Science.gov

Sample records for corms

  1. Spatial and temporal gene expression patterns occur during corm development.

    PubMed Central

    de Castro, L A; Carneiro, M; Neshich, D de C; de Paiva, G R

    1992-01-01

    We investigated gene expression patterns that occur during taro corm development. Two-dimensional gel electrophoresis identified several different prevalent proteins that accumulate during corm development. Microsequencing studies indicated that some of these proteins are related to taste-modifying proteins, such as curculin and miraculin, and proteins found in other storage organs, such as sporamin and the Kunitz trypsin inhibitor. A curculin-encoding cDNA clone, designated as TC1, was identified that corresponds to a highly prevalent 1-kb corm mRNA. The TC1 mRNA accumulates during corm development, is more prevalent in corm apical than basal regions, and is either absent, or present at low concentrations, in other vegetative organs such as the leaf and root. In situ hybridization experiments showed that the TC1 mRNA is highly concentrated in corm storage parenchyma cells and is absent, or present in reduced concentrations, in other corm cells and tissues. Our results show that corm development is associated with the differentiation of specialized cells and tissues, and that these differentiation events are coupled with the temporal and spatial expression of corm-specific genes. PMID:1467653

  2. Spatial and temporal gene expression patterns occur during corm development.

    PubMed

    de Castro, L A; Carneiro, M; Neshich, D de C; de Paiva, G R

    1992-12-01

    We investigated gene expression patterns that occur during taro corm development. Two-dimensional gel electrophoresis identified several different prevalent proteins that accumulate during corm development. Microsequencing studies indicated that some of these proteins are related to taste-modifying proteins, such as curculin and miraculin, and proteins found in other storage organs, such as sporamin and the Kunitz trypsin inhibitor. A curculin-encoding cDNA clone, designated as TC1, was identified that corresponds to a highly prevalent 1-kb corm mRNA. The TC1 mRNA accumulates during corm development, is more prevalent in corm apical than basal regions, and is either absent, or present at low concentrations, in other vegetative organs such as the leaf and root. In situ hybridization experiments showed that the TC1 mRNA is highly concentrated in corm storage parenchyma cells and is absent, or present in reduced concentrations, in other corm cells and tissues. Our results show that corm development is associated with the differentiation of specialized cells and tissues, and that these differentiation events are coupled with the temporal and spatial expression of corm-specific genes. PMID:1467653

  3. A luminescent and biocompatible photoCORM.

    PubMed

    Pierri, Agustin E; Pallaoro, Alessia; Wu, Guang; Ford, Peter C

    2012-11-01

    The water-soluble rhenium(I) complex fac-[Re(bpy)(CO)(3)(thp)](+) (1) [CF(3)SO(3)(-) salt; bpy = 2,2'-bipyridine, thp = tris(hydroxymethyl)phosphine] is both strongly luminescent and photoactive toward carbon monoxide release. It is stable in aerated aqueous media, is incorporated into cells from the human prostatic carcinoma cell line PPC-1, and shows no apparent cytotoxicity. Furthermore, the solvated Re(I) photoproduct of CO release (2) is also luminescent, a feature that allows one to track the transformation of 1 to 2 inside such cells using confocal fluorescence microscopy. In this context, 1 is a very promising candidate as a photoactivated CO releasing moiety (photoCORM) with potential therapeutic applications. PMID:23077984

  4. IR spectroscopic methods for the investigation of the CO release from CORMs.

    PubMed

    Klein, Moritz; Neugebauer, Ute; Gheisari, Ali; Malassa, Astrid; Jazzazi, Taghreed M A; Froehlich, Frank; Westerhausen, Matthias; Schmitt, Michael; Popp, Jürgen

    2014-07-24

    Carbon monoxide (CO) is a toxic gas for mammals, and despite this fact, it is naturally produced in these organisms and has been proven to be beneficial in medical treatments, too. Therefore, CO-releasing molecules (CORMs) are intensively developed to administer and dose CO for physiological applications. Nearly all of these compounds are metal carbonyl complexes, which have been synthesized and investigated. However, for most of these CORMs, the exact reaction mechanisms of CO release is not completely elucidated, although it is of utmost importance. The widely used myoglobin assay for testing the CO release has several disadvantages, and therefore, different methods have to be applied to characterize CORMs. In this work, different setups of IR absorption spectroscopy are used to analyze and quantify the CO release during the decay of various CORMs: IR spectroscopy of the gas phase is applied to follow the CO liberation, and attenuated total reflection (ATR) IR spectroscopy is used to record the decay of the metal carbonyl. IR spectroscopy supported by DFT calculations yields valuable insights in the CO release reaction mechanism. The focus is set on two different CORMs: CORM-2 (Ru2(CO)(6)Cl(4)) and on the photoactive CORM-S1 (photoCORM [Fe(CO)2(SCH2CH2NH2)2]). Our results indicate that the CO liberation from CORM-2 strongly depends on sodium dithionite, which is required for the commonly applied myoglobin assay and that CORM-S1 loses all its bound CO molecules upon irradiation with blue light. PMID:24978105

  5. CORM-EDE1: A Highly Water-Soluble and Nontoxic Manganese-Based photoCORM with a Biogenic Ligand Sphere.

    PubMed

    Mede, Ralf; Klein, Moritz; Claus, Ralf A; Krieck, Sven; Quickert, Stefanie; Görls, Helmar; Neugebauer, Ute; Schmitt, Michael; Gessner, Guido; Heinemann, Stefan H; Popp, Jürgen; Bauer, Michael; Westerhausen, Matthias

    2016-01-01

    [Mn(CO)5Br] reacts with cysteamine and 4-amino-thiophenyl with a ratio of 2:3 in refluxing tetrahydrofuran to the complexes of the type [{(OC)3Mn}2(μ-SCH2CH2NH3)3]Br2 (1, CORM-EDE1) and [{(OC)3Mn}2(μ-SC6H4-4-NH3)3]Br2 (2, CORM-EDE2). Compound 2 precipitates during refluxing of the tetrahydrofuran solution as a yellow solid whereas 1 forms a red oil that slowly solidifies. Recrystallization of 2 from water yields the HBr-free complex [{(OC)3Mn}2(μ-S-C6H4-4-NH2)2(μ-SC6H4-4-NH3)] (3). The n-propylthiolate ligand (which is isoelectronic to the bridging thiolate of 1) leads to the formation of the di- and tetranuclear complexes [(OC)4Mn(μ-S-nPr)2]2 and [(OC)3Mn(μ-S-nPr)]4. CORM-EDE1 possesses ideal properties to administer carbon monoxide to biological and medicinal tissues upon irradiation (photoCORM). Isolated crystalline CORM-EDE1 can be handled at ambient and aerobic conditions. This complex is nontoxic, highly soluble in water, and indefinitely stable therein in the absence of air and phosphate buffer. CORM-EDE1 is stable as frozen stock in aqueous solution without any limitations, and these stock solutions maintain their CO release properties. The reducing dithionite does not interact with CORM-EDE1, and therefore, the myoglobin assay represents a valuable tool to study the release kinetics of this photoCORM. After CO liberation, the formation of MnHPO4 in aqueous buffer solution can be verified. PMID:26672620

  6. Vascular and angiogenic activities of CORM-401, an oxidant-sensitive CO-releasing molecule.

    PubMed

    Fayad-Kobeissi, Sarah; Ratovonantenaina, Johary; Dabiré, Hubert; Wilson, Jayne Louise; Rodriguez, Anne Marie; Berdeaux, Alain; Dubois-Randé, Jean-Luc; Mann, Brian E; Motterlini, Roberto; Foresti, Roberta

    2016-02-15

    Carbon monoxide (CO) is generated by heme oxygenase-1 (HO-1) and displays important signaling, anti-apoptotic and anti-inflammatory activities, indicating that pharmacological agents mimicking its action may have therapeutic benefit. This study examined the biochemical and pharmacological properties of CORM-401, a recently described CO-releasing molecule containing manganese as a metal center. We used in vitro approaches, ex-vivo rat aortic rings and the EA.hy926 endothelial cell line in culture to address how CORM-401 releases CO and whether the compound modulates vascular tone and pro-angiogenic activities, respectively. We found that CORM-401 released up to three CO/mole of compound depending on the concentration of the acceptor myoglobin. Oxidants such as H2O2, tert-butyl hydroperoxide or hypochlorous acid increased the CO liberated by CORM-401. CORM-401 also relaxed pre-contracted aortic rings and vasorelaxation was enhanced in combination with H2O2. Consistent with the release of multiple CO molecules, CORM-401-induced vasodilation was three times higher than that elicited by CORM-A1, which exhibits a similar half-life to CORM-401 but liberates only one CO/mole of compound. Furthermore, endothelial cells exposed to CORM-401 accumulated CO intracellularly, accelerated migration in vitro and increased VEGF and IL-8 levels. Studies using pharmacological inhibitors revealed HO-1 and p38 MAP kinase as two independent and parallel mechanisms involved in stimulating migration. We conclude that the ability of CORM-401 to release multiple CO, its sensitivity to oxidants which increase CO release, and its vascular and pro-angiogenic properties highlight new advances in the design of CO-releasing molecules that can be tailored for the treatment of inflammatory and oxidative stress-mediated pathologies. PMID:26721585

  7. Vasoactive properties of CORM-3, a novel water-soluble carbon monoxide-releasing molecule.

    PubMed

    Foresti, Roberta; Hammad, Jehad; Clark, James E; Johnson, Tony R; Mann, Brian E; Friebe, Andreas; Green, Colin J; Motterlini, Roberto

    2004-06-01

    1 Carbon monoxide (CO), one of the end products of heme catabolism by heme oxygenase, possesses antihypertensive and vasodilatory characteristics. We have recently discovered that certain transition metal carbonyls are capable of releasing CO in biological fluids and modulate physiological functions via the delivery of CO. Because the initial compounds identified were not water soluble, we have synthesized new CO-releasing molecules that are chemically modified to allow solubility in water. The aim of this study was to assess the vasoactive properties of tricarbonylchloro(glycinato)ruthenium(II) (CORM-3) in vitro and in vivo. 2 CORM-3 produced a concentration-dependent relaxation in vessels precontracted with phenylephrine, exerting significant vasodilatation starting at concentrations of 25-50 microm. Inactive CORM-3, which does not release CO, did not affect vascular tone. 3 Blockers of ATP-dependent potassium channels (glibenclamide) or guanylate cyclase activity (ODQ) considerably reduced CORM-3-dependent relaxation, confirming that potassium channels activation and cGMP partly mediate the vasoactive properties of CO. In fact, increased levels of cGMP were detected in aortas following CORM-3 stimulation. 4 The in vitro and in vivo vasorelaxant activities of CORM-3 were further enhanced in the presence of YC-1, a benzylindazole derivative which is known to sensitize guanylate cyclase to activation by CO. Interestingly, inhibiting nitric oxide production or removing the endothelium significantly decreased vasodilatation by CORM-3, suggesting that factors produced by the endothelium influence CORM-3 vascular activities. 5 These results, together with our previous findings on the cardioprotective functions of CORM-3, indicate that this molecule is an excellent prototype of water-soluble CO carriers for studying the pharmacological and biological features of CO. PMID:15148243

  8. Vasoactive properties of CORM-3, a novel water-soluble carbon monoxide-releasing molecule

    PubMed Central

    Foresti, Roberta; Hammad, Jehad; Clark, James E; Johnson, Tony R; Mann, Brian E; Friebe, Andreas; Green, Colin J; Motterlini, Roberto

    2004-01-01

    Carbon monoxide (CO), one of the end products of heme catabolism by heme oxygenase, possesses antihypertensive and vasodilatory characteristics. We have recently discovered that certain transition metal carbonyls are capable of releasing CO in biological fluids and modulate physiological functions via the delivery of CO. Because the initial compounds identified were not water soluble, we have synthesized new CO-releasing molecules that are chemically modified to allow solubility in water. The aim of this study was to assess the vasoactive properties of tricarbonylchloro(glycinato)ruthenium(II) (CORM-3) in vitro and in vivo. CORM-3 produced a concentration-dependent relaxation in vessels precontracted with phenylephrine, exerting significant vasodilatation starting at concentrations of 25–50 μM. Inactive CORM-3, which does not release CO, did not affect vascular tone. Blockers of ATP-dependent potassium channels (glibenclamide) or guanylate cyclase activity (ODQ) considerably reduced CORM-3-dependent relaxation, confirming that potassium channels activation and cGMP partly mediate the vasoactive properties of CO. In fact, increased levels of cGMP were detected in aortas following CORM-3 stimulation. The in vitro and in vivo vasorelaxant activities of CORM-3 were further enhanced in the presence of YC-1, a benzylindazole derivative which is known to sensitize guanylate cyclase to activation by CO. Interestingly, inhibiting nitric oxide production or removing the endothelium significantly decreased vasodilatation by CORM-3, suggesting that factors produced by the endothelium influence CORM-3 vascular activities. These results, together with our previous findings on the cardioprotective functions of CORM-3, indicate that this molecule is an excellent prototype of water-soluble CO carriers for studying the pharmacological and biological features of CO. PMID:15148243

  9. Determination of some phenolic compounds in Crocus sativus L. corms and its antioxidant activities study

    PubMed Central

    Esmaeili, N; Ebrahimzadeh, H; Abdi, K; Safarian, S

    2011-01-01

    It is well known that phenolic compounds are constituents of many plants. In this study, the total phenolics content in Crocus sativus L. corms in dormancy and waking stages were determined by the Folin-Ciocalteu method. Analysis was carried out by gas chromatography-mass spectrometry (GC-MS) after silylation by N-methyl-N-trimethylsilyl trifluroacetamide (MSTFA) + %1 trimethyl iodosilane (TMIS). Numerous compounds were detected and 11 compounds were identified. The highest phenolics content in waking corms was observed for gentisic acid (5.693 ± 0.057 μg/g) and the lowest for gallic acid (0.416 ± 0.006 μg/g); also these two phenolic compounds are the highest (0.929 ± 0.015 μg/g) and lowest (0.017 ± 0.001 μg/g) phenolics in dormant corms, respectively. The results from quantization and GC-MS analysis showed a high concentration of phenolic compounds in waking corms than the dormant stage. Furthermore, the radical scavenging activities of saffron corms were studied by 1,1-diphenyl-2-pycrylhydrazyl (DPPH) test and EC 50values were determined about 2055 ppm and 8274 ppm for waking and dormant corms, respectively. PMID:21472084

  10. ADP-glucose pyrophosphorylase gene plays a key role in the quality of corm and yield of cormels in gladiolus.

    PubMed

    Seng, Shanshan; Wu, Jian; Sui, Juanjuan; Wu, Chenyu; Zhong, Xionghui; Liu, Chen; Liu, Chao; Gong, Benhe; Zhang, Fengqin; He, Junna; Yi, Mingfang

    2016-05-20

    Starch is the main storage compound in underground organs like corms. ADP-glucose pyrophosphorylase (AGPase) plays a key role in regulating starch biosynthesis in storage organs and is likely one of the most important determinant of sink strength. Here, we identify an AGPase gene (GhAGPS1) from gladiolus. The highest transcriptional levels of GhAGPS1 were observed in cormels and corms. Transformation of GhAGPS1 into Arabidopsis rescued the phenotype of aps1 mutant. Silencing GhAGPS1 in gladiolus corms by virus-induced gene silencing (VIGS) decreased the transcriptional levels of two genes and starch content. Transmission electron microscopy analyses of leaf and corm sections confirmed that starch biosynthesis was inhibited. Corm weight and cormel number reduced significantly in the silenced plants. Taken together, these results indicate that inhibiting the expression of AGPase gene could impair starch synthesis, which results in the lowered corm quality and cormel yield in gladiolus. PMID:27107698

  11. The Interaction of CORM-2 with Block Copolymers Containing Poly(4-vinylpyridine): Macromolecular Scaffolds for Carbon Monoxide Delivery in Biological Systems.

    PubMed

    Nguyen, Diep; Adnan, Nik Nik M; Oliver, Susan; Boyer, Cyrille

    2016-05-01

    CORM-2, tricarbonyldichlororuthenium(II) dimer (Ru2 Cl4 (CO)6 ), is a common carbon monoxide releasing molecule (CORM) studied both in vitro and in vivo, but this compound possesses poor water solubility and a short half-life, which hinders its clinical development. Herein, for the first time the conjugation of CORM-2 is reported with a copolymer containing poly(4-vinylpyridine) to yield water-soluble CO-releasing polymeric nanoparticles. CORM-2 is rapidly conjugated to copolymers through pyridine groups as confirmed by inductively coupled plasma-optical emission spectroscopy and infrared spectroscopy. In comparison with free CORM-2, the copolymers functionalized with CORM-2 display better water solubility and the CO release from the polymer-based CORM is slow and sustained. This study paves the way for the potential use of a copolymer encapsulating CORM-2 as a therapeutic agent. PMID:26945898

  12. Elucidation of the CO-Release Kinetics of CORM-A1 by Means of Vibrational Spectroscopy.

    PubMed

    Klein, Moritz; Neugebauer, Ute; Schmitt, Michael; Popp, Jürgen

    2016-04-01

    CO-releasing molecules (CORMs) are developed for investigations of the interaction between the signaling molecule carbon monoxide (CO) and cells or tissue. Prior to their application these molecules must be fully characterized with respect to their CO-release mechanism. One widely used CORM for biological application is sodium boranocarbonate (CORM-A1), which shows pH-dependent CO liberation. The complete reaction mechanism of CORM-A1 is not fully understood yet. Therefore, in this contribution time-resolved gas-phase IR spectroscopy is used to monitor the headspace above decaying CORM-A1 solutions at four different pH values (5.8 to 7.4). Borane carbonyl is found as an intermediate in the gas phase, which is formed during CORM degradation and further decays to CO. Concentration profiles of a pseudoconsecutive first-order reaction are successfully fitted to specific band areas of the measured gas-phase spectra, and the rate constants are obtained. The production of borane carbonyl is strongly pH dependent (half-lives between 5 and 106 min), whereas the decay of borane carbonyl in the gas phase is nearly constant with a half-life of about 33 min. The ratio of liberated CO molecules per CORM-A1 is determined to be 0.91±0.09, and boric acid is identified as further end product. PMID:26699153

  13. In vitro starch digestibility, estimated glycemic index and antioxidant potential of taro (Colocasia esculenta L. Schott) corm.

    PubMed

    Simsek, Sebnem; Nehir El, Sedef

    2015-02-01

    The purpose of this study was to determine some functional properties of taro (Colocasia esculenta L. Schott) corm, which can be a good alternative to the other dietary carbohydrate sources with its high starch content. The total phenolic and flavonoid content of taro corm was found as 205±53mgCAE/100g and 61±9mgCAE/100g, respectively. The antioxidant capacity of corm was determined as 452±72mMTEAC/100g and 244±73mMTEAC/100g, by the scavenging activity against ABTS and DPPH radicals, respectively. The free glucose content of corms was less than 1%, whereas the 60% of dry matter was composed of starch. According to the results, the taro corms' starch was highly digestible and higher than the 50% of the starch was composed of rapidly digestible starch (RDS) fractions. The estimated glycemic index (eGI) of taro corm was 63.1±2.5, indicating taro corm as a medium GI food and a good dietary carbohydrate alternative especially for diabetic people. PMID:25172708

  14. SOIL PASTEURIZATION AND INOCULATION WITH MYCORRHIZAL FUNGI ALTERS FLOWER PRODUCTIN AND CORM COMPOSITION OF BRODIAEA LAXA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inoculum of the vesicular-arbuscular mycorrhizal fungus (VAMF) Glomus intraradices was added to pasteurized or non-pasteurized growing medium for Brodiaea laxa 'Queen Fabiola' to assess whether inoculation altered aspects of flower and corm production during two growing seasons after inoculation. Re...

  15. Novel lead structures and activation mechanisms for CO-releasing molecules (CORMs).

    PubMed

    Schatzschneider, U

    2015-03-01

    Carbon monoxide (CO) is an endogenous small signalling molecule in the human body, produced by the action of haem oxygenase on haem. Since it is very difficult to apply safely as a gas, solid storage and delivery forms for CO are now explored. Most of these CO-releasing molecules (CORMs) are based on the inactivation of the CO by coordinating it to a transition metal centre in a prodrug approach. After a brief look at the potential cellular target structures of CO, an overview of the design principles and activation mechanisms for CO release from a metal coordination sphere is given. Endogenous and exogenous triggers discussed include ligand exchange reactions with medium, enzymatically-induced CO release and photoactivated liberation of CO. Furthermore, the attachment of CORMs to hard and soft nanomaterials to confer additional target specificity to such systems is critically assessed. A survey of analytical methods for the study of the stoichiometry and kinetics of CO release, as well as the tracking of CO in living systems by using fluorescent probes, concludes this review. CORMs are very valuable tools for studying CO bioactivity and might lead to new drug candidates; however, in the design of future generations of CORMs, particular attention has to be paid to their drug-likeness and the tuning of the peripheral 'drug sphere' for specific biomedical applications. Further progress in this field will thus critically depend on a close interaction between synthetic chemists and researchers exploring the physiological effects and therapeutic applications of CO. PMID:24628281

  16. Identification of Differentially Expressed Genes Relevant to Corm Formation in Sagittaria trifolia

    PubMed Central

    Xu, Xiaoyong; Hussain, Javeed; Yin, Jingjing; Zhang, Yi; Li, Liangjun; Chen, Xuehao

    2013-01-01

    Sagittaria trifolia is a good model of wetland plants to elucidate the formation of corm. However, few studies have been conducted to uncover the complexity of gene expression involved in corm formation. In this study, high-throughput tag-sequencing based on Solexa Genome Analyzer Platform was applied to monitor the changes in gene expression with three libraries of differentially expressed genes (DEGs) (C1 library: stolon stage, C2 library: initial swelling stage and C3 library: swelling stage) during corm formation in Sagittaria trifolia. Approximately 6.0 million tags were sequenced, and 5854021, 5983454, and 5761079 clean tags including 138319, 116804, and 101739 distinct tags were obtained after removal of low quality tags from each library, respectively. About 46% distinct tags were unambiguous tags mapping to the reference genes, and 33% were unambiguous tag-mapped genes. Totally, 20575, 19807, and 18438 were annotated in C1, C2, and C3 libraries, respectively, after mapping their functions in existing databases. In addition, we found that profiling of gene expression in C1/C2 and C2/C3 libraries were different among most of the selected 20 DEGs. Most DEGs in C1/C2 libraries were relevant to hormone synthesis and response; energy metabolism and stress response, while most of the genes in C2/C3 libraries were involved in carbohydrate metabolism. All up-regulated transcriptional factors and 16 important genes relevant to corm formation in three libraries were also identified. To further analyze the expression of 9 genes, from the results of tag-sequencing, qRT-PCR was applied. In summary, this study provides a comprehensive understanding of gene expression, during the formation of corm in Sagittaria trifolia. PMID:23359383

  17. Novel lead structures and activation mechanisms for CO-releasing molecules (CORMs)

    PubMed Central

    Schatzschneider, U

    2015-01-01

    Carbon monoxide (CO) is an endogenous small signalling molecule in the human body, produced by the action of haem oxygenase on haem. Since it is very difficult to apply safely as a gas, solid storage and delivery forms for CO are now explored. Most of these CO-releasing molecules (CORMs) are based on the inactivation of the CO by coordinating it to a transition metal centre in a prodrug approach. After a brief look at the potential cellular target structures of CO, an overview of the design principles and activation mechanisms for CO release from a metal coordination sphere is given. Endogenous and exogenous triggers discussed include ligand exchange reactions with medium, enzymatically-induced CO release and photoactivated liberation of CO. Furthermore, the attachment of CORMs to hard and soft nanomaterials to confer additional target specificity to such systems is critically assessed. A survey of analytical methods for the study of the stoichiometry and kinetics of CO release, as well as the tracking of CO in living systems by using fluorescent probes, concludes this review. CORMs are very valuable tools for studying CO bioactivity and might lead to new drug candidates; however, in the design of future generations of CORMs, particular attention has to be paid to their drug-likeness and the tuning of the peripheral ‘drug sphere’ for specific biomedical applications. Further progress in this field will thus critically depend on a close interaction between synthetic chemists and researchers exploring the physiological effects and therapeutic applications of CO. Linked Articles This article is part of a themed section on Pharmacology of the Gasotransmitters. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-6 PMID:24628281

  18. Emerging concepts on the anti-inflammatory actions of carbon monoxide-releasing molecules (CO-RMs)

    PubMed Central

    2012-01-01

    Carbon monoxide-releasing molecules (CO-RMs) are a class of organometallo compounds capable of delivering controlled quantities of CO gas to cells and tissues thus exerting a broad spectrum of pharmacological effects. CO-RMs containing transition metal carbonyls were initially implemented to mimic the function of heme oxygenase-1 (HMOX1), a stress inducible defensive protein that degrades heme to CO and biliverdin leading to anti-oxidant and anti-inflammatory actions. Ten years after their discovery, the research on the chemistry and biological activities of CO-RMs has greatly intensified indicating that their potential use as CO delivering agents for the treatment of several pathological conditions is feasible. Although CO-RMs are a class of compounds that structurally diverge from traditional organic-like pharmaceuticals, their behaviour in the biological environments is progressively being elucidated revealing interesting features of metal-carbonyl chemistry towards cellular targets. Specifically, the presence of carbonyl groups bound to transition metals such as ruthenium, iron or manganese appears to make CO-RMs unique in their ability to transfer CO intracellularly and amplify the mechanisms of signal transduction mediated by CO. In addition to their well-established vasodilatory activities and protective effects against organ ischemic damage, CO-RMs are emerging for their striking anti-inflammatory properties which may be the result of the multiple activities of metal carbonyls in the control of redox signaling, oxidative stress and cellular respiration. Here, we review evidence on the pharmacological effects of CO-RMs in models of acute and chronic inflammation elaborating on some emerging concepts that may help to explain the chemical reactivity and mechanism(s) of action of this distinctive class of compounds in biological systems. PMID:23171578

  19. Analysis of the Bacterial Response to Ru(CO)3Cl(Glycinate) (CORM-3) and the Inactivated Compound Identifies the Role Played by the Ruthenium Compound and Reveals Sulfur-Containing Species as a Major Target of CORM-3 Action

    PubMed Central

    Begg, Ronald; Jesse, Helen E.; Mann, Brian E.; Sanguinetti, Guido; Poole, Robert K.

    2013-01-01

    Abstract Aims: Carbon monoxide (CO)-releasing molecules (CO-RMs) are being developed with the ultimate goal of safely utilizing the therapeutic potential of CO clinically. One such application is antimicrobial activity; therefore, we aimed to characterize and compare the effects of the CO-RM, CORM-3, and its inactivated counterpart, where all labile CO has been removed, at the transcriptomic and cellular level. Results: We found that both compounds are able to penetrate the cell, but the inactive form is not inhibitory to bacterial growth under conditions where CORM-3 is. Transcriptomic analyses revealed that the bacterial response to inactivated CORM-3 (iCORM-3) is much lower than to the active compound and that a wide range of processes appear to be affected by CORM-3 and to a lesser extent iCORM-3, including energy metabolism, membrane transport, motility, and the metabolism of many sulfur-containing species, including cysteine and methionine. Innovation: This work has demonstrated that both CORM-3 and its inactivated counterpart react with cellular functions to yield a complex response at the transcriptomic level. A full understanding of the actions of both compounds is vital to understand the toxic effects of CO-RMs. Conclusion: This work has furthered our understanding of how CORM-3 behaves at the cellular level and identifies the responses that occur when the host is exposed to the Ru compound as well as those that result from the released CO. This is a vital step in laying the groundwork for future development of optimized CO-RMs for eventual use in antimicrobial therapy. Antioxid. Redox Signal. 19, 1999–2012. PMID:23472713

  20. Isolation and characterization of a heteropolysaccharide from the corm of Amorphophallus campanulatus.

    PubMed

    Das, Debsankar; Mondal, Subhas; Roy, Sadhan K; Maiti, Debabrata; Bhunia, Bibhas; Maiti, Tapas K; Islam, Syed S

    2009-12-14

    A water-soluble polysaccharide isolated from the aqueous extract of the corm of Amorphophallus campanulatus was found to contain D-galactose, D-glucose, 4-O-acyl-D-methyl galacturonate, and l-arabinose in a molar ratio 2:1:1:1. Structural investigation of the polysaccharide was carried out using acid hydrolysis, methylation analysis, periodate oxidation study, and NMR studies ((1)H, (13)C, DQF-COSY, TOCSY, NOESY, ROESY, HMQC, and HMBC). On the basis of the above-mentioned experiments the structure of the repeating unit of the polysaccharide was established as: This molecule showed splenocyte activation. PMID:19889399

  1. Carbon Monoxide (CO) Released from Tricarbonyldichlororuthenium (II) Dimer (CORM-2) in Gastroprotection against Experimental Ethanol-Induced Gastric Damage

    PubMed Central

    Magierowska, Katarzyna; Magierowski, Marcin; Hubalewska-Mazgaj, Magdalena; Adamski, Juliusz; Surmiak, Marcin; Sliwowski, Zbigniew; Kwiecien, Slawomir; Brzozowski, Tomasz

    2015-01-01

    The physiological gaseous molecule, carbon monoxide (CO) becomes a subject of extensive investigation due to its vasoactive activity throughout the body but its role in gastroprotection has been little investigated. We determined the mechanism of CO released from its donor tricarbonyldichlororuthenium (II) dimer (CORM-2) in protection of gastric mucosa against 75% ethanol-induced injury. Rats were pretreated with CORM-2 30 min prior to 75% ethanol with or without 1) non-selective (indomethacin) or selective cyclooxygenase (COX)-1 (SC-560) and COX-2 (celecoxib) inhibitors, 2) nitric oxide (NO) synthase inhibitor L-NNA, 3) ODQ, a soluble guanylyl cyclase (sGC) inhibitor, hemin, a heme oxygenase (HO)-1 inductor or zinc protoporphyrin IX (ZnPPIX), an inhibitor of HO-1 activity. The CO content in gastric mucosa and carboxyhemoglobin (COHb) level in blood was analyzed by gas chromatography. The gastric mucosal mRNA expression for HO-1, COX-1, COX-2, iNOS, IL-4, IL-1β was analyzed by real-time PCR while HO-1, HO-2 and Nrf2 protein expression was determined by Western Blot. Pretreatment with CORM-2 (0.5–10 mg/kg) dose-dependently attenuated ethanol-induced lesions and raised gastric blood flow (GBF) but large dose of 100 mg/kg was ineffective. CORM-2 (5 mg/kg and 50 mg/kg i.g.) significantly increased gastric mucosal CO content and whole blood COHb level. CORM-2-induced protection was reversed by indomethacin, SC-560 and significantly attenuated by celecoxib, ODQ and L-NNA. Hemin significantly reduced ethanol damage and raised GBF while ZnPPIX which exacerbated ethanol-induced injury inhibited CORM-2- and hemin-induced gastroprotection and the accompanying rise in GBF. CORM-2 significantly increased gastric mucosal HO-1 mRNA expression and decreased mRNA expression for iNOS, IL-1β, COX-1 and COX-2 but failed to affect HO-1 and Nrf2 protein expression decreased by ethanol. We conclude that CORM-2 released CO exerts gastroprotection against ethanol-induced gastric

  2. Light-triggered CO delivery by a water-soluble and biocompatible manganese photoCORM.

    PubMed

    Jimenez, Jorge; Chakraborty, Indranil; Carrington, Samantha J; Mascharak, Pradip K

    2016-08-16

    The discovery of salutary effects of low doses of carbon monoxide (CO) has spurred interest in designing exogenous molecules that can deliver CO to biological targets under controlled conditions. Herein we report a water-soluble photosensitive manganese carbonyl complex [MnBr(CO)3(pyTAm)] (2) (pyTAm = 2-(pyridyl)imino-triazaadamantane) that can be triggered to release CO upon exposure to visible light. Inclusion of a triazaadamantyl pharmacophore into the coligand of 2 improves its stability and solubility in water. Change in the coligand from 2-(pyridyl)imino-triazaadamantane to 2-(pyridyl)iminoadamantane (pyAm) or 2-(quinonyl)imino-triazaadamantane (qyTAm) dramatically alters these desired properties of the photoCORM. In addition to structures and CO-releasing properties of the three analogous complexes 1-3 from these three α-diimine ligands, theoretical calculations have been performed to determine the origin of Mn-CO bond labilization upon illumination. Rapid delivery of CO to myoglobin under physiological conditions attests the potential of 2 as a biocompatible photoCORM. PMID:27417419

  3. Synthesis of oxime-based CO-releasing molecules, CORMs and their immobilization on maghemite nanoparticles for magnetic-field induced CO release.

    PubMed

    Meyer, Hajo; Brenner, Markus; Höfert, Simon-P; Knedel, Tim-O; Kunz, Peter C; Schmidt, Annette M; Hamacher, Alexandra; Kassack, Matthias U; Janiak, Christoph

    2016-05-01

    Oxime-based CO-releasing molecules (oximeCORMs) were immobilized with a catechol-modified backbone on maghemite iron oxide nanoparticles (IONPs) to give oximeCORM@IONP. The CO release from the free and immobilized oximeCORMs was measured using the standard myoglobin assay. The oximeCORM-nanoparticles were coated with dextran for improved water solubility and confined into an alginate shell for protection and separation from the surrounding myoglobin assay to allow for CO release studies by UV/Vis absorption without interference from highly-absorptive oximeCORM@IONP. Half-lifes of the oxime-based polymer-confined alginate@dextran@oximeCORM@IONPs were estimated at 20 °C to 814 ± 23 min, at 37 °C to 346 ± 83 min and at 50 °C to 73 ± 1 min. The alginate@dextran@oximeCORM@IONP composite showed a further decrease of the half-life of CO release to 153 ± 27 min at 37 °C through local magnetic heating of the susceptible iron oxide nanoparticles with application of an external alternating magnetic field (31.7 kA m(-1), 247 kHz, 39.9 mTesla). The activation energy for the CO release from molecular dicarbonylchlorido(imidazole-2-carbaldehydeoxime)(alkoxycarbonyl)ruthenium(ii) complexes is determined to be ∼100 kJ mol(-1) for five different imidazole-oxime derivatives. PMID:27048982

  4. Beneficial effects of carbon monoxide-releasing molecule-2 (CORM-2) on acute doxorubicin cardiotoxicity in mice: Role of oxidative stress and apoptosis

    SciTech Connect

    Soni, Hitesh; Pandya, Gaurav; Patel, Praful; Acharya, Aviseka; Jain, Mukul; Mehta, Anita A.

    2011-05-15

    Doxorubicin (DXR) has been used in variety of human malignancies for decades. Despite its efficacy in cancer, clinical usage is limited because of its cardiotoxicity, which has been associated with oxidative stress and apoptosis. Carbon monoxide-releasing molecules (CORMs) have been shown to reduce the oxidative damage and apoptosis. The present study investigated the effects of CORM-2, a fast CO-releaser, against DXR-induced cardiotoxicity in mice using biochemical, histopathological and gene expression approaches. CORM-2 (3, 10 and 30 mg/kg/day) was administered intraperitoneally (i.p.) for 10 days and terminated the study on day 11. DXR (20 mg/kg, i.p.) was injected before 72 h of termination. Mice treated with DXR showed cardiotoxicity as evidenced by elevation of serum creatine kinase (CK) and lactate dehydrogenase (LDH), tissue malondialdehyde (MDA), caspase-3 and decrease the level of total antioxidant status (TAS) in heart tissues. Pre- and post-treatment with CORM-2 (30 mg/kg, i.p.) elicited significant improvement in CK, LDH, MDA, caspase-3 and TAS levels. Histopathological studies showed that cardiac damage with DXR has been reversed with CORM-2 + DXR treatment. There was dramatic decrease in hematological count in DXR-treated mice, which has been improved with CORM-2. Furthermore, there was also elevation of mRNA expression of heme oxygenase-1, hypoxia inducible factor-1 alpha, vascular endothelial growth factor and decrease in inducible-nitric oxide synthase expression upon treatment with CORM-2 that might be linked to cardioprotection. These data suggest that CORM-2 treatment provides cardioprotection against acute doxorubicin-induced cardiotoxicity in mice and this effect may be attributed to CORM-2-mediated antioxidant and anti-apoptotic properties.

  5. Carbon monoxide released by CORM-401 uncouples mitochondrial respiration and inhibits glycolysis in endothelial cells: A role for mitoBKCa channels.

    PubMed

    Kaczara, Patrycja; Motterlini, Roberto; Rosen, Gerald M; Augustynek, Bartlomiej; Bednarczyk, Piotr; Szewczyk, Adam; Foresti, Roberta; Chlopicki, Stefan

    2015-10-01

    Carbon monoxide (CO), a product of heme degradation by heme oxygenases, plays an important role in vascular homeostasis. Recent evidence indicates that mitochondria are among a number of molecular targets that mediate the cellular actions of CO. In the present study we characterized the effects of CO released from CORM-401 on mitochondrial respiration and glycolysis in intact human endothelial cells using electron paramagnetic resonance (EPR) oximetry and the Seahorse XF technology. We found that CORM-401 (10-100μM) induced a persistent increase in the oxygen consumption rate (OCR) that was accompanied by inhibition of glycolysis (extracellular acidification rate, ECAR) and a decrease in ATP-turnover. Furthermore, CORM-401 increased proton leak, diminished mitochondrial reserve capacity and enhanced non-mitochondrial respiration. Inactive CORM-401 (iCORM-401) neither induced mitochondrial uncoupling nor inhibited glycolysis, supporting a direct role of CO in the endothelial metabolic response induced by CORM-401. Interestingly, blockade of mitochondrial large-conductance calcium-regulated potassium ion channels (mitoBKCa) with paxilline abolished the increase in OCR promoted by CORM-401 without affecting ECAR; patch-clamp experiments confirmed that CO derived from CORM-401 activated mitoBKCa channels present in mitochondria. Conversely, stabilization of glycolysis by MG132 prevented CORM-401-mediated decrease in ECAR but did not modify the OCR response. In summary, we demonstrated in intact endothelial cells that CO induces a two-component metabolic response: uncoupling of mitochondrial respiration dependent on the activation of mitoBKCa channels and inhibition of glycolysis independent of mitoBKCa channels. PMID:26185029

  6. Mechanisms of the vasorelaxing effects of CORM-3, a water-soluble carbon monoxide-releasing molecule: interactions with eNOS.

    PubMed

    Alshehri, Ali; Bourguignon, Marie-Pierre; Clavreul, Nicolas; Badier-Commander, Cécile; Gosgnach, Willy; Simonet, Serge; Vayssettes-Courchay, Christine; Cordi, Alex; Fabiani, Jean-Noël; Verbeuren, Tony J; Félétou, Michel

    2013-03-01

    The purpose of the present work was to elucidate the mechanisms underlying the endothelium-dependent and endothelium-independent components of the vascular relaxation induced by a water-soluble and ruthenium-based carbon monoxide (CO)-releasing agent, tricarbonylchloro(glycinato)ruthenium(II) (CORM-3). Changes in isometric tension and cyclic guanosine monophosphate (cGMP) production were measured in isolated aortic rings from normotensive Wistar-Kyoto rats. Nitric oxide (NO) generation was assessed in cultured human umbilical vein endothelial cells (HUVEC) by electron spin resonance. In rat aortic rings, CORM-3, but not the inactivated compound, iCORM, induced relaxations. In rings with but not in those without endothelium relaxations were partially inhibited by L-nitro-arginine (L-NA), 1H-(1,2,4)-oxadiazolo(4,2-a)quinoxalin-1-one (ODQ), or hydroxocobalamin, inhibitors of NO-synthase, soluble guanylyl cyclase, and scavenger of NO, respectively. In rings with and without endothelium, deoxyhemoglobin abolished the relaxations. A combination of potassium channel blockers (barium, glibenclamide, and iberiotoxin) blunted the relaxation in rings without endothelium. CORM-3 produced an endothelium-dependent generation of cGMP that was inhibited by L-NA. CORM-3, but not iCORM, inhibited the endothelium-dependent relaxation to acetylcholine without affecting the response to sodium nitroprusside. In HUVEC, CORM-3 produced a concentration-dependent release of NO. Therefore, CORM-3-induced relaxations involve the soluble guanylyl cyclase-independent activation of smooth muscle potassium channels. Additionally, CO can produce concomitantly activation and inhibition of NO synthase, the former being responsible for the endothelium- and cGMP-dependent effect of CORM-3, the latter for the inhibition of acetylcholine-induced endothelium-dependent relaxations. PMID:23296254

  7. Taro corms mucilage/HPMC based transdermal patch: an efficient device for delivery of diltiazem hydrochloride.

    PubMed

    Sarkar, Gunjan; Saha, Nayan Ranjan; Roy, Indranil; Bhattacharyya, Amartya; Bose, Madhura; Mishra, Roshnara; Rana, Dipak; Bhattacharjee, Debashis; Chattopadhyay, Dipankar

    2014-05-01

    The aim of this work is to examine the effectiveness of mucilage/hydroxypropylmethylcellulose (HPMC) based transdermal patch (matrix type) as a drug delivery device. We have successfully extracted mucilage from Colocasia esculenta (Taro) corms and prepared diltiazem hydrochloride incorporated mucilage/HPMC based transdermal patches using various wt% of mucilage by the solvent evaporation technique. Characterization of both mucilage and transdermal patches has been done by several techniques such as Molisch's test, organoleptic evaluation of mucilage, mechanical, morphological and thermal analysis of transdermal patches. Skin irritation test is studied on hairless Albino rat skin showing that transdermal patches are apparently free of potentially hazardous skin irritation. Fourier transform infrared analysis shows that there is no interaction between drug, mucilage and HPMC while scanning electron microscopy shows the surface morphology of transdermal patches. In vitro drug release time of mucilage-HPMC based transdermal patches is prolonged with increasing mucilage concentration in the formulation. PMID:24556117

  8. Variation of mineral composition in different parts of taro (Colocasia esculenta) corms.

    PubMed

    Mergedus, Andrej; Kristl, Janja; Ivancic, Anton; Sober, Andreja; Sustar, Vilma; Krizan, Tomaz; Lebot, Vincent

    2015-03-01

    Taro (Colocasia esculenta) is an important root crop in the humid tropics and a valuable source of essential mineral nutrients. In the presented study, we compared the mineral compositions of four main parts of taro corm: the upper, marginal, central and lower (basal) parts. The freeze-dried taro samples were analysed for eleven minerals (K, P, Mg, Ca, Zn, Fe, Mn, Cu, Cd, Pb and Cr). The upper part, which plays a critical role in vegetative propagation based on headsets, contained high levels of P, Mg, Zn, Fe, Mn, Cu and Cd. The central part, which is essential for human nutrition, was characterised by higher concentrations of K, P, Mg, Zn, Fe, Cu and Cd. Ca was concentrated in the lower and marginal parts. The effect of the genotype was significant for more than half of the analysed minerals (i.e., Mg, Ca, Zn, Fe, Mn). PMID:25306315

  9. Cytochrome bd-I in Escherichia coli is less sensitive than cytochromes bd-II or bo′' to inhibition by the carbon monoxide-releasing molecule, CORM-3☆☆☆

    PubMed Central

    Jesse, Helen E.; Nye, Tacita L.; McLean, Samantha; Green, Jeffrey; Mann, Brian E.; Poole, Robert K.

    2013-01-01

    Background: CO-releasing molecules (CO-RMs) are potential therapeutic agents, able to deliver CO – a critical gasotransmitter – in biological environments. CO-RMs are also effective antimicrobial agents; although the mechanisms of action are poorly defined, haem-containing terminal oxidases are primary targets. Nevertheless, it is clear from several studies that the effects of CO-RMs on biological systems are frequently not adequately explained by the release of CO: CO-RMs are generally more potent inhibitors than is CO gas and other effects of the molecules are evident. Methods: Because sensitivity to CO-RMs cannot be predicted by sensitivity to CO gas, we assess the differential susceptibilities of strains, each expressing only one of the three terminal oxidases of E. coli — cytochrome bd-I, cytochrome bd-II and cytochrome bo′, to inhibition by CORM-3. We present the first sensitive measurement of the oxygen affinity of cytochrome bd-II (Km 0.24 μM) employing globin deoxygenation. Finally, we investigate the way(s) in which thiol compounds abolish the inhibitory effects of CORM-2 and CORM-3 on respiration, growth and viability, a phenomenon that is well documented, but poorly understood. Results: We show that a strain expressing cytochrome bd-I as the sole oxidase is least susceptible to inhibition by CORM-3 in its growth and respiration of both intact cells and membranes. Growth studies show that cytochrome bd-II has similar CORM-3 sensitivity to cytochrome bo′. Cytochromes bo′ and bd-II also have considerably lower affinities for oxygen than bd-I. We show that the ability of N-acetylcysteine to abrogate the toxic effects of CO-RMs is not attributable to its antioxidant effects, or prevention of CO targeting to the oxidases, but may be largely due to the inhibition of CO-RM uptake by bacterial cells. Conclusions: A strain expressing cytochrome bd-I as the sole terminal oxidase is least susceptible to inhibition by CORM-3. N-acetylcysteine is a

  10. CO-Releasing Molecules Have Nonheme Targets in Bacteria: Transcriptomic, Mathematical Modeling and Biochemical Analyses of CORM-3 [Ru(CO)3Cl(glycinate)] Actions on a Heme-Deficient Mutant of Escherichia coli

    PubMed Central

    Wilson, Jayne Louise; Wareham, Lauren K.; McLean, Samantha; Begg, Ronald; Greaves, Sarah; Mann, Brian E.; Sanguinetti, Guido

    2015-01-01

    Abstract Aims: Carbon monoxide-releasing molecules (CORMs) are being developed with the ultimate goal of safely utilizing the therapeutic potential of CO clinically, including applications in antimicrobial therapy. Hemes are generally considered the prime targets of CO and CORMs, so we tested this hypothesis using heme-deficient bacteria, applying cellular, transcriptomic, and biochemical tools. Results: CORM-3 [Ru(CO)3Cl(glycinate)] readily penetrated Escherichia coli hemA bacteria and was inhibitory to these and Lactococcus lactis, even though they lack all detectable hemes. Transcriptomic analyses, coupled with mathematical modeling of transcription factor activities, revealed that the response to CORM-3 in hemA bacteria is multifaceted but characterized by markedly elevated expression of iron acquisition and utilization mechanisms, global stress responses, and zinc management processes. Cell membranes are disturbed by CORM-3. Innovation: This work has demonstrated for the first time that CORM-3 (and to a lesser extent its inactivated counterpart) has multiple cellular targets other than hemes. A full understanding of the actions of CORMs is vital to understand their toxic effects. Conclusion: This work has furthered our understanding of the key targets of CORM-3 in bacteria and raises the possibility that the widely reported antimicrobial effects cannot be attributed to classical biochemical targets of CO. This is a vital step in exploiting the potential, already demonstrated, for using optimized CORMs in antimicrobial therapy. Antioxid. Redox Signal. 23, 148–162. PMID:25811604

  11. Efficient in vitro regeneration of fertile plants from corm explants of Hypoxis hemerocallidea landrace Gaza -- the "African Potato".

    PubMed

    Ndong, Yves Assoumou; Wadouachi, Anne; Sangwan-Norreel, Brigitte S; Sangwan, Rajbir S

    2006-04-01

    We present efficient protocols for the regeneration of fertile plants from corm explants of Hypoxis hemerocallidea Fisch. and C. A. Mey. landrace Gaza, either by direct multiple shoot formation or via shoot organogenesis from corm-derived calluses. The regeneration efficiency depended on plant growth regulator concentrations and combinations. Multiple direct shoot formation with high frequency (100% with 5-8 shoots/explant) was obtained on a basal medium (BM) supplemented with 3 mg/l kinetin (BM1). However, efficient indirect regeneration occurred when corm explants were first plated on callus induction medium (BM2) with high kinetin (3 mg/l) and naphthalene acetic acid (NAA 1 mg/l), and then transferred to shoot inducing medium (BM3) containing BA (1.5 mg/l) and NAA (0.5 mg/l). Shoot regeneration frequency was 100% and 30-35 shoots per explant were obtained. The regenerated shoots were rooted on a root inducing medium (BM4) containing NAA (0.1 mg/l). Rooted plantlets were transferred to the greenhouse. The regenerants were morphologically normal and fertile. Flow cytometric analyses and chloroplast counts of guard cells suggested that the regenerants were diploid. Efficient cloning protocols described here, have the potential not only to substantially reduce the pressure on natural populations but also for wider biotechnological applications of Hypoxis hemerocallidea-an endangered medicinal plant. PMID:16222532

  12. Different design of enzyme-triggered CO-releasing molecules (ET-CORMs) reveals quantitative differences in biological activities in terms of toxicity and inflammation.

    PubMed

    Stamellou, E; Storz, D; Botov, S; Ntasis, E; Wedel, J; Sollazzo, S; Krämer, B K; van Son, W; Seelen, M; Schmalz, H G; Schmidt, A; Hafner, M; Yard, B A

    2014-01-01

    Acyloxydiene-Fe(CO)3 complexes can act as enzyme-triggered CO-releasing molecules (ET-CORMs). Their biological activity strongly depends on the mother compound from which they are derived, i.e. cyclohexenone or cyclohexanedione, and on the position of the ester functionality they harbour. The present study addresses if the latter characteristic affects CO release, if cytotoxicity of ET-CORMs is mediated through iron release or inhibition of cell respiration and to what extent cyclohexenone and cyclohexanedione derived ET-CORMs differ in their ability to counteract TNF-α mediated inflammation. Irrespective of the formulation (DMSO or cyclodextrin), toxicity in HUVEC was significantly higher for ET-CORMs bearing the ester functionality at the outer (rac-4), as compared to the inner (rac-1) position of the cyclohexenone moiety. This was paralleled by an increased CO release from the former ET-CORM. Toxicity was not mediated via iron as EC50 values for rac-4 were significantly lower than for FeCl2 or FeCl3 and were not influenced by iron chelation. ATP depletion preceded toxicity suggesting impaired cell respiration as putative cause for cell death. In long-term HUVEC cultures inhibition of VCAM-1 expression by rac-1 waned in time, while for the cyclohexanedione derived rac-8 inhibition seems to increase. NFκB was inhibited by both rac-1 and rac-8 independent of IκBα degradation. Both ET-CORMs activated Nrf-2 and consequently induced the expression of HO-1. This study further provides a rational framework for designing acyloxydiene-Fe(CO)3 complexes as ET-CORMs with differential CO release and biological activities. We also provide a better understanding of how these complexes affect cell-biology in mechanistic terms. PMID:25009775

  13. Different design of enzyme-triggered CO-releasing molecules (ET-CORMs) reveals quantitative differences in biological activities in terms of toxicity and inflammation

    PubMed Central

    Stamellou, E.; Storz, D.; Botov, S.; Ntasis, E.; Wedel, J.; Sollazzo, S.; Krämer, B.K.; van Son, W.; Seelen, M.; Schmalz, H.G.; Schmidt, A.; Hafner, M.; Yard, B.A.

    2014-01-01

    Acyloxydiene–Fe(CO)3 complexes can act as enzyme-triggered CO-releasing molecules (ET-CORMs). Their biological activity strongly depends on the mother compound from which they are derived, i.e. cyclohexenone or cyclohexanedione, and on the position of the ester functionality they harbour. The present study addresses if the latter characteristic affects CO release, if cytotoxicity of ET-CORMs is mediated through iron release or inhibition of cell respiration and to what extent cyclohexenone and cyclohexanedione derived ET-CORMs differ in their ability to counteract TNF-α mediated inflammation. Irrespective of the formulation (DMSO or cyclodextrin), toxicity in HUVEC was significantly higher for ET-CORMs bearing the ester functionality at the outer (rac-4), as compared to the inner (rac-1) position of the cyclohexenone moiety. This was paralleled by an increased CO release from the former ET-CORM. Toxicity was not mediated via iron as EC50 values for rac-4 were significantly lower than for FeCl2 or FeCl3 and were not influenced by iron chelation. ATP depletion preceded toxicity suggesting impaired cell respiration as putative cause for cell death. In long-term HUVEC cultures inhibition of VCAM-1 expression by rac-1 waned in time, while for the cyclohexanedione derived rac-8 inhibition seems to increase. NFκB was inhibited by both rac-1 and rac-8 independent of IκBα degradation. Both ET-CORMs activated Nrf-2 and consequently induced the expression of HO-1. This study further provides a rational framework for designing acyloxydiene–Fe(CO)3 complexes as ET-CORMs with differential CO release and biological activities. We also provide a better understanding of how these complexes affect cell-biology in mechanistic terms. PMID:25009775

  14. Digestibility and nitrogen utilization in sheep fed enset (Ensete ventricosum) pseudostem or corm and graded levels of Desmodium intortum hay to wheat straw-based diets.

    PubMed

    Nurfeta, A

    2010-12-01

    The aim of this study was to investigate the effects of different levels of Desmodium intortum (Desmodium) hay supplementation in sheep fed fixed amounts of enset pseudostem or corm and a basal diet of wheat straw on intake, digestibility and nitrogen utilization. Eighteen male sheep with a mean (± SD) live weight of 20.5 ± 1.45 kg were assigned to six treatments in a completely randomized design and fed either 108 g dry matter (DM) enset pseudostem or 165 g DM enset corm each with three levels (100, 200 and 300 g) of hay supplementation. For the pseudostem diets, there was no significant difference in total DM intake. Total crude protein (CP) intake and N retention increased with increasing levels of hay in both pseudostem and corm diets. The apparent digestibility of DM, OM, CP, acid detergent fibre and neutral detergent fibre (NDF) and microbial nitrogen supply (MN) at 100 g was lower that other levels of supplementation. For the corm diets, total DM and OM intake and MN supply increased with increasing levels of hay. The digestibility decreased (p < 0.001) with increasing levels of supplementation. The results suggest that at least 300 g (395 g/kg dietary DM) of Desmodium hay is required in pseudostem diets, whereas 200 g (337 g/kg dietary DM) may be sufficient in corm diets for efficient nutrient utilization. PMID:20050945

  15. Interaction of the carbon monoxide-releasing molecule Ru(CO)3Cl(glycinate) (CORM-3) with Salmonella enterica serovar Typhimurium: in situ measurements of carbon monoxide binding by integrating cavity dual-beam spectrophotometry.

    PubMed

    Rana, Namrata; McLean, Samantha; Mann, Brian E; Poole, Robert K

    2014-12-01

    Carbon monoxide (CO) is a toxic gas that binds to haems, but also plays critical signalling and cytoprotective roles in mammalian systems; despite problems associated with systemic delivery by inhalation of the gas, it may be employed therapeutically. CO delivered to cells and tissues by CO-releasing molecules (CO-RMs) has beneficial and toxic effects not mimicked by CO gas; CO-RMs are also attractive candidates as novel antimicrobial agents. Salmonella enterica serovar Typhimurium is an enteropathogen causing gastroenteritis in humans. Recent studies have implicated haem oxygenase-1 (HO-1), the protein that catalyses the degradation of haem into biliverdin, free iron and CO, in the host immune response to Salmonella infection. In several studies, CO administration via CO-RMs elicited many of the protective roles of HO-1 induction and so we investigated the effects of a well-characterized water-soluble CO-RM, Ru(CO)3Cl(glycinate) (CORM-3), on Salmonella. CORM-3 exhibits toxic effects at concentrations significantly lower than those reported to cause toxicity to RAW 264.7 macrophages. We demonstrated here, through oxyhaemoglobin assays, that CORM-3 did not release CO spontaneously in phosphate buffer, buffered minimal medium or very rich medium. CORM-3 was, however, accumulated to high levels intracellularly (as shown by inductively coupled plasma MS) and released CO inside cells. Using growing Salmonella cultures without prior concentration, we showed for the first time that sensitive dual-beam integrating cavity absorption spectrophotometry can detect directly the CO released from CORM-3 binding in real-time to haems of the bacterial electron transport chain. The toxic effects of CO-RMs suggested potential applications as adjuvants to antibiotics in antimicrobial therapy. PMID:25085864

  16. Amphetamine Decreases α2C-Adrenoceptor Binding of [11C]ORM-13070: A PET Study in the Primate Brain

    PubMed Central

    Hughes, Zoë A; Haaparanta-Solin, Merja; Stepanov, Vladimir; Nakao, Ryuji; Varnäs, Katarina; Varrone, Andrea; Arponen, Eveliina; Marjamäki, Päivi; Pohjanoksa, Katariina; Vuorilehto, Lauri; Babalola, Phebian A; Solin, Olof; Grimwood, Sarah; Sallinen, Jukka; Farde, Lars; Scheinin, Mika; Halldin, Christer

    2015-01-01

    Background: The neurotransmitter norepinephrine has been implicated in psychiatric and neurodegenerative disorders. Examination of synaptic norepinephrine concentrations in the living brain may be possible with positron emission tomography (PET), but has been hampered by the lack of suitable radioligands. Methods: We explored the use of the novel α2C-adrenoceptor antagonist PET tracer [11C]ORM-13070 for measurement of amphetamine-induced changes in synaptic norepinephrine. The effect of amphetamine on [11C]ORM-13070 binding was evaluated ex vivo in rat brain sections and in vivo with PET imaging in monkeys. Results: Microdialysis experiments confirmed amphetamine-induced elevations in rat striatal norepinephrine and dopamine concentrations. Regional [11C]ORM-13070 receptor binding was high in the striatum and low in the cerebellum. After injection of [11C]ORM-13070 in rats, mean striatal specific binding ratios, determined using cerebellum as a reference region, were 1.4±0.3 after vehicle pretreatment and 1.2±0.2 after amphetamine administration (0.3mg/kg, subcutaneous). Injection of [11C]ORM-13070 in non-human primates resulted in mean striatal binding potential (BP ND) estimates of 0.65±0.12 at baseline. Intravenous administration of amphetamine (0.5 and 1.0mg/kg, i.v.) reduced BP ND values by 31–50%. Amphetamine (0.3mg/kg, subcutaneous) increased extracellular norepinephrine (by 400%) and dopamine (by 270%) in rat striata. Conclusions: Together, these results indicate that [11C]ORM-13070 may be a useful tool for evaluation of synaptic norepinephrine concentrations in vivo. Future studies are required to further understand a potential contribution of dopamine to the amphetamine-induced effect. PMID:25522417

  17. Styrene-maleic acid copolymer-encapsulated CORM2, a water-soluble carbon monoxide (CO) donor with a constant CO-releasing property, exhibits therapeutic potential for inflammatory bowel disease.

    PubMed

    Yin, Hongzhuan; Fang, Jun; Liao, Long; Nakamura, Hideaki; Maeda, Hiroshi

    2014-08-10

    Carbon monoxide (CO), the physiological product of heme oxygenase during catabolic breakdown of heme, has versatile functions and fulfills major anti-oxidative and anti-apoptotic roles in cell systems. Administration of CO is thus thought to be a reasonable therapeutic approach in diseases-such as inflammatory bowel disease-that are induced by reactive oxygen species (ROS). Tricarbonyldichlororuthenium(II) dimer (CORM2) is a commonly used CO donor, but it has poor aqueous solubility and a very short CO-releasing half-life (t1/2). In the present study, we prepared micelles consisting of water-soluble styrene-maleic acid copolymer (SMA) encapsulating CORM2 (SMA/CORM2) that had a hydrodynamic size of 165.3nm. Compared with free CORM2, SMA/CORM2 demonstrated better water solubility (>50mg/ml in a physiological water solution). Moreover, because of micelle formation in an aqueous environment, the CO release rate was slow and sustained. These properties resulted in much longer in vivo bioactivity of SMA/CORM2 compared with that of free CORM2, i.e. the t1/2 in blood of SMA/CORM2 in mice after intravenous (i.v.) injection was about 35 times longer than that of free CORM2. We then evaluated the therapeutic potential of SMA/CORM2 in a murine model of inflammatory colitis induced by dextran sulfate sodium (DSS). Administration (either i.v. or oral) of SMA/CORM2 once at the beginning of colitis, 3days after DSS treatment, significantly improved colitis symptoms-loss of body weight, diarrhea, and hematochezia-as well as histopathological colonic changes-shortening of the colon and necrosis or ulcers in the colonic mucosa. Up-regulation of inflammatory cytokines including monocyte chemotactic protein-1, tumor necrosis factor-α, and interleukin-6 in this DSS-induced colitis was significantly suppressed in SMA/CORM2-treated mice. SMA/CORM2 may thus be a superior CO donor and may be a candidate drug, which involves cytokine suppression, for ROS-related diseases including

  18. Production comparisons of Chinese water chestnut [Eleocharis dulcis (Burm. f.) Trin. ex Hensch] functional corms grown in hydroponics versus flooded sand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chinese water chestnut [Eleocharis dulcis (Burm. f.) Trin. ex Hensch.] corms are used as a canned or raw vegetable worldwide and may have potential use as a functional vegetable for human health uses. The accessions in the USDA, ARS, Plant Genetic Resources Conservation Unit do not produce very many...

  19. Physical, functional, and pasting properties of flours from corms of two Cocoyam (Colocasia esculenta and Xanthosoma sagittifolium) cultivars.

    PubMed

    Falade, Kolawole O; Okafor, Chidinma A

    2015-06-01

    Physical, functional and physicochemical properties of flours of five cocoyam (Colocasia spp and Xanthosoma spp) cultivars were evaluated. Colour (L*a*b*) parameters of corms and flours, pasting and functional properties of the flours were determined. Xanthosoma spp showed significantly higher length (95.16-151.46), width (75.29-78.03) and weight (179.20-605.94) than the Colocasia spp., but the parameters did not vary significantly within either Xanthosoma and Colocasia spp. Generally, colour of peeled corms [L* (72.08-78.93); a* (+1.06 - +3.5); b* (+17.65 - +35.80)] was lighter than the flours [L* (69.35-84.97); a* (+0.30 - + 4.76); b* (+4.44 - +23.48)]. The NXs001 showed significantly higher peak (201.71RVU), trough (186.75 RVU), final (289.75 RVU) and setback (103 RVU) viscosities that the other cultivars. Pasting profiles of the cocoyam flours showed similar trend with the NXs001 showing a steeper curve. Pasting temperature and peak time ranged from 87.33 to 92.53 °C and 5.17-6.34 min, respectively. Water absorption capacity, gelling point, pH, foam capacity, bulk density and swelling power varied from 32-69 %, 6.56-7.59, 58.5-72.5 °C, 7.19-14.72 %, 0.94-1.01 g/mL and 3.18-7.36, respectively. PMID:26028725

  20. Carbon monoxide-releasing molecule-3 (CORM-3; Ru(CO)3Cl(glycinate)) as a tool to study the concerted effects of carbon monoxide and nitric oxide on bacterial flavohemoglobin Hmp: applications and pitfalls.

    PubMed

    Tinajero-Trejo, Mariana; Denby, Katie J; Sedelnikova, Svetlana E; Hassoubah, Shahira A; Mann, Brian E; Poole, Robert K

    2014-10-24

    CO and NO are small toxic gaseous molecules that play pivotal roles in biology as gasotransmitters. During bacterial infection, NO, produced by the host via the inducible NO synthase, exerts critical antibacterial effects while CO, generated by heme oxygenases, enhances phagocytosis of macrophages. In Escherichia coli, other bacteria and fungi, the flavohemoglobin Hmp is the most important detoxification mechanism converting NO and O2 to the ion nitrate (NO3(-)). The protoheme of Hmp binds not only O2 and NO, but also CO so that this ligand is expected to be an inhibitor of NO detoxification in vivo and in vitro. CORM-3 (Ru(CO)(3)Cl(glycinate)) is a metal carbonyl compound extensively used and recently shown to have potent antibacterial properties. In this study, attenuation of the NO resistance of E. coli by CORM-3 is demonstrated in vivo. However, polarographic measurements showed that CO gas, but not CORM-3, produced inhibition of the NO detoxification activity of Hmp in vitro. Nevertheless, CO release from CORM-3 in the presence of soluble cellular compounds is demonstrated by formation of carboxy-Hmp. We show that the inability of CORM-3 to inhibit the activity of purified Hmp is due to slow release of CO in protein solutions alone i.e. when sodium dithionite, widely used in previous studies of CO release from CORM-3, is excluded. Finally, we measure intracellular CO released from CORM-3 by following the formation of carboxy-Hmp in respiring cells. CORM-3 is a tool to explore the concerted effects of CO and NO in vivo. PMID:25193663

  1. Carbon Monoxide-releasing Molecule-3 (CORM-3; Ru(CO)3Cl(Glycinate)) as a Tool to Study the Concerted Effects of Carbon Monoxide and Nitric Oxide on Bacterial Flavohemoglobin Hmp

    PubMed Central

    Tinajero-Trejo, Mariana; Denby, Katie J.; Sedelnikova, Svetlana E.; Hassoubah, Shahira A.; Mann, Brian E.; Poole, Robert K.

    2014-01-01

    CO and NO are small toxic gaseous molecules that play pivotal roles in biology as gasotransmitters. During bacterial infection, NO, produced by the host via the inducible NO synthase, exerts critical antibacterial effects while CO, generated by heme oxygenases, enhances phagocytosis of macrophages. In Escherichia coli, other bacteria and fungi, the flavohemoglobin Hmp is the most important detoxification mechanism converting NO and O2 to the ion nitrate (NO3−). The protoheme of Hmp binds not only O2 and NO, but also CO so that this ligand is expected to be an inhibitor of NO detoxification in vivo and in vitro. CORM-3 (Ru(CO)3Cl(glycinate)) is a metal carbonyl compound extensively used and recently shown to have potent antibacterial properties. In this study, attenuation of the NO resistance of E. coli by CORM-3 is demonstrated in vivo. However, polarographic measurements showed that CO gas, but not CORM-3, produced inhibition of the NO detoxification activity of Hmp in vitro. Nevertheless, CO release from CORM-3 in the presence of soluble cellular compounds is demonstrated by formation of carboxy-Hmp. We show that the inability of CORM-3 to inhibit the activity of purified Hmp is due to slow release of CO in protein solutions alone i.e. when sodium dithionite, widely used in previous studies of CO release from CORM-3, is excluded. Finally, we measure intracellular CO released from CORM-3 by following the formation of carboxy-Hmp in respiring cells. CORM-3 is a tool to explore the concerted effects of CO and NO in vivo. PMID:25193663

  2. Cloning and characterization of a novel Gladiolus hybridus AFP family gene (GhAFP-like) related to corm dormancy.

    PubMed

    Wu, Jian; Seng, Shanshan; Carianopol, Carina; Sui, Juanjuan; Yang, Qiuyan; Zhang, Fengqin; Jiang, Huiru; He, Junna; Yi, Mingfang

    2016-02-26

    Abscisic acid (ABA) is an important phytohormone controlling seed dormancy. AFPs (ABA INSENSITIVE FIVE BINDING PROTEINS) are reported to be negative regulators of the ABA signaling pathway. The involvement of AFPs in dormant vegetative organs remains poorly understood. Here, we isolated and characterized a novel AFP family member from Gladiolus dormant cormels, GhAFP-like, containing three conserved domains of the AFP family. Quantitative PCR analysis revealed that GhAFP-like was expressed in dormant organs and its expression was down-regulated along with corm storage. GhAFP-like was verified to be a nuclear-localized protein. Overexpressing GhAFP-like in Arabidopsis thaliana not only showed weaker seed dormancy with insensitivity to ABA, but also changed the expression of some ABA related genes. In addition, a primary root elongation assay showed GhAFP-like may involve in auxin signaling response. The results in this study indicate that GhAFP-like acts as a negative regulator in ABA signaling and is related to dormancy. PMID:26826388

  3. Effect of boiling time on chemical composition and physico-functional properties of flours from taro (Colocasia esculenta cv fouê) corm grown in Côte d'Ivoire.

    PubMed

    Amon, Anon Simplice; Soro, René Yadé; Assemand, Emma Fernande; Dué, Edmond Ahipo; Kouamé, Lucien Patrice

    2014-05-01

    Taro (Colocasia esculenta cv fouê) corm was subjected to different boiling times and the changes in chemical composition and physico-functional properties were investigated using standard method. The change in boiling time led to a significant (P < 0.05) reduction in the moisture, reducing sugars, total sugars, crude fat, crude fibre, total phenolic compound contents and iodine affinity of starch, whereas the total carbohydrate content, water absorption capacity, water solubility index, paste clarity and foam capacity increased significantly (p < 0.05). The crude protein and total ash contents of the flours from taro corm were not affected significantly (p < 0.05) by the change in boiling time. Taro corm flours exhibited highest total carbohydrate, crude fibre, total ash contents, water absorption capacity, iodine affinity of starch and lowest crude protein and fat contents, foaming capacity and water solubility index. Principal component analysis showed that flours from taro corm boiled during 20 min and 15 min were located at the left of the score plot, while flours from raw and boiled taro corm during 10 min had a large positive score in the first principal component. PMID:24803691

  4. The CO donor CORM-2 inhibits LPS-induced vascular cell adhesion molecule-1 expression and leukocyte adhesion in human rheumatoid synovial fibroblasts

    PubMed Central

    Chi, Pei-Ling; Chuang, Yu-Chen; Chen, Yu-Wen; Lin, Chih-Chung; Hsiao, Li-Der; Yang, Chuen-Mao

    2014-01-01

    BACKGROUND AND PURPOSE Infection with Gram-negative bacteria has been recognized as an initiator of rheumatoid arthritis, which is characterized by chronic inflammation and infiltration of immune cells. Carbon monoxide (CO) exhibits anti-inflammatory properties. Here we have investigated the detailed mechanisms of vascular cell adhesion molecule-1 (VCAM-1) expression induced by LPS and if CO inhibited LPS-induced leukocyte adhesion to synovial fibroblasts by suppressing VCAM-1 expression. EXPERIMENTAL APPROACH Human rheumatoid arthritis synovial fibroblasts (RASFs) were incubated with LPS and/or the CO-releasing compound CORM-2. Effects of LPS on VCAM-1 levels were determined by analysing mRNA expression, promoter activity, protein expression, and immunohistochemical staining. The molecular mechanisms were investigated by determining the expression, activation, and binding activity of transcriptional factors using target signal antagonists. KEY RESULTS CORM-2 significantly inhibited inflammatory responses in LPS-treated RASFs by down-regulating the expression of adhesion molecule VCAM-1 and leukocyte infiltration. The down-regulation of LPS-induced VCAM-1 expression involved inhibition of the expression of phosphorylated-NF-κB p65 and AP-1 (p-c-Jun, c-Jun and c-Fos mRNA levels). These results were confirmed by chromatin immunoprecipitation assay to detect NF-κB and AP-1 DNA binding activity. CONCLUSIONS AND IMPLICATIONS LPS-mediated formation of the TLR4/MyD88/TRAF6/c-Src complex regulated NF-κB and MAPKs/AP-1 activation leading to VCAM-1 expression and leukocyte adhesion. CORM-2, which liberates CO to elicit direct biological activities, attenuated LPS-induced VCAM-1 expression by interfering with NF-κB and AP-1 activation, and significantly reduced LPS-induced immune cell infiltration of the synovium. PMID:24628691

  5. Carbon Monoxide Releasing Molecule-A1 (CORM-A1) Improves Neurogenesis: Increase of Neuronal Differentiation Yield by Preventing Cell Death

    PubMed Central

    Almeida, Ana S.; Soares, Nuno L.; Vieira, Melissa; Gramsbergen, Jan Bert

    2016-01-01

    Cerebral ischemia and neurodegenerative diseases lead to impairment or death of neurons in the central nervous system. Stem cell based therapies are promising strategies currently under investigation. Carbon monoxide (CO) is an endogenous product of heme degradation by heme oxygenase (HO) activity. Administration of CO at low concentrations produces several beneficial effects in distinct tissues, namely anti-apoptotic and anti-inflammatory. Herein the CO role on modulation of neuronal differentiation was assessed. Three different models with increasing complexity were used: human neuroblastoma SH-S5Y5 cell line, human teratocarcinoma NT2 cell line and organotypic hippocampal slice cultures (OHSC). Cell lines were differentiated into post-mitotic neurons by treatment with retinoic acid (RA) supplemented with CO-releasing molecule A1 (CORM-A1). CORM-A1 positively modulated neuronal differentiation, since it increased final neuronal production and enhanced the expression of specific neuronal genes: Nestin, Tuj1 and MAP2. Furthermore, during neuronal differentiation process, there was an increase in proliferative cell number (ki67 mRNA expressing cells) and a decrease in cell death (lower propidium iodide (PI) uptake, limitation of caspase-3 activation and higher Bcl-2 expressing cells). CO supplementation did not increase the expression of RA receptors. In the case of SH-S5Y5 model, small amounts of reactive oxygen species (ROS) generation emerges as important signaling molecules during CO-promoted neuronal differentiation. CO’s improvement of neuronal differentiation yield was validated using OHSC as ex vivo model. CORM-A1 treatment of OHSC promoted higher levels of cells expressing the neuronal marker Tuj1. Still, CORM-A1 increased cell proliferation assessed by ki67 expression and also prevented cell death, which was followed by increased Bcl-2 expression, decreased levels of active caspase-3 and PI uptake. Likewise, ROS signaling emerged as key factors in CO

  6. Growth indices and cost implications of hybro broiler chicks fed with graded levels of fermented wild cocoyam Colocasia esculenta (L.) Schott corm meal as a replacement for maize.

    PubMed

    Olajide, R

    2014-05-01

    Corms such as wild cocoyam [Colocasia esculenta] have potential to replace maize as a cheaper energy source in poultry rations. A feeding trial was conducted to evaluate the effects of graded levels of fermented wild cocoyam [Colocasia esculenta (L.) Schott] corm (FWCC), as substitutes for maize in the diets of broilers at the starter phase. One hundred and twenty unsexed day-old Hybro broiler chicks were randomly distributed to four dietary treatments in a Completely Randomized Design (CRD). There were 3 replicates per dietary treatment with 10 birds per replicate. Diet 1 without FWCC served as the control. Diets 2, 3 and 4 contained 10, 20 and 30% FWCC. Each of the diets represented a treatment. The experimental diets and clean drinking water were supplied ad libitum for 4 weeks (28 days) representing the starter phase of the broiler production. Result of the performance revealed significant (p<0.05) differences in feed intake, weight gain and feed conversion ratio. The economic analysis also showed that cost (Naira58.52) of a kilogram feed was highest (p<0.05) for the control and least (Naira53.10) for 30% FWCC. The least cost (Naira101.24) of feed per kilogram weight gain (p<0.05) was obtained for birds fed 30% FWCC compared to (Naira105.53) for the control. It was concluded that maize can economically be substituted with 30% FWCC in broiler starter diets. PMID:26031004

  7. Production of resistant starch from taro (Colocasia esculenta L. Schott) corm and determination of its effects on health by in vitro methods.

    PubMed

    Simsek, Sebnem; El, Sedef Nehir

    2012-10-15

    The aim of the study was the production of resistant starch from taro (Colocasia esculenta L. Schott) corm and determination of its effects on health by in vitro methods. Starch was isolated from taro corms with 98% purity, and 10.4±0.5% amylose content. By application of heating, autoclaving, enzymatic debranching, retrogradation, and drying processes to taro starch for two times, resistant starch (RS) content was increased 16 fold (35.1±1.9%, dry basis). The expected glycemic index (eGI) of taro starch and taro resistant starch was determined as 60.6±0.5 and 51.9±0.9, respectively and the decrease in the glycemic index of taro resistant starch was found as statistically significant (P<0.05). The in vitro binding of bile acids by taro starch and taro resistant starch relative to cholesterol decreasing drug cholestyramine were 5.2±0.2% and 7.6±1.7%, respectively. PMID:22939332

  8. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy

    PubMed Central

    Wu, Jian; Seng, Shanshan; Sui, Juanjuan; Vonapartis, Eliana; Luo, Xian; Gong, Benhe; Liu, Chen; Wu, Chenyu; Liu, Chao; Zhang, Fengqin; He, Junna; Yi, Mingfang

    2015-01-01

    The phytohormone abscisic acid (ABA) regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5), which is a basic leucine zipper motif transcriptional factor (TF). GhABI5 is expressed in dormant vegetative organs (corm, cormel, and stolon) as well as in reproductive organs (stamen), and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6, and RD29B). Down-regulation of GhABI5 in dormant cormels via virus induced gene silence promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B). The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ) in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ). PMID:26579187

  9. The Protective Role of Carbon Monoxide (CO) Produced by Heme Oxygenases and Derived from the CO-Releasing Molecule CORM-2 in the Pathogenesis of Stress-Induced Gastric Lesions: Evidence for Non-Involvement of Nitric Oxide (NO).

    PubMed

    Magierowska, Katarzyna; Magierowski, Marcin; Surmiak, Marcin; Adamski, Juliusz; Mazur-Bialy, Agnieszka Irena; Pajdo, Robert; Sliwowski, Zbigniew; Kwiecien, Slawomir; Brzozowski, Tomasz

    2016-01-01

    Carbon monoxide (CO) produced by heme oxygenase (HO)-1 and HO-2 or released from the CO-donor, tricarbonyldichlororuthenium (II) dimer (CORM-2) causes vasodilation, with unknown efficacy against stress-induced gastric lesions. We studied whether pretreatment with CORM-2 (0.1-10 mg/kg oral gavage (i.g.)), RuCl₃ (1 mg/kg i.g.), zinc protoporphyrin IX (ZnPP) (10 mg/kg intraperitoneally (i.p.)), hemin (1-10 mg/kg i.g.) and CORM-2 (1 mg/kg i.g.) combined with N(G)-nitro-l-arginine (l-NNA, 20 mg/kg i.p.), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 mg/kg i.p.), indomethacin (5 mg/kg i.p.), SC-560 (5 mg/kg i.g.), and celecoxib (10 mg/kg i.g.) affects gastric lesions following 3.5 h of water immersion and restraint stress (WRS). Gastric blood flow (GBF), the number of gastric lesions and gastric CO and nitric oxide (NO) contents, blood carboxyhemoglobin (COHb) level and the gastric expression of HO-1, HO-2, hypoxia inducible factor 1α (HIF-1α), tumor necrosis factor α (TNF-α), cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) were determined. CORM-2 (1 mg/kg i.g.) and hemin (10 mg/kg i.g.) significantly decreased WRS lesions while increasing GBF, however, RuCl₃ was ineffective. The impact of CORM-2 was reversed by ZnPP, ODQ, indomethacin, SC-560 and celecoxib, but not by l-NNA. CORM-2 decreased NO and increased HO-1 expression and CO and COHb content, downregulated HIF-1α, as well as WRS-elevated COX-2 and iNOS mRNAs. Gastroprotection by CORM-2 and HO depends upon CO's hyperemic and anti-inflammatory properties, but is independent of NO. PMID:27023525

  10. The Protective Role of Carbon Monoxide (CO) Produced by Heme Oxygenases and Derived from the CO-Releasing Molecule CORM-2 in the Pathogenesis of Stress-Induced Gastric Lesions: Evidence for Non-Involvement of Nitric Oxide (NO)

    PubMed Central

    Magierowska, Katarzyna; Magierowski, Marcin; Surmiak, Marcin; Adamski, Juliusz; Mazur-Bialy, Agnieszka Irena; Pajdo, Robert; Sliwowski, Zbigniew; Kwiecien, Slawomir; Brzozowski, Tomasz

    2016-01-01

    Carbon monoxide (CO) produced by heme oxygenase (HO)-1 and HO-2 or released from the CO-donor, tricarbonyldichlororuthenium (II) dimer (CORM-2) causes vasodilation, with unknown efficacy against stress-induced gastric lesions. We studied whether pretreatment with CORM-2 (0.1–10 mg/kg oral gavage (i.g.)), RuCl3 (1 mg/kg i.g.), zinc protoporphyrin IX (ZnPP) (10 mg/kg intraperitoneally (i.p.)), hemin (1–10 mg/kg i.g.) and CORM-2 (1 mg/kg i.g.) combined with NG-nitro-l-arginine (l-NNA, 20 mg/kg i.p.), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 mg/kg i.p.), indomethacin (5 mg/kg i.p.), SC-560 (5 mg/kg i.g.), and celecoxib (10 mg/kg i.g.) affects gastric lesions following 3.5 h of water immersion and restraint stress (WRS). Gastric blood flow (GBF), the number of gastric lesions and gastric CO and nitric oxide (NO) contents, blood carboxyhemoglobin (COHb) level and the gastric expression of HO-1, HO-2, hypoxia inducible factor 1α (HIF-1α), tumor necrosis factor α (TNF-α), cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) were determined. CORM-2 (1 mg/kg i.g.) and hemin (10 mg/kg i.g.) significantly decreased WRS lesions while increasing GBF, however, RuCl3 was ineffective. The impact of CORM-2 was reversed by ZnPP, ODQ, indomethacin, SC-560 and celecoxib, but not by l-NNA. CORM-2 decreased NO and increased HO-1 expression and CO and COHb content, downregulated HIF-1α, as well as WRS-elevated COX-2 and iNOS mRNAs. Gastroprotection by CORM-2 and HO depends upon CO’s hyperemic and anti-inflammatory properties, but is independent of NO. PMID:27023525

  11. HO-1 Induction by CO-RM2 Attenuates TNF-α-Induced Cytosolic Phospholipase A2 Expression via Inhibition of PKCα-Dependent NADPH Oxidase/ROS and NF-κB

    PubMed Central

    Chi, Pei-Ling; Liu, Chun-Ju; Lee, I-Ta; Chen, Yu-Wen; Hsiao, Li-Der; Yang, Chuen-Mao

    2014-01-01

    Rheumatoid arthritis (RA) is characterized by chronic inflammatory infiltration of the synovium and elevation of proinflammatory cytokines. Cytosolic phospholipase A2 (cPLA2) is involved in the development of inflammatory diseases. Heme oxygenase-1 (HO-1) has been shown to possess anti-inflammatory properties. The objective of the study was to investigate the detailed mechanisms of TNF-α-induced cPLA2 expression and to determine whether carbon monoxide releasing molecule-2 (CO-RM2) suppresses TNF-α-induced expression of NF-κB-related proinflammatory genes, including cPLA2, via HO-1 induction in RA synovial fibroblasts (RASFs). Here, we reported that TNF-α-induced cPLA2 expression was mediated through TNFR1/PKCα-dependent signaling pathways, including NADPH oxidase (NOX) activation/ROS production and NF-κB activation. CO-RM2 significantly suppressed TNF-α-induced cPLA2 expression by inhibiting the ROS generation and the phosphorylation of NF-κB p65 and IKKα/β, but not the phosphorylation of p38 MAPK and JNK1/2. These results were further confirmed by a ChIP assay to detect the NF-κB DNA-binding activity. Our results demonstrated that induction of HO-1 by CO-RM2 exerted anti-inflammatory and antioxidant effects which were required in concert to prevent the activation of NF-κB leading to induction of various inflammatory genes implicated in the pathogenesis of RA. PMID:24616552

  12. Characterization of a versatile organometallic pro-drug (CORM) for experimental CO based therapeutics

    PubMed Central

    Seixas, João D.; Mukhopadhyay, Abhik; Santos-Silva, Teresa; Otterbein, Leo E; Gallo, David J.; Rodrigues, Sandra S.; Guerreiro, Bruno H.; Gonçalves, Ana M. L.; Penacho, Nuno; Marques, Ana R.; Coelho, Ana C.; Reis, Patrícia M.; Romão, Maria J.; Romão, Carlos C.

    2013-01-01

    The complex fac-[Mo(CO)3(histidinate)]Na has been reported to be an effective CO− Releasing Molecule in vivo, eliciting therapeutic effects in several animal models of disease. The CO releasing profile of this complex in different settings both in vitro and in vivo reveals that the compound can readily liberate all of its three CO equivalents under biological conditions. The compound has low toxicity and cytoxicity and is not hemolytic. CO release is accompanied by a decrease in arterial blood pressure following administration in vivo. We studied its behavior in solution and upon the interaction with proteins. Reactive oxygen species (ROS) generation upon exposure to air and polyoxomolybdate formation in soaks with lysozyme crystals were observed as processes ensuing from the decomposition of the complex and the release of CO. PMID:23223860

  13. In vitro digestibility and some physicochemical properties of starch from wild and cultivated amadumbe corms.

    PubMed

    Naidoo, K; Amonsou, E O; Oyeyinka, S A

    2015-07-10

    Amadumbe, commonly known as taro, is an indigenous underutilised tuber to Southern Africa. In this study, starch functional properties and in vitro starch digestibility of processed products from wild and cultivated amadumbe were determined. Starch extracts from both amadumbe types had similar contents of total starch (approx. 95%). Wild and cultivated amadumbe starch granules were polygonal and very small in size (2.7 ± 0.9 μm). Amylose content of wild amadumbe (20%) was about double that of cultivated (12%). By DSC, the peak gelatinisation temperatures of wild and cultivated amadumbe starches were 81 and 85°C, respectively. The slowly digestible starch (SDS); 20% and resistant starch (RS); 64% contents of wild amadumbe appeared slightly higher than those of cultivated. Processing amadumbe into boiled and baked products did not substantially affect SDS and RS contents. Estimated glycaemic index of processed products ranged from 40 to 44%. Thus, amadumbe, both wild and cultivated, present some potential in the formulation of products for diabetics and weight management. PMID:25857954

  14. Compositional, spectroscopic and rheological analyses of mucilage isolated from taro (Colocasia esculenta L. Schott) corms.

    PubMed

    Njintang, Nicolas Yanou; Boudjeko, Thaddee; Tatsadjieu, Leopold Ngoune; Nguema-Ona, Eric; Scher, Joel; Mbofung, Carl M F

    2014-05-01

    Tropical roots and tubers generally contain mucilage. These mucilages exhibit unique rheological properties with considerable potential as a food thickener and stabilizer. A one-step extraction procedure was used to isolate starch free mucilage and associated proteins from a number of taro (Colocasia esculenta) varieties. The monosaccharide and amino acid composition, the structural and flow properties were investigated. The results showed that yield of mucilage fraction varied from 30 to 190 g.kg(-1). A negative correlation (r = -0.87; p < 0.05) was observed between the crude protein level and the yield. The monosaccharide profiles revealed that galactose, mannose and arabinose were the main monosaccharides in the hydrolysate of the mucilage. From the 17 amino acids analyzed, aspartic acid/asparagine (14.4-17.2%) and glutamic acid/glutamine (10.3-13.6%) were prominent in the mucilage as well as the flour. No significant differences were observed in the FT-IR spectra and in the viscosity behavior of the mucilage dispersions. The greatest difference in the mucilage is based on its monosaccharide profile while the protein composition, which reflects that of the flour, is relatively stable. PMID:24803696

  15. CO and CO-releasing molecules (CO-RMs) in acute gastrointestinal inflammation

    PubMed Central

    Babu, D; Motterlini, R; Lefebvre, R A

    2015-01-01

    Carbon monoxide (CO) is enzymatically generated in mammalian cells alongside the liberation of iron and the production of biliverdin and bilirubin. This occurs during the degradation of haem by haem oxygenase (HO) enzymes, a class of ubiquitous proteins consisting of constitutive and inducible isoforms. The constitutive HO2 is present in the gastrointestinal tract in neurons and interstitial cells of Cajal and CO released from these cells might contribute to intestinal inhibitory neurotransmission and/or to the control of intestinal smooth muscle cell membrane potential. On the other hand, increased expression of the inducible HO1 is now recognized as a beneficial response to oxidative stress and inflammation. Among the products of haem metabolism, CO appears to contribute primarily to the antioxidant and anti-inflammatory effects of the HO1 pathway explaining the studies conducted to exploit CO as a possible therapeutic agent. This article reviews the effects and, as far as known today, the mechanism(s) of action of CO administered either as CO gas or via CO-releasing molecules in acute gastrointestinal inflammation. We provide here a comprehensive overview on the effect of CO in experimental in vivo models of post-operative ileus, intestinal injury during sepsis and necrotizing enterocolitis. In addition, we will analyse the in vitro data obtained so far on the effect of CO on intestinal epithelial cell lines exposed to cytokines, considering the important role of the intestinal mucosa in the pathology of gastrointestinal inflammation. Linked Articles This article is part of a themed section on Pharmacology of the Gasotransmitters. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-6 PMID:24641722

  16. Antimicrobial Activity of the Manganese Photoactivated Carbon Monoxide-Releasing Molecule [Mn(CO)3(tpa-κ3N)]+ Against a Pathogenic Escherichia coli that Causes Urinary Infections

    PubMed Central

    Tinajero-Trejo, Mariana; Rana, Namrata; Nagel, Christoph; Jesse, Helen E.; Smith, Thomas W.; Wareham, Lauren K.; Hippler, Michael; Schatzschneider, Ulrich

    2016-01-01

    Abstract Aims: We set out to investigate the antibacterial activity of a new Mn-based photoactivated carbon monoxide-releasing molecule (PhotoCORM, [Mn(CO)3(tpa-κ3N)]+) against an antibiotic-resistant uropathogenic strain (EC958) of Escherichia coli. Results: Activated PhotoCORM inhibits growth and decreases viability of E. coli EC958, but non-illuminated carbon monoxide-releasing molecule (CORM) is without effect. NADH-supported respiration rates are significantly decreased by activated PhotoCORM, mimicking the effect of dissolved CO gas. CO from the PhotoCORM binds to intracellular targets, namely respiratory oxidases in strain EC958 and a bacterial globin heterologously expressed in strain K-12. However, unlike previously characterized CORMs, the PhotoCORM is not significantly accumulated in cells, as deduced from the cellular manganese content. Activated PhotoCORM reacts avidly with hydrogen peroxide producing hydroxyl radicals; the observed peroxide-enhanced toxicity of the PhotoCORM is ameliorated by thiourea. The PhotoCORM also potentiates the effect of the antibiotic, doxycycline. Innovation: The present work investigates for the first time the antimicrobial activity of a light-activated PhotoCORM against an antibiotic-resistant pathogen. A comprehensive study of the effects of the PhotoCORM and its derivative molecules upon illumination is performed and mechanisms of toxicity of the activated PhotoCORM are investigated. Conclusion: The PhotoCORM allows a site-specific and time-controlled release of CO in bacterial cultures and has the potential to provide much needed information on the generality of CORM activities in biology. Understanding the mechanism(s) of activated PhotoCORM toxicity will be key in exploring the potential of this and similar compounds as antimicrobial agents, perhaps in combinatorial therapies with other agents. Antioxid. Redox Signal. 24, 765–780. PMID:26842766

  17. Effects of Exogenous Carbon Monoxide Releasing Molecules on the Development of Zebrafish Embryos and Larvae.

    PubMed

    Song, Jing E; Si, Jing; Zhou, Rong; Liu, Hua Peng; Wang, Zhen Guo; Gan, Lu; Gui, Fang; Liu, Bin; Zhang, Hong

    2016-06-01

    The use of exogenous carbon monoxide releasing molecules (CORMs) provides promise for clinical application; however, the hazard potential of CORMs in vivo remains poorly understood. The developmental toxicity of CORM-3 was investigated by exposure to concentrations ranging from 6.25 to 400 μmol/L during 4-144 h post fertilization. Toxicity endpoints of mortality, spontaneous movement, heart rate, hatching rate, malformation, body length, and larval behavior were measured. CORM-3 disrupted the progression of zebrafish larval development at concentrations exceeding 50 μmol/L, resulting in embryonic developmental toxicity. PMID:27470107

  18. Chronic treatment with a carbon monoxide releasing molecule reverses dietary induced obesity in mice

    PubMed Central

    Hosick, Peter A; AlAmodi, Abdulhadi A; Hankins, Michael W; Stec, David E

    2016-01-01

    ABSTRACT Chronic, low level treatment with a carbon monoxide releasing molecule (CO-RM), CORM-A1, has been shown to prevent the development of obesity in response to a high fat diet. The objective of this study was to test the hypothesis that chronic, low level treatment with this CO-RM can reverse established obesity via a mechanism independent of food intake. Dietary induced obese mice were treated with CORM-A1, the inactive compound iCORM-A1, or saline every 48 hours for 30 weeks while maintained on a high fat (60%) diet. Chronic treatment with CORM-A1 resulted in a 33% decrease from initial body weight over the 30 week treatment period while treatment with iCORM and saline were associated with 18 and 25% gain in initial body weight over the same time frame. Chronic treatment with CORM-A1 did not affect food intake or activity but resulted in a significant increase in metabolism. CORM-A1 treatment also resulted in lower fasting blood glucose, improvement in insulin sensitivity and decreased heptatic steatosis. Chronic treatment with CO releasing molecules can reverse dietary induced obesity and normalize insulin resistance independent of changes in food intake or activity. These findings are likely though a mechanism which increases metabolism. PMID:27144091

  19. Sulfite species enhance carbon monoxide release from CO-releasing molecules: implications for the deoxymyoglobin assay of activity.

    PubMed

    McLean, Samantha; Mann, Brian E; Poole, Robert K

    2012-08-01

    Carbon monoxide-releasing molecules (CO-RMs) emulate the beneficial (e.g., anti-inflammatory) effects of CO in biology. CO release from CO-RMs is routinely determined in the presence of reduced deoxy-myoglobin by measuring the formation of carboxy-myoglobin (Mb-CO). Previous studies have highlighted discrepancies between the apparent CO release rates of some CO-RMs established using this assay versus other experimental data where a slower or more complex mechanism of release is suggested. It has been hypothesized that some CO-RMs require a CO acceptor, believed to be reduced myoglobin in Mb-CO assays, in order to facilitate the release of CO. Here, we show, for the first time, that CO is not liberated from the ruthenium (Ru)-based [Ru(CO)(3)Cl(2)](2) (CORM-2) and [Ru(CO)(3)Cl(glycinate)] (CORM-3) at an appreciable rate in the presence of reduced myoglobin alone. Rather, we confirm that it is the reducing agent sodium dithionite that facilitates release of CO from these CO-RMs. Other sulfite compounds, namely sodium sulfite and potassium metabisulfite, also promote the liberation of CO from CORM-3. We describe an alternative oxy-hemoglobin assay that eliminates dithionite and suggest that the efficacy of CO-RMs results from intracellular interactions with anions that facilitate CO delivery to therapeutic targets. PMID:22561917

  20. Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule.

    PubMed

    Clark, James E; Naughton, Patrick; Shurey, Sandra; Green, Colin J; Johnson, Tony R; Mann, Brian E; Foresti, Roberta; Motterlini, Roberto

    2003-07-25

    Carbon monoxide, which is generated in mammals during the degradation of heme by the enzyme heme oxygenase, is an important signaling mediator. Transition metal carbonyls have been recently shown to function as carbon monoxide-releasing molecules (CO-RMs) and to elicit distinct pharmacological activities in biological systems. In the present study, we report that a water-soluble form of CO-RM promotes cardioprotection in vitro and in vivo. Specifically, we found that tricarbonylchloro(glycinato)ruthenium(II) (CORM-3) is stable in water at acidic pH but in physiological buffers rapidly liberates CO in solution. Cardiac cells pretreated with CORM-3 (10 to 50 micromol/L) become more resistant to the damage caused by hypoxia-reoxygenation and oxidative stress. In addition, isolated hearts reperfused in the presence of CORM-3 (10 micromol/L) after an ischemic event displayed a significant recovery in myocardial performance and a marked and significant reduction in cardiac muscle damage and infarct size. The cardioprotective effects mediated by CORM-3 in cardiac cells and isolated hearts were totally abolished by 5-hydroxydecanoic acid, an inhibitor of mitochondrial ATP-dependent potassium channels. Predictably, cardioprotection is lost when CORM-3 is replaced by an inactive form (iCORM-3) that is incapable of liberating CO. Using a model of cardiac allograft rejection in mice, we also found that treatment of recipients with CORM-3 but not iCORM-3 considerably prolonged the survival rate of transplanted hearts. These data corroborate the notion that transition metal carbonyls could be used as carriers to deliver CO and highlight the bioactivity and potential therapeutic features of CO-RMs in the mitigation of cardiac dysfunction. The full text of this article is available online at http://www.circresaha.org. PMID:12842916

  1. Effects of carbon monoxide-releasing molecules on pulmonary vasoreactivity in isolated perfused lungs.

    PubMed

    Pak, Oleg; Bakr, Adel G; Gierhardt, Mareike; Albus, Julia; Strielkov, Ievgen; Kroschel, Florian; Hoeres, Timm; Hecker, Matthias; Ghofrani, Hossein A; Seeger, Werner; Weissmann, Norbert; Sommer, Natascha

    2016-01-15

    In addition to its renowned poisonous effects, carbon monoxide (CO) is being recognized for its beneficial actions on inflammatory and vasoregulatory pathways, particularly when applied at low concentrations via CO-releasing molecules (CO-RMs). In the lung, CO gas and CO-RMs are suggested to decrease pulmonary vascular tone and hypoxic pulmonary vasoconstriction (HPV). However, the direct effect of CO-RMs on the pulmonary vasoreactivity in isolated lungs has not yet been investigated. We assessed the effect of CORM-2 and CORM-3 on the pulmonary vasculature during normoxia and acute hypoxia (1% oxygen for 10 min) in isolated ventilated and perfused mouse lungs. The effects were compared with those of inhaled CO gas (10%). The interaction of CORM-2 or CO with cytochrome P-450 (CYP) was measured simultaneously by tissue spectrophotometry. Inhaled CO decreased HPV and vasoconstriction induced by the thromboxane mimetic U-46619 but did not alter KCl-induced vasoconstriction. In contrast, concentrations of CORM-2 and CORM-3 used to elicit beneficial effects on the systemic circulation did not affect pulmonary vascular tone. High concentration of CO-RMs or long-term application induced a continuous increase in normoxic pressure. Inhaled CO showed spectral alterations correlating with the inhibition of CYP. In contrast, during application of CORM-2 spectrophotometric signs of interaction with CYP could not be detected. Application of CO-RMs in therapeutic doses in isolated lungs neither decreases pulmonary vascular tone and HPV nor does it induce spectral alterations that are characteristic of CO-inhibited CYP. High doses, however, may cause pulmonary vasoconstriction. PMID:26586910

  2. Exogenous Carbon Monoxide Decreases Sepsis-Induced Acute Kidney Injury and Inhibits NLRP3 Inflammasome Activation in Rats.

    PubMed

    Wang, Peng; Huang, Jian; Li, Yi; Chang, Ruiming; Wu, Haidong; Lin, Jiali; Huang, Zitong

    2015-01-01

    Carbon monoxide (CO) has shown various physiological effects including anti-inflammatory activity in several diseases, whereas the therapeutic efficacy of CO on sepsis-induced acute kidney injury (AKI) has not been reported as of yet. The purpose of the present study was to explore the effects of exogenous CO on sepsis-induced AKI and nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome activation in rats. Male rats were subjected to cecal ligation and puncture (CLP) to induce sepsis and AKI. Exogenous CO delivered from CO-releasing molecule 2 (CORM-2) was used intraperitoneally as intervention after CLP surgery. Therapeutic effects of CORM-2 on sepsis-induced AKI were assessed by measuring serum creatinine (Scr) and blood urea nitrogen (BUN), kidney histology scores, apoptotic cell scores, oxidative stress, levels of cytokines TNF-α and IL-1β, and NLRP3 inflammasome expression. CORM-2 treatment protected against the sepsis-induced AKI as evidenced by reducing serum Scr/BUN levels, apoptotic cells scores, increasing survival rates, and decreasing renal histology scores. Furthermore, treatment with CORM-2 significantly reduced TNF-α and IL-1β levels and oxidative stress. Moreover, CORM-2 treatment significantly decreased NLRP3 inflammasome protein expressions. Our study provided evidence that CORM-2 treatment protected against sepsis-induced AKI and inhibited NLRP3 inflammasome activation, and suggested that CORM-2 could be a potential therapeutic candidate for treating sepsis-induced AKI. PMID:26334271

  3. Exogenous Carbon Monoxide Decreases Sepsis-Induced Acute Kidney Injury and Inhibits NLRP3 Inflammasome Activation in Rats

    PubMed Central

    Wang, Peng; Huang, Jian; Li, Yi; Chang, Ruiming; Wu, Haidong; Lin, Jiali; Huang, Zitong

    2015-01-01

    Carbon monoxide (CO) has shown various physiological effects including anti-inflammatory activity in several diseases, whereas the therapeutic efficacy of CO on sepsis-induced acute kidney injury (AKI) has not been reported as of yet. The purpose of the present study was to explore the effects of exogenous CO on sepsis-induced AKI and nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome activation in rats. Male rats were subjected to cecal ligation and puncture (CLP) to induce sepsis and AKI. Exogenous CO delivered from CO-releasing molecule 2 (CORM-2) was used intraperitoneally as intervention after CLP surgery. Therapeutic effects of CORM-2 on sepsis-induced AKI were assessed by measuring serum creatinine (Scr) and blood urea nitrogen (BUN), kidney histology scores, apoptotic cell scores, oxidative stress, levels of cytokines TNF-α and IL-1β, and NLRP3 inflammasome expression. CORM-2 treatment protected against the sepsis-induced AKI as evidenced by reducing serum Scr/BUN levels, apoptotic cells scores, increasing survival rates, and decreasing renal histology scores. Furthermore, treatment with CORM-2 significantly reduced TNF-α and IL-1β levels and oxidative stress. Moreover, CORM-2 treatment significantly decreased NLRP3 inflammasome protein expressions. Our study provided evidence that CORM-2 treatment protected against sepsis-induced AKI and inhibited NLRP3 inflammasome activation, and suggested that CORM-2 could be a potential therapeutic candidate for treating sepsis-induced AKI. PMID:26334271

  4. Combined treatment of hydroxytyrosol with carbon monoxide-releasing molecule-2 prevents TNF α-induced vascular endothelial cell dysfunction through NO production with subsequent NFκB inactivation.

    PubMed

    Zrelli, Houda; Wu, Che Wei; Zghonda, Nahla; Shimizu, Hidehisa; Miyazaki, Hitoshi

    2013-01-01

    This study investigated the atheroprotective properties of olive oil polyphenol, hydroxytyrosol (HT), in combination with carbon monoxide-releasing molecule-2 (CORM-2) that acts as a carbon monoxide donor using vascular endothelial cells (VECs). Our results showed that CORM-2 could strengthen the cytoprotective and anti-apoptotic effects of HT against TNFα-induced cellular damage by enhancing cell survival and the suppression of caspase-3 activation. While HT alone attenuated NFκBp65 phosphorylation and IκBα degradation triggered by TNFα in a dose-dependent manner, combined treatment of HT with CORM-2 but not iCORM-2 nearly completely blocked these TNFα effects. Furthermore, combined action of both compounds results in the inhibition of NFκB nuclear translocation. Results also indicate that both compounds time-dependently increased eNOS phosphorylation levels and the combination of HT with CORM-2 was more effective in enhancing eNOS activation and NO production in VECs. The NOS inhibitor, L-NMMA, significantly suppressed the combined effects of HT and CORM-2 on TNFα-triggered NFκBp65 and IκBα phosphorylation as well as decreased cell viability. Together, these data suggest that carbon monoxide-dependent regulation of NO production by the combination of HT with CORM-2 may provide a therapeutic benefit in the treatment of endothelial dysfunction and atherosclerosis. PMID:24066302

  5. Carbon Monoxide-Releasing Molecule-2 Reduces Intestinal Epithelial Tight-Junction Damage and Mortality in Septic Rats

    PubMed Central

    Wang, Xin; Shi, Qiankun; Wang, Xiang; Yuan, Shoutao; Wang, Guozheng; Ji, Zhenling

    2015-01-01

    Objective Damage to intestinal epithelial tight junctions plays an important role in sepsis. Recently we found that Carbon Monoxide-Releasing Molecule-2 (CORM-2) is able to protect LPS-induced intestinal epithelial tight junction damage and in this study we will investigate if CORM-2 could protect intestinal epithelial tight junctions in the rat cecal ligation and puncture (CLP) model. Materials and Methods The CLP model was generated using male Sprague-Dawley (SD) rats according to standard procedure and treated with CORM-2 or inactive CORM-2 (iCORM-2), 8 mg/kg, i.v. immediately after CLP induction and euthanized after 24h or 72h (for mortality rate only). Morphological changes were investigated using both transmission electron and confocal microscopy. The levels of important TJ proteins and phosphorylation of myosin light chain (MLC) were examined using Western blotting. Cytokines, IL-1β and TNF-α were measured using ELISA kits. The overall intestinal epithelial permeability was evaluated using FD-4 as a marker. Results CORM-2, but not iCORM-2, significantly reduced sepsis-induced damage of intestinal mucosa (including TJ disruption), TJ protein reduction (including zonula occludens-l (ZO-1), claudin-1 and occludin), MLC phosphorylation and proinflammatory cytokine release. The overall outcomes showed that CORM-2 suppressed sepsis-induced intestinal epithelial permeability changes and reduced mortality rate of those septic rats. Conclusions Our data strongly suggest that CORM-2 could be a potential therapeutic reagent for sepsis by suppressing inflammation, restoring intestinal epithelial barrier and reducing mortality. PMID:26720630

  6. Water-soluble carbon monoxide-releasing molecules: helping to elucidate the vascular activity of the 'silent killer'.

    PubMed

    Chatterjee, Prabal Kumar

    2004-06-01

    Carbon monoxide (CO) is formed during the degradation of haeme by haeme oxygenase (HO). As well as being an important signalling molecule and vasodilator, CO also possesses antihypertensive, anti-inflammatory and antiapoptotic qualities and protects against ischaemic tissue injury. Several approaches have been used to investigate the therapeutic potential of CO, ranging from direct administration of CO gas to the use of prodrugs, which generate CO upon metabolism. A novel approach involves the use of specific CO carriers, which will release measurable, controllable and effective amounts of CO into biological systems. Transitional metal carbonyls based around iron, manganese or ruthenium have recently been developed as CO-releasing molecules (CO-RMs) that, under appropriate conditions, will release CO. Such molecules have been shown to provide cardioprotection in both ex vivo and in vivo experiments. To date, CO-RMs have been largely incompatible with biological systems in that they are only soluble in organic solvents or have to be preactivated either by physical or chemical stimuli. However, the recent development of water-soluble CO-RMs has provided new opportunities to investigate the pharmacological and biological features of CO without such confounding influences. CORM-3, a novel water-soluble CO-RM, has recently been used to confirm the cardioprotective actions of CO. In this issue of British Journal of Pharmacology, Foresti and co-workers report that CORM-3 delivers CO, produces aortic vasodilation ex vivo and reduces blood pressure in vivo via modulation of the same cGMP and potassium channels utilised by endogenous and exogenous CO. These findings suggest that CORM-3 has the potential for use as a modulator of vascular function and hypertension. However, the use of water-soluble CO-RMs raises several questions of their own which will need to be addressed if CO-RMs are to be of future use therapeutically. PMID:15148242

  7. Water-soluble carbon monoxide-releasing molecules: helping to elucidate the vascular activity of the ‘silent killer'

    PubMed Central

    Chatterjee, Prabal Kumar

    2004-01-01

    Carbon monoxide (CO) is formed during the degradation of haeme by haeme oxygenase (HO). As well as being an important signalling molecule and vasodilator, CO also possesses antihypertensive, anti-inflammatory and antiapoptotic qualities and protects against ischaemic tissue injury. Several approaches have been used to investigate the therapeutic potential of CO, ranging from direct administration of CO gas to the use of prodrugs, which generate CO upon metabolism. A novel approach involves the use of specific CO carriers, which will release measurable, controllable and effective amounts of CO into biological systems. Transitional metal carbonyls based around iron, manganese or ruthenium have recently been developed as CO-releasing molecules (CO-RMs) that, under appropriate conditions, will release CO. Such molecules have been shown to provide cardioprotection in both ex vivo and in vivo experiments. To date, CO-RMs have been largely incompatible with biological systems in that they are only soluble in organic solvents or have to be preactivated either by physical or chemical stimuli. However, the recent development of water-soluble CO-RMs has provided new opportunities to investigate the pharmacological and biological features of CO without such confounding influences. CORM-3, a novel water-soluble CO-RM, has recently been used to confirm the cardioprotective actions of CO. In this issue of British Journal of Pharmacology, Foresti and co-workers report that CORM-3 delivers CO, produces aortic vasodilation ex vivo and reduces blood pressure in vivo via modulation of the same cGMP and potassium channels utilised by endogenous and exogenous CO. These findings suggest that CORM-3 has the potential for use as a modulator of vascular function and hypertension. However, the use of water-soluble CO-RMs raises several questions of their own which will need to be addressed if CO-RMs are to be of future use therapeutically. PMID:15148242

  8. Carbon monoxide-releasing molecule 3 inhibits myeloperoxidase (MPO) and protects against MPO-induced vascular endothelial cell activation/dysfunction.

    PubMed

    Patterson, Eric K; Fraser, Douglas D; Capretta, Alfredo; Potter, Richard F; Cepinskas, Gediminas

    2014-05-01

    Polymorphonuclear leukocyte (PMN)-derived myeloperoxidase (MPO) contributes to the pathophysiology of numerous systemic inflammatory disorders through: (1) direct peroxidation of targets and (2) production of strong oxidizing compounds, e.g., hypohalous acids, particularly hypochlorous acid, which furthers oxidant damage and contributes to the propagation of inflammation and tissue injury/dysfunction. Carbon monoxide-releasing molecules (CORMs) offer potent anti-inflammatory effects; however, the mechanism(s) of action is not fully understood. This study assessed the potential of MPO activity inhibition by a water-soluble CORM, CORM-3. To this end, we used in vitro assays to study CORM-3-dependent modulation of MPO activity with respect to: (1) the inhibition of MPO's catalytic activity generally and (2) the specific inhibition of MPO's peroxidation and halogenation (i.e., production of hypochlorous acid) reactions. Further, we employed primary human umbilical vein endothelial cells (HUVECs) to investigate MPO-dependent cellular activation and dysfunction by measuring intracellular oxidant stress (DHR-123 oxidation) and HUVEC permeability (flux of Texas red-dextran), respectively. The results indicate that CORM-3 significantly inhibits MPO activity as well as MPO's peroxidation and hypohalous acid cycles specifically (p<0.05 vs uninhibited MPO). In addition, CORM-3 significantly decreases PMN homogenate- or rhMPO-induced intracellular DHR-123 oxidation in HUVECs and rhMPO-induced HUVEC monolayer permeability (p<0.05 vs untreated). In all assays the inactivated CORM-3 was significantly less effective than CORM-3 (p<0.05). Taken together our findings indicate that CORM-3 is a novel MPO inhibitor and mitigates inflammatory damage at least in part through a mechanism involving the inhibition of neutrophilic MPO activity. PMID:24583458

  9. CO-releasing Metal Carbonyl Compounds as Antimicrobial Agents in the Post-antibiotic Era*

    PubMed Central

    Wareham, Lauren K.; Poole, Robert K.; Tinajero-Trejo, Mariana

    2015-01-01

    The possibility of a “post-antibiotic era” in the 21st century, in which common infections may kill, has prompted research into radically new antimicrobials. CO-releasing molecules (CORMs), mostly metal carbonyl compounds, originally developed for therapeutic CO delivery in animals, are potent antimicrobial agents. Certain CORMs inhibit growth and respiration, reduce viability, and release CO to intracellular hemes, as predicted, but their actions are more complex, as revealed by transcriptomic datasets and modeling. Progress is hindered by difficulties in detecting CO release intracellularly, limited understanding of the biological chemistry of CO reactions with non-heme targets, and the cytotoxicity of some CORMs to mammalian cells. PMID:26055702

  10. 40 CFR 180.637 - Mandipropamid; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the following commodities. Commodity Parts per million Brassica, head and stem, subgroup 5A 3 Brassica... 1.0 Vegetable, leafy except Brassica, group 4 20 Vegetable, tuberous and corm, subgroup 1C 0.01...

  11. 40 CFR 180.564 - Indoxacarb; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., greens 12 Vegetable, Brassica, leafy, group 5 12 Vegetable, cucurbit, group 9 0.60 Vegetable, fruiting, group 8 0.50 Vegetable, leafy, except Brassica, group 4 14 Vegetable, tuberous and corm, subgroup 1-C...

  12. 40 CFR 180.637 - Mandipropamid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the following commodities. Commodity Parts per million Brassica, head and stem, subgroup 5A 3 Brassica... 1.0 Vegetable, leafy except Brassica, group 4 20 Vegetable, tuberous and corm, subgroup 1C 0.01...

  13. 40 CFR 180.637 - Mandipropamid; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the following commodities. Commodity Parts per million Brassica, head and stem, subgroup 5A 3 Brassica... 1.0 Vegetable, leafy except Brassica, group 4 20 Vegetable, tuberous and corm, subgroup 1C 0.01...

  14. 40 CFR 180.637 - Mandipropamid; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the following commodities. Commodity Parts per million Brassica, head and stem, subgroup 5A 3 Brassica... 1.0 Vegetable, leafy except Brassica, group 4 20 Vegetable, tuberous and corm, subgroup 1C 0.01...

  15. Chapter II. Taxonomy and Phylogeny

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The book chapter presents a review of the taxonomic distribution of ornamental geophytic plants (bulbs, tubers, corms, rhizomes) and the modern classification of the families within which they belong....

  16. 75 FR 862 - Bacillus subtilis; Registration Review Proposed Decision; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... suppress disease organisms such as Botrytis, Alternaria, Rhizoctonia, and Fusarium and is also used to... Rhizoctonia and Fusarium as a dip for seedlings, transplants, plugs, tubers, bulbs, corms, cuttings and...

  17. Carbon Monoxide Induces Heme Oxygenase-1 to Modulate STAT3 Activation in Endothelial Cells via S-Glutathionylation

    PubMed Central

    Yang, Yan-Chang; Huang, Yu-Ting; Hsieh, Chia-Wen; Yang, Po-Min; Wung, Being-Sun

    2014-01-01

    IL-6/STAT3 pathway is involved in a variety of biological responses, including cell proliferation, differentiation, apoptosis, and inflammation. In our present study, we found that CO releasing molecules (CORMs) suppress IL-6-induced STAT3 phosphorylation, nuclear translocation and transactivity in endothelial cells (ECs). CO is a byproduct of heme degradation mediated by heme oxygenase (HO-1). However, CORMs can induce HO-1 expression and then inhibit STAT3 phosphorylation. CO has been found to increase a low level ROS and which may induce protein glutathionylation. We hypothesized that CORMs increases protein glutathionylation and inhibits STAT3 activation. We found that CORMs increase the intracellular GSSG level and induce the glutathionylation of multiple proteins including STAT3. GSSG can inhibit STAT3 phosphorylation and increase STAT3 glutathionylation whereas the antioxidant enzyme catalase can suppress the glutathionylation. Furthermore, catalase blocks the inhibition of STAT3 phosphorylation by CORMs treatment. The inhibition of glutathione synthesis by BSO was also found to attenuate STAT3 glutathionylation and its inhibition of STAT3 phosphorylation. We further found that HO-1 increases STAT3 glutathionylation and that HO-1 siRNA attenuates CORM-induced STAT3 glutathionylation. Hence, the inhibition of STAT3 activation is likely to occur via a CO-mediated increase in the GSSG level, which augments protein glutathionylation, and CO-induced HO-1 expression, which may enhance and maintain its effects in IL-6-treated ECs. PMID:25072782

  18. Incorporation of photo-carbon monoxide releasing materials into electrospun scaffolds for vascular tissue engineering.

    PubMed

    Michael, Eden; Abeyrathna, Nawodi; Patel, Aatish V; Liao, Yi; Bashur, Chris A

    2016-04-01

    Hyper-proliferation of smooth muscle cells (SMCs) and a reduction in endothelial cell function are reasons for poor patency rates of current tissue engineered small-diameter vascular grafts. The controlled delivery of carbon monoxide (CO), a gasotransmitter involved in cell signaling, could improve vascular cell function in these grafts. Current CO releasing molecules (CORMs) can improve endothelialization of injured vessels with appropriate doses, but they still have limitations. The goal of this project was to generate a novel tissue engineered scaffold that includes a non-toxic and photoactivatable CORM. This is the first use of a CORM for tissue engineering. The results demonstrated that CORM-loaded, electrospun poly(ɛ-caprolactone) scaffolds can be photo-activated and release CO. The fluorescence that develops after CO release can be used to non-destructively track the extent of reaction. Further, activation can occur when both dry and incubated in cell culture conditions. However, incubation in serum protein-containing media decreases the time frame for activation, demonstrating the importance of testing the release profile in culture conditions. Rat SMCs were able to attach, grow, and express contractile SMC markers on activated CORM-loaded meshes and controls. Overall, these findings demonstrate that CORM-loaded electrospun scaffolds provide a promising delivery system for vascular tissue engineering. PMID:27007251

  19. Carbon monoxide-releasing molecules modulate leukocyte-endothelial interactions under flow.

    PubMed

    Urquhart, Paula; Rosignoli, Guglielmo; Cooper, Dianne; Motterlini, Roberto; Perretti, Mauro

    2007-05-01

    Carbon monoxide (CO) generated by the enzyme heme oxygenase during the breakdown of heme is known to mediate a number of biological effects. Here, we investigated whether CO liberated from a water-soluble CO-releasing molecule (CO-RM) is capable of modulating leukocyte-endothelial interactions. Tricarbonylchoro(glycinato)ruthenium (II) (CORM-3), a fast CO releaser, proved to be anti-inflammatory in two distinct models of acute inflammation in vivo. In both cases, a significant reduction in neutrophil extravasation was observed. Subsequent in vitro static experiments showed that CORM-3 produced a direct effect on neutrophil (polymorphonuclear neutrophil; PMN) adhesion molecule expression; dose-dependently inhibiting platelet-activating factor stimulated CD11b up-regulation and L-selectin shedding, whereas no effect was observed on up-regulation of human umbilical vein endothelial cell (HUVEC) adhesion molecules intercellular adhesion molecule-1 or E-selectin nor on interleukin-8 chemokine production. In addition, when PMN interaction with HUVECs was studied, an inhibitory effect of CORM-3 on cell capture and rolling was observed. The effect of CORM-3 on PMN CD11b expression was mimicked by the incubation of PMN with the selective large potassium channel opener 1,3-dihydro-1-(2-hydroxy-5-(trifluoromethyl)-phenyl)-5-(trifluoromethyl)-2H-benzimidazol-2-one (NS-1619), which suggests that CORM-3 actions in this instance are mediated, at least in part, via opening of this channel. In conclusion, we have reported that CORM-3 possesses acute anti-inflammatory effects in vivo and that these are probably the result of targeting PMN activation and rolling upon the endothelium. PMID:17289832

  20. Photoactive metal carbonyl complexes as potential agents for targeted CO delivery.

    PubMed

    Gonzales, Margarita A; Mascharak, Pradip K

    2014-04-01

    The surprising discovery of carbon monoxide (CO) as a signaling molecule in mammalian physiology has recently raised interest in this toxic gas among researchers in biochemical and pharmaceutical community. CO is endogenously produced mainly from catabolism of heme by the enzyme heme oxygenase (HO) and participates in a myriad of anti-inflammatory, anti-proliferative, and vasoregulatory pathways. In animal models, low doses of CO have exhibited beneficial effects in suppression of organ graft rejection and safeguarding the heart during reperfusion after cardiopulmonary bypass surgery. The salutary effects of CO have naturally drawn attention of the pharmaceutical industry for its use as a cytoprotective agent. Safety-related concerns of the use of this noxious gas have prompted research in the area of syntheses of CO-releasing molecules (CORMs) and to date, several metal carbonyls (metal complexes of CO) have been employed as CORMs in promoting prolonged (and safe) delivery of low doses of CO to cellular targets. Because many carbonyl complexes release CO upon illumination, investigators have recently began to explore the possibility of "controlled CO delivery" through the use of light. During the past few years, a number of photoactive CORMs or "photoCORMs" have been synthesized that release CO upon illumination with UV or visible light. The utility of these photoCORMs in CO delivery has also been confirmed. Novel design principles for isolation of photoCORMs have started to appear in recent reports. Scrutiny of the literature reveals the emergence of a new exciting area of drug development in such efforts. The potential of photoCORMs as CO-donating pharmaceuticals along with a brief overview of the physiological roles of CO is presented in this review. PMID:24287103

  1. MECHANISMS OF CARBON MONOXIDE ATTENUATION OF TUBULOGLOMERULAR FEEDBACK (TGF)

    PubMed Central

    Ren, YiLin; D’Ambrosio, Martin A.; Wang, Hong; Falck, John R.; Peterson, Edward L.; Garvin, Jeffrey L.; Carretero, Oscar A.

    2012-01-01

    Carbon monoxide (CO) is a physiological messenger with diverse functions in the kidney, including controlling afferent arteriole (Af-Art) tone both directly and via tubuloglomerular feedback (TGF). We have reported that CO attenuates TGF, but the mechanisms underlying this effect remain unknown. We hypothesized that CO, acting via cGMP, cGMP-dependent protein kinase (PKG), and cGMP-stimulated phosphodiesterase-2 (PDE2), reduces cAMP in the macula densa, leading to TGF attenuation. In vitro, microdissected rabbit Af-Arts and their attached macula densa were simultaneously perfused. TGF was measured as the decrease in Af-Art diameter elicited by switching macula densa NaCl from 10 to 80 mM. Adding a CO-releasing molecule (CORM-3, 5×10−5mol/L) to the macula densa blunted TGF from 3.3±0.3 to 2.0±0.3 µm (P<0.001). The guanylate cyclase inhibitor LY-83583 (10−6mol/L) enhanced TGF (5.8±0.6 µm; P<0.001 vs. control) and prevented the effect of CORM-3 on TGF (LY-83583 + CORM-3, 5.5±0.3 µm). Similarly, the PKG inhibitor KT-5823 (2×10−6mol/L) enhanced TGF and prevented the effect of CORM-3 on TGF (KT-5823, 6.0±0.7 µm; KT-5823 + CORM-3, 5.9±0.8 µm). However, the PDE2 inhibitor BAY-60-7550 (10−6mol/L) did not prevent the effect of CORM-3 on TGF (BAY-60-7550, 4.07±0.31 µm; BAY-60-7550 + CORM-3, 1.84±0.31 µm, P<0.001). Finally, the degradation-resistant cAMP analog dibutyryl-cAMP (db-cAMP, 10−3mol/L) prevented the attenuation of TGF by CORM-3 (db-cAMP, 4.6±0.5 µm; db-cAMP + CORM-3, 5.0±0.6 µm). We conclude that CO attenuates TGF by reducing cAMP via a cGMP-dependent pathway mediated by PKG, rather than PDE2. Our results will lead to a better understanding of the mechanisms that control the renal microcirculation. PMID:22508834

  2. Carbon monoxide – physiology, detection and controlled release

    PubMed Central

    Heinemann, Stefan H.; Hoshi, Toshinori; Westerhausen, Matthias

    2014-01-01

    Carbon monoxide (CO) is increasingly recognized as a cell-signalling molecule akin to nitric oxide (NO). CO has attracted particular attention as a potential therapeutic agent because of its reported anti-hypertensive, anti-inflammatory and cell-protective effects. We discuss recent progress in identifying new effector systems and elucidating the mechanisms of action of CO on, e.g., ion channels, as well as the design of novel methods to monitor CO in cellular environments. We also report on recent developments in the area of CO-releasing molecules (CORMs) and materials for controlled CO application. Novel triggers for CO release, metal carbonyls and degradation mechanisms of CORMs, are highlighted. In addition, potential formulations of CORMs for targeted CO release are discussed. PMID:24556640

  3. Stabilizing Alginate Confinement and Polymer Coating of CO-Releasing Molecules Supported on Iron Oxide Nanoparticles To Trigger the CO Release by Magnetic Heating.

    PubMed

    Meyer, Hajo; Winkler, Felix; Kunz, Peter; Schmidt, Annette M; Hamacher, Alexandra; Kassack, Matthias U; Janiak, Christoph

    2015-12-01

    Maghemite (Fe2O3) iron oxide nanoparticles (IONPs) were synthesized, modified with covalent surface-bound CO-releasing molecules of a tri(carbonyl)-chlorido-phenylalaninato-ruthenium(II) complex (CORM), and coated with a dextran polymer. The time- and temperature-dependent CO release from this CORM-3 analogue was followed by a myoglobin assay. A new measurement method for the myoglobin assay was developed, based on confining "water-soluble" polymer-coated Dextran500k@CORM@IONP particles in hollow spheres of nontoxic and easily prepared calcium alginate. Dropping a mixture of Dextran500k@CORM@IONP and sodium alginate into a CaCl2 solution leads to stable hollow spheres of Ca(2+) cross-linked alginate which contain the Dextran500k@CORM@IONP particles. This "alginate-method" (i) protects CORM-3 analogues from rapid CO-displacement reactions with a protein, (ii) enables a spatial separation of the CORM from its surrounding myoglobin assay with the alginate acting as a CO-permeable membrane, and (iii) allows the use of substances with high absorptivity (such as iron oxide nanoparticles) in the myoglobin assay without interference in the optical path of the UV cell. Embedding the CORM@IONP nanoparticles in the alginate vessel represents a compartmentation of the reactive component and allows for close contact with, yet facile separation from, the surrounding myoglobin assay. The half-life of the CO release from Dextran500k@CORM@IONP particles surrounded by alginate was determined to be 890 ± 70 min at 20 °C. An acceleration of the CO release occurs at higher temperature with a half-life of 172 ± 27 min at 37 °C and 45 ± 7 min at 50 °C. The CO release can be triggered in an alternating current magnetic field (31.7 kA m(-1), 247 kHz, 39.9 mT) through local magnetic heating of the susceptible iron oxide nanoparticles. With magnetic heating at 20 °C in the bulk solution, the half-life of CO release from Dextran500k@CORM@IONP particles decreased to 155 ± 18 min

  4. Design, synthesis, and functional evaluation of CO-releasing molecules triggered by Penicillin G amidase as a model protease.

    PubMed

    Sitnikov, Nikolay S; Li, Yingchun; Zhang, Danfeng; Yard, Benito; Schmalz, Hans-Günther

    2015-10-12

    Protease-triggered CO-releasing molecules (CORMs) were developed. The viability of the approach was demonstrated through the synthesis of compounds consisting of an η(4) -oxydiene-Fe(CO)3 moiety connected to a penicillin G amidase (PGA)-cleavable unit through a self-immolative linker. The rate of PGA-induced hydrolysis was investigated by HPLC analysis and the subsequent CO release was quantitatively assessed through headspace gas chromatography. In an in vitro assay with human endothelial cells, typical biological effects of CO, that is, inhibition of the inflammatory response and the induction of heme oxygenase-1 expression, were observed only upon co-administration of the CORM and PGA. This work forms a promising basis for the future development of protease-specific CORMs for potential medicinal applications. PMID:26037072

  5. Design of biomaterials for intracellular delivery of carbon monoxide.

    PubMed

    Inaba, Hiroshi; Fujita, Kenta; Ueno, Takafumi

    2015-11-01

    Carbon monoxide (CO) is recognized as one of the most important gas signaling molecules involved in governing various therapeutic responses. Intracellular generation of CO is spatiotemporally controlled by catalytic reactions of heme oxygenases (HOs). Thus, the ability to control intracellular CO delivery with modulation of the CO-release rate in specific amounts and locations is expected to improve our fundamental understanding of the functions of CO and the development of clinical applications. For this purpose, CO-releasing molecules (CORMs) have been developed and investigated in vitro and in vivo. Most CORMs are based on transition metal carbonyl complexes. Recently, various biomaterials consisting of metal carbonyls with biomacromolecular scaffolds have been reported to improve the properties of bare metal carbonyls. In this mini-review, current progress in CO delivery, recent strategies for the development of CORMs, and future directions in this field are discussed. PMID:26252321

  6. Determining the most effective traits to improve saffron (Crocus sativus L.) yield.

    PubMed

    Bayat, Mahdi; Rahimi, Mehdi; Ramezani, Mehdi

    2016-01-01

    To determine the effective traits to improve saffron yield, a split plot design based on RBCD was done in Mashhad region in Iran for three years (2012-2014). The results showed that all traits except number of daughter corm, fresh weight of daughter corm and dry leaf weight had low general heritability. Results of genotypic and phenotypic coefficients of variation and genetic advance demonstrated that the majority of traits had a low diversity and the selection did not have any effect in improving the traits. As a result, the best way to increase saffron yield is improvement of farm management. It was also found that saffron yield had the highest phenotypic and genotypic correlations with fresh and dry weight of daughter corm and dry and fresh flower weight. Therefore, the efforts to improve these traits will increase saffron yield. According to the present study 5-Jun to 5-Jul was found to be the best sowing date for planting saffron. Also, the Mashhad and Torbat ecotypes were the best ecotypes in this study. Phenotypic and genotypic path analysis showed that in the first step three traits number of daughter corm, fresh flower weight and flower number and in the second step traits fresh weight of daughter corm, dry flower weight and dry leaf weight interred to the regression model and had the highest positive direct and indirect effects on saffron yield. Mainly, it can be derived that the implementation of correct farm management including appropriate sowing date, saffron ecotypes, proper density, bigger and higher quality saffron corm can play an important role in improving yield components and subsequently increasing saffron yield. PMID:27186029

  7. Apical dominance in saffron and the involvement of the branching enzymes CCD7 and CCD8 in the control of bud sprouting

    PubMed Central

    2014-01-01

    Background In saffron (Crocus sativus), new corms develop at the base of every shoot developed from the maternal corm, a globular underground storage stem. Since the degree of bud sprouts influences the number and size of new corms, and strigolactones (SLs) suppress growth of pre-formed axillary bud, it was considered appropriate to investigate SL involvement in physiology and molecular biology in saffron. We focused on two of the genes within the SL pathway, CCD7 and CCD8, encoding carotenoid cleavage enzymes required for the production of SLs. Results The CsCCD7 and CsCCD8 genes are the first ones isolated and characterized from a non-grass monocotyledonous plant. CsCCD7 and CsCCD8 expression showed some overlapping, although they were not identical. CsCCD8 was highly expressed in quiescent axillary buds and decapitation dramatically reduced its expression levels, suggesting its involvement in the suppression of axillary bud outgrowth. Furthermore, in vitro experiments showed also the involvement of auxin, cytokinin and jasmonic acid on the sprouting of axillary buds from corms in which the apical bud was removed. In addition, CsCCD8 expression, but not CsCCD7, was higher in the newly developed vascular tissue of axillary buds compared to the vascular tissue of the apical bud. Conclusions We showed that production and transport of auxin in saffron corms could act synergistically with SLs to arrest the outgrowth of the axillary buds, similar to the control of above-ground shoot branching. In addition, jasmonic acid seems to play a prominent role in bud dormancy in saffron. While cytokinins from roots promote bud outgrowth. In addition the expression results of CsCCD8 suggest that SLs could positively regulate procambial activity and the development of new vascular tissues connecting leaves with the mother corm. PMID:24947472

  8. Mapping the protein-binding sites for iridium(iii)-based CO-releasing molecules.

    PubMed

    Caterino, Marco; Petruk, Ariel A; Vergara, Alessandro; Ferraro, Giarita; Marasco, Daniela; Doctorovich, Fabio; Estrin, Dario A; Merlino, Antonello

    2016-07-26

    A combination of mass spectrometry, Raman microspectroscopy, circular dichroism and X-ray crystallography has been used to obtain detailed information on the reaction of an iridium-based CO-releasing molecule (Ir-CORM), Cs2IrCl5CO, with a model protein, bovine pancreatic ribonuclease. The results show that Ir-compound fragments bind to the N-terminal amine and close to histidine and methionine side chains, and the CO ligand is retained for a long time. The data provide helpful information for identifying protein targets for Ir-CORMs and for studying the mechanism that allows them to exhibit their interesting biological properties. PMID:27411388

  9. Carbon monoxide in biology and microbiology: surprising roles for the "Detroit perfume".

    PubMed

    Davidge, Kelly S; Motterlini, Roberto; Mann, Brian E; Wilson, Jayne Louise; Poole, Robert K

    2009-01-01

    Carbon monoxide (CO) is a colorless, odorless gas with a reputation for being an anthropogenic poison; there is extensive documentation of the modes of human exposure, toxicokinetics, and health effects. However, CO is also generated endogenously by heme oxygenases (HOs) in mammals and microbes, and its extraordinary biological activities are now recognized and increasingly utilized in medicine and physiology. This review introduces recent advances in CO biology and chemistry and illustrates the exciting possibilities that exist for a deeper understanding of its biological consequences. However, the microbiological literature is scant and is currently restricted to: 1) CO-metabolizing bacteria, CO oxidation by CO dehydrogenase (CODH) and the CO-sensing mechanisms that enable CO oxidation; 2) the use of CO as a heme ligand in microbial biochemistry; and 3) very limited information on how microbes respond to CO toxicity. We demonstrate how our horizons in CO biology have been extended by intense research activity in recent years in mammalian and human physiology and biochemistry. CO is one of several "new" small gas molecules that are increasingly recognized for their profound and often beneficial biological activities, the others being nitric oxide (NO) and hydrogen sulfide (H2S). The chemistry of CO and other heme ligands (oxygen, NO, H2S and cyanide) and the implications for biological interactions are briefly presented. An important advance in recent years has been the development of CO-releasing molecules (CO-RMs) for aiding experimental administration of CO as an alternative to the use of CO gas. The chemical principles of CO-RM design and mechanisms of CO release from CO-RMs (dissociation, association, reduction and oxidation, photolysis, and acidification) are reviewed and we present a survey of the most commonly used CO-RMs. Amongst the most important new applications of CO in mammalian physiology and medicine are its vasoactive properties and the

  10. Somatic Embryogenesis in Crocus sativus L.

    PubMed

    Sevindik, Basar; Mendi, Yesim Yalcin

    2016-01-01

    Saffron (Crocus sativus L.) is one of the most important species in Crocus genus because of its effective usage. It is not only a very expensive spice, but it has also a big ornamental plant potential. Crocus species are propagated by corm and seed, and male sterility is the most important problem of this species. Hence, somatic embryogenesis can be regarded as a strategic tool for the multiplication of saffron plants. In this chapter, the production of saffron corms via somatic embryogenesis is described. PMID:26619871

  11. 78 FR 44440 - Imazosulfuron; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ...This regulation establishes tolerances for residues of imazosulfuron in or on the melon subgroup 9A and the tuberous and corm subgroup 1C. Interregional Research Project Number 4 (IR-4) requested these tolerances under the Federal Food, Drug, and Cosmetic Act...

  12. First report of Nerine yellow stripe virus in Amaryllis in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ornamental flower bulbs (including true bulbs, bulbils, corms, tubers and rhizomes) are increasingly important floriculture crops. Amaryllis is a small genus of flowering bulbs, with two species. The South African native, Amaryllis belladonna, also known as belladonna lily, Jersey lily, naked lady,...

  13. Registration of the Soft Red Winter Wheat Germplasm MD01W233-06-1 Resistant to Fusarium Head Blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MD01W233-06-1 (Reg. No., PI ) is a soft red winter wheat (SRWW) (Triticum aestivum L.) germplasm line developed at the University of Maryland and released by the Maryland Agricultural Experiment Station in 2009. MD01W233-06-1 was selected from a cross of ‘McCormick’/ ‘Choptank’ made in 2001. McCorm...

  14. 40 CFR 180.482 - Tebufenozide; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .../05 Sweet potato, roots 0.25 12/31/05 (c) Tolerances with regional registrations. (d) Indirect or... affecting § 180.482, see the List of CFR Sections Affected, which appears in the Finding Aids section of the..., roots 0.3 Vegetable, fruiting, group 8 1.0 Vegetable, tuberous and corm, except potato, subgroup 1D...

  15. 40 CFR 180.544 - Methoxyfenozide; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 125 Corn, sweet, forage 30 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet, stover 60..., root, subgroup 1A 0.5 Vegetable, tuberous and corm, except potato, subgroup 1D 0.02 Wax jambu 0.4...

  16. 40 CFR 180.544 - Methoxyfenozide; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 0.05 Corn, pop, stover 125 Corn, sweet, forage 30 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet, stover 60 Cotton, gin byproducts 35 Cotton, undelinted seed 2.0 Cranberry 0.5 Feijoa... sugar beet, Subgroup 1B 0.90 Vegetable, tuberous and corm, except potato, subgroup 1D 0.02 Wax jambu...

  17. 40 CFR 180.544 - Methoxyfenozide; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 125 Corn, sweet, forage 30 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet, stover 60..., root, subgroup 1A 0.5 Vegetable, tuberous and corm, except potato, subgroup 1D 0.02 Wax jambu 0.4...

  18. 40 CFR 180.603 - Dinotefuran; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....2 Brassica, head and stem, subgroup 5A 1.4 Brassica, leafy greens, subgroup 5B 15.0 Cotton..., except Brassica, group 4 5.0 Vegetable, tuberous and corm, subgroup 1C 0.05 Watercress 8.0 1 There are...

  19. 40 CFR 180.603 - Dinotefuran; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....2 Brassica, head and stem, subgroup 5A 1.4 Brassica, leafy greens, subgroup 5B 15.0 Cotton..., except Brassica, group 4 5.0 Vegetable, tuberous and corm, subgroup 1C 0.05 Watercress 8.0 1 There are...

  20. 40 CFR 180.663 - Ametoctradin; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... permillion Brassica, head and stem, subgroup 5A 9.0 Brassica, leafy greens, subgroup 5B 50 Grape 4.0 Grape... Brassica, group 4, except spinach 40.0 Vegetable, tuberous and corm, subgroup 1C 0.05 (b) Section...

  1. 40 CFR 180.556 - Pymetrozine; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Commodity Parts per million Asparagus 0.04 Brassica, head and stem, subgroup 5A 0.5 Brassica, leafy greens..., execpt brassica, group 4 0.6 Vegetable, tuberous and corm, subgroup 1C 0.02 (b) Section 18...

  2. 40 CFR 180.556 - Pymetrozine; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Commodity Parts per million Asparagus 0.04 Brassica, head and stem, subgroup 5A 0.5 Brassica, leafy greens..., execpt brassica, group 4 0.6 Vegetable, tuberous and corm, subgroup 1C 0.02 (b) Section 18...

  3. 40 CFR 180.663 - Ametoctradin; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... permillion Brassica, head and stem, subgroup 5A 9.0 Brassica, leafy greens, subgroup 5B 50 Grape 4.0 Grape... Brassica, group 4, except spinach 40.0 Vegetable, tuberous and corm, subgroup 1C 0.05 (b) Section...

  4. 40 CFR 180.663 - Ametoctradin; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... permillion Brassica, head and stem, subgroup 5A 9.0 Brassica, leafy greens, subgroup 5B 50 Grape 4.0 Grape... Brassica, group 4, except spinach 40.0 Vegetable, tuberous and corm, subgroup 1C 0.05 (b) Section...

  5. 40 CFR 180.556 - Pymetrozine; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Commodity Parts per million Asparagus 0.04 Brassica, head and stem, subgroup 5A 0.5 Brassica, leafy greens..., execpt brassica, group 4 0.6 Vegetable, tuberous and corm, subgroup 1C 0.02 (b) Section 18...

  6. 40 CFR 180.556 - Pymetrozine; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Commodity Parts per million Asparagus 0.04 Brassica, head and stem, subgroup 5A 0.5 Brassica, leafy greens..., execpt brassica, group 4 0.6 Vegetable, tuberous and corm, subgroup 1C 0.02 (b) Section 18...

  7. 40 CFR 180.556 - Pymetrozine; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Commodity Parts per million Asparagus 0.04 Brassica, head and stem, subgroup 5A 0.5 Brassica, leafy greens..., execpt brassica, group 4 0.6 Vegetable, tuberous and corm, subgroup 1C 0.02 (b) Section 18...

  8. 40 CFR 180.568 - Flumioxazin; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... be determined by measuring only flumioxazin. Commodity Parts per million Alfalfa, forage 3.0 Alfalfa... 0.02 Cabbage, Chinese, napa 0.02 Corn, field, forage 0.02 Corn, field, grain 0.02 Corn, field... Vegetable, tuberous and corm, subgroup 1C 0.02 Wheat, forage 0.02 Wheat, grain 0.40 Wheat, hay 0.02...

  9. Expression of a synthetic antimicrobial peptide, D4E1, in Gladiolus plants for resistance to Fusarium oxysporum f. sp. gladioli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The main pathogen of Gladiolus plants is Fusarium oxysporum, a soilborne fungus that infects roots and corms and kills the plant. Purified D4E1, a synthetic antimicrobial peptide, was found to effectively inhibit 100% of F. oxysporum f. sp. gladioli germinated spores from forming a mycelial mass in ...

  10. 40 CFR 180.589 - Boscalid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... beet, garden beet, radish, and turnip 1.0 Vegetable, tuberous and corm, subgroup 1C 0.05 1No US..., hulls 0.50 Turnip, roots 0.1 Vegetable, foliage of legume, group 7, forage 1.5 Vegetable, foliage...

  11. 40 CFR 180.589 - Boscalid; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... beet, garden beet, radish, and turnip 1.0 Vegetable, tuberous and corm, subgroup 1C 0.05 1No US..., hulls 0.50 Turnip, roots 0.1 Vegetable, foliage of legume, group 7, forage 1.5 Vegetable, foliage...

  12. 40 CFR 180.589 - Boscalid; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... beet, garden beet, radish, and turnip 1.0 Vegetable, tuberous and corm, subgroup 1C 0.05 1No US..., hulls 0.50 Turnip, roots 0.1 Vegetable, foliage of legume, group 7, forage 1.5 Vegetable, foliage...

  13. 40 CFR 180.589 - Boscalid; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... beet, garden beet, radish, and turnip 1.0 Vegetable, tuberous and corm, subgroup 1C 0.05 1No US..., hulls 0.50 Turnip, roots 0.1 Vegetable, foliage of legume, group 7, forage 1.5 Vegetable, foliage...

  14. Comparison of Morphology and Physicochemical Properties of Starch Among 3 Arrowhead Varieties.

    PubMed

    Li, Aimin; Zhang, Yunhong; Zhang, Yongji; Yu, Xurun; Xiong, Fei; Zhou, Rumei; Zhang, Yongtai

    2016-05-01

    Arrowhead (Sagittaria trifolia var. sinensis) is a source of starch worldwide, but arrowhead starch has been rarely studied. In this work, starch was separated from arrowhead corm. The morphology and physicochemical properties of starch were then investigated and compared among 3 different arrowhead varieties (Purple-corm, Hongta, and Japanese). Results showed that starches from the 3 varieties similarly featured an oval shape containing a visible polarization cross, a CA -type crystalline structure, and an ordered structure in the external granule region. However, starch content, granule size, crystal characteristics, and pasting properties differed among the 3 varieties. Japanese arrowhead exhibited the highest starch content and degree of ordered structure in the external granule region, as well as onset, peak, and final gelatinization temperature. Purple-corm arrowhead starch demonstrated the highest amylose content and relative degree of crystallinity, smallest granule size, and lowest swelling power and solubility. Purple-corm arrowhead starch also showed the highest gelatinization enthalpy, as well as peak, trough, final, and setback viscosities. This starch further presented the lowest breakdown viscosity and degree of hydrolysis by HCl and porcine pancreatic α-amylase. These findings can provide useful references for arrowhead variety selection in food and nonfood industries. PMID:27082515

  15. 7 CFR 319.37-1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... distributed and being officially controlled. Regulated plant. A vascular or nonvascular plant. Vascular plants... Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE...: Bulb. The portion of a plant commonly known as a bulb, bulbil, bulblet, corm, cormel, rhizome,...

  16. 7 CFR 319.37-1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... distributed and being officially controlled. Regulated plant. A vascular or nonvascular plant. Vascular plants... Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE...: Bulb. The portion of a plant commonly known as a bulb, bulbil, bulblet, corm, cormel, rhizome,...

  17. Saffron: Its Phytochemistry, Developmental Processes, and Biotechnological Prospects.

    PubMed

    Ahrazem, Oussama; Rubio-Moraga, Angela; Nebauer, Sergio G; Molina, Rosa Victoria; Gómez-Gómez, Lourdes

    2015-10-14

    The present state of knowledge concerning developmental processes and the secondary metabolism of saffron, Crocus sativus L. (Iridaceae), along with the genes involved in these processes so far known, is reviewed. Flowers and corms constitute the most valuable parts of saffron. Corm and flower development are two key aspects to be studied in saffron to increase the yield and quality of the spice, to raise its reproductive rate, and to implement new production systems. Important knowledge about the physiology of flowering and vegetative growth has been acquired in recent years, but there is still only limited information on molecular mechanisms controlling these processes. Although some genes involved in flower formation and meristem transition in other species have been isolated in saffron, the role of these genes in this species awaits further progress. Also, genes related with the synthesis pathway of abscisic acid and strigolactones, growth regulators related with bud endodormancy and apical dominance (paradormancy), have been isolated. However, the in-depth understanding of these processes as well as of corm development is far from being achieved. By contrast, saffron phytochemicals have been widely studied. The different flower tissues and the corm have been proved to be an important source of phytochemicals with pharmacological properties. The biotechnological prospects for saffron are here reviewed on the basis of the discovery of the enzymes involved in key aspects of saffron secondary metabolism, and we also analyze the possibility of transferring current knowledge about flowering and vegetative propagation in model species to the Crocus genus. PMID:26414550

  18. 75 FR 31785 - Pesticide Products; Registration Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    .... Explain why you agree or disagree; suggest alternatives and substitute language for your requested changes... fruits, rye, soybean, stone fruits, succulent shelled peas and beans, sugar beet, tuberous and corm... fruits, rye, soybean, stone fruits, succulent shelled peas and beans, sugar beet, tuberous and...

  19. Carbon monoxide stimulates Ca2+ -dependent big-conductance K channels in the cortical collecting duct.

    PubMed

    Wang, Zhijian; Yue, Peng; Lin, Dao-Hong; Wang, Wen-Hui

    2013-03-01

    We used the patch-clamp technique to examine the role of carbon monoxide (CO) in regulating Ca(2+)-activated big-conductance K (BK) channels in the principal cell of the cortical collecting duct (CCD). Application of CORM3 or CORM2, a CO donor, activated BK channels in the CCD, whereas adding inactivated CORM2/3 had no effect. Superfusion of the CCD with CO-bubbled bath solution also activated the BK channels in the cell-attached patches. The effect of CO on BK channels was not dependent on nitric oxide synthase (NOS) because the effect of CORM3 was also observed in the CCD treated with l-NAME, an agent that inhibits the NOS. Adding a membrane-permeable cGMP analog, 8-bromo-cGMP, significantly increased the BK channel in the CCD. However, inhibition of soluble guanylate cyclase failed to abolish the stimulatory effect of CORM3 on BK channels. Moreover, inhibition of cGMP-dependent protein kinase G did not block the stimulatory effect of CORM3 on the BK channels, suggesting that the stimulatory effect of CO on the BK channels was, at least partially, induced by a cGMP-independent mechanism. Western blot demonstrated that heme oxygenase type 1 (HO-1) and HO-2 were expressed in the kidney. Moreover, a high-K (HK) intake increased the expression of HO-1 but not HO-2 in the kidney. A HK intake also increased renal HO activity defined by NADPH-dependent CO generation following addition of heme in the cell lysate from renal cortex and outer medulla. The role of HO in regulating BK channel activity in the CCD was also suggested by experiments in which application of hemin increased the BK channels. The stimulatory effect of hemin on the BK channels was blocked by SnMP, a HO inhibitor. But, adding CORM3 was still able to activate the BK channels in the presence of SnMP. We conclude that CO activates the BK channels, at least partially, through a NO-cGMP-independent pathway and that HO plays a role in mediating the effect of HK intake on the BK channels in the CCD. PMID

  20. Heme oxygenase metabolites inhibit tubuloglomerular feedback (TGF).

    PubMed

    Ren, YiLin; D'Ambrosio, Martin A; Wang, Hong; Liu, Ruisheng; Garvin, Jeffrey L; Carretero, Oscar A

    2008-10-01

    Tubuloglomerular feedback (TGF) is the mechanism by which the macula densa (MD) senses increases in luminal NaCl concentration and sends a signal to constrict the afferent arteriole (Af-Art). The kidney expresses constitutively heme oxygenase-2 (HO-2) and low levels of HO-1. HOs release carbon monoxide (CO), biliverdin, and free iron. We hypothesized that renal HOs inhibit TGF via release of CO and biliverdin. Rabbit Af-Arts and attached MD were simultaneously microperfused in vitro. The TGF response was determined by measuring Af-Art diameter before and after increasing NaCl in the MD perfusate. When HO activity was inhibited by adding stannous mesoporphyrin (SnMP) to the MD perfusate, the TGF response increased from 2.1+/-0.2 to 4.1+/-0.4 microm (P=0.003, control vs. SnMP, n=7). When a CO-releasing molecule, (CORM-3; 50 microM), was added to the MD perfusate, the TGF response decreased by 41%, from 3.6+/-0.3 to 2.1+/-0.2 microm (P<0.001, control vs. CORM-3, n=12). When CORM-3 at 100 microM was added to the perfusate, it completely blocked the TGF response, from 4.2+/-0.4 to -0.2+/-0.3 microm (P<0.001, control vs. CORM-3, n=6). When biliverdin was added to the perfusate, the TGF response decreased by 79%, from 3.4+/-0.3 to 0.7+/-0.4 microm (P=0.001, control vs. biliverdin, n=6). The effects of SnMP and CORM-3 were not blocked by inhibition of nitric oxide synthase. We concluded that renal HO inhibits TGF probably via release of CO and biliverdin. HO regulation of TGF is a novel mechanism that could lead to a better understanding of the control of renal microcirculation and function. PMID:18715939

  1. Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance

    PubMed Central

    Wareham, Lauren K.; Begg, Ronald; Jesse, Helen E.; van Beilen, Johan W.A.; Ali, Salar; Svistunenko, Dimitri; McLean, Samantha; Hellingwerf, Klaas J.; Sanguinetti, Guido

    2016-01-01

    Abstract Aims: Carbon monoxide is a respiratory poison and gaseous signaling molecule. Although CO-releasing molecules (CORMs) deliver CO with temporal and spatial specificity in mammals, and are proven antimicrobial agents, we do not understand the modes of CO toxicity. Our aim was to explore the impact of CO gas per se, without intervention of CORMs, on bacterial physiology and gene expression. Results: We used tightly controlled chemostat conditions and integrated transcriptomic datasets with statistical modeling to reveal the global effects of CO. CO is known to inhibit bacterial respiration, and we found expression of genes encoding energy-transducing pathways to be significantly affected via the global regulators, Fnr, Arc, and PdhR. Aerobically, ArcA—the response regulator—is transiently phosphorylated and pyruvate accumulates, mimicking anaerobiosis. Genes implicated in iron acquisition, and the metabolism of sulfur amino acids and arginine, are all perturbed. The global iron-related changes, confirmed by modulation of activity of the transcription factor Fur, may underlie enhanced siderophore excretion, diminished intracellular iron pools, and the sensitivity of CO-challenged bacteria to metal chelators. Although CO gas (unlike H2S and NO) offers little protection from antibiotics, a ruthenium CORM is a potent adjuvant of antibiotic activity. Innovation: This is the first detailed exploration of global bacterial responses to CO, revealing unexpected targets with implications for employing CORMs therapeutically. Conclusion: This work reveals the complexity of bacterial responses to CO and provides a basis for understanding the impacts of CO from CORMs, heme oxygenase activity, or environmental sources. Antioxid. Redox Signal. 24, 1013–1028. PMID:26907100

  2. Carbon Monoxide (CO) Is a Novel Inhibitor of Connexin Hemichannels*

    PubMed Central

    León-Paravic, Carmen G.; Figueroa, Vania A.; Guzmán, Diego J.; Valderrama, Carlos F.; Vallejos, Antonio A.; Fiori, Mariana C.; Altenberg, Guillermo A.; Reuss, Luis; Retamal, Mauricio A.

    2014-01-01

    Hemichannels (HCs) are hexamers of connexins that can form gap-junction channels at points of cell contacts or “free HCs” at non-contacting regions. HCs are involved in paracrine and autocrine cell signaling, and under pathological conditions may induce and/or accelerate cell death. Therefore, studies of HC regulation are of great significance. Nitric oxide affects the activity of Cx43 and Cx46 HCs, whereas carbon monoxide (CO), another gaseous transmitter, modulates the activity of several ion channels, but its effect on HCs has not been explored. We studied the effect of CO donors (CORMs) on Cx46 HCs expressed in Xenopus laevis oocytes using two-electrode voltage clamp and on Cx43 and Cx46 expressed in HeLa cells using a dye-uptake technique. CORM-2 inhibited Cx46 HC currents in a concentration-dependent manner. The C-terminal domain and intracellular Cys were not necessary for the inhibition. The effect of CORM-2 was not prevented by guanylyl-cyclase, protein kinase G, or thioredoxin inhibitors, and was not due to endocytosis of HCs. However, the effect of CORM-2 was reversed by reducing agents that act extracellularly. Additionally, CO inhibited dye uptake of HeLa cells expressing Cx43 or Cx46, and MCF-7 cells, which endogenously express Cx43 and Cx46. Because CORM-2 carbonylates Cx46 in vitro and induces conformational changes, a direct effect of that CO on Cx46 is possible. The inhibition of HCs could help to understand some of the biological actions of CO in physiological and pathological conditions. PMID:25384983

  3. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    SciTech Connect

    Li, Yanyan; Gao, Chao; Shi, Yanru; Tang, Yuhan; Liu, Liang; Xiong, Ting; Du, Min; Xing, Mingyou; Liu, Liegang; Yao, Ping

    2013-11-15

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD.

  4. Asymbiotic Germination Response to Photoperiod and Nutritional Media in Six Populations of Calopogon tuberosus var. tuberosus (Orchidaceae): Evidence for Ecotypic Differentiation

    PubMed Central

    Kauth, Philip J.; Kane, Michael E.; Vendrame, Wagner A.; Reinhardt-Adams, Carrie

    2008-01-01

    Background and Aims Ecotypic differentiation has been explored in numerous plant species, but has been largely ignored in the Orchidaceae. Applying a specific germination protocol for widespread seed sources may be unreliable due to inherent physiological or genetic differences in localized populations. It is crucial to determine whether ecotypic differentiation exists for restoration and conservation programmes. Calopogon tuberosus var. tuberosus, a widespread terrestrial orchid of eastern North America, is a model species to explore ecotypic differences in germination requirements, as this species occupies diverse habitats spanning a wide geographical range. Methods Mature seeds were collected from south Florida, north central Florida, three locations in South Carolina, and the upper Michigan peninsula. Effects of three photoperiods (8/16, 12/12, 16/8 h L/D) were examined on asymbiotic in vitro seed germination and seedling development of C. tuberosus. Germination and early development was monitored for 8 weeks, while advanced development was monitored for an additional 8 weeks. In an additional experiment, asymbiotic seed germination and development was monitored for 8 weeks on six culture media (BM-1 terrestrial orchid medium, Knudson C, Malmgrem, half-strength MS, P723, and Vacin and Went). A tetrazolium test for embryo viability was performed. Key Results Short days promoted the highest germination among Florida populations, but few differences among photoperiods in other seed sources existed. Different media had little effect on the germination of Michigan and Florida populations, but germination of South Carolina seeds was higher on media with higher calcium and magnesium. Tetrazolium testing confirmed that South Carolina seeds exhibited low viability while viability was higher in Florida seeds. Seed germination and corm formation was rapid in Michigan seeds across all treatments. Michigan seedlings allocated more biomass to corms compared with other seed

  5. The role of gaseous neurotransmitters in the antinociceptive effects of morphine during acute thermal pain.

    PubMed

    Gou, Gemma; Leánez, Sergi; Pol, Olga

    2014-08-15

    Treatment with a carbon monoxide-releasing molecule (tricarbonyldichlororuthenium(II) dimer, CORM-2) or a classical inducible heme oxygenase (HO-1) inducer (cobalt protoporphyrin IX, CoPP) enhanced the antinociceptive effects of morphine during chronic pain but the role played by these compounds in acute thermal nociception was not evaluated. The effects of CORM-2 and CoPP treatments on the local antinociceptive actions of morphine and their interactions with nitric oxide during acute pain were evaluated by using wild type (WT), neuronal (nNOS-KO) or inducible (iNOS-KO) nitric oxide synthase knockout mice and assessing their thermal nociception to a hot stimulus with the hot plate test. Our results showed that the absence of nNOS or iNOS genes did not alter licking and jumping responses nor the antinociceptive effects produced by morphine indicating that the local thermal inhibitory effects produced by this drug in the absence of inflammation or injury are not mediated by the nitric oxide pathway triggered by nNOS or iNOS enzymes. Moreover, while the systemic administration of CORM-2 or CoPP inhibited licking and jumping latencies in all genotypes, these treatments only enhanced the local inhibition of jumping latencies produced by morphine in WT and nNOS-KO mice which effects were reversed by the peripheral administration of an HO-1 inhibitor. These data indicate that the co-administration of morphine with CORM-2 or CoPP produced remarkable local antinociceptive effects in WT and nNOS-KO mice and reveal that a significant interaction between carbon monoxide and nitric oxide systems occurs on the local antinociceptive effects produced by morphine during acute thermal nociception. PMID:24846012

  6. An N-Acetyl Cysteine Ruthenium Tricarbonyl Conjugate Enables Simultaneous Release of CO and Ablation of Reactive Oxygen Species

    PubMed Central

    Seixas, João D; Chaves-Ferreira, Miguel; Montes-Grajales, Diana; Gonçalves, Ana M; Marques, Ana R; Saraiva, Lígia M; Olivero-Verbel, Jesus; Romão, Carlos C; Bernardes, Gonçalo J L

    2015-01-01

    We have designed and synthesised a [Ru(CO)3Cl2(NAC)] pro-drug that features an N-acetyl cysteine (NAC) ligand. This NAC carbon monoxide releasing molecule (CORM) conjugate is able to simultaneously release biologically active CO and to ablate the concurrent formation of reactive oxygen species (ROS). Complexes of the general formulae [Ru(CO)3(L)3]2+, including [Ru(CO)3Cl(glycinate)] (CORM-3), have been shown to produce ROS through a water–gas shift reaction, which contributes significantly, for example, to their antibacterial activity. In contrast, NAC-CORM conjugates do not produce ROS or possess antibacterial activity. In addition, we demonstrate the synergistic effect of CO and NAC both for the inhibition of nitric oxide (formation) and in the expression of tumour-necrosis factor (TNF)-α. This work highlights the advantages of combining a CO-releasing scaffold with the anti-oxidant and anti-inflammatory drug NAC in a unique pro-drug. PMID:26316066

  7. Identification of bacteria associated with underground parts of Crocus sativus by 16S rRNA gene targeted metagenomic approach.

    PubMed

    Ambardar, Sheetal; Sangwan, Naseer; Manjula, A; Rajendhran, J; Gunasekaran, P; Lal, Rup; Vakhlu, Jyoti

    2014-10-01

    Saffron (Crocus sativus L), an autumn-flowering perennial sterile plant, reproduces vegetatively by underground corms. Saffron has biannual corm-root cycle that makes it an interesting candidate to study microbial dynamics in its rhizosphere and cormosphere (area under influence of corm). Culture independent 16S rRNA gene metagenomic study of rhizosphere and cormosphere of Saffron during flowering stage revealed presence of 22 genera but none of the genus was common in all the three samples. Bulk soil bacterial community was represented by 13 genera with Acidobacteria being dominant. In rhizosphere, out of eight different genera identified, Pseudomonas was the most dominant genus. Cormosphere bacteria comprised of six different genera, dominated by the genus Pantoea. This study revealed that the bacterial composition of all the three samples is significantly different (P < 0.05) from each other. This is the first report on the identification of bacteria associated with rhizosphere, cormosphere and bulk soil of Saffron, using cultivation independent 16S rRNA gene targeted metagenomic approach. PMID:24989343

  8. Carbon monoxide and biliverdin prevent endothelial cell sloughing in rats with type I diabetes.

    PubMed

    Rodella, Luigi; Lamon, Brian D; Rezzani, Rita; Sangras, Bhavani; Goodman, Alvin I; Falck, John R; Abraham, Nader G

    2006-06-15

    Hyperglycemia has been linked to increased oxidative stress, a resultant endothelial cell dysfunction, and, ultimately, apoptosis. Heme oxygenases (HO-1/HO-2) and the products of their activity, biliverdin/bilirubin and carbon monoxide (CO), play a physiological role in the vascular system. The effects of heme-mediated HO-1 induction, CO, and biliverdin on urinary 8-epi-isoprostane PGF(2alpha) and endothelial cell sloughing were examined in an animal model of streptozotocin (STZ)-induced diabetes. Hyperglycemia itself did not affect HO-1 and HO-2 protein levels, but caused a net decrease in HO activity. Weekly heme administration induced HO-1 protein, as demonstrated by immunohistochemistry and Western blot analyses. Administration of biliverdin or the CO donor, CORM-3, decreased urinary 8-epi-isoprostane PGF(2alpha), P < 0.5 compared to diabetes. Hyperglycemia increased endothelial cell sloughing; 8.2 +/- 0.8 cells/ml blood in control rats vs. 48 +/- 4.8 cells/ml blood in diabetic rats (P < 0.05). Heme administration significantly increased endothelial cell sloughing in diabetic rats (98 +/- 8.1 cells/ml blood, P < 0.0007) whereas biliverdin modestly decreased endothelial cell sloughing (26 +/- 3.5 cells/ml blood, P < 0.003). Administration of CORM-3 to diabetic rats resulted in a significant decrease in endothelial cell sloughing to 21.3 +/- 2.3 (P < 0.001). Administration of SnMP to CORM-3 diabetic rats only partially reversed the protective effects of CORM-3 on endothelial cell sloughing from 21.3 +/- 2.3 to 29 +/- 2.1 cells/ml, thus confirming a direct protective of CO, in addition to the ability of CORM-3 to induce HO-1 protein. These results demonstrate that exogenously administered CO or bilirubin can prevent endothelial cell sloughing in diabetic rats, likely via a decrease in oxidative stress, and thus represents a novel approach to prophylactic vascular protection in diabetes. PMID:16785033

  9. The Fatty Acid Profile Analysis of Cyperus laxus Used for Phytoremediation of Soils from Aged Oil Spill-Impacted Sites Revealed That This Is a C18:3 Plant Species.

    PubMed

    Rivera Casado, Noemí Araceli; Montes Horcasitas, María del Carmen; Rodríguez Vázquez, Refugio; Esparza García, Fernando José; Pérez Vargas, Josefina; Ariza Castolo, Armando; Ferrera-Cerrato, Ronald; Gómez Guzmán, Octavio; Calva Calva, Graciano

    2015-01-01

    The effect of recalcitrant hydrocarbons on the fatty acid profile from leaf, basal corm, and roots of Cyperus laxus plants cultivated in greenhouse phytoremediation systems of soils from aged oil spill-impacted sites containing from 16 to 340 g/Kg total hydrocarbons (THC) was assessed to investigate if this is a C18:3 species and if the hydrocarbon removal during the phytoremediation process has a relationship with the fatty acid profile of this plant. The fatty acid profile was specific to each vegetative organ and was strongly affected by the hydrocarbons level in the impacted sites. Leaf extracts of plants from uncontaminated soil produced palmitic acid (C16), octadecanoic acid (C18:0), unsaturated oleic acids (C18:1-C18:3), and unsaturated eichosanoic (C20:2-C20:3) acids with a noticeable absence of the unsaturated hexadecatrienoic acid (C16:3); this finding demonstrates, for the first time, that C. laxus is a C18:3 plant. In plants from the phytoremediation systems, the total fatty acid contents in the leaf and the corm were negatively affected by the hydrocarbons presence; however, the effect was positive in root. Interestingly, under contaminated conditions, unusual fatty acids such as odd numbered carbons (C15, C17, C21, and C23) and uncommon unsaturated chains (C20:3n6 and C20:4) were produced together with a remarkable quantity of C22:2 and C24:0 chains in the corm and the leaf. These results demonstrate that weathered hydrocarbons may drastically affect the lipidic composition of C. laxus at the fatty acid level, suggesting that this species adjusts the cover lipid composition in its vegetative organs, mainly in roots, in response to the weathered hydrocarbon presence and uptake during the phytoremediation process. PMID:26473488

  10. Heme oxygenase metabolites inhibit tubuloglomerular feedback in vivo.

    PubMed

    Wang, Hong; Garvin, Jeffrey L; D'Ambrosio, Martin A; Falck, John R; Leung, Pablo; Liu, Ruisheng; Ren, YiLin; Carretero, Oscar A

    2011-04-01

    Tubuloglomerular feedback (TGF) is a renal autoregulatory mechanism that constricts the afferent arteriole in response to increases in distal NaCl. Heme oxygenases (HO-1 and HO-2) release carbon monoxide (CO) and biliverdin, which may help control renal function. We showed in vitro that HO products inhibit TGF; however, we do not know whether this also occurs in vivo or the mechanism(s) involved. We hypothesized that in vivo HO-1 and HO-2 in the nephron inhibit TGF via release of CO and biliverdin. We first performed laser capture microdissection followed by real-time PCR and found that both HO-1 and HO-2 are expressed in the macula densa. We next performed micropuncture experiments in vivo on individual rat nephrons, adding different compounds to the perfusate, and found that an HO inhibitor, stannous mesoporphyrin (SnMP), potentiated TGF (P < 0.05, SnMP vs. control). The CO-releasing molecule (CORM)-3 partially inhibited TGF at 50 μmol/l (P < 0.01, CORM-3 vs. control) and blocked it completely at higher doses. A soluble guanylyl cyclase (sGC) inhibitor, LY83583, blocked the inhibitory effect of CORM-3 on TGF. Biliverdin also partially inhibited TGF (P < 0.01, biliverdin vs. control), most likely attributable to decreased superoxide (O(2)(-)) because biliverdin was rendered ineffective by tempol, a O(2)(-) dismutase mimetic. We concluded that HO-1 and HO-2 in the nephron inhibit TGF by releasing CO and biliverdin. The inhibitory effect of CO on TGF is mediated by the sGC/cGMP signaling pathway, whereas biliverdin probably acts by reducing O(2)(-). PMID:21239629

  11. The Fatty Acid Profile Analysis of Cyperus laxus Used for Phytoremediation of Soils from Aged Oil Spill-Impacted Sites Revealed That This Is a C18:3 Plant Species

    PubMed Central

    Montes Horcasitas, María del Carmen; Rodríguez Vázquez, Refugio; Esparza García, Fernando José; Pérez Vargas, Josefina; Ariza Castolo, Armando; Ferrera-Cerrato, Ronald; Gómez Guzmán, Octavio

    2015-01-01

    The effect of recalcitrant hydrocarbons on the fatty acid profile from leaf, basal corm, and roots of Cyperus laxus plants cultivated in greenhouse phytoremediation systems of soils from aged oil spill-impacted sites containing from 16 to 340 g/Kg total hydrocarbons (THC) was assessed to investigate if this is a C18:3 species and if the hydrocarbon removal during the phytoremediation process has a relationship with the fatty acid profile of this plant. The fatty acid profile was specific to each vegetative organ and was strongly affected by the hydrocarbons level in the impacted sites. Leaf extracts of plants from uncontaminated soil produced palmitic acid (C16), octadecanoic acid (C18:0), unsaturated oleic acids (C18:1-C18:3), and unsaturated eichosanoic (C20:2-C20:3) acids with a noticeable absence of the unsaturated hexadecatrienoic acid (C16:3); this finding demonstrates, for the first time, that C. laxus is a C18:3 plant. In plants from the phytoremediation systems, the total fatty acid contents in the leaf and the corm were negatively affected by the hydrocarbons presence; however, the effect was positive in root. Interestingly, under contaminated conditions, unusual fatty acids such as odd numbered carbons (C15, C17, C21, and C23) and uncommon unsaturated chains (C20:3n6 and C20:4) were produced together with a remarkable quantity of C22:2 and C24:0 chains in the corm and the leaf. These results demonstrate that weathered hydrocarbons may drastically affect the lipidic composition of C. laxus at the fatty acid level, suggesting that this species adjusts the cover lipid composition in its vegetative organs, mainly in roots, in response to the weathered hydrocarbon presence and uptake during the phytoremediation process. PMID:26473488

  12. Cloning and functional characterization of MusaVND1 using transgenic banana plants.

    PubMed

    Negi, Sanjana; Tak, Himanshu; Ganapathi, T R

    2015-06-01

    Vascular related NAC (NAM, ATAF and CUC) domain-containing genes regulate secondary wall deposition and differentiation of xylem vessel elements. MusaVND1 is an ortholog of Arabidopsis VND1 and contains the highly conserved NAC domain. The expression of MusaVND1 is highest in developing corm and during lignification conditions, the increase in expression of MusaVND1 coincides with the expression of PAL, COMT and C4H genes. MusaVND1 encodes a nuclear localized protein as MusaVND1-GFP fusion protein gets localized to nucleus. Transient overexpression of MusaVND1 converts banana embryogenic cells to xylem vessel elements, with a final differentiation frequency of 33.54% at the end of tenth day. Transgenic banana plants overexpressing MusaVND1 showed stunted growth and were characterized by PCR and Southern blot analysis. Transgenic banana plants showed transdifferentiation of various types of cells into xylem vessel elements and ectopic deposition of lignin in cells of various plant organs such as leaf and corm. Tracheary element formation was seen in the cortical region of transgenic corm as well as in epidermal cells of leaves. Biochemical analysis indicates significantly higher levels of lignin and cellulose content in transgenic banana lines than control plants. MusaVND1 overexpressing transgenic banana plants showed elevated expression levels of genes involved in lignin and cellulose biosynthesis pathway. Further expression of different MYB transcription factors positively regulating secondary wall deposition was also up regulated in MusaVND1 transgenic lines. PMID:25523085

  13. Regulation of vascular tone in rabbit ophthalmic artery: cross talk of endogenous and exogenous gas mediators.

    PubMed

    Salomone, Salvatore; Foresti, Roberta; Villari, Ambra; Giurdanella, Giovanni; Drago, Filippo; Bucolo, Claudio

    2014-12-15

    Nitric oxide (NO), carbon monoxide (CO) and hydrogen sulphide (H2S) modulate vascular tone. In view of their therapeutic potential for ocular diseases, we examined the effect of exogenous CO and H2S on tone of isolated rabbit ophthalmic artery and their interaction with endogenous and exogenous NO. Ophthalmic artery segments mounted on a wire myograph were challenged with cumulative concentrations of phenylephrine (PE) in the presence or absence of NG-nitro-L-arginine (LNNA) to inhibit production of NO, the CO-releasing molecules CORMs or the H2S-donor GYY4137. The maximal vasoconstriction elicited by PE reached 20-30% of that induced by KCl but was dramatically increased by incubation with LNNA. GYY4137 significantly raised PE-mediated vasoconstriction, but it did not change the response to PE in the presence of LNNA or the relaxation to sodium nitroprusside (SNP). CORMs concentration-dependently inhibited PE-induced constriction, an effect that was synergistic with endogenous NO (reduced by LNNA), but insensitive to blockade of guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3,-α]quinoxalin-1-one (ODQ). In vascular tissues cyclic GMP (cGMP) levels seemed reduced by GYY4137 (not significantly), but were not changed by CORM. These data indicate that CO is able per se to relax isolated ophthalmic artery and to synergize with NO, while H2S counteracts the effect of endogenous NO. CO does not stimulate cGMP production in our system, while H2S may reduce cGMP production stimulated by endogenous NO. These findings provide new insights into the complexities of gas interactions in the control of ophthalmic vascular tone, highlighting potential pharmacological targets for ocular diseases. PMID:25451691

  14. Phenylphenalenones Accumulate in Plant Tissues of Two Banana Cultivars in Response to Herbivory by the Banana Weevil and Banana Stem Weevil.

    PubMed

    Hölscher, Dirk; Buerkert, Andreas; Schneider, Bernd

    2016-01-01

    Phenylphenalenone-type compounds accumulated in the tissues of two banana cultivars-Musa acuminata cv. "Grande Naine" (AAA) and Musa acuminata × balbisiana Colla cv. "Bluggoe" (ABB)-when these were fed on by the banana weevil (Cosmopolites sordidus (Germ.) (Coleoptera: Curculionidae)) and the banana stem weevil (Odoiporus longicollis (Oliver) (Coleoptera: Curculionidae)). The chemical constituents of the banana material were separated by means of chromatographic techniques and identified by NMR spectroscopy. One new compound, 2-methoxy-4-phenylphenalen-1-one, was found exclusively in the corm material of "Bluggoe" that had been fed on by the weevils. PMID:27571112

  15. Transition-Metal-Free CO-Releasing BODIPY Derivatives Activatable by Visible to NIR Light as Promising Bioactive Molecules.

    PubMed

    Palao, Eduardo; Slanina, Tomáš; Muchová, Lucie; Šolomek, Tomáš; Vítek, Libor; Klán, Petr

    2016-01-13

    Carbon monoxide-releasing molecules (CORMs) are chemical agents used to administer CO as an endogenous, biologically active molecule. A precise spatial and temporal control over the CO release is the major requirement for their applications. Here, we report the synthesis and properties of a new generation of transition-metal-free carbon monoxide-releasing molecules based on BODIPY chromophores (COR-BDPs) activatable by visible-to-NIR (up to 730 nm) light. We demonstrate their performance for both in vitro and in vivo experimental settings, and we propose the mechanism of the CO release based on steady-state and transient spectroscopy experiments and quantum chemical calculations. PMID:26697725

  16. Bactericidal Effect of a Photoresponsive Carbon Monoxide-Releasing Nonwoven against Staphylococcus aureus Biofilms.

    PubMed

    Klinger-Strobel, Mareike; Gläser, Steve; Makarewicz, Oliwia; Wyrwa, Ralf; Weisser, Jürgen; Pletz, Mathias W; Schiller, Alexander

    2016-07-01

    Staphylococcus aureus is a leading pathogen in skin and skin structure infections, including surgical and traumatic infections that are associated with biofilm formation. Because biofilm formation is accompanied by high phenotypic resistance of the embedded bacteria, they are almost impossible to eradicate by conventional antibiotics. Therefore, alternative therapeutic strategies are of high interest. We generated nanostructured hybrid nonwovens via the electrospinning of a photoresponsive carbon monoxide (CO)-releasing molecule [CORM-1, Mn2(CO)10] and the polymer polylactide. This nonwoven showed a CO-induced antimicrobial activity that was sufficient to reduce the biofilm-embedded bacteria by 70% after photostimulation at 405 nm. The released CO increased the concentration of reactive oxygen species (ROS) in the biofilms, suggesting that in addition to inhibiting the electron transport chain, ROS might play a role in the antimicrobial activity of CORMs on S. aureus The nonwoven showed increased cytotoxicity on eukaryotic cells after longer exposure, most probably due to the released lactic acid, that might be acceptable for local and short-time treatments. Therefore, CO-releasing nonwovens might be a promising local antimicrobial therapy against biofilm-associated skin wound infections. PMID:27114272

  17. Compositional analysis of Chinese water chestnut (Eleocharis dulcis) cell-wall material from parenchyma, epidermis, and subepidermal tissues.

    PubMed

    Grassby, Terri; Jay, Andrew J; Merali, Zara; Parker, Mary L; Parr, Adrian J; Faulds, Craig B; Waldron, Keith W

    2013-10-01

    Chinese water chestnut (Eleocharis dulcis (Burman f.) Trin ex Henschel) is a corm consumed globally in Oriental-style cuisine. The corm consists of three main tissues, the epidermis, subepidermis, and parenchyma; the cell walls of which were analyzed for sugar, phenolic, and lignin content. Sugar content, measured by gas chromatography, was higher in the parenchyma cell walls (931 μg/mg) than in the subepidermis (775 μg/mg) or epidermis (685 μg/mg). The alkali-extractable phenolic content, measured by high-performance liquid chromatography, was greater in the epidermal (32.4 μg/mg) and subepidermal cell walls (21.7 μg/mg) than in the cell walls of the parenchyma (12.3 μg/mg). The proportion of diferulic acids was higher in the parenchyma. The Klason lignin content of epidermal and subepidermal cell walls was ~15%. Methylation analysis of Chinese water chestnut cell-wall polysaccharides identified xyloglucan as the predominant hemicellulose in the parenchyma for the first time, and also a significant pectin component, similar to other nongraminaceous monocots. PMID:24066627

  18. Cation Exchange Strategy for the Encapsulation of a Photoactive CO-Releasing Organometallic Molecule into Anionic Porous Frameworks.

    PubMed

    Carmona, Francisco J; Rojas, Sara; Sánchez, Purificación; Jeremias, Hélia; Marques, Ana R; Romão, Carlos C; Choquesillo-Lazarte, Duane; Navarro, Jorge A R; Maldonado, Carmen R; Barea, Elisa

    2016-07-01

    The encapsulation of the photoactive, nontoxic, water-soluble, and air-stable cationic CORM [Mn(tacn)(CO)3]Br (tacn = 1,4,7-triazacyclononane) in different inorganic porous matrixes, namely, the metalorganic framework bio-MOF-1, (NH2(CH3)2)2[Zn8(adeninate)4(BPDC)6]·8DMF·11H2O (BPDC = 4,4'-biphenyldicarboxylate), and the functionalized mesoporous silicas MCM-41-SO3H and SBA-15-SO3H, is achieved by a cation exchange strategy. The CO release from these loaded materials, under simulated physiological conditions, is triggered by visible light. The results show that the silica matrixes, which are unaltered under physiological conditions, slow the kinetics of CO release, allowing a more controlled CO supply. In contrast, bio-MOF-1 instability leads to the complete leaching of the CORM. Nevertheless, the degradation of the MOF matrix gives rise to an enhanced CO release rate, which is related to the presence of free adenine in the solution. PMID:27291890

  19. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death

    PubMed Central

    Kwon, Min-Young; Park, Eunhee

    2015-01-01

    The oncogenic RAS-selective lethal small molecule Erastin triggers a unique iron-dependent form of nonapoptotic cell death termed ferroptosis. Ferroptosis is dependent upon the production of intracellular iron-dependent reactive oxygen species (ROS), but not other metals. However, key regulators remain unknown. The heme oxygenase (HO) is a major intracellular source of iron. In this study, the role of heme oxygenase in Erastin-triggered ferroptotic cancer cell death has been investigated. Zinc protoporphyrin IX (ZnPP), a HO-1 inhibitor, prevented Erastin-triggered ferroptotic cancer cell death. Furthermore, Erastin induced the protein and mRNA levels of HO-1 in HT-1080 fibrosarcoma cells. HO-1+/+ and HO-1−/− fibroblast, HO-1 overexpression, and chycloheximide-treated experiments revealed that the expression of HO-1 has a decisive effects in Erastin-triggered cell death. Hemin and CO-releasing molecules (CORM) promote Erastin-induced ferroptotic cell death, not by biliverdin and bilirubin. In addition, hemin and CORM accelerate the HO-1 expression in the presence of Erastin and increase membranous lipid peroxidation. Thus, HO-1 is an essential enzyme for iron-dependent lipid peroxidation during ferroptotic cell death. PMID:26405158

  20. Toxicity, bio-distribution and metabolism of CO-releasing molecules based on cobalt.

    PubMed

    Gong, Yaguo; Zhang, Taofeng; Li, Meng; Xi, Na; Zheng, Yawen; Zhao, Quanyi; Chen, Yonglin; Liu, Bin

    2016-08-01

    CO-releasing molecules (CORMs) containing [Co2(CO)6] moiety show many bioactivities, such as anti-inflammatory and antitumor cell proliferation. However, so far, no one knows their properties in vivo. So, here, we evaluated some these kind CORMs from drug-like properties including cytotoxicity, toxicity in vivo, distribution and metabolism. The results show all the tested complexes displayed antiproliferative activity to HeLa cell and HepG2 cell lines, and their IC50 values were 36-110µM against HeLa cells and 39-140µM against HepG2 cells. Toxicity tests of mice, we used oral acute toxic class method and got their LD50 values; among them, LD50 of complex 1 and complex 4 were in 2500-5000mgkg(-1) and complex 7 over 5000mgkg(-1). The developmental toxicities of the complexes were investigated in embryonic zebrafish. The mortality, hatch rate, malformation, heart rate, spontaneous movement, and larval behavior were examined, and we found both complexes 4 and 7 have not toxicity at low concentration (<1.0μM) but have higher toxicity at high concentration (>5.0μM). After several consecutive i.p administrations, tested complexes severely damaged rat liver and kidney in both functional and morphological aspects. Through metal ion measurement using ICP-AES, we found the tested complexes were unevenly distributed in tissues and organs; complex 4 has a big prone to collect in liver, whereas complex 7 easily enters to kidney. After administration 480min later, most of complex 7 excreted from kidney and entered urine, while complex 4 needed 9h at least. This results show cobalt did not accumulate, and could excrete with the urine. In vivo, Co(0) in complexes was oxidised to Co(II). In addition, the substituents significantly affected the rate of CO-release, cytotoxicity and their bio-distribution. In the view of these aspects, the CORMs based cobalt has a potential property to be a medicine. PMID:27375229

  1. A contribution to the rational design of Ru(CO)3Cl2L complexes for in vivo delivery of CO.

    PubMed

    Seixas, João D; Santos, Marino F A; Mukhopadhyay, Abhik; Coelho, Ana C; Reis, Patrícia M; Veiros, Luís F; Marques, Ana R; Penacho, Nuno; Gonçalves, Ana M L; Romão, Maria J; Bernardes, Gonçalo J L; Santos-Silva, Teresa; Romão, Carlos C

    2015-03-21

    A few ruthenium based metal carbonyl complexes, e.g. CORM-2 and CORM-3, have therapeutic activity attributed to their ability to deliver CO to biological targets. In this work, a series of related complexes with the formula [Ru(CO)3Cl2L] (L = DMSO (3), L-H3CSO(CH2)2CH(NH2)CO2H) (6a); D,L-H3CSO(CH2)2CH(NH2)CO2H (6b); 3-NC5H4(CH2)2SO3Na (7); 4-NC5H4(CH2)2SO3Na (8); PTA (9); DAPTA (10); H3CS(CH2)2CH(OH)CO2H (11); CNCMe2CO2Me (12); CNCMeEtCO2Me (13); CN(c-C3H4)CO2Et) (14)) were designed, synthesized and studied. The effects of L on their stability, CO release profile, cytotoxicity and anti-inflammatory properties are described. The stability in aqueous solution depends on the nature of L as shown using HPLC and LC-MS studies. The isocyanide derivatives are the least stable complexes, and the S-bound methionine oxide derivative is the more stable one. The complexes do not release CO gas to the headspace, but release CO2 instead. X-ray diffraction of crystals of the model protein Hen Egg White Lysozyme soaked with 6b (4UWN) and 8 (4UWN) shows the addition of Ru(II)(CO)(H2O)4 at the His15 binding site. Soakings with 7(4UWN) produced the metallacarboxylate [Ru(COOH)(CO)(H2O)3](+) bound to the His15 site. The aqueous chemistry of these complexes is governed by the water-gas shift reaction initiated with the nucleophilic attack of HO(-) on coordinated CO. DFT calculations show this addition to be essentially barrierless. The complexes have low cytotoxicity and low hemolytic indices. Following i.v. administration of CORM-3, the in vivo bio-distribution of CO differs from that obtained with CO inhalation or with heme oxygenase stimulation. A mechanism for CO transport and delivery from these complexes is proposed. PMID:25427784

  2. N-Nitrosamine-{cis-Re[CO]2}(2+) cobalamin conjugates as mixed CO/NO-releasing molecules.

    PubMed

    Santoro, Giuseppe; Beltrami, Ruben; Kottelat, Emmanuel; Blacque, Olivier; Bogdanova, Anna Yu; Zobi, Fabio

    2016-01-28

    Mixed CO/NO-releasing molecules were prepared by conjugation of the 17-electron rhenium dicarbonyl cis-[Re(CO)2Br4](2-) complex to N-nitrosamine modified cyanocobalamin (B12) bio-vectors. The species were fully characterized by standard analytical techniques, including X-ray crystallography for cyanocobalamin-5'-O-pyrazine and () and its N-pyrazine nitrosylated derivative (). The N-nitrosamine B12 derivatives are able to liberate low NO doses in buffer solutions and appear to be "activated" towards NO release if in contact with cultured cells. Coordination of the cis-[Re(CO)2Br4](2-) complex on the axial cyanide of B12 allows for the combined loss of CO and NO from the conjugates. The mixed CO/NO-releasing molecules show cytoprotection in an ischemia-reperfusion model but no significant enhanced synergistic effects over the relative NORMs and CORMs building constituents. PMID:26681365

  3. Plant-parasitic Nematode Problems in the Pacific Islands

    PubMed Central

    Bridge, John

    1988-01-01

    The Pacific islands have a diverse range of food and cash crops with indigenous and introduced nematode problems. The staple food crops have serious nematode pests, such as Meloidogyne spp. on sweet potato, Hirschmanniella miticausa causing corm rot of taro, and Pratylenchus coffeae and Radopholus sp. producing tuber dry rot of yams. Bananas are infested with P. coffeae or R. similis, citrus with Tylenchulus semipenetrans, rice with Aphelenchoides besseyi, and ginger with Meloidogyne spp. and R. similis. Rotylenchulus reniformis, P. zeae, P. brachyurus, and Helicotylenchus spp. are important on all of these and other crops, such as sugarcane, passion fruit, pawpaw, and cassava. Meloidogyne spp. cause serious damage to local and introduced leaf and fruit vegetables and other crops, such as tobacco, sugarcane, pawpaw, black pepper, and pyrethrum. Many other plant-parasitic genera and species, some undescribed, occur in the Pacific, and there are many islands still to be investigated. PMID:19290200

  4. Thuniopsis: A New Orchid Genus and Phylogeny of the Tribe Arethuseae (Orchidaceae)

    PubMed Central

    Yan, Hai-Fei; Wen, Tie-Long; Li, Shi-Jin

    2015-01-01

    An investigation of a questionable orchid led to the discovery of a new genus and species Thuniopsis cleistogama, endemic to Yunnan province, China. It is characterized by having a subglobose corm, a spike-like (racemose) inflorescence, half opened and spurless flowers, a collar-shaped stigma and subglobose capsules. Based on DNA sequence data from three gene regions (nuclear ribosomal ITS, chloroplast matK and trnL), we investigated its phylogenetic position within the tribe Arethuseae. Phylogenies using maximum likelihood and Bayesian inference support the recognition of Thuniopsis as a distinct genus, and suggest its close relationship to the genera Bletilla, Dilochia, and Thunia. The new genus is circumscribed and a description and illustrations of the new species are provided. The phylogenetic relationships among the genera in Arethuseae are accessed. Moreover, our phylogeny also shed light on the phylogenetic positions of several genera which, to date, remain uncertain. PMID:26244769

  5. Low concentration of exogenous carbon monoxide protects mammalian cells against proliferation induced by radiation-induced bystander effect.

    PubMed

    Tong, Liping; Yu, K N; Bao, Lingzhi; Wu, Wenqing; Wang, Hongzhi; Han, Wei

    2014-01-01

    Radiation-induced bystander effect (RIBE) has been proposed to have tight relationship with the irradiation-caused secondary cancers beyond the irradiation-treated area after radiotherapy. Our previous studies demonstrated a protective effect of low concentration carbon monoxide (CO) on the genotoxicity of RIBE after α-particle irradiation. In the present work, a significant inhibitory effect of low-dose exogenous CO, generated by tricarbonyldichlororuthenium (II) dimer [CO-releasing molecule (CORM-2)], on both RIBE-induced proliferation and chromosome aberration was observed. Further studies on the mechanism revealed that the transforming growth factor β1/nitric oxide (NO) signaling pathway, which mediated RIBE signaling transduction, could be modulated by CO involved in the protective effects. Considering the potential of exogenous CO in clinical applications and its protective effect on RIBE, the present work aims to provide a foundation for potential application of CO in radiotherapy. PMID:24333162

  6. Structural and functional properties of C-type starches.

    PubMed

    Cai, Jinwen; Cai, Canhui; Man, Jianmin; Zhou, Weidong; Wei, Cunxu

    2014-01-30

    This study investigated the structural and functional properties of C-type starches from pea seeds, faba bean seeds, yam rhizomes and water chestnut corms. These starches were mostly oval in shape with significantly different sizes and contents of amylose, damaged starch and phosphorus. Pea, faba bean and water chestnut starches had central hila, and yam starch had eccentric hilum. Water chestnut and yam starches had higher amylopectin short and long chain, respectively. Water chestnut and faba bean starches showed CA-type crystallinities, and pea and yam starches had C-type crystallinities. Water chestnut starch had the highest swelling power, granule swelling and pasting viscosity, lowest gelatinization temperatures and enthalpy. Faba bean starch had the lowest pasting viscosity, whereas yam starch had the highest gelatinization temperatures. Water chestnut and yam starches possessed significantly higher and lower susceptibility to acid and enzyme hydrolysis, the highest and lowest RDS contents, and the lowest and highest RS contents, respectively. PMID:24299776

  7. Curcumin-induced heme oxygenase-1 expression prevents H2O2-induced cell death in wild type and heme oxygenase-2 knockout adipose-derived mesenchymal stem cells.

    PubMed

    Cremers, Niels A J; Lundvig, Ditte M S; van Dalen, Stephanie C M; Schelbergen, Rik F; van Lent, Peter L E M; Szarek, Walter A; Regan, Raymond F; Carels, Carine E; Wagener, Frank A D T G

    2014-01-01

    Mesenchymal stem cell (MSC) administration is a promising adjuvant therapy to treat tissue injury. However, MSC survival after administration is often hampered by oxidative stress at the site of injury. Heme oxygenase (HO) generates the cytoprotective effector molecules biliverdin/bilirubin, carbon monoxide (CO) and iron/ferritin by breaking down heme. Since HO-activity mediates anti-apoptotic, anti-inflammatory, and anti-oxidative effects, we hypothesized that modulation of the HO-system affects MSC survival. Adipose-derived MSCs (ASCs) from wild type (WT) and HO-2 knockout (KO) mice were isolated and characterized with respect to ASC marker expression. In order to analyze potential modulatory effects of the HO-system on ASC survival, WT and HO-2 KO ASCs were pre-treated with HO-activity modulators, or downstream effector molecules biliverdin, bilirubin, and CO before co-exposure of ASCs to a toxic dose of H2O2. Surprisingly, sensitivity to H2O2-mediated cell death was similar in WT and HO-2 KO ASCs. However, pre-induction of HO-1 expression using curcumin increased ASC survival after H2O2 exposure in both WT and HO-2 KO ASCs. Simultaneous inhibition of HO-activity resulted in loss of curcumin-mediated protection. Co-treatment with glutathione precursor N-Acetylcysteine promoted ASC survival. However, co-incubation with HO-effector molecules bilirubin and biliverdin did not rescue from H2O2-mediated cell death, whereas co-exposure to CO-releasing molecules-2 (CORM-2) significantly increased cell survival, independently from HO-2 expression. Summarizing, our results show that curcumin protects via an HO-1 dependent mechanism against H2O2-mediated apoptosis, and likely through the generation of CO. HO-1 pre-induction or administration of CORMs may thus form an attractive strategy to improve MSC therapy. PMID:25299695

  8. IRG1 induced by heme oxygenase-1/carbon monoxide inhibits LPS-mediated sepsis and pro-inflammatory cytokine production

    PubMed Central

    Jamal Uddin, Md; Joe, Yeonsoo; Kim, Seul-Ki; Oh Jeong, Sun; Ryter, Stefan W; Pae, Hyun-Ock; Chung, Hun Taeg

    2016-01-01

    The immunoresponsive gene 1 (IRG1) protein has crucial functions in embryonic implantation and neurodegeneration. IRG1 promotes endotoxin tolerance by increasing A20 expression in macrophages through reactive oxygen species (ROS). The cytoprotective protein heme oxygenase-1 (HO-1), which generates endogenous carbon monoxide (CO), is expressed in the lung during Lipopolysaccharide (LPS) tolerance and cross tolerance. However, the detailed molecular mechanisms and functional links between IRG1 and HO-1 in the innate immune system remain unknown. In the present study, we found that the CO releasing molecule-2 (CORM-2) and chemical inducers of HO-1 increased IRG1 expression in a time- and dose-dependent fashion in RAW264.7 cells. Furthermore, inhibition of HO-1 activity by zinc protoporphyrin IX (ZnPP) and HO-1 siRNA significantly reduced expression of IRG1 under these conditions. In addition, treatment with CO and HO-1 induction significantly increased A20 expression, which was reversed by ZnPP and HO-1 siRNA. LPS-stimulated TNF-α was significantly decreased, whereas IRG1 and A20 were increased by CORM-2 application and HO-1 induction, which in turn were abrogated by ZnPP. Interestingly, siRNA against IRG1 and A20 reversed the effects of CO and HO-1 on LPS-stimulated TNF-α production. Additionally, CO and HO-1 inducers significantly increased IRG1 and A20 expression and downregulated TNF-α production in a LPS-stimulated sepsis mice model. Furthermore, the effects of CO and HO-1 on TNF-α production were significantly reversed when ZnPP was administered. In conclusion, CO and HO-1 induction regulates IRG1 and A20 expression, leading to inhibition of inflammation in vitro and in an in vivo mice model. PMID:25640654

  9. Carbon monoxide release properties and molecular structures of phenylthiolatomanganese(I) carbonyl complexes of the type [(OC)4Mn(μ-S-aryl)]2.

    PubMed

    Mede, Ralf; Lorett-Velásquez, Vaneza Paola; Klein, Moritz; Görls, Helmar; Schmitt, Michael; Gessner, Guido; Heinemann, Stefan H; Popp, Jürgen; Westerhausen, Matthias

    2015-02-21

    Several phenylthiolatomanganese carbonyl complexes of the type [(OC)4Mn(μ-SR)]2 (R = Ph (), C6H4-4-CH3 (), C6H4-4-CF3 (), C6H4-4-F (), C6H4-4-Cl (), C6H4-4-OMe (), C6F5 (), and CH2C6H4-4-Cl ()) have been prepared via the reaction of Mn2(CO)10 with diaryldisulfane or via the reaction of [(OC)5MnBr] with arylthiols. These complexes lose two carbon monoxide molecules quite easily yielding tetranuclear [(OC)3Mn(μ3-SR)]4 (). Derivatives with fluoro-substituted aryl groups commonly form mixtures of dinuclear and tetranuclear which can quantitatively be converted to by heating of the corresponding reaction mixtures. A unique trinuclear structure is found for the mesityl derivative [(OC)4Mn(μ-SMes)]3 () which is maintained in solution as verified by IR and NMR spectroscopy. Traces of an already known dinuclear by-product of the type [(OC)3Mn(μ-SC6H3(-4-Me)-2-SC6H4-4-Me)]2 () have been structurally characterized. The suitability of [(OC)4Mn(μ-SPh)]2 () as a CO releasing molecule (CORM) for the administration of carbon monoxide has been studied. Two CO molecules are released upon dissolving in strongly Lewis basic solvents L, yielding [(OC)3Mn(L)(μ-SPh)]2, which liberates all the remaining CO molecules upon irradiation (photoCORM behavior). PMID:25569035

  10. Curcumin-Induced Heme Oxygenase-1 Expression Prevents H2O2-Induced Cell Death in Wild Type and Heme Oxygenase-2 Knockout Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Cremers, Niels A. J.; Lundvig, Ditte M. S.; van Dalen, Stephanie C. M.; Schelbergen, Rik F.; van Lent, Peter L. E. M.; Szarek, Walter A.; Regan, Raymond F.; Carels, Carine E.; Wagener, Frank A. D. T. G.

    2014-01-01

    Mesenchymal stem cell (MSC) administration is a promising adjuvant therapy to treat tissue injury. However, MSC survival after administration is often hampered by oxidative stress at the site of injury. Heme oxygenase (HO) generates the cytoprotective effector molecules biliverdin/bilirubin, carbon monoxide (CO) and iron/ferritin by breaking down heme. Since HO-activity mediates anti-apoptotic, anti-inflammatory, and anti-oxidative effects, we hypothesized that modulation of the HO-system affects MSC survival. Adipose-derived MSCs (ASCs) from wild type (WT) and HO-2 knockout (KO) mice were isolated and characterized with respect to ASC marker expression. In order to analyze potential modulatory effects of the HO-system on ASC survival, WT and HO-2 KO ASCs were pre-treated with HO-activity modulators, or downstream effector molecules biliverdin, bilirubin, and CO before co-exposure of ASCs to a toxic dose of H2O2. Surprisingly, sensitivity to H2O2-mediated cell death was similar in WT and HO-2 KO ASCs. However, pre-induction of HO-1 expression using curcumin increased ASC survival after H2O2 exposure in both WT and HO-2 KO ASCs. Simultaneous inhibition of HO-activity resulted in loss of curcumin-mediated protection. Co-treatment with glutathione precursor N-Acetylcysteine promoted ASC survival. However, co-incubation with HO-effector molecules bilirubin and biliverdin did not rescue from H2O2-mediated cell death, whereas co-exposure to CO-releasing molecules-2 (CORM-2) significantly increased cell survival, independently from HO-2 expression. Summarizing, our results show that curcumin protects via an HO-1 dependent mechanism against H2O2-mediated apoptosis, and likely through the generation of CO. HO-1 pre-induction or administration of CORMs may thus form an attractive strategy to improve MSC therapy. PMID:25299695

  11. Magnetic Properties of Diluted Fcc System Nickel

    NASA Astrophysics Data System (ADS)

    Feng, Zhen

    Starting from Ni and Mg nitrates, about 20 samples of Ni_{rm p}Mg _{rm 1-p}O (0.06 <=q p <=q 0.86) were prepared and X-ray diffraction studies showed the samples to have the NaCl structure with the lattice constant fitting the equation a(p) = 4.2115 - 0.0340p A. Temperature dependent dc magnetic susceptibility (chi ) studies of the samples were carried out between 1.8K and 600K using a SQUID magnetometer and the Neel temperature T_{rm N} were determined from the peak in partial(chiT)/ partialT. The variation of t = T _{rm N}(p)/T _{rm N}(1) versus p is compared with that in Co_{rm p}Mg _{rm 1-p}O. For both systems, the variations for p > 0.31 are found to fit the predicted values for a simple cubic Heisenberg antiferromagnet and a theoretical basis for this anomalous results is advanced. The experimental percolation threshold p_{rm c} = 0.15 +/- 0.01. For p_ {rm c} <=q p <=q 0.33, chi below T_{rm N} shows irreversible behavior for the zero-field-cooled and field -cooled cases, suggestive of spin-glass-like behavior, also observed in other diluted fcc antiferromagnets such as Co_{rm p}Mg _{rm 1-p}O and Eu _{rm p}Sr_ {rm 1-p}Te. It is suggested that the differences in the t vs p variations for p < 0.33 in Ni_{rm p} Mg_{rm 1-p}O, Co_{rm p}Mg _{rm 1-p}O and Eu _{rm p}Sr_ {rm 1-p}Te may be related to the differences in the ratio of the next-nearest-neighbor to nearest-neighbor exchange constants in these systems. A higher order correction to Curie-Weiss law was applied for sample with 0.19 <=q p <=q 0.59 which explains why 1/ chi curve versus T bends downward with decreasing temperatures. For the sample Ni_{0.33} Mg_{0.67}O, the magnetization M versus magnetic field H (0 to 0.2T) are measured with temperature ranging from 5.2K to 13.4K at intervals of 0.2K. The magnitude of the non-linear susceptibility, a_3, is determined from the M versus H data at different temperatures. The divergence of a _3 around 9.4 +/- 0.6K indicates spin-glass behavior in this system.

  12. Traditional uses and potential health benefits of Amorphophallus konjac K. Koch ex N.E.Br.

    PubMed

    Chua, Melinda; Baldwin, Timothy C; Hocking, Trevor J; Chan, Kelvin

    2010-03-24

    Amorphophallus konjac (konjac) has long been used in China, Japan and South East Asia as a food source and as a traditional medicine. Flour extracted from the corm of this species is used in Far Eastern cuisine to make noodles, tofu and snacks. In traditional Chinese medicine (TCM), a gel prepared from the flour has been used for detoxification, tumour-suppression, blood stasis alleviation and phlegm liquefaction; and for more than 2000 years has been consumed by the indigenous people of China for the treatment of asthma, cough, hernia, breast pain, burns as well as haematological and skin disorders. Over the past two decades, purified konjac flour, commonly known as konjac glucomannan (KGM) has been introduced on a relatively small scale into the United States and Europe, both as a food additive and a dietary supplement. The latter is available in capsule form or as a drink mix and in food products. Clinical studies have demonstrated that supplementing the diet with KGM significantly lowers plasma cholesterol, improves carbohydrate metabolism, bowel movement and colonic ecology. Standards for the classification of both konjac flour and KGM have been established by the Chinese Ministry of Agriculture, the European Commission and the U.S. Food Chemicals Codex. However, to date, there is no worldwide agreed regulatory standard for konjac flour or KGM. This highlights the need for harmonization of konjac commercial standards to assess and ensure the quality of existing and future KGM products. Despite the widespread consumption of konjac derived products in East and South East Asia, there has been limited research on the biology, processing and cultivation of this species in the West. Most studies performed outside Asia have focussed on the structural characterisation and physicochemical properties of KGM. Therefore, the objective of this monograph is to review the literature covering the ethnic uses, botany and cultivation of konjac corms, together with the health

  13. Energy analyses and greenhouse gas emissions assessment for saffron production cycle.

    PubMed

    Bakhtiari, Amir Abbas; Hematian, Amir; Sharifi, Azin

    2015-10-01

    Population growth and world climate changes are putting high pressure on agri-food production systems. Exacerbating use of energy sources and expanding the environmental damaging symptoms are the results of these difficult situations. This study was conducted to determine the energy balance for saffron production cycle and investigate the corresponding greenhouse gas (GHG) emissions in Iran. Saffron (Crocus sativus L.) is one of the main spice that historically cultivated in Iran. Data were obtained from 127 randomly selected saffron growers using a face to face questionnaire technique. The results revealed that in 5 years of saffron production cycle, the overall input and output energy use were to be 163,912.09 and 184,868.28 MJ ha(-1), respectively. The highest-level of energy consumption belongs to seeds (23.7 %) followed by chemical fertilizers (23.4 %). Energy use efficiency, specific energy, net energy, and energy productivity of saffron production were 1.1, 13.4 MJ kg(-1), 20,956.2 MJ ha(-1), and 0.1 kg MJ(-1), respectively. The result shows that the cultivation of saffron emits 2325.5 kg CO2 eq. ha(-1) greenhouse gas, in which around 46.5 % belonged to electricity followed by chemical fertilizers. In addition the Cobb-Douglas production function was applied into EViews 7 software to define the functional relationship. The results of econometric model estimation showed that the impact of human labor, electricity, and water for irrigation on stigma, human labor, electricity, and seed on corm and also human labor and farmyard manure (FYM) on flower and leaf yield were found to be statistically significant. Sensitivity analysis results of the energy inputs demonstrated that the marginal physical productivity (MPP) worth of electricity energy was the highest for saffron stigma and corm, although saffron flower and leaf had more sensitivity on chemicals energy inputs. Moreover, MPP values of renewable and indirect energies were higher than non-renewable and

  14. Effect of carbon monoxide on gene expression in cerebrocortical astrocytes: Validation of reference genes for quantitative real-time PCR.

    PubMed

    Oliveira, Sara R; Vieira, Helena L A; Duarte, Carlos B

    2015-09-15

    Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is a widely used technique to characterize changes in gene expression in complex cellular and tissue processes, such as cytoprotection or inflammation. The accurate assessment of changes in gene expression depends on the selection of adequate internal reference gene(s). Carbon monoxide (CO) affects several metabolic pathways and de novo protein synthesis is crucial in the cellular responses to this gasotransmitter. Herein a selection of commonly used reference genes was analyzed to identify the most suitable internal control genes to evaluate the effect of CO on gene expression in cultured cerebrocortical astrocytes. The cells were exposed to CO by treatment with CORM-A1 (CO releasing molecule A1) and four different algorithms (geNorm, NormFinder, Delta Ct and BestKeeper) were applied to evaluate the stability of eight putative reference genes. Our results indicate that Gapdh (glyceraldehyde-3-phosphate dehydrogenase) together with Ppia (peptidylpropyl isomerase A) is the most suitable gene pair for normalization of qRT-PCR results under the experimental conditions used. Pgk1 (phosphoglycerate kinase 1), Hprt1 (hypoxanthine guanine phosphoribosyl transferase I), Sdha (Succinate Dehydrogenase Complex, Subunit A), Tbp (TATA box binding protein), Actg1 (actin gamma 1) and Rn18s (18S rRNA) genes presented less stable expression profiles in cultured cortical astrocytes exposed to CORM-A1 for up to 60 min. For validation, we analyzed the effect of CO on the expression of Bdnf and bcl-2. Different results were obtained, depending on the reference genes used. A significant increase in the expression of both genes was found when the results were normalized with Gapdh and Ppia, in contrast with the results obtained when the other genes were used as reference. These findings highlight the need for a proper and accurate selection of the reference genes used in the quantification of qRT-PCR results

  15. Resveratrol Induces Hepatic Mitochondrial Biogenesis Through the Sequential Activation of Nitric Oxide and Carbon Monoxide Production

    PubMed Central

    Kim, Seul-Ki; Joe, Yeonsoo; Zheng, Min; Kim, Hyo Jeong; Yu, Jae-Kyoung; Cho, Gyeong Jae; Chang, Ki Churl; Kim, Hyoung Kyu; Han, Jin; Ryter, Stefan W.

    2014-01-01

    Abstract Aims: Nitric oxide (NO) can induce mitochondrial biogenesis in cultured cells, through increased guanosine 3′,5′-monophosphate (cGMP), and activation of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α). We sought to determine the role of NO, heme oxygenase-1 (HO-1), and its reaction product (carbon monoxide [CO]) in the induction of mitochondrial biogenesis by the natural antioxidant resveratrol. Results: S-nitroso-N-acetylpenicillamine (SNAP), an NO donor, induced mitochondrial biogenesis in HepG2 hepatoma cells, and in vivo, through stimulation of PGC-1α. NO-induced mitochondrial biogenesis required cGMP, and was mimicked by the cGMP analogue (8-bromoguanosine 3′,5′-cyclic monophosphate [8-Br-cGMP]). Activation of mitochondrial biogenesis by SNAP required HO-1, as it could be reversed by genetic interference of HO-1; and by treatment with the HO inhibitor tin-protoporphyrin-IX (SnPP) in vitro and in vivo. Cobalt protoporphyrin (CoPP)-IX, an HO-1 inducing agent, stimulated mitochondrial biogenesis in HepG2 cells, which could be reversed by the CO scavenger hemoglobin. Application of CO, using the CO-releasing molecule-3 (CORM-3), stimulated mitochondrial biogenesis in HepG2 cells, in a cGMP-dependent manner. Both CoPP and CORM-3-induced mitochondrial biogenesis required NF-E2-related factor-2 (Nrf2) activation and phosphorylation of Akt. The natural antioxidant resveratrol induced mitochondrial biogenesis in HepG2 cells, in a manner dependent on NO biosynthesis, cGMP synthesis, Nrf2-dependent HO-1 activation, and endogenous CO production. Furthermore, resveratrol preserved mitochondrial biogenesis during lipopolysaccharides-induced hepatic inflammation in vivo. Innovation and Conclusions: The complex interplay between endogenous NO and CO production may underlie the mechanism by which natural antioxidants induce mitochondrial biogenesis. Strategies aimed at improving mitochondrial biogenesis may be used as therapeutics

  16. Petunia Floral Defensins with Unique Prodomains as Novel Candidates for Development of Fusarium Wilt Resistance in Transgenic Banana Plants

    PubMed Central

    Ghag, Siddhesh B.; Shekhawat, Upendra K. Singh; Ganapathi, Thumballi R.

    2012-01-01

    Antimicrobial peptides are a potent group of defense active molecules that have been utilized in developing resistance against a multitude of plant pathogens. Floral defensins constitute a group of cysteine-rich peptides showing potent growth inhibition of pathogenic filamentous fungi especially Fusarium oxysporum in vitro. Full length genes coding for two Petunia floral defensins, PhDef1 and PhDef2 having unique C- terminal 31 and 27 amino acid long predicted prodomains, were overexpressed in transgenic banana plants using embryogenic cells as explants for Agrobacterium–mediated genetic transformation. High level constitutive expression of these defensins in elite banana cv. Rasthali led to significant resistance against infection of Fusarium oxysporum f. sp. cubense as shown by in vitro and ex vivo bioassay studies. Transgenic banana lines expressing either of the two defensins were clearly less chlorotic and had significantly less infestation and discoloration in the vital corm region of the plant as compared to untransformed controls. Transgenic banana plants expressing high level of full-length PhDef1 and PhDef2 were phenotypically normal and no stunting was observed. In conclusion, our results suggest that high-level constitutive expression of floral defensins having distinctive prodomains is an efficient strategy for development of fungal resistance in economically important fruit crops like banana. PMID:22745785

  17. Organochlorine (chlordecone) uptake by root vegetables.

    PubMed

    Florence, Clostre; Philippe, Letourmy; Magalie, Lesueur-Jannoyer

    2015-01-01

    Chlordecone, an organochlorine insecticide, continues to pollute soils in the French West Indies. The main source of human exposure to this pollutant is food. Root vegetables, which are staple foods in tropical regions, can be highly contaminated and are thus a very effective lever for action to reduce consumer exposure. We analyzed chlordecone contamination in three root vegetables, yam, dasheen and sweet potato, which are among the main sources of chlordecone exposure in food in the French West Indies. All soil types do not have the same potential for the contamination of root vegetables, allophanic andosols being two to ten times less contaminating than non-allophanic nitisols and ferralsols. This difference was only partially explained by the higher OC content in allophanic soils. Dasheen corms were shown to accumulate more chlordecone than yam and sweet potato tubers. The physiological nature of the root vegetable may explain this difference. Our results are in good agreement with the hypothesis that chlordecone uptake by root vegetables is based on passive and diffusive processes and limited by transport and dilution during growth. PMID:25043888

  18. Effects of Tidal Action on Pollination and Reproductive Allocation in an Estuarine Emergent Wetland Plant–Sagittaria graminea (Alismataceae)

    PubMed Central

    Zhang, Yanwen; Zhang, Lihui; Zhao, Xingnan; Huang, Shengjun; Zhao, Jimin

    2013-01-01

    In estuarine wetlands, the daily periodic tidal activity has a profound effect on plant growth and reproduction. We studied the effects of tidal action on pollination and reproductive allocation of Sagittaria graminea. Results showed that the species had very different reproductive allocation in tidal and non-tidal habitats. In the tidal area, seed production was only 9.7% of that in non-tidal habitat, however, plants produced more male flowers and nearly twice the corms compared to those in non-tidal habitat. An experiment showed that the time available for effective pollination determined the pollination rate and pollen deposition in the tidal area. A control experiment suggested that low pollen deposition from low visitation frequency is not the main cause of very low seed sets or seed production in this plant in tidal habitat. The negative effects of tides (water) on pollen germination may surpass the influence of low pollen deposition from low visitation frequency. The length of time from pollen deposition to flower being submerged by water affected pollen germination rate on stigmas; more than three hours is necessary to allow pollen germination and complete fertilization to eliminate the risk of pollen grains being washed away by tidal water. PMID:24244393

  19. Conservation of remnant populations of Colchicum autumnale - The relative importance of local habitat quality and habitat fragmentation

    NASA Astrophysics Data System (ADS)

    Adriaens, Dries; Jacquemyn, Hans; Honnay, Olivier; Hermy, Martin

    2009-01-01

    Semi-natural habitat is extremely vulnerable to habitat fragmentation and degradation since its socio-economic value has decreased substantially during the last century in most parts of Europe. We evaluated the relative effects of habitat fragmentation and local environmental conditions on population structure and reproductive performance of the long-lived corm geophyte Colchicum autumnale in 17 highly fragmented populations. Habitat isolation did not affect patch occupancy, population structure or plant performance. In contrast, population size and local environment strongly affected population structure and reproductive performance. Densities of all life stages increased with increasing population size. Large populations also showed a higher reproductive performance and a larger proportion of new recruits. Relationships with local growth conditions pointed towards the importance of an open grassland sward for flower and fruit set and the presence of microsites for successful sexual recruitment. These results suggest that the distribution of C. autumnale consists of an assemblage of basically unconnected populations that are remnants of formerly larger populations. This is in accordance with the species' ability to grow clonally, allowing long-term persistence under deteriorating conditions that occurred during a long period of habitat fragmentation. In conclusion, our results indicate that local habitat and population size are more important than habitat fragmentation (i.e. calcareous grassland isolation and surface area) and argue in favour of a management that is primarily focused on local habitat restoration. This is preferentially accomplished by reintroducing grazing practices, complemented by regular setback of spontaneous succession towards forest.

  20. Role of Hydroxytyrosol-dependent Regulation of HO-1 Expression in Promoting Wound Healing of Vascular Endothelial Cells via Nrf2 De Novo Synthesis and Stabilization.

    PubMed

    Zrelli, Houda; Kusunoki, Miki; Miyazaki, Hitoshi

    2015-07-01

    Hydroxytyrosol (HT), an olive plant (Olea europaea L.) polyphenol, has proven atheroprotective effects. We previously demonstrated that heme oxygenase-1 (HO-1) is involved in the HT dependent prevention of dysfunction induced by oxidative stress in vascular endothelial cells (VECs). Here, we further investigated the signaling pathway of HT-dependent HO-1 expression in VECs. HT dose- and time-dependently increased HO-1 mRNA and protein levels through the PI3K/Akt and ERK1/2 pathways. Cycloheximide and actinomycin D inhibited both increases, suggesting that HT-triggered HO-1 induction is transcriptionally regulated and that de novo protein synthesis is necessary for this HT effect. HT stimulated nuclear accumulation of nuclear factor E2-related factor 2 (Nrf2). This Nrf2 accumulation was blocked by actinomycin D and cycloheximide whereas HT in combination with the 26S proteasome inhibitor MG132 enhanced the accumulation. HT also extended the half-life of Nrf2 proteins by decelerating its turnover. Moreover, HO-1 inhibitor, ZnppIX and CO scavenger, hemoglobin impaired HT-dependent wound healing while CORM-2, a CO generator, accelerated wound closure. Together, these data demonstrate that HT upregulates HO-1 expression by stimulating the nuclear accumulation and stabilization of Nrf2, leading to the wound repair of VECs crucial in the prevention of atherosclerosis. PMID:25870947

  1. Genetic variation and variation in aggressiveness to native and exotic hosts among Brazilian populations of Ceratocystis fimbriata.

    PubMed

    Harrington, Thomas C; Thorpe, Daniel J; Alfenas, Acelino C

    2011-05-01

    Ceratocystis fimbriata is a complex of many species that cause wilt and cankers on woody plants and rot of storage roots or corms of many economically important crops worldwide. In Brazil, C. fimbriata infects different cultivated crop plants that are not native to Brazil, including Gmelina arborea, Eucalyptus spp., Mangifera indica (mango), Ficus carica (fig), and Colocasia esculenta (inhame). Phylogenetic analyses and inoculation studies were performed to test the hypothesis that there are host-specialized lineages of C. fimbriata in Brazil. The internal transcribed spacer region ribosomal DNA sequences varied greatly but there was little resolution of lineages based on these sequences. A portion of the MAT1-2 mating type gene showed less variation, and this variation corresponded more closely with host of origin. However, mango isolates were found scattered throughout the tree. Inoculation experiments on the five exotic hosts showed substantial variation in aggressiveness within and among pathogen populations. Native hosts from the same families as the exotic hosts tended to be less susceptible than the cultivated hosts, but there was little correlation between aggressiveness to the cultivated and native hosts of the same family. Cultivation and vegetative propagation of exotic crops may select for strains that are particularly aggressive on those crops. PMID:21190423

  2. Functional characterization of secondary wall deposition regulating transcription factors MusaVND2 and MusaVND3 in transgenic banana plants.

    PubMed

    Negi, Sanjana; Tak, Himanshu; Ganapathi, T R

    2016-03-01

    NAM, ATAF, and CUC (NAC) domain-containing proteins are plant-specific transcription factors involved in stress responses and developmental regulation. MusaVND2 and MusaVND3 are vascular-related NAC domain-containing genes encoding for nuclear-localized proteins. The transcript level of MusaVND2 and MusaVND3 are gradually induced after induction of lignification conditions in banana embryogenic cells. Banana embryogenic cells differentiated to tracheary element-like cells after overexpression of MusaVND2 and MusaVND3 with a differentiation frequency of 63.5 and 23.4 %, respectively, after ninth day. Transgenic banana plants overexpressing either of MusaVND2 or MusaVND3 showed ectopic secondary wall deposition as well as transdifferentiation of cells into tracheary elements. Transdifferentiation to tracheary element-like cells was observed in cortical cells of corm and in epidermal and mesophyll cells of leaves of transgenic plants. Elevated levels of lignin and crystalline cellulose were detected in the transgenic banana lines than control plants. The results obtained are useful for understanding the molecular regulation of secondary wall development in banana. PMID:25952082

  3. Root-knot Nematode Management in Dryland Taro with Tropical Cover Crops

    PubMed Central

    Sipes, B. S.; Arakaki, A. S.

    1997-01-01

    Twenty-two cover crops were evaluated for their ability to reduce damage by root-knot nematode, Meloidogyne javanica, to taro, Colocastia esculenta, in a tropical cropping system. Cover crops were grown and incorporated into the soil before taro was planted. Barley, greenpanic, glycine, marigold, sesame, sunn hemp, and sorghum x sudangrass DeKalb ST6E were poor or nonhosts to the nematode as measured by low population changes of nematodes in soil between cover crop planting and taro planting. Alfalfa, buckwheat, cowpea, lablab, Lana vetch, mustard, oat, okra, rhodes grass, ryegrain, ryegrass, siratro, sweet corn, and wheat allowed nematode populations to increase dramatically. Taro yields were greatest in the marigold plots and lowest in the ryegrain plots. Taro corm weight decreased with increasing initial nematode population (Pi) (r = 0.22, P = 0.056). Siratro, ryegrass, and Blizzard wheat plots had higher taro yield than plots with similar Pi's but planted to other cover crops. These cover crops may have antagonism to other soil microorganisms or their decomposition products may be toxic or adversely affect the nematodes. Cover crops can be an effective and valuable nematode management tactic for use in minor tropical cropping systems such as taro. PMID:19274275

  4. Cost-Benefit Analysis of Managing the Papuana uninodis (Coleoptera: Scarabaeidae) Taro Beetle in Fiji.

    PubMed

    Brown, P; Daigneault, A

    2014-10-01

    Taro (Colocasia esculenta (L.) Schott) plays a prominent role in the economies and cultures of Pacific Island countries such as Fiji. Unfortunately, taro is highly susceptible to invasion from taro beetles, which burrow into the corms and weaken the plants, rendering them unmarkable and prone to rot. Papuana uninodis Prell, an invasive alien species that is native to the Solomon Islands and Vanuatu, was first reported on Viti Levu (Fiji's largest island) in 1984. Since that time, taro production on Viti Levu has fallen substantially. In this paper, we employ data from surveys of households and communities to document the impacts of P. uninodis on Viti Levu. We then identify three management approaches-chemical controls, cultural controls, and switching from taro to another staple crop-and conduct a cost-benefit analysis of each. We find strong arguments for pursuing chemical control, which derives a net present value of monetised benefits of about FJ$139,500 per hectare over 50 yr, or >FJ$21 for each FJ$1 spent. Still, any of the three management options is more efficient than no management, even without any attempt to quantify the benefits to biodiversity or forest protection, underscoring the value of actively managing this invasive alien species. PMID:26309277

  5. NS-398, a selective COX-2 inhibitor, inhibits proliferation of IL-1{beta}-stimulated vascular smooth muscle cells by induction of {eta}{omicron}-1

    SciTech Connect

    Choi, Hyoung Chul; Kim, Hee Sun; Lee, Kwang Youn; Chang, Ki Churl Kang, Young Jin

    2008-11-28

    We investigated whether NS-398, a selective inhibitor of COX-2, induces HO-1 in IL-1{beta}-stimulated vascular smooth muscle cells (VSMC). NS-398 reduced the production of PGE{sub 2} without modulation of expression of COX-2 in IL-1{beta}-stimulated VSMC. NS-398 increased HO-1 mRNA and protein in a dose-dependent manner, but inhibited proliferation of IL-1{beta}-stimulated VSMC. Furthermore, SnPPIX, a HO-1 inhibitor, reversed the effects of NS-398 on PGE{sub 2} production, suggesting that COX-2 activity can be affected by HO-1. Hemin, a HO-1 inducer, also reduced the production of PGE{sub 2} and proliferation of IL-1{beta}-stimulated VSMC. CORM-2, a CO-releasing molecule, but not bilirubin inhibited proliferation of IL-1{beta}-stimulated VSMC. NS-398 inhibited proliferation of IL-1{beta}-stimulated VSMC in a HbO{sub 2}-sensitive manner. In conclusion, NS-398 inhibits proliferation of IL-1{beta}-stimulated VSMC by HO-1-derived CO. Thus, NS-398 may facilitate the healing process of vessels in vascular inflammatory disorders such as atherosclerosis.

  6. Rapid and sensitive detection of Phytophthora colocasiae responsible for the taro leaf blight using conventional and real-time PCR assay.

    PubMed

    Nath, Vishnu S; Hegde, Vinayaka M; Jeeva, Muthulekshmi L; Misra, Raj S; Veena, Syamala S; Raj, Mithun; Unnikrishnan, Suresh K; Darveekaran, Sree S

    2014-03-01

    Conventional and real-time PCR assays were developed for sensitive and specific detection of Phytophthora colocasiae, an oomycete pathogen that causes leaf blight and corm rot of taro. A set of three primer pairs was designed from regions of the RAS-related protein (Ypt1), G protein alpha-subunit (GPA1) and phospho-ribosylanthranilate isomerase (TRP1) genes. In conventional PCR, the lower limit of detection was 50 pg DNA, whereas in real-time PCR, the detection limit was 12.5 fg for the primer based on Ypt1 gene. The cycle threshold values were linearly correlated with the concentration of the target DNA (range of R(2) = 0.911-0.999). All the primer sets were successful in detecting P. colocasie from naturally infected leaves and tubers of taro. Phytophthora colocasiae was detected from artificially infested samples after 18 and 15 h of postinoculation in conventional and real-time PCR assay, respectively. The developed PCR assay proved to be a robust and reliable technique to detect P. colocasiae in taro planting material and for assessing the distribution of pathogen within fields, thus aid in mitigating taro leaf blight. PMID:24612149

  7. Purification of Colocasia esculenta lectin and determination of its anti-insect potential towards Bactrocera cucurbitae.

    PubMed

    Thakur, Kshema; Kaur, Manpreet; Kaur, Satwinder; Kaur, Amritpal; Kamboj, Sukhdev Singh; Singh, Jatinder

    2013-01-01

    The present study reports the purification of a lectin from Colocasia esculenta (L.) Schott corms and evaluation of its anti-insect potential towards Bactrocera cucurbitae (Coquilett). The lectin was found to be specific towards N-acetyl-D-lactosamine (LacNac), a disaccharide and asialofetuin, a desialylated serum glycoprotein in hemagglutination inhibition assay. Asialofetuin was used as a ligand to purify Colocasia esculenta agglutinin (CEA) by affinity chromatography. The purity of CEA was ascertained by the presence of a single band in reducing SDS-PAGE at pH 8.3. The affinity purified CEA was employed in artificial diet bioassay of second instar larvae (64-72 hr old) of the B. cucurbitae at concentrations ranging between 10-160 microg ml(-1). The lectin significantly (p < 0.01) decreased the percent pupation and emergence with respect to control. Effect on various enzymes was studied by employing LC50 (51.6 microg ml(-1)) CEA in the artificial diet bioassay of second instar larvae. All the enzymes tested namely esterases, phosphatases (acid and alkaline), superoxide dismutases, catalase and glutathione-S-transferase showed a significant (p < 0.01, p < 0.05) increase in their enzyme and specific activities. These results showed that CEA affected normal growth and development and presented stress to the larvae, activating their detoxification and anti-oxidant systems. Thus, the lectin seems to be a useful candidate for the control measures of B. cucurbitae under the integrated pest management (IPM) system. PMID:24006804

  8. Rapid estimation of taro (Colocasia esculenta) quality by near-infrared reflectance spectroscopy.

    PubMed

    Lebot, Vincent; Malapa, Roger; Bourrieau, Marion

    2011-09-14

    The aim of the present study is to develop a methodology for the rapid estimation of taro (Colocasia esculenta) quality. Chemical analyses were conducted on 315 accessions for major constituents (starch, total sugars, cellulose, proteins, and minerals). NIRS calibration equations, developed on a calibration set composed of 243 accessions, showed high explained variances in cross-validation (r(2)(cv)) for starch (0.89), sugars (0.90), proteins (0.89), and minerals (0.90) but poor response for amylose (0.44) and cellulose (0.61). The predictions were tested on an independent set of 58 randomly selected accessions. The r(2)(pred) values for starch, sugars, proteins, and minerals were, respectively, of 0.76, 0.74, 0.85, and 0.85 with ratios of performance to deviation (RPD) of 3.41, 4.01, 3.78, and 3.64. New calibration equations developed on 303 accessions confirmed good RPD values for starch (3.30), sugars (4.13), proteins (3.61), and minerals (3.74). NIRS could be used to predict starch, sugars, proteins, and minerals contents in taro corms with reasonably high confidence. PMID:21806061

  9. Characterization of tyrosinase and accompanying laccase from Amorphophallus campanulatus.

    PubMed

    Paranjpe, Pallavi S; Karve, Meena S; Padhye, Subhash B

    2003-02-01

    Tyrosinase and laccase activities were detected in the corm of Amorphophallus campanulatus after extraction with ethanol followed by ammonium sulphate precipitation (20-60%) and dialysis against 10 mM Na2HPO4 buffer at pH 7.0. Tyrosinase was found to be the predominant enzyme exhibiting mono- and di-phenolase activities, specificity for L-DOPA as substrate, optimum pH being 6.0, optimum temperature at 40 degrees C and Km at 1.05 mM. Laccase showed substrate specificity for p-phenylenediamine (p-PD), Km at 2.7 mM, optimum pH being 5.0 and was inactivated above 40 degrees C. Three isoforms of tyrosinase were detected on SDS-PAGE with apparent molecular mass approximately 127, 31 and 27 kDa respectively. On staining sections of A. campanulatus with L-DOPA as substrate and 3-methyl benzothiazolinone hydrazone (MBTH) for colour development, tyrosinase was detected in the intercellular spaces of the plant tissue. The cytosolic region did not show any colour indicating the absence of the enzyme. PMID:22900290

  10. Improvement of banana cv. Rasthali (Silk, AAB) against Fusarium oxysporum f.sp. cubense (VCG 0124/5) through induced mutagenesis: Determination of LD50 specific to mutagen, explants, toxins and in vitro and in vivo screening for Fusarium wilt resistance.

    PubMed

    Saraswathi, M S; Kannan, G; Uma, S; Thangavelu, R; Backiyarani, S

    2016-05-01

    Shoot tips and in vitro grown proliferating buds of banana cv. Rasthali (Silk, AAB) were treated with various concentrations and durations of chemical mutagens viz., EMS, NaN3 and DES. LD50 for shoot tips based on 50% reduction in fresh weight was determined as 2% for 3 h, 0.02% for 5 h and 0.15% for 5 h, while for proliferating buds, they were 0.6% for 30 min, 0.01% for 2 h and 0.06% for 2 h for the mutagens EMS, NaN3 and DES, respectively. Subsequently, the mutated explants were screened in vitro against fusarium wilt using selection agents like fusaric acid and culture filtrate. LD50 for in vitro selection agents calculated based on 50% survival of explants was 0.050 mM and 7% for fusaric acid and culture filtrate, respectively and beyond which a rapid decline in growth was observed. This was followed by pot screening which led to the identification of three putative resistant mutants with an internal disease score of 1 (corm completely clean, no vascular discolouration). The putative mutants identified in the present study have also been mass multiplied in vitro. PMID:27319054

  11. In vitro assessment of plant lectins with anti-pinwood nematode activity.

    PubMed

    Gaofu, Qi; Shiqing, Mao; Fayin, Zhu; Zhiniu, Yu; Xiuyun, Zhao

    2008-05-01

    Two lectin proteins were purified from the corms of Pinellia ternata and Lycoris radiata. Both P. ternata agglutinin (PTA) protein and L. radiata agglutinin (LRA) protein formed polymers and coagulated both rabbit red blood cells and yeast cells. The two proteins were each diluted to different concentration and then mixed with pinewood nematodes, and nematode survival was measured. Results showed that the two lectin proteins showed significant levels of resistance against nematodes and the nematode population was significantly reduced, compared to PBS buffer without protein control group. The mean number of nematodes of two lectin proteins group was significantly lower than that of control group constantly throughout the assay period with differences being very significant at P<0.01 after 24 h. After 96 h, when 500 microg/ml proteins were used, nematode number significantly declined to an average of 26 (approximately 43% of the controls) and 32.2 (approximately 53.3% of the controls) nematodes at LRA and PTA protein, respectively, compared to the control group. Results also indicated that higher concentrations of protein were more toxic to the pinewood nematode. Even when the concentration was as low as 30 microg/ml, the toxic proteins retained their anti-nematode activity. Furthermore, pinewood nematode was exposed to the proteins for longer, more pinewood nematodes were killed. Our results indicated the two lectin proteins both apparently have a toxic effect on the pinewood nematode that affects its survival in vitro. PMID:18158158

  12. COBRAS/SAMBA: the ESA Medium Size Mission for measurements of CBR anisotropy

    NASA Astrophysics Data System (ADS)

    Mandolesi, N.; Bersanelli, M.; Cesarsky, C.; Danese, L.; Efstathiou, G.; Griffin, M.; Lamarre, J. M.; Norgaard-Nielsen, H. U.; Pace, O.; Puget, J. L.; Raisanen, A.; Smoot, G. F.; Tauber, J.; Volonte, S.

    1995-02-01

    The COBRAS/SAMBA mission is designed for extensive, accurate mapping of the anisotropy of the Cosmic Background Radiation. with angular sensitivity from scales of a few arcminutes up to and overlapping with the > 7° COBE-DMR resolution. This will allow a full identification of the primordial density perturbations which grew to Corm the large-scale structures observed in the present universe. The COBRAS/SAMBA maps will provide a major source of information relevant to several cosmological and astrophysical issues, such as testing theories of the early universe and the origin of cosmic structure. One of the main diffuse foreground emissions will be from interstellar dust, and the mission will provide relevant information on its components and emission properties. A combination of bolometric and radiometric detection techniques will ensure the sensitivity and wide spectral coverage required for accurate foreground discrimination. A far-Earth orbit has been selected to minimize the unwanted emission from the Earth as a source of contamination. The project is currently undergoing a feasibility study within the European Space Agency M3 programme.

  13. Petunia floral defensins with unique prodomains as novel candidates for development of fusarium wilt resistance in transgenic banana plants.

    PubMed

    Ghag, Siddhesh B; Shekhawat, Upendra K Singh; Ganapathi, Thumballi R

    2012-01-01

    Antimicrobial peptides are a potent group of defense active molecules that have been utilized in developing resistance against a multitude of plant pathogens. Floral defensins constitute a group of cysteine-rich peptides showing potent growth inhibition of pathogenic filamentous fungi especially Fusarium oxysporum in vitro. Full length genes coding for two Petunia floral defensins, PhDef1 and PhDef2 having unique C-terminal 31 and 27 amino acid long predicted prodomains, were overexpressed in transgenic banana plants using embryogenic cells as explants for Agrobacterium-mediated genetic transformation. High level constitutive expression of these defensins in elite banana cv. Rasthali led to significant resistance against infection of Fusarium oxysporum f. sp. cubense as shown by in vitro and ex vivo bioassay studies. Transgenic banana lines expressing either of the two defensins were clearly less chlorotic and had significantly less infestation and discoloration in the vital corm region of the plant as compared to untransformed controls. Transgenic banana plants expressing high level of full-length PhDef1 and PhDef2 were phenotypically normal and no stunting was observed. In conclusion, our results suggest that high-level constitutive expression of floral defensins having distinctive prodomains is an efficient strategy for development of fungal resistance in economically important fruit crops like banana. PMID:22745785

  14. Diversity of culturable bacterial endophytes of saffron in Kashmir, India.

    PubMed

    Sharma, Tanwi; Kaul, Sanjana; Dhar, Manoj K

    2015-01-01

    Saffron (Crocus sativus) is a medicinally important plant. The Kashmir valley (J&K, India) emblematizes one of the major and quality saffron producing areas in the world. Nonetheless, the area has been experiencing a declining trend in the production of saffron during the last decade. Poor disease management is one of the major reasons for declining saffron production in the area. Endophytes are known to offer control against many diseases of host plant. During the present study, culturable bacterial endophytes were isolated from saffron plant, identified and assessed for plant growth promoting activities. Molecular and phylogenetic analysis grouped the fifty-four bacterial isolates into eleven different taxa, viz. Bacillus licheniformis, B. subtilis, B. cereus, B. humi, B. pumilus, Paenibacillus elgii, B. safensis, Brevibacillus sp., Pseudomonas putida, Staphylococcus hominis and Enterobacter cloacae. The results were also supported with the identification based on BIOLOG system. B. licheniformis was the dominant endophyte in both leaves and corms of saffron. 81 % isolates showed lipase activity, 57 % cellulase, 48 % protease, 38 % amylase, 33 % chitinase and 29 % showed pectinase activity. 24 % of the isolates were phosphate solublizers, 86 % showed siderophore production and 80 % phytohormone production potential. The present repository of well characterized bacterial endophytes of saffron, have plant growth promoting potential which can be explored further for their respective roles in the biology of the saffron plant. PMID:26558164

  15. Remote-controlled delivery of CO via photoactive CO-releasing materials on a fiber optical device.

    PubMed

    Gläser, Steve; Mede, Ralf; Görls, Helmar; Seupel, Susanne; Bohlender, Carmen; Wyrwa, Ralf; Schirmer, Sina; Dochow, Sebastian; Reddy, Gandra Upendar; Popp, Jürgen; Westerhausen, Matthias; Schiller, Alexander

    2016-08-16

    Although carbon monoxide (CO) delivery materials (CORMAs) have been generated, remote-controlled delivery with light-activated CORMAs at a local site has not been achieved. In this work, a fiber optic-based CO delivery system is described in which the photoactive and water insoluble CO releasing molecule (CORM) manganese(i) tricarbonyl [(OC)3Mn(μ3-SR)]4 (R = nPr, 1) has been non-covalently embedded into poly(l-lactide-co-d/l-lactide) and poly(methyl methacrylate) non-woven fabrics via the electrospinning technique. SEM images of the hybrid materials show a porous fiber morphology for both polymer supports. The polylactide non-woven fabric was attached to a fiber optical device. In combination with a laser irradiation source, remote-controlled and light-triggered CO release at 405 nm excitation wavelength was achieved. The device enabled a high flexibility of the spatially and timely defined application of CO with the biocompatible hybrid fabric in aqueous media. The rates of liberated CO were adjusted with the light intensity of the laser. CO release was confirmed via ATR-IR spectroscopy, a portable electrochemical CO sensor and a heterogeneous myoglobin assay. PMID:27431097

  16. Oral drug delivery of therapeutic gases - carbon monoxide release for gastrointestinal diseases.

    PubMed

    Steiger, Christoph; Lühmann, Tessa; Meinel, Lorenz

    2014-09-10

    Deploying the therapeutic potential of carbon monoxide (CO) in various gastrointestinal diseases is challenged by inappropriate oral delivery modes. It is for this challenge, that we developed an easy to use tablet referred to as oral carbon monoxide release system (OCORS) providing precise, controlled, tunable and targeted CO delivery for the treatment of sequelae of gastrointestinal diseases. OCORS is an oral tablet based on sulfite induced CO release from the CO releasing molecule 2 (CORM-2). OCORS performance was detailed as a function of the presence of buffer within the tablet core and the composition of a semipermeable cellulose acetate coating, shielding the tablet core. OCORS delivered CO for up to 10h with a nearly linear release profile between approximately 30 to 240min. This controlled release system delivered the therapeutic gas independent of environmental pH for reliable CO generation at gastric, intestinal or colonic sites. In vivo experiments and toxicological assessments particularly with respect to observed ruthenium release of OCORS are required to demonstrate the pharmacokinetics and clinical potential of this oral delivery platform for therapeutic gases. PMID:24969354

  17. Fourier transform infrared analysis of Tamra Bhasma at different levels: A preliminary study

    PubMed Central

    Chaudhari, Swapnil Y.; Rajput, Dhirajsingh S.; Galib, R.; Prajapati, Pradeep Kumar

    2015-01-01

    Introduction: Tamra Bhasma, one among the herbo-metallic preparations is extensively used in Ayurveda for different conditions. To make it safe to use, Tamra has to pass through a set of classical pharmaceutical procedures including a series of quenching in prescribed liquids, followed by incineration with black sulfide of mercury and herbal juice of Citrus jambhiri Lush. and corm of Amorphophallus campanulatus Linn. FTIR profiles of Tamra Bhasma at different levels is not available. Aim: To evaluate the chemical changes in Tamra Bhasma at different steps by following Fourier transform infrared (FTIR) spectroscopy. Materials and Methods: In current study, raw Tamra, intermediate samples obtained during purification, incineration and Amritikarana were analyzed using FTIR. Results: It was observed that Shodhana procedure leads in the formation of bonds between surface particles of Tamra and Shodhana media. These formed bonds on the surface of Shodhita Tamra samples gave various sharp peaks representing presence of many functional groups. Conclusion: The FTIR spectra revealed that both Bhasma samples contained organic compounds probably in the form of a complex with common functional groups like alkyl, methyl, etc., which need further studies for exact characterization of the complexes. PMID:26730144

  18. The Medicinal Uses of Poi

    PubMed Central

    Brown, Amy C.; Valiere, Ana

    2006-01-01

    Poi is a pasty starch made from the cooked, mashed corm of the taro plant (Colocasia esculenta L.). Originating in Asia, this root crop is now found primarily in tropical and subtropical regions and was a major dietary staple in the Pacific islands. We hypothesize that poi has potential use as a probiotic—defined by FAO/WHO as, “live microorganisms which when administered in adequate amounts confer a health benefit to the host.” No scientific studies have explored the possibility of poi being used as a probiotic in medical nutrition therapy, however, an investigator determined that the predominant bacteria in poi are Lactococcus lactis (95%) and Lactobacilli (5%), both of which are lactic acid-producing bacteria. This investigator also reported that poi contains significantly more of these bacteria per gram than yogurt. To determine if poi is beneficial for certain health conditions, a literature search was conducted to find all available research studies in which poi was used as a complementary treatment. Documented evidence suggests that poi shows promise for use in infants with allergies or failure-to-thrive. However, to support previous findings, more research needs to be conducted with poi and its potential use as a probiotic. PMID:15481740

  19. Antioxidant capacity, total phenolics and nutritional content in selected ethiopian staple food ingredients.

    PubMed

    Forsido, Sirawdink Fikreyesus; Rupasinghe, H P Vasantha; Astatkie, Tess

    2013-12-01

    The total antioxidant capacity, total phenolics content (TPC) and nutritional content of five types of enset (Enset ventricosum) flour in comparison with four staples (teff [Eragrostis tef], wheat, corn and tapioca) were evaluated. Teff, corn and "amicho" (corm of enset) had the highest ferric reducing antioxidant power (FRAP). The FRAP and TPC of teff (1.8 mmol Trolox equivalence/100 g dry matter (DM) and 123.6 mg gallic acid equivalent/100 g DM, respectively) were over 4-fold larger than the lowest obtained from "bulla" (dehydrated juice of pseudostem of enset). Corn had the lowest IC(50) value of 1,1-diphenyl-2-picrylhydrazyl radical scavenging (10.27 mg DM mL(-1)). Teff had the highest crude fat content (3.71%) and some mineral profile (P, Mg, Mn and Cu). Enset products had higher fiber, Ca, K, Mg and Mn content as compared to wheat and corn. Ethiopian staple teff has a potential for developing value-added food products with nutritional and health benefits. PMID:23777527

  20. Interaction of carbon monoxide with transition metals: evolutionary insights into drug target discovery.

    PubMed

    Foresti, Roberta; Motterlini, Roberto

    2010-12-01

    The perception that carbon monoxide (CO) is poisonous and life-threatening for mammalian organisms stems from its intrinsic propensity to bind iron in hemoglobin, a reaction that ultimately leads to impaired oxygen delivery to tissues. From evolutionary and chemical perspectives, however, CO is one of the most essential molecules in the formation of biological components and its interaction with transition metals is at the origin of primordial cell signaling. Not surprisingly, mammals have gradually evolved systems to finely control the synthesis and the sensing of this gaseous molecule. Cells are indeed continuously exposed to small quantities of CO produced endogenously during the degradation of heme by constitutive and inducible heme oxygenase enzymes. We have gradually learnt that heme oxygenase-derived carbon monoxide (CO) serves as a ubiquitous signaling mediator which could be exploited for therapeutic purposes. The development of transition metal carbonyls as prototypic carbon monoxide-releasing molecules (CO-RMs) represents a novel stratagem for a safer delivery of CO-based pharmaceuticals in the treatment of various pathological disorders. This review will look back at evolution to analyze and argue that a dynamic interaction of CO with specific intracellular metal centers is the common denominator for the diversified beneficial effects mediated by this gaseous molecule. PMID:20704543

  1. Identification of differentially accumulated proteins associated with embryogenic and non-embryogenic calli in saffron (Crocus sativus L.)

    PubMed Central

    2012-01-01

    Background Somatic embryogenesis (SE) is a complex biological process that occurs under inductive conditions and causes fully differentiated cells to be reprogrammed to an embryo like state. In order to get a better insight about molecular basis of the SE in Crocus sativus L. and to characterize differentially accumulated proteins during the process, a proteomic study based on two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry has been carried out. Results We have compared proteome profiles of non-embryogenic and embryogenic calli with native corm explants. Total soluble proteins were phenol-extracted and loaded on 18 cm IPG strips for the first dimension and 11.5% sodium dodecyl sulfate-polyacrylamide gels for the second dimension. Fifty spots with more than 1.5-fold change in abundance were subjected to mass spectrometry analysis for further characterization. Among them 36 proteins could be identified, which are classified into defense and stress response, protein synthesis and processing, carbohydrate and energy metabolism, secondary metabolism, and nitrogen metabolism. Conclusion Our results showed that diverse cellular and molecular processes were affected during somatic to embryogenic transition. Differential proteomic analysis suggests a key role for ascorbate metabolism during early stage of SE, and points to the possible role of ascorbate-glutathione cycle in establishing somatic embryos. PMID:22243837

  2. Carbon Monoxide: An Essential Signalling Molecule

    NASA Astrophysics Data System (ADS)

    Mann, Brian E.

    Carbon monoxide (CO), like nitric oxide (NO), is an essential signalling molecule in humans. It is active in the cardiovascular system as a vasodilator. In addition, CO possesses anti-inflammatory, anti-apoptotic and anti-proliferative properties and protects tissues from hypoxia and reperfusion injury. Some of its applications in animal models include suppression of organ graft rejection and safeguarding the heart during reperfusion after cardiopulmonary bypass surgery. CO also suppresses arteriosclerotic lesions following angioplasty, reverses established pulmonary hypertension and mitigates the development of post-operative ileus in the murine small intestine and the development of cerebral malaria in mice as well as graft-induced intimal hyperplasia in pigs. There have been several clinical trials using air-CO mixtures for the treatment of lung-, heart-, kidney- and abdominal-related diseases. This review examines the research involving the development of classes of compounds (with particular emphasis on metal carbonyls) that release CO, which could be used in clinically relevant conditions. The review is drawn not only from published papers in the chemical literature but also from the extensive biological literature and patents on CO-releasing molecules (CO-RMs).

  3. Buccal dental microwear analyses support greater specialization in consumption of hard foodstuffs for Australopithecus anamensis.

    PubMed

    Estebaranz, Ferran; Galbany, Jordi; Martínez, Laura; Turbón, Daniel; Pérez-Pérez, Alejandro

    2012-01-01

    Molar occlusal microwear texture and anisotropy analyses of 3 Australopithecus anamensis fossil specimens have shown complexity values similar to those of Au. afarensis, indicating that neither of these hominin species had a diet dominated by hard food. However, many researchers have suggested that these were some of the earliest hominins to have such diets. Here we examine buccal microwear patterns of 5 Au. anamensis, 26 Au. afarensis, 48 Hominoidea and 80 Cercopithecoidea primate specimens for independent evidence of dietary adaptations of Au. anamensis. The buccal microwear results obtained suggest that the diet of Au. anamensis relied heavily on hard, brittle food, at least seasonally. This is similar to the diet of the extant Cercopithecoidea primates, including Papio anubis and Chlorocebus aethiops, both of which live in wooded, seasonal savannah environments and have diets that include fruit and grasses, but also underground storage organs (USOs), such as corms or blades, as well as leaves and seeds, and also Mandrillus and Cercocebus, from forested environments with frugivorous-granivorous diets. Furthermore, the buccal microwear patterns of Au. anamensis and Au. afarensis clearly differed - in clear contrast to occlusal enamel texture observations-, which support previous dietary interpretations based on both anatomical and palaeocological reconstructions. PMID:22781583

  4. Impact of heme oxygenase-1 on cholesterol synthesis, cholesterol efflux and oxysterol formation in cultured astroglia.

    PubMed

    Hascalovici, Jacob R; Song, Wei; Vaya, Jacob; Khatib, Soliman; Fuhrman, Bianca; Aviram, Michael; Schipper, Hyman M

    2009-01-01

    Up-regulation of heme oxygenase-1 (HO-1) and altered cholesterol (CH) metabolism are characteristic of Alzheimer-diseased neural tissues. The liver X receptor (LXR) is a molecular sensor of CH homeostasis. In the current study, we determined the effects of HO-1 over-expression and its byproducts iron (Fe(2+)), carbon monoxide (CO) and bilirubin on CH biosynthesis, CH efflux and oxysterol formation in cultured astroglia. HO-1/LXR interactions were also investigated in the context of CH efflux. hHO-1 over-expression for 3 days ( approximately 2-3-fold increase) resulted in a 30% increase in CH biosynthesis and a two-fold rise in CH efflux. Both effects were abrogated by the competitive HO inhibitor, tin mesoporphyrin. CO, released from administered CORM-3, significantly enhanced CH biosynthesis; a combination of CO and iron stimulated CH efflux. Free iron increased oxysterol formation three-fold. Co-treatment with LXR antagonists implicated LXR activation in the modulation of CH homeostasis by heme degradation products. In Alzheimer's disease and other neuropathological states, glial HO-1 induction may transduce ambient noxious stimuli (e.g. beta-amyloid) into altered patterns of glial CH homeostasis. As the latter may impact synaptic plasticity and neuronal repair, modulation of glial HO-1 expression (by pharmacological or other means) may confer neuroprotection in patients with degenerative brain disorders. PMID:19046352

  5. T-Type Ca2+ Channel Regulation by CO: A Mechanism for Control of Cell Proliferation.

    PubMed

    Duckles, Hayley; Al-Owais, Moza M; Elies, Jacobo; Johnson, Emily; Boycott, Hannah E; Dallas, Mark L; Porter, Karen E; Boyle, John P; Scragg, Jason L; Peers, Chris

    2015-01-01

    T-type Ca(2+) channels regulate proliferation in a number of tissue types, including vascular smooth muscle and various cancers. In such tissues, up-regulation of the inducible enzyme heme oxygenase-1 (HO-1) is often observed, and hypoxia is a key factor in its induction. HO-1 degrades heme to generate carbon monoxide (CO) along with Fe(2+) and biliverdin. Since CO is increasingly recognized as a regulator of ion channels (Peers et al. 2015), we have explored the possibility that it may regulate proliferation via modulation of T-type Ca(2+) channels.Whole-cell patch-clamp recordings revealed that CO (applied as the dissolved gas or via CORM donors) inhibited all 3 isoforms of T-type Ca(2+) channels (Cav3.1-3.3) when expressed in HEK293 cells with similar IC(50) values, and induction of HO-1 expression also suppressed T-type currents (Boycott et al. 2013). CO/HO-1 induction also suppressed the elevated basal [Ca(2+) ](i) in cells expressing these channels and reduced their proliferative rate to levels seen in non-transfected control cells (Duckles et al. 2015).Proliferation of vascular smooth muscle cells (both A7r5 and human saphenous vein cells) was also suppressed either by T-type Ca(2+) channel inhibitors (mibefradil and NNC 55-0396), HO-1 induction or application of CO. Effects of these blockers and CO were non additive. Although L-type Ca(2+) channels were also sensitive to CO (Scragg et al. 2008), they did not influence proliferation. Our data suggest that HO-1 acts to control proliferation via CO modulation of T-type Ca(2+) channels. PMID:26303493

  6. Integrated micro-biochemical approach for phytoremediation of cadmium and lead contaminated soils using Gladiolus grandiflorus L cut flower.

    PubMed

    Mani, Dinesh; Kumar, Chitranjan; Patel, Niraj Kumar

    2016-02-01

    The potential of vermicompost, elemental sulphur, Thiobacillus thiooxidans and Pseudomonas putida for phytoremediation is well known individually but their integrated approach has not been discovered so far. The present work highlights the consideration of so far overlooked aspects of their integrated treatment by growing the ornamental plant, Gladiolus grandiflorus L in uncontaminated and sewage-contaminated soils (sulphur-deficient alluvial Entisols, pH 7.6-7.8) for phytoremediation of cadmium and lead under pot experiment. Between vermicompost and elemental sulphur, the response of vermicompost was higher towards improvement in the biometric parameters of plants, whereas the response of elemental sulphur was higher towards enhanced bioaccumulation of heavy metals under soils. The integrated treatment (T7: vermicompost 6g and elemental sulphur 0.5gkg(-1) soil and co-inoculation of the plant with T. thiooxidans and P. putida) was found superior in promoting root length, plant height and dry biomass of the plant. The treatment T7 caused enhanced accumulation of Cd up to 6.96 and 6.45mgkg(-1) and Pb up to 22.6 and 19.9mgkg(-1) in corm and shoot, respectively at the contaminated soil. T7 showed maximum remediation efficiency of 0.46% and 0.19% and bioaccumulation factor of 2.92 and 1.21 and uptake of 6.75 and 21.4mgkg(-1) dry biomass for Cd and Pb respectively in the contaminated soil. The integrated treatment T7 was found significant over the individual treatments to promote plant growth and enhance phytoremediation. Hence, authors conclude to integrate vermicompost, elemental sulphur and microbial co-inoculation for the enhanced clean-up of Cd and Pb-contaminated soils. PMID:26615479

  7. Carbon monoxide improves neuronal differentiation and yield by increasing the functioning and number of mitochondria.

    PubMed

    Almeida, Ana S; Sonnewald, Ursula; Alves, Paula M; Vieira, Helena L A

    2016-08-01

    The process of cell differentiation goes hand-in-hand with metabolic adaptations, which are needed to provide energy and new metabolites. Carbon monoxide (CO) is an endogenous cytoprotective molecule able to inhibit cell death and improve mitochondrial metabolism. Neuronal differentiation processes were studied using the NT2 cell line, which is derived from human testicular embryonic teratocarcinoma and differentiates into post-mitotic neurons upon retinoic acid treatment. CO-releasing molecule A1 (CORM-A1) was used do deliver CO into cell culture. CO treatment improved NT2 neuronal differentiation and yield, since there were more neurons and the total cell number increased following the differentiation process. CO supplementation enhanced the mitochondrial population in post-mitotic neurons derived from NT2 cells, as indicated by an increase in mitochondrial DNA. CO treatment during neuronal differentiation increased the extent of the classical metabolic change that occurs during neuronal differentiation, from glycolytic to more oxidative metabolism, by decreasing the ratio of lactate production and glucose consumption. The expression of pyruvate and lactate dehydrogenases was higher, indicating an augmented oxidative metabolism. Moreover, these findings were corroborated by an increased percentage of (13) C incorporation from [U-(13) C]glucose into the tricarboxylic acid cycle metabolites malate and citrate, and also glutamate and aspartate in CO-treated cells. Finally, under low levels of oxygen (5%), which enhances glycolytic metabolism, some of the enhancing effects of CO on mitochondria were not observed. In conclusion, our data show that CO improves neuronal and mitochondrial yield by stimulation of tricarboxylic acid cycle activity, and thus oxidative metabolism of NT2 cells during the process of neuronal differentiation. The process of cell differentiation is coupled with metabolic adaptations. Carbon monoxide (CO) is an endogenous cytoprotective

  8. Pollinator shifts as triggers of speciation in painted petal irises (Lapeirousia: Iridaceae)

    PubMed Central

    Forest, Félix; Goldblatt, Peter; Manning, John C.; Baker, David; Colville, Jonathan F.; Devey, Dion S.; Jose, Sarah; Kaye, Maria; Buerki, Sven

    2014-01-01

    Background and Aims Adaptation to different pollinators has been hypothesized as one of the main factors promoting the formation of new species in the Cape region of South Africa. Other researchers favour alternative causes such as shifts in edaphic preferences. Using a phylogenetic framework and taking into consideration the biogeographical scenario explaining the distribution of the group as well as the distribution of pollinators, this study compares pollination strategies with substrate adaptations to develop hypotheses of the primary factors leading to speciation in Lapeirousia (Iridaceae), a genus of corm-bearing geophytes well represented in the Cape and presenting an important diversity of pollination syndromes and edaphic preferences. Methods Phylogenetic relationships are reconstructed within Lapeirousia using nuclear and plastid DNA sequence data. State-of-the-art methods in biogeography, divergence time estimation, character optimization and diversification rate assessments are used to examine the evolution of pollination syndromes and substrate shifts in the history of the group. Based on the phylogenetic results, ecological factors are compared for nine sister species pairs in Lapeirousia. Key Results Seventeen pollinator shifts and ten changes in substrate types were inferred during the evolution of the genus Lapeirousia. Of the nine species pairs examined, all show divergence in pollination syndromes, while only four pairs present different substrate types. Conclusions The available evidence points to a predominant influence of pollinator shifts over substrate types on the speciation process within Lapeirousia, contrary to previous studies that favoured a more important role for edaphic factors in these processes. This work also highlights the importance of biogeographical patterns in the study of pollination syndromes. PMID:24323246

  9. Effect of Iron and Carbon Monoxide on Fibrinogenase-like Degradation of Plasmatic Coagulation by Venoms of Six Agkistrodon Species.

    PubMed

    Nielsen, Vance G; Redford, Daniel T; Boyle, Patrick K

    2016-05-01

    Annually, thousands suffer poisonous snakebite, often from defibrinogenating species. It has been demonstrated that iron and carbon monoxide change the ultrastructure of plasma thrombi and improve coagulation kinetics. Thus, this investigation sought to determine whether pre-treatment of plasma with iron and carbon monoxide could attenuate venom-mediated catalysis of fibrinogen obtained from Agkistrodon species with fibrinogenase activity. Human plasma was pre-treated with ferric chloride (0-10 μM) and carbon monoxide-releasing molecule-2 (CORM-2, 0-100 μM) prior to exposure to 0.5-11 μg/ml of six different Agkistrodon species' venom. The amount of venom used for experimentation needed to decrease coagulation function of one or more kinetic parameters by at least 50% of normal values for (e.g. half the normal speed of clot formation). Coagulation kinetics were determined with thrombelastography. All six snake venoms degraded plasmatic coagulation kinetics to a significant extent, especially prolonging the onset to clot formation and diminishing the speed of clot growth. Pre-treatment of plasma with iron and carbon monoxide attenuated these venom-mediated coagulation kinetic changes in a species-specific manner, with some venom effects markedly abrogated while others were only mildly decreased. Further in vitro investigation of other pit viper venoms that possess fibrinogenolytic activity is indicated to identify species amenable to or resistant to iron and carbon monoxide-mediated attenuation of venom-mediated catalysis of fibrinogen. Lastly, future pre-clinical investigation with animal models (e.g. rabbit ear-bleed model) is planned to determine whether iron and carbon monoxide can be used therapeutically after envenomation. PMID:26467642

  10. Multiple factors from bradykinin-challenged astrocytes contribute to the neuronal apoptosis: involvement of astroglial ROS, MMP-9, and HO-1/CO system.

    PubMed

    Yang, Chuen-Mao; Hsieh, Hsi-Lung; Lin, Chih-Chung; Shih, Ruey-Horng; Chi, Pei-Ling; Cheng, Shin-Ei; Hsiao, Li-Der

    2013-06-01

    Bradykinin (BK) has been shown to induce the expression of several inflammatory mediators, including reactive oxygen species (ROS) and matrix metalloproteinases (MMPs), in brain astrocytes. These mediators may contribute to neuronal dysfunction and death in various neurological disorders. However, the effects of multiple inflammatory mediators released from BK-challenged astrocytes on neuronal cells remain unclear. Here, we found that multiple factors were released from brain astrocytes (RBA-1) exposed to BK in the conditioned culture media (BK-CM), including ROS, MMP-9, and heme oxygenase-1 (HO-1)/carbon monoxide (CO), leading to neuronal cell (SK-N-SH) death. Exposure of SK-N-SH cells to BK-CM or H2O2 reduced cell viability and induced cell apoptosis which were attenuated by N-acetyl cysteine, indicating a role of ROS in these responses. The effect of BK-CM on cell viability and cell apoptosis was also reversed by immunoprecipitation of BK-CM with anti-MMP-9 antibody (MMP-9-IP-CM) or MMP2/9 inhibitor, suggesting the involvement of MMP-9 in BK-CM-mediated responses. Astroglial HO-1/CO in BK-CM induced cell apoptosis and reduced cell viability which was reversed by hemoglobin. Consistently, the involvement of CO in these cellular responses was revealed by incubation with a CO donor CO-RM2 which was reversed by hemoglobin. The role of HO-1 in BK-CM-induced responses was confirmed by overexpression of HO-1 in SK-N-SH infected with Adv-HO-1. BK-CM-induced cell apoptosis was due to the activation of caspase-3 and cleavage of PARP. Together, we demonstrate that BK-induced several neurotoxic factors, including ROS, MMP-9, and CO released from astrocytes, may induce neuronal death through a caspase-3-dependent apoptotic pathway. PMID:23307413

  11. IL-10/HMOX1 signaling modulates cochlear inflammation via negative regulation of MCP-1/CCL2 expression in cochlear fibrocytes

    PubMed Central

    Woo, Jeong-Im; Kil, Sung-Hee; Oh, Sejo; Lee, Yoo-Jin; Park, Raekil; Lim, David J.; Moon, Sung K.

    2015-01-01

    Cochlear inflammatory diseases such as tympanogenic labyrinthitis are associated with acquired sensorineural hearing loss. Although otitis media is extremely frequent in children, tympanogenic labyrinthitis is not commonly observed, which suggests the existence of a potent anti-inflammatory mechanism modulating cochlear inflammation. In this study, we aim to determine the molecular mechanism involved in cochlear protection from inflammation-mediated tissue damage, focusing on interleukin-10 (IL-10) and hemoxygenase-1 (HMOX1) signaling. We demonstrated that IL-10 receptors (IL-10Rs) are expressed in the cochlear lateral wall of mice and rats, particularly in the spiral ligament fibrocytes (SLFs). The rat SLF cell line (RSL) was found to inhibit nontypeable H. influenzae (NTHi)-induced up-regulation of monocyte chemotactic protein-1 (MCP-1/CCL2) in response to IL-10. This inhibition was suppressed by silencing IL-10R1 and was mimicked by cobalt protoporphyrin IX (CoPP) and carbon monoxide-releasing molecule-2 (CORM-2). In addition, IL-10 appeared to suppress monocyte recruitment through reduction of NTHi-induced RSL-derived chemoattractants. Silencing of HMOX1 was found to attenuate the inhibitory effect of IL-10 on NTHi-induced MCP-1/CCL2 up-regulation. Chromatin immunoprecipitation (ChIP) assays showed that IL-10 inhibits NTHi-induced binding of p65 NF-κB to the distal motif in the promoter region of MCP-1/CCL2, resulting in suppression of NTHi-induced NF-κB activation. Furthermore, IL-10 deficiency appeared to significantly affect cochlear inflammation induced by intratympanic injections of NTHi. Taken together, our results suggest that IL-10/HMOX1 signaling is involved in modulation of cochlear inflammation through inhibition of MCP-1/CCL2 regulation in SLFs, implying therapeutic potential of a carbon monoxide (CO)-based approach for inflammation-associated cochlear diseases. PMID:25780042

  12. Wetland vegetation and nutrient retention in Nakivubo and Kirinya wetlands in the Lake Victoria basin of Uganda

    NASA Astrophysics Data System (ADS)

    Mugisha, P.; Kansiime, F.; Mucunguzi, P.; Kateyo, E.

    Wetlands form an important part of the catchment area of the African Great Lakes and protect water resources therein. One of the most important functions is the retention of nutrients from the inflowing water from the catchment, by wetland plants which store them in their phytomass. An assessment of the capacity in storing nutrients by dominant plants ( Cyeprus papyrus, Miscanthus violaceus, Phragmites mauritianus and Colocasia C. esculenta), of Nakivubo and Kirinya wetlands at the shores of Lake Victoria in Uganda, was studied through the determination of phytomass production and nutrient concentration in the plant parts at different stages of growth. The above ground phytomass production increased rapidly during the exponential growth for C. papyrus and P. mauritianus. In all the dominant plants, nitrogen concentration was highest in juvenile plants and decreased with increasing age. The most pronounced nitrogen level occurred in the young umbels of C. papyrus during the first month of growth with total nitrogen content of 1.95% DW which dropped to 0.62% DW after the fifth month in Nakivubo wetland. Corms (tubers) of yams had the highest nitrogen content in Kirinya and Nakivubo wetlands exhibiting respective values of 4.8% DW and 3.7% DW. There is a close relationship between nutrient content and increase in phytomass. In Nakivubo and Kirinya wetlands, the rapid increase in phytomass during the third and fourth month corresponded with high nutrient levels. Since plants store significant amounts of nitrogen during their growth, periodic harvesting of above ground plant parts can remove significant amounts of nutrients (during the first five months of growth) from the wastewater flowing into the two wetlands. Wetland plant species with high phytomass productivity and well developed root systems and ability to withstand flooding are the best in nutrient removal.

  13. Anti-metastatic effect of polysaccharide isolated from Colocasia esculenta is exerted through immunostimulation.

    PubMed

    Park, Hye-Ryung; Lee, Hyun-Sun; Cho, Sun Young; Kim, Yoon-Sook; Shin, Kwang-Soon

    2013-02-01

    In the present study, an edible corm of the plant Colocasia esculenta, commonly known as Taro was extracted with cold water (4˚C). Finally, 10.44 g (1.04%) of the crude polysaccharide (Taro-0) was obtained from Taro. The purified active compound (Taro-4-I) was isolated using DEAE-Sepharose FF and Sephadex G-100. The anti-complementary activity of Taro-4-I (57.3±4.5%) was similar to that of polysaccharide K (used as the positive control). The molecular weight of Taro-4-I was 200 kDa and it was a polysaccharide composed of 64.4% neutral sugars and 35.6% uronic acid. Taro-4-I activated the complement system through the classical and alternative pathways. The treatment of peritoneal macrophages with Taro-4-I significantly increased the production of interleukin (IL)-6 and tumor necrosis factor-α (TNF-α) in a dose-dependent manner. However, IL-12 production showed maximal activity at 56 µg/ml and subsequently decreased. Splenocytes obtained from mice which were administered Taro-4-I intravenously showed a higher toxicity to Yac-1 cells compared to those obtained from untreated mice in a effector‑to‑target (E/T) ratio-dependent manner. The group treated with 50 µg/ml Taro-4-I showed a significantly increased toxicity to Yac-1 cells compared to the group treated with 500 µg/ml Taro-4-I. The administration of Taro-4-I significantly inhibited the lung metastasis of B16BL6 melanoma cells. However, the group treated with 50 µg/mouse Taro-4-I had a significantly lower number of tumors compared to the group injected with 500 µg/mouse Taro-4-I. PMID:23292184

  14. Cytotoxic and apoptotic activities of Amorphophallus campanulatus (Roxb.) Bl. tuber extracts against human colon carcinoma cell line HCT-15.

    PubMed

    Ansil, P N; Wills, P J; Varun, R; Latha, M S

    2014-12-01

    Colorectal cancer is one of the leading causes of cancer death worldwide and is the third most common form of malignancy in both men and women. Several possible colon cancer chemopreventive agents are found in edible plants. Amorphophallus campanulatus (Roxb.) Blume (family: Araceae) is a tuber crop, largely cultivated throughout the plains of India for using its corm as food. This tuber has also been traditionally used for the treatment of abdominal tumors, liver diseases, piles etc. The aim of this study was to evaluate the dose-dependent cytotoxic and apoptosis inducing effects of the sub fractions of A. campanulatus tuber methanolic extract (ACME) viz. petroleum ether fraction (PEF), chloroform fraction (CHF), ethyl acetate fraction (EAF) and methanolic fraction (MEF) on the colon cancer cell line, HCT-15. Antiproliferative effects of the sub fractions of ACME were studied by MTT assay. Apoptotic activity was assessed by DAPI, Annexin V-FITC and JC-1 fluorescent staining. The chemotherapeutic drug, 5-flurouracil (5-FU) was used as positive drug control. The sub fractions of ACME significantly inhibited the proliferation of HCT-15 cells in a dose-dependent manner. In addition, the extracts were found to induce apoptosis and were confirmed by DAPI, Annexin V-FITC and JC-1 fluorescent staining. A pronounced results of cytotoxic and apoptotic activities were observed in the cells treated with 5-FU and CHF, whereas, EAF and MEF treated cells exhibited a moderate result and the least effect was observed in PEF treated cells. Our results suggested that, among the sub fractions of ACME, CHF had potent cytotoxic and apoptotic activity and thus it could be explored as a novel target for anticancer drug development. Furthermore, these findings confirm that the sub fractions of ACME dose-dependently suppress the proliferation of HCT-15 cells by inducing apoptosis. PMID:25473360

  15. Cytotoxic and apoptotic activities of Amorphophallus campanulatus (Roxb.) Bl. tuber extracts against human colon carcinoma cell line HCT-15

    PubMed Central

    Ansil, P.N.; Wills, P.J.; Varun, R.; Latha, M.S.

    2014-01-01

    Colorectal cancer is one of the leading causes of cancer death worldwide and is the third most common form of malignancy in both men and women. Several possible colon cancer chemopreventive agents are found in edible plants. Amorphophallus campanulatus (Roxb.) Blume (family: Araceae) is a tuber crop, largely cultivated throughout the plains of India for using its corm as food. This tuber has also been traditionally used for the treatment of abdominal tumors, liver diseases, piles etc. The aim of this study was to evaluate the dose-dependent cytotoxic and apoptosis inducing effects of the sub fractions of A. campanulatus tuber methanolic extract (ACME) viz. petroleum ether fraction (PEF), chloroform fraction (CHF), ethyl acetate fraction (EAF) and methanolic fraction (MEF) on the colon cancer cell line, HCT-15. Antiproliferative effects of the sub fractions of ACME were studied by MTT assay. Apoptotic activity was assessed by DAPI, Annexin V-FITC and JC-1 fluorescent staining. The chemotherapeutic drug, 5-flurouracil (5-FU) was used as positive drug control. The sub fractions of ACME significantly inhibited the proliferation of HCT-15 cells in a dose-dependent manner. In addition, the extracts were found to induce apoptosis and were confirmed by DAPI, Annexin V-FITC and JC-1 fluorescent staining. A pronounced results of cytotoxic and apoptotic activities were observed in the cells treated with 5-FU and CHF, whereas, EAF and MEF treated cells exhibited a moderate result and the least effect was observed in PEF treated cells. Our results suggested that, among the sub fractions of ACME, CHF had potent cytotoxic and apoptotic activity and thus it could be explored as a novel target for anticancer drug development. Furthermore, these findings confirm that the sub fractions of ACME dose-dependently suppress the proliferation of HCT-15 cells by inducing apoptosis. PMID:25473360

  16. Heme Oxygenase-1 Protects Corexit 9500A-Induced Respiratory Epithelial Injury across Species

    PubMed Central

    Oliva, Octavio M.; Karki, Suman; Surolia, Ranu; Wang, Zheng; Watson, R. Douglas; Thannickal, Victor J.; Powell, Mickie; Watts, Stephen; Kulkarni, Tejaswini; Batra, Hitesh; Bolisetty, Subhashini; Agarwal, Anupam; Antony, Veena B.

    2015-01-01

    The effects of Corexit 9500A (CE) on respiratory epithelial surfaces of terrestrial mammals and marine animals are largely unknown. This study investigated the role of CE-induced heme oxygenase-1 (HO-1), a cytoprotective enzyme with anti-apoptotic and antioxidant activity, in human bronchial airway epithelium and the gills of exposed aquatic animals. We evaluated CE-mediated alterations in human airway epithelial cells, mice lungs and gills from zebrafish and blue crabs. Our results demonstrated that CE induced an increase in gill epithelial edema and human epithelial monolayer permeability, suggesting an acute injury caused by CE exposure. CE induced the expression of HO-1 as well as C-reactive protein (CRP) and NADPH oxidase 4 (NOX4), which are associated with ROS production. Importantly, CE induced caspase-3 activation and subsequent apoptosis of epithelial cells. The expression of the intercellular junctional proteins, such as tight junction proteins occludin, zonula occludens (ZO-1), ZO-2 and adherens junctional proteins E-cadherin and Focal Adhesion Kinase (FAK), were remarkably inhibited by CE, suggesting that these proteins are involved in CE-induced increased permeability and subsequent apoptosis. The cytoskeletal protein F-actin was also disrupted by CE. Treatment with carbon monoxide releasing molecule-2 (CORM-2) significantly inhibited CE-induced ROS production, while the addition of HO-1 inhibitor, significantly increased CE-induced ROS production and apoptosis, suggesting a protective role of HO-1 or its reaction product, CO, in CE-induced apoptosis. Using HO-1 knockout mice, we further demonstrated that HO-1 protected against CE-induced inflammation and cellular apoptosis and corrected CE-mediated inhibition of E-cadherin and FAK. These observations suggest that CE activates CRP and NOX4-mediated ROS production, alters permeability by inhibition of junctional proteins, and leads to caspase-3 dependent apoptosis of epithelial cells, while HO-1 and its

  17. Carbon monoxide inhibition of Cav3.2 T-type Ca2+ channels reveals tonic modulation by thioredoxin.

    PubMed

    Boycott, Hannah E; Dallas, Mark L; Elies, Jacobo; Pettinger, Louisa; Boyle, John P; Scragg, Jason L; Gamper, Nikita; Peers, Chris

    2013-08-01

    T-type Ca(2+) channels play diverse roles in tissues such as sensory neurons, vascular smooth muscle, and cancers, where increased expression of the cytoprotective enzyme, heme oxygenase-1 (HO-1) is often found. Here, we report regulation of T-type Ca(2+) channels by carbon monoxide (CO) a HO-1 by-product. CO (applied as CORM-2) caused a concentration-dependent, poorly reversible inhibition of all T-type channel isoforms (Cav3.1-3.3, IC50 ∼3 μM) expressed in HEK293 cells, and native T-type channels in NG108-15 cells and primary rat sensory neurons. No recognized CO-sensitive signaling pathway could account for the CO inhibition of Cav3.2. Instead, CO sensitivity was mediated by an extracellular redox-sensitive site, which was also highly sensitive to thioredoxin (Trx). Trx depletion (using auranofin, 2-5 μM) reduced Cav3.2 currents and their CO sensitivity by >50% but increased sensitivity to dithiothreitol ∼3-fold. By contrast, Cav3.1 and Cav3.3 channels, and their sensitivity to CO, were unaffected in identical experiments. Our data propose a novel signaling pathway in which Trx acts as a tonic, endogenous regulator of Cav3.2 channels, while HO-1-derived CO disrupts this regulation, causing channel inhibition. CO modulation of T-type channels has widespread implications for diverse physiological and pathophysiological mechanisms, such as excitability, contractility, and proliferation. PMID:23671274

  18. Characterization of Colletotrichum acutatum Causing Anthracnose of Anemone (Anemone coronaria L.)†

    PubMed Central

    Freeman, Stanley; Shabi, Ezra; Katan, Talma

    2000-01-01

    Anthracnose, or leaf-curl disease of anemone, caused by Colletotrichum sp., has been reported to occur in Australia, western Europe, and Japan. Symptoms include tissue necrosis, corm rot, leaf crinkles, and characteristic spiral twisting of floral peduncles. Three epidemics of the disease have been recorded in Israel: in 1978, in 1990 to 1993, and in 1996 to 1998. We characterized 92 Colletotrichum isolates associated with anthracnose of anemone (Anemone coronaria L.) for vegetative compatibility (72 isolates) and for molecular genotype (92 isolates) and virulence (4 isolates). Eighty-six of the isolates represented the three epidemics in Israel, one isolate was from Australia, and five isolates originated from western Europe. We divided these isolates into three vegetative-compatibility groups (VCGs). One VCG (ANE-A) included all 10 isolates from the first and second epidemics, and 13 of 62 examined isolates from the third epidemic in Israel, along with the isolate from Australia and 4 of 5 isolates from Europe. Another VCG (ANE-F) included most of the examined isolates (49 of the 62) from the third epidemic, as well as Colletotrichum acutatum from strawberry, in Israel. Based on PCR amplification with species-specific primers, all of the anemone isolates were identified as C. acutatum. Anemone and strawberry isolates of the two VCGs were genotypically similar and indistinguishable when compared by arbitrarily primed PCR of genomic DNA. Only isolate NL-12 from The Netherlands, confirmed as C. acutatum but not compatible with either VCG, had a distinct genotype; this isolate represents a third VCG of C. acutatum. Isolates from anemone and strawberry could infect both plant species in artificial inoculations. VCG ANE-F was recovered from natural infections of both anemone and strawberry, but VCG ANE-A was recovered only from anemone. This study of C. acutatum from anemone illustrates the potential of VCG analysis to reveal distinct subspecific groups within a

  19. Heme oxygenase-1 induction prevents neuronal damage triggered during mitochondrial inhibition: role of CO and bilirubin.

    PubMed

    Orozco-Ibarra, Marisol; Estrada-Sánchez, Ana María; Massieu, Lourdes; Pedraza-Chaverrí, José

    2009-06-01

    Heme oxygenase (HO) catalyzes the breakdown of heme to iron, carbon monoxide (CO), and biliverdin, the latter being further reduced to bilirubin (BR). A protective role of the inducible isoform, HO-1, has been described in pathological conditions associated with reactive oxygen species (ROS) and oxidative damage. The aim of this study was to investigate the role of HO-1 in the neurotoxicity induced by the mitochondrial toxin 3-nitropropionic acid (3-NP) in primary cultures of cerebellar granule neurons (CGNs). Toxicity of 3-NP is associated with ROS production, and this metabolic toxin has been used to mimic pathological conditions such as Huntington's disease. We found that cell death caused by 3-NP exposure was exacerbated by inhibition of HO with tin mesoporphyrin (SnMP). In addition, HO-1 up-regulation induced by the exposure to cobalt protoporphyrin (CoPP) before the incubation with 3-NP, prevented the cell death and the increase in ROS induced by 3-NP. Interestingly, addition of SnMP to CoPP-pretreated CGNs exposed to 3-NP, abolished the protective effect of CoPP suggesting that HO activity was responsible for this protective effect. This was additionally supported by the fact that CORM-2, a CO-releasing molecule, and BR, were able to protect against cell death and the increase in ROS induced by 3-NP. Our data clearly show that HO-1 elicits in CGNs a neuroprotective action against the neurotoxicity of 3-NP and that CO and BR may be involved, at least in part, in this protective effect. The present results increase our knowledge about the role of HO-1 in neuropathological conditions. PMID:19063990

  20. Heme Oxygenase-1 and Carbon Monoxide Promote Burkholderia pseudomallei Infection.

    PubMed

    Stolt, Claudia; Schmidt, Imke H E; Sayfart, Yana; Steinmetz, Ivo; Bast, Antje

    2016-08-01

    The environmental bacterium and potential biothreat agent Burkholderia pseudomallei causes melioidosis, an often fatal infectious disease. Increased serum bilirubin has been shown to be a negative predictive factor in melioidosis patients. We therefore investigated the role of heme oxygenase-1 (HO-1), which catalyzes the degradation of heme into the bilirubin precursor biliverdin, ferrous iron, and CO during B. pseudomallei infection. We found that infection of murine macrophages induces HO-1 expression, involving activation of several protein kinases and the transcription factor nuclear erythroid-related factor 2 (Nrf2). Deficiency of Nrf2 improved B. pseudomallei clearance by macrophages, whereas Nrf2 activation by sulforaphane and tert-butylhydroquinone with subsequent HO-1 induction enhanced intracellular bacterial growth. The HO-1 inducer cobalt protoporphyrin IX diminished proinflammatory cytokine levels, leading to an increased bacterial burden in macrophages. In contrast, HO-1 gene knockdown reduced the survival of intramacrophage B. pseudomallei Pharmacological administration of cobalt protoporphyrin IX to mice resulted in an enhanced bacterial load in various organs and was associated with higher mortality of intranasally infected mice. The unfavorable outcome of B. pseudomallei infection after HO-1 induction was associated with higher serum IL-6, TNF-α, and MCP-1 levels but decreased secretion of IFN-γ. Finally, we demonstrate that the CO-releasing molecule CORM-2 increases the B. pseudomallei load in macrophages and mice. Thus, our data suggest that the B. pseudomallei-mediated induction of HO-1 and the release of its metabolite CO impair bacterial clearance in macrophages and during murine melioidosis. PMID:27316684

  1. Heme oxygenase-1 protects corexit 9500A-induced respiratory epithelial injury across species.

    PubMed

    Li, Fu Jun; Duggal, Ryan N; Oliva, Octavio M; Karki, Suman; Surolia, Ranu; Wang, Zheng; Watson, R Douglas; Thannickal, Victor J; Powell, Mickie; Watts, Stephen; Kulkarni, Tejaswini; Batra, Hitesh; Bolisetty, Subhashini; Agarwal, Anupam; Antony, Veena B

    2015-01-01

    The effects of Corexit 9500A (CE) on respiratory epithelial surfaces of terrestrial mammals and marine animals are largely unknown. This study investigated the role of CE-induced heme oxygenase-1 (HO-1), a cytoprotective enzyme with anti-apoptotic and antioxidant activity, in human bronchial airway epithelium and the gills of exposed aquatic animals. We evaluated CE-mediated alterations in human airway epithelial cells, mice lungs and gills from zebrafish and blue crabs. Our results demonstrated that CE induced an increase in gill epithelial edema and human epithelial monolayer permeability, suggesting an acute injury caused by CE exposure. CE induced the expression of HO-1 as well as C-reactive protein (CRP) and NADPH oxidase 4 (NOX4), which are associated with ROS production. Importantly, CE induced caspase-3 activation and subsequent apoptosis of epithelial cells. The expression of the intercellular junctional proteins, such as tight junction proteins occludin, zonula occludens (ZO-1), ZO-2 and adherens junctional proteins E-cadherin and Focal Adhesion Kinase (FAK), were remarkably inhibited by CE, suggesting that these proteins are involved in CE-induced increased permeability and subsequent apoptosis. The cytoskeletal protein F-actin was also disrupted by CE. Treatment with carbon monoxide releasing molecule-2 (CORM-2) significantly inhibited CE-induced ROS production, while the addition of HO-1 inhibitor, significantly increased CE-induced ROS production and apoptosis, suggesting a protective role of HO-1 or its reaction product, CO, in CE-induced apoptosis. Using HO-1 knockout mice, we further demonstrated that HO-1 protected against CE-induced inflammation and cellular apoptosis and corrected CE-mediated inhibition of E-cadherin and FAK. These observations suggest that CE activates CRP and NOX4-mediated ROS production, alters permeability by inhibition of junctional proteins, and leads to caspase-3 dependent apoptosis of epithelial cells, while HO-1 and its

  2. Below-ground herbivory in natural communities: a review emphasizing fossorial animals

    USGS Publications Warehouse

    Andersen, Douglas C.

    1987-01-01

    Roots, bulbs, corms, and other below-ground organs are almost universally present in communities containing vascular plants. A large and taxonomically diverse group of herbivores uses these below-ground plant parts as its sole or primary source of food. Important within this group are plant-parasitic nematodes and several fossorial taxa that affect plants through their soil-disturbing activities as well as by consuming plant tissue. The fossorial taxa are probably best exemplified by fossorial rodents, which are distributed on all continents except Australia. All other fossorial herbivores are insects. The impact of below-groud herbivory on individual plant fitness will depend upon the extent to which, and under what circumstances, the consumption of plant tissue disrupts one or more of the six functions of below-ground plant parts. Below-ground herbivory is probably more often chronic than acute. Indirect evidence suggests that plants have responded evolutionarily to herbivory by enhancing the functional capacities of below-ground organs, thus developing a degree of tolerance, and by producing compounds that serve as feeding deterrents. Many plant species respond to the removal of root tissues by increasing the growth rate of the remaining roots and initiating new roots. Soil movement and mixing by fossorial rodents infleuce the environment of other below-ground herbivores as well as that of plants and plant propagules. The relationships among the various groups of below-ground herbivores, and between below-ground herbivores and plants, are at best poorly known, yet they appear to have major roles in determining the structure and regulating the functioning of natural communities.

  3. In vitro cloning and homestead cultivation of primitive Musa cultivars.

    PubMed

    Mukunthakumar, S; Seeni, S

    2005-01-01

    Two primitive diploid Musa cultivars, Matti and Chemmatti from the extreme southern part of the Western Ghats were multiplied by in vitro culture of sucker-derived shoot apices. Decontaminated corm explants (1 cm x 1 cm) having shoot apex (approximately 0.3 cm) cultured for 1 month in Murashige and Skoog basal agar medium was cut vertically into eight segments and each segment having a part of shoot meristem was cultured in presence of 6-benzylaminopurine (BAP) and combinations of BAP and indole-3-acetic acid (IAA) or indole-3-butyricacid (IBA) to produce multiple shoots. After 12 weeks of culture, maximum number of shoots (32) in both the cultivars were produced in approximate 60% of the explants in presence of BAP and IAA each at 1.5 mg/l(-1) (Matti) and 40% of the explants in 2.5 mg/l(-1) of BAP and 1.5 mg/l(-1) of IAA (Chemmatti). Buds were formed from the base of the subcultured shoots and somewhat more number (34) of shoots were obtained in Matti than in Chemmatti (31) after 8 weeks. Difference in the concentration of cytokinin required for shoot initiation and multiplication, persistence of exudation through the subculture and red colouration of the early formed sheathing leaf bases in the shoots in Chemmatti indicated possible genotypic differences between the two cultivars. Multiple shoot proliferation achieved through five subcultures of the isolated shoots without any decline. Transfer of shoots (4-5 cm) into MS basal medium favoured rooting in 4 weeks and rooted plants (9 cm) were hardened and established (80-95%). Mericlones of Matti cultivated in homesteads produced bunches of uniform characters in 13 months. PMID:15691071

  4. Investigating the effect of cadmium and aluminium on growth and stress-induced responses in the micropropagated medicinal plant Hypoxis hemerocallidea.

    PubMed

    Okem, A; Moyo, M; Stirk, W A; Finnie, J F; Van Staden, J

    2016-09-01

    Hypoxis hemerocallidea is a highly utilized medicinal plant in South Africa. Its cultivation has received considerable attention in order to meet the high demand. High levels of cadmium (Cd) and aluminum (Al) in H. hemerocallidea plants sold in traditional medicinal markets was previously reported. The present study used an in vitro propagation model to investigate the uptake of Cd and Al by H. hemerocallidea and their effect on plant growth, elemental uptake and some stress-induced responses such as pigment, malondialdehyde (MDA), proline content and ultrastructural changes. Shoot and root growth of plantlets exposed to Cd, Cd:Al and high concentrations of Al was significantly reduced. Highest concentrations of Cd accumulated in the corms of Cd-treated plantlets while highest Al concentrations occurred in the leaves and roots. There was higher accumulation of Cd and Al when applied singularly compared to the Cd:Al combination treatments. Cd and Al also reduced accumulation of trace elements in micropropagted H. hemerocallidea with lowest concentrations in the Cd:Al combination treatments. Exposure to Cd, Al and Cd:Al significantly reduced the level of chlorophyll but increased the levels of carotenoids, MDA and proline. Ultrastructural changes were also observed in H. hemerocallidea exposed to Cd and Al. All these factors contributed to the inhibition of plant growth and could potentially affect the ability of this important medicinal plant to synthesize bioactive compounds. It is thus necessary to understand heavy metal stress-induced responses in this highly valued medicinal plant to ensure a high quality product for the consumer. PMID:27307203

  5. Heme oxygenase-1 protects against Alzheimer's amyloid-β1-42-induced toxicity via carbon monoxide production

    PubMed Central

    Hettiarachchi, N; Dallas, M; Al-Owais, M; Griffiths, H; Hooper, N; Scragg, J; Boyle, J; Peers, C

    2014-01-01

    Heme oxygenase-1 (HO-1), an inducible enzyme up-regulated in Alzheimer's disease, catabolises heme to biliverdin, Fe2+ and carbon monoxide (CO). CO can protect neurones from oxidative stress-induced apoptosis by inhibiting Kv2.1 channels, which mediates cellular K+ efflux as an early step in the apoptotic cascade. Since apoptosis contributes to the neuronal loss associated with amyloid β peptide (Aβ) toxicity in AD, we investigated the protective effects of HO-1 and CO against Aβ1-42 toxicity in SH-SY5Y cells, employing cells stably transfected with empty vector or expressing the cellular prion protein, PrPc, and rat primary hippocampal neurons. Aβ1-42 (containing protofibrils) caused a concentration-dependent decrease in cell viability, attributable at least in part to induction of apoptosis, with the PrPc-expressing cells showing greater susceptibility to Aβ1-42 toxicity. Pharmacological induction or genetic over-expression of HO-1 significantly ameliorated the effects of Aβ1-42. The CO-donor CORM-2 protected cells against Aβ1-42 toxicity in a concentration-dependent manner. Electrophysiological studies revealed no differences in the outward current pre- and post-Aβ1-42 treatment suggesting that K+ channel activity is unaffected in these cells. Instead, Aβ toxicity was reduced by the L-type Ca2+ channel blocker nifedipine, and by the CaMKKII inhibitor, STO-609. Aβ also activated the downstream kinase, AMP-dependent protein kinase (AMPK). CO prevented this activation of AMPK. Our findings indicate that HO-1 protects against Aβ toxicity via production of CO. Protection does not arise from inhibition of apoptosis-associated K+ efflux, but rather by inhibition of AMPK activation, which has been recently implicated in the toxic effects of Aβ. These data provide a novel, beneficial effect of CO which adds to its growing potential as a therapeutic agent. PMID:25501830

  6. Botanical identification of medicinal roots collected and traded in Morocco and comparison to the existing literature

    PubMed Central

    2013-01-01

    Background A literature review revealed heavy reliance on a few key publications for identification of medicinal plant species from local or vernacular names and a lack of citation of voucher specimens in many publications. There is a need for more reliable and standardized data on the identity of species used for medicine, especially because local names vary from region to region. This is especially true in the case of medicinal roots, for which identification of species is difficult. This paper contributes to existing data on the species sold as medicinal roots (and other underground plant parts such as bulbs, corms, rhizomes and tubers) in Morocco. Methods Data were collected in collaboration with herbalists in Marrakech and collectors in rural regions near Marrakech where species are collected from the wild. The ethno-medicinal uses of these species were also recorded. Results We identified the vernacular names for 67 medicinal roots (by free listing) used to treat a variety of human diseases. We were able to collect and identify one or more species for 39 of the recorded vernacular names. The ones we were not able to identify were either imported or no longer available in the markets. We collected more than one species for some of the vernacular names for a total of 43 species. We identified six new vernacular names and four species which had not been previously described in the literature. Our botanical identification matched at least one of the names listed in the literature 63% of the time and did not match any species listed in the literature 37% of the time. Of the three most commonly cited pieces of literature we compared to, we found the greatest overlap with the broader, more comprehensive work of Bellakhdar 1997 (as opposed to Benchâabane and Abbad 1997 which worked in a similarly focused geographical area). However there was only 63% agreement between Bellakhdar 1997 and our botanical identifications, and 29% of the time our identification didn

  7. Use of weeds as traditional vegetables in Shurugwi District, Zimbabwe

    PubMed Central

    2013-01-01

    Background Most agricultural weeds are usually regarded as undesirable and targeted for eradication. However, weeds are useful to human beings as food and traditional medicines. Few studies have been done to document the uses of weeds as traditional vegetables. This study was therefore, done to document indigenous knowledge related to the diversity and use of agricultural weeds as traditional vegetables in Shurugwi District, Zimbabwe, emphasizing their role in food security and livelihoods of the local people. Materials and methods Semi-structured interviews, observation and guided field walks with 147 participants were employed between December 2011 and January 2012 to obtain ethnobotanical data on the use of edible weeds as traditional vegetables. Based on ethnobotanical information provided by the participants, botanical specimens were collected, numbered, pressed and dried for identification. Results A total of 21 edible weeds belonging to 11 families and 15 genera, mostly from Amaranthaceae (19%), Asteraceae and Tiliaceae (14.3%), Capparaceae, Cucurbitaceae and Solanaceae (9.5% each) were identified. Of the documented edible weeds, 52.4% are indigenous while 47.6% are exotic to Zimbabwe; either semi-cultivated or growing naturally as agricultural weeds in farmlands, fallow land and home gardens. Among the main uses of edible weeds were leafy vegetables (81%), followed by edible fruits (19%), edible corms (9.5%), edible flowers and seeds (4.8% each). The most important edible weeds were Cleome gynandra, cited by 93.9% of the participants, Cucumis metuliferus (90.5%), Cucumis anguria (87.8%), Corchorus tridens (50.3%) and Amaranthus hybridus (39.5%). All edible weeds were available during rainy and harvest period with Cleome gynandra, Corchorus tridens, Cucumis anguria, Cucumis metuliferus and Moringa oleifera also available during the dry season, enabling households to obtain food outputs in different times of the year. The importance of edible weeds for local

  8. Structure and Chemistry of Atomic Clusters from Supersonic Beams.

    NASA Astrophysics Data System (ADS)

    Yang, Shi-He.

    A tandem time-of-flight (TOF) apparatus was designed to study the structure and chemistry of cold transition metal cluster ions from supersonic beams. By means of a photodissociation laser fluence dependence technique, binding energies of Nb_{rm x }^{+} (x = 2 - 20), Co_{rm x}^{+ } (x = 4 - 20) and etc. were found to generally increase with cluster size. The desorption energies of Nb_{rm x}N _2^{+} (x = 2 - 17) and Nb_{rm x} CO^{+} (x = 2 - 10) also increase with cluster size with some oscillations similar to the size dependent reactivities of these clusters. Photodetachment studies revealed that electron affinities of copper clusters increase with cluster size with a sharp even/odd alternation. Unlike other noble metals, Ag_{rm x}^ {-} clusters display two competing processes: photodissociation and photodetachment. Relative reactivities of cluster ions of Nb, Co, Ag, and etc. have been measured using a fast flow cluster reactor, displaying a similar function of cluster size to that of the neutrals. In addition, preliminary photoelectron experiments have been performed on Cu_{ rm x}^{-} and Nb _{rm x}^{-}. A magnetic Time-of-flight ultraviolet photoelectron spectrometer (MTOFUPS) has been developed to study electronic structures of cold metal and semiconductor cluster anions prepared in supersonic beams. Application of this spectrometer to carbon clusters with a F_2 laser (7.9 eV) allowed their electron affinities and UPS patterns to be measured,demonstrating a remarkable structural evolution of these clusters: Chains (C_2^{ -}-C_9^{-} ) - Rings (C_{10}^ {-}-C_{29}^ {-}) - Cages (C_{38 }^{-}-C_{84 }^{-}). In particular, the UPS of C_{60}^{-} is in excellent agreement with the CNDO/S calculation, providing a striking spectral evidence for the highly symmetric icosahedral soccer ball structure--Buckminsterfullerene. For comparison, the UPS of Si_ {rm x}^{-} and Ge_{rm x}^{ -} are presented. Unlike carbon clusters which prefer structures of low dimensionality, these

  9. Development of microsatellite markers by transcriptome sequencing in two species of Amorphophallus (Araceae)

    PubMed Central

    2013-01-01

    Background Amorphophallus is a genus of perennial plants widely distributed in the tropics or subtropics of West Africa and South Asia. Its corms contain a high level of water-soluble glucomannan; therefore, it has long been used as a medicinal herb and food source. Genetic studies of Amorphophallus have been hindered by a lack of genetic markers. A large number of molecular markers are required for genetic diversity study and improving disease resistance in Amorphophallus. Here, we report large scale of transcriptome sequencing of two species: Amorphophallus konjac and Amorphophallus bulbifer using deep sequencing technology, and microsatellite (SSR) markers were identified based on these transcriptome sequences. Results cDNAs of A. konjac and A. bulbifer were sequenced using Illumina HiSeq™ 2000 sequencing technology. A total of 135,822 non-redundant unigenes were assembled from about 9.66 gigabases, and 19,596 SSRs were identified in 16,027 non-redundant unigenes. Di-nucleotide SSRs were the most abundant motif (61.6%), followed by tri- (30.3%), tetra- (5.6%), penta- (1.5%), and hexa-nucleotides (1%) repeats. The top di- and tri-nucleotide repeat motifs included AG/CT (45.2%) and AGG/CCT (7.1%), respectively. A total of 10,754 primer pairs were designed for marker development. Of these, 320 primers were synthesized and used for validation of amplification and assessment of polymorphisms in 25 individual plants. The total of 275 primer pairs yielded PCR amplification products, of which 205 were polymorphic. The number of alleles ranged from 2 to 14 and the polymorphism information content valued ranged from 0.10 to 0.90. Genetic diversity analysis was done using 177 highly polymorphic SSR markers. A phenogram based on Jaccard’s similarity coefficients was constructed, which showed a distinct cluster of 25 Amorphophallus individuals. Conclusion A total of 10,754 SSR markers have been identified in Amorphophallus using transcriptome sequencing. One hundred and

  10. Glucose lowering effect of montbretin A in Zucker Diabetic Fatty rats.

    PubMed

    Yuen, Violet G; Coleman, John; Withers, Steven G; Andersen, Raymond J; Brayer, Gary D; Mustafa, Sally; McNeill, John H

    2016-01-01

    Diabetes is an increasingly prevalent disease state with a global impact. It is important that effective and cost-efficient methods be developed to treat this disease state. Zucker diabetic fatty rats, an animal model of type 2 diabetes, were treated with montbretin A (MbA), a selective human pancreatic α-amylase inhibitor, isolated from the corms of the Crocosmia crocosmiiflora plant that may have potential as a glucose-lowering agent. The study purpose was to determine if MbA was an orally effective treatment for diabetes. The effect of MbA was compared to a current clinical treatment modality, acarbose that is associated with gastrointestinal side effects known to affect patient compliance. MbA and acarbose were administered daily in the drinking water. Body weight and fluid intake were measured daily to calculate dose consumption. Plasma glucose levels were determined twice weekly in both the fed and fasted state. At termination samples were collected to assess increased risk of secondary complications related to diabetes and oxidative stress. There was no effect of either MbA or acarbose treatment on insulin levels. Plasma glucose levels were significantly lower following MbA treatment in the ZT group which persisted throughout the study period (day 49: 12.1 ± 1.2 mM). However, while there was an initial decrease in plasma glucose levels in the acarbose-treated fatty group, this effect was not sustained (day 49: 20.6 ± 1.3 mM) through to termination. MbA improved the oxidative status of the fatty diabetic animals as well as attenuated markers for increased risk of cardiovascular complications associated with diabetes. This study demonstrated that, at a lower dose as compared to acarbose (10 mg/kg/day), chronic oral administration of MbA (7.5 mg/kg/day) was an effective glucose-lowering agent in the treatment of type 2 diabetes. PMID:26547551

  11. The natural food habits of grizzly bears in Yellowstone National Park, 1973-74

    USGS Publications Warehouse

    Mealey, Stephen Patrick

    1980-01-01

     The natural food habits of grizzly bears (Ursus arctos horribilis Ord) in Yellowstone National Park were investigated in 1973-74 to identify the grizzly's energy sources and trophic level(s), nutrient use, and distribution. Food consumption was determined by scat analysis and field observations. Food quality and digestibility were estimated by chemical analysis. Grizzlies were distributed in 3 distinctive feeding economies: valley/plateau, a grass/rodent economy where grizzlies were intensive diggers; mountain, primarily a grass/springbeauty/root economy where grizzlies were casual diggers; and lake, primarily a fish/grass economy where grizzlies were fishers. The economies occured in areas with fertile soils; distribution of bears within each was related to the occurrence of succulent plants. The feeding cycle in the valley/plateau and mountain economies followed plant phenology. Grizzlies fed primarily on meat before green-up and on succulent herbs afterwards; meat, corms, berries, and nuts became important during the postgrowing season. Succulent grasses and sedges with an importance value percentage of 78.5 were the most important food items consumed. Protein from animal tissue was more digestible than protein from plant tissue. Storage fats were more digestible than structural fats. Food energy and digestibility were directly related. Five principle nutrient materials (listed with their percentage digestibilities) contributed to total energy intake: protein from succulent herbs, 42.8; protein and fat from animal material, 78.1; fat and protein from pine nuts, 73.6; starch, 78.8; and sugar from berries and fruits, digestibility undetermined. Protein from succulent herbs, with a nutritive value percentage of 77.3, was the grizzlies' primary energy source. Because succulent, preflowering herbs had higher protein levels than dry, mature herbs, grizzly use of succulent herbs guaranteed them the highest source of herbaceous protein. Low protein digestibility of

  12. Evidence for a role of heme oxygenase-1 in the control of cardiac function in zebrafish (Danio rerio) larvae exposed to hypoxia.

    PubMed

    Tzaneva, Velislava; Perry, Steve F

    2016-05-15

    Carbon monoxide (CO) is a gaseous neurotransmitter produced from the breakdown of heme via heme oxygenase-1 (HO-1; hypoxia-inducible isoform) and heme oxygenase-2 (HO-2; constitutively expressed isoform). In mammals, CO is involved in modulating cardiac function. The role of the HO-1/CO system in the control of heart function in fish, however, is unknown and investigating its physiological function in lower vertebrates will provide a better understanding of the evolution of this regulatory mechanism. We explored the role of the HO-1/CO system in larval zebrafish (Danio rerio) in vivo by investigating the impact of translational gene knockdown of HO-1 on cardiac function. Immunohistochemistry revealed the presence of HO-1 in the pacemaker cells of the heart at 4 days post-fertilization and thus the potential for CO production at these sites. Sham-treated zebrafish larvae (experiencing normal levels of HO-1) significantly increased heart rate (fH) when exposed to hypoxia (PwO2 =30 mmHg). Zebrafish larvae lacking HO-1 expression after morpholino knockdown (morphants) exhibited significantly higher fH under normoxic (but not hypoxic) conditions when compared with sham-treaded fish. The increased fH in HO-1 morphants was rescued (fH was restored to control levels) after treatment of larvae with a CO-releasing molecule (40 µmol l(-1) CORM). The HO-1-deficient larvae developed significantly larger ventricles and when exposed to hypoxia they displayed higher cardiac output ([Formula: see text]) and stroke volume (SV). These results suggest that under hypoxic conditions, HO-1 regulates [Formula: see text] and SV presumably via the production of CO. Overall, this study provides a better understanding of the role of the HO-1/CO system in controlling heart function in lower vertebrates. We demonstrate for the first time the ability for CO to be produced in presumptive pacemaker cells of the heart where it plays an inhibitory role in setting the resting cardiac

  13. Ferulic Acid Regulates the Nrf2/Heme Oxygenase-1 System and Counteracts Trimethyltin-Induced Neuronal Damage in the Human Neuroblastoma Cell Line SH-SY5Y

    PubMed Central

    Catino, Stefania; Paciello, Fabiola; Miceli, Fiorella; Rolesi, Rolando; Troiani, Diana; Calabrese, Vittorio; Santangelo, Rosaria; Mancuso, Cesare

    2016-01-01

    Over the past years, several lines of evidence have pointed out the efficacy of ferulic acid (FA) in counteracting oxidative stress elicited by β-amyloid or free radical initiators, based on the ability of this natural antioxidant to up-regulate the heme oxygenase-1 (HO-1) and biliverdin reductase (BVR) system. However, scarce results can be found in literature regarding the cytoprotective effects of FA in case of damage caused by neurotoxicants. The aim of this work is to investigate the mechanisms through which FA exerts neuroprotection in SH-SY5Y neuroblastoma cells exposed to the neurotoxin trimethyltin (TMT). FA (1–10 μM for 6 h) dose-dependently increased both basal and TMT (10 μM for 24 h)-induced HO-1 expression in SH-SY5Y cells by fostering the nuclear translocation of the transcriptional activator Nrf2. In particular, the co-treatment of FA (10 μM) with TMT was also responsible for the nuclear translocation of HO-1 in an attempt to further increase cell stress response in SH-SY5Y cells. In addition to HO-1, FA (1–10 μM for 6 h) dose-dependently increased the basal expression of BVR. The antioxidant and neuroprotective features of FA, through the increase of HO activity, were supported by the evidence that FA inhibited TMT (10 μM)-induced lipid peroxidation (evaluated by detecting 4-hydroxy-nonenal) and DNA fragmentation in SH-SY5Y cells and that this antioxidant effect was reversed by the HO inhibitor Zinc-protoporphyrin-IX (5 μM). Among the by-products of the HO/BVR system, carbon monoxide (CORM-2, 50 nM) and bilirubin (BR, 50 nM) significantly inhibited TMT-induced superoxide anion formation in SH-SY5Y cells. All together, these results corroborate the neuroprotective effect of FA through the up-regulation of the HO-1/BVR system, via carbon monoxide and BR formation, and provide the first evidence on the role of HO-1/Nrf2 axis in FA-related enhancement of cell stress response in human neurons. PMID:26779023