Modelling of the Coriolis mass flowmeter
NASA Astrophysics Data System (ADS)
Sultan, G.; Hemp, J.
1989-08-01
The Coriolis mass flowmeter is modelled by using the theory of vibrating beams. Tube deformations for the fundamental mode and for the next two modes of natural (out-of-plane) vibration are worked out for a U-tube configuration. Predictions of the relative phase of the vibration at two points are compared with measurements carried out on the "Micro Motion" industrial meter in water and kerosene flow rigs.
NASA Astrophysics Data System (ADS)
Parent, A.; Masson, S.; Le Traon, O.
2005-09-01
In piezoelectric Coriolis Vibrating Gyros piezoelectricity is both used to excite the in plane reference vibration and to detect the out of plane vibration induced by an input angular rate. Quartz crystal is used because of its good mechanical properties (e.g. high quality factor... ). In this paper, the opportunity of using new piezoelectric crystals with high electromechanical coupling factor is studied. An analytical model of a piezoelectric beam CVG has been established in the case of high piezoelectric coupling. This model predicts an improvement by a factor 50 of the gyro resolution by using the ferroelectric single crystal PMN-0.34PT instead of quartz.
NASA Astrophysics Data System (ADS)
Vansteenkiste, P.; Van Neck, D.; Van Speybroeck, V.; Waroquier, M.
2006-01-01
Large-amplitude motions, particularly internal rotations, are known to affect substantially thermodynamic functions and rate constants of reactions in which flexible molecules are involved. Up to now all methods for computing the partition functions of these motions rely on the Pitzer approximation of more than 50 years ago, in which the large-amplitude motion is treated in complete independence of the other (vibrational) degrees of freedom. In this paper an extended hindered-rotor model (EHR) is developed in which the vibrational modes, treated harmonically, are correctly separated from the large-amplitude motion and in which relaxation effects (the changes in the kinetic-energy matrix and potential curvature) are taken into account as one moves along the large-amplitude path. The model also relies on a specific coordinate system in which the Coriolis terms vanish at all times in the Hamiltonian. In this way an increased level of consistency between the various internal modes is achieved, as compared with the more usual hindered-rotor (HR) description. The method is illustrated by calculating the entropies and heat capacities on 1,3-butadiene and 1-butene (with, respectively, one and two internal rotors) and the rate constant for the addition reaction of a vinyl radical to ethene. We also discuss various variants of the one-dimensional hindered-rotor scheme existing in the literature and its relation with the EHR model. It is argued why in most cases the HR approach is already quite successful.
NASA Astrophysics Data System (ADS)
Sato, S.; Nomura, Y.; Fujimura, Y.
1987-09-01
Effects of vibration-rotation (Coriolis) couplings on the coherent polarization anisotropy are theoretically studied in a time-resolved two-photon ionization of a symmetric top molecule. This polarization anisotropy originates from a coherent excitation of the resonant rovibronic molecular eigenstates (rovibronic coherence) whose zeroth order states are mixed through the Coriolis coupling. Expressions for the time-dependent degree of polarization after the coherent excitation of the rovibronic states produced by the Coriolis coupling are derived as a function of the delay time in the pump-probe two-photon ionization. Model calculations of the time-dependent degree of polarization as well as the probabilities of the two-photon ionization are performed to demonstrate the Coriolis coupling effects in the low excess energy regions of the resonant intermediate state. It is shown that oscillatory behaviors in the time-dependent degree of polarization should be observed as a result of the creation of the rovibronic coherence. It is demonstrated that oscillations of the degree of polarization involve both contribution of the purely rotational J-coherence and that of the rovibronic coherence in the resonant manifold when the rotational branches are coherently excited and the characteristic rotation-vibration interaction energy is larger than a typical free rotational energy under jet-cooled condition.
The Coriolis Effect: A Model for Student Involvement
ERIC Educational Resources Information Center
Exline, Joseph D.
1977-01-01
Lists materials and procedures for constructing a model that demonstrates certain aspects of the Coriolis effect. Materials include an electric drill motor, voltage control, toy dart gun and darts, wood blocks of varying dimensions. Includes description of an experiment illustrating relationship between speed of rotation and amount of apparent…
NASA Technical Reports Server (NTRS)
Lackner, J. R.; Graybiel, A.
1986-01-01
The effect of gravity on the severity of the Coriolis-induced motion sickness was investigated in ten individuals subjected to high and low G-force phases of parabolic flight maneuvers using constant level Coriolis, cross-coupled angular acceleration stimulation. Using seven levels of severity in the diagnosis of motion sickness, it was found that the subjects were less susceptible at 0 G than at +2 Gz, and that the perceived intensity and provocativeness of Coriolis stimulation decreased in 0 G and increased in +2 Gz relative to the +1 Gz baseline values. The changes in the apparent intensity of Coriolis stimulation occur virtually immediately when the background gravitatioinertial force level is varied. These findings explain why the Skylab astronauts were refractory to motion sickness during Coriolis stimulation in-flight.
Direct transitions from high-K isomers to low-K bands -- {gamma} softness or coriolis coupling
Shimizu, Yoshifumi R.; Narimatsu, Kanako; Ohtsubo, Shin-Ichi
1996-12-31
Recent measurements of direct transitions from high-K isomers to low-K bands reveal severe break-down of the K-selection rule and pose the problem of how to understand the mechanism of such K-violation. The authors recent systematic calculations by using a simple {gamma}-tunneling model reproduced many of the observed hindrances, indicating the importance of the {gamma} softness. However, there are some data which cannot be explained in terms of the {gamma}-degree of freedom. In this talk, the authors also discuss the results of conventional Coriolis coupling calculations, which is considered to be another important mechanism.
Microwave spectrum, structure, dipole moment, and Coriolis coupling of 1,1-difluoroallene
NASA Technical Reports Server (NTRS)
Durig, J. R.; Li, Y. S.; Tong, C. C.; Zens, A. P.; Ellis, P. D.
1974-01-01
Microwave spectra from 12.4 to 40.0 GHz were recorded for five isotopic species of 1,1-difluoroallene. A-type transitions were observed and R-branch assignments were made for the ground state and two vibrationally excited states. Several structural parameters of the compounds were determined. The dipole moment value obtained from Stark splitting was 2.07 plus or minus 0.03 D. A Coriolis coupling was observed between the two-low-frequency C = C = C bending modes.
Vestibular coriolis effect differences modeled with three-dimensional linear-angular interactions.
Holly, Jan E
2004-01-01
The vestibular coriolis (or "cross-coupling") effect is traditionally explained by cross-coupled angular vectors, which, however, do not explain the differences in perceptual disturbance under different acceleration conditions. For example, during head roll tilt in a rotating chair, the magnitude of perceptual disturbance is affected by a number of factors, including acceleration or deceleration of the chair rotation or a zero-g environment. Therefore, it has been suggested that linear-angular interactions play a role. The present research investigated whether these perceptual differences and others involving linear coriolis accelerations could be explained under one common framework: the laws of motion in three dimensions, which include all linear-angular interactions among all six components of motion (three angular and three linear). The results show that the three-dimensional laws of motion predict the differences in perceptual disturbance. No special properties of the vestibular system or nervous system are required. In addition, simulations were performed with angular, linear, and tilt time constants inserted into the model, giving the same predictions. Three-dimensional graphics were used to highlight the manner in which linear-angular interaction causes perceptual disturbance, and a crucial component is the Stretch Factor, which measures the "unexpected" linear component. PMID:15735327
NASA Astrophysics Data System (ADS)
Li, Song; Zheng, Rui; Zhu, Yu; Duan, Chuanxi
2011-10-01
Four internal-rotation/vibration bands of the Ne-D2O complex have been measured in the v2 bend region of D2O using a tunable infrared diode laser spectrometer to probe a slit supersonic expansion. Three ortho bands are excited from the ground state Σ(000) to the Σ and Π(111, υ2 = 1) internal rotor states and the n = 1, Σ(000, υ2 = 1) stretching-internal rotor combination state. Strong perturbations between the excited vibrational states are evident. The observed spectra are analyzed separately with a three-state J-dependent Coriolis plus J-independent angular-radial coupling model [M. J. Weida and D. J. Nesbitt, J. Chem. Phys. 106, 3078 (1997), 10.1063/1.473051] and a three-state Coriolis coupling model [R. C. Cohen and R. J. Saykally, J. Chem. Phys. 95, 7891 (1991), 10.1063/1.461318]. The former model works more successfully than the latter. Molecular constants for the ground and excited vibrational states of ortho 20Ne-D2O isotopomer as well as the Coriolis and angular-radial coupling constants are determined accurately. The van der Waals stretching frequency is estimated to be νs = 24.85 cm-1 in the ground state and decreases to about 20.8 cm-1 upon vibrational excitation of the D2O bend.
Linear thermal circulator based on Coriolis forces.
Li, Huanan; Kottos, Tsampikos
2015-02-01
We show that the presence of a Coriolis force in a rotating linear lattice imposes a nonreciprocal propagation of the phononic heat carriers. Using this effect we propose the concept of Coriolis linear thermal circulator which can control the circulation of a heat current. A simple model of three coupled harmonic masses on a rotating platform permits us to demonstrate giant circulating rectification effects for moderate values of the angular velocities of the platform. PMID:25768443
NASA Technical Reports Server (NTRS)
Valentinuzzi, M.
1973-01-01
Phase lag, maximal slow phase velocity, and beat frequency were measured in periodic Coriolis star nystagmus. The results have been described by Steinhausen's model of the semicircular canal system. Estimates of the biophysical constants have been obtained. It is concluded that this model is a good functional approximation for describing, and also for interpreting, the behavior of the system.
NASA Technical Reports Server (NTRS)
Dizio, Paul; Lackner, James R.; Evanoff, John N.
1987-01-01
The goal of the present experiment was to determine whether gravitoinertial force magnitude influences oculomotor and perceptual responses to Coriolis cross-coupling stimulation. Blindfolded subjects who were rotating at constant velocity were asked to make standardized head movements during the free-fall and high-force phases of parabolic flight, and the characteristics of their horizontal nystagmus and the magnitude of their experienced self-motion were measured. Both responses were less intense in the free-fall periods than in the high-force periods. These findings suggest that the response to semicircular canal stimulation depends on the background level of gravitoinertial force.
Modeling, design, fabrication and characterization of a micro Coriolis mass flow sensor
NASA Astrophysics Data System (ADS)
Haneveld, J.; Lammerink, T. S. J.; de Boer, M. J.; Sanders, R. G. P.; Mehendale, A.; Lötters, J. C.; Dijkstra, M.; Wiegerink, R. J.
2010-12-01
This paper discusses the modeling, design and realization of micromachined Coriolis mass flow sensors. A lumped element model is used to analyze and predict the sensor performance. The model is used to design a sensor for a flow range of 0-1.2 g h-1 with a maximum pressure drop of 1 bar. The sensor was realized using semi-circular channels just beneath the surface of a silicon wafer. The channels have thin silicon nitride walls to minimize the channel mass with respect to the mass of the moving fluid. Special comb-shaped electrodes are integrated on the channels for capacitive readout of the extremely small Coriolis displacements. The comb-shaped electrode design eliminates the need for multiple metal layers and sacrificial layer etching methods. Furthermore, it prevents squeezed film damping due to a thin layer of air between the capacitor electrodes. As a result, the sensor operates at atmospheric pressure with a quality factor in the order of 40 and does not require vacuum packaging like other micro Coriolis flow sensors. Measurement results using water, ethanol, white gas and argon are presented, showing that the sensor measures true mass flow. The measurement error is currently in the order of 1% of the full scale of 1.2 g h-1.
A Coriolis Demonstration Using a 3-D Interactive Computer Model of a Physical Demonstration
NASA Astrophysics Data System (ADS)
Urbano, L.; Houghton, J.
2005-12-01
The coriolis effect can be a difficult concept, particularly for large classes where the effectiveness of physical demonstrations is limited by visibility. We developed a fully interactive computer visualization aimed at introductory undergraduate and pre-college students based on the physical demonstration of a marble rolling across a turntable. The marble's velocity, turntable angular velocity and direction, and friction between the marble and the surface can be controlled to allow significant instructional flexibility. Pre and post-demonstration surveys indicate that the coriolis model helped students better understand the concept. This program is written in the free, open-source Python programming language, specifically with the VPython module, which makes three-dimensional, physically-based, real-time visualizations efficiently programmable for geoscience demonstrations by non-professional programmers.
NASA Astrophysics Data System (ADS)
Choquard, Ph.; Vuffray, M.
2014-10-01
The coupling between dilatation and vorticity, two coexisting and fundamental processes in fluid dynamics (Wu et al., 2006, pp. 3, 6) is investigated here, in the simplest cases of inviscid 2D isotropic Burgers and pressureless Euler-Coriolis fluids respectively modeled by single vortices confined in compressible, local, inertial and global, rotating, environments. The field equations are established, inductively, starting from the equations of the characteristics solved with an initial Helmholtz decomposition of the velocity fields namely a vorticity free and a divergence free part (Wu et al., 2006, Sects. 2.3.2, 2.3.3) and, deductively, by means of a canonical Hamiltonian Clebsch like formalism (Clebsch, 1857, 1859), implying two pairs of conjugate variables. Two vector valued fields are constants of the motion: the velocity field in the Burgers case and the momentum field per unit mass in the Euler-Coriolis one. Taking advantage of this property, a class of solutions for the mass densities of the fluids is given by the Jacobian of their sum with respect to the actual coordinates. Implementation of the isotropy hypothesis entails a radial dependence of the velocity potentials and of the stream functions associated to the compressible and to the rotational part of the fluids and results in the cancellation of the dilatation-rotational cross terms in the Jacobian. A simple expression is obtained for all the radially symmetric Jacobians occurring in the theory. Representative examples of regular and singular solutions are shown and the competition between dilatation and vorticity is illustrated. Inspired by thermodynamical, mean field theoretical analogies, a genuine variational formula is proposed which yields unique measure solutions for the radially symmetric fluid densities investigated. We stress that this variational formula, unlike the Hopf-Lax formula, enables us to treat systems which are both compressible and rotational. Moreover in the one
High Resolution IR Study of the Coriolis Coupling between ν 3and ν 9in CH 235Cl 37Cl
NASA Astrophysics Data System (ADS)
Snels, Marcel
1997-06-01
The infrared spectra of the ν3and ν9bands of methylene chloride have been recorded both for isotopically pure CH235Cl2and for a natural mixture with a resolution of 0.0025-0.004 cm-1(FWHM) in the range 600-800 cm-1using a Bruker IFS 120 HR Fourier Transform interferometer. The Coriolis coupling between the two CCl2stretching fundamentals ν3and ν9has been investigated for the CH235Cl37Cl isotopic species. An effective coupling constant ξ39c= 0.1975(2) cm-1results from a full rotational analysis of a difference spectrum, obtained by subtracting the CH235Cl2room temperature spectrum from that of the natural mixture. A least-mean-squares fit of the data to Watson's A-reduction Hamiltonian in theIrrepresentation yields a set of accurate effective rotational and distortion constants up to quartic terms for the excited states of both fundamental bands. The standard deviation of the fit was 0.893 × 10-3cm-1.
Sensitivities of Modeled Tropical Cyclones to Surface Friction and the Coriolis Parameter
NASA Technical Reports Server (NTRS)
Chao, Winston C.; Chen, Baode; Tao, Wei-Kuo; Lau, William K. M. (Technical Monitor)
2002-01-01
In this investigation the sensitivities of a 2-D tropical cyclone (TC) model to surface frictional coefficient and the Coriolis parameter are studied and their implication is discussed. The model used is an axisymmetric version of the latest version of the Goddard cloud ensemble model. The model has stretched vertical grids with 33 levels varying from 30 m near the bottom to 1140 m near the top. The vertical domain is about 21 km. The horizontal domain covers a radius of 962 km (770 grids) with a grid size of 1.25 km. The time step is 10 seconds. An open lateral boundary condition is used. The sea surface temperature is specified at 29C. Unless specified otherwise, the Coriolis parameter is set at its value at 15 deg N. The Newtonian cooling is used with a time scale of 12 hours. The reference vertical temperature profile used in the Newtonian cooling is that of Jordan. The Newtonian cooling models not only the effect of radiative processes but also the effect of processes with scale larger than that of TC. Our experiments showed that if the Newtonian cooling is replaced by a radiation package, the simulated TC is much weaker. The initial condition has a temperature uniform in the radial direction and its vertical profile is that of Jordan. The initial winds are a weak Rankin vortex in the tangential winds superimposed on a resting atmosphere. The initial sea level pressure is set at 1015 hPa everywhere. Since there is no surface pressure perturbation, the initial condition is not in gradient balance. This initial condition is enough to lead to cyclogenesis, but the initial stage (say, the first 24 hrs) is not considered to resemble anything observed. The control experiment reaches quasi-equilibration after about 10 days with an eye wall extending from 15 to 25 km radius, reasonable comparing with the observations. The maximum surface wind of more than 70 m/s is located at about 18 km radius. The minimum sea level pressure on day 10 is about 886 hPa. Thus the
NASA Technical Reports Server (NTRS)
Chao, Winston C.; Chen, Baode; Tao, Wei-Kuo; Lau, William K. M. (Technical Monitor)
2002-01-01
The sensitivities to surface friction and the Coriolis parameter in tropical cyclogenesis are studied using an axisymmetric version of the Goddard cloud ensemble model. Our experiments demonstrate that tropical cyclogenesis can still occur without surface friction. However, the resulting tropical cyclone has very unrealistic structure. Surface friction plays an important role of giving the tropical cyclones their observed smaller size and diminished intensity. Sensitivity of the cyclogenesis process to surface friction. in terms of kinetic energy growth, has different signs in different phases of the tropical cyclone. Contrary to the notion of Ekman pumping efficiency, which implies a preference for the highest Coriolis parameter in the growth rate if all other parameters are unchanged, our experiments show no such preference.
NASA Astrophysics Data System (ADS)
Gao, Shoubao; Zhang, Lulu; Song, Yuzhi; Meng, Qingtian
2016-05-01
The time-dependent dynamics studies on the H +Li2 (X1Σg+) reaction has been carried out by using the novel HLi2 (X2A‧) potential energy surface [7]. The reaction probabilities from both Coriolis coupling and centrifugal sudden approximation calculation exhibit oscillations, being attributed to the existence of deep potential well in the reaction. The integral cross sections of the Coriolis coupling calculation are slightly larger than those of the centrifugal sudden approximation calculation over the collision energy range of 0-0.4 eV, which demonstrates that the Coriolis coupling effect plays an important role in the H +Li2 (X1Σg+) reaction.
Theoretical study of spin-orbit and Coriolis coupling among the low-lying states of Rb2 and Cs2
NASA Astrophysics Data System (ADS)
Pazyuk, Elena A.; Revina, Elena I.; Stolyarov, Andrey V.
2015-11-01
The spin-orbit (SO) and angular (Coriolis) coupling matrix elements of rubidium and cesium dimers have been calculated between the states converging to the lowest three dissociation limits. The relevant quasi-relativistic matrix elements were evaluated for a wide range of internuclear distances and density grid in the basis of the spin-averaged wave functions corresponding to pure Hund's coupling case (a). Both shape and energy consistent small (9-electrons) effective core pseudopotentials were used to monitor a sensitivity of the matrix elements to the particular basis set. The dynamic correlation has been taken accounted by a large scale multi-reference configuration interaction method which was applied for only two valence electrons. The l-independent core-polarization potentials were employed to take into account the residual core-valence effect. The assessment of current accuracy of the present ab initio functions is discussed by a comparison with preceding calculations and their empirical counterparts.
Estimation of Coriolis Force and Torque Acting on Ares-1
NASA Technical Reports Server (NTRS)
Mackey, Ryan M.; Kulikov, Igor K.; Smelyanskiy, Vadim; Luchinsky, Dmitry; Orr, Jeb
2011-01-01
A document describes work on the origin of Coriolis force and estimating Coriolis force and torque applied to the Ares-1 vehicle during its ascent, based on an internal ballistics model for a multi-segmented solid rocket booster (SRB).
Debunking Coriolis Force Myths
ERIC Educational Resources Information Center
Shakur, Asif
2014-01-01
Much has been written and debated about the Coriolis force. Unfortunately, this has done little to demystify the paradoxes surrounding this fictitious force invoked by an observer in a rotating frame of reference. It is the purpose of this article to make another valiant attempt to slay the dragon of the Coriolis force! This will be done without…
Apple, C.
1995-12-01
Coriolis meters provide significant advantages for custody transfer measurement of fluids. The most obvious feature is the Coriolis meter`s ability to provide a direct mass flow measurement. This makes Coriolis meters ideally suited to measuring products which are commonly accounted for on a mass basis, such as LPG, NGL, ethylene, liquid CO{sub 2}. Using a single Coriolis meter simplifies the metering system by replacing a volumetric flowmeter, densitometer, and flow computer, with a single measurement device. Another unique feature of Coriolis meters is their ability to measure fluid density independently of mass flow rate. The density measurement is determined in the same manner as any vibrating tube densitometer. By measuring both the mass flow rate ({center_dot}m) and density ({rho}), the Coriolis meter can provide a volumetric flow measurement (q) by performing the following calculation: q = {center_dot}m / {rho}. Coriolis meters have no rotating parts such as bearings or gears, that wear with time. This reduces maintenance costs. Since solids can flow through the meters without damage, strainers are generally unnecessary. Also, gas or vapor in the process fluid which can damage turbine meters due to overspin, will not harm Coriolis meters. The measurement accuracy of Coriolis meters, {+-}0.15%, is suitable for custody transfer measurement. The meters are capable of measuring flow bi-directionally. This is particularly advantageous for loading rack and cavern storage applications. Flowmeters which are used for custody transfer measurement, generally require some means to prove meter accuracy. The principles of operation of Coriolis meters are fundamentally different than those of turbine or positive displacement meters. In order to properly prove these meters it is important to understand some basics about the meters operation and output signals.
Kirkpatrick, Robynne W; Masiello, Tony; Jariyasopit, Narumol; Nibler, Joseph W; Maki, Arthur G; Blake, Thomas A; Weber, Alfons
2009-01-02
Infrared spectra of the small strained cage molecule [1.1.1]propellane have been obtained at high resolution (0.0015 cm^{-1}) and the J and K, l rovibrational structure has been resolved for the first time. We recently used combination-differences to obtain ground state parameters for propellane; over 4,100 differences from five fundamental and four combination bands were used in this process. The combination-difference approach eliminated errors due to localized perturbations in the upper state levels of the transitions and gave well-determined ground state parameters. In the current work, these ground state parameters were used in a determination of the upper state parameters for the v_{12}(e') perpendicular and v_{15}(a_{2}") parallel bands. Over 4000 infrared transitions were fitted for each band, with J, K values ranging up to 71, 51 and 92, 90 respectively. While the transition frequencies for both bands can be fit nicely using separate analyses for each band, the strong intensity perturbations observed in the weaker v_{12} band indicated that Coriolis coupling between the two modes was significant and should be included. Due to correlations with other parameters, the Coriolis coupling parameter ζ^{y}_{15,12a} for the v_{15} and v_{12} interaction is poorly determined by a transition frequency fit alone. However, by combining the frequency fit with a fit of experimental intensities, a value of -0.42 was obtained, quite close to that predicted from the ab initio calculation (-0.44). This intensity fit also yielded a (∂μ^{z}/∂Q_{15})/(∂μ^{x}/∂Q_{12a}) dipole derivative ratio of 36.5, in reasonable agreement with a value of 29.2 predicted by Gaussian ab initio density functional calculations using a cc-pVTZ basis. This ratio is unusually high due to large charge movement as the novel central Caxial-Caxial bond is displaced along the symmetry axis of
ERIC Educational Resources Information Center
Lissaman, P. B. S.
1979-01-01
Detailed are the history, development, and future objectives of the Coriolis program, a project designed to place large turbine units in the Florida Current that would generate large amounts of electric power. (BT)
Debunking Coriolis Force Myths
NASA Astrophysics Data System (ADS)
Shakur, Asif
2014-11-01
Much has been written and debated about the Coriolis force.1-8 Unfortunately, this has done little to demystify the paradoxes surrounding this fictitious force invoked by an observer in a rotating frame of reference. It is the purpose of this article to make another valiant attempt to slay the dragon of the Coriolis force! This will be done without unleashing the usual mathematical apparatus, which we believe is more of a hindrance than a help.
Yao, Cui-Xia; Zhang, Pei-Yu
2014-07-10
The dynamics of the Ne + D2(+) (v0 = 0-2, j0 = 0) → NeD(+) + D reaction has been investigated in detail by using an accurate time-dependent wave-packet method on the ground 1(2)A' potential energy surface. Comparisons between the Coriolis coupling results and the centrifugal-sudden ones reveal that Coriolis coupling effect can influence reaction dynamics of the NeD2(+) system. Integral cross sections have been evaluated for the Ne + D2(+) reaction and its isotopic variant Ne + H2(+), and a considerable intermolecular isotopic effect has been found. Also obvious is the great enhancement of the reactivity due to the reagent vibrational excitation. Besides, a comparison with previous theoretical results is also presented and discussed. PMID:24949528
NASA Astrophysics Data System (ADS)
Costa, L. Filipe; Natário, José
2016-05-01
We present a pedagogical discussion of the Coriolis field, emphasizing its not-so-well-understood aspects. We show that this field satisfies the field equations of the so-called Newton-Cartan theory, a generalization of Newtonian gravity that is covariant under changes of arbitrarily rotating and accelerated frames. Examples of solutions of this theory are given, including the Newtonian analogue of the Gödel universe. We discuss how to detect the Coriolis field by its effect on gyroscopes, of which the gyrocompass is an example. Finally, using a similar framework, we discuss the Coriolis field generated by mass currents in general relativity, and its measurement by the gravity probe B and LAGEOS/LARES experiments.
ERIC Educational Resources Information Center
Levi, F. A.
1988-01-01
Describes a demonstration of Coriolis acceleration. Discusses two different meanings of "Coriolis" and two causes of Coriolis acceleration. Gives a set-up method of the demonstration apparatus by using a rotary disk with rubber tubing for tap water, switches, lamps, battery, and counterweight. Provides two pictures with operating method. (YP)
NASA Astrophysics Data System (ADS)
Stoppa, Paolo; Tasinato, Nicola; Baldacci, Agostino; Pietropolli Charmet, Andrea; Giorgianni, Santi; Tamassia, Filippo; Cané, Elisabetta; Villa, Mattia
2016-05-01
The FTIR spectra of CH2F2 have been investigated in a region of atmospheric interest (1000-1300 cm-1) where four fundamentals ν3, ν5, ν7 and ν9 occur. These vibrations perturb each other by different Coriolis interactions and the forbidden ν5 borrows intensity from the neighboring levels. Furthermore, the v4=2 state has been found to interact with the v3=1 and v9=1 states by anharmonic and c-type Coriolis resonances, respectively. The spectral analysis resulted in the assignment of about 7500 rovibrational transitions which have been simultaneously fitted, together with microwave data available in literature (Hirota E. J Mol Spectrosc 1978; 69: 409-420) [15] using the Watson's A-reduction Hamiltonian in the Ir representation and the relevant perturbation operators. The model employed includes eight types of resonances within the pentad ν3/ν5/ν7/ν9/2ν4. A set of spectroscopic constants for the four fundamentals as well as parameters for the v4=2 state and eighteen coupling terms have been determined. The simulations performed in different spectral regions well reproduce the experimental data.
Exposing the Bathtub Coriolis Myth.
ERIC Educational Resources Information Center
Salzsieder, John C.
1994-01-01
Presents a demonstration that employs angular momentum to disprove the myth that water spirals down a bathtub drain clockwise in one hemisphere and counterclockwise in the other because of the Coriolis force on water. (ZWH)
Coriolis attenuation in the A congruent 130--150 region
Saha, M.; Goswami, A.; Bhattacharya, S.; Sen, S. )
1990-10-01
The particle-rotor model has been applied to calculate the band structure in a number of highly neutron deficient odd-{ital A} rare-earth nuclei in the {ital A}{congruent}130--150 region. Several transitional nuclei are also included in the study. The only adjustable parameter, used in the calculation, is the Coriolis attenuation coefficient. However, it is seen that the observed band structures in these nuclei can be reproduced practically without any {ital ad} {ital hoc} reduction of the Coriolis matrix elements. The systematics of the Coriolis attenuation in the neutron-deficient, transitional, and well-deformed rare-earth nuclei are discussed in the light of the present work and several theoretical studies, made earlier. The importance of the pairing interaction in the Coriolis attenuation study is emphasized.
How Coriolis meter design affects field performance
Levien, A.; Dudiak, A.
1995-12-31
Although many possibilities exist for the design of Coriolis flowmeters, a common set of fundamental physical principles affect practical meter design. Design criteria such as tube geometry, alloy section, operating frequencies, stress levels, and tubing wall thickness have varying impacts on meter performance. Additionally, field conditions such as changing temperature, pressure, pipeline stress and vibration affect measurement performance. The challenge created in Coriolis flow meter design is to maximize the sensitivity of the meter Coriolis forces, while minimizing the impact of outside environmental influences. Data are presented on the physical principles that affect Coriolis flowmeters, and how the various aspects of meter design influence field performance.
Peeters, A. G.; Angioni, C.; Strintzi, D.
2007-06-29
In this Letter, the influence of the ''Coriolis drift'' on small scale instabilities in toroidal plasmas is shown to generate a toroidal momentum pinch velocity. Such a pinch results because the Coriolis drift generates a coupling between the density and temperature perturbations on the one hand and the perturbed parallel flow velocity on the other. A simple fluid model is used to highlight the physics mechanism and gyro-kinetic calculations are performed to accurately assess the magnitude of the pinch. The derived pinch velocity leads to a radial gradient of the toroidal velocity profile even in the absence of a torque on the plasma and is predicted to generate a peaking of the toroidal velocity profile similar to the peaking of the density profile. Finally, the pinch also affects the interpretation of current experiment000.
Measurement of Coriolis Acceleration with a Smartphone
ERIC Educational Resources Information Center
Shaku, Asif; Kraft, Jakob
2016-01-01
Undergraduate physics laboratories seldom have experiments that measure the Coriolis acceleration. This has traditionally been the case owing to the inherent complexities of making such measurements. Articles on the experimental determination of the Coriolis acceleration are few and far between in the physics literature. However, because modern…
Uncertainty Analysis of Model Coupling
NASA Astrophysics Data System (ADS)
Held, H.; Knopf, B.; Schneider von Deimling, T.; Schellnhuber, H.-J.
The Earth System is a highly complex system that is often modelled by coupling sev- eral nonlinear submodules. For predicting the climate with these models, the following uncertainties play an essential role: parameter uncertainty, uncertainty in initial con- ditions or model uncertainty. Here we will address uncertainty in initial conditions as well as model uncertainty. As the process of coupling is an important part of model- ing, the main aspect of this work is the investigation of uncertainties that are due to the coupling process. For this study we use conceptual models that, compared to GCMs, have the advantage that the model itself as well as the output can be treated in a mathematically elabo- rated way. As the time for running the model is much shorter, the investigation is also possible for a longer period, e.g. for paleo runs. In consideration of these facts it is feasible to analyse the whole phase space of the model. The process of coupling is investigated by using different methods of examining low order coupled atmosphere-ocean systems. In the dynamical approach a fully coupled system of the two submodules can be compared to a system where one submodule forces the other. For a particular atmosphere-ocean system, based on the Lorenz model for the atmosphere, there can be shown significant differences in the predictability of a forced system depending whether the subsystems are coupled in a linear or a non- linear way. In [1] it is shown that in the linear case the forcing cannot represent the coupling, but in the nonlinear case, that we investigated in our study, the variability and the statistics of the coupled system can be reproduced by the forcing. Another approach to analyse the coupling is to carry out a bifurcation analysis. Here the bifurcation diagram of a single atmosphere system is compared to that of a cou- pled atmosphere-ocean system. Again it can be seen from the different behaviour of the coupled and the uncoupled system, that the
Measurement of Coriolis Acceleration with a Smartphone
NASA Astrophysics Data System (ADS)
Shakur, Asif; Kraft, Jakob
2016-05-01
Undergraduate physics laboratories seldom have experiments that measure the Coriolis acceleration. This has traditionally been the case owing to the inherent complexities of making such measurements. Articles on the experimental determination of the Coriolis acceleration are few and far between in the physics literature. However, because modern smartphones come with a raft of built-in sensors, we have a unique opportunity to experimentally determine the Coriolis acceleration conveniently in a pedagogically enlightening environment at modest cost by using student-owned smartphones. Here we employ the gyroscope and accelerometer in a smartphone to verify the dependence of Coriolis acceleration on the angular velocity of a rotatingtrack and the speed of the sliding smartphone.
Percent solids measurement using Coriolis technology
Smith, S.; Schietinger, M.
1995-12-31
In many industrial processes, measurement of percent solids is vital to product quality. Percent solids values are most often derived form measurement of density, specific gravity and refractive index. In the lab and in the process, measurement methods range from nuclear and refractometer to vibrating tube. For on-line measurement, Coriolis technology, a vibrating tube approach, is playing a more significant role. Coriolis technology is best known for the performance and benefits it provides for direct mass flow measurement. This discussion focuses on Coriolis technology as an option for percent solids measurement and its ability to provide real-time data for controlling the process, maintaining consistency, improving quality, and controlling costs. The combined abilities of a Coriolis mass flowmeter to provide direct mass flow and percent solids information simultaneously provides real-time control that is unattainable with any other single technology.
Coriolis instability of pulsed flow
NASA Astrophysics Data System (ADS)
Aouidef, A.; Normand, C.; Wesfreid, J. E.
1995-09-01
The linear stability of a time-periodic flow is considered. The fluid motion is taking place in a Hele-Shaw cell made of two vertical rectangular parallel plates separated by a gap of small extent compared to the dimensions of the plates. The flow is generated by oscillating the cell about its vertical symmetry axis. Our stability analysis was motivated by the experimental results reported some years ago by Bolton and Maurer [Bull. Am. Phys. Soc. 32, 2097 (1987)] who observed the onset of longitudinal rolls in this configuration. The inviscid stability criterion for steady flow subjected to Coriolis force is applied at different times to assess the instability mechanism in the two opposite regimes of respectively low and high frequency of oscillation. For moderate values of the frequency, implementation of Floquet theory is used to find the critical values of the instability parameters. Finally a connection is established between the present results and those we obtained recently for a pulsed flow in a Taylor-Couette geometry.
Rapid adaptation to Coriolis force perturbations of arm trajectory
NASA Technical Reports Server (NTRS)
Lackner, J. R.; Dizio, P.
1994-01-01
line to the wrong place. Aftereffects of opposite sign were transiently present in the postrotary movements. 5. These observations fail to support current equilibrium point models, both alpha and lambda, of movement control. Such theories would not predict endpoint errors under our experimental conditions, in which the Coriolis force is absent at the beginning and end of a movement. Our results indicate that detailed aspects of movement trajectory are being continuously monitored on the basis of proprioceptive feedback in relation to motor commands. Adaptive compensations can be initiated after one perturbation despite the absence of either visual or tactile feedback about movement trajectory and endpoint error. Moreover, movement trajectory and end-point can be remapped independently.(ABSTRACT TRUNCATED AT 400 WORDS).
NASA Astrophysics Data System (ADS)
Ceausu-Velcescu, Adina; Pracna, Petr
2012-05-01
The degenerate combination level ν3 = ν5 = 1 (1669.09 cm-1, E symmetry) was investigated with high-resolution, using a Fourier-transform infrared spectrum recorded in the 1600-1800 cm-1 region, at a resolution of 0.0024 cm-1. A second spectrum, recorded in the 900-1100 cm-1, at a resolution of 0.0024 cm-1, was employed to analyze the ν3 + ν5 - ν3 hot band. The studied combination level has to be treated as a part of a polyad including two other dark states: (ν3 = 1, ν6 = 2, l6 = 0, ∓ 2) and (ν4 = ν6 = 1). The important anharmonic, Coriolis, and α-resonance interactions were extrapolated from the previously studied dyads ν5/2ν6 and ν4/ν3 + ν6. The reproduction thus achieved is quantitative for all the assigned data and provides spectroscopic parameters which are consistent with those of the system of vibrational levels ν5/2ν6.
The competition between Lorentz and Coriolis forces in planetary dynamos
NASA Astrophysics Data System (ADS)
Soderlund, Krista M.; Sheyko, Andrey; King, Eric M.; Aurnou, Jonathan M.
2015-12-01
Fluid motions within planetary cores generate magnetic fields through dynamo action. These core processes are driven by thermo-compositional convection subject to the competing influences of rotation, which tends to organize the flow into axial columns, and the Lorentz force, which tends to inhibit the relative movement of the magnetic field and the fluid. It is often argued that these forces are predominant and approximately equal in planetary cores; we test this hypothesis using a suite of numerical geodynamo models to calculate the Lorentz to Coriolis force ratio directly. Our results show that this ratio can be estimated by ( Λ i is the traditionally defined Elsasser number for imposed magnetic fields and Rm is the system-scale ratio of magnetic induction to magnetic diffusion). Best estimates of core flow speeds and magnetic field strengths predict the geodynamo to be in magnetostrophic balance where the Lorentz and Coriolis forces are comparable. The Lorentz force may also be significant, i.e., within an order of magnitude of the Coriolis force, in the Jovian interior. In contrast, the Lorentz force is likely to be relatively weak in the cores of Saturn, Uranus, Neptune, Ganymede, and Mercury.
Session on coupled atmospheric/chemistry coupled models
NASA Technical Reports Server (NTRS)
Thompson, Anne
1993-01-01
The session on coupled atmospheric/chemistry coupled models is reviewed. Current model limitations, current issues and critical unknowns, and modeling activity are addressed. Specific recommendations and experimental strategies on the following are given: multiscale surface layer - planetary boundary layer - chemical flux measurements; Eulerian budget study; and Langrangian experiment. Nonprecipitating cloud studies, organized convective systems, and aerosols - heterogenous chemistry are also discussed.
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.; Brown, G. V.; Lawrence, C.
1986-01-01
The coupled bending-bending-torsional equations of dynamic motion of rotating, linearly pretwisted blades are derived including large precone, second degree geometric nonlinearities and Coriolis effects. The equations are solved by the Galerkin method and a linear perturbation technique. Accuracy of the present method is verified by comparisons of predicted frequencies and steady state deflections with those from MSC/NASTRAN and from experiments. Parametric results are generated to establish where inclusion of only the second degree geometric nonlinearities is adequate. The nonlinear terms causing torsional divergence in thin blades are identified. The effects of Coriolis terms and several other structurally nonlinear terms are studied, and their relative importance is examined.
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.; Brown, G. V.; Lawrence, C.
1987-01-01
The coupled bending-bending-torsional equations of dynamic motion of rotating, linearly pretwisted blades are derived including large precone, second degree geometric nonlinearities and Coriolis effects. The equations are solved by the Galerkin method and a linear perturbation technique. Accuracy of the present method is verified by conparisons of predicted frequencies and steady state deflections with those from MSC/NASTRAN and from experiments. Parametric results are generated to establish where inclusion of only the second degree geometric nonlinearities is adequate. The nonlinear terms causing torsional divergence in thin blades are identified. The effects of Coriolis terms and several other structurally nonlinear terms are studied, and their relative importance is examined.
Angular velocities, angular accelerations, and coriolis accelerations
NASA Technical Reports Server (NTRS)
Graybiel, A.
1975-01-01
Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.
The Challenges to Coupling Dynamic Geospatial Models
Goldstein, N
2006-06-23
Many applications of modeling spatial dynamic systems focus on a single system and a single process, ignoring the geographic and systemic context of the processes being modeled. A solution to this problem is the coupled modeling of spatial dynamic systems. Coupled modeling is challenging for both technical reasons, as well as conceptual reasons. This paper explores the benefits and challenges to coupling or linking spatial dynamic models, from loose coupling, where information transfer between models is done by hand, to tight coupling, where two (or more) models are merged as one. To illustrate the challenges, a coupled model of Urbanization and Wildfire Risk is presented. This model, called Vesta, was applied to the Santa Barbara, California region (using real geospatial data), where Urbanization and Wildfires occur and recur, respectively. The preliminary results of the model coupling illustrate that coupled modeling can lead to insight into the consequences of processes acting on their own.
Coupled transport in rotor models
NASA Astrophysics Data System (ADS)
Iubini, S.; Lepri, S.; Livi, R.; Politi, A.
2016-08-01
Steady nonequilibrium states are investigated in a one-dimensional setup in the presence of two thermodynamic currents. Two paradigmatic nonlinear oscillators models are investigated: an XY chain and the discrete nonlinear Schrödinger equation. Their distinctive feature is that the relevant variable is an angle in both cases. We point out the importance of clearly distinguishing between energy and heat flux. In fact, even in the presence of a vanishing Seebeck coefficient, a coupling between (angular) momentum and energy arises, mediated by the unavoidable presence of a coherent energy flux. Such a contribution is the result of the ‘advection’ induced by the position-dependent angular velocity. As a result, in the XY model, the knowledge of the two diagonal elements of the Onsager matrix suffices to reconstruct its transport properties. The analysis of the nonequilibrium steady states finally allows to strengthen the connection between the two models.
The effectiveness of Coriolis dampening of convection during aircraft high-g arcs
NASA Technical Reports Server (NTRS)
Curreri, Peter A.
1992-01-01
Directional solidification data for metal samples in KC-135 parabolic maneuvers are examined to determine evidence for Coriolis dampening of convection. Microstructural and materials properties data are examined for iron carbon, immiscible, and superalloy systems. By comparison of low-g data and high-g data with those of one-g control samples, it is determined that there is no evidence that Coriolis dampening of convective flow is effective during the 1.8 g KC-135 high-g maneuvers. A first approximation model for the high-g arc is proposed. The model yields a centrifugal radius of 20,480 ft and an angular speed of 0.397 RPM. Comparison to centrifugal solidification experiments (for an equal acceleration) where Coriolis melt growth stabilization is significant indicates that the KC-135 high-g arc is less effective in dampening convection by a factor of 100. This large difference in Coriolis dampening of convection might be taken advantage of for experiments where separation of centrifugal acceeration and Coriolis acceleration is desirable.
Horizontal Coriolis Vector: When Can We Neglect It?: A f-Plane Analysis
NASA Astrophysics Data System (ADS)
Yano, Jun-Ichi
2016-04-01
Under the traditional approximations, the horizontal component of the Coriolis vector is neglected in large-scale atmospheric modelling. [A major exception to this rule is the UK Met Office Unified Model.] Almost any standard textbook assures us this is a valid approximation. A simple scale analysis can just suggest us that so long as the aspect ratio of the atmosphere is small enough (as the case with the standard parameters) this horizontal Coriolis vector can be neglected. However, a straight linear-wave analysis on the f-plane shows that the wave dispersion relationship is clearly different in large-scale limit (i.e., limit of vanishing horizontal wavenumber) between the cases with and without the horizontal component of the Coriolis vector. For this reason, Gerkema and Shrira (2005, JFM) suggest that the effect of the horizontal Coriolis vector constitutes a singular perturbation. The goal of the present talk is to elucidate what kind of singularities is involved for generating such an unintuitive wave-dispersion behavior. The key starting point of the analysis is to realize that in the large-scale limit, all the waves reduce to the inertial oscillations without horizontal structures specified. This is a state of degeneracy in the same sense as in the classical quasi-geostrophic problem. In order to resolve this degeneracy, we have to proceed to a higher-order of the equation system, to that order the horizontal Coriolis vector plays a critical role. The full analysis will be presented during the talk.
Use of Coriolis meters in gas applications
Patten, T.; Pawlas, G.
1995-12-31
Coriolis mass flowmeters provide a solution for measuring the mass flow rate of gases directly. Recent calibration data on compressed air shows that the factory water calibration is also valid on air. In addition, a Coriolis meter is fundamentally linear resulting in an accurate measurement over a wide flow range. Data are presented based on testing performed on Micro Motion 25 mm, 50 mm, and 75 mm Coriolis mass flowmeters on compressed air. Test pressures ranging between 1.7 bar (25 psia) and 100 bar (1450 psia) and mass flow rates ranging between 100:1 to 10:1, depending on the meter size. All calibration points fell with {plus_minus}2%, with a significant portion of the data within {plus_minus}5%. Data are also presented for a 6 mm meter on natural gas at 100 bar; all data are within {plus_minus}0.5%. Repeatability data are presented for a 9 mm meter calibrated on 100 bar air for calibration run times between 10 and 60 seconds. Meter repeatability improved approximately 10 times to {plus_minus}0.15% when the calibration time was 60 seconds.
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1985-01-01
The effects of pretwist, precone, setting angle, Coriolis forces and second degree geometric nonlinearities on the natural frequencies, steady state deflections and mode shapes of rotating, torsionally rigid, cantilevered beams were studied. The governing coupled equations of flap lag extensional motion are derived including the effects of large precone and retaining geometric nonlinearities up to second degree. The Galerkin method, with nonrotating normal modes, is used for the solution of both steady state nonlinear equations and linear perturbation equations. Parametric indicating the individual and collective effects of pretwist, precone, Coriolis forces and second degree geometric nonlinearities on the steady state deflection, natural frequencies and mode shapes of rotating blades are presented. It is indicated that the second degree geometric nonlinear terms, which vanish for zero precone, can produce frequency changes of engineering significance. Further confirmation of the validity of including those generated by MSC NASTRAN. It is indicated that the linear and nonlinear Coriolis effects must be included in analyzing thick blades. The Coriolis effects are significant on the first flatwise and the first edgewise modes.
A multilingual programming model for coupled systems.
Ong, E. T.; Larson, J. W.; Norris, B.; Tobis, M.; Steder, M.; Jacob, R. L.; Mathematics and Computer Science; Univ. of Wisconsin; Univ. of Chicago; The Australian National Univ.
2008-01-01
Multiphysics and multiscale simulation systems share a common software requirement-infrastructure to implement data exchanges between their constituent parts-often called the coupling problem. On distributed-memory parallel platforms, the coupling problem is complicated by the need to describe, transfer, and transform distributed data, known as the parallel coupling problem. Parallel coupling is emerging as a new grand challenge in computational science as scientists attempt to build multiscale and multiphysics systems on parallel platforms. An additional coupling problem in these systems is language interoperability between their constituent codes. We have created a multilingual parallel coupling programming model based on a successful open-source parallel coupling library, the Model Coupling Toolkit (MCT). This programming model's capabilities reach beyond MCT's native Fortran implementation to include bindings for the C++ and Python programming languages. We describe the method used to generate the interlanguage bindings. This approach enables an object-based programming model for implementing parallel couplings in non-Fortran coupled systems and in systems with language heterogeneity. We describe the C++ and Python versions of the MCT programming model and provide short examples. We report preliminary performance results for the MCT interpolation benchmark. We describe a major Python application that uses the MCT Python bindings, a Python implementation of the control and coupling infrastructure for the community climate system model. We conclude with a discussion of the significance of this work to productivity computing in multidisciplinary computational science.
Go, J.; Perry, D.S.
1995-10-01
The measures are the dilution factor {phi}{sub {ital d}}, the interaction width {Delta}{epsilon}, and the effective level density {rho}{sub eff}{sup {ital c}}. In the presence of multiple coupling mechanisms (near the best fit to the ethanol {nu}{sub 14} band), the correlations between {phi}{sub {ital d}} and {Delta}{epsilon} and the bright-bath Coriolis coupling mechanisms follow the expected trends. It was also found that {rho}{sub eff}{sup {ital c}} is sensitive to the {ital x}, {ital y} Coriolis coupling {ital among} the bath states. The results were not sensitive to the {ital z}-type Coriolis coupling among the bath states in the region of the ethanol simulation, but {rho}{sub eff}{sup {ital c}} was sensitive to it in the simulation of the 1-butyne {nu}{sub 16} band. Best-fit coupling parameters were obtained for both simulated bands. The rms bright-bath {ital z}-type Coriolis coupling was found to be 0.028{plus_minus}0.005 cm{sup {minus}1} which is about three times the value obtained from a naive approach which neglects the interaction of the multiple coupling mechanisms. A direct count vibrational level density, {rho}{sub vib}, provided good agreement with the experiments when a full treatment of the torsional modes was included and a 20% enhancement of the density from neglected diagonal anharmonicities was added. A method of quantifying the conservation of the rotational quantum number, {ital K}, is provided by the inequalities, {rho}{sub vib}{le}{rho}{sub eff}{sup {ital c}}{le}(2{ital J}+1){rho}{sub vib}. For 1-butyne, {rho}{sub eff}{sup {ital c}} is closer to {rho}{sub vib} than for ethanol indicating that {ital K} is more nearly conserved. While this work treats only anharmonic and Coriolis coupling, the random matrix formalism provides the ability to treat a wide variety of coupling schemes. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Coriolis effect and spin Hall effect of light in an inhomogeneous chiral medium.
Zhang, Yongliang; Shi, Lina; Xie, Changqing
2016-07-01
We theoretically investigate the spin Hall effect of spinning light in an inhomogeneous chiral medium. The Hamiltonian equations of the photon are analytically obtained within eikonal approximation in the noninertial orthogonal frame. Besides the usual spin curvature coupling, the chiral parameter enters the Hamiltonian as a spin-torsion-like interaction. We reveal that both terms have parallel geometric origins as the Coriolis terms of Maxwell's equations in nontrivial frames. PMID:27367104
Importance of Coriolis interaction and pseudo-spin doublets in deformed proton emitters
Ferreira, Lidia S.; Costa Lopes, M.; Maglione, Enrico
2006-04-26
Theoretical aspects in the calculation of the half lives for proton decay from deformed nuclei lying beyond the proton drip line are discussed. The presence of pseudo-spin doublets close to the Fermi energy depends strongly on the parameterization of the single particle mean field. The calculation of the decay widths from these states, is very sensitive to the Coriolis coupling, and the pairing residual interaction cannot be ignored in these studies, for a correct interpretation of data.
Coriolis-effect in mass flow metering
NASA Astrophysics Data System (ADS)
Raszillier, H.; Durst, F.
The physical background for the so-called Coriolis mass flow meter is described. The vibration modes of a fluid conveying straight pipe segment are analyzed. These modes deviate in shape from those appearing in the absence of fluid motion. The effect of fluid inertia may be exploited for the purpose of flow measurement. The analysis is performed under a simplifying approximation: the pipe is considered as a beam, the fluid as a moving string. The equations describing the vibrations are derived variationally, with the constraint of a common vibration amplitude of both fluid and pipe. The Lagrange multiplier associated with the constraint gives the interaction force between pipe and fluid. The modes are determined by a perturbation procedure. The analysis shows how the time delay between the vibrations of two appropriately chosen points of the pipe may serve to determine the mass flow rate of the fluid. The precise role of the Coriolis force is considered. The improvements of the used approximation are discussed.
Convectively coupled Kelvin waves in CMIP5 coupled climate models
NASA Astrophysics Data System (ADS)
Wang, Lu; Li, Tim
2016-04-01
This study provided a quantitative evaluation of convectively coupled Kelvin waves (CCKWs) over the Indian Ocean and the Pacific Ocean simulated by 20 coupled climate models that participated in Coupled Model Intercomparison Project phase 5. The two leading empirical orthogonal function (EOF) modes of filtered daily precipitation anomalies are used to represent the eastward propagating CCKWs in both observations and simulations. The eigenvectors and eigenvalues of the EOF modes represent the spatial patterns and intensity of CCKWs respectively, and the lead-lag relationship between the two EOF principle components describe the phase propagation of CCKWs. A non-dimensional metric was designed in consideration of all the three factors (i.e., pattern, amplitude and phase propagation) for evaluation. The relative rankings of the models based on the skill scores calculated by the metric are conducted for the Indian Ocean and the Pacific Ocean, respectively. Two models (NorESM1-M and MPI-ESM-LR) are ranked among the best 20 % for both the regions. Three models (inmcm4, MRI-CGCM3 and HadGEM2-ES) are ranked among the worst 20 % for both the regions. While the observed CCKW amplitude is greater north of the equator in the Pacific, some models overestimate the CCKW ampliutde in the Southern Hemisphere. This bias is related to the mean state precipitation bias along the south Pacific convergence zone.
Theoretical and experimental investigations of flow pulsation effects in Coriolis mass flowmeters
NASA Astrophysics Data System (ADS)
Svete, A.; Kutin, J.; Bobovnik, G.; Bajsić, I.
2015-09-01
An understanding of the effects of flow pulsations on the dynamic behavior of Coriolis flowmeters is very important for their further development. In order to determine the phase difference between the vibrational signals, which represents the basic measurement effect of Coriolis flowmeters, there are many methods that include the proper filtering of all the signal components, except those with frequencies close to the drive frequency. Therefore, an understanding of the phenomenon of exciting the meter at its first natural frequency is very important. The results of a simple, linear, two-degree-of-freedom, lumped-parameter, dynamic model of a flowmeter show that the flow pulsations can degrade the accuracy of such a flowmeter as a result of indirect excitations of the measuring tube at the first natural frequency through the second-order perturbations by means of the Coriolis forces induced in pulsating flow conditions. In order to experimentally investigate these flow pulsation effects, a prototype of a straight-tube Coriolis mass flowmeter was developed to enable the processing of the response signals logged directly from the flow tube's sensors with the dual quadrature demodulation method, and therefore to provide the information available within the phase-difference data. The experimental results show that the flow pulsations upset the meter at its first natural frequency indirectly, as well as directly at the frequency of the pulsations due to the geometric imperfections of the measuring tube.
Influence of Coriolis forces on the structure and evolution of wind-turbine wakes
NASA Astrophysics Data System (ADS)
Abkar, Mahdi; Porté-Agel, Fernando
2015-11-01
In this study, large-eddy simulation (LES) is combined with a turbine model to investigate the effect of Coriolis forces on the structure and evolution of wind-turbine wakes. In order to isolate the Coriolis effect on the turbulent wake flow, two set of simulations are performed. In the first set of simulations, atmospheric boundary layer (ABL) flow is driven by the geostrophic forces including the effect of Earth's rotation, while in the second case, the ABL flow is driven by a unidirectional pressure gradient forcing. Both cases have the same mean horizontal velocity and turbulence intensity at the hub height. The simulation results show that the Coriolis forces significantly affect the spatial distribution of the mean velocity deficit and turbulence statistics in the wake region. In particular, it is found that the Coriolis effect, responsible for vertical wind veer, has important lateral wake stretching effects, which in turn significantly impacts the wake recovery and wake meandering characteristics downwind of the turbines. We also apply the proper orthogonal decomposition (POD) to LES data of the wake. The results indicate a very high correlation between the most energetic modes and both maximum velocity deficit and wake meandering characteristics.
SCIRAS sensor - Sundstrand Coriolis Inertial Rate and Acceleration Sensor
NASA Astrophysics Data System (ADS)
Hulsing, Rand H., II
The evolution of the design of SCIRAS (Sundstrand Coriolis Inertial Rate and Acceleration Sensor) from operational theory through three generations of hardware is discussed. SCIRAS measures both angular rotation and linear acceleration and is suitable for a full three-axis inertial navigation package replacing conventional clusters of gyros and accelerometers. Using only accelerometers, the package can be made smaller, lighter, and at less cost than equivalent performance sensors. Since a microprocessor is included, thermal modeling, misaligment correction, and size effect corrections can be made providing 'ideal' delta velocity and delta angle in digital format to a navigational computer. Since the sensor is all flexure, it has no wearout, is extremely rugged, and requires no special backfill, sealing, or maintenance.
Flow structures in submarine channels affected by Coriolis forces: Experimental observations
NASA Astrophysics Data System (ADS)
Cossu, R.; Wells, M. G.
2011-12-01
In this talk we will show how Coriolis forces can control the flow dynamics of turbidity currents flowing in sinuous channels at high latitudes. We describe how the internal velocity structure changes with latitude, based on observations from rotating laboratory experiments. When these results are combined with existing conceptual facies and depositional models we can now describe the changes in sedimentation patterns that are observed at different latitudes. The experiments were conducted in a sinuous channel model placed in a tank that was rotated at various rates (reflected by the Coriolis parameters f) ranging from f = 0 (at the equator) to ± 0.5 rad s-1 (at higher latitudes). The dependence of the density interface of gravity currents on rotation is shown in Figure 1a. At the equator the interface slopes up to the outer bend due to the centrifugal forces. In the Northern Hemisphere (NH) the tilt of the interface increases as now the Coriolis forces reinforce the centrifugal acceleration. In contrast, in the Southern Hemisphere (SH) the current ramps up to the inner bend and Coriolis forces dominate over centrifugal forces. Figure 1b shows the corresponding position of the downstream velocity core in the bend apex. At the equator the core is predominantly close to the centerline, whilst in the NH the core is deflected to the inner bend and in the SH the velocity core is shifted to the outer bank. Based upon our experimental results, we hypothesize that Coriolis forces can affect the velocity structure and sedimentation regime. Lateral accretion packages (LAPs) are built only on one side in the channel and finer sediments will be deposited mainly on the levee bank to which the high velocity core is deflected. The Rossby number RoW = U/fW (where U is the mean downstream velocity and W the channel width) can be used to determine the influence of Coriolis forces. In channel systems at high-latitudes (with RoW << 1) we predict that channels exhibit a low sinuosity
NASA Astrophysics Data System (ADS)
Hegelund, F.; Larsen, R. Wugt; Aitken, R. A.; Palmer, M. H.
2008-04-01
The Fourier transform gas-phase IR spectrum of 1,3,4-thiadiazole, C 2H 2N 2S, has been recorded with a resolution of ca. 0.003 cm -1 in the 800-1500 cm -1 spectral region. Five fundamental bands ν2(A 1; 1391.9 cm -1), ν4(A 1; 964.4 cm -1), ν5(A 1; 894.6 cm -1), ν9(B 1; 821.5 cm -1), and ν14(B 2; 898.4 cm -1) have been analysed using the Watson model. Ground state rotational and quartic centrifugal distortion constants as well as upper state spectroscopic constants have been obtained from fits. The ν4 and ν9 bands are unperturbed while a strong c-Coriolis resonance perturbs the close-lying ν5 and ν14 bands. This dyad system has been analysed by a model including first and second order c-Coriolis resonance using the theoretically predicted Coriolis coupling constant ς14,5c. The ν2 band is strongly perturbed by a local resonance, and we obtain a set of spectroscopic parameters using a model including second order a-Coriolis resonance with the inactive ν10 + ν14 band. Ground state rotational and quartic centrifugal distortion constants, anharmonic frequencies, and vibration-rotational α-constants predicted by quantum chemical calculations using a cc-pVTZ basis and B3LYP methodology, have been compared with the present experimental data, where there is generally good agreement.
Coriolis effects enhance lift on revolving wings.
Jardin, T; David, L
2015-03-01
At high angles of attack, an aircraft wing stalls. This dreaded event is characterized by the development of a leading edge vortex on the upper surface of the wing, followed by its shedding which causes a drastic drop in the aerodynamic lift. At similar angles of attack, the leading edge vortex on an insect wing or an autorotating seed membrane remains robustly attached, ensuring high sustained lift. What are the mechanisms responsible for both leading edge vortex attachment and high lift generation on revolving wings? We review the three main hypotheses that attempt to explain this specificity and, using direct numerical simulations of the Navier-Stokes equations, we show that the latter originates in Coriolis effects. PMID:25871040
Coriolis effects enhance lift on revolving wings
NASA Astrophysics Data System (ADS)
Jardin, T.; David, L.
2015-03-01
At high angles of attack, an aircraft wing stalls. This dreaded event is characterized by the development of a leading edge vortex on the upper surface of the wing, followed by its shedding which causes a drastic drop in the aerodynamic lift. At similar angles of attack, the leading edge vortex on an insect wing or an autorotating seed membrane remains robustly attached, ensuring high sustained lift. What are the mechanisms responsible for both leading edge vortex attachment and high lift generation on revolving wings? We review the three main hypotheses that attempt to explain this specificity and, using direct numerical simulations of the Navier-Stokes equations, we show that the latter originates in Coriolis effects.
Eulerian derivation of the Coriolis force
NASA Astrophysics Data System (ADS)
Kageyama, Akira; Hyodo, Mamoru
2006-02-01
In textbooks of geophysical fluid dynamics, the Coriolis force and the centrifugal force in a rotating fluid system are derived by making use of the fluid parcel concept. In contrast to this intuitive derivation to the apparent forces, more rigorous derivation would be useful not only for the pedagogical purpose but also for the applications to other kinds of rotating geophysical systems rather than the fluid. The purpose of this paper is to show a general procedure to derive the transformed equations in the rotating frame of reference based on the local Galilean transformation and rotational coordinate transformation of field quantities. The generality and usefulness of this Eulerian approach is demonstrated in the derivation of apparent forces in rotating fluids as well as the transformed electromagnetic field equation in the rotating system.
Coupling environmental models and geospatial data processing
NASA Astrophysics Data System (ADS)
Brandmeyer, Jo Ellen
2000-10-01
This research investigated geospatial functions for solving environmental problems from the perspective of the environmental modeler. Its purpose is to better understand the different approaches to coupling complex models and geospatial data processing, plus the implications for the coupled system. To this end, various coupling methodologies were systematically explored using a geographic information system (GIS) and an emissions processor (SMOKE) for air quality models (AQMs). SMOKE converts an emissions inventory into the format required by an AQM. A GIS creates a file describing the spatial distribution of emissions among the cells in a modeling domain. To demonstrate advantages of a coupled GIS---environmental model system, two methods of spatially distributing on-road mobile emissions to cells were examined. The existing method calculates emissions for each road class, but distributes emissions to the cells using population density. For the new method a GIS builds road density by class and then distributes the emissions using road density. Comparing these methods reveals a significantly different spatial pattern of emissions. Next, various model-coupling methodologies were analyzed, revealing numerous coupling approaches, some of which were categorized in the literature. Critiquing these categorizations while comparing them with documented implementations led to the development of a new coupling hierarchy. The properties of each hierarchical level are discussed with the advantages and limitations of each design. To successfully couple models, the spatial and temporal scales of all models in the coupled system and the spatiotemporal extents of the data must be reconciled. Finally, a case study demonstrated methodologies for coupling SMOKE and a GIS. One methodology required a new approach utilizing dynamically linked libraries. Consequently, emissions were processed using SMOKE from a GIS. Also, a new method of converting data from netCDF files into a database
Dynamic coupling of three hydrodynamic models
NASA Astrophysics Data System (ADS)
Hartnack, J. N.; Philip, G. T.; Rungoe, M.; Smith, G.; Johann, G.; Larsen, O.; Gregersen, J.; Butts, M. B.
2008-12-01
The need for integrated modelling is evidently present within the field of flood management and flood forecasting. Engineers, modellers and managers are faced with flood problems which transcend the classical hydrodynamic fields of urban, river and coastal flooding. Historically the modeller has been faced with having to select one hydrodynamic model to cover all the aspects of the potentially complex dynamics occurring in a flooding situation. Such a single hydrodynamic model does not cover all dynamics of flood modelling equally well. Thus the ideal choice may in fact be a combination of models. Models combining two numerical/hydrodynamic models are becoming more standard, typically these models combine a 1D river model with a 2D overland flow model or alternatively a 1D sewer/collection system model with a 2D overland solver. In complex coastal/urban areas the flood dynamics may include rivers/streams, collection/storm water systems along with the overland flow. The dynamics within all three areas is of the same time scale and there is feedback in the system across the couplings. These two aspects dictate a fully dynamic three way coupling as opposed to running the models sequentially. It will be shown that the main challenges of the three way coupling are time step issues related to the difference in numerical schemes used in the three model components and numerical instabilities caused by the linking of the model components. MIKE FLOOD combines the models MIKE 11, MIKE 21 and MOUSE into one modelling framework which makes it possible to couple any combination of river, urban and overland flow fully dynamically. The MIKE FLOOD framework will be presented with an overview of the coupling possibilities. The flood modelling concept will be illustrated through real life cases in Australia and in Germany. The real life cases reflect dynamics and interactions across all three model components which are not possible to reproduce using a two-way coupling alone. The
Surface wave effects in the NEMO ocean model: Forced and coupled experiments
NASA Astrophysics Data System (ADS)
Breivik, Øyvind; Mogensen, Kristian; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A. E. M.
2015-04-01
The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wavefield), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extratropics, but the sea-state-dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total ocean heat content exhibits a trend closer to that observed in a recent ocean reanalysis (ORAS4) when wave effects are included. Seasonal integrations of the coupled atmosphere-wave-ocean model consisting of NEMO, the wave model ECWAM, and the atmospheric model of ECMWF similarly show that the sea surface temperature biases are greatly reduced when the mixing is controlled by the sea state and properly weighted by the thickness of the uppermost level of the ocean model. These wave-related physical processes were recently implemented in the operational coupled ensemble forecast system of ECMWF.
NASA Astrophysics Data System (ADS)
Li, Jianglong; Zhang, Xuehong; Yu, Yongqiang; Dai, Fushan
2004-12-01
This paper investigates the processes behind the double ITCZ phenomenon, a common problem in Coupled ocean-atmosphere General Circulation Models (CGCMs), using a CGCM—FGCM-0 (Flexible General Circulation Model, version 0). The double ITCZ mode develops rapidly during the first two years of the integration and becomes a perennial phenomenon afterwards in the model. By way of Singular Value Decomposition (SVD) for SST, sea surface pressure, and sea surface wind, some air-sea interactions are analyzed. These interactions prompt the anomalous signals that appear at the beginning of the coupling to develop rapidly. There are two possible reasons, proved by sensitivity experiments: (1) the overestimated east-west gradient of SST in the equatorial Pacific in the ocean spin-up process, and (2) the underestimated amount of low-level stratus over the Peruvian coast in CCM3 (the Community Climate Model, Version Three). The overestimated east-west gradient of SST brings the anomalous equatorial easterly. The anomalous easterly, affected by the Coriolis force in the Southern Hemisphere, turns into an anomalous westerly in a broad area south of the equator and is enhanced by atmospheric anomalous circulation due to the underestimated amount of low-level stratus over the Peruvian coast simulated by CCM3. The anomalous westerly leads to anomalous warm advection that makes the SST warm in the southeast Pacific. The double ITCZ phenomenon in the CGCM is a result of a series of nonlocal and nonlinear adjustment processes in the coupled system, which can be traced to the uncoupled models, oceanic component, and atmospheric component. The zonal gradient of the equatorial SST is too large in the ocean component and the amount of low-level stratus over the Peruvian coast is too low in the atmosphere component.
The menstrual cycle and susceptibility to coriolis-induced sickness.
Cheung, B; Heskin, R; Hofer, K; Gagnon, M
2001-01-01
Survey studies on motion sickness susceptibility suggest that females tend to report greater severity in illness and higher incidence of vomiting than males. Menstruation is said to be a contributing factor. A recent study suggested that females were least susceptible to seasickness during ovulation in a "round the world" yacht race. Sixteen subjects (18-36 years old) were exposed to Coriolis cross-coupling stimulation in the laboratory. They were tested once during permenstruation (Day 1-5), ovulation (Day 12-15) and premenstruation (Day 24-28), based on a normalized 28-day cycle, in a randomised design. Physiological measurements of motion sickness included forearm and calf cutaneous blood flow. Subjective evaluation of sickness symptoms was based on Graybiel's diagnostic criteria and Golding's rating method. Our results indicated that under controlled laboratory conditions, different phases of the menstrual cycle appear to have no influence on subjective symptoms of motion sickness or on cutaneous blood flow increase in the forearm and calf. The lack of commonality between the types and levels of hormones that are released during motion sickness and those that are involved in different menstrual phases appears to support our findings. PMID:11847456
Coupled wake boundary layer model of windfarms
NASA Astrophysics Data System (ADS)
Stevens, Richard; Gayme, Dennice; Meneveau, Charles
2014-11-01
We present a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a windfarm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall windfarm boundary layer structure. Wake models capture the effect of turbine positioning, while the top-down approach represents the interaction between the windturbine wakes and the atmospheric boundary layer. Each portion of the CWBL model requires specification of a parameter that is unknown a-priori. The wake model requires the wake expansion rate, whereas the top-down model requires the effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion rate is obtained by matching the mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing is determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We show that the CWBL model predictions compare more favorably with large eddy simulation results than those made with either the wake or top-down model in isolation and that the model can be applied successfully to the Horns Rev and Nysted windfarms. The `Fellowships for Young Energy Scientists' (YES!) of the Foundation for Fundamental Research on Matter supported by NWO, and NSF Grant #1243482.
Procedures and equipment for field proving Coriolis meters
Apple, C.; Liu, K.T.; Shen, J.J.S.
1995-12-31
As one of the fastest growing flowmeter technologies, Coriolis meters are now gaining wider usage in the petroleum and petrochemical industries for custody transfer measurement. As with other traditional custody transfer flowmeters, periodic on-line proving of the Coriolis meter is required. At present, volumetric provers, such as conventional pipe provers and small volume provers, are regarded as the only practical means for flowmeter proving. Depending on how the Coriolis meter`s output is configured, proving techniques differ. In general, if a Coriolis meter is configured to provide mass flow output, an accurate fluid density during proving will need to be determined for volume-to-mass conversion calculations. If a Coriolis meter is configured to provide volumetric flow output, then the same proving procedure for conventional volumetric flowmeters can be adopted. This paper describes the procedures and associated equipment needed for field proving of Coriolis meters. Field proving data collected from several meter installations has shown acceptable proving repeatability and meter factor stability.
An Appraisal of Coupled Climate Model Simulations
Sperber, K; Gleckler, P; Covey, C; Taylor, K; Bader, D; Phillips, T; Fiorino, M; Achutarao, K
2004-02-24
In 2002, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) proposed the concept for a state-of-the-science appraisal of climate models to be performed approximately every two years. Motivation for this idea arose from the perceived needs of the international modeling groups and the broader climate research community to document progress more frequently than provided by the Intergovernmental Panel on Climate Change (IPCC) Assessment Reports. A committee of external reviewers, which included senior researchers from four leading international modeling centers, supported the concept by stating in its review: ''The panel enthusiastically endorses the suggestion that PCMDI develop an independent appraisal of coupled model performance every 2-3 years. This would provide a useful 'mid-course' evaluation of modeling progress in the context of larger IPCC and national assessment activities, and should include both coupled and single-component model evaluations.''
Mass flow prediction of the coriolis meter using C0 continuous beam elements
NASA Astrophysics Data System (ADS)
Binulal, B. R.; Rajan, Akash; Abhilash, Suryan R.; Kochupillai, Jayaraj; Kim, Heuy Dong
2015-06-01
A three node C0 continuous isoparametric beam element is formulated to model the curved pipe conveying fluid in three dimensional configuration. The equations of motion for the combined structure and fluid domain including added mass effect, Coriolis effect, centrifugal effect and the effect of pressure on the walls of pipe have been developed by Paidoussis. This equation is converted to finite element formulation using Galerkin technique and is validated with the results available from literature.
Model reduction for networks of coupled oscillators
NASA Astrophysics Data System (ADS)
Gottwald, Georg A.
2015-05-01
We present a collective coordinate approach to describe coupled phase oscillators. We apply the method to study synchronisation in a Kuramoto model. In our approach, an N-dimensional Kuramoto model is reduced to an n-dimensional ordinary differential equation with n ≪ N , constituting an immense reduction in complexity. The onset of both local and global synchronisation is reproduced to good numerical accuracy, and we are able to describe both soft and hard transitions. By introducing two collective coordinates, the approach is able to describe the interaction of two partially synchronised clusters in the case of bimodally distributed native frequencies. Furthermore, our approach allows us to accurately describe finite size scalings of the critical coupling strength. We corroborate our analytical results by comparing with numerical simulations of the Kuramoto model with all-to-all coupling networks for several distributions of the native frequencies.
Playing with fermion couplings in Higgsless models
Casalbuoni, R.; De Curtis, S.; Dolce, D.; Dominici, D.
2005-04-01
We discuss the fermion couplings in a four dimensional SU(2) linear moose model by allowing for direct couplings between the left-handed fermions on the boundary and the gauge fields in the internal sites. This is realized by means of a product of nonlinear {sigma}-model scalar fields which, in the continuum limit, is equivalent to a Wilson line. The effect of these new nonlocal couplings is a contribution to the {epsilon}{sub 3} parameter which can be of opposite sign with respect to the one coming from the gauge fields along the string. Therefore, with some fine-tuning, it is possible to satisfy the constraints from the electroweak data.
CORA: In situ re-qualified dataset at the Coriolis data center
NASA Astrophysics Data System (ADS)
Cabanes, C.; Gourazel, A.; Coatanoan, C.; von Schuckmann, K.; Hamon, M.; Turpin, V.; Reverdin, G.; Gaillard, F.; Pouliquen, S.; Le Traon, P.-Y.
2012-04-01
Coriolis is a French programme that provide service to operational oceanography and research communities. It gathers global ocean in-situ observation data in real time, and contributes to continuous, automatic, and permanent observation networks. A new version of the comprehensive and qualified ocean in-situ dataset, the COriolis dataset for Re-Analysis (CORA), is produced for the period 1990 to 2010. This in-situ dataset of temperature and salinity profiles, built from different data sources (Argo, OceanSites, VOS ships, NODC historical and GTS data..) at global scale, is meant to be used for general oceanographic research purposes, for ocean model validation, and also for initialisation or assimilation of ocean models re-analysis. To generate this new version, new and updated data have been extracted from the Coriolis database and added to the previous CORA dataset spanning the period 1990-2008. To qualify this dataset, several tests have been developed to improve in a homogeneous way the quality of the raw database and to fit the quality level required by the physical ocean re-analysis activities. These tests include some simple systematic tests, a test against climatology and a more elaborate statistical test involving an objective analysis method Visual quality control (QC) is performed on all the suspicious T and S profiles and quality flag are modified in the dataset if necessary. This product is distributed through different channels (ftp, OPeNDAP and web)
Simplified coupling power model for fibers fusion
NASA Astrophysics Data System (ADS)
Saktioto, J.; Ali, J.; Fadhali, M.
2009-09-01
Fiber coupler fabrication used for an optical waveguide requires lossless power for an optimal application. The previous research coupled fibers were successfully fabricated by injecting hydrogen flow at 1 bar and fused slightly by unstable torch flame in the range of 800-1350°C. Optical parameters may vary significantly over wide range physical properties. Coupling coefficient and refractive index are estimated from the experimental result of the coupling ratio distribution from 1% to 75%. The change of geometrical fiber affects the normalized frequency V even for single mode fibers. V is derived and some parametric variations are performed on the left and right hand side of the coupling region. A partial power is modelled and derived using V, normalized lateral phase constant u, and normalized lateral attenuation constant, w through the second kind of modified Bessel function of the l order, which obeys the normal mode and normalized propagation constant b. Total power is maintained constant in order to comply with the energy conservation law. The power is integrated through V, u, and w over the pulling length of 7500 µm for 1-D. The core radius of a fiber significantly affects V and power partially at coupling region rather than wavelength and refractive index of core and cladding. This model has power phenomena in transmission and reflection for an optical switch and tunable filter.
Parallelization of the Coupled Earthquake Model
NASA Technical Reports Server (NTRS)
Block, Gary; Li, P. Peggy; Song, Yuhe T.
2007-01-01
This Web-based tsunami simulation system allows users to remotely run a model on JPL s supercomputers for a given undersea earthquake. At the time of this reporting, predicting tsunamis on the Internet has never happened before. This new code directly couples the earthquake model and the ocean model on parallel computers and improves simulation speed. Seismometers can only detect information from earthquakes; they cannot detect whether or not a tsunami may occur as a result of the earthquake. When earthquake-tsunami models are coupled with the improved computational speed of modern, high-performance computers and constrained by remotely sensed data, they are able to provide early warnings for those coastal regions at risk. The software is capable of testing NASA s satellite observations of tsunamis. It has been successfully tested for several historical tsunamis, has passed all alpha and beta testing, and is well documented for users.
The Coupled Model Intercomparison Project (CMIP).
NASA Astrophysics Data System (ADS)
Meehl, Gerald A.; Boer, George J.; Covey, Curt; Latif, Mojib; Stouffer, Ronald J.
2000-02-01
The Coupled Model Intercomparison Project (CMIP) was established to study and intercompare climate simulations made with coupled ocean-atmosphere-cryosphere-land GCMs. There are two main phases (CMIP1 and CMIP2), which study, respectively, 1) the ability of models to simulate current climate, and 2) model simulations of climate change due to an idealized change in forcing (a 1% per year CO2 increase). Results from a number of CMIP projects were reported at the first CMIP Workshop held in Melbourne, Australia, in October 1998. Some recent advances in global coupled modeling related to CMIP were also reported. Presentations were based on preliminary unpublished results. Key outcomes from the workshop were that 1) many observed aspects of climate variability are simulated in global coupled models including the North Atlantic oscillation and its linkages to North Atlantic SSTs, El Niño-like events, and monsoon interannual variability; 2) the amplitude of both high- and low-frequency global mean surface temperature variability in many global coupled models is less than that observed, with the former due in part to simulated ENSO in the models being generally weaker than observed, and the latter likely to be at least partially due to the uncertainty in the estimates of past radiative forcing; 3) an El Niño-like pattern in the mean SST response with greater surface warming in the eastern equatorial Pacific than the western equatorial Pacific is found by a number of models in global warming climate change experiments, but other models have a more spatially uniform or even a La Niña-like, response; 4) flux adjustment, by definition, improves the simulation of mean present-day climate over oceans, does not guarantee a drift-free climate, but can produce a stable base state in some models to enable very long term (1000 yr and longer) integrations-in these models it does not appear to have a major effect on model processes or model responses to increasing CO2; and 5) recent
Coupled intertwiner dynamics: A toy model for coupling matter to spin foam models
NASA Astrophysics Data System (ADS)
Steinhaus, Sebastian
2015-09-01
The universal coupling of matter and gravity is one of the most important features of general relativity. In quantum gravity, in particular spin foams, matter couplings have been defined in the past, yet the mutual dynamics, in particular if matter and gravity are strongly coupled, are hardly explored, which is related to the definition of both matter and gravitational degrees of freedom on the discretization. However, extracting these mutual dynamics is crucial in testing the viability of the spin foam approach and also establishing connections to other discrete approaches such as lattice gauge theories. Therefore, we introduce a simple two-dimensional toy model for Yang-Mills coupled to spin foams, namely an Ising model coupled to so-called intertwiner models defined for SU (2 )k. The two systems are coupled by choosing the Ising coupling constant to depend on spin labels of the background, as these are interpreted as the edge lengths of the discretization. We coarse grain this toy model via tensor network renormalization and uncover an interesting dynamics: the Ising phase transition temperature turns out to be sensitive to the background configurations and conversely, the Ising model can induce phase transitions in the background. Moreover, we observe a strong coupling of both systems if close to both phase transitions.
Analytical model of internally coupled ears.
Vossen, Christine; Christensen-Dalsgaard, Jakob; van Hemmen, J Leo
2010-08-01
Lizards and many birds possess a specialized hearing mechanism: internally coupled ears where the tympanic membranes connect through a large mouth cavity so that the vibrations of the tympanic membranes influence each other. This coupling enhances the phase differences and creates amplitude differences in the tympanic membrane vibrations. Both cues show strong directionality. The work presented herein sets out the derivation of a three dimensional analytical model of internally coupled ears that allows for calculation of a complete vibration profile of the membranes. The analytical model additionally provides the opportunity to incorporate the effect of the asymmetrically attached columella, which leads to the activation of higher membrane vibration modes. Incorporating this effect, the analytical model can explain measurements taken from the tympanic membrane of a living lizard, for example, data demonstrating an asymmetrical spatial pattern of membrane vibration. As the analytical calculations show, the internally coupled ears increase the directional response, appearing in large directional internal amplitude differences (iAD) and in large internal time differences (iTD). Numerical simulations of the eigenfunctions in an exemplary, realistically reconstructed mouth cavity further estimate the effects of its complex geometry. PMID:20707461
Modeling partially coupled objects with smooth particle hydrodynamics
Wingate, C.A.
1996-10-01
A very simple phenomenological model is presented to model objects that are partially coupled (i.e. welded or bonded) where usually the coupled interface is weaker than the bulk material. The model works by letting objects fully interact in compression and having the objects only partially interact in tension. A disconnect factor is provided to adjust the tensile interaction to simulate coupling strengths. Three cases of an example impact calculation are shown-no coupling, full coupling and partial coupling.
Numerical Experiments on Homogeneous Strained Turbulence Subjected to Coriolis Force
NASA Technical Reports Server (NTRS)
Shariff, K.; Blaisdell, G. A.; Abid, R.; Speziale, C. G.; Rai, Man Mohan (Technical Monitor)
1995-01-01
Homogeneous turbulent flows with various combinations of strain-rate, rotation rate and coriolis force capture some important aspects of more complex flows with streamline curvature and rotation. Presently, a situation is considered in which as a box of turbulence rotates, strain axes rotate with it. This is to be contrasted with the elliptic streamline flow in which the strain axes are fixed in an inertial frame. The elliptic flow is known to exhibit (inviscid) growth of turbulent energy and one might expect even more rapid growth with the strain-axes following the box. Instead, it is found that the sign of the Reynolds shear stress is reversed leading to a negative production term for turbulent energy. Partial understanding of the phenomenon is obtained from a consideration of the rotation of inertial waves relative to the strain axes as well as the "pressure-less" RDT argument put forward by Cambon etal. [J. Fluid Mech, 278, 175]. Some comparisons with the predictions of second-order closure models will be presented.
Modeling coupled avulsion and earthquake timescale dynamics
NASA Astrophysics Data System (ADS)
Reitz, M. D.; Steckler, M. S.; Paola, C.; Seeber, L.
2014-12-01
River avulsions and earthquakes can be hazardous events, and many researchers work to better understand and predict their timescales. Improvements in the understanding of the intrinsic processes of deposition and strain accumulation that lead to these events have resulted in better constraints on the timescales of each process individually. There are however several mechanisms by which these two systems may plausibly become linked. River deposition and avulsion can affect the stress on underlying faults through differential loading by sediment or water. Conversely, earthquakes can affect river avulsion patterns through altering the topography. These interactions may alter the event recurrence timescales, but this dynamic has not yet been explored. We present results of a simple numerical model, in which two systems have intrinsic rates of approach to failure thresholds, but the state of one system contributes to the other's approach to failure through coupling functions. The model is first explored for the simplest case of two linear approaches to failure, and linearly proportional coupling terms. Intriguing coupling dynamics emerge: the system settles into cycles of repeating earthquake and avulsion timescales, which are approached at an exponential decay rate that depends on the coupling terms. The ratio of the number of events of each type and the timescale values also depend on the coupling coefficients and the threshold values. We then adapt the model to a more complex and realistic scenario, in which a river avulses between either side of a fault, with parameters corresponding to the Brahmaputra River / Dauki fault system in Bangladesh. Here the tectonic activity alters the topography by gradually subsiding during the interseismic time, and abruptly increasing during an earthquake. The river strengthens the fault by sediment loading when in one path, and weakens it when in the other. We show this coupling can significantly affect earthquake and avulsion
NASA Astrophysics Data System (ADS)
Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter
2016-08-01
Coupled circulation (NEMO) and wave model (WAM) system was used to study the effects of surface ocean waves on water temperature distribution and heat exchange at regional scale (the Baltic Sea). Four scenarios—including Stokes-Coriolis force, sea-state dependent energy flux (additional turbulent kinetic energy due to breaking waves), sea-state dependent momentum flux and the combination these forcings—were simulated to test the impact of different terms on simulated temperature distribution. The scenario simulations were compared to a control simulation, which included a constant wave-breaking coefficient, but otherwise was without any wave effects. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwelling's. Overall, when all three wave effects were accounted for, did the estimates of temperature improve compared to control simulation. During the summer, the wave-induced water temperature changes were up to 1 °C. In northern parts of the Baltic Sea, a warming of the surface layer occurs in the wave included simulations in summer months. This in turn reduces the cold bias between simulated and measured data, e.g. the control simulation was too cold compared to measurements. The warming is related to sea-state dependent energy flux. This implies that a spatio-temporally varying wave-breaking coefficient is necessary, because it depends on actual sea state. Wave-induced cooling is mostly observed in near-coastal areas and is the result of intensified upwelling in the scenario, when Stokes-Coriolis forcing is accounted for. Accounting for sea-state dependent momentum flux results in modified heat exchange at the water-air boundary which consequently leads to warming of surface water compared to control simulation.
NASA Astrophysics Data System (ADS)
Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter
2016-06-01
Coupled circulation (NEMO) and wave model (WAM) system was used to study the effects of surface ocean waves on water temperature distribution and heat exchange at regional scale (the Baltic Sea). Four scenarios—including Stokes-Coriolis force, sea-state dependent energy flux (additional turbulent kinetic energy due to breaking waves), sea-state dependent momentum flux and the combination these forcings—were simulated to test the impact of different terms on simulated temperature distribution. The scenario simulations were compared to a control simulation, which included a constant wave-breaking coefficient, but otherwise was without any wave effects. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwelling's. Overall, when all three wave effects were accounted for, did the estimates of temperature improve compared to control simulation. During the summer, the wave-induced water temperature changes were up to 1 °C. In northern parts of the Baltic Sea, a warming of the surface layer occurs in the wave included simulations in summer months. This in turn reduces the cold bias between simulated and measured data, e.g. the control simulation was too cold compared to measurements. The warming is related to sea-state dependent energy flux. This implies that a spatio-temporally varying wave-breaking coefficient is necessary, because it depends on actual sea state. Wave-induced cooling is mostly observed in near-coastal areas and is the result of intensified upwelling in the scenario, when Stokes-Coriolis forcing is accounted for. Accounting for sea-state dependent momentum flux results in modified heat exchange at the water-air boundary which consequently leads to warming of surface water compared to control simulation.
Cyclone on a Turntable: Illustrations of the Coriolis Force
NASA Astrophysics Data System (ADS)
Haugland, Ole Anton
2009-11-01
The description of motion in a noninertial reference frame, and especially the Coriolis force, is a topic that often comes up even when it is not in the curriculum. Sometimes students may have seen a Foucault pendulum at a museum or they may have heard a discussion about the draining of bathtubs. At those times it would be nice to be able to give a simple and clear demonstration in the next lesson. At a more advanced level, the description of the Coriolis and the centrifugal force is a nice illustration of the use of vector algebra.
Coupled wave model for large magnet coils
NASA Technical Reports Server (NTRS)
Gabriel, G. J.
1980-01-01
A wave coupled model based on field theory is evolved for analysis of fast electromagnetic transients on superconducting coils. It is expected to play a useful role in the design of protection methods against damage due to high voltages or any adverse effects that might arise from unintentional transients. The significant parameters of the coil are identified to be the turn to turn wave coupling coefficients and the travel time of an electromagnetic disturbance around a single turn. Unlike circuit theoretic inductor, the coil response evolves in discrete steps having durations equal to this travel time. It is during such intervals that high voltages are likely to occur. The model also bridges the gap between the low and high ends of the frequency spectrum.
Towards Better Coupling of Hydrological Simulation Models
NASA Astrophysics Data System (ADS)
Penton, D.; Stenson, M.; Leighton, B.; Bridgart, R.
2012-12-01
Standards for model interoperability and scientific workflow software provide techniques and tools for coupling hydrological simulation models. However, model builders are yet to realize the benefits of these and continue to write ad hoc implementations and scripts. Three case studies demonstrate different approaches to coupling models, the first using tight interfaces (OpenMI), the second using a scientific workflow system (Trident) and the third using a tailored execution engine (Delft Flood Early Warning System - Delft-FEWS). No approach was objectively better than any other approach. The foremost standard for coupling hydrological models is the Open Modeling Interface (OpenMI), which defines interfaces for models to interact. An implementation of the OpenMI standard involves defining interchange terms and writing a .NET/Java wrapper around the model. An execution wrapper such as OatC.GUI or Pipistrelle executes the models. The team built two OpenMI implementations for eWater Source river system models. Once built, it was easy to swap river system models. The team encountered technical challenges with versions of the .Net framework (3.5 calling 4.0) and with the performance of the execution wrappers when running daily simulations. By design, the OpenMI interfaces are general, leaving significant decisions around the semantics of the interfaces to the implementer. Increasingly, scientific workflow tools such as Kepler, Taverna and Trident are able to replace custom scripts. These tools aim to improve the provenance and reproducibility of processing tasks. In particular, Taverna and the myExperiment website have had success making many bioinformatics workflows reusable and sharable. The team constructed Trident activities for hydrological software including IQQM, REALM and eWater Source. They built an activity generator for model builders to build activities for particular river systems. The models were linked at a simulation level, without any daily time
Nonlinear Walecka models and point-coupling relativistic models
Lourenco, O.; Amaral, R. L. P. G.; Dutra, M.; Delfino, A.
2009-10-15
We study hadronic nonlinear point-coupling (NLPC) models which reproduce numerically the binding energy, the incompressibility, and the nucleon effective mass at the nuclear matter saturation obtained by different nonlinear Walecka (NLW) models. We have investigated their behaviors as functions of the nuclear matter density to observe how they deviate from known NLW models. In our study we present a meson-exchange modified nonlinear Walecka model (MNLW) which exactly underlies a nonlinear point-coupling model (NLPC) presenting third- and fourth-order scalar density self-couplings. A discussion about naive dimensional analysis (NDA) and naturalness is also provided for a large class of NLW and NLPC models. At finite temperature, critical and flash parameters of both approaches are presented.
Four mass coupled oscillator guitar model.
Popp, John E
2012-01-01
Coupled oscillator models have been used for the low frequency response (50 to 250 Hz) of a guitar. These 2 and 3 mass models correctly predict measured resonance frequency relationships under various laboratory boundary conditions, but did not always represent the true state of a guitar in the players' hands. The model presented has improved these models in three ways, (1) a fourth oscillator includes the guitar body, (2) plate stiffnesses and other fundamental parameters were measured directly and effective areas and masses used to calculate the responses, including resonances and phases, directly, and (3) one of the three resultant resonances varies with neck and side mass and can also be modeled as a bar mode of the neck and body. The calculated and measured resonances and phases agree reasonably well. PMID:22280705
Coriolis analysis of several high-resolution infrared bands of bicyclo[111]pentane-d0 and -d1
Perry, A.; Martin, M. A.; Nibler, J. W.; Maki, A.; Weber, A.; Blake, T. A.
2012-06-01
High resolution infrared absorption spectra have been analyzed for two bicyclo[1.1.1]pentane isotopologues, C5H8 (-d0) and C5H7D (-d1), where in the latter the D-atom replaces a hydrogen on the C3 symmetry axis such that the molecular symmetry is reduced from D3h to C3v. Two (a2") parallel bands, ν17 and ν18, of bicyclopentane-d0 were studied and the former was found to be profoundly affected by Coriolis coupling with the nearby (e') perpendicular band, ν11. Weaker coupling was observed between the ν18 band and the nearby ν13(e') band, for which fewer transitions could be assigned. For bicyclopentane-d1, the ν5 parallel band was also studied along with the nearby ν15(e') band to which it is coupled through a similar type of Coriolis resonance. For both isotopologues, quantum calculations (B3LYP/cc-pVTZ) done at the anharmonic level were very helpful in unraveling the complexities caused by the Coriolis interactions, provided that care is taken in identifying the effect of any Coriolis resonances in the theoretical values of aB and q rovibrational parameters. The ground state B0 constants were found to be 0.2399412(2) and 0.2267506(11) cm-1 for the -d0 and -d1 isotopologues. The difference yields an Rs substitution value of 2.0309(2) Å for the position of the axial H atom relative to the -d0 center of mass, a result in good accord with a corresponding Ra value of 2.044(6) Å from electron diffraction data. For both isotopologues, the theoretical results from the quantum calculations are in good agreement with all corresponding values determined from the spectra.
Effects of the Coriolis force on the oil spreading in instantaneous and continuous spill
NASA Astrophysics Data System (ADS)
Brovchenko, Igor; Maderich, Vladimir; Jung, Kyung Tae
2013-04-01
The possible effects of the Coriolis force on the oil spill spreading have not yet investigated or even discussed despite the spreading time scale for large spills can be of many hours and days and releases can last days and months like in the "Ixtoc I" and "Deep Horizon" spills. Therefore, it is important to quantify possible effects of the Coriolis force on the dynamics of spreading of surface slick caused by continuous and instantaneous releases. The main goal of this work is to explore does the Coriolis force affect the oil slick spreading in gravity viscous regime. For this study a new shallow-water model for transport and spreading of slick of arbitrary shape was developed. The governing equations for oil slick are derived in shallow water approximation by means of the continuity and the momentum equations integrated over the oil layer in which the inertial terms are neglected and is assumed balance between gravity, frictional and the Coriolis forces. The oil-water friction is parameterized in frame of boundary layer theory including the Ekman layer friction. The numerical Lagrangian method based on smoothed particle dynamics is described. New similarity solutions of the model equations are obtained for unidirectional and axisymmetric spreading in gravity-viscous and gravity-viscous-rotational regimes for instantaneous and continuous releases. The results are extended for the case of continuous release in the field of currents by numerical simulation. It was shown that Coriolis term in the momentum equation can be omitted if slick thickness is much less of the laminar Ekman layer thickness. However, the Ekman friction should be retained at any thickness of slick for large times. The Ekman friction results in the essential slowdown of the spreading as well as in the deflection of the oil spreading velocity at 45o from the direction of velocity in the non-rotation case. The new most important feature of the gravity-viscous-rotational regime is appearance of the
New applications for Coriolis flow and density measurement in the natural gas industry
Valentine, J.; Keilty, M.
1995-11-01
Simultaneous, highly accurate measurement of mass, density and temperature makes the Coriolis instrumentation ideal technology for a wide variety of natural gas applications. This paper describes the technology, discusses the benefits of using Coriolis instrumentation, and describes several applications related to the oil and gas production industries utilizing the Coriolis meter.
NASA Astrophysics Data System (ADS)
Hegelund, F.; Wugt Larsen, R.; Palmer, M. H.
2008-01-01
The Fourier transform infrared spectrum of gaseous thiophene, C 4H 4S, has been recorded in the 600-1200 cm -1 spectral region with a resolution of ca. 0.0030 cm -1. Five fundamental bands ν13 ( B1, 712.1 cm -1), ν7 ( A1; 840.0 cm -1), ν6 ( A1; 1036.4 cm -1), ν5 ( A1; 1081.5 cm -1) and ν19 ( B2; 1084.0 cm -1) have been analysed by the standard Watson model (A-reduction). Ground state rotational and quartic centrifugal distortion constants have been obtained from a simultaneous fit of ground state combination differences from four of these bands and previous microwave transitions. Upper state spectroscopic constants have been obtained for all five bands from single band fits using the Watson model. A strong c-Coriolis resonance perturbs the close lying ν5 and ν19 bands. We have analysed this dyad system by a model including first and second order Coriolis resonance using the theoretically predicted Coriolis coupling constant ς19,5c. From this analysis we locate the previously unobserved ν19 band at 1083.969 cm -1. The rotational constants, ground state quartic centrifugal distortion constants, anharmonic frequencies, and vibration-rotational constants ( α-constants) predicted by quantum chemical calculations using a cc-pVTZ basis with B3LYP methodology, are compared with the present experimental data, where there is generally good agreement. A complete set of anharmonic frequencies and α-constants for all fundamental levels of the molecule is given.
The dynamic response of Coriolis mass flow meters
NASA Astrophysics Data System (ADS)
Cheesewright, R.; Clark, C.; Belhadj, A.; Hou, Y. Y.
2003-09-01
The speed of response of commercial Coriolis meters to a step change in mass flow rate corresponds to a time constant which may range from 0.1s to several seconds. This response is a result both of the dynamic response of the physical components of the meter and of the electronics and the computational algorithms used to convert that dynamic response into an estimate of the mass flow rate. A comprehensive investigation of the dynamic response is presented with a view to establishing the ultimate limits of the overall meter response. Attention is initially concentrated on a simple straight tube meter and analytical solutions are presented for the response to a step change in flow rate both for an undamped meter and for a meter with internal damping. These results are compared with results from a finite element model of the same meter and then the finite element modelling is extended to geometries typical of commercial meters. Finally, representative results are presented from an experimental study of the response of commercial meters to step changes in flow rate. A study of the essential components of the algorithm used in a meter leads to the conclusion that the time constant cannot be less than the period of one cycle of the meter drive. The analytical, finite element and experimental results all combine to show that the meters all respond in the period of one drive cycle but that the flow step induces fluctuations in the meter output which decay under the influence of the flow tube damping. It is the additional damping introduced in the signal processing to overcome these fluctuations which is responsible for the large observed time constants. Possible alternative approaches are discussed.
Coupling a terrestrial biogeochemical model to the common land model
Shi, Xiaoying; Mao, Jiafu; Wang, Yingping; Dai, Yongjiu; Tang, Xuli
2011-01-01
A terrestrial biogeochemical model (CASACNP) was coupled to a land surface model (the Common Land Model, CoLM) to simulate the dynamics of carbon substrate in soil and its limitation on soil respiration. The combined model, CoLM-CASACNP, was able to predict long-term carbon sources and sinks that CoLM alone could not. The coupled model was tested using measurements of belowground respiration and surface fluxes from two forest ecosystems. The combined model simulated reasonably well the diurnal and seasonal variations of net ecosystem carbon exchange, as well as seasonal variation in the soil respiration rate of both the forest sites chosen for this study. However, the agreement between model simulations and actual measurements was poorer under dry conditions. The model should be tested against more measurements before being applied globally to investigate the feedbacks between the carbon cycle and climate change.
Session on validation of coupled models
NASA Technical Reports Server (NTRS)
Kuo, Bill
1993-01-01
The session on validation of coupled models is reviewed. The current use of a mesoscale model with a grid size of 20-km during STORM-FEST in 1992 has proven to be extremely valuable. The availability of forecast products at a much higher temporal and spatial resolution was very helpful for mesoscale forecasting, mission planning, and the guidance of research aircraft. Recent numerical simulation of ocean cyclones and mesoscsle convective systems using nonhydrostatic cloud/mesoscale models with a grid size as small as 2-km have demonstrated the potential of these models for predicting mesoscale convective systems, squall lines, hurricane rainbands, mesoscale gravity waves, and mesoscale frontal structures embedded within an extratropical cyclone. Although mesoscale/cloud scale models have demonstrated strong potential for use in operational forecasting, very limited quantitative evaluation (and verification) of these models were performed. As a result, the accuracy, the systematic biases, and the useful forecasts limits were not properly defined for these models. Also, no serious attempts were made to use these models for operational prediction of mesoscale convective systems.
The Effect of Flow Pulsations on Coriolis Mass Flow Meters
NASA Astrophysics Data System (ADS)
Cheesewright, R.; Clark, C.
1998-11-01
It has been reported that the accuracy of Coriolis mass flow meters can be adversely affected by the presence of pulsations (at particular frequencies) in the flow. A full analysis of the transient performance of a commercial Coriolis meter is only possible using finite element techniques. However, this is a transient, nonlinear problem in which the space and time variables are not (strictly) separable and the finite element techniques for tackling such problems make it desirable to have an analytical solution for a simplified meter, against which the finite element solution can be compared. This paper reports such a solution. The solution will also provide guidance for experiments. Existing analytical solutions for the performance of Coriolis meters in steady flow (a complex eigenvalue problem) are not easily extended to the transient flow case. The paper thus begins with the presentation of an alternative solution for steady flow through a simple, straight tube, Coriolis meter and it is notable that this solution gives a simple analytical expression for the experimentally observed small change in the resonant frequency of the meter, with flow rate, as well as an analytical expression for the meter sensitivity. The analysis is extended to the transient case, using classical, forced vibration, modal decomposition techniques. The solution shows that, unlike the steady flow case where the detector signals contain components at the drive frequency and the second mode frequency (Coriolis frequency), for pulsatile flow the detector signals will in general contain components involving at least four frequencies. It is demonstrated that the meter error depends on the algorithm used to estimate the phase difference from the detector signals. The particular flow pulsation frequencies which could possibly lead to large meter errors are identified.
Multi-scale Model Coupling for CFD Simulations of Discharge Dispersion in the Sea
NASA Astrophysics Data System (ADS)
Robinson, D.; Wood, M.; Piggott, M. D.; Gorman, G.
2014-12-01
The processes that influence the dispersion of effluent discharges in the sea occur over a wide range of length and time scales. The distance that effluent can travel before it is considered mixed can be several kilometres, whereas the turbulent eddies that affect the near-field mixing of a discharge can be as small as a few centimetres. The range of scales that are involved mean that it is not generally practical to include all influencing physical phenomena within one model. Typically, the modelling of effluent dispersion is performed using two separate numerical models: a local model of the outlet(s), including the near-field effects of momentum, buoyancy and turbulence; and a larger scale model that can include the far-field effects of tidal-, wind- and wave-driven-currents, water depth variations, atmospheric fluxes, and Coriolis forces. The boundary between the two models is often not strictly defined, but is usually placed at the transition from where the behaviour of the effluent is dominated by the ambient environment, rather than the discharge characteristics and outfall configuration. In most real applications, this transition line varies considerably in time and space. This paper presents the findings of collaborative research between the Applied Modelling and Computation Group (AMCG) at Imperial College London, UK, and HR Wallingford Ltd. Results are presented using a range of coupling methods to link the near- and far-field mixing regions. An idealised domain and tidal conditions are used, with the outfall and ambient conditions typical of those found at small coastal desalination plants. Open-source CFD code Fluidity is used for both the near-field and far-field modelling. Fluidity scales well when run in parallel on large numbers of cores. It also has an anisotropic adaptive mesh capability which allows local control over solution accuracy throughout the domain. This combination means that accuracy can be achieved without excessive time costs, with
Multiphysics and Multiscale Model Coupling Using Gerris
NASA Astrophysics Data System (ADS)
Keen, T. R.; Dykes, J. D.; Campbell, T. J.
2012-12-01
This work is implementing oceanographic processes encompassing multiple physics and scales using the Gerris Flow Solver (GFS) in order to examine their interdependence and sensitivity to changes in the physical environment. The processes include steady flow due to tides and the wind, phase-averaged wave-forced flow and oscillatory currents, and sediment transport. The 2D steady flow is calculated by the Ocean module contained within GFS. This model solves the Navier-Stokes (N-S) equations using the finite volume method. The model domain is represented by quad-tree adaptive mesh refinement (AMR). A stationary wave field is computed for a specified wave spectrum is uniformly distributed over the domain as a tracer with local wind input parameterized as a source, and dissipation by friction and breaking as a sink. Alongshore flow is included by a radiation stress term; this current is added to the steady flow component from tides and wind. Wave-current interaction is parameterized using a bottom boundary layer model. Sediment transport as suspended and bed load is implemented using tracers that are transported via the advection equations. A bed-conservation equation is implemented to allow changes in seafloor elevation to be used in adjusting the AMR refinement. These processes are being coupled using programming methods that are inherent to GFS and that do not require modification or recompiling of the code. These techniques include passive tracers, C functions that operate as plug-ins, and user-defined C-type macros included with GFS. Our results suggest that the AMR model coupling method is useful for problems where the dynamics are governed by several processes. This study is examining the relative influence of the steady currents, wave field, and sedimentation. Hydrodynamic and sedimentation interaction in nearshore environments is being studied for an idealized beach and for the Sandy Duck storm of Oct. 1998. The potential behavior of muddy sediments on the
Coupled map lattice model of jet breakup
Minich, R W; Schwartz, A J; Baker, E L
2001-01-25
An alternative approach is described to evaluate the statistical nature of the breakup of shaped charge liners. Experimental data from ductile and brittle copper jets are analyzed in terms of velocity gradient, deviation of {Delta}V from linearity, R/S analysis, and the Hurst exponent within the coupled map lattice model. One-dimensional simulations containing 600 zones of equal mass and using distinctly different force-displacement curves are generated to simulate ductile and brittle behavior. A particle separates from the stretching jet when an element of material reaches the failure criterion. A simple model of a stretching rod using brittle, semi-brittle, and ductile force-displacement curves is in agreement with the experimental results for the Hurst exponent and the phase portraits and indicates that breakup is a correlated phenomenon.
Generalized hydrodynamics model for strongly coupled plasmas
NASA Astrophysics Data System (ADS)
Diaw, A.; Murillo, M. S.
2015-07-01
Beginning with the exact equations of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy, we obtain the density, momentum, and stress tensor-moment equations. We close the moment equations with two closures, one that guarantees an equilibrium state given by density-functional theory and another that includes collisions in the relaxation of the stress tensor. The introduction of a density functional-theory closure ensures self-consistency in the equation-of-state properties of the plasma (ideal and excess pressure, electric fields, and correlations). The resulting generalized hydrodynamics thus includes all impacts of Coulomb coupling, viscous damping, and the high-frequency (viscoelastic) response. We compare our results with those of several known models, including generalized hydrodynamic theory and models obtained using the Singwi-Tosi-Land-Sjolander approximation and the quasilocalized charge approximation. We find that the viscoelastic response, including both the high-frequency elastic generalization and viscous wave damping, is important for correctly describing ion-acoustic waves. We illustrate this result by considering three very different systems: ultracold plasmas, dusty plasmas, and dense plasmas. The new model is validated by comparing its results with those of the current autocorrelation function obtained from molecular-dynamics simulations of Yukawa plasmas, and the agreement is excellent. Generalizations of this model to mixtures and quantum systems should be straightforward.
Low-temperature linear thermal rectifiers based on Coriolis forces
NASA Astrophysics Data System (ADS)
Suwunnarat, Suwun; Li, Huanan; Fleischmann, Ragnar; Kottos, Tsampikos
2016-04-01
We demonstrate that a three-terminal harmonic symmetric chain in the presence of a Coriolis force, produced by a rotating platform that is used to place the chain, can produce thermal rectification. The direction of heat flow is reconfigurable and controlled by the angular velocity Ω of the rotating platform. A simple three-terminal triangular lattice is used to demonstrate the proposed principle.
Parametric excitation of a micro Coriolis mass flow sensor
NASA Astrophysics Data System (ADS)
Droogendijk, H.; Groenesteijn, J.; Haneveld, J.; Sanders, R. G. P.; Wiegerink, R. J.; Lammerink, T. S. J.; Lötters, J. C.; Krijnen, G. J. M.
2012-11-01
We demonstrate that a micro Coriolis mass flow sensor can be excited in its torsional movement by applying parametric excitation. Using AC-bias voltages for periodic electrostatic spring softening, the flow-filled tube exhibits a steady vibration at suitable voltage settings. Measurements show that the sensor for this type of excitation can be used to measure water flow rates within a range of 0 ± 500 μl/h with an accuracy of 1% full scale error.
NASA Astrophysics Data System (ADS)
Weinstein, Joel Aaron
Coriolis flow meters measure mass flow and density of liquids and gases to very high accuracies. However, when two or more phases are present simultaneously in a pipeline, measurement accuracy can be severely reduced. Coriolis meters have an inherent advantage over volumetric meters in measuring pure liquid quantities in applications involving liquids with entrained gas because the mass flow rate of an aerated mixture is close to that of the liquid flow rate. However, Coriolis meters use two oscillating flow tubes to make measurements, with the assumption that the fluid moves directly with the tubes in the oscillatory direction. When multiple phases or components of different density are present, this assumption is not valid and errors result. The current research involves analytic and experimental efforts to understand, model, and reduce errors due to multiphase flow in a Coriolis meter. The main error mechanism studied is phase decoupling, or the relative motion of the dispersed phase with respect to the continuous phase. Dilute mixtures involving solid particles in liquids are considered in addition to bubbly fluids. Equations of motion for spherical particles and bubbles in non-inertial oscillating reference frames are non-dimensionalized and solved with a variety of boundary conditions. Theoretical results for amplitude ratio and phase angle between sphere and fluid are verified with high speed video camera experiments. Phase decoupling is found to depend on meter and fluid parameters such as frequency, oscillation amplitude, and viscosity. Practical recommendations based on experimental and model results are made to improve measurement accuracy. Reducing bubble size by turbulent mixing and using a Coriolis meter with a minimum tube oscillation frequency and maximum amplitude are found to be the most practical ways to reduce errors due to relative phase motion. Power dissipation, density error, and other parameters of interest in the design and operation of a
Extended source model for diffusive coupling.
González-Ochoa, Héctor O; Flores-Moreno, Roberto; Reyes, Luz M; Femat, Ricardo
2016-01-01
Motivated by the prevailing approach to diffusion coupling phenomena which considers point-like diffusing sources, we derived an analogous expression for the concentration rate of change of diffusively coupled extended containers. The proposed equation, together with expressions based on solutions to the diffusion equation, is intended to be applied to the numerical solution of systems exclusively composed of ordinary differential equations, however is able to account for effects due the finite size of the coupled sources. PMID:26802012
Lithosphere-Atmosphere-Ionosphere coupling model
NASA Astrophysics Data System (ADS)
Kachakhidze, M. K., III
2015-12-01
The present work offers interpretation of a mechanism of formation of hypothetic ideal electromagnetic contour, creation of which is envisaged in incoming earthquake focal zone. Model of generation of EM emissions detected before earthquake is based on physical analogues of distributed and conservative systems and focal zones. According to the model the process of earthquake preparation from the moment of appearance of cracks in the system, including completion of series of foreshocks, earthquake and aftershocks, are entirely explained by oscillating systems.According to the authors of the work electromagnetic emissions in radio diapason is more universal and reliable than other anomalous variations of various geophysical phenomena in earthquake preparation period; Besides, VLF/LF electromagnetic emissions might be declared as the main precursor of earthquake because it might turn out very useful with the view of prediction of large (M5) inland earthquakes and to govern processes going on in lithosphere-atmosphere-ionosphere coupling (LAIC) system. Based on this model, in case of electromagnetic emissions spectrum monitoring in the period that precedes earthquake it is possible to determine, with certain accuracy, the time, location and magnitude of an incoming earthquake simultaneously.The present item considers possible physical mechanisms of the geophysical phenomena, which may accompany earthquake preparation process and expose themselves several months, weeks or days prior to earthquakes. Such as: Changing of intensity of electro-telluric current in focal area; Perturbations of geomagnetic field in forms of irregular pulsations or regular short-period pulsations; Perturbations of atmospheric electric field; Irregular changing of characteristic parameters of the lower ionosphere (plasma frequency, electron concentration, height of D layer, etc.); Irregular perturbations reaching the upper ionosphere, namely F2-layer, for 2-3 days before the earthquake
Coupling approaches used in atmospheric entry models
NASA Astrophysics Data System (ADS)
Gritsevich, M. I.
2012-09-01
While a planet orbits the Sun, it is subject to impact by smaller objects, ranging from tiny dust particles and space debris to much larger asteroids and comets. Such collisions have taken place frequently over geological time and played an important role in the evolution of planets and the development of life on the Earth. Though the search for near-Earth objects addresses one of the main points of the Asteroid and Comet Hazard, one should not underestimate the useful information to be gleaned from smaller atmospheric encounters, known as meteors or fireballs. Not only do these events help determine the linkages between meteorites and their parent bodies; due to their relative regularity they provide a good statistical basis for analysis. For successful cases with found meteorites, the detailed atmospheric path record is an excellent tool to test and improve existing entry models assuring the robustness of their implementation. There are many more important scientific questions meteoroids help us to answer, among them: Where do these objects come from, what are their origins, physical properties and chemical composition? What are the shapes and bulk densities of the space objects which fully ablate in an atmosphere and do not reach the planetary surface? Which values are directly measured and which are initially assumed as input to various models? How to couple both fragmentation and ablation effects in the model, taking real size distribution of fragments into account? How to specify and speed up the recovery of a recently fallen meteorites, not letting weathering to affect samples too much? How big is the pre-atmospheric projectile to terminal body ratio in terms of their mass/volume? Which exact parameters beside initial mass define this ratio? More generally, how entering object affects Earth's atmosphere and (if applicable) Earth's surface? How to predict these impact consequences based on atmospheric trajectory data? How to describe atmospheric entry
Parameterization of the Lorentz to Coriolis Force Ratio in Planetary Dynamos
NASA Astrophysics Data System (ADS)
Soderlund, K. M.; Sheyko, A. A.; King, E. M.; Aurnou, J. M.
2015-12-01
The Lorentz to Coriolis force ratio is an important parameter for the dynamics of planetary cores: it is expected that dynamos with dominant Coriolis forces will be driven by fundamentally different archetypes of fluid motions than those with co-dominant Lorentz forces. Using a suite of geodynamo simulations, we have tested several parameterizations of the Lorentz to Coriolis force ratio against direct calculations and developed a scaling estimate to predict this ratio for planetary cores. Our results suggest that the Earth's core is likely to be in magnetostrophic balance where the Lorentz and Coriolis forces are comparable. The Lorentz force may also be significant in Jupiter's core, where it is predicted to be approximately a factor of ten less than the Coriolis force. Magnetic fields become increasingly sub-dominant for the other planets: the Coriolis force is predicted to exceed the Lorentz force by at least two orders of magnitude within the cores of Saturn, Uranus/Neptune, Ganymede, and Mercury.
Madden-Julian Variability in Coupled Models
Sperber, K R; Gualdi, S; Li, W; Slingo, J M
2001-12-12
The Madden-Julian Oscillation (MJO) is a dominant mode of tropical variability (Madden and Julian 1971, 1972). It is manifested on a timescale of {approx}30-70 days through large-scale circulation anomalies which occur in conjunction with eastward propagating convective anomalies over the eastern hemisphere. Recent evidence has suggested that an interactive ocean may be important for the simulation of the Madden-Julian Oscillation (Flatau et al. 1997, Sperber et al. 1997, Waliser et al. 1999, Inness et al. 2002). As part of an initiative to the CLIVAR Working Group on Coupled Modeling, we examine ocean-atmosphere GCMs to ascertain the degree to which they can represent the 4-dimensional space-time structure of the MJO. The eastward propagation of convection is also examined with respect to the surface fluxes and SST, and we compare and contrast the behavior over the Indian Ocean and the western Pacific. Importantly, the results are interpreted with respect to systematic error of the mean state.
Coupling Climate Models and Forward-Looking Economic Models
NASA Astrophysics Data System (ADS)
Judd, K.; Brock, W. A.
2010-12-01
Authors: Dr. Kenneth L. Judd, Hoover Institution, and Prof. William A. Brock, University of Wisconsin Current climate models range from General Circulation Models (GCM’s) with millions of degrees of freedom to models with few degrees of freedom. Simple Energy Balance Climate Models (EBCM’s) help us understand the dynamics of GCM’s. The same is true in economics with Computable General Equilibrium Models (CGE’s) where some models are infinite-dimensional multidimensional differential equations but some are simple models. Nordhaus (2007, 2010) couples a simple EBCM with a simple economic model. One- and two- dimensional ECBM’s do better at approximating damages across the globe and positive and negative feedbacks from anthroprogenic forcing (North etal. (1981), Wu and North (2007)). A proper coupling of climate and economic systems is crucial for arriving at effective policies. Brock and Xepapadeas (2010) have used Fourier/Legendre based expansions to study the shape of socially optimal carbon taxes over time at the planetary level in the face of damages caused by polar ice cap melt (as discussed by Oppenheimer, 2005) but in only a “one dimensional” EBCM. Economists have used orthogonal polynomial expansions to solve dynamic, forward-looking economic models (Judd, 1992, 1998). This presentation will couple EBCM climate models with basic forward-looking economic models, and examine the effectiveness and scaling properties of alternative solution methods. We will use a two dimensional EBCM model on the sphere (Wu and North, 2007) and a multicountry, multisector regional model of the economic system. Our aim will be to gain insights into intertemporal shape of the optimal carbon tax schedule, and its impact on global food production, as modeled by Golub and Hertel (2009). We will initially have limited computing resources and will need to focus on highly aggregated models. However, this will be more complex than existing models with forward
Strong coupling theory for interacting lattice models
NASA Astrophysics Data System (ADS)
Stanescu, Tudor D.; Kotliar, Gabriel
2004-11-01
We develop a strong coupling approach for a general lattice problem. We argue that this strong coupling perspective represents the natural framework for a generalization of the dynamical mean field theory (DMFT). The main result of this analysis is twofold: (1) It provides the tools for a unified treatment of any nonlocal contribution to the Hamiltonian. Within our scheme, nonlocal terms such as hopping terms, spin-spin interactions, or nonlocal Coulomb interactions are treated on equal footing. (2) By performing a detailed strong-coupling analysis of a generalized lattice problem, we establish the basis for possible clean and systematic extensions beyond DMFT. To this end, we study the problem using three different perspectives. First, we develop a generalized expansion around the atomic limit in terms of the coupling constants for the nonlocal contributions to the Hamiltonian. By analyzing the diagrammatics associated with this expansion, we establish the equations for a generalized dynamical mean-field theory. Second, we formulate the theory in terms of a generalized strong coupling version of the Baym-Kadanoff functional. Third, following Pairault, Sénéchal, and Tremblay [Phys. Rev. Lett. 80, 5389 (1998)], we present our scheme in the language of a perturbation theory for canonical fermionic and bosonic fields and we establish the interpretation of various strong coupling quantities within a standard perturbative picture.
Influence of the Coriolis Force in Atom Interferometry
NASA Astrophysics Data System (ADS)
Lan, Shau-Yu; Kuan, Pei-Chen; Estey, Brian; Haslinger, Philipp; Müller, Holger
2012-03-01
In a light-pulse atom interferometer, we use a tip-tilt mirror to remove the influence of the Coriolis force from Earth’s rotation and to characterize configuration space wave packets. For interferometers with a large momentum transfer and large pulse separation time, we improve the contrast by up to 350% and suppress systematic effects. We also reach what is to our knowledge the largest space-time area enclosed in any atom interferometer to date. We discuss implications for future high-performance instruments.
Shape difference implied by quenched Coriolis interaction in 175Os
NASA Astrophysics Data System (ADS)
Dracoulis, G. D.; Fabricius, B.
1990-06-01
Chance near degeneracy of rotational states in the 1/2-[521] and 5/2-[512] bands in 175Os leads to mixing and connecting E2 transitions. Analysis of the observed branching ratios gives an interaction matrix element of about 4 keV, an order of magnitude smaller than the expected Coriolis interaction, deduced from particle-rotor calculations. A difference in deformation of 25% between the two configurations, as suggested by the larger unperturbed moment of inertia in the 1/2-[521] band, would explain the quenched interaction.
Influence of the Coriolis force in atom interferometry.
Lan, Shau-Yu; Kuan, Pei-Chen; Estey, Brian; Haslinger, Philipp; Müller, Holger
2012-03-01
In a light-pulse atom interferometer, we use a tip-tilt mirror to remove the influence of the Coriolis force from Earth's rotation and to characterize configuration space wave packets. For interferometers with a large momentum transfer and large pulse separation time, we improve the contrast by up to 350% and suppress systematic effects. We also reach what is to our knowledge the largest space-time area enclosed in any atom interferometer to date. We discuss implications for future high-performance instruments. PMID:22463619
Large momentum transfer atom interferometry with Coriolis force compensation
NASA Astrophysics Data System (ADS)
Kuan, Pei-Chen; Lan, Shau-Yu; Estey, Brian; Haslinger, Philipp; Mueller, Holger
2012-06-01
Light-pulse atom interferometers use atom-photon interactions to coherently split, guide, and recombine freely falling matter-waves. Because of Earth's rotation, however, the matter-waves do not recombine precisely, which causes severe loss of contrast in large space-time atom interferometers. I will present our recent progress in using a tip-tilt mirror to remove the influence of the Coriolis force from Earth's rotation. Therefore, we improve the contrast and suppress systematic effects, also reach what is to our knowledge the largest spacetime area.
Modeling of coupled geochemical and transport processes: An overview
Carnahan, C.L.
1989-10-01
Early coupled models associated with fluid flow and solute transport have been limited by assumed conditions of constant temperature, fully saturated fluid flow, and constant pore fluid velocity. Developments including coupling of chemical reactions to variable fields of temperature and fluid flow have generated new requirements for experimental data. As the capabilities of coupled models expand, needs are created for experimental data to be used for both input and validation. 25 refs.
Time-delayed coupled logistic capacity model in population dynamics
NASA Astrophysics Data System (ADS)
Cáceres, Manuel O.
2014-08-01
This study proposes a delay-coupled system based on the logistic equation that models the interaction of a population with its varying environment. The integro-diferential equations of the model are presented in terms of a distributed time-delayed coupled logistic-capacity equation. The model eliminates the need for a prior knowledge of the maximum saturation environmental carrying capacity value. Therefore the dynamics toward the final attractor in a distributed time-delayed coupled logistic-capacity model is studied. Exact results are presented, and analytical conclusions have been done in terms of the two parameters of the model.
CIDGA - Coupling of Interior Dynamic models with Global Atmosphere models
NASA Astrophysics Data System (ADS)
Noack, Lena; Plesa, Ana-Catalina; Breuer, Doris
2010-05-01
Atmosphere temperatures and in particular the surface temperatures mostly depend on the solar heat flux and the atmospheric composition. The latter can be influenced by interior processes of the planet, i.e. volcanism that releases greenhouse gases such as H2O, CO2 and methane into the atmosphere and plate tectonics through which atmospheric CO2 is recycled via carbonates into the mantle. An increasing concentration of greenhouse gases in the atmosphere results in an increase of the surface temperature. Changes in the surface temperature on the other hand may influence the cooling behaviour of the planet and hence influence its volcanic activity [Phillips et al., 2001]. This feedback relation between mantle convection and atmosphere is not very well understood, since until now mostly either the interior dynamic of a planet or its atmosphere was investigated separately. 2D or 3D mantle convection models to the authors' knowledge haven't been coupled to the atmosphere so far. We have used the 3D spherical simulation code GAIA [Hüttig et al., 2008] including partial melt production and coupled it with the atmosphere module CIDGA using a gray greenhouse model for varying H2O concentrations. This way, not only the influence of mantle dynamics on the atmosphere can be investigated, but also the recoupling effect, that the surface temperature has on the mantle dynamics. So far, we consider one-plate planets without crustal and thus volatile recycling. Phillips et al. [2001] already investigated the coupling effect of the surface temperature on mantle dynamics by using simple parameterized convection models for Venus. In their model a positive feedback mechanism has been observed, i.e., an increase of the surface temperature leads to an increase of partial melt and hence an increase of atmosphere density and surface temperature. Applying our model to Venus, we show that an increase of surface temperature leads not only to an increase of partial melt in the mantle; it also
Quark-meson coupling model with the cloudy bag
Nagai, S.; Miyatsu, T.; Saito, Kenji; Tsushima, Kazuo
2008-07-01
Using the volume coupling version of the cloudy bag model, the quark-meson coupling model is extended to study the role of pion field and the properties of nuclear matter. The extended model includes the effect of gluon exchange as well as the pion-cloud effect, and provides a good description of the nuclear matter properties. The relationship between the extended model and the EFT approach to nuclear matter is also discussed.
D3-Equivariant coupled advertising oscillators model
NASA Astrophysics Data System (ADS)
Zhang, Chunrui; Zheng, Huifeng
2011-04-01
A ring of three coupled advertising oscillators with delay is considered. Using the symmetric functional differential equation theories, the multiple Hopf bifurcations of the equilibrium at the origin are demonstrated. The existence of multiple branches of bifurcating periodic solution is obtained. Numerical simulation supports our analysis results.
Synchronized action of synaptically coupled chaotic model neurons.
Abarbanel, H D; Huerta, R; Rabinovich, M I; Rulkov, N F; Rowat, P F; Selverston, A I
1996-11-15
Experimental observations of the intracellular recorded electrical activity in individual neurons show that the temporal behavior is often chaotic. We discuss both our own observations on a cell from the stomatogastric central pattern generator of lobster and earlier observations in other cells. In this paper we work with models with chaotic neurons, building on models by Hindmarsh and Rose for bursting, spiking activity in neurons. The key feature of these simplified models of neurons is the presence of coupled slow and fast subsystems. We analyze the model neurons using the same tools employed in the analysis of our experimental data. We couple two model neurons both electrotonically and electrochemically in inhibitory and excitatory fashions. In each of these cases, we demonstrate that the model neurons can synchronize in phase and out of phase depending on the strength of the coupling. For normal synaptic coupling, we have a time delay between the action of one neuron and the response of the other. We also analyze how the synchronization depends on this delay. A rich spectrum of synchronized behaviors is possible for electrically coupled neurons and for inhibitory coupling between neurons. In synchronous neurons one typically sees chaotic motion of the coupled neurons. Excitatory coupling produces essentially periodic voltage trajectories, which are also synchronized. We display and discuss these synchronized behaviors using two "distance" measures of the synchronization. PMID:8888609
Graphical models of residue coupling in protein families.
Thomas, John; Ramakrishnan, Naren; Bailey-Kellogg, Chris
2008-01-01
Many statistical measures and algorithmic techniques have been proposed for studying residue coupling in protein families. Generally speaking, two residue positions are considered coupled if, in the sequence record, some of their amino acid type combinations are significantly more common than others. While the proposed approaches have proven useful in finding and describing coupling, a significant missing component is a formal probabilistic model that explicates and compactly represents the coupling, integrates information about sequence,structure, and function, and supports inferential procedures for analysis, diagnosis, and prediction.We present an approach to learning and using probabilistic graphical models of residue coupling. These models capture significant conservation and coupling constraints observable ina multiply-aligned set of sequences. Our approach can place a structural prior on considered couplings, so that all identified relationships have direct mechanistic explanations. It can also incorporate information about functional classes, and thereby learn a differential graphical model that distinguishes constraints common to all classes from those unique to individual classes. Such differential models separately account for class-specific conservation and family-wide coupling, two different sources of sequence covariation. They are then able to perform interpretable functional classification of new sequences, explaining classification decisions in terms of the underlying conservation and coupling constraints. We apply our approach in studies of both G protein-coupled receptors and PDZ domains, identifying and analyzing family-wide and class-specific constraints, and performing functional classification. The results demonstrate that graphical models of residue coupling provide a powerful tool for uncovering, representing, and utilizing significant sequence structure-function relationships in protein families. PMID:18451428
Model of globally coupled Duffing flows
NASA Astrophysics Data System (ADS)
Shimada, Tokuzo; Moriya, Takanobu
2014-03-01
A Duffing oscillator in a certain parameter range shows period-doubling that has the same Feigenbaum ratio as the logistic map, which is an important issue in universality in chaos. In this paper a globally coupled lattice of Duffing flows (GCFL), which is a natural extension of the globally coupled logistic map lattice (GCML), is constructed. It is observed that GCFL inherits various intriguing properties of GCML and that universality at the level of elements is thus lifted to that of systems. Phase diagrams for GCFL are determined, which are essentially the same as those for GCML. Similar to the two-clustered periodic attractor of GCML, the GCFL two-clustered attractor exhibits a successive period-doubling with an increase of population imbalance between the clusters (\\vartheta -bifurcation). A nontrivial distinction between the GCML and GCFL attractors that originates from the symmetry in the Duffing equation is investigated in detail.
Modeling of Inner Magnetosphere Coupling Processes
NASA Technical Reports Server (NTRS)
Khazanov, George V.
2011-01-01
The Ring Current (RC) is the biggest energy player in the inner magnetosphere. It is the source of free energy for Electromagnetic Ion Cyclotron (EMIC) wave excitation provided by a temperature anisotropy of RC ions, which develops naturally during inward E B convection from the plasmasheet. The cold plasmasphere, which is under the strong influence of the magnetospheric electric field, strongly mediates the RC-EMIC wave-particle-coupling process and ultimately becomes part of the particle and energy interplay. On the other hand, there is a strong influence of the RC on the inner magnetospheric electric and magnetic field configurations and these configurations, in turn, are important to RC dynamics. Therefore, one of the biggest needs for inner magnetospheric research is the continued progression toward a coupled, interconnected system with the inclusion of nonlinear feedback mechanisms between the plasma populations, the electric and magnetic fields, and plasma waves. As we clearly demonstrated in our studies, EMIC waves strongly interact with electrons and ions of energies ranging from approx.1 eV to approx.10 MeV, and that these waves strongly affect the dynamics of resonant RC ions, thermal electrons and ions, and the outer RB relativistic electrons. As we found, the rate of ion and electron scattering/heating in the Earth's magnetosphere is not only controlled by the wave intensity-spatial-temporal distribution but also strongly depends on the spectral distribution of the wave power. The latter is also a function of the plasmaspheric heavy ion content, and the plasma density and temperature distributions along the magnetic field lines. The above discussion places RC-EMIC wave coupling dynamics in context with inner magnetospheric coupling processes and, ultimately, relates RC studies with plasmaspheric and Superthermal Electrons formation processes as well as with outer RB physics.
Exact solutions for a coupled nonlocal model of nanobeams
Marotti de Sciarra, Francesco E-mail: raffaele.barretta@unina.it; Barretta, Raffaele E-mail: raffaele.barretta@unina.it
2014-10-06
BERNOULLI-EULER nanobeams under concentrated forces/couples with the nonlocal constitutive behavior proposed by ERINGEN do not exhibit small-scale effects. A new model obtained by coupling the ERINGEN and gradient models is formulated in the present note. A variational treatment is developed by imposing suitable thermodynamic restrictions for nonlocal models and the ensuing differential and boundary conditions of elastic equilibrium are provided. The nonlocal elastostatic problem is solved in a closed-form for nanocantilever and clamped nanobeams.
Solar system constraints on planetary Coriolis-type effects induced by rotation of distant masses
NASA Astrophysics Data System (ADS)
Iorio, Lorenzo
2010-08-01
We phenomenologically put local constraints on the rotation of distant masses by using the planets of the solar system. First, we analytically compute the orbital secular precessions induced on the motion of a test particle about a massive primary by a Coriolis-like force, treated as a small perturbation, in the case of a constant angular velocity vector Ψ directed along a generic direction in space. The semimajor axis a and the eccentricity e of the test particle do not secularly change, contrary to the inclination I, the longitude of the ascending node Ω, the longitude of the pericenter varpi and the mean anomaly Script M. Then, we compare our prediction for langledot varpirangle with the corrections Δdot varpi to the usual perihelion precessions of the inner planets recently estimated by fitting long data sets with different versions of the EPM ephemerides. We obtain as preliminary upper bounds |Ψz| <= 0.0006-0.013 arcsec cty-1, |Ψx| <= 0.1-2.7 arcsec cty-1, |Ψy| <= 0.3-2.3 arcsec cty-1. Interpreted in terms of models of space-time involving cosmic rotation, our results are able to yield constraints on cosmological parameters like the cosmological constant Λ and the Hubble parameter H0 not too far from their values determined with cosmological observations and, in some cases, several orders of magnitude better than the constraints usually obtained so far from space-time models not involving rotation. In the case of the rotation of the solar system throughout the Galaxy, occurring clockwise about the North Galactic Pole, our results for Ψz are in disagreement with the expected value of it at more than 3-σ level. Modeling the Oort cloud as an Einstein-Thirring slowly rotating massive shell inducing Coriolis-type forces inside yields unphysical results for its putative rotation.
Coupling entropy of co-processing model on social networks
NASA Astrophysics Data System (ADS)
Zhang, Zhanli
2015-08-01
Coupling entropy of co-processing model on social networks is investigated in this paper. As one crucial factor to determine the processing ability of nodes, the information flow with potential time lag is modeled by co-processing diffusion which couples the continuous time processing and the discrete diffusing dynamics. Exact results on master equation and stationary state are achieved to disclose the formation. In order to understand the evolution of the co-processing and design the optimal routing strategy according to the maximal entropic diffusion on networks, we propose the coupling entropy comprehending the structural characteristics and information propagation on social network. Based on the analysis of the co-processing model, we analyze the coupling impact of the structural factor and information propagating factor on the coupling entropy, where the analytical results fit well with the numerical ones on scale-free social networks.
Overview of the Coupled Model Intercomparison Project (CMIP)
Meehl, G A; Covey, C; McAvaney, B; Latif, M; Stouffer, R J
2004-08-05
The Coupled Model Intercomparison Project (CMIP) is designed to allow study and intercomparison of multi-model simulations of present-day and future climate. The latter are represented by idealized forcing of compounded 1% per year CO2 increase to the time of CO2 doubling near year 70 in simulations with global coupled models that contain, typically, components representing atmosphere, ocean, sea ice and land surface. Results from CMIP diagnostic subprojects were presented at the Second CMIP Workshop held at the Max Planck Institute for Meteorology in Hamburg, Germany, in September, 2003. Significant progress in diagnosing and understanding results from global coupled models has been made since the First CMIP Workshop in Melbourne, Australia in 1998. For example, the issue of flux adjustment is slowly fading as more and more models obtain stable multi-century surface climates without them. El Nino variability, usually about half the observed amplitude in the previous generation of coupled models, is now more accurately simulated in the present generation of global coupled models, though there are still biases in simulating the patterns of maximum variability. Typical resolutions of atmospheric component models contained in coupled models is now usually around 2.5 degrees latitude-longitude, with the ocean components often having about twice the atmospheric model resolution, with even higher resolution in the equatorial tropics. Some new-generation coupled models have atmospheric model resolutions of around 1.5 degrees latitude-longitude. Modeling groups now routinely run the CMIP control and 1% CO2 simulations in addition to 20th and 21st century climate simulations with a variety of forcings (e.g. volcanoes, solar variability, anthropogenic sulfate aerosols, ozone, and greenhouse gases (GHGs), with the anthropogenic forcings for future climate as well). However, persistent systematic errors noted in previous generations of global coupled models still are present
Perturbative unification of gauge couplings in supersymmetric E6 models
NASA Astrophysics Data System (ADS)
Cho, Gi-Chol; Maru, Nobuhito; Yotsutani, Kaho
2016-07-01
We study gauge coupling unification in supersymmetric (SUSY) E6 models where an additional U(1)‧ gauge symmetry is broken near the TeV scale and a number of exotic matter fields from the 27 representations have O(TeV) mass. Solving the two-loop renormalization group equations (RGE) of gauge couplings and a kinetic mixing coupling between the U(1)‧ and U(1)Y gauge fields, we find that the gauge couplings fall into the non-perturbative regime below the grand unified theories (GUT) scale. We examine threshold corrections on the running of gauge couplings from both light and heavy ( ˜ GUT scale) particles and show constraints on the size of corrections to achieve the perturbative unification of gauge couplings.
Coupled thermomechanical modeling using dissimilar geometries in arpeggio.
Kostka, Timothy D.; Templeton, Jeremy Alan
2010-11-01
Performing coupled thermomechanical simulations is becoming an increasingly important aspect of nuclear weapon (NW) safety assessments in abnormal thermal environments. While such capabilities exist in SIERRA, they have thus far been used only in a limited sense to investigate NW safety themes. An important limiting factor is the difficulty associated with developing geometries and meshes appropriate for both thermal and mechanical finite element models, which has limited thermomechanical analysis to simplified configurations. This work addresses the issue of how to perform coupled analyses on models where the underlying geometries and associated meshes are different and tailored to their relevant physics. Such an approach will reduce the model building effort and enable previously developed single-physics models to be leveraged in future coupled simulations. A combined-environment approach is presented in this report using SIERRA tools, with quantitative comparisons made between different options in SIERRA. This report summarizes efforts on running a coupled thermomechanical analysis using the SIERRA Arpeggio code.
Two-level parabolic model with phase-jump coupling
NASA Astrophysics Data System (ADS)
Lehto, J. M. S.; Suominen, K.-A.
2016-07-01
We study the coherent dynamics of a two-level parabolic model and ways to enhance population transfer and even to obtain complete population inversion in such models. Motivated by the complete population inversion effect of zero-area pulses found in [Phys. Rev. A 73, 023416 (2006), 10.1103/PhysRevA.73.023416], we consider a scheme where a given coupling function is transformed to a zero-area coupling by performing a phase jump in the middle of the evolution. With a phase-jump coupling, complete population inversion can be achieved with relatively small coupling. In the case of Zener tunneling, complete population inversion is obtained for strong-enough coupling regardless of the height of the tunneling barrier. We also derive a universal formula for the effect of the phase jump.
Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities
Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina
2012-09-01
The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.
Coupled land surface/hydrologic/atmospheric models
NASA Technical Reports Server (NTRS)
Pielke, Roger; Steyaert, Lou; Arritt, Ray; Lahtakia, Mercedes; Smith, Chris; Ziegler, Conrad; Soong, Su Tzai; Avissar, Roni; Wetzel, Peter; Sellers, Piers
1993-01-01
The topics covered include the following: prototype land cover characteristics data base for the conterminous United States; surface evapotranspiration effects on cumulus convection and implications for mesoscale models; the use of complex treatment of surface hydrology and thermodynamics within a mesoscale model and some related issues; initialization of soil-water content for regional-scale atmospheric prediction models; impact of surface properties on dryline and MCS evolution; a numerical simulation of heavy precipitation over the complex topography of California; representing mesoscale fluxes induced by landscape discontinuities in global climate models; emphasizing the role of subgrid-scale heterogeneity in surface-air interaction; and problems with modeling and measuring biosphere-atmosphere exchanges of energy, water, and carbon on large scales.
Accurate theoretical chemistry with coupled pair models.
Neese, Frank; Hansen, Andreas; Wennmohs, Frank; Grimme, Stefan
2009-05-19
Quantum chemistry has found its way into the everyday work of many experimental chemists. Calculations can predict the outcome of chemical reactions, afford insight into reaction mechanisms, and be used to interpret structure and bonding in molecules. Thus, contemporary theory offers tremendous opportunities in experimental chemical research. However, even with present-day computers and algorithms, we cannot solve the many particle Schrodinger equation exactly; inevitably some error is introduced in approximating the solutions of this equation. Thus, the accuracy of quantum chemical calculations is of critical importance. The affordable accuracy depends on molecular size and particularly on the total number of atoms: for orientation, ethanol has 9 atoms, aspirin 21 atoms, morphine 40 atoms, sildenafil 63 atoms, paclitaxel 113 atoms, insulin nearly 800 atoms, and quaternary hemoglobin almost 12,000 atoms. Currently, molecules with up to approximately 10 atoms can be very accurately studied by coupled cluster (CC) theory, approximately 100 atoms with second-order Møller-Plesset perturbation theory (MP2), approximately 1000 atoms with density functional theory (DFT), and beyond that number with semiempirical quantum chemistry and force-field methods. The overwhelming majority of present-day calculations in the 100-atom range use DFT. Although these methods have been very successful in quantum chemistry, they do not offer a well-defined hierarchy of calculations that allows one to systematically converge to the correct answer. Recently a number of rather spectacular failures of DFT methods have been found-even for seemingly simple systems such as hydrocarbons, fueling renewed interest in wave function-based methods that incorporate the relevant physics of electron correlation in a more systematic way. Thus, it would be highly desirable to fill the gap between 10 and 100 atoms with highly correlated ab initio methods. We have found that one of the earliest (and now
Coupled oscillator model for nonlinear gravitational perturbations
NASA Astrophysics Data System (ADS)
Yang, Huan; Zhang, Fan; Green, Stephen R.; Lehner, Luis
2015-04-01
Motivated by the gravity-fluid correspondence, we introduce a new method for characterizing nonlinear gravitational interactions. Namely we map the nonlinear perturbative form of the Einstein equation to the equations of motion of a collection of nonlinearly coupled harmonic oscillators. These oscillators correspond to the quasinormal or normal modes of the background spacetime. We demonstrate the mechanics and the utility of this formalism within the context of perturbed asymptotically anti-de Sitter black brane spacetimes. We confirm in this case that the boundary fluid dynamics are equivalent to those of the hydrodynamic quasinormal modes of the bulk spacetime. We expect this formalism to remain valid in more general spacetimes, including those without a fluid dual. In other words, although born out of the gravity-fluid correspondence, the formalism is fully independent and it has a much wider range of applicability. In particular, as this formalism inspires an especially transparent physical intuition, we expect its introduction to simplify the often highly technical analytical exploration of nonlinear gravitational dynamics.
Coupled Oscillator Model for Nonlinear Gravitational Perturbations
NASA Astrophysics Data System (ADS)
Yang, Huan; Zhang, Fan; Green, Stephen; Lehner, Luis
2015-04-01
Motivated by the fluid/gravity correspondence, we introduce a new method for characterizing nonlinear gravitational interactions. Namely we map the nonlinear perturbative form of the Einstein's equation to the equations of motion of a series of nonlinearly-coupled harmonic oscillators. These oscillators correspond to the quasinormal modes of the background spacetime. We demonstrate the mechanics and the utility of this formalism with an asymptotically AdS black-brane spacetime, where the equations of motion for the oscillators are shown to be equivalent to the Navier-Stokes equation for the boundary fluid in the mode-expansion picture. We thereby expand on the explicit correspondence connecting the fluid and gravity sides for this particular physical set-up. Perhaps more importantly, we expect this formalism to remain valid in more general spacetimes, including those without a fluid/gravity correspondence. In other words, although born out of the correspondence, the formalism survives independently of it and has a much wider range of applicability.
The Coupled Chemical and Physical Dynamics Model of MALDI.
Knochenmuss, Richard
2016-06-12
The coupled physical and chemical dynamics model of ultraviolet matrix-assisted laser desorption/ionization (MALDI) has reproduced and explained a wide variety of MALDI phenomena. The rationale behind and elements of the model are reviewed, including the photophysics, kinetics, and thermodynamics of primary and secondary reaction steps. Experimental results are compared with model predictions to illustrate the foundations of the model, coupling of ablation and ionization, differences between and commonalities of matrices, secondary charge transfer reactions, ionization in both polarities, fluence and concentration dependencies, and suppression and enhancement effects. PMID:27070182
Finite Element Modelling of Fluid Coupling in the Coiled Cochlea
NASA Astrophysics Data System (ADS)
Ni, Guangjian; Elliott, S. J.; Lineton, B.; Saba, R.
2011-11-01
A finite element model is first used to calculate the modal pressure difference for a box model of the cochlea, which shows that the number of fluid elements across the width of the cochlea determines the accuracy with which the near field, or short wavenumber, component of the fluid coupling is reproduced. Then results are compared with the analytic results to validate the accuracy of the FE model. It is, however, the far field, or long wavelength, component of the fluid coupling that is most affected by the geometry. A finite element model of the coiled cochlea is then used to calculate fluid coupling in this case, which has similar characteristics to the uncoiled model.
ITG sideband coupling models for zonal flows
Stransky, M.
2011-05-15
Four-wave interaction model between ITG mode and zonal flow was derived using fluid equations. In this model, the zonal flow is excited non-linearly by ITG turbulence via Reynolds stress. Numerical simulations show that the system allows for a small range above the ITG threshold where the zonal flow can stabilize an unstable ITG mode, effectively increasing {eta}{sub i} threshold, an effect which has been called the Dimits shift. However, the shift is smaller than in known cases such that in the Cyclone base.
A Dynamic Coupled Magnetosphere-Ionosphere-Ring Current Model
NASA Astrophysics Data System (ADS)
Pembroke, Asher
In this thesis we describe a coupled model of Earth's magnetosphere that consists of the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamics (MHD) simulation, the MIX ionosphere solver and the Rice Convection Model (RCM). We report some results of the coupled model using idealized inputs and model parameters. The algorithmic and physical components of the model are described, including the transfer of magnetic field information and plasma boundary conditions to the RCM and the return of ring current plasma properties to the LFM. Crucial aspects of the coupling include the restriction of RCM to regions where field-line averaged plasma-beta ¡=1, the use of a plasmasphere model, and the MIX ionosphere model. Compared to stand-alone MHD, the coupled model produces a substantial increase in ring current pressure and reduction of the magnetic field near the Earth. In the ionosphere, stronger region-1 and region-2 Birkeland currents are seen in the coupled model but with no significant change in the cross polar cap potential drop, while the region-2 currents shielded the low-latitude convection potential. In addition, oscillations in the magnetic field are produced at geosynchronous orbit with the coupled code. The diagnostics of entropy and mass content indicate that these oscillations are associated with low-entropy flow channels moving in from the tail and may be related to bursty bulk flows and bubbles seen in observations. As with most complex numerical models, there is the ongoing challenge of untangling numerical artifacts and physics, and we find that while there is still much room for improvement, the results presented here are encouraging. Finally, we introduce several new methods for magnetospheric visualization and analysis, including a fluid-spatial volume for RCM and a field-aligned analysis mesh for the LFM. The latter allows us to construct novel visualizations of flux tubes, drift surfaces, topological boundaries, and bursty-bulk flows.
A multicomponent coupled model of glacier hydrology
NASA Astrophysics Data System (ADS)
Flowers, Gwenn Elizabeth
Multiple lines of evidence suggest a causal link between subglacial hydrology and phenomena such as fast-flowing ice. This evidence includes a measured correlation between water under alpine glaciers and their motion, the presence of saturated sediment beneath Antaxctic ice streams, and geologic signatures of enhanced paleo-ice flow over deformable substrates. The complexity of the glacier bed as a three-component mixture presents an obstacle to unraveling these conundra. Inadequate representations of hydrology, in part, prevent us from closing the gap between empirical descriptions and a comprehensive consistent framework for understanding the dynamics of glacierized systems. I have developed a distributed numerical model that solves equations governing glacier surface runoff, englacial water transport, subglacial drainage, and subsurface groundwater flow. Ablation and precipitation drive the surface model through a temperature-index parameterization. Water is permitted to flow over and off the glacier, or to the bed through a system of crevasses, pipes, and fractures. A macroporous sediment horizon transports subglacial water to the ice margin or to an underlying aquifer. Governing equations are derived from the law of mass conservation and are expressed as a balance between the internal redistribution of water and external sources. Each of the four model components is represented as a two-dimensional, vertically-integrated layer that communicates with its neighbors through water exchange. Stacked together, these layers approximate a three-dimensional system. I tailor the model to Trapridge Glacier, where digital maps of the surface and bed have been derived from ice-penetrating radar data. Observations of subglacial water pressure provide additional constraints on model parameters and a basis for comparison of simulations with real data. Three classical idealizations of glacier geometry are used for simple model experiments. Equilibrium tests emphasize geometric
Coupled Facility/Payload Vibration Modeling Improvements
NASA Technical Reports Server (NTRS)
Carnahan, Timothy M.; Kaiser, Michael
2015-01-01
A major phase of aerospace hardware verification is vibration testing. The standard approach for such testing is to use a shaker to induce loads into the payload. In preparation for vibration testing at NASA/GSFC there is an analysis to assess the responses of the payload. A new method of modeling the test is presented that takes into account dynamic interactions between the facility and the payload. This dynamic interaction has affected testing in the past, but been ignored or adjusted for during testing. By modeling the combination of the facility and test article (payload) it is possible to improve the prediction of hardware responses. Many aerospace test facilities work in similar way to those at NASA Goddard Space Flight Center. Lessons learned here should be applicable to other test facilities with similar setups.
Coupled Facility-Payload Vibration Modeling Improvements
NASA Technical Reports Server (NTRS)
Carnahan, Timothy M.; Kaiser, Michael A.
2015-01-01
A major phase of aerospace hardware verification is vibration testing. The standard approach for such testing is to use a shaker to induce loads into the payload. In preparation for vibration testing at National Aeronautics and Space Administration/Goddard Space Flight Center an analysis is performed to assess the responses of the payload. A new method of modeling the test is presented that takes into account dynamic interactions between the facility and the payload. This dynamic interaction has affected testing in the past, but been ignored or adjusted for during testing. By modeling the combined dynamics of the facility and test article (payload) it is possible to improve the prediction of hardware responses. Many aerospace test facilities work in similar way to those at NASA/Goddard Space Flight Center. Lessons learned here should be applicable to other test facilities with similar setups.
NASA Astrophysics Data System (ADS)
Casuso, E.; Beckman, J. E.
2015-05-01
We present here a theoretical model which can at least contribute to the observed relation between the specific angular momenta of galaxies and their masses. This study offers prima facie evidence that the origin of an angular momentum of galaxies could be somewhat more complex than previously proposed. The most recent observations point to a scenario in which, after recombination, matter was organized around bubbles (commonly termed voids), which acquired rotation by tidal torque interaction. Subsequently, a combination of the effects of the gravitational collapse of gas in protogalaxies and the Coriolis force due to the rotation of the voids could produce the rotation of spiral galaxies. Thereafter, the tidal interaction between the objects populating the quasi-spherical voids, in which the galaxies far away from the rotation axes (populating the sheet forming the surface of a void) interact with higher probability with others similarly situated in a neighbouring void, offers a mechanism for transforming some of the galaxies into ellipticals, breaking their spin and yielding galaxies with low net angular momentum, as observed. This model gives an explanation for those observations which suggest a tendency of galactic spins to align along the radius vectors pointing towards the centres of the voids for ellipticals/SO and parallel to filaments and sheets for the spirals. Furthermore, while in simple tidal torque theory the angular momentum supplied to galaxies diminishes drastically with the cosmic expansion, in our approximation for which the Coriolis force acts in addition to tidal torques, the Coriolis force due to void rotation ensures almost continuous angular momentum supply.
Strong Local-Nonlocal Coupling for Integrated Fracture Modeling
Littlewood, David John; Silling, Stewart A.; Mitchell, John A.; Seleson, Pablo D.; Bond, Stephen D.; Parks, Michael L.; Turner, Daniel Z.; Burnett, Damon J.; Ostien, Jakob; Gunzburger, Max
2015-09-01
Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for
Service-Oriented Approach to Coupling Earth System Models and Modeling Frameworks
NASA Astrophysics Data System (ADS)
Goodall, J. L.; Saint, K. D.; Ercan, M. B.; Briley, L. J.; Murphy, S.; You, H.; DeLuca, C.; Rood, R. B.
2012-12-01
Modeling water systems often requires coupling models across traditional Earth science disciplinary boundaries. While there has been significant effort within various Earth science disciplines (e.g., atmospheric science, hydrology, and Earth surface dynamics) to create models and, more recently, modeling frameworks, there has been less work on methods for coupling across disciplinary-specific models and modeling frameworks. We present work investigating one possible method for coupling across disciplinary-specific Earth system models and modeling frameworks: service-oriented architectures. In a service-oriented architecture, models act as distinct units or components within a system and are designed to pass well defined messages to consumers of the service. While the approach offers the potential to couple heterogeneous computational models by allowing a high degree of autonomy across models of the Earth system, there are significant scientific and technical challenges to be addressed when coupling models designed for different communities and built for different modeling frameworks. We have addressed some of these challenges through a case study where we coupled a hydrologic model compliant with the OpenMI standard with an atmospheric model compliant with the EMSF standard. In this case study, the two models were coupled through data exchanges of boundary conditions enabled by exposing the atmospheric model as a web service. A discussion of the technical and scientific challenges, some that we have addressed and others that remain open, will be presented including differences in computer architectures, data semantics, and spatial scales between the coupled models.
Non compact continuum limit of two coupled Potts models
NASA Astrophysics Data System (ADS)
Vernier, Éric; Lykke Jacobsen, Jesper; Saleur, Hubert
2014-10-01
We study two Q-state Potts models coupled by the product of their energy operators, in the regime 2 < Q ⩽ 4 where the coupling is relevant. A particular choice of weights for the square lattice is shown to be equivalent to the integrable a_3(2) vertex model. It corresponds to a selfdual system of two antiferromagnetic Potts models, coupled ferromagnetically. We derive the Bethe ansatz equations and study them numerically for two arbitrary twist angles. The continuum limit is shown to involve two compact bosons and one non compact boson, with discrete states emerging from the continuum at appropriate twists. The non compact boson entails strong logarithmic corrections to the finite-size behaviour of the scaling levels, an understanding of which allows us to correct an earlier proposal for some of the critical exponents. In particular, we infer the full set of magnetic scaling dimensions (watermelon operators) of the Potts model.
Development of a Validated Model of Ground Coupling
Metz, P. D.
1980-01-01
A research program at Brookhaven National Laboratory (BNL) studies ground coupling, the use of the earth as a heat source/sink or storage element for solar heat pump space conditioning systems. This paper outlines the analytical and experimental research to date toward the development of an experimentally validated model of ground coupling and based on experimental results from December, 1978 to September, 1979, expores sensitivity of present model predictions to variations in thermal conductivity and other factors. Ways in which the model can be further refined are discussed.
Lumped-element models characterize DR coupling effects
NASA Technical Reports Server (NTRS)
Hearn, Chase P.
1992-01-01
An approach to the analysis of closely spaced resonances produced by a microstrip coupled dielectric resonator is presented. In particular, it is shown that the use of a lumped-element model significantly simplifies the analysis. An experimental verification demonstrates that the model predicts the adjacent complementary resonances to within 1.6 percent of the measured value.
Energy demand analytics using coupled technological and economic models
Impacts of a range of policy scenarios on end-use energy demand are examined using a coupling of MARKAL, an energy system model with extensive supply and end-use technological detail, with Inforum LIFT, a large-scale model of the us. economy with inter-industry, government, and c...
FULLY COUPLED "ONLINE" CHEMISTRY WITHIN THE WRF MODEL
A fully coupled "online" Weather Research and Forecasting/Chemistry (WRF/Chem) model has been developed. The air quality component of the model is fully consistent with the meteorological component; both components use the same transport scheme (mass and scalar preserving), the s...
Improving data transfer for model coupling
NASA Astrophysics Data System (ADS)
Zhang, C.; Liu, L.; Yang, G.; Li, R.; Wang, B.
2015-10-01
Data transfer, which means transferring data fields between two component models or rearranging data fields among processes of the same component model, is a fundamental operation of a coupler. Most of state-of-the-art coupler versions currently use an implementation based on the point-to-point (P2P) communication of the Message Passing Interface (MPI) (call such an implementation "P2P implementation" for short). In this paper, we reveal the drawbacks of the P2P implementation, including low communication bandwidth due to small message size, variable and big number of MPI messages, and jams during communication. To overcome these drawbacks, we propose a butterfly implementation for data transfer. Although the butterfly implementation can outperform the P2P implementation in many cases, it degrades the performance in some cases because the total message size transferred by the butterfly implementation is larger than that by the P2P implementation. To make the data transfer completely improved, we design and implement an adaptive data transfer library that combines the advantages of both butterfly implementation and P2P implementation. Performance evaluation shows that the adaptive data transfer library significantly improves the performance of data transfer in most cases and does not decrease the performance in any cases. Now the adaptive data transfer library is open to the public and has been imported into a coupler version C-Coupler1 for performance improvement of data transfer. We believe that it can also improve other coupler versions.
Ray-tracing simulations of coupled dark energy models
NASA Astrophysics Data System (ADS)
Pace, Francesco; Baldi, Marco; Moscardini, Lauro; Bacon, David; Crittenden, Robert
2015-02-01
Dark matter and dark energy are usually assumed to couple only gravitationally. An extension to this picture is to model dark energy as a scalar field coupled directly to cold dark matter. This coupling leads to new physical effects, such as a fifth force and a time-dependent dark matter particle mass. In this work we examine the impact that coupling has on weak lensing statistics by constructing realistic simulated weak lensing maps using ray-tracing techniques through N-body cosmological simulations. We construct maps for different lensing quantities, covering a range of scales from a few arcminutes to several degrees. The concordance Λ cold dark matter (ΛCDM) model is compared to different coupled dark energy models, described either by an exponential scalar field potential (standard coupled dark energy scenario) or by a SUGRA potential (bouncing model). We analyse several statistical quantities and our results, with sources at low redshifts are largely consistent with previous work on cosmic microwave background lensing by Carbone et al. The most significant differences from the ΛCDM model are due to the enhanced growth of the perturbations and to the effective friction term in non-linear dynamics. For the most extreme models, we see differences in the power spectra up to 40 per cent compared to the ΛCDM model. The different time evolution of the linear matter overdensity can account for most of the differences, but when controlling for this using a ΛCDM model having the same normalization, the overall signal is smaller due to the effect of the friction term appearing in the equation of motion for dark matter particles.
A Coupled Atmosphere-Ocean-Wave Modeling System
NASA Astrophysics Data System (ADS)
Allard, R. A.; Smith, T.; Rogers, W. E.; Jensen, T. G.; Chu, P.; Campbell, T. J.
2012-12-01
A growing interest in the impacts that large and small scale ocean and atmospheric events (El Niño, hurricanes, etc.) have on weather forecasting has led to the coupling of atmospheric, ocean circulation and ocean wave models. The Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS™ ) consists of the Navy's atmospheric model coupled to the Navy Coastal Ocean Model (NCOM) and the wave models SWAN (Simulating WAves Nearshore) and WAVEWATCH III (WW3™). In a fully coupled mode, COAMPS, NCOM, and SWAN (or WW3) may be integrated concurrently so that currents and water levels, wave-induced stress, bottom drag, Stokes drift current, precipitation, and surface fluxes of heat, moisture, and momentum are exchanged across the air-wave-sea interface. This coupling is facilitated through the Earth System Modeling Framework (ESMF). The ESMF version of COAMPS is being transitioned to operational production centers at the Naval Oceanographic Office and the Fleet Numerical Meteorology and Oceanography Center. Highlights from validation studies for the Florida Straits, Hurricane Ivan and the Adriatic Sea will be presented. COAMPS® is a registered trademark of the Naval Research Laboratory.
Coupling TOUGH2 with CLM3: Developing a Coupled Land Surface andSubsurface Model
Pan, Lehua; Jin, Jiming; Miller, Norman; Wu, Yu-Shu; Bodvarsson,Gudmundur
2006-05-19
An understanding of the hydrologic interactions among atmosphere, land surface, and subsurface is one of the keys to understanding the water cycling system that supports life on earth. The inherent coupled processes and complex feedback structures among subsystems make such interactions difficult to simulate. In this paper, we present a model that simulates the land surface and subsurface hydrologic response to meteorological forcing. This model combines a state-of-the-art land-surface model, the NCAR Community Land Model version 3 (CLM3), with a variably saturated groundwater model, TOUGH2, through an internal interface that includes flux and state variables shared by the two submodels. Specifically, TOUGH2 uses infiltration, evaporation, and root-uptake rates, calculated by CLM3, as source/sink terms in its simulation; CLM3 uses saturation and capillary pressure profiles, calculated by TOUGH2, as state variables in its simulation. This new model, CLMT2, preserves the best aspects of both submodels: the state-of-the-art modeling capability of surface energy and hydrologic processes (including snow, runoff, freezing/melting, evapotranspiration, radiation, and biophysiological processes) from CLM3 and the more realistic physical-process-based modeling capability of subsurface hydrologic processes (including heterogeneity, three-dimensional flow, seamless combining of unsaturated and saturated zone, and water table) from TOUGH2. The preliminary simulation results show that the coupled model greatly improved the predictions of the groundwater table, evapotranspiration, and surface temperature at a real watershed, as evaluated using 18 years of observed data. The new model is also ready to be coupled with an atmospheric simulation model, to form one of the first top of the atmosphere to deep groundwater atmosphere-land-surface-subsurface models.
A coupled subsurface-boundary layer model of water on Mars
NASA Astrophysics Data System (ADS)
Zent, A. P.; Haberle, R. M.; Houben, H. C.; Jakosky, B. M.
1993-02-01
A 1D numerical model of the exchange of H2O between the atmosphere and subsurface of Mars through the PBL is employed to explore the mechanisms of H2O exchange and to elucidate the role played by the regolith in the local H2O budget. The atmospheric model includes effects of Coriolis, pressure gradient, and frictional forces for momentum: radiation, sensible heat flux, and advection for heat. It is suggested that in most cases, the flux through the Martian surface reverses twice in the course of each sol. The effects of surface albedo, thermal inertia, solar declination, atmospheric optical depth, and regolith pore structure are explored. It is proposed that higher thermal inertia forces more H2O into the atmosphere because the regolith is warmer at depth.
Hawke, B.C.
1963-02-26
This patent relates to a releasable coupling connecting a control rod to a control rod drive. This remotely operable coupling mechanism can connect two elements which are laterally and angviarly misaligned, and provides a means for sensing the locked condition of the elements. The coupling utilizes a spherical bayonet joint which is locked against rotation by a ball detent lock. (AEC)
The effect of the Coriolis force on the stability of rotating magnetic stars
NASA Technical Reports Server (NTRS)
Sakurai, K.
1972-01-01
The effect of the Coriolis force on the stability of rotating magnetic stars in hydrostatic equilibrium is investigated by using the method of the energy principle. It is shown that this effect is to inhibit the onset of instability.
The effect of the Coriolis force on the stability of rotating magnetic stars.
NASA Technical Reports Server (NTRS)
Sakurai, K.
1972-01-01
The effect of the Coriolis force on the stability of rotating magnetic stars in hydrostatic equilibrium is investigated by using the method of the energy principle. It is shown that this effect is to inhibit the onset of instability.
Dynamic Coupling of Alaska Based Ecosystem and Geophysical Models into an Integrated Model
NASA Astrophysics Data System (ADS)
Bennett, A.; Carman, T. B.
2012-12-01
As scientific models and the challenges they address have grown in complexity and scope, so has interest in dynamically coupling or integrating these models. Dynamic model coupling presents software engineering challenges stemming from differences in model architectures, differences in development styles between modeling groups, and memory and run time performance concerns. The Alaska Integrated Ecosystem Modeling (AIEM) project aims to dynamically couple three independently developed scientific models so that each model can exchange run-time data with each of the other models. The models being coupled are a stochastic fire dynamics model (ALFRESCO), a permafrost model (GIPL), and a soil and vegetation model (DVM-DOS-TEM). The scientific research objectives of the AIEM project are to: 1) use the coupled models for increasing our understanding of climate change and other stressors on landscape level physical and ecosystem processes, and; 2) provide support for resource conservation planning and decision making. The objectives related to the computer models themselves are modifiability, maintainability, and performance of the coupled and individual models. Modifiability and maintainability are especially important in a research context because source codes must be continually adapted to address new scientific concepts. Performance is crucial to delivering results in a timely manner. To achieve the objectives while addressing the challenges in dynamic model coupling, we have designed an architecture that emphasizes high cohesion for each individual model and loose coupling between the models. Each model will retain the ability to run independently, or to be available as a linked library to the coupled model. Performance is facilitated by parallelism in the spatial dimension. With close collaboration among modeling groups, the methodology described here has demonstrated the feasibility of coupling complex ecological and geophysical models to provide managers with more
Preliminary investigation of models of coupled clocks and coupled driven pendulums
NASA Astrophysics Data System (ADS)
LeBailly, Christopher A.
In this paper we study a phenomena observed in the 17 th century by Christiaan Huygens. He found that two pendulum clocks placed on a common support synchronized over time. We study a model of this type of coupling primarily using the fourth-order Runge-Kutta method. We look at time series to get a picture of what types of synchronization occur and then once we figure out how to classify synchronization we study how varying the damping in the system affects the synchronization. We next look at what happens when driven pendulums replace the clocks. We compare phase portraits and bifurcation diagrams of the uncoupled driven pendulum to the coupled driven pendulums to get a picture of how the dynamics and chaotic tendencies of the driven pendulum change with the coupling.
Fluid coupling in a discrete model of cochlear mechanics.
Elliott, Stephen J; Lineton, Ben; Ni, Guangjian
2011-09-01
A discrete model of cochlear mechanics is introduced that includes a full, three-dimensional, description of fluid coupling. This formulation allows the fluid coupling and basilar membrane dynamics to be analyzed separately and then coupled together with a simple piece of linear algebra. The fluid coupling is initially analyzed using a wavenumber formulation and is separated into one component due to one-dimensional fluid coupling and one comprising all the other contributions. Using the theory of acoustic waves in a duct, however, these two components of the pressure can also be associated with a far field, due to the plane wave, and a near field, due to the evanescent, higher order, modes. The near field components are then seen as one of a number of sources of additional longitudinal coupling in the cochlea. The effects of non-uniformity and asymmetry in the fluid chamber areas can also be taken into account, to predict both the pressure difference between the chambers and the mean pressure. This allows the calculation, for example, of the effect of a short cochlear implant on the coupled response of the cochlea. PMID:21895085
Analytic Thermoelectric Couple Modeling: Variable Material Properties and Transient Operation
NASA Technical Reports Server (NTRS)
Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred
2015-01-01
To gain a deeper understanding of the operation of a thermoelectric couple a set of analytic solutions have been derived for a variable material property couple and a transient couple. Using an analytic approach, as opposed to commonly used numerical techniques, results in a set of useful design guidelines. These guidelines can serve as useful starting conditions for further numerical studies, or can serve as design rules for lab built couples. The analytic modeling considers two cases and accounts for 1) material properties which vary with temperature and 2) transient operation of a couple. The variable material property case was handled by means of an asymptotic expansion, which allows for insight into the influence of temperature dependence on different material properties. The variable property work demonstrated the important fact that materials with identical average Figure of Merits can lead to different conversion efficiencies due to temperature dependence of the properties. The transient couple was investigated through a Greens function approach; several transient boundary conditions were investigated. The transient work introduces several new design considerations which are not captured by the classic steady state analysis. The work helps to assist in designing couples for optimal performance, and also helps assist in material selection.
Initialization and Predictability of a Coupled ENSO Forecast Model
NASA Technical Reports Server (NTRS)
Chen, Dake; Zebiak, Stephen E.; Cane, Mark A.; Busalacchi, Antonio J.
1997-01-01
The skill of a coupled ocean-atmosphere model in predicting ENSO has recently been improved using a new initialization procedure in which initial conditions are obtained from the coupled model, nudged toward observations of wind stress. The previous procedure involved direct insertion of wind stress observations, ignoring model feedback from ocean to atmosphere. The success of the new scheme is attributed to its explicit consideration of ocean-atmosphere coupling and the associated reduction of "initialization shock" and random noise. The so-called spring predictability barrier is eliminated, suggesting that such a barrier is not intrinsic to the real climate system. Initial attempts to generalize the nudging procedure to include SST were not successful; possible explanations are offered. In all experiments forecast skill is found to be much higher for the 1980s than for the 1970s and 1990s, suggesting decadal variations in predictability.
First Analysis Of A Coupled Mediterranean - Atmosphere Model
NASA Astrophysics Data System (ADS)
Somot, S.; Sevault, F.; Béranger, K.; Déqué, M.; Crépon, M.
A regional coupled ocean-atmosphere model has been developed to study the climate of the Mediterranean Region in a joint research between Météo-France-CNRM and CNRS-IPSL. This model is based on a variable resolution version of the global spectral AGCM Arpège-Climat with an horizontal grid mesh of 50 km over the mediterranean area and a limited area version of the OGCM OPA with an horizontal grid mesh of 10 km. The two models are coupled with the OASIS coupler developed by CERFACS. Outside the Mediterranean Sea, the sea surface temperature is prescribed from interannual observed data. A ten year coupled simulation has been done without relaxation nor correction. Sea- sonal averages as well as interannual variability have been compared with available observations and with uncoupled simulations.
A Coupled Aeroelastic Model for Launch Vehicle Stability Analysis
NASA Technical Reports Server (NTRS)
Orr, Jeb S.
2010-01-01
A technique for incorporating distributed aerodynamic normal forces and aeroelastic coupling effects into a stability analysis model of a launch vehicle is presented. The formulation augments the linear state-space launch vehicle plant dynamics that are compactly derived as a system of coupled linear differential equations representing small angular and translational perturbations of the rigid body, nozzle, and sloshing propellant coupled with normal vibration of a set of orthogonal modes. The interaction of generalized forces due to aeroelastic coupling and thrust can be expressed as a set of augmenting non-diagonal stiffness and damping matrices in modal coordinates with no penalty on system order. While the eigenvalues of the structural response in the presence of thrust and aeroelastic forcing can be predicted at a given flight condition independent of the remaining degrees of freedom, the coupled model provides confidence in closed-loop stability in the presence of rigid-body, slosh, and actuator dynamics. Simulation results are presented that characterize the coupled dynamic response of the Ares I launch vehicle and the impact of aeroelasticity on control system stability margins.
Validation of coupled atmosphere-fire behavior models
Bossert, J.E.; Reisner, J.M.; Linn, R.R.; Winterkamp, J.L.; Schaub, R.; Riggan, P.J.
1998-12-31
Recent advances in numerical modeling and computer power have made it feasible to simulate the dynamical interaction and feedback between the heat and turbulence induced by wildfires and the local atmospheric wind and temperature fields. At Los Alamos National Laboratory, the authors have developed a modeling system that includes this interaction by coupling a high resolution atmospheric dynamics model, HIGRAD, with a fire behavior model, BEHAVE, to predict the spread of wildfires. The HIGRAD/BEHAVE model is run at very high resolution to properly resolve the fire/atmosphere interaction. At present, these coupled wildfire model simulations are computationally intensive. The additional complexity of these models require sophisticated methods for assuring their reliability in real world applications. With this in mind, a substantial part of the research effort is directed at model validation. Several instrumented prescribed fires have been conducted with multi-agency support and participation from chaparral, marsh, and scrub environments in coastal areas of Florida and inland California. In this paper, the authors first describe the data required to initialize the components of the wildfire modeling system. Then they present results from one of the Florida fires, and discuss a strategy for further testing and improvement of coupled weather/wildfire models.
Coupling Efforts to the Accurate and Efficient Tsunami Modelling System
NASA Astrophysics Data System (ADS)
Son, S.
2015-12-01
In the present study, we couple two different types of tsunami models, i.e., nondispersive shallow water model of characteristic form(MOST ver.4) and dispersive Boussinesq model of non-characteristic form(Son et al. (2011)) in an attempt to improve modelling accuracy and efficiency. Since each model deals with different type of primary variables, additional care on matching boundary condition is required. Using an absorbing-generating boundary condition developed by Van Dongeren and Svendsen(1997), model coupling and integration is achieved. Characteristic variables(i.e., Riemann invariants) in MOST are converted to non-characteristic variables for Boussinesq solver without any loss of physical consistency. Established modelling system has been validated through typical test problems to realistic tsunami events. Simulated results reveal good performance of developed modelling system. Since coupled modelling system provides advantageous flexibility feature during implementation, great efficiencies and accuracies are expected to be gained through spot-focusing application of Boussinesq model inside the entire domain of tsunami propagation.
Effect of nonlinear nonlinear coupling to a pure dephasing model
NASA Astrophysics Data System (ADS)
Ge, Li; Zhao, Nan
2015-03-01
We investigate the influence of the nonlinear coupling to the coherence of a pure dephasing model. The total system consists of a qubit and a Bosonic bath, which are coupled by an interaction HI =g1σz ⊗ x +g2σz ⊗x2 with x =1/√{ 2} (a +a†) . It's shown that no matter how small g2 is, the long time behavior of the coherence is significantly changed by the nonlinear coupling for free induction decay (FID), while the effect of g1 can be neglected as long as g1 is much smaller than the enegy splitting of the qubit. In the case that many-pulse dynamical decoupling control is exerted on the qubit, g2 also modulates the oscillation of the coherence. Our results indicate that the nonlinear coupling must be taken into account for long time dynamics.
Triple neutral gauge boson couplings in noncommutative Standard Model
NASA Astrophysics Data System (ADS)
Deshpande, N. G.; He, Xiao-Gang
2002-05-01
It has been shown recently that the triple neutral gauge boson couplings are not uniquely determined in noncommutative extension of the Standard Model (NCSM). Depending on specific schemes used, the couplings are different and may even be zero. To distinguish different realizations of the NCSM, additional information either from theoretical or experimental considerations is needed. In this Letter we show that these couplings can be uniquely determined from considerations of unification of electroweak and strong interactions. Using SU(5) as the underlying theory and integrating out the heavy degrees of freedom, we obtain unique non-zero new triple γγγ, γγZ, γZZ, ZZZ, γGG, ZGG and GGG couplings at the leading order in the NCSM. We also briefly discuss experimental implications.
A coupled bubble plume-reservoir model for hypolimnetic oxygenation
NASA Astrophysics Data System (ADS)
Singleton, V. L.; Rueda, F. J.; Little, J. C.
2010-12-01
A model for a linear bubble plume used for hypolimnetic oxygenation was coupled with a three-dimensional hydrodynamic model to simulate the complex interaction between bubble plumes and the large-scale processes of transport and mixing. The coupled model accurately simulated the evolution of dissolved oxygen (DO) and temperature fields that occurred during two full-scale diffuser tests in a water supply reservoir. The prediction of asymmetric circulation cells laterally and longitudinally on both sides of the linear diffuser was due to the uneven reservoir bathymetry. Simulation of diffuser operation resulted in baroclinic pressure gradients, which caused vertical oscillations above the hypolimnion and contributed to distribution of plume detrainment upstream and downstream of the diffuser. On the basis of a first-order variance analysis, the largest source of uncertainty for both predicted DO and temperature was the model bathymetry, which accounted for about 90% of the overall uncertainty. Because the oxygen addition rate was 4 times the sediment oxygen uptake (SOU) rate, DO predictions were not sensitive to SOU. In addition to bathymetry, the momentum assigned to plume entrainment and detrainment is a significant source of uncertainty in the coupled model structure and appreciably affects the predicted intensity of mixing and lake circulation. For baseline runs, the entrainment and detrainment velocities were assumed to be half of the velocities through the flux face of the grid cells. Additional research on appropriate values of the plume detrainment momentum for the coupled model is required.
String coupling and interactions in type IIB matrix model
Kitazawa, Yoshihisa; Nagaoka, Satoshi
2009-05-15
We investigate the interactions of closed strings in a IIB matrix model. The basic interaction of the closed superstring is realized by the recombination of two intersecting strings. Such interaction is investigated in a IIB matrix model via two-dimensional noncommutative gauge theory in the IR limit. By estimating the probability of the recombination, we identify the string coupling g{sub s} in the IIB matrix model. We confirm that our identification is consistent with matrix string theory.
Using Lateral Coupled Snakes for Modeling the Contours of Worms
NASA Astrophysics Data System (ADS)
Wang, Qing; Ronneberger, Olaf; Schulze, Ekkehard; Baumeister, Ralf; Burkhardt, Hans
A model called lateral coupled snakes is proposed to describe the contours of moving C. elegans worms on 2D images with high accuracy. The model comprises two curves with point correspondence between them. The line linking a corresponding pair is approximately perpendicular to the curves at the two points, which is ensured by shear restoring forces. Experimental proofs reveal that the model is a promising tool for locating and segmenting worms or objects with similar shapes.
A Fully Coupled Model for Electromechanics of the Heart
Xia, Henian; Wong, Kwai; Zhao, Xiaopeng
2012-01-01
We present a fully coupled electromechanical model of the heart. The model integrates cardiac electrophysiology and cardiac mechanics through excitation-induced contraction and deformation-induced current. Numerical schemes based on finite element were implemented in a supercomputer. Numerical examples were presented using a thin cardiac tissue and a dog ventricle with realistic geometry. Performance of the parallel simulation scheme was studied. The model provides a useful tool to understand cardiovascular dynamics. PMID:23118801
NASA Technical Reports Server (NTRS)
Hickey, M. P.
1988-01-01
The chemical-dynamical model of Walterscheid et al. (1987), which describes wave-driven fluctuations in OH nightglow, was modified to include the effects of both eddy thermal conduction and viscosity, as well as the Coriolis force (with the shallow atmosphere approximation). Using the new model, calculations were performed for the same nominal case as used by Walterscheid et al. but with only wave periods considered. For this case, the Coriolis force was found to be unimportant at any wave period. For wave periods greater than 2 or 3 hours, the inclusion of thermal conduction alone greatly modified the results (in terms of a complex ratio 'eta' which expresses the relationship between the intensity oscillation about the time-averaged intensity and the temperature oscillation about the time-averaged temperature); this effect was reduced with the further inclusion of the eddy viscosity.
Revisiting ENSO Coupled Instability Theory and SST Error Growth in a Fully Coupled Model
NASA Astrophysics Data System (ADS)
Larson, S.; Kirtman, B. P.
2015-12-01
In an effort to untangle certain mechanisms contributing to the initiation of ENSO events, a coupled model framework is presented to isolate coupled instability induced SST error (or anomaly) growth in the ENSO region. The modeling framework using CCSM4 allows for seasonal ensembles of initialized simulations that are utilized to quantify the spatial and temporal behavior of coupled instabilities and the associated implications for ENSO predictability. The experimental design allows for unstable growth of initial perturbations that are not prescribed and several cases exhibit sufficiently rapid growth to produce ENSO events that do not require a previous ENSO event, large-scale wind trigger, or subsurface heat content precursor. Without these precursors, however, ENSO amplitude is reduced, suggesting that a combination of processes is essential to achieving peak amplitude in CCSM4. The results imply that even without classical precursors, including western Pacific "preconditioning," ENSO events can be excited via coupled instabilities in fully coupled models. By removing the subsurface heat content precursor, however, essentially a lower bounds for ENSO predictability in CCSM4 is established, although seasonal ensembles initialized later in the calendar year retain some predictability. The initial error growth exhibits strong seasonality with fastest growth during spring and summer and also dependence on the initialization month with fastest growth occurring in the July ensemble. The error growth displays a well-defined seasonal limit with ensembles initialized in the winter or spring exhibiting a clear seasonal halt in error growth around September, consistent with increased background stability typical during fall. Overall, dynamically driven error growth in CCSM4 is deemed best characterized by strong seasonality, dependence on the initialization month, and nonlinearity. The results pose real implications for predictability because the final error structure is
Coupling Stokes and Darcy Flow in Melt Migration Modelling
NASA Astrophysics Data System (ADS)
Kaus, B.; Lehmann, R.; Lukáčová-Medvid'ová, M.
2015-12-01
Melt migration can be modelled by coupling variable-viscosity Stokes flow and Darcy flow. Stokes Flow, generally, captures the long-term behavior of the mantle and lithosphere while Darcy flow models the two-phase regime. The major unknowns of the coupled system are solid velocity, fluid pressure and compaction pressure, captured in the so-called three-field formulation of the system. The fluid velocity can be computed in a post-processing step. We present lithosperic-scale results of the fully-coupled system with visco-elasto-plastic rheologies. This comprises elasto-plastic effects from shearing (Mode II) as well as poro-elastic effects and "opening mode" (Mode I) tensile plasticity. The system is solved using the Finite Element Method on triangular or quadrilateral grids in the Matlab-based code MVEP. Triangular meshes are adapted dynamically to better resolve the different deformation modes (diapiric, channeling, diking).
Thermosphere-ionosphere coupling - An experiment in interactive modeling
NASA Technical Reports Server (NTRS)
Forbes, Jeffrey M.; Roble, Raymond G.
1990-01-01
Using the NCAR thermosphere general circulation model, a series of controlled experiments is performed to investigate the interactive coupling between ionospheric plasma densities and thermospheric neutral winds. The interaction is accomplished by parameterizing the F layer peak height, h(m)F2, in an empirical ionospheric model in terms of the meridional wind, v(south), and by forcing the h(m)F2 and the v(south) parameters to remain mutually coupled in a dynamical calculation. It was found that mutual coupling between forcing and meridional wind is weak during the daytime when the F layer exhibits a broad vertical structure. At night, when the F2 layer is more localized, the neutral dynamical structure is dependent on whether forcing is significantly above or below the altitude (about 275-300 km) at which ion drag effectively competes with viscosity in the neutral momentum balance.
Drift-Scale Coupled Processes (DST and THC Seepage) Models
E. Gonnenthal; N. Spyoher
2001-02-05
The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [153447]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: (1) Performance Assessment (PA); (2) Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); (3) UZ Flow and Transport Process Model Report (PMR); and (4) Near-Field Environment (NFE) PMR. The work scope for this activity is presented in the TWPs cited above, and summarized as follows: continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in
Drift-Scale Coupled Processes (DST and THC Seepage) Models
E. Sonnenthale
2001-04-16
The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 2000 [1534471]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M&O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: Performance Assessment (PA); Near-Field Environment (NFE) PMR; Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); and UZ Flow and Transport Process Model Report (PMR). The work scope for this activity is presented in the TWPs cited above, and summarized as follows: Continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in this AMR are required
Solar system constraints on planetary Coriolis-type effects induced by rotation of distant masses
Iorio, Lorenzo
2010-08-01
We phenomenologically put local constraints on the rotation of distant masses by using the planets of the solar system. First, we analytically compute the orbital secular precessions induced on the motion of a test particle about a massive primary by a Coriolis-like force, treated as a small perturbation, in the case of a constant angular velocity vector Ψ directed along a generic direction in space. The semimajor axis a and the eccentricity e of the test particle do not secularly change, contrary to the inclination I, the longitude of the ascending node Ω, the longitude of the pericenter varpi and the mean anomaly M. Then, we compare our prediction for (dot varpi) with the corrections Δdot varpi to the usual perihelion precessions of the inner planets recently estimated by fitting long data sets with different versions of the EPM ephemerides. We obtain as preliminary upper bounds |Ψ{sub z}| ≤ 0.0006−0.013 arcsec cty{sup −1}, |Ψ{sub x}| ≤ 0.1−2.7 arcsec cty{sup −1}, |Ψ{sub y}| ≤ 0.3−2.3 arcsec cty{sup −1}. Interpreted in terms of models of space-time involving cosmic rotation, our results are able to yield constraints on cosmological parameters like the cosmological constant Λ and the Hubble parameter H{sub 0} not too far from their values determined with cosmological observations and, in some cases, several orders of magnitude better than the constraints usually obtained so far from space-time models not involving rotation. In the case of the rotation of the solar system throughout the Galaxy, occurring clockwise about the North Galactic Pole, our results for Ψ{sub z} are in disagreement with the expected value of it at more than 3−σ level. Modeling the Oort cloud as an Einstein-Thirring slowly rotating massive shell inducing Coriolis-type forces inside yields unphysical results for its putative rotation.
Models of Excitation–Contraction Coupling in Cardiac Ventricular Myocytes
Jafri, M. Saleet
2012-01-01
Excitation–contraction coupling describes the processes relating to electrical excitation through force generation and contraction in the heart. It occurs at multiple levels from the whole heart, to single myocytes and down to the sarcomere. A central process that links electrical excitation to contraction is calcium mobilization. Computational models that are well grounded in experimental data have been an effective tool to understand the complex dynamics of the processes involved in excitation–contraction coupling. Presented here is a summary of some computational models that have added to the understanding of the cellular and subcellular mechanisms that control ventricular myocyte calcium dynamics. Models of cardiac ventricular myocytes that have given insight into termination of calcium release and interval–force relations are discussed in this manuscript. Computational modeling of calcium sparks, the elementary events in cardiac excitation–contraction coupling, has given insight into mechanism governing their dynamics and termination as well as their role in excitation–contraction coupling and is described herein. PMID:22821602
Asymptotic behavior of coupled linear systems modeling suspension bridges
NASA Astrophysics Data System (ADS)
Dell'Oro, Filippo; Giorgi, Claudio; Pata, Vittorino
2015-06-01
We consider the coupled linear system describing the vibrations of a string-beam system related to the well-known Lazer-McKenna suspension bridge model. For ɛ > 0 and k > 0, the decay properties of the solution semigroup are discussed in dependence of the nonnegative parameters γ and h, which are responsible for the damping effects.
Spectra, triple, and quartic gauge couplings in a Higgsless model
Cheung Kingman; Wu Xiaohong; Yan Qishu
2007-12-01
Spectra, triple, and quartic gauge couplings of the Higgsless model with gauge group SU(2){sub L}xSU(2){sub R}xU(1){sub B-L} defined in warped space are explored with a numerical method. We extend the equation of motions, boundary conditions, and formalism of multi-gauge-boson vertices to the Hirn-Sanz scenario. By assuming the ideally delocalized fermion profile, we study the spectra of vector bosons as well as the triple and quartic gauge couplings among vector bosons. It is found that mass spectra can be greatly modified by the parameters of QCD power corrections. Meanwhile, the triple and quartic gauge couplings can deviate from the values of the standard model to at least {+-}10% and can saturate the LEP2 bounds. We find the triple gauge couplings of ZWW can be 50% smaller than the unitarity bounds. The triple gauge couplings of ZWW is 20% smaller than the unitarity bounds, which might challenge the detection of Z via s channel at LHC if m{sub Z}>500 GeV.
An efficient model for coupling structural vibrations with acoustic radiation
NASA Technical Reports Server (NTRS)
Frendi, Abdelkader; Maestrello, Lucio; Ting, LU
1993-01-01
The scattering of an incident wave by a flexible panel is studied. The panel vibration is governed by the nonlinear plate equations while the loading on the panel, which is the pressure difference across the panel, depends on the reflected and transmitted waves. Two models are used to calculate this structural-acoustic interaction problem. One solves the three dimensional nonlinear Euler equations for the flow-field coupled with the plate equations (the fully coupled model). The second uses the linear wave equation for the acoustic field and expresses the load as a double integral involving the panel oscillation (the decoupled model). The panel oscillation governed by a system of integro-differential equations is solved numerically and the acoustic field is then defined by an explicit formula. Numerical results are obtained using the two models for linear and nonlinear panel vibrations. The predictions given by these two models are in good agreement but the computational time needed for the 'fully coupled model' is 60 times longer than that for 'the decoupled model'.
A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas
Munafò, A. Alfuhaid, S. A. Panesi, M.; Cambier, J.-L.
2015-10-07
The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.
A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas
NASA Astrophysics Data System (ADS)
Munafò, A.; Alfuhaid, S. A.; Cambier, J.-L.; Panesi, M.
2015-10-01
The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.
PDF turbulence modeling and DNS
NASA Technical Reports Server (NTRS)
Hsu, A. T.
1992-01-01
The problem of time discontinuity (or jump condition) in the coalescence/dispersion (C/D) mixing model is addressed in probability density function (pdf). A C/D mixing model continuous in time is introduced. With the continuous mixing model, the process of chemical reaction can be fully coupled with mixing. In the case of homogeneous turbulence decay, the new model predicts a pdf very close to a Gaussian distribution, with finite higher moments also close to that of a Gaussian distribution. Results from the continuous mixing model are compared with both experimental data and numerical results from conventional C/D models. The effect of Coriolis forces on compressible homogeneous turbulence is studied using direct numerical simulation (DNS). The numerical method used in this study is an eight order compact difference scheme. Contrary to the conclusions reached by previous DNS studies on incompressible isotropic turbulence, the present results show that the Coriolis force increases the dissipation rate of turbulent kinetic energy, and that anisotropy develops as the Coriolis force increases. The Taylor-Proudman theory does apply since the derivatives in the direction of the rotation axis vanishes rapidly. A closer analysis reveals that the dissipation rate of the incompressible component of the turbulent kinetic energy indeed decreases with a higher rotation rate, consistent with incompressible flow simulations (Bardina), while the dissipation rate of the compressible part increases; the net gain is positive. Inertial waves are observed in the simulation results.
Mutual coupling, channel model, and BER for curvilinear antenna arrays
NASA Astrophysics Data System (ADS)
Huang, Zhiyong
This dissertation introduces a wireless communications system with an adaptive beam-former and investigates its performance with different antenna arrays. Mutual coupling, real antenna elements and channel models are included to examine the system performance. In a beamforming system, mutual coupling (MC) among the elements can significantly degrade the system performance. However, MC effects can be compensated if an accurate model of mutual coupling is available. A mutual coupling matrix model is utilized to compensate mutual coupling in the beamforming of a uniform circular array (UCA). Its performance is compared with other models in uplink and downlink beamforming scenarios. In addition, the predictions are compared with measurements and verified with results from full-wave simulations. In order to accurately investigate the minimum mean-square-error (MSE) of an adaptive array in MC, two different noise models, the environmental and the receiver noise, are modeled. The minimum MSEs with and without data domain MC compensation are analytically compared. The influence of mutual coupling on the convergence is also examined. In addition, the weight compensation method is proposed to attain the desired array pattern. Adaptive arrays with different geometries are implemented with the minimum MSE algorithm in the wireless communications system to combat interference at the same frequency. The bit-error-rate (BER) of systems with UCA, uniform rectangular array (URA) and UCA with center element are investigated in additive white Gaussian noise plus well-separated signals or random direction signals scenarios. The output SINR of an adaptive array with multiple interferers is analytically examined. The influence of the adaptive algorithm convergence on the BER is investigated. The UCA is then investigated in a narrowband Rician fading channel. The channel model is built and the space correlations are examined. The influence of the number of signal paths, number of the
Delay model for dynamically switching coupled RLC interconnects
NASA Astrophysics Data System (ADS)
Sharma, Devendra Kumar; Kaushik, Brajesh Kumar; Sharma, Rajender Kumar
2014-04-01
With the evolution of integrated circuit technology, the interconnect parasitics can be the limiting factor in high speed signal transmission. With increasing frequency of operation, length of interconnect and fast transition time of the signal, the RC models are not sufficient to estimate the delay accurately. To mitigate this problem, accurate delay models for coupled interconnects are very much required. This paper proposes an analytical model for estimating propagation delay in lossy coupled RLC interconnect lines for simultaneously switching scenario. To verify the proposed model, the analytical results are compared with those of FDTD and SPICE results for the two cases of inputs switching under consideration. An average error of 2.07% is observed which shows an excellent agreement with SPICE simulation and FDTD computations.
Drift-Scale Coupled Processes (DST and THC Seepage) Models
P. Dixon
2004-04-05
The purpose of this Model Report (REV02) is to document the unsaturated zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrological-chemical (THC) processes on UZ flow and transport. This Model Report has been developed in accordance with the ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this Model Report in Section 1.12, Work Package AUZM08, ''Coupled Effects on Flow and Seepage''. The plan for validation of the models documented in this Model Report is given in Attachment I, Model Validation Plans, Section I-3-4, of the TWP. Except for variations in acceptance criteria (Section 4.2), there were no deviations from this TWP. This report was developed in accordance with AP-SIII.10Q, ''Models''. This Model Report documents the THC Seepage Model and the Drift Scale Test (DST) THC Model. The THC Seepage Model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC model is a drift-scale process model relying on the same conceptual model and much of the same input data (i.e., physical, hydrological, thermodynamic, and kinetic) as the THC Seepage Model. The DST THC Model is the primary method for validating the THC Seepage Model. The DST THC Model compares predicted water and gas compositions, as well as mineral alteration patterns, with observed data from the DST. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal-loading conditions, and predict the evolution of mineral alteration and fluid chemistry around potential waste emplacement drifts. The DST THC Model is used solely for the validation of the THC
NASA Astrophysics Data System (ADS)
García-Senz, D.; Cabezón, R. M.; Domínguez, I.; Thielemann, F. K.
2016-03-01
Currently the number of models aimed at explaining the phenomena of type Ia supernovae is high and distinguishing between them is a must. In this work we explore the influence of rotation on the evolution of the nuclear flame that drives the explosion in the so-called gravitational confined detonation models. Assuming that the flame starts in a pointlike region slightly above the center of the white dwarf (WD) and adding a moderate amount of angular velocity to the star we follow the evolution of the deflagration using a smoothed particle hydrodynamics code. We find that the results are very dependent on the angle between the rotational axis and the line connecting the initial bubble of burned material with the center of the WD at the moment of ignition. The impact of rotation is larger for angles close to 90° because the Coriolis force on a floating element of fluid is maximum and its principal effect is to break the symmetry of the deflagration. Such symmetry breaking weakens the convergence of the nuclear flame at the antipodes of the initial ignition volume, changing the environmental conditions around the convergence region with respect to non-rotating models. These changes seem to disfavor the emergence of a detonation in the compressed volume at the antipodes and may compromise the viability of the so-called gravitational confined detonation mechanism.
Coupled Climate Model Appraisal a Benchmark for Future Studies
Phillips, T J; AchutaRao, K; Bader, D; Covey, C; Doutriaux, C M; Fiorino, M; Gleckler, P J; Sperber, K R; Taylor, K E
2005-08-22
The Program for Climate Model Diagnosis and Intercomparison (PCMDI) has produced an extensive appraisal of simulations of present-day climate by eleven representative coupled ocean-atmosphere general circulation models (OAGCMs) which were developed during the period 1995-2002. Because projections of potential future global climate change are derived chiefly from OAGCMs, there is a continuing need to test the credibility of these predictions by evaluating model performance in simulating the historically observed climate. For example, such an evaluation is an integral part of the periodic assessments of climate change that are reported by the Intergovernmental Panel on Climate Change. The PCMDI appraisal thus provides a useful benchmark for future studies of this type. The appraisal mainly analyzed multi-decadal simulations of present-day climate by models that employed diverse representations of climate processes for atmosphere, ocean, sea ice, and land, as well as different techniques for coupling these components (see Table). The selected models were a subset of those entered in phase 2 of the Coupled Model Intercomparison Project (CMIP2, Covey et al. 2003). For these ''CMIP2+ models'', more atmospheric or oceanic variables were provided than the minimum requirements for participation in CMIP2. However, the appraisal only considered those climate variables that were supplied from most of the CMIP2+ models. The appraisal focused on three facets of the simulations of current global climate: (1) secular trends in simulation time series which would be indicative of a problematical ''coupled climate drift''; (2) comparisons of temporally averaged fields of simulated atmospheric and oceanic climate variables with available observational climatologies; and (3) correspondences between simulated and observed modes of climatic variability. Highlights of these climatic aspects manifested by different CMIP2+ simulations are briefly discussed here.
Coupling Hydrologic and Hydrodynamic Models to Estimate PMF
NASA Astrophysics Data System (ADS)
Felder, G.; Weingartner, R.
2015-12-01
Most sophisticated probable maximum flood (PMF) estimations derive the PMF from the probable maximum precipitation (PMP) by applying deterministic hydrologic models calibrated with observed data. This method is based on the assumption that the hydrological system is stationary, meaning that the system behaviour during the calibration period or the calibration event is presumed to be the same as it is during the PMF. However, as soon as a catchment-specific threshold is reached, the system is no longer stationary. At or beyond this threshold, retention areas, new flow paths, and changing runoff processes can strongly affect downstream peak discharge. These effects can be accounted for by coupling hydrologic and hydrodynamic models, a technique that is particularly promising when the expected peak discharge may considerably exceed the observed maximum discharge. In such cases, the coupling of hydrologic and hydraulic models has the potential to significantly increase the physical plausibility of PMF estimations. This procedure ensures both that the estimated extreme peak discharge does not exceed the physical limit based on riverbed capacity and that the dampening effect of inundation processes on peak discharge is considered. Our study discusses the prospect of considering retention effects on PMF estimations by coupling hydrologic and hydrodynamic models. This method is tested by forcing PREVAH, a semi-distributed deterministic hydrological model, with randomly generated, physically plausible extreme precipitation patterns. The resulting hydrographs are then used to externally force the hydraulic model BASEMENT-ETH (riverbed in 1D, potential inundation areas in 2D). Finally, the PMF estimation results obtained using the coupled modelling approach are compared to the results obtained using ordinary hydrologic modelling.
NASA Astrophysics Data System (ADS)
Deppenmeier, Anna-Lena; Hazeleger, Wilco; Haarsma, Rein; Prodhomme, Chloé; Exarchou, Eleftheria; Doblas-Reyes, Francisco J.
2016-04-01
State-of-the-art coupled general circulation models (CGCMs) still fail to simulate the mean state and variability of the tropical Atlantic (TA) climate correctly. We investigate the importance of air-sea interaction at different regions in the TA by means of performing partially coupled sensitivity experiments with the state-of-the-art CGCM EC-Earth3.1. All simulations are intialised from the observed climate state. By studying the initial drift in sensitivity experiments we obtain insight into the tropical dynamics and sources of model bias. We test the influence of realistic wind stress forcing over different regions of the TA on the development of SST as well as other oceanic biases. A series of hindcasts fully initialised in May and run until the end of August are performed with prescribed ERA-Interim zonal and meridional wind stresses over three different regions: firstly, we force the entire TA from 15N - 30S. Secondly, we force the equatorial band only between 5N - 5S, and finally we force the coastal area of the Angola Benguela upwelling region between 0W and the coast and between 5S - 30N. Our setup only affects the oceanic forcing and leaves the atmosphere free to adapt, such that we can identify the air-sea interaction processes in the different regions and their effect on the SST bias in the fully coupled system. The differences between forcing the entire TA and the equatorial region only are very small, which hints to the great importance of the relatively narrow equatorial region. The coastal upwelling area does not strongly affect the equatorial region in our model. We identify the equatorial band as most susceptible to errors in the wind stress forcing and, due to the strong atmosphere-ocean coupling, as source of the main biases in our model. The partially coupled experiments with initialised seasonal hindcasts appear to be a powerful tool to identify the sources of model biases and to identify relevant air-sea interaction processes in the TA.
Theoretical Modeling of Mechanical-Electrical Coupling of Carbon Nanotubes
Lu, Jun-Qiang; Jiang, Hanqiang
2008-01-01
Carbon nanotubes have been studied extensively due to their unique properties, ranging from electrical, mechanical, optical, to thermal properties. The coupling between the electrical and mechanical properties of carbon nanotubes has emerged as a new field, which raises both interesting fundamental problems and huge application potentials. In this article, we will review our recently work on the theoretical modeling on mechanical-electrical coupling of carbon nanotubes subject to various loading conditions, including tension/compression, torsion, and squashing. Some related work by other groups will be also mentioned.
A Coupled Wave-Current-Sediment model for Skagit Bay
NASA Astrophysics Data System (ADS)
Cowles, G. W.; Holmes, E. M.; Ralston, D. K.
2010-12-01
Along with tidal currents, waves provide a dominant forcing mechanism for sediment transport on many tidal flats. In semi-enclosed regions such as Skagit Bay, Washington, the wave action is due mainly to local wind forcing that occurs over seasonal and event scales. Due to the limited fetch, variations in along-flat wave characteristics can drive gradients in the wave-induced bottom stress and resulting sediment transport. In this work, we use an unstructured grid, coupled wave-current-sediment model to study the influence of wave-induced near bottom stresses in the presence of tidal currents on the sediment transport within the Skagit River delta and Skagit Bay. The coupled model consists of three primary components: the Finite Volume Coastal Ocean Model (FVCOM) for hydrodynamics, the unstructured grid model SWAN to compute the phase-averaged wave field, and the Community Sediment Transport Modeling System. Model sensitivities to the choice of coupling and bottom boundary layer formulations are examined. Results from process oriented simulations will be presented. The process studies use a realistic domain with controlled forcing conditions to quantify the influence of wave-induced bed stresses on the sediment dynamics in Skagit Bay.
Climate Change and Groundwater: A Coupling of Models
NASA Astrophysics Data System (ADS)
Chesebrough, E.; Gorokhovich, Y.
2012-12-01
Groundwater is the largest source of readily available freshwater on our planet. Aquifers are vulnerable to climate change and require new groundwater management plans to account for changing precipitation patterns and sea level rise, among other factors. Atmospheric General Circulation Models (GCMs) use algorithms applied to historic and modern data to simulate current climatic conditions and predict future changes on a global scale. However, these GCMs are limited in their application at a regional level, thus making hydrogeological predictions difficult. Models designed specifically for hydrogeology are most commonly designed for regional assessment, and they can incorporate GCM outputs. Some of the challenges in coupling GCM outputs and hydrogeological models are the differences in spatial and temporal scales. In addition, the different scenarios of climate response to Greenhouse Gas forcings create a range of outputs from GCMs, affecting the predicting capacity of hydrogeological models. The use of dynamic and statistical downscaling of GCMs make it possible to overcome these challenges by taking the climate simulation output from GCMs and incorporating it as the input for hydrogeological models. This coupling of GCMs to groundwater models makes new groundwater management plans possible, which will ensure the sustainability of these resources in the future. The studies referenced within this paper highlight the advantages and disadvantages of various combinations of coupling and downscaling methodologies.
A dynamical stochastic coupled model for financial markets
NASA Astrophysics Data System (ADS)
Govindan, T. E.; Ibarra-Valdez, Carlos; Ruiz de Chávez, J.
2007-07-01
A model coupling a deterministic dynamical system which represents trading, with a stochastic one that represents asset prices evolution is presented. Both parts of the model have connections with well established dynamic models in mathematical economics and finance. The main objective is to represent the double feedback between trading dynamics (the demand/supply interaction) and price dynamics (assumed as largely random). We present the model, and address to some extent existence and uniqueness, continuity with respect to initial conditions and stability of solutions. The non-Lipschitz case is briefly considered as well.
Comparison of Coriolis and turbine-type flowmeters for fuel measurement in gas turbine testing
MacLeod, J.D.; Grabe, W.
1995-01-01
The Machinery and Engine Technology (MET) Program of the National Research Council of Canada (NRCC) has established a program for the evaluation of sensors to measure gas turbine engine performance accurately. The precise measurement of fuel flow is an essential part of steady-state gas turbine performance assessment. The MET Laboratory has critically examined two types of fuel flowmeters, Coriolis and turbine. The two flowmeter types are different in that the Coriolis flowmeter measures mass flow directly, while the turbine flowmeter measures volumetric flow, which must be converted to mass flow for conventional performance analysis. The direct measurement of mass flow, using a Coriolis flowmeter, has many advantages in field testing of gas turbines, because it reduces the risk of errors resulting from the conversion process. Turbine flowmeters, on the other hand, have been regarded as an industry standard because they are compact, rugged, reliable, and relatively inexpensive. This paper describes the project objectives, the experimental installation, and the results of the comparison of the Coriolis and turbine-type flowmeters in steady-state performance testing. Discussed are variations between the two types of flowmeters due to fuel characteristics, fuel handling equipment, acoustic and vibration interference, and installation effects. Also included in this paper are estimations of measurement uncertainties for both types of flowmeter. Results indicate that the agreement between Coriolis and turbine-type flowmeters is good over the entire steady-state operating range of a typical gas turbine engine. In some cases the repeatability of the Coriolis flowmeter is better than the manufacturer`s specification. Even a significant variation in fuel density (10 percent), and viscosity (300 percent) did not appear to compromise the ability of the Coriolis flowmeter to match the performance of the turbine flowmeter.
A neural mass model of phase-amplitude coupling.
Chehelcheraghi, Mojtaba; Nakatani, Chie; Steur, Erik; van Leeuwen, Cees
2016-06-01
Brain activity shows phase-amplitude coupling between its slow and fast oscillatory components. We study phase-amplitude coupling as recorded at individual sites, using a modified version of the well-known Wendling neural mass model. To the population of fast inhibitory interneurons of this model, we added external modulatory input and dynamic self-feedback. These two modifications together are sufficient to let the inhibitory population serve as a limit-cycle oscillator, with frequency characteristics comparable to the beta and gamma bands. The frequency and power of these oscillations can be tuned through the time constant of the dynamic and modulatory input. Alpha band activity is generated, as is usual in such models, as a result of interactions of pyramidal neurons and a population of slow inhibitory interneurons. The slow inhibitory population activity directly influences the fast oscillations via the synaptic gain between slow and fast inhibitory populations. As a result, the amplitude envelope of the fast oscillation is coupled to the phase of the slow activity; this result is consistent with the notion that phase-amplitude coupling is effectuated by interactions between inhibitory interneurons. PMID:27241189
Perceptual disturbances predicted in zero-g through three-dimensional modeling.
Holly, Jan E
2003-01-01
Perceptual disturbances in zero-g and 1-g differ. For example, the vestibular coriolis (or "cross-coupled") effect is weaker in zero-g. In 1-g, blindfolded subjects rotating on-axis experience perceptual disturbances upon head tilt, but the effects diminish in zero-g. Head tilts during centrifugation in zero-g and 1-g are investigated here by means of three-dimensional modeling, using a model that was previously used to explain the zero-g reduction of the on-axis vestibular coriolis effect. The model's foundation comprises the laws of physics, including linear-angular interactions in three dimensions. Addressed is the question: In zero-g, will the vestibular coriolis effect be as weak during centrifugation as during on-axis rotation? Centrifugation in 1-g was simulated first, with the subject supine, head toward center. The most noticeable result concerned direction of head yaw. For clockwise centrifuge rotation, greater perceptual effects arose in simulations during yaw counterclockwise (as viewed from the top of the head) than for yaw clockwise. Centrifugation in zero-g was then simulated with the same "supine" orientation. The result: In zero-g the simulated vestibular coriolis effect was greater during centrifugation than during on-axis rotation. In addition, clockwise-counterclockwise differences did not appear in zero-g, in contrast to the differences that appear in 1-g. PMID:15096662
A Bidirectional Coupling Procedure Applied to Multiscale Respiratory Modeling
Kuprat, Andrew P.; Kabilan, Senthil; Carson, James P.; Corley, Richard A.; Einstein, Daniel R.
2013-07-01
In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFD) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the Modified Newton’s Method with nonlinear Krylov accelerator developed by Carlson and Miller [1, 2, 3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a “pressure-drop” residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD-ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural pressure applied to the multiple
A bidirectional coupling procedure applied to multiscale respiratory modeling
NASA Astrophysics Data System (ADS)
Kuprat, A. P.; Kabilan, S.; Carson, J. P.; Corley, R. A.; Einstein, D. R.
2013-07-01
In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFDs) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the modified Newton's method with nonlinear Krylov accelerator developed by Carlson and Miller [1], Miller [2] and Scott and Fenves [3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a "pressure-drop" residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD-ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural
A Bidirectional Coupling Procedure Applied to Multiscale Respiratory Modeling.
Kuprat, A P; Kabilan, S; Carson, J P; Corley, R A; Einstein, D R
2013-07-01
In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFD) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the Modified Newton's Method with nonlinear Krylov accelerator developed by Carlson and Miller [1, 2, 3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a "pressure-drop" residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD-ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural pressure applied to the multiple sets
A bidirectional coupling procedure applied to multiscale respiratory modeling
Kuprat, A.P.; Kabilan, S.; Carson, J.P.; Corley, R.A.; Einstein, D.R.
2013-07-01
In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFDs) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the modified Newton’s method with nonlinear Krylov accelerator developed by Carlson and Miller [1], Miller [2] and Scott and Fenves [3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a “pressure-drop” residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD–ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural
Frisch, E.; Johnson, C.G.
1962-05-15
A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)
A Coupled General Circulation Model of the Archean Earth
NASA Astrophysics Data System (ADS)
Wolf, E. T.; Toon, O. B.
2011-12-01
We present results from a new coupled general circulation model suitable for deep paleoclimate studies. Particular interest is given to the faint young Sun paradox. The model is based on the Community Earth System Model maintained by the National Center for Atmospheric Research [1]. Prognostic atmosphere, ocean, land, ice, and hydrological cycle models are coupled. A new correlated-k radiative transfer model has been implemented allowing accurate flux calculations for anoxic atmospheres containing high concentrations of CO2 and CH4 [2, 3]. This model represents a significant improvement upon one-dimensional radiative-convective climate models used previously to study ancient climate [4]. Cloud and ice albedo feedbacks will be accurately quantified and new constraints on Archean surface temperatures will be revealed. References [1] Collins W.D. et al. "Description of the NCAR Community Atmosphere Model (CAM 3.0)." NCAR Technical Note, 2004. [2] Toon O.B., McKay, C.P., Ackerman, T.P. "Rapid Calculation of Radiative Heating Rates and Photodissociation Rates in Inhomogeneous Multiple Scattering Atmospheres." J. Geo. Res., 94(D13), 16287 - 16301, 1989. [3] Mlawer, E.J., et al. "Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave." J. Geo. Res., 102(D14), 16663 - 16682, 1997. [4] Kasting J.F., Pollack, J.B., Crisp, D. "Effects of High CO2 Levels on Surface Temperature and Atmospheric Oxidation State of the Early Earth." J. Atm. Chem., 1, 403-428, 1984.
Pathological gambling and couple: towards an integrative systemic model.
Cunha, Diana; Relvas, Ana Paula
2014-06-01
This article is a critical literature review of pathological gambling focused in the family factors, particularly in the couple dynamics. Its main goal is to develop an explicative integrative systemic model of pathological gambling, based in these couple dynamics. To achieve that aim, a bibliography search was made, using on-line data bases (e.g., EBSCO Host) and recognized books in pathological gambling subject, as well as in the systemic approach in general. This process privileged the recent works (about 70 % of the reviewed literature was published in the last decade), however, also considered some classic works (the oldest one dates back to 1970). The guiding focus of this literature search evolves according to the following steps: (1) search of general comprehension of pathological gambling (19 references), (2) search specification to the subject "pathological gambling and family" (24 references), (3) search specification to the subject "pathological gambling and couple"(11 references), (4) search of systemic information which integrates the evidence resulted in the previous steps (4 references). The developed model is constituted by different levels of systemic complexity (social context, family of origin, couple and individual) and explains the problem as a signal of perturbation in the marital subsystem vital functions (e.g., power and control) though the regularities of marital dynamics of pathological gamblers. Furthermore, it gives theoretical evidence of the systemic familiar intervention in the pathological gambling. PMID:23423730
Coupled surface-water and ground-water model
Swain, Eric D.; Wexler, Eliezer J.
1991-01-01
In areas with dynamic and hydraulically well connected ground-water and surface-water systems, it is desirable that stream-aquifer interaction be simulated with models of equal sophistication and accuracy. Accordingly, a new, coupled ground-water and surface-water model was developed by combining the U.S. Geological Survey models MODFLOW and BRANCH. MODFLOW is the widely used modular three-dimensional, finite-difference, ground-water model and BRANCH is a one-dimensional numerical model commonly used to simulate flow in open-channel networks. Because time steps used in ground-water modeling commonly are much longer than those used in surface-water simulations, provision has been made for handling multiple BRANCH time steps within one MODFLOW time step. Verification testing of the coupled model was done using data from previous studies and by comparing results with output from a simpler four-point implicit open-channel flow model linked with MODFLOW.
Coupled vibro-acoustic model updating using frequency response functions
NASA Astrophysics Data System (ADS)
Nehete, D. V.; Modak, S. V.; Gupta, K.
2016-03-01
Interior noise in cavities of motorized vehicles is of increasing significance due to the lightweight design of these structures. Accurate coupled vibro-acoustic FE models of such cavities are required so as to allow a reliable design and analysis. It is, however, experienced that the vibro-acoustic predictions using these models do not often correlate acceptably well with the experimental measurements and hence require model updating. Both the structural and the acoustic parameters addressing the stiffness as well as the damping modeling inaccuracies need to be considered simultaneously in the model updating framework in order to obtain an accurate estimate of these parameters. It is also noted that the acoustic absorption properties are generally frequency dependent. This makes use of modal data based methods for updating vibro-acoustic FE models difficult. In view of this, the present paper proposes a method based on vibro-acoustic frequency response functions that allow updating of a coupled FE model by considering simultaneously the parameters associated with both the structural as well as the acoustic model of the cavity. The effectiveness of the proposed method is demonstrated through numerical studies on a 3D rectangular box cavity with a flexible plate. Updating parameters related to the material property, stiffness of joints between the plate and the rectangular cavity and the properties of absorbing surfaces of the acoustic cavity are considered. The robustness of the method under presence of noise is also studied.
MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS
Y.S. Wu
2005-08-24
This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on water and gas
Nonrelativistic approaches derived from point-coupling relativistic models
Lourenco, O.; Dutra, M.; Delfino, A.; Sa Martins, J. S.
2010-03-15
We construct nonrelativistic versions of relativistic nonlinear hadronic point-coupling models, based on new normalized spinor wave functions after small component reduction. These expansions give us energy density functionals that can be compared to their relativistic counterparts. We show that the agreement between the nonrelativistic limit approach and the Skyrme parametrizations becomes strongly dependent on the incompressibility of each model. We also show that the particular case A=B=0 (Walecka model) leads to the same energy density functional of the Skyrme parametrizations SV and ZR2, while the truncation scheme, up to order {rho}{sup 3}, leads to parametrizations for which {sigma}=1.
Modeling Reactive Transport in Coupled Groundwater-Conduit Systems
NASA Astrophysics Data System (ADS)
Spiessl, S. M.; Sauter, M.; Zheng, C.; Viswanathan, H. S.
2002-05-01
Modeling reactive transport in coupled groundwater-conduit systems requires consideration of two transport time scales in the flow and transport models. Consider for example a subsurface mine consisting of a network of highly conductive shafts, drifts or ventilation raises (i.e., conduits) within the considerably less permeable ore material (i.e., matrix). In the conduits, potential contaminants can travel much more rapidly than in the background aquifer (matrix). Since conduits cannot necessarily be regarded as a continuum, double continuum models are only of limited use for simulation of contaminant transport in such coupled groundwater-conduit systems. This study utilizes a "hybrid" flow and transport model in which contaminants can in essence be transported at a slower time scale in the matrix and at a faster time scale in the conduits. The hybrid flow model uses an approach developed by Clemens et al. (1996), which is based on the modelling of flow in a discrete pipe network, coupled to a continuum representing the low-permeability inter-conduit matrix blocks. Laminar or turbulent flow can be simulated in the different pipes depending on the flow conditions in the model domain. The three-dimensional finite-difference groundwater flow model MODFLOW (Harbaugh and McDonald, 1996) is used to simulate flow in the continuum. Contaminant transport within the matrix is simulated with a continuum approach using the three-dimensional multi-species solute transport model MT3DMS (Zheng and Wang, 1999), while that in the conduit system is simulated with a one-dimensional advective transport model. As a first step for reactive transport modeling in such systems, only equilibrium reactions among multiple species are considered by coupling the hybrid transport model to a geochemical speciation package. An idealized mine network developed by Viswanathan and Sauter (2001) is used as a test problem in this study. The numerical experiment is based on reference date collected from
Gas/liquid flow measurement using coriolis-based flow meters
Liu, K.T.; Nguyen, T.V.
1991-07-09
This patent describes a method of determining total mass flow rate and phase distribution of individual components in a flowing gas/liquid stream. It comprises flowing at least a first gas/liquid stream through a Coriolis-based flow meter, the first gas/liquid stream having a first known total mass flow rate and component phase distribution; obtaining a first apparent total mass flow rate output and a first apparent density output from the Coriolis- based mass flow meter; correlating the first known total mass flow rate and phase distribution with the first apparent mass flow rate output and the first apparent density output obtained from the Coriolis-based mass flow meter to determine a set of correlation equations; flowing a second gas/liquid stream through the Coriolis-based mass flow meter; obtaining a second apparent mass flow rate output and a second apparent density output from the Coriolis-based mass flow meter; calculating a total mass flow rate and a component phase distribution of the second gas/liquid stream based on the correlation equations and the second apparent mass flow rate output and the second apparent density output.
Coupled Hydrological and Hydraulic Modeling for Flood Mapping
NASA Astrophysics Data System (ADS)
Drobot, Radu; Draghia, Aurelian
2014-05-01
The delineation of the flooded areas involves both hydrological and hydraulic modeling. Usually, the hydrological and hydraulic processes are separately treated. In the proposed methodology, the coupled modeling of the hydrological and hydraulic processes is used. The calibration and validation of the hydrological parameters is undertaken based on historical floods using the corresponding precipitations for the same period. The calibration process was more complicated in the presence of reservoirs, when not only the discharges downstream but also the water level in the reservoirs had to be accurately reproduced. The time step for precipitation is 1 hour, corresponding to the concentration time of the smallest catchments. The maximum annual precipitation for different time steps (1; 3; 6; 24 hours) were statistically processed and based on these results the cumulative rainfall curves and the synthetic hyetographs were derived. The rainfall duration is depending on the concentration time. Mike 11 with UHM module based on SCS model was used for coupled hydrological and hydraulic modeling. The coupled hydrological and hydraulic simulation for the scaled precipitation leads both at the computation of the components which contribute to the generation of the P% flood at the Hydrometric stations as well as to the determination of the discharge hydrograph along the main river. Based on these results the flood hazard maps were obtained using a DTM based on Lidar data. The methodology was applied for a river basin in Romania of 12500 km2.
Coupled land-atmosphere modeling of methane emissions with WRF
NASA Astrophysics Data System (ADS)
Taylor, D.
2013-12-01
This project aims to couple a soil model for methane transport to an atmospheric model to predict methane emissions and dispersion. Methane is a potent greenhouse gas, 20 times as efficient at trapping heat in the atmosphere as the most prevalent greenhouse gas, carbon dioxide. It has been estimated that 60% of methane emissions in the earth's atmosphere come from anthropogenic sources, 17% of which comes from landfills, making landfills the third largest contributor of human-generated methane. Due to high costs and non-ideal weather conditions, field measurements of methane concentration at landfills are difficult and infrequent, so estimates of annual emissions from landfills are not very accurate. We plan to create a coupled land-atmosphere model that takes production and oxidation of methane into account when calculating methane emissions. This model will give a better understanding of how much methane is emitted annually from a given landfill and assist with monitoring efforts. It will also demonstrate the magnitude of diurnal and seasonal variations in methane emissions, which may identify errors in yearly methane emissions estimates made by extrapolating from a small number of field measurements. As a first step, an existing land-surface model, Noah, is modified to compute the transport of oxygen and methane along a 1-D soil column. Surface emissions are calculated using a gradient flux method with a boundary layer conductance that depends on the wind speed. These modifications to the land-surface model will be added to the Weather Research and Forecasting model to predict atmospheric dispersion of methane emitted by landfills. Comparisons to observations are made at two different landfill sites to validate the coupled model.
Nao/ao Variability In The Coupled Bergen Climate Model
NASA Astrophysics Data System (ADS)
Sorteberg, A.; Furevik, T.; Bentsen, M.; Drange, H.; Kvamsto, N. G.; Thorstensen-Kindem, I.
A new fully coupled atmosphere-ocean-sea ice model, known as the Bergen Climate Model (BCM), has been developed. The coupled model can be run with stretched co- ordinates both in the atmosphere and ocean and consists of the atmospheric model ARPEGE/IFS, and a global version of the isopycnal ocean model MICOM, including a sea ice model. The atmospheric model ARPEGE/IFS (c22) is a spectral model devel- oped jointly by Meteo-France and the European Centre for Medium-Range Weather Forecasts (ECMWF). The ocean circulation model is the Miami Isopycnic Coordinate Ocean Model (MI- COM). Several modifications have been done to the MICOM model including the incorporation of a thermodynamic and dynamic sea ice model, the use of tempera- ture as a prognostic variable instead of salinity, and the use of a metric scale factor in both lateral, so the model can easily be configured on a general orthogonal grid. Also,the thickness diffusion has been modified to better handle diffusion near bottom topography and the base of the mixed layer. Coupling has been done with the library OASIS where 14 different fields are ex- changed using Montecarlo mapping and subgrid interpolation. Continental runoff into the correct rivers and discharge into the correct ocean grid cells are performed using the Total Runoff Integrating Pathways (TRIP) data set. Results will be present from a 300 years flux adjusted control integration of BCM with todays climate, using a unstretched T63 truncation in the atmosphere and a 0.8 by 2.4 degree resolution (near the equator gradually transforming to approximate square grid cells towards the poles) in the ocean. The model output has been analysed for large scale variability in both the ocean and atmosphere, with emphasise on the North Atlantic and Arctic climate. Statistical properties of the NAO/AO signal, and its im- pacts on the climate components, are identified and compared with observations. The NAO/AO mode of variability show up in the model with
Assessing groundwater policy with coupled economic-groundwater hydrologic modeling
NASA Astrophysics Data System (ADS)
Mulligan, Kevin B.; Brown, Casey; Yang, Yi-Chen E.; Ahlfeld, David P.
2014-03-01
This study explores groundwater management policies and the effect of modeling assumptions on the projected performance of those policies. The study compares an optimal economic allocation for groundwater use subject to streamflow constraints, achieved by a central planner with perfect foresight, with a uniform tax on groundwater use and a uniform quota on groundwater use. The policies are compared with two modeling approaches, the Optimal Control Model (OCM) and the Multi-Agent System Simulation (MASS). The economic decision models are coupled with a physically based representation of the aquifer using a calibrated MODFLOW groundwater model. The results indicate that uniformly applied policies perform poorly when simulated with more realistic, heterogeneous, myopic, and self-interested agents. In particular, the effects of the physical heterogeneity of the basin and the agents undercut the perceived benefits of policy instruments assessed with simple, single-cell groundwater modeling. This study demonstrates the results of coupling realistic hydrogeology and human behavior models to assess groundwater management policies. The Republican River Basin, which overlies a portion of the Ogallala aquifer in the High Plains of the United States, is used as a case study for this analysis.
Robust Validation of ENSO in IPCC-Class Coupled Models
NASA Astrophysics Data System (ADS)
Stevenson, Samantha; Fox-Kemper, Baylor; Jochum, Markus
2010-05-01
Wavelet probability analysis, a new method of model validation, is used to assess the performance of ENSO in a variety of coupled climate models. Wavelet probability analysis relies on wavelet spectra for a given time series, for which the amount of spectral overlap between subsets is measured using a quantity known as the wavelet probability index (WPI). This approach provides quantitative estimates of model agreement relative to either observations or other models, accompanied by well-defined confidence levels. ENSO, as represented by the NINO3.4 index, has been examined in 2,000 year long coupled integrations of both the new NCAR CCSM3.5 and GFDL's CM2.1; interestingly, it is not possible to distinguish either model from observations of NINO3.4 during 1949-2003, for runs shorter than 200 years. At longer model run lengths, some inaccuracies are seen in both CCSM3.5 and CM2.1 relative to observations. CCSM3.5 and CM2.1 are compared to one another using hypothesis testing procedures, and changes in model physics discussed in terms of their impact on ENSO. Finally, the method is applied to non-equilibrium simulations, using both high-CO2 'ramp-up' runs and selected IPCC AR4 integrations. This allows the effect of changing CO2 levels on ENSO activity to be examined, and the statistical significance of such effects to be determined.
A parallel coupled oceanic-atmospheric general circulation model
Wehner, M.F.; Bourgeois, A.J.; Eltgroth, P.G.; Duffy, P.B.; Dannevik, W.P.
1994-12-01
The Climate Systems Modeling group at LLNL has developed a portable coupled oceanic-atmospheric general circulation model suitable for use on a variety of massively parallel (MPP) computers of the multiple instruction, multiple data (MIMD) class. The model is composed of parallel versions of the UCLA atmospheric general circulation model, the GFDL modular ocean model (MOM) and a dynamic sea ice model based on the Hiber formulation extracted from the OPYC ocean model. The strategy to achieve parallelism is twofold. One level of parallelism is accomplished by applying two dimensional domain decomposition techniques to each of the three constituent submodels. A second level of parallelism is attained by a concurrent execution of AGCM and OGCM/sea ice components on separate sets of processors. For this functional decomposition scheme, a flux coupling module has been written to calculate the heat, moisture and momentum fluxes independent of either the AGCM or the OGCM modules. The flux coupler`s other roles are to facilitate the transfer of data between subsystem components and processors via message passing techniques and to interpolate and aggregate between the possibly incommensurate meshes.
Conformal Loop quantization of gravity coupled to the standard model
NASA Astrophysics Data System (ADS)
Pullin, Jorge; Gambini, Rodolfo
2016-03-01
We consider a local conformal invariant coupling of the standard model to gravity free of any dimensional parameter. The theory is formulated in order to have a quantized version that admits a spin network description at the kinematical level like that of loop quantum gravity. The Gauss constraint, the diffeomorphism constraint and the conformal constraint are automatically satisfied and the standard inner product of the spin-network basis still holds. The resulting theory has resemblances with the Bars-Steinhardt-Turok local conformal theory, except it admits a canonical quantization in terms of loops. By considering a gauge fixed version of the theory we show that the Standard model coupled to gravity is recovered and the Higgs boson acquires mass. This in turn induces via the standard mechanism masses for massive bosons, baryons and leptons.
Modeling of a bipedal robot using mutually coupled Rayleigh oscillators.
Filho, Armando C de Pina; Dutra, Max S; Raptopoulos, Luciano S C
2005-01-01
The objective of the work presented here was the modeling of a bipedal robot using a central pattern generator (CPG) formed by a set of mutually coupled Rayleigh oscillators. We analyzed a 2D model, with the three most important determinants of gait, that performs only motions parallel to the sagittal plane. Using oscillators with integer relation of frequency, we determined the transient motion and the stable limit cycles of the network formed by the three oscillators, showing the behavior of the knee angles and the hip angle. A comparison of the plotted graphs revealed that the system provided excellent results when compared to experimental analysis. Based on the results of the study, we come to the conclusion that the use of mutually coupled Rayleigh oscillators can represent an excellent method of signal generation, allowing their application for feedback control of a walking machine. PMID:15580522
Bose-Hubbard model with occupation-parity couplings
NASA Astrophysics Data System (ADS)
Sun, Kuei; Bolech, C. J.
2014-02-01
We study a Bose-Hubbard model having on-site repulsion, nearest-neighbor tunneling, and ferromagneticlike coupling between occupation parities of nearest-neighbor sites. For a uniform system in any dimension at zero tunneling, we obtain an exact phase diagram characterized by Mott-insulator (MI) and pair liquid phases and regions of phase separation of two MIs. For a general trapped system in one and two dimensions with finite tunneling, we perform quantum Monte Carlo and Gutzwiller mean-field calculations, both of which show the evolution of the system, as the parity coupling increases, from a superfluid to wedding-cake-structure MIs with their occupations jumping by 2. We also identify an exotic pair superfluid at relatively large tunneling strength. Our model ought to effectively describe recent findings in imbalanced Fermi gases in two-dimensional optical lattices and also potentially apply to an anisotropic version of bilinear-biquadratic spin systems.
Eikonal solutions to optical model coupled-channel equations
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Khandelwal, Govind S.; Maung, Khin M.; Townsend, Lawrence W.; Wilson, John W.
1988-01-01
Methods of solution are presented for the Eikonal form of the nucleus-nucleus coupled-channel scattering amplitudes. Analytic solutions are obtained for the second-order optical potential for elastic scattering. A numerical comparison is made between the first and second order optical model solutions for elastic and inelastic scattering of H-1 and He-4 on C-12. The effects of bound-state excitations on total and reaction cross sections are also estimated.
Strongly Coupled Models with a Higgs-like Boson
NASA Astrophysics Data System (ADS)
Pich, Antonio; Rosell, Ignasi; José Sanz-Cillero, Juan
2013-11-01
Considering the one-loop calculation of the oblique S and T parameters, we have presented a study of the viability of strongly-coupled scenarios of electroweak symmetry breaking with a light Higgs-like boson. The calculation has been done by using an effective Lagrangian, being short-distance constraints and dispersive relations the main ingredients of the estimation. Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models with massive resonances are not in conflict with experimentalconstraints on these parameters and the recently observed Higgs-like resonance. So there is room for these models, but they are stringently constrained. The vector and axial-vector states should be heavy enough (with masses above the TeV scale), the mass splitting between them is highly preferred to be small and the Higgs-like scalar should have a WW coupling close to the Standard Model one. It is important to stress that these conclusions do not depend critically on the inclusion of the second Weinberg sum rule. We wish to thank the organizers of LHCP 2013 for the pleasant conference. This work has been supported in part by the Spanish Government and the European Commission [FPA2010-17747, FPA2011- 23778, AIC-D-2011-0818, SEV-2012-0249 (Severo Ochoa Program), CSD2007-00042 (Consolider Project CPAN)], the Generalitat Valenciana [PrometeoII/2013/007] and the Comunidad de Madrid [HEPHACOS S2009/ESP-1473].
To study gaseous exchanges between the soil, biosphere and atmosphere, a biochemical model was coupled with the latest version of Meyers Multi-Layer Deposition Model. The biochemical model describes photosynthesis and respiration and their coupling with stomatal resistance for...
Modelling of a refrigerating system coupled with a refrigerated room
NASA Astrophysics Data System (ADS)
Wang, Hongwei
1991-08-01
The development of a set of comprehensive computer models to simulate and analyze both steady state and non steady state behavior of a refrigerating system coupled with a refrigerated room is described. The refrigerating system is a single stage vapor compression system consisting of four basic elements: a reciprocating piston compressor, a dry expansion evaporator (or cooler), a shell and tube watercooled condensor and a thermostatic expansion valve. To validate the computer models, a test plant on which steady state and dynamic measurements were carried out, was set up. Experiments to determine several empirical constants encountered in the models were done, and the simulation results were compared with a series of measurements within a wide range of operation conditions. The validated models were applied to the prediction of the air distributions in a cold store and the study of a system with different capacity control systems, proving the capability and reliability of the models.
A Fully Coupled Computational Model of the Silylation Process
G. H. Evans; R. S. Larson; V. C. Prantil; W. S. Winters
1999-02-01
This report documents the development of a new finite element model of the positive tone silylation process. Model development makes use of pre-existing Sandia technology used to describe coupled thermal-mechanical behavior in deforming metals. Material properties and constitutive models were obtained from the literature. The model is two-dimensional and transient and focuses on the part of the lithography process in which crosslinked and uncrosslinked resist is exposed to a gaseous silylation agent. The model accounts for the combined effects of mass transport (diffusion of silylation agent and reaction product), chemical reaction resulting in the uptake of silicon and material swelling, the generation of stresses, and the resulting material motion. The influence of stress on diffusion and reaction rates is also included.
Gauge coupling unification in a classically scale invariant model
NASA Astrophysics Data System (ADS)
Haba, Naoyuki; Ishida, Hiroyuki; Takahashi, Ryo; Yamaguchi, Yuya
2016-02-01
There are a lot of works within a class of classically scale invariant model, which is motivated by solving the gauge hierarchy problem. In this context, the Higgs mass vanishes at the UV scale due to the classically scale invariance, and is generated via the Coleman-Weinberg mechanism. Since the mass generation should occur not so far from the electroweak scale, we extend the standard model only around the TeV scale. We construct a model which can achieve the gauge coupling unification at the UV scale. In the same way, the model can realize the vacuum stability, smallness of active neutrino masses, baryon asymmetry of the universe, and dark matter relic abundance. The model predicts the existence vector-like fermions charged under SU(3) C with masses lower than 1 TeV, and the SM singlet Majorana dark matter with mass lower than 2.6 TeV.
NASA Astrophysics Data System (ADS)
Mooney, P.; Mulligan, F. J.; Bruyere, C. L.; Bonnlander, B.
2014-12-01
We examine the influence of physics parameterizations and ocean coupling on the ability of the Weather Research and Forecasting (WRF) model to simulate the storm track and intensity of 2011 storms Irene and Ophelia. Of the physics parameterizations investigated - cumulus parameterizations, planetary boundary layer, microphysics, radiation, and land surface models - cumulus parameterizations have the greatest impact on WRF's ability to reproduce the two storms, particularly storm intensity. We also investigated the influence of coupling the Regional Ocean Modelling System (ROMS) to the WRF model. This was achieved using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system which couples ROMS to WRF using the Model Coupling Toolkit (MCT). Simulated storm intensity and track are modified as a result of coupling ROMS to WRF, but coupling will not compensate for a poor initial parameterization selection.
Defazio, Paolo; Gamallo, Pablo
2012-02-07
We present the spin-orbit (SO) and Renner-Teller (RT) quantum dynamics of the spin-forbidden quenching O({sup 1}D) + N{sub 2}(X{sup 1}{Sigma}{sub g}{sup +}){yields}O({sup 3}P) + N{sub 2}(X{sup 1}{Sigma}{sub g}{sup +}) on the N{sub 2}O X-tilde{sup 1}A{sup '}, a-tilde{sup 3}A', and b-tilde{sup 3}A{sup '} coupled PESs. We use the permutation-inversion symmetry, propagate coupled-channel (CC) real wavepackets, and compute initial-state-resolved probabilities and cross sections {sigma}{sub j0} for the ground vibrational and the first two rotational states of N{sub 2}, j{sub 0}= 0 and 1. Labeling symmetry angular states by j and K, we report selection rules for j and for the minimum K value associated with any electronic state, showing that a-tilde{sup 3}A' is uncoupled in the centrifugal-sudden (CS) approximation at j{sub 0}= 0. The dynamics is resonance-dominated, the probabilities are larger at low K, {sigma}{sub j0} decrease with the collision energy and increase with j{sub 0}, and the CS {sigma}{sub 0} is lower than the CC one. The nonadiabatic interactions play different roles on the quenching dynamics, because the X-tilde{sup 1}A{sup '}-b-tilde{sup 3}A{sup '} SO effects are those most important while the a-tilde{sup 3}A'-b-tilde{sup 3}A{sup '} RT ones are negligible.
Standard model-like D-brane models and gauge couplings
NASA Astrophysics Data System (ADS)
Hamada, Yuta; Kobayashi, Tatsuo; Uemura, Shohei
2015-08-01
We systematically search intersecting D-brane models, which just realize the Standard Model chiral matter contents and gauge symmetry. We construct new classes of non-supersymmetric Standard Model-like models. We also study the gauge coupling constants of these models. The tree level gauge coupling is a function of the compactification moduli, the string scale, the string coupling and the winding numbers of D-branes. By tuning them, we examine whether the models can explain the experimental values of gauge couplings. As a result, we find that the string scale should be greater than 1014-15 GeV if the compactification scale and the string scale are of the same order.
A coupled model of fluid flow in jointed rock
Swenson, Daniel; Martineau, Rick; James, Mark; Brown, Don
1991-01-01
We present a fully coupled model of fluid flow in jointed rock, where the fluid flow depends on the joint openings and the joint openings depend on the fluid pressure. The joints and rock blocks are modeled discretely using the finite element method. Solutions for the fluid and rock are obtained and iteration is performed until both solutions converge. Example applications include an examination of the effects of back-pressure on flow in a geothermal reservoir and transient fluid injection into a reservoir.
Warm stellar matter within the quark-meson-coupling model
NASA Astrophysics Data System (ADS)
Panda, P. K.; Providência, C.; Menezes, D. P.
2010-10-01
In the present article, we investigate stellar matter obtained within the quark-meson-coupling (QMC) model for fixed temperature and with the entropy of the order of 1 or 2 Boltzmann units per baryon for neutrino-free matter and matter with trapped neutrinos. A new prescription for the calculation of the baryon effective masses in terms of the free energy is used. Comparing the results of the present work with those obtained from the nonlinear Walecka model, smaller strangeness and neutrino fractions are predicted within QMC. As a consequence, QMC has a smaller window of metastability for conversion into a low-mass blackhole during cooling.
Warm stellar matter within the quark-meson-coupling model
Panda, P. K.; Providencia, C.; Menezes, D. P.
2010-10-15
In the present article, we investigate stellar matter obtained within the quark-meson-coupling (QMC) model for fixed temperature and with the entropy of the order of 1 or 2 Boltzmann units per baryon for neutrino-free matter and matter with trapped neutrinos. A new prescription for the calculation of the baryon effective masses in terms of the free energy is used. Comparing the results of the present work with those obtained from the nonlinear Walecka model, smaller strangeness and neutrino fractions are predicted within QMC. As a consequence, QMC has a smaller window of metastability for conversion into a low-mass blackhole during cooling.
NASA Astrophysics Data System (ADS)
Syvitski, J. P.; Csdms Scientific; Software Team
2010-12-01
CSDMS is the virtual home for a diverse community who foster and promote the modeling of earth surface processes, with emphasis on the movement of fluids, sediment and solutes through landscapes, seascapes and through their sedimentary basins. CSDMS develops, integrates, disseminates & archives software (> 150 models and 3million+ lines of code) that reflects and predicts earth surface processes over a broad range of time and space scales. CSDMS deals with the Earth's surface—the ever-changing, dynamic interface between lithosphere, hydrosphere, cryosphere, and atmosphere. CSDMS employs state-of-the-art architectures, interface standards and frameworks that make it possible to convert stand-alone models into flexible, "plug-and-play" components that can be assembled into larger applications. The CSDMS model-coupling environment offers language interoperability, structured and unstructured grids, and serves as a migration pathway for surface dynamics modelers towards High-Performance Computing (HPC). The CSDMS Modeling Tool is a key product of the overall project, as it allows earth scientists with relatively modest computer coding experience to use the CSDMS modules for earth surface dynamics research and education. The CMT Tool is platform independent. CMT can easily couple models that have followed the CSDMS protocols for model contribution: 1) Open-source license; 2) Available; 3) Vetted; 4) Open-source language; 5) Refactored for componentization; 6) Metadata & test files; 7) Clean and documented using keywords.
Safer Batteries through Coupled Multiscale Modeling (ICCS 2015)
Turner, John A; Allu, Srikanth; Berrill, Mark A; Elwasif, Wael R; Kalnaus, Sergiy; Kumar, Abhishek; Lebrun-Grandie, Damien T; Pannala, Dr. Sreekanth; Simunovic, Srdjan
2015-01-01
Batteries are highly complex electrochemical systems, with performance and safety governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. We describe a new, open source computational environment for battery simulation known as VIBE - the Virtual Integrated Battery Environment. VIBE includes homogenized and pseudo-2D electrochemistry models such as those by Newman-Tiedemann-Gu (NTG) and Doyle- Fuller-Newman (DFN, a.k.a. DualFoil) as well as a new advanced capability known as AMPERES (Advanced MultiPhysics for Electrochemical and Renewable Energy Storage). AMPERES provides a 3D model for electrochemistry and full coupling with 3D electrical and thermal models on the same grid. VIBE/AMPERES has been used to create three-dimensional battery cell and pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical response under adverse conditions.
A novel time varying signal processing method for Coriolis mass flowmeter.
Shen, Ting-Ao; Tu, Ya-Qing; Zhang, Hai-Tao
2014-06-01
The precision of frequency tracking method and phase difference calculation method affects the measurement precision of Coriolis Mass Flowmeter directly. To improve the accuracy of the mass flowrate, a novel signal processing method for Coriolis Mass Flowmeter is proposed for this time varying signal, which is comprised of a modified adaptive lattice notch filter and a revised sliding recursive discrete-time Fourier transform algorithm. The method cannot only track the change of frequency continuously, but also ensure the calculation accuracy when measuring phase difference. The computational load of the proposed method is small with higher accuracy. Simulation and experiment results show that the proposed method is effective. PMID:24985861
The dynamics of a coupled soilscape-landscape evolution model
NASA Astrophysics Data System (ADS)
Welivitiya, Dimuth; Willgoose, Garry; Hancock, Greg
2016-04-01
In this study we present results obtained from a landform evolution model coupled with SSSPAM5D soilscape evolution model. This presentation will show a number of computer animations with this coupled model using a range of widely accepted soil profile weathering models, and erosion/armouring models. The animations clearly show that subtle changes in process can result in dramatic changes in long-term equilibrium hillslope and soilscape form. We will discuss the reasons for these differences, arguing from the various mathematical and physical assumptions modelled, and infer how observed hillslope form may provide identifiable (and perhaps quantifiable) landform and soilscape signatures of landscape and soilscape process, and in particular the coupling between the landscape and the soilscape. Specifically we have simulated soilscapes using 3 depth dependent weathering functions: 1) Exponential, 2) Humped and 3) Reversed exponential. The Exponential weathering function simulates physical weathering due to thermal effects, and the weathering rate exponentially decreases with depth. The Humped function simulates chemical and/or physical weathering with moisture feedbacks, where the highest weathering rate is at a finite depth below the surface and exponentially declines with depth. The Reversed exponential function simulates chemical weathering, and the highest weathering rate is at the soil-saprolite interface and exponentially decreases both above and below the interface. Both the Humped and Reversed exponential functions can be used as approximations to chemical weathering as they can be derived analytically by solving widely accepted geochemical weathering equations. The Humped function can arise where the weathering fluid is introduced at the top of the soil profile (e.g. rainfall equilibrated with carbon dioxide in the atmosphere), while the Reversed exponential can be derived when carbon dioxide is generated within the profile (e.g. by biodegradation of soil
Evolution of a Coupled Marine Ice Sheet - Sea Level Model
NASA Astrophysics Data System (ADS)
Gomez, N.; Pollard, D.; Mitrovica, J. X.; Huybers, P.; Clark, P. U.
2012-04-01
An instability mechanism is widely predicted for marine ice sheets resting upon reversed bed slopes whereby ice-sheet thinning or rising sea level is thought to lead to irreversible retreat of the grounding line. Previous analyses of marine ice-sheet stability have considered the influence of a sea-level perturbation on ice-sheet stability by assuming a geographically uniform, or eustatic, change in sea level. However, gravitational, deformational and rotational effects associated with changes in the volume of grounded ice lead to markedly non-uniform spatial patterns of sea-level change. In particular, a gravitationally self-consistent sea-level theory predicts a sea-level fall in the vicinity of a shrinking ice sheet that is an order of magnitude greater amplitude than the sea-level rise that would be predicted assuming eustasy. We highlight the stabilizing influence of local sea-level changes on marine ice sheets by incorporating gravitationally self-consistent sea-level changes into a steady state model of ice sheet stability (Gomez et. al., Nature Geoscience, 2010). In addition, we develop a dynamic coupled ice sheet - sea level model to consider the impact of this stabilizing mechanism on the timescale of ice sheet retreat. The coupled system combines a sea-level model valid for a self-gravitating, viscoelastically deforming Earth to a 1D, dynamic marine ice sheet-shelf model. The evolution of the coupled model is explored for a suite of simulations in which we vary the bed slope and the forcing that initiates retreat. We find that the sea-level fall at the grounding line associated with a retreating ice sheet acts to slow the retreat; in simulations with shallow reversed bed slopes and/or small initial forcing, the drop in sea level can be sufficient to halt the retreat. The rate of sea-level change at the grounding line has an elastic component due to ongoing changes in ice-sheet geometry, and a viscous component due to past ice and ocean load changes. When
Upscalling processes in an ocean-atmosphere multiscale coupled model
NASA Astrophysics Data System (ADS)
Masson, S. G.; Berthet, S.; Samson, G.; Crétat, J.; Colas, F.; Echevin, V.; Jullien, S.; Hourdin, C.
2015-12-01
This work explores new pathways toward a better representation of the multi-scale physics that drive climate variability. We are analysing the key upscaling processes by which small-scale localized errors have a knock-on effect onto global climate. We focus on the Peru-Chilli coastal upwelling, an area known to hold among the strongest models biases in the Tropics. Our approach is based on the development of a multiscale coupling interface allowing us to couple WRF with the NEMO oceanic model in a configuration including 2-way nested zooms in the oceanic and/or the atmospheric component of the coupled model. Upscalling processes are evidenced and quantified by comparing three 20-year long simulations of a tropical channel (45°S-45°N), which differ by their horizontal resolution: 0.75° everywhere, 0.75°+0.25° zoom in the southeastern Pacific or 0.25° everywhere. This set of three 20-year long simulations was repeated with 3 different sets of parameterizations to assess the robustness of our results. Our results show that adding an embedded zoom over the southeastern Pacific only in the atmosphere cools down the SST along the Peru-Chili coast, which is a clear improvement. This change is associated with a displacement of the low-level cloud cover, which moves closer to the coast cooling further the coastal area SST. Offshore, we observe the opposite effect with a reduction of the cloud cover with higher resolution, which increases solar radiation and warms the SST. Increasing the resolution in the oceanic component show contrasting results according to the different set parameterization used in the experiments. Some experiment shows a coastal cooling as expected, whereas, in other cases, we observe a counterintuitive response with a warming of the coastal SST. Using at the same time an oceanic and an atmospheric zoom mostly combines the results obtained when using the 2-way nesting in only one component of the coupled model. In the best case, we archive by this
Model independent predictions for rare top decays with weak coupling
Datta, Alakabha; Duraisamy, Murugeswaran
2010-04-01
Measurements at B factories have provided important constraints on new physics in several rare processes involving the B meson. New physics, if present in the b quark sector may also affect the top sector. In an effective Lagrangian approach, we write down operators, where effects in the bottom and the top sector are related. Assuming the couplings of the operators to be of the same size as the weak coupling g of the standard model and taking into account constraints on new physics from the bottom sector as well as top branching ratios, we make predictions for the rare top decays t{yields}cV, where V={gamma}, Z. We find branching fractions for these decays within possible reach of the LHC. Predictions are also made for t{yields}sW.
Particle production within the quark meson coupling model
Panda, P. K.; Menezes, D. P.; Providencia, C.
2009-07-15
Quark-meson coupling (QMC) models can be successfully applied to the description of compact star properties in nuclear astrophysics as well as to nuclear matter. In the regime of hot hadronic matter very few calculations exist using the QMC model, in particular when applied to particle yields in heavy ion collisions. In the present work, we identify the free energy of the bag with the effective mass of the baryons and we calculate the particle production yields on a Au+Au collision at the BNL Relativistic Heavy Ion Collider (RHIC) with the QMC model and compare them with results obtained previously with other relativistic models. A smaller temperature for the fireball, T=132 MeV, is obtained because of the smaller effective baryon masses predicted by QMC. QMC was also applied to the description of particle yields at the CERN Super Proton Synchrotron (SPS) in Pb+Pb collisions.
Thermodynamics of the BMN matrix model at strong coupling
NASA Astrophysics Data System (ADS)
Costa, Miguel S.; Greenspan, Lauren; Penedones, João; Santos, Jorge E.
2015-03-01
We construct the black hole geometry dual to the deconfined phase of the BMN matrix model at strong 't Hooft coupling. We approach this solution from the limit of large temperature where it is approximately that of the non-extremal D0-brane geometry with a spherical S 8 horizon. This geometry preserves the SO(9) symmetry of the matrix model trivial vacuum. As the temperature decreases the horizon becomes deformed and breaks the SO(9) to the SO(6) × SO(3) symmetry of the matrix model. When the black hole free energy crosses zero the system undergoes a phase transition to the confined phase described by a Lin-Maldacena geometry. We determine this critical temperature, whose computation is also within reach of Monte Carlo simulations of the matrix model.