers and cross-linking agents by the initiator. The MIP synthesized by this procedure was anchored on the surface of UCNPs, possessed better site accessibility and lower transfer resistance for the target molecule compared to bulk imprinted materials. The obtained UCNPs@MIP showed good binding capacity, fast response, high selectivity and specificity to the SMZ. The FL intensity of the UCNPs@MIP decreased sensitively with the increasing concentration of SMZ in the range of 50-700 ng mL(-1), the detection limit was 34 ng mL(-1) (S/N = 3). The UCNPs@MIP was successfully applied to the detection of SMZ in chicken samples. Thanks to the unique near-infrared (NIR) excitation nature of UCNPs, the chicken meat only needed some simple extraction procedures before FL detection, no complex purifications were required. The average recoveries ranged from 96.01% to 98.90%, with relative standard deviations (RSDs) below 4.5%. This work offers a novel sensing system that combined the advantages of upconverting nanotechnology and molecularly imprinted technology. PMID:26075380

  14. Enhanced upconversion luminescence through core/shell structures and its application for detecting organic dyes in opaque fishes.

    PubMed

    Hu, Pan; Wu, Xiaofeng; Hu, Shigang; Chen, Zenghui; Yan, Huanyuan; Xi, Zaifang; Yu, Yi; Dai, Gangtao; Liu, Yunxin

    2016-02-10

    Here, we report the enhanced upconversion luminescence of NaLuF4:18%Yb(3+),2%Er(3+) through core/shell structures. Among NaYF4, NaGdF4, and NaLuF4 shells, the first one presents the highest efficiency. These upconversion fluorescent nanoprobes with an oleic acid/PEG hybrid ligand can efficiently capture Rhodamine B (RB) and sodium fluorescein (SF) in opaque fishes to present their residues in vivo through luminescence resonant energy transfer (LRET) processes. It can be confirmed based on LRET technology that no RB is absorbed by opaque fishes after incubating in the aqueous solution of 1 μg ml(-1) RB for one day, while SF residue can be obviously detected after incubating in the aqueous solution of 1 μg ml(-1) SF for one day. The merit of this LRET technology with the upconversion nanoparticle (UCNP) donor is ascribed to the deep penetration depth of the infrared pumping laser and high signal to noise ratio. PMID:26806612

  15. Novel method for the preparation of core-shell nanoparticles with movable Ag core and polystyrene loop shell

    SciTech Connect

    Liu Weijun; Zhang Zhicheng . E-mail: lwj3600@ustc.edu; He Weidong; Zheng Cheng; Ge Xuewu; Li, Jian; Liu Huarong; Jiang Hao

    2006-04-15

    Core/shell nanoparticles with movable silver (Ag) core and polystyrene (PSt) shell (Ag at PSt nanoparticle) were successfully synthesized at room temperature and under ambient pressure via two steps: {gamma}-irradiation and interfacial-initiated polymerization. Firstly, mono-dispersed Ag nanoparticles with diameters 20 nm were synthesized in inversed microemulsion by reducing silver nitrate under {gamma}-irradiation. Then, Ag nanoparticles were coated with PSt via interfacial-initiated polymerization with cumene hydroperoxide/ferrous sulfate/disodium ethylenediaminetetraacetate/sodium formaldehyde sulfoxylate (CHPO-Fe {sup 2+}-EDTA-SFS) as the redox initiation pair. The resulted Ag at PSt nanoparticles were identified by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS)

  16. Preparation of SiC/SiO2 core-shell nanowires via molten salt mediated carbothermal reduction route

    NASA Astrophysics Data System (ADS)

    Zhang, Ju; Yan, Shuai; Jia, Quanli; Huang, Juntong; Lin, Liangxu; Zhang, Shaowei

    2016-06-01

    The growth of silicon carbide (SiC) crystal generally requires a high temperature, especially when low quality industrial wastes are used as the starting raw materials. In this work, SiC/SiO2 core-shell nanowires (NWs) were synthesized from low cost silica fume and sucrose via a molten salt mediated carbothermal reduction (CR) route. The molten salt was found to be effective in promoting the SiC growth and lowering the synthesis temperature. The resultant NWs exhibited a heterostructure composed of a 3C-SiC core of 100 nm in diameter and a 5-10 nm thick amorphous SiO2 shell layer. The photoluminescence spectrum of the achieved SiC NWs displayed a significant blue shift (a dominant luminescence at round 422 nm), which suggested that they were high quality and could be a promising candidate material for future optoelectronic applications.

  17. Exploring the first steps in core-shell electrocatalyst preparation: in situ characterization of the underpotential deposition of Cu on supported Au nanoparticles.

    PubMed

    Price, Stephen W T; Speed, Jonathon D; Kannan, Prabalini; Russell, Andrea E

    2011-12-01

    The underpotential deposition (upd) of a Cu shell on a non-Pt nanoparticle core followed by galvanic displacement of the Cu template shell to form core-shell electrocatalyst materials is one means by which the Pt-based mass activity targets required for commercialization of PEM fuel cells may be reached. In situ EXAFS measurements were conducted at both the Au L(3) and the Cu K absorption edges during deposition of Cu onto a carbon-supported Au electrocatalyst to study the initial stages of formation of such a core-shell electrocatalyst. The Au L(3) EXAFS data obtained in 0.5 mol dm(-3) H(2)SO(4) show that the shape of the Au core is potential dependent, from a flattened to a round spherical shape as the Cu upd potential is approached. Following the addition of 2 mmol dm(-3) Cu, the structure was also measured as a function of the applied potential. At +0.2 V vs Hg/Hg(2)SO(4), the Cu(2+) species was found to be a hydrated octahedron. As the potential was made more negative, single-crystal studies predict an ordered bilayer of sulfate anions and partially discharged Cu ions, followed by a complete/uniform layer of Cu atoms. In contrast, the model obtained by fitting the Au L(3) and Cu K EXAFS data corresponds first to partially discharged Cu ions deposited at the defect sites in the outer shell of the Au nanoparticles at -0.42 V, followed by the growth of clusters of Cu atoms at -0.51 V. The absence of a uniform/complete Cu shell, even at the most negative potentials investigated, has implications for the structure, and the activity and/or stability, of the core-shell catalyst that would be subsequently formed following galvanic displacement of the Cu shell. PMID:22032178

  18. Structure and magnetism in Fe/FexPd1-x core/shell nanoparticles formed by alloying in Pd-embedded Fe nanoparticles

    NASA Astrophysics Data System (ADS)

    Baker, S. H.; Lees, M.; Roy, M.; Binns, C.

    2013-09-01

    We have investigated atomic structure and magnetism in Fe nanoparticles with a diameter of 2 nm embedded in a Pd matrix. The samples for these studies were prepared directly from the gas phase by co-deposition, using a gas aggregation source and an MBE-type source for the Fe nanoparticles and Pd matrix respectively. Extended absorption fine structure (EXAFS) measurements indicate that there is an appreciable degree of alloying at the nanoparticle/matrix interface; at dilute nanoparticle concentrations, more than half of the Fe atoms are alloyed with Pd. This leads to a core/shell structure in the embedded nanoparticles, with an FexPd1-x shell surrounding a reduced pure Fe core. Magnetism in the nanocomposite samples was probed by means of magnetometry measurements, which were interpreted in the light of their atomic structure. These point to a magnetized cloud of Pd atoms surrounding the embedded nanoparticles which is significantly larger than around single Fe atoms in Pd. The coercivities in the Fe/Pd nanocomposite samples are larger than in FexPd1-x atomic alloys of corresponding composition, which is consistent with exchange coupling between the magnetically harder and softer regions in the nanocomposite samples.

  19. Control of protein adsorption onto core-shell tubular and vesicular structures of diphenylalanine/parylene.

    PubMed

    Demirel, Gökhan; Malvadkar, Niranjan; Demirel, Melik C

    2010-02-01

    The self-assembly of peptides, specifically dipeptides, offers numerous advantages for biological applications. We describe an easy, versatile method of fabricating different types of zwitterionic Phe-Phe dipeptide structures (i.e., tubes and vesicles) through solvent-mediated assembly. The stability of the dipeptide structures is increased by thin polymer coatings of poly(chloro-p-xylylene), a PPX film. We also investigated protein adsorption onto PPX-coated peptide tubes and vesicles by varying the thickness of the polymer film. PMID:20000323

  20. [Adsorption of Cu on Core-shell Structured Magnetic Particles: Relationship Between Adsorption Performance and Surface Properties].

    PubMed

    Li, Qiu-mei; Chen, Jing; Li, Hai-ning; Zhang, Xiao-lei; Zhang, Gao-sheng

    2015-12-01

    In order to reveal the relationship between the adsorption performance of adsorbents and their compositions, structure, and surface properties, the core-shell structured Fe₃O₄/MnO2 and Fe-Mn/Mn₂2 magnetic particles were systematically characterized using multiple techniques and their Cu adsorption behaviors as well as mechanism were also investigated in details. It was found that both Fe₃O4 and Fe-Mn had spinel structure and no obvious crystalline phase change was observed after coating with MnO₂. The introduction of Mn might improve the affinity between the core and the shell, and therefore enhanced the amount and distribution uniformity of the MnO₂ coated. Consequently, Fe-Mn/MnO₂ exhibited a higher BET specific surface area and a lower isoelectric point. The results of sorption experiments showed that Fe-Mn had a higher maximal Cu adsorption capacity of 33.7 mg · g⁻¹ at pH 5.5, compared with 17.5 mg · g⁻¹ of Fe₃O4. After coating, the maximal adsorption capacity of Fe-Mn/MnO₂ was increased to 58.2 mg · g⁻¹, which was 2.6 times as high as that of Fe₃O₄/MnO₂ and outperformed the majority of magnetic adsorbents reported in literature. In addition, a specific adsorption of Cu occurred at the surface of Fe₃O₄/MnO₂ or Fe-Mn/MnO₂ through the formation of inner-sphere complexes. In conclusion, the adsorption performance of the magnetic particles was positively related to their compositions, structure, and surface properties. PMID:27011990

  1. Complex three-dimensional polymer-metal core-shell structures towards emission control.

    PubMed

    Ren, Lin; Wang, De-Gong; Niu, Li-Gang; Xu, Bin-Bin; Song, Jun-Feng; Chen, Qi-Dai; Sun, Hong-Bo

    2013-06-28

    We report the fabrication of three-dimensional periodic metal nickel nanostructures achieved by the combination of femtosecond laser-induced two-photon polymerization and electroless plating technology. We can control the deposition speed of 10 nm per second by adjusting the reaction time. The thermal stability is good under 500 °C for the three-dimensional graphite-lattice polymer structure with 200 nm nickel film. Optical reflectivity and thermal emission measurements under 550 °C showed that the fabricated metallic structure was thermally excited and emitted light at λ = 4.50, 4.95 μm. The emission peak wavelengths agree with the absorption peaks. These data demonstrate that creating metallic photonic crystals by incorporation of metals to laser-fabricated templates is a simple and cost-efficient method. The emitters can work at such low temperatures, which is more important for realistic operation in applications. PMID:23666225

  2. Morphology-controlled synthesis of monodispersed graphitic carbon coated core/shell structured Ni/NiO nanoparticles with enhanced magnetoresistance.

    PubMed

    Patange, M; Biswas, S; Yadav, A K; Jha, S N; Bhattacharyya, D

    2015-12-28

    Graphitic carbon coated core/shell structured Ni/NiO nanoparticles were synthesized by a sol-gel type chemical precursor method and their structural, morphological and magnetic properties were evaluated. The synthesis method provides an improved and comparatively facile approach towards controlled growth of the composite structure of a metallic ferromagnetic (FM) core and an antiferromagnetic (AFM) metal oxide shell along with in situ growth of a supplementary surface functionalization layer of graphitic carbon. In addition, the process allows a precise control over the shape and size of this important class of core/shell type functional materials for a wide range of pertinent applications. The structural properties of the derived samples were studied with X-ray diffraction (XRD), X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS), Raman spectroscopy, energy dispersive X-ray (EDX) analysis, and X-ray photoelectron spectroscopy (XPS). The microstructural features in the core/shell structured particles were evaluated using a scanning electron microscope (SEM) and a high resolution transmission electron microscope (HRTEM). Magnetic properties of the derived samples were studied using a vibrating sample magnetometer (VSM) in the 80-300 K temperature range. The surface functionalized Ni/NiO nanoparticles exhibit a distinctly enhanced magnetoresistance (MR), e.g., -10% at 290 K, than reported values in compacted Ni/NiO powders or composites. PMID:26585235

  3. Preparation of Li2TiO3-Li4SiO4 core-shell ceramic pebbles with enhanced crush load by graphite bed process

    NASA Astrophysics Data System (ADS)

    Xiang, Maoqiao; Zhang, Yingchun; Zhang, Yun; Liu, Shuya; Liu, Hui; Wang, Chaofu; Gu, Cheng

    2015-11-01

    Li4SiO4 and Li2TiO3 have been regarded as the most favored ceramic breeders of the test blanket modules (TBMs). The lithium density of Li4SiO4 is higher than that of Li2TiO3; however, the thermo-mechanical stability of Li2TiO3 is better than that of Li4SiO4. Hence, the biphasic yLi2TiO3-(1-y)Li4SiO4 (y = 25%, 50%, 75%, molar ratio) pebbles were fabricated by a graphite bed process for the next generation of advanced tritium breeder materials. The pebbles with interesting core-shell structure (core: Li2TiO3 and Li4SiO4, shell: Li2TiO3) were fabricated for the first time. The thickness of Li2TiO3 shell can be controlled by sintering time. Crystal structure, microstructure, and mechanical properties of the biphasic pebbles were investigated. The experimental results showed that the core-shell structure improved the crush load dramatically. The average crush load of 50%Li2TiO3-50%Li4SiO4 pebbles sintered at 1100 °C for 5 h was up to104.79 N.

  4. Electrically tunable negative refraction in core/shell-structured nanorod fluids.

    PubMed

    Su, Zhaoxian; Yin, Jianbo; Guan, Yanqing; Zhao, Xiaopeng

    2014-10-21

    We theoretically investigate optical refraction behavior in a fluid system which contains silica-coated gold nanorods dispersed in silicone oil under an external electric field. Because of the formation of a chain-like or lattice-like structure of dispersed nanorods along the electric field, the fluid shows a hyperbolic equifrequency contour characteristic and, as a result, all-angle broadband optical negative refraction for transverse magnetic wave propagation can be realized. We calculate the effective permittivity tensor of the fluid and verify the analysis using finite element simulations. We also find that the negative refractive index can vary with the electric field strength and external field distribution. Under a non-uniform external field, the gradient refraction behavior can be realized. PMID:25087913

  5. Bioactive glasses-incorporated, core-shell-structured polypeptide/polysaccharide nanofibrous hydrogels.

    PubMed

    Chen, Jian; Chen, Xiaoyi; Yang, Xianyan; Han, Chunmao; Gao, Changyou; Gou, Zhongru

    2013-01-30

    Although the synthetic hydrogel materials capable of accelerating wound healing are being developed at a rapid pace, achieving inorganic-organic hybrid at nanoscale dimension in nanofibrous hydrogels is still a great challenge because of its notorious brittleness and microstructural stability in wet state. Here, we developed a new nanofibrous gelatin/bioactive glass (NF-GEL/BG) composite hydrogel by phase separation method and followed by arming the nanofibers network with counterionic chitosan-hyaluronic acid pairs for improving microstructural and thermal integrity. We achieve this feature by carrying an optimal balance of charges that allows the inorganic ion release in aqueous solution without minimal structure collapse. Therefore, such NF-GEL-based, polysaccharide-crosslinked bioactive hydrogel could afford a close biomimicry to the fibrous nanostructure and constituents of the hierarchically organized natural soft tissues to facilitate chronic, nonhealing wound treatment. PMID:23218343

  6. Synthesis and characterization of Co/cenosphere core-shell structure composites

    NASA Astrophysics Data System (ADS)

    Meng, Xian-Feng; Shen, Xiang-Qian; Liu, Wei

    2012-01-01

    The cobalt film was successfully coated on the cenosphere particles using heterogeneous precipitation thermal reduction method. The morphology and microstructure of the products were analyzed by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). FE-SEM results implied that the Co film was relatively uniform and compact. XRD results indicated that the Co film coated on cenospheres was a face-centered cubic structure (fcc) and the crystallite size of Co particles was about 24.5 nm. The magnetic property of Co/cenosphere composites was measured by vibrating sample magnetometer (VSM), and the results showed that the Co/cenosphere composites were of the weak soft magnetic property at room temperature, the Ms and Hc value was 18.2 Am2 kg-1 and 28.4 kA m-1, respectively.

  7. Micromagnetic Modeling of Reversal Nucleation in Core/Shell Exchange-Spring Structures

    NASA Astrophysics Data System (ADS)

    Jiang, J. S.; Bader, Sam

    2015-03-01

    Nanocomposite exchange-spring permanent magnet materials promise superior performance and are a potential solution to the supply criticality in rare earth elements. The nucleation of magnetization reversal in cylindrical and spherical soft core/hard shell exchange-spring structures has been investigated by solving the linearized Brown's equation perturbatively, and has been verified with numerical simulations. Accounting for the magnetostatic self-interaction field leads to a modification to the proposed quasi-coherent ``bulging'' mode of nucleation for small core sizes. The modified curling mode, where the magnetization configuration is vortex-like and flux-closed, becomes favored at large core sizes. The mode crossover occurs at a core diameter of approximately twice the exchange length for the cylindrical geometry. Since flux-closure allows magnetic elements to be densely packed without affecting the nucleation field, a potential direction for improving permanent magnet materials is to induce the modified curling mode by creating a soft-cylinder-in-hard-matrix exchange-spring microstructure. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  8. Hierarchical core/shell structure of MnO2@polyaniline composites grown on carbon fiber paper for application in pseudocapacitors.

    PubMed

    Yang, MinHo; Hong, Seok Bok; Choi, Bong Gill

    2015-11-28

    Hierarchical core/shell structured arrays of MnO2@polyaniline (PANI) nanosheets are successfully deposited on the surface of carbon fiber paper (CFP) by a two-step method of a redox reaction-assisted deposition of MnO2 and post electrodeposition of PANI. The CFP is used as a three-dimensional (3D) current collector to ensure 3D transport of ions and electrons with a large surface area. In addition, the electrodeposition technique enables conformal and thin coating of a layer of PANI across the entire MnO2 nanosheet. The MnO2@PANI on the CFP shows a unique architecture for efficient ion diffusion pathways in hierarchical porous structures and rapid electron transfer through PANI coated layers. The MnO2@PANI/CFP can be applied as a binder- and carbon-free electrode for supercapacitors. Evaluation of the electrochemical performance revealed that the as-prepared electrodes have a high value of specific capacitance (437 F g(-1) at 1 A g(-1)), high rate capability (62.4% retention at 15 A g(-1)), and good cycle life (∼100% at sequential current densities of 1 and 5 A g(-1) over 3000 cycles). PMID:26486195

  9. WC-Co Composite Coating Deposited by Cold Spraying of a Core-Shell-Structured WC-Co Powder

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Tao; Li, Cheng-Xin; Shang, Fu-Lin; Yang, Guan-Jun; Wang, Yu-Yue; Li, Chang-Jiu

    2015-01-01

    In this study, a core-shell-structured WC-Co powder was used to develop a heterogeneously structured WC-Co coating with tens micrometers of WC-10Co as strengthening phase and Co-rich WC-Co as the binder in order to realize simultaneous strengthening and toughening. Spray powder particles contain WC-10Co core coated with a Co-rich WC-Co shell by mechanical milling. WC-Co coating with dual-scale strengthening phases was deposited by cold spraying. Post-spray annealing was carried out to further modify the coating microstructure. Microstructures of the spray powder and the coating were characterized by SEM. Mechanical properties of the coating in terms of microhardness and fracture toughness were examined. Results show that a biomodal WC-Co coating with a porosity of only 0.7% was deposited by cold spray. The Co-rich matrix phase contains submicrometer-sized carbide and primary hard phase is WC-10Co particles. The measurement yielded a Vickers microhardness of 1493 ± 76.7 HV0.1 for WC-10Co core and 693 ± 47.3 HV0.1 for Co-rich binder phase. After annealed at 900 °C for 5 h, a remarkable increase in fracture toughness from 21.2 ± 3.8 to 35.7±5.2 MPa m-0.5 was achieved while no evident change occurred to the hardness of WC-10Co cores.

  10. New insights into the surface structure of Pt-Pd core-shell nanoparticles as revealed by Cs-corrected STEM

    NASA Astrophysics Data System (ADS)

    Khanal, Subarna; Casillas, Gilberto; Velazquez-Salazar, J. Jesus; Ponce, Arturo; Yacaman, Miguel Jose

    2012-10-01

    Bimetallic nanoparticles of Pt-Pd core-shell structures have been found to possess significant applications in fuel cells, hydrogen storage, catalysis, etc. However, the cost of Pt makes it unpractical to use in big quantities; therefore, one of the big challenges is to very small catalysts with only a few layers of the active metal in the shell in order to maximize the efficiency in their use. In this work the modified polyol method was used to synthesize Pt-Pd core-shell nanoparticles in the size range of 20 nm and characterized them by Cs-corrected scanning transmission electron microscopy. This technique allowed us to probe the structure at the atomic level of these nanoparticles revealing new structural information. We determined the structure of the three main polyhedral morphologies obtained in the synthesis: octahedral, decahedral and triangular plates. These final shapes of the core-shell structures were determined by the seed morphology. In addition the STEM energy dispersive X-ray spectroscopy (EDS) chemical analysis can be better identified the chemical composition of the nanocrystals. The overgrowth of the thin Pd shells on the Pt cores due to the epitaxial growth modes was observed. In this work, we have been able to observed Shockley partial dislocations, stacking faults, and adatoms at the surfaces of the nanoparticles.

  11. Synthesis of a 3D graphite microball using a microfluidic droplet generator and its polymer composite with core-shell structure.

    PubMed

    Han, Dong Ju; Jung, Jae Hwan; Choi, Jong Seob; Kim, Yong Tae; Seo, Tae Seok

    2013-10-21

    Spherical 3D graphite microballs (3D GMs) and their nanohybrids (3D GM-Fe3O4 nanoparticles) were synthesized by using a microfluidic droplet generator and a thermal evaporation-induced capillary compression method. Using the 3D GM-Fe3O4 nanoparticle as a support for polymerization, 3D GM-polypyrrole composites were produced with a unique core-shell structure. PMID:23921454

  12. Synthesis and Characterization of SiO2@Y2MoO6:Eu3+ Core-Shell Structured Spherical Phosphors by Sol-Gel Process.

    PubMed

    Li, G Z; Liu, F H; Chu, Z S; Wu, D M; Yang, L B; Li, J L; Wang, M N; Wang, Z L

    2016-04-01

    SiO2@Y2MoO6:Eu3+ core-shell phosphors were prepared by the sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as kinetic decays were used to characterize the resulting SiO2@Y2MoO6:Eu3+ core-shell phosphors. The XRD results demonstrated that the Y2MoO6:Eu3+ layers on the SiO2 spheres crystallized after being annealed at 700 °C and the crystallinity increased with raising the annealing temperature. The obtained core-shell phosphors have spherical shape with narrow size distribution (average size ca. 640 nm), non-agglomeration, and smooth surface. The thickness of the Y2MoO6:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (70 nm for four deposition cycles). The Eul+ shows a strong PL emission (dominated by 5D0-7F2 red emission at 614 nm) under the excitation of 347 nm UV light. The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles. PMID:27451737

  13. Benefits of Silica Core-Shell Structures on the Temperature Sensing Properties of Er,Yb:GdVO4 Up-Conversion Nanoparticles.

    PubMed

    Savchuk, Oleksandr A; Carvajal, Joan J; Cascales, C; Aguiló, M; Díaz, F

    2016-03-23

    We studied the temperature-dependent luminescence of GdVO4 nanoparticles co-doped with Er(3+) (1 mol %) and Yb(3+) (20 mol %) and determined their thermal sensing properties through the fluorescence intensity ratio (FIR) technique. We also analyzed how a silica coating, in a core-shell structure, affects the temperature sensing properties of this material. Spectra were recorded in the range of biological temperatures (298-343 K). The absolute sensitivity for temperature determination calculated for the core-shell nanoparticles is double the one calculated for bare nanoparticles, achieving a thermal resolution of 0.4 K. Moreover, silica-coated nanoparticles show good dispersibility in different solvents, such as water, DMSO, and methanol. Also, they show good luminescence stability without interactions with solvent molecules. Furthermore, we also observed that the silica coating shell prevents progressive heating of the nanoparticles during prolonged excitation periods with the 980 nm laser, preventing effects on their thermometric applications. PMID:26949971

  14. Optimizing LiFePO₄@C core-shell structures via the 3-aminophenol-formaldehyde polymerization for improved battery performance.

    PubMed

    Chi, Zi-xiang; Zhang, Wei; Wang, Xu-sheng; Cheng, Fu-quan; Chen, Ji-tao; Cao, An-min; Wan, Li-jun

    2014-12-24

    Polyanion-type cathode materials are well-known for their low electronic conductivity; accordingly, the addition of conductive carbon in the cathode materials becomes an indispensable step for their application in lithium ion batteries. To maximize the contribution of carbon, a core-shell structure with a full coverage of carbon should be favorable due to an improved electronic contact between different particles. Here, we report the formation of a uniform carbon nanoshell on a typical cathode material, LiFePO4, with the shell thickness precisely defined via the 3-aminophenol-formaldehyde polymerization process. In addition to the higher discharge capacity and the improved rate capability as expected from the carbon nanoshell, we identified that the core-shell configuration could lead to a much safer cathode material as revealed by the obviously reduced iron dissolution, much less heat released during the cycling, and better cyclability at high temperature. PMID:25453295

  15. Structural and magnetic properties of a core-shell type L10 FePt/Fe exchange coupled nanocomposite with tilted easy axis

    NASA Astrophysics Data System (ADS)

    Ma, Bin; Wang, Hao; Zhao, Haibao; Sun, Chengjun; Acharya, Ramamurthy; Wang, Jian-Ping

    2011-04-01

    Structural and magnetic properties of core-shell type L10 FePt/Fe exchange coupled nanocomposites are studied systematically. Core-shell nanocomposites with FePt core and Fe shell are obtained by depositing Fe cap layers on granular L10 FePt films. Epitaxial growth is disclosed by x-ray diffraction. Coercivity decreases drastically for FePt/Fe with the thickness increase of Fe cap layers. The coercivity reduction is due to the much increased domain wall area pinned and compressed at the soft-hard interface, and the tilted effective easy axis because of the presence of demagnetized energy. L10 FePt/Fe with a 3 nm Fe layer has high thermal stability and gain factor for media applications.

  16. High efficiency, full-color AlInGaN quaternary nanowire light emitting diodes with spontaneous core-shell structures on Si

    NASA Astrophysics Data System (ADS)

    Wang, Renjie; Liu, Xuedong; Shih, Ishiang; Mi, Zetian

    2015-06-01

    We have developed AlInGaN quaternary core-shell nanowire heterostructures on Si substrate, wherein an In-rich core and an Al-rich shell were spontaneously formed during the epitaxial growth process. By varying the growth conditions, the emission wavelengths can be tuned from ˜430 nm to ˜630 nm. Such core-shell structures can largely suppress nonradiative surface recombination, leading to a significant enhancement of carrier lifetime from ˜0.2 ns to ˜2 ns. The resulting nanowire light emitting diodes can exhibit an output power exceeding 30 mW for a ˜1 × 1 mm2 non-packaged device at a current density of 100 A/cm2.

  17. Synthesis and features of the structure and luminescence of monodisperse SiO2/(Lu1 - x Eu x )2O3 ( x = 0.07) core-shell heteroparticles

    NASA Astrophysics Data System (ADS)

    Ermolaeva, Yu. V.; Masalov, V. M.; Gruzintsev, A. N.; Yakimov, E. E.; Zver'kova, I. I.; Barthou, C.; Tolmachev, A. V.; Emel'Chenko, G. A.

    2010-08-01

    Monodisperse SiO2/Lu1.86Eu0.14O3 core-shell heteroparticles have been obtained using a method developed previously for the synthesis of spherical colloidal particles of silicon dioxide with a size spread of 2-2.5%, followed by the coprecipitation of europium-doped lutetium oxide nanocoating on these spheres. The structure of heteroparticles was studied and their photo- and cathodoluminescence spectra were analyzed. The luminescence decay time in heteroparticles is almost twice that in Lu1.86Eu0.14O3 phosphor powder prepared and treated under the same thermal conditions.

  18. Excitonic fine structure splitting in ZnTe/ZnX (X = S and Se) core/shell nanocrystals: Atomistic tight-binding theory

    NASA Astrophysics Data System (ADS)

    Sukkabot, Worasak

    2016-03-01

    Implementing the atomistic tight-binding theory in the conjunction with a configuration interaction method of coulomb and exchange description, the excitonic fine structure splitting (FSS) in core/shell semiconductor nanocrystals is usually caused by the intrinsic electron-hole exchange interaction. I demonstrate the control of the excitonic fine structure splitting by suitably engineering the type of the band alignments and the thickness of the growth shell. ZnTe/ZnS and ZnTe/ZnSe core/shell nanocrystals exhibiting the type-I and type-II band profile are used to be the simulated candidates with various growth shell thicknesses. The detailed calculations, consisting of single-particle spectra, optical band gaps, ground-state wave function overlaps, ground-state oscillation strengths, ground-state coulomb energies, ground-state exchange energies and excitonic splitting energies, are all sensitive with the type and dimension of the coated shells. The simulations highlight that ZnTe/ZnSe type-II core/shell nanocrystals with the thick growth shell can offer an intensely reduced excitonic splitting as defined by an associated reduction of electron-hole exchange interaction. This insight is important for the theoretical understanding and practical control by the type of the band alignments and sizes in the growth shell for the quantum state of the emitted light from a biexciton cascade recombination process which will be implemented to the entangled photon source in the novel application of quantum information processing.

  19. Influences of hydrogen dilution on the growth of Si-based core-shell nanowires by HWCVD, and their structure and optical properties

    NASA Astrophysics Data System (ADS)

    Al-Masoodi, Abtisam Hasan Hamood; Hamzan, Najwa Binti; Al-Masoodi, Ahmed Hasan Hamood; Rahman, Saadah Abdul; Goh, Boon Tong

    2016-03-01

    Si-based core-shell nanowires were grown on Ni-coated crystal silicon substrates using a hot-wire chemical vapor deposition technique. The NiSi nanoparticles acted as catalysts that facilitated the growth of the core-shell nanowires without any hydrogen dilution as well as that ranging from 20 to 99 %. These nanowires were structured by single-crystalline NiSi cores and amorphous shells with consisting of nanocrystallites embedded within an amorphous matrix. Raman results reveal crystallization of amorphous Si to crystalline Si up to the crystalline volume fraction of 92.3 % for the nanowires grown with hydrogen dilution. An increase in hydrogen dilution enhanced the decomposition rate and the gas-phase reactions for SiC shell formation, while further increases up to 99 % suppressed the growth of the nanowires. Moreover, a phased transition from Si to SiC occurred with increases in hydrogen dilution above 20 %. The nanowires demonstrated superior optical absorption in the visible region, revealing their significant light-trapping ability. This paper discusses the influences of hydrogen dilution on the structure and optical properties of these core-shell nanowires.

  20. Preparation of Porous Core-Shell Poly L-Lactic Acid/Polyethylene Glycol Superfine Fibres Containing Drug.

    PubMed

    Yang, Wenjing; He, Nongyue; Fu, Juan; Li, Zhiyang; Ji, Xuyuan

    2015-12-01

    In this paper, poly L-lactic acid (PLLA) blended with polyethylene glycol (PEG) was dissolved in methylene dichloride solution as the shell solution, and rapamycin (RAPA), was encapsulated inside the core of PLLA micro/nano fibres as a model drug. The effects of the blending ratio of PLLA to PEG, the concentration of the electrospinning solution, the voltage, the flow rate, and the encapsulation efficiency were studied. Uniform and porous RAPA-Loading PLLA fibres were obtained when the ratio of PLLA to PEG was 7/3, the concentration of PLLA was 3%, the applied voltage was 7.5 kV, and the pump speed was V(core) = 0.1 mL/h, V(shell) = 1 mL/h, repectively. The average diameter of PLLA fibres increased with the gradual increase in PLLA concentration. FTIR results showed that RAPA was successfully encapsulated into the core-co-shell PLLA fibres. Meanwhile, the RAPA-loading of coaxial electrospun PLLA fibres was significantly higher than that of the blending electrospun fibres. It was also found that the porous core-shell PLLA/PEG blending superfine fibres could regulate the appearance of pore on the surface of superfine fibres by adjusting the electrospinning parameters. The porous PLLA/PEG blending fibres can be used as drug carriers and, to improve the single way of drug release depending on the degradation of shell material to meet different need. It will be a remarkable breakthrough in the area for sustained and controlled release drug delivery system. PMID:26682434

  1. Effect of core-shell structure and chitosan addition on catalytic activities of copper-containing silica-aluminosilicate composites in deNO(x) reaction by H2.

    PubMed

    Chamnankid, Busaya; Samanpratan, Rattanaporn; Kongkachuichay, Paisan

    2012-12-01

    Mesoporous silica-aluminosilicate composites were used as supports for selective catalytic reduction of NO by H2 using copper catalyst. Effect of loading techniques and structures of the supports on the catalytic performance were investigated. The nature, the oxidation state of copper, the structural properties and the morphology of the catalysts were characterized by means of UV-vis spectra, Fourier Transform Infrared Spectroscopy (FTIR), nitrogen sorption, and transmission electron microscopy, respectively. By using substitution technique, the copper(II) species were introduced into the silica-aluminosilicate framework by replacing aluminum atoms that located in the tetrahedral coordination. On the other hand, by using incipient wetness impregnation method, the copper species were deposited on the surface of composite materials. Upon testing their performances in deNO(x) reaction, the catalysts prepared by incipient wetness impregnation method showed higher catalytic activity than those prepared by substitution technique in any copper content. The core-shell structure was able to enhance the catalytic performance. It was found that, among the tested catalysts, the 1.5% Cu loaded core-shell mesoporous silica aluminosilicate composites prepared by an incipient wetness impregnation yielded the highest NO conversion of approximately 59%. However, the addition of chitosan creating macroporosity and controlling the uniform small clusters did not improve the catalytic performance. PMID:23447996

  2. Multicomponent (Ce, Cu, Ni) oxides with cage and core-shell structures: tunable fabrication and enhanced CO oxidation activity.

    PubMed

    Liu, Wei; Tang, Ke; Lin, Ming; June, Lay Ting Ong; Bai, Shi-Qiang; Young, David James; Li, Xu; Yang, Yan-Zhao; Hor, T S Andy

    2016-05-01

    Solvothermal synthesis of Cu2O cubes from Cu(OAc)2 in ethanol provided templates for tunable formation of novel multicomponent composites: hollow CeO2-Cu2O (), core-shell NiO@Cu2O () and hollow CeO2-NiO-Cu2O (). Composites catalyze the oxidation of CO at a lower temperature than the parent Cu2O cubes. PMID:27116942

  3. Study of Molecular Conformation and Activity-Related Properties of Lipase Immobilized onto Core-Shell Structured Polyacrylic Acid-Coated Magnetic Silica Nanocomposite Particles.

    PubMed

    Esmaeilnejad-Ahranjani, Parvaneh; Kazemeini, Mohammad; Singh, Gurvinder; Arpanaei, Ayyoob

    2016-04-01

    A facile approach for the preparation of core-shell structured poly(acrylic acid) (PAA)-coated Fe3O4 cluster@SiO2 nanocomposite particles as the support materials for the lipase immobilization is reported. Low- or high-molecular-weight (1800 and 100 000, respectively) PAA molecules were covalently attached onto the surface of amine-functionalized magnetic silica nanoacomposite particles. The successful preparation of particles were verified by scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA), zeta potential measurement, and Fourier-transform infrared (FTIR) techniques. Once lipase is covalently immobilized onto the particles with an average diameter of 210 ± 50 nm, resulting from high binding sites concentrations on the low- and high-molecular-weight PAA-coated particles, high lipase immobilization efficiencies (86.2% and 89.9%, respectively), and loading capacities (786 and 816 mg g(-1), respectively) are obtained. Results from circular dichroism (CD) analysis and catalytic activity tests reveal an increase in the β-sheet content of lipase molecules upon immobilization, along with an enhancement in their activities and stabilities. The lipases immobilized onto the low- and high-molecular-weight PAA-coated particles show maximum activities at 55 and 50 °C, respectively, which are ∼28% and ∼15% higher than that of the free lipase at its own optimum temperature (40 °C), respectively. The immobilized lipases exhibit excellent performance at broader temperature and pH ranges and high thermal and storage stabilities, as well as superior reusability. These prepared magnetic nanocomposite particles can be offered as suitable support materials for efficient immobilization of enzymes and improvement of the immobilized enzymes properties. PMID:26986897

  4. Magnetite and magnetite/silver core/shell nanoparticles with diluted magnet-like behavior

    SciTech Connect

    Garza-Navarro, Marco; Gonzalez, Virgilio; Ortiz, Ubaldo; De la Rosa, Elder

    2010-01-15

    In the present work is reported the use of the biopolymer chitosan as template for the preparation of magnetite and magnetite/silver core/shell nanoparticles systems, following a two step procedure of magnetite nanoparticles in situ precipitation and subsequent silver ions reduction. The crystalline and morphological characteristics of both magnetite and magnetite/silver core/shell nanoparticles systems were analyzed by high resolution transmission electron microscopy (HRTEM) and nanobeam diffraction patterns (NBD). The results of these studies corroborate the core/shell morphology and the crystalline structure of the magnetite core and the silver shell. Moreover, magnetization temperature dependent, M(T), measurements show an unusual diluted magnetic behavior attributed to the dilution of the magnetic ordering in the magnetite and magnetite/silver core/shell nanoparticles systems. - Graphical abstract: Biopolymer chitosan was used as stabilization media to synthesize both magnetite and magnetite/silver core/shell nanoparticles. Results of HRTEM and NBD patterns confirm core/shell morphology of the obtained nanoparticles. It was found that the composites show diluted magnet-like behavior.

  5. Single Domain SmCo5@Co Exchange-coupled Magnets Prepared from Core/shell Sm[Co(CN)6]·4H2O@GO Particles: A Novel Chemical Approach

    PubMed Central

    Yang, Ce; Jia, Lihui; Wang, Shouguo; Gao, Chen; Shi, Dawei; Hou, Yanglong; Gao, Song

    2013-01-01

    SmCo5 based magnets with smaller size and larger maximum energy product have been long desired in various fields such as renewable energy technology, electronic industry and aerospace science. However, conventional relatively rough synthetic strategies will lead to either diminished magnetic properties or irregular morphology, which hindered their wide applications. In this article, we present a facile chemical approach to prepare 200 nm single domain SmCo5@Co core/shell magnets with coercivity of 20.7 kOe and saturation magnetization of 82 emu/g. We found that the incorporation of GO sheets is responsible for the generation of the unique structure. The single domain SmCo5 core contributes to the large coercivity of the magnets and the exchange-coupled Co shell enhances the magnetization. This method can be further utilized in the synthesis other Sm-Co based exchange-coupled magnets. PMID:24356309

  6. Rationally synthesized five-fold twinned core-shell Pt3Ni@Rh nanopentagons, nanostars and nanopaddlewheels for selective reduction of a phenyl ring of phthalimide

    NASA Astrophysics Data System (ADS)

    Khi, Nguyen Tien; Baik, Hionsuck; Lee, Hyunkyung; Yoon, Jisun; Sohn, Jeong-Hun; Lee, Kwangyeol

    2014-09-01

    Surface-energy fine-tuned five-fold twinned nanostructures with a core-shell Pt3Ni@Rh structural motif, namely, a core-shell Pt3Ni@Rh pentagon, a core-shell Pt3Ni@Rh starfish, and a paddlewheel with a Pt3Ni crankshaft and two Rh five-fold starfish wheels, are prepared by rationally designed stepwise heteroepitaxial growth. Unusual selective hydrogenation of the phenyl ring in phthalimide is accomplished with moderately active core-shell Pt3Ni@Rh pentagons and starfish-like nanoparticles. The most active paddlewheel structure proceeds to further reduce one carbonyl group, indicating the sequential nature of phthalimide reduction by Rh nanoparticle catalysis.Surface-energy fine-tuned five-fold twinned nanostructures with a core-shell Pt3Ni@Rh structural motif, namely, a core-shell Pt3Ni@Rh pentagon, a core-shell Pt3Ni@Rh starfish, and a paddlewheel with a Pt3Ni crankshaft and two Rh five-fold starfish wheels, are prepared by rationally designed stepwise heteroepitaxial growth. Unusual selective hydrogenation of the phenyl ring in phthalimide is accomplished with moderately active core-shell Pt3Ni@Rh pentagons and starfish-like nanoparticles. The most active paddlewheel structure proceeds to further reduce one carbonyl group, indicating the sequential nature of phthalimide reduction by Rh nanoparticle catalysis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02874k

  7. One-pot synthesis of highly luminescent CdTe/CdS core/shell nanocrystals in aqueous phase

    NASA Astrophysics Data System (ADS)

    Gu, Zhenyu; Zou, Lei; Fang, Zheng; Zhu, Weihong; Zhong, Xinhua

    2008-04-01

    Surface passivation of nanocrystals with suitable organic or inorganic materials is key to improving the photoluminescence (PL) efficiency and stability of nanocrystals. Although the hot-injection organometallic approach is a powerful tool to achieve different kinds of core/shell structures, direct synthesis of such structures in aqueous phase, which bears many advantages such as biocompatibility, water-solubility, environment-friendliness, and cheapness, is less often reported. Herein we present a facile approach for the one-pot preparation of a water-soluble core/shell structure with CdTe cores packed in a CdS shell in aqueous phase. In comparison with plain CdTe nanocrystals, the PL efficiency of the obtained CdTe/CdS core/shell structure can approach about 75%. The stability of the core/shell structure to UV irradiation and oxidation is also improved.

  8. Photoconductivity of structures based on the SnO{sub 2} porous matrix coupled with core-shell CdSe/CdS quantum dots

    SciTech Connect

    Drozdov, K. A.; Kochnev, V. I.; Dobrovolsky, A. A.; Khokhlov, D. R.; Popelo, A. V.; Rumyantseva, M. N.; Gaskov, A. M.; Ryabova, L. I.; Vasiliev, R. B.

    2013-09-23

    Embedding of quantum dots into porous oxide matrixes is a perspective technique for photosensitization of a structure. We show that the sensitization efficiency may be increased by the use of core-shell quantum dots. It is demonstrated that the photoresponse amplitude in a SnO{sub 2} porous matrix with CdSe/CdS quantum dots depends non-monotonously on the number of atomic layers in a shell. The best results are obtained for SnO{sub 2} matrixes coupled with the quantum dots with three atomic layers of a shell. Mechanisms responsible for the structure sensitization are discussed.

  9. Palladium-platinum core-shell electrocatalysts for oxygen reduction reaction prepared with the assistance of citric acid

    DOE PAGESBeta

    Zhang, Lulu; Su, Dong; Zhu, Shangqian; Chang, Qiaowan; Yue, Jeffrey; Du, Zheng; Shao, Minhua

    2016-04-26

    Core–shell structure is a promising alternative to solid platinum (Pt) nanoparticles as electrocatalyst for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). A simple method of preparing palladium (Pd)–platinum (Pt) core–shell catalysts (Pd@Pt/C) in a gram-batch was developed with the assistance of citric acid. The Pt shell deposition involves three different pathways: galvanic displacement reaction between Pd atoms and Pt cations, chemical reduction by citric acid, and reduction by negative charges on Pd surfaces. The uniform ultrathin (~0.4 nm) Pt shell was characterized by in situ X-ray diffraction (XRD) and high-angle annular dark-field scanning transmission electron microscopymore » (HAADF-STEM) images combined with electron energy loss spectroscopy (EELS). Compared with state-of-the-art Pt/C, the Pd@Pt/C core–shell catalyst showed 4 times higher Pt mass activity and much better durability upon potential cycling. As a result, both the mass activity and durability were comparable to that of Pd@Pt/C synthesized by a Cu-mediated-Pt-displacement method, which is more complicated and difficult for mass production.« less

  10. Multicomponent (Ce, Cu, Ni) oxides with cage and core-shell structures: tunable fabrication and enhanced CO oxidation activity

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Tang, Ke; Lin, Ming; June, Lay Ting Ong; Bai, Shi-Qiang; Young, David James; Li, Xu; Yang, Yan-Zhao; Hor, T. S. Andy

    2016-05-01

    Solvothermal synthesis of Cu2O cubes from Cu(OAc)2 in ethanol provided templates for tunable formation of novel multicomponent composites: hollow CeO2-Cu2O (1), core-shell NiO@Cu2O (2) and hollow CeO2-NiO-Cu2O (3). Composites 1-3 catalyze the oxidation of CO at a lower temperature than the parent Cu2O cubes.Solvothermal synthesis of Cu2O cubes from Cu(OAc)2 in ethanol provided templates for tunable formation of novel multicomponent composites: hollow CeO2-Cu2O (1), core-shell NiO@Cu2O (2) and hollow CeO2-NiO-Cu2O (3). Composites 1-3 catalyze the oxidation of CO at a lower temperature than the parent Cu2O cubes. Electronic supplementary information (ESI) available: Experimental section: materials and characterization; synthesis of materials; catalytic test. Tables S1-S3 and Fig. S1-S8. See DOI: 10.1039/c6nr02383e

  11. Microwave absorption behavior of core-shell structured poly (3,4-ethylenedioxy thiophene)-barium ferrite nanocomposites.

    PubMed

    Ohlan, Anil; Singh, Kuldeep; Chandra, Amita; Dhawan, Sundeep K

    2010-03-01

    The present paper reports the complex permittivity, permeability, and microwave absorption properties of core shell type poly (3,4-ethylenedioxy thiophene) (PEDOT) nanocomposite with barium ferrite, synthesized by in situ emulsion polymerization, in the 12.4-18 GHz frequency range. High-resolution transmission electron microscopy (HRTEM) studies reveal the formation of core-shell type morphology with ferrite particles (60-80 nm) as the center while the polymer (PEDOT) formulates the outer shell of the composite. The presence of barium ferrite nanoparticles in the polymer matrix includes the magnetic losses, which mainly arise from the magnetic hysteresis, domain-wall displacement, and eddy current loss. The higher dielectric (epsilon'' = 23.5) and magnetic loss (micro'' = 0.22) contributes to the microwave absorption value of 22.5 dB (>99% attenuation) and are found to increase with the amount of ferrite constituents. The polymer was further characterized through Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). PMID:20356300

  12. Fabrication of Cu-Ag core-shell bimetallic superfine powders by eco-friendly reagents and structures characterization

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Zhang, Dongming; Zhao, Jie

    2011-09-01

    Superfine bimetallic Cu-Ag core-shell powders were synthesized by reduction of copper sulfate pentahydrate and silver nitrate with eco-friendly ascorbic acid as a reducing agent and cyclodextrins as a protective agent in an aqueous system. The influence of Ag/Cu ratio on coatings was investigated. Ag was homogeneously distributed on the surface of Cu particles at a mole ratio of Ag/Cu=1. FE-SEM showed an uniformity of Ag coatings on Cu particles. Antioxidation of Cu particles was improved by increasing Ag/Cu ratio. TEM-EDX and UV-vis spectra also revealed that Cu cores were covered by Ag nanoshells on the whole. The surface composition analysis by XPS indicated that only small parts of Cu atoms in the surface were oxidized. It was noted that the hindrance of cyclodextrins chemisorbed on particles plays an important role in forming high quality and good dispersity Cu-Ag (Cu@Ag) core-shell powders.

  13. Highly Stretchable Conductive Fibers from Few-Walled Carbon Nanotubes Coated on Poly(m-phenylene isophthalamide) Polymer Core/Shell Structures.

    PubMed

    Jiang, Shujuan; Zhang, Hongbo; Song, Shaoqing; Ma, Yanwen; Li, Jinghua; Lee, Gyeong Hee; Han, Qiwei; Liu, Jie

    2015-10-27

    A core/shell stretchable conductive composite of a few-walled carbon nanotube network coated on a poly(m-phenylene isophthalamide) fiber (FWNT/PMIA) was fabricated by a dip-coating method and an annealing process that greatly enhanced interactions between the FWNT network and PMIA core as well as within the FWNT network. The first strain-conductivity test of the as-prepared FWNT/PMIA fiber showed a stretching-induced alignment of nanotubes in the shell during the deformation process and a good conductivity stability with a slight conductivity drop from 109.63 S/cm to 98.74 S/cm (Δσ/σ0 = 10%) at a strain of ∼150% (2.5 times the original length). More importantly, after the first stretching process, the fiber can be recovered with a slight increase in length but a greatly improved conductivity of 167.41 S/cm through an additional annealing treatment. The recovered fiber displays a similarly superb conductivity stability against stretching, with a decrease of only ∼13 S/cm to 154.49 S/cm (Δσ/σ0 = 8%) at a strain of ∼150%. We believe that this conductivity stability came from the formation and maintaining of aligned nanotube structures during the stretching process, which ensures the good tube-tube contacts and the elongation of the FWNT network without losing its conductivity. Such stable conductivity in stretchable fibers will be important for applications in stretchable electronics. PMID:26390200

  14. Investing the effectiveness of retention performance in a non-volatile floating gate memory device with a core-shell structure of CdSe nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hoon; Kim, Jung-Min; Lim, Ki-Tae; Cho, Hyeong Jun; Bang, Jin Ho; Kim, Yong-Sang

    2016-03-01

    In this paper, we empirically investigate the retention performance of organic non-volatile floating gate memory devices with CdSe nanoparticles (NPs) as charge trapping elements. Core-structured CdSe NPs or core-shell-structured ZnS/CdSe NPs were mixed in PMMA and their performance in pentacene based device was compared. The NPs and self-organized thin tunneling PMMA inside the devices exhibited hysteresis by trapping hole during capacitance-voltage characterization. Despite of core-structured NPs showing a larger memory window, the retention time was too short to be adopted by an industry. By contrast core-shell structured NPs showed an improved retention time of >10000 seconds than core-structure NCs. Based on these results and the energy band structure, we propose the retention mechanism of each NPs. This investigation of retention performance provides a comparative and systematic study of the charging/discharging behaviors of NPs based memory devices. [Figure not available: see fulltext.

  15. Facile Preparation of Core-Shell Magnetic Metal-Organic Framework Nanoparticles for the Selective Capture of Phosphopeptides.

    PubMed

    Chen, Yajing; Xiong, Zhichao; Peng, Li; Gan, Yangyang; Zhao, Yiman; Shen, Jie; Qian, Junhong; Zhang, Lingyi; Zhang, Weibing

    2015-08-01

    In regard to the phosphoproteome, highly specific and efficient capture of heteroideous kinds of phosphopeptides from intricate biological sample attaches great significance to comprehensive and in-depth phosphorylated proteomics research. However, until now, it has been a challenge. In this study, a new-fashioned porous immobilized metal ion affinity chromatography (IMAC) material was designed and fabricated to promote the selectivity and detection limit for phosphopeptides by covering a metal-organic frameworks (MOFs) shell onto Fe3O4 nanoparticles, taking advantage of layer-by-layer method (the synthesized nanoparticle denoted as Fe3O4@MIL-100 (Fe)). The thick layer renders the nanoparticles with perfect hydrophilic character, super large surface area, large immobilization of the Fe(3+) ions and the special porous structure. Specifically, the as-synthesized MOF-decorated magnetic nanoparticles own an ultra large surface area which is up to 168.66 m(2) g(-1) as well as two appropriate pore sizes of 1.93 and 3.91 nm with a narrow grain-size distribution and rapid separation under the magnetic circumstance. The unique features vested the synthesized nanoparticles an excellent ability for phosphopeptides enrichment with high selectivity for β-casein (molar ratio of β-casein/BSA, 1:500), large enrichment capacity (60 mg g(-1)), low detection limit (0.5 fmol), excellent phosphopeptides recovery (above 84.47%), fine size-exclusion of high molecular weight proteins, good reusability, and desirable batch-to-batch repeatability. Furthermore, encouraged by the experimental results, we successfully performed the as-prepared porous IMAC nanoparticle in the specific capture of phosphopeptides from the human serum (both the healthy and unhealthy) and nonfat milk, which proves itself to be a good candidate for the enrichment and detection of the low-abundant phosphopeptides from complicated biological samples. PMID:26156207

  16. Tailoring the properties of sub-3 μm silica core-shell particles prepared by a multilayer-by-multilayer process.

    PubMed

    Dong, Hanjiang; Brennan, John D

    2015-01-01

    Sub-3 μm silica core-shell particles (CSPs) were fabricated by a multilayer-by-multilayer method recently developed in our group. In this work, we report on methods to prepare and modify the properties of these CSPs by high temperature calcination, pore size enlargement under basic conditions, and rehydrolyzation in boiling water to make them more suitable as starting materials for preparation of HPLC columns. The chemical, physical and mechanical properties of these modified CSPs were characterized by scanning electron microscopy (SEM), infrared spectroscopy (IR), thermogravimetric analysis (TGA), and nitrogen sorption porosimetry. CSPs obtained after these treatments were observed to have the following properties: particle diameter ∼2.7 μm, shell thickness ∼0.5 μm, surface area ∼200 m(2)/g, pore diameter ∼10 nm (and almost no mesopores), pore volume ∼0.5 cc/g, and Si-OH group surface concentration ∼4 OH/nm(2). These properties are in line with those of commercially available sub-3 μm CSP products. PMID:25310582

  17. Surface protein imprinted core-shell particles for high selective lysozyme recognition prepared by reversible addition-fragmentation chain transfer strategy.

    PubMed

    Li, Qinran; Yang, Kaiguang; Liang, Yu; Jiang, Bo; Liu, Jianxi; Zhang, Lihua; Liang, Zhen; Zhang, Yukui

    2014-12-24

    A novel kind of lysozyme (Lys) surface imprinted core-shell particles was synthesized by reversible addition-fragmentation chain transfer (RAFT) strategy. With controllable polymer shell chain length, such particles showed obviously improved selectivity for protein recognition. After the RAFT initial agent and template protein was absorbed on silica particles, the prepolymerization solution, with methacrylic acid and 2-hydroxyethyl methacrylate as the monomers, and N,N'-methylenebis(acrylamide) as the cross-linker, was mixed with the silica particles, and the polymerization was performed at 40 °C in aqueous phase through the oxidation-reduction initiation. Ater polymerization, with the template protein removal and destroying dithioester groups with hexylamine, the surface Lyz imprinted particles were obtained with controllable polymer chain length. The binding capacity of the Lys imprinted particles could reach 5.6 mg protein/g material, with the imprinting factor (IF) as 3.7, whereas the IF of the control material prepared without RAFT strategy was only 1.6. The absorption equilibrium could be achieved within 60 min. Moreover, Lys could be selectively recognized by the imprinted particles from both a four-proteins mixture and egg white sample. All these results demonstrated that these particles prepared by RAFT strategy are promising to achieve the protein recognition with high selectivity. PMID:25434676

  18. Structural and compositional evolutions of InxAl1-xN core-shell nanorods grown on Si(111) substrates by reactive magnetron sputter epitaxy.

    PubMed

    Serban, Elena Alexandra; Åke Persson, Per Ola; Poenaru, Iuliana; Junaid, Muhammad; Hultman, Lars; Birch, Jens; Hsiao, Ching-Lien

    2015-05-29

    Catalystless growth of InxAl(1-x)N core-shell nanorods have been realized by reactive magnetron sputter epitaxy onto Si(111) substrates. The samples were characterized by scanning electron microscopy, x-ray diffraction, scanning transmission electron microscopy, and energy dispersive x-ray spectroscopy. The composition and morphology of InxAl(1-x)N nanorods are found to be strongly influenced by the growth temperature. At lower temperatures, the grown materials form well-separated and uniform core-shell nanorods with high In-content cores, while a deposition at higher temperature leads to the formation of an Al-rich InxAl(1-x)N film with vertical domains of low In-content as a result of merging Al-rich shells. The thickness and In content of the cores (domains) increase with decreasing growth temperature. The growth of the InxAl(1-x)N is traced to the initial stage, showing that the formation of the core-shell nanostructures starts very close to the interface. Phase separation due to spinodal decomposition is suggested as the origin of the resultant structures. Moreover, the in-plane crystallographic relationship of the nanorods and substrate was modified from a fiber textured to an epitaxial growth with an epitaxial relationship of InxAl(1-x)N[0001]//Si[111] and InxAl(1-x)N[1120]//Si[110 by removing the native SiOx layer from the substrate. PMID:25944838

  19. Structural and compositional evolutions of InxAl1-xN core-shell nanorods grown on Si(111) substrates by reactive magnetron sputter epitaxy

    NASA Astrophysics Data System (ADS)

    Serban, Elena Alexandra; Åke Persson, Per Ola; Poenaru, Iuliana; Junaid, Muhammad; Hultman, Lars; Birch, Jens; Hsiao, Ching-Lien

    2015-05-01

    Catalystless growth of InxAl1-xN core-shell nanorods have been realized by reactive magnetron sputter epitaxy onto Si(111) substrates. The samples were characterized by scanning electron microscopy, x-ray diffraction, scanning transmission electron microscopy, and energy dispersive x-ray spectroscopy. The composition and morphology of InxAl1-xN nanorods are found to be strongly influenced by the growth temperature. At lower temperatures, the grown materials form well-separated and uniform core-shell nanorods with high In-content cores, while a deposition at higher temperature leads to the formation of an Al-rich InxAl1-xN film with vertical domains of low In-content as a result of merging Al-rich shells. The thickness and In content of the cores (domains) increase with decreasing growth temperature. The growth of the InxAl1-xN is traced to the initial stage, showing that the formation of the core-shell nanostructures starts very close to the interface. Phase separation due to spinodal decomposition is suggested as the origin of the resultant structures. Moreover, the in-plane crystallographic relationship of the nanorods and substrate was modified from a fiber textured to an epitaxial growth with an epitaxial relationship of InxAl1-xN[0001]//Si[111] and InxAl1-xN[11\\bar{2}0]//Si[1\\bar{1}0] by removing the native SiOx layer from the substrate.

  20. Novel magnetoelectric ceramic composites by control of the interface reactions in Fe2O3@BaTiO3 core-shell structures

    NASA Astrophysics Data System (ADS)

    Curecheriu, Lavinia; Postolache, Petronel; Buscaglia, Maria Teresa; Buscaglia, Vincenzo; Ianculescu, Adelina; Mitoseriu, Liliana

    2014-08-01

    In the present work, composite ceramics of ferroelectric BaTiO3 (BT) with magnetic αFe2O3 were prepared from powders synthesized by two different methods: (a) core-shell powders of Fe2O3@BT and (b) Fe2O3-BT composites from mixed powders with the same composition. The M(H) loops at room temperature show a "wasp-waisted" character, with multiple components, determined as result of the formation of magnetic phases with contrasting coercivities (hard BaFe12O19 and soft Ba12Ti28Fe15O84 phases) in different ratios, as indicated by the magnetic first-order-reversal curves analysis. The core-shell composite ceramics generally showed slightly improved dielectric properties and smaller conductivity. The high field properties of composite ceramics show a strong nonlinearity in both cases, together with a reduction of zero field permittivity, making from these composites possible tunable materials interesting for applications. Their multifunctional character is enhanced by the presence of a complex magnetic character with soft/hard components.

  1. Three-Dimensional Structures of MoS2@Ni Core/Shell Nanosheets Array toward Synergetic Electrocatalytic Water Splitting.

    PubMed

    Xing, Zhicai; Yang, Xiurong; Asiri, Abdullah M; Sun, Xuping

    2016-06-15

    Hydrogen evolution reaction (HER) in alkaline media using non-noble metal catalysts with great efficiency represents a critical challenge in current water-alkaline and chlor-alkali electrolyzers. Herein, we demonstrate that the MoS2@Ni core/shell nanosheets array vertically aligned on carbon cloth (MoS2@Ni/CC) is a highly active electrocatalyst for HER. In alkaline solutions, MoS2@Ni/CC needs overpotentials of 91, 118, and 196 mV to approach current densities of 10, 20, and 100 mA cm(-2), respectively, exceeding behavior of commercial Pt/C catalyst at high current densities. Additionally, this catalyst also exhibits excellent electrocatalytic activity toward HER in neutral electrolytes. Such high hydrogen evolution activities are due to synergistic electrocatalytic effects between MoS2 core and Ni shell. PMID:27211232

  2. Compensation temperature in a dendrimer nano-system with a core-shell structure: Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Belhaj, A.; Jabar, A.; Labrim, H.; Ziti, S.; Bahmad, L.; Laânab, L.; Benyoussef, A.

    2016-01-01

    In this work, we study the magnetic properties of a nanostructure based on an hexagonal core-shell geometry. The model is formed with core spins σ =3/2 and surface spins S=2. More precisely, we investigate the effect of the coupling exchange interactions in the absence/presence of both an external magnetic and crystal fields. In a first step, we elaborate the ground state phase diagrams, and then we discuss the stable phases. At different non null temperatures, we explore Monte Carlo to study computation and the magnetic properties. Among others, we find a compensation temperature between the spins σ and S. To close this study, we examine the hysteresis loop behaviors.

  3. Facile spray-drying/pyrolysis synthesis of core-shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Min; Hou, Xianhua; Sha, Yujing; Wang, Jie; Hu, Shejun; Liu, Xiang; Shao, Zongping

    2014-02-01

    A silicon/graphite/amorphous carbon (Si/C) composite with a low silicon content in a core-shell structure has been easily synthesized using a simple method based on spray drying in combination with a subsequent pyrolysis process; natural graphite serves as the core, and silicon nanoparticles, which filled in the porous carbon matrix formed from the pyrolysis of citric acid and pitch precursors, serve as the shell. The combination of the core-shell structure for the composite and porous carbon-coating layer accommodates the large volume change of the silicon during the lithium intercalation/extraction process, thus stabilizing the electrode structure during discharge/charge cycles. As an anode material, the as-obtained Si/C composite demonstrates high capacity and excellent cycle stability. An initial specific discharge capacity of approximately 723.8 mAh g-1 and a reversible specific capacity of approximately 600 mAh g-1 after 100 cycles at a constant density of 100 mA g-1 are reached, about two times the values for graphite. Due to the simple synthesis process and the excellent performance of the resulted electrode, great commercial potential is envisioned.

  4. Synergistic effect of the core-shell structured Sn/SnO2/C ternary anode system with the improved sodium storage performance

    NASA Astrophysics Data System (ADS)

    Cheng, Yayi; Huang, Jianfeng; Li, Jiayin; Xu, Zhanwei; Cao, Liyun; Qi, Hui

    2016-08-01

    Sn/SnO2/C ternary composite with core-shell structures is synthesized using a hydrothermal method and subsequent heat treatment at 973 K. This Sn/SnO2/C composite exhibits the micro-sphere structure that nanosized Sn and SnO2 particles are well encapsulated in the carbon matrix. As anode for sodium-ion batteries, the composite displays superior cycling stability and rate capability to SnO2/C and Sn/C composites. It delivers a high initial discharge capacity of 1110 mAh g-1 with good cyclability. Even at a high current density of 1000 mA g-1, a reversible capacity of 120 mAh g-1 is still remained. The enhanced sodium storage performance of Sn/SnO2/C anode is attributed to the synergistic effect provided by Sn, SnO2 and unique core-shell structure. Since the deformation of Sn can increase the reversible capacity of the SnO2 electrode and the carbon matrix could act as a buffer to accommodate the volume change.

  5. Preparation of Fe(3)O(4)@C@CNC multifunctional magnetic core/shell nanoparticles and their application in a signal-type flow-injection photoluminescence immunosensor.

    PubMed

    Chu, Chengchao; Li, Meng; Li, Long; Ge, Shenguang; Ge, Lei; Yu, Jinghua; Yan, Mei; Song, Xianrang

    2013-11-01

    We describe here the preparation of carbon-coated Fe3O4 magnetic nanoparticles that were further fabricated into multifunctional core/shell nanoparticles (Fe3O4@C@CNCs) through a layer-by-layer self-assembly process of carbon nanocrystals (CNCs). The nanoparticles were applied in a photoluminescence (PL) immunosensor to detect the carcinoembryonic antigen (CEA), and CEA primary antibody was immobilized onto the surface of the nanoparticles. In addition, CEA secondary antibody and glucose oxidase were covalently bonded to silica nanoparticles. After stepwise immunoreactions, the immunoreagent was injected into the PL cell using a flow-injection PL system. When glucose was injected, hydrogen peroxide was obtained because of glucose oxidase catalysis and quenched the PL of the Fe3O4@C@CNC nanoparticles. The here proposed PL immunosensor allowed us to determine CEA concentrations in the 0.005–50 ng·mL-1 concentration range, with a detection limit of 1.8 pg·mL-1. PMID:24121430

  6. Reduced energy loss in poly(vinylidene fluoride) nanocomposites by filling with a small loading of core-shell structured BaTiO3/SiO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Liu, Shaohui; Xue, Shuangxi; Shen, Bo; Zhai, Jiwei

    2015-07-01

    Homogeneous ceramic-polymer nanocomposites consisting of core-shell structured BaTiO3/SiO2 nanofibers and a p oly(vinylidene fluoride) (PVDF) polymer matrix have been prepared. The correlation between the energy discharged density and interfacial polarization is studied in PVDF nanocomposites by the measurements of the discharge performance and impedance spectroscopy. According to the results of dielectric constant, breakdown strength, and complex impedance analysis, coating SiO2 layers on the surface of BaTiO3 nanofibers can block the movement of charge carriers through the nanocomposites by playing a shielding role on the charge-rich inter layer, which resulted in weak Maxwell-Wagner-Sillars interfacial polarization and thus reduces the energy loss and improved the energy discharged density of the nanocomposites. The energy discharged density in the nanocomposite with 2.5 vol. % BaTiO3/SiO2 core-shell nanofibers is 6.28 J/cm3 at 3.3 MV/cm, which is over 11.94% higher than that of nanocomposite with BaTiO3 nanofibers at the same electric field.

  7. Controlled preparation of Au/Ag/SnO2 core-shell nanoparticles using a photochemical method and applications in LSPR based sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Na; Ye, Chen; Polavarapu, Lakshminarayana; Xu, Qing-Hua

    2015-05-01

    A photochemical method for the controlled preparation of core-shell Au/Ag/SnO2 nanorods (NRs) and nanospheres (NSs) has been developed based on photo-induced electron transfer processes in the plasmonic metal-semiconductor system. Au/AgNR/SnO2 and Au/AgNS/SnO2 were prepared by the UV irradiation of a mixture of mesoporous SnO2 coated AuNRs, or AuNSs, and AgNO3, in which AgNO3 was reduced by electrons transferred from the photo-excited mesoporous SnO2 (semiconductor) to the gold (metal). This method allows precise control over the composition and optical properties of the obtained nanoparticles. The LSPR refractive index sensitivity of the obtained Au/AgNR/SnO2 nanoparticles has been optimized to obtain a refractive index sensitivity of ~442 nm RIU-1. The optimized nanoparticles were subsequently chosen for the LSPR based sensing of glutathione (GSH) with the limit of detection of ~7.5 × 10-7 M. This photochemical method allows the controlled preparation of various Au/Ag/SnO2 nanoparticles to adjust their LSPR to suit various applications.A photochemical method for the controlled preparation of core-shell Au/Ag/SnO2 nanorods (NRs) and nanospheres (NSs) has been developed based on photo-induced electron transfer processes in the plasmonic metal-semiconductor system. Au/AgNR/SnO2 and Au/AgNS/SnO2 were prepared by the UV irradiation of a mixture of mesoporous SnO2 coated AuNRs, or AuNSs, and AgNO3, in which AgNO3 was reduced by electrons transferred from the photo-excited mesoporous SnO2 (semiconductor) to the gold (metal). This method allows precise control over the composition and optical properties of the obtained nanoparticles. The LSPR refractive index sensitivity of the obtained Au/AgNR/SnO2 nanoparticles has been optimized to obtain a refractive index sensitivity of ~442 nm RIU-1. The optimized nanoparticles were subsequently chosen for the LSPR based sensing of glutathione (GSH) with the limit of detection of ~7.5 × 10-7 M. This photochemical method allows

  8. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries.

    PubMed

    Li, Zhen; Jiang, Yan; Yuan, Lixia; Yi, Ziqi; Wu, Chao; Liu, Yang; Strasser, Peter; Huang, Yunhui

    2014-09-23

    For lithium-sulfur batteries, commercial application is hindered by the insulating nature of sulfur and the dissolution of the reaction intermediates of polysulfides. Here, we present an ordered meso-microporous core-shell carbon (MMCS) as a sulfur container, which combines the advantages of both mesoporous and microporous carbon. With large pore volume and highly ordered porous structure, the "core" promises a sufficient sulfur loading and a high utilization of the active material, while the "shell" containing microporous carbon and smaller sulfur acts as a physical barrier and stabilizes the cycle capability of the entire S/C composite. Such a S/MMCS composite exhibits a capacity as high as 837 mAh g(-1) at 0.5 C after 200 cycles with a capacity retention of 80% vs the second cycle (a decay of only 0.1% per cycle), demonstrating that the diffusion of the polysulfides into the bulk electrolyte can be greatly reduced. We believe that the tailored highly ordered meso-microporous core-shell structured carbon can also be applicable for designing some other electrode materials for energy storage. PMID:25144303

  9. BiFeO{sub 3}/TiO{sub 2} core-shell structured nanocomposites as visible-active photocatalysts and their optical response mechanism

    SciTech Connect

    Li Shun; Lin Yuanhua; Li Jingfeng; Nan Cewen; Zhang Boping

    2009-03-01

    Anatase titania-coated bismuth ferrite nanocomposites (BiFeO{sub 3}/TiO{sub 2}) have been fabricated via a hydrothermal approach combined with a hydrolysis precipitation processing. Analysis of the microstructure and phase composition reveals that a core-shell BiFeO{sub 3}/TiO{sub 2} structure can be formed, which results in a significant redshift in the UV-vis absorption spectra as compared to a simple mechanical mixture of BiFeO{sub 3}-TiO{sub 2} nanopowders. The core-shell structured BiFeO{sub 3}/TiO{sub 2} nanocomposites exhibit higher photocatalytic activity for photodegradation of Congo red under visible-light ({lambda}>400 nm) irradiation, which should be attributed to the enhancement of the quantum efficiency by separating the electrons and holes effectively. The obtained BiFeO{sub 3}/TiO{sub 2} nanocomposites can be used as potential visible-light driven photocatalysts.

  10. Metal Oxide Assisted Preparation of Core-Shell Beads with Dense Metal-Organic Framework Coatings for the Enhanced Extraction of Organic Pollutants.

    PubMed

    Del Rio, Mateo; Palomino Cabello, Carlos; Gonzalez, Veronica; Maya, Fernando; Parra, Jose B; Cerdà, Victor; Turnes Palomino, Gemma

    2016-08-01

    Dense and homogeneous metal-organic framework (MOF) coatings on functional bead surfaces are easily prepared by using intermediate sacrificial metal oxide coatings containing the metal precursor of the MOF. Polystyrene (PS) beads are coated with a ZnO layer to give ZnO@PS core-shell beads. The ZnO@PS beads are reactive in the presence of 2-methylimidazole to transform part of the ZnO coating into a porous zeolitic imidazolate framework-8 (ZIF-8) external shell positioned above the internal ZnO precursor shell. The obtained ZIF-8@ZnO@PS beads can be easily packed in column format for flow-through applications, such as the solid-phase extraction of trace priority-listed environmental pollutants. The prepared material shows an excellent permeance to flow when packed as a column to give high enrichment factors, facile regeneration, and excellent reusability for the extraction of the pollutant bisphenol A. It also shows an outstanding performance for the simultaneous enrichment of mixtures of endocrine disrupting chemicals (bisphenol A, 4-tert-octylphenol and 4-n-nonylphenol), facilitating their analysis when present at very low levels (<1 μg L(-1) ) in drinking waters. For the extraction of the pollutant bisphenol A, the prepared ZIF-8@ZnO@PS beads also show a superior extraction and preconcentration capacity to that of the PS beads used as precursors and the composite materials obtained by the direct growth of ZIF-8 on the surface of the PS beads in the absence of metal oxide intermediate coatings. PMID:27388932

  11. Core shell micron-scale composites of titanium oxide and carbide formed through controlled thermal-plasma oxidation

    NASA Astrophysics Data System (ADS)

    Li, Ya-Li; Ishigaki, Takamasa

    2003-01-01

    Core-shell structured micron-scale spheres of titanium oxide and carbide were prepared by the controlled in-flight oxidation of a powder of irregularly shaped titanium-carbide particles in an argon-oxygen thermal plasma. Mono-dispersed core-shell particles with rutile shells and TiC cores were formed by an intermediate-rate input of oxygen to the plasma gas. The partial oxidation of the TiC particles in the liquid phase was accompanied by spheroidization of the surface oxide melt, thus giving rise to a core-shell composite under rapid quenching. TiO 2-TiC core-shell composites have potential as new materials for roles such as light-scattering media, photo-catalysts, and electro-rheorogical fluids.

  12. Preparation and characterization of Phase change material microcapsules by a core-shell-like emulsion polymerization method

    NASA Astrophysics Data System (ADS)

    Ding, Li-ming; Pei, Guang-ling

    2015-07-01

    Phase change material microcapsules (MicroPCMs) were synthesized by a coreshell-like emulsion polymerization method. Styrene and methylacrylic acid copolymer (PS- MAA) was used as a wall material, and paraffin was used as a core material in order to prepare spherical, high resistance and high enthalpy MicroPCMs. Scanning Electron Microscope (SEM), laser particle size analyzer, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetry (TG) and Differential Scanning Calorimeter (DSC) were employed to characterize the MicroPCMs. The results indicated that the average particle size of MicroPCMs was 42.29 μm, and the content of paraffin within microcapsules was 57.6%. The melting temperature and crystallization temperature were 30.7°C and 25.2°C.The melting enthalpy and crystallization enthalpy were -84.1 J/g and 91.3 J/g, respectively.

  13. Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures

    PubMed Central

    Zhang, Ran; Zhou, Yongfang; Peng, Ling; Li, Xue; Chen, Shufen; Feng, Xiaomiao; Guan, Yuqiao; Huang, Wei

    2016-01-01

    Locating core-shell metal nanoparticles into a photoactive layer or at the interface of photoactive layer/hole extraction layer is beneficial for fully employing surface plasmon energy, thus enhancing power conversion efficiency (PCE) in plasmonic organic photovoltaic devices (OPVs). Herein, we first investigated the influence of silica shell thickness in Au nanorods (NRs)@SiO2 core-shell structures on OPV performances by inserting them into poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and thieno[3,4-b]thiophene/benzodithiophene (PTB7) interface, and amazedly found that a 2–3 nm silica shell onto Au NRs induces a highest short-circuit current density of 21.2 mA cm−2 and PCE of 9.55%. This is primarily due to an extremely strong local field and a much slower attenuation of localized surface plasmon resonance around ultrathin silica-coated Au NRs, with which the field intensity remains a high value in the active layer, thus sufficiently improves the absorption of PTB7. Our work provides a clear design concept on precise control of the shell of metal nanoparticles to realize high performances in plasmonic OPVs. PMID:27125309

  14. Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures.

    PubMed

    Zhang, Ran; Zhou, Yongfang; Peng, Ling; Li, Xue; Chen, Shufen; Feng, Xiaomiao; Guan, Yuqiao; Huang, Wei

    2016-01-01

    Locating core-shell metal nanoparticles into a photoactive layer or at the interface of photoactive layer/hole extraction layer is beneficial for fully employing surface plasmon energy, thus enhancing power conversion efficiency (PCE) in plasmonic organic photovoltaic devices (OPVs). Herein, we first investigated the influence of silica shell thickness in Au nanorods (NRs)@SiO2 core-shell structures on OPV performances by inserting them into poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and thieno[3,4-b]thiophene/benzodithiophene (PTB7) interface, and amazedly found that a 2-3 nm silica shell onto Au NRs induces a highest short-circuit current density of 21.2 mA cm(-2) and PCE of 9.55%. This is primarily due to an extremely strong local field and a much slower attenuation of localized surface plasmon resonance around ultrathin silica-coated Au NRs, with which the field intensity remains a high value in the active layer, thus sufficiently improves the absorption of PTB7. Our work provides a clear design concept on precise control of the shell of metal nanoparticles to realize high performances in plasmonic OPVs. PMID:27125309

  15. Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures

    NASA Astrophysics Data System (ADS)

    Zhang, Ran; Zhou, Yongfang; Peng, Ling; Li, Xue; Chen, Shufen; Feng, Xiaomiao; Guan, Yuqiao; Huang, Wei

    2016-04-01

    Locating core-shell metal nanoparticles into a photoactive layer or at the interface of photoactive layer/hole extraction layer is beneficial for fully employing surface plasmon energy, thus enhancing power conversion efficiency (PCE) in plasmonic organic photovoltaic devices (OPVs). Herein, we first investigated the influence of silica shell thickness in Au nanorods (NRs)@SiO2 core-shell structures on OPV performances by inserting them into poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and thieno[3,4-b]thiophene/benzodithiophene (PTB7) interface, and amazedly found that a 2–3 nm silica shell onto Au NRs induces a highest short-circuit current density of 21.2 mA cm‑2 and PCE of 9.55%. This is primarily due to an extremely strong local field and a much slower attenuation of localized surface plasmon resonance around ultrathin silica-coated Au NRs, with which the field intensity remains a high value in the active layer, thus sufficiently improves the absorption of PTB7. Our work provides a clear design concept on precise control of the shell of metal nanoparticles to realize high performances in plasmonic OPVs.

  16. Structural and optical nanoscale analysis of GaN core-shell microrod arrays fabricated by combined top-down and bottom-up process on Si(111)

    NASA Astrophysics Data System (ADS)

    Müller, Marcus; Schmidt, Gordon; Metzner, Sebastian; Veit, Peter; Bertram, Frank; Krylyuk, Sergiy; Debnath, Ratan; Ha, Jong-Yoon; Wen, Baomei; Blanchard, Paul; Motayed, Abhishek; King, Matthew R.; Davydov, Albert V.; Christen, Jürgen

    2016-05-01

    Large arrays of GaN core-shell microrods were fabricated on Si(111) substrates applying a combined bottom-up and top-down approach which includes inductively coupled plasma (ICP) etching of patterned GaN films grown by metal-organic vapor phase epitaxy (MOVPE) and selective overgrowth of obtained GaN/Si pillars using hydride vapor phase epitaxy (HVPE). The structural and optical properties of individual core-shell microrods have been studied with a nanometer scale spatial resolution using low-temperature cathodoluminescence spectroscopy (CL) directly performed in a scanning electron microscope (SEM) and in a scanning transmission electron microscope (STEM). SEM, TEM, and CL measurements reveal the formation of distinct growth domains during the HVPE overgrowth. A high free-carrier concentration observed in the non-polar \\{ 1\\bar{1}00\\} HVPE shells is assigned to in-diffusion of silicon atoms from the substrate. In contrast, the HVPE shells directly grown on top of the c-plane of the GaN pillars reveal a lower free-carrier concentration.

  17. Pulsed laser deposited porous nano-carpets of indium tin oxide and their use as charge collectors in core-shell structures for dye sensitized solar cells.

    PubMed

    Garvey, Timothy R; Farnum, Byron H; Lopez, Rene

    2015-02-14

    Porous In2O3:Sn (ITO) films resembling from brush carpets to open moss-like discrete nanostructures were grown by pulsed laser deposition under low to high background gas pressures, respectively. The charge transport properties of these mesoporous substrates were probed by pulsed laser photo-current and -voltage transient measurements in N719 dye sensitized devices. Although the cyclic voltammetry and dye adsorption measurements suggest a lower proportion of electro-active dye molecules for films deposited at the high-end background gas pressures, the transient measurements indicate similar electron transport rates within the films. Solar cell operation was achieved by the deposition of a conformal TiO2 shell layer by atomic layer deposition (ALD). Much of the device improvement was shown to be due to the TiO2 shell blocking the recombination of photoelectrons with the electrolyte as recombination lifetimes increased drastically from a few seconds in uncoated ITO to over 50 minutes in the ITO with a TiO2 shell layer. Additionally, an order of magnitude increase in the electron transport rate in ITO/TiO2 (core/shell) films was observed, giving the core-shell structure a superior ratio of recombination/transport times. PMID:25563519

  18. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery

    NASA Astrophysics Data System (ADS)

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-01

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.

  19. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery.

    PubMed

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-22

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form. PMID:24164775

  20. Preparation and characterization of nano-composites with carbon nanotubes and core-shell type polyaniline for the conductive colloidal ink

    NASA Astrophysics Data System (ADS)

    Lee, Jungmin; Varadan, Vijay K.

    2012-04-01

    Printing method for electronics elements fabrication has attractive advantages such as low material consumption, high speed fabrication, and low temperature process. The stable conductive ink is the most important factor for the fabrication of printed electronics elements with high resolution. These materials are widely used as fillers in conductive inks; metal particles, conductive polymers, and carbon materials. Among these materials, the carbon nanotubes (CNTs) are extremely attractive filler for printed electronics due to its superior electrical properties, extra high mechanical properties, and excellent chemical stability. In this research, nano-composites which are composed of multi wall carbon nanotubes (MWCNTs) and polyaniline core-shell type particles were synthesized and formulated into electrically conductive colloidal inks. The poly(acrylonitrile-co-itaconic acid-co-methylacrylate) nanoparticles were used as cores. And this core was coated with polyaniline. The surface treatments for MWCNTs were applied to make the stable nano-composites. The experimental conditions were optimized to achieve high miscibility between MWCNTs and polyaniline coated particles. Their structure and surface morphology of the nanocomposites were characterized by Scanning Electron Microscopy. And four point probe automatic resistivity meter was used to measure the conductivities of the nanocomposites.

  1. A novel preparation of core-shell electrode materials via evaporation-induced self-assembly of nanoparticles for advanced Li-ion batteries.

    PubMed

    Xie, Zhiqiang; Ellis, Sarah; Xu, Wangwang; Dye, Dara; Zhao, Jianqing; Wang, Ying

    2015-10-18

    We report, for the first time, a simple and novel synthesis of a Li-rich layered-spinel core-shell heterostructure (L@S core-shell) via evaporation-induced self-assembly (EISA) of Ni-doped Li4Mn5O12 nanoparticles (Li4Mn4.5Ni0.5O12) onto the surface of layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 (LMNCO) without using any surfactant during the coating process. The resultant L@S core-shell as a cathode in lithium ion batteries demonstrates significantly improved specific capacity, cycling performance and rate capability compared to pristine LMNCO. PMID:26313024

  2. Inorganic/organic nanocomposites: Reaching a high filler content without increasing viscosity using core-shell structured nanoparticles

    NASA Astrophysics Data System (ADS)

    Benhadjala, W.; Gravoueille, M.; Bord-Majek, I.; Béchou, L.; Suhir, E.; Buet, M.; Louarn, M.; Weiss, M.; Rougé, F.; Gaud, V.; Ousten, Y.

    2015-11-01

    Extensive research is being conducted on the development of inorganic/organic nanocomposites for a wide variety of applications in microelectronics, biotechnologies, photonics, adhesives, or optical coatings. High filler contents are usually required to fully optimize the nanocomposites properties. However, numerous studies demonstrated that traditional composite viscosity increases with increasing the filler concentration reducing therefore significantly the material processability. In this work, we synthesized inorganic/organic core-shell nanocomposites with different shell thicknesses. By reducing the shell thickness while maintaining a constant core size, the nanoparticle molecular mass decreases but the nanocomposite filler fraction is correlatively increased. We performed viscosity measurements, which clearly highlighted that intrinsic viscosity of hybrid nanoparticles decreases as the molecular mass decreases, and thus, as the filler fraction increases, as opposed to Einstein predictions about the viscosity of traditional inorganic/polymer two-phase mixtures. This exceptional behavior, modeled by Mark-Houwink-Sakurada equation, proves to be a significant breakthrough for the development of industrializable nanocomposites with high filler contents.

  3. Inorganic/organic nanocomposites: Reaching a high filler content without increasing viscosity using core-shell structured nanoparticles

    SciTech Connect

    Benhadjala, W.; Gravoueille, M.; Weiss, M.; Bord-Majek, I.; Béchou, L.; Ousten, Y.; Suhir, E.; Buet, M.; Louarn, M.; Rougé, F.; Gaud, V.

    2015-11-23

    Extensive research is being conducted on the development of inorganic/organic nanocomposites for a wide variety of applications in microelectronics, biotechnologies, photonics, adhesives, or optical coatings. High filler contents are usually required to fully optimize the nanocomposites properties. However, numerous studies demonstrated that traditional composite viscosity increases with increasing the filler concentration reducing therefore significantly the material processability. In this work, we synthesized inorganic/organic core-shell nanocomposites with different shell thicknesses. By reducing the shell thickness while maintaining a constant core size, the nanoparticle molecular mass decreases but the nanocomposite filler fraction is correlatively increased. We performed viscosity measurements, which clearly highlighted that intrinsic viscosity of hybrid nanoparticles decreases as the molecular mass decreases, and thus, as the filler fraction increases, as opposed to Einstein predictions about the viscosity of traditional inorganic/polymer two-phase mixtures. This exceptional behavior, modeled by Mark-Houwink-Sakurada equation, proves to be a significant breakthrough for the development of industrializable nanocomposites with high filler contents.

  4. Influence of core size on the upconversion luminescence properties of spherical Gd{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+}@SiO{sub 2} particles with core-shell structures

    SciTech Connect

    Zheng, Kezhi; Liu, Zhenyu; Liu, Ye; Song, Weiye; Qin, Weiping

    2013-11-14

    Spherical SiO{sub 2} particles with different sizes (30, 80, 120, and 180 nm) have been coated with Gd{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+} layers by a heterogeneous precipitation method, leading to the formation of core-shell structural Gd{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+}@SiO{sub 2} particles. The samples were characterized by using X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, upconversion (UC) emission spectra, and fluorescent dynamical analysis. The obtained core-shell particles have perfect spherical shape with narrow size distribution. Under the excitation of 980 nm diode laser, the core-shell samples showed size-dependent upconversion luminescence (UCL) properties. The inner SiO{sub 2} cores in core-shell samples were proved to have limited effect on the total UCL intensities of Er{sup 3+} ions. The UCL intensities of core-shell particles were demonstrated much higher than the values obtained in pure Gd{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+} with the same phosphor volume. The dependence of the specific area of a UCL shell on the size of its inner SiO{sub 2} particle was calculated and analyzed for the first time. It was confirmed that the surface effect came from the outer surfaces of emitting shells is dominant in influencing the UCL property in the core-shell samples. Three-photon UC processes for the green emissions were observed in the samples with small sizes of SiO{sub 2} cores. The results of dynamical analysis illustrated that more nonradiative relaxation occurred in the core-shell samples with smaller SiO{sub 2} core sizes.

  5. Influence of core size on the upconversion luminescence properties of spherical Gd2O3:Yb3+/Er3+@SiO2 particles with core-shell structures

    NASA Astrophysics Data System (ADS)

    Zheng, Kezhi; Liu, Zhenyu; Liu, Ye; Song, Weiye; Qin, Weiping

    2013-11-01

    Spherical SiO2 particles with different sizes (30, 80, 120, and 180 nm) have been coated with Gd2O3:Yb3+/Er3+ layers by a heterogeneous precipitation method, leading to the formation of core-shell structural Gd2O3:Yb3+/Er3+@SiO2 particles. The samples were characterized by using X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, upconversion (UC) emission spectra, and fluorescent dynamical analysis. The obtained core-shell particles have perfect spherical shape with narrow size distribution. Under the excitation of 980 nm diode laser, the core-shell samples showed size-dependent upconversion luminescence (UCL) properties. The inner SiO2 cores in core-shell samples were proved to have limited effect on the total UCL intensities of Er3+ ions. The UCL intensities of core-shell particles were demonstrated much higher than the values obtained in pure Gd2O3:Yb3+/Er3+ with the same phosphor volume. The dependence of the specific area of a UCL shell on the size of its inner SiO2 particle was calculated and analyzed for the first time. It was confirmed that the surface effect came from the outer surfaces of emitting shells is dominant in influencing the UCL property in the core-shell samples. Three-photon UC processes for the green emissions were observed in the samples with small sizes of SiO2 cores. The results of dynamical analysis illustrated that more nonradiative relaxation occurred in the core-shell samples with smaller SiO2 core sizes.

  6. Three-Dimensional GaN-Ga{sub 2}O{sub 3} Core Shell Structure Revealed by X-Ray Diffraction Microscopy

    SciTech Connect

    Miao, Jianwei; Song, Changyong; Ramunno-Johnson, Damien; Chen, C.-C.; Lee, T.-K.; Nishino, Yoshinori; Kohmura, Yoshiki; Ishikawa, Tetsuya

    2006-11-24

    In combination of direct phase retrieval of coherent x-ray diffraction patterns with a novel tomographic reconstruction algorithm, we, for the first time, carried out quantitative 3D imaging of a heat-treated GaN particle with each voxel corresponding to 17x17x17 nm{sup 3}. We observed the platelet structure of GaN and the formation of small islands on the surface of the platelets, and successfully captured the internal GaN-Ga{sub 2}O{sub 3} core shell structure in three dimensions. This work opens the door for nondestructive and quantitative imaging of 3D morphology and 3D internal structure of a wide range of materials at the nanometer scale resolution that are amorphous or possess only short-range atomic organization.

  7. Dual Drug Release Electrospun Core-Shell Nanofibers with Tunable Dose in the Second Phase

    PubMed Central

    Qian, Wei; Yu, Deng-Guang; Li, Ying; Liao, Yao-Zu; Wang, Xia; Wang, Lu

    2014-01-01

    This study reports a new type of drug-loaded core-shell nanofibers capable of providing dual controlled release with tunable dose in the second phase. The core-shell nanofibers were fabricated through a modified coaxial electrospinning using a Teflon-coated concentric spinneret. Poly(vinyl pyrrolidone) and ethyl cellulose were used as the shell and core polymer matrices respectively, and the content of active ingredient acetaminophen (APAP) in the core was programmed. The Teflon-coated concentric spinneret may facilitate the efficacious and stable preparation of core-shell nanofibers through the modified coaxial electrospinning, where the core fluids were electrospinnable and the shell fluid had no electrospinnability. The resultant nanofibers had linear morphologies and clear core-shell structures, as observed by the scanning and transmission electron microscopic images. APAP was amorphously distributed in the shell and core polymer matrices due to the favorite second-order interactions, as indicated by the X-ray diffraction and FTIR spectroscopic tests. The results from the in vitro dissolution tests demonstrated that the core-shell nanofibers were able to furnish the desired dual drug controlled-release profiles with a tunable drug release amount in the second phase. The modified coaxial electrospinning is a useful tool to generate nanostructures with a tailored components and compositions in their different parts, and thus to realize the desired functional performances. PMID:24406731

  8. Lateral structuring and stability phenomena induced by block copolymers and core-shell nanogel particles at immiscible polymer/polymer interfaces

    NASA Astrophysics Data System (ADS)

    Gozen, Arif Omer

    We have investigated the parameters such as copolymer/nanoparticle concentration, architecture and molecular weight combined with film thickness, time and temperature in order to develop a molecular-level insight on how lateral interfacial structuring occurs at immiscible polymer/polymer interfaces. I order to develop a molecular-level understanding of how these 'smart' self-assembling materials and core-shell nanogel particles interact both intra- and inter-molecularly and form ordered structures in bulk, as well as at immiscible interfaces, we first focused on the response of core-shell polymer nanoparticles, designated CSNGs, composed of a cross-linked divinylbenzene core and poly(methyl methacrylate) (PMMA) arms as they segregate from PMMA homopolymer. We have demonstrated that these nanogel particles exhibit autophobic character when dispersed in high molecular weight homopolymer matrices and segregate to the interface with another fluid. We have further explored the migration of these new-generation nanogel particles (CSNG-Rs) segregating from PS homopolymer to PS/PMMA interfaces. Unlike the instability patterns observed with the CSNGs, which exhibit classical nucleation and growth mechanism with circular hole formation, we have observed an intriguing dewetting pattern and CSNG-Rs forming lateral aggregates and tentacle-like structures at the interface. In parallel with our core-shell particle studies, we have also explored the structuring of copolymer molecules that are far from equilibrium in bulk and complex laminate of polymer thin films. Our early triblock copolymer studies have proven that molecular asymmetry has a profound effect on order-disorder transition temperature. We focused primarily on the effect of the copolymer chemical composition (i.e., block sizes) on the dewetting behavior of PS/SM thin films on PMMA. We elucidate the interfacial segregation and concurrent micellization of diblock copolymers in a dynamically evolving environment with

  9. Preparation of core-shell magnetic molecular imprinted polymer with binary monomer for the fast and selective extraction of bisphenol A from milk.

    PubMed

    Yuan, Yanhao; Liu, Yan; Teng, Weidi; Tan, Jiean; Liang, Yong; Tang, Youwen

    2016-09-01

    In the current study, a new strategy for the extraction of bisphenol A (BPA) from milk has been employed by using surface-imprinted core-shell magnetic beads, prepared by the reversible addition-fragmentation chain transfer (RAFT) polymerization. In order to obtain highly selective recognition cavities, an enhanced imprinting method based on binary functional monomers, e.g. 4-vinylpyridine (4-VP) and β-cyclodextrin (β-CD), was chosen for BPA imprinting. The morphological and magnetic properties of the Fe3O4-MIP beads were characterized by Transmission Electron Microscopy (TEM), Fourier Transform Infrared (FT-IR) Spectroscopy, Thermogravimetric Analysis (TGA), and Vibrating Sample Magnetometer (VSM). The characterization results suggested that MIP was synthesized evenly on Fe3O4-SiO2 surface. The adsorption experiments revealed that Fe3O4-MIPs showed better extraction capacity and selectivity toward BPA and its analogues than the non-imprinted polymers (NIPs). The saturation capacity of Fe3O4-MIP was 17.98mg/g. In milk samples, the present method displayed a lower the detection thresholds, down to 3.7μg/L. The recoveries of BPA in milk samples for three concentrations were found to be within 99.21%, 98.07% and 97.23%, respectively to three concentrations: 1.0μmol/L, 10.0mol/L, 100.0μmol/L. Thus, the MIPs can be used for remove BPA in milk samples. PMID:27497721

  10. Mechanism of in situ surface polymerization of gallic acid in an environmental-inspired preparation of carboxylated core-shell magnetite nanoparticles.

    PubMed

    Tóth, Ildikó Y; Szekeres, Márta; Turcu, Rodica; Sáringer, Szilárd; Illés, Erzsébet; Nesztor, Dániel; Tombácz, Etelka

    2014-12-30

    Magnetite nanoparticles (MNPs) with biocompatible coatings are good candidates for MRI (magnetic resonance imaging) contrasting, magnetic hyperthermia treatments, and drug delivery systems. The spontaneous surface induced polymerization of dissolved organic matter on environmental mineral particles inspired us to prepare carboxylated core-shell MNPs by using a ubiquitous polyphenolic precursor. Through the adsorption and in situ surface polymerization of gallic acid (GA), a polygallate (PGA) coating is formed on the nanoparticles (PGA@MNP) with possible antioxidant capacity. The present work explores the mechanism of polymerization with the help of potentiometric acid-base titration, dynamic light scattering (for particle size and zeta potential determination), UV-vis (UV-visible light spectroscopy), FTIR-ATR (Fourier-transformed infrared spectroscopy by attenuated total reflection), and XPS (X-ray photoelectron spectroscopy) techniques. We observed the formation of ester and ether linkages between gallate monomers both in solution and in the adsorbed state. Higher polymers were formed in the course of several weeks both on the surface of nanoparticles and in the dispersion medium. The ratio of the absorbances of PGA supernatants at 400 and 600 nm (i.e., the E4/E6 ratio commonly used to characterize the degree of polymerization of humic materials) was determined to be 4.3, similar to that of humic acids. Combined XPS, dynamic light scattering, and FTIR-ATR results revealed that, prior to polymerization, the GA monomers became oxidized to poly(carboxylic acid)s due to ring opening while Fe(3+) ions reduced to Fe(2+). Our published results on the colloidal and chemical stability of PGA@MNPs are referenced thoroughly in the present work. Detailed studies on biocompatibility, antioxidant property, and biomedical applicability of the particles will be published. PMID:25517214

  11. Investigation on Spin Dependent Transport Properties of Core-Shell Structural Fe3O4/ZnS Nanocomposites for Spintronic Application

    PubMed Central

    Liu, Er; Yuan, Honglei; Kou, Zhaoxia; Wu, Xiumei; Xu, Qingyu; Zhai, Ya; Sui, Yunxia; You, Biao; Du, Jun; Zhai, Hongru

    2015-01-01

    The core-shell structural Fe3O4/ZnS nanocomposites with controllable shell thickness were well-fabricated via seed-mediate growth method. Structural and morphological characterizations reveal the direct deposition of crystalline II-VI compound semiconductor ZnS shell layer on Fe3O4 particles. Spin dependent electrical transport is studied on Fe3O4/ZnS nanocomposites with different shell thickness, and a large magnetoresistance (MR) ratio is observed under the magnetic field of 1.0 T at room temperature and 100 K for the compacted sample by Fe3O4/ZnS nanocomposites, which is 50% larger than that of sample with pure Fe3O4 particles, indicating that the enhanced MR is contributed from the spin injection between Fe3O4 and ZnS layer. PMID:26053888

  12. Cation Exchange Combined with Kirkendall Effect in the Preparation of SnTe/CdTe and CdTe/SnTe Core/Shell Nanocrystals.

    PubMed

    Jang, Youngjin; Yanover, Diana; Čapek, Richard Karel; Shapiro, Arthur; Grumbach, Nathan; Kauffmann, Yaron; Sashchiuk, Aldona; Lifshitz, Efrat

    2016-07-01

    Controlling the synthesis of narrow band gap semiconductor nanocrystals (NCs) with a high-quality surface is of prime importance for scientific and technological interests. This Letter presents facile solution-phase syntheses of SnTe NCs and their corresponding core/shell heterostructures. Here, we synthesized monodisperse and highly crystalline SnTe NCs by employing an inexpensive, nontoxic precursor, SnCl2, the reactivity of which was enhanced by adding a reducing agent, 1,2-hexadecanediol. Moreover, we developed a synthesis procedure for the formation of SnTe-based core/shell NCs by combining the cation exchange and the Kirkendall effect. The cation exchange of Sn(2+) by Cd(2+) at the surface allowed primarily the formation of SnTe/CdTe core/shell NCs. Further continuation of the reaction promoted an intensive diffusion of the Cd(2+) ions, which via the Kirkendall effect led to the formation of the inverted CdTe/SnTe core/shell NCs. PMID:27331900

  13. The influence of structural characteristics on the electronic and thermal properties of GaN/AlN core/shell nanowires

    NASA Astrophysics Data System (ADS)

    Pavloudis, Th.; Termentzidis, K.; Komninou, Ph.; Latham, C. D.; Briddon, P. R.; Kioseoglou, J.

    2016-02-01

    Interatomic potential based molecular dynamics and ab initio calculations are employed to investigate the structural, thermal, and electronic properties of polar GaN/AlN core/shell nanowires. Nanowire models for the molecular dynamics simulations contain hundreds of thousands of atoms with different shell-to-nanowire ratios. The energetic and structural properties are evaluated through a detailed examination of the strain, the stress, and the displacement fields. It is found that the relaxation of the AlN shell is initiated at the edges, with the shell becoming increasingly stress free when the shell-to-nanowire ratio is increased. The basal lattice parameter a of the AlN shell is found to have a smaller value than the value predicted by the elasticity theory. The stresses on the GaN core are strongly influenced by the shell. The core retains the a lattice parameter of bulk GaN only up to a shell-to-nanowire ratio equal to 0.10 and is significantly compressed beyond this point. Concerning the thermal properties, the molecular dynamics simulations conclude that there is a linear relationship between the thermal conductivity and the shell-to-core area ratio of the GaN/AlN core/shell nanowires. The bandgaps of the nanowires are calculated through ab initio calculations of 103 atoms and the influence of the structural characteristics on the electronic properties is investigated. A well-defined relationship that predicts the bandgap of the GaN/AlN nanowires, follows the 2nd order Vegard's law and taking into account the shell-to-nanowire ratio, is established. Finally, the valence band maximum is found to be dominated by the surface N-2p levels, while the conduction band minimum is dominated by the core and interface Ga-3s, and the surface Al-2s levels.

  14. Triple-functional core-shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro

    NASA Astrophysics Data System (ADS)

    Qiao, Xiao-Fei; Zhou, Jia-Cai; Xiao, Jia-Wen; Wang, Ye-Fu; Sun, Ling-Dong; Yan, Chun-Hua

    2012-07-01

    Upconversion luminescent nanoparticles (UCNPs) have been widely used in many biochemical fields, due to their characteristic large anti-Stokes shifts, narrow emission bands, deep tissue penetration and minimal background interference. UCNPs-derived multifunctional materials that integrate the merits of UCNPs and other functional entities have also attracted extensive attention. Here in this paper we present a core-shell structured nanomaterial, namely, NaGdF4:Yb,Er@CaF2@SiO2-PS, which is multifunctional in the fields of photodynamic therapy (PDT), magnetic resonance imaging (MRI) and fluorescence/luminescence imaging. The NaGdF4:Yb,Er@CaF2 nanophosphors (10 nm in diameter) were prepared via sequential thermolysis, and mesoporous silica was coated as shell layer, in which photosensitizer (PS, hematoporphyrin and silicon phthalocyanine dihydroxide) was covalently grafted. The silica shell improved the dispersibility of hydrophobic PS molecules in aqueous environments, and the covalent linkage stably anchored the PS molecules in the silica shell. Under excitation at 980 nm, the as-fabricated nanomaterial gave luminescence bands at 550 nm and 660 nm. One luminescent peak could be used for fluorescence imaging and the other was suitable for the absorption of PS to generate singlet oxygen for killing cancer cells. The PDT performance was investigated using a singlet oxygen indicator, and was investigated in vitro in HeLa cells using a fluorescent probe. Meanwhile, the nanomaterial displayed low dark cytotoxicity and near-infrared (NIR) image in HeLa cells. Further, benefiting from the paramagnetic Gd3+ ions in the core, the nanomaterial could be used as a contrast agent for magnetic resonance imaging (MRI). Compared with the clinical commercial contrast agent Gd-DTPA, the as-fabricated nanomaterial showed a comparable longitudinal relaxivities value (r1) and similar imaging effect.Upconversion luminescent nanoparticles (UCNPs) have been widely used in many biochemical

  15. Fe3O4@Bi2WO6 Core-Shell Structured Microspheres: Facile Construction and Magnetically Recyclable Photocatalytic Activity Under Visible-Light.

    PubMed

    Zhou, Yu-Xue; Tong, Ling; Zeng, Xiang-Hua; Chen, Xiao-Bing

    2015-12-01

    Core-shell structured Fe3O4@Bi2WO6 composite microspheres (Fe3O4 microspheres as core and Bi2WO6 nanoplates as shell) have been fabricated in a facile and cost effective reflux way. Such fabricated Fe3O4@Bi2WO6 composites show good visible-light driven photocatalytic performance on degradation of rhodamine B (RhB) from solution in presence of H2O2. More importantly, they can be easily harvested from aqueous system for recycle with small loss of their photocatalytic activity upon applying an external magnet. However, this combination of Bi2WO6 photocatalytic activity and Fe3O4 magnetic property endows such composite with a bright perspective in low cost waste water treatment by taking full advantage of solar energy. PMID:26682426

  16. Factors affecting the microstructure and mechanical properties of Ti-Al3Ti core-shell-structured particle-reinforced Al matrix composites

    NASA Astrophysics Data System (ADS)

    Guo, Baisong; Yi, Jianhong; Ni, Song; Shen, Rujuan; Song, Min

    2016-04-01

    This work studied the effects of matrix powder and sintering temperature on the microstructure and mechanical properties of in situ formed Ti-Al3Ti core-shell-structured particle-reinforced pure Al-based composites. It has been shown that both factors have significant effects on the morphology of the reinforcements and densification behaviour of the composites. Due to the strong interfacial bonding and the limitation of the crack propagation in the intermetallic shell during deformation by soft Al matrix and Ti core, the composite fabricated using fine spherical-shaped Al powder and sintered at 570 °C for 5 h has the optimal combination of the overall mechanical properties. The study provides a direction for the optimum combination of high strength and ductility of the composites by adjusting the fabrication parameters.

  17. Core-shell-structured CNT@RuO(2) composite as a high-performance cathode catalyst for rechargeable Li-O(2) batteries.

    PubMed

    Jian, Zelang; Liu, Pan; Li, Fujun; He, Ping; Guo, Xianwei; Chen, Mingwei; Zhou, Haoshen

    2014-01-01

    A RuO2 shell was uniformly coated on the surface of core CNTs by a simple sol-gel method, and the resulting composite was used as a catalyst in a rechargeable Li-O2 battery. This core-shell structure can effectively prevent direct contact between the CNT and the discharge product Li2 O2 , thus avoiding or reducing the formation of Li2 CO3 , which can induce large polarization and lead to charge failure. The battery showed a high round-trip efficiency (ca. 79 %), with discharge and charge overpotentials of 0.21 and 0.51 V, respectively, at a current of 100 mA gtotal (-1) . The battery also exhibited excellent rate and cycling performance. PMID:24259081

  18. [Removal and Recycle of Phosphor from Water Using Magnetic Core/Shell Structured Fe₃O₄ @ SiO₂Nanoparticles Functionalized with Hydrous Aluminum Oxide].

    PubMed

    Lai, Li; Xie, Qiang; Fang, Wen-kan; Xing, Ming-chao; Wu, De-yi

    2016-04-15

    A novel magnetic core/shell structured nano-particle Fe₃O₄@ SiO₂phosphor-removal ahsorbent functionalized with hydrous aluminum oxides (Fe₃O₄@ SiO₂@ Al₂O₃· nH₂O) was synthesized. Fe₃O₄@ SiO₂@ Al₂O₃· nH₂O was characterized by XRD, TEM, VSM and BET nitrogen adsorption experiment. The XRD and TEM results demonstrated the presence of the core/shell structure, with saturated magnetization and specific surface area of 56.00 emu · g⁻¹ and 47.27 m² · g⁻¹, respectively. In batch phosphor adsorption experiment, the Langmuir adsorption maximum capacity was 12.90 mg · g⁻¹ and nearly 96% phosphor could be rapidly removed within a contact time of 40 mm. Adsorption of phosphor on Fe₃O₄@ SiO₂@ Al₂O₃ · nH₂O was highly dependent on pH condition, and the favored pH range was 5-9 in which the phosphor removal rate was above 90%. In the treatment of sewage water, the recommended dosage was 1.25 kg · t⁻¹. In 5 cycles of adsorption-regeneration-desorption experiment, over 90% of the adsorbed phosphor could be desorbed with 1 mol · L⁻¹ NaOH, and Fe₃O₄@ SiO₂@ Al₂O₃· nH₂O could be reused after regeneration by pH adjustment with slightly decreased phosphor removal rate with increasing recycling number, which proved the recyclability of Fe₃O₄@ SiO₂@ Al₂O₃· nH₂O and thereby its potential in recycling of phosphor resources. PMID:27548967

  19. Metal-enhanced fluorescence-based core-shell Ag@SiO₂ nanoflares for affinity biosensing via target-induced structure switching of aptamer.

    PubMed

    Lu, Lu; Qian, Yunxia; Wang, Lihui; Ma, Keke; Zhang, Yaodong

    2014-02-12

    One of the great challenges in metal-enhanced fluorescence (MEF) technology is the achievement of distance modulation with nanometer accuracy between the fluorophore and metal surface to obtain maximum enhancement. We propose an MEF-based core-shell Ag@SiO2 nanoflare for distance control via the thickness of silica shell with cooperation of DNA hybridization. The nanoflare contains a 50 nm spherical silver nanoparticle (Ag NP) core, a 8 nm silica shell, and cyanine (Cy5)-labeled aptamer hybridized with a complementary DNA (cDNA) immobilized onto the shell surface. The formation of the Cy5-labeled aptamer/cDNA duplex on the Ag@SiO2 NP surface results in the confinement of Cy5 to the shell surface and an increase in the fluorescence of Cy5 with a 32-fold enhancement factor in bulk solution (signal-on). In the presence of affinity-binding targets, the Cy5-labeled aptamers confined onto the Ag@SiO2 NP surface dissociate from their cDNA into the solution because of structure switching. The target-induced release of aptamer leads to a reduction in the enhanced fluorescence signal of the labeled Cy5 moiety (signal-off). Thus, the nanoflare can be used as a sensor for target recognition. Using adenosine-5'-triphosphate (ATP) aptamer, detection of ATP has a linear response from 0 to 0.5 mM and a detection limit of 8 μM. With various types of DNA probes immobilized onto the core-shell Ag@SiO2 NPs, the MEF-based nanoflare has provided an effective platform for the detection and quantification of a broad range of analytes, such as mRNA regulation and detection, cell sorting, and gene profiling. PMID:24480015

  20. Effects of core/shell structure on magnetic induction heating promotion in Fe3O4/γ-Fe2O3 magnetic nanoparticles for hyperthermia

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Chi; Fu, Chao-Ming; Chang, Fu-Hsiung

    2013-10-01

    Fe3O4/γ-Fe2O3 core-shell magnetic nanoparticles have demonstrated superior heating efficiency by applying the alternating magnetic field. The magnetic induction heating properties of core-shell magnetic nanoparticles were analyzed by the rate-dependent hysteresis model, taken into account the magnetic anisotropies and actual size distribution of particles. The analyzed results have disclosed the significance of magnetic anisotropies and shell-thickness to the promotion of magnetic induction heating performance. Further experiments about the cancer cells with uptake of these core-shell magnetic nanoparticles conjugated biocompatible cationic liposomes have achieved in vitro intracellular magnetically induced hyperthermia under a weak alternating magnetic field.

  1. Core/shell colloidal semiconductor nanoplatelets.

    PubMed

    Mahler, Benoit; Nadal, Brice; Bouet, Cecile; Patriarche, Gilles; Dubertret, Benoit

    2012-11-14

    We have recently synthesized atomically flat semiconductor colloidal nanoplatelets with quasi 2D geometry. Here, we show that core/shell nanoplatelets can be obtained with a 2D geometry that is conserved. The epitaxial growth of the shell semiconductor is performed at room temperature. We report the detailed synthesis of CdSe/CdS and CdSe/CdZnS structures with different shell thicknesses. The shell growth is characterized both spectroscopically and structurally. In particular, the core/shell structure appears very clearly on high-resolution, high-angle annular dark-field transmission electron microscope images, thanks to the difference of atomic density between the core and the shell. When the nanoplatelets stand on their edge, we can precisely count the number of atomic planes forming the core and the shell. This provides a direct measurement, with atomic precision, of the core nanoplatelets thickness. The constraints exerted by the shell growth on the core is analyzed using global phase analysis. The core/shell nanoplatelets we obtained have narrow emission spectra with full-width at half-maximum close to 20 nm, and quantum yield that can reach 60%. PMID:23057684

  2. Characterization of oxidation resistant Fe@M (M=Cr, Ni) core@shell nanoparticles prepared by a modified reverse micelle reaction

    NASA Astrophysics Data System (ADS)

    Naik, Sweta H.; Carroll, Kyler J.; Carpenter, Everett E.

    2011-04-01

    Iron-based nanoparticles are the forerunners in the field of nanotechnology due to their high magnetization saturation and biocompability which affords them use in a variety of applications. However, iron-based nanoparticles, due to a high surface-to-volume ratio, suffer from oxidation and limit its practicality by lowering the magnetic moment significantly. To avoid this oxidation, the surfaces of the particles have to be passivated. One such way to accomplish this passivation is to synthesize core@shell nanoparticles that have a surface treatment of chromium or nickel. These core@shell nanoparticles have been synthesized using a reverse micelle technique. The Cr and Ni passivated iron nanoparticles were characterized by x-ray diffraction, transmission electron microscopy, vibrating sample magnetometry, and x-ray photoelectron spectroscopy to determine their phase, morphology, surface properties, and magnetization saturation. A high magnetization saturation of 160 and 165 emu/g for Cr and Ni passivated iron core@shell nanoparticles was achieved.

  3. Core@shell bimetallic nanoparticle synthesis via anion coordination

    NASA Astrophysics Data System (ADS)

    Serpell, Christopher J.; Cookson, James; Ozkaya, Dogan; Beer, Paul D.

    2011-06-01

    Core@shell structured bimetallic nanoparticles are currently of immense interest due to their unique electronic, optical and catalytic properties. However, their synthesis is non-trivial. We report a new supramolecular route for the synthesis of core@shell nanoparticles, based on an anion coordination protocol—the first to function by binding the shell metal to the surface of the pre-formed primary metal core before reduction. The resultant gold/palladium and platinum/palladium core@shell nanoparticles have been characterized by aberration-corrected scanning transmission electron microscopy (as well as other techniques), giving striking atomic-resolution images of the core@shell architecture, and the unique catalytic properties of the structured nanoparticles have been demonstrated in a remarkable improvement of the selective production of industrially valuable chloroaniline from chloronitrobenzene.

  4. Structural Evolution of Co-Based Metal Organic Frameworks in Pyrolysis for Synthesis of Core-Shells on Nanosheets: Co@CoOx@Carbon-rGO Composites for Enhanced Hydrogen Generation Activity.

    PubMed

    Xing, Congcong; Liu, Yanyan; Su, Yongheng; Chen, Yinghao; Hao, Shuo; Wu, Xianli; Wang, Xiangyu; Cao, Huaqiang; Li, Baojun

    2016-06-22

    In this article, Co-based metal organic frameworks (MOFs) with two shapes were used as pyrolysis precursor to synthesize multilayer core-shells composites loaded on reduced graphene oxide (rGO) sheets. The core-shell structures were obtained by the formation of cores from metal ions and carbon shells from carbonization of ligands. Controllable oxidation of Co cores to CoOx shells generated multilayer core-shell structures anchored onto the surface of rGO sheets. The N-doped composites were obtained by adding poly vinylpyrrolidone. The multilayer core-shells composites exhibited superior catalytic activity toward hydrogen generation compared to their single layer counterparts. By using the N-doped multilayer composites, high hydrogen generation specific rate of 5560 mL min(-1) gCo(-1) was achieved at room temperature. The rGO sheets in composites improved their structure stability. These catalysts exhibited high stability after used five cycling. This synergistic strategy proposes simple, efficient, and versatile blue-prints for the fabrication of rGO composites from MOFs-based precursors. PMID:27243608

  5. Synthesis and characterization of core-shell acrylate based latex and study of its reactive blends.

    PubMed

    Liu, Xiang; Fan, Xiao-Dong; Tang, Min-Feng; Nie, Ying

    2008-03-01

    Techniques in resin blending are simple and efficient method for improving the properties of polymers, and have been used widely in polymer modification field. However, polymer latex blends such as the combination of latexes, especially the latexes with water-soluble polymers, were rarely reported. Here, we report a core-shell composite latex synthesized using methyl methacrylate (MMA), butyl acrylate (BA), 2-ethylhexyl acrylate (EHA) and glycidyl methacrylate (GMA) as monomers and ammonium persulfate and sodium bisulfite redox system as the initiator. Two stages seeded semi-continuous emulsion polymerization were employed for constructing a core-shell structure with P(MMA-co-BA) component as the core and P(EHA-co-GMA) component as the shell. Results of Transmission Electron Microscopy (TEM) and Dynamics Light Scattering (DLS) tests confirmed that the particles obtained are indeed possessing a desired core-shell structural character. Stable reactive latex blends were prepared by adding the latex with waterborne melamine-formaldehyde resin (MF) or urea-formaldehyde resin (UF). It was found that the glass transition temperature, the mechanical strength and the hygroscopic property of films cast from the latex blends present marked enhancements under higher thermal treatment temperature. It was revealed that the physical properties of chemically reactive latexes with core-shell structure could be altered via the change of crosslinking density both from the addition of crosslinkers and the thermal treatment. PMID:19325753

  6. Synthesis and Characterization of Core-Shell Acrylate Based Latex and Study of Its Reactive Blends

    PubMed Central

    Liu, Xiang; Fan, Xiao-Dong; Tang, Min-Feng; Nie, Ying

    2008-01-01

    Techniques in resin blending are simple and efficient method for improving the properties of polymers, and have been used widely in polymer modification field. However, polymer latex blends such as the combination of latexes, especially the latexes with water-soluble polymers, were rarely reported. Here, we report a core-shell composite latex synthesized using methyl methacrylate (MMA), butyl acrylate (BA), 2-ethylhexyl acrylate (EHA) and glycidyl methacrylate (GMA) as monomers and ammonium persulfate and sodium bisulfite redox system as the initiator. Two stages seeded semi-continuous emulsion polymerization were employed for constructing a core-shell structure with P(MMA-co-BA) component as the core and P(EHA-co-GMA) component as the shell. Results of Transmission Electron Microscopy (TEM) and Dynamics Light Scattering (DLS) tests confirmed that the particles obtained are indeed possessing a desired core-shell structural character. Stable reactive latex blends were prepared by adding the latex with waterborne melamine-formaldehyde resin (MF) or urea-formaldehyde resin (UF). It was found that the glass transition temperature, the mechanical strength and the hygroscopic property of films cast from the latex blends present marked enhancements under higher thermal treatment temperature. It was revealed that the physical properties of chemically reactive latexes with core-shell structure could be altered via the change of crosslinking density both from the addition of crosslinkers and the thermal treatment. PMID:19325753

  7. Synthesis of three dimensional Co9S8 nanorod@Ni(OH)2 nanosheet core-shell structure for high performance supercapacitor application

    NASA Astrophysics Data System (ADS)

    Wen, Jian; Li, Songzhan; Li, Borui; Song, Zengcai; Wang, Haoning; Xiong, Rui; Fang, Guojia

    2015-06-01

    In this work, three dimensional Co9S8 nanorod@Ni(OH)2 nanosheet core-shell structure is directly fabricated on flexible carbon cloth by a simple low temperature hydrothermal method. This structure with good electrochemical performance could be applied for supercapacitor electrode material. Firstly, this three dimensional structure possesses high specific capacitance of 1620 F g-1, which is 1.7 times of the specific capacitance of the pure Ni(OH)2 electrode and 2.5 times of that of the pure Co9S8 electrode. Secondly, this hybrid electrode exhibits a very high energy density of 70.0 Wh Kg-1 at the power density of 305.7 W kg-1. In addition, the hybrid electrode displays good cycling stability with 104.5% of the initial capacitance after 2000 continuous cycles. Furthermore, the hybrid electrode with three dimensional structure possesses excellent flexibility and has almost the same cyclic voltammetry curve under different bending angles. Thus, the designed electrode holds great promises for light weight, flexible, high energy density supercapacitor applications.

  8. Metal-Organic Frameworks Derived Porous Core/Shell Structured ZnO/ZnCo2O4/C Hybrids as Anodes for High-Performance Lithium-Ion Battery.

    PubMed

    Ge, Xiaoli; Li, Zhaoqiang; Wang, Chengxiang; Yin, Longwei

    2015-12-01

    Metal-organic frameworks (MOFs) derived porous core/shell ZnO/ZnCo2O4/C hybrids with ZnO as a core and ZnCo2O4 as a shell are for the first time fabricated by using core/shell ZnCo-MOF precursors as reactant templates. The unique MOFs-derived core/shell structured ZnO/ZnCo2O4/C hybrids are assembled from nanoparticles of ZnO and ZnCo2O4, with homogeneous carbon layers coated on the surface of the ZnCo2O4 shell. When acting as anode materials for lithium-ion batteries (LIBs), the MOFs-derived porous ZnO/ZnCo2O4/C anodes exhibit outstanding cycling stability, high Coulombic efficiency, and remarkable rate capability. The excellent electrochemical performance of the ZnO/ZnCo2O4/C LIB anodes can be attributed to the synergistic effect of the porous structure of the MOFs-derived core/shell ZnO/ZnCo2O4/C and homogeneous carbon layer coating on the surface of the ZnCo2O4 shells. The hierarchically porous core/shell structure offers abundant active sites, enhances the electrode/electrolyte contact area, provides abundant channels for electrolyte penetration, and also alleviates the structure decomposition induced by Li(+) insertion/extraction. The carbon layers effectively improve the conductivity of the hybrids and thus enhance the electron transfer rate, efficiently prevent ZnCo2O4 from aggregation and disintegration, and partially buffer the stress induced by the volume change during cycles. This strategy may shed light on designing new MOF-based hybrid electrodes for energy storage and conversion devices. PMID:26572922

  9. Poly(N-isopropylacrylamide)-gated Fe3O4/SiO2 core shell nanoparticles with expanded mesoporous structures for the temperature triggered release of lysozyme.

    PubMed

    Yu, Erick; Galiana, Irene; Martínez-Máñez, Ramón; Stroeve, Pieter; Marcos, María D; Aznar, Elena; Sancenón, Félix; Murguía, José R; Amorós, Pedro

    2015-11-01

    Core-shell nanoparticles comprised of Fe3O4 cores and a mesoporous silica shell with an average expanded pore size of 6.07 nm and coated with a poly(N-isopropylacrylamide) (PNIPAM) layer (CS-MSNs-EP-PNIPAM) were prepared and characterized. The nanoparticles was loaded with (Ru(bipy)3(2+)) dye or an antibacterial enzyme, lysozyme, to obtain CS-MSNs-EP-PNIPAM-Ru(bipy)3(2+) and CS-MSNs-EP-PNIPAM-Lys, respectively. The lysozyme loading was determined to be 160 mg/g of nanoparticle. It was seen that Ru(bipy)3(2+) and lysozyme release was minimal at a room temperature of 25 °C while at physiological temperature (37 °C), abrupt release was observed. The applicability of the CS-MSNs-EP-PNIPAM-Lys was further tested with two Gram-positive bacteria samples, Bacillus cereus and Micrococcus luteus. At physiological temperature, the nanoparticles were shown to reduce bacterial growth, indicating a successful release of lysozyme from the nanoparticles. This nanoparticle system shows potential as a nanocarrier for the loading of similarly sized proteins or other species as a drug delivery platform. PMID:26335056

  10. New Approach to Create TiO2(B)/Carbon Core/Shell Nanotubes: Ideal Structure for Enhanced Lithium Ion Storage.

    PubMed

    Zhu, Xiaoyi; Yang, Xianfeng; Lv, Chunxiao; Guo, Shaojun; Li, Jianjiang; Zheng, Zhanfeng; Zhu, Huaiyong; Yang, Dongjiang

    2016-07-27

    To achieve uniform carbon coating on TiO2 nanomaterials, high temperature (>500 °C) annealing treatment is a necessity. However, the annealing treatment inevitably leads to the strong phase transformation from TiO2(B) with high lithium ion storage (LIS) capacity to anatase with low LIS one as well as the damage of nanostructures. Herein, we demonstrate a new approach to create TiO2(B)/carbon core/shell nanotubes (C@TBNTs) using a long-chain silane polymethylhydrosiloxane (PMHS) to bind the TBNTs by forming Si-O-Ti bonds. The key feature of this work is that the introduction of PMHS onto TBNTs can afford TBNTs with very high thermal stability at higher than 700 °C and inhibit the phase transformation from TiO2(B) to anatase. Such a high thermal property of PMHS-TBNTs makes them easily coated with highly graphitic carbon shell via CVD process at 700 °C. The as-prepared C@TBNTs deliver outstanding rate capability and electrochemical stability, i.e., reversible capacity above 250 mAh g(-1) at 10 C and a high specific capacity of 479.2 mAh g(-1) after 1000 cycles at 1 C. As far as we know, the LIS performance of our sample is the highest among the previously reported TiO2(B) anode materials. PMID:27383450

  11. Magnetically separable core-shell structural γ-Fe2O3@Cu/Al-MCM-41 nanocomposite and its performance in heterogeneous Fenton catalysis.

    PubMed

    Ling, Yuhan; Long, Mingce; Hu, Peidong; Chen, Ya; Huang, Juwei

    2014-01-15

    To target the low catalytic activity and the inconvenient separation of copper loading nanocatalysts in heterogeneous Fenton-like reaction, a core-shell structural magnetically separable catalyst, with γ-Fe2O3 nanoparticles as the core layer and the copper and aluminum containing MCM-41 as the shell layer, has been fabricated. The role of aluminum has been discussed by comparing the copper containing mesoporous silica with various Cu contents. Their physiochemical properties have been characterized by XRD, UV-vis, FT-IR, TEM, nitrogen physisorption and magnetite susceptibility measurements. Double content Cu incorporation results in an improved catalytic activity for phenol degradation at the given condition (40°C, initial pH=4), but leads to a declined BET surface area and less ordered mesophase structure. Aluminum incorporation helps to retain the high BET surface area (785.2m(2)/g) and the regular hexagonal mesoporous structure of MCM-41, which make the catalyst possess a lower copper content and even a higher catalytic activity than that with the double copper content in the absence of aluminum. The catalysts can be facilely separated by an external magnetic field for recycle usage. PMID:24295771

  12. Rationally synthesized five-fold twinned core-shell Pt3Ni@Rh nanopentagons, nanostars and nanopaddlewheels for selective reduction of a phenyl ring of phthalimide.

    PubMed

    Khi, Nguyen Tien; Baik, Hionsuck; Lee, HyunKyung; Yoon, Jisun; Sohn, Jeong-Hun; Lee, Kwangyeol

    2014-10-01

    Surface-energy fine-tuned five-fold twinned nanostructures with a core-shell Pt3Ni@Rh structural motif, namely, a core-shell Pt3Ni@Rh pentagon, a core-shell Pt3Ni@Rh starfish, and a paddlewheel with a Pt3Ni crankshaft and two Rh five-fold starfish wheels, are prepared by rationally designed stepwise heteroepitaxial growth. Unusual selective hydrogenation of the phenyl ring in phthalimide is accomplished with moderately active core-shell Pt3Ni@Rh pentagons and starfish-like nanoparticles. The most active paddlewheel structure proceeds to further reduce one carbonyl group, indicating the sequential nature of phthalimide reduction by Rh nanoparticle catalysis. PMID:25125204

  13. The use of the core-shell structure of zero-valent iron nanoparticles (NZVI) for long-term removal of sulphide in sludge during anaerobic digestion.

    PubMed

    Su, Lianghu; Zhen, Guangyin; Zhang, Longjiang; Zhao, Youcai; Niu, Dongjie; Chai, Xiaoli

    2015-12-01

    A core-shell structure results in zero-valent iron nanoparticles (NZVI) with manifold functional properties. In this study, the long-term effects of NZVI on hydrogen sulphide removal in an anaerobic sludge digester were investigated. Within 20 days, the average hydrogen sulphide content in the biogas was successfully reduced from 300 (or 3620 of sulphate-rich sludge) mg Nm(-3) to 6.1 (121), 0.9 (3.3) and 0.5 (1.3) mg Nm(-3) in the presence of 0.05, 0.10 and 0.20% (wt) NZVI, respectively. Methane yield was enhanced at the low NZVI dose (0.05-0.10%) but decreased at the elevated dose (0.20%). Methane production and volatile solid degradation analyses implied that doses of 0.5-0.10% NZVI could accelerate sludge stabilization during anaerobic digestion. The phosphorus fractionation profile suggested that methane production could be inhibited at the elevated NZVI dose, partly due to the limited availability of soluble phosphorus due to the immobilization of bioavailable-P through the formation of vivianite. An analysis of the reducible inorganic sulphur species revealed that the elimination of hydrogen sulphide occurred via the reaction between hydrogen sulphide and the oxide shell of NZVI, which mainly formed FeS and some FeS2 and S(0). PMID:26565792

  14. Defect induced ferromagnetic interaction in nanostructured nickel oxide with core-shell magnetic structure: the role of Ni(2+) and O(2-) vacancies.

    PubMed

    Madhu, G; Maniammal, K; Biju, V

    2016-04-28

    Nanostructured nickel oxide samples with crystallite sizes in the range 32-45 nm are synthesized through a facile chemical route using nickel chloride and ethanol amine as the starting materials. The analysis of the antioxidant activity and DC conductivity of the NiO samples confirmed the presence of both Ni(2+) and O(2-) vacancies. The temperature dependent magnetization studies of the samples are done using a Vibrating Sample Magnetometer in the range 20-300 K. The core-shell magnetic structure of the NiO nanoparticles with an antiferromagnetic core and a spin-glass shell is revealed from the zero field cooled and field cooled magnetization studies of the samples. The dependence of uncompensated moments on total spins contradicts Neel's models and is found to vary directly with O(2-) vacancy concentration. The ferromagnetic response of NiO samples due to the interaction between the antiferromagnetic core and the ferromagnetic shell is evident from the magnetic hysteresis studies in the temperature range 20-300 K. The ferromagnetic response is traced to the concentration of O(2-) vacancies, which act as donor impurities and mediate the alignment of magnetic moments associated with Ni(2+) vacancies. The decrease of ferromagnetic contribution upon annealing is explained by the decrease in the concentration of O(2-) vacancies which caused a reduction in the number of magnetic polarons and hence the effective magnetization. PMID:27074902

  15. Design of metal/dielectric/nanocrystals core/shell/shell nano-structures for the fluorescence enhancement of cadmium-free semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Chevallier, Théo.; Le Blevennec, Gilles; Chandezon, Frédéric

    2015-10-01

    AgInS2-ZnS (ZAIS) quaternary semiconductors nanocrystals are versatile cadmium-free luminescent nanomaterials. Their broad emission spectrum and strong absorption make them ideal for the development of new white-LED devices taking advantage of nano-optical phenomena. We recently found strategies to increase the photoluminescence quantum yield of ZAIS nanocrystals up to 80%. In a second step toward high efficiency luminescent materials, we aim at increasing the net conversion efficiency of ZAIS nanocrystals by coupling them with metallic nano-antennae. Indeed, by grafting ZAIS nanocrystals onto carefully chosen metal/dielectric core/shell nanoparticles, both the absorption and emission processes can be tuned and enhanced. A finite-element simulation based on the discrete dipole approximation (DDA) was used to predict the nano-optical behavior of silver@oxide@ZAIS nanostructures. Desirable combinations of materials and geometry for the antennae were identified. A chemical method for the synthesis of the simulated nanostructures was developed. The coupling of ZAIS nanocrystals emission with the plasmonic structure is experimentally observed and is in accordance with our predictions.

  16. Optical and structural characterization of CdS/ZnS and CdS:Cu(2+) /ZnS core-shell nanoparticles.

    PubMed

    Murugadoss, G; Kumar, M Rajesh

    2014-09-01

    Core-shell CdS/ZnS (Zn 0.025-0.125 M) and CdS:Cu(2+) (1%)/ZnS nanoparticles were successfully synthesized using a chemical method. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR TEM), photoluminescence (PL) and UV/Visible (UV/Vis) techniques were used to characterize the novel CdS/ZnS and CdS:Cu(2+) /ZnS core-shell nanoparticles. All absorption peaks of the synthesized samples were highly blue-shifted from the bulk CdS and ZnS. Very narrow and symmetric PL emission was observed in the yellow region for core-shell CdS/ZnS. Furthermore, the PL emission of CdS/ZnS was tuned into orange region by incorporate the Cu ion into the core CdS lattice. PMID:24254232

  17. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions

    PubMed Central

    Chen, Dong; Li, Chengyin; Liu, Hui; Ye, Feng; Yang, Jun

    2015-01-01

    Core-shell nanoparticles often exhibit improved catalytic properties due to the lattice strain created in these core-shell particles. Herein, we demonstrate the synthesis of core-shell Au@Pd nanoparticles from their core-shell Au@Ag/Pd parents. This strategy begins with the preparation of core-shell Au@Ag nanoparticles in an organic solvent. Then, the pure Ag shells are converted into the shells made of Ag/Pd alloy by galvanic replacement reaction between the Ag shells and Pd2+ precursors. Subsequently, the Ag component is removed from the alloy shell using saturated NaCl solution to form core-shell Au@Pd nanoparticles with an Au core and a Pd shell. In comparison with the core-shell Au@Pd nanoparticles upon directly depositing Pd shell on the Au seeds and commercial Pd/C catalysts, the core-shell Au@Pd nanoparticles via their core-shell Au@Ag/Pd templates display superior activity and durability in catalyzing oxygen reduction reaction, mainly due to the larger lattice tensile effect in Pd shell induced by the Au core and Ag removal. PMID:26144550

  18. Core shell particles consisting of cobalt ferrite and silica as model ferrofluids [CoFe 2O 4-SiO 2 core shell particles

    NASA Astrophysics Data System (ADS)

    Wagner, Joachim; Autenrieth, Tina; Hempelmann, Rolf

    2002-11-01

    Nearly monodisperse core shell particles consisting of a magnetic core of cobalt ferrite (CoFe 2O 4) and a shell of silica (SiO 2) are prepared via a modified Stöber synthesis. The core shell structure is confirmed by TEM, the size distribution of the whole particles was determined by means of photon correlation spectroscopy and small angle X-ray scattering. Due to charged surface groups of the silica shells and the magnetic moments of the cores, these particles interact both via a screened Coulomb potential and via a magnetic dipole potential. If stray ions are removed in the presence of a mixed bed ion exchanger, the electrostatic repulsion induces colloidal crystallisation. The lattice constant is influenced by the interaction with a magnetic field gradient, indicated by a blue shift of the Laue spots towards increasing field gradient.

  19. Controllable synthesis and highly efficient electrocatalytic oxidation performance of SnO 2/CNT core-shell structures

    NASA Astrophysics Data System (ADS)

    Zhang, Dengsong; Pan, Chengsi; Shi, Liyi; Mai, Hailing; Gao, Xiaohong

    2009-02-01

    In this work, the nanocomposites, carbon nanotubes (CNTs) coated with nanosized uninterrupted SnO 2, were prepared controllably by a facile solvothermal method. The obtained nanocomposites have a thin overlayer which is made of nanoparticles with a diameter of ˜3 nm. The products were characterized by X-ray diffraction and transmission electron microscopy. The obtained SnO 2/CNTs have an excellent electrocatalytic oxidation performance for the X-3B, a kind of dye. The parameters affecting the electrocatalytic activity were investigated in details. The excellent catalytic property of the SnO 2/CNT electrodes can be explained as follows: (1) high specific surface area gives more active sites for X-3B oxidation; (2) the formation of thin, uniform, and uninterrupted coverage of SnO 2 nanoparticles on CNTs raises the potential of oxygen evolution and the current efficiency; and (3) the CNTs increase the conductivity of the electrodes, which results in the increase of the current efficiency.

  20. Enhanced electrical properties and field emission characteristics of AZO/ZnO-nanowire core-shell structures.

    PubMed

    Huang, Jheng-Ming; Tsai, Shang-You; Ku, Ching-Shun; Lin, Chih-Ming; Chen, San-Yuan; Lee, Hsin-Yi

    2016-06-01

    The electrical properties and field-emission characteristics of ZnO nanowires (ZnO-NWs) fabricated using a vapor-liquid-solid method were systematically investigated. In particular, we explored the effects of Al-doped ZnO (AZO) films (thickness 4-100 nm) deposited on ZnO-NWs using an atomic layer deposition (ALD) method on the optoelectronic properties. The results show that the sheet resistance of net-like ZnO-NW structures can be significantly improved, specifically to become ∼1/1000 of the sheet resistance of the as-grown ZnO-NWs, attaining less than 10 Ω Sq(-1). The emission current density measured at the maximum field was roughly quadrupled relative to that of the as-grown ZnO-NWs. The data of the enhanced field-emission characteristics show that, with the ALD system, the AZO films of small resistance are readily coated on a structure with a high aspect ratio and the coating radius is controlled relative to the turn-on voltage and current density. The ultrathin AZO film from a one-monolayer coating process also significantly improved emission properties through modification of the effective work function at the AZO/ZnO-NW surface. PMID:27210896

  1. Multifunctional CdS/CoFe2O4 fluorescent/magnetic core/shell nanocomposite structure for bio-applications

    NASA Astrophysics Data System (ADS)

    Singh, Simrjit; Khare, Neeraj; Sivakumar, Balasubramanian; Aravind, Athulya; Nair Sakthikumar, Dasappan

    2016-04-01

    In this work, self-assembled core/shell nanostructures of CdS/CoFe2O4 (CFO) have been synthesized using a chemical solution method to include magnetic and fluorescent properties in a single composite material for bioapplications. Successful synthesis of the core/shell nanostructure has been evidenced from the transmission electron microscopy and x-ray diffraction results. Alternating gradient magnetometer and photoluminescence spectroscopy results confirm good magnetic and luminescent characteristics of the core/shell nanostructure. The in vitro biocompatibility of the CFO and CdS/CFO nanostructures has been studied in the Alamar blue assay in four different cell lines (MIAPaCa-2, MCF-7, KUSA-A1, and L929 cells) at different concentrations of nanostructures. The CdS/CFO nanostructure shows improved biocompatibility in all the cell lines as compared to bare CFO nanostructures at all concentrations. However, the biocompatibility for both the nanostructures is found to decrease in the KUSA-A1 cell line at higher concentrations of the nanostructures, which is due to the higher sensitivity of the KUSA-A1 cell line to the nanostructures at higher concentrations than other cell lines. Biocompatibility studies show the potentiality of these core/shell nanostructures for bio-applications.

  2. Hollow ruthenium nanoparticles with small dimensions derived from Ni@Ru core@shell structure: synthesis and enhanced catalytic dehydrogenation of ammonia borane.

    PubMed

    Chen, Guozhu; Desinan, Stefano; Rosei, Renzo; Rosei, Federico; Ma, Dongling

    2012-08-18

    Hollow Ru nanoparticles with ~14 nm diameter and ~2 nm shell thickness are reported for the first time, by removal of Ni from the delicately designed Ni@Ru core@shell NPs. Such hollow Ru NPs exhibit enhanced catalytic activity in the dehydrogenation of ammonia borane with respect to solid ones. PMID:22773309

  3. Luminescence properties of core-shell structured SiO{sub 2}-CaMoO{sub 4}:Eu{sup 3+} phosphor

    SciTech Connect

    Ju Xiaoxia; Li Xueming; Yang Yuling; Li Wulin; Tao Chuanyi; Feng Wenlin

    2012-03-15

    Uniform SiO{sub 2}-CaMoO{sub 4}:Eu{sup 3+} red phosphor has been synthesized by sol-gel method, and its luminescence properties have been studied by fluorescence spectrometer. The structure and morphology of the SiO{sub 2}-CaMoO{sub 4}:Eu{sup 3+} red phosphor have been investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and FT-IR spectrometer. Results indicate that phosphor particles have a core-shell structure and the thickness of the SiO{sub 2}-shell is about 60 nm. In addition, the luminescent intensity of SiO{sub 2}-CaMoO{sub 4}:Eu{sup 3+} red phosphor has been greatly enhanced with respect to CaMoO{sub 4}:Eu{sup 3+} phosphor. But the lifetime {tau} value of SiO{sub 2}-coated CaMoO{sub 4}:Eu{sup 3+} is slightly smaller than that of non-coated CaMoO{sub 4}:Eu{sup 3+}. - Graphical abstract: A SiO{sub 2} nano-layer with thickness of 60 nm and good uniformity was successfully coated on the surface of CaMoO{sub 4}:Eu{sup 3+} phosphor. This coating greatly increases luminescent intensity of the phosphor. Highlights: Black-Right-Pointing-Pointer SiO{sub 2}-CaMoO{sub 4}:Eu{sup 3+} was successfully synthesized by sol-gel method. Black-Right-Pointing-Pointer The SiO{sub 2} nano-layer increases luminescent intensity of the phosphor. Black-Right-Pointing-Pointer The SiO{sub 2} nano-layer reduces fluorescence lifetime of the phosphor.

  4. Enhanced up/down-conversion luminescence and heat: Simultaneously achieving in one single core-shell structure for multimodal imaging guided therapy.

    PubMed

    He, Fei; Feng, Lili; Yang, Piaoping; Liu, Bin; Gai, Shili; Yang, Guixin; Dai, Yunlu; Lin, Jun

    2016-10-01

    Upon near-infrared (NIR) light irradiation, the Nd(3+) doping derived down-conversion luminescence (DCL) in NIR region and thermal effect are extremely fascinating in bio-imaging and photothermal therapy (PTT) fields. However, the concentration quenching induced opposite changing trend of the two properties makes it difficult to get desired DCL and thermal effect together in one single particle. In this study, we firstly designed a unique NaGdF4:0.3%Nd@NaGdF4@NaGdF4:10%Yb/1%Er@NaGdF4:10%Yb @NaNdF4:10%Yb multiple core-shell structure. Here the inert two layers (NaGdF4 and NaGdF4:10%Yb) can substantially eliminate the quenching effects, thus achieving markedly enhanced NIR-to-NIR DCL, NIR-to-Vis up-conversion luminescence (UCL), and thermal effect under a single 808 nm light excitation simultaneously. The UCL excites the attached photosensitive drug (Au25 nanoclusters) to generate singlet oxygen ((1)O2) for photodynamic therapy (PDT), while DCL with strong NIR emission serves as probe for sensitive deep-tissue imaging. The in vitro and in vivo experimental results demonstrate the excellent cancer inhibition efficacy of this platform due to a synergistic effect arising from the combined PTT and PDT. Furthermore, multimodal imaging including fluorescence imaging (FI), photothermal imaging (PTI), and photoacoustic imaging (PAI) has been obtained, which is used to monitor the drug delivery process, internal structure of tumor and photo-therapeutic process, thus achieving the target of imaging-guided cancer therapy. PMID:27512942

  5. Temperature-induced structure switch in thermo-responsive micellar interpolyelectrolyte complexes: toward core-shell-corona and worm-like morphologies.

    PubMed

    Dähling, Claudia; Lotze, Gudrun; Drechsler, Markus; Mori, Hideharu; Pergushov, Dmitry V; Plamper, Felix A

    2016-06-21

    The spontaneous formation and thermo-responsiveness of a colloidally-stable interpolyelectrolyte complex (IPEC) based on a linear temperature-sensitive diblock copolymer poly(vinyl sulfonate)31-b-poly(N-isopropyl acrylamide)27 (PVS31-b-PNIPAM27) and a star-shaped quaternized miktoarm polymer poly(ethylene oxide)114-(poly(2-(dimethylamino)ethyl methacrylate)17)4 (PEO114-(qPDMAEMA17)4) was investigated in aqueous media at 0.3 M NaCl by means of dynamic light scattering (DLS), small angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM). The micellar macromolecular co-assemblies show a temperature-dependent size and morphology, which result from the lower critical solution temperature (LCST) behavior of the PNIPAM-blocks. Hence, the micellar co-assemblies grow upon heating. At 60 °C, spherical core-shell-corona co-assemblies are proposed with a hydrophobic PNIPAM core, a water-insoluble IPEC shell, and a hydrophilic PEO corona. These constructs develop into a rod-like structure upon extended equilibration. In turn, PEO-arms and PNIPAM-blocks within a hydrophilic mixed two-component corona surround the water-insoluble IPEC domain at 20 °C, thereby forming spherical core-corona co-assemblies. Reversibility of the structural changes is suggested by the scattering data. This contribution addresses the use of a combination of oppositely charged thermo-responsive and bis-hydrophilic star-shaped polymeric components toward IPECs of diverse morphological types. PMID:27194585

  6. Simulated evolution process of core-shell microstructures

    NASA Astrophysics Data System (ADS)

    Qin, Tao; Wang, Haipeng; Wei, Bingbo

    2007-08-01

    The evolution process of core-shell microstructures formed in monotectic alloys under the space environment condition was investigated by the numerical simulation method. In order to account for the effect of surface segregation on phase separation, Model H was modified by introducing a surface free energy term into the total free energy of alloy droplet. Three Fe-Cu alloys were taken as simulated examples, which usually exhibit metastable phase separation in undercooled and microgravity states. It was revealed by the dynamic simulation process that the formation of core-shell microstructures depends mainly on surface segregation and Marangoni convection. The phase separation of Fe65Cu35 alloy starts from a dispersed structure and gradually evolves into a triple-layer core-shell micro-structure. Similarly, Fe50Cu50 alloy experiences a structural evolution process of “bicontinuous phase → quadruple-layer core-shell → triple-layer core-shell”, while the microstructures of Fe35Cu65 alloy transfer from the dispersed structure into the final double-layer core-shell morphology. The Cu-rich phase always forms the outer layer because of surface segregation, whereas the internal microstructural evolution is controlled mainly by the Marangoni convection resulting from the temperature gradient.

  7. Core-shell structure of nanoscaled Ba0.5Sr0.5TiO3 self-wrapped by MgO derived from a direct solution synthesis at room temperature

    NASA Astrophysics Data System (ADS)

    Tian, H. Y.; Qi, J. Q.; Wang, Y.; Wang, J.; Chan, H. L. W.; Choy, C. L.

    2005-01-01

    A nanoscaled Ba0.5Sr0.5TiO3 (BST) powder was successfully synthesized using a modified hydrothermal process at a low temperature ({\\sim }80\\,^{\\circ }{\\mathrm {C}} ). By dissolving Ba(OH)2·8H2O and Sr(OH)2·8H2O in deionized water as a base solution, nanocrystalline BST powder can be obtained by mixing an ethanol solution of tetrabutyl titanate with a hot base solution by stirring. The grain size of BST is close to 17-20 nm, as calculated by XRD patterns and confirmed by TEM and SEM measurements. A perovskite structure core material of the nanoscaled BST was successfully self-wrapped by a non-ferroelectric oxide MgO derived from a magnesium nitrate (Mg(NO3)2·6H2O) solution under ultrasonic dispersion. A small amount of ammonia solution was added to this mixture to adjust it to a proper level of acidity in order to form a homogeneous core-shell structure. Straightforward experimental results revealed the formation of a core-shell structure. High-resolution transmission electron microscopy (HRTEM) combined with EDX was used to confirm the composition and its variation. TEM, SEM, and XRD results showed that the average particle size of a core-shell structure was less than 150 nm up to sintering at 1100 °C, depending on the core BST powder and its dispersion.

  8. Enhancement of Electrochromic Durability of a Film Made of Silica-Polyaniline Core-Shell Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hwang, Taejin; Lee, Heungyeol; Kim, Hohyeong; Kim, Gyuntak; Mun, Gyeongjin

    Enhancing the operation life time or the electrochemical durability is one of the key issues in electrochromic material studies. It is generally accepted that the inorganic-organic hybrid structure is one of the effective ways to enhance the chemical stability of the material. In this study, an electrochromic film made of silica-polyaniline core-shell composite nanoparticles was tested. The composite particles were prepared through a chemical dispersion polymerization of aniline in an aqueous colloidal solution of silica. The synthesized particles were then dispersed into ethanol and the solution was deposited onto an Indium Tin Oxide (ITO)-coated glass substrate. The electrochromic characterization on the prepared films was performed using the cyclovoltammetry and the optical response to a switching potential. The results showed that the inorganic-organic core-shell hybrid nanoparticle could be a promising choice for the enhancement of electrochromic durability.

  9. The Core-Shell Approach to Formation of Ordered Nanoporous Materials

    SciTech Connect

    Chang, Jeong H.; Wang, Li Q.; Shin, Yongsoon; Jeong, Byeongmoon; Birnbaum, Jerome C.; Exarhos, Gregory J.

    2002-03-04

    This work describes a novel core-shell approach for the preparation of ordered nanoporous ceramic materials that involve a self-assembly process at the molecular level using MPEG-b-PDLLA bloack copolymers. This approach provides for rapid self-assembly and structural reorganization at room temperature. Selected MPEG-b-PDLLA block copolymers were synthesized with systematic variation of the chain lengths of the resident hydrophilic and hydrophobic blocks. This allows the micelle size to be systematically varied. Results from this work are used to understand the formation mechanism of nanoporous structures in which the pore size and wall thickness are closely dependent on the size of hydrophobic cores and hydrophilic shells of the block copolymer templates. The core-shell mechanism for nanoporous structure evolution is based on the size and contrasting micellar packing arrangements that are controlled by the copolymer.

  10. Current Status of Magnetite-Based Core@Shell Structures for Diagnosis and Therapy in Oncology Short running title: Biomedical Applications of Magnetite@Shell Structures.

    PubMed

    Andrade, Angela Leao; Fabris, Jose Domingos; Domingues, Rosana Zacarias; Pereira, Marcio C

    2015-01-01

    Superparamagnetic iron oxides, as magnetite (Fe3O4) or maghemite (γ-Fe2O3), are primary materials with intrinsic properties that enable them, as single components or as special composites, to base advanced techniques in medical clinical practices, as a contrast agent in magnetic resonance imaging (MRI), as magnetically-induced hyperthermic heat generator, and as a magnetic guide to locally deliver drugs to specific sites in the human body. An interesting approach to developing nanoplatforms for those applications consists in manufacturing core@shell nanostructures, in which the precursor magnetic iron oxide (usually, magnetite) acts as a core, and an organic, or inorganic compound is used as a shell in a multifunctional composite. In this review, we report the current advances in the use of magnetite-based core@shell nanostructures, including Fe3O4@SiO2 and Fe3O4@polymers, in MRI, magnetic hyperthermia and drug delivery systems for diagnosis and therapy of tumor cells. The development of nanoplatforms for combined therapy and diagnostic (theranostic) is also addressed. PMID:26377654

  11. Facile Synthesis of Nb2O5@Carbon Core-Shell Nanocrystals with Controlled Crystalline Structure for High-Power Anodes in Hybrid Supercapacitors.

    PubMed

    Lim, Eunho; Jo, Changshin; Kim, Haegyeom; Kim, Mok-Hwa; Mun, Yeongdong; Chun, Jinyoung; Ye, Youngjin; Hwang, Jongkook; Ha, Kyoung-Su; Roh, Kwang Chul; Kang, Kisuk; Yoon, Songhun; Lee, Jinwoo

    2015-07-28

    Hybrid supercapacitors (battery-supercapacitor hybrid devices, HSCs) deliver high energy within seconds (excellent rate capability) with stable cyclability. One of the key limitations in developing high-performance HSCs is imbalance in power capability between the sluggish Faradaic lithium-intercalation anode and rapid non-Faradaic capacitive cathode. To solve this problem, we synthesize Nb2O5@carbon core-shell nanocyrstals (Nb2O5@C NCs) as high-power anode materials with controlled crystalline phases (orthorhombic (T) and pseudohexagonal (TT)) via a facile one-pot synthesis method based on a water-in-oil microemulsion system. The synthesis of ideal T-Nb2O5 for fast Li(+) diffusion is simply achieved by controlling the microemulsion parameter (e.g., pH control). The T-Nb2O5@C NCs shows a reversible specific capacity of ∼180 mA h g(-1) at 0.05 A g(-1) (1.1-3.0 V vs Li/Li(+)) with rapid rate capability compared to that of TT-Nb2O5@C and carbon shell-free Nb2O5 NCs, mainly due to synergistic effects of (i) the structural merit of T-Nb2O5 and (ii) the conductive carbon shell for high electron mobility. The highest energy (∼63 W h kg(-1)) and power (16 528 W kg(-1) achieved at ∼5 W h kg(-1)) densities within the voltage range of 1.0-3.5 V of the HSC using T-Nb2O5@C anode and MSP-20 cathode are remarkable. PMID:26095456

  12. Core-shell and segmented polymer-metal composite nanostructures.

    PubMed

    Lahav, Michal; Weiss, Emily A; Xu, Qiaobing; Whitesides, George M

    2006-09-01

    Composite nanostructures (approximately 200 nm wide and several micrometers long) of metal and polyaniline (PANI) in two new variations of core-shell (PANI-Au) and segmented (Au-PANI and Ni-Au-PANI) architectures were fabricated electrochemically within anodized aluminum oxide (AAO) membranes. Control over the structure of these composites (including the length of the gold shells in the core-shell structures) was accomplished by adjusting the time and rate of electrodeposition and the pH of the solution from which the materials were grown. Exposure of the core-shell structures to oxygen plasma removed the PANI and yielded aligned gold nanotubes. In the segmented structures, a self-assembled monolayer (SAM) of thioaniline nucleated the growth of PANI on top of metal nanorods and acted as an adhesion layer between the metal and PANI components. PMID:16968046

  13. The effect of operational parameters on the photocatalytic degradation of Congo red organic dye using ZnO-CdS core-shell nano-structure coated on glass by Doctor Blade method.

    PubMed

    Habibi, Mohammad Hossein; Rahmati, Mohammad Hossein

    2015-02-25

    Photocatalytic degradation of Congo red was investigated using ZnO-CdS core-shell nano-structure coated on glass by Doctor Blade method in aqueous solution under irradiation. Field-emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) techniques were used for the morphological and structural characterization of ZnO-CdS core-shell nanostructures. XRD results showed diffractions of wurtzite zinc oxide core and wurtzite cadmium sulfide shell. FESEM results showed that nanoparticles are nearly hexagonal with an average diameter of about 50 nm. The effect of catalyst loading, UV-light irradiation time and solution pH on photocatalytic degradation of Congo red was studied and optimized values were obtained. Results showed that the employment of efficient photocatalyst and selection of optimal operational parameters may lead to complete decolorization of dye solutions. It was found that ZnO-CdS core-shell nano-structure is more favorable for the degradation of Congo red compare to pure ZnO or pure CdS due to lower electron hole recombination. The results showed that the photocatalytic degradation rate of Congo red is enhanced with increasing the content of ZnO up to ZnO(0.2 M)/CdS(0.075 M) which is reached 88.0% within 100 min irradiation. PMID:25218225

  14. Effect of Growth Parameters and Substrate Surface Preparation for High-Density Vertical GaAs/GaAsSb Core-Shell Nanowires on Silicon with Photoluminescence Emission at 1.3 μm

    NASA Astrophysics Data System (ADS)

    Kasanaboina, Pavan Kumar; Ojha, Sai Krishna; Sami, Shifat Us; Lewis Reynolds, C.; Liu, Yang; Iyer, Shanthi

    2016-04-01

    GaAs/GaAsSb nanowire (NW) arrays are ideally suited to meet the demands of the next generation infrared (IR) photodetectors with potential for improving detection. NWs in a core-shell geometry have the advantage of providing axial direction for a long optical path for enhanced optical absorption and a short radial path for charge diffusion and collection. For the Ga-assisted molecular beam epitaxial growth of vertical, dense and uniform GaAs core NWs on Si (111), the effects of substrate surface preparation in combination with growth parameter variation were examined. On the epiready substrate without any surface preparation, both initial Ga shutter opening duration and V/III beam equivalent pressure ratio play a vital role in achieving almost all vertical NWs with moderate density ~107 cm-2. Also the spatial uniformity of the NWs was poor. Substrate surface preparation by chemical cleaning followed by oxidation in air led to highly vertical and uniform NWs with high density (8 × 108 cm-2). The GaAsSb shell was then successfully grown around the highly dense and vertical core GaAs NWs at growth temperatures ranging from 550°C to 590°C. It was found that growth temperature has a strong influence on Sb incorporation in the NWs and, hence, the NW morphology and 4K photoluminescence (PL) spectra. The presence of x-ray diffraction peaks corresponding to (111) reflection only and its higher-order reflections attest to the vertical alignment of NWs. Strain in the NWs as estimated using the Williamson-Hall isotropic strain model increases with Sb incorporation, which results in bending of the NWs with increasing Sb. Structural properties of these NWs using scanning transmission electron microscopy (STEM) are also presented. The temperature dependence PL of the NWs exhibited "S-curve" behavior, which is a well-known signature of localized excitons and a room temperature band edge PL emission occurring at ~1.3 μm.

  15. Facet recovery and light emission from GaN/InGaN/GaN core-shell structures grown by metal organic vapour phase epitaxy on etched GaN nanorod arrays

    NASA Astrophysics Data System (ADS)

    Le Boulbar, E. D.; Gîrgel, I.; Lewins, C. J.; Edwards, P. R.; Martin, R. W.; Šatka, A.; Allsopp, D. W. E.; Shields, P. A.

    2013-09-01

    The use of etched nanorods from a planar template as a growth scaffold for a highly regular GaN/InGaN/GaN core-shell structure is demonstrated. The recovery of m-plane non-polar facets from etched high-aspect-ratio GaN nanorods is studied with and without the introduction of a hydrogen silsesquioxane passivation layer at the bottom of the etched nanorod arrays. This layer successfully prevented c-plane growth between the nanorods, resulting in vertical nanorod sidewalls (˜89.8°) and a more regular height distribution than re-growth on unpassivated nanorods. The height variation on passivated nanorods is solely determined by the uniformity of nanorod diameter, which degrades with increased growth duration. Facet-dependent indium incorporation of GaN/InGaN/GaN core-shell layers regrown onto the etched nanorods is observed by high-resolution cathodoluminescence imaging. Sharp features corresponding to diffracted wave-guide modes in angle-resolved photoluminescence measurements are evidence of the uniformity of the full core-shell structure grown on ordered etched nanorods.

  16. Core-shell diodes for particle detectors

    NASA Astrophysics Data System (ADS)

    Jia, Guobin; Plentz, Jonathan; Höger, Ingmar; Dellith, Jan; Dellith, Andrea; Falk, Fritz

    2016-02-01

    High performance particle detectors are needed for fundamental research in high energy physics in the exploration of the Higgs boson, dark matter, anti-matter, gravitational waves and proof of the standard model, which will extend the understanding of our Universe. Future particle detectors should have ultrahigh radiation hardness, low power consumption, high spatial resolution and fast signal response. Unfortunately, some of these properties are counter-influencing for the conventional silicon drift detectors (SDDs), so that they cannot be optimized simultaneously. In this paper, the main issues of conventional SDDs have been analyzed, and a novel core-shell detector design based on micro- and nano-structures etched into Si-wafers is proposed. It is expected to simultaneously reach ultrahigh radiation hardness, low power consumption, fast signal response and high spatial resolution down to the sub-micrometer range, which will probably meet the requirements for the most powerful particle accelerators in the near future. A prototype core-shell detector was fabricated using modern silicon nanotechnology and the functionality was tested using electron-beam-induced current measurements. Such a high performance detector will open many new applications in extreme radiation environments such as high energy physics, astrophysics, high resolution (bio-) imaging and crystallography, which will push these fields beyond their current boundaries.

  17. Simultaneous in-situ synthesis and characterization of Co@Cu core-shell nanoparticle arrays

    DOE PAGESBeta

    McKeown, Joseph T.; Wu, Yueying; Fowlkes, Jason D.; Rack, Philip D.; Campbell, Geoffrey H.

    2014-12-23

    Core-shell nanostructures have attracted much attention due to their unique and tunable properties relative to bulk structures of the same materials, making core-shell nanoparticles candidates for a variety of applications with multiple functionalities.[1,2] Intriguing magnetic behavior can be tailored by variation of size, interface, crystal orientation, and composition, and core-shell nanostructures with noble-metal shells yield novel optical responses[3] and enhanced electrocatalytic activity.[4

  18. Core-shell hybrid liposomal vesicles loaded with panax notoginsenoside: preparation, characterization and protective effects on global cerebral ischemia/reperfusion injury and acute myocardial ischemia in rats

    PubMed Central

    Zhang, Jing; Han, Xizhen; Li, Xiang; Luo, Yun; Zhao, Haiping; Yang, Ming; Ni, Bin; Liao, Zhenggen

    2012-01-01

    Purpose: Novel panax notoginsenoside-loaded core-shell hybrid liposomal vesicles (PNS-HLV) were developed to resolve the restricted bioavailability of PNS and to enhance its protective effects in vivo on oral administration. Methods: Physicochemical characterizations of PNS-HLV included assessment of morphology, particle size and zeta potential, encapsulation efficiency (EE%), stability and in vitro release study. In addition, to evaluate its oral treatment potential, we compared the effect of PNS-HLV on global cerebral ischemia/reperfusion and acute myocardial ischemia injury with those of PNS solution, conventional PNS-loaded nanoparticles, and liposomes. Results: In comparison with PNS solution, conventional PNS-loaded nanoparticles and liposomes, PNS-HLV was stable for at least 12 months at 4°C. Satisfactory improvements in the EE% of notoginsenoside R1, ginsenoside Rb1, and ginsenoside Rg1 were shown with the differences in EE% shortened and the greater controlled drug release profiles were exhibited from PNS-HLV. The improvements in the physicochemical properties of HLV contributed to the results that PNS-HLV was able to significantly inhibit the edema of brain and reduce the infarct volume, while it could markedly inhibit H2O2, modified Dixon agar, and serum lactate dehydrogenase, and increase superoxide dismutase (P < 0.05). Conclusion: The results of the present study imply that HLV has promising prospects for improving free drug bioactivity on oral administration. PMID:22915851

  19. Metal-organic framework-immobilized polyhedral metal nanocrystals: reduction at solid-gas interface, metal segregation, core-shell structure, and high catalytic activity.

    PubMed

    Aijaz, Arshad; Akita, Tomoki; Tsumori, Nobuko; Xu, Qiang

    2013-11-01

    For the first time, this work presents surfactant-free monometallic and bimetallic polyhedral metal nanocrystals (MNCs) immobilized to a metal-organic framework (MIL-101) by CO-directed reduction of metal precursors at the solid-gas interface. With this novel method, Pt cubes and Pd tetrahedra were formed by CO preferential bindings on their (100) and (111) facets, respectively. PtPd bimetallic nanocrystals showed metal segregation, leading to Pd-rich core and Pt-rich shell. Core-shell Pt@Pd nanocrystals were immobilized to MIL-101 by seed-mediated two-step reduction, representing the first example of core-shell MNCs formed using only gas-phase reducing agents. These MOF-supported MNCs exhibited high catalytic activities for CO oxidation. PMID:24138338

  20. Nanocrystalline p-hydroxyacetanilide (paracetamol) and gold core-shell structure as a model drug deliverable organic-inorganic hybrid nanostructure

    NASA Astrophysics Data System (ADS)

    Das, Subhojit; Paul, Anumita; Chattopadhyay, Arun

    2013-09-01

    We report on the generation of core-shell nanoparticles (NPs) having an organic nanocrystal (NC) core coated with an inorganic metallic shell, being dispersed in aqueous medium. First, NCs of p-hydroxyacetanilide (pHA)--known also as paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell particles with a solution comprising NaCl and HCl (pH < 3), the Au shell could be dissolved, subsequently releasing pHA molecules. The dissolution of Au shell was marked by a gradual diminishing of its SPR band, while the release of pHA molecules in the solution was confirmed from TEM and FTIR studies. The findings suggest that the core-shell NP could be hypothesized to be a model for encapsulating drug molecules, in their crystalline forms, for slow as well as targeted release.We report on the generation of core-shell nanoparticles (NPs) having an organic nanocrystal (NC) core coated with an inorganic metallic shell, being dispersed in aqueous medium. First, NCs of p-hydroxyacetanilide (pHA)--known also as paracetamol--were generated in an aqueous medium. Transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) evidenced the formation of pHA NCs and of their crystalline nature. The NCs were then coated with Au to form pHA@Au core-shell NPs, where the thickness of the Au shell was on the order of nanometers. The formation of Au nanoshell--surrounding pHA NC--was confirmed from its surface plasmon resonance (SPR) band in the UV/Vis spectrum and by TEM measurements. Further, on treatment of the core-shell

  1. Enhanced Electrorheological Properties of Elastomers Containing TiO₂/Urea Core-Shell Particles.

    PubMed

    Niu, Chenguang; Dong, Xufeng; Qi, Min

    2015-11-11

    Polar molecule-coated core-shell particles have been used to prepare electrorheological (ER) fluids with high performance. Inspired by those studies, TiO2/urea core-shell structured particles were fabricated and used to prepare novel ER elastomers, whose properties were compared with the ER elastomers with bare TiO2 particles. Particles characterization results illustrate the TiO2/urea particles present little change in size, morphology and crystal structure with respect to the bare amorphous TiO2 particles, while clear core-shell structure is observed. Compared with the bare TiO2 particles filled elastomer, the TiO2/urea particles filled elastomer presents higher dielectric constant, indicating enhanced polarization. The viscoelastic properties of the two elastomers under different strain amplitude, frequency and electric field were tested. The results indicate that the TiO2/urea particles filled elastomer shows higher storage modulus G' and higher relative ER effect within the low field strength region from 0 to 2 kV/mm. Coating polar molecules is an effective method to improve the ER performance for ER elastomers. PMID:26492099

  2. Silica-metal core-shell nanostructures.

    PubMed

    Jankiewicz, B J; Jamiola, D; Choma, J; Jaroniec, M

    2012-01-15

    Silica-metal nanostructures consisting of silica cores and metal nanoshells attract a lot of attention because of their unique properties and potential applications ranging from catalysis and biosensing to optical devices and medicine. The important feature of these nanostructures is the possibility of controlling their properties by the variation of their geometry, shell morphology and shell material. This review is devoted to silica-noble metal core-shell nanostructures; specifically, it outlines the main methods used for the preparation and surface modification of silica particles and presents the major strategies for the formation of metal nanoshells on the modified silica particles. A special emphasis is given to the Stöber method, which is relatively simple, effective and well verified for the synthesis of large and highly uniform silica particles (with diameters from 100 nm to a few microns). Next, the surface chemistry of these particles is discussed with a special focus on the attachment of specific organic groups such as aminopropyl or mercaptopropyl groups, which interact strongly with metal species. Finally, the synthesis, characterization and application of various silica-metal core-shell nanostructures are reviewed, especially in relation to the siliceous cores with gold or silver nanoshells. Nowadays, gold is most often used metal for the formation of nanoshells due to its beneficial properties for many applications. However, other metals such as silver, platinum, palladium, nickel and copper were also used for fabrication of core-shell nanostructures. Silica-metal nanostructures can be prepared using various methods, for instance, (i) growth of metal nanoshells on the siliceous cores with deposited metal nanoparticles, (ii) reduction of metal species accompanied by precipitation of metal nanoparticles on the modified silica cores, and (iii) formation of metal nanoshells under ultrasonic conditions. A special emphasis is given to the seed

  3. Structurally Well-Defined Au@Cu2- x S Core-Shell Nanocrystals for Improved Cancer Treatment Based on Enhanced Photothermal Efficiency.

    PubMed

    Ji, Muwei; Xu, Meng; Zhang, Wei; Yang, Zhenzhong; Huang, Liu; Liu, Jiajia; Zhang, Yong; Gu, Lin; Yu, Youxing; Hao, Weichang; An, Pengfei; Zheng, Lirong; Zhu, Hesun; Zhang, Jiatao

    2016-04-01

    Au@Cu2- x S core-shell nanocrystals (NCs) have been synthesized under large lattice mismatch with high crystallinity, controllable shape, and nonstoichiometric composition. Both experimental observations and simulations are used to verify the flexible dual-mode plasmon coupling. The enhanced photothermal effect is harnessed for diverse HeLa cancer cell ablation applications in the NIR-I window (750-900 nm) and the NIR-II window (1000-1400 nm). PMID:26913692

  4. Microstructure and electronic behavior of PtPd@Pt core-shell nanowires

    SciTech Connect

    Han, Wei-Qiang; Su, Dong; Murphy, Michael; Ward, Matthew; Sham, Tsun-Kong; Wu, Lijun; Zhu, Yimei; Hu, Yongfeng; Aoki, Toshihiro

    2010-07-19

    PtPd{at}Pt core-shell ultrathin nanowires were prepared using a one-step phase-transfer approach. The diameters of the nanowires range from 2 to 3 nm, and their lengths are up to hundreds of nanometers. Line scanning electron energy loss spectra showed that PtPd bimetallic nanowires have a core-shell structure, with a PtPd alloy core and a Pt monolayer shell. X-ray absorption near edge structure (XANES) spectra reveal that a strong Pt-Pd interaction exists in this nanowire system in that there is PtPd alloying and/or interfacial interaction. Extended x-ray absorption fine structures (EXAFS) further confirms the PtPd@Pt core-shell structure. The bimetallic nanowires were determined to be face-centered cubic structures. The long-chain organic molecules of n-dodecyl trimethylammonium bromide and octadecylamine, used as surfactants during synthesis, were clearly observed using aberration-corrected TEM operated at 80 KV. The interaction of Pt and surfactants was also revealed by EXAFS.

  5. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.

    PubMed

    Haldar, Krishna Kanta; Kundu, Simanta; Patra, Amitava

    2014-12-24

    Bimetallic core-shell nanoparticles have recently emerged as a new class of functional materials because of their potential applications in catalysis, surface enhanced Raman scattering (SERS) substrate and photonics etc. Here, we have synthesized Au/Ag bimetallic core-shell nanoparticles with varying the core diameter. The red-shifting of the both plasmonic peaks of Ag and Au confirms the core-shell structure of the nanoparticles. Transmission electron microscopy (TEM) analysis, line scan EDS measurement and UV-vis study confirm the formation of core-shell nanoparticles. We have examined the catalytic activity of these core-shell nanostructures in the reaction between 4-nitrophenol (4-NP) and NaBH4 to form 4-aminophenol (4-AP) and the efficiency of the catalytic reaction is found to be increased with increasing the core size of Au/Ag core-shell nanocrystals. The catalytic efficiency varies from 41.8 to 96.5% with varying core size from 10 to 100 nm of Au/Ag core-shell nanoparticles, and the Au100/Ag bimetallic core-shell nanoparticle is found to be 12-fold more active than that of the pure Au nanoparticles with 100 nm diameter. Thus, the catalytic properties of the metal nanoparticles are significantly enhanced because of the Au/Ag core-shell structure, and the rate is dependent on the size of the core of the nanoparticles. PMID:25456348

  6. Template-Directed Synthesis of Porous and Protective Core-Shell Bionanoparticles.

    PubMed

    Li, Shaobo; Dharmarwardana, Madushani; Welch, Raymond P; Ren, Yixin; Thompson, Christina M; Smaldone, Ronald A; Gassensmith, Jeremiah J

    2016-08-26

    Metal-organic frameworks (MOFs) are promising high surface area coordination polymers with tunable pore structures and functionality; however, a lack of good size and morphological control over the as-prepared MOFs has persisted as an issue in their application. Herein, we show how a robust protein template, tobacco mosaic virus (TMV), can be used to regulate the size and shape of as-fabricated MOF materials. We were able to obtain discrete rod-shaped TMV@MOF core-shell hybrids with good uniformity, and their diameters could be tuned by adjusting the synthetic conditions, which can also significantly impact the stability of the core-shell composite. More interestingly, the virus particle underneath the MOF shell can be chemically modified using a standard bioconjugation reaction, showing mass transportation within the MOF shell. PMID:27485579

  7. Lithium Intercalation in Core-Shell Materials-Theoretical Analysis

    SciTech Connect

    Suthar, B; Subramanian, VR

    2014-03-04

    Core-shell composite structures are potential candidates for Li-ion battery electrodes as they can take advantage of materials with higher energy density and materials with higher cyclability. This paper derives an analytical solution for isotropic 1-dimensional diffusion with galvanostatic boundary condition in composite slab, cylinder and sphere using separation of variables method. A general interfacial condition has been used to represent the dynamics at the interface of the composite material rendering the solution useful for wide variety of battery materials. Using the derived analytical solution for diffusion, intercalation induced stresses were estimated for spherical core-shell materials. (C) 2014 The Electrochemical Society. All rights reserved.

  8. Characterization of polymer-silica nanocomposite particles with core-shell morphologies using Monte Carlo simulations and small angle X-ray scattering.

    PubMed

    Balmer, Jennifer A; Mykhaylyk, Oleksandr O; Schmid, Andreas; Armes, Steven P; Fairclough, J Patrick A; Ryan, Anthony J

    2011-07-01

    A two-population model based on standard small-angle X-ray scattering (SAXS) equations is verified for the analysis of core-shell structures comprising spherical colloidal particles with particulate shells. First, Monte Carlo simulations of core-shell structures are performed to demonstrate the applicability of the model. Three possible shell packings are considered: ordered silica shells due to either charge-dependent repulsive or size-dependent Lennard-Jones interactions or randomly arranged silica particles. In most cases, the two-population model produces an excellent fit to calculated SAXS patterns for the simulated core-shell structures, together with a good correlation between the fitting parameters and structural parameters used for the simulation. The limits of application are discussed, and then, this two-population model is applied to the analysis of well-defined core-shell vinyl polymer/silica nanocomposite particles, where the shell comprises a monolayer of spherical silica nanoparticles. Comprehensive SAXS analysis of a series of poly(styrene-co-n-butyl acrylate)/silica colloidal nanocomposite particles (prepared by the in situ emulsion copolymerization of styrene and n-butyl acrylate in the presence of a glycerol-functionalized silica sol) allows the overall core-shell particle diameter, the copolymer latex core diameter and polydispersity, the mean silica shell thickness, the mean silica diameter and polydispersity, the volume fractions of the two components, the silica packing density, and the silica shell structure to be obtained. These experimental SAXS results are consistent with electron microscopy, dynamic light scattering, thermogravimetry, helium pycnometry, and BET surface area studies. The high electron density contrast between the (co)polymer and the silica components, together with the relatively low polydispersity of these core-shell nanocomposite particles, makes SAXS ideally suited for the characterization of this system. Moreover

  9. Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues

    NASA Astrophysics Data System (ADS)

    Rodriguez-Arco, Laura; Rodriguez, Ismael A.; Carriel, Victor; Bonhome-Espinosa, Ana B.; Campos, Fernando; Kuzhir, Pavel; Duran, Juan D. G.; Lopez-Lopez, Modesto T.

    2016-04-01

    The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous. First, gravitational settling for core-shell nanocomposites is slower because of the reduction of the composite average density connected to the light polymer core. Second, the magnetic response of core-shell nanocomposites can be tuned by changing the thickness of the magnetic layer. The incorporation of the composites into biopolymer hydrogels containing cells results in magnetic field-responsive engineered tissues whose mechanical properties can be controlled by external magnetic forces. Indeed, we obtain a significant increase of the viscoelastic moduli of the engineered tissues when exposed to an external magnetic field. Because the composites are functionalized with polyethylene glycol, the prepared bio-artificial tissue-like constructs also display excellent ex vivo cell viability and proliferation. When implanted in vivo, the engineered tissues show good biocompatibility and outstanding interaction with the host tissue. Actually, they only cause a localized transitory inflammatory reaction at the implantation site, without any effect on other organs. Altogether, our results suggest that the inclusion of magnetic core-shell nanocomposites into biomaterials would enable tissue engineering of artificial substitutes whose mechanical properties could be tuned to match those of the potential target tissue. In a wider perspective, the good biocompatibility and magnetic behavior of the composites could be beneficial for many other applications.The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we

  10. No-Core Shell Model and Reactions

    SciTech Connect

    Navratil, Petr; Ormand, W. Erich; Caurier, Etienne; Bertulani, Carlos

    2005-10-14

    There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic two- and three-nucleon interactions the ab initio no-core shell model (NCSM) can predict low-lying levels in p-shell nuclei. It is a challenging task to extend ab initio methods to describe nuclear reactions. In this contribution, we present a brief overview of the NCSM with examples of recent applications as well as the first steps taken toward nuclear reaction applications. In particular, we discuss cross section calculations of p+6Li and 6He+p scattering as well as a calculation of the astrophysically important 7Be(p,{gamma})8B S-factor.

  11. No-Core Shell Model and Reactions

    SciTech Connect

    Navratil, P; Ormand, W E; Caurier, E; Bertulani, C

    2005-04-29

    There has been a significant progress in ab initio approaches to the structure of light nuclei. Starting from realistic two- and three-nucleon interactions the ab initio no-core shell model (NCSM) can predict low-lying levels in p-shell nuclei. It is a challenging task to extend ab initio methods to describe nuclear reactions. In this contribution, we present a brief overview of the NCSM with examples of recent applications as well as the first steps taken toward nuclear reaction applications. In particular, we discuss cross section calculations of p+{sup 6}Li and {sup 6}He+p scattering as well as a calculation of the astrophysically important {sup 7}Be(p, {gamma}){sup 8}B S-factor.

  12. Biocompatible magnetic core-shell nanocomposites for engineered magnetic tissues.

    PubMed

    Rodriguez-Arco, Laura; Rodriguez, Ismael A; Carriel, Victor; Bonhome-Espinosa, Ana B; Campos, Fernando; Kuzhir, Pavel; Duran, Juan D G; Lopez-Lopez, Modesto T

    2016-04-14

    The inclusion of magnetic nanoparticles into biopolymer matrixes enables the preparation of magnetic field-responsive engineered tissues. Here we describe a synthetic route to prepare biocompatible core-shell nanostructures consisting of a polymeric core and a magnetic shell, which are used for this purpose. We show that using a core-shell architecture is doubly advantageous. First, gravitational settling for core-shell nanocomposites is slower because of the reduction of the composite average density connected to the light polymer core. Second, the magnetic response of core-shell nanocomposites can be tuned by changing the thickness of the magnetic layer. The incorporation of the composites into biopolymer hydrogels containing cells results in magnetic field-responsive engineered tissues whose mechanical properties can be controlled by external magnetic forces. Indeed, we obtain a significant increase of the viscoelastic moduli of the engineered tissues when exposed to an external magnetic field. Because the composites are functionalized with polyethylene glycol, the prepared bio-artificial tissue-like constructs also display excellent ex vivo cell viability and proliferation. When implanted in vivo, the engineered tissues show good biocompatibility and outstanding interaction with the host tissue. Actually, they only cause a localized transitory inflammatory reaction at the implantation site, without any effect on other organs. Altogether, our results suggest that the inclusion of magnetic core-shell nanocomposites into biomaterials would enable tissue engineering of artificial substitutes whose mechanical properties could be tuned to match those of the potential target tissue. In a wider perspective, the good biocompatibility and magnetic behavior of the composites could be beneficial for many other applications. PMID:27029891

  13. Nature of diffraction fringes originating in the core of core-shell nanoparticle Cu/SiO2 and formation mechanism of the structures

    NASA Astrophysics Data System (ADS)

    Radnaev, A. R.; Kalashnikov, S. V.; Nomoev, A. V.

    2016-05-01

    This article is devoted to the analysis of the reasons for the occurrence of diffraction fringes in the cores of the core-shell nanoparticles Cu/SiO2. Moiré and diffraction fringes are observed while studying the nanoparticle cores under a transmission electron microscope. The formation of diffraction fringes is closely connected to the mechanism of nanoparticle formation under study and appears to be its consequence, letting us develop a hypothesis of metastable phase formation in nanoparticle cores. In our opinion, the emergence of diffraction fringes in cores of copper is connected to clasterisation in solid solution oversaturated with silicon α-Cu with the diffused interphase state.

  14. Magnetization measurements and XMCD studies on ion irradiated iron oxide and core-shell iron/iron-oxide nanomaterials

    SciTech Connect

    Kaur, Maninder; Qiang, You; Jiang, Weilin; Pearce, Carolyn; McCloy, John S.

    2014-12-02

    Magnetite (Fe3O4) and core-shell iron/iron-oxide (Fe/Fe3O4) nanomaterials prepared by a cluster deposition system were irradiated with 5.5 MeV Si2+ ions and the structures determined by x-ray diffraction as consisting of 100% magnetite and 36/64 wt% Fe/FeO, respectively. However, x-ray magnetic circular dichroism (XMCD) indicates similar surfaces in the two samples, slightly oxidized and so having more Fe3+ than the expected magnetite structure, with XMCD intensity much lower for the irradiated core-shell samples indicating weaker magnetism. X-ray absorption spectroscopy (XAS) data lack the signature for FeO, but the irradiated core-shell system consists of Fe-cores with ~13 nm of separating oxide crystallite, so it is likely that FeO exists deeper than the probe depth of the XAS (~5 nm). Exchange bias (Hex) for both samples becomes increasingly negative as temperature is lowered, but the irradiated Fe3O4 sample shows greater sensitivity of cooling field on Hex. Loop asymmetries and Hex sensitivities of the irradiated Fe3O4 sample are due to interfaces and interactions between grains which were not present in samples before irradiation as well as surface oxidation. Asymmetries in the hysteresis curves of the irradiated core/shell sample are related to the reversal mechanism of the antiferromagnetic FeO and possibly some near surface oxidation.

  15. Evaluation of damage progression and mechanical behavior under compression of bone cements containing core-shell nanoparticles by using acoustic emission technique.

    PubMed

    Pacheco-Salazar, O F; Wakayama, Shuichi; Sakai, Takenobu; Cauich-Rodríguez, J V; Ríos-Soberanis, C R; Cervantes-Uc, J M

    2015-06-01

    In this work, the effect of the incorporation of core-shell particles on the fracture mechanisms of the acrylic bone cements by using acoustic emission (AE) technique during the quasi-static compression mechanical test was investigated. Core-shell particles were composed of a poly(butyl acrylate) (PBA) rubbery core and a methyl methacrylate/styrene copolymer (P(MMA-co-St)) outer glassy shell. Nanoparticles were prepared with different core-shell ratio (20/80, 30/70, 40/60 and 50/50) and were incorporated into the solid phase of bone cement at several percentages (5, 10 and 15 wt%). It was observed that the particles exhibited a spherical morphology averaging ca. 125 nm in diameter, and the dynamic mechanical analysis (DMA) thermograms revealed the desired structuring pattern of phases associated with core-shell structures. A fracture mechanism was proposed taking into account the detected AE signals and the scanning electron microscopy (SEM) micrographs. In this regard, core-shell nanoparticles can act as both additional nucleation sites for microcracks (and crazes) and to hinder the microcrack propagation acting as a barrier to its growth; this behavior was presented by all formulations. Cement samples containing 15 wt% of core-shell nanoparticles, either 40/60 or 50/50, were fractured at 40% deformation. This fact seems related to the coalescence of microcracks after they surround the agglomerates of core-shell nanoparticles to continue growing up. This work also demonstrated the potential of the AE technique to be used as an accurate and reliable detection tool for quasi-static compression test in acrylic bone cements. PMID:25792411

  16. Fabrication of Au@Ag core/shell nanoparticles decorated TiO2 hollow structure for efficient light-harvesting in dye-sensitized solar cells.

    PubMed

    Yun, Juyoung; Hwang, Sun Hye; Jang, Jyongsik

    2015-01-28

    Improving the light-harvesting properties of photoanodes is promising way to enhance the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). We synthesized Au@Ag core/shell nanoparticles decorated TiO2 hollow nanoparticles (Au@Ag/TiO2 HNPs) via sol-gel reaction and chemical deposition. The Au@Ag/TiO2 HNPs exhibited multifunctions from Au@Ag core/shell NPs (Au@Ag CSNPs) and TiO2 hollow nanoparticles (TiO2 HNPs). These Au@Ag CSNPs exhibited strong and broadened localized surface plasmon resonance (LSPR), together with a large specific surface area of 129 m(2) g(-1), light scattering effect, and facile oxidation-reduction reaction of electrolyte from TiO2 HNPs, which resulted in enhancement of the light harvesting. The optimum PCE of η = 9.7% was achieved for the DSSCs using photoanode materials based on TiO2 HNPs containing Au@Ag/TiO2 HNPs (0.2 wt % Au@Ag CSNPs with respect to TiO2 HNPs), which outperformed by 24% enhancement that of conventional photoanodes formed using P25 (η = 7.8%). PMID:25562329

  17. Core-decomposition-facilitated fabrication of hollow rare-earth silicate nanowalnuts from core-shell structures via the Kirkendall effect.

    PubMed

    Zhou, Wenli; Zou, Rui; Yang, Xianfeng; Huang, Ningyu; Huang, Junjian; Liang, Hongbin; Wang, Jing

    2015-08-28

    Hollow micro-/nanostructures have been widely applied in the fields of lithium ion batteries, catalysis, biosensing, biomedicine, and so forth. The Kirkendall effect, which involves a non-equilibrium mutual diffusion process, is one of many important fabrication strategies for the formation of hollow nanomaterials. Accordingly, full understanding of the interdiffusion process at the nanoscale is very important for the development of novel multifunctional hollow materials. In this work, hollow Y2SiO5 nanowalnuts have been fabricated from the conversion of YOHCO3@SiO2 core-shell nanospheres via the Kirkendall effect. More importantly, it was found that in the conversion process, the decomposition of YOHCO3 core imposes on the formation of the Y2SiO5 interlayer by facilitating the initial nucleation of the Kirkendall nanovoids and accelerating the interfacial diffusion of Y2O3@SiO2 core@shell. The simple concept developed herein can be employed as a general Kirkendall effect strategy without the assistance of any catalytically active Pt nanocrystals or gold motion for future fabrication of novel hollow nanostructures. Moreover, the photoluminescence properties of rare-earth ion doped hollow Y2SiO5 nanoparticles are researched. PMID:26220051

  18. A novel approach to the construction of core shell gold polyaniline nanoparticles

    NASA Astrophysics Data System (ADS)

    Dong, Yang; Ma, Ying; Zhai, Tianyou; Zeng, Yi; Fu, Hongbing; Yao, Jiannian

    2007-11-01

    Uniform core-shell gold-polyaniline (Au-PANI) nanoparticles were successfully fabricated by in situ polymerization of aniline using poly(N-isopropylacrylamide)-co-poly(acrylic acid) (PNIPAM-co-PAA)/AuNP hybrid microgel particles as a template. TEM images gave direct evidence of the core-shell nanostructure of Au-PANI particles, which were composed of gold nanoparticles as the core and polyaniline as the shell. The shell thickness of as-prepared core-shell Au-PANI nanoparticles can be easily tuned by controlling the reaction time. A possible mechanism for the formation of core-shell Au-PANI nanostructures was proposed. This novel synthetic method may be extended to the synthesis of other core-shell nanostructures with diverse functionality and high colloidal stability.

  19. Growth rate controlled synthesis of hierarchical Bi2S3/In2S3 core/shell microspheres with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Zhou, Juan; Tian, Guohui; Chen, Yajie; Shi, Yunhan; Tian, Chungui; Pan, Kai; Fu, Honggang

    2014-02-01

    Core/shell heterostructure composite has great potential applications in photocatalytic field because the introduction of core can remarkably improve charge transport and enhance the electron-hole separation. Herein, hierarchical Bi2S3/In2S3 core/shell structured microspheres were prepared via a simple one-pot hydrothermal process based on different growth rate of the two kinds of sulphides. The results showed that, the as-prepared hierarchical Bi2S3/In2S3 core/shell heterostructure exhibits significant visible light photocatalytic activity for degradation of 2, 4-dichlorophenol. The introduction of Bi2S3 core can not only improve charge transport and enhance the electron-hole separation, but also broaden the visible light response. The hierarchical porous folwer-like shell of In2S3 could increase the specific surface area and remarkably enhanced the chemical stability of Bi2S3 against oxidation.

  20. Growth rate controlled synthesis of hierarchical Bi2S3/In2S3 core/shell microspheres with enhanced photocatalytic activity

    PubMed Central

    Zhou, Juan; Tian, Guohui; Chen, Yajie; Shi, Yunhan; Tian, Chungui; Pan, Kai; Fu, Honggang

    2014-01-01

    Core/shell heterostructure composite has great potential applications in photocatalytic field because the introduction of core can remarkably improve charge transport and enhance the electron-hole separation. Herein, hierarchical Bi2S3/In2S3 core/shell structured microspheres were prepared via a simple one-pot hydrothermal process based on different growth rate of the two kinds of sulphides. The results showed that, the as-prepared hierarchical Bi2S3/In2S3 core/shell heterostructure exhibits significant visible light photocatalytic activity for degradation of 2, 4-dichlorophenol. The introduction of Bi2S3 core can not only improve charge transport and enhance the electron-hole separation, but also broaden the visible light response. The hierarchical porous folwer-like shell of In2S3 could increase the specific surface area and remarkably enhanced the chemical stability of Bi2S3 against oxidation. PMID:24504084

  1. Raman scattering from Zn/ZnO core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Bajaj, Geetika; Soni, R. K.

    2008-09-01

    We have synthesized Zn/ZnO core-shell nanoparticles by pulsed laser ablation in liquid (PLAL) media using nanosecond pulsed Nd:YAG laser. The formation of crystalline core-shell nanoparticles of varying core and shell thickness with varying SDS concentration is confirmed by HRTEM images. The optical absorption shows distinct features corresponding to ZnO exciton and Zn surface plasmon. Raman spectrum from Zn/ZnO core-shell nanoparticles shows E2(high) phonon modes of the bulk which are insensitive to the size and modes unique to the core-shell structures. Moreover, the surface optical mode is dominant feature of the nonresonant spectrum. We have also examined the wavelength dependence of the phonon modes in Zn/ZnO core-shell structure.

  2. NiCo2O4@La0.8Sr0.2MnO3 core-shell structured nanorods as efficient electrocatalyst for Lisbnd O2 battery with enhanced performances

    NASA Astrophysics Data System (ADS)

    Luo, Yong; Lu, Fanliang; Jin, Chao; Wang, Yarong; Yang, Ruizhi; Yang, Chenghao

    2016-07-01

    La1-xSrxMnO3 perovskite oxides are promising electrocatalysts for Lisbnd O2 batteries because of their excellent intrinsic catalytic activity for oxygen reduction reaction (ORR). However, the relatively inert catalytic activity for oxygen evolution reaction (OER) suppresses their practical applications in Lisbnd O2 battery. Here, nanoscale NiCo2O4 (NCO) layer with high OER catalytic activity has been homogenously incorporated into the surface of La0.8Sr0.2MnO3 (LSM) nanorods to form a core-shell structure. In this typical structure, the ORR mainly occurred on the LSM core, while the OER mainly occurred on the nanoscale NCO shell, and structure damage of catalysts coming from gas evolution can be greatly avoided. The synergy of high catalytic activity and core-shell structure results in the Lisbnd O2 battery with good rate capability and excellent cycle stability, which sustains 80 cycles without capacity attenuation at a high current density of 200 mA g-1.

  3. Photon upconversion in core-shell nanoparticles.

    PubMed

    Chen, Xian; Peng, Denfeng; Ju, Qiang; Wang, Feng

    2015-03-21

    Photon upconversion generally results from a series of successive electronic transitions within complex energy levels of lanthanide ions that are embedded in the lattice of a crystalline solid. In conventional lanthanide-doped upconversion nanoparticles, the dopant ions homogeneously distributed in the host lattice are readily accessible to surface quenchers and lose their excitation energy, giving rise to weak and susceptible emissions. Therefore, present studies on upconversion are mainly focused on core-shell nanoparticles comprising spatially confined dopant ions. By doping upconverting lanthanide ions in the interior of a core-shell nanoparticle, the upconversion emission can be substantially enhanced, and the optical integrity of the nanoparticles can be largely preserved. Optically active shells are also frequently employed to impart multiple functionalities to upconversion nanoparticles. Intriguingly, the core-shell design introduces the possibility of constructing novel upconversion nanoparticles by exploiting the energy exchange interactions across the core-shell interface. In this tutorial review, we highlight recent advances in the development of upconversion core-shell nanoparticles, with particular emphasis on the emerging strategies for regulating the interplay of dopant interactions through core-shell nanostructural engineering that leads to unprecedented upconversion properties. The improved control over photon energy conversion will open up new opportunities for biological and energy applications. PMID:25058157

  4. Core-decomposition-facilitated fabrication of hollow rare-earth silicate nanowalnuts from core-shell structures via the Kirkendall effect

    NASA Astrophysics Data System (ADS)

    Zhou, Wenli; Zou, Rui; Yang, Xianfeng; Huang, Ningyu; Huang, Junjian; Liang, Hongbin; Wang, Jing

    2015-08-01

    Hollow micro-/nanostructures have been widely applied in the fields of lithium ion batteries, catalysis, biosensing, biomedicine, and so forth. The Kirkendall effect, which involves a non-equilibrium mutual diffusion process, is one of many important fabrication strategies for the formation of hollow nanomaterials. Accordingly, full understanding of the interdiffusion process at the nanoscale is very important for the development of novel multifunctional hollow materials. In this work, hollow Y2SiO5 nanowalnuts have been fabricated from the conversion of YOHCO3@SiO2 core-shell nanospheres via the Kirkendall effect. More importantly, it was found that in the conversion process, the decomposition of YOHCO3 core imposes on the formation of the Y2SiO5 interlayer by facilitating the initial nucleation of the Kirkendall nanovoids and accelerating the interfacial diffusion of Y2O3@SiO2 core@shell. The simple concept developed herein can be employed as a general Kirkendall effect strategy without the assistance of any catalytically active Pt nanocrystals or gold motion for future fabrication of novel hollow nanostructures. Moreover, the photoluminescence properties of rare-earth ion doped hollow Y2SiO5 nanoparticles are researched.Hollow micro-/nanostructures have been widely applied in the fields of lithium ion batteries, catalysis, biosensing, biomedicine, and so forth. The Kirkendall effect, which involves a non-equilibrium mutual diffusion process, is one of many important fabrication strategies for the formation of hollow nanomaterials. Accordingly, full understanding of the interdiffusion process at the nanoscale is very important for the development of novel multifunctional hollow materials. In this work, hollow Y2SiO5 nanowalnuts have been fabricated from the conversion of YOHCO3@SiO2 core-shell nanospheres via the Kirkendall effect. More importantly, it was found that in the conversion process, the decomposition of YOHCO3 core imposes on the formation of the Y2Si

  5. Core-Shell Soy Protein-Soy Polysaccharide Complex (Nano)particles as Carriers for Improved Stability and Sustained Release of Curcumin.

    PubMed

    Chen, Fei-Ping; Ou, Shi-Yi; Tang, Chuan-He

    2016-06-22

    Using soy protein isolate (SPI) and soy-soluble polysaccharides (SSPS) as polymer matrixes, this study reported a novel process to fabricate unique core-shell complex (nano)particles to perform as carriers for curcumin (a typical poorly soluble bioactive). In the process, curcumin-SPI nanocomplexes were first formed at pH 7.0 and then coated by SSPS. At this pH, the core-shell complex was formed in a way the SPI nanoparticles might be incorporated into the interior of SSPS molecules without distinctly affecting the size and morphology of particles. The core-shell structure was distinctly changed by adjusting pH from 7.0 to 4.0. At pH 4.0, SSPS was strongly bound to the surface of highly aggregated SPI nanoparticles, and as a consequence, much larger complexes were formed. The bioaccessibility of curcumin in the SPI-curcumin complexes was unaffected by the SSPS coating. However, the core-shell complex formation greatly improved the thermal stability and controlled release properties of encapsulated curcumin. The improvement was much better at pH 4.0 than that at pH 7.0. All of the freeze-dried core-shell complex preparations exhibited good redispersion behavior. The findings provide a simple approach to fabricate food-grade delivery systems for improved water dispersion, heat stability, and even controlled release of poorly soluble bioactives. PMID:27243766

  6. Core-shell photoanode developed by atomic layer deposition of Bi₂O₃ on Si nanowires for enhanced photoelectrochemical water splitting.

    PubMed

    Weng, Baicheng; Xu, Fenghua; Xu, Jianguang

    2014-11-14

    Core-shell nanowire (NW) arrays, which feature a vertically aligned n-type Si NW core and a p-type α-Bi₂O₃ shell, are developed as a highly efficient photoanode that is suitable for water splitting. The morphology and structure of the heterostructure were characterized by scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), x-ray photoelectron spectroscopy (XPS), and x-ray diffraction (XRD). The deposition of Bi₂O₃ nanolayers on the surface of the smooth Si NWs causes the surface of the NWs to become rough. The as-prepared core-shell NW photoelectrode has a relatively low reflectance in the visible light region, suggesting good light absorption. The core-shell NW arrays show greatly improved photoelectrochemical water-splitting performance. Photoelectrochemical stability for over 16 h under constant light illumination and fixed bias potential was achieved, illustrating the good stability of this core-shell NW photoanode. These Si/Bi₂O₃ core-shell NW arrays effectively combine the light absorption ability of the Si NWs and the wide energy gap and chemical stability of Bi₂O₃ for water splitting. This study furthers the attempts to design photoanodes from low-cost, abundant materials for applications in water splitting and photovoltaics. PMID:25338216

  7. Nanofiber Yarn/Hydrogel Core-Shell Scaffolds Mimicking Native Skeletal Muscle Tissue for Guiding 3D Myoblast Alignment, Elongation, and Differentiation.

    PubMed

    Wang, Ling; Wu, Yaobin; Guo, Baolin; Ma, Peter X

    2015-09-22

    Designing scaffolds that can mimic native skeletal muscle tissue and induce 3D cellular alignment and elongated myotube formation remains an ongoing challenge for skeletal muscle tissue engineering. Herein, we present a simple technique to generate core-shell composite scaffolds for mimicking native skeletal muscle structure, which comprise the aligned nanofiber yarn (NFY) core and the photocurable hydrogel shell. The aligned NFYs are prepared by the hybrid composition including poly(caprolactone), silk fibroin, and polyaniline via a developed dry-wet electrospinning method. A series of core-shell column and sheet composite scaffolds are ultimately obtained by encapsulating a piece and layers of aligned NFY cores within the hydrogel shell after photo-cross-linking. C2C12 myoblasts are seeded within the core-shell scaffolds, and the good biocompatibility of these scaffolds and their ability to induce 3D cellular alignment and elongation are successfully demonstrated. Furthermore, the 3D elongated myotube formation within core-shell scaffolds is also performed after long-term cultivation. These data suggest that these core-shell scaffolds combine the aligned NFY core that guides the myoblast alignment and differentiation and the hydrogel shell that provides a suitable 3D environment for nutrition exchange and mechanical protection to perform a great practical application for skeletal muscle regeneration. PMID:26280983

  8. Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures.

    PubMed

    El-Toni, Ahmed Mohamed; Habila, Mohamed A; Labis, Joselito Puzon; ALOthman, Zeid A; Alhoshan, Mansour; Elzatahry, Ahmed A; Zhang, Fan

    2016-02-01

    With the evolution of nanoscience and nanotechnology, studies have been focused on manipulating nanoparticle properties through the control of their size, composition, and morphology. As nanomaterial research has progressed, the foremost focus has gradually shifted from synthesis, morphology control, and characterization of properties to the investigation of function and the utility of integrating these materials and chemical sciences with the physical, biological, and medical fields, which therefore necessitates the development of novel materials that are capable of performing multiple tasks and functions. The construction of multifunctional nanomaterials that integrate two or more functions into a single geometry has been achieved through the surface-coating technique, which created a new class of substances designated as core-shell nanoparticles. Core-shell materials have growing and expanding applications due to the multifunctionality that is achieved through the formation of multiple shells as well as the manipulation of core/shell materials. Moreover, core removal from core-shell-based structures offers excellent opportunities to construct multifunctional hollow core architectures that possess huge storage capacities, low densities, and tunable optical properties. Furthermore, the fabrication of nanomaterials that have the combined properties of a core-shell structure with that of a hollow one has resulted in the creation of a new and important class of substances, known as the rattle core-shell nanoparticles, or nanorattles. The design strategies of these new multifunctional nanostructures (core-shell, hollow core, and nanorattle) are discussed in the first part of this review. In the second part, different synthesis and fabrication approaches for multifunctional core-shell, hollow core-shell and rattle core-shell architectures are highlighted. Finally, in the last part of the article, the versatile and diverse applications of these nanoarchitectures in

  9. Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures

    NASA Astrophysics Data System (ADS)

    El-Toni, Ahmed Mohamed; Habila, Mohamed A.; Labis, Joselito Puzon; Alothman, Zeid A.; Alhoshan, Mansour; Elzatahry, Ahmed A.; Zhang, Fan

    2016-01-01

    With the evolution of nanoscience and nanotechnology, studies have been focused on manipulating nanoparticle properties through the control of their size, composition, and morphology. As nanomaterial research has progressed, the foremost focus has gradually shifted from synthesis, morphology control, and characterization of properties to the investigation of function and the utility of integrating these materials and chemical sciences with the physical, biological, and medical fields, which therefore necessitates the development of novel materials that are capable of performing multiple tasks and functions. The construction of multifunctional nanomaterials that integrate two or more functions into a single geometry has been achieved through the surface-coating technique, which created a new class of substances designated as core-shell nanoparticles. Core-shell materials have growing and expanding applications due to the multifunctionality that is achieved through the formation of multiple shells as well as the manipulation of core/shell materials. Moreover, core removal from core-shell-based structures offers excellent opportunities to construct multifunctional hollow core architectures that possess huge storage capacities, low densities, and tunable optical properties. Furthermore, the fabrication of nanomaterials that have the combined properties of a core-shell structure with that of a hollow one has resulted in the creation of a new and important class of substances, known as the rattle core-shell nanoparticles, or nanorattles. The design strategies of these new multifunctional nanostructures (core-shell, hollow core, and nanorattle) are discussed in the first part of this review. In the second part, different synthesis and fabrication approaches for multifunctional core-shell, hollow core-shell and rattle core-shell architectures are highlighted. Finally, in the last part of the article, the versatile and diverse applications of these nanoarchitectures in

  10. Hybrid Co3O4/SnO2 Core-Shell Nanospheres as Real-Time Rapid-Response Sensors for Ammonia Gas.

    PubMed

    Wang, Lili; Lou, Zheng; Zhang, Rui; Zhou, Tingting; Deng, Jianan; Zhang, Tong

    2016-03-16

    Novel hybrid Co3O4/SnO2 core-shell nanospheres have been effectively realized by a one-step hydrothermal, template-free preparation method. Our strategy involves a simple fabrication scheme that entails the coating of natural cross-link agents followed by electrostatic interaction between the positive charges of Sn and Co ions and the negative charge of glutamic acid. The core-shell architecture enables novel flexibility of gas sensor surfaces compared to commonly used bulk materials. The highly efficient charge transfer and unique structure are key to ensuring the availability of high response and rapid-response speed. It demonstrates how hybrid core-shell nanospheres can be used as an advance function material to fabricate electrical sensing devices that may be useful as gas sensors. PMID:26943006

  11. Co-Pt core-shell nanostructured catalyst prepared by selective chemical vapor pulse deposition of Pt on Co as a cathode in polymer electrolyte fuel cells

    SciTech Connect

    Seo, Sang-Joon; Chung, Ho-Kyoon; Yoo, Ji-Beom; Chae, Heeyeop; Seo, Seung-Woo; Min Cho, Sung

    2014-01-15

    A new type of PtCo/C catalyst for use as a cathode in polymer electrolyte fuel cells was prepared by selective chemical vapor pulse deposition (CVPD) of Pt on the surface of Co. The activity of the prepared catalyst for oxygen reduction was higher than that of a catalyst prepared by sequential impregnation (IMP) with the two metallic components. This catalytic activity difference occurs because the former catalyst has smaller Pt crystallites that produce stronger Pt-Co interactions and have a larger Pt surface area. Consequently, the CVPD catalyst has a great number of Co particles that are in close contact with the added Pt. The Pt surface was also electronically modified by interactions with Co, which were stronger in the CVPD catalyst than in the IMP catalyst, as indicated by X-ray diffraction, X-ray photoemission spectroscopy, and cyclic voltammetry measurements of the catalysts.

  12. Spectroscopic, structural and in vitro cytotoxicity evaluation of luminescent, lanthanide doped core@shell nanomaterials GdVO4:Eu(3+)5%@SiO2@NH2.

    PubMed

    Szczeszak, Agata; Ekner-Grzyb, Anna; Runowski, Marcin; Szutkowski, Kosma; Mrówczyńska, Lucyna; Kaźmierczak, Zuzanna; Grzyb, Tomasz; Dąbrowska, Krystyna; Giersig, Michael; Lis, Stefan

    2016-11-01

    The luminescent GdVO4:Eu(3+)5%@SiO2@NH2 core@shell nanomaterials were obtained via co-precipitation method, followed by hydrolysis and co-condensation of silane derivatives: tetraethyl orthosilicate and 3-aminopropyltriethoxysilane. Their effect on human erythrocytes sedimentation and on proliferation of human lung microvascular endothelial cells was examined and discussed. The luminescent nanoparticles were synthesized in the presence of polyacrylic acid or glycerin in order to minimalize the agglomeration and excessive growth of nanostructures. Surface coating with amine functionalized silica shell improved their biocompatibility, facilitated further organic conjugation and protected the internal core. Magnetic measurements revealed an enhanced T1-relaxivity for the synthesized GdVO4:Eu(3+)5% nanostructures. Structure, morphology and average grain size of the obtained nanomaterials were determined by X-ray diffraction, transmission electron microscopy and dynamic light scattering analysis. The qualitative elemental composition of the nanomaterials was established using energy-dispersive X-ray spectroscopy. The spectroscopic characteristic of red emitting core@shell nanophosphors was completed by measuring luminescence spectra and decays. The emission spectra revealed characteristic bands of Eu(3+) ions related to the transitions (5)D0-(7)F0,1,2,3,4 and (5)D1-(7)F1. The luminescence lifetimes consisted of two components, associated with the presence of Eu(3+) ions located at the surface of the crystallites and in the bulk. PMID:27478979

  13. PVP induce self-seeding process for growth of Au@Ag core@shell nanocomposites

    NASA Astrophysics Data System (ADS)

    Eisa, Wael H.; Al-Ashkar, Emad; El-Mossalamy, S. M.; Ali, Safaa S. M.

    2016-05-01

    A novel self-seeding route is developed for fabrication of metallic nanocomposites of gold (core) and silver (shell) (Au@Ag core@shell). Herein, polyvinylpyrrolidone (PVP) is used as both reducing and stabilizing agent. The surface plasmon resonance (SPR) of Au@Ag core@shell can be tuned by controlling the thickness of the Ag shell. The different growth stages of the Au@Ag core@shell have been traced by in situ UV-vis absorption spectra. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy are used for the characterization of the prepared samples.

  14. Synthesis of core-shell composites using an inverse surfmer.

    PubMed

    Armando Zaragoza-Contreras, E; Stockton-Leal, Margarita; Hernández-Escobar, Claudia A; Hoshina, Yusuke; Guzmán-Lozano, Josué F; Kobayashi, Takaomi

    2012-07-01

    Anilinium dodecylsulfate was prepared from aniline and sodium dodecylsulfate. The critical micellar concentration of the salt was determined using electrical conductimetry, which revealed that the change of countercation, sodium by anilinium, reduced the critical micellar concentration with respect to the conventional counterpart, sodium dodecylsulfate. The anilinium dodecylsulfate was used as the surfmer in the synthesis of polystyrene/polyaniline core-shell composites, first performing as the surfactant to stabilize the emulsion polymerization of styrene, and later as the monomer to synthesize polyaniline via oxidative polymerization. Here, the surfmer function was directed toward the external phase instead of to the internal phase, as with conventional surfmers with carbon-carbon double bonds. Consequently, the term inverse surfmer is proposed. Analyses of its composite microstructure using electron microscopy and thermogravimetric analysis confirmed the core-shell arrangement. PMID:22520709

  15. Surface-engineered core-shell nano-size ferrites and their antimicrobial activity

    SciTech Connect

    Baraliya, Jagdish D. Joshi, Hiren H.

    2014-04-24

    We report the results of biological study on core-shell structured MFe{sub 2}O{sub 4} (where M = Co, Mn, Ni) nanoparticles and influence of silica- DEG dual coating on their antimicrobial activity. Spherical MFe{sub 2}O{sub 4} nanoparticles were prepared via a Co-precipitation method. The microstructures and morphologies of these nanoparticles were studied by x-ray diffraction and FTIR. The antimicrobial activity study carried out in nutrient agar medium with addition of antimicrobial synthesis compound which is tested for its activity against different types of bacteria.

  16. High efficiency n-Si/ p-Cu2O core-shell nanowires photodiode prepared by atomic layer deposition of Cu2O on well-ordered Si nanowires array

    NASA Astrophysics Data System (ADS)

    Kim, Hangil; Kim, Soo-Hyun; Ko, Kyung Yong; Kim, Hyungjun; Kim, Jaehoon; Oh, Jihun; Lee, Han-Bo-Ram

    2016-05-01

    A highly efficient n-Si/ p-Cu2O core-shell (C-S) nanowire (NW) photodiode was fabricated using Cu2O grown by atomic layer deposition (ALD) on a well-ordered Si NW array. Ordered Si nanowires arrays were fabricated by nano-sphere lithography to pattern metal catalysts for the metal-assisted etching of silicon, resulting in a Si NW arrays with a good arrangement, smooth surface and small diameter distribution. The ALD-Cu2O thin films were grown using a new non-fluorinated Cu precursor, bis(1-dimethylamino-2-methyl-2-butoxy)copper (C14H32N2O2Cu), and water vapor (H2O) at 140°C. Transmission electron microscopy equipped with an energy dispersive spectrometer confirmed that p-Cu2O thin films had been coated over arrayed Si NWs with a diameter of 150 nm (aspect ratio of ˜7.6). The C-S NW photodiode exhibited more sensitive photodetection performance under ultraviolet illumination as well as an enhanced photocurrent density in the forward biasing region than the planar structure diode. The superior performance of C-S NWs photodiode was explained by the lower reflectance of light and the effective carrier separation and collection originating from the C-S NWs structure. [Figure not available: see fulltext.

  17. Synthesis of BiVO4@C Core-Shell Structure on Reduced Graphene Oxide with Enhanced Visible-Light Photocatalytic Activity.

    PubMed

    Sun, Zhihua; Li, Chenzhe; Zhu, Shenmin; Cho, Maenghyo; Chen, Zhixin; Cho, Kyeongjae; Liao, Yongliang; Yin, Chao; Zhang, Di

    2015-08-24

    Herein, a facile strategy for the controllable synthesis of BiVO4@C core-shell nanoparticles on reduced graphene oxide (RGO) is reported. The BiVO4 particle size can be controlled in the process by adjusting the volume ratio of glycerol in the sol-gel solution. The glycerol layers adsorbed on BiVO4 (BiVO4@glycerol) made it possible to form hydrogen bonds between BiVO4@glycerol and graphene oxide with the assistance of ultrasound. After thermal treatment, glycerol adsorbed on the BiVO4 particles formed amorphous carbon shells to link the particles and RGO. As a result, the obtained RGO-BiVO4@C nanocomposite showed a five times higher rate in O2 evolution from water under visible-light irradiation. Also, it demonstrated a six times higher photocatalytic performance enhancement than that of pure BiVO4 in the degradation of Rhodamine B. The enhanced performance is attributed to the carbon shells that restrict the growth of BiVO4 , the reduced graphene oxide that improves the electronic conductivity of the composite, and importantly, the bonds formed between the carbon shells and RGO that reduce the recombination loss of photogenerated charges effectively. The strategy is simple, effective, and can be extended to other ternary oxides with controlled size and high performance. PMID:26212377

  18. Synthesis and Characterization of Au@Cu Core-Shell Nanoparticles

    NASA Astrophysics Data System (ADS)

    Khanal, Subarna; Velazquez-Salazar, Jesus; Yacaman, Miguel Jose

    2011-10-01

    The synthesis of bimetallic nanoparticles has become so important in present times due to its diverse applications of nanotechnology. Particularly most of the bimetallic nanoparticles are focused to use in catalysis, plasmonic, magnetic, sensors, and many other applications. In Au/Cu case, the bulk Au and Cu are soluble at all compositions. But the structure of Au/Cu nanoparticles depends on the preparation methods. The structure might be the core shell, alloys or other morphology. Au- Cu core-shell nanocrystals were prepared using a two-step polyol reduction method. First, Au core seeds were prepared by reducing HAuCl4. 4H2O in ethylene glycol (EG) using oil-bath heating in the presence of polyvinylpyrrolidone (PVP) as a polymer surfactant. Then Cu shells were overgrown on Au core seeds by reducing Cu2(OAc)4 in EG with PVP again using oil-bath heating. The morphology is studied by STEM HITACHI S-5500.The resultant crystal structures were characterized using TEM, high-resolution (HR)-TEM and the STEM were using for the study of micro analysis.

  19. Preparation of silicon@silicon oxide core-shell nanowires from a silica precursor toward a high energy density Li-ion battery anode.

    PubMed

    Zhang, Chuanjian; Gu, Lin; Kaskhedikar, Nitin; Cui, Guanglei; Maier, Joachim

    2013-12-11

    Bulk-quantity silicon@silicon oxide nanowires have been successfully synthesized via a facile high-temperature approach using environment-friendly silica mixed with titanium powders. It is confirmed that the obtained nanowires process a crystalline core and amorphous oxide sheath. The obtained nanowires grow along the [111] direction which catalyzed by spherical silicon@siilcon oxide nanoparticles. The unique one-dimensional structure and thin oxide sheath result in the favorable electrochemical performances, which may be beneficial to the high energy density silicon anode for lithium ion batteries. PMID:24229329

  20. In vitro hyperthermia with improved colloidal stability and enhanced SAR of magnetic core/shell nanostructures.

    PubMed

    Patil, R M; Thorat, N D; Shete, P B; Otari, S V; Tiwale, B M; Pawar, S H

    2016-02-01

    Magnetic core/shell nanostructures of Fe3O4 nanoparticles coated with oleic acid and betaine-HCl were studied for their possible use in magnetic fluid hyperthermia (MFH). Their colloidal stability and heat induction ability were studied in different media viz. phosphate buffer solution (PBS), saline solution and glucose solution with different physiological conditions and in human serum. The results showed enhanced colloidal stability in these media owing to their high zeta potential values. Heat induction studies showed that specific absorption rates (SAR) of core/shells were 82-94W/g at different pH of PBS and concentrations of NaCl and glucose. Interestingly, core/shells showed 78.45±3.90W/g SAR in human serum. The cytotoxicity of core/shells done on L929 and HeLa cell lines using 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide and trypan blue dye exclusion assays showed >89% and >80% cell viability for 24 and 48h respectively. Core/shell structures were also found to be very efficient for in vitro MFH on cancer cell line. About 95% cell death was occurred in 90min after hyperthermia treatment. The mechanism of cell death was found to be elevated ROS generation in cells after exposure to core/shells in external magnetic field. This study showed that these core/shells have a great potential to be used in in vivo MFH. PMID:26652424

  1. Environmentally responsive core/shell particles via electrohydrodynamic co-jetting of fully miscible polymer solutions.

    PubMed

    Kazemi, Abbass; Lahann, Joerg

    2008-10-01

    Herein it is demonstrated that electrohydrodynamic co-jetting is not limited to Janus-type particles, but can also be used for the preparation of core/shell particles. Using side-by-side flow of miscible polymer solutions, electrohydrodynamic co-jetting offers an elegant and scalable route towards preparation of core/shell particles with otherwise difficult-to-prepare particle architectures, including particles with hydrophilic shell and core. Throughout this study, electrohydrodynamic co-jetting of aqueous solutions consisting of a mixture of PAAm-co-AA and PAA is used, and a range of different types of particles with distinct compartments are observed. Transition from Janus particles to core/shell particles appears to be caused by changes in the relative conductivity of the two jetting solutions. After crosslinking, the core/shell particles are stable in aqueous solution and exhibit reproducible swelling behavior while maintaining the original core/shell geometry. In addition, the pH-responsiveness of the particles is demonstrated by repeatedly switching the environmental pH between 1.3 and 12. Moreover, the core/shell particles show surprising uptake selectivity. For instance, a 450% increase in uptake of 6-carboxyfluorescein over rhodamine B base is found. PMID:18819137

  2. One-pot aerosol synthesis of ordered hierarchical mesoporous core-shell silica nanoparticles.

    PubMed

    Areva, S; Boissière, C; Grosso, D; Asakawa, T; Sanchez, C; Lindén, M

    2004-07-21

    A mixed surfactant approach has been successfully employed in an aerosol-based synthesis of spherical silica particles exhibiting a new core-shell structure where the shell and the core exhibit different ordered mesoporosity and pore sizes. PMID:15263952

  3. Study of photodynamic activity of Au@SiO2 core-shell nanoparticles in vitro.

    PubMed

    Meena, K S; Dhanalekshmi, K I; Jayamoorthy, K

    2016-06-01

    Metal-semiconductor core-shell type Au@SiO2 nanoparticles were prepared by Stober's method. They were characterized by absorption, XRD, HR-TEM and EDAX techniques. The resulting modified core-shell nanoparticles shows that the formation of singlet oxygen, which was confirmed by ESR technique. The photohemolysis studies were carried out under two different experimental conditions. It is observed that the photohemolysis increases with concentration as well as light dose. Cell viability of the core-shell nanoparticles against HeLa cell lines were studied by MTT assay method. The outcomes of the present study indicate that, the Au@SiO2 core-shell nanoparticles are extremely stable with a very high photodynamic efficiency under visible light illumination. PMID:27040225

  4. Controllable fabrication of PS/Ag core-shell-shaped nanostructures

    PubMed Central

    2012-01-01

    In this paper, based on the previous steps, a facile in situ reduction method was developed to controllably prepare polystyrene/Ag (PS/Ag) core-shell-shaped nanostructures. The crucial procedure includes surface treatment of polystyrene core particles by cationic polyelectrolyte polyethyleneimine, in situ formation of Ag nanoparticles, and immobilization of the Ag nanoparticles onto the surface of the polystyrene colloids via functional group NH from the polyethyleneimine. The experimental parameters, such as the reaction temperature, the reaction time, and the silver precursors were optimized for improvement of dispersion and Ag coat coverage of the core-shell-shaped nanostructures. Ultimately, the optimum parameters were obtained through a series of experiments, and well-dispersed, uniformly coated PS/Ag core-shell-shaped nanostructures were successfully fabricated. The formation mechanism of the PS/Ag core-shell-shaped nanostructures was also explained. PMID:23092195

  5. Core-shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Oka, Chiemi; Ushimaru, Kazunori; Horiishi, Nanao; Tsuge, Takeharu; Kitamoto, Yoshitaka

    2015-05-01

    Core-shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core-shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body.

  6. Synthesis and characterization of silver-copper core-shell nanoparticles using polyol method for antimicrobial agent

    NASA Astrophysics Data System (ADS)

    Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.

    2016-06-01

    Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.

  7. Synthesis of Lutetium Phosphate/Apoferritin Core-Shell Nanoparticles for Potential Applications in Radioimmunoimaging and Radioimmunotherapy of Cancers

    SciTech Connect

    Wu, Hong; Engelhard, Mark H.; Wang, Jun; Fisher, Darrell R.; Lin, Yuehe

    2008-04-01

    We report a novel approach for synthesizing LuPO4/apoferritin core-shell nanoparticles based on an apoferritin template, conjugated to the protein biotin. To prepare the nanoparticle conjugates, we used non-radioactive lutetium as a model target or surrogate for radiolutetium (177Lu). The central cavity, multi-channel structure, and chemical properties of apoferritin are well-suited for sequentially diffusing lutetium and phosphate ions into the cavity--resulting in a stable core-shell composite. We characterized the synthesized LuPO4/apoferritin nanoparticle using transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). We tested the pre-targeting capability of biotin-modified lutetium/apoferritin nanoparticle using streptavidin-modified magnetic beads and streptavidin-modified fluorescein isothiocyanate (FITC) tracer. This paper presents a simple, fast, and efficient method for synthesizing LuPO4/apoferritin nanoparticle conjugates with biotin for potential applications in radioimmunotherapy and radioimmunoimaging of cancer.

  8. Fe3O4@Al2O3 magnetic core-shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis.

    PubMed

    Li, Yan; Liu, Yingchao; Tang, Jia; Lin, Huaqing; Yao, Ning; Shen, Xizhong; Deng, Chunhui; Yang, Pengyuan; Zhang, Xiangmin

    2007-11-16

    Selective detection of phosphopeptides from complex biological samples is a challenging and highly relevant task in many proteomics applications. In this study, a novel phosphopeptide enrichment approach based on the strong interaction of Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres with phosphopeptides has been developed. With a well-defined core-shell structure, the Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres not only have a shell of aluminum oxide, giving them a high-trapping capacity for the phosphopeptides, but also have magnetic property that enables easy isolation by positioning an external magnetic field. The prepared Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres have been successfully applied to the enrichment of phosphopeptides from the tryptic digest of standard phosphoproteins beta-casein and ovalbumin. The excellent selectivity of this approach was demonstrated by analyzing phosphopeptides in the digest mixture of beta-casein and bovine serum albumin with molar ratio of 1:50 as well as tryptic digest product of casein and five protein mixtures. The results also proved a stronger selective ability of Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres over Fe(3+)-immobilized magnetic silica microspheres, commercial Fe(3+)-IMAC (immobilized metal affinity chromatography) resin, and TiO(2) beads. Finally, the Al(2)O(3) coated Fe(3)O(4) microspheres were successfully utilized for enrichment of phosphopeptides from digestion products of rat liver extract. These results show that Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres are very good materials for rapid and selective separation and enrichment of phosphopeptides. PMID:17936290

  9. Core-shell interaction and its impact on the optical absorption of pure and doped core-shell CdSe/ZnSe nanoclusters

    NASA Astrophysics Data System (ADS)

    Wang, Xinqin; Cui, Yingqi; Yu, Shengping; Zeng, Qun; Yang, Mingli

    2016-04-01

    The structural, electronic, and optical properties of core-shell nanoclusters, (CdSe)x@(CdSe)y and their Zn-substituted complexes of x = 2-4 and y = 16-28, were studied with density functional theory calculations. The substitution was applied in the cores, the shells, and/or the whole clusters. All these clusters are characterized by their core-shell structures in which the core-shell interaction was found different from those in core or in shell, as reflected by their bondlengths, volumes, and binding energies. Moreover, the core and shell combine together to compose a new cluster with electronic and optical properties different from those of separated individuals, as reflected by their HOMO-LUMO gaps and optical absorptions. With the substitution of Cd by Zn, the structural, electronic, and optical properties of clusters change regularly. The binding energy increases with Zn content, attributed to the strong Zn-Se bonding. For the same core/shell, the structure with a CdSe shell/core has a narrower gap than that with a ZnSe shell/core. The optical absorption spectra also change accordingly with Zn substitution. The peaks blueshift with increasing Zn concentration, accompanying with shape variations in case large number of Cd atoms are substituted. Our calculations reveal the core-shell interaction and its influence on the electronic and optical properties of the core-shell clusters, suggesting a composition-structure-property relationship for the design of core-shell CdSe and ZnSe nanoclusters.

  10. Synthesis of fly ash based core-shell composites for use as functional pigment in paints

    NASA Astrophysics Data System (ADS)

    Sharma, Richa; Tiwari, Sangeeta

    2016-04-01

    Fly ash is a combustion residue, mainly composed of silica, alumina and iron oxides. It is produced by the power industries in very large amounts and usually disposed in landfills, which have represented an environmental problem in recent years1. The need to generate a market for fly ash consumption is the main reason why alternative applications have been studied. It has been applied as an additive in construction materials like cement and pavements2. The present work describes the synthesis of Flyash-Titania core-shell particles by precipitation technique using Titanium tetra isopropoxide (TTIP) which can be used for variety of applications such as NIR reflecting materials for cool coatings, Photocatalysis etc. In this work, Fly ash is used in core and Nano -TiO2 is coated as shell on it. Surfactants are used to improve the adhesion of Nano Titania shell on fly ash core. Effect on adhesion of TiO2 on Fly ash is studied by using different types of surfactant. The preparation of core shells was carried out in absence of surfactant as well as using anionic and non-ionic surfactants. The percentage of surfactant was varied to study the effect of amount of surfactant on the uniformity and size of particles in the shell using Kubelka-Munk transformed reflectance spectra. The morphology of core shell structures was studied using SEM technique. Use of anionic surfactant results in more uniform coating with reduced particle size of the shell material. The composite particles prepared by using anionic surfactant are having good pigment properties and also shows good reflectance in Near Infrared region and hence can be used as a pigment in cool coatings.

  11. Core-shell electrospun polybutylene terephthalate/polypyrrole hollow nanofibers for micro-solid phase extraction.

    PubMed

    Bagheri, Habib; Rezvani, Omid; Banihashemi, Solmaz

    2016-02-19

    In the present work, a new micro-solid phase extraction (μ-SPE) sorbent as an extracting medium based on core-shell nanofibers was synthesized by electrospinning. The core-shell nanofibers of polyvinylpyrrolidone-Polybutylene terephthalate/polypyrrole (PVP-PBT/PPy) were electrospun and subsequently, modified hollow nanofibers were prepared by removing the central PVP moiety. Moreover, conventional PBT/PPy was also prepared for the comparison purposes. The homogeneity and the porous surface structure of the core-shell nanofibers were confirmed by scanning electron microscopy (SEM). The applicability of the fabricated nanofibers-coating was examined by immersed μ-SPE of some selected triazine herbicides from aqueous samples and wheat grains. Subsequently, the extracted analytes were transferred into a gas chromatography (GC) after solvent desorption. Influencing parameters on the morphology of nanofiber such as elctrospinning parameters and the weight ratio of components were optimized. In addition, effects of different parameters influencing the extraction efficiency including extraction temperature, extraction time, ionic strength, sample pH, desorption temperature, and desorption time were investigated and optimized. Eventually, the developed method was validated by gas chromatography-mass spectrometry (GC-MS). At the optimum conditions, the relative standard deviation values for real water samples spiked with the selected triazines at 1 ng mL(-1) were 4-8% (n=3) and the limits of detection for the studied compounds were between 50 and 90 ng L(-1). The calibration curves for the selected triazines were in the range of 0.3-500 ng mL(-1) and regression coefficients (R(2)) were between 0.9985 and 0.9996. PMID:26810808

  12. Au nanocrystal-directed growth of Au-Cu(2)O core-shell heterostructures with precise morphological control.

    PubMed

    Kuo, Chun-Hong; Hua, Tzu-En; Huang, Michael H

    2009-12-16

    Formation of metal-semiconductor core-shell heterostructures with precise morphological control of both components remains challenging. Heterojunctions, rather than core-shell structures, were typically produced for metal-semiconductor composites. Furthermore, growth of semiconductor shells with systematic shape evolution using the same metal particle cores can also present a significant challenge. Here, we have synthesized Au-Cu(2)O core-shell heterostructures using gold nanoplates, nanorods, octahedra, and highly faceted nanoparticles as the structure-directing cores for the overgrowth of Cu(2)O shells by a facile aqueous solution approach. The gold nanoparticle cores guide the growth of Cu(2)O shells with morphological and orientation control. Systematic shape evolution of the shells can be easily achieved by simply adjusting the volume of reductant added. For example, truncated cubic to octahedral Cu(2)O shells were produced from octahedral gold nanocrystal cores. Unusual truncated stellated icosahedral and star column structures have also been synthesized. The heterostructures were found to be formed via an unusual hollow-shell-refilled growth mechanism not reported before. The approach has potential toward the preparation of other complex Cu(2)O structures with well-defined facets. PMID:19919066

  13. Radial modulation doping in core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Dillen, David C.; Kim, Kyounghwan; Liu, En-Shao; Tutuc, Emanuel

    2014-02-01

    Semiconductor nanowires are potential candidates for applications in quantum information processing, Josephson junctions and field-effect transistors and provide a unique test bed for low-dimensional physical phenomena. The ability to fabricate nanowire heterostructures with atomically flat, defect-free interfaces enables energy band engineering in both axial and radial directions. The design of radial, or core-shell, nanowire heterostructures relies on energy band offsets that confine charge carriers into the core region, potentially reducing scattering from charged impurities on the nanowire surface. Key to the design of such nanoscale heterostructures is a fundamental understanding of the heterointerface properties, particularly energy band offsets and strain. The charge-transfer and confinement mechanism can be used to achieve modulation doping in core-shell structures. By selectively doping the shell, which has a larger bandgap, charge carriers are donated and confined in the core, generating a quasi-one-dimensional electron system with higher mobility. Here, we demonstrate radial modulation doping in coherently strained Ge-SixGe1-x core-shell nanowires and a technique to directly measure their valence band offset. Radial modulation doping is achieved by incorporating a B-doped layer during epitaxial shell growth. In contrast to previous work showing site-selective doping in Ge-Si core-shell nanowires, we find both an enhancement in peak hole mobility compared with undoped nanowires and observe a decoupling of electron transport in the core and shell regions. This decoupling stems from the higher carrier mobility in the core than in the shell and allows a direct measurement of the valence band offset for nanowires of various shell compositions.

  14. Core-shell upconversion nanoparticle - semiconductor heterostructures for photodynamic therapy.

    PubMed

    Dou, Qing Qing; Rengaramchandran, Adith; Selvan, Subramanian Tamil; Paulmurugan, Ramasamy; Zhang, Yong

    2015-01-01

    Core-shell nanoparticles (CSNPs) with diverse chemical compositions have been attracting greater attention in recent years. However, it has been a challenge to develop CSNPs with different crystal structures due to the lattice mismatch of the nanocrystals. Here we report a rational design of core-shell heterostructure consisting of NaYF4:Yb,Tm upconversion nanoparticle (UCN) as the core and ZnO semiconductor as the shell for potential application in photodynamic therapy (PDT). The core-shell architecture (confirmed by TEM and STEM) enables for improving the loading efficiency of photosensitizer (ZnO) as the semiconductor is directly coated on the UCN core. Importantly, UCN acts as a transducer to sensitize ZnO and trigger the generation of cytotoxic reactive oxygen species (ROS) to induce cancer cell death. We also present a firefly luciferase (FLuc) reporter gene based molecular biosensor (ARE-FLuc) to measure the antioxidant signaling response activated in cells during the release of ROS in response to the exposure of CSNPs under 980 nm NIR light. The breast cancer cells (MDA-MB-231 and 4T1) exposed to CSNPs showed significant release of ROS as measured by aminophenyl fluorescein (APF) and ARE-FLuc luciferase assays, and ~45% cancer cell death as measured by MTT assay, when illuminated with 980 nm NIR light. PMID:25652742

  15. Core - shell upconversion nanoparticle - semiconductor heterostructures for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Dou, Qing Qing; Rengaramchandran, Adith; Selvan, Subramanian Tamil; Paulmurugan, Ramasamy; Zhang, Yong

    2015-02-01

    Core-shell nanoparticles (CSNPs) with diverse chemical compositions have been attracting greater attention in recent years. However, it has been a challenge to develop CSNPs with different crystal structures due to the lattice mismatch of the nanocrystals. Here we report a rational design of core-shell heterostructure consisting of NaYF4:Yb,Tm upconversion nanoparticle (UCN) as the core and ZnO semiconductor as the shell for potential application in photodynamic therapy (PDT). The core-shell architecture (confirmed by TEM and STEM) enables for improving the loading efficiency of photosensitizer (ZnO) as the semiconductor is directly coated on the UCN core. Importantly, UCN acts as a transducer to sensitize ZnO and trigger the generation of cytotoxic reactive oxygen species (ROS) to induce cancer cell death. We also present a firefly luciferase (FLuc) reporter gene based molecular biosensor (ARE-FLuc) to measure the antioxidant signaling response activated in cells during the release of ROS in response to the exposure of CSNPs under 980 nm NIR light. The breast cancer cells (MDA-MB-231 and 4T1) exposed to CSNPs showed significant release of ROS as measured by aminophenyl fluorescein (APF) and ARE-FLuc luciferase assays, and ~45% cancer cell death as measured by MTT assay, when illuminated with 980 nm NIR light.

  16. Synthesis, Structural and Optical Characterization of CdTeSe/ZnSe and CdTeSe/ZnTe Core/Shell Ternary Quantum Dots for Potential Application in Solar Cells

    NASA Astrophysics Data System (ADS)

    Hung, Le Xuan; Thang, Pham Nam; Van Nong, Hoang; Yen, Nguyen Hai; Chinh, Vu Đuc; Van Vu, Le; Hien, Nguyen Thi Thuc; de Marcillac, Willy Daney; Hong, Phan Ngoc; Loan, Nguyen Thu; Schwob, Catherine; Maître, Agnès; Liem, Nguyen Quang; Bénalloul, Paul; Coolen, Laurent; Nga, Pham Thu

    2016-08-01

    This work presents the results on the fabrication, structural and optical properties of CdTeSe/ZnTe and CdTeSe/ZnSe n monolayers (ML) (with n = 0,1,2,4 and 6 being the nominal shell monolayer thickness) ternary alloyed core/shell quantum dots (QDs). Transmission electron microscopy has been used to observe the shape and size of the QDs. These QDs crystallize at the zinc-blende phase. Raman scattering has been used to characterize the CdTeSe QDs' alloy composition in the fabrication and coating processes. The Raman spectrum of CdTeSe QDs, in the frequency range from 100 cm-1 to 300 cm-1, is a composite band with two peaks at 160 cm-1 and 192 cm-1. When the thickness of the ZnTe shell is 4 ML, the peak of the Raman spectrum only appears at 160 cm-1. For the ZnSe 4 ML shell, the peak only appears at ˜200 cm-1. This shows that the nature of the CdTeSe QDs is either CdTe-rich or CdSe-rich depending on the shell of each sample. The shell thickness of 2 ML does not change the ternary core QDs' crystalline phase. The absorption and photoluminescence spectra show that the absorption and emission bands can be shifted to 900 nm, depending on each ternary alloyed QD core/shell sample. This near-infrared spectrum region is suitable for applications in solar cells.

  17. Synthesis, Structural and Optical Characterization of CdTeSe/ZnSe and CdTeSe/ZnTe Core/Shell Ternary Quantum Dots for Potential Application in Solar Cells

    NASA Astrophysics Data System (ADS)

    Hung, Le Xuan; Thang, Pham Nam; Van Nong, Hoang; Yen, Nguyen Hai; Chinh, Vu Đuc; Van Vu, Le; Hien, Nguyen Thi Thuc; de Marcillac, Willy Daney; Hong, Phan Ngoc; Loan, Nguyen Thu; Schwob, Catherine; Maître, Agnès; Liem, Nguyen Quang; Bénalloul, Paul; Coolen, Laurent; Nga, Pham Thu

    2016-05-01

    This work presents the results on the fabrication, structural and optical properties of CdTeSe/ZnTe and CdTeSe/ZnSe n monolayers (ML) (with n = 0,1,2,4 and 6 being the nominal shell monolayer thickness) ternary alloyed core/shell quantum dots (QDs). Transmission electron microscopy has been used to observe the shape and size of the QDs. These QDs crystallize at the zinc-blende phase. Raman scattering has been used to characterize the CdTeSe QDs' alloy composition in the fabrication and coating processes. The Raman spectrum of CdTeSe QDs, in the frequency range from 100 cm-1 to 300 cm-1, is a composite band with two peaks at 160 cm-1 and 192 cm-1. When the thickness of the ZnTe shell is 4 ML, the peak of the Raman spectrum only appears at 160 cm-1. For the ZnSe 4 ML shell, the peak only appears at ˜200 cm-1. This shows that the nature of the CdTeSe QDs is either CdTe-rich or CdSe-rich depending on the shell of each sample. The shell thickness of 2 ML does not change the ternary core QDs' crystalline phase. The absorption and photoluminescence spectra show that the absorption and emission bands can be shifted to 900 nm, depending on each ternary alloyed QD core/shell sample. This near-infrared spectrum region is suitable␣for applications in solar cells.

  18. Synthesis and characterization of Zn 3P 2/ZnS core/shell nanowires

    NASA Astrophysics Data System (ADS)

    Sun, T.; Wu, P. C.; Guo, Z. D.; Dai, Y.; Meng, H.; Fang, X. L.; Shi, Z. J.; Dai, L.; Qin, G. G.

    2011-05-01

    Fully-surrounded Zn3P2/ZnS core/shell nanowires (NWs) were synthesized for the first time via a two-step method: a catalyst free chemical vapor deposition followed by a low-pressure vulcanization process. Field emission scanning electron microscopy, high-resolution transmission electron microscopy, and high-angle angular dark field scanning transmission electron microscopy were used to characterize the morphologies, crystal structure, and element composition of the core/shell NWs. The band structure analysis demonstrates that the Zn3P2/ZnS core-shell NW type-II heterostructures have bright potential in photovoltaic nanodevice applications. The core/shell NW growth method used here can be extended to other material system.

  19. Boronic acid-functionalized core-shell-shell magnetic composite microspheres for the selective enrichment of glycoprotein.

    PubMed

    Pan, Miaorong; Sun, Yangfei; Zheng, Jin; Yang, Wuli

    2013-09-11

    In this work, core-shell-shell-structured boronic acid-functionalized magnetic composite microspheres Fe3O4@SiO2@poly (methyl methacrylate-co-4-vinylphenylbornoic acid) (Fe3O4@SiO2@P(MMA-co-VPBA)) with a uniform size and fine morphology were synthesized. Here, Fe3O4 magnetic particles were prepared by a solvothermal reaction, whereas the Fe3O4@SiO2 microspheres with a core-shell structure were obtained by a sol-gel process. 3-(Trimethoxysilyl) propyl methacrylate (MPS)-modified Fe3O4@SiO2 was used as the seed in the emulsion polymerization of MMA and VPBA to form the core-shell-shell-structured magnetic composite microspheres. As the boronic acid groups on the surface of Fe3O4@SiO2@P(MMA-co-VPBA) could form tight yet reversible covalent bonds with the cis-1,2-diols groups of glycoproteins, the magnetic composite microspheres were applied to enrich a standard glycoprotein, horseradish peroxidase (HRP), and the results demonstrated that the composite microspheres have a higher affinity for the glycoproteins in the presence of the nonglycoprotein bovine serum albumin (BSA) over HRP. Additionally, different monomer mole ratios of MMA/VPBA were studied, and the results implied that using MMA as the major monomer could reduce the amount of VPBA with a similar glycoprotein enrichment efficiency but a lower cost. PMID:23924282

  20. Fabrication of Ni-P/palygorskite core-shell linear powder via electroless deposition

    NASA Astrophysics Data System (ADS)

    Zhou, Sumin; Wang, Li; Shen, Shiming

    2011-09-01

    Palygorskite is a kind of hydrated magnesium aluminium silicate clay mineral. A novel linear core-shell structured Ni-P coated micro-fiber palygorskite (MFP) was fabricated via an electroless (EL) plating process in an alkaline bath. The composition, morphology and structure of the as-prepared products were characterized by the techniques such as powder X-ray diffraction (XRD), energy-dispersive X-ray spectrum (EDS), scanning electron microscopy (SEM) and transmission electron microscope (TEM). It was observed that the size and morphology of Ni-P coated MFPs were altered by depositing temperature and time. The as-prepared Ni-P coated MFPs showed good conductivity. To the best of our knowledge, the Ni-P coated MFPs have not been reported before. And this fabrication process might also apply in preparing other metal coated MFPs such as silver, copper and palladium.

  1. Introduction of biotin or folic acid into polypyrrole magnetite core-shell nanoparticles

    SciTech Connect

    Nan, Alexandrina; Turcu, Rodica; Liebscher, Jürgen

    2013-11-13

    In order to contribute to the trend in contemporary research to develop magnetic core shell nanoparticles with better properties (reduced toxicity, high colloidal and chemical stability, wide scope of application) in straightforward and reproducible methods new core shell magnetic nanoparticles were developed based on polypyrrole shells functionalized with biotin and folic acid. Magnetite nanoparticles stabilized by sebacic acid were used as magnetic cores. The morphology of magnetite was determined by transmission electron microscopy TEM, while the chemical structure investigated by FT-IR.

  2. Synthesis and optical properties of three-dimensional porous core-shell nanoarchitectures.

    PubMed

    Qian, Li-Hua; Ding, Yi; Fujita, Takeshi; Chen, Ming-Wei

    2008-05-01

    Three-dimensional porous core-shell nanostructures consisting of gold skeletons and silver shells were fabricated by controllable electroless plating. Optical properties of the 3D nanocomposite with a heterogeneous interface exhibit a significant shell-thickness dependence. The porous core-shell structure with an optimized shell thickness of approximately 3-5 nm exhibits a considerable improvement in surface-enhanced Raman scattering. This study has important implications in the functionalization of nanoporous metals by surface modification. PMID:18355096

  3. Colloidally stable selenium@copper selenide core@shell nanoparticles as selenium source for manufacturing of copper-indium-selenide solar cells.

    PubMed

    Dong, Hailong; Quintilla, Aina; Cemernjak, Marco; Popescu, Radian; Gerthsen, Dagmar; Ahlswede, Erik; Feldmann, Claus

    2014-02-01

    Selenium nanoparticles with diameters of 100-400nm are prepared via hydrazine-driven reduction of selenious acid. The as-prepared amorphous, red selenium (a-Se) particles were neither a stable phase nor were they colloidally stable. Due to phase transition to crystalline (trigonal), grey selenium (t-Se) at or even below room temperature, the particles merged rapidly and recrystallized as micronsized crystal needles. As a consequence, such Se particles were not suited for layer deposition and as a precursor to manufacture thin-film CIS (copper indium selenide/CuInSe2) solar cells. To overcome this restriction, Se@CuSe core@shell particles are presented here. For these Se@CuSe core@shell nanoparticles, the phase transition a-Se→t-Se is shifted to temperatures higher than 100°C. Moreover, a spherical shape of the particles is retained even after phase transition. Composition and structure of the Se@CuSe core@shell nanostructure are evidenced by electron microscopy (SEM/STEM), DLS, XRD, FT-IR and line-scan EDXS. As a conceptual study, the newly formed Se@CuSe core@shell nanostructures with CuSe acting as a protecting layer to increase the phase-transition temperature and to improve the colloidal stability were used as a selenium precursor for manufacturing of thin-film CIS solar cells and already lead to conversion efficiencies up to 3%. PMID:24267336

  4. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles.

    PubMed

    Nonkumwong, Jeeranan; Pakawanit, Phakkhananan; Wipatanawin, Angkana; Jantaratana, Pongsakorn; Ananta, Supon; Srisombat, Laongnuan

    2016-04-01

    In this work, the core-magnesium ferrite (MgFe2O4) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe2O4 nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe2O4 core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV-visible spectroscopy (UV-vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe2O4 core nanoparticles via suitable core/shell ratio with particle size less than 100nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV-vis spectra of complete coated MgFe2O4-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe2O4-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe2O4 core. Both of MgFe2O4 and MgFe2O4-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line. PMID:26838832

  5. Design of polyelectrolyte core-shells with DNA to control TMPyP binding.

    PubMed

    Serra, Vanda Vaz; Teixeira, Raquel; Andrade, Suzana M; Costa, Sílvia M B

    2016-10-01

    The interaction of DNA with 5,10,15,20-tetrakis(4-N-methylpyridiniumyl)porphyrin (TMPyP) in polyelectrolyte core-shells obtained via layer by layer adsorption of poly(sodium 4-styrenesulfonate), PSS, and poly(allylamine hydrochloride), PAH, polyelectrolytes was followed by steady state, time resolved fluorescence and by Fluorescence Lifetime Imaging Microscopy (FLIM). Our results show that DNA adsorption onto polyelectrolyte core-shell changes the TMPyP interaction within PSS/PAH core-shells structure and increase significantly the TMPyP uptake. Specific DNA/TMPyP interactions are also altered by DNA adsorption favouring porphyrin intercalation onto GC pair rich regions. Circular dichroism (CD) spectra reveal that DNA undergoes important conformational changes upon adsorption onto the core-shell surface, which are reverted upon TMPyP encapsulation. PMID:27285535

  6. Water-soluble core/shell nanoparticles for proton therapy through particle-induced radiation

    NASA Astrophysics Data System (ADS)

    Park, Jeong Chan; Jung, Myung-Hwan; Kim, Maeng Jun; Kim, Kye-Ryung

    2015-02-01

    Metallic nanoparticles have been used in biomedical applications such as magnetic resonance imaging (MRI), therapy, and drug delivery systems. Metallic nanoparticles as therapeutic tools have been demonstrated using radio-frequency magnetic fields or near-infrared light. Recently, therapeutic applications of metallic nanomaterials combined with proton beams have been reported. Particle-induced radiation from metallic nanoparticles, which can enhance the therapeutic effects of proton therapy, was released when the nanoparticles were bombarded by a high-energy proton beam. Core/shell nanoparticles, especially Au-coated magnetic nanoparticles, have drawn attention in biological applications due to their attractive characteristics. However, studies on the phase transfer of organic-ligand-based core/shell nanoparticles into water are limited. Herein, we demonstrated that hydrophobic core/shell structured nanomaterials could be successfully dispersed in water through chloroform/surfactant mixtures. The effects of the core/shell nanomaterials and the proton irradiation on Escherichia coli (E. coli) were also explored.

  7. Facile synthesis of mesoporous core-shell TiO{sub 2} nanostructures from TiCl{sub 3}

    SciTech Connect

    Xue, Bin; Sun, Tao; Mao, Fang; Sun, Li-Chun; Yang, Wei; Xu, Zhu-De; Zhang, Xin

    2011-09-15

    Highlights: {yields} Stable TiCl{sub 3} solution is adopted as Ti sources. {yields} Low-cost glucose assisted facile solvothermal reactions. {yields} Exquisite core-shell morphology and mesoporous structure of TiO{sub 2} nanostructures. {yields} Superior photocatalytic activity of TiO{sub 2} nanostructures in UV light irradiation. -- Abstract: The present study reports the synthesis and formation process of mesoporous core-shell TiO{sub 2} nanostructures by employing a glucose-assisted solvothermal process using water-ethanol mixture as solvent and subsequent calcination process at 550 {sup o}C for 4 h. X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption analysis were used to investigate the structural properties of these nanostructures. By optimizing the preparation conditions, especially the contents of water and ethanol in the mixture solvent, mesoporous core-shell TiO{sub 2} nanostructures were obtained. These mesoporous nanostructures have anatase phase and exhibit the superior photocatalytic activity. This synthesis route is facile due to the usage of stable and low-cost Ti precursor such as TiCl{sub 3} and is thus applicable for large-scale production.

  8. Synthesis and microwave-absorbing properties of Co3Fe7@C core-shell nanostructure

    NASA Astrophysics Data System (ADS)

    Guo, Xiao Dang; Qiao, Xiao Jing; Ren, Qing Guo; Wan, Xiang; Li, Wang Chang; Sun, Zhi Gang

    2015-07-01

    Co3Fe7@C core-shell nanoparticles with high performance of microwave-absorbing properties were prepared by hydrothermal method and heat treatment. The transformation of structural, morphological and magnetic properties among the carbon-encapsulated composites, which were annealed at three different temperatures, were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). XRD analysis indicated the phase composition of Co3Fe7/CoFe2O4, Fe3C/Co3Fe7 and pure Co3Fe7 at different annealing temperatures. TEM confirmed the Co3Fe7@graphite core-shell nanostructure with an average particle size of 180 nm. The saturation magnetization ( M s) increased monotonically with the increase in temperature, which was attributed to the crystal growth and purity of metallic core. Co3Fe7@graphite nanoparticles exhibited the hysteretic loops of soft ferromagnetic behavior with high M s of 222.85 emu g-1, weak remanent magnetization ( M r) and coercivity ( H c). For Co3Fe7@graphite nanomaterial, a reflection loss exceeding -20 dB was obtained between 2.8 and 10.2 GHz, which almost covering from S-band to X-band. The maximum reflection loss is -26.8 dB at 9 GHz with 1.8 mm thickness. The excellent microwave absorption properties result from the proper electromagnetic match in core-shell nanostructure and the strong natural ferromagnetic resonance.

  9. Dynamic evolution process of multilayer core-shell microstructures within containerlessly solidifying Fe(50)Sn(50) immiscible alloy.

    PubMed

    Wang, W L; Wu, Y H; Li, L H; Geng, D L; Wei, B

    2016-03-01

    Multilayer core-shell structures are frequently formed in polymers and alloys when temperature and concentration fields are well symmetrical spatially. Here we report that two- to five-layer core-shell microstructures were the dominant structural morphology of a binary Fe(50)Sn(50) immiscible alloy solidified under the containerless and microgravity states within a drop tube. Three dimensional phase field simulation reveals that both the uniformly dispersive structure and the multilayer core-shells are the various metastable and transitional states of the liquid phase separation process. Only the two-layer core-shell is the most stable microstructure with the lowest chemical potential. Because of the suppression of Stokes motion, solutal Marangoni migration becomes important to drive the evolution of core-shell structures. PMID:27078410

  10. Dynamic evolution process of multilayer core-shell microstructures within containerlessly solidifying F e50S n50 immiscible alloy

    NASA Astrophysics Data System (ADS)

    Wang, W. L.; Wu, Y. H.; Li, L. H.; Geng, D. L.; Wei, B.

    2016-03-01

    Multilayer core-shell structures are frequently formed in polymers and alloys when temperature and concentration fields are well symmetrical spatially. Here we report that two- to five-layer core-shell microstructures were the dominant structural morphology of a binary F e50S n50 immiscible alloy solidified under the containerless and microgravity states within a drop tube. Three dimensional phase field simulation reveals that both the uniformly dispersive structure and the multilayer core-shells are the various metastable and transitional states of the liquid phase separation process. Only the two-layer core-shell is the most stable microstructure with the lowest chemical potential. Because of the suppression of Stokes motion, solutal Marangoni migration becomes important to drive the evolution of core-shell structures.

  11. Single and multi-layered core-shell structures based on ZnO nanorods obtained by aerosol assisted chemical vapor deposition

    SciTech Connect

    Sáenz-Trevizo, A.; Amézaga-Madrid, P.; Pizá-Ruiz, P.; Antúnez-Flores, W.; Ornelas-Gutiérrez, C.; Miki-Yoshida, M.

    2015-07-15

    Core–shell nanorod structures were prepared by a sequential synthesis using an aerosol assisted chemical vapor deposition technique. Several samples consisting of ZnO nanorods were initially grown over TiO{sub 2} film-coated borosilicate glass substrates, following the synthesis conditions reported elsewhere. Later on, a uniform layer consisting of individual Al, Ni, Ti or Fe oxides was grown onto ZnO nanorod samples forming the so-called single MO{sub x}/ZnO nanorod core–shell structures, where MO{sub x} was the metal oxide shell. Additionally, a three-layer core–shell sample was developed by growing Fe, Ti and Fe oxides alternately, onto the ZnO nanorods. The microstructure of the core–shell materials was characterized by grazing incidence X-ray diffraction, scanning and transmission electron microscopy. Energy dispersive X-ray spectroscopy was employed to corroborate the formation of different metal oxides. X-ray diffraction outcomes for single core–shell structures showed solely the presence of ZnO as wurtzite and TiO{sub 2} as anatase. For the multi-layered shell sample, the existence of Fe{sub 2}O{sub 3} as hematite was also detected. Morphological observations suggested the existence of an outer material grown onto the nanorods and further microstructural analysis by HR-STEM confirmed the development of core–shell structures in all cases. These studies also showed that the individual Al, Fe, Ni and Ti oxide layers are amorphous; an observation that matched with X-ray diffraction analysis where no apparent extra oxides were detected. For the multi-layered sample, the development of a shell consisting of three different oxide layers onto the nanorods was found. Overall results showed that no alteration in the primary ZnO core was produced during the growth of the shells, indicating that the deposition technique used herein was and it is suitable for the synthesis of homogeneous and complex nanomaterials high in quality and purity. In addition

  12. Synthesis and characterization of Fe3O4-TiO2 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Stefan, M.; Pana, O.; Leostean, C.; Bele, C.; Silipas, D.; Senila, M.; Gautron, E.

    2014-09-01

    Composite core-shell nanoparticles may have morpho-structural, magnetic, and optical (photoluminescence (PL)) properties different from each of the components considered separately. The properties of Fe3O4-TiO2 nanoparticles can be controlled by adjusting the titania amount (shell thinness). Core-shell nanoparticles were prepared by seed mediated growth of semiconductor (TiO2) through a modified sol-gel process onto preformed magnetite (Fe3O4) cores resulted from the co-precipitation method. The structure and morphology of samples were characterized by X-ray diffraction, transmission electron microscopy (TEM), and high resolution-TEM respectively. X-ray photoelectron spectroscopy was correlated with ICP-AES. Magnetic measurements, optical absorption spectra, as well as PL spectroscopy indicate the presence of a charge/spin transfer from the conduction band of magnetite into the band gap of titania nanocrystals. The process modifies both Fe3O4 and TiO2 magnetic and optical properties, respectively.

  13. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics

    NASA Astrophysics Data System (ADS)

    Lee, Changsoo; Kim, Na Rae; Koo, Jahyun; Jong Lee, Yung; Lee, Hyuck Mo

    2015-11-01

    In this work, we synthesized uniform Cu-Ag core-shell nanoparticles using a facile two-step process that consists of thermal decomposition and galvanic displacement methods. The core-shell structure of these nanoparticles was confirmed through characterization using transmission electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Furthermore, we investigated the oxidation stability of the Cu-Ag core-shell nanoparticles in detail. Both qualitative and quantitative x-ray photoelectron spectroscopy analyses confirm that the Cu-Ag core-shell nanoparticles have considerably higher oxidation stability than Cu nanoparticles. Finally, we formulated a conductive ink using the synthesized nanoparticles and coated it onto glass substrates. Following the sintering process, we compared the resistivity of the Cu-Ag core-shell nanoparticles with that of the Cu nanoparticles. The results of this study clearly show that the Cu-Ag core-shell nanoparticles can potentially be used as an alternative to Ag nanoparticles because of their superior oxidation stability and electrical properties.

  14. Folate-targeting magnetic core-shell nanocarriers for selective drug release and imaging.

    PubMed

    Wang, Hanjie; Wang, Sheng; Liao, Zhenyu; Zhao, Peiqi; Su, Wenya; Niu, Ruifang; Chang, Jin

    2012-07-01

    One of the most urgent medical requirements for cancer diagnosis and treatment is how to construct a multifunctional vesicle for simultaneous diagnostic imaging and therapeutic applications. In our study, superparamagnetic iron oxide nanocrystals (SPIONs) and doxorubicin hydrochloride (DOX) are co-encapsulated into PLGA/polymeric liposome core-shell nanocarriers for achieving simultaneous magnetic resonance imaging and targeting drug delivery. The core-shell nanocarrier was self-assembled from a hydrophobic PLGA core and a hydrophilic folate coated PEGlated lipid shell. The experiment showed that folate-targeting magnetic core-shell nanocarriers show clear core-shell structure, excellent magnetism and controlled drug release behavior. Importantly, the core-shell nanoparticles achieve the possibility of co-delivering drugs and SPIONs to the same cells for enhancing magnetic resonance imaging (MRI) effect and improving drug delivery efficiency simultaneously. Our data suggests that the folate-targeting magnetic core-shell nanocarriers (FMNs) could provide effective cancer-targeting and MRI as well as drug delivery. The FMNs may become a useful nanomedical carrier system for cancer diagnosis and treatment. PMID:22525087

  15. Ab Initio No-Core Shell Model

    SciTech Connect

    Barrett, B R; Navratil, P; Vary, J P

    2011-04-11

    and NNN interactions, characterized by the order of the expansion retained (e.g. 'next-to-next-to leading order' is NNLO), provide a high-quality fit to the NN data and the A = 3 ground-state (g.s.) properties. The derivations of NN, NNN, etc. interactions within meson-exchange and {chi}EFT are well-established but are not subjects of this review. Our focus is solution of the non-relativistic quantum many-body Hamiltonian that includes these interactions using our no core shell model (NCSM) formalism. In the next section we will briefly outline the NCSM formalism and then present applications, results and extensions in later sections.

  16. Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration

    NASA Astrophysics Data System (ADS)

    Banerjee, Madhuchanda; Sharma, Shilpa; Chattopadhyay, Arun; Ghosh, Siddhartha Sankar

    2011-12-01

    Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against Gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was possibly due to the more active silver atoms in the shell surrounding gold core due to high surface free energy of the surface Ag atoms owing to shell thinness in the bimetallic NP structure.Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against Gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was

  17. Carboxymethyl chitosan-poly(amidoamine) dendrimer core-shell nanoparticles for intracellular lysozyme delivery.

    PubMed

    Zhang, Xiaoyang; Zhao, Jun; Wen, Yan; Zhu, Chuanshun; Yang, Jun; Yao, Fanglian

    2013-11-01

    Intracellular delivery of native, active proteins is challenging due to the fragility of most proteins. Herein, a novel polymer/protein polyion complex (PIC) nanoparticle with core-shell structure was prepared. Carboxymethyl chitosan-grafted-terminal carboxyl group-poly(amidoamine) (CM-chitosan-PAMAM) dendrimers were synthesized by amidation and saponification reactions. (1)H NMR was used to characterize CM-chitosan-PAMAM dendrimers. The TEM images and results of lysozyme loading efficiency indicated that CM-chitosan-PAMAM dendrimers could self-assemble into core-shell nanoparticles, and lysozyme was efficiently encapsulated inside the core of CM-chitosan-PAMAM dendrimer nanoparticles. Activity of lysozyme was completely inhibited by CM-chitosan-PAMAM Dendrimers at physiological pH, whereas it was released into the medium and exhibited a significant enzymatic activity in an acidic intracellular environment. Moreover, the CM-chitosan-PAMAM dendrimer nanoparticles did not exhibit significant cytotoxicity in the range of concentrations below 3.16 mg/ml. The results indicated that these CM-chitosan-PAMAM dendrimers have excellent properties as highly potent and non-toxic intracellular protein carriers, which would create opportunities for novel applications in protein delivery. PMID:24053810

  18. Supported Core@Shell Electrocatalysts for Fuel Cells: Close Encounter with Reality

    PubMed Central

    Hwang, Seung Jun; Yoo, Sung Jong; Shin, Jungho; Cho, Yong-Hun; Jang, Jong Hyun; Cho, Eunae; Sung, Yung-Eun; Nam, Suk Woo; Lim, Tae-Hoon; Lee, Seung-Cheol; Kim, Soo-Kil

    2013-01-01

    Core@shell electrocatalysts for fuel cells have the advantages of a high utilization of Pt and the modification of its electronic structures toward enhancement of the activities. In this study, we suggest both a theoretical background for the design of highly active and stable core@shell/C and a novel facile synthetic strategy for their preparation. Using density functional theory calculations guided by the oxygen adsorption energy and vacancy formation energy, Pd3Cu1@Pt/C was selected as the most suitable candidate for the oxygen reduction reaction in terms of its activity and stability. These predictions were experimentally verified by the surfactant-free synthesis of Pd3Cu1/C cores and the selective Pt shell formation using a Hantzsch ester as a reducing agent. In a similar fashion, Pd@Pd4Ir6/C catalyst was also designed and synthesized for the hydrogen oxidation reaction. The developed catalysts exhibited high activity, high selectivity, and 4,000 h of long-term durability at the single-cell level. PMID:23419683

  19. Formation mechanism of monodispersed spherical core-shell ceria/polymer hybrid nanoparticles

    SciTech Connect

    Izu, Noriya; Uchida, Toshio; Matsubara, Ichiro; Itoh, Toshio; Shin, Woosuck; Nishibori, Maiko

    2011-08-15

    Graphical abstract: The formation mechanism for core-shell nanoparticles is considered to be as follows: nucleation and particle growth occur simultaneously (left square); very slow particle growth occurs (middle square). Highlights: {yields} The size of the resultant nanoparticles was strongly and complicatedly dependent on the set temperature used during reflux heating and the PVP molecular weight. {yields} The size of the nanoparticles increased by a 2-step process as the reflux heating time increased. {yields} The IR spectral changes with increasing reflux time indicated the increase in the number of cross-linked polymers in the shell. -- Abstract: Very unique core-shell ceria (cerium oxide)/polymer hybrid nanoparticles that have monodispersed spherical structures and are easily dispersed in water or alcohol without the need for a dispersant were reported recently. The formation mechanism of the unique nanoparticles, however, was not clear. In order to clarify the formation mechanism, these nanoparticles were prepared using a polyol method (reflux heating) under varied conditions of temperature, time, and concentration and molecular weight of added polymer (poly(vinylpyrrolidone)). The size of the resultant nanoparticles was strongly and complicatedly dependent on the set temperature used during reflux heating and the poly(vinylpyrrolidone) molecular weight. Furthermore, the size of the nanoparticles increased by a 2-step process as the reflux heating time increased. The IR spectral changes with increasing reflux time indicated the increase in the number of cross-linked polymers in the shell. From these results, the formation mechanism was discussed and proposed.

  20. Atrazine adsorption removal with nylon6/polypyrrole core-shell nanofibers mat: possible mechanism and characteristics

    NASA Astrophysics Data System (ADS)

    Yang, Bi-Yi; Cao, Yang; Qi, Fei-Fei; Li, Xiao-Qing; Xu, Qian

    2015-05-01

    A functionalized nylon6/polypyrrole core-shell nanofibers mat (PA6/PPy NFM) was prepared via situ polymerization on nylon6 electrospun nanofibers mat (PA6 NFM) template and used as an adsorbent to remove atrazine from aqueous solutions. The core-shell structure of PA6/PPy NFM can be clearly proved under scanning electron microscope (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The effects of initial solution pH and ionic strength, as well as the comparison of the adsorption capacity of functionalized (PA6/PPy NFM) and non-functionalized (PA6 NFM) adsorbent, were examined to reveal the possible adsorption mechanism. The results indicated that π-π interaction and electrostatic interaction should play a key role in the adsorption process. The kinetics and thermodynamics studies also further elucidated the detailed adsorption characteristics of atrazine removal by PA6/PPy NFM. The adsorption of atrazine could be well described by the pseudo-second-order equation. The adsorption equilibrium data was well fitted with the Freundlich isotherm model with a maximum adsorption capacity value of 14.8 mg/g. In addition, the increase of adsorption rate caused by a temperature increase could be felicitously explained by the endothermic reaction. The desorption results showed that the adsorption capacity remained almost unchanged after six adsorption/desorption cycles. These results suggest that PA6/PPy NFM could be employed as an efficient adsorbent for removing atrazine from contaminated water sources.

  1. Tegafur loading and release properties of magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles.

    PubMed

    Arias, José L; Ruiz, M Adolfina; Gallardo, Visitación; Delgado, Angel V

    2008-01-01

    In this work, we describe a reproducible method to prepare polymeric colloidal nanospheres of poly(ethyl-2-cyanoacrylate), poly(butylcyanoacrylate), poly(hexylcyanoacrylate) and poly(octylcyanoacrylate) with a magnetite core, and loaded with the anticancer drug Tegafur. The method is based on the emulsion polymerization procedure, often used in the synthesis of poly(alkylcyanoacrylate) nanospheres for drug delivery. The heterogeneous structure of the particles confer them both magnetic-field responsiveness and potential applicability as drug carriers. In order to investigate to what extent is this target achieved, we compare the surface electrical properties of the core/shell particles with those of both the nucleus and the coating material. The hysteresis cycles of both magnetite and composite particles demonstrate that the polymer shell reduces the magnetic responsiveness of the particles, but keeps their soft ferrimagnetic character unchanged. A detailed investigation of the capabilities of the core/shell particles to load this drug is shown. We found, by means of spectrophotometric and electrophoretic measurements, the existence of two drug loading mechanisms: absorption or entrapment in the polymeric network, and surface adsorption. The type of polymer, the pH and the drug concentration are the main factors determining the drug incorporation to the nanoparticles. The release studies showed a biphasic profile affected by the type of polymeric shell, the type of drug incorporation and the amount of drug loaded. PMID:17949844

  2. Biocompatible core-shell magnetic nanoparticles for cancer treatment

    SciTech Connect

    Sharma, Amit M.; Qiang, You; Meyer, Daniel R.; Souza, Ryan; Mcconnaughoy, Alan; Muldoon, Leslie; Baer, Donald R.

    2008-04-01

    Non-toxic magnetic nanoparticles (MNPs) have expanded the treatment delivery options in the medical world. With a size range from 2 to 200 nm MNPs can be compiled with most of the small cells and tissues in living body. Monodispersive iron-iron oxide core shell nanoparticles were prepared in our novel cluster deposition system. This unique method of preparing the core shell MNPs gives nanoparticles very high magnetic moment. We tested the nontoxicity and uptake of MNPs coated with/without dextrin by incubating them with rat LX-1 small cell lung cancer cells (SCLC). Since core iron enhances the heating effect [7] the rate of oxidation of iron nanoparticles was tested in deionized water at certain time interval. Both coated and noncoated MNPs were successfully uptaken by the cells, indicating that the nanoparticles were not toxic. The stability of MNPs was verified by X-ray diffraction (XRD) scan after 0, 24, 48, 96, 204 hours. Due to the high magnetic moment offered by MNPs produced in our lab, we predict that even in low applied external alternating field desired temperature can be reached in cancer cells in comparison to the commercially available nanoparticles. Moreover, our MNPs do not require additional anti-coagulating agents and provide a cost effective means of treatment with significantly lower dosage in the body in comparison to commercially available nanoparticles.

  3. Proteresis of Cu2O/CuO core-shell nanoparticles: Experimental observations and theoretical considerations

    NASA Astrophysics Data System (ADS)

    Wu, Sheng Yun; Ji, Jhong-Yi; Shih, Po-Hsun; Gandhi, Ashish Chhaganlal; Chan, Ting-Shan

    2014-11-01

    A study of "proteresis (inverted hysteresis)" in core-shell, Cu2O/CuO nanoparticles, is presented. Crystal and characteristic sizes are determined using the x-ray absorption near-edge structure method for the weak ferromagnetic core (Cu2O) and antiferromagnetic shell (CuO) nanoparticles. A core-shell anisotropic energy model is established to describe the observed proteretic behavior in Cu2O/CuO core-shell nanocrystals. The proteresis loop triggered by the applied magnetic field can be tentatively attributed to core-shell exchange coupling induced by the surface of the Cu2O core, hinting at a possible way to tune the strength of the exchange inter-coupling energy that can control the dynamic of proteresis and hysteresis in a core-shell system.

  4. Synthesis and properties of core-shell magnetic molecular imprinted polymers

    NASA Astrophysics Data System (ADS)

    Chang, Limin; Chen, Shaona; Li, Xin

    2012-06-01

    A general fabricating protocol for the preparation of core-shell magnetic molecularly imprinted polymers (MIPs) for chlorinated phenols recognition is described. In this protocol, Fe3O4 magnetic nanoparticles were first prepared using the chemical co-precipitation method. Then, the obtained magnetic nanoparticles were coated with a silica shell through modified Stöber method. Finally, MIP films were coated onto the surface of silica-modified magnetic nanoparticles by surface molecular imprinting technique. The resultant polymers showed a high saturation magnetization value (31.350 emu g-1), and short response time (30 s). Meanwhile, the as-synthesized magnetic MIPs showed an excellent recognition and selection properties toward imprinted molecule over structurally related compounds.

  5. Nickel- and platinum-containing core@shell catalysts for hydrogen generation of aqueous hydrazine borane

    NASA Astrophysics Data System (ADS)

    Clémençon, D.; Petit, J. F.; Demirci, U. B.; Xu, Q.; Miele, P.

    2014-08-01

    Nickel and platinum were used to prepare a series of core@shell structures to be studied as catalysts for the dehydrogenation of aqueous hydrazine borane N2H4BH3 at 50 °C. The challenge was especially to get a maximum of 3 mol of gas by decomposition of the N2H4 moiety. In our conditions, the most efficient Ni@Pt was found to be the structure constituted of 5 atoms of nickel for 1 atom of platinum. This catalyst permits to generate up to 4.5 mol H2 + N2. Surface characterizations showed that the efficiency of this catalyst is due to the presence of both metals on the surface, suggesting therefore that the structure would be rather Ni@NiPt. Our main results are reported herein.

  6. Core-shell morphology and characterization of carbon nanotube nanowires click coupled with polypyrrole

    NASA Astrophysics Data System (ADS)

    Rana, Sravendra; Cho, Jae Whan

    2011-07-01

    Core-shell nanowires having multiwalled carbon nanotubes (MWNT) as a core and polypyrrole (PPy) as a shell were synthesized using Cu(I)-catalyzed azide-alkyne cycloaddition click chemistry. According to transmission electron microscopy measurements, the uniform PPy layers of 10-20 nm in thickness were formed well on the MWNT's surface. In particular 'grafting from' click coupling was more effective in obtaining uniform and stable core-shell nanowires as well as in the reaction yield, compared to 'grafting to' click coupling. This is due to chemical bond formation between PPy and MWNT in equal intervals along the longitudinal direction of the MWNT, achieved by 'grafting from' click coupling. As a result, the core-shell nanowires were very stable even in the sonication of nanowires and showed an enhanced electrical conductivity of 80 S cm - 1, due to the synergetic interaction between MWNTs and PPy, which is higher than the conductivity of pure MWNTs and pure PPy. In addition, the core-shell nanowires could show better NO2 gas sensing properties compared to pure MWNTs and pure PPy as well as MWNT/PPy composites prepared by in situ polymerization. The synthesized core-shell nanowires would play an important role in preparing electrical and sensing devices.

  7. Cadmium Telluride, Cadmium Telluride/Cadmium Sulfide Core/Shell, and Cadmium Telluride/Cadmium Sulfide/Zinc Sulfide Core/Shell/Shell Quantum Dots Study

    NASA Astrophysics Data System (ADS)

    Yan, Yueran

    CdTe, CdTe/CdS core/shell, and CdTe/CdS/ZnS core/shell/shell quantum dots (QDs) are potential candidates for bio-imaging and solar cell applications because of some special physical properties in these nano materials. For example, the band gap energy of the bulk CdTe is about 1.5 eV, so that principally they can emit 790 nm light, which is in the near-infrared range (also called biological window). Moreover, theoretically hot exciton generated by QDs is possible to be caught since the exciton relaxation process in QDs is slower than in bulk materials due to the large intraband energy gap in QDs. In this dissertation, we have synthesized the CdTe and CdTe/CdS core/shell QDs, characterized their structure, and analyzed their photophysical properties. We used organometallic methods to synthesize the CdTe QDs in a noncoordinating solvent. To avoid being quenched by air, ligands, solvent, or other compounds, CdS shell was successfully deposited on the CdTe QDs by different methods, including the slow injection method, the successive ion layer adsorption and reaction (SILAR) method, and thermal-cycling coupled single precursor method (TC-SP). Our final product, quasi-type- II CdTe/CdS core/shell QDs were able to emit at 770 nm with a fluorescence quantum yield as high as 70%. We also tried to deposit a second shell ZnS on CdTe/CdS core/shell QDs since some compounds can quench CdTe/CdS core/shell QDs. Even though different methods were used to deposit ZnS shell on the CdTe/CdS core/shell QDs, CdTe/CdS/ZnS core/shell/shell QDs still can be quenched. Furthermore, the CdTe/CdS core/shell and CdTe/CdS/ZnS core/shell/shell QDs were transferred into aqueous phase, phosphate buffered saline or deionized water, by switching the hydrophilic ligands (thiol or PEG ligands). The thioglycolic acid (TGA)-capped CdTe/CdS core/shell QDs can be kept in aqueous phase with high fluorescence quantum yield (60%--70%) for more than two months. However, some other compounds in organic or

  8. Polyethylenimine-immobilized core-shell nanoparticles: synthesis, characterization, and biocompatibility test.

    PubMed

    Ratanajanchai, Montri; Soodvilai, Sunhapas; Pimpha, Nuttaporn; Sunintaboon, Panya

    2014-01-01

    Herein, we prepared PEI-immobilized core-shell particles possessing various types of polymer cores via a visible light-induced surfactant-free emulsion polymerization (SFEP) of three vinyl monomers: styrene (St), methyl methacrylate (MMA), and 2-hydroxyethyl methacrylate (HEMA). An effect of monomers on the polymerization and characteristics of resulting products was investigated. Monomers with high polarity can provide high monomer conversion, high percentage of grafted PEI, stable particles with uniform size distribution but less amino groups per particles. All prepared nanoparticles exhibited a core-shell nanostructure, containing PEI on the shell with hydrodynamic size around 140-230nm. For in-vitro study in Caco-2 cells, we found that the incorporation of PEI into these core-shell nanoparticles can significantly reduce its cytotoxic effect and also be able to internalized within the cells. Accordingly, these biocompatible particles would be useful for various biomedical applications, including gene transfection and intracellular drug delivery. PMID:24268272

  9. Magnetic-Plasmonic Core-Shell Nanoparticles

    PubMed Central

    Levin, Carly S.; Hofmann, Cristina; Ali, Tamer A.; Kelly, Anna T.; Morosan, Emilia; Nordlander, Peter; Whitmire, Kenton H.; Halas, Naomi J.

    2013-01-01

    Nanoparticles composed of magnetic cores with continuous Au shell layers simultaneously possess both magnetic and plasmonic properties. Faceted and tetracubic nanocrystals consisting of wüstite with magnetite-rich corners and edges retain magnetic properties when coated with an Au shell layer, with the composite nanostructures showing ferrimagnetic behavior. The plasmonic properties are profoundly influenced by the high dielectric constant of the mixed-iron-oxide nanocrystalline core. A comprehensive theoretical analysis that examines the geometric plasmon tunability over a range of core permittivities enables us to identify the dielectric properties of the mixed-oxide magnetic core directly from the plasmonic behavior of the core-shell nanoparticle. PMID:19441794

  10. Hydrogel Nanofilaments via Core-Shell Electrospinning.

    PubMed

    Nakielski, Paweł; Pawłowska, Sylwia; Pierini, Filippo; Liwińska, Wioletta; Hejduk, Patryk; Zembrzycki, Krzysztof; Zabost, Ewelina; Kowalewski, Tomasz A

    2015-01-01

    Recent biomedical hydrogels applications require the development of nanostructures with controlled diameter and adjustable mechanical properties. Here we present a technique for the production of flexible nanofilaments to be used as drug carriers or in microfluidics, with deformability and elasticity resembling those of long DNA chains. The fabrication method is based on the core-shell electrospinning technique with core solution polymerisation post electrospinning. Produced from the nanofibers highly deformable hydrogel nanofilaments are characterised by their Brownian motion and bending dynamics. The evaluated mechanical properties are compared with AFM nanoindentation tests. PMID:26091487

  11. Core-shell structured carbonyl iron microspheres prepared via dual-step functionality coatings and their magnetorheological response.

    PubMed

    Fang, Fei Fei; Liu, Ying Dan; Choi, Hyoung Jin; Seo, Yongsok

    2011-09-01

    The dispersion stability of soft magnetic carbonyl iron (CI)-based magnetorheological (MR) fluids was improved by applying a unique functional coating composed of a conducting polyaniline layer and a multiwalled carbon nanotube nest to the surfaces of the CI particles via conventional dispersion polymerization, followed by facile solvent casting. The coating morphology and thickness were analyzed by SEM and TEM imaging. Chemical composition of the polyaniline layer was detected by Raman spectroscope, which also confirmed the coating performance successfully. The influence of the functional coating on the magnetic properties was investigated by measuring the MR performance and sedimentation properties using a vibrating sample magnetometer, rotational rheometer, and Turbiscan apparatus. Improved dispersion characteristics of the MR fluid were observed. PMID:21815626

  12. A luminescent and mesoporous core-shell structured Gd2O3 : Eu(3+)@nSiO2@mSiO2 nanocomposite as a drug carrier.

    PubMed

    Xu, Zhenhe; Gao, Yu; Huang, Shanshan; Ma, Ping' an; Lin, Jun; Fang, Jiye

    2011-05-14

    In this paper, Gd(2)O(3) : Eu(3+) nanospheres have been encapsulated with nonporous silica and further layer of ordered mesoporous silica through a simple sol-gel process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N(2) adsorption/desorption, photoluminescence (PL) spectra, and kinetic decay were used to characterize the sample. The results indicate that the nanocomposite with general 50 nm shell thickness and 270 nm core size shows typical ordered mesoporous characteristics (2.4 nm) and has spherical morphology with a smooth surface and narrow size distribution. Additionally, the obtained inorganic nanocomposite shows the characteristic emission of Eu(3+) ((5)D(0)→(7)F(1-4)) even after the loading of drug molecules. The biocompatibility test on L929 fibroblast cells using MTT assay reveals low cytotoxicity of the system. Most importantly, the nanocomposite can be used as an effective drug delivery carrier. A typical anticancer drug, doxorubicin hydrochloride (DOX), was used for drug loading, and the DOX release, cytotoxicity, uptake behavior and therapeutic effects were examined. It was found that DOX is shuttled into the cell by the nanocomposite and released inside cells after endocytosis and that the DOX-loaded nanocomposite exhibited greater cytotoxicity than free DOX. These results indicate that core-shell structured Gd(2)O(3) : Eu(3+)@nSiO(2)@mSiO(2) nanocomposite has potential for drug loading and delivery into cancer cells to induce cell death. PMID:21431226

  13. Core-shell Cd0.2Zn0.8S@BiOX (X = Cl, Br and I) microspheres: a family of hetero-structured catalysts with adjustable bandgaps, enhanced stability and photocatalytic performance under visible light irradiation.

    PubMed

    Zhou, Yannan; Wen, Ting; Chang, Binbin; Yang, Baocheng; Wang, Yonggang

    2016-09-21

    Heterostructures consisting of two semiconductors have merited considerable attention in photocatalytic applications due to synergistic effects in complex redox processes. The incorporation of solid solutions into such architectures can further offer extra variability to control the bandgap. In this study, we report the fabrication of a series of core-shell Cd0.2Zn0.8S@BiOX (X = Cl, Br and I) microspheres via a solvothermal route that lead to enhanced photocatalytic performance under visible light irradiation. By optimizing the synthesis conditions, uniform and porous Cd0.2Zn0.8S@BiOX microspheres were achieved. The products were thoroughly characterized by X-ray diffraction studies, scanning electron microscopy, transmission electron microscopy, photoluminescence studies, absorption measurements and the photodegradation of RhB. Remarkably, the electronic structures of Cd0.2Zn0.8S@BiOX composites can be continuously tuned by varying the composition of BiOX to achieve the best catalytic performance under visible light irradiation. Finally, this greatly enhanced visible-light-driven photocatalytic efficiency was observed in the optimized Cd0.2Zn0.8S@BiOI composites when compared to their single-component counterparts, which may be attributed to increased light absorption and improved electron-hole separation. The photocatalytic mechanism has also been proposed based on the experimental evidences and the theoretical band positions of Cd0.2Zn0.8S@BiOI. PMID:27510184

  14. Efficiently Enhancing Visible Light Photocatalytic Activity of Faceted TiO2 Nanocrystals by Synergistic Effects of Core-Shell Structured Au@CdS Nanoparticles and Their Selective Deposition.

    PubMed

    Tong, Ruifeng; Liu, Chang; Xu, Zhenkai; Kuang, Qin; Xie, Zhaoxiong; Zheng, Lansun

    2016-08-24

    Integrating wide bandgap semiconductor photocatalysts with visible-light-active inorganic nanoparticles (such as Au and CdS) as sensitizers is one of the most efficient methods to improve their photocatalytic activity in the visible light region. However, as for all such composite photocatalysts, a rational design and precise control over their architecture is often required to achieve optimal performance. Herein, a new TiO2-based ternary composite photocatalyst with superior visible light activity was designed and synthesized. In this composite photocatalyst, the location of the visible light sensitizers was engineered according to the intrinsic facet-induced effect of well-faceted TiO2 nanocrystals on the spatial separation of photogenerated carriers. Experimentally, core-shell structured Au@CdS nanoparticles acting as visible light sensitizers were selectively deposited onto photoreductive {101} facets of well-faceted anatase TiO2 nanocrystals through a two-step in situ photodeposition route. Because the combination of Au@CdS and specific {101} facets of TiO2 nanocrystals facilitates the transport of charges photogenerated under visible light irradiation, this well-designed ternary composite photocatalyst exhibited superior activity in visible-light-driven photocatalytic H2 evolution, as expected. PMID:27479634

  15. Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties.

    PubMed

    Balasubramanian, Balamurugan; Kraemer, Kristin L; Reding, Nicholas A; Skomski, Ralph; Ducharme, Stephen; Sellmyer, David J

    2010-04-27

    Core-shell structures of oxide nanoparticles having a high dielectric constant, and organic shells with large breakdown field are attractive candidates for large electrical energy storage applications. A high growth temperature, however, is required to obtain the dielectric oxide nanoparticles, which affects the process of core-shell formation and also leads to poor control of size, shape, and size-distribution. In this communication, we report a new synthetic process to grow core-shell nanoparticles by means of an experimental method that can be easily adapted to synthesize core-shell structures from a variety of inorganic-organic or inorganic-inorganic materials. Monodisperse and spherical TiO2 nanoparticles were produced at room temperature as a collimated cluster beam in the gas phase using a cluster-deposition source and subsequently coated with uniform paraffin nanoshells using in situ thermal evaporation, prior to deposition on substrates for further characterization and device processing. The paraffin nanoshells prevent the TiO2 nanoparticles from contacting each other and also act as a matrix in which the volume fraction of TiO2 nanoparticles was varied by controlling the thickness of the nanoshells. Parallel-plate capacitors were fabricated using dielectric core-shell nanoparticles having different shell thicknesses. With respect to the bulk paraffin, the effective dielectric constant of TiO2-paraffin core-shell nanoparticles is greatly enhanced with a decrease in the shell thickness. The capacitors show a minimum dielectric dispersion and low dielectric losses in the frequency range of 100 Hz-1 MHz, which are highly desirable for exploiting these core-shell nanoparticles for potential applications. PMID:20359188

  16. Controllable-permittivity and low-loss of Ba0.5Sr0.5TiO3/MgO composites prepared by citrate gel derived core-shell powders

    NASA Astrophysics Data System (ADS)

    Zhang, Jingji; Ji, Ludong; Xu, Yu; Gao, Yafeng; Bai, Wangfeng; Chen, Zhi; Wang, Jiangying

    2015-11-01

    Core-shell Ba0.5Sr0.5TiO3(BST)/MgO nano-composites have been synthesized by using an oleic acid modified citrate gel in situ process. The nano-composites exhibit a spherical microstructure consisting of large amounts of small particles with average sizes of 50-100 nm, which results in high F center levels in the composite ceramics. Interestingly, microwave permittivity of the composite can be reduced significantly with increasing volume fraction of MgO, while microwave loss and tunability remain almost unchanged, which is in good agreement with the results of the columnar model.

  17. Enhanced spin-orbit coupling in core/shell nanowires

    NASA Astrophysics Data System (ADS)

    Furthmeier, Stephan; Dirnberger, Florian; Gmitra, Martin; Bayer, Andreas; Forsch, Moritz; Hubmann, Joachim; Schüller, Christian; Reiger, Elisabeth; Fabian, Jaroslav; Korn, Tobias; Bougeard, Dominique

    2016-08-01

    The spin-orbit coupling (SOC) in semiconductors is strongly influenced by structural asymmetries, as prominently observed in bulk crystal structures that lack inversion symmetry. Here we study an additional effect on the SOC: the asymmetry induced by the large interface area between a nanowire core and its surrounding shell. Our experiments on purely wurtzite GaAs/AlGaAs core/shell nanowires demonstrate optical spin injection into a single free-standing nanowire and determine the effective electron g-factor of the hexagonal GaAs wurtzite phase. The spin relaxation is highly anisotropic in time-resolved micro-photoluminescence measurements on single nanowires, showing a significant increase of spin relaxation in external magnetic fields. This behaviour is counterintuitive compared with bulk wurtzite crystals. We present a model for the observed electron spin dynamics highlighting the dominant role of the interface-induced SOC in these core/shell nanowires. This enhanced SOC may represent an interesting tuning parameter for the implementation of spin-orbitronic concepts in semiconductor-based structures.

  18. Enhanced spin–orbit coupling in core/shell nanowires

    PubMed Central

    Furthmeier, Stephan; Dirnberger, Florian; Gmitra, Martin; Bayer, Andreas; Forsch, Moritz; Hubmann, Joachim; Schüller, Christian; Reiger, Elisabeth; Fabian, Jaroslav; Korn, Tobias; Bougeard, Dominique

    2016-01-01

    The spin–orbit coupling (SOC) in semiconductors is strongly influenced by structural asymmetries, as prominently observed in bulk crystal structures that lack inversion symmetry. Here we study an additional effect on the SOC: the asymmetry induced by the large interface area between a nanowire core and its surrounding shell. Our experiments on purely wurtzite GaAs/AlGaAs core/shell nanowires demonstrate optical spin injection into a single free-standing nanowire and determine the effective electron g-factor of the hexagonal GaAs wurtzite phase. The spin relaxation is highly anisotropic in time-resolved micro-photoluminescence measurements on single nanowires, showing a significant increase of spin relaxation in external magnetic fields. This behaviour is counterintuitive compared with bulk wurtzite crystals. We present a model for the observed electron spin dynamics highlighting the dominant role of the interface-induced SOC in these core/shell nanowires. This enhanced SOC may represent an interesting tuning parameter for the implementation of spin–orbitronic concepts in semiconductor-based structures. PMID:27491871

  19. Enhanced spin-orbit coupling in core/shell nanowires.

    PubMed

    Furthmeier, Stephan; Dirnberger, Florian; Gmitra, Martin; Bayer, Andreas; Forsch, Moritz; Hubmann, Joachim; Schüller, Christian; Reiger, Elisabeth; Fabian, Jaroslav; Korn, Tobias; Bougeard, Dominique

    2016-01-01

    The spin-orbit coupling (SOC) in semiconductors is strongly influenced by structural asymmetries, as prominently observed in bulk crystal structures that lack inversion symmetry. Here we study an additional effect on the SOC: the asymmetry induced by the large interface area between a nanowire core and its surrounding shell. Our experiments on purely wurtzite GaAs/AlGaAs core/shell nanowires demonstrate optical spin injection into a single free-standing nanowire and determine the effective electron g-factor of the hexagonal GaAs wurtzite phase. The spin relaxation is highly anisotropic in time-resolved micro-photoluminescence measurements on single nanowires, showing a significant increase of spin relaxation in external magnetic fields. This behaviour is counterintuitive compared with bulk wurtzite crystals. We present a model for the observed electron spin dynamics highlighting the dominant role of the interface-induced SOC in these core/shell nanowires. This enhanced SOC may represent an interesting tuning parameter for the implementation of spin-orbitronic concepts in semiconductor-based structures. PMID:27491871

  20. Hydrogel Encapsulation of Cells in Core-Shell Microcapsules for Cell Delivery.

    PubMed

    Nguyen, Duy Khiem; Son, Young Min; Lee, Nae-Eung

    2015-07-15

    A newly designed 3D core-shell microcapsule structure composed of a cell-containing liquid core and an alginate hydrogel shell is fabricated using a coaxial dual-nozzle electrospinning system. Spherical alginate microcapsules are successfully generated with a core-shell structure and less than 300 μm in average diameter using this system. The thickness of the core and shell can be easily controlled by manipulating the core and shell flow rates. Cells encapsulated in core-shell microcapsules demonstrate better cell encapsulation and immune protection than those encapsulated in microbeads. The observation of a high percentage of live cells (≈80%) after encapsulation demonstrates that the voltage applied for generation of microcapsules does not significantly affect the viability of encapsulated cells. The viability of encapsulated cells does not change even after 3 d in culture, which suggests that the core-shell structure with culture medium in the core can maintain high cell survival by providing nutrients and oxygen to all cells. This newly designed core-shell structure can be extended to use in multifunctional platforms not only for delivery of cells but also for factor delivery, imaging, or diagnosis by loading other components in the core or shell. PMID:25963828

  1. Synthesis of Au/TiO2 Core-Shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2 Shell

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Woo; Lim, Young-Min; Tripathy, Suraj Kumar; Kim, Byoung-Gyu; Lee, Min-Sang; Yu, Yeon-Tae

    2007-04-01

    On the synthesis of Au/TiO2 core-shell structure nanoparticles, the effect of the concentration of Ti4+ on the morphology and optical property of Au/TiO2 core-shell nanoparticles was examined. A gold colloid was prepared by mixing HAuCl4\\cdot4H2O and C6H5Na3\\cdot2H2O. Titanium stock solution was prepared by mixing solutions of titanium(IV) isopropoxide (TTIP) and triethanolamine (TEOA). The concentration of the Ti4+ stock solution was adjusted to 0.01-0.3 mM, and then the gold colloid was added to the Ti4+ stock solution. Au/TiO2 core-shell structure nanoparticles could be prepared by the hydrolysis of the Ti4+ stock solution at 80 °C. The size of the as-prepared Au nanoparticles was 15 nm. The thickness of the TiO2 shell on the surface of gold particles was about 10 nm. The absorption peak of the Au/TiO2 core-shell nanoparticles shifted towards the red end of the spectrum by about 3 nm because of the formation of the TiO2 shell on the surface of the gold particles. The crystal structure of the TiO2 shell showed an anatase phase. The increase in the Au crystallite size of the Au/TiO2 nanoparticles with increasing heat treatment temperature is smaller than that in the pure Au nanoparticles. This may be due to the encapsulation of Au particles with the TiO2 shell that prevents the growth of the nanoparticle nucleation.

  2. Core/shell structured NaYF4:Yb3+/Er3+/Gd+3 nanorods with Au nanoparticles or shells for flexible amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Li, Z. Q.; Li, X. D.; Liu, Q. Q.; Chen, X. H.; Sun, Z.; Liu, C.; Ye, X. J.; Huang, S. M.

    2012-01-01

    A simple approach for preparing near-infrared (NIR) to visible upconversion (UC) NaYF4:Yb/Er/Gd nanorods in combination with gold nanostructures has been reported. The grown UC nanomaterials with Au nanostructures have been applied to flexible amorphous silicon solar cells on the steel substrates to investigate their responses to sub-bandgap infrared irradiation. Photocurrent-voltage measurements were performed on the solar cells. It was demonstrated that UC of NIR light led to a 16-fold to 72-fold improvement of the short-circuit current under 980 nm illumination compared to a cell without upconverters. A maximum current of 1.16 mA was obtained for the cell using UC nanorods coated with Au nanoparticles under 980 nm laser illumination. This result corresponds to an external quantum efficiency of 0.14% of the solar cell. Mechanisms of erbium luminescence in the grown UC nanorods were analyzed and discussed.

  3. Anisotropic In distribution in InGaN core-shell nanowires

    SciTech Connect

    Leclere, C.; Renevier, H.; Katcho, N. A.; Tourbot, G.; Daudin, B.; Proietti, M. G.

    2014-07-07

    In this work, we investigate the local atomic structure of defect-free homogeneous and self-organized core-shell structure nanowires by means of X-ray Absorption Fine Structure (XAFS) Spectroscopy at the In L{sub III} and K edges and Multiwavelength Anomalous Diffraction. The results are interpreted by comparison of the experimental data with X-ray absorption calculations carried out with ab initio structural models. Extended-XAFS data analysis at In K-edge shows an anisotropic In distribution in the second nearest neighbors pointing out to a deviation from randomness in In distribution for the core-shell sample.

  4. Organized thiol functional groups in mesoporous core shell colloids

    SciTech Connect

    Marchena, Martin H.; Granada, Mara; Bordoni, Andrea V.; Joselevich, Maria; Troiani, Horacio; Williams, Federico J.; Wolosiuk, Alejandro

    2012-03-15

    The co-condensation in situ of tetraethoxysilane (TEOS) and mercaptopropyltrimethoxysilane (MPTMS) using cetyltrimethylammonium bromide (CTAB) as a template results in the synthesis of multilayered mesoporous structured SiO{sub 2} colloids with 'onion-like' chemical environments. Thiol groups were anchored to an inner selected SiO{sub 2} porous layer in a bilayered core shell particle producing different chemical regions inside the colloidal layered structure. X-Ray Photoelectron Spectroscopy (XPS) shows a preferential anchoring of the -SH groups in the double layer shell system, while porosimetry and simple chemical modifications confirm that pores are accessible. We can envision the synthesis of interesting colloidal objects with defined chemical environments with highly controlled properties. - Graphical abstract: Mesoporous core shell SiO{sub 2} colloids with organized thiol groups. Highlights: Black-Right-Pointing-Pointer Double shell mesoporous silica colloids templated with CTAB. Black-Right-Pointing-Pointer Sequential deposition of mesoporous SiO{sub 2} layers with different chemistries. Black-Right-Pointing-Pointer XPS shows the selective functionalization of mesoporous layers with thiol groups.

  5. Hybrid nanocarbon as a catalyst for direct dehydrogenation of propane: formation of an active and selective core-shell sp2/sp3 nanocomposite structure.

    PubMed

    Wang, Rui; Sun, Xiaoyan; Zhang, Bingsen; Sun, Xiaoying; Su, Dangsheng

    2014-05-19

    Hybrid nanocarbon, comprised of a diamond core and a graphitic shell with a variable sp(2)-/sp(3)-carbon ratio, is controllably obtained through sequential annealing treatment (550-1300 °C) of nanodiamond. The formation of sp(2) carbon increases with annealing temperature and the nanodiamond surface is reconstructed from amorphous into a well-ordered, onion-like carbon structure via an intermediate composite structure--a diamond core covered by a defective, curved graphene outer shell. Direct dehydrogenation of propane shows that the sp(2)-/sp(3)-nanocomposite exhibits superior catalytic performance to that of individual nanodiamond and graphitic nanocarbon. The optimum catalytic activity of the diamond/graphene composite depends on the maximum structural defectiveness and high chemical reactivity of the ketone groups. Ketone-type functional groups anchored on the defects/vacancies are active for propene formation; nevertheless, once the oxygen functional groups are desorbed, the defects/vacancies alone might be active sites responsible for the C-H bond activation of propane. PMID:24740731

  6. Probing the core-shell-shell structure of CdSe/CdTe/CdS type II quantum dots for solar cell applications

    NASA Astrophysics Data System (ADS)

    Lewis, E. A.; Page, R. C.; Binks, D. J.; Pennycook, T. J.; O'Brien, P.; Haigh, S. J.

    2014-06-01

    A greater understanding of multiple exciton generation in heterostructured colloidal quantum dots can be achieved through detailed modelling, and used to optimise their design for solar cell applications. However, such modelling requires an accurate knowledge of the physical structure of the quantum dots. Here we report the use of high angle annular dark field (HAADF) scanning transmission electron microscope (STEM) imaging to study the size and shape of CdSe/CdTe/CdS type II quantum dots at each of the three stages of their synthesis.

  7. Direct correlations of structural and optical properties of three-dimensional GaN/InGaN core/shell micro-light emitting diodes

    NASA Astrophysics Data System (ADS)

    Sadat Mohajerani, Matin; Müller, Marcus; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-H.; Veit, Peter; Bertram, Frank; Christen, Jürgen; Waag, Andreas

    2016-05-01

    Three-dimensional (3D) InGaN/GaN quantum-well (QW) core–shell light emitting diodes (LEDs) are a promising candidate for the future solid state lighting. In this contribution, we study direct correlations of structural and optical properties of the core–shell LEDs using highly spatially-resolved cathodoluminescence spectroscopy (CL) in combination with scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). Temperature-dependent resonant photoluminescence (PL) spectroscopy has been performed to understand recombination mechanisms and to estimate the internal quantum efficiency (IQE).

  8. Core-Shell Structured o-LiMnO2@Li2CO3 Nanosheet Array Cathode for High-Performance, Wide-Temperature-Tolerance Lithium-Ion Batteries.

    PubMed

    Guo, Junling; Cai, Yingjun; Zhang, Suojiang; Chen, Shimou; Zhang, Fengxiang

    2016-06-29

    To develop a high-capacity, high-rate, cycle-stable cathode material has long been the focus for lithium-ion battery (LIB) research. Recently, layer-structured orthorhombic-LiMnO2 (o-LMO) has attracted extensive interest owing to its large discharge capacities. However, poor cycle performance greatly hinders its practical application, especially at high temperatures. Conventional strategies to address this issue often lead to sacrificed rate performance and mostly work at low temperatures. Herein, we report a novel core-shell structured, o-LiMnO2@Li2CO3 (o-LMO@Li2CO3) nanosheet array cathode, where the Li2CO3 shell improves cycle performance by preventing o-LMO dissolution in the electrolyte (even at an elevated temperature), the o-LMO core provides high capacities and the nanosheet array architecture ensures rate performance (to the best of our knowledge, this o-LMO nanosheet array architecture is reported for the first time). The above features work synergistically to give well-balanced cycle performance (79% capacity retention at 60 °C, 400 cycles), capacity (207 mAh g(-1) at 0.5C) and rate performance (128 mAh g(-1) at 5C) of the o-LMO@ Li2CO3 cathode as well as remarkable full-cell performance (∼67% capacity retention for 400 cycles at ∼2C, 60 °C). Our work demonstrates that the synergistic effect between the o-LMO core, Li2CO3 coating and the nanoarray structure is an effective strategy for developing high-energy/power density, high-stability LIB cathodes. PMID:27270124

  9. Core-Shell Chitosan Microcapsules for Programmed Sequential Drug Release.

    PubMed

    Yang, Xiu-Lan; Ju, Xiao-Jie; Mu, Xiao-Ting; Wang, Wei; Xie, Rui; Liu, Zhuang; Chu, Liang-Yin

    2016-04-27

    A novel type of core-shell chitosan microcapsule with programmed sequential drug release is developed by the microfluidic technique for acute gastrosis therapy. The microcapsule is composed of a cross-linked chitosan hydrogel shell and an oily core containing both free drug molecules and drug-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles. Before exposure to acid stimulus, the resultant microcapsules can keep their structural integrity without leakage of the encapsulated substances. Upon acid-triggering, the microcapsules first achieve burst release due to the acid-induced decomposition of the chitosan shell. The encapsulated free drug molecules and drug-loaded PLGA nanoparticles are rapidly released within 60 s. Next, the drugs loaded in the PLGA nanoparticles are slowly released for several days to achieve sustained release based on the synergistic effect of drug diffusion and PLGA degradation. Such core-shell chitosan microcapsules with programmed sequential drug release are promising for rational drug delivery and controlled-release for the treatment of acute gastritis. In addition, the microcapsule systems with programmed sequential release provide more versatility for controlled release in biomedical applications. PMID:27052812

  10. CuGaS2 hollow spheres from Ga-CuS core-shell nanoparticles.

    PubMed

    Cha, Ji-Hyun; Jung, Duk-Young

    2014-05-01

    A liquid gallium emulsion was prepared as a starting material using ultrasound treatment in ethylene glycol. Core-shell particles of Ga@CuS were successfully synthesized by deposition of a CuS layer on gallium droplets through sonochemical deposition of copper ions and thiourea in an alcohol media. The core and shell of Ga@CuS products were composed of amorphous gallium metal and covellite phase CuS, which transformed into chalcopyrite CuGaS2 hollow spheres after sulfurization at 450°C, which was the lowest crystallization temperature. The formation of hollow nanostructures was ascribed to the Kirkendall mechanism, in which liquid gallium particles play an important role as reactive templates. In conclusion, we obtained CuGaS2 hollow spheres with a 430 nm outer diameter and 120 nm shell thickness that had the same crystal structure and electrical properties as bulk CuGaS2. PMID:24365224

  11. The synthesis and modification of CdTe/CdS core shell quantum dots.

    PubMed

    Chen, Jianqiu; Xiao, An; Zhang, Zhengwei; Yu, Yan; Yan, Zhengyu

    2015-12-01

    A simple and economical synthesis method of CdTe quantum dots (QDs) has been developed using glutathione as a modifier in an aqueous system. The fluorescent properties of as-prepared CdTe QDs at different reaction times were studied to optimize the synthesis conditions. CdTe/CdS QDs with core-shell structure was obtained by modifying as-synthesized CdTe QDs with refluxing and microwave method, respectively. The properties of the CdTe/CdS QDs were thoroughly investigated by photoluminescence (PL) and inverted fluorescence microscope, and exhibited high fluorescence intensity and good optical property. The study also shows that the microwave synthesis of CdTe/CdS QDs had more dispersed particle size and higher fluorescence intensity. PMID:26162337

  12. Spectroscopy of colloidal semiconductor core/shell nanoplatelets with high quantum yield.

    PubMed

    Tessier, M D; Mahler, B; Nadal, B; Heuclin, H; Pedetti, S; Dubertret, B

    2013-07-10

    Free standing two-dimensional materials appear as a novel class of structures. Recently, the first colloidal two-dimensional heterostructures have been synthesized. These core/shell nanoplatelets are the first step toward colloidal quantum wells. Here, we study in detail the spectroscopic properties of this novel generation of colloidal nanoparticles. We show that core/shell CdSe/CdZnS nanoplatelets with 80% quantum yield can be obtained. The emission time trace of single core/shell nanoplatelets exhibits reduced blinking compared to core nanoplatelets with a two level emission time trace. At cryogenic temperatures, these nanoplatelets have a quantum yield close to 100% and a stable emission time trace. A solution of core/shell nanoplatelets has emission spectra with a full width half-maximum close to 20 nm, a value much lower than corresponding spherical or rod-shaped heterostructures. Using single particle spectroscopy, we show that the broadening of the emission spectra upon the shell deposition is not due to dispersity between particles but is related to an intrinsic increased exciton-phonon coupling in the shell. We also demonstrate that optical spectroscopy is a relevant tool to investigate the presence of traps induced by shell deposition. The spectroscopic properties of the core/shell nanoplatelets presented here strongly suggest that this new generation of objects will be an interesting alternative to spherical or rod-shaped nanocrystals. PMID:23731211

  13. Platinum Monolayer on IrFe Core-Shell Nanoparticle Electrocatalysts for the Oxygen Reduction Reaction

    SciTech Connect

    K Sasaki; K Kuttiyiel; D Su; R Adzic

    2011-12-31

    We synthesized high activity and stability platinum monolayer on IrFe core-shell nanoparticle electrocatalysts. Carbon-supported IrFe core-shell nanoparticles were synthesized by chemical reduction and subsequent thermal annealing. The formation of Ir shells on IrFe solid-solution alloy cores has been verified by scanning transmission electron microscopy coupled with energy-loss spectroscopy (EELS) and in situ X-ray absorption spectroscopy. The Pt monolayers were deposited on IrFe core-shell nanoparticles by galvanic replacement of underpotentially deposited Cu adatoms on the Ir shell surfaces. The specific and Pt mass activities for the ORR on the Pt monolayer on IrFe core-shell nanoparticle electrocatalyst are 0.46 mA/cm{sup 2} and 1.1 A/mg{sub Pt}, which are much higher than those on a commercial Pt/C electrocatalyst. High durability of Pt{sub ML}/IrFe/C has also been demonstrated by potential cycling tests. These high activity and durability observed can be ascribed to the structural and electronic interaction between the Pt monolayer and the IrFe core-shell nanoparticles.

  14. Production of Polymer Core-Shell Colloids with High Uniformity via Coaxial Electrospray

    NASA Astrophysics Data System (ADS)

    Hwang, Yoon Kyun; Jeong, Unyong

    2008-03-01

    Although nanofibers fabricated by electrospinning have been attracting wide interest, the production of colloids by electrospraying has not much studied so far. We have developed a simple method for the production of core-shell colloids with high uniformity by means of the coaxial electrospray. Contrary to usual coaxial setup, the inner nozzle was set to touch the inside wall of the outer nozzle for reproducible production. A polymer solution for the core was introduced through the outer nozzle and another solution for the shell was provided through the inner nozzle. The structure of the colloids was dependent on the polymer concentration, relative feed ratio between the polymer solutions. Especially, core-shell structured colloids are our primary interest due to their promising uses in drug-delivery systems, cosmetics, and food industries. This talk will present the production of core-shell colloids consisting of two polymer components.

  15. Highly responsive core-shell microactuator arrays for use in viscous and viscoelastic fluids

    PubMed Central

    Fiser, Briana L.; Shields, Adam R.; Falvo, M. R.; Superfine, R.

    2015-01-01

    We present a new fabrication method to produce arrays of highly responsive polymer-metal core-shell magnetic microactuators. The core-shell fabrication method decouples the elastic and magnetic structural components such that the actuator response can be optimized by adjusting the core-shell geometry. Our microstructures are 10 μm long, 550 nm in diameter, and electrochemically fabricated in particle track-etched membranes, comprising a poly(dimethylsiloxane) core with a 100 nm Ni shell surrounding the upper 3–8 μm. The structures can achieve deflections of nearly 90° with moderate magnetic fields and are capable of driving fluid flow in a fluid 550 times more viscous than water. PMID:26405376

  16. Multifunctional composite core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Wei, Suying; Wang, Qiang; Zhu, Jiahua; Sun, Luyi; Lin, Hongfei; Guo, Zhanhu

    2011-11-01

    In this review paper, the state-of-the-art knowledge of the core-shell multifunctional nanoparticles (MNPs), especially with unique physiochemical properties, is presented. The synthesis methods were summarized from the aspects of both the advantages and the demerits. The core includes the inexpensive and easily oxidized metals and the noble shells include the relatively noble metals, carbon, silica, other oxides, and polymers. The properties including magnetic, optical, anti-corrosion and the surface chemistry of the NPs are thoroughly reviewed. The current status of the applications is reviewed with the detailed examples including the catalysis, giant magnetoresistance (GMR) sensing, electromagnetic interface shielding or microwave absorption, biomedical drug delivery, and the environmental remediation.

  17. Investigation of linear optical absorption coefficients in core-shell quantum dot (QD) luminescent solar concentrators (LSCs)

    NASA Astrophysics Data System (ADS)

    Ebrahimipour, Bahareh Alsadat; Askari, Hassan Ranjbar; Ramezani, Ali Behjat

    2016-09-01

    The interlevel absorption coefficient of CdSe/ZnS and ZnS/CdSe core-shell Quantum Dot (QD) in luminescent solar concentrators (LSCs) is reported. By considering the quantum confinement effects, the wave functions and eigenenergies of electrons in the nonperturebative system consists of a core-shell QD have been numerically calculated under the frame work of effective-mass approximation by solving a three-dimensional Schrӧdinger equation. And then the absorption coefficient is obtained under density matrix approximation considering in the polymer sheets of the concentrator including the core-shell QDs. The effect of the hetero-structure geometry upon the energy spectrum and absorption coefficient associated to interlevel transitions was also considered. The results show that the core-shell QDs can absorb the photons with higher energy in solar spectrum as compared to the inverted core-shell. And with a small shell layer diameter, the core-shell QDs produce larger linear absorption coefficients and consequently higher efficiency values, however it is inversed for inverted core-shell QDs. The work described here gives a detailed insight into the promise of QD-based LSCs and the optoelectronic devices applications.

  18. Recent advances in the synthesis of Fe3O4@AU core/shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Salihov, Sergei V.; Ivanenkov, Yan A.; Krechetov, Sergei P.; Veselov, Mark S.; Sviridenkova, Natalia V.; Savchenko, Alexander G.; Klyachko, Natalya L.; Golovin, Yury I.; Chufarova, Nina V.; Beloglazkina, Elena K.; Majouga, Alexander G.

    2015-11-01

    Fe3O4@Au core/shell nanoparticles have unique magnetic and optical properties. These nanoparticles are used for biomedical applications, such as magnetic resonance imaging, photothermal therapy, controlled drug delivery, protein separation, biosensors, DNA detection, and immunosensors. In this review, recent methods for the synthesis of core/shell nanoparticles are discussed. We divided all of the synthetic methods in two groups: methods of synthesis of bi-layer structures and methods of synthesis of multilayer composite structures. The latter methods have a layer of "glue" material between the core and the shell.

  19. Simultaneous in-situ synthesis and characterization of Co@Cu core-shell nanoparticle arrays

    SciTech Connect

    McKeown, Joseph T.; Wu, Yueying; Fowlkes, Jason D.; Rack, Philip D.; Campbell, Geoffrey H.

    2014-12-23

    Core-shell nanostructures have attracted much attention due to their unique and tunable properties relative to bulk structures of the same materials, making core-shell nanoparticles candidates for a variety of applications with multiple functionalities.[1,2] Intriguing magnetic behavior can be tailored by variation of size, interface, crystal orientation, and composition, and core-shell nanostructures with noble-metal shells yield novel optical responses[3] and enhanced electrocatalytic activity.[4]

  20. Synthesis and characterization of Fe3O4/TiO2 magnetic and photocatalyst bifunctional core-shell with superparamagnetic performance

    NASA Astrophysics Data System (ADS)

    Behrad, F.; Helmi Rashid Farimani, M.; Shahtahmasebi, N.; Rezaee Roknabadi, M.; Karimipour, M.

    2015-07-01

    In this research a simple method has been presented to coat magnetic nanoparticles with TiO2. Firstly, Fe3O4 nanoparticles have been prepared using a co-precipitation method. Thereafter, in order to achieve particles with better dispersibility, the surface of Fe3O4 nanoparticles has been modified with the help of trisodium citrate as stabilizer. Afterward, Fe3O4 / TiO2 core-shell nanocomposites were synthesized by the Stöber method. The prepared samples were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, energy dispersive X-ray spectroscopy (EDS) analysis and vibrating sample magnetometer (VSM). XRD results show the formation of two compounds of crystalline magnetite and brookite-type TiO2 . TEM images confirmed the formation of their core-shell structure. The surface modification of magnetite nanoparticles using trisodium citrate was confirmed by FTIR analysis. Magnetic studies also indicated that prepared core-shells exhibit superparamagnetic behavior at room temperature. Combining this property with the photocatalytic ability of TiO2 could result in a synthesized nanocomposite with different medical and environmental applications.

  1. Stability of core-shell nanowires in selected model solutions

    NASA Astrophysics Data System (ADS)

    Kalska-Szostko, B.; Wykowska, U.; Basa, A.; Zambrzycka, E.

    2015-03-01

    This paper presents the studies of stability of magnetic core-shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods.

  2. The effect of oxide shell thickness on the structural, electronic, and optical properties of Si-SiO2 core-shell nano-crystals: A (time dependent)density functional theory study

    NASA Astrophysics Data System (ADS)

    Nazemi, Sanaz; Pourfath, Mahdi; Soleimani, Ebrahim Asl; Kosina, Hans

    2016-04-01

    Due to their tunable properties, silicon nano-crystals (NC) are currently being investigated. Quantum confinement can generally be employed for size-dependent band-gap tuning at dimensions smaller than the Bohr radius (˜5 nm for silicon). At the nano-meter scale, however, increased surface-to-volume ratio makes the surface effects dominant. Specifically, in Si-SiO2 core-shell semiconductor NCs the interfacial transition layer causes peculiar electronic and optical properties, because of the co-existence of intermediate oxidation states of silicon (Sin+, n = 0-4). Due to the presence of the many factors involved, a comprehensive understanding of the optical properties of these NCs has not yet been achieved. In this work, Si-SiO2 NCs with a diameter of 1.1 nm and covered by amorphous oxide shells with thicknesses between 2.5 and 4.75 Å are comprehensively studied, employing density functional theory calculations. It is shown that with increased oxide shell thickness, the low-energy part of the optical transition spectrum of the NC is red shifted and attenuated. Moreover, the absorption coefficient is increased in the high-energy part of the spectrum which corresponds to SiO2 transitions. Structural examinations indicate a larger compressive stress on the central silicon cluster with a thicker oxide shell. Examination of the local density of states reveals the migration of frontier molecular orbitals from the oxide shell into the silicon core with the increase of silica shell thickness. The optical and electrical properties are explained through the analysis of the density of states and the spatial distribution of silicon sub-oxide species.

  3. Material with core-shell structure

    DOEpatents

    Luhrs, Claudia; Richard, Monique N.; Dehne, Aaron; Phillips, Jonathan; Stamm, Kimber L.; Fanson, Paul T.

    2011-11-15

    Disclosed is a material having a composite particle, the composite particle including an outer shell and a core. The core is made from a lithium alloying material and the outer shell has an inner volume that is greater in size than the core of the lithium alloying material. In some instances, the outer mean diameter of the outer shell is less than 500 nanometers and the core occupies between 5 and 99% of the inner volume. In addition, the outer shell can have an average wall thickness of less than 100 nanometers.

  4. Synthesis of polystyrene/polysilsesquioxane core/shell composite particles via emulsion polymerization in the existence of poly(γ-methacryloxypropyl trimethoxysilane) sol.

    PubMed

    Yang, Shenglin; Song, Chunfeng; Qiu, Teng; Guo, Longhai; Li, Xiaoyu

    2013-01-01

    Here, we synthesized the polystyrene/polysilsesquioxane (PS/PSQ) core/shell latex particles via emulsion polymerization, which behave as an amusing morphology. First, the nanosized PSQ particles were prepared by the hydrolysis-condensation reaction of γ-methacryloxypropyl trimethoxysilane (MPTS) in ethanol medium. Subsequently, the as-obtained methacryloxypropylene functionalized PSQ (PMPTS) sol was directly added into the emulsion system of styrene (St) monomer, and PS/PSQ composite particles with core/shell structure were obtained through emulsion polymerization. We found that the structure of the composite particles can be affected by the synthesis parameters such as reaction time, content of PMPTS added in the reaction, amount of coemulsifier, and the pH value of emulsion system, which were systemically explored by transmission electron microscopy (TEM), scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), and thermogravimetric analysis (TGA) in this work. These results indicate that the PMPTS particles in the size of about 5 nm could first absorb onto the surface of PS latex particles so as to assemble in a strawberry-like morphology. The further coalescence among the PMPTS particles would result in a continuous PMPTS shell around the PS core. Moreover, the hollow PSQ capsules were prepared after extraction of the PS core by organic solvent, further confirming the core/shell structure of the as-synthesized PS/PMPTS particles. Meanwhile, we also explored the application of the PS/PSQ core/shell particles as a new kind of Pickering emulsifier in the emulsion polymerization of St, and composite particles with complex patchy morphologies have been obtained finally under different ratios of styrene monomer to PS/PMPTS colloidal emulsifier. PMID:23231420

  5. Study of core-shell platinum-based catalyst for methanol and ethylene glycol oxidation

    NASA Astrophysics Data System (ADS)

    Kaplan, D.; Alon, M.; Burstein, L.; Rosenberg, Yu.; Peled, E.

    A Ru core-Pt shell, XC72-supported catalyst was synthesized in a two-step process: first, by deposition of Ru on XC72 by the polyol process and then by deposition of Pt on the XC72-supported Ru, with NaBH 4 as reducing agent. The structure and composition of this core-shell catalyst were determined by EDS, XPS, TEM and XRD. Electrochemical characterization was determined with the use of cyclic voltammetry and chronoamperometry. The methanol and ethylene glycol oxidation activities of the core-shell catalyst were studied at 80 °C and compared to those of a commercial catalyst. It was found to be significantly better (in terms of A g -1 of Pt) in the case of methanol oxidation and worse in the case of ethylene glycol oxidation. Possible reasons for the lower ethylene glycol oxidation activity of the core-shell catalyst are discussed.

  6. Lithography-Free Fabrication of Core-Shell GaAs Nanowire Tunnel Diodes.

    PubMed

    Darbandi, A; Kavanagh, K L; Watkins, S P

    2015-08-12

    GaAs core-shell p-n junction tunnel diodes were demonstrated by combining vapor-liquid-solid growth with gallium oxide deposition by atomic layer deposition for electrical isolation. The characterization of an ensemble of core-shell structures was enabled by the use of a tungsten probe in a scanning electron microscope without the need for lithographic processing. Radial tunneling transport was observed, exhibiting negative differential resistance behavior with peak-to-valley current ratios of up to 3.1. Peak current densities of up to 2.1 kA/cm(2) point the way to applications in core-shell photovoltaics and tunnel field effect transistors. PMID:26189994

  7. Nitride stabilized PtNi core-shell nanocatalyst for high oxygen reduction activity.

    PubMed

    Kuttiyiel, Kurian A; Sasaki, Kotaro; Choi, Yongman; Su, Dong; Liu, Ping; Adzic, Radoslav R

    2012-12-12

    We describe a route to the development of novel PtNiN core-shell catalysts with low Pt content shell and inexpensive NiN core having high activity and stability for the oxygen reduction reaction (ORR). The PtNiN synthesis involves nitriding Ni nanoparticles and simultaneously encapsulating it by 2-4 monolayer-thick Pt shell. The experimental data and the density functional theory calculations indicate nitride has the bifunctional effect that facilitates formation of the core-shell structures and improves the performance of the Pt shell by inducing both geometric and electronic effects. Synthesis of inexpensive NiN cores opens up possibilities for designing of various transition metal nitride based core-shell nanoparticles for a wide range of applications in energy conversion processes. PMID:23194259

  8. Controlled nanostructuring of multiphase core-shell nanowires by a template-assisted electrodeposition approach

    NASA Astrophysics Data System (ADS)

    Shi, Dawei; Chen, Junyang; Riaz, Saira; Zhou, Wenping; Han, Xiufeng

    2012-08-01

    Multiphase core-shell nanowires have been fabricated by controlling the ion transport processes of the microfluids in the nanochannels of the template. Both forced convection and pulsed potential induced migration can be applied to tune the morphologies of the nanostructures obtained by manipulating the ion transport during electrodeposition. The morphology and content of the core-shell structure were studied by field emission scanning electron microscope (FESEM) analysis, transmission electron microscope (TEM) analysis and energy dispersive spectrometry (EDS), respectively. The magnetic properties were analyzed by vibrating sample magnetometer (VSM) analysis. A magnetically hard core and soft shell constitutes the multiphase composite nanostructure. The unique magnetic hysteresis curve indicates the decoupled magnetic reversal processes of the two components. Our work provides deeper insights into the formation mechanisms of a new core-shell nanostructure, which may have potential applications in novel spintronics devices.

  9. Controlled nanostructuring of multiphase core-shell nanowires by a template-assisted electrodeposition approach.

    PubMed

    Shi, Dawei; Chen, Junyang; Riaz, Saira; Zhou, Wenping; Han, Xiufeng

    2012-08-01

    Multiphase core-shell nanowires have been fabricated by controlling the ion transport processes of the microfluids in the nanochannels of the template. Both forced convection and pulsed potential induced migration can be applied to tune the morphologies of the nanostructures obtained by manipulating the ion transport during electrodeposition. The morphology and content of the core-shell structure were studied by field emission scanning electron microscope (FESEM) analysis, transmission electron microscope (TEM) analysis and energy dispersive spectrometry (EDS), respectively. The magnetic properties were analyzed by vibrating sample magnetometer (VSM) analysis. A magnetically hard core and soft shell constitutes the multiphase composite nanostructure. The unique magnetic hysteresis curve indicates the decoupled magnetic reversal processes of the two components. Our work provides deeper insights into the formation mechanisms of a new core-shell nanostructure, which may have potential applications in novel spintronics devices. PMID:22751156

  10. Solution-Processed Copper/Reduced-Graphene-Oxide Core/Shell Nanowire Transparent Conductors.

    PubMed

    Dou, Letian; Cui, Fan; Yu, Yi; Khanarian, Garo; Eaton, Samuel W; Yang, Qin; Resasco, Joaquin; Schildknecht, Christian; Schierle-Arndt, Kerstin; Yang, Peidong

    2016-02-23

    Copper nanowire (Cu NW) based transparent conductors are promising candidates to replace ITO (indium-tin-oxide) owing to the high electrical conductivity and low-cost of copper. However, the relatively low performance and poor stability of Cu NWs under ambient conditions limit the practical application of these devices. Here, we report a solution-based approach to wrap graphene oxide (GO) nanosheets on the surface of ultrathin copper nanowires. By mild thermal annealing, GO can be reduced and high quality Cu r-GO core-shell NWs can be obtained. High performance transparent conducting films were fabricated with these ultrathin core-shell nanowires and excellent optical and electric performance was achieved. The core-shell NW structure enables the production of highly stable conducting films (over 200 days stored in air), which have comparable performance to ITO and silver NW thin films (sheet resistance ∼28 Ω/sq, haze ∼2% at transmittance of ∼90%). PMID:26820809

  11. Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors

    PubMed Central

    Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui

    2016-01-01

    Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm−2 at 2 mA cm−2 and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm−2. The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure. PMID:27515274

  12. Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors.

    PubMed

    Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui

    2016-01-01

    Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm(-2) at 2 mA cm(-2) and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm(-2). The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure. PMID:27515274

  13. Highly stable, luminescent core-shell type methylammonium-octylammonium lead bromide layered perovskite nanoparticles.

    PubMed

    Bhaumik, Saikat; Veldhuis, Sjoerd A; Ng, Yan Fong; Li, Mingjie; Muduli, Subas Kumar; Sum, Tze Chien; Damodaran, Bahulayan; Mhaisalkar, Subodh; Mathews, Nripan

    2016-06-01

    A new protocol for the synthesis of a highly stable (over 2 months under ambient conditions) solution-processed core-shell type structure of mixed methylammonium-octylammonium lead bromide perovskite nanoparticles (5-12 nm), having spherical shape, color tunability in the blue to green spectral region (438-521 nm) and a high photoluminescence quantum yield (PLQY) of up to 92% is described. The color tunability, high PLQY and stability are due to the quantum confinement imparted by the crystal engineering associated with core-shell nanoparticle formation during growth. PMID:27165565

  14. Silicon nanowire array/Cu2O crystalline core-shell nanosystem for solar-driven photocatalytic water splitting.

    PubMed

    Xiong, Zuzhou; Zheng, Maojun; Liu, Sida; Ma, Li; Shen, Wenzhong

    2013-07-01

    P-type Cu2O nanocrystals were deposited on n-type silicon nanowire arrays (Si NWs) to form core-shell heterojunction arrays structure via a simple electroless deposition technique. Scanning electron microscopy, transmission electron microscope and x-ray diffraction were utilized to characterize the morphology and structure of the core-shell nanosystem. The reflectivity of the obtained core-shell structure measured by UV/vis spectrometry showed a comparatively low reflectivity in the visible-light region, which implied good optical absorption performance. The water splitting performance of the obtained Si NWs, planar Si/Cu2O structure and Si NW/Cu2O core-shell nanosystem were studied. Owing to the large specific surface area, heterojunctions formed between Cu2O nanocrystallites and Si NWs and the light trapping effect of the NW array structure, the photocatalytic performance of the Si NW/Cu2O core-shell nanosystem increased markedly compared with that of pure silicon NWs and a planar Si/Cu2O structure, which means excellent hydrogen production capacity under irradiation with simulated sunlight. In addition, the photocatalytic performance of the core-shell nanosystem was improved obviously after platinum nanoparticles were electrodeposited on it. PMID:23733303

  15. Silicon nanowire array/Cu2O crystalline core-shell nanosystem for solar-driven photocatalytic water splitting

    NASA Astrophysics Data System (ADS)

    Xiong, Zuzhou; Zheng, Maojun; Liu, Sida; Ma, Li; Shen, Wenzhong

    2013-07-01

    P-type Cu2O nanocrystals were deposited on n-type silicon nanowire arrays (Si NWs) to form core-shell heterojunction arrays structure via a simple electroless deposition technique. Scanning electron microscopy, transmission electron microscope and x-ray diffraction were utilized to characterize the morphology and structure of the core-shell nanosystem. The reflectivity of the obtained core-shell structure measured by UV/vis spectrometry showed a comparatively low reflectivity in the visible-light region, which implied good optical absorption performance. The water splitting performance of the obtained Si NWs, planar Si/Cu2O structure and Si NW/Cu2O core-shell nanosystem were studied. Owing to the large specific surface area, heterojunctions formed between Cu2O nanocrystallites and Si NWs and the light trapping effect of the NW array structure, the photocatalytic performance of the Si NW/Cu2O core-shell nanosystem increased markedly compared with that of pure silicon NWs and a planar Si/Cu2O structure, which means excellent hydrogen production capacity under irradiation with simulated sunlight. In addition, the photocatalytic performance of the core-shell nanosystem was improved obviously after platinum nanoparticles were electrodeposited on it.

  16. Synthesis and characterization of monodisperse spherical SiO{sub 2}-RE{sub 2}O{sub 3} (RE=rare earth elements) and SiO{sub 2}-Gd{sub 2}O{sub 3}:Ln{sup 3+} (Ln=Eu, Tb, Dy, Sm, Er, Ho) particles with core-shell structure

    SciTech Connect

    Wang, H.; Yang, J.; Zhang, C.M.; Lin, J.

    2009-10-15

    Spherical SiO{sub 2} particles have been coated with rare earth oxide layers by a Pechini sol-gel process, leading to the formation of core-shell structured SiO{sub 2}-RE{sub 2}O{sub 3} (RE=rare earth elements) and SiO{sub 2}-Gd{sub 2}O{sub 3}:Ln{sup 3+} (Ln=Eu, Tb, Dy, Sm, Er, Ho) particles. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL), and cathodoluminescence spectra as well as lifetimes were used to characterize the resulting SiO{sub 2}-RE{sub 2}O{sub 3} (RE=rare earth elements) and SiO{sub 2}-Gd{sub 2}O{sub 3}:Ln{sup 3+} (Eu{sup 3+}, Tb{sup 3+}, Dy{sup 3+}, Sm{sup 3+}, Er{sup 3+}, Ho{sup 3+}) samples. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size ca. 380 nm), smooth surface and non-agglomeration. The thickness of shells could be easily controlled by changing the number of deposition cycles (40 nm for two deposition cycles). Under the excitation of ultraviolet, the Ln{sup 3+} ion mainly shows its characteristic emissions in the core-shell particles from Gd{sub 2}O{sub 3}:Ln{sup 3+} (Eu{sup 3+}, Tb{sup 3+}, Sm{sup 3+}, Dy{sup 3+}, Er{sup 3+}, Ho{sup 3+}) shells. - Graphical abstract: The advantages of core-shell phosphors are the easy availability of homogeneous spherical morphology in different size, and its corresponding luminescence color can change from red, yellow to green.

  17. When cubic cobalt sulfide meets layered molybdenum disulfide: a core-shell system toward synergetic electrocatalytic water splitting.

    PubMed

    Zhu, Han; Zhang, Junfeng; Yanzhang, Ruoping; Du, Mingliang; Wang, Qingfa; Gao, Guohua; Wu, Jiandong; Wu, Guangming; Zhang, Ming; Liu, Bo; Yao, Juming; Zhang, Xiangwen

    2015-08-26

    A new class of Co9 S8 @MoS2 core-shell structures formed on carbon nanofibers composed of cubic Co9 S8 as cores and layered MoS2 as shells is described. The core-shell design of these nanostructures allows the advantages of MoS2 and Co9 S8 to be combined, serving as a bifunctional electrocatalyst for H2 and O2 evolution. PMID:26179503

  18. Vertical Ge/Si Core/Shell Nanowire Junctionless Transistor.

    PubMed

    Chen, Lin; Cai, Fuxi; Otuonye, Ugo; Lu, Wei D

    2016-01-13

    Vertical junctionless transistors with a gate-all-around (GAA) structure based on Ge/Si core/shell nanowires epitaxially grown and integrated on a ⟨111⟩ Si substrate were fabricated and analyzed. Because of efficient gate coupling in the nanowire-GAA transistor structure and the high density one-dimensional hole gas formed in the Ge nanowire core, excellent P-type transistor behaviors with Ion of 750 μA/μm were obtained at a moderate gate length of 544 nm with minimal short-channel effects. The experimental data can be quantitatively modeled by a GAA junctionless transistor model with few fitting parameters, suggesting the nanowire transistors can be fabricated reliably without introducing additional factors that can degrade device performance. Devices with different gate lengths were readily obtained by tuning the thickness of an etching mask film. Analysis of the histogram of different devices yielded a single dominate peak in device parameter distribution, indicating excellent uniformity and high confidence of single nanowire operation. Using two vertical nanowire junctionless transistors, a PMOS-logic inverter with near rail-to-rail output voltage was demonstrated, and device matching in the logic can be conveniently obtained by controlling the number of nanowires employed in different devices rather than modifying device geometry. These studies show that junctionless transistors based on vertical Ge/Si core/shell nanowires can be fabricated in a controlled fashion with excellent performance and may be used in future hybrid, high-performance circuits where bottom-up grown nanowire devices with different functionalities can be directly integrated with an existing Si platform. PMID:26674542

  19. Preparation of C18-functionalized Fe3O4@SiO2 core-shell magnetic nanoparticles for extraction and determination of phthalic acid esters in Chinese herb preparations.

    PubMed

    Guo, Bize; Ji, Shunli; Zhang, Feifang; Yang, Bingcheng; Gu, Jiangping; Liang, Xinmiao

    2014-11-01

    The extraction and determination of phthalic acid esters (PAEs) residue in Chinese herbal preparations (CHP) by C18-functionalized magnetic nanoparticles (C18-FS-MNP) has been firstly performed. It was synthesized through coating Fe3O4 nanoparticles with sodium silicate, followed by freeze-drying technique and then modified with C18 groups. C18-FS-MNPs prepared via freeze-drying technique were superior to those particles prepared via common vacuum drying method in terms of dispersion and extraction recovery. C18-FS-MNPs demonstrated obvious enrichment effect for four model PAEs and 478-627-fold enrichment factors were obtained. The limit of detection was <1.89ng/mL and relative standard deviation was ranging from 3.7 to 5.8%. It was successfully applied for determination of trace PAEs residue in CHP with good recoveries. PMID:25213260

  20. 3D TiO2@Ni(OH)2 Core-shell Arrays with Tunable Nanostructure for Hybrid Supercapacitor Application

    PubMed Central

    Ke, Qingqing; Zheng, Minrui; Liu, Huajun; Guan, Cao; Mao, Lu; Wang, John

    2015-01-01

    Three dimensional hierarchical nanostructures have attracted great attention for electrochemical energy storage applications. In this work, self-supported TiO2@Ni(OH)2 core-shell nanowire arrays are prepared on carbon fiber paper via the combination of hydrothermal synthesis and chemical bath deposition. In this core-shell hybrid, the morphology and wall size of the interconnected nanoflake shell of Ni(OH)2 can be tuned through adjusting the concentration of ammonia solution. Heterogeneous nucleation and subsequent oriented crystal growth are identified to be the synthesis mechanism affecting the nanostructure of the shell material, which consequently determines the electrochemical performance in both energy storage and charge transfer. Superior capabilities of 264 mAhg−1 at 1 A g−1 and 178 mAh g−1 at 10 A g−1 are achieved with the core-shell hybrids of the optimized structure. The asymmetric supercapacitor prototype, comprising of TiO2@Ni(OH)2 as the anode and mesoporous carbons (MCs) as the cathode, is shown to exhibit superior electrochemical performance with high energy and power densities. The present work provides a clear illustration of the structure-property relationship in nanocrystal synthesis and offers a potential strategy to enhance the battery type Ni(OH)2 electrode in a hybrid supercapacitor device. PMID:26353970

  1. 3D TiO2@Ni(OH)2 Core-shell Arrays with Tunable Nanostructure for Hybrid Supercapacitor Application

    NASA Astrophysics Data System (ADS)

    Ke, Qingqing; Zheng, Minrui; Liu, Huajun; Guan, Cao; Mao, Lu; Wang, John

    2015-09-01

    Three dimensional hierarchical nanostructures have attracted great attention for electrochemical energy storage applications. In this work, self-supported TiO2@Ni(OH)2 core-shell nanowire arrays are prepared on carbon fiber paper via the combination of hydrothermal synthesis and chemical bath deposition. In this core-shell hybrid, the morphology and wall size of the interconnected nanoflake shell of Ni(OH)2 can be tuned through adjusting the concentration of ammonia solution. Heterogeneous nucleation and subsequent oriented crystal growth are identified to be the synthesis mechanism affecting the nanostructure of the shell material, which consequently determines the electrochemical performance in both energy storage and charge transfer. Superior capabilities of 264 mAhg-1 at 1 A g-1 and 178 mAh g-1 at 10 A g-1 are achieved with the core-shell hybrids of the optimized structure. The asymmetric supercapacitor prototype, comprising of TiO2@Ni(OH)2 as the anode and mesoporous carbons (MCs) as the cathode, is shown to exhibit superior electrochemical performance with high energy and power densities. The present work provides a clear illustration of the structure-property relationship in nanocrystal synthesis and offers a potential strategy to enhance the battery type Ni(OH)2 electrode in a hybrid supercapacitor device.

  2. 3D TiO2@Ni(OH)2 Core-shell Arrays with Tunable Nanostructure for Hybrid Supercapacitor Application.

    PubMed

    Ke, Qingqing; Zheng, Minrui; Liu, Huajun; Guan, Cao; Mao, Lu; Wang, John

    2015-01-01

    Three dimensional hierarchical nanostructures have attracted great attention for electrochemical energy storage applications. In this work, self-supported TiO2@Ni(OH)2 core-shell nanowire arrays are prepared on carbon fiber paper via the combination of hydrothermal synthesis and chemical bath deposition. In this core-shell hybrid, the morphology and wall size of the interconnected nanoflake shell of Ni(OH)2 can be tuned through adjusting the concentration of ammonia solution. Heterogeneous nucleation and subsequent oriented crystal growth are identified to be the synthesis mechanism affecting the nanostructure of the shell material, which consequently determines the electrochemical performance in both energy storage and charge transfer. Superior capabilities of 264 mAh g(-1) at 1 A g(-1) and 178 mAh g(-1) at 10 A g(-1) are achieved with the core-shell hybrids of the optimized structure. The asymmetric supercapacitor prototype, comprising of TiO2@Ni(OH)2 as the anode and mesoporous carbons (MCs) as the cathode, is shown to exhibit superior electrochemical performance with high energy and power densities. The present work provides a clear illustration of the structure-property relationship in nanocrystal synthesis and offers a potential strategy to enhance the battery type Ni(OH)2 electrode in a hybrid supercapacitor device. PMID:26353970

  3. Controlled Synthesis of Pd/Pt Core Shell Nanoparticles Using Area-selective Atomic Layer Deposition

    PubMed Central

    Cao, Kun; Zhu, Qianqian; Shan, Bin; Chen, Rong

    2015-01-01

    We report an atomic scale controllable synthesis of Pd/Pt core shell nanoparticles (NPs) via area-selective atomic layer deposition (ALD) on a modified surface. The method involves utilizing octadecyltrichlorosilane (ODTS) self-assembled monolayers (SAMs) to modify the surface. Take the usage of pinholes on SAMs as active sites for the initial core nucleation, and subsequent selective deposition of the second metal as the shell layer. Since new nucleation sites can be effectively blocked by surface ODTS SAMs in the second deposition stage, we demonstrate the successful growth of Pd/Pt and Pt/Pd NPs with uniform core shell structures and narrow size distribution. The size, shell thickness and composition of the NPs can be controlled precisely by varying the ALD cycles. Such core shell structures can be realized by using regular ALD recipes without special adjustment. This SAMs assisted area-selective ALD method of core shell structure fabrication greatly expands the applicability of ALD in fabricating novel structures and can be readily applied to the growth of NPs with other compositions. PMID:25683469

  4. Fabrication of hierarchical core-shell Au@ZnO heteroarchitectures initiated by heteroseed assembly for photocatalytic applications.

    PubMed

    Qin, Yao; Zhou, Yanjie; Li, Jie; Ma, Jie; Shi, Donglu; Chen, Junhong; Yang, Jinhu

    2014-03-15

    Three dimensional dandelion-like hierarchical core-shell Au@ZnO heteroarchitectures with ZnO nanorods grown radially on Au nanoparticle (NP) cores have been successfully prepared with a high yield via a simple solution method involving heteroseed-induced nucleation and subsequent heteroepitaxial growth processes. Briefly, mercaptopropionic acid (MA) modified Au NPs were synthesized beforehand and served as nucleation centers for primary ZnO seed generation and Au@ZnO heteroseed formation. Then an epitaxial growth of ZnO nanorods (ZnO NRs) on the Au@ZnO heteroseeds resulted in the formation of Au@ZnO dandelions. The photocatalytic properties of as-prepared Au@ZnO dandelions were evaluated through rhodamine B (RhB) photodegradation under UV irradiation. The result showed that the Au@ZnO dandelions had improved photocatalytic performance compared with pure ZnO NRs and hybrids of ZnO NRs/Au NPs, due likely to the synergistic effect of the metal-semiconductor heterojunction and the unique dandelion-like hierarchical core-shell structure. PMID:24461832

  5. Three-dimensional silicon/carbon core-shell electrode as an anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Jung Sub; Pfleging, Wilhelm; Kohler, Robert; Seifert, Hans Jürgen; Kim, Tae Yong; Byun, Dongjin; Jung, Hun-Gi; Choi, Wonchang; Lee, Joong Kee

    2015-04-01

    Practical application of silicon anodes for lithium-ion batteries has been mainly hindered because of their low electrical conductivity and large volume change (ca. 300%) occurring during the lithiation and delithiation processes. Thus, the surface engineering of active particles (material design) and the modification of electrode structure (electrode design) of silicon are necessary to alleviate these critical limiting factors. Silicon/carbon core-shell particles (Si@C, material design) are prepared by the thermal decomposition and subsequent three-dimensional (3D) electrode structures (electrode design) with a channel width of 15 μm are incorporated using the laser ablation process. The electrochemical characteristics of 3D Si@C used as the anode material for lithium-ion batteries are investigated to identify the effects of material and electrode design. By the introduction of a carbon coating and the laser structuring, an enhanced performance of Si anode materials exhibiting high specific capacity (>1200 mAh g-1 over 300 cycles), good rate capability (1170 mAh g-1 at 8 A g-1), and stable cycling is achieved. The morphology of the core-shell active material combined with 3D channel architecture can minimize the volume expansion by utilizing the void space during the repeated cycling.

  6. Liquid immiscibility and core-shell morphology formation in ternary Al–Bi–Sn alloys

    SciTech Connect

    Dai, R.; Zhang, J.F.; Zhang, S.G. Li, J.G.

    2013-07-15

    The effects of composition on liquid immiscibility, macroscopic morphology, microstructure and phase transformation in ternary Al–Bi–Sn alloys were investigated. Three types of morphology, the core-shell type, the stochastic droplet type and uniform dispersion type, of Al–Bi–Sn particles prepared by a jet breakup process were distinguished, and the relationships between which were discussed. The phase transformation behaviors of the Al–Bi–Sn alloys were studied by thermal analysis, in agreement with the microstructural observation and microanalysis. The liquid immiscibility and formation of the core-shell morphology in Al–Bi–Sn alloys are easily achieved when the composition lies in the liquid miscibility gap. The particles exhibit a high melting point Al-rich core with a low melting point Sn–Bi-rich solder shell, showing promise for application as high-density electronic packaging materials. - Highlights: • The liquid demixing, morphology and microstructure in Al–Bi–Sn alloys were studied. • Three types of morphology were classified and discussed. • The conditions for formation of the core-shell morphology were obtained. • The phase transition behaviors agree with the microstructure characterization. • The Al/Sn–Bi core-shell particles show promise for use in electronic packaging.

  7. Novel ZnO/Fe₂O₃ Core-Shell Nanowires for Photoelectrochemical Water Splitting.

    PubMed

    Hsu, Yu-Kuei; Chen, Ying-Chu; Lin, Yan-Gu

    2015-07-01

    A facile and simple fabrication of Fe2O3 as a shell layer on the surface of ZnO nanowires (NW) as a core-shell nanoelectrode is applied for the photoelectrochemical (PEC) splitting of water. An ZnO NW array of core diameter ∼80 nm was grown on a fluorine-doped tin-oxide (FTO) substrate with a hydrothermal method; subsequent deposition and annealing achieved a shell structure of the Fe2O3 layer of thickness a few nm. Fe2O3 in the α phase and ZnO in the wurtzite phase were identified as the structures of the shell and core, respectively, through analysis with X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The ZnO/Fe2O3 core-shell NW showed an excellent PEC response to the oxidation of water, and also benefited from a negative shift of onset potential because of an n/n heterojunction structure. A detailed energy diagram of the ZnO/Fe2O3 core-shell NW was investigated with a Mott-Schottky analysis. This novel core-shell nanostructure can hence not only exhibit a great potential for the solar generation of hydrogen, but also offer a blueprint for the future design of photocatalysts. PMID:26053274

  8. Nanostructured core-shell Ni deposition on SiC particles by alkaline electroless coating

    NASA Astrophysics Data System (ADS)

    Uysal, M.; Karslioğlu, R.; Alp, A.; Akbulut, H.

    2011-10-01

    In this study, core-shell nanostructured nickel formation on silicon carbide (SiC) ceramic powders was achieved through the electroless deposition method using alkaline solutions. To produce a nano core-shell Ni deposition on the SiC surfaces, process parameters such as pH values, the type of reducer material, deposition temperature, stirring rate and activation procedure among others were determined. Full coverage of core-shell nickel structures on SiC surfaces was achieved with a grain size of between 100 and 300 nm, which was approximately the same deposition thickness on the SiC surfaces. The surface morphology of the coated SiC particles showed a homogenous distribution of nanostructured nickel grains characterized by scanning electron microscopy and X-ray diffraction techniques. The nanostructures of the crystalline Ni coatings were observed to be attractive for achieving both good bonding and dense structure. The thin core shell-structure of Ni on the SiC surfaces was assessed as a beneficial reinforcement for possible metal matrix composite manufacturing.

  9. Fabrication of hollow platinum-ruthenium core-shell catalysts with nanochannels and enhanced performance for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Hu, Yuming; Zhu, Aimei; Zhang, Qiugen; Liu, Qinglin

    2015-12-01

    This work reports the preparation of hollow PtRu core-shell catalysts with TiO2 as template, in which the Pt nanoparticles (NPs) grow on the exterior surface of Ru layer. The quantity of Pt NPs is easily tailored to control the integrity of Pt shell through varying the concentration of H2PtCl6 solution. Scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and selected-area electron diffraction (SAED) are used to characterize the structure and morphology of H-PtRu. The core-shell structure is confirmed by the high-angle annular dark-field scanning TEM (HAADF-STEM) with energy-disperse X-ray spectroscopy (EDX). The electrochemical performance of H-PtRu is investigated by cyclic voltammetry and chronoamperometry. Results show that the catalytic activity of H-PtRu toward methanol oxidation reaction (MOR) is ∼2.5 times higher than that of Pt/C (JM), and the electrocatalytic stability improves with the increase of Ru content. Furthermore, H-PtRu exhibits better stability for methanol oxidation compared to Pt/C (JM) and PtRu/C (JM).

  10. Durable polydopamine-coated porous sulfur core-shell cathode for high performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Deng, Yuanfu; Xu, Hui; Bai, Zhaowen; Huang, Baoling; Su, Jingyang; Chen, Guohua

    2015-12-01

    Lithium-sulfur batteries show fascinating potential for advanced energy system due to their high specific capacity, low-cost, and environmental benignity. However, their wide applications have been plagued by low coulombic efficiency, fast capacity fading and poor rate performance. Herein, a facile method for preparation of S@PDA (PDA = polydopamine) composites with core-shell structure and good electrochemical performance as well as the First-Principles calculations on the interactions of PDA and polysulfides are reported. Taking the advantages of the core-shell structure with porous sulfur core, the high mechanical flexibility of PDA for accommodating the volumetric variation during the discharge/charge processes, the good lithium ion conductivity and the strong chemical interactions between the nitrogen/oxygen atoms with lone electron pair and lithium polysulfides for alleviating their dissolution, the S@PDA composites exhibit high discharge capacities at different current densities (1048 and 869 mAh g-1 at 0.2 and 0.8 A g-1, respectively) and excellent capacity retention capability. A capacity decay as low as 0.021% per cycle and an average coulombic efficiency of 98.5% is observed over a long-term cycling of 890 cycles at 0.8 A g-1. The S@PDA electrode has great potential as a low-cost cathode in high energy Li-S batteries.

  11. Carbon nanofiber/cobalt oxide nanopyramid core-shell nanowires for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    An, Geon-Hyoung; Ahn, Hyo-Jin

    2014-12-01

    Carbon nanofiber (CNF)/Co3O4 nanopyramid core-shell nanowires (NWs) are synthesized using an electrospinning method followed by reduction and hydrothermal treatment in order to improve the capacity, cycle stability, and high-rate capability of the electrodes in Li ion batteries (LIBs). The morphology, crystal structure, and chemical states of all samples are investigated by means of field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analysis. For comparison, conventional CNFs, octahedral Co3O4, and Co3O4/CNF composite electrodes are prepared. LIB cells fabricate with the CNF/Co3O4 nanopyramid core-shell NWs exhibit superb discharge capacity (1173 mAh g-1 at the 1st cycle), cycle stability (795 mAh g-1 at 50 cycles), high initial Coulombic efficiency (84.8%), and high-rate capability (570 mAh g-1 at a current density of 700 mA g-1) as compared to the conventional CNF, octahedral Co3O4, and Co3O4/CNF composite electrodes. The performance improvement is owing to the introduction of one-dimensional CNFs relative to efficient electron transport in the core region, extensive utilization of Co3O4 nanopyramids with high capacity grown closely on the CNFs in the shell region, and the network structures of the electrode relative to the improvement of Li ion diffusion.

  12. Hyaluronic acid/poly(lactic-co-glycolic acid) core/shell fiber meshes loaded with epigallocatechin-3-O-gallate as skin tissue engineering scaffolds.

    PubMed

    Lee, Eun Ji; Lee, Jong Ho; Jin, Linhua; Jin, Oh Seong; Shin, Yong Cheol; Sang, Jin Oh; Lee, Jaebeom; Hyon, Suong-Hyu; Han, Dong-Wook

    2014-11-01

    In this study, hyaluronic acid (HA)/poly(lactic-co-glycolic acid, PLGA) core/shell fiber meshes loaded with epigallocatechin-3-O-gallate (EGCG) (HA/PLGA-E) for application to tissue engineering scaffolds for skin regeneration were prepared via coaxial electrospinning. Physicochemical properties of HA/PLGA-E core/shell fiber meshes were characterized by SEM, Raman spectroscopy, contact angle, EGCG release profiling and in vitro degradation. Biomechanical properties of HA/PLGA-E meshes were also investigated by a tensile strength test. SEM images showed that HA/PLGA-E fiber meshes had a three-dimensional interconnected pore structure with an average fiber diameter of about 1270 nm. Raman spectra revealed that EGCG was uniformly dispersed in the PLGA shell of meshes. HA/PLGA-E meshes showed sustained EGCG release patterns by controlled diffusion and PLGA degradation over 4 weeks. EGCG loading did not adversely affect the tensile strength and elastic modulus of HA/PLGA meshes, while increased their hydrophilicity and surface energy. Attachment of human dermal fibroblasts on HA/PLGA-E meshes was appreciably increased and their proliferation was steadily retained during the culture period. These results suggest that HA/PLGA-E core/shell fiber meshes can be potentially used as scaffolds supporting skin regeneration. PMID:25958546

  13. Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection.

    PubMed

    Panigrahi, Shrabani; Basak, Durga

    2011-05-01

    Core-shell TiO(2)@ZnO nanorods (NRs) have been fabricated by a simple two step method: growth of ZnO NRs' array by an aqueous chemical technique and then coating of the NRs with a solution of titanium isopropoxide [Ti(OC(3)H(7))(4)] followed by a heating step to form the shell. The core-shell nanocomposites are composed of single-crystalline ZnO NRs, coated with a thin TiO(2) shell layer obtained by varying the number of coatings (one, three and five times). The ultraviolet (UV) emission intensity of the nanocomposite is largely quenched due to an efficient electron-hole separation reducing the band-to-band recombinations. The UV photoconductivity of the core-shell structure with three times TiO(2) coating has been largely enhanced due to photoelectron transfer between the core and the shell. The UV photosensitivity of the nanocomposite becomes four times larger while the photocurrent decay during steady UV illumination has been decreased almost by 7 times compared to the as-grown ZnO NRs indicating high efficiency of these core-shell structures as UV sensors. PMID:21483939

  14. Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection

    NASA Astrophysics Data System (ADS)

    Panigrahi, Shrabani; Basak, Durga

    2011-05-01

    Core-shell TiO2@ZnO nanorods (NRs) have been fabricated by a simple two step method: growth of ZnO NRs' array by an aqueous chemical technique and then coating of the NRs with a solution of titanium isopropoxide [Ti(OC3H7)4] followed by a heating step to form the shell. The core-shell nanocomposites are composed of single-crystalline ZnO NRs, coated with a thin TiO2 shell layer obtained by varying the number of coatings (one, three and five times). The ultraviolet (UV) emission intensity of the nanocomposite is largely quenched due to an efficient electron-hole separation reducing the band-to-band recombinations. The UV photoconductivity of the core-shell structure with three times TiO2 coating has been largely enhanced due to photoelectron transfer between the core and the shell. The UV photosensitivity of the nanocomposite becomes four times larger while the photocurrent decay during steady UV illumination has been decreased almost by 7 times compared to the as-grown ZnO NRs indicating high efficiency of these core-shell structures as UV sensors.

  15. In-situ Liquid Phase Epitaxy: Another Strategy to Synthesize Heterostructured Core-shell Composites

    NASA Astrophysics Data System (ADS)

    Wen, Zhongsheng; Wang, Guanqin

    2016-04-01

    Core-shell Nb2O5/TiO2 composite with hierarchical heterostructure is successfully synthesized In-situ by a facile template-free and acid-free solvothermal method based on the mechanism of liquid phase epitaxy. The chemical circumstance change induced by the alcoholysis of NbCl5 is utilized tactically to trigger core-shell assembling In-situ. The tentative mechanism for the self-assembling of core-shell structure and hierarchical structure is explored. The microstructure and morphology changes during synthesis process are investigated systematically by using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. The dramatic alcoholysis of NbCl5 has been demonstrated to be the fundamental factor for the formation of the spherical core, which changes the acid circumstance of the solution and induces the co-precipitation of TiO2. The homogeneous co-existence of Nb2O5/TiO2 in the core and the co-existence of Nb/Ti ions in the reaction solution facilitate the In-situ nucleation and epitaxial growth of the crystalline shell with the same composition as the core. In-situ liquid phase epitaxy can offer a different strategy for the core-shell assembling for oxide materials.

  16. In-situ Liquid Phase Epitaxy: Another Strategy to Synthesize Heterostructured Core-shell Composites

    PubMed Central

    Wen, Zhongsheng; Wang, Guanqin

    2016-01-01

    Core-shell Nb2O5/TiO2 composite with hierarchical heterostructure is successfully synthesized In-situ by a facile template-free and acid-free solvothermal method based on the mechanism of liquid phase epitaxy. The chemical circumstance change induced by the alcoholysis of NbCl5 is utilized tactically to trigger core-shell assembling In-situ. The tentative mechanism for the self-assembling of core-shell structure and hierarchical structure is explored. The microstructure and morphology changes during synthesis process are investigated systematically by using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. The dramatic alcoholysis of NbCl5 has been demonstrated to be the fundamental factor for the formation of the spherical core, which changes the acid circumstance of the solution and induces the co-precipitation of TiO2. The homogeneous co-existence of Nb2O5/TiO2 in the core and the co-existence of Nb/Ti ions in the reaction solution facilitate the In-situ nucleation and epitaxial growth of the crystalline shell with the same composition as the core. In-situ liquid phase epitaxy can offer a different strategy for the core-shell assembling for oxide materials. PMID:27121200

  17. In-situ Liquid Phase Epitaxy: Another Strategy to Synthesize Heterostructured Core-shell Composites.

    PubMed

    Wen, Zhongsheng; Wang, Guanqin

    2016-01-01

    Core-shell Nb2O5/TiO2 composite with hierarchical heterostructure is successfully synthesized In-situ by a facile template-free and acid-free solvothermal method based on the mechanism of liquid phase epitaxy. The chemical circumstance change induced by the alcoholysis of NbCl5 is utilized tactically to trigger core-shell assembling In-situ. The tentative mechanism for the self-assembling of core-shell structure and hierarchical structure is explored. The microstructure and morphology changes during synthesis process are investigated systematically by using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. The dramatic alcoholysis of NbCl5 has been demonstrated to be the fundamental factor for the formation of the spherical core, which changes the acid circumstance of the solution and induces the co-precipitation of TiO2. The homogeneous co-existence of Nb2O5/TiO2 in the core and the co-existence of Nb/Ti ions in the reaction solution facilitate the In-situ nucleation and epitaxial growth of the crystalline shell with the same composition as the core. In-situ liquid phase epitaxy can offer a different strategy for the core-shell assembling for oxide materials. PMID:27121200

  18. Hydrothermal synthesis of core-shell TiO2 to enhance the photocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghui; Zhou, Han; Zhang, Fan; Fan, Tongxiang; Zhang, Di

    2016-04-01

    A hydrothermal approach was designed to synthesize core-shell TiO2 with interior cavity by making sodium dodecyl sulfonate (SDS) as the surfactant and the mixture of water and ethanol as the solvent. The control experiment of solvent reveals ethanol and water are responsible for the formation of sphere and interior cavity, respectively. Besides, SDS can assist the growth of core-shell structure, and the sizes of sphere and interior cavity can be tuned by regulating the reaction time or temperature. UV-vis absorption proves core-shell structure with interior cavity can increase the absorption of incident light to enhance the optical activity of final product. The calculated bandgap and photoluminescence (PL) analyses reveal the coexistence of rutile in final product can optimize the bandgap to 3.03 eV and delay the charge recombination. As a result, an effective photocatalytic hydrogen evolution under full spectrum irradiation can be harvested by the as-synthesized core-shell spheres to reach a quantum yield, approximately 9.57% at 340 nm wavelength.

  19. Global optimization and oxygen dissociation on polyicosahedral Ag32Cu6 core-shell cluster for alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Chen, F. Y.; Wu, X. Q.

    2015-07-01

    The structure of 38 atoms Ag-Cu cluster is studied by using a combination of a genetic algorithm global optimization technique and density functional theory (DFT) calculations. It is demonstrated that the truncated octahedral (TO) Ag32Cu6 core-shell cluster is less stable than the polyicosahedral (pIh) Ag32Cu6 core-shell cluster from the atomistic models and the DFT calculation shows an agreeable result, so the newfound pIh Ag32Cu6 core-shell cluster is further investigated for potential application for O2 dissociation in oxygen reduction reaction (ORR). The activation energy barrier for the O2 dissociation on pIh Ag32Cu6 core-shell cluster is 0.715 eV, where the d-band center is -3.395 eV and the density of states at the Fermi energy level is maximal for the favorable absorption site, indicating that the catalytic activity is attributed to a maximal charge transfer between an oxygen molecule and the pIh Ag32Cu6 core-shell cluster. This work revises the earlier idea that Ag32Cu6 core-shell nanoparticles are not suitable as ORR catalysts and confirms that Ag-Cu nanoalloy is a potential candidate to substitute noble Pt-based catalyst in alkaline fuel cells.

  20. Global optimization and oxygen dissociation on polyicosahedral Ag32Cu6 core-shell cluster for alkaline fuel cells

    PubMed Central

    Zhang, N.; Chen, F. Y.; Wu, X.Q.

    2015-01-01

    The structure of 38 atoms Ag-Cu cluster is studied by using a combination of a genetic algorithm global optimization technique and density functional theory (DFT) calculations. It is demonstrated that the truncated octahedral (TO) Ag32Cu6 core-shell cluster is less stable than the polyicosahedral (pIh) Ag32Cu6 core-shell cluster from the atomistic models and the DFT calculation shows an agreeable result, so the newfound pIh Ag32Cu6 core-shell cluster is further investigated for potential application for O2 dissociation in oxygen reduction reaction (ORR). The activation energy barrier for the O2 dissociation on pIh Ag32Cu6 core-shell cluster is 0.715 eV, where the d-band center is −3.395 eV and the density of states at the Fermi energy level is maximal for the favorable absorption site, indicating that the catalytic activity is attributed to a maximal charge transfer between an oxygen molecule and the pIh Ag32Cu6 core-shell cluster. This work revises the earlier idea that Ag32Cu6 core-shell nanoparticles are not suitable as ORR catalysts and confirms that Ag-Cu nanoalloy is a potential candidate to substitute noble Pt-based catalyst in alkaline fuel cells. PMID:26148904

  1. Core-shell molecularly imprinted polymer nanoparticles with assistant recognition polymer chains for effective recognition and enrichment of natural low-abundance protein.

    PubMed

    Liu, Dejing; Yang, Qian; Jin, Susu; Song, Yingying; Gao, Junfei; Wang, Ying; Mi, Huaifeng

    2014-02-01

    Core-shell molecular imprinting of nanomaterials overcomes difficulties with template transfer and achieves higher binding capacities for macromolecular imprinting, which are more important to the imprinting of natural low-abundance proteins from cell extracts. In the present study, a novel strategy of preparing core-shell nanostructured molecularly imprinted polymers (MIPs) was developed that combined the core-shell approach with assistant recognition polymer chains (ARPCs). Vinyl-modified silica nanoparticles were used as support and ARPCs were used as additional functional monomers. Immunoglobulin heavy chain binding protein (BiP) from the endoplasmic reticulum (ER) was chosen as the model protein. The cloned template protein BiP was selectively assembled with ARPCs from their library, which contained numerous limited-length polymer chains with randomly distributed recognition and immobilization sites. The resulting complex was copolymerized onto the surface of vinyl-modified silica nanoparticles under low concentrations of the monomers. After template removal, core-shell-structured nanoparticles with a thin imprinted polymer layer were produced. The particles demonstrated considerably high adsorption capacity, fast adsorption kinetics and selective binding affinities toward the template BiP. Furthermore, the synthesized MIP nanoparticles successfully isolated cloned protein BiP from protein mixtures and highly enriched BiP from an ER extract containing thousands of kinds of proteins. The enrichment reached 115-fold and the binding capacity was 5.4 μg g(-1), which were higher than those achieved by using traditional MIP microspheres. The advantageous properties of MIP nanoparticles hold promise for further practical applications in biology, such as protein analysis and purification. PMID:24140608

  2. A new class of PANI-Ag core-shell nanorods with sensing dimensions.

    PubMed

    Shukla, Vineet K; Yadav, Poonam; Yadav, Raghvendra S; Mishra, Priya; Pandey, Avinash C

    2012-07-01

    A single-step, cost-effective and eco-safe synthesis of a new class of homogeneous silver-polyaniline (PANI-Ag) core-shell nanorods is carried out via mild photolysis by ultraviolet radiation from sunlight (SUN UV-radiation). X-ray diffraction (XRD) of these core-shell nanorods gives two additional peaks from PANI centered at 2θ = 20.5° and 24. 9°. A validation of the core-shell structural information is given by transmission electron spectroscopy (TEM) whereas the tubular shape morphology is determined by scanning electron microscopy (SEM). UV-Vis. absorption shows a strong blue-shift along with photoluminescence emission. Fourier transform-infrared spectroscopy (FT-IR) and energy dispersive X-ray spectroscopy (EDX) also support the core-shell formation. Thermogravimetric analysis (TGA) shows good thermal stability and allows excellent detection of hydrogen peroxide and hydrazine. The cyclic voltammetry (CV) results show excellent electro-activation, indicating its promising potential in sensing of clinical and environmental analytes. PMID:22669315

  3. Comparison of methanol and ethylene glycol oxidation by alloy and Core-Shell platinum based catalysts

    NASA Astrophysics Data System (ADS)

    Kaplan, D.; Burstein, L.; Rosenberg, Yu.; Peled, E.

    2011-10-01

    Two Core-Shell, RuCore-PtShell and IrNiCore-PtRuShell, XC72-supported catalyst were synthesized in a two-step deposition process with NaBH4 as reducing agent. The structure and composition of the Core-Shell catalysts were determined by EDS, XPS and XRD. Electrochemical characterization was performed with the use of cyclic voltammetry. Methanol and ethylene glycol oxidation activities of the Core-Shell catalysts (in terms of surface and mass activities) were studied at 80 °C and compared to those of a commercial Pt-Ru alloy catalyst. The surface activity of the alloy based catalyst, in the case of methanol oxidation, was found to be superior as a result of optimized surface Pt:Ru composition. However, the mass activity of the PtRu/IrNi/XC72 was higher than that of the alloy based catalyst by ∼50%. Regarding ethylene glycol oxidation, while the surface activity of the alloy based catalyst was slightly higher than that of the Pt/Ru/XC72 catalyst, the latter showed ∼66% higher activities in terms of A g-1 of Pt. These results show the potential of Core-Shell catalysts for reducing the cost of catalysts for DMFC and DEGFC.

  4. Fluorescent core-shell silica nanoparticles: an alternative radiative materials platform

    NASA Astrophysics Data System (ADS)

    Herz, Erik; Burns, Andrew; Lee, Stephanie; Sengupta, Prabuddha; Bonner, Daniel; Ow, Hooisweng; Liddell, Chekesha; Baird, Barbara; Wiesner, Ulrich

    2006-02-01

    We report on monodisperse fluorescent core-shell silica nanoparticles (C dots) with enhanced brightness and photostability as compared to parent free dye in aqueous solution. Dots containing either tetramethylrhodamine or 7-nitrobenz-2-oxa-1,3-diazole dyes with diameters ranging from tens of nanometers to microns are discussed. The benefits of the core-shell architecture are described in terms of enhanced fluorescent yield of the fluorophores in the quasi-solid-state environment within the particle as compared with parent free dye in water. Several applications of these particles in the fields of photonics and the life sciences are discussed. Specifically, fluorescent core-shell silica nanoparticles are investigated as an active medium for photonic building blocks assembled on zinc sulfide-based seed particles. Initial assembly results for these composite raspberry structures are shown. Finally, applications in the life sciences are explored, including targeting of specific antibody receptors using these single-emission nanoparticles. We expand on single-emission core-shell architecture to incorporate environmentally-sensitive fluorophores to create quantitative ratiometric nanoscale sensors capable of interrogating chemical concentrations on the sub-cellular to molecular levels and demonstrate initial results of intracellular pH imaging. The concept of a single particle laboratory (SPL) is introduced as an active investigator of its environment.

  5. Photo-physical properties enhancement of bare and core-shell quantum dots

    NASA Astrophysics Data System (ADS)

    Mumin, Md Abdul; Akhter, Kazi Farida; Charpentier, Paul A.

    2014-03-01

    Semiconductor nanocrystals (NCs) (also known as quantum dots, QDs) have attracted immense attention for their size-tunable optical properties that makes them impressive candidates for solar cells, light emitting devices, lasers, as well as biomedical imaging. However monodispersity, high and consistent photoluminescence, photostability, and biocompatibility are still major challenges. This work focuses on optimizing the photophysical properties and biocompatibility of QDs by forming core-shell nanostructures and their encapsulation by a carrier. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm sizes were synthesized using a facile approach based on pyrolysis of the single molecule precursors. After capping the CdS QDs with a thin layer of ZnS to reduce toxicity, the photoluminescence and photostability of the core-shell QDs was significantly enhanced. To make both the bare and core/shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interaction. This encapsulation enhanced the quantum yield and photostability compared to the bare QDs by providing much stronger resistance to oxidation and Oswald ripening of QDs. Encapsulation also improved biocompatibility of QDs that was evaluated with human umbilical vein endothelial cell lines (HUVEC).

  6. Photo-physical properties enhancement of bare and core-shell quantum dots

    SciTech Connect

    Mumin, Md Abdul Akhter, Kazi Farida Charpentier, Paul A.

    2014-03-31

    Semiconductor nanocrystals (NCs) (also known as quantum dots, QDs) have attracted immense attention for their size-tunable optical properties that makes them impressive candidates for solar cells, light emitting devices, lasers, as well as biomedical imaging. However monodispersity, high and consistent photoluminescence, photostability, and biocompatibility are still major challenges. This work focuses on optimizing the photophysical properties and biocompatibility of QDs by forming core-shell nanostructures and their encapsulation by a carrier. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm sizes were synthesized using a facile approach based on pyrolysis of the single molecule precursors. After capping the CdS QDs with a thin layer of ZnS to reduce toxicity, the photoluminescence and photostability of the core-shell QDs was significantly enhanced. To make both the bare and core/shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interaction. This encapsulation enhanced the quantum yield and photostability compared to the bare QDs by providing much stronger resistance to oxidation and Oswald ripening of QDs. Encapsulation also improved biocompatibility of QDs that was evaluated with human umbilical vein endothelial cell lines (HUVEC)

  7. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  8. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2013-03-26

    Graded core/shell semiconductor nanorods and shapped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  9. One-pot synthesis of hematite@graphene core@shell nanostructures for superior lithium storage

    NASA Astrophysics Data System (ADS)

    Chen, Dezhi; Quan, Hongying; Liang, Junfei; Guo, Lin

    2013-09-01

    Novel hematite@graphene composites have been successfully synthesized by a one-pot surfactant governed approach under mild wet-chemical conditions. A series of characterizations including X-ray diffraction (XRD), Raman spectrum, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicated that the hematite nanoparticles with relatively uniform size were encapsulated by graphene layers and were able to form core-shell nanostructures. The electrochemical properties of hematite@graphene core-shell nanostructures as anodes for lithium-ion batteries were evaluated by galvanostatic charge-discharge and AC impedance spectroscopy techniques. The as-prepared hematite@graphene core-shell nanostructures exhibited a high reversible specific capacity of 1040 mA h g-1 at a current density of 200 mA g-1 (0.2 C) after 180 cycles and excellent rate capability and long cycle life. Furthermore, a reversible capacity as high as 500 mA h g-1 was still achieved after 200 cycles even at a high rate of 6 C. The electrochemical test results show that the hematite@graphene composites prepared by the one-pot wet chemical method are promising anode materials for lithium-ion batteries.Novel hematite@graphene composites have been successfully synthesized by a one-pot surfactant governed approach under mild wet-chemical conditions. A series of characterizations including X-ray diffraction (XRD), Raman spectrum, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicated that the hematite nanoparticles with relatively uniform size were encapsulated by graphene layers and were able to form core-shell nanostructures. The electrochemical properties of hematite@graphene core-shell nanostructures as anodes for lithium-ion batteries were evaluated by galvanostatic charge-discharge and AC impedance spectroscopy techniques. The as-prepared hematite@graphene core-shell nanostructures exhibited a high reversible specific capacity of 1040 mA h g-1 at a

  10. Multifunctional Au-Fe3O4@MOF core-shell nanocomposite catalysts with controllable reactivity and magnetic recyclability.

    PubMed

    Ke, Fei; Wang, Luhuan; Zhu, Junfa

    2015-01-21

    The recovery and reuse of expensive catalysts are important in both heterogeneous and homogeneous catalysis due to economic and environmental reasons. This work reports a novel multifunctional magnetic core-shell gold catalyst which can be easily prepared and shows remarkable catalytic properties in the reduction of 4-nitrophenol. The novel Au-Fe3O4@metal-organic framework (MOF) catalyst consists of a superparamagnetic Au-Fe3O4 core and a porous MOF shell with controllable thickness. Small Au nanoparticles (NPs) of 3-5 nm are mainly sandwiched between the Fe3O4 core and the porous MOF shell. Catalytic studies show that the core-shell structured Au-Fe3O4@MOF catalyst has a much higher catalytic activity than other reported Au-based catalysts toward the reduction of 4-nitrophenol. Moreover, this catalyst can be easily recycled due to the presence of the superparamagnetic core. Therefore, compared to conventional catalysts used in the reduction of 4-nitrophenol, this porous MOF-based magnetic catalyst is green, cheap and promising for industrial applications. PMID:25486865

  11. Enrichment of magnetic alignment stimulated by {gamma}-radiation in core-shell type nanoparticle Mn-Zn ferrite

    SciTech Connect

    Naik, P. P.; Tangsali, R. B.; Sonaye, B.; Sugur, S.

    2013-02-05

    Core shell type nanoparticle Mn{sub x}Zn{sub 1-x}Fe{sub 2}O{sub 4} systems with x=0.55, 0.65 and 0.75 were prepared using autocombustion method. The systems were characterized using tools like XRD and IR for structure confirmation. Magnetic parameter measurements like Saturation magnetization and coercivity were obtained from hysteresis loop which exhibited a symmetry shift due to core shell nature of the nanoparticles. Nanoparticles of particle size between 21.2nm to 25.7nm were found to show 20 percent shrinkage after being radiated by the {gamma}-radiation. This is due to variation in the cation distribution which also affects the cell volume of the cubic cell. Lattice constant reduction observed is reflected in the magnetic properties of the samples. A considerable hike in the saturation magnetization of the samples was observed due to enrichment of magnetic alignment in the magnetic core of the particles. Samples under investigation were irradiated with gamma radiation from Co{sup 60} source for different time intervals.

  12. Synthesis of Co/MFe{sub 2}O{sub 4} (M=Fe, Mn) core/shell nanocomposite particles

    SciTech Connect

    Peng Sheng; Xie Jin; Sun Shouheng

    2008-07-15

    Monodispersed cobalt nanoparticles (NPs) with controllable size (8-14 nm) have been synthesized using thermal decomposition of dicobaltoctacarbonyl in organic solvent. The as-synthesized high magnetic moment (125 emu/g) Co NPs are dispersible in various organic solvents, and can be easily transferred into aqueous phase by surface modification using phospholipids. However, the modified hydrophilic Co NPs are not stable as they are quickly oxidized, agglomerated in buffer. Co NPs are stabilized by coating the MFe{sub 2}O{sub 4} (M=Fe, Mn) ferrite shell. Core/shell structured bimagnetic Co/MFe{sub 2}O{sub 4} nanocomposites are prepared with tunable shell thickness (1-5 nm). The Co/MFe{sub 2}O{sub 4} nanocomposites retain the high magnetic moment density from the Co core, while gaining chemical and magnetic stability from the ferrite shell. Compared to Co NPs, the nanocomposites show much enhanced stability in buffer solution at elevated temperatures, making them promising for biomedical applications. - Graphical abstract: The 10 nm/3 nm Co/MFe{sub 2}O{sub 4} (M=Fe, Mn) bimagnetic core/shell nanocomposites are synthesized from the surface coating of ferrite shell over 10 nm Co nanoparticle seeds. The nanocomposites show much enhanced chemical and magnetic stability in solid state, organic solution and aqueous phase, and are promising for biomedical applications.

  13. Water-Soluble Fluorescent CdTe/ZnSe Core/Shell Quantum Dot: Aqueous Phase Synthesis and Cytotoxicity Assays.

    PubMed

    Li, Yansheng; Wang, Wenqian; Zhao, Dan; Chen, Peng; Du, Hongwu; Wen, Yongqiang; Zhang, Xueji

    2015-06-01

    In this manuscript, we demonstrate a novel, facile and environmentally friendly method to directly obtain CdTe/ZnSe core/shell QDs in the aqueous phase based on the method of epitaxial growth of ZnSe shells on CdTe cores. The ZnSe shell and the capping reagent glutathione of the CdTe/ZnSe core/shell QDs greatly increased the biocompatibility and stability of the original CdTe cores. The optical property of the as-prepared CZ QDs could be controlled by precisely adjusting the size of CdTe cores, which showed broad emission spectra from 530 to 688 nm. The crystalline structure of the CZ QDs was extensively characterized by XRD, TEM and HRTEM, etc. Furthermore, since there were several functional groups on glutathione molecules, the QDs could be potentially used for connecting other functional small molecules, biomolecules or nanoparticles. Such QDs have bright future perspectives in the development biological and nanomedical fields. PMID:26369092

  14. Tailoring magnetic and photoluminescence properties in ZnS/ZnO core/shell nanostructures through Cr doping

    NASA Astrophysics Data System (ADS)

    Chawla, Santa; Sharma, Simmi; Kotnala, R. K.

    2013-11-01

    Work on doped inverted core/shell semiconductor structure and study of their magnetic and luminescence properties is very rare. We have successfully prepared core/shell (C/S) nanostructure of important semiconductors ZnS core/ZnO shell with doping of chromium in both core and shell regions for tailoring magnetic and luminescence properties. Cooperative exchange of pinned spins at the interface of core and shell magnetic regions lead to ferromagnetism in ZnS:Cr/ZnO:Cr C/S nanoparticles (NP) at room temperature. Ferromagnetic interaction enhances at low temperature. Growth of hexagonal ZnO shell on cubic ZnS NPs in coprepitous aqueous solution has been confirmed by XRD and HRTEM analysis. Substitutional transition metal Cr in ZnS core and/or ZnO shell region could induce magnetic moments, create spin ordering and pinning while on C/S interface and also domain alignment leading to different magnetic states in varied C/S architecture. Cr also induces blue photoluminescence in doped ZnS/ZnO C/S NPs thus paving a possibility of tailoring multifunctional properties in C/S semiconductors architecture.

  15. Gate field induced switching of electronic current in Si-Ge Core-Shell nanowire quantum dots: A first principles study

    NASA Astrophysics Data System (ADS)

    Dhungana, Kamal B.; Jaishi, Meghnath; Pati, Ranjit

    Core-shell nanowires are formed by varying the radial composition of the nanowires. One of the most widely studied core-shell nanowire groups in recent years is the Si-Ge and Ge-Si core-shell nanowires. Compared to their pristine counterparts, they are reported to have superior electronic properties. For example, the scaled ON state current value in a Ge-Si core-shell nanowire field effect transistor (FET) is reported to be three to four times higher than that observed in state-of-the-art-metal oxide semiconductor FET (MOSFET) (Nature, 441, 489 (2006)). Here, we study the transport properties of the pristine Si and Si-Ge core-shell nanowire quantum dots of similar dimension to understand the superior performance of Si-Ge core-shell nanowire field effect transistor. Our calculations yield excellent gate field induced switching behavior in current for both pristine Si and Si-Ge core-shell hetero-structure nanowire quantum dots. The threshold gate bias for ON/OFF switching in the Si-Ge core-shell nanowire is found to be much smaller than that found in the pristine Si nanowire. A single particle many-body Green's function approach in conjunction with density functional theory is employed to calculate the electronic current.

  16. Green synthesis and surface properties of Fe3O4@SA core-shell nanocomposites

    NASA Astrophysics Data System (ADS)

    Cao, Huimin; Li, Juchuan; Shen, Yuhua; Li, Shikuo; Huang, Fangzhi; Xie, Anjian

    2014-05-01

    In this paper, a one-step, economic and green approach was explored to prepare Fe3O4 nanoparticles by using L-cysteine as reducer and disperser without any inert gas protection. The Fe3O4 nanoparticles were then modified with stearic acid (SA) to form Fe3O4@SA core-shell nanocomposites. The experiment results indicate that the core-shell nanocomposites prepared could form monolayer on the water surface or films by means of Langmuir-Blodgett (LB) technology due to their hydrophobic and lipophilic properties. Also the composites exhibit paramagnetism, which make product dispersed stably in the oil medium to form magnetic fluid. Moreover, they are developed as sorbents to remove oil from water surface.

  17. Fabrication of Te@Au core-shell hybrids for efficient ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Jin, Huile; Wang, Demeng; Zhao, Yuewu; Zhou, Huan; Wang, Shun; Wang, Jichang

    2012-10-01

    Using Au nanoparticles to catalyze the oxidation of alcohols has garnered increasing attention due to its potential application in direct alcohol fuel cells. In this research Te@Au core-shell hybrids were fabricated for the catalytic oxidation of ethanol, where the preparation procedure involved the initial production of Te crystals with different microstructures and the subsequent utilization of the Te crystal as a template and reducing agent for the production of Te@Au hybrids. The as-prepared core-shell hybrids were characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction techniques. Electrochemical measurements illustrate that the hybrids have great electrocatalytic activity and stability toward ethanol oxidation in alkaline media. The enhanced electrocatalytic property may be attributed to the cooperative effects between the metal and semiconductor and the presence of a large number of active sites on the hybrids surface.

  18. Size-controlled synthesis of thermal stable single-cored Ru@H-SiO2 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Yu, Xiaolong; Yu, Hongbo; Lim, Zi-Yian; Yang, Guangming; Xie, Zhaohui; Zhou, Shenghu; Yin, Hongfeng

    2016-06-01

    Single-cored Ru@H-SiO2 (H: hollow) core-shell nanoparticles (NPs) with around 4.3 nm Ru cores and hollow SiO2 shells were prepared successfully. In this synthetic process, we obtained multi-cored Ru@SiO2 NPs initially, single-cored RuO2@H-SiO2 NPs during treatment, and single-cored Ru@H-SiO2 NPs in the end. The Ru@SiO2 NPs were prepared by water-in-oil microemulsion method, and the size and core number of Ru@SiO2 NPs can be controlled. Single-cored RuO2@H-SiO2 NPs and Ru@H-SiO2 NPs were successively obtained by calcination and reduction. The structure showed promising aggregate-resistant performance and potential application in catalysis.

  19. Spherical core-shell magnetic particles constructed by main-chain palladium N-heterocyclic carbenes

    NASA Astrophysics Data System (ADS)

    Zhao, Huaixia; Li, Liuyi; Wang, Jinyun; Wang, Ruihu

    2015-02-01

    The encapsulation of the functional species on magnetic core is a facile approach for the synthesis of core-shell magnetic materials, and surface encapsulating matrices play crucial roles in regulating their properties and applications. In this study, two core-shell palladium N-heterocyclic carbene (NHC) particles (Fe3O4@PNP1 and Fe3O4@PNP2) were prepared by a one-pot reaction of semi-rigid tripodal imidazolium salts and palladium acetate in the presence of magnetite nanoparticles. The magnetite nanoparticles are encapsulated inside the main-chain palladium, which act as cores. The conjugated effects of triphenyltriazine and triphenylbenzene in the imidazolium salts have important influence on their physical properties and catalytic performances. Fe3O4@PNP2 shows better recyclability than Fe3O4@PNP1. Unexpectedly, Pd(ii) is well maintained after six consecutive catalytic runs in Fe3O4@PNP2, and Pd(0) and Pd(ii) coexist in Fe3O4@PNP1 under the same conditions; moreover, the morphologies of these spherical core-shell particles show no significant variation after six consecutive catalytic runs.The encapsulation of the functional species on magnetic core is a facile approach for the synthesis of core-shell magnetic materials, and surface encapsulating matrices play crucial roles in regulating their properties and applications. In this study, two core-shell palladium N-heterocyclic carbene (NHC) particles (Fe3O4@PNP1 and Fe3O4@PNP2) were prepared by a one-pot reaction of semi-rigid tripodal imidazolium salts and palladium acetate in the presence of magnetite nanoparticles. The magnetite nanoparticles are encapsulated inside the main-chain palladium, which act as cores. The conjugated effects of triphenyltriazine and triphenylbenzene in the imidazolium salts have important influence on their physical properties and catalytic performances. Fe3O4@PNP2 shows better recyclability than Fe3O4@PNP1. Unexpectedly, Pd(ii) is well maintained after six consecutive catalytic runs in

  20. Synthesis of one-dimensional CdS@TiO₂ core-shell nanocomposites photocatalyst for selective redox: the dual role of TiO₂ shell.

    PubMed

    Liu, Siqi; Zhang, Nan; Tang, Zi-Rong; Xu, Yi-Jun

    2012-11-01

    One-dimensional (1D) CdS@TiO₂ core-shell nanocomposites (CSNs) have been successfully synthesized via a two-step solvothermal method. The structure and properties of 1D CdS@TiO₂ core-shell nanocomposites (CdS@TiO₂ CSNs) have been characterized by a series of techniques, including X-ray diffraction (XRD), ultraviolet-visible-light (UV-vis) diffuse reflectance spectra (DRS), field-emission scanning electron microscopy (FESEM), photoluminescence spectra (PL), and electron spin resonance (ESR) spectroscopy. The results demonstrate that 1D core-shell structure is formed by coating TiO₂ onto the substrate of CdS nanowires (NWs). The visible-light-driven photocatalytic activities of the as-prepared 1D CdS@TiO₂ CSNs are evaluated by selective oxidation of alcohols to aldehydes under mild conditions. Compared to bare CdS NWs, an obvious enhancement of both conversion and yield is achieved over 1D CdS@TiO₂ CSNs, which is ascribed to the prolonged lifetime of photogenerated charge carriers over 1D CdS@TiO₂ CSNs under visible-light irradiation. Furthermore, it is disclosed that the photogenerated holes from CdS core can be stuck by the TiO₂ shell, as evidenced by controlled radical scavenger experiments and efficiently selective reduction of heavy-metal ions, Cr(VI), over 1D CdS@TiO₂ CSNs, which consequently leads to the fact that the reaction mechanism of photocatalytic oxidation of alcohols over 1D CdS@TiO₂ CSNs is apparently different from that over 1D CdS NWs under visible-light irradiation. It is hoped that our work could not only offer useful information on the fabrication of various specific 1D core-shell nanostructures, but also open a new doorway of such 1D core-shell semiconductors as visible-light photocatalysts in the promising field of selective transformations. PMID:23131118