Science.gov

Sample records for coring fluids

  1. Soft core thermodynamics from self-consistent hard core fluids.

    PubMed

    Schöll-Paschinger, Elisabeth; Reiner, Albert

    2006-10-28

    In an effort to generalize the self-consistent Ornstein-Zernike approximation (SCOZA)-an accurate liquid state theory that has been restricted so far to hard core systems-to arbitrary soft core systems we study a combination of SCOZA with a recently developed perturbation theory. The latter was constructed by Ben-Amotz and Stell [J. Phys. Chem. B 108, 6877 (2004)] as a reformulation of the Weeks-Chandler-Andersen [J. Chem. Phys. 54, 5237 (1971)] perturbation theory directly in terms of an arbitrary hard sphere reference system. We investigate the accuracy of the combined approach for the Lennard-Jones fluid in comparison with simulation data and pure perturbation theory predictions and determine the dependence of the thermodynamic properties and the phase behavior on the choice of the effective hard core diameter of the reference system. PMID:17092101

  2. Lunar Fluid Core and Solid-Body Tides

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2005-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2-5] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening has been improving [3,5] and now seems significant. This strengthens the case for a fluid lunar core.

  3. Anomalous structure and dynamics of the Gaussian-core fluid.

    PubMed

    Krekelberg, William P; Kumar, Tanuj; Mittal, Jeetain; Errington, Jeffrey R; Truskett, Thomas M

    2009-03-01

    It is known that there are thermodynamic states for which the Gaussian-core fluid displays anomalous properties such as expansion upon isobaric cooling (density anomaly) and increased single-particle mobility upon isothermal compression (self-diffusivity anomaly). Here, we investigate how temperature and density affect its short-range translational structural order, as characterized by the two-body excess entropy. We find that there is a wide range of conditions for which the short-range translational order of the Gaussian-core fluid decreases upon isothermal compression (structural order anomaly). As we show, the origin of the structural anomaly is qualitatively similar to that of other anomalous fluids (e.g., water or colloids with short-range attractions) and is connected to how compression affects static correlations at different length scales. Interestingly, we find that the self-diffusivity of the Gaussian-core fluid obeys a scaling relationship with the two-body excess entropy that is very similar to the one observed for a variety of simple liquids. One consequence of this relationship is that the state points for which structural, self-diffusivity, and density anomalies of the Gaussian-core fluid occur appear as cascading regions on the temperature-density plane; a phenomenon observed earlier for models of waterlike fluids. There are, however, key differences between the anomalies of Gaussian-core and waterlike fluids, and we discuss how those can be qualitatively understood by considering the respective interparticle potentials of these models. Finally, we note that the self-diffusivity of the Gaussian-core fluid obeys different scaling laws depending on whether the two-body or total excess entropy is considered. This finding, which deserves more comprehensive future study, appears to underscore the significance of higher-body correlations for the behavior of fluids with bounded interactions. PMID:19391927

  4. Fluid flow near the surface of earth's outer core

    NASA Technical Reports Server (NTRS)

    Bloxham, Jeremy; Jackson, Andrew

    1991-01-01

    This review examines the recent attempts at extracting information on the pattern of fluid flow near the surface of the outer core from the geomagnetic secular variation. Maps of the fluid flow at the core surface are important as they may provide some insight into the process of the geodynamo and may place useful constraints on geodynamo models. In contrast to the case of mantle convection, only very small lateral variations in core density are necessary to drive the flow; these density variations are, by several orders of magnitude, too small to be imaged seismically; therefore, the geomagnetic secular variation is utilized to infer the flow. As substantial differences exist between maps developed by different researchers, the possible underlying reasons for these differences are examined with particular attention given to the inherent problems of nonuniqueness.

  5. Some anticipated contributions to core fluid dynamics from the GRM

    NASA Technical Reports Server (NTRS)

    Vanvorhies, C.

    1985-01-01

    It is broadly maintained that the secular variation (SV) of the large scale geomagnetic field contains information on the fluid dynamics of Earth's electrically conducting outer core. The electromagnetic theory appropriate to a simple Earth model has recently been combined with reduced geomagnetic data in order to extract some of this information and ascertain its significance. The simple Earth model consists of a rigid, electrically insulating mantle surrounding a spherical, inviscid, and perfectly conducting liquid outer core. This model was tested against seismology by using truncated spherical harmonic models of the observed geomagnetic field to locate Earth's core-mantle boundary, CMB. Further electromagnetic theory has been developed and applied to the problem of estimating the horizontal fluid motion just beneath CMB. Of particular geophysical interest are the hypotheses that these motions: (1) include appreciable surface divergence indicative of vertical motion at depth, and (2) are steady for time intervals of a decade or more. In addition to the extended testing of the basic Earth model, the proposed GRM provides a unique opportunity to test these dynamical hypotheses.

  6. Review of coaxial flow gas core nuclear rocket fluid mechanics

    NASA Technical Reports Server (NTRS)

    Weinstein, H.

    1976-01-01

    Almost all of the fluid mechanics research associated with the coaxial flow gas core reactor ended abruptly with the interruption of NASA's space nuclear program because of policy and budgetary considerations in 1973. An overview of program accomplishments is presented through a review of the experiments conducted and the analyses performed. Areas are indicated where additional research is required for a fuller understanding of cavity flow and of the factors which influence cold and hot flow containment. A bibliography is included with graphic material.

  7. NMR imaging of fluid dynamics in reservoir core.

    PubMed

    Baldwin, B A; Yamanashi, W S

    1988-01-01

    A medical NMR imaging instrument has been modified to image water and oil in reservoir rocks by the construction of a new receiving coil. Both oil and water inside the core produced readily detectable proton NMR signals, while the rock matrix produced no signal. Because of similar T2 NMR relaxation times, the water was doped with a paramagnetic ion, Mn+2, to reduce its T2 relaxation time. This procedure enhanced the separation between the oil and water phases in the resulting images. Sequential measurements, as water imbibed into one end and oil was expelled from the other end of a core plug, produced a series of images which showed the dynamics of the fluids. For water-wet Berea Sandstone a flood front was readily observed, but some of the oil was apparently left behind in small, isolated pockets which were larger than individual pores. After several additional pore volumes of water flowed through the plug the NMR image indicated a homogeneous distribution of oil. The amount of residual oil, as determined from the ratio of NMR intensities, closely approximated the residual oil saturation of fully flooded Berea samples measured by Dean-Stark extraction. A Berea sandstone core treated to make it partially oil-wet, did not show a definitive flood front, but appeared to channel the water around the perimeter of the core plug. The relative ease with which these images were made indicates that NMR imaging can be a useful technique to follow the dynamics of oil and water through a core plug for a variety of production processes. PMID:3226235

  8. Discrete perturbation theory for continuous soft-core potential fluids.

    PubMed

    Cervantes, L A; Jaime-Muñoz, G; Benavides, A L; Torres-Arenas, J; Sastre, F

    2015-03-21

    In this work, we present an equation of state for an interesting soft-core continuous potential [G. Franzese, J. Mol. Liq. 136, 267 (2007)] which has been successfully used to model the behavior of single component fluids that show some water-type anomalies. This equation has been obtained using discrete perturbation theory. It is an analytical expression given in terms of density, temperature, and the set of parameters that characterize the intermolecular interaction. Theoretical results for the vapor-liquid phase diagram and for supercritical pressures are compared with previous and new simulation data and a good agreement is found. This work also clarifies discrepancies between previous Monte Carlo and molecular dynamics simulation results for this potential. PMID:25796255

  9. Equation of state and critical point behavior of hard-core double-Yukawa fluids.

    PubMed

    Montes, J; Robles, M; López de Haro, M

    2016-02-28

    A theoretical study on the equation of state and the critical point behavior of hard-core double-Yukawa fluids is presented. Thermodynamic perturbation theory, restricted to first order in the inverse temperature and having the hard-sphere fluid as the reference system, is used to derive a relatively simple analytical equation of state of hard-core multi-Yukawa fluids. Using such an equation of state, the compressibility factor and phase behavior of six representative hard-core double-Yukawa fluids are examined and compared with available simulation results. The effect of varying the parameters of the hard-core double-Yukawa intermolecular potential on the location of the critical point is also analyzed using different perspectives. The relevance of this analysis for fluids whose molecules interact with realistic potentials is also pointed out. PMID:26931708

  10. Stability of the subseismic wave equation for the Earth's fluid core

    NASA Astrophysics Data System (ADS)

    Friedlander, Susan

    The effects of compressibility on the stability of internal oscillations in the Earth's fluid core are examined in the context of the subseismic approximation for the equations of motion describing a rotating, stratified, self-gravitating, compressible fluid in a thick shell. It is shown that in the case of a bounded fluid the results are closely analogous to those derived under the Boussinesq approximation.

  11. Turbulence coefficients and stability studies for the coaxial flow or dissimiliar fluids. [gaseous core nuclear reactors

    NASA Technical Reports Server (NTRS)

    Weinstein, H.; Lavan, Z.

    1975-01-01

    Analytical investigations of fluid dynamics problems of relevance to the gaseous core nuclear reactor program are presented. The vortex type flow which appears in the nuclear light bulb concept is analyzed along with the fluid flow in the fuel inlet region for the coaxial flow gaseous core nuclear reactor concept. The development of numerical methods for the solution of the Navier-Stokes equations for appropriate geometries is extended to the case of rotating flows and almost completes the gas core program requirements in this area. The investigations demonstrate that the conceptual design of the coaxial flow reactor needs further development.

  12. Surface Deformation Caused by Pressure Changes in the Fluid Core

    NASA Technical Reports Server (NTRS)

    Fang, Ming; Hager, Bradford H.; Herring, Thomas A.

    1995-01-01

    Pressure load Love numbers are presented for the mantle deformation induced by the variation of the pressure field at the core mantle boundary (CNB). We find that the CMB geostrophic pressure fields, derived from 'frozen-flux' core surface flow estimates at epochs 1965 and 1975, produce a relative radial velocity (RRV) field in the range of 3mm/decade with uplift near the equator and subsidence near the poles. The contribution of this mechanism to the change in the length of day (l.o.d) is small --- about 2.3 x 10(exp -2) ms/decade. The contribution to the time variation of the ellipticity coefficient is more important --- -1.3 x 10(exp -11)/yr.

  13. Highly responsive core-shell microactuator arrays for use in viscous and viscoelastic fluids

    PubMed Central

    Fiser, Briana L.; Shields, Adam R.; Falvo, M. R.; Superfine, R.

    2015-01-01

    We present a new fabrication method to produce arrays of highly responsive polymer-metal core-shell magnetic microactuators. The core-shell fabrication method decouples the elastic and magnetic structural components such that the actuator response can be optimized by adjusting the core-shell geometry. Our microstructures are 10 μm long, 550 nm in diameter, and electrochemically fabricated in particle track-etched membranes, comprising a poly(dimethylsiloxane) core with a 100 nm Ni shell surrounding the upper 3–8 μm. The structures can achieve deflections of nearly 90° with moderate magnetic fields and are capable of driving fluid flow in a fluid 550 times more viscous than water. PMID:26405376

  14. Magnetic field sensor based on selectively magnetic fluid infiltrated dual-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Gangwar, Rahul Kumar; Bhardwaj, Vanita; Singh, Vinod Kumar

    2016-02-01

    We reported the modeling result of selectively magnetic fluid infiltrated dual-core photonic crystal fiber based magnetic field sensor. Inside the cross-section of the designed photonic crystal fiber, the two fiber cores filled with magnetic fluid (Fe3O4) form two independent waveguides with mode coupling. The mode coupling under different magnetic field strengths is investigated theoretically. The sensitivity of the sensor as a function of the structural parameters of the photonic crystal fiber is calculated. The result shows that the proposed sensing device with 1 cm photonic crystal fiber length has a large sensitivity of 305.8 pm/Oe.

  15. Bacterial study of Vostok drilling fluid: the tool to make ice core finding confident

    NASA Astrophysics Data System (ADS)

    Alekhina, I. A.; Petit, J. R.; Lukin, V. V.; Bulat, S. A.

    2003-04-01

    Decontamination of Vostok ice core is a critical issue in molecular biology studies. Core surface contains a film of hardly removable 'dirty' drilling fluid representing a mixture of polyhydrocarbons (PHC) including polyaromatic hydrocarbons (PAH) and freon. To make ice microbial finding more confident the original Vostok drilling fluid sampled from different depths (110m - 3600m) was analyzed for bacterial content by ribosomal DNA sequencing. Total, 33 clones of 16S ribosomal DNA were recovered from four samples of drilling fluid at 110, 2750, 3400, and 3600m leading to identification of 8 bacterial species. No overlapping was observed even for neighboring samples (3400m and 3600m). At present four major bacteria with the titer more than 103-104 cells per ml (as estimated from PCR results) are identified. Among them we found: unknown representative of Desulfobacteraceae which are able to oxidize sulphates and degrade benzenes (110m); PAH-degrading alpha-proteobacterium Sphingomonas natatoria (3400m); alpha-proteobacterium representing closely-related group of Sphingomonas sp. (e.g., S. aurantiaca) which are able to degrade PAH as well, and human pathogen closely related to Haloanella gallinarum of CFB group (3600m). Four additional species were revealed as single clones and showed relatedness to human pathogens and saprophytes as well as soil bacteria. These bacteria may represent drilling fluid contaminants introduced during its sampling or DNA extraction procedure. Of four major bacteria revealed, one species, Sphingomonas natatoria, has been met by us in the Vostok core from 3607 m depth (AF532054) whereas another Sphingomonas sp. which we refer to as S. aurantiaca was found in Antarctic microbial endolithic community (AF548567), hydrocarbon-containing soil near Scott Base in Antarctica (AF184221) and even isolated from 3593m Vostok accretion ice (AF324199) and Taylor Dome core (AF395031). The source for major human pathogen-related bacteria is rather uncertain

  16. On the coupling of fluid dynamics and electromagnetism at the top of the earth's core

    NASA Technical Reports Server (NTRS)

    Benton, E. R.

    1985-01-01

    A kinematic approach to short-term geomagnetism has recently been based upon pre-Maxwell frozen-flux electromagnetism. A complete dynamic theory requires coupling fluid dynamics to electromagnetism. A geophysically plausible simplifying assumption for the vertical vorticity balance, namely that the vertical Lorentz torque is negligible, is introduced and its consequences are developed. The simplified coupled magnetohydrodynamic system is shown to conserve a variety of magnetic and vorticity flux integrals. These provide constraints on eligible models for the geomagnetic main field, its secular variation, and the horizontal fluid motions at the top of the core, and so permit a number of tests of the underlying assumptions.

  17. Novel magnetic field sensor based on magnetic fluids infiltrated dual-core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Li, Jianhua; Wang, Rong; Wang, Jingyuan; Zhang, Baofu; Xu, Zhiyong; Wang, Huali

    2014-03-01

    Novel magnetic field sensor based on magnetic fluids infiltrated dual-core Photonic Crystal Fibers (PCFs) is proposed in this paper. Inside the cross-section of the designed PCFs, the two fiber cores filled with magnetic fluids (Fe3O4) are separated by an air hole, and then form two independent waveguides with mode coupling. The mode coupling under different magnetic field strength is investigated theoretically. A novel and simple magnetic field sensing system is proposed and its sensing performances have been studied numerically. The results show that the magnetic field sensor with 15-cm PCFs has a large sensing range and high sensitivity of 4.80 pm/Oe. It provides a new feasible method to design PCF-based magnetic field sensor.

  18. Core-softened fluids as a model for water and the hydrophobic effect

    PubMed Central

    Huš, Matej; Urbic, Tomaz

    2013-01-01

    An interaction model with core-softened potential in three dimensions was studied by Monte Carlo computer simulations and integral equation theory. We investigated the possibility that a fluid with a core-softened potential can reproduce anomalies found experimentally in liquid water, such as the density anomaly, the minimum in the isothermal compressibility as a function of temperature, and others. Critical points of the fluid were also determined. We provided additional arguments that the old notion, postulating that only angular-dependent interactions result in density anomaly, is incorrect. We showed that potential with two characteristic distances is sufficient for the system to exhibit water-like behavior and anomalies, including the famous density maximum. We also found that this model can properly describe the hydrophobic effect. PMID:24070294

  19. Spontaneous Ferroelectric Order in a Bent-Core Smectic Liquid Crystal of Fluid Orthorhombic Layers

    SciTech Connect

    R Reddy; C Zhu; R Shao; E Korblova; T Gong; Y Shen; M Glaser; J Maclennan; D Walba; N Clark

    2011-12-31

    Macroscopic polarization density, characteristic of ferroelectric phases, is stabilized by dipolar intermolecular interactions. These are weakened as materials become more fluid and of higher symmetry, limiting ferroelectricity to crystals and to smectic liquid crystal stackings of fluid layers. We report the SmAP{sub F}, the smectic of fluid polar orthorhombic layers that order into a three-dimensional ferroelectric state, the highest-symmetry layered ferroelectric possible and the highest-symmetry ferroelectric material found to date. Its bent-core molecular design employs a single flexible tail that stabilizes layers with untilted molecules and in-plane polar ordering, evident in monolayer-thick freely suspended films. Electro-optic response reveals the three-dimensional orthorhombic ferroelectric structure, stabilized by silane molecular terminations that promote parallel alignment of the molecular dipoles in adjacent layers.

  20. A numerical model for elliptical instability of the Earth's fluid outer core

    NASA Astrophysics Data System (ADS)

    Seyed-Mahmoud, Behnam; Henderson, Gary; Aldridge, Keith

    2000-01-01

    A dynamical model is proposed for the elliptical instability that has been reported by Aldridge et al. [Aldridge, K.D., Seyed-Mahmoud, B., Henderson, G.A., van Wijngaarden, W., 1997. Elliptical instability of the Earth's fluid core. Phys. Earth Planet. Inter., 103, 365-374] in connection with recent experiments on an ellipsoidal shell of rotating fluid. The frequencies and growth rates of the instability are obtained numerically by means of a Galerkin method that is based upon the normal modes of the contained fluid. A finite-element method has been employed to approximately solve the ill-posed Poincaré problem for the normal modes. The numerical results for a special case are compared with their analytical counterparts, and the agreement is to within 0.1% for shells of small ellipticity. Results are presented for other cases, including some where the boundary perturbation is allowed to rotate slowly with respect to the inertial frame. The conclusion is that such investigations are of geophysical interest, since tidal forcing might be sufficient to excite an elliptical instability of the fluid outer core of the Earth and thus contribute to the geomagnetic field.

  1. Dynamics of the Earth's fluid core: implementation of a Clairaut coordinate system

    NASA Astrophysics Data System (ADS)

    Seyed-Mahmoud, B.; Moradi, A.

    2013-12-01

    If the reference state of a rotating and self gravitating fluid body is one of hydrostatic equilibrium then the figure of the body is a spheroid such that a cross sectional area parallel to the equatorial plane of the body is a circle while that parallel to a meridional plane is an ellipse. The effect of the fluid body's flattened (spheroidal) figure is small on the frequencies of the body's short-period (shorter than a few hours in the case of the Earth) normal modes. For the log-period normal modes, however, these effects must be considered. Furthermore, the body's wobble and nutation modes owe their existence to its ellipsoidal figure. In the conventional approach to computing these frequencies, an orthogonal coordinate system is usually considered. It is then necessary to have the knowledge of the derivatives of the material properties of the body, such as the density and Lamé parameters, in order to include the effects of the ellipticity in the dynamical equations. In the available Earth models, however, these derivatives are not well defined. In order to minimize the effects of these derivatives in the treatment of the dynamical problems we use a non-orthogonal (Clairaut) coordinate system. Using this approach, we compute the frequencies and displacement eigenfunctions for some of the inertial modes of a realistic spheroidal model of the Earth's fluid core and compare them to the known results for an Earth model with a homogeneous and incompressible fluid core.

  2. Directed Fluid Flow Produced by Arrays of Magnetically Actuated Core-Shell Biomimetic Cilia

    NASA Astrophysics Data System (ADS)

    Fiser, B. L.; Shields, A. R.; Evans, B. A.; Superfine, R.

    2010-03-01

    We have developed a novel core-shell microstructure that we use to fabricate arrays of flexible, magnetically actuated biomimetic cilia. Our biomimetic cilia mimic the size and beat shape of biological cilia in order to replicate the transport of fluid driven by cilia in many biological systems including the determination of left-right asymmetry in the vertebrate embryonic nodal plate and mucociliary clearance in the lung. Our core-shell structures consist of a flexible poly(dimethylsiloxane) (PDMS) core surrounded by a shell of nickel approximately forty nanometers thick; by using a core-shell structure, we can tune the mechanical and magnetic properties independently. We present the fabrication process and the long-range transport that occurs above the beating biomimetic cilia tips and will report on progress toward biomimetic cilia induced flow in viscoelastic fluids similar to mucus in the human airway. These flows may have applications in photonics and microfluidics, and our structures may be further useful as sensors or actuators in microelectromechanical systems.

  3. Computational Fluid Dynamic Analysis of Core Bypass Flow Phenomena in a Prismatic VHTR

    SciTech Connect

    Hiroyuki Sato; Richard W. Johnson; Richard R. Schultz

    2010-09-01

    The core bypass flow in a prismatic very high temperature gas-cooled reactor (VHTR) is one of the important design considerations which impacts considerably on the integrity of reactor core internals including operating fuels. The interstitial gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The occurrence of hot spots in the core and lower plenum and hot streaking in the lower plenum (regions of very hot gas flow) will be affected by the bypass flow. In the present study, three-dimensional computational fluid dynamic (CFD) calculations of a typical prismatic VHTR are conducted to understand better the bypass flow phenomenon and establish the evaluation method in the reactor core using commercial CFD code FLUENT. Parametric calculations changing several factors in a on-twelfth sector of a fuel column are performed. The simulations show the impact of each factor on bypass flow and the flow and temperature distributions in the prismatic core. The factors inlcude inter-column gap-width, turbulence model, axial heat generation profile and geometry change from irradiation-induced shrinkage in the graphite block region. It is shown that bypass flow provides a significant cooling effect on the prismatic block and that the maximum fuel and coolant channel outlet temperatures increase with an increase in gap-width, especially when a peak radial factor is applied to the total heat generation rate. Also, the presence of bypass flow causes a large lateral temperature gradient in the block that may have repurcussions on the structural integrity of the block and on the neutronics. These results indicate that bypass flow has a significant effect on hot spots in the core and on the temperature of jets flowing from the core into the lower plenum.

  4. Microthermometry of fluid inclusions from the VC-1 core hole in Valles Caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Sasada, Masakatsu

    1988-06-01

    Fluid inclusions in vein quartz and calcite from core samples of the VC-1 hole were studied with microscope heating/freezing and crushing stages. All samples originate from hydrothermally altered Paleozoic rocks predating formation of the Jemez Mountains volcanic field and Valles caldera. Most homogenization temperatures (Th) of the liquid-rich inclusions are above the present well temperature, but some Th of primary inclusions from 515 m and those of secondary inclusions from 723 m fit the present well temperature curve measured 10 months after completion of the well. The maximum temperature recorded by the primary inclusions is 275°C from hydrothermal quartz in the Sandia Formation at 811-m depth. The total range of Th for samples from several depths (90°C) indicates cooling from the maximum temperature. The salinity of fluid inclusions in hydrothermal quartz and calcite is generally low, <1 wt % NaCl eq. High-salinity fluid, up to 5 wt % NaCl eq, has been found in several calcite veins from the lower part of the Madera Limestone. The salinity decreases with decrease of Th of the secondary inclusions, and that with lowest Th at the lower part of the Madera Limestone is similar to those from the other depths. These data show that early hot water circulation system involved several types of fluid, whereas the later one was a homogeneous fluid. The salinity of fluid inclusions in detrital quartz (presumably inherited inclusions) is higher than that in hydrothermal minerals. Some of these inclusions show extraordinary low temperatures of final melting point of ice (about -40°C), suggesting that a CaCl2 component is present. CO2 contents in fluid inclusions were estimated by the bubble behavior on crushing. Crushing results indicate that CO2 content of the early fluid is ≧0.35 wt %, and that of the later fluid is ˜0.2-0.3 wt %. Geothermal fluid trapped in the fluid inclusions representing the present temperature regime is comparable in composition to those from

  5. Syntectonic fluid flux during rift faulting: Record from the MIS core, Victoria Land Basin, Antarctica

    NASA Astrophysics Data System (ADS)

    Millan, C.; Wilson, T. J.; Paulsen, T. S.

    2009-12-01

    The McMurdo Ice Shelf project successfully recovered 1285 m of Neogene sedimentary core from the Victoria Land Basin, a large rift basin within the West Antarctic Rift System (WARS) of Antarctica. The core contains 1475 natural fractures that were logged as faults, veins and clastic dikes, associated with the southern extension of the Neogene-active? Terror Rift fault zone. Veins constitute about 625 of this population. Most veins are filled with calcite, although zeolites and minor chlorite are common towards the bottom of the core. In the lower ~300 m of the core, veins contain opening-mode fiber fills and are wavy to tightly folded due to vertical shortening. Folded, opening-mode folded veins are filled by calcite fibers that grew normal to vein walls, indicating the host sediment was cohesive enough to fracture but was not fully lithified and accommodated vein buckling during compaction. Fold hinges are fractured and wedging of vein segments is marked by overlapping tips separated by zones with strong chlorite and clay fabrics, suggesting shearing during further vertical contraction of the host rock. Calcite veins are commonly strongly twinned. Cathodoluminescence microscopy shows minor changes in color and intensity and minimal concentric or sectoral zoning, suggesting relatively rapid crystallization of fluids of similar chemistry. However, stable isotope analyses reveal large variations in values, with carbon values ranging from -21.91 to -7.15 (VPBD) and oxygen values ranging from -5.35 to -11.97 (VPBD). Further detailed investigation of the fracture fills using cathodoluminescence and electron microscopy combined with isotopic analysis of carbon and oxygen will document the generations of the filling material in more detail and will constrain the sources and evolution of the fluids. There has clearly been significant structural control on fluid pathways during lithification, compaction and diagenesis of strata deforming within the Terror Rift zone.

  6. Design of Gas-phase Synthesis of Core-Shell Particles by Computational Fluid - Aerosol Dynamics.

    PubMed

    Buesser, B; Pratsinis, S E

    2011-11-01

    Core-shell particles preserve the bulk properties (e.g. magnetic, optical) of the core while its surface is modified by a shell material. Continuous aerosol coating of core TiO2 nanoparticles with nanothin silicon dioxide shells by jet injection of hexamethyldisiloxane precursor vapor downstream of titania particle formation is elucidated by combining computational fluid and aerosol dynamics. The effect of inlet coating vapor concentration and mixing intensity on product shell thickness distribution is presented. Rapid mixing of the core aerosol with the shell precursor vapor facilitates efficient synthesis of hermetically coated core-shell nanoparticles. The predicted extent of hermetic coating shells is compared to the measured photocatalytic oxidation of isopropanol by such particles as hermetic SiO2 shells prevent the photocatalytic activity of titania. Finally the performance of a simpler, plug-flow coating model is assessed by comparisons to the present detailed CFD model in terms of coating efficiency and silica average shell thickness and texture. PMID:23729817

  7. Simultaneous solution for core magnetic field and fluid flow beneath an electrically conducting mantle

    NASA Astrophysics Data System (ADS)

    Voorhies, Goerte V.; Nishihama, Masahiro

    1994-04-01

    The effects of laterally homogeneous mantle electrical conductivity have been included in steady, frozen-flux core surface flow estimation along with refinements in method and weighting. The refined method allows simultaneous solution for both the initial radial geomagnetic field component at the core-mantle boundary and the subadjacent fluid motion; it also features Gauss' method for solving the nonlinear inverse problem associated with steady motional induction. The trade-off between spatial complexity of the derived flows and misfit to the weighted Definitive Geomagnetic Reference Field models is studied for various mantle conductivity profiles. For simple flow and a fixed initial geomagnetic condition a fairly high deep-mantle conductivity performs better than either insulating or weakly conducting profiles; however, a thin, very high conductivity layer at the base of the mantle performs almost as well. Simultaneous solution for both initial geomagnetic field and fluid flow reduces the misfit per degree of freedom even more than does changing the mantle conductivity profile. Moreover, when both core field and flow are estimated, the performance of the solutions and the derived flows become insensitive to the conductivity profile.

  8. Simultaneous solution for core magnetic field and fluid flow beneath an electrically conducting mantle

    NASA Technical Reports Server (NTRS)

    Voorhies, Goerte V.; Nishihama, Masahiro

    1994-01-01

    The effects of laterally homogeneous mantle electrical conductivity have been included in steady, frozen-flux core surface flow estimation along with refinements in method and weighting. The refined method allows simultaneous solution for both the initial radial geomagnetic field component at the core-mantle boundary and the subadjacent fluid motion; it also features Gauss' method for solving the nonlinear inverse problem associated with steady motional induction. The trade-off between spatial complexity of the derived flows and misfit to the weighted Definitive Geomagnetic Reference Field models is studied for various mantle conductivity profiles. For simple flow and a fixed initial geomagnetic condition a fairly high deep-mantle conductivity performs better than either insulating or weakly conducting profiles; however, a thin, very high conductivity layer at the base of the mantle performs almost as well. Simultaneous solution for both initial geomagnetic field and fluid flow reduces the misfit per degree of freedom even more than does changing the mantle conductivity profile. Moreover, when both core field and flow are estimated, the performance of the solutions and the derived flows become insensitive to the conductivity profile.

  9. Porous structure and fluid partitioning in polyethylene cores from 3D X-ray microtomographic imaging.

    PubMed

    Prodanović, M; Lindquist, W B; Seright, R S

    2006-06-01

    Using oil-wet polyethylene core models, we present the development of robust throat finding techniques for the extraction, from X-ray microtomographic images, of a pore network description of porous media having porosity up to 50%. Measurements of volume, surface area, shape factor, and principal diameters are extracted for pores and area, shape factor and principal diameters for throats. We also present results on the partitioning of wetting and non-wetting phases in the pore space at fixed volume increments of the injected fluid during a complete cycle of drainage and imbibition. We compare these results with fixed fractional flow injection, where wetting and non-wetting phase are simultaneously injected at fixed volume ratio. Finally we demonstrate the ability to differentiate three fluid phases (oil, water, air) in the pore space. PMID:16364351

  10. Simultaneous solution for core magnetic field and fluid flow beneath an electrically conducting mantle

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.; Nishihama, Masahiro

    1993-01-01

    The effects of laterally homogeneous mantle electrical conductivity were included in steady, frozen-flux core surface flow estimation along with refinements in method and weighting. The refined method allows simultaneous solution for both the initial radial geomagnetic field component at the core-mantle boundary (CMB) and the sub-adjacent fluid motion; it also features Gauss' method for solving the non-linear inverse problem associated with steady motional induction. The tradeoff between spatial complexity of the derived flows and misfit to the weighted Definitive Geomagnetic Reference Field models (DGRF's) is studied for various mantle conductivity profiles. For simple flow and a fixed initial geomagnetic condition, a fairly high deep-mantle conductivity performs better than either insulating or weakly conducting profiles; however, a thin, very high conductivity layer at the base of the mantle performs almost as well. Simultaneous solution for both initial geomagnetic field and flow reduces the misfit per degree of freedom even more than does changing the mantle conductivity profile. Moreover, when both core field and flow are estimated, the performance of the solutions and the derived flows become insensitive to the conductivity profile.

  11. Data use investigation for the magnetic field satellite (MAGSAT) mission: Geomagnetic field forecasting and fluid dynamics of the core

    NASA Technical Reports Server (NTRS)

    Benton, E. R. (Principal Investigator)

    1982-01-01

    MAGSAT data were used to construct a variety of spherical harmonic models of the main geomagnetic field emanating from Earth's liquid core at poch 1980. These models were used to: (1) accurately determine the radius of Earth's core by a magnetic method, (2) calculate estimates, of the long-term ange of variation of geomagnetic Gauss coefficients; (3) establish a preferred truncation level for current spherical harmonic models of the main geomagnetic field from the core; (4) evaluate a method for taking account of electrical conduction in the mantle when the magnetic field is downward continued to the core-mantle boundary; and (5) establish that upwelling and downwelling of fluid motion at the top of the core is probably detectable, observationally. A fluid dynamics forecast model was not produced because of insufficient data.

  12. Electrospray fabrication and osmotic response of fluid core-viscoelastic shell microcapsules

    NASA Astrophysics Data System (ADS)

    Meng, Zhiyong; Osuji, Chinedum

    2011-03-01

    Microcapsules with fluid-core in viscoelastic shell is interesting partially because of their unusual elasticity/rigidity. Electrospray technique, more flexible and scalable than traditional bulk and microfluidic emulsification, was used to generate spherical microcapsules. In particular, sodium alginate fine droplets generated by electrospray was surface cross-linked by either Ca(II) or chitosan to form polyelectrolyte microcapsules. By adjusting the needle inner diameter, concentration of sodium alginate, and applied voltage, we can control the droplet size to the designated range. Furthermore, we can tune the thickness and thereby rigidity/elasticity of the viscoelastic shell by adjusting the residence time of microcapsules in gelation solution to control the rigidity/elasticity of microcapsules. These polyelectrolyte microcapsules were subject to the osmotic pressure of synthetic water-soluble polymers, such as poly(ethylene glycol), with progressively lower concentration to observe their osmotic swelling behavior.

  13. Effect of the fluid core on changes in the length of day due to long period tides

    NASA Technical Reports Server (NTRS)

    Wahr, J. M.; Smith, M. L.; Sasao, T.

    1981-01-01

    The long period luni-solar tidal potential is known to cause periodic changes in the earth's rotation rate. It is found that the effect of a dissipationless fluid outer core is to reduce the amplitudes of these tidal perturbations by about 11 percent. When the fluid core effect is added to Agnew and Farrell's (1978) estimate of the effect of an equilibrium ocean, the result is in accord with observation. The effects of dissipative processes within the fluid core are also examined. Out-of-phase perturbations are found which could be as large as about 10 ms at 18.6 yr. It is concluded, however, that the poorly understood decade fluctuations in the earth's rotation rate will prohibit observation of this effect.

  14. Thermodynamic stability of soft-core Lennard-Jones fluids and their mixtures

    NASA Astrophysics Data System (ADS)

    Heyes, D. M.

    2010-02-01

    Thermodynamic stability of model single component and binary mixture fluids is considered with the Fisher-Ruelle (FR) stability criteria, which apply in the thermodynamic limit, and molecular dynamics (MD) simulation for finite periodic systems. Two soft-core potential forms are considered, ϕ6,1(r)=4[1/(a +r6)2-1/(a +r6)] and ϕ2,3(r)=4[1/(a +r2)6-1/(a+r2)3], where r is the separation between the particle centers. According to FR these are unstable in the thermodynamic limit if a >ac=1/2 and a >ac=(7/32)1/3, respectively. MD simulations with single-component particles show, however, that this transition on typical simulation times is more gradual for finite periodic systems with variation in a on either side of ac. For a fluid in the "depletion" limit equilibrated particularly slowly for a >ac, with the unstable component in the mixture breaking up into many long-lived microdroplets which conferred apparent equilibrium thermodynamic behavior (i.e., negligible N-dependence of the average potential energy per particle) in this period.

  15. Update on the core and developing cerebrospinal fluid biomarkers for Alzheimer disease

    PubMed Central

    Babić, Mirjana; Švob Štrac, Dubravka; Mück-Šeler, Dorotea; Pivac, Nela; Stanić, Gabrijela; Hof, Patrick R.; Šimić, Goran

    2014-01-01

    Alzheimer disease (AD) is a complex neurodegenerative disorder, whose prevalence will dramatically rise by 2050. Despite numerous clinical trials investigating this disease, there is still no effective treatment. Many trials showed negative or inconclusive results, possibly because they recruited only patients with severe disease, who had not undergone disease-modifying therapies in preclinical stages of AD before severe degeneration occurred. Detection of AD in asymptomatic at risk individuals (and a few presymptomatic individuals who carry an autosomal dominant monogenic AD mutation) remains impractical in many of clinical situations and is possible only with reliable biomarkers. In addition to early diagnosis of AD, biomarkers should serve for monitoring disease progression and response to therapy. To date, the most promising biomarkers are cerebrospinal fluid (CSF) and neuroimaging biomarkers. Core CSF biomarkers (amyloid β1-42, total tau, and phosphorylated tau) showed a high diagnostic accuracy but were still unreliable for preclinical detection of AD. Hence, there is an urgent need for detection and validation of novel CSF biomarkers that would enable early diagnosis of AD in asymptomatic individuals. This article reviews recent research advances on biomarkers for AD, focusing mainly on the CSF biomarkers. In addition to core CSF biomarkers, the potential usefulness of novel CSF biomarkers is discussed. PMID:25165049

  16. Comparison of two fluid warming devices for maintaining body core temperature during living donor liver transplantation: Level 1 H-1000 vs. Fluid Management System 2000

    PubMed Central

    Han, Sangbin; Choi, Junghee; Ko, Justin Sangwook; Gwak, Misook; Lee, Suk-Koo

    2014-01-01

    Background Rapid fluid warming has been a cardinal measure to maintain normothermia during fluid resuscitation of hypovolemic patients. A previous laboratory simulation study with different fluid infusion rates showed that a fluid warmer using magnetic induction is superior to a warmer using countercurrent heat exchange. We tested whether the simulation-based result is translated into the clinical liver transplantation. Methods Two hundred twenty recipients who underwent living donor liver transplantation between April 2009 and October 2011 were initially screened. Seventeen recipients given a magnetic induction warmer (FMS2000) were matched 1 : 1 with those given a countercurrent heat exchange warmer (Level-1 H-1000) based on propensity score. Matched variables included age, gender, body mass index, model for end-stage liver disease score, graft size and time under anesthesia. Core temperatures were taken at predetermined time points. Results Level-1 and FMS groups had comparable core temperature throughout the surgery from skin incision, the beginning/end of the anhepatic phase to skin closure. (P = 0.165, repeated measures ANOVA). The degree of core temperature changes within the dissection, anhepatic and postreperfusion phase were also comparable between the two groups. The minimum intraoperative core temperature was also comparable (Level 1, 35.6℃ vs. FMS, 35.4℃, P = 0.122). Conclusions A countercurrent heat exchange warmer and magnetic induction warmer displayed comparable function regarding the maintenance of core temperature and prevention of hypothermia during living donor liver transplantation. The applicability of the two devices in liver transplantation needs to be evaluated in various populations and clinical settings. PMID:25368785

  17. Influence of an external force field on the dynamics of a free core and fluid in a rotating spherical cavity

    NASA Astrophysics Data System (ADS)

    Kozlov, V. G.; Kozlov, N. V.; Subbotin, S. V.

    2015-07-01

    This research involves experimental studies of the dynamics of a free spherical core and fluid motion in a spherical cavity rotating around the horizontal axis. The gravity field causes circular oscillations of the core in the reference frame of the cavity creating an averaged force in the Stokes boundary layer which makes the core rotate relative to the cavity (vibrational hydrodynamic top). The core rotates in the direction opposite to that of the cavity (lagging differential rotation). The research shows that the differential rotation intensity is determined by the ratio between the gravitational and centrifugal acceleration, as well as the ratio of the core size to the thickness of the Stokes layer. Various regimes of the fluid flow have been studied. The shape of subcritical flow is a circular-section column extended along the geometric continuation of the sphere. Increasing the differential rotation rate of the core results in various independent modes of instability of the column. One of such modes involves development of an azimuthal wave on the column boundary. The second mode is a system of two-dimensional vortices extended along the axis and rotating inside the column. It has been discovered that the development of supercritical structures causes changes in the differential rotation rate of the core.

  18. Optimization and development of a core-in-cup tablet for modulated release of theophylline in simulated gastrointestinal fluids.

    PubMed

    Danckwerts, M P

    2000-07-01

    A triple-layer core-in-cup tablet that can release theophylline in simulated gastrointestinal (GI) fluids at three distinct rates has been developed. The first layer is an immediate-release layer; the second layer is a sustained-release layer; and the last layer is a boost layer, which was designed to coincide with a higher nocturnal dose of theophylline. The study consisted of two stages. The first stage optimized the sustained-release layer of the tablet to release theophylline over a period of 12 hr. Results from this stage indicated that 30% w/w acacia gum was the best polymer and concentration to use when compressed to a hardness of 50 N/m2. The second stage of the study involved the investigation of the final triple-layer core-in-cup tablet to release theophylline at three different rates in simulated GI fluids. The triple-layer modulated core-in-cup tablet successfully released drug in simulated fluids at an initial rate of 40 mg/min, followed by a rate of 0.4085 mg/min, in simulated gastric fluid TS, 0.1860 mg/min in simulated intestinal fluid TS, and finally by a boosted rate of 0.6952 mg/min. PMID:10872096

  19. Profiling of bile acids in bovine follicular fluid by fused-core-LC-MS/MS.

    PubMed

    Sánchez-Guijo, A; Blaschka, C; Hartmann, M F; Wrenzycki, C; Wudy, S A

    2016-09-01

    Bile acids (BAs) are present in follicular fluid (FF) from humans and cattle. This fact has triggered an interest on the role BAs might play in folliculogenesis and their possible association with fertility. To achieve a better understanding about this subject, new methods are needed to provide reliable information about concentrations of the most important BAs in FF. In this context, liquid chromatography-tandem mass spectrometry (LC-MS/MS) offers high specificity with a relatively simple sample workup. We developed and validated a new assay for the quick profiling of the 9 most abundant BAs in follicular fluid from cattle. The method uses 200μl of FF and can quantify cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA) and their glycine (G) and taurine (T) conjugates. Lithocholic acid (LCA), its conjugates GLCA and TLCA, and sulfated forms, were present in some samples, but their concentration was low compared to other BAs (in average, below 60ng/ml for LCA, GLCA or TLCA and below 20ng/ml for their corresponding sulfates). Method performance was studied at three quality controls for each compound in consonance with their physiological concentration. Excellent linearity and recovery were found for all compounds at every control level. Intra-day and between-day precisions (%CV) and accuracies (relative errors) were below 15% for all the compounds. Matrix effects were negligible for most of the analytes. Samples undergoing freeze-thaw showed no degradation of their BAs. The method makes use of a fused-core phenyl column coupled to a triple quadrupole tandem mass spectrometer to achieve chromatographic separation within 5min. We quantified BAs grouped in four different follicle sizes (3-5mm, 6-8mm, 9-14mm, >15mm), obtaining a similar relative BA profile for all the sizes, with CA always in higher concentration, ranging between 1600 and 18000ng/ml, approximately, followed by its conjugate glycocholic acid, GCA, which ranged between 800 and 9000ng

  20. Fluid Motion and the Toroidal Magnetic Field Near the Top of Earth's Liquid Outer Core.

    NASA Astrophysics Data System (ADS)

    Celaya, Michael Augustine

    This work considers two unresolved problems central to the study of Earth's deep interior: (1) What is the surface flow of the complete three dimensional motion sustaining the geomagnetic field in the fluid outer core? (2) How strong is the toroidal component of that field just beneath the mantle inside the core?. A solution of these problems is necessary to achieve even a basic understanding of magnetic field generation, and core-mantle interactions. Progress in solving (1) is made by extending previous attempts to resolve the core surface flow, and identifying obstacles which lead to distorted solutions. The extension relaxes the steady motions constraint. This permits more realistic solutions which should resemble more closely the real Earth flow. A difficulty with the assumption of steady flow is that if the real motion is unsteady, as it is likely to be, then steady models will suffer from aliasing. Aliased solutions can be highly corrupted. The effects of aliasing incurred through model underparametrization are explored. It is found that flow spectral energy must fall rapidly with increasing degree to escape aliasing's distortion. Damping does not appear to remedy the problem, but in fact obscures it by forcing the solution to converge upon a single, but possibly still aliased estimate. Inversions of a magnetic field model for unsteady motions, indicate steady flows are indeed aliased in time. By comparison, unsteady flows appear free of aliasing and show significant temporal variation, changing by about 30% of their magnitude over 20 years. However, it appears that noise in the high degree secular variation (SV) data used to determine the flow acts as a further impediment to solving (1). Damping is shown to be effective in removing noise, but only once aliasing is no longer a factor and noise is restricted to that part of the SV which makes only a small contribution to the solution. To solve (2) the radial component of Ohm's law is inverted for the toroidal

  1. Thermodynamic properties of Fe-S alloys from molecular dynamics modeling: Implications for the lunar fluid core

    NASA Astrophysics Data System (ADS)

    Kuskov, Oleg L.; Belashchenko, David K.

    2016-09-01

    Density and sound velocity of Fe-S liquids for the P-T parameters of the lunar core have not been constrained well. From the analysis of seismic wave travel time, Weber et al. (2011) proposed that the lunar core is composed of iron alloyed with ⩽6 wt% of light elements, such as S. A controversial issue in models of planetary core composition concerns whether Fe-S liquids under high pressure - temperature conditions provide sound velocity and density data, which match the seismic model. Here we report the results of molecular dynamics (MD) simulations of iron-sulfur alloys based on Embedded Atom Model (EAM). The results of calculations include caloric, thermal and elastic properties of Fe-S alloys at concentrations of sulfur 0-18 at.%, temperatures up to 2500 K and pressures up to 14 GPa. The effect of sulfur on the elastic properties of Fe-rich melts is most evident in the notably decreased density with added S content. In the MD simulation, the density and bulk modulus KT of liquid Fe-S decrease with increasing sulfur content, while the bulk modulus KS decreases as a whole but has some fluctuations with increasing sulfur content. The sound velocity increases with increasing pressure, but depends weakly on temperature and the concentration of sulfur. For a fluid Fe-S core of the Moon (∼5 GPa/2000 K) with 6-16 at.% S (3.5-10 wt%), the sound velocity and density may be estimated at the level of 4000 m s-1 and 6.25-7.0 g cm-3. Comparison of thermodynamic calculations with the results of interpretation of seismic observations shows good agreement of P-wave velocities in the liquid outer core, while the core density does not match the seismic models. At such concentrations of sulfur and a density by 20-35% higher than the model seismic density, a radius for the fluid outer core should be less than about 330 km found by Weber et al. because at the specified mass and moment of inertia values of the Moon an increase of the core density leads to a decrease of the core

  2. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.

    PubMed

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio

    2016-04-13

    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization. PMID:26948023

  3. On viscous decay factors for spherical inertial modes in rotating planetary fluid cores: Comparison between asymptotic and numerical analysis

    NASA Astrophysics Data System (ADS)

    Liao, Xinhao; Zhang, Keke

    2008-08-01

    The initial value problem of how an initial state of fluid motion, excited by earthquake or tide and then damped by viscous dissipation, decays toward the state of rigid-body rotation is considered for rapidly rotating fluid spheres like planetary fluid cores. An essential element in an asymptotic time-dependent solution for the initial value problem is the viscous decay factors for spherical inertial modes. We derive an analytical expression for the viscous decay factors valid for a broad range of the inertial modes that are required for an asymptotic solution of the initial value problem at an arbitrarily small but fixed Ekman number. We also perform fully numerical analysis to compute the viscous decay factors for several selected inertial modes, showing a quantitative agreement between the asymptotic and numerical analysis. It is argued that the correct viscous decay factors cannot be derived using an asymptotic expansion based on the half powers of a small Ekman number.

  4. Subseafloor Boiling Within the PACMANUS Hydrothermal System Indicated by Anhydrite-Hosted Fluid Inclusions from ODP Leg 193 Cores

    NASA Astrophysics Data System (ADS)

    Vanko, D. A.; Bach, W.; Scott, S. D.; Yeats, C.; Roberts, S.; Beaudoin, Y.

    2001-12-01

    Drilling during Leg 193 was in an area of active hydrothermal venting from dacitic rocks on Pual Ridge in the Manus Basin. All the cored rocks underlying the fresh surficial volcanic rocks are intensively hydrothermally altered. Primary fluid inclusions preserved in anhydrite veins provide unique fluid samples that provide direct evidence on the chemical and physical properties of hydrothermal fluids present beneath the seafloor. Site 1188 is located on Snowcap Knoll, an area of diffuse warm venting at a water depth of ~1645 m. Fluid inclusions have been studied from a coarse anhydrite +/- pyrite vein from ~123 m below the seafloor. The ambient hydrostatic pressure for this sample is calculated to be ~180 bars. The ambient temperature is unknown, but the T measured after 8 days of thermal rebound at a depth of 360 m in this hole was 313° C. Primary fluid inclusions measuring up to 100 μ m across are dominantly two-phase L + V inclusions, yet fluid inclusions with up to three daughter crystals are also observed. The largest daughter crystal is halite, commonly accompanied by a small transparent granular daughter crystal and an even smaller granular opaque crystal. Consequently, optical inspection alone demonstrates the co-occurrence of both hypersaline, multicomponent brines and less saline aqueous fluids. Ice melting temperatures for L+V inclusions vary from -0.1° to -14.5° C, with a strong mode at -2° C, corresponding to a seawater-like salinity. However, the range in Tm(ice) indicates that a significant number contain quite fresh water, and others contain quite saline water. Ice melting temperatures from the multiphase inclusions, measured in the presence of hydrohalite, range from -29.5° to -39.9° C, confirming their hypersaline composition. These data, as well as measured halite dissolution temperatures ranging from 125° to 257° C, indicate salinities of ~30+/-3 wt.% NaCl equivalent. Most two-phase inclusions homogenize to liquid between 191° C and

  5. Core-flood experiment for transport of reactive fluids in rocks

    NASA Astrophysics Data System (ADS)

    Ott, H.; de Kloe, K.; van Bakel, M.; Vos, F.; van Pelt, A.; Legerstee, P.; Bauer, A.; Eide, K.; van der Linden, A.; Berg, S.; Makurat, A.

    2012-08-01

    Investigation of the transport of reactive fluids in porous rocks is an intriguing but challenging task and relevant in several areas of science and engineering such as geology, hydrogeology, and petroleum engineering. We designed and constructed an experimental setup to investigate physical and chemical processes caused by the flow of reactive and volatile fluids such as supercritical CO2 and/or H2S in geological formations. Potential applications are geological sequestration of CO2 in the frame of carbon capture and storage and acid-gas injection for sulfur disposal and/or enhanced oil recovery. The present paper outlines the design criteria and the realization of reactive transport experiments on the laboratory scale. We focus on the spatial and time evolution of rock and fluid composition as a result of chemical rock fluid interaction and the coupling of chemistry and fluid flow in porous rocks.

  6. Fluid inclusions and preliminary studies of hydrothermal alteration in core hole PLTG-1, Platanares geothermal area, Honduras

    USGS Publications Warehouse

    Bargar, K.E.

    1991-01-01

    The Platanares geothermal area in western Honduras consists of more than 100 hot springs that issue from numerous hot-spring groups along the banks or within the streambed of the Quebrada de Agua Caliente (brook of hot water). Evaluation of this geothermal area included drilling a 650-m deep PLTG-1 drill hole which penetrated a surface mantling of stream terrace deposits, about 550 m of Tertiary andesitic lava flows, and Cretaceous to lower Tertiary sedimentary rocks in the lower 90 m of the drill core. Fractures and cavities in the drill core are partly to completely filled by hydrothermal minerals that include quartz, kaolinite, mixed-layer illite-smectite, barite, fluorite, chlorite, calcite, laumontite, biotite, hematite, marcasite, pyrite, arsenopyrite, stibnite, and sphalerite; the most common open-space fillings are calcite and quartz. Biotite from 138.9-m depth, dated at 37.41 Ma by replicate 40Ar/39 Ar analyses using a continuous laser system, is the earliest hydrothermal mineral deposited in the PLTG-1 drill core. This mid-Tertiary age indicates that at least some of the hydrothermal alteration encountered in the PLTG-1 drill core occured in the distant past and is unrelated to the present geothermal system. Furthermore, homogenization temperatures (Th) and melting-point temperatures (Tm) for fluid inclusions in two of the later-formed hydrothermal minerals, calcite and barite, suggest that the temperatures and concentration of dissolved solids of the fluids present at the time these fluid inclusions formed were very different from the present temperatures and fluid chemistry measured in the drill hole. Liquid-rich secondary fluid inclusions in barite and caicite from drill hole PLTG-1 have Th values that range from about 20??C less than the present measured temperature curve at 590.1-m depth to as much as 90??C higher than the temperature curve at 46.75-m depth. Many of the barite Th measurements (ranging between 114?? and 265??C) plot above the

  7. Investigation of geomagnetic field forecasting and fluid dynamics of the core

    NASA Technical Reports Server (NTRS)

    Benton, E. R. (Principal Investigator)

    1982-01-01

    Progress in the development, testing, and evaluation of kinematic geomagnetic forecast models and their utility in magnetic prediction of the core-mantle boundary of the Earth and in determination of the core radius is reported. The GFSC 9/80 model, which uses MAGSAT data, was determined to be of high quality.

  8. Design of Gas-phase Synthesis of Core-Shell Particles by Computational Fluid – Aerosol Dynamics

    PubMed Central

    Buesser, B.; Pratsinis, S.E.

    2013-01-01

    Core-shell particles preserve the bulk properties (e.g. magnetic, optical) of the core while its surface is modified by a shell material. Continuous aerosol coating of core TiO2 nanoparticles with nanothin silicon dioxide shells by jet injection of hexamethyldisiloxane precursor vapor downstream of titania particle formation is elucidated by combining computational fluid and aerosol dynamics. The effect of inlet coating vapor concentration and mixing intensity on product shell thickness distribution is presented. Rapid mixing of the core aerosol with the shell precursor vapor facilitates efficient synthesis of hermetically coated core-shell nanoparticles. The predicted extent of hermetic coating shells is compared to the measured photocatalytic oxidation of isopropanol by such particles as hermetic SiO2 shells prevent the photocatalytic activity of titania. Finally the performance of a simpler, plug-flow coating model is assessed by comparisons to the present detailed CFD model in terms of coating efficiency and silica average shell thickness and texture. PMID:23729817

  9. Core Angular Momentum and the IERS Sub-Centers Activity for Monitoring Global Geophysical Fluids. Part 1; Core Angular Momentum and Earth Rotation

    NASA Technical Reports Server (NTRS)

    Song, Xia-Dong; Chao, Benjamin (Technical Monitor)

    1999-01-01

    The part of the grant was to use recordings of seismic waves travelling through the earth's core (PKP waves) to study the inner core rotation and constraints on possible density anomalies in the fluid core. The shapes and relative arrival times of such waves associated with a common source were used to reduce the uncertainties in source location and excitation and the effect of unknown mantle structure. The major effort of the project is to assemble historical seismograms with long observing base lines. We have found original paper records of SSI earthquakes at COL between 1951 and 1966 in a warehouse of the U.S. Geological Survey office in Golden, Colorado, extending the previous measurements at COL by Song and Richards [1996] further back 15 years. Also in Alaska, the University of Alaska, Fairbanks Geophysical Institute (UAFGI) has been operating the Alaskan Seismic Network with over 100 stations since the late 1960s. Virtually complete archives of seismograms are still available at UAFGI. Unfortunately, most of the archives are in microchip form (develocorders), for which the use of waveforms is impossible. Paper seismograms (helicorders) are available for a limited number of stations, and digital recordings of analog signals started around 1989. Of the paper records obtained, stations at Gilmore Dome (GLM, very close to COL), Yukon (FYU), McKinley (MCK), and Sheep Creek Mountain (SCM) have the most complete continuous recordings.

  10. Investigation of geomagnetic field forecasting and fluid dynamics of the core

    NASA Technical Reports Server (NTRS)

    Benton, E. R. (Principal Investigator)

    1981-01-01

    The magnetic determination of the depth of the core-mantle boundary using MAGSAT data is discussed. Refinements to the approach of using the pole-strength of Earth to evaluate the radius of the Earth's core-mantle boundary are reported. The downward extrapolation through the electrically conducting mantle was reviewed. Estimates of an upper bound for the time required for Earth's liquid core to overturn completely are presented. High order analytic approximations to the unsigned magnetic flux crossing the Earth's surface are also presented.

  11. Effects of confinement on anomalies and phase transitions of core-softened fluids

    SciTech Connect

    Krott, Leandro B. Barbosa, Marcia C.; Bordin, José Rafael

    2015-04-07

    We use molecular dynamics simulations to study how the confinement affects the dynamic, thermodynamic, and structural properties of a confined anomalous fluid. The fluid is modeled using an effective pair potential derived from the ST4 atomistic model for water. This system exhibits density, structural, and dynamical anomalies, and the vapor-liquid and liquid-liquid critical points similar to the quantities observed in bulk water. The confinement is modeled both by smooth and structured walls. The temperatures of extreme density and diffusion for the confined fluid show a shift to lower values while the pressures move to higher amounts for both smooth and structured confinements. In the case of smooth walls, the critical points and the limit between fluid and amorphous phases show a non-monotonic change in the temperatures and pressures when the nanopore size is increase. In the case of structured walls, the pressures and temperatures of the critical points varies monotonically with the pore size. Our results are explained on basis of the competition between the different length scales of the fluid and the wall-fluid interaction.

  12. Fluid core size of Mars from detection of the solar tide.

    PubMed

    Yoder, C F; Konopliv, A S; Yuan, D N; Standish, E M; Folkner, W M

    2003-04-11

    The solar tidal deformation of Mars, measured by its k2 potential Love number, has been obtained from an analysis of Mars Global Surveyor radio tracking. The observed k2 of 0.153 +/- 0.017 is large enough to rule out a solid iron core and so indicates that at least the outer part of the core is liquid. The inferred core radius is between 1520 and 1840 kilometers and is independent of many interior properties, although partial melt of the mantle is one factor that could reduce core size. Ice-cap mass changes can be deduced from the seasonal variations in air pressure and the odd gravity harmonic J3, given knowledge of cap mass distribution with latitude. The south cap seasonal mass change is about 30 to 40% larger than that of the north cap. PMID:12624177

  13. Fluid core size of Mars from detection of the solar tide

    NASA Technical Reports Server (NTRS)

    Yoder, C. F.; Konopliv, A. S.; Yuan, D. N.; Standish, E. M.; Folkner, W. M.

    2003-01-01

    The solar tidal deformation of Mars, measured by its k2 potential Love number, has been obtained from an analysis of Mars Global Surveyor radio tracking. The observed k2 of 0.153 +/- 0.017 is large enough to rule out a solid iron core and so indicates that at least the outer part of the core is liquid. The inferred core radius is between 1520 and 1840 kilometers and is independent of many interior properties, although partial melt of the mantle is one factor that could reduce core size. Ice-cap mass changes can be deduced from the seasonal variations in air pressure and the odd gravity harmonic J3, given knowledge of cap mass distribution with latitude. The south cap seasonal mass change is about 30 to 40% larger than that of the north cap.

  14. Fluid-rock interactions between xanthan-chromium(III) gel systems and dolomite core material

    SciTech Connect

    McCool, C.S.; Green, D.W.; Willhite, G.P.

    1995-11-01

    Gelation of chromium(III)-xanthan systems in dolomite core material was investigated. Compositional changes in the gelant caused by interactions with the dolomite core material resulted in low permeability reductions for gelants prepared with chromium chloride, chromium acetate and a chromium diamine salt. The primary cause of incomplete gelation in the dolomite material was the increase in gelant pH that resulted in precipitation of chromium.

  15. Simultaneous Determination of Capillary Pressure and Relative Permeability Curves from Core-Flooding Experiments with Various Fluid Pairs

    NASA Astrophysics Data System (ADS)

    Pini, Ronny; Hingerl, Ferdinand; Benson, Sally

    2013-04-01

    Geological systems are complex and so are the processes that determine the distribution of two (or more) immiscible phases within their porous structure; nevertheless, an empirical relationship between the capillary pressure and saturation, the capillary pressure function, provides the foundation for the theory of multiphase flow in porous media. The simultaneous existence of at least two fluids in a porous rock further implies that the ability of each fluid to flow is reduced by the presence of the other and a so-called relative permeability function has been introduced and defined as the ratio between the effective permeability to the given phase and the absolute permeability of the rock. When coupled to the continuum-scale equations of motion, these two characteristic curves allow for a description of multiphase displacement processes in a variety of natural settings that are related to a wide range of applications, thus including the storage of carbon dioxide into deep saline aquifers. In this study, capillary pressure and relative permeability drainage curves are measured on a single Berea Sandstone core by using three different fluid pairs, namely gCO2/water, gN2/water and scCO2/brine. An important feature of this experimental investigation is that these two multiphase properties are obtained simultaneously during a core-flooding experiment. The applied technique possesses many of the characteristics of a conventional steady-state relative permeability experiment and consists of injecting the nonwetting fluid at increasingly higher flow rates in a core that is initially saturated with the wetting phase, while observing fluid saturations with a medical x-ray CT scanner [Pini et al. 2012]. Injection flow rates are varied so as to cover a sufficiently large range of capillary pressures, whereas fluid-pairs and experimental conditions are selected in order to move across a range interfacial tension values (40-65 mN/m), while maintaining a constant viscosity ratio

  16. Electrically tunable negative refraction in core/shell-structured nanorod fluids.

    PubMed

    Su, Zhaoxian; Yin, Jianbo; Guan, Yanqing; Zhao, Xiaopeng

    2014-10-21

    We theoretically investigate optical refraction behavior in a fluid system which contains silica-coated gold nanorods dispersed in silicone oil under an external electric field. Because of the formation of a chain-like or lattice-like structure of dispersed nanorods along the electric field, the fluid shows a hyperbolic equifrequency contour characteristic and, as a result, all-angle broadband optical negative refraction for transverse magnetic wave propagation can be realized. We calculate the effective permittivity tensor of the fluid and verify the analysis using finite element simulations. We also find that the negative refractive index can vary with the electric field strength and external field distribution. Under a non-uniform external field, the gradient refraction behavior can be realized. PMID:25087913

  17. Fluid flow analysis of a hot-core hypersonic wind-tunnel nozzle concept

    NASA Technical Reports Server (NTRS)

    Anders, J. B.; Sebacher, D. I.; Boatright, W. B.

    1972-01-01

    A hypersonic-wind-tunnel nozzle concept which incorporates a hot-core flow surrounded by an annular flow of cold air offers a promising technique for maximizing the model size while minimizing the power required to heat the test core. This capability becomes especially important when providing the true-temperature duplication needed for hypersonic propulsion testing. Several two-dimensional wind-tunnel nozzle configurations that are designed according to this concept are analyzed by using recently developed analytical techniques for prediction of the boundary-layer growth and the mixing between the hot and cold coaxial supersonic airflows. The analyses indicate that introduction of the cold annular flow near the throat results in an unacceptable test core for the nozzle size and stagnation conditions considered because of both mixing and condensation effects. Use of a half-nozzle with a ramp on the flat portion does not appear promising because of the thick boundary layer associated with the extra length. However, the analyses indicate that if the cold annular flow is introduced at the exit of a full two-dimensional nozzle, an acceptable test core will be produced. Predictions of the mixing between the hot and cold supersonic streams for this configuration show that mixing effects from the cold flow do not appreciably penetrate into the hot core for the large downstream distances of interest.

  18. Resonant tidal excitation of internal waves in the Earth's fluid core

    NASA Astrophysics Data System (ADS)

    Tyler, Robert H.; Kuang, Weijia

    2014-07-01

    It has long been speculated that there is a stably stratified layer below the core-mantle boundary, and two recent studies have improved the constraints on the parameters describing this stratification. Here we consider the dynamical implications of this layer using a simplified model. We first show that the stratification in this surface layer has sensitive control over the rate at which tidal energy is transferred to the core. We then show that when the stratification parameters from the recent studies are used in this model, a resonant configuration arrives whereby tidal forces perform elevated rates of work in exciting core flow. Specifically, the internal wave speed derived from the two independent studies (150 and 155 m/s) are in remarkable agreement with the speed (152 m/s) required for excitation of the primary normal mode of oscillation as calculated from full solutions of the Laplace Tidal Equations applied to a reduced-gravity idealized model representing the stratified layer. In evaluating this agreement it is noteworthy that the idealized model assumed may be regarded as the most reduced representation of the stratified dynamics of the layer, in that there are no non-essential dynamical terms in the governing equations assumed. While it is certainly possible that a more realistic treatment may require additional dynamical terms or coupling, it is also clear that this reduced representation includes no freedom for coercing the correlation described. This suggests that one must accept either (1) that tidal forces resonantly excite core flow and this is predicted by a simple model or (2) that either the independent estimates or the dynamical model does not accurately portray the core surface layer and there has simply been an unlikely coincidence between three estimates of a stratification parameter which would otherwise have a broad plausible range.

  19. Roles of translational and reorientational modes in translational diffusion of high-pressure water: comparison with soft-core fluids.

    PubMed

    Yamaguchi, T; Koda, S

    2011-06-21

    The dynamics of two soft-core fluids that show the increase in diffusivity with isothermal compression is studied with the mode-coupling theory (MCT). The anomalous density dependence of the diffusivity of these fluids is reproduced by the theory, and it is ascribed to the decrease in the first peak of the structure factor. The mechanism is quite different from that of high-pressure water revealed by MCT on molecular liquids described by the interaction-site model [T. Yamaguchi, S.-H. Chong, and F. Hirata, J. Chem. Phys., 119, 1021 (2003)]. The structures used in that study, calculated by the reference interaction-site model integral equation theory, showed the increase in the height of the first peak of the structure factor between oxygen atoms, whereas the structure obtained by molecular dynamics (MD) simulations shows the decrease in the peak height. In this work, calculations with MCT are performed on the simple fluids whose structure factor is the same as that between oxygen atoms of water from MD simulation, in order to clarify the role of translational structure on the increase in diffusivity with compression. The conclusion is that both the translational and reorientational modes contribute to the increase in diffusivity, and the effect of the latter is indispensable for the anomaly alone at least above freezing temperature. PMID:21702566

  20. The axisymmetric long-wave interfacial stability of core-annular flow of power-law fluid with surfactant

    NASA Astrophysics Data System (ADS)

    Sun, Xue-Wei; Peng, Jie; Zhu, Ke-Qin

    2012-02-01

    The long wave stability of core-annular flow of power-law fluids with an axial pressure gradient is investigated at low Reynolds number. The interface between the two fluids is populated with an insoluble surfactant. The analytic solution for the growth rate of perturbation is obtained with long wave approximation. We are mainly concerned with the effects of shear-thinning/thickening property and interfacial surfactant on the flow stability. The results show that the influence of shear-thinning/thickening property accounts to the change of the capillary number. For a clean interface, the shear-thinning property enhances the capillary instability when the interface is close to the pipe wall. The converse is true when the interface is close to the pipe centerline. For shear-thickening fluids, the situation is reversed. When the interface is close to the pipe centerline, the capillary instability can be restrained due to the influence of surfactant. A parameter set can be found under which the flow is linearly stable.

  1. Regular black holes: Guilfoyle's electrically charged solutions with a perfect fluid phantom core

    NASA Astrophysics Data System (ADS)

    Lemos, José P. S.; Zanchin, Vilson T.

    2016-06-01

    Regular black hole solutions are found among the Guilfoyle exact solutions. These are spherically symmetric solutions of general relativity coupled to Maxwell's electromagnetism and charged matter where the metric potentials and electromagnetic fields are related in some particularly simple form. We show that, for certain ranges of the parameters, there are objects which correspond to regular charged black holes, whose interior region is filled by an electrically charged phantomlike fluid, or, in the limiting case, a de Sitter false vacuum fluid, and whose exterior region is Reissner-Nordström. The boundary between both regions is a smooth boundary surface, except in the limiting case where the boundary is made of a massless electrically charged spherically symmetric coat. The main physical and geometrical properties of such charged regular solutions are analyzed.

  2. A molecular dynamics study of the collective correlation functions of a hard-core fluid with a Yukawa tail

    NASA Astrophysics Data System (ADS)

    Alemany, M. M. G.; Rey, C.; Gallego, L. J.

    1996-11-01

    We present a molecular dynamics study of the collective correlation functions of a hard-core system with an attractive Yukawa tail, for various thermodynamic states in the fluid and liquid regions of the phase diagram. The results are compared with available information for hard spheres. The small-q behavior of the intermediate scattering functions indicates the propagation of sound waves, i.e., phononlike collective excitations, in the hard-core Yukawa system. The upper limit of q for these collective modes is practically independent of the thermodynamic state. The computed transverse current correlation functions show that at liquid densities the hard-core Yukawa system is able to sustain shear wave propagation above a critical q; the upper limit of q for sound waves and the lower limit for shear waves nearly coincide. All of these features are qualitatively similar to those found for hard spheres. However, there are significant quantitative differences, which reflect the influence of the attractive Yukawa tail on the dynamical behavior of the system.

  3. Simultaneous determination of capillary pressure and relative permeability curves from core-flooding experiments with various fluid pairs

    NASA Astrophysics Data System (ADS)

    Pini, Ronny; Benson, Sally M.

    2013-06-01

    Capillary pressure and relative permeability drainage curves are simultaneously measured on a single Berea Sandstone core by using three different fluid pairs, namely gCO 2/water, gN2/water and scCO 2/brine. This novel technique possesses many of the characteristics of a conventional steady-state relative permeability experiment and consists of injecting the nonwetting fluid at increasingly higher flow rates in a core that is initially saturated with the wetting phase, while observing fluid saturations with a medical x-ray CT scanner. Injection flow rates (0.5-75 mL/min) are varied so as to generate a large range of capillary pressures (up to 18 kPa), whereas fluid-pairs and experimental conditions are selected in order to move across a range interfacial tension values (γ12=40-65 mN/m), while maintaining a constant viscosity ratio (μw/μnw ≈30). Moreover, these experiments, carried out at moderate pressures (P=2.4 MPa and T=50°C), can be compared directly with results for gas/liquid pairs reported in the literature and they set the benchmark for the experiment at a higher pressure (P=9 MPa and T=50°C), where CO 2 is in the supercritical state. Contrary to some prior investigations, from these experiments we find no evidence that the scCO 2/brine system behaves differently than any of these other fluid pairs. At the same time, capillary pressure data show a significant (but consistent) effect of the different values for the interfacial tension. The fact that the three different fluid pairs yield the same drainage relative permeability curve is consistent with observations in the petroleum literature. Additionally, the observed end-point values for the relative permeability to the nonwetting phase (kr,nw 0.9) and the corresponding irreducible water saturations (Sw,irr 0.35) suggest that water-wet conditions are maintained

  4. A Computational Fluid Dynamic and Heat Transfer Model for Gaseous Core and Gas Cooled Space Power and Propulsion Reactors

    NASA Technical Reports Server (NTRS)

    Anghaie, S.; Chen, G.

    1996-01-01

    A computational model based on the axisymmetric, thin-layer Navier-Stokes equations is developed to predict the convective, radiation and conductive heat transfer in high temperature space nuclear reactors. An implicit-explicit, finite volume, MacCormack method in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve the thermal and fluid governing equations. Simulation of coolant and propellant flows in these reactors involves the subsonic and supersonic flows of hydrogen, helium and uranium tetrafluoride under variable boundary conditions. An enthalpy-rebalancing scheme is developed and implemented to enhance and accelerate the rate of convergence when a wall heat flux boundary condition is used. The model also incorporated the Baldwin and Lomax two-layer algebraic turbulence scheme for the calculation of the turbulent kinetic energy and eddy diffusivity of energy. The Rosseland diffusion approximation is used to simulate the radiative energy transfer in the optically thick environment of gas core reactors. The computational model is benchmarked with experimental data on flow separation angle and drag force acting on a suspended sphere in a cylindrical tube. The heat transfer is validated by comparing the computed results with the standard heat transfer correlations predictions. The model is used to simulate flow and heat transfer under a variety of design conditions. The effect of internal heat generation on the heat transfer in the gas core reactors is examined for a variety of power densities, 100 W/cc, 500 W/cc and 1000 W/cc. The maximum temperature, corresponding with the heat generation rates, are 2150 K, 2750 K and 3550 K, respectively. This analysis shows that the maximum temperature is strongly dependent on the value of heat generation rate. It also indicates that a heat generation rate higher than 1000 W/cc is necessary to maintain the gas temperature at about 3500 K, which is typical design temperature required to achieve high

  5. A Direct-Push Sample-Freezing Drive Shoe for Collecting Sediment Cores with Intact Pore Fluid, Microbial, and Sediment Distributions

    NASA Astrophysics Data System (ADS)

    Bekins, B. A.; Trost, J.; Christy, T. M.; Mason, B.

    2015-12-01

    Abiotic and biological reactions in shallow groundwater and bottom sediments are central to understanding groundwater contaminant attenuation and biogeochemical cycles. The laminar flow regime in unconsolidated surficial aquifers creates narrow reaction zones. Studying these reaction zones requires fine-scale sampling of water together with adjacent sediment in a manner that preserves in situ redox conditions. Collecting representative samples of these narrow zones with traditional subsurface sampling equipment is challenging. For example, use of a basket type core catcher for saturated, non-cohesive sediments results in loss of fluid and sediments during retrieval. A sample-freezing drive shoe designed for a wire line piston core sampler allowed collection of cores with intact sediment, microbial, and pore fluid distributions and has been the basis for studies documenting centimeter-scale variations in aquifer microbial populations (Murphy and Herkelrath, 1996). However, this freezing drive shoe design is not compatible with modern-day direct push sampling rigs. A re-designed sample-freezing drive shoe compatible with a direct-push dual-tube coring system was developed and field-tested. The freezing drive shoe retained sediment and fluid distributions in saturated sediment core samples by freezing a 10 centimeter plug below the core sample with liquid CO­2. Core samples collected across the smear zone at a crude oil spill site near Bemidji, Minnesota, were successfully extracted without loss of fluid or sediment. Multiple core sections from different depths in the aquifer were retrieved from a single hole. This new design makes a highly effective sampling technology available on modern-day direct push sampling equipment to inform myriad questions about subsurface biogeochemistry processes. The re-design of the freezing drive shoe was supported by the USGS Innovation Center for Earth Sciences. References: Murphy, Fred, and W. N. Herkelrath. "A sample

  6. Density functional formulation of the random-phase approximation for inhomogeneous fluids: Application to the Gaussian core and Coulomb particles

    NASA Astrophysics Data System (ADS)

    Frydel, Derek; Ma, Manman

    2016-06-01

    Using the adiabatic connection, we formulate the free energy in terms of the correlation function of a fictitious system, hλ(r ,r') , in which interactions λ u (r ,r') are gradually switched on as λ changes from 0 to 1. The function hλ(r ,r') is then obtained from the inhomogeneous Ornstein-Zernike equation and the two equations constitute a general liquid-state framework for treating inhomogeneous fluids. The two equations do not yet constitute a closed set. In the present work we use the closure cλ(r ,r') ≈-λ β u (r ,r') , known as the random-phase approximation (RPA). We demonstrate that the RPA is identical with the variational Gaussian approximation derived within the field-theoretical framework, originally derived and used for charged particles. We apply our generalized RPA approximation to the Gaussian core model and Coulomb charges.

  7. Density functional formulation of the random-phase approximation for inhomogeneous fluids: Application to the Gaussian core and Coulomb particles.

    PubMed

    Frydel, Derek; Ma, Manman

    2016-06-01

    Using the adiabatic connection, we formulate the free energy in terms of the correlation function of a fictitious system, h_{λ}(r,r^{'}), in which interactions λu(r,r^{'}) are gradually switched on as λ changes from 0 to 1. The function h_{λ}(r,r^{'}) is then obtained from the inhomogeneous Ornstein-Zernike equation and the two equations constitute a general liquid-state framework for treating inhomogeneous fluids. The two equations do not yet constitute a closed set. In the present work we use the closure c_{λ}(r,r^{'})≈-λβu(r,r^{'}), known as the random-phase approximation (RPA). We demonstrate that the RPA is identical with the variational Gaussian approximation derived within the field-theoretical framework, originally derived and used for charged particles. We apply our generalized RPA approximation to the Gaussian core model and Coulomb charges. PMID:27415213

  8. Eocene and Miocene extension, meteoric fluid infiltration, and core complex formation in the Great Basin (Raft River Mountains, Utah)

    NASA Astrophysics Data System (ADS)

    Methner, Katharina; Mulch, Andreas; Teyssier, Christian; Wells, Michael L.; Cosca, Michael A.; Gottardi, Raphaël.; Gébelin, Aude; Chamberlain, C. Page

    2015-04-01

    Metamorphic core complexes (MCCs) in the North American Cordillera reflect the effects of lithospheric extension and contribute to crustal adjustments both during and after a protracted subduction history along the Pacific plate margin. While the Miocene-to-recent history of most MCCs in the Great Basin, including the Raft River-Albion-Grouse Creek MCC, is well documented, early Cenozoic tectonic fabrics are commonly severely overprinted. We present stable isotope, geochronological (40Ar/39Ar), and microstructural data from the Raft River detachment shear zone. Hydrogen isotope ratios of syntectonic white mica (δ2Hms) from mylonitic quartzite within the shear zone are very low (-90‰ to -154‰, Vienna SMOW) and result from multiphase synkinematic interaction with surface-derived fluids. 40Ar/39Ar geochronology reveals Eocene (re)crystallization of white mica with δ2Hms ≥ -154‰ in quartzite mylonite of the western segment of the detachment system. These δ2Hms values are distinctively lower than in localities farther east (δ2Hms ≥ -125‰), where 40Ar/39Ar geochronological data indicate Miocene (18-15 Ma) extensional shearing and mylonitic fabric formation. These data indicate that very low δ2H surface-derived fluids penetrated the brittle-ductile transition as early as the mid-Eocene during a first phase of exhumation along a detachment rooted to the east. In the eastern part of the core complex, prominent top-to-the-east ductile shearing, mid-Miocene 40Ar/39Ar ages, and higher δ2H values of recrystallized white mica, indicate Miocene structural and isotopic overprinting of Eocene fabrics.

  9. Constraints on geomagnetic secular variation modeling from electromagnetism and fluid dynamics of the Earth's core

    NASA Technical Reports Server (NTRS)

    Benton, E. R.

    1986-01-01

    A spherical harmonic representation of the geomagnetic field and its secular variation for epoch 1980, designated GSFC(9/84), is derived and evaluated. At three epochs (1977.5, 1980.0, 1982.5) this model incorporates conservation of magnetic flux through five selected patches of area on the core/mantle boundary bounded by the zero contours of vertical magnetic field. These fifteen nonlinear constraints are included like data in an iterative least squares parameter estimation procedure that starts with the recently derived unconstrained field model GSFC (12/83). Convergence is approached within three iterations. The constrained model is evaluated by comparing its predictive capability outside the time span of its data, in terms of residuals at magnetic observatories, with that for the unconstrained model.

  10. Laser-tuned whispering gallery modes in a solid-core microstructured optical fibre integrated with magnetic fluids

    PubMed Central

    Lin, Wei; Zhang, Hao; Liu, Bo; Song, Binbin; Li, Yuetao; Yang, Chengkun; Liu, Yange

    2015-01-01

    A laser-assisted tuning method of whispering gallery modes (WGMs) in a cylindrical microresonator based on magnetic-fluids-infiltrated microstructured optical fibres (MFIMOFs, where MF and MOF respectively refer to magnetic fluid and microstructured optical fibre) is proposed, experimentally demonstrated and theoretically analysed in detail. The MFIMOF is prepared by infiltrating the air-hole array of the MOF using capillary action effect. A fibre-coupling system is set up for the proposed MFIMOF-based microresonator to acquire an extinction ratio up to 25 dB and a Q-factor as large as 4.0 × 104. For the MF-infiltrated MOF, the light propagating in the fibre core region would rapidly spread out and would be absorbed by the MF-rod array cladding to induce significant thermal effect. This has been exploited to achieve a WGM resonance wavelength sensitivity of 0.034 nm/mW, which is ~20 times higher than it counterpart without MF infiltration. The wavelength response of the resonance dips exhibit linear power dependence, and owing to such desirable merits as ease of fabrication, high sensitivity and laser-assisted tunability, the proposed optical tuning approach of WGMs in the MFIMOF would find promising applications in the areas of optical filtering, sensing, and signal processing, as well as future all-optical networking systems. PMID:26632445

  11. Laser-tuned whispering gallery modes in a solid-core microstructured optical fibre integrated with magnetic fluids.

    PubMed

    Lin, Wei; Zhang, Hao; Liu, Bo; Song, Binbin; Li, Yuetao; Yang, Chengkun; Liu, Yange

    2015-01-01

    A laser-assisted tuning method of whispering gallery modes (WGMs) in a cylindrical microresonator based on magnetic-fluids-infiltrated microstructured optical fibres (MFIMOFs, where MF and MOF respectively refer to magnetic fluid and microstructured optical fibre) is proposed, experimentally demonstrated and theoretically analysed in detail. The MFIMOF is prepared by infiltrating the air-hole array of the MOF using capillary action effect. A fibre-coupling system is set up for the proposed MFIMOF-based microresonator to acquire an extinction ratio up to 25 dB and a Q-factor as large as 4.0 × 10(4). For the MF-infiltrated MOF, the light propagating in the fibre core region would rapidly spread out and would be absorbed by the MF-rod array cladding to induce significant thermal effect. This has been exploited to achieve a WGM resonance wavelength sensitivity of 0.034 nm/mW, which is ~20 times higher than it counterpart without MF infiltration. The wavelength response of the resonance dips exhibit linear power dependence, and owing to such desirable merits as ease of fabrication, high sensitivity and laser-assisted tunability, the proposed optical tuning approach of WGMs in the MFIMOF would find promising applications in the areas of optical filtering, sensing, and signal processing, as well as future all-optical networking systems. PMID:26632445

  12. Laser-tuned whispering gallery modes in a solid-core microstructured optical fibre integrated with magnetic fluids

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Zhang, Hao; Liu, Bo; Song, Binbin; Li, Yuetao; Yang, Chengkun; Liu, Yange

    2015-12-01

    A laser-assisted tuning method of whispering gallery modes (WGMs) in a cylindrical microresonator based on magnetic-fluids-infiltrated microstructured optical fibres (MFIMOFs, where MF and MOF respectively refer to magnetic fluid and microstructured optical fibre) is proposed, experimentally demonstrated and theoretically analysed in detail. The MFIMOF is prepared by infiltrating the air-hole array of the MOF using capillary action effect. A fibre-coupling system is set up for the proposed MFIMOF-based microresonator to acquire an extinction ratio up to 25 dB and a Q-factor as large as 4.0 × 104. For the MF-infiltrated MOF, the light propagating in the fibre core region would rapidly spread out and would be absorbed by the MF-rod array cladding to induce significant thermal effect. This has been exploited to achieve a WGM resonance wavelength sensitivity of 0.034 nm/mW, which is ~20 times higher than it counterpart without MF infiltration. The wavelength response of the resonance dips exhibit linear power dependence, and owing to such desirable merits as ease of fabrication, high sensitivity and laser-assisted tunability, the proposed optical tuning approach of WGMs in the MFIMOF would find promising applications in the areas of optical filtering, sensing, and signal processing, as well as future all-optical networking systems.

  13. Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment

    NASA Astrophysics Data System (ADS)

    Mitran, Sorin

    2013-07-01

    The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale.

  14. Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment

    PubMed Central

    Mitran, Sorin

    2013-01-01

    The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale. PMID:23729842

  15. Fluid-Rock Characterization for NMR Well Logging and Special Core Analysis

    SciTech Connect

    George Hirasaki; Kishore Mohanty

    2007-12-31

    The overall objective of this effort is to develop, build and test a high-speed drilling motor that can meet the performance guidelines of the announcement, namely: 'The motors are expected to rotate at a minimum of 10,000 rpm, have an OD no larger than 7 inches and work downhole continuously for at least 100 hours. The motor must have common oilfield thread connections capable of making up to a drill bit and bottomhole assembly. The motor must be capable of transmitting drilling fluid through the motor'. To these goals, APS would add that the motor must be economically viable, in terms of both its manufacturing and maintenance costs, and be applicable to as broad a range of markets as possible. APS has taken the approach of using a system using planetary gears to increase the speed of a conventional mud motor to 10,000 rpm. The mud flow is directed around the outside of the gear train, and a unique flow diversion system has been employed. A prototype of the motor was built and tested in APS's high-pressure flow loop. The motor operated per the model up to {approx}4200 rpm. At that point a bearing seized and the performance was severely degraded. The motor is being rebuilt and will be retested outside of this program.

  16. The effect of oscillating force field on the dynamics of free inner core in a rotating fluid-filled spherical cavity

    NASA Astrophysics Data System (ADS)

    Kozlov, V. G.; Kozlov, N. V.; Subbotin, S. V.

    2015-12-01

    This research involves experimental studies of the dynamics of a free spherical core in a fluid-filled spherical cavity rotating around the horizontal axis and subject to vibration perpendicular to the rotation axis. The core stays in the center of the cavity under the action of a centrifugal force (the core density is less than the fluid density). The vibration manifests itself in resonance regions when the vibration frequency coincides with one of the core's natural frequencies. The amplitude of the core oscillations and generation of its intensive differential rotation rise steeply, with the differential rotation lagging or leading, depending on the frequency of the core oscillations. Excitation of leading rotation is accompanied by the core shift from the cavity center to one of the poles with the core rotation axis deviated from the cavity rotation axis. The research shows that the superposition of different force fields, oscillating vibrational field, and static gravitational force field determines the differential rotation rate of the core. The gravity field causes the lagging circular oscillations of the core with respect to the cavity, and consequently its steady lagging differential rotation, which decreases as the cavity rotation rate increases. The research shows that 2D steady flow in the form of a Taylor-Proudman column accompanies the differential rotation of the core. The resulting flow is a linear superposition of flows excited independently by gravity and vibration. The instability of the flow manifests itself, as an azimuthal two-dimensional wave is propagating on the Taylor-Proudman column boundary, and depends on the flow structure.

  17. Metastable liquid-liquid coexistence and density anomalies in a core-softened fluid

    NASA Astrophysics Data System (ADS)

    Gibson, H. M.; Wilding, N. B.

    2006-06-01

    Linearly sloped or “ramp” potentials belong to a class of core-softened models which possess a liquid-liquid critical point (LLCP) in addition to the usual liquid-gas critical point. Furthermore, they exhibit thermodynamic anomalies in their density and compressibility, the nature of which may be akin to those occurring in water. Previous simulation studies of ramp potentials have focused on just one functional form, for which the LLCP is thermodynamically stable. In this work we construct a series of ramp potentials, which interpolate between this previously studied form and a ramp-based approximation to the Lennard-Jones (LJ) potential. By means of Monte Carlo simulation, we locate the LLCP, the first order high density liquid (HDL)-low density liquid (LDL) coexistence line, and the line of density maxima for a selection of potentials in the series. We observe that as the LJ limit is approached, the LLCP becomes metastable with respect to freezing into a hexagonal close packed crystalline solid. The qualitative nature of the phase behavior in this regime shows a remarkable resemblance to that seen in simulation studies of accurate water models. Specifically, the density of the liquid phase exceeds that of the solid; the gradient of the metastable LDL-HDL line is negative in the pressure (p) -temperature (T) plane; while the line of density maxima in the p-T plane has a shape similar to that seen in water and extends into the stable liquid region of the phase diagram. As such, our results lend weight to the “second critical point” hypothesis as an explanation for the anomalous behavior of water.

  18. The Topographic Torque on a Bounding Surface of a Rotating Gravitating Fluid and the Excitation by Core Motions of Decadal Fluctuations in the Earth's Rotation

    NASA Technical Reports Server (NTRS)

    Hide, Raymond

    1995-01-01

    General expressions (with potential applications in several areas of geophysical fluid dynamics) are derived for all three components of the contribution made by the geostrophic part of the pressure field associated with flow in a rotating gravitating fluid to the topographic torque exerted by the fluid on a rigid impermeable bounding surface of any shape. When applied to the Earth's liquid metallic core, which is bounded by nearly spherical surfaces and can be divided into two main regions, the "torosphere" and "polosphere," the expressions reduce to formulae given previously by the author, thereby providing further support for his work and that of others on the role of topographic coupling at the core-mantle boundary in the excitation by core motions of Earth rotation fluctuations on decadal time scales. They also show that recent criticisms of that work are vitiated by mathematical and physical errors. Contrary to these criticisms, the author's scheme for exploiting Earth rotation and other geophysical data (either real or simulated in computer models) in quantitative studies of the topography of the core-mantle boundary (CMB) by intercomparing various models of (a) motions in the core based on geomagnetic secular variation data and (b) CMB topography based on seismological and gravity data has a sound theoretical basis. The practical scope of the scheme is of course limited by the accuracy of real data, but this is a matter for investigation, not a priori assessment.

  19. Fluid-rock interactions in seismic faults: Implications from the structures and mineralogical and geochemical compositions of drilling cores from the rupture of the 2008 Wenchuan earthquake, China

    NASA Astrophysics Data System (ADS)

    Duan, Qingbao; Yang, Xiaosong; Ma, Shengli; Chen, Jianye; Chen, Jinyu

    2016-01-01

    We describe the structural features and mineralogical and geochemical compositions of the fault rocks recovered from boreholes at the Golden River site on the Yingxiu-Beichuan fault, which activated and slipped along a 240 km-long main surface rupture zone during the 2008 Wenchuan earthquake. The fault, which accommodated co-seismic slip, cuts granitic rocks from the Pengguan complex, in which this earthquake most likely nucleated. Fault rocks, including cohesive cataclasite, unconsolidated breccia and three fault gouges with distinct colors, were identified from the drilling cores. On-going uplift and erosion in the area means that the fault rocks, formed at different depth, were exhumed to the shallow surface during the uplift history of the Longmenshan fault zone. A clear change from fracturing and comminution in the cataclasites and breccia to more pervasive shear/formation of fine grained materials in the gouges has been observed. The gouges are distinct and have accommodated significant displacement in multiple increments of shear. Furthermore, fault rocks recovered from the boreholes display numerous features indicative of fluid infiltration and fluid-rock interaction. Toward the fault core, clay minerals have replaced feldspars. The element enrichment/depletion patterns of the fault rocks show general fluid infiltration trends, such as 1) mobile elements are generally depleted in the fault rocks, 2) the microstructural, mineralogical and geochemical results of the fault rocks consistently indicate that pervasive fluid infiltration and fluid-rock interactions altered feldspars and mafic minerals to clay minerals. The fluid was Mg2 +- and Fe2 +-rich, facilitating formation of chlorite. Isocon analyses further reveal that a large rock volume has been lost, which is attributed to the removal of mobile elements associated with fluid infiltration and perhaps enhanced by pressure solution. These results reflect the accumulated effects of cataclasis and fluid

  20. Investigation of geomagnetic field forecasting and fluid dynamics of the core. [determination of the bundary between the core and mantle of the Earth

    NASA Technical Reports Server (NTRS)

    Benton, E. R. (Principal Investigator)

    1981-01-01

    Progress in the use of MAGSAT data to confirm that the radius of the Earth's core-mantle boundary can be accurately determined magnetically is reported. The MAGSAT data was used in conjunction with a high quality manfield model for epoch 1965. The unsigned flux linking the core and mantle of the Earth is considered to be a legitimate invariant for a span of time. The value from MAGSAT of this constant is 16.056 GWb (gigawebers).

  1. Core Formation And Gravothermal Collapse Of Self-interacting Dark Matter Halos: Monte Carlo N-body simulation versus Conducting Fluid Model

    NASA Astrophysics Data System (ADS)

    Koda, Jun; Shapiro, P. R.

    2007-12-01

    Self-interacting dark matter (SIDM) has been proposed to solve the cuspy core problem of dark matter halos in standard CDM. There are two ways to investigate the effect of the 2-body, non-gravitational, elastic collisions of SIDM, Monte-Carlo N-body simulation and a conducting fluid model. The former is a gravitational N-body simulation with a Monte Carlo algorithm for the SIDM scattering that changes the direction of N-body particles randomly according to a given scattering cross section. The latter is a system of fluid conservation equations with a thermal conduction that describes the collisional effect, which was originally invented to describe the gravothermal collapse of globular clusters. Our previous work found a significant disagreement as regards the strength of collisionality required to solve cuspy core problem. However the two methods have not been properly tested against each other. Here, we make direct comparisons between Monte Carlo N-body simulations and analytic and numerical solutions of the conducting fluid (gaseous) model, for various isolated self-interacting dark matter halos. The N-body simulations reproduce the analytical self-similar solution of gravothermal collapse in the fluid model when one free parameter, the coefficient of heat conduction C, is chosen to be 0.75. The gravothermal collapse results of the simulations agrees well with our 1D numerical hydro solutions of the fluid model within 20% for other initial conditions, including Plummer model, Hernquist profile and NFW profile. In conclusion the conducting fluid model is in reasonably good agreement with the Monte Carlo simulations for isolated halos. We will pursue the origin of the reported disagreement between two methods in a cosmological environment by comparing new N-body simulations with fully cosmological initial conditions.

  2. Evolution of fluid-rock interaction in the Reykjanes geothermal system, Iceland: Evidence from Iceland Deep Drilling Project core RN-17B

    NASA Astrophysics Data System (ADS)

    Fowler, Andrew P. G.; Zierenberg, Robert A.; Schiffman, Peter; Marks, Naomi; Friðleifsson, Guðmundur Ómar

    2015-09-01

    We describe the lithology and present spatially resolved geochemical analyses of samples from the hydrothermally altered Iceland Deep Drilling Project (IDDP) drill core RN-17B. The 9.3 m long RN-17B core was collected from the seawater-dominated Reykjanes geothermal system, located on the Reykjanes Peninsula, Iceland. The nature of fluids and the location of the Reykjanes geothermal system make it a useful analog for seafloor hydrothermal processes, although there are important differences. The recovery of drill core from the Reykjanes geothermal system, as opposed to drill cuttings, has provided the opportunity to investigate evolving geothermal conditions by utilizing in-situ geochemical techniques in the context of observed paragenetic and spatial relationships of alteration minerals. The RN-17B core was returned from a vertical depth of ~ 2560 m and an in-situ temperature of ~ 345 °C. The primary lithologies are basaltic in composition and include hyaloclastite breccia, fine-grained volcanic sandstone, lithic breccia, and crystalline basalt. Primary igneous phases have been entirely pseudomorphed by calcic plagioclase + magnesium hornblende + chlorite + titanite + albitized plagioclase + vein epidote and sulfides. Despite the extensive hydrothermal metasomatism, original textures including hyaloclastite glass shards, lithic clasts, chilled margins, and shell-fragment molds are superbly preserved. Multi-collector LA-ICP-MS strontium isotope ratio (87Sr/86Sr) measurements of vein epidote from the core are consistent with seawater as the dominant recharge fluid. Epidote-hosted fluid inclusion homogenization temperature and freezing point depression measurements suggest that the RN-17B core records cooling through the two-phase boundary for seawater over time to current in-situ measured temperatures. Electron microprobe analyses of hydrothermal hornblende and hydrothermal plagioclase confirm that while alteration is of amphibolite-grade, it is in disequilibrium

  3. Petrophysical characteristics and fluid flow zones in the Buntsandstein sandstones reservoir according well cores and outcrop analysis (Upper Rhine Graben, France)

    NASA Astrophysics Data System (ADS)

    Sébastien, H.; Géraud, Y.; Diraison, M.; Dezayes, C.

    2012-04-01

    Buntsandstein Sandstones (Lower Triassic), located in the Upper Rhine Graben, appears as an easy target for geothermal exploitation. This sedimentary reservoir links more or less permeable argillaceous sandstones intersected by many major faults to the regional thermal anomaly. Petrophysical analysis (permeability, porosity, thermal conductivity, P-wave velocity), performed on cores from several boreholes and samples from several outcrops in the Vosgian Mountain, drive us to characterise fluid and heat transfer capability of the different sedimentary facies present in the Buntsandstein sandstones. First data from well cores analysis indicate that the more permeable and porous (respectively >100mD & >15%) facies are the Playa Lake and fluvial and aeolian sand-sheet, and the fluvial-aeolian marginal erg, whereas the more common facies, the braided rivers within arid alluvial plain, presents permeability <10mD and porosity <10%. Thermal conductivities present high heterogeneities and values range between 1 and 5 W/m/K and their detailed analysis according a new proposed method, drive us to determine fluid flow at formation scale: major fault drive hot fluid flow and feed permeable levels. Second, outcrop analysis allows us to analysis fracturation dispersion and petrophysical modifications induced by fracture and fault in the sandstone series. Barite and quartz precipitation in fracture indicate us fracture orientation and position, compare to major fault position, in which fluid flow has occurs. All data acquired allow us to build a schematic geological block model: this block represent the Buntsandstein sandstone reservoir at depth with the different facies, above the Palaeozoic Granit and below the Muschelkalk limestones, intersecting by faults according the regional major azimuth. According each particular direction the particular fracturation is raised according outcrop data. This bloc points the major zones in which fluid circulation occurs.

  4. A poroplastic model of mature fault cores with biphasic pore fluids to investigate the role of gas on the onset of fault failure

    NASA Astrophysics Data System (ADS)

    Maury, V.; Fitzenz, D. D.; Piau, J.

    2011-12-01

    A poroplastic model of mature fault cores with biphasic pore fluids to investigate the role of gas on the onset of fault failure The effects of a rapid access of a fault to a source of overpressured fluids on effective stress and failure criterion have been recognized for a long time (Quattrocchi 1999), resulting in a decrease of the effective stress. We concentrate here on the case of the appearance/disappearance of gas in the pore fluid, and its effects on the loading path (Maury et al., 2011). Indeed, gas can appear continuously in a fault zone through dilatant deformation of the zones adjacent to the core fault (Kuo, 2006 ), due to fluid depressurization and degassing. Other source of gas e.g., mantle degasing (Miller et al, 2004), devolitization of coal or other organic matter during frictional sliding (O'Hara et al, 2006), may be remote, and diffuse through a fracture network, or local. Gas in a fault core reduces the Skempton's coefficient to almost 0, the total stress increase during tectonic loading induces a larger increase in effective stress than when pore fluid is fully liquid saturated, thus changing dramatically the loading path for that fault. Not only is failure delayed, but the shear stress at failure increases significantly. Before gas disappearance, the fault might not be critically stressed. However, a subsequent disappearance of gas may lead to failure for small increments of normal and shear stress: apparently strong faults can fail in response to small stress changes. Dilatant failure envelopes are often assumed for localized faults, whereas end-cap envelopes are usually used in association with compaction bands. Here we investigate a poroplastic model for mature fault cores acknowledging that these can be dilatant/contractant according to the state of stress at the plasticity criterion contact. We therefore use a Cam-Clay model as a first approximation. This model enables us to monitor the stability behavior and compute the jumps in stress

  5. Diagenesis of the Oseberg Sandstone Reservoir (North Sea): An example of integration of core, formation fluid and geochemical modelling studies

    SciTech Connect

    Girard, J.P.; Sanjuan, B.; Czernichowski-Lauriol, I.; Fouillac, C.

    1996-12-31

    A detailed multidisciplinary integrated study of the Middle Jurassic Oseberg reservoir in 20 wells of the Oseberg field, Norwegian North Sea, was carried out in collaboration with Norsk Hydro and Oseberg partners. The objectives were to reconstruct the tinting, conditions and spatial variation of diagenetic transformations; to characterize the nature and origin of diagenetic fluids; and to develop a geochemical model of the observed diagenesis. The 20-60 m thick Oseberg Formation occurs at depths of 2.5 to 3.2 km, and at present temperatures of 100 to 125{degrees}C. The detrital assemblage is mainly composed of quartz, K-feldspar, albite, muscovite and lithic clay clasts, and is very homogeneous throughout the field. The diagenetic sequence includes: minor siderite and pyrite, K-feldspar rims, ankerite, pervasive feldspar dissolution, abundant vermiform kaolinite, quartz overgrowths, poikilotopic ferroan calcite, and dickite. Diagenetic temperatures were derived from fluid inclusions in ankerite, quartz and calcite, and combined with the modelled burial/thermal history to constrain approximate ages and duration of diagenetic events. Isotopic compositions of carbonates and kaolinite indicate that meteoric water and seawater were two major constituents of diagenetic fluids. Present formation waters are fairly similar chemically and isotopically at reservoir scale and represent mixing of three end members: seawater ({approximately}54%), meteoric water ({approximately}40%) and primary evaporative brine ({approximately}6%). Stability diagrams and chemical geothermometers indicate that formation fluids are close to equilibrium with the host sandstone at present reservoir temperatures.

  6. Composition, Alteration, and Texture of Fault-Related Rocks from Safod Core and Surface Outcrop Analogs: Evidence for Deformation Processes and Fluid-Rock Interactions

    NASA Astrophysics Data System (ADS)

    Bradbury, Kelly K.; Davis, Colter R.; Shervais, John W.; Janecke, Susanne U.; Evans, James P.

    2015-05-01

    We examine the fine-scale variations in mineralogical composition, geochemical alteration, and texture of the fault-related rocks from the Phase 3 whole-rock core sampled between 3,187.4 and 3,301.4 m measured depth within the San Andreas Fault Observatory at Depth (SAFOD) borehole near Parkfield, California. This work provides insight into the physical and chemical properties, structural architecture, and fluid-rock interactions associated with the actively deforming traces of the San Andreas Fault zone at depth. Exhumed outcrops within the SAF system comprised of serpentinite-bearing protolith are examined for comparison at San Simeon, Goat Rock State Park, and Nelson Creek, California. In the Phase 3 SAFOD drillcore samples, the fault-related rocks consist of multiple juxtaposed lenses of sheared, foliated siltstone and shale with block-in-matrix fabric, black cataclasite to ultracataclasite, and sheared serpentinite-bearing, finely foliated fault gouge. Meters-wide zones of sheared rock and fault gouge correlate to the sites of active borehole casing deformation and are characterized by scaly clay fabric with multiple discrete slip surfaces or anastomosing shear zones that surround conglobulated or rounded clasts of compacted clay and/or serpentinite. The fine gouge matrix is composed of Mg-rich clays and serpentine minerals (saponite ± palygorskite, and lizardite ± chrysotile). Whole-rock geochemistry data show increases in Fe-, Mg-, Ni-, and Cr-oxides and hydroxides, Fe-sulfides, and C-rich material, with a total organic content of >1 % locally in the fault-related rocks. The faults sampled in the field are composed of meters-thick zones of cohesive to non-cohesive, serpentinite-bearing foliated clay gouge and black fine-grained fault rock derived from sheared Franciscan Formation or serpentinized Coast Range Ophiolite. X-ray diffraction of outcrop samples shows that the foliated clay gouge is composed primarily of saponite and serpentinite, with localized

  7. Cryogenic brines as a diagenetic fluid: using clumped isotopes to reconstruct the cementation history of sediments in the ANDRILL 2A core

    NASA Astrophysics Data System (ADS)

    Staudigel, P. T.; Dunham, D.; Fielding, C. R.; Frank, T. D.; Swart, P. K.

    2015-12-01

    The ANDRILL 2A core contains a succession of Neogene glaciomarine deposits, cemented by up to 20 wt% carbonate. Isotopic analysis of the cements yielded extremely negative d18O values, indicating either formation from isotopically negative fluids or at extremely high temperature. In outcrop, such values could be interpreted as being the result of meteoric diagenesis, but the lack of any exposure horizons in the core precludes such an interpretation. A previous study of the pore fluids described a brine below 200m, with an extremely negative δ18O value (c. -10‰), probably formed by batch-freezing seawater on the continental margin. The present study integrates ∆47­ values of the cements with traditional approaches to further assess the nature of diagenetic fluids and processes. Isotopic data suggest three sources of carbonate: marine, methane reducing, and the aforementioned brines. Marine carbonate indicates δ13C and water δ18O within the range typical of seawater (c. -1‰), whereas the cryogenic brines show more negative values. A few samples exhibited extremely low δ13C values, the lowest below -25‰; the only feasible source for these cements would be the oxidation of methane. The shallow cements' signatures diminish with depth as cryogenic brines begin to dominate the isotopic signal. Biogenic materials show an increased influence of this brine at depth, the deepest buried shells are isotopically indistinguishable from adjacent cements. These analyses show that these cryogenic brines play a major role in the diagenetic history of this site. Clumped isotopic results support previous interpretations using traditional methods, which have identified cryogenic brine as a major cementing agent in the subsurface of Southern McMurdo Sound. Because cryogenic brines have likely formed throughout Earth history, results have the potential to change the way diagenesis is evaluated in sedimentary successions that formed in polar environments.

  8. Polar organic compounds in pore waters of the Chesapeake Bay impact structure, Eyreville core hole: Character of the dissolved organic carbon and comparison with drilling fluids

    USGS Publications Warehouse

    Rostad, C.E.; Sanford, W.E.

    2009-01-01

    Pore waters from the Chesapeake Bay impact structure cores recovered at Eyreville Farm, Northampton County, Virginia, were analyzed to characterize the dissolved organic carbon. After squeezing or centrifuging, a small volume of pore water, 100 ??L, was taken for analysis by electrospray ionization-mass spectrometry. Porewater samples were analyzed directly without filtration or fractionation, in positive and negative mode, for polar organic compounds. Spectra in both modes were dominated by low-molecular-weight ions. Negative mode had clusters of ions differing by -60 daltons, possibly due to increasing concentrations of inorganic salts. The numberaverage molecular weight and weight-average molecular weight values for the pore waters from the Chesapeake Bay impact structure are higher than those reported for other aquatic sources of natural dissolved organic carbon as determined by electrospray ionization-mass spectrometry. In order to address the question of whether drilling mud fluids may have contaminated the pore waters during sample collection, spectra from the pore waters were compared to spectra from drilling mud fluids. Ions indicative of drilling mud fluids were not found in spectra from the pore waters, indicating there was no detectable contamination, and highlighting the usefulness of this analytical technique for detecting potential contamination during sample collection. ?? 2009 The Geological Society of America.

  9. A heterogeneous system based on GPU and multi-core CPU for real-time fluid and rigid body simulation

    NASA Astrophysics Data System (ADS)

    da Silva Junior, José Ricardo; Gonzalez Clua, Esteban W.; Montenegro, Anselmo; Lage, Marcos; Dreux, Marcelo de Andrade; Joselli, Mark; Pagliosa, Paulo A.; Kuryla, Christine Lucille

    2012-03-01

    Computational fluid dynamics in simulation has become an important field not only for physics and engineering areas but also for simulation, computer graphics, virtual reality and even video game development. Many efficient models have been developed over the years, but when many contact interactions must be processed, most models present difficulties or cannot achieve real-time results when executed. The advent of parallel computing has enabled the development of many strategies for accelerating the simulations. Our work proposes a new system which uses some successful algorithms already proposed, as well as a data structure organisation based on a heterogeneous architecture using CPUs and GPUs, in order to process the simulation of the interaction of fluids and rigid bodies. This successfully results in a two-way interaction between them and their surrounding objects. As far as we know, this is the first work that presents a computational collaborative environment which makes use of two different paradigms of hardware architecture for this specific kind of problem. Since our method achieves real-time results, it is suitable for virtual reality, simulation and video game fluid simulation problems.

  10. Effects of fluids on faulting within active fault zones - evidence from drill core samples recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling project

    NASA Astrophysics Data System (ADS)

    Janssen, C.; Wirth, R.; Kienast, M.; Morales, L. G.; Rybacki, E.; Wenk, H.; Dresen, G. H.

    2011-12-01

    Low temperature microstructures observed in samples from SAFOD drill cores indicate fluid-related deformation and chemical reactions occurring simultaneously and interacting with each other. Transmission Electron Microscopy (TEM) observations, document open pores that formed in-situ during or after deformation. In TEM images, many pores with high aspect ratio appear to be unconnected. They were possibly filled with formation water and/or hydrothermal fluids suggesting that elevated pore fluid pressure exist in the fault gouge, preventing pore collapse. The chemical influence of fluids on mineralogical alteration and geomechanical processes in fault rocks is visible in pronounced dissolution-precipitation processes (stylolites, solution seams) as well as in the formation of new phases. Detrital quartz and feldspar grains are partially dissolved and replaced by authigenic illite-smectite (I-S) mixed-layer clay minerals. TEM imaging of these grains reveals that the alteration processes initiated within pores and small intra-grain fissures. In few samples syntectonic fluid-assisted overgrowth of chlorite-rich films on slickensides partly replaced sedimentary quartz grains. Quartz and feldspar grains are partially dissolved with sutured boundaries. Newly-formed phyllosilicates are illite-smectite phases, Mg-rich smectites and chlorite minerals. They are very fine-grained (down to 20 nm) and nucleate at grain surfaces (interfaces), which in many cases are pore or fracture walls. These relatively straight or curved crystals grow into open pore spaces and fractures. They are arranged in a card-house fabric with open pore spaces between the flakes. Locally, clay flakes are bent, folded or show sigmoidal shapes indicating that they were involved in faulting. The clay particles do not show a preferred shape orientation. The predominantly random orientation distribution of the clay minerals was confirmed by x-ray synchrotron texture analysis. Pole figures show very weak

  11. Preliminary core-engine noise abatement experimental results of a fluid injection nozzle on a JT-15D turbofan engine

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.; Wang, P.

    1975-01-01

    Jet noise, as induced by shear stress, in an jet exhaust is investigated. Experiments were performed on a JT-15D fan jet to verify the inward momentum stress reduction concept. The experiments involved making fan air flow convergently around the high velocity core jet with a small angle. Ring airfoils were used as flow separators for the minimization of the thrust loss. Jet exhaust noise reduction of ll db at 30 deg from the jet axis was recorded and 8 db integrated overall noise reduction over a hemisphere was measured with only 4.6% thrust loss, or 152 db/percent thrust loss.

  12. Evolution of the liquid-vapor coexistence of the hard-core Yukawa fluid as a function of the interaction range.

    PubMed

    El Mendoub, E B; Wax, J-F; Jakse, N

    2010-04-28

    The present work is devoted to the study of the liquid-vapor coexistence curve of hard-core Yukawa fluids for range parameter lambda, going from 0.5 to 7 by means of an integral equation approach. Both binodal and spinodal lines are computed and compared to available simulation data, and the integral equation used appears to be accurate. We also compare two methods for determining the coordinates of the critical point. The first one, using the rectilinear diameter law, appears to be less accurate than the second one based on the heat capacity at constant volume. It is found that the critical temperature decreases as the range of the interactions increases and that the liquid-vapor coexistence disappears for lambda greater than 6. PMID:20441284

  13. Fluid motion associated with Tertiary mylonitization and detachment faulting: 18O/16O evidence from the Picacho metamorphic core complex, Arizona

    NASA Astrophysics Data System (ADS)

    Kerrich, R.; Rehrig, W.

    1987-01-01

    Major crustal detachment faults of Tertiary age in the Picacho metamorphic core complex of southern Arizona demark three tectonic plates in a structural section characterized by the transition from undeformed granitic basement through a mylonitic carapace to brecciated and hydrothermally altered counterparts. A lower detachment fault defines the top of the lower plate and is coplanar with the overprinting of mylonites to chloritic breccias. Variably altered and fractured granite of an overlying middle plate is bounded by an upper detachment fault on which allochthonous Miocene volcanics have been superposed; the volcanics display intense oxidative potassic alteration. This overall transition is accompanied by a 10‰ increase in δ18O and a 400 °C decrease of temperature. Undeformed Oracle Granite of the lower plate (δ18O ≈7.8) retains near-magmatic mineral fractionations, but these are disturbed in mylonitic equivalents, where ambient temperatures were ˜520 °C, δ18OH2O ≈4‰, and conditions of low water/rock ratios prevailed. Chloritic breccias record a whole-rock shift to +8.5‰, accompanied by diminished temperatures of 300 °C, and the infiltration of fluids where δ18OH2O = 3‰ ± 1‰ under conditions of high water/rock ratios. A pronounced isotopic discontinuity occurs at the upper detachment fault where intensely oxidized and K-metasomatized volcanics of the upper plate are shifted to 18‰ at temperatures that diminished to ˜ 150 °C. Two distinct fluid reservoirs were involved in alteration of the lower two plates and the upper plate, respectively, the tectonic section recording an upward transition from high to low temperature, low to elevated water/rock ratios, ductile creep to brittle fracturing, and an interface of deep “exchanged” fluids with a shallow oxidized surface aqueous reservoir.

  14. Low temperature sensitive intensity-interrogated magnetic field sensor based on modal interference in thin-core fiber and magnetic fluid

    NASA Astrophysics Data System (ADS)

    Wu, Jixuan; Miao, Yinping; Song, Binbin; Lin, Wei; Zhang, Hao; Zhang, Kailiang; Liu, Bo; Yao, Jianquan

    2014-06-01

    A fiber-optic magnetic field sensor based on the thin-core modal interference and magnetic fluid (MF) has been proposed and experimentally demonstrated. The magnetic field sensor is spliced with a thin-core fiber (TCF) between two conventional single-mode fibers immersed into the MF. The transmission spectra of the proposed sensor under different magnetic field intensities have been measured and theoretically analyzed. The results show that the magnetic field sensitivity reaches up to -0.058 dB/Oe with the linear range from 75 Oe to 300 Oe. Due to the small thermal expansion of the TCF material, the attenuation wavelength and the transmission power remain almost unchanged as the temperature varies. The proposed magnetic field sensor has several advantages such as intensity-interrogation, low temperature sensitivity, low cost, compact size, and ease of fabrication. And particularly, the temperature cross-sensitivity could be effectively resolved, which makes it a promising candidate for strict temperature environments. Therefore, it would find potential applications in the magnetic field measurement.

  15. Simulating stress-dependent fluid flow in a fractured core sample using real-time X-ray CT data

    NASA Astrophysics Data System (ADS)

    Kling, Tobias; Huo, Da; Schwarz, Jens-Oliver; Enzmann, Frieder; Benson, Sally; Blum, Philipp

    2016-07-01

    Various geoscientific applications require a fast prediction of fracture permeability for an optimal workflow. Hence, the objective of the current study is to introduce and validate a practical method to characterize and approximate single flow in fractures under different stress conditions by using a core-flooding apparatus, in situ X-ray computed tomography (CT) scans and a finite-volume method solving the Navier-Stokes-Brinkman equations. The permeability of the fractured sandstone sample was measured stepwise during a loading-unloading cycle (0.7 to 22.1 MPa and back) to validate the numerical results. Simultaneously, the pressurized core sample was imaged with a medical X-ray CT scanner with a voxel dimension of 0.5 × 0.5 × 1.0 mm3. Fracture geometries were obtained by CT images based on a modification of the simplified missing attenuation (MSMA) approach. Simulation results revealed both qualitative plausibility and a quantitative approximation of the experimentally derived permeabilities. The qualitative results indicate flow channeling along several preferential flow paths with less pronounced tortuosity. Significant changes in permeability can be assigned to temporal and permanent changes within the fracture due to applied stresses. The deviations of the quantitative results appear to be mainly caused by both local underestimation of hydraulic properties due to compositional matrix heterogeneities and the low CT resolution affecting the accurate capturing of sub-grid-scale features. Both affect the proper reproduction of the actual connectivity and therefore also the depiction of the expected permeability hysteresis. Furthermore, the threshold value CTmat (1862.6 HU) depicting the matrix material represents the most sensitive input parameter of the simulations. Small variations of CTmat can cause enormous changes in simulated permeability by up to a factor of 2.6 ± 0.1 and, thus, have to be defined with caution. Nevertheless, comparison with further CT

  16. Structural evolution of the Rio Grande rift: Synchronous exhumation of rift flanks from 20-10 Ma, embryonic core complexes, and fluid-enhanced Quaternary extension

    NASA Astrophysics Data System (ADS)

    Ricketts, Jason William

    The Rio Grande rift in Colorado and New Mexico is one of the well-exposed and well-studied continental rifts in the world. Interest in the rift is driven not only by pure scientific intrigue, but also by a desire and a necessity to quantify earthquake hazards in New Mexico as well as to assess various water related issues throughout the state. These motivating topics have thus far led to the publication of two Geological Society of America Special Publication volumes in 1994 and 2013. This dissertation aims at building on the wealth of previous knowledge about the rift, and is composed of three separate chapters that focus on the structural evolution of the Rio Grande rift at several different time and spatial scales. At the largest scale, apatite (U-Th)/He thermochronologic data suggest synchronous extension along the entire length of the Rio Grande rift in Colorado and New Mexico from 20-10 Ma, which is important for understanding and evaluating possible driving mechanisms which are responsible for the rift. Previous tectonic and magmatic events in western North America were highly influential in the formation of the Rio Grande rift, and the new thermochronologic data suggest that its formation may have been closely linked to foundering and removal of the underlying Farallon Plate. A fundamental result of rift development at these scales is a concentration of strain is some regions of the rift. In these regions of maximum extension, fault networks display a geometry involving both high- and low-angle fault networks. These geometries are similar to the early stages in the development of metamorphic core complexes, and thus these regions in the rift link incipient extensional environments to highly extended terranes. At shorter time scales, heterogeneous strain accumulation may be governed in part by fluids in fault zones. As an example, along the western edge of the Albuquerque basin, travertine deposits are cut by extensional veins that record anomalously high

  17. Physical and Chemical Effects of Two-Phase Brine/Supercritical-CO2 Fluid Flow on Clastic Rocks: Real-Time Monitoring and NMR Imaging of Flow-Through Core Experiments

    NASA Astrophysics Data System (ADS)

    Shaw, C. A.; Vogt, S.; Maneval, J. E.; Brox, T.; Skidmore, M. L.; Codd, S. L.; Seymour, J. D.

    2010-12-01

    Sandstone core samples were challenged with a supercritical CO2-saturated brine mixture in a laboratory flow-through core reactor system over a range of temperatures and brine strengths. Cores of quartz arenite from the Berea formation were selected to represent ideal ‘clean’ sandstone These laboratory experiments potentially provide an analog for the acidification of pore fluids near the brine/CO2 interface during CO2 flooding of depleted clastic hydrocarbon reservoirs for carbon sequestration. Flow in the reactor was perpendicular to bedding. Initial experiments were run at 50°C and 100°C with brine concentrations of 1g/L and 10g/L (TDS) to test effects of different temperatures and brine compositions. Real-time monitoring of fluid pH and conductivity provided a measure of reaction rates. Introduction of supercritical CO2 into the brine-saturated cores initiated a reduction in pH accompanied by an increase in conductivity. NMR images of fresh cores were compared with images of challenged cores using a protocol for pixel-by-pixel comparison to determine the effects on bulk pore volume and geometry. Two types of imaging experiments were conducted: multi-slice spin echo and 3-D spin echo images. Multi-slice experiments had a slice thickness of 1.5 mm and an in-plane resolution of 0.27 mm x 0.27 mm, and 3-D experiments had a resolution of 0.47 mm x 0.55 mm x 0.55mm. Imaging results reflected the observed changes in the physical and chemical structure post-challenge. Two-dimensional relaxation correlation experiments were also conducted to probe the pore sizes, connectivity and fluid saturation of the rock cores before and after challenging. Chemical analyses and microscopic examination of the challenged cores will provide a better understanding of alteration in the cores and the changes in the volume, geometry and connectivity of pore space.

  18. Continuous coring drill bit

    SciTech Connect

    Ford, G.A.

    1987-09-22

    A continuous coring drill bit is described comprising: (a) body means defining a vertical axis and adapted for connection to drill pipe and forming an internal body cavity disposed in eccentric relation with the vertical axis and a generally circular throat in communication with the body cavity for conducting drilling fluid. The throat defining a throat axis coincident with the vertical axis and being of a configuration permitting passage of a formation core into the body cavity; (b) a generally cylindrical tubular core breaker being rotatably mounted within the body cavity and defining a vertical axis of rotation of generally parallel and offset relation with the vertical axis of the body means; and (c) a buttress element extending inwardly from the core breaker and adapted to contact the formation core. Upon each rotation of the drill bit the buttress element applying transverse force to the core for fracturing of the core into sections sufficiently small for transport by the drilling fluid.

  19. Fluid imbalance

    MedlinePlus

    ... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...

  20. Lunar Core and Tides

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2004-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2,3,4] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening, which in the past has been marginal but improving [3,4,5], now seems significant. Direct detection of the core moment has not yet been achieved.

  1. HYDRATE CORE DRILLING TESTS

    SciTech Connect

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate formation comprised of coarse, large

  2. The core paradox.

    NASA Technical Reports Server (NTRS)

    Kennedy, G. C.; Higgins, G. H.

    1973-01-01

    Rebuttal of suggestions from various critics attempting to provide an escape from the seeming paradox originated by Higgins and Kennedy's (1971) proposed possibility that the liquid in the outer core was thermally stably stratified and that this stratification might prove a powerful inhibitor to circulation of the outer core fluid of the kind postulated for the generation of the earth's magnetic field. These suggestions are examined and shown to provide no reasonable escape from the core paradox.

  3. Comparison of hydrogeochemical logging of drilling fluid during coring with the results from geophysical logging and hydraulic testing Example of the Morte-Mérie scientific borehole, Ardèche-France, Deep Geology of France Programme

    NASA Astrophysics Data System (ADS)

    Aquilina, L.; Eberschweiler, C.; Perrin, J.; Deep Geology of France Team

    1996-11-01

    A 980-m-deep well was cored on the Ardèche border of the Southeastern basin of France as part of the Deep Geology of France (GPF) programme. Hydrogeochemical logging was carried out during drilling, which involved the monitoring of physico-chemical parameters (pH, Eh, temperature and conductivity), and chemical parameters (concentrations of He, Rn, CO 2, CH 4, O 2 Ca, Cl and SiO 2) of the drilling fluid permanently circulating in the well. This logging programme was complemented by geophysical logging and two hydraulic tests. The combination of these measurements enabled identification of a transmissive interval due to fractures in the Jurassic carbonates, and of fluid inflow both at the base of the porous and slightly permeable Triassic sandstones and from an open fracture in the Permian conglomerates. These intervals are marked by changes in the drilling-fluid chemistry, such as an increase in chemical species content, or a drop in pH. The degree of modification depends on the natural permeability of the fractures and the salinity of the fluids. The porous and permeable intervals are also marked by He anomalies, which act as a tracer for these zones. Comparison between the geophysical and hydrogeochemical logs reveals that the latter provide information on the liquid phase, whether the fractures are productive or not, whereas the geophysical logs are more directly related to the solid phase.

  4. Fluid-deposited graphitic inclusions in quartz: Comparison between KTB (German Continental Deep-Drilling) core samples and artificially reequilibrated natural inclusions

    USGS Publications Warehouse

    Pasteris, J.D.; Chou, I.-Ming

    1998-01-01

    We used Raman microsampling spectroscopy (RMS) to determine the degree of crystallinity of minute (2-15 ??m) graphite inclusions in quartz in two sets of samples: experimentally reequilibrated fluid inclusions in a natural quartz grain and biotite-bearing paragneisses from the KTB deep drillhole in SE Germany. Our sequential reequilibration experiments at 725??C on initially pure CO2 inclusions in a quartz wafer and the J. Krautheim (1993) experiments at 900-1100??C on organic compounds heated in gold or platinum capsules suggest that, at a given temperature, (1) fluid-deposited graphite will have a lower crystallinity than metamorphosed organic matter and (2) that the crystallinity of fluid-deposited graphite is affected by the composition of the fluid from which it was deposited. We determined that the precipitation of more-crystalline graphite is favored by lower fH2 (higher fO2), and that the crystallinity of graphite is established by the conditions (including gas fugacities) that pertain as the fluid first reaches graphite saturation. Graphite inclusions within quartz grains in the KTB rocks show a wide range in crystallinity index, reflecting three episodes of carbon entrapment under different metamorphic conditions. Isolated graphite inclusions have the spectral properties of totally ordered, completely crystalline graphite. Such crystallinity suggests that the graphite was incorporated from the surrounding metasedimentary rocks, which underwent metamorphism at upper amphibolite-facies conditions. Much of the fluid-deposited graphite in fluid inclusions, however, shows some spectral disorder. The properties of that graphite resemble those of experimental precipitates at temperatures in excess of 700??C and at elevated pressures, suggesting that the inclusions represent precipitates from C-O-H fluids trapped under conditions near those of peak metamorphism at the KTB site. In contrast, graphite that is intimately associated with chlorite and other

  5. Fluid circulation and carbonate vein precipitation in the footwall of an oceanic core complex, Ocean Drilling Program Site 175, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Schroeder, Tim; Bach, Wolfgang; Jöns, Niels; Jöns, Svenja; Monien, Patrick; Klügel, Andreas

    2015-10-01

    Carbonate veins recovered from the mafic/ultramafic footwall of an oceanic detachment fault on the Mid-Atlantic Ridge record multiple episodes of fluid movement through the detachment and secondary faults. High-temperature (˜75-175°C) calcite veins with elevated REE contents and strong positive Eu-anomalies record the mixing of up-welling hydrothermal fluids with infiltrating seawater. Carbonate precipitation is most prominent in olivine-rich troctolite, which also display a much higher degree of greenschist and sub-greenschist alteration relative to gabbro and diabase. Low-temperature calcite and aragonite veins likely precipitated from oxidizing seawater that infiltrated the detachment fault and/or within secondary faults late or post footwall denudation. Oxygen and carbon isotopes lie on a mixing line between seawater and Logatchev-like hydrothermal fluids, but precipitation temperatures are cooler than would be expected for isenthalpic mixing, suggesting conductive cooling during upward flow. There is no depth dependence of vein precipitation temperature, indicating effective cooling of the footwall via seawater infiltration through fault zones. One sample contains textural evidence of low-temperature, seawater-signature veins being cut by high-temperature, hydrothermal-signature veins. This indicates temporal variability in the fluid mixing, possibly caused by deformation-induced porosity changes or dike intrusion. The strong correlation between carbonate precipitation and olivine-rich troctolites suggests that the presence of unaltered olivine is a key requirement for carbonate precipitation from seawater and hydrothermal fluids. Our results also suggest that calcite-talc alteration of troctolites may be a more efficient CO2 trap than serpentinized peridotite.

  6. Nanometer precise adjustment of the silver shell thickness during automated Au-Ag core-shell nanoparticle synthesis in micro fluid segment sequences.

    PubMed

    Knauer, Andrea; Eisenhardt, Anja; Krischok, Stefan; Koehler, J Michael

    2014-05-21

    In this work, a wet-chemical synthesis method for gold-silver core-shell particles with nanometer precise adjustable silver shell thicknesses is presented. Typically wet-chemical syntheses lead to relatively large diameter size distributions and losses in the yield of the desired particle structure due to thermodynamical effects. With the here explained synthesis method in micro fluidic segment sequences, a combinatorial in situ parameter screening of the reactant concentration ratios by programmed flow rate shifts in conjunction with efficient segment internal mixing conditions is possible. The highly increased mixing rates ensure a homogeneous shell deposition on all presented gold core particles while the amount of available silver ions was adjusted by automated flow rate courses, from which the synthesis conditions for exactly tunable shell thicknesses between 1.1 and 6.1 nm could be derived. The findings according to the homogeneity of size and particle structure were confirmed by differential centrifugal sedimentation (DCS), scanning and transmission electron microscopy (SEM, TEM) and X-ray photoelectron spectroscopy (XPS) measurements. In UV-Vis measurements, a significant contribution of the core metal was found in the shape of the extinction spectra in the case of thin shells. These results were confirmed by theoretical calculations. PMID:24687008

  7. Emergency core cooling system

    DOEpatents

    Schenewerk, William E.; Glasgow, Lyle E.

    1983-01-01

    A liquid metal cooled fast breeder reactor provided with an emergency core cooling system includes a reactor vessel which contains a reactor core comprising an array of fuel assemblies and a plurality of blanket assemblies. The reactor core is immersed in a pool of liquid metal coolant. The reactor also includes a primary coolant system comprising a pump and conduits for circulating liquid metal coolant to the reactor core and through the fuel and blanket assemblies of the core. A converging-diverging venturi nozzle with an intermediate throat section is provided in between the assemblies and the pump. The intermediate throat section of the nozzle is provided with at least one opening which is in fluid communication with the pool of liquid sodium. In normal operation, coolant flows from the pump through the nozzle to the assemblies with very little fluid flowing through the opening in the throat. However, when the pump is not running, residual heat in the core causes fluid from the pool to flow through the opening in the throat of the nozzle and outwardly through the nozzle to the assemblies, thus providing a means of removing decay heat.

  8. Hydrocarbon fluid, ejector refrigeration system

    SciTech Connect

    Kowalski, G.J.; Foster, A.R.

    1993-08-31

    A refrigeration system is described comprising: a vapor ejector cycle including a working fluid having a property such that entropy of the working fluid when in a saturated vapor state decreases as pressure decreases, the vapor ejector cycle comprising: a condenser located on a common fluid flow path; a diverter located downstream from the condenser for diverting the working fluid into a primary fluid flow path and a secondary fluid flow path parallel to the primary fluid flow path; an evaporator located on the secondary fluid flow path; an expansion device located on the secondary fluid flow path upstream of the evaporator; a boiler located on the primary fluid flow path parallel to the evaporator for boiling the working fluid, the boiler comprising an axially extending core region having a substantially constant cross sectional area and a porous capillary region surrounding the core region, the core region extending a length sufficient to produce a near sonic velocity saturated vapor; and an ejector having an outlet in fluid communication with the inlet of the condenser and an inlet in fluid communication with the outlet of the evaporator and the outlet of the boiler and in which the flows of the working fluid from the evaporator and the boiler are mixed and the pressure of the working fluid is increased to at least the pressure of the condenser, the ejector inlet, located downstream from the axially extending core region, including a primary nozzle located sufficiently close to the outlet of the boiler to minimize a pressure drop between the boiler and the primary nozzle, the primary nozzle of the ejector including a converging section having an included angle and length preselected to receive the working fluid from the boiler as a near sonic velocity saturated vapor.

  9. Lunar core: occam's razor?

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Whether or not the earth's moon has a core is a much bandied question. Like many notions about the properties of the moon, ideas of a lunar core changed drastically after the Apollo studies. A review of the development of these ideas was given a scholarly treatment by S.K. Runcorn recently (Nature, 304, 589-596, 1983). In contrast, L.L. Hood, C.P. Sonett, and L.J. Srnka have questioned the concept in serious detail (Nature, 307, 661-662, 1984).Whether or not the moon actually has or has had a fluid metallic core is of great consequence for a number of geophysical theories about the solar system. Most investigators concede that the possible existence of a lunar core remains one of the major unanswered, and yet most critical, questions about the moon. A lot rides on the answer: Can a lunar-sized body have a core? Is the core metallic? How is the core related to lunar magnetism and its paleomagnetism? Is or was a lunar core related to lunar volcanism? If the moon can have a core, is planetary core formation in the solar system a simple matter of gravitationally segregating metallic fragments that were formed elsewhere? Implications of the questions are without limit. There is, perhaps, no more valid issue about the moon to explore scientifically.

  10. Models of the Earth's Core.

    PubMed

    Stevenson, D J

    1981-11-01

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with the following properties. Core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and laboratory data. PMID:17839632

  11. Models of the earth's core

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.

    1981-01-01

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.

  12. Composite Cores

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Spang & Company's new configuration of converter transformer cores is a composite of gapped and ungapped cores assembled together in concentric relationship. The net effect of the composite design is to combine the protection from saturation offered by the gapped core with the lower magnetizing requirement of the ungapped core. The uncut core functions under normal operating conditions and the cut core takes over during abnormal operation to prevent power surges and their potentially destructive effect on transistors. Principal customers are aerospace and defense manufacturers. Cores also have applicability in commercial products where precise power regulation is required, as in the power supplies for large mainframe computers.

  13. Amniotic fluid

    MedlinePlus

    Amniotic fluid is a clear, slightly yellowish liquid that surrounds the unborn baby (fetus) during pregnancy. It is ... in the womb, the baby floats in the amniotic fluid. The amount of amniotic fluid is greatest at ...

  14. Postimpact heat conduction and compaction-driven fluid flow in the Chesapeake Bay impact structure based on downhole vitrinite reflectance data, ICDP-USGS Eyreville deep core holes and Cape Charles test holes

    USGS Publications Warehouse

    Malinconico, M.L.; Sanford, W.E.; Wright, Horton W.J.J., Jr.

    2009-01-01

    Vitrinite reflectance data from the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville deep cores in the centralcrater moat of the Chesapeake Bay impact structure and the Cape Charles test holes on the central uplift show patterns of postimpact maximum-temperature distribution that result from a combination of conductive and advective heat flow. Within the crater-fill sediment-clast breccia sequence at Eyreville, an isoreflectance (-0.44% Ro) section (525-1096 m depth) is higher than modeled background coastal-plain maturity and shows a pattern typical of advective fluid flow. Below an intervening granite slab, a short interval of sediment-clast breccia (1371-1397 m) shows a sharp increase in reflectance (0.47%-0.91% Ro) caused by conductive heat from the underlying suevite (1397-1474 m). Refl ectance data in the uppermost suevite range from 1.2% to 2.1% Ro. However, heat conduction alone is not sufficient to affect the temperature of sediments more than 100 m above the suevite. Thermal modeling of the Eyreville suevite as a 390 ??C cooling sill-like hot rock layer supplemented by compaction- driven vertical fluid flow (0.046 m/a) of cooling suevitic fluids and deeper basement brines (120 ??C) upward through the sediment breccias closely reproduces the measured reflectance data. This scenario would also replace any marine water trapped in the crater fill with more saline brine, similar to that currently in the crater, and it would produce temperatures sufficient to kill microbes in sediment breccias within 450 m above the synimsuevite. A similar downhole maturity pattern is present in the sediment-clast breccia over the central uplift. High-reflectance (5%-9%) black shale and siltstone clasts in the suevite and sediment-clast breccia record a pre-impact (Paleozoic?) metamorphic event. Previously published maturity data in the annular trough indicate no thermal effect there from impact-related processes. ?? 2009 The

  15. Fluid-loss control

    SciTech Connect

    Crowe, C.W.; Trittipo, B.L. ); Hutchinson, B.H. )

    1989-08-01

    Acid fluid loss is extremely difficult to control and is generally considered to be the major factor limiting the effectiveness of acid fracturing treatments. Chemical erosion of fracture faces and the development of wormholes are largely responsible for the reduced efficiency of acid fracturing fluids. The creation of acid wormholes increases the effective area from which leakoff occurs, thus reducing the acid hydraulic efficiency. Once wormholes form, most acid fluid loss originates from these wormholes rather than penetrating uniformly into the fracture face. Methods of acid fluid-loss control are discussed and evaluated with an improved fluid-loss test procedure. This procedure uses limestone cores of sufficient length to contain wormhole growth. Studies demonstrate that if wormhole growth can be controlled, acid fluid loss approaches that of nonreactive fluids. An improved acid fracturing fluid having unique rheological characteristics is described. This acid has a low initial viscosity but temporarily becomes extremely viscous during leakoff. This high leakoff viscosity blocks wormhole development and prevents acid entry into natural fractures. After the treatment, spent-acid viscosity declines rapidly to ensure easier cleanup.

  16. Core bit design reduces mud invasion, improves ROP

    SciTech Connect

    Clydesdale, G. ); Leseultre, A.; Lamine, E. )

    1994-08-08

    A recently developed core bit reduces fluid invasion in the cut core by minimizing the exposure to the drilling fluid and by increasing the rate of penetration (ROP). A high ROP during coring is one of the major factors in reducing mud filtrate invasion in cores. This new low-invasion polycrystalline diamond compact (PDC) core bit was designed to achieve a higher ROP than conventional PDC core bits without detriment to the cutting structure. The paper describes the bit and its operation, results of lab tests, fluid dynamics, and results of field tests.

  17. Amniotic fluid

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002220.htm Amniotic fluid To use the sharing features on this page, please enable JavaScript. Amniotic fluid is a clear, slightly yellowish liquid that surrounds ...

  18. Sponge coring apparatus with reinforced sponge

    SciTech Connect

    Park, A.; Wilson, B. T.

    1985-03-05

    A well coring apparatus includes an outer barrel and an inner barrel. A hollow sponge is disposed along a liner for insertion into the inner barrel. The sponge is operable to absorb subterranean fluid from a well core. A plurality of reinforcing members are disposed on the inner surface of the liner to prevent movement of the sponge with respect thereto. A plurality of orifices are disposed in the surface of the liner to allow gas and/or fluid to escape from the interior thereof when the subterranean fluid contained within the core bleeds into the sponge.

  19. Fluid Mechanics.

    ERIC Educational Resources Information Center

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  20. Labeled drawing of Jupiter showing its core and composition

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Labeled drawing of Jupiter identifies fluid molecular hydrogen, transition zone, fluid metallic hydrogen, and possible core and the composition of its atmosphere - cloud tops - aerosols, ammonia crystals, ammonium hydrosulfide clouds, ice crystal clouds, and water droplets.

  1. DUBLIN CORE

    EPA Science Inventory

    The Dublin Core is a metadata element set intended to facilitate discovery of electronic resources. It was originally conceived for author-generated descriptions of Web resources, and the Dublin Core has attracted broad ranging international and interdisciplinary support. The cha...

  2. Complex Fluids and Hydraulic Fracturing.

    PubMed

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H

    2016-06-01

    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process. PMID:27070765

  3. Pressure Core Characterization

    NASA Astrophysics Data System (ADS)

    Santamarina, J. C.

    2014-12-01

    Natural gas hydrates form under high fluid pressure and low temperature, and are found in permafrost, deep lakes or ocean sediments. Hydrate dissociation by depressurization and/or heating is accompanied by a multifold hydrate volume expansion and host sediments with low permeability experience massive destructuration. Proper characterization requires coring, recovery, manipulation and testing under P-T conditions within the stability field. Pressure core technology allows for the reliable characterization of hydrate bearing sediments within the stability field in order to address scientific and engineering needs, including the measurement of parameters used in hydro-thermo-mechanical analyses, and the monitoring of hydrate dissociation under controlled pressure, temperature, effective stress and chemical conditions. Inherent sampling effects remain and need to be addressed in test protocols and data interpretation. Pressure core technology has been deployed to study hydrate bearing sediments at several locations around the world. In addition to pressure core testing, a comprehensive characterization program should include sediment analysis, testing of reconstituted specimens (with and without synthetic hydrate), and in situ testing. Pressure core characterization technology can be used to study other gas-charged formations such as deep sea sediments, coal bed methane and gas shales.

  4. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, John L.; Smith, Richard D.

    1993-01-01

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

  5. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  6. GEOS-CORE

    SciTech Connect

    2014-06-24

    GEOS-CORE is a code that integrates open source Libraries for linear algebra and I/O with two main LLNL-written components: (i) a set of standard finite, discrete, and discontinuous displacement element physics solvers for resolving Darcy fluid flow, explicit mechanics, implicit mechanics, and fluid-mediated fracturing, including resolution of physical behaviors both implicitly and explicitly, and (ii) a MPI-based parallelization implementation for use on generic HPC distributed memory architectures. The resultant code can be used alone for linearly elastic and quasistatic damage problems; problems involving hydraulic fracturing, where the mesh topology is dynamically changed; and general granular materials behavior. The key application domain is for low-rate stimulation and fracture control in subsurface reservoirs (e.g., enhanced geothermal sites and unconventional shale gas stimulation). GEOS-CORE also has interfaces to call external libraries for, e.g., material models and equations fo state; however, LLNL-developed EOS and material models, beyond the aforementioned linear elastic and quasi-static damage models, will not be part of the current release. GEOS-CORE's secondary applications include granular materials behavior under different load paths.

  7. GEOS-CORE

    Energy Science and Technology Software Center (ESTSC)

    2014-06-24

    GEOS-CORE is a code that integrates open source Libraries for linear algebra and I/O with two main LLNL-written components: (i) a set of standard finite, discrete, and discontinuous displacement element physics solvers for resolving Darcy fluid flow, explicit mechanics, implicit mechanics, and fluid-mediated fracturing, including resolution of physical behaviors both implicitly and explicitly, and (ii) a MPI-based parallelization implementation for use on generic HPC distributed memory architectures. The resultant code can be used alone formore » linearly elastic and quasistatic damage problems; problems involving hydraulic fracturing, where the mesh topology is dynamically changed; and general granular materials behavior. The key application domain is for low-rate stimulation and fracture control in subsurface reservoirs (e.g., enhanced geothermal sites and unconventional shale gas stimulation). GEOS-CORE also has interfaces to call external libraries for, e.g., material models and equations fo state; however, LLNL-developed EOS and material models, beyond the aforementioned linear elastic and quasi-static damage models, will not be part of the current release. GEOS-CORE's secondary applications include granular materials behavior under different load paths.« less

  8. Spacer fluids

    SciTech Connect

    Wilson, W.N.; Bradshaw, R.D.; Wilton, B.S.; Carpenter, R.B.

    1992-05-19

    This patent describes a method for cementing a wellbore penetrating an earth formation into which a conduit extends, the wellbore having a space occupied by a drilling fluid. It comprises displacing the drilling fluid from the space with a spacer fluid comprising: sulfonated styrene-maleic anhydride copolymer, bentonite, welan gum, surfactant and a weighting agent; and displacing the spacer composition and filling the wellbore space with a settable cement composition.

  9. Core rotational dynamics and geological events

    PubMed

    Greff-Lefftz; Legros

    1999-11-26

    A study of Earth's fluid core oscillations induced by lunar-solar tidal forces, together with tidal secular deceleration of Earth's axial rotation, shows that the rotational eigenfrequency of the fluid core and some solar tidal waves were in resonance around 3.0 x 10(9), 1.8 x 10(9), and 3 x 10(8) years ago. The associated viscomagnetic frictional power at the core boundaries may be converted into heat and would destabilize the D" thermal layer, leading to the generation of deep-mantle plumes, and would also increase the temperature at the fluid core boundaries, perturbing the core dynamo process. Such phenomena could account for large-scale episodes of continental crust formation, the generation of flood basalts, and abrupt changes in geomagnetic reversal frequency. PMID:10576731

  10. Stability of Molten Core Materials

    SciTech Connect

    Layne Pincock; Wendell Hintze

    2013-01-01

    The purpose of this report is to document a literature and data search for data and information pertaining to the stability of nuclear reactor molten core materials. This includes data and analysis from TMI-2 fuel and INL’s LOFT (Loss of Fluid Test) reactor project and other sources.

  11. 24. A CORE WORKER DISPLAYS THE CORE BOX AND CORES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. A CORE WORKER DISPLAYS THE CORE BOX AND CORES FOR A BRASS GATE VALVE BODY MADE ON A CORE BOX, CA. 1950. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  12. Core strengthening.

    PubMed

    Arendt, Elizabeth A

    2007-01-01

    Several recent studies have evaluated interventional techniques designed to reduce the risk of serious knee injuries, particularly noncontact anterior cruciate ligament injuries in female athletes. Maintenance of rotational control of the limb underneath the pelvis, especially in response to cutting and jumping activities, is a common goal in many training programs. Rotational control of the limb underneath the pelvis is mediated by a complex set of factors including the strength of the trunk muscles and the relationship between the core muscles. It is important to examine the interrelationship between lower extremity function and core stability. PMID:17472321

  13. Fluid inflation

    SciTech Connect

    Chen, X.; Firouzjahi, H.; Namjoo, M.H.; Sasaki, M. E-mail: firouz@ipm.ir E-mail: misao@yukawa.kyoto-u.ac.jp

    2013-09-01

    In this work we present an inflationary mechanism based on fluid dynamics. Starting with the action for a single barotropic perfect fluid, we outline the procedure to calculate the power spectrum and the bispectrum of the curvature perturbation. It is shown that a perfect barotropic fluid naturally gives rise to a non-attractor inflationary universe in which the curvature perturbation is not frozen on super-horizon scales. We show that a scale-invariant power spectrum can be obtained with the local non-Gaussianity parameter f{sub NL} = 5/2.

  14. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Lauriie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Ribeiro, L.; Lui, J.; Macias, B.; Arbeille, P.; Danielson, R.; Chang, D.; Johnston, S.; Ploutz-Snyder, R.; Smith, S.

    2016-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low-Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 50% of ISS astronauts experienced more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's preflight conditions and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. METHODS: We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by

  15. Reservoir compartmentalization assessed with fluid compositional data

    SciTech Connect

    Smalley, P.C.; England, W.A. . Alliance R D Centre)

    1994-08-01

    Fluid composition is a valuable addition to the battery of static'' data available during reservoir appraisal that can be used to predict the dynamic behavior of the reservoir later in field life. This is because fluid data are not truly static; natural fluid mixing is a dynamic process that occurs over a long (geologic) time scale. Oil compositional differences, especially those that parallel changes in density, should be mixed rapidly by convection; their preservation indicates barriers to fluid flow. Water variations, now measurable on conventional core samples by use of residual salt analysis (RSA), help identify barriers to vertical fluid flow in oil and water legs.

  16. Method of determining drilling fluid invasion

    SciTech Connect

    Vinegar, H. J.; Wellington, S. L.

    1985-09-10

    A method of determining the invasion of drilling fluid into a core sample taken from a borehole. A first material is added to the drilling fluid to obtain a first fluid that has an effective atomic number that is different than the effective atomic number of the connate fluids in the rock formation surrounding the borehole. A preserved core sample is collected from the borehole for scanning by a computerized axial tomographic scanner (CAT) to determine the attenuation coefficients at a plurality of points in a cross section of the core sample. The preserved core sample is scanned with a CAT at first and second energies, and the determined attenuation coefficients for the plurality of points in the cross section at each energy are used to determine an atomic number image for the cross section of the core sample. The depth of invasion of the first fluid is then determined from the atomic number image, as an indication of the depth of invasion of the drilling fluid into the core sample.

  17. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, Michael B.; Hargens, Alan R.; Dulchavsky, Scott A.; Ebert, Douglas J.; Lee, Stuart M. C.; Laurie, Steven S.; Garcia, Kathleen M.; Sargsyan, Ashot E.; Martin, David S.; Liu, John; Macias, Brandon R.; Arbeille, Philippe; Danielson, Richard; Chang, Douglas; Gunga, Hanns-Christian; Johnston, Smith L.; Westby, Christian M.; Ploutz-Snyder, Robert J.; Smith, Scott M.

    2016-01-01

    We hypothesize that microgravity-induced cephalad fluid shifts elevate intracranial pressure (ICP) and contribute to VIIP. We will test this hypothesis and a possible countermeasure in ISS astronauts.

  18. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Laurie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; Danielson, R.; Chang, D.; Gunga, H.; Johnston, S.; Westby, C.; Ribeiro, L.; Ploutz-Snyder, R.; Smith, S.

    2015-01-01

    INTRODUCTION: Mechanisms responsible for the ocular structural and functional changes that characterize the visual impairment and intracranial pressure (ICP) syndrome (VIIP) are unclear, but hypothesized to be secondary to the cephalad fluid shift experienced in spaceflight. This study will relate the fluid distribution and compartmentalization associated with long-duration spaceflight with VIIP symptoms. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, can be predicted preflight with acute hemodynamic manipulations, and also if lower body negative pressure (LBNP) can reverse the VIIP effects. METHODS: Physiologic variables will be examined pre-, in- and post-flight in 10 International Space Station crewmembers including: fluid compartmentalization (D2O and NaBr dilution); interstitial tissue thickness (ultrasound); vascular dimensions and dynamics (ultrasound and MRI (including cerebrospinal fluid pulsatility)); ocular measures (optical coherence tomography, intraocular pressure, ultrasound); and ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight measures will be assessed while upright, supine and during 15 deg head-down tilt (HDT). In-flight measures will occur early and late during 6 or 12 month missions. LBNP will be evaluated as a countermeasure during HDT and during spaceflight. RESULTS: The first two crewmembers are in the preflight testing phase. Preliminary results characterize the acute fluid shifts experienced from upright, to supine and HDT postures (increased stroke volume, jugular dimensions and measures of ICP) which are reversed with 25 millimeters Hg LBNP. DISCUSSION: Initial results indicate that acute cephalad fluid shifts may be related to VIIP symptoms, but also may be reversible by LBNP. The effect of a chronic fluid shift has yet to be evaluated. Learning Objectives: Current spaceflight VIIP research is described

  19. Wellbore fluid

    SciTech Connect

    Swanson, B.L.

    1984-06-19

    The water loss properties of well completion and well workover fluids are improved by the addition of an effective amount of at least one adjuvant selected from (1) sodium carbonate with either sodium bicarbonate or an organic polycarboxylic acid or polycarboxylic acid anhydride or (2) sodium bicarbonate alone. In another embodiment, the adjuvants are added to stabilize water loss control agents in wellbore fluids, especially at elevated temperatures.

  20. Electrorheological fluids

    SciTech Connect

    Halsey, T.C.; Martin, J.E.

    1993-10-01

    An electrorheological fluid is a substance whose form changes in the presence of electric fields. Depending on the strength of the field to which it is subjected, an electrorheological fluid can run freely like water, ooze like honey or solidify like gelatin. Indeed, the substance can switch from ne state to another within a few milliseconds. Electrorheological fluids are easy to make; they consist of microscopic particles suspended in an insulating liquid. Yet they are not ready for most commercial applications. They tend to suffer from a number of problems, including structural weakness as solids, abrasiveness as liquids and chemical breakdown, especially at high temperatures. Automotive engineers could imagine, for instance, constructing an electrorheological clutch. It was also hoped that electrorheological fluids would lead to valveless hydraulic systems, in which solidifying fluid would shut off flow through a thin section of pipe. Electrorheological fluids also offer the possibility of a shock absorber that provides response times of milliseconds and does not require mechanical adjustments. 3 refs.

  1. Core-mantle Mill Theory

    NASA Astrophysics Data System (ADS)

    Zhang, Yikun

    2003-05-01

    Based on radiation mechanics, the history of Earth can be interpreted by core-mantle mill theory. The theory confesses the inner core as a ferromagnet. The ferromagnetism of inner core is supported by observed anisotropic property of inner core in transmitting seismic waves. Rotation of Earth originates from the magnetic interaction between Earth and Jovian planets. Since the torque caused by the magnetic interaction between Earth and Jovian planets only acts on the iron core of Earth, the core behaves as a rotating engine, tending to change both the rate and axis of Earth's rotation, while the mantle is the resistant to any alternation of rotation. The interplay between the two leads to formations of fluid outer core, basalt magmas, oceanic crust, and differential rotation between the inner core and mantle. Rock materials at the core-mantle boundary are ground into basalt magma due to the differential rotation between the inner core and mantle. Mid-ocean ridge systems are interpreted as the huge dike systems rooted in some principal magma chambers in the core-mantle boundary layer. The anisotropy of background radiation in the polar directions determines the patterns of mid-ocean ridge systems on the Earth's surface and the global tectonic movement of the Earth's crust. The theory also explains the causes of geomagnetic reversals, mass extinctions and global climate changes. The history of Earth is featured by three stages: without oceanic crust (before 2.7Ga), creation of oceanic crust (2.7-2.25Ga) and growth of continents (after 2.25Ga).

  2. Fluid Management System (FMS) fluid systems overview

    NASA Technical Reports Server (NTRS)

    Baird, R. S.

    1990-01-01

    Viewgraphs on fluid management system (FMS) fluid systems overview are presented. Topics addressed include: fluid management system description including system requirements (integrated nitrogen system, integrated water system, and integrated waste gas system) and physical description; and fluid management system evolution.

  3. Apparatus and method for controlling the temperature of the core of a super-conducting transformer

    DOEpatents

    Golner, Thomas; Pleva, Edward; Mehta, Shirish

    2006-10-10

    An apparatus for controlling the temperature of a core of a transformer is provided that includes a core, a shield surrounding the core, a cast formed between the core and the shield, and tubing positioned on the shield. The cast directs heat from the core to the shield and cooling fluid is directed through the tubing to cool the shield.

  4. Magnetic nuclear core restraint and control

    DOEpatents

    Cooper, Martin H.

    1978-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  5. Magnetic nuclear core restraint and control

    DOEpatents

    Cooper, Martin H.

    1979-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  6. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, Michael; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; Platts, S.

    2014-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 30% of ISS astronauts experience more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the space flight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration space flight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during space flight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's pre-flight condition and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by ultrasound

  7. Means and method for facilitating measurements while coring

    SciTech Connect

    Campbell, F.L.; Barnum, D.C.; Corea, W.C.

    1986-07-22

    This patent describes an apparatus for monitoring detrimental conditions associated with extraction of a core from an earth formation penetrated by a well bore using a core barrel having a rotatable outer cylindrical barrel attached to and operationally rotated by, a drill string, and drilling fluid circulating within the well bore as the core is extracted, wherein rotation of a usually stationary inner core barrel coaxial of the outer core barrel during the extraction of the core and its placement thereof within the cylindrical inner barrel, is used to indicate the associated detrimental coring conditions.

  8. Guiding principles of fluid and volume therapy.

    PubMed

    Aditianingsih, Dita; George, Yohanes W H

    2014-09-01

    Fluid therapy is a core concept in the management of perioperative and critically ill patients for maintenance of intravascular volume and organ perfusion. Recent evidence regarding the vascular barrier and its role in terms of vascular leakage has led to a new concept for fluid administration. The choice of fluid used should be based on the fluid composition and the underlying pathophysiology of the patient. Avoidance of both hypo- and hypervolaemia is essential when treating circulatory failure. In daily practice, the assessment of individual thresholds in order to optimize cardiac preload and avoid hypovolaemia or deleterious fluid overload remains a challenge. Liberal versus restrictive fluid management has been challenged by recent evidence, and the ideal approach appears to be goal-directed fluid therapy. PMID:25208960

  9. NEUTRONIC REACTOR CORE INSTRUMENT

    DOEpatents

    Mims, L.S.

    1961-08-22

    A multi-purpose instrument for measuring neutron flux, coolant flow rate, and coolant temperature in a nuclear reactor is described. The device consists essentially of a hollow thimble containing a heat conducting element protruding from the inner wall, the element containing on its innermost end an amount of fissionsble materinl to function as a heat source when subjected to neutron flux irradiation. Thermocouple type temperature sensing means are placed on the heat conducting element adjacent the fissionable material and at a point spaced therefrom, and at a point on the thimble which is in contact with the coolant fluid. The temperature differentials measured between the thermocouples are determinative of the neutron flux, coolant flow, and temperature being measured. The device may be utilized as a probe or may be incorporated in a reactor core. (AE C)

  10. From Prestellar to Protostellar Cores

    NASA Astrophysics Data System (ADS)

    Aikawa, Yuri; Wakelam, Valentine; Hersant, Franck; Garrod, Robin; Herbst, Eric

    2012-07-01

    We investigate the molecular evolution and D/H abundance ratios that develop as star formation proceeds from dense cloud cores to protostellar cores. We solve a gas-grain reaction network, which is extended to include multi-deuterated species, using a 1-D radiative hydrodynamic model with infalling fluid parcels to derive molecular distribution in assorted evolutionary stages. We find that the abundances of large organic species in the central region increase with time. The duration of the warm-up phase, in which large organic species are efficiently formed, is longer in infalling fluid parcels at later stages. Formation of unsaturated carbon chains in the CH4 sublimation zone (warm carbon chain chemistry) is more effective in later stage. The carbon ion, which reacts with CH4 to form carbon chains, increases in abundance as the envelope density decreases. The large organic molecules and carbon chains are both heavily deuterated, mainly because their mother molecules have high D/H ratios, which are set in the cold phase. The observed CH2DOH/CH3OH ratio towards protostars is reproduced if we assume that the grain-surface exchange and abstraction reactions of CH3OH + D occurs efficiently. In our 1-D collapse model, the fluid parcels directly fall into the protostar, and the warm-up phase in the fluid parcels is rather short. But, in reality, a circumstellar disk is formed, and fluid parcels will stay there for a longer timescale than a free-fall time. We investigate the molecular evolution in such a disk by assuming that a fluid parcel stays at a constant temperature (i.e. a fixed disk radius) after the infall. The species CH3OCH3 and HCOOCH3 become more abundant in the disk than in the envelope. Both have high D/H abundance ratios as well.

  11. Earth rotation and core topography

    NASA Technical Reports Server (NTRS)

    Hager, Bradford H.; Clayton, Robert W.; Spieth, Mary Ann

    1988-01-01

    The NASA Geodynamics program has as one of its missions highly accurate monitoring of polar motion, including changes in length of day (LOD). These observations place fundamental constraints on processes occurring in the atmosphere, in the mantle, and in the core of the planet. Short-timescale (t less than or approx 1 yr) variations in LOD are mainly the result of interaction between the atmosphere and the solid earth, while variations in LOD on decade timescales result from the exchange of angular momentum between the mantle and the fluid core. One mechanism for this exchange of angular momentum is through topographic coupling between pressure variations associated with flow in the core interacting with topography at the core-mantel boundary (CMB). Work done under another NASA grant addressing the origin of long-wavelength geoid anomalies as well as evidence from seismology, resulted in several models of CMB topography. The purpose of work supported by NAG5-819 was to study further the problem of CMB topography, using geodesy, fluid mechanics, geomagnetics, and seismology. This is a final report.

  12. Fluid extraction

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth E.

    1999-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  13. Drilling fluid

    SciTech Connect

    Russell, J.A.; Patel, B.B.

    1987-11-03

    A drilling fluid additive mixture is described consisting essentially of a sulfoalkylated tannin in admixture with a non-sulfoalkylated alkali-solubilized lignite wherein the weight ratio of the sulfoalkylated tannin to the non-sulfoalkylated lignite is in the range from about 2:1 to about 1:1. The sulfoalkylated tannin has been sulfoalkylated with at least one -(C(R-)/sub 2/-SO/sub 3/M side chain, wherein each R is selected from the group consisting of hydrogen and alkyl radicals containing from 1 to about 5 carbon atoms, and M is selected from the group consisting of ammonium and the alkali metals.

  14. Cerebrospinal fluid.

    PubMed

    Jerrard, D A; Hanna, J R; Schindelheim, G L

    2001-08-01

    A quick and accurate diagnosis of maladies affecting the central nervous system (CNS) is imperative. Procurement and analysis of cerebrospinal fluid (CSF) are paramount in helping the clinician determine a patient's clinical condition. Various staining methods, measurement of white blood cell counts, glucose and protein levels, recognition of xanthochromia, and microbiologic studies are CSF parameters that are collectively important in the ultimate determination by a clinician of the presence or absence of a catastrophic CNS condition. Many of these CNS parameters have significant limitations that should be recognized to minimize under treating patients with catastrophic illness. PMID:11489408

  15. Peritoneal Fluid Analysis

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Peritoneal Fluid Analysis Share this page: Was this page helpful? Formal name: Peritoneal Fluid Analysis Related tests: Pleural Fluid Analysis , Pericardial Fluid ...

  16. Pleural Fluid Analysis Test

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Pleural Fluid Analysis Share this page: Was this page helpful? Formal name: Pleural Fluid Analysis Related tests: Pericardial Fluid Analysis , Peritoneal Fluid ...

  17. Respiratory fluid mechanics

    NASA Astrophysics Data System (ADS)

    Grotberg, James B.

    2011-02-01

    This article covers several aspects of respiratory fluid mechanics that have been actively investigated by our group over the years. For the most part, the topics involve two-phase flows in the respiratory system with applications to normal and diseased lungs, as well as therapeutic interventions. Specifically, the topics include liquid plug flow in airways and at airway bifurcations as it relates to surfactant, drug, gene, or stem cell delivery into the lung; liquid plug rupture and its damaging effects on underlying airway epithelial cells as well as a source of crackling sounds in the lung; airway closure from "capillary-elastic instabilities," as well as nonlinear stabilization from oscillatory core flow which we call the "oscillating butter knife;" liquid film, and surfactant dynamics in an oscillating alveolus and the steady streaming, and surfactant spreading on thin viscous films including our discovery of the Grotberg-Borgas-Gaver shock.

  18. Fluid Transport in Lineaments

    NASA Astrophysics Data System (ADS)

    Kerrich, R.

    1986-04-01

    of fluids and solutes through the structure from a large external reservoir. Major crustal detachment faults of Tertiary age in the Picacho Cordilleran metamorphic core complex of Arizona show an upward transition from undeformed granitic basement, through mylonitic to brecciated and hydrothermally altered counterparts. The highest tectonic levels are allochthonous, oxidatively altered Miocene volcanics, with hydrothernial sediments in listric normal fault basins. This transition is accompanied by a 12 per thousad increase in δ 18O from 7 to 19, and a decrease of temperature of 400 degrees C, because of expulsion of large volumes of metamorphic fluids during detachment. In the Miocene allochthon, mixing occurred between cool downward- penetrating meteoric thermal waters and hot, deeper aqueous reservoirs. In general, flow r6gimes in these fault and shear zones follow a sequence from conditions of high temperature and pressure with locally derived fluids at low water/rock ratios during initiation of the structures, to high fluxes of reduced formation or metamorphic fluids along conduits as the structures propagate and intersect hydrothermal reservoirs. Later in the tectonic evolution and at shallower crustal levels, there was incursion of oxidizing fluids from near-surface reservoirs into the faults.

  19. Magnetic Probing of Core Geodynamics

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    2004-01-01

    To better understand geomagnetic theory and observation, we can use spatial magnetic spectra for the main field and secular variation to test core dynamical hypotheses against seismology. The hypotheses lead to theoretical spectra which are fitted to observational spectra. Each fit yields an estimate of the radius of Earth's core and uncertainty. If this agrees with the seismologic value, then the hypothesis passes the test. A new way to obtain theoretical spectra extends the hydromagnetic scale analysis of Benton to scale-variant field and flow. For narrow scale flow and a dynamically weak field by the top of Earth's core, this yields a generalized Stevenson-McLeod spectrum for the core-source field, and a secular variation spectrum modulated by a cubic polynomial in spherical harmonic degree n. The former passes the tests. The latter passes many tests, but does not describe rapid dipole decline and quadrupole rebound; some tests suggest it is a bit hard, or rich in narrow scale range. In a core geodynamo, motion of the fluid conductor does work against the Lorentz force. This converts kinetic into magnetic energy which, in turn, is lost to heat via Ohmic dissipation. In the analysis at length-scale 1/k, if one presumes kinetic energy is converted in either eddy-overturning or magnetic free-decay time-scales, then Kolmogorov or other spectra in conflict with observational spectra can result. Instead, the rate work is done roughly balances the dissipation rate, which is consistent with small-scale flow. The conversion time-scale depends on dynamical constraints. These are summarized by the magnetogeostrophic vertical vorticity balance by the top of the core, which includes anisotropic effects of rotation, the magnetic field, and the core-mantle boundary. The resulting theoretical spectra for the core-source field and its SV are far more compatible with observation. The conversion time-scale of order 120 years is pseudo-scale-invariant. Magnetic spectra of other

  20. Magnetic Probing of Core Geodynamics

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    2004-01-01

    To better understand geomagnetic theory and observation, we can use spatial magnetic spectra for the main field and secular variation to test core dynmcal hypotheses against seismology. The hypotheses lead to theoretical spectra which are fitted to observational spectra. Each fit yields an estimate of the radius of Earth's core and uncertainty. If this agrees with the seismologic value, then the hypothes pass the test. A new way to obtain theoretical spectra extends the hydromagnetic scale analysis of Benton to scale-variant field and flow. For narrow scale flow and a dynamically weak field by the top of Earth's core, this yields a generalized Stevenson-McLeod spectrum for the core-source field, and a secular variation spectrum modulated by a cubic polynomial in spherical harmonic degree n. The former passes the tests. The latter passes many tests, but does not describe rapid dipole decline and quadrupole rebound; some tests suggest it is a bit hard, or rich in narrow scale change. In a core geodynamo, motion of the fluid conductor does work against the Lorentz force. This converts kinetic into magnetic energy which, in turn, is lost to heat via Ohmic dissipation. In the analysis at lentgh-scale l/k, if one presumes kinetic energy is converted in either eddy- overturning or magnetic free-decay time-scales, then Kolmogorov or other spectra in conflict with observational spectra can result. Instead, the rate work is done roughly balances the dissipation rate, which is consistent with small scale flow. The conversion time-scale depends on dynamical constraints. These are summarized by the magneto-geostrophic vertical vorticity balance by the top of the core, which includes anisotropic effects of rotation, the magnetic field, and the core- mantle boundary. The resulting theoretical spectra for the core-source field and its SV are far more compatible with observation. The conversion time-scale of order l20 years is pseudo-scale-invarient. Magnetic spectra of other

  1. Gyroelastic fluids

    SciTech Connect

    Kerbel, G.D.

    1981-01-20

    A study is made of a scale model in three dimensions of a guiding center plasma within the purview of gyroelastic (also known as finite gyroradius-near theta pinch) magnetohydrodynamics. The (nonlinear) system sustains a particular symmetry called isorrhopy which permits the decoupling of fluid modes from drift modes. Isorrhopic equilibria are analyzed within the framework of geometrical optics resulting in (local) dispersion relations and ray constants. A general scheme is developed to evolve an arbitrary linear perturbation of a screwpinch equilibrium as an invertible integral transform (over the complete set of generalized eigenfunctions defined naturally by the equilibrium). Details of the structure of the function space and the associated spectra are elucidated. Features of the (global) dispersion relation owing to the presence of gyroelastic stabilization are revealed. An energy principle is developed to study the stability of the tubular screwpinch.

  2. Dual-core antiresonant hollow core fibers.

    PubMed

    Liu, Xuesong; Fan, Zhongwei; Shi, Zhaohui; Ma, Yunfeng; Yu, Jin; Zhang, Jing

    2016-07-25

    In this work, dual-core antiresonant hollow core fibers (AR-HCFs) are numerically demonstrated, based on our knowledge, for the first time. Two fiber structures are proposed. One is a composite of two single-core nested nodeless AR-HCFs, exhibiting low confinement loss and a circular mode profile in each core. The other has a relatively simple structure, with a whole elliptical outer jacket, presenting a uniform and wide transmission band. The modal couplings of the dual-core AR-HCFs rely on a unique mechanism that transfers power through the air. The core separation and the gap between the two cores influence the modal coupling strength. With proper designs, both of the dual-core fibers can have low phase birefringence and short modal coupling lengths of several centimeters. PMID:27464191

  3. Fluid channeling system

    NASA Technical Reports Server (NTRS)

    Davis, Donald Y. (Inventor); Hitch, Bradley D. (Inventor)

    1994-01-01

    A fluid channeling system includes a fluid ejector, a heat exchanger, and a fluid pump disposed in series flow communication The ejector includes a primary inlet for receiving a primary fluid, and a secondary inlet for receiving a secondary fluid which is mixed with the primary fluid and discharged therefrom as ejector discharge. Heat is removed from the ejector discharge in the heat exchanger, and the heat exchanger discharge is compressed in the fluid pump and channeled to the ejector secondary inlet as the secondary fluid In an exemplary embodiment, the temperature of the primary fluid is greater than the maximum operating temperature of a fluid motor powering the fluid pump using a portion of the ejector discharge, with the secondary fluid being mixed with the primary fluid so that the ejector discharge temperature is equal to about the maximum operating temperature of the fluid motor.

  4. Imaging of multiphase fluid saturation within a porous material via sodium NMR.

    PubMed

    Washburn, Kathryn E; Madelin, Guillaume

    2010-01-01

    We present in this paper a method to monitor multiphase fluid core saturation through measurement of the sodium NMR signal. In a rock core saturated with water and oil, sodium will be present only in the water phase, and therefore can be used to separate the two fluids. Two dimensional sodium images were taken to monitor the movement of brine into oil saturated rock cores. The measured fluid exchange agrees well with expected behavior from traditional core analysis methods. Indications of damage to the rock structure can be seen from the patterns of fluid imbibition. PMID:19864169

  5. Mercury's thermal evolution and core crystallization regime

    NASA Astrophysics Data System (ADS)

    Rivoldini, Attilio; Dumberry, Mathieu; Van Hoolst, Tim; Steinle-Neumann, Gerd

    2015-04-01

    Unlike the Earth, where the liquid core isentrope is less steep than the core melting temperature, at the lower pressures inside Mercury's core the isentrope can be steepper than the melting temperature. As a consequence, upon cooling, the isentrope may first cross the melting temperature near the core mantle boundary and produce iron-rich snow that sinks under gravity and produces buoyant upwellings of iron depleted fluid. Similar to bottom up crystallization, top down crystallization is expected to generate sufficient buoyancy flux to drive magnetic field generation by compositional convection. In this study we model Mercury's thermal evolution by taking into account the formation of iron-rich snow to assess when the conditions for internally magnetic field can be satisfied. We employ a thermodynamic consistent description of the iron high pressure phase diagram and thermoelastic properties of iron alloys as well as the most recent data about the thermal conductivity of core materials.

  6. Magnectic Probing of Core Geodynamics

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte

    2004-01-01

    To better understand geomagnetic theory and observation, we can use spatial magnetic spectra for the main field and secular variation to test core dynamical hypotheses against seismology. The hypotheses lead to theoretical spectra which are fitted to observational spectra. Each fit yields an estimate of the radius of Earth s core and uncertainty. If this agrees with the seismologic value, then the hypotheses pass the test. A new way to obtain theoretical spectra extends the hydromagnetic scale analysis of Benton to scale-variant field and flow. For narrow scale flow and a dynamically weak field by the top of Earth s core, this yields a JGR-PI, and a secular variation spectrum modulated by a cubic polynomial in spherical harmonic degree n. The former passes the tests. The latter passes many tests, but does not describe rapid dipole decline and quadrupole rebound; some tests suggest it is a bit hard, or rich in narrow scale change.In a core geodynamo, motion of the fluid conductor does work against the Lorentz force. This converts kinetic into magnetic energy which, in turn, is lost to heat via Ohmic dissipation. In the analysis at length- scale l/k, if one presumes kinetic energy is converted in either eddy- overturning or magnetic free-decay time-scales, then Kolmogorov or other spectra in conflict with observational spectra can result. Instead, the rate work is done roughly balances the dissipation rate, which is consistent with small scale flow. The conversion time-scale depends on dynamical constraints. These are summarized by the magneto- geostrophic vertical vorticity balance by the top of the core, which includes anisotropic effects of rotation, the magnetic field, and the core-mantle boundary. The resulting theoretical spectra for the core- source field and its SV are far more compatible with observation. The conversion time-scale of order 120 years is pseudo-scale-invariant. Magnetic spectra of other planets may differ; however, if a transition to non

  7. Thermophysical Properties of Fluids and Fluid Mixtures

    SciTech Connect

    Sengers, Jan V.; Anisimov, Mikhail A.

    2004-05-03

    The major goal of the project was to study the effect of critical fluctuations on the thermophysical properties and phase behavior of fluids and fluid mixtures. Long-range fluctuations appear because of the presence of critical phase transitions. A global theory of critical fluctuations was developed and applied to represent thermodynamic properties and transport properties of molecular fluids and fluid mixtures. In the second phase of the project, the theory was extended to deal with critical fluctuations in complex fluids such as polymer solutions and electrolyte solutions. The theoretical predictions have been confirmed by computer simulations and by light-scattering experiments. Fluctuations in fluids in nonequilibrium states have also been investigated.

  8. Joint fluid Gram stain

    MedlinePlus

    Gram stain of joint fluid ... A sample of joint fluid is needed. The fluid sample is sent to a lab where a small drop is placed in a ... on how to prepare for the removal of joint fluid, see joint fluid aspiration .

  9. Fluid sampling tool

    DOEpatents

    Garcia, Anthony R.; Johnston, Roger G.; Martinez, Ronald K.

    2000-01-01

    A fluid-sampling tool for obtaining a fluid sample from a container. When used in combination with a rotatable drill, the tool bores a hole into a container wall, withdraws a fluid sample from the container, and seals the borehole. The tool collects fluid sample without exposing the operator or the environment to the fluid or to wall shavings from the container.

  10. Analysis of vortex core in steady turbulent flow

    NASA Astrophysics Data System (ADS)

    Amromin, Eduard

    2007-11-01

    Profiles of velocity and pressure for the vortex core in turbulent flow were obtained by solving Reynolds equation for the circumferential component of the fluid momentum. The viscous core radius is defined as a function of viscosity coefficient, vortex intensity, and a Reynolds stress component. The obtained velocity profiles are in much better agreement with known experimental data than are the Rankin vortex profiles.

  11. Ciliary fluid transport enhanced by viscoelastic fluid

    NASA Astrophysics Data System (ADS)

    Guo, Hanliang; Kanso, Eva

    2015-11-01

    Motile cilia encounter complex, non-Newtonian fluids as they beat to gain self-propulsion of cells, transport fluids, and mix particles. Recently there have been many studies on swimming in complex fluids, both experimentally and theoretically. However the role of the non-Newtonian fluid in the ciliary transport system remains largely unknown. Here we use a one-way-coupled immersed boundary method to evaluate the impacts of viscoelastic fluid (Oldroyd-B fluid) on the fluid transport generated by an array of rabbit tracheal cilia beating in a channel at low Reynolds number. Our results show that the viscoelasticity could enhance the fluid transport generated by the rabbit tracheal cilia beating pattern and the flow is sensitive to the Deborah number in the range we investigate.

  12. Mercury's inner core size and core-crystallization régime

    NASA Astrophysics Data System (ADS)

    Dumberry, M.; Rivoldini, A.

    2014-04-01

    Geodetic observations provide insights about the interior structure of Mercury. In particular, they constrain the radius of the core-mantle boundary and on the bulk densities of the core and mantle [5, 3]. Here, we show that they also yield information about the radius of the inner core and on the crystallization regime in the liquid core. Recently, the MESSENGER spacecraft has measured Mercury's internally generated magnetic field and shown that the magnetic field is about two orders of magnitude smaller than Earth's [4]. Dynamo models that agree with those observations require a magnetic field that is driven by chemical convection and generated in a thin spherical shell located deep inside the fluid core that is overlain by a stable thermallystratified layer [1]. We have build models of Mercury that include a sub-adiabatic temperature profile in the upper part of the liquid core. In those models, the dominant light element inside the core is sulfur. Unlike the Earth, upon cooling the core adiabat may first cross the liquidus near the core-mantle boundary resulting in the precipitation of solid iron snow from the liquid Fe - FeS liquid alloy. Cooling extends the precipitation zone to greater depth and produces a stable compositional gradient [2]. Depending on the thermal state of the core the snow zone could extent to the inner core boundary. In that case the inner core would grow through the sedimentation of solid iron snow. If, somewhere below the snow layer, the temperature crosses the liquidus, then inner core growth will proceed in an Earth-like manner. Our study shows that models that best agree with recently measured geodesy observations (88 - day libration and polar moment of inertia) require an inner core that is not larger than 1325 ± 250km. If the inner core radius is smaller than about 650km they have an iron snow layer in the upper part of the fluid core, consistent with a deep seated dynamo. However, if the inner core radius is larger than about 650

  13. Core-core and core-valence correlation

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    The effect of (1s) core correlation on properties and energy separations was analyzed using full configuration-interaction (FCI) calculations. The Be 1 S - 1 P, the C 3 P - 5 S and CH+ 1 Sigma + or - 1 Pi separations, and CH+ spectroscopic constants, dipole moment and 1 Sigma + - 1 Pi transition dipole moment were studied. The results of the FCI calculations are compared to those obtained using approximate methods. In addition, the generation of atomic natural orbital (ANO) basis sets, as a method for contracting a primitive basis set for both valence and core correlation, is discussed. When both core-core and core-valence correlation are included in the calculation, no suitable truncated CI approach consistently reproduces the FCI, and contraction of the basis set is very difficult. If the (nearly constant) core-core correlation is eliminated, and only the core-valence correlation is included, CASSCF/MRCI approached reproduce the FCI results and basis set contraction is significantly easier.

  14. Synovial fluid analysis

    MedlinePlus

    Joint fluid analysis; Joint fluid aspiration ... El-Gabalawy HS. Synovial fluid analysis, synovial biopsy, and synovial pathology. In: Firestein GS, Budd RC, Gabriel SE, McInnes IB, O'Dell JR, eds. Kelly's Textbook of ...

  15. Pleural fluid Gram stain

    MedlinePlus

    Gram stain of pleural fluid ... lungs fill a person's chest with air. If fluid builds up in the space outside the lungs ... chest, it can cause many problems. Removing the fluid can relieve a person's breathing problems and help ...

  16. Pericardial fluid culture

    MedlinePlus

    Culture - pericardial fluid ... the heart (the pericardium). A small amount of fluid is removed. You may have an ECG and ... x-ray after the test. Sometimes the pericardial fluid is taken during open heart surgery. The sample ...

  17. Pleural fluid culture

    MedlinePlus

    Culture - pleural fluid ... is used to get a sample of pleural fluid. The sample is sent to a laboratory and ... the chest wall into the pleural space. As fluid drains into a collection bottle, you may cough ...

  18. Fluid Inclusion Gas Analysis

    DOE Data Explorer

    Dilley, Lorie

    2013-01-01

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  19. VLBI Observations of the Free Core Nutations

    NASA Astrophysics Data System (ADS)

    Smylie, D. E.

    2012-12-01

    At core scale lengths with periods from a few hours to days, the Coriolis acceleration dominates the Lorentz force density and core modes can be considered as purely mechanical. One of the most interesting core modes is the spin-over mode, which reflects the ability of the outer core to rotate about an axis different from that of either the inner core or the shell. It has a nearly diurnal period. In the Earth frame of reference, this mode produces the nearly diurnal retrograde wobble. In the space frame of reference it is accompanied by the free core nutations. When the flattening of the boundaries of the fluid outer core and the figure-figure gravitational coupling are taken into account, as well as the deformability of the boundaries, both a retrograde free core nutation and a prograde free core nutation are found. The retrograde free core nutation was first predicted by Poincare (1910) for a completly fluid, incompressible core bounded by a rigid shell. In a variational calculation of wobble-nutation modes in realistic Earth models, Jiang (1993) found the classical retrograde free core nutation (RFCN) but discovered a prograde free core nutation (PFCN) as well. VLBI residuals in longitude and obliquity compared to the 1980 IAU nutation series, and their standard errors, were downloaded from the Goddard Space Flight Center website, for the period August 3, 1979 to March 6, 2003, giving 3343 points over a span of 8617 days. In an overlapping segment analysis, the discrete Fourier transform (DFT) for each segment was found for the corresponding series of unequally spaced nutation residuals by singular value decomposition (SVD), with the number of singular values eliminated determined by the satisfaction of Parseval's theorem. Both the RFCN and the PFCN resonances were found in the resulting power spectrum. The nutation resonances were found to be in free decay, the half-life of the PFCN at 2620 days and that of the RFCN at 2229 days, with Ekman boundary layer

  20. Fluid sampling device

    NASA Technical Reports Server (NTRS)

    Studenick, D. K. (Inventor)

    1977-01-01

    An inlet leak is described for sampling gases, more specifically, for selectively sampling multiple fluids. This fluid sampling device includes a support frame. A plurality of fluid inlet devices extend through the support frame and each of the fluid inlet devices include a longitudinal aperture. An opening device that is responsive to a control signal selectively opens the aperture to allow fluid passage. A closing device that is responsive to another control signal selectively closes the aperture for terminating further fluid flow.

  1. Physical properties of preserved core from the Geysers scientific corehole

    SciTech Connect

    Roberts, J.J.; Bonner, B.P.; Duba, A.G.; Schneberk, D.L.

    1996-01-24

    X-ray attenuation, electrical conductivity, and ultrasonic velocity are reported for a segment of preserved core from SB-15D, 918 ft. X-ray tomography and ultrasonic measurements change as the core dries, providing information regarding handling and disturbance of the core. Electrical conductivity measurements at reservoir conditions indicate that pore fluid properties and pore microstructure control bulk conductivity. These data are useful for calibration and interpretation of field geophysical measurements.

  2. Mercury's thermal evolution and core crystallization regime

    NASA Astrophysics Data System (ADS)

    Rivoldini, A.; Van Hoolst, T.; Dumberry, M.; Steinle-Neumann, G.

    2015-10-01

    Unlike the Earth, where the liquid core isentrope is shallower than the core liquidus, at the lower pressures inside Mercury's core the isentrope can be steeper than the melting temperature. As a consequence, upon cooling, the isentrope may first enter a solid stability field near the core mantle boundary and produce ironrich snow that sinks under gravity and produces buoyant upwellings of iron depleted fluid. Similar to bottom up crystallization, crystallization initiated near the top might generate sufficient buoyancy flux to drive magnetic field generation by compositional convection.In this study we model Mercury's thermal evolution by taking into account the formation of iron-rich snow to assess when the conditions for an internally magnetic field can be satisfied. We employ a thermodynamic consistent description of the iron high-pressure phase diagram and thermoelastic properties of iron alloys as well as the most recent data about the thermal conductivity of core materials. We use a 1-dimensional parametrized thermal evolution model in the stagnant lid regime for the mantle (e.g. [1]) that is coupled to the core. The model for the mantle takes into account the formation of the crust due to melting at depth. Mantle convection is driven by heat producing radioactive elements, heat loss from secular cooling and from the heat supplied by the core. The heat generated inside the core is mainly provided from secular cooling, from the latent heat released at iron freezing, and from gravitational energy resulting form the release of light elements at the inner core-outer core boundary as well as from the sinking of iron-rich snow and subsequent upwellings of light elements in the snow zone. If the heat flow out of the core is smaller than the heat transported along the core isentrope a thermal boundary will from at the top of the outer core. To determine the extension of the convecting region inside the liquid core we calculate the convective power [2]. Finally, we

  3. Exact Results for One Dimensional Fluids Through Functional Integration

    NASA Astrophysics Data System (ADS)

    Fantoni, Riccardo

    2016-06-01

    We review some of the exactly solvable one dimensional continuum fluid models of equilibrium classical statistical mechanics under the unified setting of functional integration in one dimension. We make some further developments and remarks concerning fluids with penetrable particles. We then apply our developments to the study of the Gaussian core model for which we are unable to find a well defined thermodynamics.

  4. Magnetohydrodynamic Convection in the Outer Core and its Geodynamic Consequences

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Chao, Benjamin F.; Fang, Ming

    2004-01-01

    The Earth's fluid outer core is in vigorous convection through much of the Earth's history. In addition to generating and maintaining Earth s time-varying magnetic field (geodynamo), the core convection also generates mass redistribution in the core and a dynamical pressure field on the core-mantle boundary (CMB). All these shall result in various core-mantle interactions, and contribute to surface geodynamic observables. For example, electromagnetic core-mantle coupling arises from finite electrically conducting lower mantle; gravitational interaction occurs between the cores and the heterogeneous mantle; mechanical coupling may also occur when the CMB topography is aspherical. Besides changing the mantle rotation via the coupling torques, the mass-redistribution in the core shall produce a spatial-temporal gravity anomaly. Numerical modeling of the core dynamical processes contributes in several geophysical disciplines. It helps explain the physical causes of surface geodynamic observables via space geodetic techniques and other means, e.g. Earth's rotation variation on decadal time scales, and secular time-variable gravity. Conversely, identification of the sources of the observables can provide additional insights on the dynamics of the fluid core, leading to better constraints on the physics in the numerical modeling. In the past few years, our core dynamics modeling efforts, with respect to our MoSST model, have made significant progress in understanding individual geophysical consequences. However, integrated studies are desirable, not only because of more mature numerical core dynamics models, but also because of inter-correlation among the geophysical phenomena, e.g. mass redistribution in the outer core produces not only time-variable gravity, but also gravitational core-mantle coupling and thus the Earth's rotation variation. They are expected to further facilitate multidisciplinary studies of core dynamics and interactions of the core with other

  5. Academic Rigor: The Core of the Core

    ERIC Educational Resources Information Center

    Brunner, Judy

    2013-01-01

    Some educators see the Common Core State Standards as reason for stress, most recognize the positive possibilities associated with them and are willing to make the professional commitment to implementing them so that academic rigor for all students will increase. But business leaders, parents, and the authors of the Common Core are not the only…

  6. The Moon's Molten Core and Tidal Q

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.; Dickey, J. O.

    1998-01-01

    The rotation of the Moon is influenced by solid-body tides and interaction at a liquid-core/solid-mantle boundary. The Lunar Laser Ranging (LLR) data are sensitive to variations in lunar rotation. Analysis of those ranges reveals four dissipation periodicities in the rotation. These signatures can be explained with the combined effects of tide plus core, but not with either alone. The fluid core detection exceeds three times its uncertainty. The inferred core radius has a 1 -sigma upper limit of 352 km for iron and up to 374 km if sulfur is present. The tidal dissipation is strong, Q at one month is 37 +/- 5 .Q increases for longer periods and is 60 (-15, +40) at one year.Dynamical evidence for a fluid lunar core has previously been presented. These-earlier solutions included three dissipation parameters. New solutions benefit from additional LLR data and an improved gravity field from Doppler tracking of Lunar Prospector. Five dissipation parameters are now solved for. There are several options for dissipation parameters: a core coupling parameter, a time delay for tidal distortion of the moments of inertia, and five periodic terms in the rotation angles. Solutions with different combinations of these are compatible (a theory relates K/C and time delay to a series of periodic terms). The solutions used K/C, time delay, and one periodic term. When dissipation signatures at five rotation frequencies are solved for, four amplitudes (4 to 263 milliarcseconds) are detected above the noise. Attempts to explain these results using either tides alone or core alone fail (less than 3(sigma) discrepancy for the former and 9(sigma), for the latter). A combination of tides and liquid core matches the results well.

  7. Fluid mechanics in fluids at rest.

    PubMed

    Brenner, Howard

    2012-07-01

    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases. PMID:23005525

  8. Fluid transport container

    DOEpatents

    DeRoos, Bradley G.; Downing, Jr., John P.; Neal, Michael P.

    1995-01-01

    An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitment for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container.

  9. Fluid transport container

    DOEpatents

    DeRoos, B.G.; Downing, J.P. Jr.; Neal, M.P.

    1995-11-14

    An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitting for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container. 13 figs.

  10. Method and apparatus for reducing field filter cake on sponge cores

    SciTech Connect

    Park, A.; Wilson, B. T.

    1984-10-30

    A well coring apparatus includes an outer barrel and an inner barrel. The inner barrel is sealed with a rupturable diaphragm and a check valve. A sponge is disposed around the inner walls of the inner barrel for contacting the core. A fluid is disposed in the sealed inner barrel to prewet the sponge. A piercer is reciprocally disposed within the outer barrel and has a conical shaped surface, the apex of which is operable to pierce the diaphragm. In response to forming of the core, the fluid displaced by the core prevents drilling mud from being disposed between the core and the sponge.

  11. Effect of an Ellipsoidal Solid Inner Core on Mercury's Obliquity

    NASA Astrophysics Data System (ADS)

    Peale, S. J.; Margot, J. L.; Hauck, S. A., II; Solomon, S. C.

    2014-12-01

    The gravitational torque on Mercury's solid mantle from a solid inner core displaces the spin axis from the Cassini state when the second-degree shapes of the mantle and inner core are misaligned. Dissipation brings the spins of the inner core, outer fluid core, and mantle to stationary equilibrium positions in the frame of the precessing orbit, where such misalignment is sustained. The equilibrium spin axes of the mantle, fluid core, and inner core all lie in the plane determined by the orbit normal and the Laplace plane normal and precess with the orbit. The fluid and inner core spins have ˜4sim 4 arcmin higher obliquities than the mantle spin, which is itself displaced from the Cassini state toward higher obliquity by an angle that exceeds the 5 arcsec uncertainty in the observed spin axis position if a hydrostatic inner core size exceeds ˜0.35sim 0.35 Mercury radii. The equilibrium mantle obliquity increases with the inner core size. Rather than placing an upper bound on the inner core size, this result means that the determination of the obliquity of the Cassini state and the determination of C/MR2C/MR^2 therefrom are incomplete, where C,M,andRC, M, and R are Mercury's polar moment of inertia, mass and radius respectively. The dependence of the mantle obliquity on the inner core size and shape as well as C/MR2C/MR^2 and the second degree coefficients in the expansion of Mercury's gravitational field J2andC22J_2 and C_{22} means our determination of C/MR2=0.346C/MR^2=0.346 from only the latter three parameters is more uncertain than previously estimated, since the inner core size and shape remain unknown. The precise value of C/MR2C/MR^2 is a crucial constraint on Mercury's internal structure.

  12. Experimental analysis on MR fluid channel flow dynamics with complex fluid-wall interactions

    NASA Astrophysics Data System (ADS)

    Nishiyama, Hideya; Takana, Hidemasa; Shinohara, Keisuke; Mizuki, Kotoe; Katagiri, Kazunari; Ohta, Makoto

    2011-05-01

    MR fluid plugging performance by aggregation of magnetized particles in MR fluid is recently expected to be one of the most promising applications in medical or safety devices, such as blood flow control, steam issuing shut-down valve and fuel supply control for automobile. In this study, dynamic response of MR fluid plugging and its breakdown in a pressure mode with complex fluid-wall interactions was experimentally investigated, considering the effects of magnetic flux density, wall surface structure, wall permeability and wall elasticity of tube. Higher endurance pressure is obtained for wall surface groove structure and for steel wall due to a strong anchoring effect by rigid cluster formation in a concave region and strong MR fluid column formation in a channel core region, respectively. Furthermore, MR fluid plugging performance and the fluid storage characteristic of PVA tube as a bio-material was clarified. Because of the large radial expansion of the tube at the applied magnetic region in a pressure mode, PVA tube shows unique characteristics, such as storing MR fluid under magnetic field and MR fluid jet issuing under releasing magnetic field.

  13. The Core Skills Initiative.

    ERIC Educational Resources Information Center

    Further Education Unit, London (England).

    A British initiative that aims to identify, develop, and assess core skills in post-16 courses and qualifications is summarized in this bulletin. The first section discusses expectations regarding what core skills can achieve. The following section focuses on other purposes to which core skills could contribute, such as broadening the post-16…

  14. Core Competence and Education.

    ERIC Educational Resources Information Center

    Holmes, Gary; Hooper, Nick

    2000-01-01

    Outlines the concept of core competence and applies it to postcompulsory education in the United Kingdom. Adopts an educational perspective that suggests accreditation as the core competence of universities. This economic approach suggests that the market trend toward lifetime learning might best be met by institutions developing a core competence…

  15. Core Design Applications

    Energy Science and Technology Software Center (ESTSC)

    1995-07-12

    CORD-2 is intended for core desigh applications of pressurized water reactors. The main objective was to assemble a core design system which could be used for simple calculations (such as frequently required for fuel management) as well as for accurate calculations (for example, core design after refueling).

  16. Coring Sample Acquisition Tool

    NASA Technical Reports Server (NTRS)

    Haddad, Nicolas E.; Murray, Saben D.; Walkemeyer, Phillip E.; Badescu, Mircea; Sherrit, Stewart; Bao, Xiaoqi; Kriechbaum, Kristopher L.; Richardson, Megan; Klein, Kerry J.

    2012-01-01

    A sample acquisition tool (SAT) has been developed that can be used autonomously to sample drill and capture rock cores. The tool is designed to accommodate core transfer using a sample tube to the IMSAH (integrated Mars sample acquisition and handling) SHEC (sample handling, encapsulation, and containerization) without ever touching the pristine core sample in the transfer process.

  17. Banded transformer cores

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T. (Inventor)

    1974-01-01

    A banded transformer core formed by positioning a pair of mated, similar core halves on a supporting pedestal. The core halves are encircled with a strap, selectively applying tension whereby a compressive force is applied to the core edge for reducing the innate air gap. A dc magnetic field is employed in supporting the core halves during initial phases of the banding operation, while an ac magnetic field subsequently is employed for detecting dimension changes occurring in the air gaps as tension is applied to the strap.

  18. Dimensional analysis of aqueous magnetic fluids

    NASA Astrophysics Data System (ADS)

    Răcuciu, M.; Creangă, D. E.; Suliţanu, N.; Bădescu, V.

    2007-11-01

    A comparison of the synthesis and characterization of three aqueous magnetic fluids intended for biomedical applications is presented. Stable colloidal suspensions of iron oxide nanoparticles were prepared by a co-precipitation method with the magnetite cores being coated with β-cyclodextrin, tetramethylammonium hydroxide and citric acid. Rheological properties of the fluids were investigated, i.e. viscosity (capillary method) and surface tension (stalagmometric method) in correlation with their density (picnometric method). The dimensional distributions of the ferrophase particles physical diameter of these three magnetic fluids - revealed on the basis of transmission electron microscopy (TEM) data - as well as the diameter distributions of some other magnetic fluids presented in the literature, were comparatively analyzed using the box-plot statistical method. In order to extract complementary data on the magnetic diameter of an iron oxide core, magnetization measurements as well as X-ray diffraction pattern analysis were carried out. Interpretation of all the measurement data was accomplished by assessing the suitability of the three magnetic fluid samples from the viewpoint of their stability and biocompatibility.

  19. "Snowing" Core in Earth?

    NASA Astrophysics Data System (ADS)

    Li, J.; Chen, B.; Cormier, V.; Gao, L.; Gubbins, D.; Kharlamova, S. A.; He, K.; Yang, H.

    2008-12-01

    As a planet cools, an initially molten core gradually solidifies. Solidification occurs at shallow depths in the form of "snow", if the liquidus temperature gradient of the core composition is smaller than the adiabatic temperature gradient in the core. Experimental data on the melting behavior of iron-sulfur binary system suggest that the cores of Mercury and Ganymede are probably snowing at the present time. The Martian core is predicted to snow in the future, provided that the sulfur content falls into the range of 10 to 14 weight percent. Is the Earth's core snowing? If so, what are the surface manifestations? If the Earth's core snowed in the past, how did it affect the formation of the solid inner core and the geodynamo? Here, we evaluate the likelihood and consequences of a snowing core throughout the Earth's history, on the basis of mineral physics data describing the melting behavior, equation-of-state, and thermodynamic properties of iron-rich alloys at high pressures. We discuss if snowing in the present-day Earth can reproduce the shallow gradients of compressional wave velocity above the inner-core boundary, and whether or not snowing in the early Earth may reconcile the apparent young age of the solid inner core with a long-lived geodynamo.

  20. Lectures on Geophysical Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Samelson, Roger M.

    The fluid kaleidoscope of the Earth's ocean and atmosphere churns and sparkles with jets, gyres, eddies, waves, streams, and cyclones. These vast circulations, essential elements of the physical environment that support human life, are given a special character by the Earth's rotation and by their confinement to a shallow surficial layer, thin relative to the solid Earth in roughly the same proportion as an apple skin is to an apple. Geophysical fluid dynamics exploits this special character to develop a unified theoretical approach to the physics of the ocean and atmosphere.With Lectures on Geophysical Fluid Dynamics, Rick Salmon has added an insightful and provocative volume to the handful of authoritative texts currently available on the subject. The book is intended for first-year graduate students, but advanced students and researchers also will find it useful. It is divided into seven chapters, the first four of these adapted from course lectures. The book is well written and presents a fresh and stimulating perspective that complements existing texts. It would serve equally well either as the main text for a core graduate curriculum or as a supplementary resource for students and teachers seeking new approaches to both classical and contemporary problems. A lively set of footnotes contains many references to very recent work. The printing is attractive, the binding is of high quality, and typographical errors are few.

  1. Transport theory for the Lennard-Jones dense fluid

    SciTech Connect

    Karkheck, J.; Stell, G.; Xu, J.

    1988-11-01

    A kinetic theory for a fluid of particles interacting via a pair potential with hard-core plus truncated tail is described and used to derive a transport theory for the Lennard-Jones fluid as well as the square-well fluid. Numerical results for shear viscosity, thermal conductivity, and the self-diffusion coefficient are given for the Lennard-Jones fluid and compared with simulation and experimental results. Our Lennard-Jones theory proves quantitatively useful over a wide range of states.

  2. Pleural fluid analysis

    MedlinePlus

    ... of fluid that has collected in the pleural space. This is the space between the lining of the outside of the ... the chest. When fluid collects in the pleural space, the condition is called pleural effusion .

  3. Peritoneal fluid analysis

    MedlinePlus

    ... at fluid that has built up in the space in the abdomen around the internal organs. This area is called the peritoneal space. ... sample of fluid is removed from the peritoneal space using a needle and syringe. Your health care ...

  4. Pleural fluid smear

    MedlinePlus

    ... the fluid that has collected in the pleural space. This is the space between the lining of the outside of the ... the chest. When fluid collects in the pleural space, the condition is called pleural effusion .

  5. Electric fluid pump

    DOEpatents

    Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun

    2015-09-29

    An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.

  6. Amniotic fluid (image)

    MedlinePlus

    Amniotic fluid surrounds the growing fetus in the womb and protects the fetus from injury and temperature changes. It ... fetal movement and permits musculoskeletal development. The amniotic fluid can be withdrawn in a procedure called amniocentsis ...

  7. Fluid and Electrolyte Balance

    MedlinePlus

    ... They are in your blood, urine and body fluids. Maintaining the right balance of electrolytes helps your ... them from the foods you eat and the fluids you drink. Levels of electrolytes in your body ...

  8. Fluid sampling tool

    DOEpatents

    Johnston, Roger G.; Garcia, Anthony R. E.; Martinez, Ronald K.

    2001-09-25

    The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.

  9. Environmentally safe fluid extractor

    DOEpatents

    Sungaila, Zenon F.

    1993-07-06

    An environmentally safe fluid extraction device for use in mobile laboratory and industrial settings comprising a pump, compressor, valving system, waste recovery tank, fluid tank, and a exhaust filtering system.

  10. Environmentally safe fluid extractor

    DOEpatents

    Sungaila, Zenon F.

    1993-01-01

    An environmentally safe fluid extraction device for use in mobile laboratory and industrial settings comprising a pump, compressor, valving system, waste recovery tank, fluid tank, and a exhaust filtering system.

  11. Peritoneal fluid culture

    MedlinePlus

    Culture - peritoneal fluid ... sent to the laboratory for Gram stain and culture. The sample is checked to see if bacteria ... based on more than just the peritoneal fluid culture (which may be negative even if you have ...

  12. Amniotic fluid (image)

    MedlinePlus

    Amniotic fluid surrounds the growing fetus in the womb and protects the fetus from injury and temperature changes. ... of fetal movement and permits musculoskeletal development. The amniotic fluid can be withdrawn in a procedure called amniocentsis ...

  13. 23. CORE WORKER OPERATING A COREBLOWER THAT PNEUMATICALLY FILLED CORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. CORE WORKER OPERATING A CORE-BLOWER THAT PNEUMATICALLY FILLED CORE BOXES WITH RESIGN IMPREGNATED SAND AND CREATED A CORE THAT THEN REQUIRED BAKING, CA. 1950. - Stockham Pipe & Fittings Company, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  14. Core-Cutoff Tool

    NASA Technical Reports Server (NTRS)

    Gheen, Darrell

    2007-01-01

    A tool makes a cut perpendicular to the cylindrical axis of a core hole at a predetermined depth to free the core at that depth. The tool does not damage the surrounding material from which the core was cut, and it operates within the core-hole kerf. Coring usually begins with use of a hole saw or a hollow cylindrical abrasive cutting tool to make an annular hole that leaves the core (sometimes called the plug ) in place. In this approach to coring as practiced heretofore, the core is removed forcibly in a manner chosen to shear the core, preferably at or near the greatest depth of the core hole. Unfortunately, such forcible removal often damages both the core and the surrounding material (see Figure 1). In an alternative prior approach, especially applicable to toxic or fragile material, a core is formed and freed by means of milling operations that generate much material waste. In contrast, the present tool eliminates the damage associated with the hole-saw approach and reduces the extent of milling operations (and, hence, reduces the waste) associated with the milling approach. The present tool (see Figure 2) includes an inner sleeve and an outer sleeve and resembles the hollow cylindrical tool used to cut the core hole. The sleeves are thin enough that this tool fits within the kerf of the core hole. The inner sleeve is attached to a shaft that, in turn, can be attached to a drill motor or handle for turning the tool. This tool also includes a cutting wire attached to the distal ends of both sleeves. The cutting wire is long enough that with sufficient relative rotation of the inner and outer sleeves, the wire can cut all the way to the center of the core. The tool is inserted in the kerf until its distal end is seated at the full depth. The inner sleeve is then turned. During turning, frictional drag on the outer core pulls the cutting wire into contact with the core. The cutting force of the wire against the core increases with the tension in the wire and

  15. Fluid force transducer

    DOEpatents

    Jendrzejczyk, Joseph A.

    1982-01-01

    An electrical fluid force transducer for measuring the magnitude and direction of fluid forces caused by lateral fluid flow, includes a movable sleeve which is deflectable in response to the movement of fluid, and a rod fixed to the sleeve to translate forces applied to the sleeve to strain gauges attached to the rod, the strain gauges being connected in a bridge circuit arrangement enabling generation of a signal output indicative of the magnitude and direction of the force applied to the sleeve.

  16. Fluid Movement and Creativity

    ERIC Educational Resources Information Center

    Slepian, Michael L.; Ambady, Nalini

    2012-01-01

    Cognitive scientists describe creativity as fluid thought. Drawing from findings on gesture and embodied cognition, we hypothesized that the physical experience of fluidity, relative to nonfluidity, would lead to more fluid, creative thought. Across 3 experiments, fluid arm movement led to enhanced creativity in 3 domains: creative generation,…

  17. NEUTRONIC REACTOR FUEL ELEMENT AND CORE SYSTEM

    DOEpatents

    Moore, W.T.

    1958-09-01

    This patent relates to neutronic reactors and in particular to an improved fuel element and a novel reactor core system for facilitating removal of contaminating fission products, as they are fermed, from association with the flssionable fuel, so as to mitigate the interferent effects of such fission products during reactor operation. The fuel elements are comprised of tubular members impervious to fluid and contatning on their interior surfaces a thin layer of fissionable material providing a central void. The core structure is comprised of a plurality of the tubular fuel elements arranged in parallel and a closed manifold connected to their ends. In the reactor the core structure is dispersed in a water moderator and coolant within a pressure vessel, and a means connected to said manifuld is provided for withdrawing and disposing of mobile fission product contamination from the interior of the feel tubes and manifold.

  18. Aqueous drilling fluids containing fluid loss additives

    SciTech Connect

    Bardoliwalla, D.F.; Villa, J.L.

    1987-03-03

    This patent describes an aqueous clay containing drilling fluid having present in an amount sufficient to reduce fluid loss of the drilling fluid, a copolymer of (1) from about 80% to about 98% by weight of acrylic acid and (2) from about 2% to about 20% by weight of itaconic acid. The copolymer has a weight average molecular weight of between about 50,000 to about 1,000,000, being in its free acid or partially or completely neutralized salt form and being at least water dispersible.

  19. Permeability damage to natural fractures caused by fracturing fluid polymers

    SciTech Connect

    Gall, B.L.; Sattler, A.R.; Maloney, D.R.; Raible, C.J.

    1988-04-01

    Formation damage studies using artificially fractured, low-permeability sandstone cores indicate that viscosified fracturing fluids can severely restrict gas flow through these types of narrow fractures. These studies were performed in support of the Department of Energy's Multiwell Experiment (MWX). Extensive geological and production evaluations at the MWX site indicate that the presence of a natural fracture system is largely responsible for unstimulated gas production. The laboratory formation damage studies were designed to examine changes in cracked core permeability to gas caused by fracturing fluid residues introduced into such narrow fractures during fluid leakoff. Polysaccharide polymers caused significant reduction (up to 95%) to gas flow through cracked cores. Polymer fracturing fluid gels used in this study included hydroxypropyl guar, hydroxyethyl cellulose, and xanthan gum. In contrast, polyacrylamide gels caused little or no reduction in gas flow through cracked cores after liquid cleanup. Other components of fracturing fluids (surfactants, breakers, etc.) caused less damage to gas flows. Other factors affecting gas flow through cracked cores were investigated, including the effects of net confining stress and non-Darcy flow parameters. Results are related to some of the problems observed during the stimulation program conducted for the MWX. 24 refs., 4 figs., 7 tabs.

  20. Core sample extractor

    NASA Technical Reports Server (NTRS)

    Akins, James; Cobb, Billy; Hart, Steve; Leaptrotte, Jeff; Milhollin, James; Pernik, Mark

    1989-01-01

    The problem of retrieving and storing core samples from a hole drilled on the lunar surface is addressed. The total depth of the hole in question is 50 meters with a maximum diameter of 100 millimeters. The core sample itself has a diameter of 60 millimeters and will be two meters in length. It is therefore necessary to retrieve and store 25 core samples per hole. The design utilizes a control system that will stop the mechanism at a certain depth, a cam-linkage system that will fracture the core, and a storage system that will save and catalogue the cores to be extracted. The Rod Changer and Storage Design Group will provide the necessary tooling to get into the hole as well as to the core. The mechanical design for the cam-linkage system as well as the conceptual design of the storage device are described.

  1. Fluid involvement in normal faulting

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    2000-04-01

    Evidence of fluid interaction with normal faults comes from their varied role as flow barriers or conduits in hydrocarbon basins and as hosting structures for hydrothermal mineralisation, and from fault-rock assemblages in exhumed footwalls of steep active normal faults and metamorphic core complexes. These last suggest involvement of predominantly aqueous fluids over a broad depth range, with implications for fault shear resistance and the mechanics of normal fault reactivation. A general downwards progression in fault rock assemblages (high-level breccia-gouge (often clay-rich) → cataclasites → phyllonites → mylonite → mylonitic gneiss with the onset of greenschist phyllonites occurring near the base of the seismogenic crust) is inferred for normal fault zones developed in quartzo-feldspathic continental crust. Fluid inclusion studies in hydrothermal veining from some footwall assemblages suggest a transition from hydrostatic to suprahydrostatic fluid pressures over the depth range 3-5 km, with some evidence for near-lithostatic to hydrostatic pressure cycling towards the base of the seismogenic zone in the phyllonitic assemblages. Development of fault-fracture meshes through mixed-mode brittle failure in rock-masses with strong competence layering is promoted by low effective stress in the absence of thoroughgoing cohesionless faults that are favourably oriented for reactivation. Meshes may develop around normal faults in the near-surface under hydrostatic fluid pressures to depths determined by rock tensile strength, and at greater depths in overpressured portions of normal fault zones and at stress heterogeneities, especially dilational jogs. Overpressures localised within developing normal fault zones also determine the extent to which they may reutilise existing discontinuities (for example, low-angle thrust faults). Brittle failure mode plots demonstrate that reactivation of existing low-angle faults under vertical σ1 trajectories is only likely if

  2. Fluid inclusion geothermometry

    USGS Publications Warehouse

    Cunningham, C.G., Jr.

    1977-01-01

    Fluid inclusions trapped within crystals either during growth or at a later time provide many clues to the histories of rocks and ores. Estimates of fluid-inclusion homogenization temperature and density can be obtained using a petrographic microscope with thin sections, and they can be refined using heating and freezing stages. Fluid inclusion studies, used in conjunction with paragenetic studies, can provide direct data on the time and space variations of parameters such as temperature, pressure, density, and composition of fluids in geologic environments. Changes in these parameters directly affect the fugacity, composition, and pH of fluids, thus directly influencing localization of ore metals. ?? 1977 Ferdinand Enke Verlag Stuttgart.

  3. Vortex Cores of Inertial Particles.

    PubMed

    Günther, Tobias; Theisel, Holger

    2014-12-01

    The cores of massless, swirling particle motion are an indicator for vortex-like behavior in vector fields and to this end, a number of coreline extractors have been proposed in the literature. Though, many practical applications go beyond the study of the vector field. Instead, engineers seek to understand the behavior of inertial particles moving therein, for instance in sediment transport, helicopter brownout and pulverized coal combustion. In this paper, we present two strategies for the extraction of the corelines that inertial particles swirl around, which depend on particle density, particle diameter, fluid viscosity and gravity. The first is to deduce the local swirling behavior from the autonomous inertial motion ODE, which eventually reduces to a parallel vectors operation. For the second strategy, we use a particle density estimation to locate inertial attractors. With this, we are able to extract the cores of swirling inertial particle motion for both steady and unsteady 3D vector fields. We demonstrate our techniques in a number of benchmark data sets, and elaborate on the relation to traditional massless corelines. PMID:26356967

  4. AN Core Analysis

    NASA Astrophysics Data System (ADS)

    Barbarino, Andrea; Tomatis, Daniele

    2014-06-01

    Several alternative approximations of neutron transport have been proposed in years to move around the known limitations imposed by neutron diffusion in the modeling of nuclear cores. However, only a few complied with the industrial requirements of fast numerical computation, concentrating more on physical accuracy. In this work, the AN transport methodology is discussed with particular interest in core performance calculations. The implementation of the methodology in full core codes is discussed with particular attention to numerical issues and to the integration within the entire simulation process. Finally, first results from core studies in AN transport are analyzed in detail and compared to standard results of neutron diffusion.

  5. Helicopter engine core noise

    NASA Astrophysics Data System (ADS)

    Vonglahn, U. H.

    1982-07-01

    Calculated engine core noise levels, based on NASA Lewis prediction procedures, for five representative helicopter engines are compared with measured total helicopter noise levels and ICAO helicopter noise certification requirements. Comparisons are made for level flyover and approach procedures. The measured noise levels are generally significantly greater than those predicted for the core noise levels, except for the Sikorsky S-61 and S-64 helicopters. However, the predicted engine core noise levels are generally at or within 3 dB of the ICAO noise rules. Consequently, helicopter engine core noise can be a significant contributor to the overall helicopter noise signature.

  6. Helicopter engine core noise

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.

    1982-01-01

    Calculated engine core noise levels, based on NASA Lewis prediction procedures, for five representative helicopter engines are compared with measured total helicopter noise levels and ICAO helicopter noise certification requirements. Comparisons are made for level flyover and approach procedures. The measured noise levels are generally significantly greater than those predicted for the core noise levels, except for the Sikorsky S-61 and S-64 helicopters. However, the predicted engine core noise levels are generally at or within 3 dB of the ICAO noise rules. Consequently, helicopter engine core noise can be a significant contributor to the overall helicopter noise signature.

  7. Core Research Center

    USGS Publications Warehouse

    Hicks, Joshua; Adrian, Betty

    2009-01-01

    The Core Research Center (CRC) of the U.S. Geological Survey (USGS), located at the Denver Federal Center in Lakewood, Colo., currently houses rock core from more than 8,500 boreholes representing about 1.7 million feet of rock core from 35 States and cuttings from 54,000 boreholes representing 238 million feet of drilling in 28 States. Although most of the boreholes are located in the Rocky Mountain region, the geologic and geographic diversity of samples have helped the CRC become one of the largest and most heavily used public core repositories in the United States. Many of the boreholes represented in the collection were drilled for energy and mineral exploration, and many of the cores and cuttings were donated to the CRC by private companies in these industries. Some cores and cuttings were collected by the USGS along with other government agencies. Approximately one-half of the cores are slabbed and photographed. More than 18,000 thin sections and a large volume of analytical data from the cores and cuttings are also accessible. A growing collection of digital images of the cores are also becoming available on the CRC Web site Internet http://geology.cr.usgs.gov/crc/.

  8. Fluid cooled electrical assembly

    SciTech Connect

    Rinehart, Lawrence E.; Romero, Guillermo L.

    2007-02-06

    A heat producing, fluid cooled assembly that includes a housing made of liquid-impermeable material, which defines a fluid inlet and a fluid outlet and an opening. Also included is an electrical package having a set of semiconductor electrical devices supported on a substrate and the second major surface is a heat sink adapted to express heat generated from the electrical apparatus and wherein the second major surface defines a rim that is fit to the opening. Further, the housing is constructed so that as fluid travels from the fluid inlet to the fluid outlet it is constrained to flow past the opening thereby placing the fluid in contact with the heat sink.

  9. Spinning fluids reactor

    DOEpatents

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  10. LUBRICATED TRANSPORT OF VISCOUS FLUIDS

    SciTech Connect

    JOSEPH, DANIEL D

    2004-06-21

    We became the acknowledged world leaders in the science fundamentals of the technology of water lubricated pipelines focusing on stability, numerical and experimental studies. We completed the first direct numerical simulation of axisymmetric core flow. We showed that the pressure at the front of the wave is large (the fluid enters a converging region) and it pushes the interface in, steepening the wave at its front. At the backside of the wave, behind the crest, the pressure is low (diverging flow) and it pulls the interface to the wall, smoothing the backside of the wave. The steepening of the wave can be regarded as a shock up by inertia and it shows that dynamics works against the formation of long waves which are often assumed but not justified in the analysis of such problems. We showed that the steep wave persists even as the gap between the core and the wall decreases to zero. The wave length also decreases in proportion, so that the wave shape is preserved in this limit. This leads to the first mathematical solution giving rise sharkskin. The analysis also showed that there is a threshold Reynolds number below which the total force reckoned relative to a zero at the wave crest is negative, positive above, and we conjectured, therefore that inertia is required to center a density matched core and to levitate the core off the wall when the density is not matched. Other work relates to self-lubricated transport of bitumen froth and self-lubricated transport of bitumen froth.

  11. A buoyancy profile for the Earth's core

    NASA Astrophysics Data System (ADS)

    Davies, C. J.; Gubbins, D.

    2011-11-01

    We investigate the thermal and chemical buoyancy forces that drive convection in the Earth's liquid outer core and derive a radial buoyancy profile that can be used in geodynamo models. We assume the core is well mixed, adiabatic and cools as a result of mantle convection. The buoyancy profile is developed for a Boussinesq fluid and incorporates secular cooling, latent heat release at the inner core boundary, radiogenic heating, the effect of the adiabat, and compositional buoyancy due to inner core freezing. Surprisingly, these complex effects can be modelled accurately by a simple combination of bottom heating and near-uniform heat sinks, which is implemented using a cotemperature formulation that converts compositional effects into effective thermal effects. The relative importance of internal and bottom heating is then defined by just two parameters, the cooling rate at the core-mantle boundary (CMB) and the uniform rate of internal radiogenic heat production, both of which can be obtained from core evolution calculations. We vary these parameters in geodynamo models and compare basic features of the generated fields with the geomagnetic field; in this manner we link core evolution models, geodynamo simulations and geomagnetic observations. We consider three end-member scenarios for core evolution: (1) rapid cooling and a young inner core; (2) moderate cooling and neutral stability at the CMB; (3) slow cooling and enough radiogenic heating to allow the inner core to be 3.5 Gyr old. We find that compositional buoyancy dominates thermal buoyancy everywhere except near the CMB, even with large amounts of radiogenic heating, and buoyancy forces are far larger at depth than higher up. Reducing the cooling rate and increasing radiogenic heating reduces the drop in the superadiabatic gradient between the inner and outer boundaries: for rapid cooling the drop is by a factor 50; for slow cooling it is a factor of 5. We demonstrate the effects of these different buoyancy

  12. Seismic Detection of the Layers of the Lunar Core

    NASA Technical Reports Server (NTRS)

    Weber, Renee C.; Garnero, Edward J.; Lin, Pei-Ying; Williams, Quentin; Lognonne, Philippe

    2010-01-01

    This slide presentation reviews the analysis of Apollo-era seismic data and indirect geophysical measurements (i.e., moment of inertia, lunar laser ranging and electromagnetic induction) and concludes that significant questions still remain. The Apollo deep moonquake seismograms using terrestrial array processing methods is analyzed to infer the structure of the lunar core. The results indicate the presence of a solid inner and fluid outer core.

  13. Core Skills in Action.

    ERIC Educational Resources Information Center

    Further Education Unit, London (England).

    This bulletin provides an update on current developments in core skills in further education. Section 1 contains information about the Further Education Unit's (FEU's) Core Skills Post-16 project, in which colleges are testing principles that underpin all good quality learning programs. Important findings and examples are outlined under the five…

  14. Reconceptualising Core Skills

    ERIC Educational Resources Information Center

    Canning, Roy

    2007-01-01

    The paper provides an analysis of Core Skill policy and practice in the UK. The author presents a conceptual basis for re-thinking generic Core Skills within educational approaches in teaching and learning. The discussion looks at whether universal notions of generic skills are appropriate when considering post-compulsory pedagogic approaches to…

  15. The Common Core.

    ERIC Educational Resources Information Center

    Boyer, Ernest L.

    Current curricula in institutions of higher education are criticized in this speech for their lack of a common core of education. Several possibilities for developing such a common core include education centered around our common heritage and the challenges of the present. It is suggested that all students must be introduced to the events,…

  16. Making an Ice Core.

    ERIC Educational Resources Information Center

    Kopaska-Merkel, David C.

    1995-01-01

    Explains an activity in which students construct a simulated ice core. Materials required include only a freezer, food coloring, a bottle, and water. This hands-on exercise demonstrates how a glacier is formed, how ice cores are studied, and the nature of precision and accuracy in measurement. Suitable for grades three through eight. (Author/PVD)

  17. Iowa Core Annual Report

    ERIC Educational Resources Information Center

    Iowa Department of Education, 2015

    2015-01-01

    One central component of a great school system is a clear set of expectations, or standards, that educators help all students reach. In Iowa, that effort is known as the Iowa Core. The Iowa Core represents the statewide academic standards, which describe what students should know and be able to do in math, science, English language arts, and…

  18. CORE - Performance Feedback System

    Energy Science and Technology Software Center (ESTSC)

    2009-10-02

    CORE is an architecture to bridge the gaps between disparate data integration and delivery of disparate information visualization. The CORE Technology Program includes a suite of tools and user-centered staff that can facilitate rapid delivery of a deployable integrated information to users.

  19. Ice Core Investigations

    ERIC Educational Resources Information Center

    Krim, Jessica; Brody, Michael

    2008-01-01

    What can glaciers tell us about volcanoes and atmospheric conditions? How does this information relate to our understanding of climate change? Ice Core Investigations is an original and innovative activity that explores these types of questions. It brings together popular science issues such as research, climate change, ice core drilling, and air…

  20. NFE Core Bibliographies.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Inst. for International Studies in Education.

    This collection of core bibliographies, which expands on an initial bibliography published in 1979 of the core resources housed in the Non-Formal Education Information Center at Michigan State University, comprises a basic stock of materials on nonformal education and women in development that have been contributed by development planners,…

  1. Internal core tightener

    DOEpatents

    Brynsvold, Glen V.; Snyder, Jr., Harold J.

    1976-06-22

    An internal core tightener which is a linear actuated (vertical actuation motion) expanding device utilizing a minimum of moving parts to perform the lateral tightening function. The key features are: (1) large contact areas to transmit loads during reactor operation; (2) actuation cam surfaces loaded only during clamping and unclamping operation; (3) separation of the parts and internal operation involved in the holding function from those involved in the actuation function; and (4) preloaded pads with compliant travel at each face of the hexagonal assembly at the two clamping planes to accommodate thermal expansion and irradiation induced swelling. The latter feature enables use of a "fixed" outer core boundary, and thus eliminates the uncertainty in gross core dimensions, and potential for rapid core reactivity changes as a result of core dimensional change.

  2. Planetary cores: a geodynamic perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Nimmo, F.

    2010-12-01

    How can measurements of planetary core materials improve our understanding of their geodynamical behaviour? Here I will focus on three aspects of this questions: 1) core formation; 2) the growth and rheology of solid cores; 3) dynamo activity. Core formation occurs either due to the heat generated by short-lived nuclides (for small bodies) or due to gravitational energy released during impacts (for large bodies) [1]. Core formation results in elemental fractionation; such fractionation depends on P,T and oxygen fugacity [2], and for Earth-mass bodies occurs as a succession of discrete events. Experimental measurements of siderophile element partition coefficients are necessary to infer conditions during accretion, though these inferences are non-unique [3]. Core formation may also lead to isotopic fractionation of elements such as Si [4] and Fe [5], although the latter in particular is currently uncertain and merits further experimental investigation. Core solidification depends on the slopes of the adiabat and melting curve, and on the concentration and nature of the light element(s) present [6,7]. Solidification may proceed from outside in (for small bodies) or from inside out (for larger bodies); the solid may be either lighter or heavier than the fluid, depending on the core composition. Thus, core solidification is complex and poorly understood; for instance, Ganymede and Mercury’s cores may be in a completely different solidification regime to that of the Earth [8,9]. Solidification can also vary spatially, giving rise to inner core seismological structure [10,11]. The viscosity of a solid inner core is an important and poorly constrained parameter [12] which controls core deformation, core-mantle coupling and tidal heating. Super-Earths probably lack solid inner cores [13], though further high-P experimental data are needed. Core dynamos are usually thought to be driven by compositional or thermal buoyancy [14] , with the former effect dominant for small

  3. Geodynamo Modeling of Core-Mantle Interactions

    NASA Technical Reports Server (NTRS)

    Kuang, Wei-Jia; Chao, Benjamin F.; Smith, David E. (Technical Monitor)

    2001-01-01

    Angular momentum exchange between the Earth's mantle and core influences the Earth's rotation on time scales of decades and longer, in particular in the length of day (LOD) which have been measured with progressively increasing accuracy for the last two centuries. There are four possible coupling mechanisms for transferring the axial angular momentum across the core-mantle boundary (CMB): viscous, magnetic, topography, and gravitational torques. Here we use our scalable, modularized, fully dynamic geodynamo model for the core to assess the importance of these torques. This numerical model, as an extension of the Kuang-Bloxham model that has successfully simulated the generation of the Earth's magnetic field, is used to obtain numerical results in various physical conditions in terms of specific parameterization consistent with the dynamical processes in the fluid outer core. The results show that depending on the electrical conductivity of the lower mantle and the amplitude of the boundary topography at CMB, both magnetic and topographic couplings can contribute significantly to the angular momentum exchange. This implies that the core-mantle interactions are far more complex than has been assumed and that there is unlikely a single dominant coupling mechanism for the observed decadal LOD variation.

  4. A star harbouring a wormhole at its core

    SciTech Connect

    Dzhunushaliev, Vladimir; Folomeev, Vladimir; Kleihaus, Burkhard; Kunz, Jutta E-mail: vfolomeev@mail.ru E-mail: kunz@theorie.physik.uni-oldenburg.de

    2011-04-01

    We consider a configuration consisting of a wormhole filled by a perfect fluid. Such a model can be applied to describe stars as well as neutron stars with a nontrivial topology. The presence of a tunnel allows for motion of the fluid, including oscillations near the core of the system. Choosing the polytropic equation of state for the perfect fluid, we obtain static regular solutions. Based on these solutions, we consider small radial oscillations of the configuration and show that the solutions are stable with respect to linear perturbations in the external region.

  5. Space station integrated propulsion and fluid systems study. Space station program fluid management systems databook

    NASA Technical Reports Server (NTRS)

    Bicknell, B.; Wilson, S.; Dennis, M.; Lydon, M.

    1988-01-01

    Commonality and integration of propulsion and fluid systems associated with the Space Station elements are being evaluated. The Space Station elements consist of the core station, which includes habitation and laboratory modules, nodes, airlocks, and trusswork; and associated vehicles, platforms, experiments, and payloads. The program is being performed as two discrete tasks. Task 1 investigated the components of the Space Station architecture to determine the feasibility and practicality of commonality and integration among the various propulsion elements. This task was completed. Task 2 is examining integration and commonality among fluid systems which were identified by the Phase B Space Station contractors as being part of the initial operating capability (IOC) and growth Space Station architectures. Requirements and descriptions for reference fluid systems were compiled from Space Station documentation and other sources. The fluid systems being examined are: an experiment gas supply system, an oxygen/hydrogen supply system, an integrated water system, the integrated nitrogen system, and the integrated waste fluids system. Definitions and descriptions of alternate systems were developed, along with analyses and discussions of their benefits and detriments. This databook includes fluid systems descriptions, requirements, schematic diagrams, component lists, and discussions of the fluid systems. In addition, cost comparison are used in some cases to determine the optimum system for a specific task.

  6. Applications of supercritical fluids.

    PubMed

    Brunner, Gerd

    2010-01-01

    This review discusses supercritical fluids in industrial and near-to-industry applications. Supercritical fluids are flexible tools for processing materials. Supercritical fluids have been applied to mass-transfer processes, phase-transition processes, reactive systems, materials-related processes, and nanostructured materials. Some applications are already at industrial capacity, whereas others remain under development. In addition to extraction, application areas include impregnation and cleaning, multistage countercurrent separation, particle formation, coating, and reactive systems such as hydrogenation, biomass gasification, and supercritical water oxidation. Polymers are modified with supercritical fluids, and colloids and emulsions as well as nanostructured materials exhibit interesting phenomena when in contact with supercritical fluids that can be industrially exploited. For these applications to succeed, the properties of supercritical fluids in combination with the materials processed must be clearly determined and fundamental knowledge of the complex behavior must be made readily available. PMID:22432584

  7. Fiber optic fluid detector

    DOEpatents

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  8. Fiber optic fluid detector

    DOEpatents

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  9. Microwave fluid flow meter

    DOEpatents

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  10. 34. DESPATCH CORE OVENS, GREY IRON FOUNDRY CORE ROOM, BAKES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. DESPATCH CORE OVENS, GREY IRON FOUNDRY CORE ROOM, BAKES CORES THAT ARE NOT MADE ON HEATED OR COLD BOX CORE MACHINES, TO SET BINDING AGENTS MIXED WITH THE SAND CREATING CORES HARD ENOUGH TO WITHSTAND THE FLOW OF MOLTEN IRON INSIDE A MOLD. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL