Science.gov

Sample records for corneal surface pathology

  1. Update on Pathologic Diagnosis of Corneal Infections and Inflammations

    PubMed Central

    Vemuganti, Geeta K.; Murthy, Somasheila I.; Das, Sujata

    2011-01-01

    One of the most frequent types of corneal specimen that we received in our pathology laboratory is an excised corneal tissue following keratoplasty. Several of these cases are due to corneal infections or the sequelae, like corneal scar. Advances in the histological and molecular diagnosis of corneal infections and inflammations have resulted in rapid and accurate diagnosis of the infectious agent and in the overall understanding of the mechanisms in inflammatory diseases of the cornea. This review provides an update of histopathological findings in various corneal infections and inflammations. PMID:22224015

  2. Reversible Nerve Damage and Corneal Pathology in Murine Herpes Simplex Stromal Keratitis

    PubMed Central

    Yun, Hongmin; Rowe, Alexander M.; Lathrop, Kira L.; Harvey, Stephen A. K.

    2014-01-01

    ABSTRACT Herpes simplex virus type 1 (HSV-1) shedding from sensory neurons can trigger recurrent bouts of herpes stromal keratitis (HSK), an inflammatory response that leads to progressive corneal scarring and blindness. A mouse model of HSK is often used to delineate immunopathogenic mechanisms and bears many of the characteristics of human disease, but it tends to be more chronic and severe than human HSK. Loss of blink reflex (BR) in human HSK is common and due to a dramatic retraction of corneal sensory nerve termini in the epithelium and the nerve plexus at the epithelial/stromal interface. However, the relationship between loss of BR due to nerve damage and corneal pathology associated with HSK remains largely unexplored. Here, we show a similar retraction of corneal nerves in mice with HSK. Indeed, we show that much of the HSK-associated corneal inflammation in mice is actually attributable to damage to the corneal nerves and accompanying loss of BR and can be prevented or ameliorated by tarsorrhaphy (suturing eyelids closed), a clinical procedure commonly used to prevent corneal exposure and desiccation. In addition, we show that HSK-associated nerve retraction, loss of BR, and severe pathology all are reversible and regulated by CD4+ T cells. Thus, defining immunopathogenic mechanisms of HSK in the mouse model will necessitate distinguishing mechanisms associated with the immunopathologic response to the virus from those associated with loss of corneal sensation. Based on our findings, investigation of a possible contribution of nerve damage and BR loss to human HSK also appears warranted. IMPORTANCE HSK in humans is a potentially blinding disease characterized by recurrent inflammation and progressive scarring triggered by viral release from corneal nerves. Corneal nerve damage is a known component of HSK, but the causes and consequences of HSK-associated nerve damage remain obscure. We show that desiccation of the corneal surface due to nerve damage and

  3. Cultured corneal epithelia for ocular surface disease.

    PubMed Central

    Schwab, I R

    1999-01-01

    PURPOSE: To evaluate the potential efficacy for autologous and allogeneic expanded corneal epithelial cell transplants derived from harvested limbal corneal epithelial stem cells cultured in vitro for the management of ocular surface disease. METHODS: Human Subjects. Of the 19 human subjects included, 18 (20 procedures) underwent in vitro cultured corneal epithelial cell transplants using various carriers for the epithelial cells to determine the most efficacious approach. Sixteen patients (18 procedures on 17 eyes) received autologous transplants, and 2 patients (1 procedure each) received allogeneic sibling grafts. The presumed corneal epithelial stem cells from 1 patient did not grow in vitro. The carriers for the expanded corneal epithelial cells included corneal stroma, type 1 collagen (Vitrogen), soft contact lenses, collagen shields, and amniotic membrane for the autologous grafts and only amniotic membrane for the allogeneic sibling grafts. Histologic confirmation was reviewed on selected donor grafts. Amniotic membrane as carrier. Further studies were made to determine whether amniotic membrane might be the best carrier for the expanding corneal epithelial cells. Seventeen different combinations of tryspinization, sonication, scraping, and washing were studied to find the simplest, most effective method for removing the amniotic epithelium while still preserving the histologic appearance of the basement membrane of the amnion. Presumed corneal epithelial stem cells were harvested and expanded in vitro and applied to the amniotic membrane to create a composite graft. Thus, the composite graft consisted of the amniotic membrane from which the original epithelium had been removed without significant histologic damage to the basement membrane, and the expanded corneal epithelial stem cells, which had been applied to and had successfully adhered to the denuded amniotic membrane. Animal model. Twelve rabbits had the ocular surface of 1 eye damaged in a standard

  4. Dynamic Corneal Surface Mapping with Electronic Speckle Pattern Interferometry

    NASA Astrophysics Data System (ADS)

    Iqbal, S.; Gualini, M. M. S.

    2013-06-01

    In view of the fast advancement in ophthalmic technology and corneal surgery, there is a strong need for the comprehensive mapping and characterization techniques for corneal surface. Optical methods with precision non-contact approaches have been found to be very useful for such bio measurements. Along with the normal mapping approaches, elasticity of corneal surface has an important role in its characterization and needs to be appropriately measured or estimated for broader diagnostics and better prospective surgical results, as it has important role in the post-op corneal surface reconstruction process. Use of normal corneal topographic devices is insufficient for any intricate analysis since these devices operate at relatively moderate resolution. In the given experiment, Pulsed Electronic Speckle Pattern Interferometry has been utilized along with an excitation mechanism to measure the dynamic response of the sample cornea. A Pulsed ESPI device has been chosen for the study because of its micron-level resolution and other advantages in real-time deformation analysis. A bovine cornea has been used as a sample in the subject experiment. The dynamic response has been taken on a chart recorder and it is observed that it does show a marked deformation at a specific excitation frequency, which may be taken as a characteristic elasticity parameter for the surface of that corneal sample. It was seen that outside resonance conditions the bovine cornea was not that much deformed. Through this study, the resonance frequency and the corresponding corneal deformations are mapped and plotted in real time. In these experiments, data was acquired and processed by FRAMES plus computer analysis system. With some analysis of the results, this technique can help us to refine a more detailed corneal surface mathematical model and some preliminary work was done on this. Such modelling enhancements may be useful for finer ablative surgery planning. After further experimentation

  5. Small fiber neuropathy in Parkinson's disease: A clinical, pathological and corneal confocal microscopy study

    PubMed Central

    Kass-Iliyya, Lewis; Javed, Saad; Gosal, David; Kobylecki, Christopher; Marshall, Andrew; Petropoulos, Ioannis N.; Ponirakis, Georgios; Tavakoli, Mitra; Ferdousi, Maryam; Chaudhuri, Kallol Ray; Jeziorska, Maria; Malik, Rayaz A.; Silverdale, Monty A.

    2015-01-01

    Autonomic and somatic denervation is well established in Parkinson's disease (PD). Objectives (1) To determine whether corneal confocal microscopy (CCM) can non-invasively demonstrate small nerve fiber damage in PD. (2) To identify relationships between corneal nerve parameters, intraepidermal nerve fiber density (IENFD) and clinical features of PD. Methods Twenty-six PD patients and 26 controls underwent CCM of both eyes. 24/26 PD patients and 10/26 controls underwent skin biopsies from the dorsa of both feet. PD patients underwent assessment of parasympathetic function [deep breathing heart rate variability (DB-HRV)], autonomic symptoms [scale for outcomes in Parkinson's disease – autonomic symptoms (SCOPA-AUT)], motor symptoms [UPDRS-III “ON”] and cumulative Levodopa dose. Results PD patients had significantly reduced corneal nerve fiber density (CNFD) with increased corneal nerve branch density (CNBD) and corneal nerve fiber length (CNFL) compared to controls. CNBD and CNFL but not CNFD correlated inversely with UPDRS-III and SCOPA-AUT. All CCM parameters correlated strongly with DB-HRV. There was no correlation between CCM parameters and disease duration, cumulative Levodopa dose or pain. IENFD was significantly reduced in PD compared to controls and correlated with CNFD and UPDRS-III. However, unlike CCM measures, IENFD correlated with disease duration and cumulative Levodopa dose but not with autonomic dysfunction. Conclusion CCM identifies corneal nerve fiber pathology, which correlates with autonomic symptoms, parasympathetic deficits and motor scores in patients with PD. IENFD is also reduced and correlates with CNFD and motor symptoms but not parasympathetic deficits, indicating it detects different aspects of peripheral nerve pathology in PD. PMID:26578039

  6. Morphology and movement of corneal surface cells in humans.

    PubMed

    Mathers, W D; Lemp, M A

    1992-06-01

    We examined the morphology of the corneal surface epithelial cells in 13 eyes of 13 subjects using specular microscopy. We determined cell area, perimeter, and shape comparing the central cornea with the inferior and superior periphery. We found surface epithelial cells are significantly smaller in the central cornea. The cells measured 560 +/- 93 square microns in the central cornea, 850 +/- 135 square microns in the superior cornea and 777 +/- 176 square microns in the inferior cornea (p less than .005). Newly emerged surface cells are smaller and are thought to enlarge with time. We postulate that lid shearing forces are greater in the central cornea and contribute to epithelial cell exfoliation. We further postulate that preferential shearing of central corneal surface cells is an important factor driving the centripetal movement of corneal epithelial cells. PMID:1505196

  7. Effect of Stratification on Surface Properties of Corneal Epithelial Cells

    PubMed Central

    Yáñez-Soto, Bernardo; Leonard, Brian C.; Raghunathan, Vijay Krishna; Abbott, Nicholas L.; Murphy, Christopher J.

    2015-01-01

    Purpose The purpose of this study was to determine the influence of mucin expression in an immortalized human corneal epithelial cell line (hTCEpi) on the surface properties of cells, such as wettability, contact angle, and surface heterogeneity. Methods hTCEpi cells were cultured to confluence in serum-free medium. The medium was then replaced by stratification medium to induce mucin biosynthesis. The mucin expression profile was analyzed using quantitative PCR and Western blotting. Contact angles were measured using a two-immiscible liquid method, and contact angle hysteresis was evaluated by tilting the apparatus and recording advancing and receding contact angles. The spatial distribution of mucins was evaluated with fluorescently labeled lectin. Results hTCEpi cells expressed the three main ocular mucins (MUC1, MUC4, and MUC16) with a maximum between days 1 and 3 of the stratification process. Upon stratification, cells caused a very significant increase in contact angle hysteresis, suggesting the development of spatially discrete and heterogeneously distributed surface features, defined by topography and/or chemical functionality. Although atomic force microscopy measurements showed no formation of appreciable topographic features on the surface of the cells, we observed a significant increase in surface chemical heterogeneity. Conclusions The surface chemical heterogeneity of the corneal epithelium may influence the dynamic behavior of tear film by “pinning” the contact line between the cellular surface and aqueous tear film. Engineering the surface properties of corneal epithelium could potentially lead to novel treatments in dry eye disease. PMID:26747762

  8. [Influence of corneal transparency on the quality of topographies].

    PubMed

    Franko Zeitz, P; Kohlhaas, M

    2012-12-01

    Corneal topographs that measure the anterior and posterior corneal surface with optical methods need a clear cornea for precise measurements. Opacities cause artifacts in the corneal thickness (with measurements usually being too thin) and corneal curvatures. This is important to know as certain pathologies may repeatedly cause similar artifacts. This is highly relevant after a corneal cross-linking, Lasek or PRK, as these procedures cause typical artifacts that can easily be misinterpreted. PMID:23258670

  9. Nanomedicine Approaches for Corneal Diseases

    PubMed Central

    Chaurasia, Shyam S.; Lim, Rayne R.; Lakshminarayanan, Rajamani; Mohan, Rajiv R.

    2015-01-01

    Corneal diseases are the third leading cause of blindness globally. Topical nonsteroidal anti-inflammatory drugs (NSAIDs), steroids, antibiotics and tissue transplantation are currently used to treat corneal pathological conditions. However, barrier properties of the ocular surface necessitate high concentration of the drugs applied in the eye repeatedly. This often results in poor efficacy and several side-effects. Nanoparticle-based molecular medicine seeks to overcome these limitations by enhancing the permeability and pharmacological properties of the drugs. The promise of nanomedicine approaches for treating corneal defects and restoring vision without side effects in preclinical animal studies has been demonstrated. Numerous polymeric, metallic and hybrid nanoparticles capable of transporting genes into desired corneal cells to intercept pathologic pathways and processes leading to blindness have been identified. This review provides an overview of corneal diseases, nanovector properties and their applications in drug-delivery and corneal disease management. PMID:25941990

  10. Light scattering from human corneal grafts: Bulk and surface contribution

    NASA Astrophysics Data System (ADS)

    Latour, Gaël; Georges, Gaëlle; Lamoine, Laure Siozade; Deumié, Carole; Conrath, John; Hoffart, Louis

    2010-09-01

    The cornea is the only transparent tissue in the body. The transparency is the main characteristic of the corneal tissue, and depends not only on the transmission coefficient but also on the losses by scattering and absorption. The scattering properties of the cornea tissues become one of the most important parameters in the case of the corneal graft. These scattering properties are studied in this paper in the reflected half area, similar to the diagnosis configuration. We quantify the influence of the cornea thickness and of the epithelial layer on scattering level. The technique of ellipsometry on scattered field is also used to analyze the polarization properties in order to determine the origin of scattering (surface and/or bulk).

  11. Essential ions for maintenance of the corneal epithelial surface.

    PubMed

    Bachman, W G; Wilson, G

    1985-11-01

    It is generally believed that tears are required to furnish only oxygen to the corneal epithelium. However, as tears are a very complicated solution, it is likely that other factors are essential to the cells of the corneal surface. The amount of light scattered from the epithelial surface of the excised rabbit cornea was examined with the in vitro specular microscope while the epithelium was bathed in different solutions. It was shown that the epithelial surface was maintained best with a buffered solution containing potassium, calcium, magnesium, phosphate and bicarbonate, in addition to sodium chloride. The solution was named Basic Tear Solution (BTS). The effect was not due to osmolarity. Potassium was particularly important, as corneas bathed with sodium chloride and potassium chloride were maintained better than corneas bathed with sodium chloride only. The appearance of the epithelial surface was different in these bathing solutions. In sodium chloride the surface scattered more light and more cells were sloughed. Least light was scattered in BTS, and cell-sloughing was at a minimum. Thus, the rate at which cells were sloughed from the epithelial surface and the quality of the surface were dependent on the bathing solution. PMID:2414247

  12. Spatiotemporal temperature profiling of corneal surface during LTK

    NASA Astrophysics Data System (ADS)

    Papaioannou, Thanassis; Maguen, Ezra I.; Grundfest, Warren S.

    2002-06-01

    Accurate prediction of LTK treatments requires refined thermal corneal models which necessitate precise input parameters. The overall objective of this study was to provide detailed information on the spatiotemporal temperature profile of the corneal surface, during in-vitro thermal keratoplasty. LTK was performed in-vitro on freshly harvested porcine eyes (N equals 16) with the Sunrise Technologies corneal shaping system (Model SUN 1000). Spatiotemporal thermal imaging of the irradiated corneas were obtained with a short wave Inframetrics thermal camera (Model PM290). Images were obtained at 8-bits resolution, with ~100 microns spatial and ~17 msec temporal resolution respectively. Treatment pattern consisted of eight spots at 6 mm zone, while lasing was conducted at settings of either 100 mJ and 15 pulses (N equals 8), or 260 mJ and 7 pulses (N equals 8). Temporal and spatial variation of the corneal surface temperatures were calculated at locations of importance to LTK. At the laser spot, temperature profiles consisted of transients coinciding approximately with the laser pulses. Maximum transient temperatures observed were 98.0+/- 4.6 degree(s)C for the high and 56.3+/- 2.6 degree(s)C for the low energy respectively. These temperature transients were superimposed on an envelope of lower-slowly varying temperatures. The maximum temperatures observed for this temperature envelope, were 51.8+/- 3.4 degree(s)C for the high and 35.4+/- 3.4 degree(s)C for the low energy respectively. The evolution of either the maximum temperature transients or the lower temperature envelope, followed exponential growth of the form: T equals A * exp(B*t). Maximum temperatures at locations 0.5 mm and 1 mm away from the laser spot, reached 25.7 degree(s)C and 23.3 degree(s)C for the low energy, and 34 degree(s)C and 25.6 degree(s)C for the high energy settings respectively. Temperature decay constants were approximately 2 to 3 sec, while the spatial temperature profile at the laser

  13. Morselized Amniotic Membrane Tissue for Refractory Corneal Epithelial Defects in Cicatricial Ocular Surface Diseases

    PubMed Central

    Cheng, Anny M. S.; Chua, Lorraine; Casas, Victoria; Tseng, Scheffer C. G.

    2016-01-01

    Purpose To evaluate the clinical efficacy of morselized amniotic membrane and umbilical cord tissue (MAU) in treating refractory corneal epithelial defect in ocular cicatricial diseases. Methods Retrospective review of four patients with ocular cicatricial diseases treated with topical MAU for corneal epithelial defects refractory to conventional treatments including topical lubricants, autologous serum, bandage contact lens, and tarsorraphy. Their symptoms, corneal staining, conjunctival inflammation, and visual acuity were compared before and after treatment. Results After topical application of MAU twice daily, two patients demonstrated rapid corneal epithelialization with prompt visual acuity improvement at the first day. All patients showed corneal epithelialization in 7.3 ± 2.6 days accompanied by a significant relief of symptoms, reduction of ocular surface inflammation, and improvement of visual acuity. Conclusion This pilot study suggests topical MAU can be developed into a novel treatment for treating refractory corneal epithelial defects. Translational Relevance Topical MAU can be an effective novel treatment for refractory corneal epithelial defects. PMID:27226933

  14. Multipurpose Care Solution–Induced Corneal Surface Disruption and Pseudomonas aeruginosa Internalization in the Rabbit Corneal Epithelium

    PubMed Central

    Posch, Leila C.; Zhu, Meifang; Robertson, Danielle M.

    2014-01-01

    Purpose. To evaluate the effects of a chemically preserved multipurpose contact lens care solution (MPS) on the corneal epithelial surface and Pseudomonas aeruginosa (PA) internalization in the rabbit corneal epithelium. Methods. Rabbits were fit in one eye with a silicone hydrogel lens (balafilcon A) soaked overnight in a borate-buffered MPS (BioTrue). The contralateral eye was fit with a lens removed directly from the blister pack containing borate-buffered saline (control). Lenses were worn for 2 hours. Upon lens removal, corneas were challenged ex vivo with invasive PA strain 6487 and assessed for PA internalization. Ultrastructural changes were assessed using scanning electron (SEM) and transmission electron microscopy (TEM). Results. Scanning electron microscopy showed frank loss of surface epithelium in MPS-exposed eyes, while control eyes exhibited occasional loss of surface membranes but retention of intact junctional borders. Transmission electron microscopy data supported and extended SEM findings, demonstrating the presence of epithelial edema in MPS-treated eyes. There was a 12-fold increase in PA uptake into the corneal epithelium following wear of the MPS-treated lens compared to control (P = 0.008). Conclusions. These data demonstrate that corneal exposure to MPS during lens wear damages the surface epithelium and are consistent with our previous clinical data showing an increase in bacterial binding to exfoliated epithelial cells following MPS use with resultant increased risk for lens-mediated infection. These findings also demonstrate that the PA invasion assay may provide a highly sensitive quantitative metric for assessing the physiological impact of lens-solution biocompatibility on the corneal epithelium. PMID:24876286

  15. ICAM-1 mediates surface contact between neutrophils and keratocytes following corneal epithelial abrasion in the mouse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corneal epithelial abrasion elicits an inflammatory response involving neutrophil (PMN) recruitment from the limbal vessels into the corneal stroma. These migrating PMNs make surface contact with collagen and stromal keratocytes. Using mice deficient in PMN integrin CD18, we previously showed that P...

  16. Genetics of corneal disease for the ocular surface clinician.

    PubMed

    Sjoberg, Stacy A

    2005-07-01

    Advances in the understanding of inherited corneal and external diseases may allow interventions that prevent the substantial vision impairment currently caused by these diseases. The observant clinician may first recognize inherited corneal and external diseases based on clinical examination and a careful family history. Researchers using positional cloning and candidate gene techniques have identified several disease-causing genes. Identification of the genes responsible for inherited corneal and external diseases will lead to more definitive diagnoses and represent the first step in development of effective therapies. Future endeavors are directed toward identifying additional inherited corneal and external diseases, the genes that cause them, and possible gene therapies to improve visual outcomes. PMID:17131020

  17. Corneal epithelialisation on surface-modified hydrogel implants: artificial cornea.

    PubMed

    Ma, Aihua; Zhao, Bojun; Bentley, Adam J; Brahma, Arun; MacNeil, Sheila; Martin, Francis L; Rimmer, Stephen; Fullwood, Nigel J

    2011-03-01

    The objective was to investigate corneal re-epithelialisation of surface-modified polymethacrylate hydrogel implants in order to evaluate them as potential materials for an artificial cornea. Polymethacrylate hydrogels were modified with amines and then coated with different extracellular matrix proteins (collagen I, IV, laminin and fibronectin). The modified hydrogels were surgically implanted into bovine corneas maintained in a 3-D culture system for 5 days. The epithelial growth across the implant surface was evaluated using fluorescent, light and electron microscopy. Full epithelialisation was achieved on 1,4-diaminobutane-modified hydrogels after coating with collagen IV. Hydrogels modified with 1,4-diaminobutane but without further coating only showed partial re-epithelialisation. Hydrogels modified with other amines (1,2-diaminoethane or 1,3-diaminopropane) showed only partial re-epithelialisation; further coating with extracellular matrix proteins improved epithelialisation of these surfaces but did not result in complete re-epithelialisation. Evaluation of the corneas implanted with the 1,4-diaminobutane-modified hydrogels coated with collagen IV showed that the artificial corneas remain clear, integrate well and become covered by a healthy stratified epithelium. In conclusion the 1,4-diaminobutane surface-modified hydrogel coated with collagen IV supported the growth of a stable stratified epithelium. With further refinement this hydrogel has the potential to be used clinically for an artificial cornea. PMID:21287242

  18. Tear lipocalin captures exogenous lipid from abnormal corneal surfaces.

    PubMed

    Glasgow, Ben J; Gasymov, Oktay K; Abduragimov, Adil R; Engle, Jamison J; Casey, Richard C

    2010-04-01

    Purpose. The cornea is protected by apical hydrophilic transmembrane mucins and tears. In pathologic states the mucin barrier is disrupted, creating potential for meibomian lipids to adhere more strongly. Undisplaced lipids create an unwettable surface. The hypothesis that pathologic ocular surfaces alter lipid binding and the ability of tear proteins to remove lipids was tested. Methods. Corneas with pathologic surfaces were studied for lipid adhesion and removal by tears. Capture of fluorescence-labeled phospholipids by human tears was assessed by steady state fluorometry. Tear proteins were separated by gel filtration chromatography and analyzed for bound lipids. Results. Contact angle measurements revealed strong lipid adherence to corneas submerged in buffer. Lower contact angles are observed for lipids on completely de-epithelialized corneas compared with intact corneas (P = 0.04). Lipid removal from these surfaces is greater with whole tears than with tears depleted of tear lipocalin (P < 0.0005). Significantly fewer lipids are captured by tears from Bowman's layer than from epithelial-bearing surfaces (P < 0.025). The only tear component to bind the fluorescence-tagged lipid is tear lipocalin. The histology of a rare case of dry eye disease demonstrates the dominant features of contemporaneous bullous keratopathy. Lipid sequestration from this cornea by tear lipocalin was robust. Conclusions. Lipid is captured by tear lipocalin from corneas with bullous keratopathy and dry eye. Lipid removal is slightly abrogated by greater lipid adhesion to Bowman's layer. Reduced secretion of tear lipocalin documented in dry eye disease could hamper lipid removal and exacerbate ocular surface pathology. PMID:19959641

  19. Tear Lipocalin Captures Exogenous Lipid from Abnormal Corneal Surfaces

    PubMed Central

    Gasymov, Oktay K.; Abduragimov, Adil R.; Engle, Jamison J.; Casey, Richard C.

    2010-01-01

    Purpose. The cornea is protected by apical hydrophilic transmembrane mucins and tears. In pathologic states the mucin barrier is disrupted, creating potential for meibomian lipids to adhere more strongly. Undisplaced lipids create an unwettable surface. The hypothesis that pathologic ocular surfaces alter lipid binding and the ability of tear proteins to remove lipids was tested. Methods. Corneas with pathologic surfaces were studied for lipid adhesion and removal by tears. Capture of fluorescence-labeled phospholipids by human tears was assessed by steady state fluorometry. Tear proteins were separated by gel filtration chromatography and analyzed for bound lipids. Results. Contact angle measurements revealed strong lipid adherence to corneas submerged in buffer. Lower contact angles are observed for lipids on completely de-epithelialized corneas compared with intact corneas (P = 0.04). Lipid removal from these surfaces is greater with whole tears than with tears depleted of tear lipocalin (P < 0.0005). Significantly fewer lipids are captured by tears from Bowman's layer than from epithelial-bearing surfaces (P < 0.025). The only tear component to bind the fluorescence-tagged lipid is tear lipocalin. The histology of a rare case of dry eye disease demonstrates the dominant features of contemporaneous bullous keratopathy. Lipid sequestration from this cornea by tear lipocalin was robust. Conclusions. Lipid is captured by tear lipocalin from corneas with bullous keratopathy and dry eye. Lipid removal is slightly abrogated by greater lipid adhesion to Bowman's layer. Reduced secretion of tear lipocalin documented in dry eye disease could hamper lipid removal and exacerbate ocular surface pathology. PMID:19959641

  20. Contributions of tissue-specific pathologies to corneal injuries following exposure to SM vapor.

    PubMed

    McNutt, Patrick M; Tuznik, Kaylie M; Glotfelty, Elliot J; Nelson, Marian R; Lyman, Megan E; Hamilton, Tracey A

    2016-06-01

    Corneal injuries resulting from ocular exposure to sulfur mustard (SM) vapor are the most prevalent chemical warfare injury. Ocular exposures exhibit three distinct, dose-dependent clinical trajectories: complete injury resolution, immediate transition to a chronic injury, or apparent recovery followed by the subsequent development of persistent ocular manifestations. These latter two trajectories include a constellation of corneal symptoms that are collectively known as mustard gas keratopathy (MGK). The etiology of MGK is not understood. Here, we synthesize recent findings from in vivo rabbit SM vapor studies, suggesting that tissue-specific damage during the acute injury can decrement the regenerative capacities of corneal endothelium and limbal stem cells, thereby predisposing the cornea to the chronic or delayed forms of MGK. This hypothesis not only provides a mechanism to explain the acute and MGK injuries but also identifies novel therapeutic modalities to mitigate or eliminate the acute and long-term consequences of ocular exposure to SM vapor. PMID:27310673

  1. Modification of readings along oblique principal meridians to fit regular corneal surfaces

    NASA Astrophysics Data System (ADS)

    Abelman, Herven; Abelman, Shirley

    2015-08-01

    Anterior astigmatic corneal surface elements may have their continuity disturbed by environmental factors. Powers detected along principal meridians define matrices whose natures distinguish the continuity of surface elements. This work aims to adapt the matrix nature of data to fit closely, uniquely and holistically with the matrix nature in a sample of data for smooth astigmatic corneas that have powers along rectangular meridians. Matrices from continuous surfaces approximate matrices with outliers from irregular surfaces explicitly. Only approximations that minimize the Frobenius norm of the residual matrices are selected. Data from smooth astigmatic corneal surfaces, in an augmented sample, may now produce more reliable analyses.

  2. Tear Lipocalin: Evidence for a Scavenging Function to Remove Lipids from the Human Corneal Surface

    PubMed Central

    Gasymov, Oktay K.; Abduragimov, Adil R.; Prasher, Pawan; Yusifov, Taleh N.; Glasgow, Ben J.

    2006-01-01

    Purpose Lipid contamination of the cornea may create an unwettable surface and result in desiccation of the corneal epithelium. Tear lipocalin (TL), also known as lipocalin-1, is the principal lipid-binding protein in tears. TL has been shown to scavenge lipids from hydrophobic surfaces. The hypothesis that TL can remove contaminating fatty acids and phospholipids from the human corneal surface was tested. Methods TL was purified from pooled human tear samples by size exclusion and ion exchange chromatographies. Tears depleted of TL were reconstituted from fractions eluted by size exclusion chromatography that did not contain TL. Fresh and formalin-fixed human corneas were obtained from exenteration specimens. Fluorescent analogs of either palmitic acid or phosphatidylcholine were applied to the corneal epithelial surface. Tears, TL, or tears depleted of TL were applied over the corneas, and spectrofluorometry and fluorescent stereomicroscopy were used to monitor the removal of fluorescent lipids. Tears used in the experiments were then fractionated by size exclusion chromatography to determine the component of tears associated with fluorescent lipids. Results Significant enhancement of fluorescence for 16AP and NBD C6-HPC was evident in solutions incubated with whole tears and purified TL but not with tears depleted of TL for fixed and unfixed corneas. After the experiment, size exclusion fractions of tears showed that the fluorescence component coeluted with TL. Conclusions TL scavenges lipids from the human corneal surface and delivers them into the aqueous phase of tears. TL may have an important role in removing lipids from the corneal surface to maintain the wettability and integrity of the ocular surface. PMID:16186338

  3. Neutrophil (PMN) surface contact with keratocytes following corneal epithelial abrasion in the mouse: a novel role for ICAM-1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corneal epithelial abrasion is associated with an inflammatory response that involves PMN recruitment from the limbal vessels into the corneal stroma. Previously, in the injured mouse cornea, we showed that migrating PMNs not only make contact with collagen, but they also make extensive surface cont...

  4. Imaging corneal pathology in a transgenic mouse model using nonlinear microscopy

    NASA Astrophysics Data System (ADS)

    Lyubovitsky, Julia G.; Spencer, Joel A.; Krasieva, Tatiana B.; Andersen, Bogi; Tromberg, Bruce J.

    2006-01-01

    A transgenic mouse model with a Clim [co-factor of LIM (a combination of first letters of Lin-11 (C. elegans), ISL1 (rat), and Mec-3 (C. elegans) gene names) domain proteins] gene partially blocked in the epithelial compartment of its tissues is used to establish the sensitivity of intrinsic reflectance nonlinear optical microscopy (NLOM) to stromal and cellular perturbations in the cornea. Our results indicate dysplasia in the squamous epithelium, irregular collagen arrays in the stroma, and a compromised posterior endothelium in the corneas of these mice. As suggested by biochemical data, the collagen alterations are likely due to collagen III synthesis and deposition during healing and remodeling of transgenic mice corneal stromas. All of the topographic features seen in NLOM images of normal and aberrant corneas are confirmed by coregistration with histological sections. In this work, we also use ratiometric redox fluorometry based on two-photon excited cellular fluorescence from reduced nicotinamide adenine dinucleotide (NAD)(P)H and oxidized flavin adenine dinucleotide (FAD) to study mitocondrial energy metabolism. Employing this method, we detect higher metabolic activity in the endothelial layer of cornea compared to an epithelial layer located further away from the metabolites. The combination of two-photon excited fluorescence (TPF) with second harmonic generation (SHG) signals allows imaging to aid in understanding the relationship between alternation of specific genes and structural changes in cells and extracellular matrix.

  5. The corneal surface of aquatic vertebrates: microstructures with optical and nutritional function?

    PubMed

    Collin, H B; Collin, S P

    2000-09-29

    The anterior surface of the mammalian cornea plays an important role in maintaining a smooth optical interface and consequently a sharp retinal image. The smooth surface is produced by a tear film, which adheres to a variety of microprojections, which increase the cell surface area, improve the absorbance of oxygen and nutrients and aid in the movement of metabolic products across the outer cell membrane. However, little is known of the structural adaptations and tear film support provided in other vertebrates from different environments. Using field emission scanning electron microscopy; this study examines the density and surface structure of corneal epithelial cells in representative species of the classes Cephalaspidomorphi, Chondrichthyes, Osteichthyes, Amphibia, Reptilia, Aves and Mammalia, including some Marsupialia. Variations in cell density and the structure and occurrence of microholes, microridges, microplicae and microvilli are described with respect to the demands placed upon the cornea in different aquatic environments such as marine and freshwater. A progressive decrease in epithelial cell density occurs from marine (e.g. 29348 cells mm(-2) in the Dover sole Microstomius pacficus) to estuarine or freshwater (e.g. 5999 cells mm(-2) in the black bream Acanthopagrus butcheri) to terrestrial (e.g. 2126 cells mm(-2) in the Australian koala Phascolarctos cinereus) vertebrates, indicating the reduction in osmotic stress across the corneal surface. The microholes found in the Southern Hemisphere lampreys, namely the pouched lamprey (Geotria australis) and the shorthead lamprey (Mordacia mordax) represent openings for the release of mucus, which may protect the cornea from abrasion during their burrowing phase. Characteristic of marine teleosts, fingerprint-like patterns of corneal microridges are a ubiquitous feature, covering many types of sensory epithelia (including the olfactory epithelium and the oral mucosa). Like microplicae and microvilli

  6. Corneal Expression of SLURP-1 by Age, Sex, Genetic Strain, and Ocular Surface Health

    PubMed Central

    Swamynathan, Sudha; Delp, Emili E.; Harvey, Stephen A. K.; Loughner, Chelsea L.; Raju, Leela; Swamynathan, Shivalingappa K.

    2015-01-01

    Purpose Although secreted Ly6/urokinase-type plasminogen activator receptor–related protein-1 (Slurp1) transcript is highly abundant in the mouse cornea, corresponding protein expression remains uncharacterized. Also, SLURP1 was undetected in previous tear proteomics studies, resulting in ambiguity about its baseline levels. Here, we examine mouse corneal Slurp1 expression in different sexes, age groups, strains, and health conditions, and quantify SLURP1 in human tears from healthy or inflamed ocular surfaces. Methods Expression of Slurp1 in embryonic day-13 (E13), E16, postnatal day-1 (PN1), PN10, PN20, and PN70 Balb/C, FVBN, C57Bl/6, and DBA/2J mouse corneas, Klf4Δ/ΔCE corneas with corneal epithelial–specific ablation of Klf4, migrating cells in wild-type corneal epithelial wound edge, and in corneas exposed to pathogen-associated molecular patterns (PAMPs) poly(I:C), zymosan-A, or Pam3Csk4 was examined by QPCR, immunoblots, and immunofluorescent staining. Human SLURP1 levels were quantified by ELISA in tears from 34 men and women aged 18 to 80 years. Results Expression of Slurp1, comparable in different strains and sexes, was low in E13, E16, PN1, and PN10 mouse corneas, and increased rapidly after eyelid opening in a Klf4-dependent manner. We found Slurp1 was downregulated in corneas exposed to PAMPs, and in migrating cells at the wound edge. Human SLURP1 expression, comparable in different sexes and age groups, was significantly decreased in tears from inflamed ocular surfaces (0.34%) than those from healthy individuals (0.77%). Conclusions These data describe the influence of age, sex, genetic background, and ocular surface health on mouse corneal expression of Slurp1, establish the baseline for human tear SLURP1 expression, and identify SLURP1 as a useful diagnostic and/or therapeutic target for inflammatory ocular surface disorders. PMID:26670825

  7. Influence of substrate on corneal epithelial cell viability within ocular surface models.

    PubMed

    Feng, Yun; Foster, James; Mi, Shengli; Chen, Bo; Connon, Che John

    2012-08-01

    Corneal tissue engineering has improved dramatically over recent years. It is now possible to apply these technological advancements to the development of superior in vitro ocular surface models to reduce animal testing. We aim to show the effect different substrates can have on the viability of expanded corneal epithelial cells and that those which more accurately mimic the stromal surface provide the most protection against toxic assault. Compressed collagen gel as a substrate for the expansion of a human epithelial cell line was compared against two well-known substrates for modelling the ocular surface (polycarbonate membrane and conventional collagen gel). Cells were expanded over 10 days at which point cell stratification, cell number and expression of junctional proteins were assessed by electron microscopy, immunohistochemistry and RT-PCR. The effect of increasing concentrations of sodium lauryl sulphate on epithelial cell viability was quantified by MTT assay. Results showed improvement in terms of stratification, cell number and tight junction expression in human epithelial cells expanded upon either the polycarbonate membrane or compressed collagen gel when compared to a the use of a conventional collagen gel. However, cell viability was significantly higher in cells expanded upon the compressed collagen gel. We conclude that the more naturalistic composition and mechanical properties of compressed collagen gels produces a more robust corneal model. PMID:22683913

  8. Modulation of Pseudomonas aeruginosa adherence to the corneal surface by mucus.

    PubMed Central

    Fleiszig, S M; Zaidi, T S; Ramphal, R; Pier, G B

    1994-01-01

    To gain access to the corneal epithelium and cause infections keratitis, bacterial pathogens must first interact with ocular surface factors that could affect bacterial adherence. In this study, we demonstrated that the mucus layer, and, in particular, the mucin fraction of mucus, modulated adherence to intact corneal epithelium of Pseudomonas aeruginosa but not that of Staphylococcus aureus or Streptococcus pyogenes. Removal of endogenous mucus from rat or rabbit eyes increased the adherence of P. aeruginosa by 3- to 10-fold. Ocular mucus obtained from rat eyes, porcine stomach mucin, or bovine submaxillary gland mucin inhibited adherence of P. aeruginosa to uninjured corneal epithelium. The mucin fraction of ocular mucus, purified by ultracentrifugation, was found to contain the inhibitory activity, and inhibition was demonstrated at concentrations of mucin as low as 35 micrograms/ml. Ocular mucin was the only material tested that inhibited adherence of P. aeruginosa to an injured cornea. However, the binding of P. aeruginosa to immobilized substrates in vitro did not predict which fraction would possess antiadherence activity: bacteria bound well to whole ocular mucus, mucin, the nonmucin fraction of ocular mucus, and dilute human tears as well as to porcine stomach mucin and bovine submaxillary gland mucin. The effectiveness of the mucin fraction of ocular mucus at inhibiting the binding of P. aeruginosa to the cornea implies that this material is a barrier that protects the surface of the eye from P. aeruginosa adherence. PMID:8168942

  9. Morphological changes of the peripheral nerves evaluated by high-resolution ultrasonography are associated with the severity of diabetic neuropathy, but not corneal nerve fiber pathology in patients with type 2 diabetes

    PubMed Central

    Ishibashi, Fukashi; Taniguchi, Miki; Kojima, Rie; Kawasaki, Asami; Kosaka, Aiko; Uetake, Harumi

    2015-01-01

    Aims/Introduction To evaluate the morphological changes of the median and posterior tibial nerve using high-resolution ultrasonography, and the corneal C fiber pathology by corneal confocal microscopy in type 2 diabetic patients. Materials and Methods The cross-sectional area, hypoechoic area and maximum thickness of the nerve fascicle of both nerves were measured by high-resolution ultrasonography in 200 type 2 diabetic patients, stratified by the severity of diabetic neuropathy, and in 40 age- and sex-matched controls. These parameters were associated with corneal C fiber pathology visualized by corneal confocal microscopy, neurophysiological tests and severity of diabetic neuropathy. Results The cross-sectional area, hypoechoic area and maximum thickness of the nerve fascicle of both nerves in patients without diabetic neuropathy were larger than those in control subjects (P < 0.05 to P < 0.001), and further increased relative to the severity of neuropathy (P < 0.0001). All morphological changes of both nerves were negatively associated with motor and sensory nerve conduction velocity (P = 0.01 to P < 0.0001), and directly associated with 2,000-Hz current perception threshold (P = 0.009 to P < 0.001). The significant corneal C fiber pathology occurred before developing the neuropathy, and deteriorated only in patients with the most severe neuropathy. The association between the morphological changes of both nerves and corneal C fiber pathology was poor. Conclusions The morphological changes in peripheral nerves of type 2 diabetic patients were found before the onset of neuropathy, and were closely correlated with the severity of diabetic neuropathy, but not with corneal C fiber pathology. PMID:25969719

  10. Mechanism of initial attachment of corneal epithelial cells to polymeric surfaces.

    PubMed

    Steele, J G; Johnson, G; Griesser, H J; Underwood, P A

    1997-12-01

    The initial attachment of cultured bovine corneal epithelial cells and stromal fibroblasts to two oxygen-containing synthetic polymers was studied. Cultured epithelial cells and stromal fibroblasts were seeded onto two oxygen-containing surfaces: 'tissue culture' polystyrene (TCPS) and a polymer film deposited by RF plasma deposition using a methylmethacrylate monomer (MMA/FEP). To establish the mechanism of cell attachment, the effect of the selective removal of the vitronectin and fibronectin from the serum used in the culture medium was tested. The attachment of cultured epithelial cells during the first 90 min of culture was reduced by 40% (TCPS)-80% (MMA/FEP) as a result of removing vitronectin from the medium. Attachment of these cells to TCPS was reduced by 85-95% when the serum was depleted of both fibronectin and vitronectin. However, depletion of fibronectin reduced cell attachment to TCPS by 20%, whilst on MMA/FEP cell attachment was equivalent, or higher, than that for intact serum. The attachment of cultured corneal stromal fibroblasts was similarly dependent on vitronectin but less dependent on fibronectin. Therefore, for the attachment of both cultured epithelial cells and fibroblasts to oxygen-containing surfaces in the presence of serum, there is a high requirement for serum vitronectin but a lesser requirement for fibronectin. The effects of the establishment of corneal epithelial cells in culture and the site of origin of the cells, were determined. Primary isolates of epithelial cells isolated from the limbal, central or peripheral regions of the cornea were less dependent on vitronectin for initial attachment to TCPS than were these cells after several passages in culture. Furthermore, the primary isolates were dramatically less responsive to vitronectin than the cultured cells. These results indicate that the mechanism of attachment of corneal epithelial cells to TCPS varies with the culture experience of the cells. Cells that are culture

  11. Analysis of the optical quality by determining the modulation transfer function for anterior corneal surface in myopes

    PubMed Central

    Zheng, Yan-Zhen; Chen, Yan-Peng; Qiu, Yan; Zhai, Guo-Guang; Li, Yao-Yu

    2012-01-01

    AIM To describe the characteristics of modulation transfer function (MTF) of anterior corneal surface, and obtain the the normal reference range of MTF at different spatial frequencies and optical zones of the anterior corneal surface in myopes. METHODS Four hundred eyes from 200 patients were examined under SIRIUS corneal topography system. Phoenis analysis software was applied to simulate the MTF curves of anterior corneal surface at vertical and horizontal meridians at the 3, 4, 5, 6, 7mm optical zones of cornea. The MTF values at spatial frequencies of 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 cycles/degree (c/d) were selected. RESULTS The MTF curve of anterior corneal surface decreased rapidly from low to intermediate frequency (0-15cpd) at various optical zones of cornea, the value decreased to 0 slowly at higher frequency (>15cpd). With the increase of the optical zones of cornea, MTF curve decreased gradually. 3) In the range of 3 mm- 6 mm optical zones of the cornea, the MTF values measured at horizontal meridian were greater than the corresponding values at horizontal meridian of each spatial frequency, the difference was statistically significant (P<0.05). At 7 mm optical zones of cornea, the MTF values measured at horizontal meridian were less than the corresponding values at vertical meridian at 10-60 spatial frequencies(cpd), and the difference was statistically significant in 25, 30, 35, 40, 45, 50 cpd (P<0.05). CONCLUSION MTF can be used to describe the imaging quality of optical systems at anterior corneal surface objectively in detail. PMID:22762049

  12. Corneal Disorders

    MedlinePlus

    ... Injuries Dystrophies - conditions in which parts of the cornea lose clarity due to a buildup of cloudy material Treatments of corneal disorders include medicines, corneal transplantation, and corneal laser surgery. NIH: National Eye Institute

  13. Isolation of a recombinant antibody specific for a surface marker of the corneal endothelium by phage display.

    PubMed

    Dorfmueller, Simone; Tan, Hwee Ching; Ngoh, Zi Xian; Toh, Kai Yee; Peh, Gary; Ang, Heng-Pei; Seah, Xin-Yi; Chin, Angela; Choo, Andre; Mehta, Jodhbir S; Sun, William

    2016-01-01

    Cell surface antigens are important targets for monoclonal antibodies, but they are often difficult to work with due to their association with the cell membrane. Phage display is a versatile technique that can be applied to generate binders against difficult targets. Here we used antibody phage display to isolate a binder for a rare and specialized cell, the human corneal endothelial cell. The human corneal endothelium is a medically important cell layer; defects in this layer account for about half of all corneal transplants. Despite its importance, no specific antigens have been found to mark this cell type. By panning a phage library directly on human corneal endothelial cells, we isolated an antibody that bound to these cells and not the other types of corneal cells. Subsequently, we identified the antibody's putative target to be CD166 by immunoprecipitation and mass spectrometry. This approach can be used to isolate antibodies against other poorly-characterized cell types, such as stem cells or cancer cells, without any prior knowledge of their discriminating markers. PMID:26902886

  14. Isolation of a recombinant antibody specific for a surface marker of the corneal endothelium by phage display

    PubMed Central

    Dorfmueller, Simone; Tan, Hwee Ching; Ngoh, Zi Xian; Toh, Kai Yee; Peh, Gary; Ang, Heng-Pei; Seah, Xin-Yi; Chin, Angela; Choo, Andre; Mehta, Jodhbir S.; Sun, William

    2016-01-01

    Cell surface antigens are important targets for monoclonal antibodies, but they are often difficult to work with due to their association with the cell membrane. Phage display is a versatile technique that can be applied to generate binders against difficult targets. Here we used antibody phage display to isolate a binder for a rare and specialized cell, the human corneal endothelial cell. The human corneal endothelium is a medically important cell layer; defects in this layer account for about half of all corneal transplants. Despite its importance, no specific antigens have been found to mark this cell type. By panning a phage library directly on human corneal endothelial cells, we isolated an antibody that bound to these cells and not the other types of corneal cells. Subsequently, we identified the antibody’s putative target to be CD166 by immunoprecipitation and mass spectrometry. This approach can be used to isolate antibodies against other poorly-characterized cell types, such as stem cells or cancer cells, without any prior knowledge of their discriminating markers. PMID:26902886

  15. Corneal cells for regeneration.

    PubMed

    Kinoshita, S; Nakamura, T

    2005-01-01

    In cases of corneal epithelial stem cell deficiency where ocular surface reconstruction is required, corneal epithelial replacement using a tissue engineering technique shows great potential. Autologous cultivated corneal epithelial stem cell sheets are the safest and most reliable forms of sheet we can use for such treatment; however, they are not useful for treating bilaterally affected ocular surface disorders. In order to treat such cases, we must choose either an allogeneic cultivated corneal epithelial sheet or an autologous cultivated oral mucosal epithelial sheet. If we use the former, the threat of immunological reaction must be dealt with. Therefore, it is imperative that we have a basic understanding of the immunological aspects of ocular surface reconstruction using allogeneic tissues. When using an autologous cultivated oral mucosal epithelial sheet, a basic understanding of ocular surface epithelial biology is required as the sheet is not exactly the same as corneal epithelium. PMID:16080287

  16. Corneal-shaping electrode

    DOEpatents

    Doss, James D.; Hutson, Richard L.

    1982-01-01

    The disclosure relates to a circulating saline electrode for changing corneal shape in eyes. The electrode comprises a tubular nonconductive electrode housing having an annular expanded base which has a surface substantially matched to a subject corneal surface. A tubular conductive electrode connected to a radiofrequency generating source is disposed within the electrode housing and longitudinally aligned therewith. The electrode has a generally hemispherical head having at least one orifice. Saline solution is circulated through the apparatus and over the cornea to cool the corneal surface while radiofrequency electric current emitted from the electrode flows therefrom through the cornea to a second electrode, on the rear of the head. This current heats the deep corneal stroma and thereby effects corneal reshaping as a biological response to the heat.

  17. Keratoprostheses for corneal blindness: a review of contemporary devices

    PubMed Central

    Avadhanam, Venkata S; Smith, Helen E; Liu, Christopher

    2015-01-01

    According to the World Health Organization, globally 4.9 million are blind due to corneal pathology. Corneal transplantation is successful and curative of the blindness for a majority of these cases. However, it is less successful in a number of diseases that produce corneal neovascularization, dry ocular surface and recurrent inflammation, or infections. A keratoprosthesis or KPro is the only alternative to restore vision when corneal graft is a doomed failure. Although a number of KPros have been proposed, only two devices, Boston type-1 KPro and osteo-odonto-KPro, have came to the fore. The former is totally synthetic and the latter is semi-biological in constitution. These two KPros have different surgical techniques and indications. Keratoprosthetic surgery is complex and should only be undertaken in specialized centers, where expertise, multidisciplinary teams, and resources are available. In this article, we briefly discuss some of the prominent historical KPros and contemporary devices. PMID:25945031

  18. Improving the moisturizing properties of collagen film by surface grafting of chondroitin sulfate for corneal tissue engineering.

    PubMed

    Liu, Yang; Lv, Huilin; Ren, Li; Xue, Guanhua; Wang, Yingjun

    2016-06-01

    Cornea disease is the second cause of blindness and keratoplasty is the most commonly performed option for visual rehabilitation of patients with corneal blindness. However, the clinical treatment has been drastically limited due to a severe shortage of high-quality donor corneas. Although collagen film with outstanding biocompatibility has promising application in corneal tissue engineering, the moisturizing properties of collagen-based materials must be further improved to satisfy the requirements of clinical applications. This paper describes a novel collagen-based film with high moisture capacity reinforced by surface grafting of chondroitin sulfate. The collagen-chondroitin sulfate (abbreviated as Col-CS) film was analyzed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy and its hydrophilic property, moisture retention, optical property, and mechanical performance had been tested. The moisture-retaining capacity is found to be improved with the introduction of chondroitin sulfate, and the Col-CS membrane performs better mechanical properties than the collagen film. Moreover, the modified film proves excellent biocompatibility for the proliferation of human corneal epithelial cells in vitro. This Col-CS film with good moisturizing properties can reduce the risk of xerophthalmia and is expected to increase the implant success rate in clinic patients with corneal defects. PMID:26948819

  19. SurfaceSlide: A Multitouch Digital Pathology Platform

    PubMed Central

    Wang, Yinhai; Williamson, Kate E.; Kelly, Paul J.; James, Jacqueline A.; Hamilton, Peter W.

    2012-01-01

    Background Digital pathology provides a digital environment for the management and interpretation of pathological images and associated data. It is becoming increasing popular to use modern computer based tools and applications in pathological education, tissue based research and clinical diagnosis. Uptake of this new technology is stymied by its single user orientation and its prerequisite and cumbersome combination of mouse and keyboard for navigation and annotation. Methodology In this study we developed SurfaceSlide, a dedicated viewing platform which enables the navigation and annotation of gigapixel digitised pathological images using fingertip touch. SurfaceSlide was developed using the Microsoft Surface, a 30 inch multitouch tabletop computing platform. SurfaceSlide users can perform direct panning and zooming operations on digitised slide images. These images are downloaded onto the Microsoft Surface platform from a remote server on-demand. Users can also draw annotations and key in texts using an on-screen virtual keyboard. We also developed a smart caching protocol which caches the surrounding regions of a field of view in multi-resolutions thus providing a smooth and vivid user experience and reducing the delay for image downloading from the internet. We compared the usability of SurfaceSlide against Aperio ImageScope and PathXL online viewer. Conclusion SurfaceSlide is intuitive, fast and easy to use. SurfaceSlide represents the most direct, effective and intimate human–digital slide interaction experience. It is expected that SurfaceSlide will significantly enhance digital pathology tools and applications in education and clinical practice. PMID:22292040

  20. Corneal dystrophies

    PubMed Central

    Klintworth, Gordon K

    2009-01-01

    The term corneal dystrophy embraces a heterogenous group of bilateral genetically determined non-inflammatory corneal diseases that are restricted to the cornea. The designation is imprecise but remains in vogue because of its clinical value. Clinically, the corneal dystrophies can be divided into three groups based on the sole or predominant anatomical location of the abnormalities. Some affect primarily the corneal epithelium and its basement membrane or Bowman layer and the superficial corneal stroma (anterior corneal dystrophies), the corneal stroma (stromal corneal dystrophies), or Descemet membrane and the corneal endothelium (posterior corneal dystrophies). Most corneal dystrophies have no systemic manifestations and present with variable shaped corneal opacities in a clear or cloudy cornea and they affect visual acuity to different degrees. Corneal dystrophies may have a simple autosomal dominant, autosomal recessive or X-linked recessive Mendelian mode of inheritance. Different corneal dystrophies are caused by mutations in the CHST6, KRT3, KRT12, PIP5K3, SLC4A11, TACSTD2, TGFBI, and UBIAD1 genes. Knowledge about the responsible genetic mutations responsible for these disorders has led to a better understanding of their basic defect and to molecular tests for their precise diagnosis. Genes for other corneal dystrophies have been mapped to specific chromosomal loci, but have not yet been identified. As clinical manifestations widely vary with the different entities, corneal dystrophies should be suspected when corneal transparency is lost or corneal opacities occur spontaneously, particularly in both corneas, and especially in the presence of a positive family history or in the offspring of consanguineous parents. Main differential diagnoses include various causes of monoclonal gammopathy, lecithin-cholesterol-acyltransferase deficiency, Fabry disease, cystinosis, tyrosine transaminase deficiency, systemic lysosomal storage diseases (mucopolysaccharidoses

  1. The corneal epithelial surface in the eyes of vertebrates: environmental and evolutionary influences on structure and function.

    PubMed

    Collin, Shaun P; Collin, H Barry

    2006-03-01

    The smooth optical surface of the cornea is maintained by a tear film, which adheres to a variety of microprojections. These microprojections increase the cell surface area and are thought to improve the movement of oxygen, nutrients, and metabolic products across the outer cell membranes. However, little is known of these structural adaptations in vertebrates inhabiting different environments. This field emission scanning electron microscopic study examined the cell density and surface structure of corneal epithelial cells across 51 representative species of all vertebrate classes from a large range of habitats (aquatic, amphibious, terrestrial, and aerial). In particular, we wished to extend the range of vertebrates to include agnathans and some uniquely Australian species, such as the Australian lungfish (Neoceratodus forsteri), the Australian galah (Eolophus roseicapillus), the Australian koala (Phascolarctos cinereus), and the rat-tailed dunnart (Sminthopsis crassicaudata). Epithelial cell densities ranged from 28,860 +/- 9,214 cells mm(-2) in the flathead sole Hippoglossoides elassodon (a marine teleost) to 2,126 +/- 713 cells mm(-2) in the Australian koala (a terrestrial mammal), which may indicate a reduction in osmotic stress across the corneal surface. A similar reduction in cell density occurred from marine to estuarine to freshwater species. The structure and occurrence of microholes, microplicae, microridges, and microvilli are also described with respect to the demands placed on the cornea in different environments. All species that spend significant periods out of an aquatic environment possess microvilli and/or microplicae. These include all of our species of Mammalia, Aves, Reptilia, Amphibia, and even one species of Teleostei (Australian lungfish). Well-developed microridges occur only in teleosts in high osmolarity environments such as marine or estuarine habitats. Clear interspecific differences in corneal surface structure suggest a degree of

  2. Surface Modification of PMMA to Improve Adhesion to Corneal Substitutes in a Synthetic Core-Skirt Keratoprosthesis.

    PubMed

    Riau, Andri K; Mondal, Debasish; Yam, Gary H F; Setiawan, Melina; Liedberg, Bo; Venkatraman, Subbu S; Mehta, Jodhbir S

    2015-10-01

    Patients with advanced corneal disease do poorly with conventional corneal transplantation and require a keratoprosthesis (KPro) for visual rehabilitation. The most widely used KPro is constructed using poly(methyl methacrylate) (PMMA) in the central optical core and a donor cornea as skirt material. In many cases, poor adherence between the PMMA and the soft corneal tissue is responsible for device "extrusion" and bacterial infiltration. The interfacial adhesion between the tissue and the PMMA was therefore critical to successful implantation and device longevity. In our approach, we modified the PMMA surface using oxygen plasma (plasma group); plasma followed by calcium phosphate (CaP) coating (p-CaP); dopamine followed by CaP coating (d-CaP); or plasma followed by coating with (3-aminopropyl)triethoxysilane (3-APTES). To create a synthetic KPro model, we constructed and attached 500 μm thick collagen type I hydrogel on the modified PMMA surfaces. Surface modifications produced significantly improved interfacial adhesion strength compared to untreated PMMA (p < 0.001). The p-CaP group yielded the best interfacial adhesion with the hydrogel (177 ± 27 mN/cm(2)) followed by d-CaP (168 ± 31 mN/cm(2)), 3-APTES (145 ± 12 mN/cm(2)), and plasma (119 ± 10 mN/cm(2)). Longer-term stability of the adhesion was achieved by d-CaP, which, after 14 and 28 days of incubation in phosphate buffered saline, yielded 164 ± 25 mN/cm(2) (p = 0.906 compared to adhesion at day 1) and 131 ± 20 mN/cm(2) (p = 0.053), respectively. In contrast, significant reduction of adhesion strength was observed in p-CaP group over time (p < 0.001). All surface coatings were biocompatible to human corneal stromal fibroblasts, except for the 3-APTES group, which showed no live cells at 72 h of culture. In contrast, cells on d-CaP surface showed good anchorage, evidenced by the expression of focal adhesion complex (paxillin and vinculin), and prominent filopodia protrusions. In conclusion, d-CaP can

  3. Substrates for Expansion of Corneal Endothelial Cells towards Bioengineering of Human Corneal Endothelium

    PubMed Central

    Navaratnam, Jesintha; Utheim, Tor P.; Rajasekhar, Vinagolu K.; Shahdadfar, Aboulghassem

    2015-01-01

    Corneal endothelium is a single layer of specialized cells that lines the posterior surface of cornea and maintains corneal hydration and corneal transparency essential for vision. Currently, transplantation is the only therapeutic option for diseases affecting the corneal endothelium. Transplantation of corneal endothelium, called endothelial keratoplasty, is widely used for corneal endothelial diseases. However, corneal transplantation is limited by global donor shortage. Therefore, there is a need to overcome the deficiency of sufficient donor corneal tissue. New approaches are being explored to engineer corneal tissues such that sufficient amount of corneal endothelium becomes available to offset the present shortage of functional cornea. Although human corneal endothelial cells have limited proliferative capacity in vivo, several laboratories have been successful in in vitro expansion of human corneal endothelial cells. Here we provide a comprehensive analysis of different substrates employed for in vitro cultivation of human corneal endothelial cells. Advances and emerging challenges with ex vivo cultured corneal endothelial layer for the ultimate goal of therapeutic replacement of dysfunctional corneal endothelium in humans with functional corneal endothelium are also presented. PMID:26378588

  4. Photographic-Based Optical Evaluation of Tissues and Biomaterials Used for Corneal Surface Repair: A New Easy-Applied Method

    PubMed Central

    Gonzalez-Andrades, Miguel; Cardona, Juan de la Cruz; Ionescu, Ana Maria; Mosse, Charles A.; Brown, Robert A.

    2015-01-01

    Purpose Tissues and biomaterials used for corneal surface repair require fulfilling specific optical standards prior to implantation in the patient. However, there is not a feasible evaluation method to be applied in clinical or Good Manufacturing Practice settings. In this study, we describe and assess an innovative easy-applied photographic-based method (PBM) for measuring functional optical blurring and transparency in corneal surface grafts. Methods Plastic compressed collagen scaffolds (PCCS) and multilayered amniotic membranes (AM) samples were optically and histologically evaluated. Transparency and image blurring measures were obtained by PBM, analyzing photographic images of a standardized band pattern taken through the samples. These measures were compared and correlated to those obtained applying the Inverse Adding-Doubling (IAD) technique, which is the gold standard method. Results All the samples used for optical evaluation by PBM or IAD were histological suitable. PCCS samples presented transmittance values higher than 60%, values that increased with increasing wavelength as determined by IAD. The PBM indicated that PCCS had a transparency ratio (TR) value of 80.3±2.8%, with a blurring index (BI) of 50.6±4.2%. TR and BI obtained from the PBM showed a high correlation (ρ>|0.6|) with the diffuse transmittance and the diffuse reflectance, both determined using the IAD (p<0.005). The AM optical properties showed that there was a largely linear relationship between the blurring and the number of amnion layers, with more layers producing greater blurring. Conclusions This innovative proposed method represents an easy-applied technique for evaluating transparency and blurriness of tissues and biomaterials used for corneal surface repair. PMID:26566050

  5. [Recent studies on corneal epithelial barrier function].

    PubMed

    Liu, F F; Li, W; Liu, Z G; Chen, W S

    2016-08-01

    Corneal epithelium, the outermost layer of eyeball, is the main route for foreign materials to enter the eye. Under physiological conditions, the corneal epithelial superficial cells form a functionally selective permeability barrier. Integral corneal epithelial barrier function not only ensures the enrolling of nutrients which is required for regular metabolism, but also prevents foreign bodies, or disease-causing microorganism invasion. Recently, a large number of clinical and experimental studies have shown that abnormal corneal epithelial barrier function is the pathological basis for many ocular diseases. In addition, some study found that corneal epithelial barrier constitutes a variety of proteins involved in cell proliferation, differentiation, apoptosis, and a series of physiological and pathological processes. This paper reviewed recent studies specifically on the corneal epithelial barrier, highlights of its structure, function and influence factors. (Chin J Ophthalmol, 2016, 52: 631-635). PMID:27562284

  6. Relationships between surface roughness/stiffness of chitosan coatings and fabrication of corneal keratocyte spheroids: Effect of degree of deacetylation.

    PubMed

    Chou, Shih-Feng; Lai, Jui-Yang; Cho, Ching-Hsien; Lee, Chih-Hung

    2016-06-01

    Fabrication of the cell spheroids from corneal keratocytes has important implications to the advance in tissue engineering while stimulation from the interface of a biopolymer coating has the ability to modulate this event. This study aims to investigate the dependence of keratocyte migration, proliferation, and differentiation on the surface roughness/stiffness of the chitosan coatings through modifications by degree of deacetylation (DD). After a series of deacetylation process, chitosan coatings with increasing DD exhibited significantly decreased surface roughness and increased surface stiffness. Relationships between the behaviors of rabbit corneal keratocytes (RCKs) and biopolymer coatings with varying DDs (between 75% and 96%) were also found during in vitro cultivation. Both the surface roughness increase and stiffness decrease could lead to enhanced cell migration, which is the main driving force for the early stage spheroid formation on chitosan substrates (e.g., within 8h). With these stimulations from the substrate interfaces, the size and morphology of RCK spheroids were greatly affected by the DD of chitosan. When fabricated on a lowered DD of chitosan material, the spheroids had a larger size with abundant extracellular matrix produced around the cells. At a later stage of spheroid cultivation (e.g., 5 days), significantly higher amount of RCKs on chitosan coatings was noted with increasing DD, indicating the substrate interface effects on cell proliferation. The keratocan expression of RCK spheroids grown on a lowered DD of chitosan was up-regulated, suggesting that both the surface roughness increase and stiffness decrease may facilitate the microenvironment for preservation of cellular phenotype. Overall, our work contributes to the scientific understanding of the keratocyte behaviors and spheroid fabrications in response to DD-mediated surface roughness/stiffness of chitosan coatings. PMID:26945162

  7. Corneal injury

    MedlinePlus

    ... as sand or dust Ultraviolet injuries: Caused by sunlight, sun lamps, snow or water reflections, or arc- ... a corneal injury if you: Are exposed to sunlight or artificial ultraviolet light for long periods of ...

  8. Corneal transplant

    MedlinePlus

    ... clear outer lens on the front of the eye. A corneal transplant is surgery to replace the cornea with tissue ... years. Rejection can sometimes be controlled with steroid eye drops. Other ... are: Bleeding Cataracts Infection of the eye Glaucoma ( ...

  9. Imaging, Reconstruction, And Display Of Corneal Topography

    NASA Astrophysics Data System (ADS)

    Klyce, Stephen D.; Wilson, Steven E.

    1989-12-01

    The cornea is the major refractive element in the eye; even minor surface distortions can produce a significant reduction in visual acuity. Standard clinical methods used to evaluate corneal shape include keratometry, which assumes the cornea is ellipsoidal in shape, and photokeratoscopy, which images a series of concentric light rings on the corneal surface. These methods fail to document many of the corneal distortions that can degrade visual acuity. Algorithms have been developed to reconstruct the three dimensional shape of the cornea from keratoscope images, and to present these data in the clinically useful display of color-coded contour maps of corneal surface power. This approach has been implemented on a new generation video keratoscope system (Computed Anatomy, Inc.) with rapid automatic digitization of the image rings by a rule-based approach. The system has found clinical use in the early diagnosis of corneal shape anomalies such as keratoconus and contact lens-induced corneal warpage, in the evaluation of cataract and corneal transplant procedures, and in the assessment of corneal refractive surgical procedures. Currently, ray tracing techniques are being used to correlate corneal surface topography with potential visual acuity in an effort to more fully understand the tolerances of corneal shape consistent with good vision and to help determine the site of dysfunction in the visually impaired.

  10. Measurement of corneal tangent modulus using ultrasound indentation.

    PubMed

    Wang, Li-Ke; Huang, Yan-Ping; Tian, Lei; Kee, Chea-Su; Zheng, Yong-Ping

    2016-09-01

    Biomechanical properties are potential information for the diagnosis of corneal pathologies. An ultrasound indentation probe consisting of a load cell and a miniature ultrasound transducer as indenter was developed to detect the force-indentation relationship of the cornea. The key idea was to utilize the ultrasound transducer to compress the cornea and to ultrasonically measure the corneal deformation with the eyeball overall displacement compensated. Twelve corneal silicone phantoms were fabricated with different stiffness for the validation of measurement with reference to an extension test. In addition, fifteen fresh porcine eyes were measured by the developed system in vitro. The tangent moduli of the corneal phantoms calculated using the ultrasound indentation data agreed well with the results from the tensile test of the corresponding phantom strips (R(2)=0.96). The mean tangent moduli of the porcine corneas measured by the proposed method were 0.089±0.026MPa at intraocular pressure (IOP) of 15mmHg and 0.220±0.053MPa at IOP of 30mmHg, respectively. The coefficient of variation (CV) and intraclass correlation coefficient (ICC) of tangent modulus were 14.4% and 0.765 at 15mmHg, and 8.6% and 0.870 at 30mmHg, respectively. The preliminary study showed that ultrasound indentation could be applied to the measurement of corneal tangent modulus with good repeatability and improved measurement accuracy compared to conventional surface displacement-based measurement method. The ultrasound indentation can be a potential tool for the corneal biomechanical properties measurement in vivo. PMID:27262352

  11. F 2 excimer laser (157 nm) radiation modification and surface ablation of PHEMA hydrogels and the effects on bioactivity: Surface attachment and proliferation of human corneal epithelial cells

    NASA Astrophysics Data System (ADS)

    Zainuddin; Chirila, Traian V.; Barnard, Zeke; Watson, Gregory S.; Toh, Chiong; Blakey, Idriss; Whittaker, Andrew K.; Hill, David J. T.

    2011-02-01

    Physical and chemical changes at the surface of poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels modified by ablation with an F 2 excimer laser were investigated experimentally. An important observation was that only the outer exposed surface layers of the hydrogel were affected by the exposure to 157 nm radiation. The effect of the surface changes on the tendency of cells to adhere to the PHEMA was also investigated. A 0.5 cm 2 area of the hydrogel surfaces was exposed to laser irradiation at 157 nm to fluences of 0.8 and 4 J cm -2. The changes in surface topography were analysed by light microscopy and atomic force microscopy, while the surface chemistry was characterized by attenuated total reflection infrared and X-ray photoelectron spectroscopies. Cell-interfacial interactions were examined based on the proliferation of human corneal limbal epithelial (HLE) cells cultured on the laser-modified hydrogels, and on the unexposed hydrogels and tissue culture plastic for comparison. It was observed that the surface topography of laser-exposed hydrogels showed rippled patterns with a surface roughness increasing at the higher exposure dose. The changes in surface chemistry were affected not only by an indirect effect of hydrogen and hydroxyl radicals, formed by water photolysis, on the PHEMA, but also by the direct action of laser radiation on PHEMA if the surface layers of the gel become depleted of water. The laser treatment led to a change in the surface characteristics, with a lower concentration of ester side-chains and the formation of new oxygenated species at the surface. The surface also became more hydrophobic. Most importantly, the surface chemistry and the newly created surface topographical features were able to improve the attachment, spreading and growth of HLE cells.

  12. The Impact of Type 1 Diabetes Mellitus on Corneal Epithelial Nerve Morphology and the Corneal Epithelium

    PubMed Central

    Cai, Daniel; Zhu, Meifang; Petroll, W. Matthew; Koppaka, Vindhya; Robertson, Danielle M.

    2015-01-01

    Diabetic corneal neuropathy can result in chronic, sight-threatening corneal pathology. Although the exact etiology is unknown, it is believed that a reduction in corneal sensitivity and loss of neurotrophic support contributes to corneal disease. Information regarding the relationship between nerve loss and effects on the corneal epithelium is limited. We investigated changes in the corneal epithelium and nerve morphology using three-dimensional imaging in vivo and in situ in a streptozotocin-induced diabetic mouse model. Streptozotocin-treated mice showed increased levels of serum glucose and growth retardation consistent with a severe diabetic state. A reduction in the length of the subbasal nerve plexus was evident after 6 weeks of disease. Loss of the subbasal nerve plexus was associated with corneal epithelial thinning and a reduction in basal epithelial cell density. In contrast, loss of the terminal epithelial nerves was associated with animal age. Importantly, this is the first rodent model of type 1 diabetes that shows characteristics of corneal epithelial thinning and a reduction in basal epithelial cell density, both previously have been documented in humans with diabetic corneal neuropathy. These findings indicate that in type 1 diabetes, nerve fiber damage is evident in the subbasal nerve plexus before terminal epithelial nerve loss and that neurotrophic support from both the subbasal nerve plexus and terminal epithelial nerves is essential for the maintenance of corneal epithelial homeostasis. PMID:25102563

  13. The impact of type 1 diabetes mellitus on corneal epithelial nerve morphology and the corneal epithelium.

    PubMed

    Cai, Daniel; Zhu, Meifang; Petroll, W Matthew; Koppaka, Vindhya; Robertson, Danielle M

    2014-10-01

    Diabetic corneal neuropathy can result in chronic, sight-threatening corneal pathology. Although the exact etiology is unknown, it is believed that a reduction in corneal sensitivity and loss of neurotrophic support contributes to corneal disease. Information regarding the relationship between nerve loss and effects on the corneal epithelium is limited. We investigated changes in the corneal epithelium and nerve morphology using three-dimensional imaging in vivo and in situ in a streptozotocin-induced diabetic mouse model. Streptozotocin-treated mice showed increased levels of serum glucose and growth retardation consistent with a severe diabetic state. A reduction in the length of the subbasal nerve plexus was evident after 6 weeks of disease. Loss of the subbasal nerve plexus was associated with corneal epithelial thinning and a reduction in basal epithelial cell density. In contrast, loss of the terminal epithelial nerves was associated with animal age. Importantly, this is the first rodent model of type 1 diabetes that shows characteristics of corneal epithelial thinning and a reduction in basal epithelial cell density, both previously have been documented in humans with diabetic corneal neuropathy. These findings indicate that in type 1 diabetes, nerve fiber damage is evident in the subbasal nerve plexus before terminal epithelial nerve loss and that neurotrophic support from both the subbasal nerve plexus and terminal epithelial nerves is essential for the maintenance of corneal epithelial homeostasis. PMID:25102563

  14. Proangiogenic role of ephrinB1/EphB1 in basic fibroblast growth factor-induced corneal angiogenesis.

    PubMed

    Kojima, Takashi; Chang, Jin-Hong; Azar, Dimitri T

    2007-02-01

    Corneal neovascularization is a vision-threatening condition caused by various ocular pathological conditions. The aim of this study was to evaluate the function of the ephrin ligands and Eph receptors in vitro and in vivo in corneal angiogenesis in a mouse model. The Eph tyrosine kinase receptors and their ligands, ephrins, are expressed on the cell surface. The functions of Eph and ephrins have been shown to regulate axonal guidance, segmentation, cell migration, and angiogenesis. Understanding the roles of Eph and ephrin in corneal angiogenesis may provide a therapeutic intervention for the treatment of angiogenesis-related disorders. Immunohistochemical studies demonstrated that ephrinB1 and EphB1 were expressed in basic fibroblast growth factor (bFGF)-induced vascularized corneas. EphB1 was specifically colocalized with vascular endothelial marker CD31 surrounded by type IV collagen. EphrinB1 was expressed in corneal-resident keratocytes and neutrophils. Recombinant ephrinB1-Fc, which induces EphB receptor activation, enhanced bFGF-induced tube formation in an in vitro aortic ring assay and promoted bFGF-induced corneal angiogenesis in vivo in a corneal pocket assay. Synergistically enhanced and sustained activation of extracellular signal-regulated kinase was noted in vascular endothelial cell lines after stimulation with ephrin B1 and bFGF combinations. These results suggest that ephrinB1 plays a synergistic role in corneal neovascularization. PMID:17255342

  15. Clinical correlates of common corneal neovascular diseases: a literature review

    PubMed Central

    Abdelfattah, Nizar Saleh; Amgad, Mohamed; Zayed, Amira A; Salem, Hamdy; Elkhanany, Ahmed E; Hussein, Heba; Abd El-Baky, Nawal

    2015-01-01

    A large subset of corneal pathologies involves the formation of new blood and lymph vessels (neovascularization), leading to compromised visual acuity. This article aims to review the clinical causes and presentations of corneal neovascularization (CNV) by examining the mechanisms behind common CNV-related corneal pathologies, with a particular focus on herpes simplex stromal keratitis, contact lenses-induced keratitis and CNV secondary to keratoplasty. Moreover, we reviewed CNV in the context of different types of corneal transplantation and keratoprosthesis, and summarized the most relevant treatments available so far. PMID:25709930

  16. [Transplantation of corneal endothelial cells].

    PubMed

    Amano, Shiro

    2002-12-01

    Though conventional corneal transplantation has achieved great success, it still has several drawbacks including limited availability of donor corneas, recurrent allograft rejection, and subsequent graft failure in certain cases. Reconstructing clinically usable corneas by applying the technology of regenerative medicine can offer a solution to these problems, as well as making corneal transplantation a non-emergency surgery and enabling the usage of banked corneal cells. In the present study, we focused on corneal endothelium that is critical for corneal transparency and investigated the reconstruction of cornea utilizing cultured human corneal endothelial cells (HCECs). We succeeded in steadily culturing HCECs by using culture dishes pre-coated with extracellular matrix produced by calf corneal endothelial cells and culture media that contained basic fibroblast growth factor and fetal bovine serum. We performed the following analysis utilizing these cultured HCECs. The older the donor was, the more frequently large senescent cells appeared in the passaged HCECs. The telomeres of HCECs were measured as terminal restriction fragments (TRF) by Southern blotting. HCECs, in vivo from donors in their seventies had a long TRFs of over 12 kilobases. Passaging shortened the TRFs but there was no difference in TRFs among donors of various ages. These results indicated that shortening of telomere length is not related to senescence of HCECs. We investigated the role of advanced glycation end products (AGEs) in the senescence of in vivo HCECs. The results indicated that AGE-protein in the aqueous humor is endocytosed into HCECs via AGE receptors expressed on the surface of HCECs and damages HCECs by producing reactive oxygen species and inducing apoptosis, suggesting that AGEs, at least partly, cause the senescence of HECEs. HCECs were cultured using adult human serum instead of bovine serum to get rid of bovine material that can be infected with prions. Primary and passage

  17. Intrastromal Corneal Ring Implants for Corneal Thinning Disorders

    PubMed Central

    2009-01-01

    Executive Summary Objective The purpose of this project was to determine the role of corneal implants in the management of corneal thinning disease conditions. An evidence-based review was conducted to determine the safety, effectiveness and durability of corneal implants for the management of corneal thinning disorders. The evolving directions of research in this area were also reviewed. Subject of the Evidence-Based Analysis The primary treatment objectives for corneal implants are to normalize corneal surface topography, improve contact lens tolerability, and restore visual acuity in order to delay or defer the need for corneal transplant. Implant placement is a minimally invasive procedure that is purported to be safe and effective. The procedure is also claimed to be adjustable, reversible, and both eyes can be treated at the same time. Further, implants do not limit the performance of subsequent surgical approaches or interfere with corneal transplant. The evidence for these claims is the focus of this review. The specific research questions for the evidence review were as follows: Safety Corneal Surface Topographic Effects: Effects on corneal surface remodelling Impact of these changes on subsequent interventions, particularly corneal transplantation (penetrating keratoplasty [PKP]) Visual Acuity Refractive Outcomes Visual Quality (Symptoms): such as contrast vision or decreased visual symptoms (halos, fluctuating vision) Contact lens tolerance Functional visual rehabilitation and quality of life Patient satisfaction: Disease Process: Impact on corneal thinning process Effect on delaying or deferring the need for corneal transplantation Clinical Need: Target Population and Condition Corneal ectasia (thinning) comprises a range of disorders involving either primary disease conditions such as keratoconus and pellucid marginal corneal degeneration or secondary iatrogenic conditions such as corneal thinning occurring after LASIK refractive surgery. The condition

  18. Corneal modeling for analysis of photorefractive keratectomy

    NASA Astrophysics Data System (ADS)

    Della Vecchia, Michael A.; Lamkin-Kennard, Kathleen

    1997-05-01

    Procedurally, excimer photorefractive keratectomy is based on the refractive correction of composite spherical and cylindrical ophthalmic errors of the entire eye. These refractive errors are inputted for correction at the corneal plane and for the properly controlled duration and location of laser energy. Topography is usually taken to correspondingly monitor spherical and cylindrical corneorefractive errors. While a corneal topographer provides surface morphologic information, the keratorefractive photoablation is based on the patient's spherical and cylindrical spectacle correction. Topography is at present not directly part of the procedural deterministic parameters. Examination of how corneal curvature at each of the keratometric reference loci affect the shape of the resultant corneal photoablated surface may enhance the accuracy of the desired correction. The objective of this study was to develop a methodology to utilize corneal topography for construction of models depicting pre- and post-operative keratomorphology for analysis of photorefractive keratectomy. Multiple types of models were developed then recreated in optical design software for examination of focal lengths and other optical characteristics. The corneal models were developed using data extracted from the TMS I corneal modeling system (Computed Anatomy, New York, NY). The TMS I does not allow for manipulation of data or differentiation of pre- and post-operative surfaces within its platform, thus models needed to be created for analysis. The data were imported into Matlab where 3D models, surface meshes, and contour plots were created. The data used to generate the models were pre- and post-operative curvatures, heights from the corneal apes, and x-y positions at 6400 locations on the corneal surface. Outlying non-contributory points were eliminated through statistical operations. Pre- and post- operative models were analyzed to obtain the resultant changes in the corneal surfaces during PRK

  19. Influence of corneal hydration on optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Twa, Michael D.; Vantipalli, Srilatha; Singh, Manmohan; Li, Jiasong; Larin, Kirill V.

    2016-03-01

    Corneal biomechanical properties are influenced by several factors, including intraocular pressure, corneal thickness, and viscoelastic responses. Corneal thickness is directly proportional to tissue hydration and can influence corneal stiffness, but there is no consensus on the magnitude or direction of this effect. We evaluated the influence of corneal hydration on dynamic surface deformation responses using optical coherence elastography (OCE). Fresh rabbit eyes (n=10) were prepared by removing the corneal epithelium and dropping with 0.9% saline every 5 minutes for 1 hour, followed by 20% dextran solution every 5 minutes for one hour. Corneal thickness was determined from structural OCT imaging and OCE measurements were performed at baseline and every 20 minutes thereafter. Micron-scale deformations were induced at the apex of the corneal tissue using a spatially-focused (150μm) short-duration (<1ms) air-pulse delivery system. These dynamic tissue responses were measured non-invasively with a phase-stabilized swept source OCT system. The tissue surface deformation response (Relaxation Rate: RR) was quantified as the time constant, over which stimulated tissue recovered from the maximum deformation amplitude. Elastic wave group velocity (GV) was also quantified and correlated with change in corneal thickness due to hydration process. Corneal thickness rapidly increased and remained constant following epithelium removal and changed little thereafter. Likewise, corneal stiffness changed little over the first hour and then decreased sharply after Dextran application (thickness: -46% [-315/682 μm] RR: - 24% [-0.7/2.88 ms-1]; GV: -19% [-0.6/3.2 m/s]). Corneal thickness and corneal stiffness (RR) were well correlated (R2 = .66). Corneal biomechanical properties are highly correlated with tissue hydration over a wide range of corneal thickness and these changes in corneal stiffness are quantifiable using OCE.

  20. Molecular Bases of Corneal Endothelial Dystrophies

    PubMed Central

    Schmedt, Thore; Silva, Mariana Mazzini; Ziaei, Alireza; Jurkunas, Ula

    2011-01-01

    The phrase “corneal endothelial dystrophies” embraces a group of bilateral corneal conditions that are characterized by a non-inflammatory and progressive degradation of corneal endothelium. Corneal endothelial cells exhibit a high pump site density and, along with barrier function, are responsible for maintaining the cornea in its natural state of relative dehydration. Gradual loss of endothelial cells leads to an insufficient water outflow, resulting in corneal edema and loss of vision. Since the pathologic mechanisms remain largely unknown, the only current treatment option is surgical transplantation when vision is severely impaired. In the past decade, important steps have been taken to understand how endothelial degeneration progresses on the molecular level. Studies of affected multigenerational families and sporadic cases identified genes and chromosomal loci, and revealed either Mendelian or complex disorder inheritance patterns. Mutations have been detected in genes that carry important structural, metabolic, cytoprotective, and regulatory functions in corneal endothelium. In addition to genetic predisposition, environmental factors like oxidative stress were found to be involved in the pathogenesis of endotheliopathies. This review summarizes and crosslinks the recent progress on deciphering the molecular bases of corneal endothelial dystrophies. PMID:21855542

  1. Corneal Abrasions and Corneal Foreign Bodies.

    PubMed

    Ahmed, Faheem; House, Robert James; Feldman, Brad Hal

    2015-09-01

    Corneal abrasions and corneal foreign bodies are frequently encountered ophthalmological injuries that are commonly diagnosed and managed by primary care physicians. The clinical course of a corneal epithelial defect can range from a relatively benign self-healing abrasion to a potentially sight-threatening complication such as a corneal ulcer, recurrent erosion, or traumatic iritis. A detailed clinical history regarding risk factors and exposure, along with a thorough slit lamp examination with fluorescein dye are essential for proper diagnosis and treatment, as well as to rule out penetrating globe injuries. Referral to an ophthalmologist is recommended in difficult cases or if other injuries are suspected. PMID:26319343

  2. [The cicatrization of corneal wounds].

    PubMed

    Spineanu, L

    1995-01-01

    The tissular mending of the corneal surface is the result of a complex series of various physiopathological responses. This structural regeneration involves a primary reconstruction and a secondary one. The primary reconstruction of the barrier function provides the restoring of the normal equilibrium of osmotic, thermal and metabolic exchanges. The primary cicatricial response's goal is the fast coating of the corneal plague and mainly involves an inflammatory response. The major stages of this initial sequence are: the migration of the polynuclear neutrophils into the plaque, the establishment of a fibrinous cork, the collapsing and then the migration of the epithelial cork, and the contraction of the keratocyte mesh. PMID:7577908

  3. Corneal neovascularization and biological therapy

    PubMed Central

    Voiculescu, OB; Voinea, LM; Alexandrescu, C

    2015-01-01

    Corneal avascularity is necessary for the preservation of optimal vision. The cornea maintains a dynamic balance between pro- and antiangiogenic factors that allows it to remain avascular under normal homeostatic conditions. Corneal neovascularization (NV) is a condition that can develop in response to inflammation, hypoxia, trauma, or limbal stem cell deficiency and it is a significant cause of blindness. New therapeutic options for diseases of the cornea and ocular surface are now being explored in experimental animals and clinical trials. Antibody based biologics are being tested for their ability to reduce blood and lymphatic vessel ingrowth into the cornea, and to reduce inflammation. Numerous studies have shown that biologics with specificity for VEGF A such as bevacizumab and ranibizumab (a recombinant antibody and an antibody fragment, respectively) or anti-tumor necrosis factor-α microantibody, are effective in the treatment of corneal neovascularization. PMID:26664467

  4. Corneal Foreign Body

    MedlinePlus

    ... Care Guidelines As with corneal abrasions and recurrent erosion of the cornea, self-care includes: Never rubbing ... can be found about corneal abrasions and recurrent erosion of the cornea in their respective diagnoses. When ...

  5. Distribution of Posterior Corneal Astigmatism According to Axis Orientation of Anterior Corneal Astigmatism

    PubMed Central

    Miyake, Toshiyuki; Shimizu, Kimiya; Kamiya, Kazutaka

    2015-01-01

    Purpose To investigate the distribution of posterior corneal astigmatism in eyes with with-the-rule (WTR) and against-the-rule (ATR) anterior corneal astigmatism. Methods We retrospectively examined six hundred eight eyes of 608 healthy subjects (275 men and 333 women; mean age ± standard deviation, 55.3 ± 20.2 years). The magnitude and axis orientation of anterior and posterior corneal astigmatism were determined with a rotating Scheimpflug system (Pentacam HR, Oculus) when we divided the subjects into WTR and ATR anterior corneal astigmatism groups. Results The mean magnitudes of anterior and posterior corneal astigmatism were 1.14 ± 0.76 diopters (D), and 0.37 ± 0.19 D, respectively. We found a significant correlation between the magnitudes of anterior and posterior corneal astigmatism (Pearson correlation coefficient r = 0.4739, P<0.001). In the WTR anterior astigmatism group, we found ATR astigmatism of the posterior corneal surface in 402 eyes (96.6%). In the ATR anterior astigmatism group, we found ATR posterior corneal astigmatism in 82 eyes (73.9%). Especially in eyes with ATR anterior corneal astigmatism of 1 D or more and 1.5 D or more, ATR posterior corneal astigmatism was found in 28 eyes (59.6%) and 9 eyes (42.9%), respectively. Conclusions WTR anterior astigmatism and ATR posterior astigmatism were found in approximately 68% and 91% of eyes, respectively. The magnitude and the axis orientation of posterior corneal astigmatism were not constant, especially in eyes having high ATR anterior corneal astigmatism, as is often the case in patients who have undergone toric IOL implantation. PMID:25625283

  6. Corneal Development: Different Cells from a Common Progenitor.

    PubMed

    Lwigale, Peter Y

    2015-01-01

    Development of the vertebrate cornea is a multistep process that involves cellular interactions between various ectodermal-derived tissues. Bilateral interactions between the neural ectoderm-derived optic vesicles and the cranial ectoderm give rise to the presumptive corneal epithelium and other epithelia of the ocular surface. Interactions between the neural tube and the adjacent ectoderm give rise to the neural crest cells, a highly migratory and multipotent cell population. Neural crest cells migrate between the lens and presumptive corneal epithelium to form the corneal endothelium and the stromal keratocytes. The sensory nerves that abundantly innervate the corneal stroma and epithelium originate from the neural crest- and ectodermal placode-derived trigeminal ganglion. Concomitant with corneal innervation is the formation of the limbal vascular plexus and the establishment of corneal avascularity. This review summarizes historical and current research to provide an overview of the genesis of the cellular layers of the cornea, corneal innervation, and avascularity. PMID:26310148

  7. Conjunctival and corneal sensitivity in patients under topical antiglaucoma treatment.

    PubMed

    Romero-Díaz de León, Lorena; Morales-León, Jorge-Emmanuel; Ledesma-Gil, Jasbeth; Navas, Alejandro

    2016-06-01

    The purpose of the study is to measure corneal and conjunctival sensitivity in patients under glaucoma topical treatment as compared to a control group. It is a case-control study. Corneal and conjunctival esthesiometry were carried out through a Cochet-Bonnet esthesiometer. We took healthy individuals as controls, who did not use any type of ophthalmic topical medications and without history of ocular surface pathology or irritation. The study group was subdivided per number of applications (1, 2, and 3 or more applications). From a total 182 eyes from 91 patients, of which 26 (28.57 %) were controls and 65 (71.43 %) were in the study group, a mean corneal sensitivity of 58.98 ± 2.25 mm was found in the control group and 52.97 ± 6.41 mm in patients using topical medication. Mean conjunctival sensitivity was 18.80 ± 5.40 mm in the control group and 11.76 ± 5.45 mm in the study group. There was no statistically significant difference among groups when separated by 1, 2, and 3 or more applications. Eyes under use of timolol-containing medications showed lower sensitivity values as compared to other topical antiglaucoma medications. Corneal and conjunctival sensitivities are diminished in patients with chronic use of topical hypotensive medications and these results can explain the lack of correlation between signs and symptoms that is typically found in patients treated for glaucoma or ocular hypertension. PMID:26272426

  8. First Identification of a Triple Corneal Dystrophy Association: Keratoconus, Epithelial Basement Membrane Corneal Dystrophy and Fuchs’ Endothelial Corneal Dystrophy

    PubMed Central

    Mazzotta, Cosimo; Traversi, Claudio; Raiskup, Frederik; Rizzo, Caterina Lo; Renieri, Alessandra

    2014-01-01

    Purpose To report the observation of a triple corneal dystrophy association consisting of keratoconus (KC), epithelial basement membrane corneal dystrophy (EBMCD) and Fuchs’ endothelial corneal dystrophy (FECD). Methods A 55-year-old male patient was referred to our cornea service for blurred vision and recurrent foreign body sensation. He reported bilateral recurrent corneal erosions with diurnal visual fluctuations. He underwent corneal biomicroscopy, Scheimpflug tomography, in vivo HRT confocal laser scanning microscopy and genetic testing for TGFBI and ZEB1 mutations using direct DNA sequencing. Results Biomicroscopic examination revealed the presence of subepithelial central and paracentral corneal opacities. The endothelium showed a bilateral flecked appearance, and the posterior corneal curvature suggested a possible concomitant ectatic disorder. Corneal tomography confirmed the presence of a stage II KC in both eyes. In vivo confocal laser scanning microscopy revealed a concomitant bilateral EBMCD with hyperreflective deposits in basal epithelial cells, subbasal Bowman's layer microfolds and ridges with truncated subbasal nerves as pseudodendritic elements. Stromal analysis revealed honeycomb edematous areas, and the endothelium showed a strawberry surface configuration typical of FECD. The genetic analysis resulted negative for TGFBI mutations and positive for a heterozygous mutation in exon 7 of the gene ZEB1. Conclusion This is the first case reported in the literature in which KC, EBMCD and FECD are present in the same patient and associated with ZEB1 gene mutation. The triple association was previously established by means of morphological analysis of the cornea using corneal Scheimpflug tomography and in vivo HRT II confocal laser scanning microscopy. PMID:25408666

  9. Confocal microscopy and electrophysiological study of single patient corneal endothelium cell cultures

    NASA Astrophysics Data System (ADS)

    Tatini, Francesca; Rossi, Francesca; Coppi, Elisabetta; Magni, Giada; Fusco, Irene; Menabuoni, Luca; Pedata, Felicita; Pugliese, Anna Maria; Pini, Roberto

    2016-04-01

    The characterization of the ion channels in corneal endothelial cells and the elucidation of their involvement in corneal pathologies would lead to the identification of new molecular target for pharmacological treatments and to the clarification of corneal physiology. The corneal endothelium is an amitotic cell monolayer with a major role in preserving corneal transparency and in regulating the water and solute flux across the posterior surface of the cornea. Although endothelial cells are non-excitable, they express a range of ion channels, such as voltage-dependent Na+ channels and K+ channels, L-type Ca2 channels and many others. Interestingly, purinergic receptors have been linked to a variety of conditions within the eye but their presence in the endothelium and their role in its pathophysiology is still uncertain. In this study, we were able to extract endothelial cells from single human corneas, thus obtaining primary cultures that represent the peculiarity of each donor. Corneas were from tissues not suitable for transplant in patients. We characterized the endothelial cells by confocal microscopy, both within the intact cornea and in the primary endothelial cells cultures. We also studied the functional role of the purinergic system (adenosine, ATP and their receptors) by means of electrophysiological recordings. The experiments were performed by patch clamp recordings and confocal time-lapse microscopy and our results indicate that the application of purinergic compounds modulates the amplitude of outward currents in the isolated endothelial cells. These findings may lead to the proposal of new therapies for endothelium-related corneal diseases.

  10. [Current treatments for corneal neovascularization].

    PubMed

    Benayoun, Y; Petellat, F; Leclerc, O; Dost, L; Dallaudière, B; Reddy, C; Robert, P-Y; Salomon, J-L

    2015-12-01

    The extension of blood vessels into the normally avascular stroma defines corneal neovascularization. Though this phenomenon, pathophysiological and clinical features are well characterized, therapeutic modalities have been hindered by a lack of safe, efficacious and non-controversial treatments. In this literature review, we focus on available therapeutic options in light of recent evidence provided by animal and clinical studies. First, this review will focus on pharmacological treatments that target angiogenesis. The low cost and market availability of bevacizumab make it the first anti-angiogenic therapy choice, and it has demonstrable efficacy in reducing corneal neovascularization when administered topically or subconjunctivally. However, novel anti-angiogenic molecules targeting the intracellular pathways of angiogenesis (siRNA, antisense oligonucleotides) provide a promising alternative. Laser therapy (direct photocoagulation or photo-dynamic therapy) and fine needle diathermy also find a place in the treatment of stabilized corneal neovascularization alone or in association with anti-angiogenic therapy. Additionally, ocular surface reconstruction using amniotic membrane graft or limbal stem cell transplantation is essential when corneal neovascularization is secondary to primary or acquired limbal deficiency. PMID:26522890

  11. Immunological aspects of corneal transplant.

    PubMed

    Kumar, Vijay; Kumar, Asha

    2014-01-01

    Corneal transplant is the most common solid tissue transplant in humans. Advances in microsurgical techniques, eye banking and the use of corticosteroids have improved the success of corneal transplants. Over 65,000 corneal transplants are being performed worldwide annually. Most of these transplants are performed in developed countries. Cornea is considered an immune privileged site. Despite this, immune mediated graft rejection is the most single cause of cornea graft failure and is one of the major postoperative complications. Incidences from as low as 2% to as high as 50% have been reported depending upon the degree of vascularization. Rejection involves donor tissue recognition and various factors may influence this rejection. Major factors include the antigenic load of the donor tissue; other factors include death to enucleation time, methods and temperature of preserving the tissue. Host factors that may impact the graft include ocular surface diseases such as dry eye, chemical burns and autoimmune diseases such as mucous membrane pemphigoid. Following infection, surgery or trauma, cells of the innate immune system invade the cornea as a result of up-regulation of cytokines, cellular adhesion molecules and growth and angiogenic factors. These factors results in neoangiogenesis and lymphoangiogenesis, leading to immune activation and graft rejection. The various immunological mechanisms that may play a role in the corneal transplant are discussed. PMID:25296240

  12. Host immune cellular reactions in corneal neovascularization

    PubMed Central

    Abdelfattah, Nizar S.; Amgad, Mohamed; Zayed, Amira A

    2016-01-01

    Corneal neovascularization (CNV) is a global important cause of visual impairment. The immune mechanisms leading to corneal heme- and lymphangiogenesis have been extensively studied over the past years as more attempts were made to develop better prophylactic and therapeutic measures. This article aims to discuss immune cells of particular relevance to CNV, with a focus on macrophages, Th17 cells, dendritic cells and the underlying immunology of common pathologies involving neovascularization of the cornea. Hopefully, a thorough understanding of these topics would propel the efforts to halt the detrimental effects of CNV. PMID:27162740

  13. Molecular mechanism of ocular surface damage: Application to an in vitro dry eye model on human corneal epithelium

    PubMed Central

    De Servi, Barbara; Marasco, Daniela; Del Prete, Salvatore

    2011-01-01

    Purpose The present study was concerned with the development of a new experimental model of dry eye using human reconstructed in vitro corneal epithelium (HCE). The model is based on the use of adapted culture conditions that induce relevant modifications at the cellular and molecular level thus mimicking dry eye. Methods The HCE model was maintained in a controlled environmental setting (relative humidity <40% and 40 °C temperature) for 24 h and up to 72 h to induce dry eye. The evolution of the dry eye condition was assessed by histology, immunohistochemistry staining, scanning electron microscopy, and gene expression by using TaqMan gene assay technology (mucin-4 [MUC4], matrix metallopeptidase-9 [MMP9], tumor necrosis factor-α [TNF-α], and defensin β-2 [DEFB2). The effects of different commercially available tear substitutes on the induced dry eye condition were tested. Results This in vitro dry eye HCE model, that was well established within 24 h, has the characteristic features of a dry eye epithelium and could be satisfactorily used for preliminary assessment of the protective activity of some artificial tears. The transcriptional study of selected biomarkers showed an increase in MUC4, MMP9, TNF-α, and hBD-2 (DEFB2) gene expression. Conclusions By using a dynamic approach, we were able to define a biomarker gene signature of dry eye-induced effects that could be predictive of corneal damage in vivo and to discriminate the efficacy among different commercial artificial tears. PMID:21245952

  14. Detection of ectatic corneal diseases based on pentacam.

    PubMed

    Lopes, Bernardo T; Ramos, Isaac C; Dawson, Daniel G; Belin, Michael W; Ambrósio, Renato

    2016-06-01

    Pentacam is a rotating Scheimpflug-based corneal and anterior segment tomographer that gives as comprehensive analysis of corneal 3D geometry. With this device the detection of mild keratoconus or ectasia susceptibility is possible. This is fundamental for screening ectasia risk prior to laser vision correction. The identification of susceptible cases at risk for developing progressive iatrogenic ectasia should go beyond (but not over) corneal front surface topography. PMID:26777318

  15. Corneal In Vivo Confocal Microscopy: Clinical Applications.

    PubMed

    You, Jae Young; Botelho, Paul J

    2016-01-01

    In vivo confocal microscopy (IVCM) has become a widely accepted imaging technique to study the human living cornea. It provides a unique opportunity to visualize the corneal tissue at the cellular level without damage and longitudinally observe its pathologic and normative changes. With rapidly evolving technology, there has been an abundance of interest in maximizing its potential to better understand the human cornea in health and disease. This is evidenced by a growing literature analyzing acquired and inherited corneal and also systemic diseases using corneal IVCM. This article provides a narrative review of IVCM and its applications. [Full article available at http://rimed.org/rimedicaljournal-2016-06.asp, free with no login]. PMID:27247970

  16. Acellular porcine corneal matrix as a carrier scaffold for cultivating human corneal epithelial cells and fibroblasts in vitro

    PubMed Central

    Zhang, Ju; Zhang, Can-Wei; Du, Li-Qun; Wu, Xin-Yi

    2016-01-01

    AIM To investigate the feasibility of corneal anterior lamellar reconstruction with human corneal epithelial cells and fibroblasts, and an acellular porcine cornea matrix (APCM) in vitro. METHODS The scaffold was prepared from fresh porcine corneas which were treated with 0.5% sodium dodecyl sulfate (SDS) solution and the complete removal of corneal cells was confirmed by hematoxylin-eosin (HE) staining and 4′, 6-diamidino-2-phenylindole (DAPI) staining. Human corneal fibroblasts and epithelial cells were cultured with leaching liquid extracted from APCM, and then cell proliferative ability was evaluated by MTT assay. To construct a human corneal anterior lamellar replacement, corneal fibroblasts were injected into the APCM and cultured for 3d, followed by culturing corneal epithelial cells on the stroma construction surface for another 10d. The corneal replacement was analyzed by HE staining, and immunofluorescence staining. RESULTS Histological examination indicated that there were no cells in the APCM by HE staining, and DAPI staining did not detect any residual DNA. The leaching liquid from APCM had little influence on the proliferation ability of human corneal fibroblasts and epithelial cells. At 10d, a continuous 3 to 5 layers of human corneal epithelial cells covering the surface of the APCM was observed, and the injected corneal fibroblasts distributed within the scaffold. The phenotype of the construction was similar to normal human corneas, with high expression of cytokeratin 12 in the epithelial cell layer and high expression of vimentin in the stroma. CONCLUSION Corneal anterior lamellar replacement can be reconstructed in vitro by cultivating human corneal epithelial cells and fibroblasts with an acellular porcine cornea matrix. This laid the foundation for the further transplantation in vivo. PMID:26949602

  17. [Cell-based therapies - an innovative therapeutic option in ophthalmology: Treating corneal diseases with stem cells].

    PubMed

    Bakker, Ann-Christin; Langer, Barbara

    2015-11-01

    Pathological changes and disorders of the cornea are a major cause of severe visual impairment and blindness. Replacement of a pathologically altered cornea with healthy corneal tissue from the eye of a suitable donor is among the most common and successful transplantation procedures in medicine. In Germany, approximately 5000-6000 corneal transplantations are performed each year, but the total demand per year is estimated to be twice as high. With a success rate of 90%, the outcome of cornea transplantation is very favourable. However, long-term maintenance and regeneration of a healthy new cornea requires tissue-specific corneal stem cells residing at the basal layer of the limbus, which is the annular transition zone between the cornea and sclera. When this important limbal stem cell population is destroyed or dysfunctional, a pathological condition known as limbal stem cell deficiency (LSCD) manifests. Limbal stem cell deficiency describes conditions associated with impaired corneal wound healing and regeneration. In this situation, transplantation of healthy limbal stem cells is the only curative treatment approach for restoration of an intact and functional ocular surface. To date, treatment of LSCD presents a great challenge for ophthalmologists. However, innovative, cell-therapeutic approaches may open new, promising treatment perspectives. In February 2015, the European Commission granted marketing authorization to the first stem cell-based treatment in the European Union. The product named Holoclar® is an advanced therapy medicinal product (ATMP) for the treatment of moderate to severe LSCD due to physical and chemical burns in adults. Further cell-based treatment approaches are in clinical development. PMID:26459569

  18. Fibrin glue-assisted for the treatment of corneal perforations using glycerin-cryopreserved corneal tissue

    PubMed Central

    Dong, Nuo; Li, Cheng; Chen, Wen-Sheng; Qin, Wen-Juan; Xue, Yu-Hua; Wu, Hu-Ping

    2014-01-01

    AIM To evaluate the outcomes and safety of lamellar keratoplasty (LK) assisted by fibrin glue in corneal perforations. METHODS Six eyes of 6 patients affected by different corneal pathologies (2 posttraumatic corneal scar and 3 bacterial keratitis) underwent LK procedures by using fibrin glue. The mean corneal perforation diameter was 1.35±0.64mm (range, 0.7-2.5mm), and the greatest diameter of the ulcerative stromal defect was 2.47±0.77mm in average (range, 1.5-3.5mm). The donor corneal lamella diameters were 0.20-mm larger and thicker than the recipient to restore a physiologic corneal thickness and shape: mean donor diameter was 8.34±0.28mm (range, 8.2-8.7mm) and mean thickness was 352±40.27mm (range, 220-400mm). Mean follow-up was 7.33±1.97 months (range, 6-11 months). Postoperatively, the graft status, graft clarity, anterior chamber response, the visual prognosis, intraocular pressures, and postoperative complications were recorded. RESULTS All the corneal perforations were successfully healed after the procedure. The best-corrected visual acuity (BCVA) ranged from 20/1 000 to 20/50 in their initial presentation, and from 20/100 to 20/20 in their last visit, showed increase in all the patients. No major complications such as graft dislocation and graft failure were noted. Neovascularization developed in the superficial stroma of donor graft in 1 case. High intraocular pressure developed on day 2 after surgery, while was remained in normal range after application of anti-glaucomatous eyedrops for 1 week in 1 case. CONCLUSION Fibrin glue-assisted sutureless LK is valuable for maintaining the ocular integrity in the treatment of corneal perforations. PMID:24634865

  19. Swept source OCT with air puff chamber for corneal dynamics measurements

    NASA Astrophysics Data System (ADS)

    Karnowski, Karol; Alonso-Caneiro, David; Kaluzny, Bartlomiej; Kowalczyk, Andrzej; Wojtkowski, Maciej

    2012-03-01

    None of currently used tonometers produce estimated IOP values that are free of errors. Measurement incredibility arises from indirect measurement of corneal deformation and the fact that pressure calculations are based on population averaged parameters of anterior segment. Reliable IOP values are crucial for understanding and monitoring of number of eye pathologies e.g. glaucoma. We have combined high speed swept source OCT with air-puff chamber. System provides direct measurement of deformation of cornea and anterior surface of the lens. This paper describes in details the performance of air-puff ssOCT instrument. We present different approaches of data presentation and analysis. Changes in deformation amplitude appears to be good indicator of IOP changes. However, it seems that in order to provide accurate intraocular pressure values an additional information on corneal biomechanics is necessary. We believe that such information could be extracted from data provided by air-puff ssOCT.

  20. In vivo corneal neovascularization imaging by optical-resolution photoacoustic microscopy

    PubMed Central

    Liu, Wenzhong; Schultz, Kathryn M.; Zhang, Kevin; Sasman, Amy; Gao, Fengli; Kume, Tsutomu; Zhang, Hao F.

    2014-01-01

    Corneal neovascularization leads to blurred vision, thus in vivo visualization is essential for pathological studies in animal models. Photoacoustic (PA) imaging can delineate microvasculature and hemodynamics noninvasively, which is suitable for investigating corneal neovascularization. In this study, we demonstrate in vivo imaging of corneal neovascularization in the mouse eye by optical-resolution photoacoustic microscopy (OR-PAM), where corneal neovascularization is induced by deliberate alkali burn injuries in C57BL6/J inbred mice corneas on the left eye. We used OR-PAM to image five mice with corneal alkali burn injuries; the uninjured eyes (right eye) in these mice are then used as the controls. Corneal images acquired by OR-PAM with and without alkali burn injury are compared, clear signs of corneal neovascularization are present in the OR-PAM images of injured eyes; the OR-PAM results are also confirmed by postmortem fluorescence-labeled confocal microscopy. PMID:25013754

  1. Corneal and conjunctival sensitivity in rosacea patients

    PubMed Central

    Örnek, Nurgül; Karabulut, Ayşe Anıl; Örnek, Kemal; Onaran, Zafer; Usta, Gülşah

    2015-01-01

    Purpose To assess corneal and conjunctival sensitivity in rosacea patients. Methods A total of 55 patients with rosacea and 37 control subjects participated in the study. Corneal and conjunctival sensitivity was determined by Cochet-Bonnet esthesiometer. Subjective symptoms of ocular dryness were evaluated using Ocular Surface Disease Index (OSDI). Schirmer’s I test (ST), tear breakup time (tBUT) and ocular surface staining with fluorescein were carried out to measure objective signs. Results The mean corneal and conjunctival sensitivity did not differ significantly between rosacea patients and controls (all p > 0.05). Schirmer’s I test and tBUT were significantly reduced (p = 0.004 for OD and p < 0.001 for OS) and grade of ocular surface staining was significantly high (p = 0.018 for OD and p = 0.038 for OS) in rosacea patients. Corneal and conjunctival sensitivity did not show significant correlation with ST, tBUT, ocular surface staining (Oxford Schema), duration of rosacea and OSDI score. Conclusions Corneal and conjunctival sensitivity did not change significantly in rosacea. PMID:26949355

  2. Corneal endothelium of the Magellanic penguin (Spheniscus magellanicus) by scanning electron microscopy.

    PubMed

    Pigatto, João A T; Laus, José L; Santos, Jaime M; Cerva, Cristine; Cunha, Luciana S; Ruoppolo, Valéria; Barros, Paulo S M

    2005-12-01

    The corneal endothelium is essential for the maintenance of the corneal transparency. The aim of this study was to examine the morphology of the endothelial surface and perform morphometric analysis of the normal corneal endothelial cells of the Magellanic penguin (Spheniscus magellanicus) using scanning electron microscopy. The present work demonstrates that the corneal endothelium of the Magellanic penguin is similar to those described in other vertebrates. PMID:17312730

  3. Partial-thickness corneal tissue restoration after a chemical burn

    PubMed Central

    Galan, Alessandro; Catania, Anton Giulio; Giudice, Giuseppe Lo

    2016-01-01

    Purpose We describe a case of full-thickness corneal restoration after an acute corneal burn with an acid agent. Methods A 32-year-old male reported painful discomfort, redness, photophobia, and a decrease in visual acuity in the left eye after a unilateral burn with an acid agent. Slit-lamp examination revealed massive corneal melting involving necrotic sequestrum of the entire corneal surface. Surgical approach was carried out in order to preserve residual ocular tissues. Results Extensive corneal–conjunctival layer curettage of the necrotic tissue was performed showing perfectly clear undamaged deep lamellar corneal layers. The patient underwent multilayered amniotic membrane transplantation and total capsular–conjunctival flap in order to preserve ocular tissue from further melting or corneal perforation. A complete and spontaneous “restitutio ad integrum” of the corneal layers was shown during the follow-up. The cornea was perfectly clear with restored normal anatomical architecture. Conclusion In this case, a spontaneous full-thickness corneal tissue restoration occurred after an acute chemical burn. Studies about the mechanisms whereby different cells interact and replicate within the stroma may unveil the biology behind corneal regeneration and transparency. PMID:27194918

  4. Corneal blindness and xenotransplantation.

    PubMed

    Lamm, Vladimir; Hara, Hidetaka; Mammen, Alex; Dhaliwal, Deepinder; Cooper, David K C

    2014-01-01

    Approximately 39 million people are blind worldwide, with an estimated 285 million visually impaired. The developing world shoulders 90% of the world's blindness, with 80% of causative diseases being preventable or treatable. Blindness has a major detrimental impact on the patient, community, and healthcare spending. Corneal diseases are significant causes of blindness, affecting at least 4 million people worldwide. The prevalence of corneal disease varies between parts of the world. Trachoma, for instance, is the second leading cause of blindness in Africa, after cataracts, but is rarely found today in developed nations. When preventive strategies have failed, corneal transplantation is the most effective treatment for advanced corneal disease. The major surgical techniques for corneal transplantation include penetrating keratoplasty (PK), anterior lamellar keratoplasty, and endothelial keratoplasty (EK). Indications for corneal transplantation vary between countries, with Fuchs' dystrophy being the leading indication in the USA and keratoconus in Australia. With the exception of the USA, where EK will soon overtake PK as the most common surgical procedure, PK is the overwhelming procedure of choice. Success using corneal grafts in developing nations, such as Nepal, demonstrates the feasibility of corneal transplantation on a global scale. The number of suitable corneas from deceased human donors that becomes available will never be sufficient, and so research into various alternatives, for example stem cells, amniotic membrane transplantation, synthetic and biosynthetic corneas, and xenotransplantation, is progressing. While each of these has potential, we suggest that xenotransplantation holds the greatest potential for a corneal replacement. With the increasing availability of genetically engineered pigs, pig corneas may alleviate the global shortage of corneas in the near future. PMID:25268248

  5. Transverse depth-dependent changes in corneal collagen lamellar orientation and distribution

    PubMed Central

    Abass, Ahmed; Hayes, Sally; White, Nick; Sorensen, Thomas; Meek, Keith M.

    2015-01-01

    It is thought that corneal surface topography may be stabilized by the angular orientation of out-of plane lamellae that insert into the anterior limiting membrane. In this study, micro-focus X-ray scattering data were used to obtain quantitative information about lamellar inclination (with respect to the corneal surface) and the X-ray scatter intensity throughout the depth of the cornea from the centre to the temporal limbus. The average collagen inclination remained predominantly parallel to the tissue surface at all depths. However, in the central cornea, the spread of inclination angles was greatest in the anterior-most stroma (reflecting the increased lamellar interweaving in this region), and decreased with tissue depth; in the peripheral cornea inclination angles showed less variation throughout the tissue thickness. Inclination angles in the deeper stroma were generally higher in the peripheral cornea, suggesting the presence of more interweaving in the posterior stroma away from the central cornea. An increase in collagen X-ray scatter was identified in a region extending from the sclera anteriorly until about 2 mm from the corneal centre. This could arise from the presence of larger diameter fibrils, probably of scleral origin, which are known to exist in this region. Incorporation of this quantitative information into finite-element models will further improve the accuracy with which they can predict the biomechanical response of the cornea to pathology and refractive procedures. PMID:25631562

  6. Transverse depth-dependent changes in corneal collagen lamellar orientation and distribution.

    PubMed

    Abass, Ahmed; Hayes, Sally; White, Nick; Sorensen, Thomas; Meek, Keith M

    2015-03-01

    It is thought that corneal surface topography may be stabilized by the angular orientation of out-of plane lamellae that insert into the anterior limiting membrane. In this study, micro-focus X-ray scattering data were used to obtain quantitative information about lamellar inclination (with respect to the corneal surface) and the X-ray scatter intensity throughout the depth of the cornea from the centre to the temporal limbus. The average collagen inclination remained predominantly parallel to the tissue surface at all depths. However, in the central cornea, the spread of inclination angles was greatest in the anterior-most stroma (reflecting the increased lamellar interweaving in this region), and decreased with tissue depth; in the peripheral cornea inclination angles showed less variation throughout the tissue thickness. Inclination angles in the deeper stroma were generally higher in the peripheral cornea, suggesting the presence of more interweaving in the posterior stroma away from the central cornea. An increase in collagen X-ray scatter was identified in a region extending from the sclera anteriorly until about 2 mm from the corneal centre. This could arise from the presence of larger diameter fibrils, probably of scleral origin, which are known to exist in this region. Incorporation of this quantitative information into finite-element models will further improve the accuracy with which they can predict the biomechanical response of the cornea to pathology and refractive procedures. PMID:25631562

  7. Donor corneal tissue evaluation.

    PubMed

    Saini, J S; Reddy, M K; Sharma, S; Wagh, S

    1996-03-01

    Proper evaluation of donor cornea is critical to the success of corneal transplantation. Attention must be paid to the cause of death and ocular condition as several general and ocular diseases constitute contraindications for donor corneal usage. Death to enucleation time should be noted. Gross examination and slit lamp biomicroscopy are mandatory for the evaluation of the donor eye while specular microscopy adds another useful dimension to information regarding donor cornea. This article provides a comprehensive review of all the aspects of donor corneal evaluation as practised today worldwide. PMID:8828299

  8. Soybean agglutinin binding to corneal endothelial cell surfaces disrupts in situ monolayer integrity and actin organization and interferes with wound repair.

    PubMed

    Gordon, Sheldon R; Wood, Meredith

    2009-03-01

    Rat corneal endothelium demonstrates cell-surface soybean agglutinin (SBA) binding during organ-culture or injury. When organ-cultured in medium containing SBA, the endothelial monolayer is disrupted because of cell-cell and cell-matrix alterations. SBA binding disorganizes the circumferential microfilament bundles (CMBs), an effect that is partially prevented by phallacidin preincubation. This disruption is reversible if tissues are returned to standard culture medium. Serum heightens SBA binding, whereas puromycin prevents it. Neither actinomycin D nor alpha-amanitin inhibits SBA binding, suggesting that SBA-binding protein(s) may be post-transcriptionally regulated. During injury-induced cell migration in the presence of SBA, cellular processes are blunted and fail to extend significantly outward. By 72 h post-injury, cells of SBA-treated tissues repopulate the wound but demonstrate little association with neighboring cells. Cells migrating in the presence of N-acetylgalactosamine appear normal but also fail to reassociate with other cells in the jury zone. Immunofluorescent staining for ZO-1 reveals punctuate patterns in cells of control tissues, whereas neither SBA- nor N-acetylgalactosamine-treated tissues exhibit ZO-1 staining. Terminal N-acetylgalactosamine removal fails to affect cell morphology, actin organization, or migration but prevents lectin binding. Our results suggest that SBA binding reflects the synthesis of a stress-induced protein(s) that may play a role in reestablishing cell-cell relationships during monolayer reorganization following injury. PMID:19145448

  9. Corneal cross-linking.

    PubMed

    Randleman, J Bradley; Khandelwal, Sumitra S; Hafezi, Farhad

    2015-01-01

    Since its inception in the late 1990s, corneal cross-linking has grown from an interesting concept to a primary treatment for corneal ectatic disease worldwide. Using a combination of ultraviolet-A light and a chromophore (vitamin B2, riboflavin), the cornea can be stiffened, usually with a single application, and progressive thinning diseases such as keratoconus arrested. Despite being in clinical use for many years, some of the underlying processes, such as the role of oxygen and the optimal treatment times, are still being worked out. More than a treatment technique, corneal cross-links represent a physiological principle of connective tissue, which may explain the enormous versatility of the method. We highlight the history of corneal cross-linking, the scientific underpinnings of current techniques, evolving clinical treatment parameters, and the use of cross-linking in combination with refractive surgery and for the treatment of infectious keratitis. PMID:25980780

  10. Importance of Corneal Thickness

    MedlinePlus

    ... News About Us Donate In This Section The Importance of Corneal Thickness email Send this article to ... is important because it can mask an accurate reading of eye pressure, causing doctors to treat you ...

  11. Refractive corneal surgery - discharge

    MedlinePlus

    Nearsightedness surgery - discharge; Refractive surgery - discharge; LASIK - discharge; PRK - discharge ... You had refractive corneal surgery to help improve your vision. This surgery uses a laser to reshape your cornea. It corrects ...

  12. Novel Therapy to Treat Corneal Epithelial Defects: A Hypothesis with Growth Hormone.

    PubMed

    Wirostko, Barbara; Rafii, MaryJane; Sullivan, David A; Morelli, Julia; Ding, Juan

    2015-07-01

    Impaired corneal wound healing that occurs with ocular surface disease, trauma, systemic disease, or surgical intervention can lead to persistent corneal epithelial defects (PCED), which result in corneal scarring, ulceration, opacification, corneal neovascularization, and, ultimately, visual compromise and vision loss. The current standard of care can include lubricants, ointments, bandage lenses, amniotic membranes, autologous serum eye drops, and corneal transplants. Various inherent problems exist with application and administration of these treatments, which often may not result in a completely healed surface. A topically applicable compound capable of promoting corneal epithelial cell proliferation and/or migration would be ideal to accelerate healing. We hypothesize that human growth hormone (HGH) is such a compound. In a recent study, HGH was shown to activate signal transducer and activators of transcription-5 (STAT5) signaling and promote corneal wound healing by enhancing corneal epithelial migration in a co-culture system of corneal epithelial cells and fibroblasts. These effects require an intact communication between corneal epithelia and fibroblasts. Further, HGH promotes corneal wound healing in a rabbit debridement model, thus demonstrating the effectiveness of HGH in vivo as well. In conclusion, HGH may represent an exciting and effective topical therapeutic to promote corneal wound healing. PMID:26045234

  13. Effects of diabetic keratopathy on corneal optical density, central corneal thickness, and corneal endothelial cell counts

    PubMed Central

    Gao, Feng; Lin, Tao; Pan, Yingzhe

    2016-01-01

    Diabetic keratopathy is an ocular complication that occurs with diabetes. In the present study, the effect of diabetic keratopathy on corneal optical density, central corneal thickness, and corneal endothelial cell count was investigated. One hundred and eighty diabetic patients (360 eyes) were enrolled in the study during the period from March, 2012 to March, 2013. The patients were divided into three age groups: <5, 5–10 and >10 years, with 60 patients per group (120 eyes). During the same period, 60 healthy cases (120 eyes) were selected and labeled as the normal control group. The Pentacam was used to measure the corneal optical density, and central corneal thickness. Specular microscopy was used to examine the corneal endothelial cell density. The coefficient of partial correlation was used to control age and correlate the analysis between the corneal optical density, corneal endothelial cell density, and central corneal thickness. The stage of the disease, the medial and intimal corneal optical density and central corneal thickness was analyzed in the diabetes group. The corneal optical density in the diabetes group increased compared with that of the normal control group. The medial and intimal corneal optical density and central corneal thickness were positively correlated with the course of the disease. However, the corneal endothelial cell density was not associated with the course of diabetes. There was a positive association between the medial and intimal corneal optical density and central corneal thickness of the diabetic patients. In conclusion, the results of the present study show that medial and intimal corneal optical density and central corneal thickness were sensitive indicators for early diabetic keratopathy.

  14. Changes in corneal collagen induced by holmium:YAG laser irradiation

    NASA Astrophysics Data System (ADS)

    Timberlake, George T.; Reinke, Martin H.; Miller, Alvin

    1996-05-01

    Holmium:YAG laser thermokeratoplasty corrects hyperopia (farsightedness) by producing small areas of corneal collagen shrinkage that cause the central cornea to bulge outward, increasing optical power. Collagen shrinkage is probably caused by laser-heated corneal water, but details of the shrinkage mechanism are not known. We investigated the shrinkage mechanism by measuring changes in corneal ultrastructure, surface shrinkage, water content, and strength following Ho:YAG laser exposures. Morphological changes in collagen were documented by measurements from electron micrographs. Corneal adhesive strength was determined by measuring tearing force in a plane parallel to the corneal surface. Laser-induced water loss was measured by weighing corneal samples before and after exposure. Corneal surface shrinkage was assessed by photographing the movement of particles on the cornea. Lasered collagen fibrils increased in diameter, lost their orderly arrangement, and appeared `frayed.' The corneal surface contracted toward lasered areas with a maximal shift of approximately 190 micrometers , more than could be explained by a model based on collagen fibril changes. Water loss plays a minor role in corneal shrinkage since corneal samples lost about only about 1.4% of their weight after massive laser exposure. Despite marked changes in collagen structure, corneal adhesive force was unchanged.

  15. Distributed scanning volumetric SDOCT for motion corrected corneal biometry

    PubMed Central

    McNabb, Ryan P.; LaRocca, Francesco; Farsiu, Sina; Kuo, Anthony N.; Izatt, Joseph A.

    2012-01-01

    We present a method, termed distributed scanning OCT (DSOCT), which reduces the effects of patient motion on corneal biometry utilizing current-generation clinically available spectral domain optical coherence tomography (SDOCT) systems. We first performed a pilot study of the power spectrum of normal patient axial eye motion based on repeated (M-mode) SDOCT. Using DSOCT to reduce the effects of patient motion, we conducted a preliminary patient study comparing the measured anterior and posterior corneal curvatures and the calculated corneal power to both corneal topography and Scheimpflug photography in normal subjects. The repeatability for the measured radius of curvature of both anterior and posterior surfaces as well as calculated corneal refractive power using DSOCT was comparable to those of both topography and Scheimpflug photography. PMID:23024900

  16. Clinical aspects of corneal trachoma.

    PubMed Central

    Hosni, F A

    1978-01-01

    Classification of trachoma by site rather than density of opacities is better related to visual prognosis and helps in selection for graft surgery. The cases are divided into 3 groups: peripheral corneal opacities, central corneal opacities, and diffuse corneal opacities (ground-glass cornea). A central lesion has the poorest prognosis, especially in children. PMID:638107

  17. Automatic analysis of the corneal ulcer

    NASA Astrophysics Data System (ADS)

    Ventura, Liliane; Chiaradia, Caio; Faria de Sousa, Sidney J.

    1999-06-01

    A very common disease in agricultural countries is the corneal ulcer. Particularly in the public hospitals, several patients come every week presenting this kind of pathology. One of the most important features to diagnose the regression of the disease is the determination of the vanishing of the affected area. An automatic system (optical system and software), attached to a Slit Lamp, has been developed to determine automatically the area of the ulcer and to follow up its regression. The clinical procedure to isolate the ulcer is still done, but the measuring time is fast enough to not cause discomfort to the patient as the traditional evaluation does. The system has been used in the last 6 months in a hospital that has about 80 patients per week presenting corneal ulcer. The patients follow up (which is an indispensable criteria for the cure of the disease) has been improved by the system and has guaranteed the treatment success.

  18. OCT corneal topography within ¼ diopter in the presence of saccadic eye movements

    NASA Astrophysics Data System (ADS)

    Sayegh, Samir I.

    2013-03-01

    Refractive surgeons and cataract surgeons need accurate measurements of corneal curvature/power. Increased expectations of patients, the increasing number of patients having undergone prior surgeries and patients with corneal pathologies dictate the need for reliable curvature measurements to enhance the predictability and the quality of surgical outcomes. Eye movements can negatively influence these measurements. We present a model of eye movements based on peak saccade velocities and formulate criteria for obtaining OCT topography within ¼ of a diopter. Using these criteria we illustrate how next generation MHz systems will allow full corneal OCT topography in both healthy and pathological corneas

  19. Riboflavin concentration in corneal stroma after intracameral injection

    PubMed Central

    Li, Na; Peng, Xiu-Jun; Fan, Zheng-Jun; Pang, Xu; Xia, Yu; Wu, Teng-Fei

    2015-01-01

    AIM To evaluate the enrichment of riboflavin in the corneal stroma after intracameral injection to research the barrier ability of the corneal endothelium to riboflavin in vivo. METHODS The right eyes of 30 New Zealand white rabbits were divided into three groups. Different concentrations riboflavin-balanced salt solutions (BSS) were injected into the anterior chamber (10 with 0.5%, 10 with 1%, and 10 with 2%). Eight corneal buttons of 8.5 mm in diameter from each group were dissected at 30min after injection and the riboflavin concentrations in the corneal stroma were determined using high-performance liquid chromatography (HPLC) after removing the epithelium and endothelium. The other two rabbits in every group were observed for 24h and sacrificed. As a comparison, the riboflavin concentrations from 16 corneal stromal samples were determined using HPLC after instillation of 0.1% riboflavin-BSS solution for 30min on the corneal surface (8 without epithelium and 8 with intact epithelium). RESULTS The mean riboflavin concentrations were 11.19, 18.97, 25.08, 20.18, and 1.13 µg/g for 0.5%, 1%, 2%, de-epithelialzed samples, and the transepithelial groups, respectively. The color change of the corneal stroma and the HPLC results showed that enrichment with riboflavin similar to classical de-epithelialized corneal collagen crosslinking (CXL) could be achieved by intracameral 1% riboflavin-BSS solution after 30min; the effect appeared to be continuous for at least 30min. CONCLUSION Riboflavin can effectively penetrate the corneal stroma through the endothelium after an intracameral injection in vivo, so it could be an enhancing method that could improve the corneal riboflavin concentration in transepithelial CXL. PMID:26085993

  20. Advances in corneal preservation.

    PubMed Central

    Lindstrom, R L

    1990-01-01

    The functional status of the endothelium and sustained corneal deturgescence after corneal preservation are of great clinical importance and have been primary goals in the development of corneal storage media. In our investigational studies we have specifically addressed the improvement of the quality of donor tissue after 4 degrees C storage, the extension of corneal preservation time, the enhancement of corneal wound healing, and the reduction of the normal progressive loss of endothelial cells postkeratoplasty. Specifically we have developed in vitro HCE cell and epithelial cell culture models that can accurately reflect the response of human corneal tissue in vivo. These models have been utilized to study the effects of growth factors and medium components in relation to their biocompatibility and efficacy in the development of improved corneal preservation solutions. Our laboratory investigated in vitro conditions that allowed human corneal endothelium to shift from a nonproliferative state, in which they remain viable and metabolically active, to a proliferative, mitotically active state. Isolation techniques developed in our laboratory have enabled the establishment of primary and subsequent subcultures of human corneal endothelium that retain the attributes of native endothelium. These in vitro conditions maintain HCE cells in a proliferative state, actively undergoing mitosis. A quantitative bioassay has been developed to determine the effects of various test medium in the stimulation or inhibition of DNA synthesis. In attempting to learn more about the events that occur during in vitro endothelial cell isolation, cell reattachment, extracellular matrix interaction and migrating during subculture, SEM was done on isolated HCE cells incubated in CSM. These studies suggest that the components of the extracellular matrix modulate the growth response of HCE cells, and play a role in regulating proliferation and migration. These observations are important in

  1. Immune Privilege of Corneal Allografts

    PubMed Central

    Niederkorn, Jerry Y.; Larkin, D. Frank P.

    2013-01-01

    Corneal transplantation has been performed successfully for over 100 years. Normally, HLA typing and systemic immunosuppressive drugs are not utilized, yet 90% of corneal allografts survive. In rodents, corneal allografts representing maximal histoincompatibility enjoy >50% survival even without immunosuppressive drugs. By contrast, other categories of transplants are invariably rejected in such donor/host combinations. The acceptance of corneal allografts compared to other categories of allografts is called immune privilege. The cornea expresses factors that contribute to immune privilege by preventing the induction and expression of immune responses to histocompatibility antigens on the corneal allograft. Among these are soluble and cell membrane molecules that block immune effector elements and also apoptosis of T lymphocytes. However, some conditions rob the corneal allograft of its immune privilege and promote rejection, which remains the leading cause of corneal allograft failure. Recent studies have examined new strategies for restoring immune privilege to such high-risk hosts. PMID:20482389

  2. Designing multifocal corneal models to correct presbyopia by laser ablation

    NASA Astrophysics Data System (ADS)

    Alarcón, Aixa; Anera, Rosario G.; Del Barco, Luis Jiménez; Jiménez, José R.

    2012-01-01

    Two multifocal corneal models and an aspheric model designed to correct presbyopia by corneal photoablation were evaluated. The design of each model was optimized to achieve the best visual quality possible for both near and distance vision. In addition, we evaluated the effect of myosis and pupil decentration on visual quality. The corrected model with the central zone for near vision provides better results since it requires less ablated corneal surface area, permits higher addition values, presents stabler visual quality with pupil-size variations and lower high-order aberrations.

  3. Testing photogrammetry-based techniques for three-dimensional surface documentation in forensic pathology.

    PubMed

    Urbanová, Petra; Hejna, Petr; Jurda, Mikoláš

    2015-05-01

    produced high-resolution photorealistic, real sized or easy to calibrate 3D surface models. Both methods equally failed when the scanned body surface was covered with body hair or reflective moist areas. Still, it can be concluded that single camera close range photogrammetry and optical surface scanning using Vectra H1 scanner represent relatively low-cost solutions which were shown to be beneficial for postmortem body documentation in forensic pathology. PMID:25818581

  4. Spontaneous Corneal Hydrops in a Patient with a Corneal Ulcer

    PubMed Central

    Batawi, Hatim; Kothari, Nikisha; Camp, Andrew; Bernhard, Luis; Karp, Carol L.; Galor, Anat

    2016-01-01

    Purpose We report the case of a 77-year-old man with no history of keratoconus or other ectatic disorders who presented with corneal hydrops in the setting of a corneal ulcer. The risk factors, pathogenesis and treatment options of corneal hydrops are discussed. Method This is an observational case report study. Results A 77-year-old man presented with a 1-day history of severe pain, redness, mucous discharge and photophobia in the right eye. A slit-lamp examination of the right eye showed an area of focal corneal edema and protrusion. Within the area of edema and protrusion, there was an infiltrate with an overlying epithelial defect consistent with an infectious corneal ulcer. The Seidel test showed no leakage, so a clinical diagnosis of corneal hydrops associated with nonperforated corneal ulcer was made. With appropriate antibiotic treatment, the corneal ulcer and hydrops both resolved over a 1-month period. Conclusion Corneal hydrops can occur in the setting of corneal infections. PMID:26889160

  5. Diabetic corneal neuropathy.

    PubMed Central

    Schultz, R O; Peters, M A; Sobocinski, K; Nassif, K; Schultz, K J

    1983-01-01

    Corneal epithelial lesions can be found in approximately one-half of asymptomatic patients with diabetes mellitus. These lesions are transient and clinically resemble the keratopathy seen in staphylococcal keratoconjunctivitis. Staphylococcal organisms, however, can be isolated in equal percentages from diabetic patients without keratopathy. Diabetic peripheral neuropathy was found to be related to the presence of diabetic keratopathy after adjusting for age with analysis of covariance. The strongest predictor of both keratopathy and corneal fluorescein staining was vibration perception threshold in the toes (P less than 0.01); and the severity of keratopathy was directly related to the degree of diminution of peripheral sensation. Other predictors of keratopathy were: reduced tear breakup time (P less than 0.03), type of diabetes (P less than 0.01), and metabolic status as indicated by c-peptide fasting (P less than 0.01). No significant relationships were found between the presence of keratopathy and tear glucose levels, endothelial cell densities, corneal thickness measurements, the presence of S epidermidis, or with duration of disease. It is our conclusion that asymptomatic epithelial lesions in the nontraumatized diabetic cornea can occur as a manifestation of generalized polyneuropathy and probably represent a specific form of corneal neuropathy. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:6676964

  6. Characteristics of corneal lens chitin in dragonfly compound eyes.

    PubMed

    Kaya, Murat; Sargin, Idris; Al-Jaf, Ivan; Erdogan, Sevil; Arslan, Gulsin

    2016-08-01

    Chitin in the compound eyes of arthropods serves as a part of the visual system. The quality of chitin in such highly specialised body parts deserves more detailed examination. Chitin in the corneal (ommatidial) lenses of dragonfly (Sympetrum fonscolombii) compound eyes was isolated by using the classical chemical method. The chitin content of the corneal lenses was determined to be quite high (20.3±0.85%). The FT-IR analysis showed that corneal lens chitin was in the α-form as found in all arthropod species where mechanical strength is required. The surface morphology analysis by scanning electron microscopy revealed that the outer part of corneal lenses consisted of long chitin fibrils with regular arrays of papillary structures while the smoother inner part had concentric lamellated chitin formation with shorter chitin nanofibrils. Chitinase enzymatic digestion studies, elemental analysis results and the degree of acetylation value showed the purity of chitin samples from corneal lens. The maximum degradation temperature value of the corneal lens chitin was observed at 369.2°C. X-ray analysis revealed that corneal lens chitin has high crystallinity index; 96.4%. Identification of chitin found in ommaditia of insect compound eyes can provide insights into insect vision and chitin-based optical material design studies. PMID:27109757

  7. Changes in cell surface primary cilia and microvilli concurrent with measurements of fluid flow across the rabbit corneal endothelium ex vivo.

    PubMed

    Doughty, M J

    1998-12-01

    Primary cilia and microvilli have been reported on the mammalian rabbit corneal endothelium but their relationship to cell function is undefined. Six corneas from healthy 2 kg female albino rabbits were glutaraldehyde-fixed post mortem (15:00 h) or twelve corneal stroma-endothelial preparations incubated at 37 degrees C under an applied hydrostatic pressure of 20 cm H2O for 4 h prior to fixation. The corneal endothelium was assessed by quantitative scanning electron microscopy. Cells fixed immediately post mortem were decorated with small stubby microvilli (average 21 +/- 13/100 micron 2), and only 25% of the cells were decorated with primary cilia having an average length of 2.44 +/- 1.56 microns. Following 4 h ex vivo incubation with a phosphate-buffered Ringer solution, conspicuous microvilli developed to an average density of 40 +/- 19/100 micron 2 and primary cilia were found on 12% of the cells, having on average length of 2.27 +/- 1.38 microns. Following 4 h incubation in a bicarbonate-buffered Ringer solution, small stubby microvilli developed to a density of 49 +/- 18/100 micron 2, and 40% of the cells showed primary cilia with an average length of 4.31 +/- 1.93 microns; the net trans-endothelial fluid flow in the latter set was 60% greater. These studies indicate that the primary cilia on corneal endothelial cells might be responsive to fluid flow, but that mild mechanical and/or chemical stress could also be the cause of the change since the elaboration of primary cilia can be accompanied by microvilli as well. PMID:10036788

  8. Recurrent corneal ulceration in presence of synthetic microfibrils

    PubMed Central

    Barsam, A; Patel, N; Laganowski, HC; Perry, HD

    2011-01-01

    Recurrence of microbial keratitis in the presence of protozoal infection is very rare and infrequently reported unless predisposing factors are present. The association of recurrent microbial keratitis and synthetic microfibrils has never previously been reported to our knowledge. This single interventional case study describes the clinical course and treatment of a contact lens wearer who was treated for Acanthamoeba keratitis with superinfection from bacterial organisms in the presence of synthetic microfibrils. The presence of synthetic fibrils on a corneal ulcer base may act as a nidus for pathological organisms and interfere with normal corneal healing. This may result in infection recurrence and the growth of resistant opportunistic organisms. PMID:21750618

  9. Corneal Dendritic Cell Density Is Associated with Subbasal Nerve Plexus Features, Ocular Surface Disease Index, and Serum Vitamin D in Evaporative Dry Eye Disease

    PubMed Central

    Shetty, Rohit; Sethu, Swaminathan; Deshmukh, Rashmi; Deshpande, Kalyani; Ghosh, Arkasubhra; Agrawal, Aarti; Shroff, Rushad

    2016-01-01

    Dry eye disease (DED) has evolved into a major public health concern with ocular discomfort and pain being responsible for significant morbidity associated with DED. However, the etiopathological factors contributing to ocular pain associated with DED are not well understood. The current IVCM based study investigated the association between corneal dendritic cell density (DCD), corneal subbasal nerve plexus (SBNP) features, and serum vitamin D and symptoms of evaporative dry eye (EDE). The study included age and sex matched 52 EDE patients and 43 heathy controls. A significant increase in the OSDI scores (discomfort subscale) was observed between EDE (median, 20.8) and control (median, 4.2) cohorts (P < 0.001). Similarly, an increase in DCD was observed between EDE (median, 48.1 cells/mm2) patients and controls (median, 5.6 cells/mm2) (P < 0.001). A significant decrease in SBNP features (corneal nerve fiber length, fiber density, fiber width, total branch density, nerve branch density, and fiber area) was observed in EDE patients with OSDI score >23 (P < 0.05). A positive correlation was observed between DCD and OSDI discomfort subscale (r = 0.348; P < 0.0003) and SBNP features. An inverse correlation was observed between vitamin D and OSDI scores (r = −0.332; P = 0.0095) and DCD with dendritic processes (r = −0.322; P = 0.0122). The findings implicate DCD, SBNP features, and vitamin D with EDE symptoms. PMID:26904676

  10. In-vivo human corneal nerve imaging using Fourier-domain OCT

    NASA Astrophysics Data System (ADS)

    Shin, Jun Geun; Lee, Byeong Ha; Eom, Tae Joong; Hwang, Ho Sik

    2015-03-01

    We have imaged human corneal nerve bundles by using real-time Fourier-domain OCT (FD-OCT). Corneal nerves contribute to the maintenance of healthy ocular surface owing to their trophic influences on the corneal epithelium. The FD-OCT system was based on a swept laser of a 50 kHz sweeping rate and 1.31 μm center wavelength. At the area including sclera, limbus, and cornea, we could successfully get the in-vivo tomograms of the corneal nerve bundles. The scan range was 5 x 5mm. In this study, the A-scan images in each B-scan were realigned to have a flat air-surface boundary in the final B-scan image. With this effort, we could align corneal nerve bundle in a same depth and get the 3D image showing the branched and threadlike corneal nerve bundles.

  11. Corneal thickness in glaucoma.

    PubMed

    De Cevallos, E; Dohlman, C H; Reinhart, W J

    1976-02-01

    The central corneal stromal thickness of patients with open angle glaucoma, secondary glaucoma (the majority aphakic), or a history of unilateral acute angle closure glaucoma were measured and compared with the stromal thickness of a group of normal patients. In open angle glaucoma, there was a small but significant increase in the average stromal thickness. This thickness increase was, in all likelihood, due to an abnormal function of the endothelium in this disease since the level of the intraocular pressure did not seem to be a factor. There was no correlation between stromal thickness and duration of the glaucoma or type of anti-glaucomatous medication. Most cases of secondary glaucome, controlled medically or not, had markedly increased corneal thickness, again, most likely, due to endothelial damage rather than to level of intraocular pressure. After an angle closure attack, permanent damage to the cornea was found to be rare. PMID:1247273

  12. Fuchs’ corneal dystrophy

    PubMed Central

    Eghrari, Allen O; Gottsch, John D

    2010-01-01

    Fuchs’ corneal dystrophy (FCD) is a progressive, hereditary disease of the cornea first described a century ago by the Austrian ophthalmologist Ernst Fuchs. Patients often present in the fifth to sixth decade of life with blurry morning vision that increases in duration as the disease progresses. Primarily a condition of the posterior cornea, characteristic features include the formation of focal excrescences of Descemet membrane termed ‘guttae’, loss of endothelial cell density and end-stage disease manifested by corneal edema and the formation of epithelial bullae. Recent advances in our understanding of the genetic and pathophysiological mechanisms of the disease, as well as the application of new imaging modalities and less invasive surgical procedures, present new opportunities for improved outcomes among patients with FCD. PMID:20625449

  13. Tissue engineering of feline corneal endothelium using a devitalized human cornea as carrier.

    PubMed

    Proulx, Stéphanie; Audet, Caroline; Uwamaliya, Jeanne d'Arc; Deschambeault, Alexandre; Carrier, Patrick; Giasson, Claude J; Brunette, Isabelle; Germain, Lucie

    2009-07-01

    The difficulties in obtaining good quality tissue for the replacement of corneas of patients suffering from endothelial dysfunctions have prompted us to evaluate the feasibility of producing a tissue-engineered (TE) corneal endothelium using devitalized human stromal carriers. Thus, corneal substitutes were produced by seeding cultured feline corneal endothelial cells on top of previously frozen human corneal stromas. After two weeks of culture to allow attachment and spreading of the seeded cells, the TE corneal endothelium was stained with alizarin red for endothelial cell count and fixed for histology, immunofluorescence labeling, scanning and transmission electron microscopy. Histology and Hoechst staining showed that there were no remaining cells in the devitalized stroma. After seeding, histology and transmission electron microscopy showed that the TE corneal endothelium formed a monolayer of tightly packed cells that were well adhered to Descemet's membrane. Scanning electron microscopy corroborated that the cells covered the entire posterior corneal surface and had an endothelial morphology. Alizarin staining showed that mean cell counts were 2272 +/- 344 cells/mm(2), indicating that the cell density was appropriate for grafting. The TE feline corneal endothelium also expressed the function-related proteins Na(+)/HCO(3)(-), ZO-1, and Na(+)/K(+)-ATPase alpha1, and could easily be marked with a fluorescent tracker. This study demonstrates the feasibility of reconstructing a highly cellular and healthy corneal endothelium on devitalized human corneal stromas. PMID:19125643

  14. A Case of Solitary Nonvascularized Corneal Epithelial Dysplasia

    PubMed Central

    Morii, Tomoya; Sumioka, Takayoshi; Izutani-Kitano, Ai; Takada, Yukihisa; Okada, Yuka; Kao, Winston W.-Y.; Saika, Shizuya

    2016-01-01

    Background. Epithelial dysplasia is categorized as conjunctival/corneal intraepithelial neoplasia which is a precancerous lesion. The lesion is usually developed at the limbal region and grows towards central cornea in association with neovascularization into the lesion. Here, we report a case of isolated nonvascularized corneal epithelial dysplasia surrounded by normal corneal epithelium with immune histochemical finding of ocular surface tissues cytokeratins, for example, keratin 13 and keratin 12. Case Presentation. A 76-year-old man consulted us for visual disturbance with localized opacification of the corneal epithelium in his left eye. His visual acuity was 20/20 and 20/200 in his right and left eye, respectively. Slit lamp examination showed a whitish plaque-like lesion at the center of his left corneal epithelium. No vascular invasion to the lesion was found. The lesion was surgically removed and subjected to histopathological examination and diagnosed as epithelial dysplasia. Amyloidosis was excluded by direct fast scarlet 4BS (DFS) staining. Immunohistochemistry showed that the dysplastic epithelial cells express keratin 13 and vimentin, but not keratin 12, indicating that the neoplastic epithelial cells lacked corneal-type epithelium differentiation. Conclusions. The lesion was diagnosed as nonvascularized epithelial dysplasia of ocular surface. Etiology of the lesion is not known. PMID:27042371

  15. Advances in corneal topography measurements with conical null-screens

    NASA Astrophysics Data System (ADS)

    Campos-García, Manuel; Cossio-Guerrero, Cesar; Huerta-Carranza, Oliver; Moreno-Oliva, Víctor I.

    2015-09-01

    In this work we report the design of a null-screen for corneal topography. To avoid the difficulties in the alignment of the test system due to the face contour (eyebrows, nose, or eyelids), we design a conical null-screen with a novel radial points distribution drawn on it in such a way that its image, which is formed by reflection on the test surface, becomes an exact array of circular spots if the surface is perfect. Additionally, an algorithm to compute the sagittal and meridional radii of curvature for the corneal surface is presented. The sagittal radius is obtained from the surface normal, and the meridional radius is calculated from a function fitted to the derivative of the sagittal curvature by using the surfacenormals raw data. Experimental results for the testing a calibration spherical surface are shown. Also, we perform some corneal topography measurements.

  16. Corneal polarimetry after LASIK refractive surgery

    NASA Astrophysics Data System (ADS)

    Bueno, Juan M.; Berrio, Esther; Artal, Pablo

    2006-01-01

    Imaging polarimetry provides spatially resolved information on the polarization properties of a system. In the case of the living human eye, polarization could be related to the corneal biomechanical properties, which vary from the normal state as a result of surgery or pathologies. We have used an aberro-polariscope, which we recently developed, to determine and to compare the spatially resolved maps of polarization parameters across the pupil between normal healthy and post-LASIK eyes. The depolarization distribution is not uniform across the pupil, with post-surgery eyes presenting larger levels of depolarization. While retardation increases along the radius in normal eyes, this pattern becomes irregular after LASIK refractive surgery. The maps of slow axis also differ in normal and post-surgery eyes, with a larger disorder in post-LASIK eyes. Since these changes in polarization indicate subtle structural modifications of the cornea, this approach can be useful in a clinical environment to follow the biomechanical and optical changes of the cornea after refractive surgery or for the early diagnosis of different corneal pathologies.

  17. Characteristics of corneal dystrophies: a review from clinical, histological and genetic perspectives

    PubMed Central

    Lin, Ze-Nan; Chen, Jie; Cui, Hong-Ping

    2016-01-01

    Corneal dystrophy is a common type of hereditary corneal diseases. It includes many types, which have varied pathology, histology and clinical manifestations. Recently, the examination techniques of ophthalmology and gene sequencing advance greatly, which do benefit to our understanding of these diseases. However, many aspects remain still unknown. And due to the poor knowledge of these diseases, the results of the treatments are not satisfoctory. The purpose of this review was to summarize the clinical, histological and genetic characteristics of different types of corneal dystrophies. PMID:27366696

  18. Corneal perforation during scleral indentation in a patient with pellucid marginal degeneration

    PubMed Central

    Mercieca, Karl; Dharmasena, Aruna; Hopley, Charles

    2016-01-01

    An observational case report of corneal perforation following scleral indentation in a patient with previously undiagnosed pellucid marginal degeneration is presented. Clinical examination, investigations, and subsequent management of this unwarranted and rare complication are described and discussed. The case highlights the need for thorough anterior segment examination before indirect ophthalmoscopy particularly in the presence of ectatic corneal pathology in which case scleral indentation should be avoided. PMID:27146937

  19. Optical Coherence Tomography of Clear Corneal Incisions for Cataract Surgery

    PubMed Central

    Schallhorn, Julie M.; Tang, Maolong; Li, Yan; Song, Jonathan C.; Huang, David

    2008-01-01

    Purpose To study the architecture of clear corneal incisions for phacoemulsification cataract surgery using optical coherence tomography (OCT). Setting University-based cornea practice. Methods A prospective study of twenty eyes of twenty patients one month after cataract surgery performed by two experienced surgeons. Temporal clear corneal single-plane incisions were made with 3-mm metal keratomes; five of the twenty eyes received sutures for wound closure. Each eye was scanned before and 1 month after surgery with a prototype high-speed anterior segment OCT system (Carl Zeiss Meditec Inc.). The OCT scans were repeated 3 times during the same visit. The length of the corneal incision, thickness of the cornea, and position of the incision (distance from the external wound edge to the scleral spur) were measured using a computer caliper. The angle of the incision relative to the corneal surface was then calculated. Results The mean corneal incision length was 1.81±0.27mm, the mean corneal thickness at the incision was 747±67µm, and the mean distance between the incision and the scleral spur was 1.46±0.24mm. The average angle of the incision was 26.8±5.5°. The measurements were repeatable to within 0.072mm (pooled standard deviation) for the incision length, 11µm for the corneal thickness, and 0.042mm for the position of the incision. There was no statistically significant difference in any of the parameters between eyes with sutures and those without. Conclusions OCT provides an excellent way to evaluate corneal incisions in cataract surgery postoperatively. Measurements of wound dimensions using OCT are highly repeatable. PMID:18721720

  20. Advances in corneal cell therapy.

    PubMed

    Fuest, Matthias; Yam, Gary Hin-Fai; Peh, Gary Swee-Lim; Mehta, Jodhbir S

    2016-09-01

    Corneal integrity is essential for visual function. Transplantation remains the most common treatment option for advanced corneal diseases. A global donor material shortage requires a search for alternative treatments. Different stem cell populations have been induced to express corneal cell characteristics in vitro and in animal models. Yet before their application to humans, scientific and ethical issues need to be solved. The in vitro propagation and implantation of primary corneal cells has been rapidly evolving with clinical practices of limbal epithelium transplantation and a clinical trial for endothelial cells in progress, implying cultivated ocular cells as a promising option for the future. This review reports on the latest developments in primary ocular cell and stem cell research for corneal therapy. PMID:27498943

  1. Corneal amyloidosis associated with keratoconus.

    PubMed

    Stern, G A; Knapp, A; Hood, C I

    1988-01-01

    Nodular, gray-white, central corneal opacities which extended from the subepithelial zone through the anterior four fifths of the stroma developed in a 50-year-old man with a longstanding history of hard contact lens wear for keratoconus. Results of histopathologic analysis of the corneal button obtained at the time of penetrating keratoplasty disclosed that the opacities were composed of amyloid. Corneal amyloidosis is rarely found in association with keratoconus. Although there were some similarities in the pattern of amyloid deposition to that seen in primary familial amyloidosis of the cornea, the authors believe that their patient is more likely to have had a secondary amyloidosis. Corneal amyloidosis should be considered in keratoconus patients with development of unusual forms of central corneal opacification. PMID:3278260

  2. The Correlation Analysis between Corneal Biomechanical Properties and the Surgically Induced Corneal High-Order Aberrations after Small Incision Lenticule Extraction and Femtosecond Laser In Situ Keratomileusis

    PubMed Central

    Wu, Wenjing; Wang, Yan

    2015-01-01

    Background. To investigate the correlation between corneal biomechanics and the surgically induced corneal high-order aberrations (HOAs) after small incision lenticule extraction (SMILE) and femtosecond laser in situ keratomileusis (FS-LASIK). Methods. A total of 150 right myopic eyes that underwent SMILE or FS-LASIK surgery were included in this retrospective study, 75 eyes in each group. The corneal hysteresis (CH) and the corneal resistance factor (CRF) with the corneal HOAs of the anterior, posterior, and total cornea were assessed preoperatively and three months postoperatively. Multivariate linear regression was applied to determine the correlations. Results. The preoperative CRF was significantly correlated with the induced 3rd–6th-order HOAs and spherical aberration of the anterior surface and the total cornea after SMILE and FS-LASIK surgeries (P < 0.05), postoperatively. The CRF was significantly correlated with the induced vertical coma of the anterior and posterior surfaces and the total cornea after SMILE surgery (P < 0.05). There was a significant correlation between the CRF and the induced posterior corneal horizontal coma after FS-LASIK surgery (P = 0.013). Conclusions. The corneal biomechanics affect the surgically induced corneal HOAs after SMILE and FS-LASIK surgery, which may be meaningful for screening the patients preoperatively and optimizing the visual qualities postoperatively. PMID:26483975

  3. Corneal seal device

    NASA Technical Reports Server (NTRS)

    Baehr, E. F. (Inventor)

    1977-01-01

    A corneal seal device is provided which, when placed in an incision in the eye, permits the insertion of a surgical tool or instrument through the device into the eye. The device includes a seal chamber which opens into a tube which is adapted to be sutured to the eye and serves as an entry passage for a tool. A sealable aperture in the chamber permits passage of the tool through the chamber into the tube and hence into the eye. The chamber includes inlet ports adapted to be connected to a regulated source of irrigation fluid which provides a safe intraocular pressure.

  4. Excimer laser phototherapeutic keratectomy in eyes with anterior corneal dystrophies: preoperative and postoperative ultrasound biomicroscopic examination and short-term clinical outcomes with and without an antihyperopia treatment.

    PubMed Central

    Rapuano, Christopher J

    2003-01-01

    PURPOSE: To evaluate the use of high-frequency ultrasound biomicroscopy (UBM) in determining the depth of corneal pathology in eyes undergoing excimer laser phototherapeutic keratectomy (PTK) for primary or recurrent anterior stromal corneal dystrophies. Corneal clarity, visual acuity and refractive changes in eyes with and without an antihyperopia treatment were also analyzed. METHODS: Twenty eyes of 14 patients with anterior stromal corneal dystrophies were treated with PTK. Eyes were evaluated preoperatively and 6 to 8 weeks postoperatively with slit-lamp biomicroscopy, manifest refraction, keratometry, computerized corneal topography, ultrasound pachymetry, and UBM. RESULTS: Nineteen of 20 corneas (95%) had greatly improved corneal clarity after PTK. Mean uncorrected Snellen vision improved from 20/102 to 20/69 and best corrected vision improved from 20/62 to 20/38. Nine eyes (45%) improved 2 or more lines of uncorrected vision, and 13 eyes (65%) improved 2 or more lines of best corrected vision. Mean change in spherical equivalent was just -0.92 diopters (D); however, the range was large (-13 to +3.88 D). UBM measurement of central corneal pathology did not correlate with the actual PTK ablation depth (P = .07). The amount of antihyperopia treatment did not correlate with changes in manifest refraction spherical equivalent, keratometry, or computerized corneal topography readings, but did correlate with length of time until corneal reepithelialization after PTK (P = .003). CONCLUSIONS: PTK resulted in improvements in corneal clarity and visual acuity in most patients with superficial corneal stromal dystrophies. UBM was not an effective tool to accurately measure the depth of corneal pathology preoperatively. The combined approach of minimizing ablation depth and selective use of an antihyperopia treatment resulted in minimal mean change in spherical equivalent; however, the range was large. PTK is a very good minimally invasive technique to improve vision in

  5. A computer model for the evaluation of the effect of corneal topography on optical performance.

    PubMed

    Camp, J J; Maguire, L J; Cameron, B M; Robb, R A

    1990-04-15

    We developed a method that models the effect of irregular corneal surface topography on corneal optical performance. A computer program mimics the function of an optical bench. The method generates a variety of objects (single point, standard Snellen letters, low contrast Snellen letters, arbitrarily complex objects) in object space. The lens is the corneal surface evaluated by a corneal topography analysis system. The objects are refracted by the cornea by using raytracing analysis to produce an image, which is displayed on a video monitor. Optically degraded images are generated by raytracing analysis of selected irregular corneal surfaces, such as those from patients with keratoconus and those from patients having undergone epikeratophakia for aphakia. PMID:2330940

  6. Corneal structure and transparency

    PubMed Central

    Meek, Keith M.; Knupp, Carlo

    2015-01-01

    The corneal stroma plays several pivotal roles within the eye. Optically, it is the main refracting lens and thus has to combine almost perfect transmission of visible light with precise shape, in order to focus incoming light. Furthermore, mechanically it has to be extremely tough to protect the inner contents of the eye. These functions are governed by its structure at all hierarchical levels. The basic principles of corneal structure and transparency have been known for some time, but in recent years X-ray scattering and other methods have revealed that the details of this structure are far more complex than previously thought and that the intricacy of the arrangement of the collagenous lamellae provides the shape and the mechanical properties of the tissue. At the molecular level, modern technologies and theoretical modelling have started to explain exactly how the collagen fibrils are arranged within the stromal lamellae and how proteoglycans maintain this ultrastructure. In this review we describe the current state of knowledge about the three-dimensional stromal architecture at the microscopic level, and about the control mechanisms at the nanoscopic level that lead to optical transparency. PMID:26145225

  7. Corneal topography analysis before and after radial keratotomy.

    PubMed

    Lin, Y; Chen, J; Wang, Z; Xuan, J

    1995-05-01

    Corneal topographic analyses were conducted on 58 eyes of 42 cases with mild or moderate myopia by computer-assisted photokeratography before and after radial keratotomy (RK). The results indicate that the corneal surfaces of most examined eyes (76%) are positive aspheric shape before RK, while after RK they are changed to negative aspheric shape. Before RK, the corneal topography of most examined eyes (67%) is symmetric bow tie pattern or asymmetric bow tie pattern; after RK, the forms of central flattened regions are mainly round or approximately round, dumbbell and belt-shaped. Before and after RK there is no significant change in surface regularity index (SRI), but surface asymmetry index (SAI) is changed significantly. RK makes the central and central peripheral parts of the cornea flattened. The most significant RK effect is found at the region 1.140 +/- 0.090 mm away from the corneal optical center. Examination and analysis on the corneal topography before and after RK not only provide an accurate and objective basis for RK operational plan, but also make it possible to objectively and quantitatively evaluate the RK effect, to accurately predict the RK clinical effects, and to effectively improve the RK clinical quality. PMID:7555399

  8. Corneal topography from spectral optical coherence tomography (sOCT)

    PubMed Central

    Ortiz, Sergio; Siedlecki, Damian; Pérez-Merino, Pablo; Chia, Noelia; de Castro, Alberto; Szkulmowski, Maciej; Wojtkowski, Maciej; Marcos, Susana

    2011-01-01

    We present a method to obtain accurate corneal topography from a spectral optical coherence tomography (sOCT) system. The method includes calibration of the device, compensation of the fan (or field) distortion introduced by the scanning architecture, and image processing analysis for volumetric data extraction, segmentation and fitting. We present examples of three-dimensional (3-D) surface topography measurements on spherical and aspheric lenses, as well as on 10 human corneas in vivo. Results of sOCT surface topography (with and without fan-distortion correction) were compared with non-contact profilometry (taken as reference) on a spherical lens, and with non-contact profilometry and state-of-the art commercial corneal topography instruments on aspheric lenses and on subjects. Corneal elevation maps from all instruments were fitted by quadric surfaces (as well as by tenth-order Zernike polynomials) using custom routines. We found that the discrepancy in the estimated radius of curvature from nominal values in artificial corneas decreased from 4.6% (without fan distortion correction) to 1.6% (after fan distortion correction), and the difference in the asphericity decreased from 130% to 5%. In human corneas, the estimated corneal radius of curvature was not statistically significantly different across instruments. However, a Bland-Altman analysis showed consistent differences in the estimated asphericity and corneal shape between sOCT topographies without fan distortion correction and the rest of the measurements. PMID:22162814

  9. Corneal afferents differentially target thalamic- and parabrachial-projecting neurons in trigeminal subnucleus caudalis

    PubMed Central

    Aicher, Sue A.; Hermes, Sam M.; Hegarty, Deborah M.

    2012-01-01

    Dorsal horn neurons send ascending projections to both thalamic nuclei and parabrachial nuclei; these pathways are thought to be critical pathways for central processing of nociceptive information. Afferents from the corneal surface of the eye mediate nociception from this tissue which is susceptible to clinically important pain syndromes. This study examined corneal afferents to the trigeminal dorsal horn and compared inputs to thalamic- and parabrachial-projecting neurons. We used anterograde tracing with cholera toxin B subunit to identify corneal afferent projections to trigeminal dorsal horn, and the retrograde tracer FluoroGold to identify projection neurons. Studies were conducted in adult male Sprague-Dawley rats. Our analysis was conducted at two distinct levels of the trigeminal subnucleus caudalis (Vc) which receive corneal afferent projections. We found that corneal afferents project more densely to the rostral pole of Vc than the caudal pole. We also quantified the number of thalamic- and parabrachial-projecting neurons in the regions of Vc that receive corneal afferents. Corneal afferent inputs to both groups of projection neurons were also more abundant in the rostral pole of Vc. Finally, by comparing the frequency of corneal afferent appositions to thalamic- versus parabrachial-projecting neurons, we found that corneal afferents preferentially target parabrachial-projecting neurons in trigeminal dorsal horn. These results suggest that nociceptive pain from the cornea may be primarily mediated by a non-thalamic ascending pathway. PMID:23201828

  10. Corneal blindness: a global perspective.

    PubMed Central

    Whitcher, J. P.; Srinivasan, M.; Upadhyay, M. P.

    2001-01-01

    Diseases affecting the cornea are a major cause of blindness worldwide, second only to cataract in overall importance. The epidemiology of corneal blindness is complicated and encompasses a wide variety of infectious and inflammatory eye diseses that cause corneal scarring, which ultimately leads to functional blindness. In addition, the prevalence of corneal disease varies from country to country and even from one population to another. While cataract is responsible for nearly 20 million of the 45 million blind people in the world, the next major cause is trachoma which blinds 4.9 million individuals, mainly as a result of corneal scarring and vascularization. Ocular trauma and corneal ulceration are significant causes of corneal blindness that are often underreported but may be responsible for 1.5-2.0 million new cases of monocular blindness every year. Causes of childhood blindness (about 1.5 million worldwide with 5 million visually disabled) include xerophthalmia (350,000 cases annually), ophthalmia neonatorum, and less frequently seen ocular diseases such as herpes simplex virus infections and vernal keratoconjunctivitis. Even though the control of onchocerciasis and leprosy are public health success stories, these diseases are still significant causes of blindness--affecting a quarter of a million individuals each. Traditional eye medicines have also been implicated as a major risk factor in the current epidemic of corneal ulceration in developing countries. Because of the difficulty of treating corneal blindness once it has occurred, public health prevention programmes are the most cost-effective means of decreasing the global burden of corneal blindness. PMID:11285665

  11. Evaluation and management of corneal foreign bodies.

    PubMed

    Keeney, A H

    1975-10-01

    Insults from corneal foreigh bodies range from trivial windblown debris through destructive chemicals, penetrating wounds, and severe secondary infection. History and preliminary examination should begin concurrently, particularly in the case of chemically active compounds. Needed auxiliaries are topical anesthetics, oblique light, magnification, sterile sodium fluorescein for diagnostic staining of surface breaks, removal instruments, and topical antibiotics to reduce the potential of secondary infection. A steadied, seated position for the physician, resting posture with hands supported on the face, and an oblique approach tend to reduce the likelihood of unwanted perforations or scars. An irrigating stream of sterile saline delivered through a 25 gauge short needle on a 5 cc syringe will dislodge most recent foreign bodies. The sterile needle is also available as a spud. Corneal thickness varies from slightly above 1 mm in the periphery to less than 0.5 mm centrally. Therefore, it is essential to have clear visualization of the foreign body in relation to corneal depth. Dislodgment into the anterior chamber or incidental perforation of the cornea generally require hospitalization, intensive antibiotics, and steroid therapy. PMID:1206368

  12. Corneal topography of excimer laser photorefractive keratectomy.

    PubMed

    Klyce, S D; Smolek, M K

    1993-01-01

    The application of the 193 nm excimer laser for keratorefractive surgery promises to deliver a higher degree of precision and predictability than traditional procedures such as radial keratotomy. The development and evaluation of keratorefractive surgery have benefited from the parallel advances made in the field of corneal topography analysis. We used the Computed Anatomy Topography Modeling System (TMS-1) to analyze a Louisiana State University (LSU) Eye Center series of patients who had photorefractive keratectomy for the treatment of myopia with the VISX Twenty/Twenty excimer laser system. The excimer ablations were characterized by a relatively uniform distribution of surface powers within the treated zone. In the few cases that exhibited marked refractive regression, corneal topography analysis showed correlative changes. With topographical analysis, centration of the ablations relative to the center of the pupil could be evaluated. Marked improvement in centration occurred in the patients of LSU Series IIB in which the procedure to locate the point on the cornea directly over the pupil's center during surgery was refined. Corneal topographical analysis provides objective measures of keratorefractive surgical results and is able to measure the precise tissue removal effect of excimer laser ablation without the uncertainties caused by measuring visual acuity alone. Our observations forecast the need for improved aids to center the laser ablations and for the development of a course of treatment to prevent post-ablation stromal remodeling. PMID:8450433

  13. Central Corneal Thickness in Patients with Atopic Keratoconjunctivitis

    PubMed Central

    Ondas, Osman; Keles, Sadullah

    2014-01-01

    Background The aim of this study was to evaluate central corneal thickness in patients with atopic keratoconjunctivitis. Material/Methods The study was conducted in the Atatürk University School of Medicine between April 2011 and June 2013. The study group included 60 eyes of 30 patients with atopic keratoconjunctivitis. Sixty eyes of 30 healthy individuals without any ophthalmic or systemic pathology were used as a control group. The central corneal thickness was measured with ultrasonic pachymetry. Results In each group, all subjects included in the study had a best corrected visual acuity (BCVA) of 20/25 or better. In the study group past medical histories revealed eczema in 19 patients, asthma in 16, and atopic dermatitis in 15. During clinical examination cicatricial conjunctivitis was noted in 5 patients, giant papillae in 4, symblepharon in 2, and entropion in 2. The mean central corneal thickness was 523.45±18.03 μm in the study group (mean age: 37.05±5.7 years) and 540.30±38.91 μm in the control group (mean age: 36.55±7.1 years), and the difference was statistically significant (p<0.001). Conclusions Evaluation of corneal thickness is important in situations such as corneal refractive surgery and contact lens use, and is an essential parameter in a wide range of ocular disorders, including glaucoma and keratoconus. Therefore, ophthalmologists should be aware of the low central corneal thickness in patients with atopic keratoconjunctivitis. PMID:25240805

  14. Indications for Corneal Transplantation at a Tertiary Referral Center in Tehran

    PubMed Central

    Zare, Mohammad; Javadi, Mohammad-Ali; Einollahi, Bahram; Baradaran-Rafii, Alireza; Ghanavati, Siamak Zarei; Farsani, Mohammad-Reza Jamshidi; Mohammadi, Parviz; Feizi, Sepehr

    2010-01-01

    Purpose To report the indications and techniques of corneal transplantation at a tertiary referral center in Tehran over a 3-year period. Methods Records of patients who had undergone any kind of corneal transplantation at Labbafinejad Medical Center, Tehran, Iran from March 2004 to March 2007 were reviewed to determine the indications and types of corneal transplantation. Results During this period, 776 eyes of 756 patients (including 504 male subjects) with mean age of 41.3±21.3 years underwent corneal transplantation. The most common indication was keratoconus (n=317, 40.8%) followed by bullous keratopathy (n=90, 11.6%), non-herpetic corneal scars (n=62, 8.0%), infectious corneal ulcers (n=61, 7.9%), previously failed grafts (n=61, 7.9%), endothelial and stromal corneal dystrophies (n=28, 3.6%), and trachoma keratopathy (n=26, 3.3%). Other indications including Terrien’s marginal degeneration, post-LASIK keratectasia, trauma, chemical burns, and peripheral ulcerative keratitis constituted the rest of cases. Techniques of corneal transplantation included penetrating keratoplasty (n=607, 78.2%), deep anterior lamellar keratoplasty (n=108, 13.9%), conventional lamellar keratoplasty (n=44, 5.7%), automated lamellar therapeutic keratoplasty (n=8, 1.0%), and Descemet stripping endothelial keratoplasty (n=6, 0.8%) in descending order. The remaining cases were endothelial keratoplasty and sclerokeratoplasty. Conclusion In this study, keratoconus was the most common indication for penetrating keratoplasty which was the most prevalent technique of corneal transplantation. However, deep anterior lamellar keratoplasty is emerging as a growing alternative for corneal pathologies not involving the endothelium. PMID:22737335

  15. Management of advanced corneal ectasias.

    PubMed

    Maharana, Prafulla K; Dubey, Aditi; Jhanji, Vishal; Sharma, Namrata; Das, Sujata; Vajpayee, Rasik B

    2016-01-01

    Corneal ectasias include a group of disorders characterised by progressive thinning, bulging and distortion of the cornea. Keratoconus is the most common disease in this group. Other manifestations include pellucid marginal degeneration, Terrien's marginal degeneration, keratoglobus and ectasias following surgery. Advanced ectasias usually present with loss of vision due to high irregular astigmatism. Management of these disorders is difficult due to the peripheral location of ectasia and associated severe corneal thinning. Newer contact lenses such as scleral lenses are helpful in a selected group of patients. A majority of these cases requires surgical intervention. This review provides an update on the current treatment modalities available for management of advanced corneal ectasias. PMID:26294106

  16. Application of corneal tomography before keratorefractive procedure for laser vision correction.

    PubMed

    Luz, Allan; Lopes, Bernardo; Salomão, Marcela; Ambrósio, Renato

    2016-05-01

    Ectasia after refractive surgery represents a major concern among refractive surgeons. Corneal abnormalities and preexisting corneal ectasia are the most important risk factors. Corneal topography and central corneal thickness are the factors traditionally screening for in refractive surgery candidates. Study of the anterior surface by Placido topography allows for identification of keratoconus before biomicroscopy. However, this is insufficient for the evaluation of pre-operative refractive surgery. There are cases of ectasia after laser in situ keratomilusis (LASIK) without identifiable risk factors such that there is a need to go beyond the corneal surface. A key requirement is quantifying susceptibility to corneal biomechanical instability and progression to ectasia. Tomographic indices derived from elevation maps and pachymetry spatial variation produce a Belin Ambrosio display final D index (BAD-D index), which has shown better results compared to surface curvature indices for detecting very mild forms of ectasia. A logistic regression formula, integrating age, residual stromal bed, and BAD-D (Ectasia Susceptibility Score, ESS) resulted in a significant improvement in accuracy, leading to 100% sensitivity and 94% specificity for detecting susceptible cases. A comprehensive corneal structural analysis based on corneal segmental tomography can detect susceptible corneas, which increases safety for refractive surgery patients. PMID:27079610

  17. Age related increase in mTOR activity contributes to the pathological changes in ovarian surface epithelium

    PubMed Central

    Bajwa, Preety; Nagendra, Prathima B.; Nielsen, Sarah; Sahoo, Subhransu S.; Bielanowicz, Amanda; Lombard, Janine M.; Wilkinson, Erby J.; Miller, Richard A.; Tanwar, Pradeep S.

    2016-01-01

    Ovarian cancer is a disease of older women. However, the molecular mechanisms of ovarian aging and their contribution to the pathogenesis of ovarian cancer are currently unclear. mTOR signalling is a major regulator of aging as suppression of this pathway extends lifespan in model organisms. Overactive mTOR signalling is present in up to 80% of ovarian cancer samples and is associated with poor prognosis. This study examined the role of mTOR signalling in age-associated changes in ovarian surface epithelium (OSE). Histological examination of ovaries from both aged mice and women revealed OSE cell hyperplasia, papillary growth and inclusion cysts. These pathological lesions expressed bonafide markers of ovarian cancer precursor lesions, Pax8 and Stathmin 1, and were presented with elevated mTOR signalling. To understand whether overactive mTOR signalling is responsible for the development of these pathological changes, we analysed ovaries of the Pten trangenic mice and found significant reduction in OSE lesions compared to controls. Furthermore, pharmacological suppression of mTOR signalling significantly decreased OSE hyperplasia in aged mice. Treatment with mTOR inhibitors reduced human ovarian cancer cell viability, proliferation and colony forming ability. Collectively, we have established the role of mTOR signalling in age-related OSE pathologies and initiation of ovarian cancer. PMID:27036037

  18. The measurement of ox corneal swelling pressure by osmometry.

    PubMed Central

    Hodson, S; O'Leary, D; Watkins, S

    1991-01-01

    1. Ox corneal stromal swelling pressure (gel pressure) may be measured by osmometry: polyethylene glycol of nominal molecular mass 10,000 Da (PEG 10K) is a suitable non-penetrating solute. 2. Corneal hydrations equilibrate within 4 h of exposure to 154 mM-NaCl including various concentrations (2-8%) of PEG 10K, providing that the epithelium covers the anterior surface and Descemet's membrane covers the posterior surface. At equilibrium hydration, corneal gel pressure equals the external osmotic pressure contributed by PEG 10K. 3. The osmotic pressure of PEG 10K may be calibrated using Descemet's membrane as the semi-permeable membrane. 4. Corneal gel pressure decreases with increasing hydration. 5. The relationship may be adequately explained by the Donnan theory of corneal swelling with a fixed negative matrix charge of 39.5 +/- 0.8 mequiv l-1 at physiological hydration of 3.2 at this salt concentration (154 mM-NaCl). PMID:2023123

  19. Generation and Feasibility Assessment of a New Vehicle for Cell-Based Therapy for Treating Corneal Endothelial Dysfunction

    PubMed Central

    Okumura, Naoki; Kakutani, Kazuya; Inoue, Ryota; Matsumoto, Daiki; Shimada, Tomoki; Nakahara, Makiko; Kiyanagi, Yumiko; Itoh, Takehiro; Koizumi, Noriko

    2016-01-01

    The corneal endothelium maintains corneal transparency by its pump and barrier functions; consequently, its decompensation due to any pathological reason causes severe vision loss due to corneal haziness. Corneal transplantation is the only therapeutic choice for treating corneal endothelial dysfunction, but associated problems, such as a shortages of donor corneas, the difficulty of the surgical procedure, and graft failure, still need to be resolved. Regenerative medicine is attractive to researchers as a means of providing innovative therapies for corneal endothelial dysfunction, as it now does for other diseases. We previously demonstrated the successful regeneration of corneal endothelium in animal models by injecting cultured corneal endothelial cells (CECs) in combination with a Rho kinase (ROCK) inhibitor. The purpose of the present study was to optimize the vehicle for clinical use in cell-based therapy. Our screening of cell culture media revealed that RELAR medium promoted CEC adhesion. We then modified RELAR medium by removing hormones, growth factors, and potentially toxic materials to generate a cell therapy vehicle (CTV) composed of amino acid, salts, glucose, and vitamins. Injection of CECs in CTV enabled efficient engraftment and regeneration of the corneal endothelium in the rabbit corneal endothelial dysfunction model, with restoration of a transparent cornea. The CECs retained >85% viability after a 24 hour preservation as a cell suspension in CTV at 4°C and maintained their potency to regenerate the corneal endothelium in vivo. The vehicle developed here is clinically applicable for cell-based therapy aimed at treating the corneal endothelium. Our strategy involves the generation of vehicle from a culture medium appropriate for a given cell type by removing materials that are not favorable for clinical use. PMID:27355373

  20. Generation and Feasibility Assessment of a New Vehicle for Cell-Based Therapy for Treating Corneal Endothelial Dysfunction.

    PubMed

    Okumura, Naoki; Kakutani, Kazuya; Inoue, Ryota; Matsumoto, Daiki; Shimada, Tomoki; Nakahara, Makiko; Kiyanagi, Yumiko; Itoh, Takehiro; Koizumi, Noriko

    2016-01-01

    The corneal endothelium maintains corneal transparency by its pump and barrier functions; consequently, its decompensation due to any pathological reason causes severe vision loss due to corneal haziness. Corneal transplantation is the only therapeutic choice for treating corneal endothelial dysfunction, but associated problems, such as a shortages of donor corneas, the difficulty of the surgical procedure, and graft failure, still need to be resolved. Regenerative medicine is attractive to researchers as a means of providing innovative therapies for corneal endothelial dysfunction, as it now does for other diseases. We previously demonstrated the successful regeneration of corneal endothelium in animal models by injecting cultured corneal endothelial cells (CECs) in combination with a Rho kinase (ROCK) inhibitor. The purpose of the present study was to optimize the vehicle for clinical use in cell-based therapy. Our screening of cell culture media revealed that RELAR medium promoted CEC adhesion. We then modified RELAR medium by removing hormones, growth factors, and potentially toxic materials to generate a cell therapy vehicle (CTV) composed of amino acid, salts, glucose, and vitamins. Injection of CECs in CTV enabled efficient engraftment and regeneration of the corneal endothelium in the rabbit corneal endothelial dysfunction model, with restoration of a transparent cornea. The CECs retained >85% viability after a 24 hour preservation as a cell suspension in CTV at 4°C and maintained their potency to regenerate the corneal endothelium in vivo. The vehicle developed here is clinically applicable for cell-based therapy aimed at treating the corneal endothelium. Our strategy involves the generation of vehicle from a culture medium appropriate for a given cell type by removing materials that are not favorable for clinical use. PMID:27355373

  1. Corneal Transplantation and Immune Privilege

    PubMed Central

    Niederkorn, Jerry Y.

    2013-01-01

    Corneal transplants have been successfully performed in human subjects for over 100 years and enjoy an immune privilege that is unrivaled in the field of transplantation. Immune privilege is defined as the reduced incidence and tempo in the immune rejection of corneal allografts compared to other categories of organ allografts performed under the same conditions. Skin allografts transplanted across various MHC or minor histocompatibility barriers undergo rejection in approximately 100% of the hosts. By contrast, orthotopic corneal allografts experience long-term survival in 50% to >90% of the hosts, depending on the histocompatibility barriers that confront the host. The capacity of corneal allografts to evade immune rejection is attributable to multiple anatomical, physiological, and immunoregulatory conditions that conspire to prevent the induction and expression of alloimmunity. PMID:23360158

  2. WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis.

    PubMed

    Ouyang, Hong; Xue, Yuanchao; Lin, Ying; Zhang, Xiaohui; Xi, Lei; Patel, Sherrina; Cai, Huimin; Luo, Jing; Zhang, Meixia; Zhang, Ming; Yang, Yang; Li, Gen; Li, Hairi; Jiang, Wei; Yeh, Emily; Lin, Jonathan; Pei, Michelle; Zhu, Jin; Cao, Guiqun; Zhang, Liangfang; Yu, Benjamin; Chen, Shaochen; Fu, Xiang-Dong; Liu, Yizhi; Zhang, Kang

    2014-07-17

    The surface of the cornea consists of a unique type of non-keratinized epithelial cells arranged in an orderly fashion, and this is essential for vision by maintaining transparency for light transmission. Cornea epithelial cells (CECs) undergo continuous renewal from limbal stem or progenitor cells (LSCs), and deficiency in LSCs or corneal epithelium--which turns cornea into a non-transparent, keratinized skin-like epithelium--causes corneal surface disease that leads to blindness in millions of people worldwide. How LSCs are maintained and differentiated into corneal epithelium in healthy individuals and which key molecular events are defective in patients have been largely unknown. Here we report establishment of an in vitro feeder-cell-free LSC expansion and three-dimensional corneal differentiation protocol in which we found that the transcription factors p63 (tumour protein 63) and PAX6 (paired box protein PAX6) act together to specify LSCs, and WNT7A controls corneal epithelium differentiation through PAX6. Loss of WNT7A or PAX6 induces LSCs into skin-like epithelium, a critical defect tightly linked to common human corneal diseases. Notably, transduction of PAX6 in skin epithelial stem cells is sufficient to convert them to LSC-like cells, and upon transplantation onto eyes in a rabbit corneal injury model, these reprogrammed cells are able to replenish CECs and repair damaged corneal surface. These findings suggest a central role of the WNT7A-PAX6 axis in corneal epithelial cell fate determination, and point to a new strategy for treating corneal surface diseases. PMID:25030175

  3. Characteristics of the low density corneal endothelial monolayer.

    PubMed

    Singh, Jorawer S; Haroldson, Thomas A; Patel, Sangita P

    2013-10-01

    Corneal endothelial cells form a leaky barrier on the posterior surface of the cornea, allowing influx of nutrient-carrying aqueous humor through the paracellular space and efflux of excess fluid. Corneal edema arises when the density of these non-proliferative endothelial cells declines from endothelial disease or intraocular surgery. The cellular changes occurring at low densities are ill-defined. We therefore investigated the paracellular pathway of corneal endothelial cell monolayers of varying density to determine alterations occurring in paracellular permeability and monolayer morphology. Primary cultures of bovine corneal endothelial cells (BCECs) were passaged onto permeable supports under varying culture conditions to obtain confluent monolayers of <1000, 1000-1999 and >2000 cells/mm(2). Culture growth was monitored by transendothelial electrical resistance measurements. Diffusional permeability to sodium fluorescein, FITC-dextran MW 4000 or FITC-dextran MW 20,000 was measured. Confluent cultures were also analyzed by immunofluorescence localization of the tight junction protein ZO-1 and by transmission electron microscopy. For comparison, we evaluated ZO-1 for low and high density human corneal endothelium. Our results showed that all BCEC cultures grew to the same final transendothelial electrical resistance regardless of final density. In the diffusional permeability assay, permeability increased significantly only for the smallest tracer molecule (sodium fluorescein) in the lowest density monolayers (<1000 cells/mm(2)). ZO-1 immunofluorescence distinctly localized to intercellular junctions in high density BCEC cultures but had more diffuse localization at lower densities. Transmission electron microscopy imaging revealed cells with thinner cross-sectional profiles and longer overlapping intercellular processes at low density relative to high density cultures. Low density human corneal endothelium lacked the diffuse ZO-1 distribution seen in BCECs

  4. Contact lens related corneal ulcer.

    PubMed

    Loh, Ky; Agarwal, P

    2010-01-01

    A corneal ulcer caused by infection is one of the major causes of blindness worldwide. One of the recent health concerns is the increasing incidence of corneal ulcers associated with contact lens user especially if the users fail to follow specific instruction in using their contact lenses. Risk factors associated with increased risk of contact lens related corneal ulcers are: overnight wear, long duration of continuous wear, lower socio-economic classes, smoking, dry eye and poor hygiene. The presenting symptoms of contact lens related corneal ulcers include eye discomfort, foreign body sensation and lacrimation. More serious symptoms are redness (especially circum-corneal injection), severe pain, photophobia, eye discharge and blurring of vision. The diagnosis is established by a thorough slit lamp microscopic examination with fluorescein staining and corneal scraping for Gram stain and culture of the infective organism. Delay in diagnosing and treatment can cause permanent blindness, therefore an early referral to ophthalmologist and commencing of antimicrobial therapy can prevent visual loss. PMID:25606178

  5. Corneal Collagen Cross-Linking

    PubMed Central

    Jankov II, Mirko R.; Jovanovic, Vesna; Nikolic, Ljubisa; Lake, Jonathan C.; Kymionis, Georgos; Coskunseven, Efekan

    2010-01-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet-A (UVA) is a new technique of corneal tissue strengthening by using riboflavin as a photosensitizer and UVA to increase the formation of intra and interfibrillar covalent bonds by photosensitized oxidation. Keratocyte apoptosis in the anterior segment of the corneal stroma all the way down to a depth of about 300 microns has been described and a demarcation line between the treated and untreated cornea has been clearly shown. It is important to ensure that the cytotoxic threshold for the endothelium has not been exceeded by strictly respecting the minimal corneal thickness. Confocal microscopy studies show that repopulation of keratocytes is already visible 1 month after the treatment, reaching its pre-operative quantity and quality in terms of functional morphology within 6 months after the treatment. The major indication for the use of CXL is to inhibit the progression of corneal ectasias, such as keratoconus and pellucid marginal degeneration. CXL may also be effective in the treatment and prophylaxis of iatrogenic keratectasia, resulting from excessively aggressive photoablation. This treatment has also been used to treat infectious corneal ulcers with apparent favorable results. Combination with other treatments, such as intracorneal ring segment implantation, limited topography-guided photoablation and conductive keratoplasty have been used with different levels of success. PMID:20543933

  6. Contact-mediated control of radial migration of corneal epithelial cells

    PubMed Central

    Walczysko, Petr; Rajnicek, Ann M.

    2016-01-01

    Purpose Patients with a heterozygous mutation in the gene encoding the transcription factor, PAX6, have a degenerative corneal opacity associated with failure of normal radial epithelial cell migration across the corneal surface and a reported wound healing defect. This study investigated the guidance mechanisms that drive the directed migration of corneal epithelial cells. Methods In vivo corneal epithelial wounding was performed in adult wild-type and Pax6+/− mice, and the healing migration rates were compared. To investigate the control of the cell migration direction, primary corneal epithelial cells from wild-type and Pax6+/− mice were plated on grooved quartz substrates, and alignment relative to the grooves was assayed. A reconstructed corneal culture system was developed in which dissociated wild-type and genetically mutant corneal epithelial cells could be cultured on a de-epithelialized corneal stroma or basement membrane and their migration assayed with time-lapse microscopy. Results The Pax6+/− cells efficiently re-epithelialized corneal wounds in vivo but had mild slowing of healing migration compared to the wild-type. Cells aligned parallel to quartz grooves in vitro, but the Pax6+/− cells were less robustly oriented than the wild-type. In the reconstructed corneal culture system, corneal epithelial cells continued to migrate radially, showing that the cells are guided by contact-mediated cues from the basement membrane. Recombining wild-type and Pax6 mutant corneal epithelial cells with wild-type and Pax6 mutant corneal stroma showed that normal Pax6 dosage was required autonomously in the epithelial cells for directed migration. Integrin-mediated attachment to the substrate, and intracellular PI3Kγ activity, were required for migration. Pharmacological inhibition of cAMP signaling randomized migration tracks in reconstructed corneas. Conclusions Striking patterns of centripetal migration of corneal epithelial cells observed in vivo are

  7. Noninvasive spectroscopic diagnosis of superficial ocular lesions and corneal infections

    SciTech Connect

    Mourant, J.R.; Bigio, I.J.; Johnson, T.; Shimada, T.; Gritz, D.C.; Storey-Held, K.

    1994-02-01

    The potential of a rapid noninvasive diagnostic system to detect tissue abnormalities on the surface of the eye has been investigated. The optical scatter signal from lesions and normal areas on the conjunctival sclera of the human eye were measured in vivo. It is possible to distinguish nonpigmented pingueculas from other lesions. The ability of the system to detect malignancies could not be tested because none of the measured and biopsied lesions were malignant. Optical scatter and fluorescence spectra of bacterial and fungal suspensions, and corneal irritations were also collected. Both scattering and fluorescence show potential for diagnosing corneal infections.

  8. Bacterial corneal ulcer associated with common variable immune deficiency.

    PubMed

    Tsui, Edmund; Deng, Jie; Siedlecki, Andrew N; Zegans, Michael E

    2016-12-01

    Common variable immune deficiency (CVID) is one of the most commonly diagnosed primary immunodeficiencies. Generally, patients have a history of recurrent sinopulmonary infections, hypogammaglobulinemia of two or more immunoglobulin isotypes, and impaired functional antibody responses. Reports of corneal involvement associated with CVID are limited. We describe a case of corneal ulceration associated with methicillin-resistant Staphylococcus aureus in a patient with CVID that developed while on monthly intravenous immunoglobulin infusions and in which there were no common risk factors for bacterial keratitis, such as prior history of ocular surface disease, trichiasis, trauma, or contact lens wear. PMID:27491761

  9. Fully automated corneal endothelial morphometry of images captured by clinical specular microscopy

    NASA Astrophysics Data System (ADS)

    Bucht, Curry; Söderberg, Per; Manneberg, Göran

    2010-02-01

    The corneal endothelium serves as the posterior barrier of the cornea. Factors such as clarity and refractive properties of the cornea are in direct relationship to the quality of the endothelium. The endothelial cell density is considered the most important morphological factor of the corneal endothelium. Pathological conditions and physical trauma may threaten the endothelial cell density to such an extent that the optical property of the cornea and thus clear eyesight is threatened. Diagnosis of the corneal endothelium through morphometry is an important part of several clinical applications. Morphometry of the corneal endothelium is presently carried out by semi automated analysis of pictures captured by a Clinical Specular Microscope (CSM). Because of the occasional need of operator involvement, this process can be tedious, having a negative impact on sampling size. This study was dedicated to the development and use of fully automated analysis of a very large range of images of the corneal endothelium, captured by CSM, using Fourier analysis. Software was developed in the mathematical programming language Matlab. Pictures of the corneal endothelium, captured by CSM, were read into the analysis software. The software automatically performed digital enhancement of the images, normalizing lights and contrasts. The digitally enhanced images of the corneal endothelium were Fourier transformed, using the fast Fourier transform (FFT) and stored as new images. Tools were developed and applied for identification and analysis of relevant characteristics of the Fourier transformed images. The data obtained from each Fourier transformed image was used to calculate the mean cell density of its corresponding corneal endothelium. The calculation was based on well known diffraction theory. Results in form of estimated cell density of the corneal endothelium were obtained, using fully automated analysis software on 292 images captured by CSM. The cell density obtained by the

  10. Efficient Generation of Human Embryonic Stem Cell-Derived Corneal Endothelial Cells by Directed Differentiation

    PubMed Central

    McCabe, Kathryn L.; Kunzevitzky, Noelia J.; Chiswell, Brian P.; Xia, Xin; Goldberg, Jeffrey L.; Lanza, Robert

    2015-01-01

    Aim To generate human embryonic stem cell derived corneal endothelial cells (hESC-CECs) for transplantation in patients with corneal endothelial dystrophies. Materials and Methods Feeder-free hESC-CECs were generated by a directed differentiation protocol. hESC-CECs were characterized by morphology, expression of corneal endothelial markers, and microarray analysis of gene expression. Results hESC-CECs were nearly identical morphologically to primary human corneal endothelial cells, expressed Zona Occludens 1 (ZO-1) and Na+/K+ATPaseα1 (ATPA1) on the apical surface in monolayer culture, and produced the key proteins of Descemet’s membrane, Collagen VIIIα1 and VIIIα2 (COL8A1 and 8A2). Quantitative PCR analysis revealed expression of all corneal endothelial pump transcripts. hESC-CECs were 96% similar to primary human adult CECs by microarray analysis. Conclusion hESC-CECs are morphologically similar, express corneal endothelial cell markers and express a nearly identical complement of genes compared to human adult corneal endothelial cells. hESC-CECs may be a suitable alternative to donor-derived corneal endothelium. PMID:26689688

  11. The Application of Digitization in Determining Corneal Topography

    PubMed Central

    Isaac, Michael S.; Rowsey, J. James; Nunnery, Arthur W.

    1982-01-01

    The exact measurement of the corneal surface is essential in determining the methods, appropriateness and effectiveness of the ophthalmological care of the patient. We have developed a microcomputer based system to provide the medical community quick and accurate access to specific eye care information. A brief description of our methods and some practical applications are presented. Our programs are available for various microcomputer systems.

  12. Stepwise Protocol for Cytospin-enhanced Smearing for Scraped Corneal Epithelial Cells.

    PubMed

    Jeyalatha, Mani V; Malathi, Jambulingam; Madhavan, Hajib N

    2016-01-01

    Proteins and antigens present on the cell surface are usually determined by immunofluorescence staining. Uniform distribution of cells is required to appreciate the presence of surface proteins. Improper smearing or crushing of the corneal epithelial cells can potentially destroy the cellular integrity. Thus a simplified, systemic method was designed to smear the cells scraped from the cornea. The procedure includes trypsinisation for dissociation of corneal epithelial cells and cytospinning for concentrating the cells in a smear. The standardized protocol was found to be efficient in maintaining the integrity of the corneal epithelial cells and also the distribution of the cells in the smear. PMID:26633702

  13. Traumatic corneal endothelial rings from homemade explosives.

    PubMed

    Ng, Soo Khai; Rudkin, Adam K; Galanopoulos, Anna

    2013-08-01

    Traumatic corneal endothelial rings are remarkably rare ocular findings that may result from blast injury. We present a unique case of bilateral traumatic corneal endothelial rings secondary to blast injury from homemade explosives. PMID:23474743

  14. Extracellular compartments in matrix morphogenesis: collagen fibril, bundle, and lamellar formation by corneal fibroblasts.

    PubMed

    Birk, D E; Trelstad, R L

    1984-12-01

    The regulation of collagen fibril, bundle, and lamella formation by the corneal fibroblasts, as well as the organization of these elements into an orthogonal stroma, was studied by transmission electron microscopy and high voltage electron microscopy. Transmission and high voltage electron microscopy of chick embryo corneas each demonstrated a series of unique extracellular compartments. Collagen fibrillogenesis occurred within small surface recesses. These small recesses usually contained between 5 and 12 collagen fibrils with typically mature diameters and constant intrafibrillar spacing. The lateral fusion of the recesses resulted in larger recesses and consequent formation of prominent cell surface foldings. Within these surface foldings, bundles that contained 50-100 collagen fibrils were formed. The surface foldings continued to fuse and the cell surface retracted, forming large surface-associated compartments in which bundles coalesced to form lamellae. High voltage electron microscopy of 0.5 micron sections cut parallel to the corneal surface revealed that the corneal fibroblasts and their processes had two major axes at approximately right angles to one another. The surface compartments involved in the production of the corneal stroma were aligned along the fibroblast axes and the orthogonality of the cell was in register with that of the extracellular matrix. In this manner, corneal fibroblasts formed collagen fibrils, bundles, and lamellae within a controlled environment and thereby determined the architecture of the corneal stroma by the configuration of the cell and its associated compartments. PMID:6542105

  15. Corneal temperature in schizophrenia patients.

    PubMed

    Shiloh, Roni; Munitz, Hanan; Portuguese, Shirley; Gross-Isseroff, Ruth; Sigler, Mayanit; Bodinger, Liron; Katz, Nachum; Stryjer, Rafael; Hermesh, Haggai; Weizman, Abraham

    2005-12-01

    Most data imply that dopaminergic transmission is essential for proper hypothalamic-mediated core temperature regulation. Altered central dopaminergic transmission is suggested to be involved in the pathophysiology of schizophrenia. Thus, hypothetically, schizophrenia patients might be at increased risk of developing thermoregulatory dysregulation manifested by alterations in core temperature, as well as in peripheral tissue, the temperature of which has been shown to correlate with core temperature (e.g. cornea). Previous small pilot studies of ours showed that schizophrenia patients may exhibit corneal temperature abnormalities. Hence, we assessed corneal temperature in a controlled sample of drug-free ( n =11) and medicated ( n =28) schizophrenia patients compared to healthy comparison subjects ( n =9), using a FLIR thermal imaging camera. Drug-free schizophrenia patients exhibited significantly higher corneal temperature compared to healthy subjects, typical antipsychotic drug (APD)-treated patients ( n =16) and atypical APD-treated patients ( n =12) (37.08+/-1.46 degrees C vs. 33.37+/-2.51 degrees C, 31.08+/-1.43 degrees C and 31.67+/-0.44 degrees C respectively, p <0.0001; p <0.001 vs. each group separately). The healthy comparison subjects and the atypical APD-treated patients exhibited comparable corneal temperatures and these two groups exhibited higher corneal temperatures compared to the typical APD-treated patients ( p <0.01 and p =0.051 respectively). In conclusion, this study indicates that drug-free schizophrenia patients exhibit substantially higher corneal temperature compared to healthy comparison subjects or medicated patients, and that APDs may decrease corneal temperature either to normal (atypical APD) or to subnormal (typical APD) values. The relevance of these phenomena to the pathophysiology of schizophrenia, the biological mechanism underlying drug-induced corneal temperature alterations, the possible role of temperature-lowering drugs

  16. The Ultrastructures and Mechanical Properties of the Descement's Membrane in Fuchs Endothelial Corneal Dystrophy.

    PubMed

    Xia, Dan; Zhang, Shuai; Nielsen, Esben; Ivarsen, Anders Ramløv; Liang, Chunyong; Li, Qiang; Thomsen, Karen; Hjortdal, Jesper Østergaard; Dong, Mingdong

    2016-01-01

    Fuchs endothelial corneal dystrophy (FECD), is the most common corneal endothelial dystrophy, and contributes up to 50% of all corneal transplantations performed in developed countries. FECD develops in Descemet's membrane (DM) and possibly alters the mechanical properties and internal structures in this basal lamina. In this work, the morphology and mechanical properties of FECD-DMs are studied by transmission electron microscopy (TEM) and quantitative dynamic atomic force microscopy (QD-AFM) at nano scale. Pathological wide-space collagens that are typical of FECD display different mechanical properties in that they are softer than the remaining tissue both for dehydrated- and fully hydrated samples. Additionally, the hydration level has major influence on the mechanical properties. These findings could help to further understand the structural changes in FECD, and possibly be useful for further characterization of the disease, the diagnosis and assessment or even pathologic analysis. PMID:26980551

  17. The Ultrastructures and Mechanical Properties of the Descement’s Membrane in Fuchs Endothelial Corneal Dystrophy

    PubMed Central

    Xia, Dan; Zhang, Shuai; Nielsen, Esben; Ivarsen, Anders Ramløv; Liang, Chunyong; Li, Qiang; Thomsen, Karen; Hjortdal, Jesper Østergaard; Dong, Mingdong

    2016-01-01

    Fuchs endothelial corneal dystrophy (FECD), is the most common corneal endothelial dystrophy, and contributes up to 50% of all corneal transplantations performed in developed countries. FECD develops in Descemet’s membrane (DM) and possibly alters the mechanical properties and internal structures in this basal lamina. In this work, the morphology and mechanical properties of FECD-DMs are studied by transmission electron microscopy (TEM) and quantitative dynamic atomic force microscopy (QD-AFM) at nano scale. Pathological wide-space collagens that are typical of FECD display different mechanical properties in that they are softer than the remaining tissue both for dehydrated- and fully hydrated samples. Additionally, the hydration level has major influence on the mechanical properties. These findings could help to further understand the structural changes in FECD, and possibly be useful for further characterization of the disease, the diagnosis and assessment or even pathologic analysis. PMID:26980551

  18. Molecular underpinnings of corneal angiogenesis: advances over the past decade.

    PubMed

    Abdelfattah, Nizar Saleh; Amgad, Mohamed; Zayed, Amira A; Hussein, Heba; Abd El-Baky, Nawal

    2016-01-01

    The cornea is maintained in an avascular state by maintaining an environment whereby anti-angiogenic factors take the upper hand over factors promoting angiogenesis. Many of the common pathologies affecting the cornea involve the disruption of such equilibrium and the shift towards new vessel formation, leading to corneal opacity and eventually-vision loss. Therefore it is of paramount importance that the molecular underpinnings of corneal neovascularization (CNV) be clearly understood, in order to develop better targeted treatments. This article is a review of the literature on the recent discoveries regarding pro-angiogenic factors of the cornea (such as vascular endothelial growth factors, fibroblast growth factor and matrix metalloproteinases) and anti-angiogenic factors of the cornea (such as endostatins and neostatins). Further, we review the molecular underpinnings of lymphangiogenesis, a process now known to be almost separate from (yet related to) hemangiogenesis. PMID:27275438

  19. Molecular underpinnings of corneal angiogenesis: advances over the past decade

    PubMed Central

    Abdelfattah, Nizar Saleh; Amgad, Mohamed; Zayed, Amira A.; Hussein, Heba; Abd El-Baky, Nawal

    2016-01-01

    The cornea is maintained in an avascular state by maintaining an environment whereby anti-angiogenic factors take the upper hand over factors promoting angiogenesis. Many of the common pathologies affecting the cornea involve the disruption of such equilibrium and the shift towards new vessel formation, leading to corneal opacity and eventually-vision loss. Therefore it is of paramount importance that the molecular underpinnings of corneal neovascularization (CNV) be clearly understood, in order to develop better targeted treatments. This article is a review of the literature on the recent discoveries regarding pro-angiogenic factors of the cornea (such as vascular endothelial growth factors, fibroblast growth factor and matrix metalloproteinases) and anti-angiogenic factors of the cornea (such as endostatins and neostatins). Further, we review the molecular underpinnings of lymphangiogenesis, a process now known to be almost separate from (yet related to) hemangiogenesis. PMID:27275438

  20. Gene Therapy in Corneal Transplantation

    PubMed Central

    Qazi, Yureeda; Hamrah, Pedram

    2014-01-01

    Corneal transplantation is the most commonly performed organ transplantation. Immune privilege of the cornea is widely recognized, partly because of the relatively favorable outcome of corneal grafts. The first-time recipient of corneal allografts in an avascular, low-risk setting can expect a 90% success rate without systemic immunosuppressive agents and histocompatibility matching. However, immunologic rejection remains the major cause of graft failure, particularly in patients with a high risk for rejection. Corticosteroids remain the first-line therapy for the prevention and treatment of immune rejection. However, current pharmacological measures are limited in their side-effect profiles, repeated application, lack of targeted response, and short duration of action. Experimental ocular gene therapy may thus present new horizons in immunomodulation. From efficient viral vectors to sustainable alternative splicing, we discuss the progress of gene therapy in promoting graft survival and postulate further avenues for gene-mediated prevention of allogeneic graft rejection. PMID:24138037

  1. Correlations between corneal and total wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p < 0.05) between the corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  2. Progress in corneal wound healing.

    PubMed

    Ljubimov, Alexander V; Saghizadeh, Mehrnoosh

    2015-11-01

    Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β (TGF-β) system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal

  3. Precision Measurement Of Corneal Topography

    NASA Astrophysics Data System (ADS)

    Yoder, Paul R.; Macri, Timothy F.; Telfair, William B.; Bennett, Peter S.; Martin, Clifford A.; Warner, John W.

    1989-05-01

    We describe a new electro-optical device being developed to provide precise measurements of the three-dimensional topography of the human cornea. This device, called a digital keratoscope, is intended primarily for use in preparing for and determining the effect of corneal surgery procedures such as laser refractive keratectomy, radial keratotomy or corneal transplant on the refractive power of the cornea. It also may serve as an aid in prescribing contact lenses. The basic design features of the hardware and of the associated computer software are discussed, the means for alignment and calibration are described and typical results are given.

  4. Corneal refractive surgery: Is intracorneal the way to go and what are the needs for technology?

    NASA Astrophysics Data System (ADS)

    Hjortdal, Jesper; Ivarsen, Anders

    2014-02-01

    Corneal refractive surgery aims to reduce or eliminate refractive errors of the eye by changing the refractive power of the cornea. For the last 20 years controlled excimer laser ablation of corneal tissue, either directly from the corneal stromal surface or from the corneal interior after creation of a superficial corneal flap has become widely used to correct myopia, hyperopia, and astigmatism. Recently, an intrastromal refractive procedure whereby a tissue lenticule is cut free in the corneal stroma by a femtosecond laser and removed through a small peripheral incision has been introduced. This procedure avoids creation of a corneal flap and the potential associated risks while avoiding the slow visual recovery of surface ablation procedures. Precise intrastromal femtosecond laser cutting of the fine lenticule requires very controlled laser energy delivery in order to avoid lenticule irregularities, which would compromise the refractive result and visual acuity. This newly introduced all-femtosecond based flap-free intracorneal refractive procedure has been documented to be a predictable, efficient, and safe procedure for correction of myopia and astigmatism. Technological developments related to further improved cutting quality, hyperopic and individualized treatments are desirable.

  5. Investigation of Overrun-Processed Porous Hyaluronic Acid Carriers in Corneal Endothelial Tissue Engineering

    PubMed Central

    Lai, Jui-Yang; Cheng, Hsiao-Yun; Ma, David Hui-Kang

    2015-01-01

    Hyaluronic acid (HA) is a linear polysaccharide naturally found in the eye and therefore is one of the most promising biomaterials for corneal endothelial regenerative medicine. This study reports, for the first time, the development of overrun-processed porous HA hydrogels for corneal endothelial cell (CEC) sheet transplantation and tissue engineering applications. The hydrogel carriers were characterized to examine their structures and functions. Evaluations of carbodiimide cross-linked air-dried and freeze-dried HA samples were conducted simultaneously for comparison. The results indicated that during the fabrication of freeze-dried HA discs, a technique of introducing gas bubbles in the aqueous biopolymer solutions can be used to enlarge pore structure and prevent dense surface skin formation. Among all the groups studied, the overrun-processed porous HA carriers show the greatest biological stability, the highest freezable water content and glucose permeability, and the minimized adverse effects on ionic pump function of rabbit CECs. After transfer and attachment of bioengineered CEC sheets to the overrun-processed HA hydrogel carriers, the therapeutic efficacy of cell/biopolymer constructs was tested using a rabbit model with corneal endothelial dysfunction. Clinical observations including slit-lamp biomicroscopy, specular microscopy, and corneal thickness measurements showed that the construct implants can regenerate corneal endothelium and restore corneal transparency at 4 weeks postoperatively. Our findings suggest that cell sheet transplantation using overrun-processed porous HA hydrogels offers a new way to reconstruct the posterior corneal surface and improve endothelial tissue function. PMID:26296087

  6. Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells.

    PubMed

    Blazejewska, Ewa Anna; Schlötzer-Schrehardt, Ursula; Zenkel, Matthias; Bachmann, Björn; Chankiewitz, Erik; Jacobi, Christina; Kruse, Friedrich E

    2009-03-01

    The aim of this study was to investigate the transdifferentiation potential of murine vibrissa hair follicle (HF) stem cells into corneal epithelial-like cells through modulation by corneal- or limbus-specific microenvironmental factors. Adult epithelial stem cells were isolated from the HF bulge region by mechanical dissection or fluorescence-activated cell sorting using antibodies to alpha6 integrin, enriched by clonal expansion, and subcultivated on various extracellular matrices (type IV collagen, laminin-1, laminin-5, fibronectin) and in different conditioned media derived from central and peripheral corneal fibroblasts, limbal stromal fibroblasts, and 3T3 fibroblasts. Cellular phenotype and differentiation were evaluated by light and electron microscopy, real-time reverse transcription-polymerase chain reaction, immunocytochemistry, and Western blotting, using antibodies against putative stem cell markers (K15, alpha6 integrin) and differentiation markers characteristic for corneal epithelium (K12, Pax6) or epidermis (K10). Using laminin-5, a major component of the corneo-limbal basement membrane zone, and conditioned medium from limbal stromal fibroblasts, clonally enriched HF stem and progenitor cells adhered rapidly and formed regularly arranged stratified cell sheets. Conditioned medium derived from limbal fibroblasts markedly upregulated expression of cornea-specific K12 and Pax6 on the mRNA and protein level, whereas expression of the epidermal keratinocyte marker K10 was strongly downregulated. These findings suggest that adult HF epithelial stem cells are capable of differentiating into corneal epithelial-like cells in vitro when exposed to a limbus-specific microenvironment. Therefore, the HF may be an easily accessible alternative therapeutic source of autologous adult stem cells for replacement of the corneal epithelium and restoration of visual function in patients with ocular surface disorders. PMID:19074417

  7. Microscopy with UV Surface Excitation (MUSE) for slide-free histology and pathology imaging

    NASA Astrophysics Data System (ADS)

    Fereidouni, Farzad; Datta-Mitra, Ananya; Demos, Stavros; Levenson, Richard

    2015-03-01

    A novel microscopy method that takes advantage of shallow photon penetration using ultraviolet-range excitation and exogenous fluorescent stains is described. This approach exploits the intrinsic optical sectioning function when exciting tissue fluorescence from superficial layers to generate images similar to those obtainable from a physically thinsectioned tissue specimen. UV light in the spectral range from roughly 240-275 nm penetrates only a few microns into the surface of biological specimens, thus eliminating out-of-focus signals that would otherwise arise from deeper tissue layers. Furthermore, UV excitation can be used to simultaneously excite fluorophores emitting across a wide spectral range. The sectioning property of the UV light (as opposed to more conventional illumination in the visible range) removes the need for physical or more elaborate optical sectioning approaches, such as confocal, nonlinear or coherent tomographic methods, to generate acceptable axial resolution. Using a tunable laser, we investigated the effect of excitation wavelength in the 230-350 nm spectral range on excitation depth. The results reveal an optimal wavelength range and suggest that this method can be a fast and reliable approach for rapid imaging of tissue specimens. Some of this range is addressable by currently available and relatively inexpensive LED light sources. MUSE may prove to be a good alternative to conventional, time-consuming, histopathology procedures.

  8. Non-mulberry Silk Fibroin Biomaterial for Corneal Regeneration

    PubMed Central

    Hazra, Sarbani; Nandi, Sudip; Naskar, Deboki; Guha, Rajdeep; Chowdhury, Sushovan; Pradhan, Nirparaj; Kundu, Subhas C.; Konar, Aditya

    2016-01-01

    Purpose: Successful repair of a damaged corneal surface is a great challenge and may require the use of a scaffold that supports cell growth and differentiation. Amniotic membrane is currently used for this purpose, in spite of its limitations. A thin transparent silk fibroin film from non-mulberry Antheraea mylitta (Am) has been developed which offers to be a promising alternative. The silk scaffolds provide sufficient rigidity for easy handling, the scaffolds support the sprouting, migration, attachment and growth of epithelial cells and keratocytes from rat corneal explants; the cells form a cell sheet, preserve their phenotypes, express cytokeratin3 and vimentin respectively. The films also support growth of limbal stem cell evidenced by expression of ABCG2. The cell growth on the silk film and the amniotic membrane is comparable. The implanted film within the rabbit cornea remains transparent, stable. The clinical examination as well as histology shows absence of any inflammatory response or neovascularization. The corneal surface integrity is maintained; tear formation, intraocular pressure and electroretinography of implanted eyes show no adverse changes. The silk fibroin film from non-mulberry silk worms may be a worthy candidate for use as a corneal scaffold. PMID:26908015

  9. Corneal Regeneration After Photorefractive Keratectomy: A Review.

    PubMed

    Tomás-Juan, Javier; Murueta-Goyena Larrañaga, Ane; Hanneken, Ludger

    2015-01-01

    Photorefractive keratectomy (PRK) remodels corneal stroma to compensate refractive errors. The removal of epithelium and the ablation of stroma provoke the disruption of corneal nerves and a release of several peptides from tears, epithelium, stroma and nerves. A myriad of cytokines, growth factors, and matrix metalloproteases participate in the process of corneal wound healing. Their balance will determine if reepithelization and stromal remodeling are appropriate. The final aim is to achieve corneal transparency for restoring corneal function, and a proper visual quality. Therefore, wound-healing response is critical for a successful refractive surgery. Our goal is to provide an overview into how corneal wounding develops following PRK. We will also review the influence of intraoperative application of mitomycin C, bandage contact lenses, anti-inflammatory and other drugs in preventing corneal haze and post-PRK pain. PMID:25444646

  10. History of corneal transplantation in Australia.

    PubMed

    Coster, Douglas J

    2015-04-01

    Corneal transplantation is a triumph of modern ophthalmology. The possibility of corneal transplantation was first raised in 1797 but a century passed before Zirm achieved the first successful penetrating graft in 1905. Gibson reported the first corneal graft in Australia from Brisbane in 1940 and English established the first eye bank there a few years later. Corneal transplantation evolved steadily over the twentieth century. In the second half of the century, developments in microsurgery, including surgical materials such as monofilament nylon and strong topical steroid drops, accounted for improvements in outcomes. In 2013, approximately 1500 corneal transplants were done in Australia. Eye banking has evolved to cope with the rising demands for donor corneas. Australian corneal surgeons collaborated to establish and support the Australian Corneal Graft Registry in 1985. It follows the outcomes of their surgery and has become an important international resource for surgeons seeking further improvement with the procedure. PMID:25112897

  11. Corneal Regeneration After Photorefractive Keratectomy: A Review☆

    PubMed Central

    Tomás-Juan, Javier; Murueta-Goyena Larrañaga, Ane; Hanneken, Ludger

    2014-01-01

    Photorefractive keratectomy (PRK) remodels corneal stroma to compensate refractive errors. The removal of epithelium and the ablation of stroma provoke the disruption of corneal nerves and a release of several peptides from tears, epithelium, stroma and nerves. A myriad of cytokines, growth factors, and matrix metalloproteases participate in the process of corneal wound healing. Their balance will determine if reepithelization and stromal remodeling are appropriate. The final aim is to achieve corneal transparency for restoring corneal function, and a proper visual quality. Therefore, wound-healing response is critical for a successful refractive surgery. Our goal is to provide an overview into how corneal wounding develops following PRK. We will also review the influence of intraoperative application of mitomycin C, bandage contact lenses, anti-inflammatory and other drugs in preventing corneal haze and post-PRK pain. PMID:25444646

  12. Morphometrics of corneal growth in chicks raised in constant light

    PubMed Central

    Wahl, Christina; Li, Tong; Choden, Tsering; Howland, Howard

    2009-01-01

    In this study we wish to augment our understanding of the effect of environment on corneal growth and morphology. To understand how corneal development of chicks raised in constant light differs from that of ‘normal’ eyes exposed to cyclic periods of light and dark, white Leghorn chicks were raised under either constant light (approximately 700 lux at cage top) or in 12 h light/12 h dark conditions for up to 12 weeks after hatching. To determine whether corneal expansion is uniform, some birds from each group received corneal tattoos for periodic photographic assessment. By 16 days of age, constant light corneas weighed less than light/dark regimen corneas [7.39 ± 0.35 mg (SE) vs. 8.47 mg ± 0.26 mg SE wet weight, P ≤ 0.05], and corresponding differences were seen in corneal dry weights. Spatial expansion of the corneal surface was uniform in both groups, but the rate of expansion was slower in constant light chicks [0.0327 ± 0.009 (SE) vs. 0.144 ± 0.018 (SE) mm2 day−1 for normal chicks, P ≤ 0.001]. At 1 day of age, there were 422 ± 12.5 (SE) stromal cells 0.01 mm−2 in the central cornea and 393 ± 21.5 (SE) stromal cells 0.01 mm−2peripherally. Although this difference is not statistically significant, the cell densities in the central cornea were always larger than those of the peripheral cornea in all eight measurements over a 10.5-week period, and this difference is significant (P ≤ 0.008, binomial test). Light/dark regimen birds show no such consistent difference in cell densities between central and peripheral corneas. Thus, the density distribution of corneal stromal cells of chicks grown in constant light differs from that of normal chicks. Taken together, all these observations suggest that diurnal cycles of light and darkness are necessary for normal corneal growth. PMID:19245502

  13. Corneal Pachymetry Mapping with High-speed Optical Coherence Tomography

    PubMed Central

    Li, Yan; Shekhar, Raj; Huang, David

    2006-01-01

    Objective To map corneal thickness before and after LASIK with optical coherence tomography (OCT). Design Cross-sectional observational study. Participants Forty-two eyes of 21 normal subjects undergoing LASIK. Methods A high-speed (2000 axial scans/second) 1.3-μm-wavelength corneal and anterior segment OCT prototype was used for corneal scanning. The scan pattern consisted of 10-mm radial lines on 8 meridians centered on the vertex reflection. The entire scan pattern of 1024 a-scans was acquired in 0.5 seconds. We developed automated computer processing for 3-dimensional corneal reconstruction and measurement. Corneal thickness was measured normal to the anterior surface and presented as color pachymetry maps and zonal statistics. The maps were divided into a central zone (<2 mm) and 3 annular areas (pericentral, 2–5 mm; transitional, 5–7 mm; peripheral, 7–10 mm), which were further divided into quadrantal zones. The average, minimum, and maximum corneal thicknesses were computed for zones within the 7-mm diameter. Optical coherence tomography and ultrasound pachymetry were measured 3 times at the preoperative and 3-month postoperative visits. Reproducibility was assessed by the pooled standard deviations (SDs) of the repeated measurements. Main Outcome Measures Optical coherence tomography pachymetric map and zonal statistic, and ultrasound pachymetry. Results Before LASIK, central corneal thicknesses (CCTs) were 546.9±29.4 μm (mean ± SD) for OCT and 553.3±33.0 μm for ultrasound. After LASIK, CCTs were 513.7±44.5 μm for OCT and 498±46.6 μm for ultrasound. Optical coherence tomography and ultrasound CCT were highly correlated (Pearson correlation r = 0.97 before LASIK and 0.98 afterwards). Optical coherence tomography CCT was slightly less than ultrasound CCT before surgery (mean difference, −6.4 μm; 95% limits of agreement, −23.2 to 10.4 μm) but slightly greater after LASIK (15.7 μm; −1.6 to 33 μm). These differences were statistically

  14. Correlation between echocardiographic endocardial surface mapping of abnormal wall motion and pathologic infarct size in autopsied hearts.

    PubMed

    Wilkins, G T; Southern, J F; Choong, C Y; Thomas, J D; Fallon, J T; Guyer, D E; Weyman, A E

    1988-05-01

    We previously developed a cross-sectional echocardiographic technique for quantitatively mapping the endocardial surface of the left ventricle and on which regions of abnormal wall motion can be superimposed in their correct spatial distribution. This endocardial mapping technique (EMT) provides a measure of the left ventricular endocardial surface area (ESA in cm2), the area of abnormal wall motion (AWM in cm2), and the overall percent dysfunction (%AWM) as a measure of the functional "infarct size." To test this approach, we compared the EMT measurements with the actual endocardial surface area (in cm2) and pathologic infarct size (both percent infarct by volume and percent endocardial surface overlying infarct) measured at later autopsy in 20 adults (14 men, six women) ranging in age from 47 to 76 years (mean 64 +/- 9.6 years). The median interval from echocardiographic study to death was 19 days (range 1 to 269 days). Patients were divided into two groups based on the age of their infarcts at the time of death: (1) recent (infarct age less than 14 days; mean age 5.3 +/- 4.6 days) and (2) old (infarct age greater than 6 months; mean age 3.6 +/- 3 years). When the left ventricular endocardial surface area at autopsy was compared with the EMT-derived ESA, a close correlation was found (EMT area = 1.17 X autopsy area + 20.4; r = .94, p = .0001), with the systematic difference in the measurements accounted for by systolic arrest, loss of distending pressure, and specimen shrinkage. The echocardiographic measure of infarct size (%AWM) correlated well with the autopsy percent infarction by volume (%AWM = 1.1 X infarct volume + 5.5; r = .82, p = .0001). Similarly, a good correlation was found for the percent abnormal wall motion and the autopsy percent endocardial surface area overlying infarction (%AWM = 0.89 X infarct area - 0.9; r = .89, p = .0001). When the data were examined in relation to the age of the myocardial infarct, the echocardiographic %AWM appeared to

  15. Fate Mapping Mammalian Corneal Epithelia.

    PubMed

    Richardson, Alexander; Wakefield, Denis; Di Girolamo, Nick

    2016-04-01

    The anterior aspect of the cornea consists of a stratified squamous epithelium, thought to be maintained by a rare population of stem cells (SCs) that reside in the limbal transition zone. Although migration of cells that replenish the corneal epithelium has been studied for over a century, the process is still poorly understood and not well characterized. Numerous techniques have been employed to examine corneal epithelial dynamics, including visualization by light microscopy, the incorporation of vital dyes and DNA labels, and transplantation of genetically marked cells that have acted as cell and lineage beacons. Modern-day lineage tracing utilizes molecular methods to determine the fate of a specific cell and its progeny over time. Classically employed in developmental biology, lineage tracing has been used more recently to track the progeny of adult SCs in a number of organs to pin-point their location and understand their movement and influence on tissue regeneration. This review highlights key discoveries that have led researchers to develop cutting-edge genetic tools to effectively and more accurately monitor turnover and displacement of cells within the mammalian corneal epithelium. Collating information on the basic biology of SCs will have clinical ramifications in furthering our knowledge of the processes that govern their role in homeostasis, wound-healing, transplantation, and how we can improve current unsatisfactory SC-based therapies for patients suffering blinding corneal disease. PMID:26774909

  16. Role of Human Corneal Stroma-Derived Mesenchymal-Like Stem Cells in Corneal Immunity and Wound Healing

    PubMed Central

    Veréb, Zoltán; Póliska, Szilárd; Albert, Réka; Olstad, Ole Kristoffer; Boratkó, Anita; Csortos, Csilla; Moe, Morten C.; Facskó, Andrea; Petrovski, Goran

    2016-01-01

    Corneal tissue regeneration is of crucial importance for maintaining normal vision. We aimed to isolate and cultivate human corneal stroma-derived mesenchymal stem-like cells (CSMSCs) from the central part of cadaver corneas and study their phenotype, multipotency, role in immunity and wound healing. The isolated cells grew as monolayers in vitro, expressed mesenchymal- and stemness-related surface markers (CD73, CD90, CD105, CD140b), and were negative for hematopoietic markers as determined by flow cytometry. CSMSCs were able to differentiate in vitro into fat, bone and cartilage. Their gene expression profile was closer to bone marrow-derived MSCs (BMMSCs) than to limbal epithelial stem cells (LESC) as determined by high-throughput screening. The immunosuppressive properties of CSMSCs were confirmed by a mixed lymphocyte reaction (MLR), while they could inhibit proliferation of activated immune cells. Treatment of CSMSCs by pro-inflammatory cytokines and toll-like receptor ligands significantly increased the secreted interleukin-6 (IL-6), interleukin-8 (IL-8) and C-X-C motif chemokine 10 (CXCL-10) levels, as well as the cell surface adhesion molecules. CSMSCs were capable of closing a wound in vitro under different stimuli. These cells thus contribute to corneal tissue homeostasis and play an immunomodulatory and regenerative role with possible implications in future cell therapies for treating sight-threatening corneal diseases. PMID:27195722

  17. Role of Human Corneal Stroma-Derived Mesenchymal-Like Stem Cells in Corneal Immunity and Wound Healing.

    PubMed

    Veréb, Zoltán; Póliska, Szilárd; Albert, Réka; Olstad, Ole Kristoffer; Boratkó, Anita; Csortos, Csilla; Moe, Morten C; Facskó, Andrea; Petrovski, Goran

    2016-01-01

    Corneal tissue regeneration is of crucial importance for maintaining normal vision. We aimed to isolate and cultivate human corneal stroma-derived mesenchymal stem-like cells (CSMSCs) from the central part of cadaver corneas and study their phenotype, multipotency, role in immunity and wound healing. The isolated cells grew as monolayers in vitro, expressed mesenchymal- and stemness-related surface markers (CD73, CD90, CD105, CD140b), and were negative for hematopoietic markers as determined by flow cytometry. CSMSCs were able to differentiate in vitro into fat, bone and cartilage. Their gene expression profile was closer to bone marrow-derived MSCs (BMMSCs) than to limbal epithelial stem cells (LESC) as determined by high-throughput screening. The immunosuppressive properties of CSMSCs were confirmed by a mixed lymphocyte reaction (MLR), while they could inhibit proliferation of activated immune cells. Treatment of CSMSCs by pro-inflammatory cytokines and toll-like receptor ligands significantly increased the secreted interleukin-6 (IL-6), interleukin-8 (IL-8) and C-X-C motif chemokine 10 (CXCL-10) levels, as well as the cell surface adhesion molecules. CSMSCs were capable of closing a wound in vitro under different stimuli. These cells thus contribute to corneal tissue homeostasis and play an immunomodulatory and regenerative role with possible implications in future cell therapies for treating sight-threatening corneal diseases. PMID:27195722

  18. Corneal Stroma Microfibrils

    PubMed Central

    Hanlon, Samuel D.; Behzad, Ali R.; Sakai, Lynn Y.; Burns, Alan R.

    2015-01-01

    Elastic tissue was first described well over a hundred years ago and has since been identified in nearly every part of the body. In this review, we examine elastic tissue in the corneal stroma with some mention of other ocular structures which have been more thoroughly described in the past. True elastic fibers consist of an elastin core surrounded by fibrillin microfibrils. However, the presence of elastin fibers is not a requirement and some elastic tissue is comprised of non-elastin-containing bundles of microfibrils. Fibers containing a higher relative amount of elastin are associated with greater elasticity and those without elastin, with structural support. Recently it has been shown that the microfibrils, not only serve mechanical roles, but are also involved in cell signaling through force transduction and the release of TGF-β. A well characterized example of elastin-free microfibril bundles (EFMBs) is found in the ciliary zonules which suspend the crystalline lens in the eye. Through contraction of the ciliary muscle they exert enough force to reshape the lens and thereby change its focal point. It is believed that the molecules comprising these fibers do not turn-over and yet retain their tensile strength for the life of the animal. The mechanical properties of the cornea (strength, elasticity, resiliency) would suggest that EFMBs are present there as well. However, many authors have reported that, although present during embryonic and early postnatal development, EFMBs are generally not present in adults. Serial-block-face imaging with a scanning electron microscope enabled 3D reconstruction of elements in murine corneas. Among these elements were found fibers that formed an extensive network throughout the cornea. In single sections these fibers appeared as electron dense patches. Transmission electron microscopy provided additional detail of these patches and showed them to be composed of fibrils (∼10nm diameter). Immunogold evidence clearly

  19. [Neurotrophic keratopathy--studies on substance P and the clinical significance of corneal sensation].

    PubMed

    Nishida, T; Nakamura, M; Konma, T; Ofuji, K; Nagano, K; Tanaka, T; Enoki, M; Reid, T W; Brown, S M; Murphy, C J; Mannis, M J

    1997-12-01

    Neurotrophic keratopathy, which often follows damage to the trigeminal nerve, is clinically characterized by various types of epithelial disorders and melting of corneal stroma. To understand both the pathology of neurotrophic keratopathy and the physiological significance of corneal sensation, we investigated both the cellular and molecular functions of a sensory neurotransmitter, substance P, in corneal epithelial cells. Our findings prompted us to try a new mode of treatment for neurotrophic keratopathy. Substance P, a member of the tachykinin family, is an 11-amino-acid peptide. In an organ culture system using rabbit corneas, substance P alone had no effect on corneal epithelial migration. In the presence of insulin-like growth factor-1 (IGF-1), however, substance P synergistically facilitated corneal epithelial migration in proportion to the concentration of substance P or of IGF-1. Other neurotransmitters (acetylcholine, norepinephrine, serotonin etc.) or tachykinins (neurokinin A, eledoisin etc.) did not show this synergistic effect with IGF-1. Among receptors for the tachykinin family (NK-1, NK-2, or NK-3) only the NK-1 receptor system was involved in the synergistic effect of substance P and IGF-1 on corneal epithelial migration. IGF-1 affected neither the binding constant nor the number of sites of substance P receptors in corneal epithelial cells, suggesting that the synergistic effect was not regulated at the receptor level. Various extracellular signals activate the intracellular signal transduction system, thus amplifying specific biological functions. We found that the addition of inhibitors of protein kinase C or tyrosine kinase clearly inhibited the synergistic effect of substance P and IGF-1 on corneal epithelial migration, demonstrating that protein kinase C and tyrosine kinase are involved in the synergistic effect. During corneal epithelial wound healing, epithelial cells must attach to a provisional, extracellular fibronectin matrix. We

  20. Corneal calcification after amniotic membrane transplantation

    PubMed Central

    Anderson, S B; de Souza, R Ferreira; Hofmann-Rummelt, C; Seitz, B

    2003-01-01

    Background/aims: Amniotic membrane transplantation (AMT) has become well established as a treatment for chronic epithelial defects, conjunctival reconstruction, and partial limbal cell deficiency. The aim of this study was to describe cases of corneal calcification following AMT and to search for risk factors that might predispose to this unusual finding. Methods: Details of 117 AMTs on 93 corneas of 91 patients with a follow up period of at least 1 month performed since 1999 were collected prospectively. In those with calcification clinical photographs were studied and the medical records retrospectively examined. Results: 15 calcifications in 117 AMTs (12.8%) were identified, occurring 3–17 (median 6.1) weeks after AMT, during a follow up period of 4–151 (median 25) weeks. Overall epithelial healing rate was 83%. Calcification covered a surface area between 0.7–40.5 mm2 maximum size with varied morphology. The primary diagnosis was diverse. Risk factors included the use of phosphate eye drops and pre-existing calcification in the operative or other eye. No patient with a “patch” AMT developed calcification. Conclusions: Corneal calcification occurs after some cases of AMT. A common risk factor was the postoperative use of phosphate containing eye drops. PMID:12714401

  1. Diagnosis of corneal pathology by laser fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Salmin, V. V.; Lazarenko, V. I.; Salmina, A. B.; Hovalyg, M. Sh.; Vladimirova, E. S.

    2012-09-01

    We have studied the difference between the fluorescence spectra of the human cornea in vivo under normal conditions and after contact lenses have been worn for different lengths of time, with excitation by emission from a nitrogen laser (337 nm). The most significant sections of the difference spectrum were identified, corresponding to peaks for endogenous fluorophores (NADH and collagen). A high correlation was found between how long the contact lenses have been worn and the fluorescence intensity ratio for wavelengths 460 nm and 410 nm.

  2. Evaluation of the PAR corneal topography system

    NASA Astrophysics Data System (ADS)

    Jindal, Prateek; Cheung, Susan; Pirouzian, Amir; Keates, Richard H.; Ren, Qiushi

    1995-05-01

    The purpose of this study was to evaluate the raster photogrammetry based Corneal Topography System by determining: inter-operator variability, reproducibility of images, effects of defocused and decentered images, and the precision of data at different optical zones. 4 human cadaver eyes were used to study the inter-operator variability. To study the reproducibility of images, 3 human cadaver eyes and a test surface doped with flourescine (provided by PAR Vision Systems Corporation) were focused and their images taken four successive times. Defocused and decentered images were taken of 4 human cadaver eyes and four times of the test surface mentioned above. The precision of defocused/decentered cadaver eyes was evaluated at the following optical zones: 3 mm, 4 mm, 5 mm, and 6 mm. All human cadaver eyes used in the above experiments had their epithelial layer removed before imaging. Average inter-operator variability was 0.06 D. In reproducibility attempts, there was an average deviation of 0.28 D for the human cadaver eyes and 0.04 D for the test surface. The defocused and decentered test surface gave an average deviation of 0.09 D. Defocused and decentered cadaver eyes resulted in an average deviation of 0.52 D, 0.37 D, 0.24 D, and 0.22 D at optical zones of 3 mm, 4 mm, 5 mm, and 6 mm, respectively. The imaging method employed by PAR Vision Systems Corporation virtually eliminates inter-operator variability. The PAR Corneal Topography System's clinical usefulness, however, could be improved by improving the reproducibility of images, decreasing the sensitivity to spatial alignment, and increasing accuracy over smaller optical zones.

  3. Turning the tide of corneal blindness.

    PubMed

    Oliva, Matthew S; Schottman, Tim; Gulati, Manoj

    2012-01-01

    Corneal diseases represent the second leading cause of blindness in most developing world countries. Worldwide, major investments in public health infrastructure and primary eye care services have built a strong foundation for preventing future corneal blindness. However, there are an estimated 4.9 million bilaterally corneal blind persons worldwide who could potentially have their sight restored through corneal transplantation. Traditionally, barriers to increased corneal transplantation have been daunting, with limited tissue availability and lack of trained corneal surgeons making widespread keratoplasty services cost prohibitive and logistically unfeasible. The ascendancy of cataract surgical rates and more robust eye care infrastructure of several Asian and African countries now provide a solid base from which to dramatically expand corneal transplantation rates. India emerges as a clear global priority as it has the world's largest corneal blind population and strong infrastructural readiness to rapidly scale its keratoplasty numbers. Technological modernization of the eye bank infrastructure must follow suit. Two key factors are the development of professional eye bank managers and the establishment of Hospital Cornea Recovery Programs. Recent adaptation of these modern eye banking models in India have led to corresponding high growth rates in the procurement of transplantable tissues, improved utilization rates, operating efficiency realization, and increased financial sustainability. The widespread adaptation of lamellar keratoplasty techniques also holds promise to improve corneal transplant success rates. The global ophthalmic community is now poised to scale up widespread access to corneal transplantation to meet the needs of the millions who are currently blind. PMID:22944753

  4. Preliminary results of a computerized Placido disk surgical corneal topographer

    NASA Astrophysics Data System (ADS)

    Carvalho, Luis A.; Tonissi, S. A.; Castro, Jarbas C.

    1999-06-01

    We have developed a novel instrument for computerized corneal topography during surgery. The instrument measures a region of approximately 7 mm in diameter, providing the surgeon with precise values of power and astigmatism. The system is based on a Placido Disc projecting system, which is attached to the objective lens of the surgical microscope. The Placido Disc pattern is reflected by a 50% beam splitter attached to the body of the microscope. At the beam splitter we installed our home-made adaptor and a CCD monochromatic high resolution camera. A high quality frame grabber is installed on a PC and images are digitized at a 480x640 resolution. Algorithms based on image processing techniques were implemented for edge detection of pattern. Calibrating curves based on 4 spherical surfaces were generated and approximately 3600 points were calculated for each exam. Preliminary measurements on 10 healthy corneas were compared with the measurements made on an EyeSys Corneal Topographer. Mean deviation was 0.05 for radius of curvature, 0.24 D for power and 5 degrees for cylinder. This system, with some improvements, may be successfully used to diminish high post surgical astigmatisms in surgeries such as cataract and corneal transplant. This system could also be used to gather preoperative data in corneal topography assisted LASIK.

  5. Spontaneous bilateral corneal perforation in stevens- johnsons syndrome-a challenge in management.

    PubMed

    Md Noh, Umi Kalthum; Then, Kong Yong

    2013-01-01

    A 42-year-old man from Ghana presented with bilateral painful corneal perforations following ingestion of a sulphur-based antibiotic. Emergency bilateral penetrating keratoplasty was performed, with restoration of globe integrity. However, surgical complications arose such as non-healing epithelial defect, secondary infection, graft dehiscence, and mounting intraocular pressure. This case illustrates the challenges faced in managing corneal grafts in patients with already compromised ocular surfaces. PMID:23785259

  6. Spontaneous Bilateral Corneal Perforation in Stevens- Johnsons Syndrome–A Challenge in Management

    PubMed Central

    Md Noh, Umi Kalthum; Then, Kong Yong

    2013-01-01

    A 42-year-old man from Ghana presented with bilateral painful corneal perforations following ingestion of a sulphur-based antibiotic. Emergency bilateral penetrating keratoplasty was performed, with restoration of globe integrity. However, surgical complications arose such as non-healing epithelial defect, secondary infection, graft dehiscence, and mounting intraocular pressure. This case illustrates the challenges faced in managing corneal grafts in patients with already compromised ocular surfaces. PMID:23785259

  7. Long-Term Observation of Coexistence of Posterior Polymorphous Corneal Dystrophy, Resultant High Myopia and Nonkeratoconic Developing Corneal Astigmatism: A Case Report of 7-Year Tracking in a Chinese Boy.

    PubMed

    Shen, Jianqin; Chixin, Du; Gu, Yangshun

    2015-06-01

    Posterior polymorphous corneal dystrophy (PPCD) is an extremely rare, bilateral, and inherited disorder, which affects the corneal endothelium and Descemet's membrane. Few PPCD cases in Chinese patients have been published so far. As far as we know, there are few studies which focused on the associations between PPCD and high myopia either. Here we report a rare case of coexistence of posterior polymorphous corneal dystrophy, resultant high myopia and with-the-rule developing corneal astigmatism in a young Chinese boy. A 6-year-old boy was first referred to our department 7 years ago, complaining of bilateral poor vision. Examinations of both eyes including ophthalmologic examination, cycloplegic refraction examination, confocal microscopy findings, and corneal topography were performed. Bilateral small aggregates of vesicular lesions and patchy hyperreflectivity were observed at the level of the Descemet's membrane on confocal microscopy, which is consistent with typical PPCD. Optometry and corneal topography examinations showed a resultant high myopia. Ocular examinations were performed annually to follow up with the patient in the past 7 years. The corneal lesions remained stable whereas an axial elongation and a sharp increase in both spherical and cylindrical equivalent power were observed. Close follow-ups including thorough scrutiny of the endothelium and systematic ocular ancillary examinations are essential for patients with PPCD. The pathological coexistence of PPCD and high myopia in our case is possibly due to a shared etiological pathway or genetic background. Advanced genetic analysis on similar cases is expected if more samples can be provided. PMID:26061314

  8. Computational Pathology

    PubMed Central

    Louis, David N.; Feldman, Michael; Carter, Alexis B.; Dighe, Anand S.; Pfeifer, John D.; Bry, Lynn; Almeida, Jonas S.; Saltz, Joel; Braun, Jonathan; Tomaszewski, John E.; Gilbertson, John R.; Sinard, John H.; Gerber, Georg K.; Galli, Stephen J.; Golden, Jeffrey A.; Becich, Michael J.

    2016-01-01

    Context We define the scope and needs within the new discipline of computational pathology, a discipline critical to the future of both the practice of pathology and, more broadly, medical practice in general. Objective To define the scope and needs of computational pathology. Data Sources A meeting was convened in Boston, Massachusetts, in July 2014 prior to the annual Association of Pathology Chairs meeting, and it was attended by a variety of pathologists, including individuals highly invested in pathology informatics as well as chairs of pathology departments. Conclusions The meeting made recommendations to promote computational pathology, including clearly defining the field and articulating its value propositions; asserting that the value propositions for health care systems must include means to incorporate robust computational approaches to implement data-driven methods that aid in guiding individual and population health care; leveraging computational pathology as a center for data interpretation in modern health care systems; stating that realizing the value proposition will require working with institutional administrations, other departments, and pathology colleagues; declaring that a robust pipeline should be fostered that trains and develops future computational pathologists, for those with both pathology and non-pathology backgrounds; and deciding that computational pathology should serve as a hub for data-related research in health care systems. The dissemination of these recommendations to pathology and bioinformatics departments should help facilitate the development of computational pathology. PMID:26098131

  9. Anterior and Posterior Corneal Astigmatism after Refractive Lenticule Extraction for Myopic Astigmatism

    PubMed Central

    Yamagishi, Mayumi; Igarashi, Akihito

    2015-01-01

    Purpose. To assess the amount and the axis orientation of anterior and posterior corneal astigmatism after refractive lenticule extraction (ReLEx) for myopic astigmatism. Methods. We retrospectively examined 53 eyes of 53 consecutive patients (mean age ± standard deviation, 33.2 ± 6.5 years) undergoing ReLEx to correct myopic astigmatism (manifest cylinder = 0.5 diopters (D)). Power vector analysis was performed with anterior and posterior corneal astigmatism measured with a rotating Scheimpflug system (Pentacam HR, Oculus) and refractive astigmatism preoperatively and 3 months postoperatively. Results. Anterior corneal astigmatism was significantly decreased, measuring 1.42 ± 0.73 diopters (D) preoperatively and 1.11 ± 0.53 D postoperatively (p < 0.001, Wilcoxon signed-rank test). Posterior corneal astigmatism showed no significant change, falling from 0.44 ± 0.12 D preoperatively to 0.42 ± 0.13 D postoperatively (p = 0.18). Refractive astigmatism decreased significantly, from 0.92 ± 0.51 D preoperatively to 0.27 ± 0.44 D postoperatively (p < 0.001). The anterior surface showed with-the-rule astigmatism in 51 eyes (96%) preoperatively and 48 eyes (91%) postoperatively. By contrast, the posterior surface showed against-the-rule astigmatism in all eyes preoperatively and postoperatively. Conclusions. The surgical effects were largely attributed to the astigmatic correction of the anterior corneal surface. Posterior corneal astigmatism remained unchanged even after ReLEx for myopic astigmatism. PMID:26097749

  10. Regenerative Cell Therapy for Corneal Endothelium.

    PubMed

    Bartakova, Alena; Kunzevitzky, Noelia J; Goldberg, Jeffrey L

    2014-09-01

    Endothelial cell dysfunction as in Fuchs dystrophy or pseudophakic bullous keratopathy, and the limited regenerative capacity of human corneal endothelial cells (HCECs), drive the need for corneal transplant. In response to limited donor corneal availability, significant effort has been directed towards cell therapy as an alternative to surgery. Stimulation of endogenous progenitors, or transplant of stem cell-derived HCECs or in vitro-expanded, donor-derived HCECs could replace traditional surgery with regenerative therapy. Ex vivo expansion of HCECs is technically challenging, and the basis for molecular identification of functional HCECs is not established. Delivery of cells to the inner layer of the human cornea is another challenge: different techniques, from simple injection to artificial corneal scaffolds, are being investigated. Despite remaining questions, corneal endothelial cell therapies, translated to the clinic, represent the future for the treatment of corneal endotheliopathies. PMID:25328857

  11. A STING-dependent innate-sensing pathway mediates resistance to corneal HSV-1 infection via upregulation of the antiviral effector tetherin.

    PubMed

    Royer, D J; Carr, D J J

    2016-07-01

    Type 1 interferons (IFNs; IFNα/β) mediate immunological host resistance to numerous viral infections, including herpes simplex virus type 1 (HSV-1). The pathways responsible for IFNα/β signaling during the innate immune response to acute HSV-1 infection in the cornea are incompletely understood. Using a murine ocular infection model, we hypothesized that the stimulator of IFN genes (STING) mediates resistance to HSV-1 infection at the ocular surface and preserves the structural integrity of this mucosal site. Viral pathogenesis, tissue pathology, and host immune responses during ocular HSV-1 infection were characterized by plaque assay, esthesiometry, pachymetry, immunohistochemistry, flow cytometry, and small interfering RNA transfection in wild-type C57BL/6 (WT), STING-deficient (STING(-/-)), and IFNα/β receptor-deficient (CD118(-/-)) mice at days 3-5 postinfection. The presence of STING was critical for sustained control of HSV-1 replication in the corneal epithelium and resistance to viral neuroinvasion, but loss of STING had a negligible impact with respect to gross tissue pathology. Auxiliary STING-independent IFNα/β signaling pathways were responsible for maintenance of corneal integrity. Lymphatic vessels, mast cells, and sensory innervation were compromised in CD118(-/-) mice concurrent with increased tissue edema. STING-dependent signaling led to the upregulation of tetherin, a viral restriction factor we identify is important in containing the spread of HSV-1 in vivo. PMID:26627457

  12. Tear Film, Contact Lens, and Patient Factors Associated with Corneal Staining

    PubMed Central

    Sinnott, Loraine T.

    2011-01-01

    Purpose. The purpose of this study was to examine ocular surface and tear film, contact lens, care solution, medical, and patient-related factors that are associated with corneal staining in contact lens wearers. Methods. In this cross-sectional/nested case–control study, in addition to the assessment of corneal staining with fluorescein, a variety of tear film and ocular surface, contact lens, and patient-related factors were examined. Poisson regression models were used to examine the relation between corneal staining and these factors. Results. Data from 413 patients were eligible for the analyses described. The average age was 30.6 ± 11.1 years, and 277 (67.1%) of the patients were women. Several factors were shown to be related to increased corneal staining in multivariate modeling, including increased daily wearing times (P = 0.0006), lower income (P = 0.0008), lissamine green conjunctival staining (P = 0.002), contact lens deposition (P = 0.007), increased tear meniscus height (P = 0.007), and decreased hydrogel nominal water content (P = 0.02). The wearing of silicone hydrogels (as opposed to hydrogels) was protective against corneal staining (P = 0.0004). Notably, neither contact lens care solutions nor disinfectants were associated with corneal staining. Conclusions. Corneal staining in contact lens wearers continues to be a frequent, but not well understood, outcome. These data suggest that contact lens factors (water content, material, wearing time, and deposition) are more generally associated with corneal staining than are contact lens care solutions or other ocular surface and tear film, demographic, or medical factors. PMID:21087960

  13. Surgical technique: coupling of intrastromal corneal ring segments for ectatic corneal disorders in eye bank corneas

    PubMed Central

    Moshirfar, Majid; Hsu, Maylon; Khalifa, Yousuf M

    2011-01-01

    The management of corneal ectasia is evolving, with intrastromal corneal ring segments playing an important role in delaying or eliminating the need for penetrating keratoplasty. This paper describes a modification in the implantation technique of intrastromal corneal ring segments that allows for coupling of the two segments with suture, affording more structural support. PMID:22034567

  14. Primary corneal melanocytoma in a Collie.

    PubMed

    Bauer, Bianca; Leis, Marina L; Sayi, Soraya

    2015-09-01

    A 6-year-old female, spayed Collie was referred to the Western College of Veterinary Medicine for a 12-month history of a progressive right corneal mass. A superficial keratectomy was performed and histopathology revealed a corneal melanocytoma with complete excision. There has been no recurrence of the neoplasm to date (12 months). This is the first known report of an isolated corneal melanocytoma in a canine. PMID:25296627

  15. Caveolin-1 Associated Adenovirus Entry into Human Corneal Cells

    PubMed Central

    Mukherjee, Santanu; Chintakuntlawar, Ashish V.; Lee, Jeong Yoon; Ramke, Mirja; Chodosh, James; Rajaiya, Jaya

    2013-01-01

    The cellular entry of viruses represents a critical area of study, not only for viral tropism, but also because viral entry dictates the nature of the immune response elicited upon infection. Epidemic keratoconjunctivitis (EKC), caused by viruses within human adenovirus species D (HAdV-D), is a severe, ocular surface infection associated with corneal inflammation. Clathrin-mediated endocytosis has previously been shown to play a critical role in entry of other HAdV species into many host cell types. However, HAdV-D endocytosis into corneal cells has not been extensively studied. Herein, we show an essential role for cholesterol rich, lipid raft microdomains and caveolin-1, in the entry of HAdV-D37 into primary human corneal fibroblasts. Cholesterol depletion using methyl-β-cyclodextrin (MβCD) profoundly reduced viral infection. When replenished with soluble cholesterol, the effect of MβCD was reversed, allowing productive viral infection. HAdV-D37 DNA was identified in caveolin-1 rich endosomal fractions after infection. Src kinase activity was also increased in caveolin-1 rich endosomal fractions after infection, and Src phosphorylation and CXCL1 induction were both decreased in caveolin-1-/- mice corneas compared to wild type mice. siRNA knock down of caveolin-1 in corneal cells reduced chemokine induction upon viral infection, and caveolin-1-/- mouse corneas showed reduced cellular entry of HAdV-D37. As a control, HAdV-C2, a non-corneal pathogen, appeared to utilize the caveolar pathway for entry into A549 cells, but failed to infect corneal cells entirely, indicating virus and cell specific tropism. Immuno-electron microscopy confirmed the presence of caveolin-1 in HAdV-D37-containing vesicles during the earliest stages of viral entry. Collectively, these experiments indicate for the first time that HAdV-D37 uses a lipid raft mediated caveolin-1 associated pathway for entry into corneal cells, and connects the processes of viral entry with downstream

  16. The corneal fibrosis response to epithelial-stromal injury.

    PubMed

    Torricelli, Andre A M; Santhanam, Abirami; Wu, Jiahui; Singh, Vivek; Wilson, Steven E

    2016-01-01

    The corneal wound healing response, including the development of stromal opacity in some eyes, is a process that often leads to scarring that occurs after injury, surgery or infection to the cornea. Immediately after epithelial and stromal injury, a complex sequence of processes contributes to wound repair and regeneration of normal corneal structure and function. In some corneas, however, often depending on the type and extent of injury, the response may also lead to the development of mature vimentin+ α-smooth muscle actin+ desmin+ myofibroblasts. Myofibroblasts are specialized fibroblastic cells generated in the cornea from keratocyte-derived or bone marrow-derived precursor cells. The disorganized extracellular matrix components secreted by myofibroblasts, in addition to decreased expression of corneal crystallins in these cells, are central biological processes that result in corneal stromal fibrosis associated with opacity or "haze". Several factors are associated with myofibroblast generation and haze development after PRK surgery in rabbits, a reproducible model of scarring, including the amount of tissue ablated, which may relate to the extent of keratocyte apoptosis in the early response to injury, irregularity of stromal surface after surgery, and changes in corneal stromal proteoglycans, but normal regeneration of the epithelial basement membrane (EBM) appears to be a critical factor determining whether a cornea heals with relative transparency or vision-limiting stromal opacity. Structural and functional abnormalities of the regenerated EBM facilitate prolonged entry of epithelium-derived growth factors such as transforming growth factor β (TGF-β) and platelet-derived growth factor (PDGF) into the stroma that both drive development of mature myofibroblasts from precursor cells and lead to persistence of the cells in the anterior stroma. A major discovery that has contributed to our understanding of haze development is that keratocytes and corneal

  17. 3D map of the human corneal endothelial cell

    PubMed Central

    He, Zhiguo; Forest, Fabien; Gain, Philippe; Rageade, Damien; Bernard, Aurélien; Acquart, Sophie; Peoc’h, Michel; Defoe, Dennis M.; Thuret, Gilles

    2016-01-01

    Corneal endothelial cells (CECs) are terminally differentiated cells, specialized in regulating corneal hydration and transparency. They are highly polarized flat cells that separate the cornea from the aqueous humor. Their apical surface, in contact with aqueous humor is hexagonal, whereas their basal surface is irregular. We characterized the structure of human CECs in 3D using confocal microscopy of immunostained whole corneas in which cells and their interrelationships remain intact. Hexagonality of the apical surface was maintained by the interaction between tight junctions and a submembraneous network of actomyosin, braced like a drum. Lateral membranes, which support enzymatic pumps, presented complex expansions resembling interdigitated foot processes at the basal surface. Using computer-aided design and drafting software, we obtained a first simplified 3D model of CECs. By comparing their expression with those in epithelial, stromal and trabecular corneal cells, we selected 9 structural or functional proteins for which 3D patterns were specific to CECs. This first 3D map aids our understanding of the morphologic and functional specificity of CECs and could be used as a reference for characterizing future cell therapy products destined to treat endothelial dysfunctions. PMID:27381832

  18. 3D map of the human corneal endothelial cell.

    PubMed

    He, Zhiguo; Forest, Fabien; Gain, Philippe; Rageade, Damien; Bernard, Aurélien; Acquart, Sophie; Peoc'h, Michel; Defoe, Dennis M; Thuret, Gilles

    2016-01-01

    Corneal endothelial cells (CECs) are terminally differentiated cells, specialized in regulating corneal hydration and transparency. They are highly polarized flat cells that separate the cornea from the aqueous humor. Their apical surface, in contact with aqueous humor is hexagonal, whereas their basal surface is irregular. We characterized the structure of human CECs in 3D using confocal microscopy of immunostained whole corneas in which cells and their interrelationships remain intact. Hexagonality of the apical surface was maintained by the interaction between tight junctions and a submembraneous network of actomyosin, braced like a drum. Lateral membranes, which support enzymatic pumps, presented complex expansions resembling interdigitated foot processes at the basal surface. Using computer-aided design and drafting software, we obtained a first simplified 3D model of CECs. By comparing their expression with those in epithelial, stromal and trabecular corneal cells, we selected 9 structural or functional proteins for which 3D patterns were specific to CECs. This first 3D map aids our understanding of the morphologic and functional specificity of CECs and could be used as a reference for characterizing future cell therapy products destined to treat endothelial dysfunctions. PMID:27381832

  19. Management of pediatric corneal limbal dermoids

    PubMed Central

    Pirouzian, Amir

    2013-01-01

    This paper reviews the data in the published literature (PubMed from 1937 to 2011) concerning the medical and surgical management of pediatric limbal dermoids. Current standard medical treatment for grade I pediatric limbal dermoids (ie, with superficial corneal involvment) is initially conservative. In stages II (ie, affecting the full thickness of the cornea with/without endothelial involvement) and III (ie, involvement of entire cornea and anterior chamber), a combination of excision, lamellar keratoplasty, and amniotic membrane and limbal stem cell tranplantation are advocated. Combinations of these approaches seem to yield better and more stable long-term ocular surface cosmesis and fewer complications in comparison with traditional methods of excision and lamellar keratoplasty. Management of amblyopia (i.e. occlusion treatment, chemical penalization with/without spectacle wear, etc) must continue after surgical excision to yield optimal results when or if the surgery is done at a younger age. PMID:23576860

  20. Management of pediatric corneal limbal dermoids.

    PubMed

    Pirouzian, Amir

    2013-01-01

    This paper reviews the data in the published literature (PubMed from 1937 to 2011) concerning the medical and surgical management of pediatric limbal dermoids. Current standard medical treatment for grade I pediatric limbal dermoids (ie, with superficial corneal involvment) is initially conservative. In stages II (ie, affecting the full thickness of the cornea with/without endothelial involvement) and III (ie, involvement of entire cornea and anterior chamber), a combination of excision, lamellar keratoplasty, and amniotic membrane and limbal stem cell tranplantation are advocated. Combinations of these approaches seem to yield better and more stable long-term ocular surface cosmesis and fewer complications in comparison with traditional methods of excision and lamellar keratoplasty. Management of amblyopia (i.e. occlusion treatment, chemical penalization with/without spectacle wear, etc) must continue after surgical excision to yield optimal results when or if the surgery is done at a younger age. PMID:23576860

  1. Corneal confocal microscopy: Recent progress in the evaluation of diabetic neuropathy

    PubMed Central

    Papanas, Nikolaos; Ziegler, Dan

    2015-01-01

    The present brief review discusses recent progress with corneal confocal microscopy for the evaluation of diabetic sensorimotor polyneuropathy. Corneal confocal microscopy is a new, non-invasive and reproducible diagnostic modality, and it can also be easily applied for patient follow up. It enables new perspectives of studying the natural history of diabetic sensorimotor polyneuropathy, severity of nerve fiber pathology and documenting early nerve fiber regeneration after therapeutic intervention. It shows moderate to high sensitivity and specificity for the timely diagnosis of diabetic sensorimotor polyneuropathy. Currently, corneal confocal microscopy is mainly used in specialized centers, but deserves more widespread application for the assessment of diabetic sensorimotor polyneuropathy. Finally, further progress is required in terms of technical improvements for automated nerve fiber quantification and for analysis of larger images. PMID:26221515

  2. Corneal confocal microscopy: Recent progress in the evaluation of diabetic neuropathy.

    PubMed

    Papanas, Nikolaos; Ziegler, Dan

    2015-07-01

    The present brief review discusses recent progress with corneal confocal microscopy for the evaluation of diabetic sensorimotor polyneuropathy. Corneal confocal microscopy is a new, non-invasive and reproducible diagnostic modality, and it can also be easily applied for patient follow up. It enables new perspectives of studying the natural history of diabetic sensorimotor polyneuropathy, severity of nerve fiber pathology and documenting early nerve fiber regeneration after therapeutic intervention. It shows moderate to high sensitivity and specificity for the timely diagnosis of diabetic sensorimotor polyneuropathy. Currently, corneal confocal microscopy is mainly used in specialized centers, but deserves more widespread application for the assessment of diabetic sensorimotor polyneuropathy. Finally, further progress is required in terms of technical improvements for automated nerve fiber quantification and for analysis of larger images. PMID:26221515

  3. Central Corneal Thickness in Children

    PubMed Central

    2011-01-01

    Objective To report the central corneal thickness (CCT) in healthy white, African-American, and Hispanic children from birth to 17 years of age. Design Prospective observational multicenter study. Central corneal thickness was measured with a hand-held contact pachymeter. Results Two thousand seventy-nine children were included in the study, with ages ranging from day of birth to 17 years. Included were 807 white, 494 Hispanic, and 474 African-American individuals, in addition to Asian, unknown and mixed race individuals. African-American children had thinner corneas on average than that of both white (p< .001) and Hispanic children (p< .001) by approximately 20 micrometers. Thicker median CCT was observed with each successive year of age from age 1 to 11 years, with year-to-year differences steadily decreasing and reaching a plateau after age 11 at 573 micrometers in white and Hispanic children and 551 micrometers in African-American children. For every 100 micrometers of thicker CCT measured, the intraocular pressure was 1.5 mmHg higher on average (p< 0.001). For every diopter of increased myopic refractive error (p< 0.001) CCT was 1 micrometer thinner on average. Conclusions Median CCT increases with age from 1 to 11 years with the greatest increase present in the youngest age groups. African-American children on average have thinner central corneas than white and Hispanic children, while white and Hispanic children demonstrate similar central corneal thickness. PMID:21911662

  4. Human corneal endothelial cell sheets for transplantation: thermo-responsive cell culture carriers to meet cell-specific requirements.

    PubMed

    Teichmann, J; Valtink, M; Gramm, S; Nitschke, M; Werner, C; Funk, R H W; Engelmann, K

    2013-02-01

    Corneal endothelial diseases lead to severe vision impairment, motivating the transplantation of donor corneae or corneal endothelial lamellae, which is, however, impeded by endothelial cell loss during processing. Therefore, one prioritized aim in corneal tissue engineering is the generation of transplantable human corneal endothelial cell (HCEC) layers. Thermo-responsive cell culture carriers are widely used for non-enzymatic harvest of cell sheets. The current study presents a novel thermo-responsive carrier based on simultaneous electron beam immobilization and cross-linking of poly(vinyl methyl ether) (PVME) on polymeric surfaces, which allows one to adjust layer thickness, stiffness, switching amplitude and functionalization with bioactive molecules to meet cell type specific requirements. The efficacy of this approach for HCEC, which require elaborate cell culture conditions and are strongly adherent to the substratum, is demonstrated. The developed method may pave the way to tissue engineering of corneal endothelium and significantly improve therapeutic options. PMID:23099299

  5. A Native-Like Corneal Construct Using Donor Corneal Stroma for Tissue Engineering

    PubMed Central

    Lin, Jing; Yoon, Kyung-Chul; Zhang, Lili; Su, Zhitao; Lu, Rong; Ma, Ping; De Paiva, Cintia S.; Pflugfelder, Stephen C.; Li, De-Quan

    2012-01-01

    Tissue engineering holds great promise for corneal transplantation to treat blinding diseases. This study was to explore the use of natural corneal stroma as an optimal substrate to construct a native like corneal equivalent. Human corneal epithelium was cultivated from donor limbal explants on corneal stromal discs prepared by FDA approved Horizon Epikeratome system. The morphology, phenotype, regenerative capacity and transplantation potential were evaluated by hematoxylin eosin and immunofluorescent staining, a wound healing model, and the xeno-transplantation of the corneal constructs to nude mice. An optically transparent and stratified epithelium was rapidly generated on donor corneal stromal substrate and displayed native-like morphology and structure. The cells were polygonal in the basal layer and became flattened in superficial layers. The epithelium displayed a phenotype similar to human corneal epithelium in vivo. The differentiation markers, keratin 3, involucrin and connexin 43, were expressed in full or superficial layers. Interestingly, certain basal cells were immunopositive to antibodies against limbal stem/progenitor cell markers ABCG2 and p63, which are usually negative in corneal epithelium in vivo. It suggests that this bioengineered corneal epithelium shared some characteristics of human limbal epithelium in vivo. This engineered epithelium was able to regenerate in 4 days following from a 4mm-diameter wound created by a filter paper soaked with 1 N NaOH. This corneal construct survived well after xeno-transplantation to the back of a nude mouse. The transplanted epithelium remained multilayer and became thicker with a phenotype similar to human corneal epithelium. Our findings demonstrate that natural corneal stroma is an optimal substrate for tissue bioengineering, and a native-like corneal construct has been created with epithelium containing limbal stem cells. This construct may have great potential for clinical use in corneal

  6. Expression of Toll-Like Receptor 4 Contributes to Corneal Inflammation in Experimental Dry Eye Disease

    PubMed Central

    Lee, Hyun Soo; Hattori, Takaaki; Park, Eun Young; Stevenson, William; Chauhan, Sunil K.; Dana, Reza

    2012-01-01

    Purpose. To investigate the corneal expression of toll-like receptor (TLR) 4 and determine its contribution to the immunopathogenesis of dry eye disease (DED). Methods. Seven to 8-week-old female C57BL/6 mice were housed in a controlled environment chamber and administered scopolamine to induce experimental DED. Mice received intravenous TLR4 inhibitor (Eritoran) to block systemic TLR4-mediated activity. The expression of TLR4 by the corneal epithelium and stroma was evaluated using real-time polymerase chain reaction and flow cytometry. Corneal fluorescein staining (CFS) was performed to evaluate clinical disease severity. The corneal expression of proinflammatory cytokines (IL-1β, IL-6, TNF, and CCL2), corneal infiltration of CD11b+ antigen-presenting cells, and lymph node frequency of mature MHC-IIhi CD11b+ cells were assessed. Results. The epithelial cells of normal corneas expressed TLR4 intracellularly; however, DED significantly increased the cell surface expression of TLR4. Similarly, flow cytometric analysis of stromal cells revealed a significant increase in the expression of TLR4 proteins by DED-induced corneas as compared with normal corneas. DED increased the mRNA expression of TLR4 in corneal stromal cells, but not epithelial cells. TLR4 inhibition decreased the severity of CFS and significantly reduced the mRNA expression of IL-1β, IL-6, and TNF. Furthermore, TLR4 inhibition significantly reduced the corneal infiltration of CD11b+ cells and the lymph node frequency of MHC-IIhi CD11b+ cells. Conclusions. These results suggest that DED increases the corneal expression of TLR4 and that TLR4 participates in the inflammatory response to ocular surface desiccating stress. PMID:22789921

  7. Musculoskeletal Pathology.

    PubMed

    Peat, Frances J; Kawcak, Christopher E

    2015-08-01

    The current understanding of pathology as it relates to common diseases of the equine musculoskeletal system is reviewed. Conditions are organized under the fundamental categories of developmental, exercise-induced, infectious, and miscellaneous pathology. The overview of developmental pathology incorporates the new classification system of juvenile osteochondral conditions. Discussion of exercise-induced pathology emphasizes increased understanding of the contribution of cumulative microdamage caused by repetitive cyclic loading. Miscellaneous musculoskeletal pathology focuses on laminitis, which current knowledge indicates should be regarded as a clinical syndrome with a variety of possible distinct mechanisms of structural failure that are outlined in this overview. PMID:26037607

  8. Ocular Inflammation and Corneal Permeability Alteration by Benzalkonium Chloride in Rats: A Protective Effect of a Myosin Light Chain Kinase Inhibitor

    PubMed Central

    Droy-Lefaix, Marie Thérèse; Bueno, Lionel; Caron, Philippe; Belot, Eric; Roche, Olivier

    2013-01-01

    Purpose. The aim of this study was to evaluate the interest of an ophthalmic eyedrop preparation containing a myosin light chain kinase (MLCK) inhibitor, ML-7, in the treatment of ocular surface. The local protective effect on the inflammation and the increase of corneal permeability induced by benzalkonium (BAK) was evaluated. Methods. An ocular instillation of 10 μL BAK at a concentration of 0.1% in PBS was performed on rats. The eyes were rinsed with sterilized water, 10 minutes after BAK preceded by instillation at T −24, −12, and −0.5 hours of 10 μL of ML-7: 100 μg (10 μL) into a gel form vehicle. All animals were sacrificed 6 hours after BAK instillation. The eyes were isolated for study in a masked manner. The ocular surface inflammation was assessed by measuring the inflammatory cell infiltration by a histologic quantitative analysis and for total ocular myeloperoxidase (MPO) activity. The tight junction permeability was tested. Results. Instillation of 0.1% BAK increased the inflammation of the eye. The quantitative analysis showed an increase in the number of eosinophil and neutrophil polynuclears, and MPO activity. Pretreatment with ML-7 reduced inflammation (P < 0.05). The vehicle alone produced no notable effects. BAK instillation also thickened the fluorescent corneal front on frozen sections, indicating an increase of tight junction permeability. Pretreatment with ML-7 suppressed BAK-induced alterations of paracellular permeability while the vehicle had no visible effects. Conclusions. Our study indicates that the inhibition of corneal cytoskeleton contraction by an MLCK inhibitor prevents BAK-induced ocular inflammatory response, and that ML-7 may be a new and original preparation in the treatment of ocular surface pathologies. PMID:23518768

  9. Data acquisition time constraints in elevation mapping corneal topography

    NASA Astrophysics Data System (ADS)

    Baron, William S.; Baron, Sandra F.

    1997-05-01

    Elevation mapping corneal topography instruments provide an array of x, y, z data points describing the corneal surface. An advantage of elevation mapping instruments is their ability to calculate the 3D data array strictly from the instrument's geometry and calibration data; no assumptions about the corneal surface itself are needed. However, uncompensated eye movements can affect accuracy. Longitudinal eye movements occur along the z axis, due to pulmonary and cardiac pulsations. Eye rotations due to saccades and drifts are normal occurrences, as are translational body movements. An analysis of eye and body movements at the cornea's surface indicates a nearly linear relationship between data acquisition times of less than 33 msec, and the possible change in elevation at a point referenced to an instrument axis. The proportionality constant is expected to vary by a factor of about six over the range of clinical patients, since eye and body movements are exaggerated in juvenile patients, geriatric patients, and patients with poor vision. The analysis estimates an elevation change due to rotation and longitudinal translation of the eye of up to +/- 285 micrometers in 33 msec within the clinical population. This analysis indicates that when a topographer's acquisition time is greater than 100 microsecond(s) ec (during which an apparent elevation change of up to 1.0 micrometers may occur) testing on static objects may not provide a realistic measure of an instrument's clinical performance.

  10. Anesthesia for Traumatic Diaphragmatic Hernia Associated with Corneal Laceration.

    PubMed

    Safaeian, Reza; Hassani, Valiollah; Faiz, Hamid Reza

    2016-01-01

    BACKGROUND Diaphragmatic rupture can be seen in up to 5% of car accidents, and 80%-100% of diaphragmatic hernias are associated with other vital organ injuries. Brain, pelvis, long bones, liver, spleen, and aorta are some other organs that can be severely damaged and need different anesthetic managements. CASE REPORT A 37-year-old male victim of a head-on collision who was suffering diaphragmatic rupture and corneal laceration was prepared for an emergency operation 11 hours after the car accident. Gastric decompression, pre-oxygenation, rapid sequence induction with succinylcholine, immediate use of non-depolarizing muscle relaxant, and mechanical ventilation with low tidal volume after intubation were used in anesthetic management of the patient. CONCLUSIONS Because of the high prevalence of coexisting pathologies with traumatic diaphragmatic hernia, anesthetic management must be tailored to the associated pathologies. PMID:27595907

  11. Pathological gambling.

    PubMed

    Hollander, E; Buchalter, A J; DeCaria, C M

    2000-09-01

    With increasing access to gambling facilities through casinos, the Internet, and other venues, PG is a rapidly emerging mental health concern. This impulse-control disorder tends to be comorbid with a wide range of other disorders and is reportedly associated with a high rate of suicide. For most gamblers, gambling is a form of entertainment, but for many individuals, the activity leads to far-reaching disruption of family and work. The personal and societal financial ramifications are severe, and many individuals with PG end up in the criminal justice system. An understanding of the neurobiology of PG is beginning to surface. 5-HT is linked to behavioral initiation and disinhibition, which are important in the onset of the gambling cycle and the difficulty in ceasing the behavior. Norepinephrine is associated with the arousal and risk taking in patients with PG. Dopamine is linked to positive and negative reward, the addictive component of this disorder. Effective treatment strategies for pathological gamblers are emerging. Potentially useful pharmacologic agents include SRIs (clomipramine and fluvoxamine), mood stabilizers for pathological gamblers with comorbid bipolar disorders (lithium), and naltrexone. Cognitive-behavioral psychotherapies offer promising results in the treatment of patients with this disorder. To devise prevention and early-intervention programs, research is needed to identify specific features of the individuals at risk for gambling problems. Education targeting vulnerable youth that show early signs of gambling behavior may be worthwhile and should be investigated further. Funding is necessary to support these endeavors, so perhaps a portion of tax revenues generated from the gambling industry should go toward specialized treatment facilities, educational efforts, and research into the neurobiology and treatment of PG. PMID:10986732

  12. Thrombomodulin Promotes Corneal Epithelial Wound Healing

    PubMed Central

    Huang, Yi-Hsun; I, Ching-Chang; Kuo, Cheng-Hsiang; Hsu, Yun-Yan; Lee, Fang-Tzu; Shi, Guey-Yueh; Tseng, Sung-Huei; Wu, Hua-Lin

    2015-01-01

    Purpose To determine the role of thrombomodulin (TM) in corneal epithelial wound healing, and to investigate whether recombinant TM epidermal growth factor-like domain plus serine/threonine-rich domain (rTMD23) has therapeutic potential in corneal epithelial wound healing. Methods TM localization and expression in the murine cornea were examined by immunofluorescence staining. TM expression after injury was also studied. The effect of rTMD23 on corneal wound healing was evaluated by in vitro and in vivo assays. Results TM was expressed in the cornea in normal adult mice. TM expression increased in the early phase of wound healing and decreased after wound recovery. In the in vitro study, platelet-derived growth factor-BB (PDGF-BB) induced TM expression in murine corneal epithelial cells by mediating E26 transformation-specific sequence-1 (Ets-1) via the mammalian target of rapamycin (mTOR) signaling pathway. The administration of rTMD23 increased the rate of corneal epithelial wound healing. Conclusions TM expression in corneal epithelium was modulated during the corneal wound healing process, and may be regulated by PDGF-BB. In addition, rTMD23 has therapeutic potential in corneal injury. PMID:25816372

  13. [Corneal tatoo--art or science?].

    PubMed

    Craiu, Andreea-Madalina

    2009-01-01

    The permanent colouring of disfigured corneal scars is known for almost 200 years. Because of improvement in surgical reconstructive techniques, corneal tattoing is used today only with a restricted group on carefully chosen patients, and merely for esthetique reasons. PMID:19697848

  14. Corneal hysteresis and its relevance to glaucoma

    PubMed Central

    Deol, Madhvi; Taylor, David A.; Radcliffe, Nathan M.

    2015-01-01

    Purpose of review Glaucoma is a leading cause of irreversible blindness worldwide. It is estimated that roughly 60.5 million people had glaucoma in 2010 and that this number is increasing. Many patients continue to lose vision despite apparent disease control according to traditional risk factors. The purpose of this review is to discuss the recent findings with regard to corneal hysteresis, a variable that is thought to be associated with the risk and progression of glaucoma. Recent findings Low corneal hysteresis is associated with optic nerve and visual field damage in glaucoma and the risk of structural and functional glaucoma progression. In addition, hysteresis may enhance intraocular pressure (IOP) interpretation: low corneal hysteresis is associated with a larger magnitude of IOP reduction following various glaucoma therapies. Corneal hysteresis is dynamic and may increase in eyes after IOP-lowering interventions are implemented. Summary It is widely accepted that central corneal thickness is a predictive factor for the risk of glaucoma progression. Recent evidence shows that corneal hysteresis also provides valuable information for several aspects of glaucoma management. In fact, corneal hysteresis may be more strongly associated with glaucoma presence, risk of progression, and effectiveness of glaucoma treatments than central corneal thickness. PMID:25611166

  15. 21 CFR 886.1220 - Corneal electrode.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Corneal electrode. 886.1220 Section 886.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1220 Corneal electrode. (a) Identification. A...

  16. Tear Mediators in Corneal Ectatic Disorders

    PubMed Central

    Pásztor, Dorottya; Kolozsvári, Bence Lajos; Csutak, Adrienne; Berta, András; Hassan, Ziad; Ujhelyi, Bernadett; Gogolák, Péter; Fodor, Mariann

    2016-01-01

    Purpose To compare the concentrations of 11 tear mediators in order to reveal the biochemical difference between pellucid marginal degeneration (PMD) and keratoconus (KC). Methods We have designed a cross-sectional study in which patients with corneal ectasia based on slit-lamp biomicroscopy and Pentacam HR (keratometry values (K1, K2, Kmax), astigmatism, minimal radius of curvature (Rmin), corneal thickness (Apex and Min), indices (surface variation, vertical asymmetry, keratoconus, central keratoconus, height asymmetry and decentration)) were enrolled. Eyes of keratoconic patients were similar to the PMD patients in age and severity (K2, Kmax and Rmin). Non-stimulated tear samples were collected from nine eyes of seven PMD patients, 55 eyes of 55 KC patients and 24 eyes of 24 healthy controls. The mediators’ (interleukin -6, -10, chemokine ligand 5, -8, -10, matrix metalloproteinase (MMP) -9, -13, tissue inhibitor of metalloproteinases (TIMP)-1, tissue plasminogen activator, plasminogen activator inhibitor, nerve growth factor) concentrations were measured using Cytometric Bead Array. Results MMP-9 was the only mediator which presented relevant variances between the two patient groups (p = 0.005). The ratios of MMP-9 and TIMP-1 were 2.45, 0.40 and 0.23 in PMD, KC and the controls, respectively. Conclusion As far as we are aware, this is the first study that aims to reveal the biochemical differences between PMD and KC. Further studies of biomarkers to investigate the precise role of these mediators need to be defined, and it is important to confirm the observed changes in a larger study to gain further insights into the molecular alterations in PMD. PMID:27074131

  17. Spatiotemporally Regulated Ablation of Klf4 in Adult Mouse Corneal Epithelial Cells Results in Altered Epithelial Cell Identity and Disrupted Homeostasis

    PubMed Central

    Delp, Emili E.; Swamynathan, Sudha; Kao, Winston W.; Swamynathan, Shivalingappa K.

    2015-01-01

    Purpose. In previous studies, conditional disruption of Klf4 in the developing mouse ocular surface from embryonic day 10 resulted in corneal epithelial fragility, stromal edema, and loss of conjunctival goblet cells, revealing the importance of Klf4 in ocular surface maturation. Here, we use spatiotemporally regulated ablation of Klf4 to investigate its functions in maintenance of adult corneal epithelial homeostasis. Methods. Expression of Cre was induced in ternary transgenic (Klf4LoxP/LoxP/Krt12rtTA/rtTA/Tet-O-Cre) mouse corneal epithelium by doxycycline administered through intraperitoneal injections and drinking water, to generate corneal epithelium–specific deletion of Klf4 (Klf4Δ/ΔCE). Corneal epithelial barrier function was tested by fluorescein staining. Expression of selected Klf4-target genes was determined by quantitative PCR (QPCR), immunoblotting, and immunofluorescent staining. Results. Klf4 was efficiently ablated within 5 days of doxycycline administration in adult Klf4Δ/ΔCE corneal epithelium. The Klf4Δ/ΔCE corneal epithelial barrier function was disrupted, and the basal cells were swollen and rounded after 15 days of doxycycline treatment. Increased numbers of cell layers and Ki67-positive proliferating cells suggested deregulated Klf4Δ/ΔCE corneal epithelial homeostasis. Expression of tight junction proteins ZO-1 and occludin, desmosomal Dsg and Dsp, basement membrane laminin-332, and corneal epithelial–specific keratin-12 was decreased, while that of matrix metalloproteinase Mmp9 and noncorneal keratin-17 increased, suggesting altered Klf4Δ/ΔCE corneal epithelial cell identity. Conclusions. Ablation of Klf4 in the adult mouse corneas resulted in the absence of characteristic corneal epithelial cell differentiation, disrupted barrier function, and squamous metaplasia, revealing that Klf4 is essential for maintenance of the adult corneal epithelial cell identity and homeostasis. PMID:26047041

  18. Corneal Mechanical Thresholds Negatively Associate With Dry Eye and Ocular Pain Symptoms

    PubMed Central

    Spierer, Oriel; Felix, Elizabeth R.; McClellan, Allison L.; Parel, Jean Marie; Gonzalez, Alex; Feuer, William J.; Sarantopoulos, Constantine D.; Levitt, Roy C.; Ehrmann, Klaus; Galor, Anat

    2016-01-01

    Purpose To examine associations between corneal mechanical thresholds and metrics of dry eye. Methods This was a cross-sectional study of individuals seen in the Miami Veterans Affairs eye clinic. The evaluation consisted of questionnaires regarding dry eye symptoms and ocular pain, corneal mechanical detection and pain thresholds, and a comprehensive ocular surface examination. The main outcome measures were correlations between corneal thresholds and signs and symptoms of dry eye and ocular pain. Results A total of 129 subjects participated in the study (mean age 64 ± 10 years). Mechanical detection and pain thresholds on the cornea correlated with age (Spearman's ρ = 0.26, 0.23, respectively; both P < 0.05), implying decreased corneal sensitivity with age. Dry eye symptom severity scores and Neuropathic Pain Symptom Inventory (modified for the eye) scores negatively correlated with corneal detection and pain thresholds (range, r = −0.13 to −0.27, P < 0.05 for values between −0.18 and −0.27), suggesting increased corneal sensitivity in those with more severe ocular complaints. Ocular signs, on the other hand, correlated poorly and nonsignificantly with mechanical detection and pain thresholds on the cornea. A multivariable linear regression model found that both posttraumatic stress disorder (PTSD) score (β = 0.21, SE = 0.03) and corneal pain threshold (β = −0.03, SE = 0.01) were significantly associated with self-reported evoked eye pain (pain to wind, light, temperature) and explained approximately 32% of measurement variability (R = 0.57). Conclusions Mechanical detection and pain thresholds measured on the cornea are correlated with dry eye symptoms and ocular pain. This suggests hypersensitivity within the corneal somatosensory pathways in patients with greater dry eye and ocular pain complaints. PMID:26886896

  19. Automatized Patient-Specific Methodology for Numerical Determination of Biomechanical Corneal Response.

    PubMed

    Ariza-Gracia, M Á; Zurita, J; Piñero, D P; Calvo, B; Rodríguez-Matas, J F

    2016-05-01

    This work presents a novel methodology for building a three-dimensional patient-specific eyeball model suitable for performing a fully automatic finite element (FE) analysis of the corneal biomechanics. The reconstruction algorithm fits and smooths the patient's corneal surfaces obtained in clinic with corneal topographers and creates an FE mesh for the simulation. The patient's corneal elevation and pachymetry data is kept where available, to account for all corneal geometric features (central corneal thickness-CCT and curvature). Subsequently, an iterative free-stress algorithm including a fiber's pull-back is applied to incorporate the pre-stress field to the model. A convergence analysis of the mesh and a sensitivity analysis of the parameters involved in the numerical response is also addressed to determine the most influential features of the FE model. As a final step, the methodology is applied on the simulation of a general non-commercial non-contact tonometry diagnostic test over a large set of 130 patients-53 healthy, 63 keratoconic (KTC) and 14 post-LASIK surgery eyes. Results show the influence of the CCT, intraocular pressure (IOP) and fibers (87%) on the numerical corneal displacement [Formula: see text] the good agreement of the [Formula: see text] with clinical results, and the importance of considering the corneal pre-stress in the FE analysis. The potential and flexibility of the methodology can help improve understanding of the eye biomechanics, to help to plan surgeries, or to interpret the results of new diagnosis tools (i.e., non-contact tonometers). PMID:26307330

  20. Corticosteroid-loaded biodegradable nanoparticles for prevention of corneal allograft rejection in rats.

    PubMed

    Pan, Qing; Xu, Qingguo; Boylan, Nicholas J; Lamb, Nicholas W; Emmert, David G; Yang, Jeh-Chang; Tang, Li; Heflin, Tom; Alwadani, Saeed; Eberhart, Charles G; Stark, Walter J; Hanes, Justin

    2015-03-10

    Immunologic graft rejection is one of the main causes of short and long-term graft failure in corneal transplantation. Steroids are the most commonly used immunosuppressive agents for postoperative management and prevention of corneal graft rejection. However, steroids delivered in eye drops are rapidly cleared from the surface of the eye, so the required frequency of dosing for corneal graft rejection management can be as high as once every 2h. Additionally, these eye drops are often prescribed for daily use for 1 year or longer, which can result in poor patient compliance and steroid-related side effects. Here, we report a biodegradable nanoparticle system composed of Generally Regarded as Safe (GRAS) materials that can provide sustained release of corticosteroids to prevent corneal graft rejection following subconjunctival injection provided initially during transplant surgery. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing dexamethasone sodium phosphate (DSP) exhibited a size of 200 nm, 8 wt.% drug loading, and sustained drug release over 15 days in vitro under sink conditions. DSP-loaded nanoparticles provided sustained ocular drug levels for at least 7 days after subconjunctival administration in rats, and prevented corneal allograft rejection over the entire 9-week study when administered weekly. In contrast, control treatment groups that received weekly injections of either placebo nanoparticles, saline, or DSP in solution demonstrated corneal graft rejection accompanied by severe corneal edema, neovascularization and opacity that occurred in ≤ 4 weeks. Local controlled release of corticosteroids may reduce the rate of corneal graft rejection, perhaps especially in the days immediately following surgery when risk of rejection is highest and when typical steroid eye drop administration requirements are particularly onerous. PMID:25576786

  1. Segmentation of 830- and 1310-nm LASIK corneal optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Li, Yan; Shekhar, Raj; Huang, David

    2002-05-01

    Optical coherence tomography (OCT) provides a non-contact and non-invasive means to visualize the corneal anatomy at micron scale resolution. We obtained corneal images from an arc-scanning (converging) OCT system operating at a wavelength of 830nm and a fan-shaped-scanning high-speed OCT system with an operating wavelength of 1310nm. Different scan protocols (arc/fan) and data acquisition rates, as well as wavelength dependent bio-tissue backscatter contrast and optical absorption, make the images acquired using the two systems different. We developed image-processing algorithms to automatically detect the air-tear interface, epithelium-Bowman's layer interface, laser in-situ keratomileusis (LASIK) flap interface, and the cornea-aqueous interface in both kinds of images. The overall segmentation scheme for 830nm and 1310nm OCT images was similar, although different strategies were adopted for specific processing approaches. Ultrasound pachymetry measurements of the corneal thickness and Placido-ring based corneal topography measurements of the corneal curvature were made on the same day as the OCT examination. Anterior/posterior corneal surface curvature measurement with OCT was also investigated. Results showed that automated segmentation of OCT images could evaluate anatomic outcome of LASIK surgery.

  2. Silk Fibroin as a Biomaterial Substrate for Corneal Epithelial Cell Sheet Generation

    PubMed Central

    Liu, Jingbo; Lawrence, Brian D.; Liu, Aihong; Schwab, Ivan R.; Oliveira, Lauro A.; Rosenblatt, Mark I.

    2012-01-01

    Purpose. To evaluate a silk fibroin (SF) biomaterial as a substrate for corneal epithelial cell proliferation, differentiation, and stratification in vitro compared with denuded human amniotic membrane (AM). Methods. Primary human and rabbit corneal epithelial cells and immortalized human corneal limbal epithelial cells were cultured on the SF and denuded AM, respectively. The biological cell behavior, including the morphology, proliferation, differentiation, and stratification, on the two substrates was compared and analyzed. Results. Corneal epithelial cells can adhere and proliferate on the SF and denuded AM with a cobblestone appearance, abundant microvilli on the surface, and wide connection with the adjacent cells. MTT assay showed that cell proliferation on denuded AM was statistically higher than that on SF at 24 and 72 hours after plating (P = 0.001 and 0.0005, respectively). Expression of ΔNp63a and keratin 3/12 was detected in primary cell cultures on the two substrates with no statistical difference. When cultured at the air-liquid interface for 7 days, cells on SF could form a comparable stratified graft with a 2- to 3-cell layering, which compared similarly to AM cultures. Conclusions. SF, a novel biomaterial, could support corneal epithelial cells to proliferate, differentiate, and stratify, retaining the normal characteristic epithelium phenotype. Compared with AM, its unique features, including the transparency, ease of handling, and transfer, and inherent freedom from disease transmission, make it a promising substrate for corneal wound repair and tissue-engineering purposes. PMID:22661480

  3. Riboflavin for corneal cross-linking.

    PubMed

    O'Brart, D P S

    2016-06-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet A (UVA) radiation is the first therapeutic modality that appears to arrest the progression of keratoconus and other corneal ectasias. Riboflavin is central to the process, acting as a photosensitizer for the production of oxygen singlets and riboflavin triplets. These free radicals drive the CXL process within the proteins of the corneal stroma, altering its biomechanical properties. Riboflavin also absorbs the majority of the UVA radiation, which is potentially cytotoxic and mutagenic, within the anterior stroma, preventing damage to internal ocular structures, such as the corneal endothelium, lens and retina. Clinical studies report cessation of ectatic progression in over 90% of cases and the majority document significant improvements in visual, keratometric and topographic parameters. Clinical follow-up is limited to 5-10 years, but suggests sustained stability and enhancement in corneal shape. Sight-threatening complications are rare. The optimal stromal riboflavin dosage for CXL is as yet undetermined. PMID:27458610

  4. Corneal autofluorescence in presence of diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Rovati, Luigi; Docchio, Franco; Azzolini, Claudio; Van Best, Jaap A.

    1998-06-01

    Recently corneal autofluorescence has been proposed as an ocular diagnostic tool for diabetic retinopathy. The method is based on the sensible increase of the natural fluorescence of corneal tissue within specific wavelength in presence of early stage of diabetic retinopathy. The main advantages of this method are that the corneal autofluorescence has been demonstrated to be not age-related and that the cornea is readily accessible to be investigated. In this study 47 insulin-dependent diabetes mellitus and 51 non-insulin- dependent diabetes mellitus patients aged 20 - 90 years have been considered. Patients were selected from the Eye Clinic of S. Raffaele Hospital. The modified Airlie House classification was used to grade the diabetic retinopathy. Corneal autofluorescence has been measured by using both a specifically designed instrument and the Fluorotron Master. Corneal autofluorescence mean value for each diabetic retinopathy measured by using both the instruments correlated with the retinopathy grade.

  5. Corneal abrasions associated with pepper spray exposure.

    PubMed

    Brown, L; Takeuchi, D; Challoner, K

    2000-05-01

    Pepper spray containing oleoresin capsicum is used by law enforcement and the public as a form of nonlethal deterrent. Stimulated by the identification of a case of a corneal abrasion associated with pepper spray exposure, a descriptive retrospective review of a physician-maintained log of patients presenting to a jail ward emergency area over a 3-year period was performed. The objective was to give some quantification to the frequency with which an emergency physician could expect to see corneal abrasions associated with pepper spray exposure. Of 100 cases of pepper spray exposure identified, seven patients had sustained corneal abrasions. We conclude that corneal abrasions are not rare events when patients are exposed to pepper spray and that fluorescein staining and slit lamp or Wood's lamp examination should be performed on all exposed patients in whom corneal abrasions cannot be excluded on clinical grounds. PMID:10830682

  6. Sutureless Corneal Transplantation Apparatus And Method

    DOEpatents

    Rowsey, J. James

    1996-12-17

    An eye with a cornea repaired without sutures comprising a donor material in the shape of a partial sphere having a generally central extent, the central extent being of the size and shape of the central portion of a cornea of an eye, the central extent having a periphery of a fixed diameter with an exterior surface in a convex configuration and an interior surface in a concave configuration and with an essentially common thickness throughout, the central extent having a plurality of corneal flaps extending radially from the periphery of the central extent, the flaps having exterior surfaces as a continuation of the exterior surface of the central extent; and a recipient eye in the shape of a partial sphere having a circular aperture in the cornea at its central portion, the central aperture being of a size and shape essentially that of the periphery of the central extent of the donor material, the aperture being of a common thickness at the periphery of the aperture, the central portion having pockets and with the central extent of the donor material located within the aperture of the recipient eye and with the flaps of the central extent being imbricated into the pockets of the recipient eye.

  7. Keratometry and corneal topography using multiple delay element OCT

    NASA Astrophysics Data System (ADS)

    Plesea, Lucian; Podoleanu, Adrian G.

    2008-02-01

    We have presented previously a novel method for the evaluation of the surface shape of an object, with immediate application to measurement of cornea shape. This method uses single shot C-scans obtained by using a multiple delay element (MDE) in the reference path of an OCT system. A calibrated MDE-OCT system can be used to measure the elevation of points on the cornea, in contrast to existing methods which are based on measurement of the cornea slope. The associated algorithm for extracting corneal topography data points from the MDE-OCT C-Scan image will be presented, data points which can then be used to calculate the Zernike coefficients for the cornea shape. The differences between the existing systems and the MDE-OCT method for keratometry and corneal topography are discussed.

  8. Corneal endothelium: developmental strategies for regeneration

    PubMed Central

    Zavala, J; López Jaime, G R; Rodríguez Barrientos, C A; Valdez-Garcia, J

    2013-01-01

    The main treatment available for restoration of the corneal endothelium is keratoplasty. This procedure is faced with several difficulties, including the shortage of donor tissue, post-surgical complications associated with the use of drugs to prevent immune rejection, and a significant increase in the occurrence of glaucoma. Recently, surgical procedures such as Descemet's stripping endothelial keratoplasty have focused on the transplant of corneal endothelium, yielding better visual results but still facing the need for donor tissue. The emergent strategies in the field of cell biology and tissue cultivation of corneal endothelial cells aim at the production of transplantable endothelial cell sheets. Cell therapy focuses on the culture of corneal endothelial cells retrieved from the donor, in the donor's cornea, followed by transplantation into the recipient. Recently, research has focused on overcoming the challenge of harvesting human corneal endothelial cells and the generation of new biomembranes to be used as cell scaffolds in surgical procedures. The use of corneal endothelial precursors from the peripheral cornea has also demonstrated to be effective and represents a valuable tool for reducing the risk of rejection in allogeneic transplants. Several animal model reports also support the use of adult stem cells as therapy for corneal diseases. Current results represent important progresses in the development of new strategies based on alternative sources of tissue for the treatment of corneal endotheliopathies. Different databases were used to search literature: PubMed, Google Books, MD Consult, Google Scholar, Gene Cards, and NCBI Books. The main search terms used were: ‘cornea AND embryology AND transcription factors', ‘human endothelial keratoplasty AND risk factors', ‘(cornea OR corneal) AND (endothelium OR endothelial) AND cell culture', ‘mesenchymal stem cells AND cell therapy', ‘mesenchymal stem cells AND cornea', and ‘stem cells AND

  9. Differential diagnosis of Schnyder corneal dystrophy.

    PubMed

    Weiss, Jayne S; Khemichian, Arbi J

    2011-01-01

    Schnyder corneal dystrophy (SCD) is a rare corneal dystrophy characterized by abnormally increased deposition of cholesterol and phospholipids in the cornea leading to progressive vision loss. SCD is inherited as an autosomal dominant trait with high penetrance and has been mapped to the UBIAD1 gene on chromosome 1p36.3. Although 2/3 of SCD patients also have systemic hypercholesterolemia, the incidence of hypercholesterolemia is also increased in unaffected members of SCD pedigrees. Consequently, SCD is thought to result from a local metabolic defect in the cornea. The corneal findings in SCD are very predictable depending on the age of the individual, with initial central corneal haze and/or crystals, subsequent appearance of arcus lipoides in the third decade and formation of midperipheral haze in the late fourth decade. Because only 50% of affected patients have corneal crystals, the International Committee for Classification of Corneal Dystrophies recently changed the original name of this dystrophy from Schnyder crystalline corneal dystrophy to Schnyder corneal dystrophy. Diagnosis of affected individuals without crystalline deposits is often delayed and these individuals are frequently misdiagnosed. The differential diagnosis of the SCD patient includes other diseases with crystalline deposits such as cystinosis, tyrosinemia, Bietti crystalline dystrophy, hyperuricemia/gout, multiple myeloma, monoclonal gammopathy, infectious crystalline keratopathy, and Dieffenbachia keratitis. Depositions from drugs such as gold in chrysiasis, chlorpromazine, chloroquine, and clofazamine can also result in corneal deposits and are different from SCD. Diseases of systemic lipid metabolism that cause corneal opacification, such as lecithin-cholesterol acyltransferase deficiency, fish eye disease and Tangier disease, should also be considered although these are autosomal recessive disorders. PMID:21540632

  10. Corneal Regeneration by Deep Anterior Lamellar Keratoplasty (DALK) Using Decellularized Corneal Matrix

    PubMed Central

    Hashimoto, Yoshihide; Funamoto, Seiichi; Sasaki, Shuji; Negishi, Jun; Honda, Takako; Hattori, Shinya; Nam, Kwangwoo; Kimura, Tsuyoshi; Mochizuki, Manabu; Kobayashi, Hisatoshi; Kishida, Akio

    2015-01-01

    The purpose of this study is to demonstrate the feasibility of DALK using a decellularized corneal matrix obtained by HHP methodology. Porcine corneas were hydrostatically pressurized at 980 MPa at 10°C for 10 minutes to destroy the cells, followed by washing with EGM-2 medium to remove the cell debris. The HHP-treated corneas were stained with H-E to assess the efficacy of decellularization. The decellularized corneal matrix of 300 μm thickness and 6.0 mm diameter was transplanted onto a 6.0 mm diameter keratectomy wound. The time course of regeneration on the decellularized corneal matrix was evaluated by haze grading score, fluorescein staining, and immunohistochemistry. H-E staining revealed that no cell nuclei were observed in the decellularized corneal matrix. The decellularized corneal matrices were opaque immediately after transplantation, but became completely transparent after 4 months. Fluorescein staining revealed that initial migration of epithelial cells over the grafts was slow, taking 3 months to completely cover the implant. Histological sections revealed that the implanted decellularized corneal matrix was completely integrated with the receptive rabbit cornea, and keratocytes infiltrated into the decellularized corneal matrix 6 months after transplantation. No inflammatory cells such as macrophages, or neovascularization, were observed during the implantation period. The decellularized corneal matrix improved corneal transparency, and remodelled the graft after being transplanted, demonstrating that the matrix obtained by HHP was a useful graft for corneal tissue regeneration. PMID:26161854

  11. Decorin and biglycan of normal and pathologic human corneas

    NASA Technical Reports Server (NTRS)

    Funderburgh, J. L.; Hevelone, N. D.; Roth, M. R.; Funderburgh, M. L.; Rodrigues, M. R.; Nirankari, V. S.; Conrad, G. W.

    1998-01-01

    PURPOSE: Corneas with scars and certain chronic pathologic conditions contain highly sulfated dermatan sulfate, but little is known of the core proteins that carry these atypical glycosaminoglycans. In this study the proteoglycan proteins attached to dermatan sulfate in normal and pathologic human corneas were examined to identify primary genes involved in the pathobiology of corneal scarring. METHODS: Proteoglycans from human corneas with chronic edema, bullous keratopathy, and keratoconus and from normal corneas were analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), quantitative immunoblotting, and immunohistology with peptide antibodies to decorin and biglycan. RESULTS: Proteoglycans from pathologic corneas exhibit increased size heterogeneity and binding of the cationic dye alcian blue compared with those in normal corneas. Decorin and biglycan extracted from normal and diseased corneas exhibited similar molecular size distribution patterns. In approximately half of the pathologic corneas, the level of biglycan was elevated an average of seven times above normal, and decorin was elevated approximately three times above normal. The increases were associated with highly charged molecular forms of decorin and biglycan, indicating modification of the proteins with dermatan sulfate chains of increased sulfation. Immunostaining of corneal sections showed an abnormal stromal localization of biglycan in pathologic corneas. CONCLUSIONS: The increased dermatan sulfate associated with chronic corneal pathologic conditions results from stromal accumulation of decorin and particularly of biglycan in the affected corneas. These proteins bear dermatan sulfate chains with increased sulfation compared with normal stromal proteoglycans.

  12. Terahertz sensing in corneal tissues

    PubMed Central

    Bennett, David B.; Taylor, Zachary D.; Tewari, Pria; Singh, Rahul S.; Culjat, Martin O.; Grundfest, Warren S.; Sassoon, Daniel J.; Johnson, R. Duncan; Hubschman, Jean-Pierre; Brown, Elliott R.

    2011-01-01

    This work introduces the potential application of terahertz (THz) sensing to the field of ophthalmology, where it is uniquely suited due to its nonionizing photon energy and high sensitivity to water content. Reflective THz imaging and spectrometry data are reported on ex-vivo porcine corneas prepared with uniform water concentrations using polyethylene glycol (PEG) solutions. At 79% water concentration by mass, the measured reflectivity of the cornea was 20.4%, 14.7%, 11.7%, 9.6%, and 7.4% at 0.2, 0.4, 0.6, 0.8, and 1 THz, respectively. Comparison of nine corneas hydrated from 79.1% to 91.5% concentration by mass demonstrated an approximately linear relationship between THz reflectivity and water concentration, with a monotonically decreasing slope as the frequency increases. The THz-corneal tissue interaction is simulated with a Bruggeman model with excellent agreement. THz applications to corneal dystrophy, graft rejection, and refractive surgery are examined from the context of these measurements. PMID:21639581

  13. The Effects of Silicone Hydrogel Lens Wear on the Corneal Epithelium and Risk for Microbial Keratitis

    PubMed Central

    Robertson, Danielle M.

    2012-01-01

    Previous studies using animal models and human clinical trials have demonstrated that the use of low oxygen transmissible contact lens materials produce corneal epithelial surface damage resulting in increased Pseudomonas aeruginosa (PA) adhesion and raft-mediated internalization into surface corneal epithelial cells. These findings led to the testable clinical predictions that: (1) microbial keratitis (MK) risk is expected to be greatest during the first 6 months of wear; (2) there is no difference between 6 and 30 night extended wear; and (3) that wear of hyper-oxygen transmissible lenses would reduce the reported incidence of infection. Subsequent epidemiological studies have confirmed the first two predictions; however, increased oxygen transmissibility with silicone hydrogel (SiHy) lens wear has not altered the overall incidence of MK. In this review, more recent clinical and basic studies that investigate epithelial alterations and bacterial adhesion to corneal epithelial cells following wear of SiHy lenses with and without concomitant exposure to chemically preserved multipurpose solutions (MPS) will be examined. The collective results of these studies demonstrate that even in the absence of lens-related hypoxia, MPS induce ocular surface changes during SiHy lens wear which are associated with a pathophysiological increase in PA adherence and internalization in the corneal epithelium, and therefore, predict an increased risk for PA-MK. In addition, new data supporting an interactive role for inflammation in facilitating PA adherence and internalization in the corneal epithelium will also be discussed. PMID:23266590

  14. Corneal Nerves in Health and Disease

    PubMed Central

    Shaheen, Brittany; Bakir, May; Jain, Sandeep

    2013-01-01

    Corneal nerves are responsible for the sensations of touch, pain, and temperature and play an important role in the blink reflex, wound healing, and tear production and secretion. Corneal nerve dysfunction is a frequent feature of diseases that cause opacities and result in corneal blindness. Corneal opacities rank as the second most frequent cause of blindness. Technological advances in in vivo corneal nerve imaging, such as optical coherence tomography and confocal scanning, have generated new knowledge regarding the phenomenological events that occur during reinnervation of the cornea following disease, injury, or surgery. The recent availability of transgenic neurofluorescent murine models has stimulated the search for molecular modulators of corneal nerve regeneration. New evidence suggests that neuro-regenerative and inflammatory pathways in the cornea are intertwined. Evidence-based treatment of neurotrophic corneal diseases includes using neuro-regenerative (blood component-based and neurotrophic factors), neuroprotective, and ensconcing (bandage contact lens and amniotic membrane) strategies and avoiding anti-inflammatory therapies, such as cyclosporine and corticosteroids. PMID:24461367

  15. Corneal nerves in health and disease.

    PubMed

    Shaheen, Brittany Simmons; Bakir, May; Jain, Sandeep

    2014-01-01

    Corneal nerves are responsible for the sensations of touch, pain, and temperature and play an important role in the blink reflex, wound healing, and tear production and secretion. Corneal nerve dysfunction is a frequent feature of diseases that cause opacities and result in corneal blindness. Corneal opacities rank as the second most frequent cause of blindness. Technological advances in in vivo corneal nerve imaging, such as optical coherence tomography and confocal scanning, have generated new knowledge regarding the phenomenological events that occur during reinnervation of the cornea following disease, injury, or surgery. The recent availability of transgenic neurofluorescent murine models has stimulated the search for molecular modulators of corneal nerve regeneration. New evidence suggests that neuroregenerative and inflammatory pathways in the cornea are intertwined. Evidence-based treatment of neurotrophic corneal diseases includes using neuroregenerative (blood component-based and neurotrophic factors), neuroprotective, and ensconcing (bandage contact lens and amniotic membrane) strategies and avoiding anti-inflammatory therapies, such as cyclosporine and corticosteroids. PMID:24461367

  16. Corneal laceration caused by river crab

    PubMed Central

    Vinuthinee, Naidu; Azreen-Redzal, Anuar; Juanarita, Jaafar; Zunaina, Embong

    2015-01-01

    A 5-year-old boy presented with right eye pain associated with tearing and photophobia of 1-day duration. He gave a history of playing with a river crab when suddenly the crab clamped his fingers. He attempted to fling the crab off, but the crab flew and hit his right eye. Ocular examination revealed a right eye corneal ulcer with clumps of fibrin located beneath the corneal ulcer and 1.6 mm level of hypopyon. At presentation, the Seidel test was negative, with a deep anterior chamber. Culture from the corneal scrapping specimen grew Citrobacter diversus and Proteus vulgaris, and the boy was treated with topical gentamicin and ceftazidime eyedrops. Fibrin clumps beneath the corneal ulcer subsequently dislodged, and revealed a full-thickness corneal laceration wound with a positive Seidel test and shallow anterior chamber. The patient underwent emergency corneal toileting and suturing. Postoperatively, he was treated with oral ciprofloxacin 250 mg 12-hourly for 1 week, topical gentamicin, ceftazidime, and dexamethasone eyedrops for 4 weeks. Right eye vision improved to 6/9 and 6/6 with pinhole at the 2-week follow-up following corneal suture removal. PMID:25678769

  17. Corneal laceration caused by river crab.

    PubMed

    Vinuthinee, Naidu; Azreen-Redzal, Anuar; Juanarita, Jaafar; Zunaina, Embong

    2015-01-01

    A 5-year-old boy presented with right eye pain associated with tearing and photophobia of 1-day duration. He gave a history of playing with a river crab when suddenly the crab clamped his fingers. He attempted to fling the crab off, but the crab flew and hit his right eye. Ocular examination revealed a right eye corneal ulcer with clumps of fibrin located beneath the corneal ulcer and 1.6 mm level of hypopyon. At presentation, the Seidel test was negative, with a deep anterior chamber. Culture from the corneal scrapping specimen grew Citrobacter diversus and Proteus vulgaris, and the boy was treated with topical gentamicin and ceftazidime eyedrops. Fibrin clumps beneath the corneal ulcer subsequently dislodged, and revealed a full-thickness corneal laceration wound with a positive Seidel test and shallow anterior chamber. The patient underwent emergency corneal toileting and suturing. Postoperatively, he was treated with oral ciprofloxacin 250 mg 12-hourly for 1 week, topical gentamicin, ceftazidime, and dexamethasone eyedrops for 4 weeks. Right eye vision improved to 6/9 and 6/6 with pinhole at the 2-week follow-up following corneal suture removal. PMID:25678769

  18. Differences between real and predicted corneal shapes after aspherical corneal ablation.

    PubMed

    Anera, Rosario G; Villa, César; Jiménez, José R; Gutiérrez, Ramón; del Barco, Luis Jiménez

    2005-07-20

    We study the differences between real and expected corneal shapes, using an aspherical ablation algorithm with a known equation and avoiding the limitation imposed by most studies of refractive surgery in which the ablation equations are not known. We have calculated the theoretical corneal shape predicted by this algorithm, comparing this shape with the real corneal topography. The results indicate that the deviations that appear in the corneal shape are significant for visual performance and for the correction of eye aberrations. If we include in this analysis the effect of reflection losses and nonnormal incidence on the cornea, we can reduce corneal differences, but they will remain significant. These results confirm that it is essential to minimize corneal differences to achieve effective correction in refractive surgery. PMID:16047903

  19. Corneal Nerve Structure and Function After Long-Term Wear of Fluid-Filled Scleral Lens

    PubMed Central

    Wang, Yvonne; Kornberg, Daniel L.; St Clair, Ryan M.; Lee, Michelle OD; Muhic, Irma; Ciralsky, Jessica B.; Alzaga Fernandez, Ana G.; Sood, Priyanka; Sippel, Kimberly C.; Rosenblatt, Mark I.

    2015-01-01

    Purpose To determine if long-term wear of a fluid-filled scleral lens alters basal tear production, corneal sensation, corneal nerve density and corneal nerve morphology in two disease categories. Methods Patients recruited from the Prosthetic Replacement of the Ocular Surface Ecosystem (PROSE) treatment program at Weill Cornell Medical College were categorized into two groups: distorted corneas (DC) or ocular surface disease (OSD). We measured tear production, central corneal sensation, sub-basal nerve density and tortuosity, and stromal nerve thickness before and after long-term wear of the prosthetic device used in PROSE treatment, defined as at least 60 days of wear for a minimum of eight hours a day. Results Twenty patients were included in the study. After long-term wear of the prosthetic device, tear production decreased in patients with DC (21.2±8.5 mm to 10.4±4.6 mm; P < 0.0001), but did not change in patients with OSD (7.5±5.2 mm to 8.7±7.2 mm; P = 0.71). Corneal sensation increased in the DC group (45.6±9.2 mm to 55.0±5.6 mm; P < 0.05). There was no significant change in sensation in patients with OSD (45.0±8.7 mm to 49.1±14.8 mm; P = 0.37). Sub-basal nerve density, sub-basal nerve tortuosity, and stromal nerve thickness remained unchanged in both DC and OSD groups after long-term wear (P > 0.05) Conclusions Patients with DC had significantly reduced basal tear production and increased corneal sensation after long-term wear of the scleral lens, but patients with OSD did not show any changes in tear production or corneal sensation. PMID:25710510

  20. Effect of Corneal Hydration on the Quality of the Femtosecond Laser Anterior Lamellar Cut

    PubMed Central

    Tran-Khanh, Nicolas; Buschmann, Michael; Podtetenev, Michel; Vidal, François; Costantino, Santiago; Brunette, Isabelle

    2014-01-01

    The goal of this study was to assess the effect of corneal hydration on the quality of the femtosecond laser (FSL) anterior lamellar cut. The Visumax FSL was used to dissect an 8-mm-diameter corneal flap in 22 eye bank corneas showing various levels of hydration. The intended ablation depth was 220 µm in all eyes, which corresponded to the maximal depth available with this laser. After the cut, the achieved ablation depth was measured using optical coherence tomography images, flap separability was assessed by measuring the mean force generated to detach the flap, and stromal bed roughness was assessed by measuring the Haralick contrast level on the 1000× scanning electron microscopy images of the ablated surfaces. The preoperative central corneal thickness ranged from 547 to 1104 µm (mean ± SEM: 833±30 µm). A negative correlation was found between the level of corneal hydration and the ablation depth measured in the mid-peripheral cornea (r = −0.626, p = 0.003), the ablation being more superficial in more edematous corneas. The Haralick contrast also tended to increase as a function of corneal hydration (r = 0.416, p = 0.061), suggesting that laser ablation in edematous corneas results in rougher stromal surfaces. These results support the hypothesis that the quality of the FSL lamellar cut decreases as the level of corneal hydration increases. Although FSL is still considered in the field as the tool of the future for corneal dissection, a better understanding of the limits of this tool will be needed before it can replace manual or automated stromal dissection techniques in hydrated corneas. PMID:24911840

  1. Posterior corneal curvature changes following Refractive Small Incision Lenticule Extraction

    PubMed Central

    Ganesh, Sri; Patel, Utsav; Brar, Sheetal

    2015-01-01

    Purpose To compare the posterior corneal curvature changes, in terms of corneal power and asphercity, following Refractive Small Incision Lenticule Extraction (ReLEx SMILE) procedure for low, moderate, and high myopia. Methods This retrospective, non randomized, comparative, interventional trial; included 52 eyes of 26 patients, divided in three groups: low myopia (myopia ≤3 D [diopters] spherical equivalent [SE]), moderate myopia (myopia >3 D and <6 D SE), and high myopia (myopia ≥6 D SE). All patients were treated for myopia and myopic astigmatism using ReLEx SMILE. The eyes were examined pre-operatively and 3 months post-operatively using SCHWIND SIRIUS, a three-dimensional rotating Scheimpflug camera with a Placido disc topographer to assess corneal changes with regard to keratometric power and asphericity of the cornea. Results A statistically significant increase in mean keratometric power in the 3, 5, and 7 mm zones of the posterior corneal surface compared with its pre-ReLEx SMILE value was detected after 3 months in the moderate myopia group (pre-operative [pre-op] −6.14±0.23, post-operative [post-op] −6.29±0.22, P<0.001) and high myopia group (pre-op −6.19±0.16, post-op −6.4±0.18, P<0.001), but there was no significant change in keratometric power of the posterior surface in the low myopia group (pre-op −5.87±0.17, post-op −6.06±0.29, P=0.143). Asphericity (Q-value) of the posterior surface changed significantly (P<0.001) after ReLEx SMILE in the moderate myopia group in the 3, 5, and 7 mm zones, and in the high myopia group in the 3 and 7 mm zones; but there was no significant change in the Q-value in the low myopia group in all three zones (pre-op 0.23±0.43, post-op −0.40±0.71, P=0.170), and in the high myopia group in the 5 mm zone (P=0.228). Conclusion ReLEx SMILE causes significant changes in posterior corneal keratometric power and asphericity in moderate and high myopia, but the effect is subtle and insignificant in low

  2. Effects of Topically Applied Vitamin D during Corneal Wound Healing

    PubMed Central

    Reins, Rose Y.; Hanlon, Samuel D.; Magadi, Sri; McDermott, Alison M.

    2016-01-01

    Vitamin D is an important regulator of immune function and largely acts to dampen chronic inflammatory events in a variety of tissues. There is also accumulating evidence that vitamin D acts to enhance initial inflammation, beneficial during both infection and wound healing, and then promotes resolution and prevention of chronic, damaging inflammation. The current study examines the effect of topical vitamin D in a mouse of model of corneal epithelial wound healing, where acute inflammation is necessary for efficient wound closure. At 12 and 18 hours post-wounding, vitamin D treatment significantly delayed wound closure by ~17% and increased infiltration of neutrophils into the central cornea. Basal epithelial cell division, corneal nerve density, and levels of VEGF, TGFβ, IL-1β, and TNFα were unchanged. However, vitamin D increased the production of the anti-microbial peptide CRAMP 12 hours after wounding. These data suggest a possible role for vitamin D in modulating corneal wound healing and have important implications for therapeutic use of vitamin D at the ocular surface. PMID:27035345

  3. In Vitro Expansion of Corneal Endothelial Cells on Biomimetic Substrates

    PubMed Central

    Palchesko, Rachelle N.; Lathrop, Kira L.; Funderburgh, James L.; Feinberg, Adam W.

    2015-01-01

    Corneal endothelial (CE) cells do not divide in vivo, leading to edema, corneal clouding and vision loss when the density drops below a critical level. The endothelium can be replaced by transplanting allogeneic tissue; however, access to donated tissue is limited worldwide resulting in critical need for new sources of corneal grafts. In vitro expansion of CE cells is a potential solution, but is challenging due to limited proliferation and loss of phenotype in vitro via endothelial to mesenchymal transformation (EMT) and senescence. We hypothesized that a bioengineered substrate recapitulating chemo-mechanical properties of Descemet's membrane would improve the in vitro expansion of CE cells while maintaining phenotype. Results show that bovine CE cells cultured on a polydimethylsiloxane surface with elastic modulus of 50 kPa and collagen IV coating achieved >3000-fold expansion. Cells grew in higher-density monolayers with polygonal morphology and ZO-1 localization at cell-cell junctions in contrast to control cells on polystyrene that lost these phenotypic markers coupled with increased α-smooth muscle actin expression and fibronectin fibril assembly. In total, these results demonstrate that a biomimetic substrate presenting native basement membrane ECM proteins and mechanical environment may be a key element in bioengineering functional CE layers for potential therapeutic applications. PMID:25609008

  4. Decay accelerating factor is essential for successful corneal engraftment

    PubMed Central

    Esposito, Andrew; Suedekum, Brandon; Liu, Jinbo; An, Fengqi; Lass, Jonathan; Strainic, Michael G; Lin, Feng; Heeger, Peter; Medof, M. Edward

    2012-01-01

    In contrast to immune restrictions that pertain for solid organ transplants, the tolerogenic milieu of the eye permits successful corneal transplantation without systemic immunosuppression, even across a fully MHC disparate barrier. Here we show that recipient and donor expression of decay accelerating factor (DAF or CD55), a cell surface C3/C5 convertase regulator recently shown to modulate T cell responses, is essential to sustain successful corneal engraftment. Whereas wild type (WT) corneas transplanted into multiple minor histocompatibility antigen (mH), or HY disparate WT recipients were accepted, DAF’s absence on either the donor cornea or in the recipient bed induced rapid rejection. Donor or recipient DAF deficiency led to expansion of donor-reactive IFN-γ producing CD4+ and CD8+ T cells, as well as inhibition of antigen induced IL-10 and TGF-β, together demonstrating that DAF deficiency precludes immune tolerance. In addition to demonstrating a requisite role for DAF in conferring ocular immune privilege, these results raise the possibility that augmenting DAF levels on corneal endothelium and/or the recipient bed could have therapeutic value for transplants that clinically are at high risk for rejection. PMID:20055803

  5. Alloimmunity and Tolerance in Corneal Transplantation.

    PubMed

    Amouzegar, Afsaneh; Chauhan, Sunil K; Dana, Reza

    2016-05-15

    Corneal transplantation is one of the most prevalent and successful forms of solid tissue transplantation. Despite favorable outcomes, immune-mediated graft rejection remains the major cause of corneal allograft failure. Although low-risk graft recipients with uninflamed graft beds enjoy a success rate ∼90%, the rejection rates in inflamed graft beds or high-risk recipients often exceed 50%, despite maximal immune suppression. In this review, we discuss the critical facets of corneal alloimmunity, including immune and angiogenic privilege, mechanisms of allosensitization, cellular and molecular mediators of graft rejection, and allotolerance induction. PMID:27183635

  6. Technology needs for corneal transplant surgery

    NASA Astrophysics Data System (ADS)

    Vaddavalli, Pravin K.; Yoo, Sonia H.

    2011-03-01

    Corneal transplant surgery has undergone numerous modifications over the years with improvements in technique, instrumentation and eye banking. The main goals of corneal transplantation are achieving excellent optical clarity with long-term graft survival. Penetrating, anterior and posterior lamellar surgery along with femtosecond laser technology have partially met these goals, but outcomes are often unpredictable and surgeon dependent. Technology to predictably separate stroma from Descemet's membrane, techniques to minimize endothelial cell loss, improvements in imaging technology and emerging techniques like laser welding that might replace suturing, eventually making corneal transplantation a refractively predictable procedure are on the wish list of the cornea surgeon.

  7. Enhancing effects of sericin on corneal wound healing in rat debrided corneal epithelium.

    PubMed

    Nagai, Noriaki; Murao, Takatoshi; Ito, Yoshimasa; Okamoto, Norio; Sasaki, Masahiro

    2009-05-01

    The protein sericin is the main constituent of silk. We demonstrate the effects of sericin on corneal wound healing in rat debrided corneal epithelium. We also determined the effects of sericin on cell adhesion and proliferation in a human cornea epithelial cell line (HCE-T). Epithelium was removed from the corneas of rats with a BD Micro-Sharp, and wounded corneas were dyed with a 1% fluorescein solution. The corneal wounds were monitored using a fundus camera TRC-50X equipped with a digital camera. The corneal wound of rats instilled with saline was approximately 10% healing at 12 h, and approximately 65% healing at 24 h after corneal epithelial abrasion. The corneal wounds of rats instilled with saline showed almost complete healing by 36 h after corneal epithelial abrasion. On the other hand, the corneal healing rate of rats instilled with sericin solution was higher than that of rats instilled with saline, and the corneal healing rate constant increased with increasing sericin concentration. In addition, the adhesion and proliferation of HCE-T cells treated with 0.01-0.5% sericin solutions were enhanced, reaching a maximum at treatments with 0.2 and 0.1% sericin solutions, respectively. The present study demonstrates that the instillation of sericin solution has a potent effect in promoting wound healing and wound-size reduction in rats, probably caused by increasing cell movement and proliferation. PMID:19420767

  8. The Relationship between Corvis ST Tonometry Measured Corneal Parameters and Intraocular Pressure, Corneal Thickness and Corneal Curvature

    PubMed Central

    Asaoka, Ryo; Nakakura, Shunsuke; Tabuchi, Hitoshi; Murata, Hiroshi; Nakao, Yoshitaka; Ihara, Noriko; Rimayanti, Ulfah; Aihara, Makoto; Kiuchi, Yoshiaki

    2015-01-01

    The purpose of the study was to investigate the correlation between Corneal Visualization Scheimpflug Technology (Corvis ST tonometry: CST) parameters and various other ocular parameters, including intraocular pressure (IOP) with Goldmann applanation tonometry. IOP with Goldmann applanation tonometry (IOP-G), central corneal thickness (CCT), axial length (AL), corneal curvature, and CST parameters were measured in 94 eyes of 94 normal subjects. The relationship between ten CST parameters against age, gender, IOP-G, AL, CST-determined CCT and average corneal curvature was investigated using linear modeling. In addition, the relationship between IOP-G versus CST-determined CCT, AL, and other CST parameters was also investigated using linear modeling. Linear modeling showed that the CST measurement ‘A time-1’ is dependent on IOP-G, age, AL, and average corneal curvature; ‘A length-1’ depends on age and average corneal curvature; ‘A velocity-1’ depends on IOP-G and AL; ‘A time-2’ depends on IOP-G, age, and AL; ‘A length-2’ depends on CCT; ‘A velocity-2’ depends on IOP-G, age, AL, CCT, and average corneal curvature; ‘peak distance’ depends on gender; ‘maximum deformation amplitude’ depends on IOP-G, age, and AL. In the optimal model for IOP-G, A time-1, A velocity-1, and highest concavity curvature, but not CCT, were selected as the most important explanatory variables. In conclusion, many CST parameters were not significantly related to CCT, but IOP usually was a significant predictor, suggesting that an adjustment should be made to improve their usefulness for clinical investigations. It was also suggested CST parameters were more influential for IOP-G than CCT and average corneal curvature. PMID:26485129

  9. Corneal Cell Adhesion to Contact Lens Hydrogel Materials Enhanced via Tear Film Protein Deposition

    PubMed Central

    Elkins, Claire M.; Qi, Qin M.; Fuller, Gerald G.

    2014-01-01

    Tear film protein deposition on contact lens hydrogels has been well characterized from the perspective of bacterial adhesion and viability. However, the effect of protein deposition on lens interactions with the corneal epithelium remains largely unexplored. The current study employs a live cell rheometer to quantify human corneal epithelial cell adhesion to soft contact lenses fouled with the tear film protein lysozyme. PureVision balafilcon A and AirOptix lotrafilcon B lenses were soaked for five days in either phosphate buffered saline (PBS), borate buffered saline (BBS), or Sensitive Eyes Plus Saline Solution (Sensitive Eyes), either pure or in the presence of lysozyme. Treated contact lenses were then contacted to a live monolayer of corneal epithelial cells for two hours, after which the contact lens was sheared laterally. The apparent cell monolayer relaxation modulus was then used to quantify the extent of cell adhesion to the contact lens surface. For both lens types, lysozyme increased corneal cell adhesion to the contact lens, with the apparent cell monolayer relaxation modulus increasing up to an order of magnitude in the presence of protein. The magnitude of this increase depended on the identity of the soaking solution: lenses soaked in borate-buffered solutions (BBS, Sensitive Eyes) exhibited a much greater increase in cell attachment upon protein addition than those soaked in PBS. Significantly, all measurements were conducted while subjecting the cells to moderate surface pressures and shear rates, similar to those experienced by corneal cells in vivo. PMID:25144576

  10. Corneal Epithelial Wound Healing Promoted by Verbascoside-Based Liposomal Eyedrops

    PubMed Central

    Ambrosone, Luigi; Guerra, Germano; Cinelli, Mariapia; Filippelli, Mariaelena; Mosca, Monica; Vizzarri, Francesco; Giorgio, Dario; Costagliola, Ciro

    2014-01-01

    Different liposomal formulations were prepared to identify those capable of forming eyedrops for corneal diseases. Liposomes with neutral or slightly positive surface charge interact very well with the cornea. Then these formulations were loaded with verbascoside to heal a burn of corneal epithelium induced by alkali. The cornea surface affected involved in wound was monitored as a function of time. Experimental results were modeled by balance equation between the rate of healing, due to the flow of phenylpropanoid, and growth of the wound. The results indicate a latency time of only three hours and furthermore the corneal epithelium heals in 48 hours. Thus, the topical administration of verbascoside appears to reduce the action time of cells, as verified by histochemical and immunofluorescence assays. PMID:25165705