Science.gov

Sample records for corona discharge secondary

  1. Corona Discharge in Clouds

    NASA Astrophysics Data System (ADS)

    Sin'kevich, A. A.; Dovgalyuk, Yu. A.

    2014-04-01

    We present a review of the results of theoretical studies and laboratory modeling of corona discharge initiation in clouds. The influence of corona discharges on the evolution of the cloud microstructure and electrification is analyzed. It is shown that corona discharges are initiated when large-size hydrometeors approach each other, whereas in some cases, corona discharges from crystals, ice pellets, and hailstones can appear. The corona discharges lead to significant air ionization, charging of cloud particles, and separation of charges in clouds and initiate streamers and lightnings. The influence of corona discharges on changes in the phase composition of clouds is analyzed.

  2. Charging of moving surfaces by corona discharges sustained in air

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Chieh; Zhang, Daihua; Leoni, Napoleon; Birecki, Henryk; Gila, Omer; Kushner, Mark J.

    2014-07-01

    Atmospheric pressure corona discharges are used in electrophotographic (EP) printing technologies for charging imaging surfaces such as photoconductors. A typical corona discharge consists of a wire (or wire array) biased with a few hundred volts of dc plus a few kV of ac voltage. An electric discharge is produced around the corona wire from which electrons drift towards and charge the underlying dielectric surface. The surface charging reduces the voltage drop across the gap between the corona wire and the dielectric surface, which then terminates the discharge, as in a dielectric barrier discharge. In printing applications, this underlying surface is continuously moving throughout the charging process. For example, previously charged surfaces, which had reduced the local electric field and terminated the local discharge, are translated out of the field of view and are replaced with uncharged surface. The uncharged surface produces a rebound in the electric field in the vicinity of the corona wire which in turn results in re-ignition of the discharge. The discharge, so reignited, is then asymmetric. We found that in the idealized corona charging system we investigated, a negatively dc biased corona blade with a dielectric covered ground electrode, the discharge is initially sustained by electron impact ionization from the bulk plasma and then dominated by ionization from sheath accelerated secondary electrons. Depending on the speed of the underlying surface, the periodic re-ignition of the discharge can produce an oscillatory charging pattern on the moving surface.

  3. Charging of moving surfaces by corona discharges sustained in air

    SciTech Connect

    Wang, Jun-Chieh Kushner, Mark J.; Zhang, Daihua; Leoni, Napoleon Birecki, Henryk Gila, Omer

    2014-07-28

    Atmospheric pressure corona discharges are used in electrophotographic (EP) printing technologies for charging imaging surfaces such as photoconductors. A typical corona discharge consists of a wire (or wire array) biased with a few hundred volts of dc plus a few kV of ac voltage. An electric discharge is produced around the corona wire from which electrons drift towards and charge the underlying dielectric surface. The surface charging reduces the voltage drop across the gap between the corona wire and the dielectric surface, which then terminates the discharge, as in a dielectric barrier discharge. In printing applications, this underlying surface is continuously moving throughout the charging process. For example, previously charged surfaces, which had reduced the local electric field and terminated the local discharge, are translated out of the field of view and are replaced with uncharged surface. The uncharged surface produces a rebound in the electric field in the vicinity of the corona wire which in turn results in re-ignition of the discharge. The discharge, so reignited, is then asymmetric. We found that in the idealized corona charging system we investigated, a negatively dc biased corona blade with a dielectric covered ground electrode, the discharge is initially sustained by electron impact ionization from the bulk plasma and then dominated by ionization from sheath accelerated secondary electrons. Depending on the speed of the underlying surface, the periodic re-ignition of the discharge can produce an oscillatory charging pattern on the moving surface.

  4. Corona Discharge Influences Ozone Concentrations Near Rats

    SciTech Connect

    Goheen, Steven C.; Gaither, Kari A.; Anantatmula, Shantha M.; Mong, Gary M.; Sasser, Lyle B.; Lessor, Delbert L.

    2004-02-26

    Ozone is produced by corona discharge in air. Its production is enhanced near grounded water. Whether grounded animals behave like grounded water, producing more ozone was investigated. Rats were exposed to corona discharge in a plastic cage. The concentration of ozone in the gas phase was monitored. The ozone concentration exceeded ambient levels only in the presence of corona discharge and either rats or water. When water or rats were exposed to corona discharge, ozone levels were more than 10 times higher than controls. Ozone levels increased rapidly with applied voltage. There was also a correlation between the distance of the corona needle to the rats and the amount of ozone produced. As the distance increased, ozone production decreased. These results are discussed in relation to the potential exposure of mammals to ozone in the vicinity of corona discharge and electric fields.

  5. Pulsed Corona Discharge Generated By Marx Generator

    NASA Astrophysics Data System (ADS)

    Sretenovic, G. B.; Obradovic, B. M.; Kovacevic, V. V.; Kuraica, M. M.; Puric J.

    2010-07-01

    The pulsed plasma has a significant role in new environmental protection technologies. As a part of a pulsed corona system for pollution control applications, Marx type repetitive pulse generator was constructed and tested in arrangement with wire-plate corona reactor. We performed electrical measurements, and obtained voltage and current signals, and also power and energy delivered per pulse. Ozone formation by streamer plasma in air was chosen to monitor chemical activity of the pulsed corona discharge.

  6. Electrode structure for uniform corona discharge

    NASA Technical Reports Server (NTRS)

    Gange, R. A.; Steinmetz, C. C.

    1976-01-01

    Single corona-discharge needle is used to apply uniform charge to thermoplastic medium in holograph-storage system. Needle is connected to flat transparent electrode that is parallel to thermoplastic.

  7. Corona discharge influences ozone concentrations near rats.

    PubMed

    Goheen, Steven C; Gaither, Kari; Anantatmula, Shantha M; Mong, Gary M; Sasser, Lyle B; Lessor, Delbert

    2004-02-01

    Ozone can be produced by corona discharge either in dry air or when one electrode is submerged in water. Since ozone is toxic, we examined whether ozone production by corona near laboratory animals could reach levels of concern. Male rats were exposed to a corona discharge and the concentration of ozone produced was measured. The resulting concentration of ozone ranged from ambient levels to 250 ppb when animals were located 1 cm from a 10 kV source. Similar ozone concentrations were observed when a grounded water source was present. Possible explanations for, as well as concerns regarding, ozone production under these conditions are discussed. PMID:14735560

  8. Device for generation of pulsed corona discharge

    DOEpatents

    Gutsol, Alexander F.; Fridman, Alexander; Blank, Kenneth; Korobtsev, Sergey; Shiryaevsky, Valery; Medvedev, Dmitry

    2012-05-08

    The invention is a method and system for the generation of high voltage, pulsed, periodic corona discharges capable of being used in the presence of conductive liquid droplets. The method and system can be used, for example, in different devices for cleaning of gaseous or liquid media using pulsed corona discharge. Specially designed electrodes and an inductor increase the efficiency of the system, permit the plasma chemical oxidation of detrimental impurities, and increase the range of stable discharge operations in the presence of droplets of water or other conductive liquids in the discharge chamber.

  9. Direct observation of laser guided corona discharges.

    PubMed

    Wang, Tie-Jun; Wei, Yingxia; Liu, Yaoxiang; Chen, Na; Liu, Yonghong; Ju, Jingjing; Sun, Haiyi; Wang, Cheng; Lu, Haihe; Liu, Jiansheng; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2015-01-01

    Laser based lightning control holds a promising way to solve the problem of the long standing disaster of lightning strikes. But it is a challenging project due to insufficient understanding of the interaction between laser plasma channel and high voltage electric filed. In this work, a direct observation of laser guided corona discharge is reported. Laser filament guided streamer and leader types of corona discharges were observed. An enhanced ionization took place in the leader (filament) through the interaction with the high voltage discharging field. The fluorescence lifetime of laser filament guided corona discharge was measured to be several microseconds, which is 3 orders of magnitude longer than the fluorescence lifetime of laser filaments. This work could be advantageous towards a better understanding of laser assisted leader development in the atmosphere. PMID:26679271

  10. Direct observation of laser guided corona discharges

    NASA Astrophysics Data System (ADS)

    Wang, Tie-Jun; Wei, Yingxia; Liu, Yaoxiang; Chen, Na; Liu, Yonghong; Ju, Jingjing; Sun, Haiyi; Wang, Cheng; Lu, Haihe; Liu, Jiansheng; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2015-12-01

    Laser based lightning control holds a promising way to solve the problem of the long standing disaster of lightning strikes. But it is a challenging project due to insufficient understanding of the interaction between laser plasma channel and high voltage electric filed. In this work, a direct observation of laser guided corona discharge is reported. Laser filament guided streamer and leader types of corona discharges were observed. An enhanced ionization took place in the leader (filament) through the interaction with the high voltage discharging field. The fluorescence lifetime of laser filament guided corona discharge was measured to be several microseconds, which is 3 orders of magnitude longer than the fluorescence lifetime of laser filaments. This work could be advantageous towards a better understanding of laser assisted leader development in the atmosphere.

  11. Direct observation of laser guided corona discharges

    PubMed Central

    Wang, Tie-Jun; Wei, Yingxia; Liu, Yaoxiang; Chen, Na; Liu, Yonghong; Ju, Jingjing; Sun, Haiyi; Wang, Cheng; Lu, Haihe; Liu, Jiansheng; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2015-01-01

    Laser based lightning control holds a promising way to solve the problem of the long standing disaster of lightning strikes. But it is a challenging project due to insufficient understanding of the interaction between laser plasma channel and high voltage electric filed. In this work, a direct observation of laser guided corona discharge is reported. Laser filament guided streamer and leader types of corona discharges were observed. An enhanced ionization took place in the leader (filament) through the interaction with the high voltage discharging field. The fluorescence lifetime of laser filament guided corona discharge was measured to be several microseconds, which is 3 orders of magnitude longer than the fluorescence lifetime of laser filaments. This work could be advantageous towards a better understanding of laser assisted leader development in the atmosphere. PMID:26679271

  12. LABORATORY ANALYSES OF CORONA DISCHARGES

    EPA Science Inventory

    The paper discusses an experimental research program to characterize corona generation from different electrode geometries in a range of conditions comparable to those found in electrostatic precipitators (ESPs). A wire-parallel plate device and a wire-cylinder device were used t...

  13. Comparison of reactant and analyte ions for ⁶³Nickel, corona discharge, and secondary electrospray ionization sources with ion mobility-mass spectrometry.

    PubMed

    Crawford, C L; Hill, H H

    2013-03-30

    (63)Nickel radioactive ionization ((63)Ni) is the most common and widely used ion source for ion mobility spectrometry (IMS). Regulatory, financial, and operational concerns with this source have promoted recent development of non-radioactive sources, such as corona discharge ionization (CD), for stand-alone IMS systems. However, there has been no comparison of the negative ion species produced by all three sources in the literature. This study compares the negative reactant and analyte ions produced by three sources on an ion mobility-mass spectrometer: conventional (63)Ni, CD, and secondary electrospray ionization (SESI). Results showed that (63)Ni and SESI produced the same reactant ion species while CD produced only the nitrate monomer and dimer ions. The analyte ions produced by each ion source were the same except for the CD source which produced a different ion species for the explosive RDX than either the (63)Ni or SESI source. Accurate and reproducible reduced mobility (K0) values, including several values reported here for the first time, were found for each explosive with each ion source. Overall, the SESI source most closely reproduced the reactant ion species and analyte ion species profiles for (63)Ni. This source may serve as a non-radioactive, robust, and flexible alternative for (63)Ni. PMID:23598216

  14. TRIANGLE-SHAPED DC CORONA DISCHARGE DEVICE FOR MOLECULAR DECOMPOSITION

    EPA Science Inventory

    The paper discusses the evaluation of electrostatic DC corona discharge devices for the application of molecular decomposition. A point-to-plane geometry corona device with a rectangular cross section demonstrated low decomposition efficiencies in earlier experimental work. The n...

  15. PEGylated nanoparticles: protein corona and secondary structure

    NASA Astrophysics Data System (ADS)

    Runa, Sabiha; Hill, Alexandra; Cochran, Victoria L.; Payne, Christine K.

    2014-09-01

    Nanoparticles have important biological and biomedical applications ranging from drug and gene delivery to biosensing. In the presence of extracellular proteins, a "corona" of proteins adsorbs on the surface of the nanoparticles, altering their interaction with cells, including immune cells. Nanoparticles are often functionalized with polyethylene glycol (PEG) to reduce this non-specific adsorption of proteins. To understand the change in protein corona that occurs following PEGylation, we first quantified the adsorption of blood serum proteins on bare and PEGylated gold nanoparticles using gel electrophoresis. We find a threefold decrease in the amount of protein adsorbed on PEGylated gold nanoparticles compared to the bare gold nanoparticles, showing that PEG reduces, but does not prevent, corona formation. To determine if the secondary structure of corona proteins was altered upon adsorption onto the bare and PEGylated gold nanoparticles, we use CD spectroscopy to characterize the secondary structure of bovine serum albumin following incubation with the nanoparticles. Our results show no significant change in protein secondary structure following incubation with bare or PEGylated nanoparticles. Further examination of the secondary structure of bovine serum albumin, α2-macroglobulin, and transferrin in the presence of free PEG showed similar results. These findings provide important insights for the use of PEGylated gold nanoparticles under physiological conditions.

  16. Modulated corona nanosecond discharge in air under ambient pressure

    NASA Astrophysics Data System (ADS)

    Lepekhin, N. M.; Priseko, Yu. S.; Filippov, V. G.; Bulatov, M. U.; Sukharevskii, D. I.; Syssoev, V. S.

    2015-04-01

    A unique type of corona discharge-modulated corona nanosecond discharge-has been obtained, the parameters of which have been determined in a geometric system of electrodes with a sharply heterogeneous electric field in air under ambient pressure and natural humidity.

  17. Corona-discharge-initiated mine explosions

    SciTech Connect

    Sacks, H.K.; Novak, T.

    2005-10-01

    Strong circumstantial evidence suggests that lightning has initiated methane explosions in abandoned and sealed areas of underground coal mines. The Mine Safety and Health Administration (MSHA) investigated several of these occurrences within recent years. The investigated explosions occurred at significant depths, ranging from 700 to 1200 ft. Data from the National Lightning Detection Network indicated a strong correlation between the times and locations of the explosions with those of specific lightning strikes. This paper proposes that corona discharge from a steel borehole casing is the most likely mechanism responsible for these ignitions. A recently investigated mine explosion and fire at a depth greater than 1000 ft was selected for this study. Computer simulations were performed, using data collected at the mine site. CDEGS software from Safe Engineering Services & Technologies, Ltd. and MaxwellSV from Ansoft Corporation were used for the simulations.

  18. Acoustic field effects on a negative corona discharge

    NASA Astrophysics Data System (ADS)

    Bálek, R.; Červenka, M.; Pekárek, S.

    2014-06-01

    For a negative corona discharge under atmospheric pressure in different regimes, we investigated the effects of an acoustic field both on its electrical parameters and on the change in its visual appearance. We found that the application of an acoustic field on the true corona discharge, for particular currents, decreases the discharge voltage. The application of an acoustic field on the discharge in the filamentary streamer regime substantially extends the range of currents for which the discharge voltage remains more or less constant, i.e. it allows a substantial increase in the power delivered to the discharge. The application of an acoustic field on the discharge causes the discharge to spread within the discharge chamber and consequently, a highly reactive non-equilibrium plasma is created throughout the inter-electrode space. Finally, our experimental apparatus radiates almost no acoustic energy from the discharge chamber.

  19. Radicals generated from 2-chloro-5-fluorotoluene by corona discharge

    NASA Astrophysics Data System (ADS)

    Yi, Eun Hye; Yoon, Young Wook; Lee, Sang Kuk

    2014-06-01

    The generation of molecular radicals in corona discharge was investigated spectroscopically by varying the experimental conditions applied to a substituted toluene precursor. Vibronic emission spectra were observed from the corona discharge of 2-chloro-5-fluorotoluene seeded in a large amount of carrier gas helium. From an analysis of emission spectra observed, it was confirmed that bond dissociation energy plays a key role in radical formation. The possible pathway for the formation of benzyl-type radicals is proposed to explain the observation.

  20. The Optical Diagnosis of Underwater Positive Sparks and Corona Discharges

    NASA Astrophysics Data System (ADS)

    Chen, Dan; Zeng, Xinwu; Wang, Yibo

    2014-12-01

    In this paper, two types of underwater discharges, spark discharge and corona discharge, are investigated by optical diagnosis using a high speed framing camera (HSFC) with the framing time within nanoseconds under the same experimental conditions. In order to capture the photographs of streamer propagation, the influence of the randomicity of the pre-breakdown duration is taken into consideration. By increasing the conductivity of water, the randomicity reduces effectively. Experimental results show that, for a spark discharge, the process can be separated into three stages: the generation and propagation of a streamer, the generation and expansion of the discharge channel, and the development and annihilation of the plasma. The streamers do not directly move to the opposite electrode, but form a bush-like figure. With the increase of the number of branches, the velocity of streamer propagation slows down. The trajectory of the initial channel between electrodes is not straight. However, with the channel expanding, its shape transforms into a straight column. For a corona discharge, there are two stages: the generation and propagation of a streamer, and the stagnation and annihilation of the streamer. The initial streamer in a corona discharge is generated later than in a spark discharge. The forms of streamers for both kinds of discharge are similar; however, streamers generated by a corona discharge propagate with a slower velocity and the number of branches is less compared with a spark discharge. When the energy injection stops, the luminescence of plasma inside the discharge channel (spark discharge) or streamers (corona discharge) becomes weaker and weaker, and finally disappears.

  1. Triggering Excimer Lasers by Photoionization from Corona Discharges

    NASA Astrophysics Data System (ADS)

    Xiong, Zhongmin; Duffey, Thomas; Brown, Daniel; Kushner, Mark

    2009-10-01

    High repetition rate ArF (192 nm) excimer lasers are used for photolithography sources in microelectronics fabrication. In highly attaching gas mixtures, preionization is critical to obtaining stable, reproducible glow discharges. Photoionization from a separate corona discharge is one technique for preionization which triggers the subsequent electron avalanche between the main electrodes. Photoionization triggering of an ArF excimer laser sustained in multi-atmosphere Ne/Ar/F2/Xe gas mixtures has been investigated using a 2-dimensional plasma hydrodynamics model including radiation transport. Continuity equations for charged and neutral species, and Poisson's equation are solved coincident with the electron temperature with transport coefficients obtained from solutions of Boltzmann's equation. Photoionizing radiation is produced by a surface discharge which propagates along a corona-bar located adjacent to the discharge electrodes. The consequences of pulse power waveform, corona bar location, capacitance and gas mixture on uniformity, symmetry and gain of the avalanche discharge will be discussed.

  2. Simulation of low temperature atmospheric pressure corona discharge in helium

    NASA Astrophysics Data System (ADS)

    Bekasov, Vladimir; Kirsanov, Gennady; Eliseev, Stepan; Kudryavtsev, Anatoly; Sisoev, Sergey

    2015-11-01

    The main objective of this work was to construct a numerical model of corona discharge in helium at atmospheric pressure. The calculation was based on the two-dimensional hybrid model. Two different plasma-chemical models were considered. Models were built for RF corona and negative DC corona discharge. The system of equations is solved by the finite element method in the COMSOL Multiphysics. Main parameters of the discharge (the density of charged and excited particles, the electron temperature) and their dependence on the input parameters of the model (geometry, electrode voltage, power) were calculated. The calculations showed that the shape of the electron distribution near the electrode depends on the discharge power. The neutral gas heating data obtained will allow predicting the temperature of the gases at the designing of atmospheric pressure helium plasma sources.

  3. Simulation of low temperature atmospheric pressure corona discharge in helium

    NASA Astrophysics Data System (ADS)

    Bekasov, V.; Chirtsov, Alex; Demidova, Maria; Kudryavtsev, Anatoly

    2015-11-01

    The main objective of this work was to construct a numerical model of corona discharge in helium at atmospheric pressure. Calculations were based on the two-dimensional hybrid model. Two different plasma-chemical models were considered. Models were built for RF corona and negative DC corona discharges. The system of equations was solved by the finite element method in the COMSOL Multiphysics. Main parameters of the discharge (the density of charged and excited particles and the electron temperature) and their dependence on the input parameters of the model (geometry, electrode voltage and power) were calculated. The calculations showed that the shape of the electron distribution near the electrode depends on the discharge power. The neutral gas heating data obtained will allow for the prediction of the temperature of the gases in atmospheric pressure helium plasma sources. This work was supported by Russian Science Foundation (project 14-19-00311).

  4. Properties of corona discharge plasma near metal surface

    NASA Astrophysics Data System (ADS)

    Lavrinenko, M.; Biktashev, E.; Kirko, D.

    2016-01-01

    Properties of corona discharge near metallic surface were researched. Electrical oscillations in discharge plasma of 1 kHz - 100 MHz rate were registered. Spectrum of electrical oscillations in this range was obtained. Possible plasma waves for observed electronic oscillations explanation are discussed.

  5. Oxidative coupling of methane with ac and dc corona discharges

    SciTech Connect

    Liu, C.; Marafee, A.; Hill, B.; Xu, G.; Mallinson, R.; Lobban, L.

    1996-10-01

    The oxidative coupling of methane (OCM) is being actively studied for the production of higher hydrocarbons from natural gas. The present study concentrated on the oxidative conversion of methane in an atmospheric pressure, nonthermal plasma formed by ac or dc corona discharges. Methyl radicals are formed by reaction with negatively-charged oxygen species created in the corona discharge. The selectivity to products ethane and ethylene is affected by electrode polarity, frequency, and oxygen partial pressure in the feed. Higher C{sub 2} yields were obtained with the ac corona. All the ac corona discharges are initiated at room temperature (i.e., no oven or other heat source is used), and the temperature increases to 300--500 C due to the exothermic reactions and the discharge itself. The largest C{sub 2} yield is 21% with 43.3% methane conversion and 48.3% C{sub 2} selectivity at a flowrate of 100 cm{sup 3}/min when the ac corona is at 30 Hz, 5 kV (rms) input power was used. The methane conversion may be improved to more than 50% by increasing the residence time, but the C{sub 2} selectivity decreases. A reaction mechanism including the oxidative dehydrogenation (OXD) of ethane to ethylene is presented to explain the observed phenomena. The results suggest that ac and/or dc gas discharge techniques have significant promise for improving the economics of OCM processes.

  6. LABORATORY ANALYSIS OF BACK-CORONA DISCHARGE

    EPA Science Inventory

    The paper discusses an experimental research program to characterize back-corona generation and behavior in a range of environments and geometries common to electrostatic precipitators (ESPs). A wire-parallel plate device was used to monitor the intensity and distribution of back...

  7. Electric winds driven by time oscillating corona discharges

    NASA Astrophysics Data System (ADS)

    Drews, Aaron M.; Cademartiri, Ludovico; Whitesides, George M.; Bishop, Kyle J. M.

    2013-10-01

    We investigate the formation of steady gas flows—so-called electric winds—created by point-plane corona discharges driven by time oscillating (ac) electric fields. By varying the magnitude and frequency of the applied field, we identify two distinct scaling regimes: (i) a low frequency (dc) regime and (ii) a high frequency (ac) regime. These experimental observations are reproduced and explained by a theoretical model describing the transport and recombination of ions surrounding the discharge and their contribution to the measured wind velocity. The two regimes differ in the spatial distribution of ions and in the process by which ions are consumed. Interestingly, we find that ac corona discharges generate strong electric forces localized near the tip of the point electrode, while dc corona discharges generate weaker forces distributed throughout the interelectrode region. Consequently, the velocity of the electric winds (>1 m/s) generated by ac discharges is largely independent of the position of the counter electrode. The unified theoretical description of dc and ac electric winds presented here reconciles previous observations of winds driven by dc corona and ac dielectric barrier discharges; insights from the model should also prove useful in the design of other plasma actuators.

  8. Mercury vapor control by means of corona discharge

    SciTech Connect

    Helfritch, D.; Harmon, G.; Feldman, P.

    1996-12-31

    The work reported here describes the construction and performance of a novel corona discharge flue gas reactor designed to oxidize mercury vapor, allowing the mercuric oxide to be subsequently captured in a downstream particulate control device. A corona discharge in flue gas produces oxidizing radicals, such as OH and atomic oxygen, which can then react with elemental mercury. Optimum performance demands that the corona discharge, and hence the oxidizing radicals, be uniformly distributed within the flow volume of the reactor. When a uniform volume distribution of electrons is achieved, then uniform exposure and treatment of the gas is assured, and maximum energy efficiency can be obtained. By means of a laboratory based, pilot scale system, it is shown that the spatially distributed corona discharge produced by the corona reactor operating at low power level and short residence time yields a high level of mercury vapor oxidation. The mercuric oxide, in the form of solid particles, can then be removed by a conventional electrostatic precipitator or fabric filter. It is also shown that low temperature, high humidity conditions enhance mercury oxidation. For an application to solid waste incineration, this suggests the placement of the reactor downstream of the spray dryer and upstream of the fabric filter. Economic analysis indicates that this method of mercury vapor control is very competitive with adsorption by activated carbon. For example, if mercury control regulations are promulgated for coal burning power plants, the corona discharge technology could potentially save the US utility industry and electricity consumers up to 250 million dollars per year. 10 refs., 6 figs., 2 tabs.

  9. Asymptotic analysis of corona discharge from thin electrodes

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1986-01-01

    The steady discharge of a high-voltage corona is analyzed as a singular perturbation problem. The small parameter is the ratio of the length of the ionization region to the total gap length. By this method, current versus voltage characteristics can be calculated analytically.

  10. Influence of humidity on the characteristics of positive corona discharge in air

    NASA Astrophysics Data System (ADS)

    Xu, Pengfei; Zhang, Bo; Chen, Shuiming; He, Jinliang

    2016-06-01

    Detailed positive corona discharge characteristics, such as the corona onset voltage, pulse amplitude, repetition frequency, average corona current, rise time, and half-wave time, are systematically studied under different air humidity with a single artificial defect electrode. The experimental results indicate that the pulse amplitude decreases with the increase of air humidity; meanwhile, the repetition frequency increases as the air humidity increases. This phenomenon is different from that of negative corona discharge. Therefore, to have an insight into the mechanism of humidity influence on positive corona discharge, a positive corona discharge model based on the continuity equations is utilized. The simulations present a dynamic development of positive corona discharge and, meanwhile, reveal the humidity influence on positive corona discharge.

  11. CORONA DISCHARGE IGNITION FOR ADVANCED STATIONARY NATURAL GAS ENGINES

    SciTech Connect

    Dr. Paul D. Ronney

    2003-09-12

    An ignition source was constructed that is capable of producing a pulsed corona discharge for the purpose of igniting mixtures in a test chamber. This corona generator is adaptable for use as the ignition source for one cylinder on a test engine. The first tests were performed in a cylindrical shaped chamber to study the characteristics of the corona and analyze various electrode geometries. Next a test chamber was constructed that closely represented the dimensions of the combustion chamber of the test engine at USC. Combustion tests were performed in this chamber and various electrode diameters and geometries were tested. The data acquisition and control system hardware for the USC engine lab was updated with new equipment. New software was also developed to perform the engine control and data acquisition functions. Work is underway to design a corona electrode that will fit in the new test engine and be capable igniting the mixture in one cylinder at first and eventually in all four cylinders. A test engine was purchased for the project that has two spark plug ports per cylinder. With this configuration it will be possible to switch between corona ignition and conventional spark plug ignition without making any mechanical modifications.

  12. The degradation of organic dyes by corona discharge

    SciTech Connect

    Goheen, S.C.; McCulloch, M.; Durham, D.E.; Heath, W.O.

    1992-02-01

    Several dyes in water were individually exposed to corona discharge. Light absorbance decreased for all organic dyes with time. Absorbance losses with methylene blue, malachite green, and new coccine were studied. The loss of color was followed using an in situ colorimeter and the effects of varying the current, voltage, gas phase, stirring rates, salinity, and electrode spacing were investigated. The highest reaction rates were observed using the highest current, highest voltage (up to 10kV), highest stirring rate, lowest salinity, smallest electrode spacing, and an environment containing enhanced levels of oxygen. Current was higher in the presence of nitrogen than in the presence of oxygen (for the same voltage), but the reaction of methylene blue did not proceed unless oxygen was present. These results help identify conditions using corona discharge in which dyes, and potentially other organics, can be destroyed. 22 refs., 5 figs.

  13. Method and apparatus for processing exhaust gas with corona discharge

    DOEpatents

    Barlow, Stephan E.; Orlando, Thomas M.; Tonkyn, Russell G.

    1999-01-01

    The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes.

  14. Method and apparatus for processing exhaust gas with corona discharge

    DOEpatents

    Barlow, S.E.; Orlando, T.M.; Tonkyn, R.G.

    1999-06-22

    The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes. 12 figs.

  15. Semi-analytical modelling of positive corona discharge in air

    NASA Astrophysics Data System (ADS)

    Pontiga, Francisco; Yanallah, Khelifa; Chen, Junhong

    2013-09-01

    Semianalytical approximate solutions of the spatial distribution of electric field and electron and ion densities have been obtained by solving Poisson's equations and the continuity equations for the charged species along the Laplacian field lines. The need to iterate for the correct value of space charge on the corona electrode has been eliminated by using the corona current distribution over the grounded plane derived by Deutsch, which predicts a cos m θ law similar to Warburg's law. Based on the results of the approximated model, a parametric study of the influence of gas pressure, the corona wire radius, and the inter-electrode wire-plate separation has been carried out. Also, the approximate solutions of the electron number density has been combined with a simplified plasma chemistry model in order to compute the ozone density generated by the corona discharge in the presence of a gas flow. This work was supported by the Consejeria de Innovacion, Ciencia y Empresa (Junta de Andalucia) and by the Ministerio de Ciencia e Innovacion, Spain, within the European Regional Development Fund contracts FQM-4983 and FIS2011-25161.

  16. Confirmed assignments of isomeric dimethylbenzyl radicals generated by corona discharge.

    PubMed

    Yoon, Young Wook; Lee, Sang Kuk

    2011-12-01

    The controversial vibronic assignments of isomeric dimethylbenzyl radicals were clearly resolved by using different precursors. By employing corresponding dimethylbenzyl chlorides as precursors, we identified the origins of the vibronic bands of the dimethylbenzyl radicals generated by corona discharge of 1,2,4-trimethylbenzene. From the analysis of the spectra observed from the dimethylbenzyl chlorides in a corona excited supersonic expansion, we revised previous assignments of the 3,4-, 2,4-, and 2,5-dimethylbenzyl radicals. Spectroscopic data of electronic transition and vibrational mode frequencies in the ground electronic state of each isomer were accurately determined by comparing them with those obtained by an ab initio calculation and with the known vibrational data of 1,2,4-trimethylbenzene. PMID:22149790

  17. Degradation of pentachlorophenol in soil by pulsed corona discharge plasma.

    PubMed

    Wang, Tie Cheng; Lu, Na; Li, Jie; Wu, Yan

    2010-08-15

    The remediation of pentachlorophenol (PCP) contaminated soil using pulsed corona discharge plasma was reported in this study. The effect of practical run parameters such as peak pulse voltage, pulse frequency, gas atmospheres (air, O(2), Ar and N(2)), air flow rate and pollution time on PCP degradation was investigated, and the intermediate products were also studied. The results indicated that PCP degradation efficiency increased with an increase in peak pulse voltage or pulse frequency, due to the enhancement of energy input. There existed a maximal PCP degradation efficiency with the change of air flow rate. PCP degradation efficiencies under oxygen and air atmospheres were achieved 92% and 77% after 45 min of discharge treatment at 14.0 kV, respectively, which were only 19% and 8% under argon and nitrogen atmospheres, respectively. O(3) played an important role in PCP degradation. However, other processes also contributed to PCP degradation, such as N, N(2)(+), N(+) and OH. The pollution time evidenced slight influence on PCP degradation. The main intermediate products produced during the treatment process were identified as tetrachlorocatechol, tetrachlorohydroquinone, acetic acid, formic acid and oxalic acid by HPLC/MS and ion chromatography. This study is expected to provide reference for the application of pulsed corona discharge in soil remediation. PMID:20452725

  18. Pulsed corona discharge at atmospheric and supercritical conditions

    NASA Astrophysics Data System (ADS)

    Lock, Evgeniya Hristova

    Pulsed corona discharge is one of the non-equilibrium plasma techniques, by which electrical power is mainly utilized to generate high-energy electrons. These react further with the background gas to produce radicals, which can be further employed in chemically selective reactions. Study of the initiation of pulsed corona discharge in carbon dioxide and air was conducted. Furthermore due to its high removal efficiency, energy yields and good economy, the pulsed corona discharge was employed for removal of methanol and dimethyl sulfide. These compounds are part of the volatile organic compounds (VOC) air pollutants, which are subject of severe environmental regulations due to their toxicity, environmental persistence and intensity of smell. The study provides experimental data for the destruction of methanol and dimethyl sulfide from dry and humid air streams. The effects of the process parameters, including applied voltage, pulse repetition rate, initial concentration of pollutants, temperature and humidity on the destruction and removal efficiency and energy cost are analyzed. Specific consideration is given to the formation of unwanted byproducts. The study on plasma application for pollution control showed that small amounts of dispersed liquid droplets increase the efficiency of the chemical utilization of the high-energy electrons and reduce the required power. So media that could facilitate homogeneous and heterogeneous chemistry at the same time would enhance the efficiency of the removal process. Such medium that has properties intermediate between the gas and liquid phase is the supercritical fluid. Generation of plasma in supercritical fluids is an unexplored area in plasma science. The generation of plasma at elevated pressures usually requires high voltages or small interelectrode distances. The supercritical phase is characterized by extensive cluster formation in the vicinity of the critical point. Typically the clusters have lower ionization

  19. Toxic Gas Removal by Dielectric Discharge with Corona Effect

    SciTech Connect

    Moreno, H.; Pacheco, M.; Mercado, A.; Cruz, A.; Pacheco, J.; Yousfi, M.; Eichwald, O.; Benhenni, M.

    2006-12-04

    In this work, a theoretical and experimental study on SO2 and NOx removal by non-thermal plasma technology, more specifically a dielectric barrier (DBD) discharge combined with the Corona effect, is presented. Results obtained from a theoretical study describe the chemical kinetic model of SO2 and NOx removal processes; the effect of OH radicals in removal of both gases is noteworthy. Experimental results of de-SO2 process are reported. Also, optical emission spectroscopy study was applied on some atomic helium lines to obtain temperature of electrons in the non-thermal plasma.

  20. Oxidation of aqueous pharmaceuticals by pulsed corona discharge.

    PubMed

    Panorel, Iris; Preis, Sergei; Kornev, Iakov; Hatakka, Henry; Louhi-Kultanen, Marjatta

    2013-01-01

    Oxidation of aromatic compounds of phenolic (paracetamol, beta-oestradiol and salicylic acid) and carboxylic (indomethacin and ibuprofen) structure used in pharmaceutics was studied. Aqueous solutions were treated with pulsed corona discharge (PCD) as a means for advanced oxidation. Pulse repetition frequency, delivered energy dose and oxidation media were the main parameters studied for their influence on the process energy efficiency. The PCD treatment appeared to be effective in oxidation of the target compounds: complete degradation of pollutant together with partial mineralization was achieved at moderate energy consumption; oxidation proceeds faster in alkaline media. Low-molecular carboxylic acids were identified as ultimate oxidation by-products formed in the reaction. PMID:23837343

  1. Experimental Study of Corona Properties with a Heated Discharge Electrode and Crossed Magnetic Fields Individually

    NASA Astrophysics Data System (ADS)

    Abu-Elabass, Karim

    2015-07-01

    This work involves ac and dc corona in air with heated discharge electrode, and breakdown streamers in corona in a crossed magnetic field. At first, the triggering of the breakdown streamers in positive and ac corona are governed by the temperature of the discharge electrode. In the negative corona, however, the breakdown streamers found to be practically independent of the temperature of the discharge electrode. Then, the transverse magnetic field, applied perpendicularly to the electric field, result in an improvement in pre-breakdown characteristic of the wire-tube gap. The application of the transverse field has the effect of increasing the corona onset voltage and the breakdown voltage. Also the transverse applied field has the effect of decreasing the corona current. It has been observed that triggering of the breakdown streamers in negative corona is affected appreciably by the transverse magnetic field.

  2. Vortex focusing of ions produced in corona discharge.

    PubMed

    Kolomiets, Yuri N; Pervukhin, Viktor V

    2013-06-15

    Completeness of the ion transportation into an analytical path defines the efficiency of ionization analysis techniques. This is of particular importance for atmospheric pressure ionization sources like corona discharge, electrospray, ionization with radioactive ((3)H, (63)Ni) isotopes that produce nonuniform spatial distribution of sample ions. The available methods of sample ion focusing are either efficient at reduced pressure (~1Torr) or feature high sample losses. This paper deals with experimental research into atmospheric pressure focusing of unipolar (positive) ions using a highly swirled air stream with a well-defined vortex core. Effects of electrical fields from corona needle and inlet capillary of mass spectrometer on collection efficiency is considered. We used a corona discharge to produce an ionized unipolar sample. It is shown experimentally that with an electrical field barrier efficient transportation and focusing of an ionized sample are possible only when a metal plate restricting the stream and provided with an opening covered with a grid is used. This gives a five-fold increase of the transportation efficiency. It is shown that the electric field barrier in the vortex sampling region reduces the efficiency of remote ionized sample transportation two times. The difference in the efficiency of light ion focusing observed may be explained by a high mobility and a significant effect of the electric field barrier upon them. It is possible to conclude based on the experimental data that the presence of the field barrier narrows considerably (more than by one and half) the region of the vortex sample ion focusing. PMID:23618173

  3. Confirmed Assignments of Isomeric Dimethylbenzyl Radicals Generated by Corona Discharge

    NASA Astrophysics Data System (ADS)

    Yoon, Young Wook; Lee, Sang Kuk

    2012-06-01

    Polymethylbenzyl radicals, multi-methyl-substituted benzyl radicals, have been believed to be an ideal model for understanding the torsional effect of methyl group and substitution effect on electronic transition. These radicals are mainly generated from polymethylbenzenes by electric discharge for spectroscopic observation. However, the existence of several methyl groups on the benzene ring may produce several isomeric polymethylbenzyl radicals by removing one of the C-H bonds of each methyl group at different substitution position, which makes the assignment of spectrum ambiguous. In this work, the controversial vibronic assignments of isomeric dimethylbenzyl radicals were clearly resolved by using different precursors. By using corresponding dimethylbenzyl chlorides as precursors, we identified the origins of the vibronic bands of the dimethylbenzyl radicals generated by corona discharge of precursors 1,2,3- and 1,2,4-trimethylbenzenes. From the analysis of the spectra observed from the dimethylbenzyl chlorides in a corona excited supersonic expansion using a pinhole-type glass nozzle, we revised previous assignments of the 2,6- and 2,3-dimethylbenzyl radicals as well as the 3,4-, 2,4-, and 2,5-dimethylbenzyl radicals. In addition, spectroscopic data of electronic transition and vibrational mode frequencies in the ground electronic state of each isomer were accurately determined by comparing them with those obtained by an ab initio calculation and with the known vibrational data of precursors.

  4. A Corona Discharge Initiated Electrochemical Electrospray Ionization Technique

    PubMed Central

    Lloyd, John R.; Hess, Sonja

    2009-01-01

    We report here the development of a corona discharge (CD) initiated electrochemical (EC) electrospray ionization (ESI) technique using a standard electrospray ion source. This is a new ionization technique distinct from ESI, electrochemistry inherent to ESI, APCI, and techniques using hydroxyl radicals produced under atmospheric pressure conditions. By maximizing the observable CD at the tip of a stainless steel ESI capillary, efficient electrochemical oxidation of electrochemically active compounds is observed. For electrochemical oxidation to be observed, the ionization potential of the analyte must be lower than Fe. Ferrocene labeled compounds were chosen as the electrochemically active moiety. The electrochemical cell in the ESI source was robust and generated ions with selectivity according to the ionization potential of the analytes and up to zeptomolar sensitivity. Our results indicate that CD initiated electrochemical ionization has the potential to become a powerful technique to increase the dynamic range, sensitivity and selectivity of ESI experiments. Synopsis Using a standard ESI source a corona discharge initiated electrochemical ionization technique was established resulting from the electrochemistry occurring at the CD electrode surface. PMID:19747843

  5. Analysis of biogenic amines using corona discharge ion mobility spectrometry.

    PubMed

    Hashemian, Z; Mardihallaj, A; Khayamian, T

    2010-05-15

    A new method based on corona discharge ion mobility spectrometry (CD-IMS) was developed for the analysis of biogenic amines including spermidine, spermine, putrescine, and cadaverine. The ion mobility spectra of the compounds were obtained with and without n-Nonylamine used as the reagent gas. The high proton affinity of n-Nonylamine prevented ion formation from compounds with a proton affinity lower than that of n-Nonylamine and, therefore, enhanced its selectivity. It was also realized that the ion mobility spectrum of n-Nonylamine varied with its concentration. A sample injection port of a gas chromatograph was modified and used as the sample introduction system into the CD-IMS. The detection limits, dynamic ranges, and analytical parameters of the compounds with and without using the reagent gas were obtained. The detection limits and dynamic ranges of the compounds were about 2ng and 2 orders of magnitude, respectively. The wide dynamic range of CD-IMS originates from the high current of the corona discharge. The results revealed the high capability of the CD-IMS for the analysis of biogenic amines. PMID:20298897

  6. Analysis of current-voltage characteristics in the wires-to-planes geometry during corona discharge

    NASA Astrophysics Data System (ADS)

    Ait Said, Hakim; Nouri, Hamou; Zebboudj, Youcef

    2014-09-01

    The behaviour of DC corona discharge in air that is free of particulate matter with the wires-to-plane geometry was analysed in this work. The formulae I = KV (V - V0) and I = A (V - V0)m commonly used for the current-voltage characteristics were used to determine the various corona parameters for the two polarities of the corona discharge. Using curve fitting, it has been shown that the geometric factors K and A and the exponent m are strongly affected by the number n of the discharging wires. However, the corona inception voltage determined from the measurements is weakly influenced when n is small, and it remained constant for n > 5 discharging wires. As for the breakdown voltage of the discharge, it is practically independent of the number n. Furthermore, it was verified that the two formulae above can be used for both negative and positive corona in multiple wires-to-plane geometries.

  7. DC negative corona discharge in atmospheric pressure helium: transition from the corona to the ‘normal’ glow regime

    NASA Astrophysics Data System (ADS)

    Hasan, Nusair; Antao, Dion S.; Farouk, Bakhtier

    2014-06-01

    Direct current (dc) negative corona discharges in atmospheric pressure helium are simulated via detailed numerical modeling. Simulations are conducted to characterize the discharges in atmospheric helium for a pin plate electrode configuration. A self-consistent two-dimensional hybrid model is developed to simulate the discharges and the model predictions are validated with experimental measurements. The discharge model considered consists of momentum and energy conservation equations for a multi-component (electrons, ions, excited species and neutrals) gas mixture, conservation equations for each component of the mixture and state relations. A drift-diffusion approximation for the electron and the ion fluxes is used. A model for the external circuit driving the discharge is also considered and solved along with the discharge model. Many of the key features of a negative corona discharge, namely non-linear current-voltage characteristics, spatially flat cathode current density and glow-like discharge in the high current regime are displayed in the predictions. A transition to the ‘normal’ glow discharge from the corona discharge regime is also observed. The transition is identified from the calculated current-voltage characteristic curve and is characterized by the radial growth of the negative glow and the engulfment of the cathode wire.

  8. Corona discharge ionization of paracetamol molecule: Peak assignment

    NASA Astrophysics Data System (ADS)

    Bahrami, H.; Farrokhpour, H.

    2015-01-01

    Ionization of paracetamol was investigated using ion mobility spectrometry equipped with a corona discharge ionization source. The measurements were performed in the positive ion mode and three peaks were observed in the ion mobility spectrum. Experimental evidence and theoretical calculations were used to correlate the peaks to related ionic species of paracetamol. Two peaks were attributed to protonated isomers of paracetamol and the other peak was attributed to paracetamol fragment ions formed by dissociation of the N-C bond after protonation of the nitrogen atom. It was observed that three sites of paracetamol compete for protonation and their relative intensities, depending on the sample concentration. The ratio of ion products could be predicted from the internal proton affinity of the protonation sites at each concentration.

  9. A corona discharge initiated electrochemical electrospray ionization technique.

    PubMed

    Lloyd, John R; Hess, Sonja

    2009-11-01

    We report here the development of a corona discharge (CD) initiated electrochemical (EC) electrospray ionization (ESI) technique using a standard electrospray ion source. This is a new ionization technique distinct from ESI, electrochemistry inherent to ESI, APCI, and techniques using hydroxyl radicals produced under atmospheric pressure conditions. By maximizing the observable CD at the tip of a stainless steel ESI capillary, efficient electrochemical oxidation of electrochemically active compounds is observed. For electrochemical oxidation to be observed, the ionization potential of the analyte must be lower than Fe. Ferrocene labeled compounds were chosen as the electrochemically active moiety. The electrochemical cell in the ESI source was robust, and generated ions with selectivity according to the ionization potential of the analytes and up to zeptomolar sensitivity. Our results indicate that CD initiated electrochemical ionization has the potential to become a powerful technique to increase the dynamic range, sensitivity, and selectivity of ESI experiments. PMID:19747843

  10. Corona discharge ionization of paracetamol molecule: peak assignment.

    PubMed

    Bahrami, H; Farrokhpour, H

    2015-01-25

    Ionization of paracetamol was investigated using ion mobility spectrometry equipped with a corona discharge ionization source. The measurements were performed in the positive ion mode and three peaks were observed in the ion mobility spectrum. Experimental evidence and theoretical calculations were used to correlate the peaks to related ionic species of paracetamol. Two peaks were attributed to protonated isomers of paracetamol and the other peak was attributed to paracetamol fragment ions formed by dissociation of the N-C bond after protonation of the nitrogen atom. It was observed that three sites of paracetamol compete for protonation and their relative intensities, depending on the sample concentration. The ratio of ion products could be predicted from the internal proton affinity of the protonation sites at each concentration. PMID:25128677

  11. Pulsed corona discharge for oxidation of gaseous elemental mercury

    NASA Astrophysics Data System (ADS)

    Ko, Kyung Bo; Byun, Youngchul; Cho, Moohyun; Namkung, Won; Hamilton, Ian P.; Shin, Dong Nam; Koh, Dong Jun; Kim, Kyoung Tae

    2008-06-01

    Positive pulsed corona discharge has been applied for the oxidation of gaseous elemental mercury (Hg0) from a simulated flue gas. The oxidation of Hg0 to HgO and HgCl2 can significantly enhance the mercury removal from flue gas. At a gas condition of O2 (10%), H2O (3%), and N2 (balance), Hg0 oxidation efficiency of 84% was achieved at an input energy density of 45J /l. The presence of NO, however, hinders Hg0 oxidation due to the preferential reaction of NO with O and O3. On the contrary, SO2 shows little effect on Hg0 oxidation due to its preferential reaction with OH. It has been also observed that the HCl in gas stream can be dissociated to Cl and Cl2 and can induce additional Hg0 oxidation to HgCl2.

  12. Positive direct current corona discharges in single wire-duct electrostatic precipitators

    NASA Astrophysics Data System (ADS)

    Yehia, Ashraf; Abdel-Fattah, E.; Mizuno, Akira

    2016-05-01

    This paper is aimed to study the characteristics of the positive dc corona discharges in single wire-duct electrostatic precipitators. Therefore, the corona discharges were formed inside dry air fed single wire-duct reactor under positive dc voltage at the normal atmospheric conditions. The corona current-voltage characteristics curves have been measured in parallel with the ozone concentration generated inside the reactor under different discharge conditions. The corona current-voltage characteristics curves have agreed with a semi empirical equation derived from the previous studies. The experimental results of the ozone concentration generated inside the reactor were formulated in the form of an empirical equation included the different parameters that were studied experimentally. The obtained equations are valid to expect both the current-voltage characteristics curves and the corresponding ozone concentration that generates with the positive dc corona discharges inside single wire-duct electrostatic precipitators under any operating conditions in the same range of the present study.

  13. Obtaining electricity by direct transfer of charge generated in corona discharge

    NASA Astrophysics Data System (ADS)

    Berezkina, T. E.; Masyukevich, S. V.; Gall, N. R.

    2015-05-01

    We have studied the possibility of generating electricity directly by using the charge that is created in a corona discharge and transferred by airflow in the direction perpendicular to the discharge axis. Results of experimental measurements and theoretical estimations confirm this possibility. The electric power output from corona discharge in experiment was on the order of 10-3 W, which is about one-tenth of the theoretical limit. It is proposed to use this effect for creating wind-driven generators.

  14. ZnO Nanowire-Based Corona Discharge Devices Operated Under Hundreds of Volts

    NASA Astrophysics Data System (ADS)

    Yang, Wenming; Zhu, Rong; Zong, Xianli

    2016-02-01

    Minimizing the voltage of corona discharges, especially when using nanomaterials, has been of great interest in the past decade or so. In this paper, we report a new corona discharge device by using ZnO nanowires operated in atmospheric air to realize continuous corona discharge excited by hundreds of volts. ZnO nanowires were synthesized on microelectrodes using electric-field-assisted wet chemical method, and a thin tungsten film was deposited on the microchip to enhance discharging performance. The testing results showed that the corona inception voltages were minimized greatly by using nanowires compared to conventional dischargers as a result of the local field enhancement of nanowires. The corona could be continuously generated and self-sustaining. It was proved that the law of corona inception voltage obeyed the conventional Peek's breakdown criterion. An optimal thickness of tungsten film coated over ZnO nanowires was figured out to obtain the lowest corona inception voltage. The ion concentration of the nanowire-based discharger attained 1017/m3 orders of magnitude, which is practicable for most discharging applications.

  15. ZnO Nanowire-Based Corona Discharge Devices Operated Under Hundreds of Volts.

    PubMed

    Yang, Wenming; Zhu, Rong; Zong, Xianli

    2016-12-01

    Minimizing the voltage of corona discharges, especially when using nanomaterials, has been of great interest in the past decade or so. In this paper, we report a new corona discharge device by using ZnO nanowires operated in atmospheric air to realize continuous corona discharge excited by hundreds of volts. ZnO nanowires were synthesized on microelectrodes using electric-field-assisted wet chemical method, and a thin tungsten film was deposited on the microchip to enhance discharging performance. The testing results showed that the corona inception voltages were minimized greatly by using nanowires compared to conventional dischargers as a result of the local field enhancement of nanowires. The corona could be continuously generated and self-sustaining. It was proved that the law of corona inception voltage obeyed the conventional Peek's breakdown criterion. An optimal thickness of tungsten film coated over ZnO nanowires was figured out to obtain the lowest corona inception voltage. The ion concentration of the nanowire-based discharger attained 10(17)/m(3) orders of magnitude, which is practicable for most discharging applications. PMID:26880727

  16. Numerical modelling of ozone production in a wire-cylinder corona discharge and comparison with a wire-plate corona discharge

    NASA Astrophysics Data System (ADS)

    Wang, Pengxiang; Chen, Junhong

    2009-02-01

    The effect of electrode configuration on ozone production in the direct-current corona discharge of dry and humid air is studied by a numerical model that combines the electron distribution in the corona plasma, plasma chemistry and transport phenomena. Two electrode configurations are considered: wire-cylinder discharge with air flowing along the wire axis and wire-plate discharge with air flowing transverse to the wire. The ozone distributions in both types of discharges are compared. For both electrode configurations, the ozone production rate is higher in the negative corona than in the positive corona and it decreases with an increase in relative humidity. More importantly, the detailed ozone distribution in the neighbourhood of the discharge wire, together with the ozone kinetics, reveals the possible difference in the ozone production from the two discharges. With the same operating conditions and sufficiently short flow residence time, the ozone production rate is nearly the same for both electrode configurations. When the flow residence time is longer than the characteristic time for homogeneous ozone destruction, the net ozone production is higher in the wire-cylinder discharge than in the wire-plate discharge due to relatively less ozone destruction.

  17. Experimental Study of Magnetic Field Effect on dc Corona Discharge in Low Vacuum

    NASA Astrophysics Data System (ADS)

    Elabbas, K.

    2014-09-01

    In the present paper, an attempt was made to investigate the effect of applying a transverse magnetic field on the dc corona discharge behavior in low vacuum. In general, two experiments were carried out in this work: the first is the ionization-region magnetic field experiment, and the second was the drift region magnetic field experiment. In these experiments, permanent magnets were used to produce magnetic field. The degree of vacuum used in this test was 0.4×105 Pa. It is found that the effect of the magnetic field increases as the degree of vacuum increases. It is also seen from this study that the corona current values are higher with magnetic fields than without magnetic fields. The experimental results indicate that the enhancement of the magnetic field near the wire discharge electrode has a significant influence on the increment of the discharge current. The effect of the magnetic field on the discharge current is the most significant with the negative corona discharges rather than with positive corona discharge. In contrast to, the curves were demonstrated that the application of magnetic fields in drift region magnetic field does not significantly change the corona discharge current. Discharge characteristics of magnetically enhanced corona discharges, extracted from this study, can be applied to various industrial applications, such as, in an electrostatic enhancement filter for the purpose of capturing fine particles, and as effective method for production of high ozone concentrations in a generator as compared to the ultraviolet (UV) radiation method.

  18. Current-voltage characteristics of dc corona discharges in air between coaxial cylinders

    NASA Astrophysics Data System (ADS)

    Zheng, Yuesheng; Zhang, Bo; He, Jinliang

    2015-02-01

    This paper presents the experimental measurement and numerical analysis of the current-voltage characteristics of dc corona discharges in air between coaxial cylinders. The current-voltage characteristics for both positive and negative corona discharges were measured within a specially designed corona cage. Then the measured results were fitted by different empirical formulae and analyzed by the fluid model. The current-voltage characteristics between coaxial cylinders can be expressed as I = C(U - U0)m, where m is within the range 1.5-2.0, which is similar to the point-plane electrode system. The ionization region has no significant effect on the current-voltage characteristic under a low corona current, while it will affect the distribution for the negative corona under a high corona current. The surface onset fields and ion mobilities were emphatically discussed.

  19. Current-voltage characteristics of dc corona discharges in air between coaxial cylinders

    SciTech Connect

    Zheng, Yuesheng; Zhang, Bo He, Jinliang

    2015-02-15

    This paper presents the experimental measurement and numerical analysis of the current-voltage characteristics of dc corona discharges in air between coaxial cylinders. The current-voltage characteristics for both positive and negative corona discharges were measured within a specially designed corona cage. Then the measured results were fitted by different empirical formulae and analyzed by the fluid model. The current-voltage characteristics between coaxial cylinders can be expressed as I = C(U − U{sub 0}){sup m}, where m is within the range 1.5–2.0, which is similar to the point-plane electrode system. The ionization region has no significant effect on the current-voltage characteristic under a low corona current, while it will affect the distribution for the negative corona under a high corona current. The surface onset fields and ion mobilities were emphatically discussed.

  20. [Analysis of streamer properties and emission spectroscopy of 2-D OH distribution of pulsed corona discharge].

    PubMed

    Zhao, Lei; Gao, Xiang; Luo, Zhong-Yang; Xuan, Jian-Yong; Jiang, Jian-Ping; Cen, Ke-Fa

    2011-11-01

    Streamer plays a key role in the process of OH radical generation. The propagation of primary and secondary streamers of positive wire-plate pulsed corona discharge was observed using a short gate ICCD in air environment. The influence of the applied voltage on the properties was investigated. It was shown that the primary streamer propagation velocity, electric coverage and length of secondary streamer increased significantly with increasing the applied voltage. Then 2-D OH distribution was investigated by the emission spectrum. With the analysis of the OH emission spectra, the distribution of OH radicals showed a trend of decreasing from the wire electrode to its circumambience. Compared with the streamer propagation trace, the authors found that OH radical distribution and streamer are in the same area. Both OH radical concentration and the intensity of streamer decreased when far away from the wire electrode. PMID:22242481

  1. Research on characteristics of electromagnetic radiation of corona discharges from high voltage transmission lines

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Liu, Shang-he; Wei, Ming; Hu, Xiao-feng

    2013-03-01

    With the development and application of ultra high voltage electric power transmitting technology, harmful effects of corona discharges to the safe and stable operation of the ultra high voltage (UHV) transmission lines should be considered. In this paper, the radiation law of corona discharges was studied by theoretical analysis and laboratory simulation. Correlated conclusions include that the waveform of corona discharges is in attenuated oscillation mode, the signal of the radiation field increases with increasing charging voltage, whereas the signal amplitude the antenna receives is attenuated with the distance from 3 m to 24 m.

  2. [Removal of SO2 from flue gas by water vapor DC corona discharge].

    PubMed

    Sun, Ming; Wu, Yan

    2006-07-01

    The influence of several factors on removal rate of SO2 from flue gas in unsaturated water vapor DC corona discharge was researched. Furthermore, the experiments of the removal rate of SO2 in pulsed discharge increased by water vapor DC corona discharge plasma were conducted. The experiment system is supplied with multi-nozzle-plate electrodes and the flow of simulated flue gas is under 70 m3/h. The results show that removal rate of SO2 can be improved by increasing the concentration of water vapor, intensity of electric field or decreasing flow of simulated flue gas. In unsaturated water vapor DC corona discharge, removal rate of SO2 can be improved by 10%, when NH3 is added as NH3 and SO2 is in a mole ratio of two to one, it can reach 60%. The removal rate of SO2 can be increased by 5% in pulsed corona discharge and reach above 90%. PMID:16881295

  3. Investigation on the Corona Discharge in Blade-to-Plane Electrode Configuration

    NASA Astrophysics Data System (ADS)

    Kaci, Meziane; Ait Said, Hakim; Laifaoui, Abdelkrim; Aissou, Massinissa; Nouri, Hamou; Zebboudj, Youcef

    2015-12-01

    The aim of this work is to analyze the characteristics of the corona discharge in blade-to-plane electrode configuration. An experimental investigation has been carried out on the geometric parameters that govern the formation of both positive and negative corona discharges, such as the inter-electrode distance, the blade-to-blade spacing, and the number of the discharging blades. The current-voltage characteristics, the breakdown voltage, and the Warburg current distribution were measured. The assisted corona discharge is an example of a blade electrode discharge that can be used to reduce the operating voltage of a conventional corona discharge. The current-voltage characteristics of both positive and negative corona discharges in a blade-to-plane electrode configuration are of the Townsend's law form. The general formula proposed by Meng et al. can also be applied in this system. It has been shown that the breakdown voltage and the corona conductance are strongly affected by the inter-electrode distance. To obtain a maximum current, the blade electrodes should be distant from each other by a value of 2 a ≥ h. To obtain a constant value of current, the blade electrodes should be separated by a value of 2 a >> h, confirming the Cooperman's law. The current density distribution is satisfied; an exponent of 5.0 is taken for positive polarity and an exponent of 4.8 for negative polarity.

  4. Towards metals analysis using corona discharge ionization ion mobility spectrometry.

    PubMed

    Jafari, Mohammad T; Saraji, Mohammad; Sherafatmand, Hossein

    2016-02-25

    For the first time, the capability of corona discharge ionization ion mobility spectrometry (CD-IMS) in the determination of metal complex was evaluated. The extreme simplicity of dispersive liquid-liquid microextraction (DLLME) coupled to the high sensitivity of CD-IMS measurement could make this combination really useful for simple, rapid, and sensitive determination of metals in different samples. In this regard, mercury, as a model metal, was complexed with diethyldithiocarbamate (DEDTC), and then extracted into the carbon tetrachloride using DLLME. Some parameters affecting the extraction efficiency, including the type and volume of the extraction solvent, the type and volume of the disperser solvent, the concentration of the chelating agent, salt addition and, pH were exhaustively investigated. Under the optimized condition, the enrichment factor was obtained to be 142. The linear range of 0.035-10.0 μg mL(-1) with r(2) = 0.997 and the detection limit of 0.010 μg mL(-1) were obtained. The relative standard deviation values were calculated to be lower than 4% and 8% for intra-day and inter-day, respectively. Finally, the developed method was successfully applied for the extraction and determination of mercury in various real samples. The satisfactory results revealed the capability of the proposed method in trace analysis without tedious derivatization or hydride generation. PMID:26851088

  5. Pulsed corona discharge oxidation of aqueous carbamazepine micropollutant.

    PubMed

    Ajo, Petri; Krzymyk, Ewelina; Preis, Sergei; Kornev, Iakov; Kronberg, Leif; Louhi-Kultanen, Marjatta

    2016-08-01

    The anti-epileptic drug carbamazepine (CBZ) receives growing attention due to slow biodegradation and inherent accumulation in the aquatic environment. The application of a gas-phase pulsed corona discharge (PCD) was investigated to remove CBZ from synthetic solutions and spiked wastewater effluent from a municipal wastewater treatment facility. The treated water was showered between high voltage (HV) wires and grounded plate electrodes, to which ultra-short HV pulses were applied. CBZ was readily oxidized and 1-(2-benzaldehyde)-4-hydroquinazoline-2-one (BQM) and 1-(2-benzaldehyde)-4-hydro-quinazoline-2,4-dione (BQD) were identified as the most abundant primary transformation products, which, contrary to CBZ ozonation data available in the literature, were further easily oxidized with PCD: BQM and BQD attributed to only a minor portion of the target compound oxidized. In concentrations commonly found in wastewater treatment plant effluents (around 5 µg L(-1)), up to 97% reduction in CBZ concentration was achieved at mere 0.3 kW h m(-3) energy consumption, and over 99.9% was removed at 1 kW h m(-3). The PCD application proved to be efficient in the removal of both the parent substance and its known transformation products, even with the competing reactions in the complex composition of wastewater. PMID:26758812

  6. Coupling corona discharge for ambient extractive ionization mass spectrometry.

    PubMed

    Hu, Bin; Zhang, Xinglei; Li, Ming; Peng, Xuejiao; Han, Jing; Yang, Shuiping; Ouyang, Yongzhong; Chen, Huanwen

    2011-12-01

    Unlike the extractive electrospray ionization (EESI) technique described elsewhere, a corona discharge instead of electrospray ionization has been utilized to charge a neutral solvent spray under ambient conditions for the generation of highly charged microdroplets, which impact a neutral sample plume for the extractive ionization of the analytes in raw samples without any sample pretreatment. Using the positive ion mode, molecular radical cations were easily generated for the detection of non-polar compounds (e.g., benzene, cyclohexane, etc.), while protonated molecular ions of polar compounds (e.g., acetonitrile, acetic ether) were readily produced for the detection. By dispensing the matrix in a relatively large space, this method tolerates highly complex matrices. For a given sample such as lily fragrances, more compounds were detected by the method established here than the EESI technique. An acceptable relative standard deviation (RSD 8.9%, n = 11) was obtained for the direct measurement of explosives (10 ppb) in waste water samples. The experimental data demonstrate that this method could simultaneously detect both polar and non-polar analytes with high sensitivity, showing promising applications for the rapid detection of a wide variety of compounds present in complex matrices. PMID:21971289

  7. Peptide Fragmentation by Corona Discharge Induced Electrochemical Ionization

    PubMed Central

    Lloyd, John R.; Hess, Sonja

    2010-01-01

    Fundamental studies have greatly improved our understanding of electrospray, including the underlying electrochemical reactions. Generally regarded as disadvantageous, we have recently shown that corona discharge (CD) can be used as an effective method to create a radical cation species [M]+•, thus optimizing the electrochemical reactions that occur on the surface of the stainless steel (SS) electrospray capillary tip. This technique is known as CD initiated electrochemical ionization (CD-ECI). Here, we report on the fundamental studies using CD-ECI to induce analytically useful in-source fragmentation of a range of molecules that complex transition metals. Compounds that have been selectively fragmented using CD-ECI include enolate forming phenylglycine containing peptides, glycopeptides, nucleosides and phosphopeptides. Collision induced dissociation (CID) or other activation techniques were not necessary for CD-ECI fragmentation. A four step mechanism was proposed: 1. Complexation using either Fe in the SS capillary tip material or Cu(II) as an offline complexation reagent; 2. Electrochemical oxidation of the complexed metal and thus formation of a radical cation (e.g.; Fe - e− → Fe +•); 3. Radical fragmentation of the complexed compound. 4. Electrospray ionization of the fragmented neutrals. Fragmentation patterns resembling b- and y-type ions were observed and allowed the localization of the phosphorylation sites. PMID:20869880

  8. Peptide fragmentation by corona discharge induced electrochemical ionization.

    PubMed

    Lloyd, John R; Hess, Sonja

    2010-12-01

    Fundamental studies have greatly improved our understanding of electrospray, including the underlying electrochemical reactions. Generally regarded as disadvantageous, we have recently shown that corona discharge (CD) can be used as an effective method to create a radical cation species [M](+·), thus optimizing the electrochemical reactions that occur on the surface of the stainless steel (SS) electrospray capillary tip. This technique is known as CD initiated electrochemical ionization (CD-ECI). Here, we report on the fundamental studies using CD-ECI to induce analytically useful in-source fragmentation of a range of molecules that complex transition metals. Compounds that have been selectively fragmented using CD-ECI include enolate forming phenylglycine containing peptides, glycopeptides, nucleosides, and phosphopeptides. Collision induced dissociation (CID) or other activation techniques were not necessary for CD-ECI fragmentation. A four step mechanism was proposed: (1) complexation using either Fe in the SS capillary tip material or Cu(II) as an offline complexation reagent; (2) electrochemical oxidation of the complexed metal and thus formation of a radical cation (e.g.; Fe - e(-) → Fe(+·)); (3) radical fragmentation of the complexed compound; (4) electrospray ionization of the fragmented neutrals. Fragmentation patterns resembling b- and y-type ions were observed and allowed the localization of the phosphorylation sites. PMID:20869880

  9. Food waste management using an electrostatic separator with corona discharge

    SciTech Connect

    Lai, Koonchun; Teh, Pehchiong; Lim, Sooking

    2015-05-15

    In Malaysia, municipal solid waste contains a high portion of organic matters, typically contributed by food waste. It is estimated that about 45% of the municipal waste are food waste, followed by the non-food waste such as plastics, metals, glass and others. Food waste, while being properly sorted and contamination free from non-food waste, can be reused (e.g. fertiliser) instead of being landfilled. Therefore, recycling of food waste is crucial not only from the view point of waste management, but also with respect to the reduction of resource losses and greenhouse gases emission. A new waste separation process involved food particles, non-food particles and electrostatic discharge was investigated in this study. The empirical results reveal that the corona electrostatic separation is an environmental-friendly way in recovering foods from municipal waste. The efficiency of the separator, under same operating conditions, varies with the particle size of the food and non-food particles. The highest efficiency of 82% is recorded for the particle sizes between 1.5 and 3.0 mm.

  10. Food waste management using an electrostatic separator with corona discharge

    NASA Astrophysics Data System (ADS)

    Lai, Koonchun; Lim, Sooking; Teh, Pehchiong

    2015-05-01

    In Malaysia, municipal solid waste contains a high portion of organic matters, typically contributed by food waste. It is estimated that about 45% of the municipal waste are food waste, followed by the non-food waste such as plastics, metals, glass and others. Food waste, while being properly sorted and contamination free from non-food waste, can be reused (e.g. fertiliser) instead of being landfilled. Therefore, recycling of food waste is crucial not only from the view point of waste management, but also with respect to the reduction of resource losses and greenhouse gases emission. A new waste separation process involved food particles, non-food particles and electrostatic discharge was investigated in this study. The empirical results reveal that the corona electrostatic separation is an environmental-friendly way in recovering foods from municipal waste. The efficiency of the separator, under same operating conditions, varies with the particle size of the food and non-food particles. The highest efficiency of 82% is recorded for the particle sizes between 1.5 and 3.0 mm.

  11. Sterilisation of Hydroponic Culture Solution Contaminated by Fungi using an Atmospheric Pressure Corona Discharge

    NASA Astrophysics Data System (ADS)

    Mizukami, Kohji; Satoh, Kohki; Kanayama, Hiroshi; Itoh, Hidenori; Tagashira, Hiroaki; Shimozuma, Mitsuo; Okamoto, Hiroyuki; Takasaki, Satoko; Kinoshita, Muneshige

    The hydroponic culture solution contaminated by fungi is sterilised by a DC corona discharge, and the sterilisation characteristics are investigated in this work. A DC streamer corona discharge is generated at atmospheric pressure in air between needle clusters and a water bath containing contaminated solution by fungus such as Fusarium oxysporum f. sp. spinaciae or Fusarium sp.. It is found that the fungi are killed by the exposure of the corona discharge, and that the death rates of the fungi chiefly depend on the concentration of the hydroponic culture solutions. It is also found that the number densities of the fungi decrease exponentially with the energy expenditure of the corona discharge, and that damping coefficients of the fungi densities depend on the concentration of the hydroponic culture solutions. This suggests that the fungi are chiefly inactivated by electroporation.

  12. Electro-hydrodynamics and kinetic modelling of polluted air flow activated by multi-tip-to-plane corona discharge

    SciTech Connect

    Meziane, M.; Eichwald, O.; Ducasse, O.; Marchal, F.; Sarrette, J. P.; Yousfi, M.

    2013-04-21

    The present paper is devoted to the 2D simulation of an Atmospheric Corona Discharge Reactor (ACDR) involving 10 pins powered by a DC high voltage and positioned 7 mm above a grounded metallic plane. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The simulation involves the electro-dynamic, chemical kinetic, and neutral gas hydrodynamic phenomena that influence the kinetics of the chemical species transformation. Each discharge stage (including the primary and the secondary streamers development and the resulting thermal shock) lasts about one hundred nanoseconds while the post-discharge stages occurring between two successive discharge phases last one hundred microseconds. The ACDR is crossed by a lateral air flow including 400 ppm of NO. During the considered time scale of 10 ms, one hundred discharge/post-discharge cycles are simulated. The simulation involves the radical formation and thermal exchange between the discharges and the background gas. The results show how the successive discharges activate the flow gas and how the induced turbulence phenomena affect the redistribution of the thermal energy and the chemical kinetics inside the ACDR.

  13. Instrumentation for investigation of corona discharges from insulated wires

    NASA Technical Reports Server (NTRS)

    Doreswamy, C. V.; Crowell, C. S.

    1975-01-01

    A coaxial cylinder configuration is used to investigate the effect of corona impulses on the deterioration of electrical insulation. The corona currents flowing through the resistance develop a voltage which is fed to the measuring set-up. The value of this resistance is made equal to the surge impedance of the coaxial cylinder set up to prevent reflections. This instrumentation includes a phase shifter and Schmidt trigger and is designed to sample, measure, and display corona impulses occurring during any predetermined sampling period of a randomly selectable half cycle of the 60 Hz high voltage wave.

  14. Multiscale simulation of DC corona discharge and ozone generation from nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Pengxiang

    Atmospheric direct current (dc) corona discharge from micro-sized objects has been widely used as an ion source in many devices, such as photocopiers, laser printers, and electronic air cleaners. Shrinking the size of the discharge electrode to the nanometer range (e.g., through the use of carbon nanotubes or CNTs) is expected to lead to a significant reduction in power consumption and detrimental ozone production in these devices. The objectives of this study are to unveil the fundamental physics of the nanoscale corona discharge and to evaluate its performance and ozone production through numerical models. The extremely small size of CNTs presents considerable complexity and challenges in modeling CNT corona discharges. A hybrid multiscale model, which combines a kinetic particle-in-cell plus Monte Carlo collision (PIC-MCC) model and a continuum model, is developed to simulate the corona discharge from nanostructures. The multiscale model is developed in several steps. First, a pure PIC-MCC model is developed and PIC-MCC simulations of corona plasma from micro-sized electrode with same boundary conditions as prior model are performed to validate the PIC-MCC scheme. The agreement between the PIC-MCC model and the prior continuum model indicates the validity of the PIC-MCC scheme. The validated PIC-MCC scheme is then coupled with a continuum model to simulate the corona discharge from a micro-sized electrode. Unlike the prior continuum model which only predicts the corona plasma region, the hybrid model successfully predicts the self-consistent discharge process in the entire corona discharge gap that includes both corona plasma region and unipolar ion region. The voltage-current density curves obtained by the hybrid model agree well with analytical prediction and experimental results. The hybrid modeling approach, which combines the accuracy of a kinetic model and the efficiency of a continuum model, is thus validated for modeling dc corona discharges. For

  15. Photo-triggering and secondary electron produced ionization in electric discharge ArF* excimer lasers

    NASA Astrophysics Data System (ADS)

    Xiong, Zhongmin; Kushner, Mark J.

    2011-10-01

    Electric discharge excimer lasers are sustained in multi-atmosphere attaching gas mixtures that are typically preionized to enable a reproducible, uniform glow, which maximizes optical quality and gain. This preionization is often accomplished using UV light produced by a corona discharge within the plasma cavity. To quantify the relationship between corona discharge properties and those of the laser discharge, the triggering of electron avalanche by preionizing UV light in an electric discharge-pumped ArF* excimer laser was numerically investigated using a two-dimensional model. The preionizing UV fluxes were generated by a corona-bar discharge driven by the same voltage pulse as the main discharge sustained in a multi-atmospheric Ne/Ar/Xe/F2 gas mixture. The resulting peak photo-electron density in the inter-electrode spacing is around 108 cm-3, and its distribution is biased toward the UV source. The preionization density increases with increasing dielectric constant and capacitance of the corona bar. The symmetry and uniformity of the discharge are, however, improved significantly once the main avalanche develops. In addition to bulk electron impact ionization, the ionization generated by sheath accelerated secondary electrons was found to be important in sustaining the discharge current at experimentally observed values. At peak current, the magnitude of the ionization by sheath accelerated electrons is comparable to that from bulk electron impact in the vicinity of the cathode.

  16. The removal of Direct Orange 39 by pulsed corona discharge from model wastewater.

    PubMed

    Vujevic, D; Koprivanac, N; Bozic, A Loncaric; Locke, B R

    2004-07-01

    Untreated wastewater from the dye industry and dyehouses cannot be directly discharged into the environment due to the high content of organic matter and intensive colouration, even with low concentrations of dye. In this paper, the application of a high voltage pulsed electrical discharge in the aqueous phase has been assessed for the dye degradation. Experiments were conducted in a batch reactor using model wastewater of the commercial water-soluble monoazo dye C.I. Direct Orange 39 (DO39). The effects of zeolite and ferrous sulphate in combination with the corona discharge were examined. Experiments were conducted for a range of process parameters including pH, conductivity, type and amount of zeolite, and ferrous sulphate concentration. A mathematical model to describe the kinetics of DO39 degradation in the corona reactor was developed. Aqueous phase pulsed streamer corona discharge as a method for coloured wastewater treatment showed very high effectiveness in the case of iron salt addition (Fenton's reaction). Low pH enhanced dye removal by corona in the absence of zeolite, thus implying that the acid properties of zeolites are important in dye degradation. Ecological parameters such as COD, TC, IC, TOC and IC50 measured before and after corona treatment showed that the treated wastewater can be discharged into the environment or reused as process water. PMID:15346860

  17. The importance of corona generation and leader formation during laser filament guided discharges in air

    NASA Astrophysics Data System (ADS)

    Schmitt-Sody, Andreas; French, David; White, William; Lucero, Adrian; Roach, William P.; Hasson, Victor

    2015-03-01

    Images taken with an intensified CCD camera show the dynamics during filament guided discharge events. The images reveal that filament initiated corona plays a role in the presented results. Furthermore, the images show the formation of leaders, propagating and eventually bridging the gap between the high voltage (HV) electrodes. Analysis of the images and comparison to oscilloscope traces of voltage and current dynamics reveal the origin of the delay between the filament and HV discharge and allows for a probability of discharge analysis.

  18. Study of the decomposition of wet SF6, subjected to 50-Hz ac corona discharges

    NASA Astrophysics Data System (ADS)

    Derdouri, A.; Casanovas, J.; Hergli, R.; Grob, R.; Mathieu, J.

    1989-03-01

    Mixtures of SF6 (100 kPa≤PSF6≤400 kPa) and water (concentrations ranging from 240 to 2000 vpm) have been submitted to point-plane 50-Hz ac corona discharges. The only stable gaseous by-products detected, either by gas-phase chromatography or gas chromatography-mass spectrometry techniques, were SOF2 and SO2F2. The variation of their concentrations as a function of the discharge current value (3-25 μA rms), the charge transported (0.15-1.5 C), the water content, the SF6 pressure, and the gap spacing (1.5-5 mm) have been studied. The results indicate that, at least in our experimental conditions, the 50-Hz ac corona discharges behave more like negative than like positive dc corona.

  19. Surface-initiated graft polymerization on multiwalled carbon nanotubes pretreated by corona discharge at atmospheric pressure.

    PubMed

    Xu, Lihua; Fang, Zhengping; Song, Ping'an; Peng, Mao

    2010-03-01

    Surface-initiated graft polymerization on multi-walled carbon nanotubes pretreated with a corona discharge at atmospheric pressure was explored. The mechanism of the corona-discharge-induced graft polymerization is discussed. The results indicate that MWCNTs were encapsulated by poly(glycidyl methacrylate) (PGMA), demonstrating the formation of PGMA-grafted MWCNTs (PGMA-g-MWCNTs), with a grafting ratio of about 22 wt%. The solubility of PGMA-g-MWCNTs in ethanol was dramatically improved compared to pristine MWCNTs, which could contribute to fabricating high-performance polymer/MWCNTs nanocomposites in the future. Compared with most plasma processes, which operate at low pressures, corona discharge has the merit of working at atmospheric pressure. PMID:20644821

  20. [Study of characteristics of excited O atom generated in multi-needle-to-plate corona discharge by emission spectroscopy].

    PubMed

    Ge, Hui; Yan, Ling; Mi, Dong; Zhu, Yi-min; Zhang, Lu

    2012-04-01

    The emission spectra of O(3p 5 P --> 3s 5 S2(0) 777.4 nm) produced by multi-needle-to-plate negative corona discharge and positive streamer discharge in air were successfully recorded at one atmosphere. The influences of discharge power, electrode gap, content of N2 and relative humidity on the excited O atom production were investigated in negative corona discharge. Meanwhile, the distribution of relative density of excited O atom in discharge space was also studied in positive streamer discharge. The results indicate that, for negative corona discharge, the amount of O active atom increases with the increase in power, decreases with increased discharge gap. And with the increase in relative humidity and N2 content, its amount firstly increases and then decreases; whereas for positive corona discharge, the relative density of O active atom from needlepoint to plate firstly increases and then decreases. PMID:22715745

  1. [Morphology determination of multi-needle-to-plate positive corona discharge].

    PubMed

    Su, Peng-hao; Zhu, Yi-min; Chen, Hai-feng

    2008-09-01

    Using the method of OES (optical emission spectrum) for measuring N2 emission spectrum, the distribution of the energetic electrons in multi-needle-to-plate positive corona discharge at atmospheric pressure was investigated, and compared with that in negative corona discharge. According to the distribution of N2 second positive band's intensity I(SPB), the outline of the ionization region in glow discharge and the streamer channel were drawn rather accurately. The relationship between I(SPB) and the discharge current I in glow discharge can be obtained through the volume integral of the I(SPB). In glow discharge, both the ionization region scale and I(SPB) are smaller than in negative corona discharge, the electron avalanche develops farther along the radius direction of needle than along axis direction, and only the arrange along axis direction is enhanced slightly with the rise of the applied voltage U. The integral of I(SPB) is second order linear to I. In streamer discharge, the discharge channels develop from needlepoint to the plate, while the shape of the region in which I(SPB) is higher looks like a bullet. The density of energetic electron in the channel farther away from the needlepoint is relatively uniform along the axis direction, but first increases then decreases along the radius direction. PMID:19093548

  2. Study on law of negative corona discharge in microparticle-air two-phase flow media

    NASA Astrophysics Data System (ADS)

    He, Bo; Li, Tianwei; Xiu, Yaping; Zhao, Heng; Peng, Zongren; Meng, Yongpeng

    2016-03-01

    To study the basic law of negative corona discharge in solid particle-air two-phase flow, corona discharge experiments in a needle-plate electrode system at different voltage levels and different wind speed were carried out in the wind tunnel. In this paper, the change law of average current and current waveform were analyzed, and the observed phenomena were systematically explained from the perspectives of airflow, particle charging, and particle motion with the help of PIV (particle image velocity) measurements and ultraviolet observations.

  3. Nanoscale discharge electrode for minimizing ozone emission from indoor corona devices.

    PubMed

    Bo, Zheng; Yu, Kehan; Lu, Ganhua; Mao, Shun; Chen, Junhong; Fan, Fa-Gung

    2010-08-15

    Ground-level ozone emitted from indoor corona devices poses serious health risks to the human respiratory system and the lung function. Federal regulations call for effective techniques to minimize the indoor ozone production. In this work, stable atmospheric corona discharges from nanomaterials are demonstrated using horizontally suspended carbon nanotubes (CNTs) as the discharge electrode. Compared with the conventional discharges employing micro- or macroscale electrodes, the corona discharge from CNTs could initiate and operate at a much lower voltage due to the small electrode diameter, and is thus energy-efficient. Most importantly, the reported discharge is environmentally friendly since no ozone (below the detection limit of 0.5 ppb) was detected for area current densities up to 0.744 A/m(2) due to the significantly reduced number of electrons and plasma volume generated by CNT discharges. The resulting discharge current density depends on the CNT loading. Contrary to the conventional wisdom, negative CNT discharges should be used to enhance the current density owing to the efficient field emission of electrons from the CNT surface. PMID:20597541

  4. Estimation of winding insulation resistance to the corona discharges

    NASA Astrophysics Data System (ADS)

    Leonov, A.; Red'ko, V.; Soldatenko, E.

    2014-10-01

    This article presents test results of enameled winding wires, characterizing an insulation electrical and mechanical strength. Standard and original test methods were used. Note that existing standard test methods do not estimate enamel insulation resistance to the electrical loads under winding operation of variable-speed drive. We show that estimation of wire corona resistance can be done by high frequency electrical impulse testing. Wire insulation plays the main role of reliability of insulation system.

  5. Space Charge Transient Kinetic Characteristics in DC Air Corona Discharge at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Liu, Xinghua; Xian, Richang; Sun, Xuefeng; Wang, Tao; Lv, Xuebin; Chen, Suhong; Yang, Fan

    2014-08-01

    Investigating the corona mechanism plays a key role in enhancing the performance of electrical insulation systems. Numerical simulation offers a better understanding of the physical characteristics of air corona discharges. Using a two-dimensional axisymmetrical kinetics model, into which the photoionization effect is incorporated, the DC air corona discharge at atmosphere pressure is studied. The plasma model is based on a self-consistent, multi-component, and continuum description of the air discharge, which is comprised of 12 species and 22 reactions. The discharge voltage-current characteristic predicted by the model is found to be in quite good agreement with experimental measurements. The behavior of the electronic avalanche progress is also described. O2+ and N2+ are the dominant positive ions, and the values of O- and O2- densities are much smaller than that of the electron. The electron and positive ion have a low-density thin layer near the anode, which is a result of the surface reaction and absorption effect of the electrode. As time progresses, the electric field increases and extends along the cathode surface, whereas the cathode fall shrinks after the corona discharge hits the cathode; thus, in the cathode sheath, the electron temperature increases and the position of its peak approaches to the cathode. The present computational model contributes to the understanding of this physical mechanism, and suggests ways to improve the electrical insulation system.

  6. [Research on electron density in DC needle-plate corona discharge at atmospheric pressure].

    PubMed

    Liu, Zhi-Qiang; Guo, Wei; Liu, Tao-Tao; Wu, Wen-Shuo; Liu, Shu-Min

    2013-11-01

    Using needle-plate discharge device, corona discharge experiment was done in the atmosphere. Through photo of spot size of light-emitting area, the relationship between the voltage and thickness of corona layer was discussed. When the distance between tip and plate is fixed, the thickness of corona layer increases with the increase in voltage; when the voltage is fixed, the thickness of corona layer decreases with the increase in the distance between tip and plate. As spectral intensity of N2 (C3pi(u)) (337.1 nm)reflects high energy electron density, it was measured with emission spectrometry. The results show that high energy electron density is the biggest near the needle tip and the relationship between high energy electron density and voltage is basically linear increasing. Fixing voltage, high energy electron density decreases with the increase in the distance between tip and plate. When the voltage and the distance between tip and plate are fixed, the high energy electron density increases with the decrease in the curvature radius of needle tip. These results are of great importance for the study of plasma parameters of corona discharge. PMID:24555347

  7. A semi-analytical study of positive corona discharge in wire-plane electrode configuration

    NASA Astrophysics Data System (ADS)

    Yanallah, K.; Pontiga, F.; Chen, J. H.

    2013-08-01

    Wire-to-plane positive corona discharge in air has been studied using an analytical model of two species (electrons and positive ions). The spatial distributions of electric field and charged species are obtained by integrating Gauss's law and the continuity equations of species along the Laplacian field lines. The experimental values of corona current intensity and applied voltage, together with Warburg's law, have been used to formulate the boundary condition for the electron density on the corona wire. To test the accuracy of the model, the approximate electric field distribution has been compared with the exact numerical solution obtained from a finite element analysis. A parametrical study of wire-to-plane corona discharge has then been undertaken using the approximate semi-analytical solutions. Thus, the spatial distributions of electric field and charged particles have been computed for different values of the gas pressure, wire radius and electrode separation. Also, the two dimensional distribution of ozone density has been obtained using a simplified plasma chemistry model. The approximate semi-analytical solutions can be evaluated in a negligible computational time, yet provide precise estimates of corona discharge variables.

  8. Influence of humidity on the characteristics of negative corona discharge in air

    SciTech Connect

    Xu, Pengfei Zhang, Bo He, Jinliang Chen, Shuiming

    2015-09-15

    Detailed negative corona discharge characteristics, such as the pulse amplitude, repetition frequency, average corona current, rise time, and half-wave time, are systematically studied under various air humidities with a single artificial defect electrode. The experimental result reveals that the pulse amplitude increases with the increase of air humidity; meanwhile, the repetition frequency deceases as the air humidity increases. Empirical formulae are first established for the pulse amplitude and repetition frequency with the humidity factor taken into consideration. The effective ionization integral is calculated and a positive correlation is found between the integral and the pulse amplitude. Furthermore, a simplified negative-ion cloud model is built up to investigate the mechanism of the humidity's influence on negative corona discharge. Based on the theoretical analyses, the correlation between pulse amplitude, repetition frequency, and air humidity is well explained.

  9. Transformation of soybean Gy3 gene into Artemisaarenaria mediated by corona discharge

    NASA Astrophysics Data System (ADS)

    Chao, Lu-meng; Na, Ri; Xue, Dan; Xu, Yongze; Liu, Teng

    2013-03-01

    In order to improve the protein content of desert plant, a method of genetic transformation mediated by corona discharge was established. Artemisia seeds were processed in corona electric field for 120 min at 12 kV, and then soaked in 0.1 SSC media that contained Soybean Gy3 gene DNA to incubate for 12 h at 26 °C. Finally the seeds were inoculated on the differentiation medium. Polymerase Chain Reaction (PCR) and Reverse Transcription Polymerase Chain Reaction (RT-PCR) detection showed that the Soybean Gy3 gene had been successfully introduced into genomic DNA of the regenerated plants of Artemisaarenaria. The study provided a new way for corona discharge in plant genetic modification.

  10. Influence of humidity on the characteristics of negative corona discharge in air

    NASA Astrophysics Data System (ADS)

    Xu, Pengfei; Zhang, Bo; He, Jinliang; Chen, Shuiming

    2015-09-01

    Detailed negative corona discharge characteristics, such as the pulse amplitude, repetition frequency, average corona current, rise time, and half-wave time, are systematically studied under various air humidities with a single artificial defect electrode. The experimental result reveals that the pulse amplitude increases with the increase of air humidity; meanwhile, the repetition frequency deceases as the air humidity increases. Empirical formulae are first established for the pulse amplitude and repetition frequency with the humidity factor taken into consideration. The effective ionization integral is calculated and a positive correlation is found between the integral and the pulse amplitude. Furthermore, a simplified negative-ion cloud model is built up to investigate the mechanism of the humidity's influence on negative corona discharge. Based on the theoretical analyses, the correlation between pulse amplitude, repetition frequency, and air humidity is well explained.

  11. Removal of NO and SO2 in Corona Discharge Plasma Reactor with Water Film

    NASA Astrophysics Data System (ADS)

    He, Yuanji; Dong, Liming; Yang, Jiaxiang

    2004-04-01

    In this paper, a novel type of a corona discharge plasma reactor was designed, which consists of needle-plate-combined electrodes, in which a series of needle electrodes are placed in a glass container filled with flue gas, and a plate electrode is immersed in the water. Based on this model, the removal of NO and SO2 was tested experimentally. In addition, the effect of streamer polarity on the reduction of SO2 and NO was investigated in detail. The experimental results show that the corona wind formed between the high-voltage needle electrode and the water by corona discharge enhances the cleaning efficiency of the flue gas because of the presence of water, and the cleaning efficiency will increase with the increase of applied dc voltage within a definite range. The removal efficiency of SO2 up to 98%, and about 85% of NOx removal under suitable conditions is obtained in our experiments.

  12. Ozone generation by negative corona discharge: the effect of Joule heating

    NASA Astrophysics Data System (ADS)

    Yanallah, K.; Pontiga, F.; Fernández-Rueda, A.; Castellanos, A.; Belasri, A.

    2008-10-01

    Ozone generation in pure oxygen using a wire-to-cylinder corona discharge reactor is experimentally and numerically investigated. Ozone concentration is determined by means of direct UV spectroscopy and the effects of Joule heating and ozone decomposition on the electrodes are analysed for different discharge gaps. The numerical model combines the physical processes in the corona discharge with the chemistry of ozone formation and destruction. The chemical kinetics model and the electrical model are coupled through Poisson's equation, and the current-voltage (CV) characteristic measured in experiments is used as input data to the numerical simulation. The numerical model is able to predict the radial distributions of electrons, ions, atoms and molecules for each applied voltage of the CV characteristic. In particular, the evolution of ozone density inside the discharge cell has been investigated as a function of current intensity and applied voltage.

  13. [Desulphurization with multi-needle-water film electrodes by corona discharge].

    PubMed

    Huang, Xu-ran; Li, Guo-feng; Li, Jie; Wu, Yan

    2008-09-01

    The study of this paper adopted stainless steel multi-needle as a high voltage electrode system, and water film as low voltage electrode. The electrodes were supplied with negative DC high voltage. Polluted gas containing sulfur dioxide (SO2) flowed into the corona discharge field from the center of the high voltage electrode system in an axis direction, then get across the water surface. Under the effect of corona discharge plasma and water absorption, SO2 was removed by converting it into sulfuric acid. The effect of the three factors which were the applied voltage, SO2 inlet concentration and duration of the exposure to the corona discharge on desulphurization efficiency has been studied mostly. Moreover, the concentrations of SO3(2-) and SO4(2-) ions in the water were measured and the mechanism of desulphurization was analyzed. The results showed that there was a synergistic effect on the removal of SO2 when combining corona discharge and water absorption, and both the desulphurization efficiency and the amount of sulfuric acid increased evidently. As the applied voltage and the duration increased, the desulphurization efficiency increased. Also, the SO2 inlet concentration had effect on desulphurization efficiency. When the SO2 inlet concentration was 430 x 10(-6), the voltage was 14.5 kV and the duration was 7.5 s, a desulphurization efficiency of more than 90% could be attained. PMID:19068659

  14. Complex analysis of features of the ionic wind from a negative-polarity corona discharge

    NASA Astrophysics Data System (ADS)

    Ashikhmin, I. A.; Samusenko, A. V.; Stishkov, Yu. K.; Yakovlev, V. V.

    2015-11-01

    We perform computer simulation of the ionic wind in the point-torus and sphere-torus electrode systems taking into account the presence of electrons in the outer region of the corona discharge. The results of computation are compared with experimental velocity fields of air and the current-voltage characteristics. The velocity fields are recorded using laser anemometry of visualizing particles.

  15. Fast imaging of intermittent electrospraying of water with positive corona discharge

    NASA Astrophysics Data System (ADS)

    Pongrác, B.; Kim, H. H.; Janda, M.; Martišovitš, V.; Machala, Z.

    2014-08-01

    The effect of the electrospraying of water in combination with a positive direct current (dc) streamer corona discharge generated in air was investigated in this paper. We employed high-speed camera visualizations and oscilloscopic discharge current measurements in combination with an intensified charge-coupled device camera for fast time-resolved imaging. The repetitive process of Taylor cone formation and droplet formation from the mass fragments of water during the electrospray was visualized. Depending on the applied voltage, the following intermittent modes of electrospraying typical for water were observed: dripping mode, spindle mode, and oscillating-spindle mode. The observed electrospraying modes were repetitive with a frequency of a few hundreds of Hz, as measured from the fast image sequences. This frequency agreed well with the frequency of the measured streamer current pulses. The presence of filamentary streamer discharges at relatively low voltages probably prevented the establishment of a continuous electrospray in the cone-jet mode. After each streamer, a positive glow corona discharge was established on the water filament tip, and it propagated from the stressed electrode along with the water filament elongation. The results show a reciprocal character of intermittent electrospraying of water, and the presence of corona discharge, where both the electrospray and the discharge affect each other. The generation of a corona discharge from the water cone depended on the repetitive process of the cone formation. Also, the propagation and curvature of the water filament were influenced by the discharge and its resultant space charge. Furthermore, these phenomena were partially influenced by the water conductivity.

  16. Corona discharges and their effect on lightning attachment revisited: Upward leader initiation and downward leader interception

    NASA Astrophysics Data System (ADS)

    Becerra, Marley

    2014-11-01

    Previous studies have suggested the possibility of using glow corona discharges to control the frequency of lightning flashes to grounded objects. In order to revisit the theoretical basis of this proposal, the self-consistent leader inception and propagation model - SLIM - is used together with a two-dimensional glow corona drift model. The analysis is performed to quantify the effect of glow corona generated at the tip of ground-based objects on the initiation and propagation of upward positive connecting leaders under the influence of downward lightning leaders. It is found that the presence of glow corona does not influence the performance of Franklin lightning rods shorter than 15 m, while it slightly reduces the lateral distance of rods up to 60 m tall by a maximum of 10%. Furthermore, the results indicate that it is not possible to suppress the initiation of upward connecting leaders by means of glow corona. It is found instead that unconventional lightning protection systems based on the generation of glow corona attract downward lightning flashes in a similar way as a standard lightning rod with the same height.

  17. Multiphysics simulation of corona discharge induced ionic wind

    NASA Astrophysics Data System (ADS)

    Cagnoni, Davide; Agostini, Francesco; Christen, Thomas; Parolini, Nicola; Stevanović, Ivica; de Falco, Carlo

    2013-12-01

    Ionic wind devices or electrostatic fluid accelerators are becoming of increasing interest as tools for thermal management, in particular for semiconductor devices. In this work, we present a numerical model for predicting the performance of such devices; its main benefit is the ability to accurately predict the amount of charge injected from the corona electrode. Our multiphysics numerical model consists of a highly nonlinear, strongly coupled set of partial differential equations including the Navier-Stokes equations for fluid flow, Poisson's equation for electrostatic potential, charge continuity, and heat transfer equations. To solve this system we employ a staggered solution algorithm that generalizes Gummel's algorithm for charge transport in semiconductors. Predictions of our simulations are verified and validated by comparison with experimental measurements of integral physical quantities, which are shown to closely match.

  18. Partial oxidation of methane by pulsed corona discharges

    NASA Astrophysics Data System (ADS)

    Hoeben, W. F. L. M.; Boekhoven, W.; Beckers, F. J. C. M.; van Heesch, E. J. M.; Pemen, A. J. M.

    2014-09-01

    Pulsed corona-induced partial oxidation of methane in humid oxygen or carbon dioxide atmospheres has been investigated for future fuel synthesis applications. The obtained product spectrum is wide, i.e. saturated, unsaturated and oxygen-functional hydrocarbons. The generally observed methane conversion levels are 6-20% at a conversion efficiency of about 100-250 nmol J-1. The main products are ethane, ethylene and acetylene. Higher saturated hydrocarbons up to C6 have been detected. The observed oxygen-functional hydrocarbons are methanol, ethanol and lower concentrations of aldehydes, ketones, dimethylether and methylformate. Methanol seems to be exclusively produced with CH4/O2 mixtures at a maximum production efficiency of 0.35 nmol J-1. CH4/CO2 mixtures appear to yield higher hydrocarbons. Carboxylic acids appear to be mainly present in the aqueous reactor phase, possibly together with higher molecular weight species.

  19. Multiphysics simulation of corona discharge induced ionic wind

    SciTech Connect

    Cagnoni, Davide; Agostini, Francesco; Christen, Thomas; Parolini, Nicola; Stevanović, Ivica; Falco, Carlo de

    2013-12-21

    Ionic wind devices or electrostatic fluid accelerators are becoming of increasing interest as tools for thermal management, in particular for semiconductor devices. In this work, we present a numerical model for predicting the performance of such devices; its main benefit is the ability to accurately predict the amount of charge injected from the corona electrode. Our multiphysics numerical model consists of a highly nonlinear, strongly coupled set of partial differential equations including the Navier-Stokes equations for fluid flow, Poisson's equation for electrostatic potential, charge continuity, and heat transfer equations. To solve this system we employ a staggered solution algorithm that generalizes Gummel's algorithm for charge transport in semiconductors. Predictions of our simulations are verified and validated by comparison with experimental measurements of integral physical quantities, which are shown to closely match.

  20. Poling of lead zirconate titanate ceramics and flexible piezoelectric composites by the corona discharge technique

    SciTech Connect

    Waller, D.; Safari, A.; Igbal, T.

    1989-02-01

    Poling of composites having a polymer matrix with 0-3 connectivity is difficult because the electric field within the high-dielectric-constant grains is far smaller than in the low-dielectric-constant polymer matrix. Therefore, very large electric fields are required to pole these types of composites. However, large electric fields often cause dielectric breakdown of the samples. In this study for improved poling, the corona discharge technique was used to pole piezoelectric ceramics, fired PXT composites, and 0.5PbTiO/sub 3/ . 0.5BiFeO/sub 3/ 0-3 polymer composites. An experimental setup for corona poling is described.

  1. Alkali ion migration between stacked glass plates by corona discharge treatment

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Keiga; Suzuki, Toshio; Ikeda, Hiroshi; Sakai, Daisuke; Funatsu, Shiro; Uraji, Keiichiro; Yamamoto, Kiyoshi; Harada, Kenji; Nishii, Junji

    2015-05-01

    Corona discharge reflects the spatial migration of alkali ions over a gap between two glass plates. This study examined stacked glass plates containing different alkali ions treated with the corona discharge plasma generated by applied voltage of 4.5 kV at 200 °C. Protons generated at the anode electrode penetrate into the potassium-ion-containing upper glass plate, which is located 5 mm below the anode electrode. Potassium ions intruded into the lower glass plate containing sodium ions placed on the cathode electrode, even over a 1 mm gap separating the plates. Finally, the sodium ion discharged on the cathode electrode. The hydrogen atmosphere was effective at inhibiting the potassium ion reaction with ambient gases during the spatial migration between the two glass plates.

  2. Morphological processing of ultraviolet emissions of electrical corona discharge for analysis and diagnostic use.

    PubMed

    Schubert, Matthew; Moore, Andrew J

    2016-03-01

    Electron cascades from electrical discharge produce secondary emissions from atmospheric plasma in the ultraviolet band. For a single point of discharge, these emissions exhibit a stereotypical discharge morphology, with latent information about the discharge location. Morphological processing can uncover the location and therefore have diagnostic utility. PMID:26974615

  3. Morphological Processing of Ultraviolet Emissions of Electrical Corona Discharge for Analysis and Diagnostic Use

    NASA Technical Reports Server (NTRS)

    Schubert, Matthew R.; Moore, Andrew J.

    2015-01-01

    Electron cascades from electrical discharge produce secondary emissions from atmospheric plasma in the ultraviolet band. For a single point of discharge, these emissions exhibit a stereotypical discharge morphology, with latent information about the discharge location. Morphological processing can uncover the location and therefore can have diagnostic utility.

  4. Influence of charging chalcogenide glassy semiconductors in a corona discharge on the formation of superimposed holographic diffraction gratings

    NASA Astrophysics Data System (ADS)

    Nastas, A. M.; Iovu, M. S.; Tridukh, G. M.; Prisakar, A. M.

    2015-03-01

    Optical recording of superimposed holographic gratings in a corona discharge initiated in a Ni-As2S3 structure is studied. It is shown that a corona discharge used for recording holographic gratings in this structure improves its holographic sensitivity and the diffraction efficiency of recorded gratings by several times. It is found that when two superimposed gratings are recorded in a corona discharge, a surface relief due to chemical etching is more uniform and the modulation depth of its thickness is larger.

  5. Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges

    NASA Astrophysics Data System (ADS)

    P. Sarrette, J.; Eichwald, O.; Marchal, F.; Ducasse, O.; Yousfi, M.

    2016-05-01

    The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air). The simulation involves the electro-dynamics, chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation. Each discharge lasts about one hundred of a nanosecond while the post-discharge occurring between two successive discharges lasts one hundred of a microsecond. The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO. After 5 ms, the time corresponding to the occurrence of 50 successive discharge/post-discharge phases, a higher NO removal rate and a lower ozone production rate are found in humid air. This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.

  6. Decontamination effects of low-temperature plasma generated by corona discharge. Part II: new insights.

    PubMed

    Scholtz, V; Julák, J; Kríha, V; Mosinger, J; Kopecká, S

    2007-01-01

    The second part of our paper presents the results of experiments with the decontamination of surfaces by low-temperature plasma generated by corona discharge in air at atmospheric pressure. A simple device is described and the effects of the corona discharge on model microorganisms, viz. the yeast Candida albicans, Gram-negative bacteria Escherichia coli, Enterobacter aerogenes, Neisseria sicca, Stenotrophomonas maltophilia, Gram-positive bacteria Deinococcus radiodurans, Enterococcus faecium, Staphylococcus epidermidis, Streptococcus sanguinis, and vegetative and spore forms of Geobacillus stearothermophilus are discussed. A similar microbicidal effect after about one-minute exposure was observed in all vegetative forms of the microorganisms. Measurement in growth inhibition zones on a semisolid medium was used to determine the dependence of the microbicidal effect on exposure time and the distance between electrodes. Counting of colonies served to assess the microbicidal effect of the discharge on contaminated inert surfaces observable after more than 1 min exposure. Geobacillus stearothermophilus spores were found to have several times lower susceptibility to the action of the discharge and the microbicidal effect was observed only after an 8 min exposure. Reaction with the iodide reagent did not unambiguously demonstrate the difference between ozone and singlet oxygen as presumed active components of the corona. The area distribution of reactive oxygen species was determined; it was found to differ from the Wartburg law depending on exposure time. Qualitative evidence was obtained on the penetration of the reactive oxygen species into the semisolid medium. PMID:18225640

  7. [Study on the reaction mechanism of NO removal by pulse corona discharge].

    PubMed

    Zhang, Lian-Shui; Liu, Tao; Dang, Wei; Duan, Shu-Xing

    2007-04-01

    Chemical reaction kinetics of NO removal by pulse corona discharge under the condition of normal atmospheric pressure was studied by using dispersive fluorescence spectrum and time-resomved spectrum. The fluorescence spectrum of NO pulse corona discharge was obtained. Moreover, dactylograms of NO, and those of the N+, O, N2, produced in the process of discharging were confirmed by attributing the fluorescence spectrum, and then the time behaviors of these particles were studied by analyzing these dactylograms. The results show that, the NO molecule turns to NO+ ion after colliding with high-energy electron, and then the NO+ ion breaks down to N+ and O. Subsequently, the N+ ion turns to N atom after absorbing an electron and then combines with another N atom, while the O atom turns to O2 molecule when combining with another O. From these results, the chemical kinetics model of NO removal by pulse corona discharge was proposed, which is helpful to increasing NO removal rate. PMID:17608170

  8. [Morphology determination of multi-needle bipolar corona discharge by OES].

    PubMed

    Chen, Hai-Feng; Su, Peng-Hao; Zhu, Yi-Min

    2009-01-01

    Using the method of OES (optical emission spectrum) for measuring N2 emission spectrum, the spacial distribution of energetic electrons in multi-needle bipolar corona discharge at atmospheric pressure was investigated. According to the distribution of N2 second positive band's intensity ISPB, the outline of ionisation region was drawn accurately. The relationship between ISPB and discharge current I was obtained through the sum of ISPB. There are two ionisation regions in the multi-needle bipolar corona discharge. One is near the HV electrode and the other is near the grounded electrode. The ionisation region exists around the needlepoint within 2-3 mm. The volume of ionisation region becomes big with the applied voltage U increasing. The ionisation region of negative corona is bigger than that of positive corona. Near the HV discharge electrode, the outline of electron avalanche is similar to the configuration of electric field lines in the ionisation region, so the electron avalanche along the axis direction of needle develops farther than that along the radial direction. The electric field in the migration area is weak, and the distribution of space charges is large along the radial direction. The sum of ISPB in each ionisation region is second order linear with I, but the quadratic coefficient is very small. So the sum of ISPB is nearly linear with I, the distribution of ISPB is corresponding to the density distribution of energetic electrons. So the charged particles forming the discharge current in ionisation region are electrons. No emission spectrum of N2 can be measured in migration area, so there is no energetic electron. The energetic electrons only exist in ionisation region and the charged particles in migration area are ions. PMID:19385198

  9. Spectroscopic Identification of Isomeric Trimethylbenzyl Radicals Generated in Corona Discharge of Tetramethylbenzene

    NASA Astrophysics Data System (ADS)

    Yoon, Young Wook; Lee, Sang Kuk; Lee, Gi Woo

    2011-06-01

    The visible vibronic emission spectra were recorded from the corona discharge of precursor tetramethylbenzene with a large amount of inert carrier gas helium using a pinhole-type glass nozzle coupled with corona excited supersonic expansion (CESE) well developed in this laboratory. The spectra showed a series of vibronic bands in the D_1 → D_0 electronic transition of jet-cooled benzyl-type radicals formed from the precursor in a corona excitation. The analysis confirmed that two isomeric radicals, 2,3,4- and 2,3,6-trimethylbenzyl radicals and three isomeric radicals, 3,4,5-, 2,3,5- and 2,4,6-trimethylbenzyl radicals were produced, respectively, from 1,2,3,4- and 1,2,3,5-tetramethylbenzenes as a result of removal of a hydrogen atom from the methyl group at different substitution position. For each isomeric trimethylbenzyl radical generated in the corona discharge of precursor, the electronic transition and a few vibrational mode frequencies were determined in the ground electronic state by comparing with those from both ab initio calculations and the known vibrational data of the precursor. The substitution effect that states the shift of electronic transition depends on the nature, the number, and the position of substituents on the ring has been qualitatively proved for the case of benzyl-type radicals.

  10. Ionic Wind Phenomenon and Charge Carrier Mobility in Very High Density Argon Corona Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Nur, M.; Bonifaci, N.; Denat, A.

    2014-04-01

    Wind ions phenomenon has been observed in the high density argon corona discharge plasma. Corona discharge plasma was produced by point to plane electrodes and high voltage DC. Light emission from the recombination process was observed visually. The light emission proper follow the electric field lines that occur between point and plane electrodes. By using saturation current, the mobilities of non-thermal electrons and ions have been obtained in argon gas and liquid with variation of density from 2,5 1021 to 2 1022 cm-3. In the case of ions, we found that the behaviour of the apparent mobility inversely proportional to the density or follow the Langevin variation law. For non-thermal electron, mobility decreases and approximately follows a variation of Langevin type until the density <= 0,25 the critical density of argon.

  11. Streptococci biofilm decontamination on teeth by low-temperature air plasma of dc corona discharges

    NASA Astrophysics Data System (ADS)

    Kovalóvá, Z.; Zahoran, M.; Zahoranová, A.; Machala, Z.

    2014-06-01

    Non-thermal plasmas of atmospheric pressure air direct current corona discharges were investigated for potential applications in dental medicine. The objective of this ex vivo study was to apply cold plasmas for the decontamination of Streptococci biofilm grown on extracted human teeth, and to estimate their antimicrobial efficiency and the plasma's impact on the enamel and dentine of the treated tooth surfaces. The results show that both positive streamer and negative Trichel pulse coronas can reduce bacterial population in the biofilm by up to 3 logs in a 10 min exposure time. This bactericidal effect can be reached faster (within 5 min) by electrostatic spraying of water through the discharge onto the treated tooth surface. Examination of the tooth surface after plasma exposure by infrared spectroscopy and scanning electron microscopy did not show any significant alteration in the tooth material composition or the tooth surface structures.

  12. Dimensional analysis of detrimental ozone generation by positive wire-to-plate corona discharge in air

    NASA Astrophysics Data System (ADS)

    Bo, Z.; Chen, J. H.

    2010-02-01

    The dimensional analysis technique is used to formulate a correlation between ozone generation rate and various parameters that are important in the design and operation of positive wire-to-plate corona discharges in indoor air. The dimensionless relation is determined by linear regression analysis based on the results from 36 laboratory-scale experiments. The derived equation is validated by experimental data and a numerical model published in the literature. Applications of such derived equation are illustrated through an example selection of the appropriate set of operating conditions in the design/operation of a photocopier to follow the federal regulations of ozone emission. Finally, a new current-voltage characteristic equation is proposed for positive wire-to-plate corona discharges based on the derived dimensionless equation.

  13. Experimental investigation and numerical modelling of positive corona discharge: ozone generation

    NASA Astrophysics Data System (ADS)

    Yanallah, K; Pontiga, F; Fernández-Rueda, A; Castellanos, A

    2009-03-01

    The spatial distribution of the species generated in a wire-cylinder positive corona discharge in pure oxygen has been computed using a plasma chemistry model that includes the most significant reactions between electrons, ions, atoms and molecules. The plasma chemistry model is included in the continuity equations of each species, which are coupled with Poisson's equation for the electric field and the energy conservation equation for the gas temperature. The current-voltage characteristic measured in the experiments has been used as an input data to the numerical simulation. The numerical model is able to reproduce the basic structure of the positive corona discharge and highlights the importance of Joule heating on ozone generation. The average ozone density has been computed as a function of current intensity and compared with the experimental measurements of ozone concentration determined by UV absorption spectroscopy.

  14. Tuning carrier density across Dirac point in epitaxial graphene on SiC by corona discharge

    NASA Astrophysics Data System (ADS)

    Lartsev, Arseniy; Yager, Tom; Bergsten, Tobias; Tzalenchuk, Alexander; Janssen, T. J. B. M.; Yakimova, Rositza; Lara-Avila, Samuel; Kubatkin, Sergey

    2014-08-01

    We demonstrate reversible carrier density control across the Dirac point (Δn ˜ 1013 cm-2) in epitaxial graphene on SiC (SiC/G) via high electrostatic potential gating with ions produced by corona discharge. The method is attractive for applications where graphene with a fixed carrier density is needed, such as quantum metrology, and more generally as a simple method of gating 2DEGs formed at semiconductor interfaces and in topological insulators.

  15. Corona discharge radical emission spectroscopy: a multi-channel detector with nose-type function for discrimination analysis.

    PubMed

    Tian, Yunfei; Wu, Peng; Wu, Xi; Jiang, Xiaoming; Xu, Kailai; Hou, Xiandeng

    2013-04-21

    A simple and economical multi-channel optical sensor using corona discharge radical emission spectroscopy is developed and explored as an optical nose for discrimination analysis of volatile organic compounds, wines, and even isomers. PMID:23471437

  16. Spectroscopy Identification of Benzyl-Type Radicals Generated by Corona Discharge of Precursors of Mixed Substituents

    NASA Astrophysics Data System (ADS)

    Yoon, Young Wook; Huh, Chang Soon; Lee, Sang Kuk

    2012-06-01

    We generated vibronically excited but jet-cooled benzyl-type radicals from corona discharge of precursor of mixed substituents using a technique of corona excited supersonic expansion coupled with a pinhole-type glass nozzle, from which the visible vibronic emission spectra were recorded with a long-path monochromator. The spectra exhibit the intensity variation of each species with discharging voltage, indicating the radical species generated in corona discharge is highly sensitive to excitation. From the analysis of the spectra, we found the Cl substituent is replaced in preference to the F substituent by the hydrogen atoms liberated from the dissociation of the C-H bond of the methyl group of the precursor, from which we proposed the possible mechanism for the elimination reaction of substituent in terms of the bond dissociation energy. Additionally, we obtained an accurate electronic energy in the D_1 → D_0 transition and the vibrational mode frequencies of newly detected benzyl-type radicals in the ground electronic state by comparison with those of ab initio calculations and the known spectroscopic data of precursors for the first time.

  17. Inactivation of bacteria using dc corona discharge: role of ions and humidity.

    PubMed

    Dobrynin, Danil; Friedman, Gary; Fridman, Alexander; Starikovskiy, Andrey

    2011-10-01

    Here we present the results of an experimental study of the effect of ions produced in a dc corona discharge on inactivation of bacteria on the surface of agarose gel. Both positive and negative corona discharges in various gases at different humidities were studied. The measurements in air, O(2), N(2), Ar and He mixtures show that there is no inactivation in pure N(2), pure O(2) and an N(2)-H(2)O mixture. The best results were achieved in the case of direct treatment, when discharge was ignited in oxygen and water-containing mixtures. We show that neither UV radiation, ozone or H(2)O(2) nor other neutral active species alone produced by corona have an effect on bacteria viability. It is shown that the main role of charged particles may be related to the faster transport of active peroxide species-cluster ions OH(-)(H(2)O)(n) and H(3)O(+)(H(2)O)(n). The efficiency of these radicals is much higher than that of the oxygen radicals and ions (including [Formula: see text] and O(3)) and that of nitrogen and argon ions. PMID:22403515

  18. Design for gas chromatography-corona discharge-ion mobility spectrometry.

    PubMed

    Jafari, Mohammad T; Saraji, Mohammad; Sherafatmand, Hossein

    2012-11-20

    A corona discharge ionization-ion mobility spectrometry (CD-IMS) with a novel sample inlet system was designed and constructed as a detector for capillary gas chromatography. In this design, a hollow needle was used instead of a solid needle which is commonly used for corona discharge creation, helping us to have direct axial interfacing for GC-IMS. The capillary column was passed through the needle, resulting in a reaction of effluents with reactant ions on the upstream side of the corona discharge ionization source. Using this sample introduction design, higher ionization efficiency was achieved relative to the entrance direction through the side of the drift tube. In addition, the volume of the ionization region was reduced to minimize the resistance time of compounds in the ionization source, increasing chromatographic resolution of the instrument. The effects of various parameters such as drift gas flow, makeup gas flow, and column tip position inside the needle were investigated. The designed instrument was exhaustively validated in terms of sensitivity, resolution, and reproducibility by analyzing the standard solutions of methyl isobutyl ketone, heptanone, nonanone, and acetophenone as the test compounds. The results obtained by CD-IMS detector were compared with those of the flame ionization detector, which revealed the capability of the proposed GC-IMS for two-dimensional separation (based on the retention time and drift time information) and identification of an analyte in complex matrixes. PMID:23083064

  19. Inactivation of bacteria using dc corona discharge: role of ions and humidity

    PubMed Central

    Friedman, Gary; Fridman, Alexander; Starikovskiy, Andrey

    2012-01-01

    Here we present the results of an experimental study of the effect of ions produced in a dc corona discharge on inactivation of bacteria on the surface of agarose gel. Both positive and negative corona discharges in various gases at different humidities were studied. The measurements in air, O2, N2, Ar and He mixtures show that there is no inactivation in pure N2, pure O2 and an N2–H2O mixture. The best results were achieved in the case of direct treatment, when discharge was ignited in oxygen and water-containing mixtures. We show that neither UV radiation, ozone or H2O2 nor other neutral active species alone produced by corona have an effect on bacteria viability. It is shown that the main role of charged particles may be related to the faster transport of active peroxide species—cluster ions OH−(H2O)n and H3O+(H2O)n. The efficiency of these radicals is much higher than that of the oxygen radicals and ions (including O2−,O4+ and O3) and that of nitrogen and argon ions. PMID:22403515

  20. Combined corona discharge and UV photoionization source for ion mobility spectrometry.

    PubMed

    Bahrami, Hamed; Tabrizchi, Mahmoud

    2012-08-15

    An ion mobility spectrometer is described which is equipped with two non-radioactive ion sources, namely an atmospheric pressure photoionization and a corona discharge ionization source. The two sources cannot only run individually but are additionally capable of operating simultaneously. For photoionization, a UV lamp was mounted parallel to the axis of the ion mobility cell. The corona discharge electrode was mounted perpendicular to the UV radiation. The total ion current from the photoionization source was verified as a function of lamp current, sample flow rate, and drift field. Simultaneous operation of the two ionization sources was investigated by recording ion mobility spectra of selected samples. The design allows one to observe peaks from either the corona discharge or photoionization individually or simultaneously. This makes it possible to accurately compare peaks in the ion mobility spectra from each individual source. Finally, the instrument's capability for discriminating two peaks appearing in approximately identical drift times using each individual ionization source is demonstrated. PMID:22841099

  1. [Research on desulfurization using coke-oven wastewater with pulsed corona discharge].

    PubMed

    Shao, Gui-wei; Li, Jin; Wang, Wan-lin; Li, Sheng-li

    2004-03-01

    A recent investigation into the application of pulsed corona discharge process, in which simultaneous SO2 removal from simulated flue gas and coke-oven wastewater degradation, was conducted at Wuhan Integrated Steel Plant. The outcome indicates that coke-oven wastewater had good desulfurization ability, and SO2 removal efficiency increased gradually as the simulated flue gas temperature increasing in the temperature range used during the experiment. When the flow of simulated flue gas was 428 m3/h, the temperature of simulated flue gas was 65 degrees C and coke-oven wastewater flow was 107 L/h, the desulfurization rate was 85%. Introducing pulsed corona discharge to the reactor enhanced the removal efficiencies of SO2, the desulfurization rate increased to 90% when high voltage was 52kV. When SO2 was removed from simulated flue gas by pulsed corona discharge, oil and phenols content in coke-oven wastewater decreased 39.26% and 68.75% respectively, and 99.98% content of cyanide was degraded, which is of important value in solving the inactivation problem of aerobic bacteria in biological treatment of coke-oven wastewater. PMID:15202239

  2. Simultaneous measurements of wire electrode surface contamination and corona discharge characteristics in an air-cleaning electrostatic precipitator

    SciTech Connect

    Kanazawa, Seiji; Ohkubo, Toshikazu; Nomoto, Yukiharu; Adachi, Takayoshi; Chang, J.S.

    1997-01-01

    Contamination of the corona wire in a wire-to-plate type air-cleaning electrostatic precipitator is studied experimentally. In order to enhance the contamination of wire, air containing dusts is directly supplied to a part of the wire electrode. Spores of Lycopodium and cigarette smoke particles are used as test dusts. Simultaneous measurements of wire electrode optical images and corona discharge modes are carried out during contamination processes. Results show that corona discharge modes and optical emission from the wire electrode change with time due to the surface contamination. In the case of cigarette smoke, after a time elapsed, streamer coronas appear due to the buildup of smoke particles on the wire surface. After the first streamer generation, the corona current fluctuates with time because the formation and diminution of the projections occur alternately at the different parts on the wire electrode surface.

  3. Charge mitigation techniques using glow and corona discharges for advanced gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Campsie, P.; Cunningham, L.; Hendry, M.; Hough, J.; Reid, S.; Rowan, S.; Hammond, G. D.

    2011-11-01

    Charging of silica test masses in gravitational wave detectors could potentially become a significant low-frequency noise source for advanced detectors. Charging noise has already been observed and confirmed in the GEO600 detector and is thought to have been observed in one of the LIGO detectors. In this paper, two charge mitigation techniques using glow and corona discharges were investigated to create repeatable and robust procedures. The glow discharge procedure was used to mitigate charge under vacuum and would be intended to be used in the instance where an optic has become charged while the detector is in operation. The corona discharge procedure was used to discharge samples at atmospheric pressure and would be intended to be used to discharge the detector optics during the cleaning of the optics. Both techniques were shown to reduce both polarities of surface charge on fused silica to a level that would not limit advanced LIGO. Measurements of the transmission of samples that had undergone the charge mitigation procedures showed no significant variation in transmission, at a sensitivity of ~ 200 ppm, in TiO2-doped Ta2O5/SiO2 multi-layer coated fused silica.

  4. Atmospheric pressure chemical ionization of explosives using alternating current corona discharge ion source.

    PubMed

    Usmanov, D T; Chen, L C; Yu, Z; Yamabe, S; Sakaki, S; Hiraoka, K

    2015-04-01

    The high-sensitive detection of explosives is of great importance for social security and safety. In this work, the ion source for atmospheric pressure chemical ionization/mass spectrometry using alternating current corona discharge was newly designed for the analysis of explosives. An electromolded fine capillary with 115 µm inner diameter and 12 mm long was used for the inlet of the mass spectrometer. The flow rate of air through this capillary was 41 ml/min. Stable corona discharge could be maintained with the position of the discharge needle tip as close as 1 mm to the inlet capillary without causing the arc discharge. Explosives dissolved in 0.5 µl methanol were injected to the ion source. The limits of detection for five explosives with 50 pg or lower were achieved. In the ion/molecule reactions of trinitrotoluene (TNT), the discharge products of NOx (-) (x = 2,3), O3 and HNO3 originating from plasma-excited air were suggested to contribute to the formation of [TNT - H](-) (m/z 226), [TNT - NO](-) (m/z 197) and [TNT - NO + HNO3 ](-) (m/z 260), respectively. Formation processes of these ions were traced by density functional theory calculations. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26149109

  5. Time-lag properties of corona streamer discharges between impulse sphere and dc needle electrodes under atmospheric air conditions

    NASA Astrophysics Data System (ADS)

    Okano, Daisuke

    2013-02-01

    In this study of corona streamer discharges from an impulse generator using a dc power supply, the relationship of the discharge time-lag with the dc bias voltage between the sphere-to-needle electrodes under atmospheric conditions is investigated. Devices utilizing corona discharges have been used to purify air or water, destroy bacteria, and to remove undesirable substances, and in order to achieve fast response times and high power efficiencies in such devices, it is important to minimize the time-lag of the corona discharge. Our experimental results show that (a) the discharge path of a negatively biased needle electrode will be straighter than that of a positively biased needle and (b) the discharge threshold voltage in both the positive and the negative needle electrodes is nearly equal to 33 kV. By expressing the discharge voltage as a power function of time-lag, the extent of corona generation can be quantitatively specified using the exponent of this power function. The observed behavior of a corona streamer discharge between the negative spherical and the positive needle electrodes indicates that the largest power exponent is associated with the shortest time-lag, owing to the reduction in the statistical time-lag in the absence of a formative time-lag.

  6. Time-lag properties of corona streamer discharges between impulse sphere and dc needle electrodes under atmospheric air conditions.

    PubMed

    Okano, Daisuke

    2013-02-01

    In this study of corona streamer discharges from an impulse generator using a dc power supply, the relationship of the discharge time-lag with the dc bias voltage between the sphere-to-needle electrodes under atmospheric conditions is investigated. Devices utilizing corona discharges have been used to purify air or water, destroy bacteria, and to remove undesirable substances, and in order to achieve fast response times and high power efficiencies in such devices, it is important to minimize the time-lag of the corona discharge. Our experimental results show that (a) the discharge path of a negatively biased needle electrode will be straighter than that of a positively biased needle and (b) the discharge threshold voltage in both the positive and the negative needle electrodes is nearly equal to 33 kV. By expressing the discharge voltage as a power function of time-lag, the extent of corona generation can be quantitatively specified using the exponent of this power function. The observed behavior of a corona streamer discharge between the negative spherical and the positive needle electrodes indicates that the largest power exponent is associated with the shortest time-lag, owing to the reduction in the statistical time-lag in the absence of a formative time-lag. PMID:23464233

  7. Modeling and characterization of field-enhanced corona discharge in ozone-generator diode

    NASA Astrophysics Data System (ADS)

    Patil, Jagadish G.; Vijayan, T.

    2010-02-01

    Electric field enhanced corona plasma discharge in ozone generator diode of axial symmetry has been investigated and characterized in theory. The cathode K of diode is made of a large number of sharpened nozzles arranged on various radial planes on the axial mast and pervaded in oxygen gas inside the anode cup A, produces high fields over MV/m and aids in the formation of a corona plume of dense ozone cloud over the cathode surface. An r-z finite difference scheme has been devised and employed to numerically determine the potential and electric field distributions inside the diode. The analyses of cathode emissions revealed a field emission domain conformed to modified Child-Langmuir diode-current. Passage of higher currents (over μA) in shorter A-K gaps d gave rise to cathode heated plasma extending from the corona to Saha regimes depending on local temperature. Plasma densities of order 102-106 m-3 are predicted in these. For larger d however, currents are smaller and heating negligible and a negative corona favoring ozone formation is attained. High ozone yields about 20 per cent of oxygen input is predicted in this domain. The generator so developed will be applied to various important applications such as, purification of ambient air /drinking water, ozone therapy, and so on.

  8. Plasma sterilization of polyethylene terephthalate bottles by pulsed corona discharge at atmospheric pressure.

    PubMed

    Masaoka, Satoshi

    2007-06-01

    A pulsed power supply was used to generate a corona discharge on a polyethylene terephthalate bottle, to conduct plasma sterilization at atmospheric pressure. Before generating such a discharge, minute quantities of water were attached to the inner surface of the bottle and to the surface of a high voltage (HV) electrode inserted into the bottle. Next, high-voltage pulses of electricity were discharged between electrodes for 6.0s, while rotating the bottle. The resulting spore log reduction values of Bacillus subtilis and Aspergillus niger on the inner surface of the bottle were 5.5 and 6 or higher, respectively, and those on the HV electrode surface were each 6 or higher for both strains. The presence of the by-products gaseous ozone, hydrogen peroxide, and nitric ions resulting from the electrical discharge was confirmed. PMID:17629247

  9. Ordering of the flame track in the ring mode of the Trichel pulse negative corona discharge

    NASA Astrophysics Data System (ADS)

    Amirov, R. H.; Barengolts, S. A.; Korostylev, E. V.; Pestovskii, N. V.; Petrov, A. A.; Samoylov, I. S.; Savinov, S. Yu

    2014-11-01

    The ring mode of the Trichel pulse negative corona discharge was studied in atmospheric air. The localization of the discharge flame track in the stable self-organized regular pattern of 3, 4, 5 and 6 - pointed star was found at the cathode surface. This phenomenon was observed at mean currents in the range 100-115 μA at the conditions of the experiment, when the modes with one or two rings are not stable. The conclusion was made that the ring mode of the discharge, which is caused by the symmetrical distribution of the volumetric charges in the conditions of the symmetrical electric field, may be unstable. This instability results in the spatial self-organization of these parameters and causes the organization of the discharge flame track at the cathode surface in the regular patterns.

  10. Treatment of Dyeing Wastewater by Using Positive Pulsed Corona Discharge to Water Surface

    NASA Astrophysics Data System (ADS)

    Young, Sun Mok; Hyun, Tae Ahn; Joeng, Tai Kim

    2007-02-01

    This study investigated the treatment of textile-dyeing wastewater by using an electrical discharge technique (positive pulsed corona discharge). The high-voltage electrode was placed above the surface of the wastewater while the ground electrode was submerged in the wastewater. The electrical discharge starting at the tip of the high voltage electrode propagated toward the surface of the wastewater, producing various oxidative radicals and ozone. Oxygen was used as the working gas instead of air to prevent nitrogen oxides from forming. The simulated wastewater was made up with amaranth, which is a kind of azo dye. The results obtained showed that the chromaticity of the wastewater was almost completely removed within an hour. The ultraviolet/visible spectra of the wastewater treated by the electrical discharge revealed that the total hydrocarbon level also decreased significantly.

  11. Influence of water conductivity on particular electrospray modes with dc corona discharge — optical visualization approach

    NASA Astrophysics Data System (ADS)

    Pongrác, Branislav; Kim, Hyun-Ha; Negishi, Nobuaki; Machala, Zdenko

    2014-08-01

    The effect of water conductivity on electrospraying of water was studied in combination with positive DC corona discharge generated in air. We used a point-to-plane geometry of electrodes with a hollow syringe needle anode opposite to the metal mesh cathode. We employed total average current measurements and high-speed camera fast time-resolved imaging. We visualized the formation of a water jet (filament) and investigated corona discharge behavior for various water conductivities. Depending on the conductivity, various jet properties were observed: pointy, prolonged, and fast spreading water filaments for lower conductivity; in contrast to rounder, broader, and shorter quickly disintegrating filaments for higher conductivity. The large acceleration values (4060 m/s2 and 520 m/s2 for 2 μS/cm and 400 μS/cm, respectively) indicate that the process is mainly governed by the electrostatic force. In addition, with increasing conductivity, the breakdown voltage for corona-to-spark transition was decreasing.

  12. Onset conditions for positive direct current corona discharges in air under the action of photoionization

    NASA Astrophysics Data System (ADS)

    Zheng, Yuesheng; Zhang, Bo; He, Jinliang

    2011-12-01

    This paper presents a numerical model for the inception of positive dc corona discharges in air near cylindrical anodes, which plays a bridge role between the classic positive corona onset criterion and the photoionization model considering the effective radiation wavelength. The predicted onset voltages agree well with Peek's experimental data in a wide range of conductor radii and relative air densities. The influence of the collisional quenching of emitting excited states on the surface onset field is significant with low air density or small conductor radius. Within the effective radiation wavelength, numerical expressions for the photon absorption coefficient in air and Townsend's second coefficient due to photoionization are deduced on the basis of the new model. A different perspective on the classic coefficients is given.

  13. Model of a wedge-electrode corona discharge under saturation: Exact solutions

    NASA Astrophysics Data System (ADS)

    Boltachev, G. Sh.; Zubarev, N. M.; Zubareva, O. V.

    2014-03-01

    Analytical solutions for the distributions of the electric field potential and electric charge density are derived for the outer region of a steady-state unipolar corona discharge from an ideal wedge-shaped electrode under the conditions of space-charge-limited current. Two situations are considered: a corona is initiated only from the edge of the wedge and from the entire surface of the electrode. In the former case, general solutions are obtained by sewing together exact cylindrically symmetric solutions in the drift space and plane symmetric solutions in space-charge-free regions. In the latter case, the field distribution near the edge turns out to be self-similar, i.e., invariant under extensions in the cross-sectional plane of the wedge, with the center at the top of the wedge. For both models, the dependences of the saturation current per edge's unit length on the apex angle and applied potential difference are obtained.

  14. Improvement in ionization efficiency of direct analysis in real time-mass spectrometry (DART-MS) by corona discharge.

    PubMed

    Sekimoto, Kanako; Sakakura, Motoshi; Kawamukai, Takatomo; Hike, Hiroshi; Shiota, Teruhisa; Usui, Fumihiko; Bando, Yasuhiko; Takayama, Mitsuo

    2016-08-01

    Herein it is shown that a combination of direct analysis in real time (DART) with a corona discharge system consisting of only a needle electrode easily improves DART ionization efficiency. Positive and negative DC corona discharges led to a formation of abundant excited helium atoms as well as the reactant ions H3O(+)(H2O)n and O2˙(-) in the DART analyte ionization area. These phenomena resulted in an increase in the absolute intensities of (de)protonated analytes by a factor of 2-20 over conventional DART. The other analyte ions detected in this corona-DART system (i.e., molecular ions, fragment ions, oxygenated (de)protonated analytes, dehydrogenated deprotonated analytes, and negative ion adducts) were quite similar to those obtained from DART alone. This indicates a lack of side reactions due to the corona discharge. The change in the relative intensities of individual analyte-related ions due to the combination of a corona discharge system with DART suggests that there is no effect of the abundant excited helium in the analyte ionization area on the fragmentation processes or enhancement of oxidation due to hydroxyl radicals HO˙. Furthermore, it was found that the corona-DART combination can be applied to the highly sensitive analysis of n-alkanes, in which the alkanes are ionized as positive ions via hydride abstraction and oxidation, independent of the type of alkane or the mass spectrometer used. PMID:27346064

  15. Positive corona discharge ion source with IMS/MS to detect impurities in high purity Nitrogen

    NASA Astrophysics Data System (ADS)

    Sabo, M.; Klas, M.; Wang, H.; Huang, C.; Chu, Y.; Matejčík, Š.

    2011-07-01

    We have applied the Ion Mobility Spectrometry/Mass Spectrometry (IMS/MS) and the Atmospheric Pressure Chemical Ionisation/Mass Spectrometry (APCI/MS) techniques to study the formation of the ions in the positive corona discharge (CD) in highly purified nitrogen with impurities at 100 ppt level. The main products observed were H3O+(H2O)n ions (reduced ion mobility of 2.15 cm2 V-1 s-1). Additionally, we have observed ions with reduced mobilities 2.42 cm2 V-1 s-1 and 2.30 cm2 V-1 s-1. The intensity of these ions was increasing with the increasing discharge current. We associated these peaks with NH4+ and NO+(H2O)n. The formation of these ions results from trace amounts of O2 and NH3 in nitrogen. The time evolution of the ions in corona discharge has been studied using the APCI/MS technique in the time windows ranging from 100 μs to 2 ms. The present work indicates the ability of the IMS technique equipped with CD ions source to detect impurities below 100 ppt level.

  16. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    NASA Astrophysics Data System (ADS)

    Prasetyaningrum, A.; Ratnawati, Jos, B.

    2015-12-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O3) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  17. [Study of emission spectroscopy of OH radicals in pulsed corona discharge].

    PubMed

    Wei, Bo; Luo, Zhong-Yang; Xu, Fei; Zhao, Lei; Gao, Xiang; Cen, Ke-Fa

    2010-02-01

    In the present paper, OH radicals generated by pulsed corona discharge in humidified air, N2 and Ar in a needle-plate reactor were measured by emission spectra. With the analysis of the emission spectra, the influence of pulse peak voltage and frequency on OH radical generation was investigated in the three kinds of background gases. The influence of the gas humidity on the generation and the distribution of OH radicals in the electric field was also discussed in detail. The authors studied the influence of the gas humidity on the generation of OH radicals in the electric field by the control of accurate change in humidity, and we also studied the distribution of OH radicals in the electric field in different background gases including humidified air, N2 and Ar by the accurate change in scales. The experiment shows that the output of OH radicals grows as the pulse peak voltage and frequency grow, but the influence of gas humidity on the process of generating OH radicals by pulsed corona discharge depends on the discharge background. The rules of the generation change when the background gases change. As the humidity in the background gases grows, the amount of OH radicals grows in the air, but it grows at first and decreases at last in N2, while it decreases at first and grows at last in Ar. The distribution of OH radical shows a trend of decreasing from the needle-electrode to its circumambience. PMID:20384109

  18. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    SciTech Connect

    Prasetyaningrum, A. Ratnawati,; Jos, B.

    2015-12-29

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O{sub 3}) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  19. Efficient methane conversion to hydrogen and hydrocarbons by combination of corona and glow discharge

    NASA Astrophysics Data System (ADS)

    Ghorbanzadeh, A. M.; Matin, N. S.

    2004-03-01

    In this study we offer a new type of plasma which consists of double, corona and glow, discharge to convert natural gas, the main part of which is methane. The most important future of this type of plasma is the steady increase of overall chemical energy efficiency by enhancement of repetition rate. At repetition rate of R=80 Hz, the energy efficiency of 5.5% was increased to 10% at R=330 Hz and more improvement was yet expected at higher repetition rates. Easy control of selectivity of products that were hydrogen, acetylene, ethylene, ethane and hydrocarbons with up to 5 carbons, was also possible by repetition rate.

  20. Tuning carrier density across Dirac point in epitaxial graphene on SiC by corona discharge

    SciTech Connect

    Lartsev, Arseniy; Yager, Tom; Lara-Avila, Samuel Kubatkin, Sergey; Bergsten, Tobias; Tzalenchuk, Alexander; Janssen, T. J. B. M; Yakimova, Rositza

    2014-08-11

    We demonstrate reversible carrier density control across the Dirac point (Δn ∼ 10{sup 13 }cm{sup −2}) in epitaxial graphene on SiC (SiC/G) via high electrostatic potential gating with ions produced by corona discharge. The method is attractive for applications where graphene with a fixed carrier density is needed, such as quantum metrology, and more generally as a simple method of gating 2DEGs formed at semiconductor interfaces and in topological insulators.

  1. A method for removal of CO from exhaust gas using pulsed corona discharge.

    PubMed

    Li, X; Yang, L; Lei, Y; Wang, J; Lu, Y

    2000-10-01

    An experimental study of the oxidation of CO in exhaust gas from a motorcycle has been carried out using plasma chemical reactions in a pulsed corona discharge. In the process, some main parameters, such as the initial CO concentration, amplitude and frequency of pulses, residence time, reactor volume, and relative humidity (RH), as well as their effects on CO removal characteristics, were investigated. O3, which is beneficial to reducing CO, was produced during CO removal. When the exhaust gas was at ambient temperature, more than 80% CO removal efficiency was realized at an initial concentration of 288 ppm in a suitable range of the parameters. PMID:11288300

  2. Influence of the airflow speed along transmission lines on the DC corona discharge loss, using finite element approach

    SciTech Connect

    Shemshadi, A.; Akbari, A.; Niayesh, K.

    2012-07-15

    Corona discharge is of great interest from the physical point of view and due to its numerous practical applications in industry and especially one of the most important sources of loss in the high voltage transmission lines. This paper provides guidelines for the amount of electric loss caused by corona phenomenon occurred around a DC high voltage wire placed between two flat plates and influence of wind speed rate on the amount of corona loss using COMSOL Multiphysics. So electric potential distribution patterns and charge density diffusion around the wire are studied in this article.

  3. Inactivation of Bacillus subtilis var. niger of both spore and vegetative forms by means of corona discharges applied in water.

    PubMed

    Joubert, Vanessa; Cheype, Cyril; Bonnet, Jean; Packan, Denis; Garnier, Jean-Pierre; Teissié, Justin; Blanckaert, Vincent

    2013-03-01

    Spores are dormant units of bacteria resistant to numerous disinfection methods. Additionally, the effects on bacteria of repetitive electrical discharges in water by used of the so-called "corona discharges" or streamer are poorly described. In this study vegetative and spore forms of Bacillus subtilis var. niger were subjected to these discharges. To generate corona discharges in water, a Marx generator capable of delivering 60-90 kV was used with a coaxial chamber of treatment. Vegetative and spore form reductions were defined using colony-forming unit counting. Proteins extracts were separated by two-dimensional electrophoresis and spots of interest were characterized by mass spectrometry. Shock waves were assessed by the diminution of liposome size and OD(400 nm). The results show a decrease in bacteria viability of 2 log(10) after 1000 discharges on the vegetative form and 4 log(10) after 10,000 discharges on the spores. Two-dimensional electrophoresis showed that the streamers impact the regulation of several proteins in the vegetative forms with UniProt ID: P80861, Q06797, P80244, C0ZI91, respectively. The reduction appears to be due, in part, to hydrogen peroxide (H(2)O(2)) generated by the corona discharges while spore deactivation remained insensitive to these chemicals. The spore eradication was associated to shock waves induced by the discharges but not H(2)O(2). Corona discharges appear as a prospective method for eradication of spores in water. The corona discharges can be an efficient method for decontamination processes of waste water. PMID:23286986

  4. Desulphurization and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge

    SciTech Connect

    Li, S.L.; Feng, Q.B.; Li, L.; Xie, C.L.; Zhen, L.P.

    2009-03-15

    Laboratory tests were conducted for removal of SO{sub 2} from simulated flue gas and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge. Tests were conducted for the flue gas flow from 12 to 18 Nm{sup 3}/h, the simulated gas temperature from 80 to 120 {sup o}C, the inlet flux of wastewater from 33 to 57 L/h, applied voltage from 0 to 27 kV, and SO{sub 2} initial concentration was about 1,430 mg/m{sup 3}. Results showed that wastewater from blast furnace has an excellent ability of desulphurization (about 90%) and pulsed corona discharge can enhance the desulphurization efficiency. Meanwhile, it was observed that the SO{sub 2} removal ratio decreased along with increased cycle index, while it increased as the flux of flue gas was reduced, and increased when the flux of wastewater from blast furnace was increased. In addition, results demonstrated that the content of sulfate radical produced in wastewater increase with an increment of applied pulsed voltage, cycle index, or the flux of flue gas. Furthermore, the results indicated that the higher the inlet content of cyanide the better removal effect of it, and the removal rate can reach 99.9% with a residence time of 2.1 s in the pulsed corona zone during the desulphurization process when the inlet content was higher, whereas there was almost no removal effect when the inlet content was lower. This research may attain the objective of waste control, and can provide a new way to remove SO{sub 2} from flue gas and simultaneously degrade wastewater from blast furnace for integrated steel plants.

  5. [Study of emission spectra of N atom generated in multi-needle-to-plate corona discharge].

    PubMed

    Ge, Hui; Yu, Ran; Zhang, Lu; Mi, Dong; Zhu, Yi-Min

    2012-06-01

    The emission spectra of nitrogen (N) atom produced by multi-needle-to-plate negative corona discharge in air were detected successfully at one atmosphere, and the excited transition spectral line at 674.5 nm with maximum value of relative intensity was selected to investigate the influences of air and electrical parameters on N atom relative density. The results indicate that N atom relative density in ionization region increases with the increase in power; decreases with increasing discharge gap and relative humidity; and with the increase in N2 content, the relative density of N active atom firstly increases and then decreases. Under present experimental conditions, the maximum value of N atom relative density appears at the axial distance from needle point r = 1 mm. PMID:22870624

  6. Experimental and theoretical investigation of para-aminophenol ionization in corona discharge

    NASA Astrophysics Data System (ADS)

    Bahrami, H.; Salehabadi, H.

    2015-03-01

    Ionization of para-aminophenol was investigated using an ion mobility spectrometer equipped with a corona discharge as ionization source. The experimental results were confirmed with the use of theoretical method, based on density functional theory. Two peaks were observed in the ion mobility spectrum in the positive ion mode which was corresponded to the protonated isomers of para-aminophenol. It was observed that the relative intensities of the peaks depend on the sample concentration and the nature of the reactant ions. The relative energies of ions derived from protonation of para-aminophenol and its topical proton affinities were determined for different sites in the gas phase. The peak with the lower drift time was assigned to the oxygen protonated isomer and the other peak was ascribed to the nitrogen protonated isomer of para-aminophenol. The calculated dipole moment and localized charge of each isomer were used to verify the ion mobility peak separation. It was shown that combination of theoretical and experimental tools leads to reliable prediction of reactive protonation sites of chemicals in a corona discharge.

  7. Simultaneous oxidation of NO, SO2 and Hg0 from flue gas by pulsed corona discharge.

    PubMed

    Xu, Fei; Luo, Zhongyang; Cao, Wei; Wang, Peng; Wei, Bo; Gao, Xiang; Fang, Mengxiang; Cen, Kefa

    2009-01-01

    A process capable of simultaneously oxidizing NO, SO2, and Hg0 was proposed, using a high-voltage and short-duration positive pulsed corona discharge. By focusing on NO, SO2, and Hg0 oxidation efficiencies, the influences of pulse peak voltage, pulse frequency, initial concentration, electrode number, residence time and water vapor addition were investigated. The results indicate that NO, SO2 and Hg0 oxidation efficiencies depend primarily on the radicals (OH, HO2, O) and the active species (O3, H2O2, etc.) produced by the pulsed corona discharge. The NO, SO2 and Hg0 oxidation efficiencies could be improved as pulse peak voltage, pulse frequency, electrode number and residence time increased, but they were reduced with increasing initial concentrations. By adding water vapor, the SO2 oxidation efficiency was improved remarkably, while the NO oxidation efficiency decreased slightly. In our experiments, the simultaneous NO, SO2, and Hg0 oxidation efficiencies reached to 40%, 98%, and 55% with the initial concentrations 479 mg/m3, 1040 mg/m3, and 15.0 microg/m3, respectively. PMID:19634444

  8. Direct coupling of packed column supercritical fluid chromatography to continuous corona discharge ion mobility spectrometry.

    PubMed

    Rahmanian, A; Ghaziaskar, H S; Khayamian, T

    2013-01-11

    In this study, packed column supercritical fluid chromatography (SFC) was directly coupled to a continuous corona discharge (CD) ion mobility spectrometer (IMS) with several modifications. The main advantage of the developed detector is its capability to introduce full column effluent up to 2000 mL min(-1) CO(2) gas directly into the IMS cell relative to 40 mL min(-1) CO(2) gas as a maximum tolerance, reported for the previous IMS detectors. This achievement was made possible because of using corona discharge instead of (63)Ni as an ionization source and locating the inlet and outlet of the CO(2) gas in the counter electrode of the CD in opposite direction. In addition, a heated interface was placed between back pressure regulator (BPR) and the IMS cell to heat the output of the BPR for introducing sample as the gas phase into the IMS cell. Furthermore, a make-up methanol flow was introduced between the column outlet and BPR to provide a more uniform flow through the BPR and also to prevent freezing and deposition of the analytes in the BPR. The performance of the SFC-CD-IMS was evaluated by analysis of testosterone, medroxyprogesterone, caffeine, and theophylline as test compounds and figures of merit for these compounds have been calculated. PMID:23261285

  9. A Study of Electromagnetic Radiation of Corona Discharge Near 500-Kv Electric Installations

    SciTech Connect

    Korzhov, A. V.; Okrainskaya, I. S.; Sidorov, A. I.; Kufel'd, V. D.

    2004-01-15

    Data on the spectral composition and intensity of electromagnetic radiation of corona discharge are obtained in an experimental study performed on the outdoor switchgear of the Shagol 500-kV substation of the Chelyabinsk Enterprise of Trunk Transmission Grids and under a 500-kV Shagol - Kozyrevo overhead transmission line. The electromagnetic environment on the territory of the 500-kV outdoor switchgear is shown to be determined by narrow-band radiations (harmonics of the frequency of electric supply) and wide-band radiations due to corona discharges of high-voltage sources. This means that the personnel experience the action of a commercial-frequency electric field and electromagnetic radiation of a quite wide range, which is not allowed for by the existing guidelines. It is recommended to continue the study in cooperation with medical institutions in order to create guidelines that would allow for the joint action of commercial-frequency electric field and electromagnetic radiation and for the voltage in the line, the current load, the meteorological situation, and other factors.

  10. Ozone production by a dc corona discharge in air contaminated by n-heptane

    NASA Astrophysics Data System (ADS)

    Pekárek, S.

    2008-01-01

    Beneficial purposes of ozone such as elimination of odours, harmful bacteria and mildew can be used for transportation of food, fruits and vegetables with the aim to extend their storage life. To date the main technique used for this purpose in the transportation of these commodities, e.g. by trucks, was cooling. Here a combination of cooling together with the supply of ozone into containers with these commodities is considered. For these purposes we studied the effect of air contamination by n-heptane (part of automotive fuels) and humidity on ozone production by a dc hollow needle to mesh corona discharge. We found that, for both polarities of the needle electrode, addition of n-heptane to air (a) decreases ozone production; (b) causes discharge poisoning to occur at lower current than for air; (c) does not substantially influence the current for which the ozone production reaches the maximum. Finally the maximum ozone production for the discharge in air occurs for the same current as the maximum ozone production for the discharge contaminated by n-heptane. We also found that humidity decreases ozone production from air contaminated by n-heptane irrespective of the polarity of the coronating needle electrode. This dependence is stronger for the discharge with the needle biased positively.

  11. Accelerated formation of sodium depletion layer on soda lime glass surface by corona discharge treatment in hydrogen atmosphere

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Keiga; Ikeda, Hiroshi; Sakai, Daisuke; Funatsu, Shiro; Uraji, Keiichiro; Yamamoto, Kiyoshi; Suzuki, Toshio; Harada, Kenji; Nishii, Junji

    2014-05-01

    Formation of a sodium depletion layer on a soda lime glass surface was accelerated efficiently using a corona discharge treatment in H2 atmosphere. One origin of such acceleration was the preferential generation of H+ with a larger mobility at an anode needle end with a lower applied voltage than that in air. The second origin was the applied voltage across the glass plate during the corona discharge treatment, which was estimated theoretically as 2.7 times higher than that in air. These two effects doubled the depletion layer thickness compared with that in air.

  12. Ionic wind generation by a wire-cylinder-plate corona discharge in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Colas, Dorian F.; Ferret, Antoine; Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-11-01

    A wire-cylinder-plate electrode configuration is presented to generate ionic wind with a dc corona discharge in air at atmospheric pressure. The objective of the work is to maximize the power supplied to the flow in order to increase acceleration while avoiding breakdown. Thus, the proposed experimental setup addresses the problem of decoupling the mechanism of ion generation from that of ion acceleration. Using a wire-plate configuration as a reference, we have focused on improving the topography of the electric field to (1) separate the ionization and acceleration zones in space, and (2) guide the trajectory of charged particles as parallel to the median axis as possible. In the proposed wire-cylinder-plate setup, a dc corona discharge is generated in the space between a wire and two cylinders. The ions produced by the corona then drift past the cylinders and into a channel between two plates, where they undergo acceleration. To maximize the ionic wind it is found that the geometric configuration must be as compact as possible and that the voltage applied must be right below breakdown. Experimentally, the optimized wire-plate reference setup provides a maximum flow velocity of 8 m s-1, a flow rate per unit electrode length of 0.034 m2 s-1, and a thrust per unit electrode length of 0.24 N m-1. The wire-cylinder-plate configuration provides a maximum flow velocity of 10 m s-1, a flow rate per unit electrode length of 0.041 m2 s-1, and a thrust per unit electrode length of 0.35 N m-1. This 46% increase in thrust is obtained by increasing the electric power per unit electrode length by only 16% (from 175 to 210 W m-1), which confirms the gain in efficiency obtained with the decoupled system. In comparison with a simple wire-wire corona configuration, the wire-cylinder-plate configuration increases the ionic wind velocity by up to a factor of 3, and the thrust by an order of magnitude.

  13. Non-stationary corona around multi-point system in atmospheric electric field: I. Onset electric field and discharge current

    NASA Astrophysics Data System (ADS)

    Bazelyan, E. M.; Raizer, Yu. P.; Aleksandrov, N. L.

    2014-03-01

    The properties of a non-stationary glow corona maintained near the tips of a multi-point ground system in a time-varying thundercloud electric field have been studied numerically and analytically. Computer and analytical models were developed to simulate the corona discharge initiated from a system of identical vertical conductive electrodes distributed uniformly over a grounded plane surface. The simulation was based on a solution of the electrostatic equation for electric field and continuity equations for light and aerosol ions. The development of individual corona space charge layers from different points and the formation of a united plane layer were considered. The effect of system dimensions and that of the distance between electrodes on the external electric field corresponding to corona onset near the rod tips was investigated. The evolution in time of the corona current was calculated for systems with various numbers of coronating rods in time-varying atmospheric electric field. In the limit of infinite number of coronating rods, reasonable agreement was obtained between numerical calculations and analytical theory considering the effect of surrounding rods on the corona discharge from a given rod in a simplified integral way. Conditions were determined under which the corona properties of a multi-point system are similar to the properties of a plane surface emitting ions into the atmosphere. In this case, the corona current density is governed by the time derivative of the thundercloud electric field and is independent of the ion mobility and of the coronating system dimensions. The total corona space charge injected into the atmosphere per unit area by a given instant is controlled by the thundercloud electric field at this instant and depends on the geometrical parameters of the system only indirectly, through the corona onset atmospheric electric field. This simple model could be used to simulate a corona discharge during thunderstorms at the earth

  14. Inactivation of MS2 bacteriophage by streamer corona discharge in water.

    PubMed

    Lee, Changha; Kim, Jaeeun; Yoon, Jeyong

    2011-02-01

    Electrical discharge processes are emerging as water treatment technologies applicable to both the degradation of organic contaminants as well as inactivation of pathogens. Particularly as a disinfection technology, electrical discharge processes do not produce toxic byproducts, and effectively inactivate a wide spectrum of microorganisms by multiple lethal actions generated by the formation of plasma channels. This study demonstrates the inactivation of a virus using the streamer corona discharge process (SCDP) with MS2 phage as a surrogate. A rapid inactivation of MS2 phage (i.e., approximately 4 log inactivation in 5 min) was observed in all experimental runs conducted. Discharge conditions such as applied voltage and storage capacitance significantly affected the inactivation efficiency of MS2 phage, whereas the influence of water quality parameters was minor. In order to elucidate the mechanism of MS2 phage inactivation, potentially lethal factors that can be generated by the SCDP were selected, and their roles in the inactivation of MS2 phage were examined. As a result, effects of UV radiation, chemical oxidants, and pulsed electric fields were found to be insignificant. The shockwave generated upon plasma channel formation appears to be the most important factor responsible for MS2 phage inactivation. PMID:21144553

  15. Polarity effect of pulsed corona discharge for the oxidation of gaseous elemental mercury.

    PubMed

    Byun, Youngchul; Koh, Dong Jun; Shin, Dong Nam; Cho, Moohyun; Namkung, Won

    2011-08-01

    The effect of polarity on the oxidation of Hg(0) was examined in the presence of O(2) via a pulsed corona discharge (PCD). The experimental result showed no difference in the energy yield of Hg(0) oxidation at both positive and negative PCDs (∼8 μg Hg Wh(-1) at following conditions: total flow rate=2 L min(-1) (Hg(0)=50 μg Nm(-3), O(2)=10%, and N(2) balance), temperature=150°C, and specific energy density=5-15 Wh Nm(-3)). This suggests that the positive PCD process used to control gaseous air pollutants may play an essential key role in Hg(0) oxidation because it consumes enough energy (∼15 Wh Nm(-3)) but an electrical precipitator could not because it consumes less energy (∼0.3 Wh Nm(-3)) to oxidize Hg(0). PMID:21700317

  16. Laser desorption with corona discharge ion mobility spectrometry for direct surface detection of explosives.

    PubMed

    Sabo, M; Malásková, M; Matejčík, S

    2014-10-21

    We present a new highly sensitive technique for the detection of explosives directly from the surface using laser desorption-corona discharge-ion mobility spectrometry (LD-CD-IMS). We have developed LD based on laser diode modules (LDM) and the technique was tested using three different LDM (445, 532 and 665 nm). The explosives were detected directly from the surface without any further preparation. We discuss the mechanism of the LD and the limitations of this technique such as desorption time, transport time and desorption area. After the evaluation of experimental data, we estimated the potential limits of detection of this method to be 0.6 pg for TNT, 2.8 pg for RDX and 8.4 pg for PETN. PMID:25118619

  17. [Study of a wire-to-plate positive pulsed corona discharge reactor by emission spectroscopy].

    PubMed

    Wang, Shen-Bing; Luo, Zhong-Yang; Zhao, Lei; Xuan, Jian-Yong; Jiang, Jian-Ping; Cen, Ke-Fa

    2011-11-01

    In order to get extensive knowledge of wire-to-plate pulsed corona discharge reactor, the influences of different diameters of wire electrode, different wire-to-plate and wire-to-wire spacing on OH radical generation were experimentally investigated under atmospheric pressure based on emission spectrum, and the spatial distribution of OH radicals in the electric field was also discussed in detail The results showed that OH radicals decrease along the X-axis, and the activation radius is approximately 20 mm; showing a trend of first increase and then decrease along the Y-axis, with the activation radius being more than 30 mm. OH radical has small change as the diameter of wire electrode changes below 2 mm, with a sharp decline as the diameter continues to increase. OH radical emission intensity increases as wire-to-wire spacing increases and decrease as wire-to-plate spacing increases. PMID:22242480

  18. Design and construct of a new detector for gas chromatography based on continuous negative corona discharge.

    PubMed

    Ghahfarokhi, M Sharifian; Khayamian, T

    2011-05-01

    In this work, a new detector was designed and constructed based on negative corona discharge. This detector can be used separately or as a detector in gas chromatography. The detector and chromatographic variables including cell temperature, gas flow rates, voltage between the two electrodes, and column temperature were optimized. Chloroform was used as a test compound to evaluate the performance of the detector. The detection limit of chloroform was obtained 0.78 ng∕ml and its dynamic range was over the range of 2-840 ng∕ml. The relative standard detection was about 6% for the limit of quantification. This detector is able to be used as an alternative for analysis of compounds containing electronegative elements. PMID:21639545

  19. [Research on the emission spectrum of NO molecule's γ-band system by corona discharge].

    PubMed

    Zhai, Xiao-dong; Ding, Yan-jun; Peng, Zhi-min; Luo, Rui

    2012-05-01

    The optical emission spectrum of the gamma-band system of NO molecule, A2 sigma+ --> X2 pi(r), has been analyzed and calculated based on the energy structure of NO molecule' doublet states. By employing the theory of diatomic molecular Spectra, some key parameters of equations for the radiative transition intensity were evaluated theoretically, including the potentials of the doublet states of NO molecule's upper and lower energy levels, the electronic transition moments calculated by using r-centroid approximation method, and the Einstein coefficient of different vibrational and rotational levels. The simulated spectrum of the gamma-band system was calculated as a function of different vibrational and rotational temperature. Compared to the theoretical spectroscopy, the measured results were achieved from corona discharge experiments of NO and N2. The vibrational and rotational temperatures were determined approximately by fitting the measured spectral intensities with the calculated ones. PMID:22827043

  20. Direct determination of ammoniacal nitrogen in water samples using corona discharge ion mobility spectrometry.

    PubMed

    Jafari, M T; Khayamian, T

    2008-09-15

    In this study, direct determination of ammoniacal nitrogen residues in water samples using corona discharge ion mobility spectrometry (CD-IMS) was investigated. Pyridine was used as an alternate reagent gas to enhance selectivity and sensitivity of the method. The results indicate that the limit of detection (LOD) was about 9.2x10(-3)mugmL(-1) and the linear dynamic range was obtained from 0.03 to 2.00mugmL(-1). The relative standard deviation was about 11%. Furthermore, this method was successfully applied to the direct determination of ammoniacal nitrogen in river and tap water samples and the results were compared with the Nessler method. The comparison of the results validates the potential of the proposed method as an alternative technique for the analysis of the ammoniacal nitrogen in water samples. PMID:18761176

  1. Pulsed corona discharge: the role of ozone and hydroxyl radical in aqueous pollutants oxidation.

    PubMed

    Preis, S; Panorel, I C; Kornev, I; Hatakka, H; Kallas, J

    2013-01-01

    Ozone and hydroxyl radical are the most active oxidizing species in water treated with gas-phase pulsed corona discharge (PCD). The ratio of the species dependent on the gas phase composition and treated water contact surface was the objective for the experimental research undertaken for aqueous phenol (fast reaction) and oxalic acid (slow reaction) solutions. The experiments were carried out in the reactor, where aqueous solutions showered between electrodes were treated with 100-ns pulses of 20 kV voltage and 400 A current amplitude. The role of ozone increased with increasing oxygen concentration and the oxidation reaction rate. The PCD treatment showed energy efficiency surpassing that of conventional ozonation. PMID:24135102

  2. Production of nitrogen oxides by lightning and coronae discharges in simulated early Earth, Venus and Mars environments

    NASA Astrophysics Data System (ADS)

    Nna Mvondo, D.; Navarro-González, R.; McKay, C. P.; Coll, P.; Raulin, F.

    We present measurements for the production of nitrogen oxides (NO and N 2O) in CO 2-N 2 mixtures that simulate different stages of the evolution of the atmospheres of the Earth, Venus and Mars. The nitrogen fixation rates by two different types of electrical discharges, namely lightning and coronae, were studied over a wide range in CO 2 and N 2 mixing ratios. Nitric oxide (NO) is formed with a maximum energy yield estimated to be ˜1.3×10 16 molecule J -1 at 80% CO 2 and ˜1.3×10 14 molecule J -1 at 50% CO 2 for lightning and coronae discharges, respectively. Nitrous oxide (N 2O) is only formed by coronae discharge with a maximum energy yield estimated to be ˜1.2×10 13 molecule J -1 at 50% CO 2. The pronounced difference in NO production in lightning and coronae discharges and the lack of formation of N 2O in lightning indicate that the physics and chemistry involved in nitrogen fixation differs substantially in these two forms of electric energy.

  3. CORONA DISCHARGE REACTOR FOR SELECTIVE OXIDATION OF ALCOHOLS AND HYDROCARBONS USING OZONATION AND PHOTOXIDATION OF OVER TIO2

    EPA Science Inventory

    We have developed a process that combines the use of surface corona for the production of ozone by passing air or oxygen through a high voltage electrical discharge and the emitted UV is being used to activate a photocatalyst. A thin film of nanostructured TiO2 with primary part...

  4. Ozone generation by negative direct current corona discharges in dry air fed coaxial wire-cylinder reactors

    SciTech Connect

    Yehia, Ashraf; Mizuno, Akira

    2013-05-14

    An analytical study was made in this paper for calculating the ozone generation by negative dc corona discharges. The corona discharges were formed in a coaxial wire-cylinder reactor. The reactor was fed by dry air flowing with constant rates at atmospheric pressure and room temperature, and stressed by a negative dc voltage. The current-voltage characteristics of the negative dc corona discharges formed inside the reactor were measured in parallel with concentration of the generated ozone under different operating conditions. An empirical equation was derived from the experimental results for calculating the ozone concentration generated inside the reactor. The results, that have been recalculated by using the derived equation, have agreed with the experimental results over the whole range of the investigated parameters, except in the saturation range for the ozone concentration. Therefore, the derived equation represents a suitable criterion for expecting the ozone concentration generated by negative dc corona discharges in dry air fed coaxial wire-cylinder reactors under any operating conditions in range of the investigated parameters.

  5. The electro-acoustic transition process of pulsed corona discharge in conductive water

    NASA Astrophysics Data System (ADS)

    Huang, Yifan; Yan, Hui; Wang, Bingzhe; Zhang, Xuming; Liu, Zhen; Yan, Keping

    2014-06-01

    A pulsed corona discharge in conductive water is studied theoretically and experimentally via pre-discharge analysis, thermodynamic and dynamic processes of a plasma-containing bubble, an acoustic signature and energy partitioning. The total particle density and electron density inside the bubble, internal temperature and pressure, bubble radius and bubble wall Mach number are simulated by solving a set of equations including the ideal gas equation, Rayleigh equation and energy balance equation. The bubble radius is also measured by a high-speed charge-coupled device camera on a homemade experimental device. The acoustic waveforms and their power spectral density are calculated indirectly. By using several diagnostic tools, the electrical parameters of the load, light emission from the plasma and acoustic waveforms are recorded simultaneously. Simulation and experimental results of the bubble radius and acoustic signature agree reasonably well over the range of energy inputs from 5 to 30 J per pulse. Different kinds of terminations or intermediates of the energy transition process are analysed through simulation and experimental data. The electro-acoustic efficiency varies from 0.8% to 1.9%, while most of the discharge energy is consumed by circuit loss, Joule heating and thermal radiation, or is transformed into kinetic energy in the water.

  6. [Morphology determination of ionization region in multi-needle-to-plate negative corona discharge].

    PubMed

    Su, Peng-Hao; Zhu, Yi-Min; Chen, Hai-Feng

    2007-11-01

    Based on the former work on the current-voltage characteristics of a multi-needle-to-plate negative corona discharge at atmospheric pressure, the present work uses the method of OES (optical emission spectrum) for measuring N2 emission spectrum, and the morphology determination of the ionization region has been investigated. According to the distribution of N2 second positive band's intensity I(SPB), the highest of all bands, the outline of the ionization region was drawn fairly accurately. The relationship between I(SPB) and discharge current I can be obtained through the volume integral of the I(SPB). The experimental results show that the size of the ionization region enhances with the rise of the applied voltage U, and the electron avalanche begins at about 1 mm off the tips of needle electrode and multiplies only in the range of several millimeters, indicating that, the range of the ionization region is at the magnitude of mm. The electron avalanche along the axis of the needle develops farther than that along the radial direction of needle, and the shape of the ionization region looks like a bullet. The integral of I(SPB) is second-order linear to I, with a very second order coefficient, meaning that the main excited substance is N2. Energetic electrons mainly exist in ionization region while ions are the main charged particles to form discharge current in the transfer region. PMID:18260386

  7. Vibronic Emission Spectroscopy of Benzyl-Type Radicals Generated by Corona Discharge

    NASA Astrophysics Data System (ADS)

    Yi, Eun Hye; Yoon, Young; Lee, Sang

    2014-06-01

    Benzyl radical is a prototypical aromatic free radical and has been the subject of numerous spectroscopic studies. On the other hand, ring-substituted benzyl radicals, benzyl-type radicals, have received less attention due to the difficulties associated with production in corona discharge and analysis of spectra. We report vibronic emission spectra of hetero halogen multi-substituted benzyl radicals generated by corona discharge of corresponding toluene derivatives using a pinhole-type glass nozzle, from which visible vibronic emission spectra were recorded using a long-path monochromator. The spectra show nice features of strongest origin band and a series of vibronic bands in the lower energies originating from the vibrationless D_1 state. From the analysis of the spectra observed, we determined the energies of the D_1 → D_0 electronic transition and vibrational mode frequencies in the ground electronic state. On the other hand, all substituted benzyl radicals show the origin bands shifted to red region with respect to the parental benzyl radical at 22002 cm-1. The shifts of multi-substituted benzyl radicals can be well estimated using the method developed from mono-substituted benzyl radicals as well as the positions of nodal point and mutual orientation of substituents, which could be useful for scientists to set a proper scanning range of their spectrometers for the spectroscopic observation of transient molecules. In this presentation, we will discuss the substituent effect on electronic transition energy and the experimental technique developed in this laboratory. Y. W. Yoon and S. K. Lee, J. Phys. Chem. A, 117, 2485 (2013). Y. W. Yoon, S. Y. Chae, and S. K. Lee, Chem. Phys. Lett., 584, 37 (2013). Y. W. Yoon and S. K. Lee, Chem. Phys. Lett., 570, 29 (2013).

  8. Protein oxidative modifications during electrospray ionization: solution phase electrochemistry or corona discharge-induced radical attack?

    PubMed

    Boys, Brian L; Kuprowski, Mark C; Noël, James J; Konermann, Lars

    2009-05-15

    The exposure of solution-phase proteins to reactive oxygen species (ROS) causes oxidative modifications, giving rise to the formation of covalent +16 Da adducts. Electrospray ionization (ESI) mass spectrometry (MS) is the most widely used method for monitoring the extent of these modifications. Unfortunately, protein oxidation can also take place as an experimental artifact during ESI, such that it may be difficult to assess the actual level of oxidation in bulk solution. Previous work has demonstrated that ESI-induced oxidation is highly prevalent when operating at strongly elevated capillary voltage V(0) (e.g., +8 kV) and with oxygen nebulizer gas in the presence of a clearly visible corona discharge. Protein oxidation under these conditions is commonly attributed to OH radicals generated in the plasma of the discharge. On the other hand, charge balancing oxidation reactions are known to take place at the metal/liquid interface of the emitter. Previous studies have not systematically explored whether such electrochemical processes could be responsible for the formation of oxidative +16 Da adducts instead of (or in combination with) plasma-generated ROS. Using hemoglobin as a model system, this work illustrates the occurrence of extensive protein oxidation even under typical operating conditions (e.g., V(0) = 3.5 kV, N(2) nebulizer gas). Surprisingly, measurements of the current flowing in the ESI circuit demonstrate that a weak corona discharge persists for these relatively gentle settings. On the basis of comparative experiments with nebulizer gases of different dielectric strength, it is concluded that ROS generated under discharge conditions are solely responsible for ESI-induced protein oxidation. This result is corroborated through off-line electrolysis experiments designed to mimic the electrochemical processes taking place during ESI. Our findings highlight the necessity of using easily oxidizable internal standards in biophysical or biomedical ESI

  9. Removal of a hydrogenated amorphous carbon film from the tip of a micropipette electrode using direct current corona discharge.

    PubMed

    Kakuta, Naoto; Okuyama, Naoki; Yamada, Yukio

    2010-02-01

    Micropipette electrodes are fabricated by coating glass micropipettes first with metal and then with hydrogenated amorphous carbon (a-C:H) as an electrical insulator. Furthermore, at the tip of the micropipette electrode, the deposited a-C:H film needs to be removed to expose the metal-coated surface and hollow for the purposes of electrical measurement and injection. This paper describes a convenient and reliable method for removing the a-C:H film using direct current corona discharge in atmospheric air. The initial film removal occurred at an applied voltage of 1.5-2.0 kV, accompanied by an abrupt increase in the discharge current. The discharge current then became stable at a microampere level in the glow corona mode, and the removed area gradually extended. PMID:20192514

  10. 2D simulation of active species and ozone production in a multi-tip DC air corona discharge

    NASA Astrophysics Data System (ADS)

    Meziane, M.; Eichwald, O.; Sarrette, J. P.; Ducasse, O.; Yousfi, M.

    2011-11-01

    The present paper shows for the first time in the literature a complete 2D simulation of the ozone production in a DC positive multi-tip to plane corona discharge reactor crossed by a dry air flow at atmospheric pressure. The simulation is undertaken until 1 ms and involves tens of successive discharge and post-discharge phases. The air flow is stressed by several monofilament corona discharges generated by a maximum of four anodic tips distributed along the reactor. The nonstationary hydrodynamics model for reactive gas mixture is solved using the commercial FLUENT software. During each discharge phase, thermal and vibrational energies as well as densities of radical and metastable excited species are locally injected as source terms in the gas medium surrounding each tip. The chosen chemical model involves 10 neutral species reacting following 24 reactions. The obtained results allow us to follow the cartography of the temperature and the ozone production inside the corona reactor as a function of the number of high voltage anodic tips.

  11. Laser-induced fluorescence from N2(+) ions generated by a corona discharge in ambient air.

    PubMed

    Konthasinghe, Kumarasiri; Fitzmorris, Kristin; Peiris, Manoj; Hopkins, Adam J; Petrak, Benjamin; Killinger, Dennis K; Muller, Andreas

    2015-09-01

    In this work, we present the measurement of laser-induced fluorescence from N2(+) ions via the B(2)Σu(+)-X(2)Σg(+) band system in the near-ultraviolet. The ions were generated continuously by a plasma glow discharge in low pressure N2 and by a corona discharge in ambient air. The fluorescence decay time was found to rapidly decrease with increasing pressure leading to an extrapolated decay rate of ≍10(10) s(-1) at atmospheric pressure. In spite of this quenching, we were able to observe laser induced fluorescence in ambient air by means of a time-gated spectral measurement. In the process of comparing the emission signal with that of N2 spontaneous Raman scattering, ion concentrations in ambient air of order 10(8-)10(10) cm(-3) were determined. With moderate increases in laser power and collection efficiency, ion concentrations of less than 10(6) cm(-3) may be measurable, potentially enabling applications in atmospheric standoff detection of ionizing radiation from hazardous radioactive sources. PMID:26414524

  12. Pulsed corona discharge oxidation of aqueous lignin: decomposition and aldehydes formation.

    PubMed

    Panorel, Iris; Kaijanen, Laura; Kornev, Iakov; Preis, Sergei; Louhi-Kultanen, Marjatta; Sirén, Heli

    2014-01-01

    Lignin is the mass waste product of pulp and paper industry mostly incinerated for energy recovery. Lignin is, however, a substantial source of raw material for derivatives currently produced in costly wet oxidation processes. The pulsed corona discharge (PCD) for the first time was applied to lignin oxidation aiming a cost-effective environmentally friendly lignin removal and transformation to aldehydes. The experimental research into treatment of coniferous kraft lignin aqueous solutions was undertaken to establish the dependence of lignin oxidation and aldehyde formation on the discharge parameters, initial concentration of lignin and gas phase composition. The rate and the energy efficiency of lignin oxidation increased with increasing oxygen concentration reaching up to 82 g kW-1 h-1 in 89% vol. oxygen. Oxidation energy efficiency in PCD treatment exceeds the one for conventional ozonation by the factor of two under the experimental conditions. Oxidation at low oxygen concentrations showed a tendency of the increasing aldehydes and glyoxylic acid formation yield. PMID:24600854

  13. Removal of acetaldehyde and skatole in gas by a corona-discharge reactor

    SciTech Connect

    Sano, Noriaki; Nagamoto, Toshiki; Hamon, Hajime; Suzuki, Tetsuo; Okazaki, Morio

    1997-09-01

    Recently, ultrahigh gas purification has been important in many cases, such as, for example, (1) removal of dioxin from incineration plants, (2) complete removal of radioactive iodine compounds from nuclear fuel recycling, (3) simultaneous removal of NO{sub x} and SO{sub x} in exhaust gases from cogeneration plants, (4) removal or decomposition of chlorofluorocarbons, and (5) supply of purified gas for semiconductor industries. A corona-discharge reactor, called a deposition-type reactor, was applied to remove acetaldehyde and skatole from nitrogen and an oxygen-nitrogen mixture. In the removal from nitrogen, acetaldehyde and skatole are negatively ionized and removed by depositing at the anode surface. In simultaneous removals of acetaldehyde and skatole, it is found that skatole has a higher reactivity of electron attachment than acetaldehyde. In the removal of acetaldehyde from an oxygen-nitrogen mixture, 40 molecules of acetaldehyde were removed by one electron. The reason for the extremely high removal efficiency is considered to be based on the ozone reaction and the formation of negative-ion clusters. Stabilization energies of the negative-ion clusters were estimated by ab initio molecular orbital calculation. Skatole was removed from a nitrogen-oxygen mixture perfectly with extremely low discharge current by the ozone reaction. Simultaneous removals of acetaldehyde and skatole from a nitrogen-oxygen mixture suggest that coexisting skatole inhibits the removal of acetaldehyde.

  14. A morphological study of the changes in the ultrastructure of a bacterial biofilm disrupted by an ac corona discharge in air

    NASA Astrophysics Data System (ADS)

    Stepanova, Olga; Rybalchenko, Oksana; Astafiev, Alexander; Orlova, Olga; Kudryavtsev, Anatoly; Kapustina, Valentina

    2016-08-01

    The morphology of bacterial cells and biofilms subjected to a low frequency (˜105 Hz) ac (˜10-1 A) corona discharge was investigated using electron microscopy. A low-frequency ac corona discharge in air is shown to have a bactericidal and bacteriostatic effect on Escherichia coli M17 culture at both the cellular and population levels. Corona exposure inhibits the formation of a microbial community and results in the destruction of formed biofilms. This paper presents data on changes in the ultrastructure of cells and biofilms after corona treatment. Our results suggest that the E. coli M17 cells inside biofilms are affected with results similar to sub-lethal and lethal thermal exposure. Some of the biological aspects of colony and biofilm cells death are evaluated. Morphological changes in the ultrastructure of the biofilms under corona treatment are described. Our results indicate that the heating effect is the main factor responsible for the corona-induced inactivation of bacteria.

  15. Ifluence of outer electrode material on ozone production in coaxial negative corona discharge fed by oxygen

    NASA Astrophysics Data System (ADS)

    Orszagh, J.; Skalny, J. D.; Mason, N. J.

    2008-07-01

    The "electric odour", observed by Van Marum when oxygen was passing trough electric spark in 1785, has been later (1839), identified by Ch. F. Schonbeim as a new chemical compound named ozone (Stolarski 1999). Almost from those times ozone is widely used chemical compound. The effect of outer electrode material on the ozone production in negative corona discharge have been studied. Two electrodes with the same dimensions were used in the experiment. One was made of stainless steel other one of brass. First the outer electrode was mechanically cleaned to remove the layer of oxides. The reactor have been filled by pure oxygen and closed. Then the measurement (1 hour measurement of discharge current at the constant voltage and time dependence of ozone concentration in the reactor) was repeated 5 times without cleaning the surface to see the ageing effects. Especially the influence of electrode oxidation on ozone concentration was studied. The experiments have been carried out at atmospheric pressure and ambient temperature. The ozone concentration was measured by UV spectroscopy method directly in the discharge reactor. As one can expect the brass surface was oxidizing faster. After five measurements the electrode surface was covered by layer of greenish oxides. On the other hand the steel electrode surface had no visible oxides layer. The oxidation of the outer electrode had little systematic effect on the ozone concentration but in case of brass electrode the results were scattered in the range from 8000 ppm to 15000 ppm of ozone. It seems that the more oxides are created on the surface the less ozone is produced or the faster the ozone decomposition processes are (see Fig. 1). On the other hand in case of stainless steel electrode the ozone concentrations were comparable in all 5 measurements. Overall ozone concentration was higher in steel electrode. Figure 1: Time dependence of ozone concentration.

  16. Evaluation and Optimization of Electrode Configuration of Multi-Channel Corona Discharge Plasma for Dye-Containing Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Ren, Jingyu; Wang, Tiecheng; Qu, Guangzhou; Liang, Dongli; Hu, Shibin

    2015-12-01

    A discharge plasma reactor with a point-to-plane structure was widely studied experimentally in wastewater treatment. In order to improve the utilization efficiency of active species and the energy efficiency of this kind of discharge plasma reactor during wastewater treatment, the electrode configuration of the point-to-plane corona discharge reactor was studied by evaluating the effects of discharge spacing and adjacent point distance on discharge power and discharge energy density, and then dye-containing wastewater decoloration experiments were conducted on the basis of the optimum electrode configuration. The experimental results of the discharge characteristics showed that high discharge power and discharge energy density were achieved when the ratio of discharge spacing to adjacent point distance (d/s) was 0.5. Reactive Brilliant Blue (RBB) wastewater treatment experiments presented that the highest RBB decoloration efficiency was observed at d/s of 0.5, which was consistent with the result obtained in the discharge characteristics experiments. In addition, the biodegradability of RBB wastewater was enhanced greatly after discharge plasma treatment under the optimum electrode configuration. RBB degradation processes were analyzed by GC-MS and IC, and the possible mechanism for RBB decoloration was also discussed. supported by China's Postdoctoral Science Foundation (No. 2014M562460), the Initiative Funding Programs for Doctoral Research of Northwest A&F University (No. 2013BSJJ121), and National Natural Science Foundation of China (No. 21107085)

  17. Measurement of vibrationally excited N2(v) in an atmospheric-pressure air pulsed corona discharge using coherent anti-Stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Teramoto, Yoshiyuki; Ono, Ryo

    2014-08-01

    Vibrationally excited N2(v = 1, 2) in an atmospheric-pressure air pulsed corona discharge was measured using coherent anti-Stokes Raman scattering (CARS). In a dry air discharge, the vibrational temperature determined from the ratio N2(v = 2)/N2(v = 0), Tv2, was approximately 500 K higher than that determined from N2(v = 1)/N2(v = 0), Tv1, immediately after the discharge pulse. Both vibrational temperatures reached equilibrium within 100 μs after the discharge pulse by the vibration-to-vibration (V-V) process of N2-N2. The translational temperature was also measured using CARS. The rise in the translational temperature due to vibration-to-translation (V-T) energy transfer was not observed for a postdischarge time of 5 μs-1 ms in the dry-air discharge. However, when the air was humidified, a significant V-T energy transfer was observed. It was due to an extremely rapid V-T process of H2O-H2O following the V-V process of N2-H2O. Measurements showed that the humidification of the ambient air accelerated the decrease in the N2 vibrational temperature and increased the translational temperature. N2(v) was generated mostly in the secondary streamer, not in the primary one, according to estimation from the measured N2(v) density.

  18. Numerical simulation of an oxygen-fed wire-to-cylinder negative corona discharge in the glow regime

    NASA Astrophysics Data System (ADS)

    Yanallah, K.; Pontiga, F.; Castellanos, A.

    2011-02-01

    Negative glow corona discharge in flowing oxygen has been numerically simulated for a wire-to-cylinder electrode geometry. The corona discharge is modelled using a fluid approximation. The radial and axial distributions of charged and neutral species are obtained by solving the corresponding continuity equations, which include the relevant plasma-chemical kinetics. Continuity equations are coupled with Poisson's equation and the energy conservation equation, since the reaction rate constants may depend on the electric field and temperature. The experimental values of the current-voltage characteristic are used as input data into the numerical calculations. The role played by different reactions and chemical species is analysed, and the effect of electrical and geometrical parameters on ozone generation is investigated. The reliability of the numerical model is verified by the reasonable agreement between the numerical predictions of ozone concentration and the experimental measurements.

  19. Concentration measurement of NO using self-absorption spectroscopy of the γ band system in a pulsed corona discharge.

    PubMed

    Zhai, Xiaodong; Ding, Yanjun; Peng, Zhimin; Luo, Rui

    2012-07-10

    Nitric oxide (NO) concentrations were measured using the γ band system spectrum based on the strong self-absorption effect of NO in pulsed corona discharges. The radiative transitional intensities of the NO γ band were simulated based on the theory of molecular spectroscopy. The intensities of some bands, especially γ(0,0) and γ(1,0), are weakened by the self-absorption. The correlations between the spectral self-absorption intensities and NO concentration were validated using a modified Beer-Lambert law with a combined factor K relating the branching ratio and the NO concentration, and a nonlinear index α that is applicable to the broadband system. Optical emissive spectra in pulsed corona discharges in NO and N2/He mixtures were used to evaluate the two parameters for various conditions. Good agreement between the experimental and theoretical results verifies the self-absorption behavior seen in the UV spectra of the NO γ bands. PMID:22781235

  20. Role of secondary emission on discharge dynamics in an atmospheric pressure dielectric barrier discharge

    SciTech Connect

    Tay, W. H.; Kausik, S. S.; Yap, S. L.; Wong, C. S.

    2014-04-15

    The discharge dynamics in an atmospheric pressure dielectric barrier discharge (DBD) is studied in a DBD reactor consisting of a pair of stainless steel parallel plate electrodes. The DBD discharge has been generated by a 50 Hz ac high voltage power source. The high-speed intensified charge coupled device camera is used to capture the images of filaments occurring in the discharge gap. It is observed that frequent synchronous breakdown of micro discharges occurs across the discharge gap in the case of negative current pulse. The experimental results reveal that secondary emissions from the dielectric surface play a key role in the synchronous breakdown of plasma filaments.

  1. Ozone production of hollow-needle-to-mesh negative corona discharge enhanced by dielectric tube on the needle electrode

    NASA Astrophysics Data System (ADS)

    Pekárek, Stanislav

    2014-12-01

    For the hollow-needle-to-mesh negative corona discharge in air, we studied the effect of placing the dielectric tube on the needle electrode and the effect of various positions of the end of this tube with respect to the tip of the needle electrode on the concentration of ozone produced by the discharge, the ozone production yield and the discharge V-A characteristics. We found that the placement of the dielectric tube on the needle electrode with a suitable position of this tube end with respect to the tip of the needle electrode for a particular discharge power led to a more than fourfold increase in the concentration of ozone produced by the discharge and also, for a constant airflow, the ozone production yield.

  2. Biodiesel production using fatty acids from food industry waste using corona discharge plasma technology.

    PubMed

    Cubas, A L V; Machado, M M; Pinto, C R S C; Moecke, E H S; Dutra, A R A

    2016-01-01

    This article aims to describe an alternative and innovative methodology to transform waste, frying oil in a potential energy source, the biodiesel. The biodiesel was produced from fatty acids, using a waste product of the food industry as the raw material. The methodology to be described is the corona discharge plasma technology, which offers advantages such as acceleration of the esterification reaction, easy separation of the biodiesel and the elimination of waste generation. The best conditions were found to be an oil/methanol molar ratio of 6:1, ambient temperature (25 °C) and reaction time of 110 min and 30 mL of sample. The acid value indicates the content of free fatty acids in the biodiesel and the value obtained in this study was 0.43 mg KOH/g. Peaks corresponding to octadecadienoic acid methyl ester, octadecanoic acid methyl ester and octadecenoic acid methyl ester, from the biodiesel composition, were identified using GC-MS. A major advantage of this process is that the methyl ester can be obtained in the absence of chemical catalysts and without the formation of the co-product (glycerin). PMID:26159043

  3. Analysis of explosives using corona discharge ionization combined with ion mobility spectrometry-mass spectrometry.

    PubMed

    Lee, Jihyeon; Park, Sehwan; Cho, Soo Gyeong; Goh, Eun Mee; Lee, Sungman; Koh, Sung-Suk; Kim, Jeongkwon

    2014-03-01

    Corona discharge ionization combined with ion mobility spectrometry-mass spectrometry (IMS-MS) was utilized to investigate five common explosives: cyclonite (RDX), trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), cyclotetramethylenetetranitramine (HMX), and 2,4-dinitrotoluene (DNT). The MS scan and the selected ion IMS analyses confirmed the identities of the existing ion species and their drift times. The ions observed were RDX·NO3(-), TNT(-), PETN·NO3(-), HMX·NO3(-), and DNT(-), with average drift times of 6.93 ms, 10.20 ms, 9.15 ms, 12.24 ms, 11.30 ms, and 8.89 ms, respectively. The reduced ion mobility values, determined from a standard curve calculated by linear regression of (normalized drift times)(-1) versus literature K0 values, were 2.09, 1.38, 1.55, 1.15, 1.25, and 1.60 cm(2) V(-1) s(-1), respectively. The detection limits were found to be 0.1 ng for RDX, 10 ng for TNT, 0.5 ng for PETN, 5.0 ng for HMX, and 10 ng for DNT. Simplified chromatograms were observed when nitrogen, as opposed to air, was used as the drift gas, but the detection limits were approximately 10 times worse (i.e., less sensitivity of detection). PMID:24468343

  4. The persistent microbicidal effect in water exposed to the corona discharge.

    PubMed

    Julák, Jaroslav; Scholtz, Vladimír; Kotúčová, Soňa; Janoušková, Olga

    2012-07-01

    This article describes and particularly explains a new phenomenon of persistent microbicidal effect of water previously exposed to the low-temperature plasma, which cannot be attributed to the acidification only. The direct microbicidal action of plasma is well documented, being mediated by number of reactive particles with a short lifetime. However, we observed the microbicidal effect also in exposed water stored for a month, where it must be mediated by stable particles. In water and in phosphate-buffered saline, the formation of NO(x) and corresponding acids, H(2)O(2) and O(3) was confirmed after exposition to the low-temperature plasma generated in air by DC negative glow corona and positive streamer discharge. The time course of acidification, H(2)O(2) and O(3) formation were deremined. Except uncertain traces of HCN, SIFT-MS analysis of exposed liquids reveals no additional reactive compounds. The microbicidal effect persists almost unchanged during 4 weeks of storage, although O(3) completely and H(2)O(2) almost disappears. Staphylococcus epidermidis and Escherichia coli were inactivated within 10 min of incubation in exposed liquids, Candida albicans needs at least 1 h. The solutions prepared by artificial mixing of reactive compounds mimic the action of exposed water, but in lesser extent. The acid milieu is the main cause of the microbicidal effect, but the possibility of still unidentified additional compound remains open. PMID:21925912

  5. An analysis on effecting factors of ultra-violet imaging appliance in corona discharge

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Yang, Ning; Yuan, Shuai; Bi, Jiangang

    2014-11-01

    In this paper, the operating principle of daylight UV imagers was introduced first, emphasizing the SBUV(solar blind UV) technology, which utilizes the fact that ultra violet between 240nm~280nm is being absorbed by the ozone so that signals detected on earth in this spectral range originate on earth. And then several influencing factors were explained, including observation distance, observing angle, imager gain settings and environmental conditions. Experimental data measured in the UHV(ultra high-voltage) DC converter station in Changzhi, Shanxi, China were analyzed using SRA(single regression analysis) method, and mathematical equations with acceptable deviation were calculated, with simulating curves plotted. The results show that environmental conditions including humidity and temperature, observation distance and imager gain settings all contribute to the measuring result, exhibiting as exponential function and convex function respectively. Concluded from the above analysis and calculation, observing conditions of a clear observing angle at the same observation distance with mediate gain settings on days of low humidity were recommended. This conclusion may guide further ultra-violet imaging appliance in high-voltage electrical devices corona discharge sensing.

  6. Direct analysis of human breath ammonia using corona discharge ion mobility spectrometry.

    PubMed

    Jazan, Elham; Mirzaei, Hadi

    2014-01-01

    In this study, ammonia in human breath was directly determined using corona discharge ionization ion mobility spectrometry (CD-IMS) technique with several important advantages including high sensitivity, low cost, high speed, and ease of maintenance. The temperature effect on the ammonia signal was evaluated too. The results indicated that the best temperature for the investigation of breath ammonia was 150°C. The analytical results showed that the linear dynamic range was between 12 and 810ppb and the detection limit was 6.6ppb. The relative standard deviation (RSD) was obtained to be 5, 3, and 3 for 290, 348, and 522ppb, respectively. The amounts of ammonia in breath of eight healthy volunteers were measured. The values were between 236 and 1218ppb. Also, the inequality in breath ammonia levels was scrutinized over a 6h working day for three healthy volunteers. The results showed a drop in breath ammonia from the morning amount to the mid-day measurement and then, a progressive increase while the day continued. In addition, the amounts of ammonia were determined to be 1494-1553ppb in exhaled breath of two renal failure patients. The results obtained in this work revealed that the method was conveniently established without any considerable sample pretreatment for direct analysis of ammonia in human breath. PMID:24120979

  7. Abatement and degradation pathways of toluene in indoor air by positive corona discharge.

    PubMed

    Van Durme, J; Dewulf, J; Sysmans, W; Leys, C; Van Langenhove, H

    2007-08-01

    Indoor air concentrations of volatile organic compounds often exceed outdoor levels by a factor of 5. There is much interest in developing new technologies in order to improve indoor air quality. In this work non-thermal plasma (DC positive corona discharge) is explored as an innovative technology for indoor air purification. An inlet gas stream of 10 l min(-1) containing 0.50+/-0.02 ppm toluene was treated by the plasma reactor in atmospheric conditions. Toluene removal proved to be achievable with a characteristic energy density epsilon(0) of 50 J l(-1). Removal efficiencies were higher for 26% relative humidity (epsilon(0)=35 J l(-1)), compared with those at increased humidities (50% relative humidity, epsilon(0)=49 J l(-1)). Reaction products such as formic acid, benzaldehyde, benzyl alcohol, 3-methyl-4-nitrophenol, 4-methyl-2-nitrophenol, 4-methyl-2-propyl furan, 5-methyl-2-nitrophenol, 4-nitrophenol, 2-methyl-4,6-dinitrophenol are identified by means of mass spectrometry. Based on these by-products a toluene degradation mechanism is proposed. PMID:17490711

  8. Specific O₂⁻ generation in corona discharge for ion mobility spectrometry.

    PubMed

    Sabo, Martin; Matúška, Ján; Matejčík, Stefan

    2011-07-15

    This study deals with O(2)(-) generation in corona discharge (CD) in point to plane geometry for single flow ion mobility spectrometry (IMS) with gas outlet located behind the ionization source. We have designed CD of special geometry in order to achieve the high O(2)(-) yield. Using this ion source we have achieved in zero air conditions that up to 74% all negative ions were O(2)(-) or O(2)(-)(H(2)O). It has been demonstrated that the non-electronegative nitrogen positively influences the efficiency of O(2)(-) generation in O(2)/N(2) mixtures. The reduced ion mobility of 2.27 cm(2)V(-1)s(-1) has been measured for O(2)(-)/O(2)(-)(H(2)O) ions in zero air. Additional ions detected in zero air (less than 200 ppb CO(2)) using the mass spectrometric and IMS technique were, NO(2)(-), N(2)O(2)(-) (2.37 cm(2)V(-1)s(-1)), NO(3)(-), N(2)O(3)(-) and N(2)O(3)(-)(H(2)O). The CO(3)(-) and CO(4)(-) ions have been detected after the introduction of 5 ppm CO(2) into zero air. PMID:21645716

  9. Simultaneous determination of 2-furfural and 5-methyl-2-furfural using corona discharge ion mobility spectrometry.

    PubMed

    Jafari, M T; Khayamian, T

    2009-06-01

    A novel technique, corona discharge ion mobility spectrometry (CD-IMS), was developed for the qualitative and quantitative determination of 2-furfural (F) and 5-methyl-2-furfural (MF) in aqueous solutions. The limits of detection (LODs) were 5.3 x 10(-3) microg/mL for F and 6.7 x 10(-3) microg/mL for MF. The linear dynamic ranges of 1.16 x 10(-2) to 1.04 microg/mL and 2.20 x 10(-2) to 1.10 microg/mL were obtained for F and MF, respectively. The relative standard deviation was below 12% for both compounds. In addition to analysis of the individual compound, simultaneous determination of F and MF was also investigated. It was realized that F imposes a matrix effect on the MF signal and vice versa. The standard addition method was used to deal with the matrix effect. The recovery of the compounds in the synthetic samples validates the capability of the method. PMID:19531891

  10. Using corona discharge-ion mobility spectrometry for detection of 2,4,6-Trichloroanisole.

    PubMed

    Lichvanová, Zuzana; Ilbeigi, Vahideh; Sabo, Martin; Tabrizchi, Mahmoud; Matejčík, Stefan

    2014-09-01

    In this work possible application of the corona discharge-ion mobility spectrometer (CD-IMS) for detection of 2,4,6-Trichloroanisole (TCA) has been investigated. We applied CD-IMS interfaced with orthogonal acceleration time of flight mass spectrometer (CD-IMS-oaTOF) to study the ion processes within the CD-IMS technique. The CD-IMS instrument was operated in two modes, (i) standard and (ii) reverse flow modes resulting in different chemical ionisation schemes by NO3(-)(HNO3)n (n=0,1,2) and O2(-)(H2O)n (n=0,1,2), respectively. The O2(-)(H2O)n ionisation was associated with formation of Cl(-) and (TCA-CH3)(-) ions from TCA. The NO3(-)(HNO3)n ionisation, resulted in formation of NO3(-)(HNO3)(TCA-Cl) adduct ions. Limit of detection (LOD) for TCA was determined in gas (100 ppb) and solid phases (150 ng). PMID:24913882

  11. A comparative summary on streamers of positive corona discharges in water and atmospheric pressure gases

    NASA Astrophysics Data System (ADS)

    Tachibana, Kunihide; Motomura, Hideki

    2015-07-01

    From an intention of summarizing present understandings of positive corona discharges in water and atmospheric pressure gases, we tried to observe streamers in those media by reproducing and complementing previously reported results under a common experimental setup. We used a point-to-plane electrode configuration with different combinations of electrode gap (7 and 19 mm length) and pulsed power sources (0.25 and 2.5 ɛs duration). The general features of streamers were similar and the streamer-to-spark transition was also observed in both the media. However, in the details large differences were observed due to inherent nature of the media. The measured propagation speed of streamers in water of 0.035 × 106 ms-1 was much smaller than the speed in gases (air, N2 and Ar) from 0.4 to 1.1 × 106 ms-1 depending on species. In He the discharge looked glow-like and no streamer was observed. The other characteristics of streamers in gases, such as inception voltage, number of branches and thickness did also depend on the species. The thickness and the length of streamers in water were smaller than those in gases. From the volumetric expansion of a streamer in water after the discharge, the molecular density within the streamer medium was estimated to be rarefied from the density of water by about an order of magnitude in the active discharge phase. We derived also the electron density from the analysis of Stark broadened spectral lines of H and O atoms on the order of 1025 m-3 at the earlier time of the streamer propagation. The analyzed background blackbody radiation, rotational temperature of OH band emission and population density of Cu atomic lines yielded a consistent temperature of the streamer medium between 7000 and 10 000 K. Using the present data with a combination of the analysis of static electric field and previously reported results, we discuss the reason for the relatively low streamer inception voltage in water as compared to the large difference in the

  12. An experimental study on the oxidative coupling of methane in a direct current corona discharge reactor over Sr/La{sub 2}O{sub 3} catalyst

    SciTech Connect

    Marafee, A.; Liu, C.; Xu, G.; Mallinson, R.; Lobban, L.

    1997-03-01

    The homogeneous and catalytic oxidative coupling of methane (OCM) for converting methane directly into higher hydrocarbons has been the subject of a large body of research. The present study on conversion of methane in dc corona discharge packed bed reactors may significantly improve the process economics. Experimental investigations have been conducted in which all the reactive gases pass through a catalyst bed which is situated within the corona-induced plasma zone. In this study, a typical OCM catalyst, Sr/La{sub 2}O{sub 3}, was used to investigate experimentally the corona discharge OCM reactions. Experiments were conducted over a wide range of temperatures (823--1,023 K) and input powers (0--6 W) with both positive and negative corona processes. Compared to the catalytic process in the absence of corona discharge, the corona discharge results in higher methane conversion and larger yield of C{sub 2} products even at temperatures at which there is no C{sub 2} activity for the catalyst alone. The methane conversion and C{sub 2} yield increase with O{sub 2} partial pressure during the corona-enhanced catalytic reactions, while the selectivity decreases slightly with increasing O{sub 2} partial pressure. Compared to results obtained in the absence of corona discharges, methane conversion in the presence of the dc corona was nearly five times larger and the selectivity for C{sub 2} over eight times higher at 853 K. A great enhancement in catalytic activity has also been achieved at a temperature at which the catalyst alone shows no C{sub 2} activity. The conversion at higher temperature (more than 953 K) is limited by the poor corona performance and the availability of active oxygen species.

  13. A volume pulsed corona formed during nanosecond pulsed periodic discharge of negative polarity in narrow gaps with airflow at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Lepekhin, N. M.; Priseko, Yu. S.; Puresev, N. I.; Filippov, V. G.

    2014-06-01

    A volume mode of spatially homogeneous nanosecond pulsed-periodic corona discharge of negative polarity has been obtained using an edge-to-edge electrode geometry in narrow gaps with airflow at atmospheric pressure and natural humidity. The parameters of discharge are estimated, and a factor limiting the power deposited in discharge is determined.

  14. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-05-01

    In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.

  15. Decontamination of Streptococci biofilms and Bacillus cereus spores on plastic surfaces with DC and pulsed corona discharges

    NASA Astrophysics Data System (ADS)

    Koval'ová, Zuzana; Tarabová, Kataŕna; Hensel, Karol; Machala, Zdenko

    2013-02-01

    Cold air plasmas of DC and pulsed corona discharges: positive streamers and negative Trichel pulses were used for bio-decontamination of Streptococci biofilm and Bacillus cereus spores on polypropylene plastic surfaces. The reduction of bacterial population (evaluated as log10) in the biofilm on plastic surfaces treated by DC corona reached 2.4 logs with 10 min treatment time and 3.3 logs with 2 min treatment time with water spraying. The enhancement of plasma biocidal effects on the biofilm by electro-spraying of water through a hollow needle high-voltage electrode was investigated. No significant polarity effect was found with DC corona. Pulsed corona was demonstrated slightly more bactericidal for spores, especially in the negative polarity where the bacterial population reduction reached up to 2.2 logs at 10 min exposure time. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  16. Reduction of low-density lipoprotein cholesterol, plasma viscosity, and whole blood viscosity by the application of pulsed corona discharges and filtration

    NASA Astrophysics Data System (ADS)

    Jung, Jin M.; Fridman, Alexander; Cho, Daniel J.; Cho, Young I.

    2013-03-01

    The present study investigated the feasibility of applying pulsed corona discharges to blood plasma to reduce the viscosity of blood plasma and whole blood. Blood plasma was separated from blood cells, treated with corona discharges, and filtered before it was re-mixed with blood cells. Plasma viscosity (PV), whole blood viscosity (WBV), and low-density lipoprotein (LDL)-c concentration were measured before and after the corona treatment and filtration. Both PV and WBV increased in the case of the corona treatment only, whereas both of them decreased in the case of the corona treatment plus filtration. In particular, the LDL-c decreased in the case of the corona treatment plus filtration by 31.5% from the baseline value. The effect of the corona treatment on the reduction of the WBV was significant at low shear rates, but not at high shear rates, suggesting that the precipitation of the molecules in blood plasma by the corona treatment and subsequent removal may suppress the aggregation of erythrocytes and improve rheological properties of blood.

  17. Factors Influencing the Electron Yield of Needle-Ring Pulsed Corona Discharge Electron Source for Negative Ion Mobility Spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Li, Shengli; Li, Mingshu

    2013-12-01

    A simple negative ion mobility spectrometer (IMS) is designed and used to investigate the factors that influence the number and efficiency of electrons generated by the needle-ring pulsed corona discharge electron source. Simulation with Ansoft Maxwell 12 is carried out to analyze the electric field distribution within the IMS, and to offer the basis and foundation for analyzing the measurement results. The measurement results of the quantities of electrons show that when the drift electric field strength and the ring inner diameter rise, both the number of effective electrons and the effective electron rate are increased. When the discharge voltage becomes stronger, the number of effective electrons goes up while the effective electron rate goes down. In light of the simulation results, mechanisms underlying the effects of drift electric field strength, ring inner diameter, and discharge voltage on the effective electron number and effective electron rate are discussed. These will make great sense for designing negative ion mode IMS using the needle-ring pulsed corona discharge as the electron source.

  18. Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field

    NASA Astrophysics Data System (ADS)

    K. Ferouani, A.; Lemerini, M.; Merad, L.; Houalef, M.

    2015-06-01

    The paper presents a simulation model of the negative corona discharge in N2 under various pressures. The simulated discharge is of a negative point-to-plane mass type, with an inter-electrode separation distance of 20 mm and a symmetry about the axis of discharge. This simulation investigates the behavior of the neutral density and temperature for different pressures in the range of 0.1-10.0 bar. The spatial and temporal evolution of the neutral gas is analyzed based upon the equations of continuity, momentum and energy in a two-dimensional cylindrical geometry model. For that geometry of the system, the FCT (Flux Corrected Transport) technique was adopted. The results show that the pressure plays a significant role of the neutrals dynamics.

  19. [Spectroscopic Diagnosis of Two-Dimensional Distribution of OH Radicals in Wire-Plate Pulsed Corona Discharge Reactor].

    PubMed

    Jiang, Jian-ping; Luo, Zhong-yang; Xuan, Jian-yong; Zhao, Lei; Fang, Meng-xiang; Gao, Xiang

    2015-10-01

    Pulsed corona discharge in atmosphere has been widely regarded as an efficient flue gas treatment technology for the generation of active radical species, such as the OH radicals. The spatial distribution of OH radicals generated by pulsed corona discharge plays an important role in decomposing pollutants. The two-dimensional (2-D) distribution of OH radicals of positive wire--plate pulsed corona discharge was detected using laser-induced fluorescence (LIF). The influence of relative humidity (RH) and oxygen concentration on the 2-D distribution of OH radicals were investigated. The results indicated that the 2-D distribution of OH radicals was characterized by a fan-shaped distribution from the wire electrode to plate electrode, and both the maximum values of vertical length and horizontal width of the fan area was less than 1 cm. The 2-D distribution area of OH radicals increased significantly with increasing the RH and the optimum condition was 65% RH. The optimal level of the oxygen concentration for the 2-D distribution area of OH radicals was 2%. The process of OH radical generation and 2-D distribution area of OH radicals were significantly interfered when the oxygen concentration was larger than 15%. The total quenching rate coefficients for different RH values and oxygen concentration in this study were used to calculate the fluorescence yield of OH radical. The fluorescence yield, which is the ratio between the emission rate (Einstein coefficient) and the sum of the emission rate and quenching rate, was used to normalize the 2-D distribution area of OH radicals. The fluorescence yield of OH radical decreased with increasing the RH and oxygen concentration linearly and rapidly. It was also found that compared with the RH, the influence of the oxygen concentration had more notable effect on the fluorescence yield of OH radical and 2-D distribution area of OH radicals. PMID:26904799

  20. Secondary structure of corona proteins determines the cell surface receptors used by nanoparticles.

    PubMed

    Fleischer, Candace C; Payne, Christine K

    2014-12-11

    Nanoparticles used for biological and biomedical applications encounter a host of extracellular proteins. These proteins rapidly adsorb onto the nanoparticle surface, creating a protein corona. Poly(ethylene glycol) can reduce, but not eliminate, the nonspecific adsorption of proteins. As a result, the adsorbed proteins, rather than the nanoparticle itself, determine the cellular receptors used for binding, the internalization mechanism, the intracellular transport pathway, and the subsequent immune response. Using fluorescence microscopy and flow cytometry, we first characterize a set of polystyrene nanoparticles in which the same adsorbed protein, bovine serum albumin, leads to binding to two different cell surface receptors: native albumin receptors and scavenger receptors. Using a combination of circular dichroism spectroscopy, isothermal titration calorimetry, and fluorescence spectroscopy, we demonstrate that the secondary structure of the adsorbed bovine serum albumin protein controls the cellular receptors used by the protein-nanoparticle complexes. These results show that protein secondary structure is a key parameter in determining the cell surface receptor used by a protein-nanoparticle complex. We expect this link between protein structure and cellular outcomes will provide a molecular basis for the design of nanoparticles for use in biological and biomedical applications. PMID:24779411

  1. An Alternative Empirical Formula for Positive Corona Discharge I-V Characteristics in Point-to-Plate Electrode Geometry

    NASA Astrophysics Data System (ADS)

    A. Azooz, A.; Sabah, I. Waysi

    2014-03-01

    Experimental data are presented for a study on the dependence of the I-V characteristics of the corona discharge on pressure and electrode spacing using point-to-plane electrode configuration. These experimental data are obtained by a fast, automatic computer data-acquisition system. The data are used to suggest an alternative dimensionally self-consistent empirical equation for the parameterization of the I-V curves. The formula eliminates the need for any prior assumptions concerning the inception voltage, as is customary in this type of work.

  2. Inscribing wettability gradients onto polymer substrates with different stiffness using corona discharge in point-to-plane geometry

    NASA Astrophysics Data System (ADS)

    Eifert, Alexander; Petit, Julien; Baier, Tobias; Bonaccurso, Elmar; Hardt, Steffen

    2015-03-01

    We use direct current (DC) corona discharge to create wettability gradients on polymer surfaces. The inhomogeneous current density distribution due to a point-to-plane arrangement induces local changes of the wettability of polymer surfaces, resulting in macroscopic wettability gradients. We found that condensation of water vapor on the surface allows a more precise characterization of the wettability gradient than macroscopic contact angle measurements. Condensation experiments allow characterizing different zones with different wettability. The wettability pattern depends on the stiffness of the substrate. We conjecture that Coulomb interactions influence the spatial distribution of wettability. Indirect measurements of the electrostatic surface potential after exposure support this assumption.

  3. Specific interaction between negative atmospheric ions and organic compounds in atmospheric pressure corona discharge ionization mass spectrometry.

    PubMed

    Sekimoto, Kanako; Sakai, Mami; Takayama, Mitsuo

    2012-06-01

    The interaction between negative atmospheric ions and various types of organic compounds were investigated using atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. Atmospheric negative ions such as O(2)(-), HCO(3)(-), COO(-)(COOH), NO(2)(-), NO(3)(-), and NO(3)(-)(HNO(3)) having different proton affinities served as the reactant ions for analyte ionization in APCDI in negative-ion mode. The individual atmospheric ions specifically ionized aliphatic and aromatic compounds with various functional groups as atmospheric ion adducts and deprotonated analytes. The formation of the atmospheric ion adducts under certain discharge conditions is most likely attributable to the affinity between the analyte and atmospheric ion and the concentration of the atmospheric ion produced under these conditions. The deprotonated analytes, in contrast, were generated from the adducts of the atmospheric ions with higher proton affinity attributable to efficient proton abstraction from the analyte by the atmospheric ion. PMID:22528201

  4. Effect of water on sulfur dioxide (SO2) and nitrogen oxides (NOx) removal from flue gas in a direct current corona discharge reactor

    NASA Astrophysics Data System (ADS)

    Yang, Jiaxiang; Chi, Xiaochun; Dong, Limin

    2007-05-01

    A direct current (dc) corona discharge reactor composed of needle-plate electrodes in a glass container filled with flue gas was designed. To clarify the influence of water on discharge characteristics, water was introduced in the plasma reactor as electrode where plate electrode is immersed, under the application of dc voltage. Experiment results show that (1) corona wind forming between high-voltage needle electrode and water by corona discharge enhances the cleaning efficiency of flue gas due to the existence of water and the cleaning efficiency will increase with the increase of applied dc voltage within definite range and (2) both removal efficiencies of NOx and SO2 increased in the presence of water, which reach up to 98% for SO2, and about 85% for NOx under suitable conditions. These results play an important role in flue gas cleanup research.

  5. Application of Ni-63 photo and corona discharge ionization for the analysis of chemical warfare agents and toxic wastes

    NASA Technical Reports Server (NTRS)

    Stach, J.; Adler, J.; Brodacki, M.; Doring, H.-R.

    1995-01-01

    Over the past decade, advances in instrumental design and refinements in the understanding of ion molecule reactions at atmospheric pressure enabled the application of Ion Mobility Spectrometry (IMS) as a simple inexpensive and sensitive analytical method for the detection of organic trace compounds. Positive and negative gas-phase ions for ion mobility spectrometry have been produced by a variety of methods, including photo-ionization, laser multi photon ionization, surface ionization, corona discharge ionization. The most common ion source used in ion mobility spectrometry is a radioactive Ni-63 foil which is favored due to simplicity, stability, convenience, and high selectivity. If reactant ions like (H2O(n)H)(+) or (H2O(n)O2)(-) dominate in the reaction region, nearly all kinds of compounds with a given proton or electron affinity; are ionized. However, the radioactivity of the Ni-63 foil is one disadvantage of this ion source that stimulates the development and application of other ionization techniques. In this paper, we report analyses of old chemical warfare agents and toxic wastes using Bruker RAID ion mobility spectrometers. Due to the modular construction of the measuring cell, the spectrometers can be equipped with different ion sources. The combined use of Ni-63, photo- and corona discharge ionization allows the identification of different classes of chemical compounds and yields in most cases comparable results.

  6. Degradation of the endocrine disrupting chemicals (EDCs) carbamazepine, clofibric acid, and iopromide by corona discharge over water.

    PubMed

    Krause, Holger; Schweiger, Bianca; Schuhmacher, Jörg; Scholl, Saskia; Steinfeld, Ute

    2009-04-01

    Common wastewater treatment plants often do not eliminate endocrine disrupting chemicals (EDCs). Aqueous solutions of three EDCs were treated with an enhanced corona discharge technology. The three EDCs were clofibric acid, a blood lipid regulator, carbamazepine, an antiepileptic drug, and iopromide, a contrast media. To simulate real conditions, EDC solutions containing landfill leachate were also used. In our setup, two barrier electrodes provided an atmospheric pressure corona discharge over a thin water film, in which the counter-electrode was submerged. Clofibric acid, carbamazepine, and iopromide were effectively removed from a single solution. After a treatment of 15min, there were no traces of iopromide estrogen activity either as a single substance or as degradation products when using an E-Screen Assay. Continuous treatment was compared with pulsed treatment using carbamazepine solutions mixed with pretreated landfill leachate. Best degradation results were achieved with a 500 W continuous duty cycle treatment. Counter-electrodes from materials such as boron doped diamond (BDD), titanium iridium oxide, and iron were investigated for their influences on the process effectivity. Significant improvements were achieved by using an enclosed reactor, BDD electrodes, and circulating only a fresh air or argon/air mixture as cooling gas through the barrier electrodes. PMID:19150730

  7. Electrohydrodynamic force produced by a wire-to-cylinder dc corona discharge in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Moreau, Eric; Benard, Nicolas; Lan-Sun-Luk, Jean-Daniel; Chabriat, Jean-Pierre

    2013-11-01

    Wire-to-cylinder corona discharges are studied to better understand the electrohydrodynamic (EHD) phenomena that govern the performances of electric propulsion systems. First, theory associated with EHD thrusters is presented in order to be compared with experimental results. Secondly, direct thrust measurements are carried out to optimize the electrical and geometrical parameters of such devices. The main results are as follows: (1) the discharge current I is proportional to the square root of the grounded electrode diameter and to 1/d2 where d is the electrode gap; (2) for d ⩽ 20 mm, the mobility of negative ions is higher than that of positive ions while the mobility of both ions is equal for higher gaps; (3) therefore, for gap ⩾30 mm, positive and negative coronas results in the same current-to-thrust conversion; (4) the current-to-thrust conversion is equal to 33 N A-1 per centimetre of gap, and it is proportional to the gap; (5) the thruster effectiveness θ increases with \\sqrt d , decreases with the square root of thrust and reaches about 15 N kW-1 for d = 40 mm (6) the force computed from experimental velocity profiles is overestimated compared with the values measured with a balance, showing that this method cannot be used for thrust determination.

  8. Corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry for monitoring of volatile organic compounds.

    PubMed

    Sabo, Martin; Matejčík, Štefan

    2012-06-19

    We demonstrate the application of corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry (CD IMS-oaTOF) for volatile organic compounds (VOCs) monitoring. Two-dimensional (2D) IMS-oaTOF spectra of VOCs were recorded in nearly real time. The corona discharge atmospheric pressure chemical ionization (APCI) source was operated in positive mode in nitrogen and air. The CD ion source generates in air H(3)O(+)(H(2)O)(n) and NO(+). The NO(+) offers additional possibility for selective ionization and for an increase of the sensitivity of monoaromatic compounds. In addition to H(3)O(+)(H(2)O)(n) and NO(+), we have carried out ionization of VOCs using acetone as dopant gas ((CH(3))(2)COH(+)). Sixteen model VOCs (tetrahydrofuran, butanol, n-propanol, iso-propano, acetone, methanol, ethanol, toluene, benzene, amomnia, dioxan, triethylamine, acetonitrile, formaldehyde, m-xylene, 2,2,2-trifluoroethylamine) were tested using these ionization techniques. PMID:22594852

  9. Modeling of experimental treatment of acetaldehyde-laden air and phenol-containing water using corona discharge technique.

    PubMed

    Faungnawakij, Kajornsak; Sano, Noriaki; Charinpanitkul, Tawatchai; Tanthapanichakoon, Wiwut

    2006-03-01

    Acetaldehyde-laden air and phenol-contaminated water were experimentally treated using corona discharge reactions and gas absorption in a single water-film column. Mathematical modeling of the combined treatment was developed in this work. Efficient removal of the gaseous acetaldehyde was achieved while the corona discharge reactions produced short-lived species such as O and O- as well as ozone. Direct contact of the radicals and ions with water was known to produce aqueous OH radical, which contributes to the decomposition of organic contaminants: phenol, absorbed acetaldehyde, and intermediate byproducts in the water. The influence of initial phenol concentration ranging from 15 to 50 mg L(-1) and that of influent acetaldehyde ranging from 0 to 200 ppm were experimentally investigated and used to build the math model. The maximum energetic efficiency of TOC, phenol, and acetaldehyde were obtained at 25.6 x 10(-9) mol carbon J(-1), 25.0 x 10(-9) mol phenol J(-1), and 2.0 x 10(-9) mol acetaldehyde J(-1), respectively. The predictions for the decomposition of acetaldehyde, phenol, and their intermediates were found to be in good agreement with the experimental results. PMID:16568779

  10. Evaluation of the potential of soil remediation by direct multi-channel pulsed corona discharge in soil.

    PubMed

    Wang, Tie Cheng; Qu, Guangzhou; Li, Jie; Liang, Dongli

    2014-01-15

    A novel approach, named multi-channel pulsed corona discharge in soil, was developed for remediating organic pollutants contaminated soil, with p-nitrophenol (PNP) as the model pollutant. The feasibility of PNP degradation in soil was explored by evaluating effects of pulse discharge voltage, air flow rate and soil moisture on PNP degradation. Based on roles of chemically active species and evolution of degradation intermediates, PNP degradation processes were discussed. Experimental results showed that about 89.4% of PNP was smoothly degraded within 60min of discharge treatment at pulse discharge voltage 27kV, soil moisture 5% and air flow rate 0.8Lmin(-1), and the degradation process fitted the first-order kinetic model. Increasing pulse discharge voltage was found to be favorable for PNP degradation, but not for energy yield. There existed appropriate air flow rate and soil moisture for obtaining gratifying PNP degradation efficacy. Roles of radical scavenger and measurement of active species suggested that ozone, H2O2, and OH radicals played very important roles in PNP degradation. CN bond in PNP molecule was cleaved, and the main intermediate products such as hydroquinone, benzoquinone, catechol, phenol, acetic acid, formic acid, oxalic acid, NO2(-) and NO3(-) were identified. Possible pathway of PNP degradation in soil in such a system was proposed. PMID:24295768

  11. Experimental and modeling study of the oxidation of acetaldehyde in an atmospheric-pressure pulsed corona discharge

    NASA Astrophysics Data System (ADS)

    Klett, C.; Touchard, S.; Vega-Gonzalez, A.; Redolfi, M.; Bonnin, X.; Hassouni, K.; Duten, X.

    2012-08-01

    This paper reports the results obtained for the degradation of acetaldehyde by an atmospheric plasma corona discharge working in a pulsed regime. It was shown that a few hundred ppm of acetaldehyde diluted in a pure N2 gas flow can be removed up to 80% by a discharge fed with an electric power lower than 1 W. Under the same conditions, adding up to 5% of O2 allowed the removal of up to 95% of the initial acetaldehyde. The main identified end products were CO2, CO and methanol. A quasi-homogeneous zero-dimensional chemical model was developed to investigate the respective efficiency of the discharge and post-discharge periods in the global removal of the pollutant. The identified main pathways of acetaldehyde degradation were quenching of N2 metastable states during plasma pulses and oxidation by O and OH radicals during the post-discharge. This latter contribution increased with input power because of ozone accumulation in the gas mixture acting as an additional oxygen reservoir.

  12. Comparative study of NO removal in surface-plasma and volume-plasma reactors based on pulsed corona discharges.

    PubMed

    Malik, Muhammad Arif; Kolb, Juergen F; Sun, Yaohong; Schoenbach, Karl H

    2011-12-15

    Nitric oxide (NO) conversion has been studied for two different types of atmospheric-pressure pulsed-corona discharges, one generates a surface-plasma and the other provides a volume-plasma. For both types of discharges the energy cost for NO removal increases with decreasing oxygen concentration and initial concentration of NO. However, the energy cost for volume plasmas for 50% NO removal, EC(50), from air was found to be 120 eV/molecule, whereas for the surface plasma, it was only 70 eV/molecule. A smaller difference in energy cost, but a higher efficiency for removal of NO was obtained in a pure nitrogen atmosphere, where NO formation is restricted due to the lack of oxygen. For the volume plasma, EC(50) in this case was measured at 50 eV/molecule, and for the surface plasma it was 40 eV/molecule. Besides the higher NO removal efficiency of surface plasmas compared to volume plasmas, the energy efficiency of surface-plasmas was found to be almost independent of the amount of electrical energy deposited in the discharge, whereas the efficiency for volume plasmas decreases considerably with increasing energy. This indicates the possibility of operating surface plasma discharges at high energy densities and in more compact reactors than conventional volume discharges. PMID:21982539

  13. Kinetically driven self-assembly of a binary solute mixture with controlled phase separation via electro-hydrodynamic flow of corona discharge.

    PubMed

    Jung, Hee Joon; Huh, June; Park, Cheolmin

    2012-10-21

    This feature article describes a new and facile process to fabricate a variety of thin films of non-volatile binary solute mixtures suitable for high performance organic electronic devices via electro-hydrodynamic flow of conventional corona discharge. Both Corona Discharge Coating (CDC) and a modified version of CDC, Scanning Corona Discharge Coating (SCDC), are based on utilizing directional electric flow, known as corona wind, of the charged uni-polar particles generated by corona discharge between a metallic needle and a bottom plate under a high electric field (5-10 kV cm(-1)). The electric flow rapidly spreads out the binary mixture solution on the bottom plate and subsequently forms a smooth and flat thin film in a large area within a few seconds. In the case of SCDC, the static movement of the bottom electrode on which a binary mixture solution is placed provides further control of thin film formation, giving rise to a film highly uniform over a large area. Interesting phase separation behaviors were observed including nanometer scale phase separation of a polymer-polymer binary mixture and vertical phase separation of a polymer-organic semiconductor mixture. Core-shell type phase separation of either polymer-polymer or polymer-colloidal nanoparticle binary mixtures was also developed with a periodically patterned microstructure when the relative location of the corona wind was controlled to a binary solution droplet on a substrate. We also demonstrate potential applications of thin functional films with controlled microstructures by corona coating to various organic electronic devices such as electroluminescent diodes, field effect transistors and non-volatile polymer memories. PMID:22990240

  14. A study of the effect of a corona discharge on recording of holographic diffraction gratings in the Cu-As2S3 structure

    NASA Astrophysics Data System (ADS)

    Nastas, A. M.; Iovu, M. S.; Prisakar, A. M.

    2014-05-01

    Improvement of the optical recording process in the Cu-As2S3 structure in the whole visible band was observed when the structure is simultaneously exposed and charged in the field of a negative corona discharge as compared to the standard direct recording in the above-mentioned structure. It was shown that using the negative corona discharge for recording in these structures allows the holographic sensitivity and diffraction efficiency of the recorded holographic diffraction gratings to be increased several-fold compared to gratings obtained by the standard approach. The results are discussed using the known photoelectrical model.

  15. The micro-discharge family (dark, corona, and glow-discharge) for analytical applications realized by dielectric barriers.

    PubMed

    Franzke, J

    2009-10-01

    The similarity principles of electric plasmas, and the current-voltage characteristics of the most prominent kinds of discharges used for analytical applications, are discussed. Most of the discharges can be miniaturized, and some of the analytical applications of different discharges can be realized by use of dielectric barriers for analytical applications, for example element spectrometry, as an ionization source for ion-mobility spectrometry or organic mass spectrometry, and as an electrospray ionization source. PMID:19434400

  16. Characteristics of back corona discharge in a honeycomb catalyst and its application for treatment of volatile organic compounds.

    PubMed

    Feng, Fada; Zheng, Yanyan; Shen, Xinjun; Zheng, Qinzhen; Dai, Shaolong; Zhang, Xuming; Huang, Yifan; Liu, Zhen; Yan, Keping

    2015-06-01

    The main technical challenges for the treatment of volatile organic compounds (VOCs) with plasma-assisted catalysis in industrial applications are large volume plasma generation under atmospheric pressure, byproduct control, and aerosol collection. To solve these problems, a back corona discharge (BCD) configuration has been designed to evenly generate nonthermal plasma in a honeycomb catalyst. Voltage-current curves, discharge images, and emission spectra have been used to characterize the plasma. Grade particle collection results and flow field visualization in the discharge zones show not only that the particles can be collected efficiently, but also that the pressure drop of the catalyst layer is relatively low. A three-stage plasma-assisted catalysis system, comprising a dielectric barrier discharge (DBD) stage, BCD stage, and catalyst stage, was built to evaluate toluene treatment performance by BCD. The ozone analysis results indicate that BCD enhances the ozone decomposition by collecting aerosols and protecting the Ag-Mn-O catalyst downstream from aerosol contamination. The GC and FTIR results show that BCD contributes to toluene removal, especially when the specific energy input is low, and the total removal efficiency reaches almost 100%. Furthermore, this removal results in the emission of fewer byproducts. PMID:25941906

  17. International Space Station (ISS) S-Band Corona Discharge Anomaly Consultation

    NASA Technical Reports Server (NTRS)

    Kichak, Robert A.; Leidecker, Henning; Battel, Steven; Ruitberg, Arthur; Sank, Victor

    2008-01-01

    The Assembly and Contingency Radio Frequency Group (ACRFG) onboard the International Space Station (ISS) is used for command and control communications and transmits (45 dBm or 32 watts) and receives at S-band. The system is nominally pressurized with gaseous helium (He) and nitrogen (N2) at 8 pounds per square inch absolute (psia). MacDonald, Dettwiler and Associates Ltd. (MDA) was engaged to analyze the operational characteristics of this unit in an effort to determine if the anomalous behavior was a result of a corona event. Based on this analysis, MDA did not recommend continued use of this ACRFG. The NESC was requested to provide expert support in the area of high-voltage corona and multipactoring in an S-Band RF system and to assess the probability of corona occurring in the ACRFG during the planned EVA. The NESC recommended minimal continued use of S/N 002 ACRFG until a replacement unit can be installed. Following replacement, S/N 002 will be subjected to destructive failure analysis in an effort to determine the proximate and root cause(s) of the anomalous behavior.

  18. NOx diesel exhaust treatment using a pulsed corona discharge: the pulse repetition rate effect

    NASA Astrophysics Data System (ADS)

    Yankelevich, Y.; Wolf, M.; Baksht, R.; Pokryvailo, A.; Vinogradov, J.; Rivin, B.; Sher, E.

    2007-05-01

    The pulsed corona offers real promise for degradation of pollutants in gas and water streams. This paper presents a study of NOx removal from diesel exhaust. Special emphasis is laid on the investigation of the dependence of the NO removal rate and efficiency on the pulse repetition rate (PRR). A nanosecond solid state power supply (45 kV, 60 ns, up to 1 kHz) was used for driving the corona reactor. A Mitsubishi 10 kW 3-cylinder diesel-generator engine with a total volume of 1300 cm3 was used as a source of exhaust gas. At an NO removal rate of 35% the NO removal efficiency was 53 g kW-1h-1 for PRR = 500 Hz and the initial NO concentration was 375 ppm. A semi-empirical expression for the corona reactor removal efficiency related both to PRR and to the residence time is presented. The removal efficiency decreases with increasing PRR at constant flow rate or constant residence time. This expression demonstrates reasonable agreement between the calculation results and the experimental data.

  19. Microbial Decontamination of Dried Alaska Pollock Shreds Using Corona Discharge Plasma Jet: Effects on Physicochemical and Sensory Characteristics.

    PubMed

    Choi, Soee; Puligundla, Pradeep; Mok, Chulkyoon

    2016-04-01

    Nonthermal techniques for microbial decontamination are becoming more common for ensuring food safety. In this study, a corona discharge plasma jet (CDPJ) was used for inactivation of microbial contaminants of dried Alaska pollock shreds. Corona plasma jet was generated at a current strength of 1.5 A, and a span length of 25 mm was maintained between the electrode tip and the sample. Upon the CDPJ treatment (0 to 3 min) of dried shreds, microbial contaminants namely aerobic and marine bacteria, and Staphylococcus aureus were inactivated by 2.5, 1.5, and >1.0 log units, respectively. Also, a one-log reduction of molds and yeasts contaminants was observed. The inactivation patterns are fitted well to the pseudo-first-order kinetics or Singh-Heldman model. The CDPJ treatment did not exert statistically significant (P > 0.05) changes in physicochemical properties, namely color characteristics, volatile basic nitrogen, and peroxide value of dried fish shreds, with some exceptions, as compared to untreated controls. Furthermore, CDPJ treatment had no significant impact on the sensory characteristics of dried fish shreds. PMID:26953810

  20. Preparation of zeolite nanorods by corona discharge plasma for degradation of phenazopyridine by heterogeneous sono-Fenton-like process.

    PubMed

    Khataee, Alireza; Rad, Tannaz Sadeghi; Vahid, Behrouz; Khorram, Sirous

    2016-11-01

    The plasma-modified clinoptilolite (PMC) nanorods were prepared from natural clinoptilolite (NC) utilizing environmentally-friendly corona discharge plasma. The PMC and NC were characterized by XRD, FT-IR, SEM, EDX, XPS and BET, which confirmed the nanocatalyst formation. The catalytic performance of the PMC in the heterogeneous sono-Fenton-like process was greater than the NC for treatment of phenazopyridine (PhP). The desired amounts were obtained for experimental parameters including initial pH (5), PMC dosage (2g/L), K2S2O8 concentration (2mmol/L), ultrasonic power (300W) and PhP concentration (10mg/L). Reactive oxygen species scavengers decreased the removal efficiency of the PhP. The treatment process followed pseudo-first order kinetic and seven degradation intermediates were identified by the GC-MS technique. PMID:27245954

  1. Analysis of testosterone in human urine using molecularly imprinted solid-phase extraction and corona discharge ion mobility spectrometry.

    PubMed

    Mirmahdieh, Shiva; Mardihallaj, Azam; Hashemian, Zahra; Razavizadeh, Jalal; Ghaziaskar, Hassan; Khayamian, Taghi

    2011-01-01

    Analysis of testosterone was accomplished using corona discharge ion mobility spectrometry. Molecular imprinted polymer was used for the extraction and pre-concentration of testosterone. Analytical parameters including precision, dynamic range and detection limit were obtained. The linear dynamic range was from 10 to 250 ng/mL and the limit of detection was 0.9 ng/mL. The proposed method was used for analysis of testosterone in urine samples. A urine sample from a 3-year-old girl was used as the blank. The RSD was below 10%. The obtained results from the method were also compared with the standard method for analysis of testosterone using SPE-HPLC analysis. The results demonstrate the accuracy of the method. PMID:21171183

  2. Calibration-free self-absorption model for measuring nitric oxide concentration in a pulsed corona discharge.

    PubMed

    Du, Yanjun; Ding, Yanjun; Liu, Yufeng; Lan, Lijuan; Peng, Zhimin

    2014-08-01

    The effect of self-absorption on emission intensity distributions can be used for species concentration measurements. A calculation model is developed based on the Beer-Lambert law to quantify this effect. And then, a calibration-free measurement method is proposed on the basis of this model by establishing the relationship between gas concentration and absorption strength. The effect of collision parameters and rotational temperature on the method is also discussed. The proposed method is verified by investigating the nitric oxide emission bands (A²Σ⁺→X²∏) that are generated by a pulsed corona discharge at various gas concentrations. Experiment results coincide well with the expectations, thus confirming the precision and accuracy of the proposed measurement method. PMID:25090323

  3. Electron mobility in liquid and supercritical helium measured using corona discharges: a new semi-empirical model for cavity formation.

    PubMed

    Aitken, F; Li, Z-L; Bonifaci, N; Denat, A; von Haeften, K

    2011-01-14

    Electron mobilities in supercritical and liquid helium were investigated as a function of the density. The mobilities were derived from I(V) curves measured in a high-pressure cryogenic cell using a corona discharge in point-plane electrode geometry for charge generation. The presented data spans a wide pressure and temperature range due to the versatility of our experimental set-up. Where data from previous investigations is available for comparison, very good agreement is found. We present a semi-empirical model to calculate electron mobilities both in the liquid and supercritical phase. This model requires the electron-helium scattering length and thermodynamic state equations as the only input and circumvents any need to consider surface tension. Our semi-empirical model reproduces experimental data very well, in particular towards lower densities where transitions from localised to delocalised electron states were observed. PMID:21052578

  4. Condition for Positive Corona Inception from Thundercloud Hydrometeors

    NASA Astrophysics Data System (ADS)

    Rassoul, H. K.; Liu, N.; Dwyer, J. R.

    2010-12-01

    Corona discharges from hydrometeors (i.e., water droplets and ice particles) are an important component in thunderstorm charging and discharging processes. In particular, they have long been recognized as playing a critical role in lightning initiation. It has been noted that the observed maximum thunderstorm electric fields are consistently about an order of magnitude smaller than the conventional breakdown threshold field [e.g., Marshall et al., JGR, 100, 7097, 1995]. One of the lightning initiation hypotheses suggests that lightning begins with corona streamers emitted from thundercloud hydrometeors that can locally enhance the thunderstorm electric field to trigger electrical breakdown of air [e.g., Petersen et al., JGR, 113, D17205, 2008]. Many studies have been conducted to understand the physics of corona discharges from hydrometeors and to determine their onset conditions and discharge characteristics. However, the current knowledge on the dependence of the corona onset on pressure and humidity is inconclusive. In this study, we report an investigation on the inception condition of positive corona discharges from thundercloud hydrometeors that are simulated as a spherical point electrode. The inception condition is examined using the physical model discussed by Naidis [J. Phys. D: Appl. Phys., 38, 2211, 2005], which suggests positive corona discharges become self-sustaining when the number of ionizing UV photons produced by all secondary avalanches is equal to that by a primary avalanche. We present the inception condition for the positive corona discharges in both dry and humid air at pressure from ground to thundercloud altitude. We discuss how pressure and humidity affect the corona onset. In general, a stronger avalanche multiplication is required for the inception of the corona discharges at the condition of higher pressure, more water vapor content, and larger hydrometeors. Finally, we discuss the implications of our results to thunderstorm

  5. Oxidation of ammonium sulfite by a multi-needle-to-plate gas phase pulsed corona discharge reactor

    NASA Astrophysics Data System (ADS)

    Ren, Hua; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-03-01

    The oxidation of ammonium sulfite in the ammonia-based flue gas desulfurization (FGD) process was investigated in a multi-needle-to-plate gas phase pulsed corona discharge reactor in this paper. The effect of several parameters, including capacitance and peak pulse voltage of discharge system, electrode gap and bubbling gas flow rate on the oxidation rate of ammonium sulfite was reviewed. The oxidation rate of ammonium sulfite could reach 47.2% at the capacitance, the peak pulse voltage, electrode gap and bubbling gas flow rate equal to 2 nF, -24.6 k V, 35 mm and 4 L min-1 within treatment time of 40 min The experimental results indicate that the gas phase pulsed discharge system with a multi-needle-to-plate electrode can oxide the ammonium sulfite. The oxidation rate increased with the applied capacitance and peak pulse voltage and decreased with the electrode gap. As the bubbling gas flow rate increased, the oxidation rate increased first and then tended to reach a stationary value. These results would be important for the process optimization of the (NH4)2SO3 to (NH4)2SO4 oxidation.

  6. Effect of Corona Discharges on the Inception of Positive Upward Leader-Streamer System

    NASA Astrophysics Data System (ADS)

    Wu, Chuanqi; Xie, Shijun; Qi, Fei; Li, Beibei; Wan, Junbiao; He, Junjia

    2013-11-01

    The critical-charge criterion of the stem-leader transition and the shielding effects of space charges on the streamer inception are two most contested issues on the inception of positive upward leader-streamer system (LSS). In this paper, a series of simulation experiments on the LSS inception were designed and carried out. A new critical-charge criterion in the range of 0.2-0.3 μC was proposed, and the previous criterion of 1.0 μC was proved to be harsh. The shielding effect of positive space charges on the streamer inception was verified directly by the experiment results. A theoretical formula for calculating the LSS inception voltage by the first-corona inception voltage was obtained. An appropriate first-corona inception time for getting an earlier LSS inception was proved to be existent. At last, the effects of the so-called improved lightning rods, such as the early streamer emission rod (ESE) and the controllable lightning rod (CL), were discussed, and it seemed that they would not help to extend the protective zones of the lightning rods.

  7. The study of thermal silicon dioxide electrets formed by corona discharge and rapid-thermal annealing

    NASA Astrophysics Data System (ADS)

    Kho, Teng C.; Baker-Finch, Simeon C.; McIntosh, Keith R.

    2011-03-01

    A silicon dioxide (SiO2) electret passivates the surface of crystalline silicon (Si) in two ways: (i) when annealed and hydrogenated, the SiO2-Si interface has a low density of interface states, offering few energy levels through which electrons and holes can recombine; and (ii) the electret's quasipermanent charge repels carriers of the same polarity, preventing most from reaching the SiO2-Si interface and thereby limiting interface recombination. In this work, we engineer a charged thermal SiO2 electret on Si by depositing corona charge onto the surface of an oxide-coated Si wafer and subjecting the wafer to a rapid thermal anneal (RTA). We show that the surface-located corona charge is redistributed deeper into the oxide by the RTA. With 80 s of charging, and an RTA at 380 °C for 60 s, we measure an electret charge density of 5 × 1012 cm-2, above which no further benefit to surface passivation is attained. The procedure leads to a surface recombination velocity of less than 20 cm/s on 1 Ω-cm n-type Si, which is commensurate with the best passivation schemes employed on high-efficiency Si solar cells. In this paper, we introduce the method of SiO2 electret formation, analyze the relationship between charge density and interface recombination, and assess the redistribution of charge by the RTA.

  8. Influence of discharge production conditions, gas pressure, current intensity and voltage type, on SF6 dissociation under point-plane corona discharges

    NASA Astrophysics Data System (ADS)

    Belarbi, A.; Pradayrol, C.; Casanovas, J.; Casanovas, A. M.

    1995-02-01

    The study of the formation of Sulfur Hexafluoride (SF6) dissociation products under point to plane corona discharges was carried out at P(sub SF(6)) = 300 kPa using different discharges production conditions (50 Hz ac voltage, dc negative polarity voltage, mean discharge current intensity bar-I varying between 2 and 45 micro-A for dc negative polarity voltage), for two plane electrode materials (aluminum and stainless steel), and moisture levels (200 and 2000 ppm(sub v) H2O). The stable gaseous by-products formed (SO2F2, SOF4, SOF2, and S2F10) were assayed by gas-phase chromatography. The results indicate an important effect of the metal constituting the plane electrode and of the moisture conditions whatever the SF6 pressure (100-300 kPa), discharges intensity (bar-I) and voltage type studied. An effect of the increase of SF6 pressure up to 300 kPa was mainly observed for S2F10 and corresponds to a greater formation of this compound with P(sub SF(6)). The influence of the mean discharge current intensity on SF6 by-product formation carried out for a transported charge of 1 C showed that for I less than or equal to 10 micro-A, the effect varies according to the compound considered and depends on the water content of the SF6 and/or on the plane electrode material, whereas for bar-I greater than 10 micro-A, the levels of the four compound studied hardly vary with the current. Comparison of results obtained under ac and dc voltage for a cumulated charge of between 0.5 and 11 C showed that (SO2F2+SOF4) and SOF2 were formed in larger quantities with ac than with dc, unlike S2F10 for which the opposite effect was observed.

  9. State waste discharge permit application: 400 Area secondary cooling water

    SciTech Connect

    Not Available

    1992-12-01

    This document constitutes the Washington Administrative Code 173-216 State Waste Discharge Permit Application that serves as interim compliance as required by the Consent Order DE 91NM-177, for the 400 Area Secondary Cooling Water stream. As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permitting Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered in to Consent Order DE 91NM-177. The Consent Order DE 91NM-177 requires a series of permitting activities for liquid effluent discharges.

  10. Spectroscopic identification of benzyl-type radicals generated by corona discharge of 2-chloro-4-fluorotoluene.

    PubMed

    Huh, Chang Soon; Yoon, Young Wook; Lee, Sang Kuk

    2012-05-01

    By means of a technique of corona excited supersonic expansion coupled with a pinhole-type glass nozzle, we generated vibronically excited but jet-cooled benzyl-type radicals from precursor 2-chloro-4-fluorotoluene seeded in a large amount of inert carrier gas He. From an analysis of the visible vibronic emission spectrum, we found evidence of the formation of the 2-chloro-4-fluorobenzyl and 4-fluorobenzyl radicals. A possible pathway for the formation of these benzyl-type radicals is herein proposed. Also, the electronic energy in the D(1) → D(0) transition and the vibrational mode frequencies of the 2-chloro-4-fluorobenzyl radical in the ground electronic state were accurately determined, for the first time, by comparison with ab initio calculations and the known vibrational data of the precursor. PMID:22583229

  11. Vibronic emission spectrum of 2-chloro-6-fluorobenzyl radical produced in corona discharge

    NASA Astrophysics Data System (ADS)

    Yoon, Young Wook; Chae, Sang Youl; Lim, Manho; Lee, Sang Kuk

    2015-09-01

    We generated vibronically excited but jet-cooled 2-chloro-6-fluorobenzyl radical from precursor 2-chloro-6-fluorotoluene seeded in a large amount of helium carrier gas using a pinhole-type glass nozzle coupled with a technique of corona excited supersonic jet expansion. From an analysis of the visible vibronic emission spectrum observed, we found evidence of the formation of the 2-chloro-6-fluorobenzyl and 2-fluorobenzyl radicals, and determined the electronic energy in the D1 → D0 transition and the vibrational mode frequencies of the 2-chloro-6-fluorobenzyl radical in the ground electronic state, for the first time, by comparison with ab initio calculations of the precursor molecule.

  12. The regularity of primary and secondary muscle spindle afferent discharges

    PubMed Central

    Matthews, P. B. C.; Stein, R. B.

    1969-01-01

    1. The patterns of nerve impulses in the afferent fibres from muscle spindles have been studied using the soleus muscle of the decerebrate cat. Impulses from up to five single units were recorded simultaneously on magnetic tape, while the muscle was stretched to a series of different lengths. Various statistics were later determined by computer analysis. 2. After the ventral roots were cut to eliminate any motor outflow to the muscle spindles, both primary and secondary spindle endings discharged very regularly. At frequencies around 30 impulses/sec the coefficient of variation of the interspike interval distributions had a mean value of only 0·02 for the secondary endings and 0·058 for the primary endings. The values obtained for the two kinds of ending did not overlap. 3. When the ventral roots were intact, the `spontaneous' fusimotor activity considerably increased the variability of both kinds of endings. Secondary endings still discharged much more regularly than primary endings, even when the fusimotor activity increased the frequency of firing equally for the two kinds of endings. At frequencies around 30/sec the average coefficient of variation of the interval distributions was then 0·064 for the secondary endings and 0·25 for the primary endings. 4. When the ventral roots were intact there was usually an inverse relation between the values of successive interspike intervals. The first serial correlation coefficient often had values down to - 0·6 for both kinds of ending. Higher order serial correlation coefficients were also computed. 5. Approximate calculations, based on the variability observed when the ventral roots were intact, suggested that when the length of the muscle was constant an observer analysing a 1 sec period of discharge from a single primary ending would only be able to distinguish about six different lengths of the muscle. The corresponding figure for a secondary ending was twenty-five lengths. 6. The increase in variability with

  13. Spectroscopic identification of isomeric jet-cooled benzyl-type radicals formed from 3-fluoro-o-xylene by corona discharge

    NASA Astrophysics Data System (ADS)

    Yoon, Young Wook; Chae, Sang Youl; Lee, Sang Kuk

    2013-10-01

    By means of a pinhole-type glass nozzle designed for supersonic jet expansion along with corona discharge, vibronically excited but jet-cooled isomeric benzyl-type radicals were generated from the precursor 3-fluoro-o-xylene. The visible vibronic emission spectrum was recorded from the discharge system with a long-path monochromator. From an analysis of the spectrum observed, we identified the formation of two isomers, 2-methyl-3-fluorobenzyl and 2-methyl-6-fluorobenzyl radicals in the corona discharge of precursor, and determined for the first time the electronic energy in the D1 → D0 transition and vibrational mode frequencies in the D0 state for both isomers.

  14. Temporal and spatial evolution of EHD particle flow onset in air in a needle-to-plate negative DC corona discharge

    NASA Astrophysics Data System (ADS)

    Mizeraczyk, J.; Berendt, A.; Podlinski, J.

    2016-05-01

    In this paper we present images showing the temporal and spatial evolution of the electrohydrodynamic (EHD) flow of dust particles (cigarette smoke) suspended in still air in a needle-to-plate negative DC corona discharge arrangement just after the corona onset, i.e. in the first stage of development of the EHD particle flow. The experimental apparatus for our study of the EHD flow onset consisted of a needle-to-plate electrode arrangement, high voltage power supply and time-resolved EHD imaging system based on 2D time-resolved particle image velocimetry equipment. The time-resolved flow images clearly show the formation of a ball-like flow structure at the needle tip just after the corona discharge onset, and its evolution into a mushroom-like object moving to the collecting electrode. After a certain time, when the mushroom-like object is still present in the interelectrode gap a second mushroom-like object forms near the needle electrode and starts to move towards the collecting electrode. Before the first mushroom-like object reaches the collecting electrode several similar mushroom-like objects can be formed and presented simultaneously in the interelectrode gap. They look like a series of mushroom-like minijets shot from the needle electrode vicinity towards the collecting electrode. The simultaneous presence of mushroom-like minijets in the interelectrode gap in the corona discharge in particle-seeded air resembles the negative-ion-charged ‘clouds’ (induced by the Trichel pulses) traversing simultaneously the interelectrode gap of the corona discharge in air, predicted a long time ago by Loeb, and Lama and Gallo and recently by Dordizadeh et al. Analysing the time behaviours of the mushroom-like minijets and current waveform in the corona discharge in particle-seeded air, we found that the Trichel pulse trains, formed just after the corona onset initiates the mushroom-like minijets. The first stage of development of the EHD particle flow, the area of

  15. Elimination of sulphur odours at landfills by bioconversion and the corona discharge plasma technique.

    PubMed

    Xia, Fangfang; Liu, Xin; Kang, Ying; He, Ruo; Wu, Zucheng

    2015-01-01

    Hydrogen sulphide (H2S) contributes a lot to odours at landfills, which is a threat to the environment and the health of the staff therein. To mitigate its emission, the bioconversion within landfill cover soils (LCSs) was introduced. H2S emission and concentration both in the field air above the landfill and in microcosm testing were surveyed. Results indicated that H2S emission and concentration in the landfill varied with landfill seasons and sites. There existed relationship between H2S concentration and fluxes spatially and temporally. To characterize and assess the spatial and temporal diversity of sulphur-oxidizing bacteria (SOB) and sulphate-reducing bacteria (SRB) in the LCSs, the terminal-restriction fragment length polymorphism technique was employed. Using the functional genes of dsrB and soxB, SOB, including Halothiobacillus, Rhodothalassium, Paracocccus, Allochromatium, and Thiobacillus, and SRB, including Desulfovibrio, Syntrophobacter, Desulfomonile and Desulfobacca, were identical and exhibited the dominant role in the LCSs. By employing an alternative available corona reactor, more than 90% removal efficiencies of sulphides were demonstrated, suggesting that the LCSs for eliminating odours in a lower concentration would be feasible. PMID:25244028

  16. Characterization of Bonding Between Poly(dimethylsiloxane) and Cyclic Olefin Coplymer Using Corona Discharge Induced Grafting Polymerization

    PubMed Central

    Liu, Ke; Gu, Pan; Hamaker, Kiri; Fan, Z. Hugh

    2011-01-01

    Thermoplastics have been increasingly used for fabricating microfluidic devices because of their low cost, mechanical/biocompatible attributes, and well-established manufacturing processes. However, there is sometimes a need to integrate such a device with components made from other materials such as polydimethylsiloxane (PDMS). Bonding thermoplastics with PDMS to produce hybrid devices is not straightforward. We have reported our method to modify the surface property of a cyclic olefin copolymer (COC) substrate by using corona discharge and grafting polymerization of 3-(trimethoxysilyl)propyl methacrylate; the modified surface enabled strong bonding of COC with PDMS. In this paper, we report our studies on the surface modification mechanism using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurement. Using this bonding method, we fabricated a three-layer (COC/PDMS/COC) hybrid device consisting of elastomer-based valve arrays. The microvalve operation was confirmed through the displacement of a dye solution in a fluidic channel when the elastomer membrane was pneumatically actuated. Valve-enabled microfluidic handling was demonstrated. PMID:21962541

  17. Collision-induced dissociation analysis of negative atmospheric ion adducts in atmospheric pressure corona discharge ionization mass spectrometry.

    PubMed

    Sekimoto, Kanako; Takayama, Mitsuo

    2013-05-01

    Collision-induced dissociation (CID) experiments were performed on atmospheric ion adducts [M + R](-) formed between various types of organic compounds M and atmospheric negative ions R(-) [such as O2(-), HCO3(-), COO(-)(COOH), NO2(-), NO3(-), and NO3(-)(HNO3)] in negative-ion mode atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. All of the [M + R](-) adducts were fragmented to form deprotonated analytes [M - H](-) and/or atmospheric ions R(-), whose intensities in the CID spectra were dependent on the proton affinities of the [M - H](-) and R(-) fragments. Precursor ions [M + R](-) for which R(-) have higher proton affinities than [M - H](-) formed [M - H](-) as the dominant product. Furthermore, the CID of the adducts with HCO3(-) and NO3(-)(HNO3) led to other product ions such as [M + HO](-) and NO3(-), respectively. The fragmentation behavior of [M + R](-) for each R(-) observed was independent of analyte type (e.g., whether the analyte was aliphatic or aromatic, or possessed certain functional groups). PMID:23479312

  18. A corona discharge atmospheric pressure chemical ionization source with selective NO(+) formation and its application for monoaromatic VOC detection.

    PubMed

    Sabo, Martin; Matejčík, Štefan

    2013-11-21

    We have developed a new type of corona discharge (CD) for atmospheric pressure chemical ionization (APCI) for application in ion mobility spectrometry (IMS) as well as in mass spectrometry (MS). While the other CD-APCI sources are able to generate H3O(+)·(H2O)n as the major reactant ions in N2 or in zero air, the present CD-APCI source has the ability to generate up to 84% NO(+)·(H2O)n reactant ions in zero air. The change of the working gas from zero air to N2 allows us to change the major reactant ions from NO(+)·(H2O)n to H3O(+)·(H2O)n. In this paper we present the description of the new CD-APCI and discuss the processes associated with the NO(+) formation. The selective formation of NO(+)·(H2O)n reactant ions offers chemical ionization based on these ions which can be of great advantage for some classes of chemicals. We demonstrate here a significant increase in the sensitivity of the IMS-MS instrument for monoaromatic volatile organic compound (VOC) detection upon NO(+)·(H2O)n chemical ionization. PMID:24081306

  19. Characterization of bonding between poly(dimethylsiloxane) and cyclic olefin copolymer using corona discharge induced grafting polymerization.

    PubMed

    Liu, Ke; Gu, Pan; Hamaker, Kiri; Fan, Z Hugh

    2012-01-01

    Thermoplastics have been increasingly used for fabricating microfluidic devices because of their low cost, mechanical/biocompatible attributes, and well-established manufacturing processes. However, there is sometimes a need to integrate such a device with components made from other materials such as polydimethylsiloxane (PDMS). Bonding thermoplastics with PDMS to produce hybrid devices is not straightforward. We have reported our method to modify the surface property of a cyclic olefin copolymer (COC) substrate by using corona discharge and grafting polymerization of 3-(trimethoxysilyl)propyl methacrylate; the modified surface enabled strong bonding of COC with PDMS. In this paper, we report our studies on the surface modification mechanism using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurement. Using this bonding method, we fabricated a three-layer (COC/PDMS/COC) hybrid device consisting of elastomer-based valve arrays. The microvalve operation was confirmed through the displacement of a dye solution in a fluidic channel when the elastomer membrane was pneumatically actuated. Valve-enabled microfluidic handling was demonstrated. PMID:21962541

  20. Feasibility of corona discharge ion mobility spectrometry for direct analysis of samples extracted by dispersive liquid-liquid microextraction.

    PubMed

    Jafari, Mohammad T; Riahi, Farhad

    2014-05-23

    The capability of corona discharge ionization ion mobility spectrometry (CD-IMS) for direct analysis of the samples extracted by dispersive liquid-liquid microextraction (DLLME) was investigated and evaluated, for the first time. To that end, an appropriate new injection port was designed and constructed, resulting in possibility of direct injection of the known sample volume, without tedious sample preparation steps (e.g. derivatization, solvent evaporation, and re-solving in another solvent…). Malathion as a test compound was extracted from different matrices by a rapid and convenient DLLME method. The positive ion mobility spectra of the extracted malathion were obtained after direct injection of carbon tetrachloride or methanol solutions. The analyte responses were compared and the statistical results revealed the feasibility of direct analysis of the extracted samples in carbon tetrachloride, resulting in a convenient methodology. The coupled method of DLLME-CD-IMS was exhaustively validated in terms of sensitivity, dynamic range, recovery, and enrichment factor. Finally, various real samples of apple, river and underground water were analyzed, all verifying the feasibility and success of the proposed method for the easy extraction of the analyte using DLLME separation before the direct analysis by CD-IMS. PMID:24742534

  1. [Diagnosis of electron energy and comparative effects of OH, O or O3 on NO oxidation in pulsed corona discharge].

    PubMed

    Xuan, Jian-yong; Luo, Zhong-yang; Zhao, Lei; Jiang, Jian-ping; Gao, Xiang

    2012-05-01

    The spectrum of excited N2 molecules and ions was measured by optical emission spectroscopy in pulsed corona discharge with a wire-to-plate reactor. The ratio of emission intensities emitted by the excited molecules and ions of N2 was compared with numerical simulation to determine average electron energies and electric field distributions. Within 2 cm distance from wire electrode in horizontal and vertical directions, electric field and average electron energies appear to be in the ranges of 11.05 19.6 MV x m(-1) and 10.10-13.92 eV respectively; as the distance increases, average electron energies and electric field show a similar trend: first decrease and then increase. Chemically active species, such as OH, O and O3, can be generated through the energetic electron collisions with H2O and O2 directly or indirectly. For the NO oxidation, there is no coexistence of NO and O3, whereas there is a coexistence of NO and OH. NO is oxidized by O3 or O more efficiently than by OH radical. PMID:22827044

  2. Evaluation of the potential of pentachlorophenol degradation in soil by pulsed corona discharge plasma from soil characteristics.

    PubMed

    Wang, Tie Cheng; Lu, Na; Li, Jie; Wu, Yan

    2010-04-15

    Chlorinated organics are frequently found as harmful soil contaminants and persisted for extended periods of time. A novel approach, named pulsed corona discharge plasma (PCDP), was employed for the degradation of pentachlorophenol (PCP) in soil. Experimental results showed that 87% of PCP could be smoothly removed in 60 min. Increasing pulse voltage, enhancing soil pH, lowering humic acid (HA) in soil and reducing granular size of the soil were found to be favorable for PCP degradation efficiency. Oxidation and physical processes simultaneously contributed to PCP removal in soil and ozone was the main factor in PCDP treatment. C-Cl bonds in PCP were cleaved during PCDP treatment by Fourier transform infrared spectroscopy (FTIR) analysis. The mineralization of PCP was confirmed by total organic carbon (TOC) and dechlorination analyses. The main intermediate products such as tetrachlorocatechol, tetrachlorohydroquinone, acetic acid, formic acid, and oxalic acid were identified by HPLC/MS and ion chromatography. A possible pathway of PCP degradation in soil in such a system was proposed. PMID:20218544

  3. Spatial and temporal evolutions of ozone in a nanosecond pulse corona discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Duten, X.; Redolfi, M.; Aggadi, N.; Vega, A.; Hassouni, K.

    2011-10-01

    This paper deals with the experimental determination of the spatial and temporal evolutions of the ozone concentration in an atmospheric pressure pulsed plasma, working in the nanosecond regime. We observed that ozone was produced in the localized region of the streamer. The ozone transport requires a characteristic time well above the millisecond. The numerical modelling of the streamer expansion confirms that the hydrodynamic expansion of the filamentary discharge region during the streamer propagation does not lead to a significant transport of atomic oxygen and ozone. It appears therefore that only diffusional transport can take place, which requires a characteristic time of the order of 50 ms.

  4. Effects of water vapor on flue gas conditioning in the electric fields with corona discharge.

    PubMed

    Liqiang, Qi; Yajuan, Zhang

    2013-07-15

    Sulfur dioxide (SO2) removal via pulsed discharge nonthermal plasma in the absence of ammonia was investigated to determine how electrostatic precipitators (ESPs) can effectively collect particulate matter less than 2.5μm in diameter from flue gas. SO2 removal increased as water vapor concentration increased. In a wet-type plasma reactor, directing a gas-phase discharge plasma toward the water film surface significantly enhanced the liquid-phase oxidation of HSO3(-) to SO4(2-). Comparisons of various absorbents revealed that the hydroxyl radical is a key factor in plasma-induced liquid-phase reactions. The resistivity, size distribution, and cohesive force of fly ash at different water vapor contents were measured using a Bahco centrifuge, which is a dust electrical resistivity test instrument, as well as a cohesive force test apparatus developed by the researchers. When water vapor content increased by 5%, fly ash resistivity in flue gas decreased by approximately two orders of magnitude, adhesive force and size increased, and specific surface area decreased. Therefore, ESP efficiency increased. PMID:23669785

  5. Conversion of NO to NO(2) in air by a micro electric NO(x) converter based on a corona discharge process.

    PubMed

    Yoon, Seung-Il; Heo, Sungmoo; Song, Soonho; Kim, Yong-Jun

    2010-06-01

    A micro-electric-NO(x)-converter based on volume treatment is proposed for the evaluation of NO(x) concentrations in air. It can electrically convert NO(x) mixture from variable mixing rates into a fixed-mixing rate of 25% NO(2) and 75% NO using the corona discharge process with stable conversion efficiency and high throughput (space velocity = 6.3 x 10(4) h(-1)). The micro-electric-NO(x)-converter is based on a volume process. Applying high voltage to the electrodes of the micro-electric-NO(x)-converter generates a corona discharge. This discharge creates high-energy electrons, which collide with gas molecules. After these collisions, NO and O(2) are broken into single atoms, and they are re-combined as a balanced form, NO(2) in this case. The fabricated micro-electric-NO(x)-converter converted NO into NO(2) at conversion efficiency of 25.63%, when 5.5 kV (the applied corona power = 0.196 W) was applied to the micro-electric-NO(x)-converter. PMID:20498882

  6. Vibronic Spectroscopy of Hetero Dihalo-Benzyl Radicals Generated by Corona Discharge : Jet-Cooled Chlorofluorobenzyl Radicals

    NASA Astrophysics Data System (ADS)

    Yoon, Young; Lee, Sang

    2015-06-01

    The technique of corona excited supersonic jet expansion coupled with a pinhole-type glass nozzle was applied to vibronic spectroscopy of jet-cooled chlorofluorobenzyl radicals for the vibronic assignments and measurements of electronic energies of the D_1 → D_0 transition. The vibronic emission spectra were recorded with a long-path monochromator in the visible region. The 2,3-, 2,4-, and 2.5-chlorofluorobenzyl radicals were generated by corona discharge of corresponding precursor molecules, chlorofluorotoluenes seeded in a large amount of helium carrier gas. The emission spectra show the vibronic bands originating from two benzyl-type radicals, chlorofluorobenzyl and fluorobenzyl benzyl radicals, in which fluorobenzyl radicals were obtained by displacement of Cl by H atom produced by the dissociation of methyl C-H bond. From an analysis of the spectra observed, we could determine the electronic energies in D_1 → D_0 transition and vibrational mode frequencies at the D_0 state of chlorofluorobenzyl radicals which show the origin band of the electronic transition to be shifted to red region, comparing with the parental benzyl radical. The red-shift is highly sensitive to the number, position, and kind of substituents in chlorofluorobenzyl radicals. From the quantitative analysis of the red-shift, it has been found that the additivity rule, discovered recently by Lee group predicts the observation very well. In addition, the negligible contribution of the substituent at the 4-position, the nodal point of the Hückel's molecular orbital theory, can be well describes by the disconnection of substituent from molecular plane of the benzene ring available for delocalized π electrons. In this presentation, I will discuss the spectroscopic observation of new chlorofluorobenzyl radicals and substituent effect on electronic transition energy which is useful for identification of isomeric substituted benzyl radicals. C.~S.~Huh, Y.~W.~Yoon, and S.~K.~Lee, J. Chem

  7. Role of energy input model on the remediation of the p-Nitrophenol contaminated over-wet soil by pulsed corona discharge plasma

    NASA Astrophysics Data System (ADS)

    Wang, C. H.; Zhang, X.; Wang, T. C.; Lu, N.; Li, J.; Wu, Y.

    2013-03-01

    Low-temperature plasma has exhibited high efficiency for fast remediation of organic-polluted soil with water content (less than 20%). In the present study, the feasibility of remediation of p-Nitrophenol (PNP) contaminated over-wet soil (water content of 100%) was studied using pulsed corona discharge plasma, which was generated in a needle-plate discharge reactor. Effect of energy input model, including pulse voltage and pulse frequency on PNP degradation, was studied. Experimental results showed that about 86.3% of PNP could be smoothly removed after 60 min discharge treatment. PNP degradation efficiency increased with an increase in pulse voltage or pulse frequency, due to the enhancement of energy input. Existence of water contributed to H2O2 generation and the amount of exhausted H2O2 increased with pulse voltage. This study is expected to provide an alternative method for remediation of contaminated soil containing much water by pulsed discharge plasma without drying pretreatment.

  8. Automatic Identification of Interictal Epileptiform Discharges in Secondary Generalized Epilepsy

    PubMed Central

    Chang, Won-Du; Cha, Ho-Seung; Lee, Chany; Kang, Hoon-Chul; Im, Chang-Hwan

    2016-01-01

    Ictal epileptiform discharges (EDs) are characteristic signal patterns of scalp electroencephalogram (EEG) or intracranial EEG (iEEG) recorded from patients with epilepsy, which assist with the diagnosis and characterization of various types of epilepsy. The EEG signal, however, is often recorded from patients with epilepsy for a long period of time, and thus detection and identification of EDs have been a burden on medical doctors. This paper proposes a new method for automatic identification of two types of EDs, repeated sharp-waves (sharps), and runs of sharp-and-slow-waves (SSWs), which helps to pinpoint epileptogenic foci in secondary generalized epilepsy such as Lennox-Gastaut syndrome (LGS). In the experiments with iEEG data acquired from a patient with LGS, our proposed method detected EDs with an accuracy of 93.76% and classified three different signal patterns with a mean classification accuracy of 87.69%, which was significantly higher than that of a conventional wavelet-based method. Our study shows that it is possible to successfully detect and discriminate sharps and SSWs from background EEG activity using our proposed method. PMID:27379172

  9. Modeling of corona discharge combined with Mn²⁺ catalysis for the removal of SO₂ from simulated flue gas.

    PubMed

    Jiwu, Li; Lei, Fan

    2013-05-01

    This study investigated a mass-transfer process of the removal of SO₂ from simulated flue gas by corona discharge combined with Mn(2+) catalysis in wet reactor, including gas migration, liquid phase diffusion, and chemical reaction. The novelty formula of desulphurization efficiency and the flow rate of flue gas, discharge voltage, reaction enhancement factor, and the flow rate of water were established. It is reported that desulphurization efficiency remarkably increased with the increasing of enhancement factor and discharge voltage at 4000 mg m(-3) of SO₂ and 0.05 m(3)s(-1) of gas flow rate. However, the desulphurization efficiency had a slightly increase with the increasing of water flow rate. It is realizable that the energy consumption could be reduced to be lower than 0.3 kJ m(-3), which was acceptable for industrial application. The experimental data were well in accord with the calculated results of theoretical model. PMID:23490184

  10. Formation of hydrogen peroxide and degradation of phenol in synergistic system of pulsed corona discharge combined with TiO2 photocatalysis.

    PubMed

    Wang, Huijuan; Li, Jie; Quan, Xie; Wu, Yan; Li, Guofeng; Wang, Fangzheng

    2007-03-01

    In the present work, a synergistic system of pulsed corona discharge combined with TiO(2) photocatalysis has been developed to investigate the degradation rate of phenol solutions by varying experimental conditions of gas bubbling varieties (air, O(2), and Ar), solution pH values, and radical scavenger additives. The hydrogen peroxide (H(2)O(2)) concentration, which indicated the amount of hydroxyl radicals (OH) in the reaction system under different conditions of gas bubbling varieties and scavenger species, was also reviewed. The obtained results revealed that degradation efficiency of phenol could be increased by the addition of TiO(2) in pulsed discharge system. The gas of Ar and O(2) bubbled into the reaction system was found to be favorable for phenol degradation and H(2)O(2) formation. Both in air bubbling and in O(2) bubbling reaction system, the higher degradation rate of phenol occurred in the case of acidic solution. The addition of sodium carbonate or n-butanol in the solution displayed a negative effect for phenol removal, while the H(2)O(2) concentration showed different changing trend by adding different radical scavengers. The most effective degradation of the three main intermediates of catechol, 1,4-hydroquinone, and 1,4-benzoquinone formed during phenol decomposition existed in the synergistic system of pulsed corona discharge and TiO(2) photocatalysis bubbled with O(2). PMID:16920259