Science.gov

Sample records for coronavirus 3a protein

  1. Potential enhancement of osteoclastogenesis by severe acute respiratory syndrome coronavirus 3a/X1 protein.

    PubMed

    Obitsu, Saemi; Ahmed, Nursarat; Nishitsuji, Hironori; Hasegawa, Atsuhiko; Nakahama, Ken-ichi; Morita, Ikuo; Nishigaki, Kazuo; Hayashi, Takaya; Masuda, Takao; Kannagi, Mari

    2009-01-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) causes a lung disease with high mortality. In addition, osteonecrosis and bone abnormalities with reduced bone density have been observed in patients following recovery from SARS, which were partly but not entirely explained by the short-term use of steroids. Here, we demonstrate that human monocytes, potential precursors of osteoclasts, partly express angiotensin converting enzyme 2 (ACE2), a cellular receptor of SARS-CoV, and that expression of an accessory protein of SARS-CoV, 3a/X1, in murine macrophage cell line RAW264.7 cells, enhanced NF-kappaB activity and differentiation into osteoclast-like cells in the presence of receptor activator of NF-kappaB ligand (RANKL). Furthermore, human epithelial A549 cells expressed ACE2, and expression of 3a/X1 in these cells up-regulated TNF-alpha, which is known to accelerate osteoclastogenesis. 3a/X1 also enhanced RANKL expression in mouse stromal ST2 cells. These findings indicate that SARS-CoV 3a/X1 might promote osteoclastogenesis by direct and indirect mechanisms. PMID:19685004

  2. The Coronavirus Nucleocapsid Is a Multifunctional Protein

    PubMed Central

    McBride, Ruth; van Zyl, Marjorie; Fielding, Burtram C.

    2014-01-01

    The coronavirus nucleocapsid (N) is a structural protein that forms complexes with genomic RNA, interacts with the viral membrane protein during virion assembly and plays a critical role in enhancing the efficiency of virus transcription and assembly. Recent studies have confirmed that N is a multifunctional protein. The aim of this review is to highlight the properties and functions of the N protein, with specific reference to (i) the topology; (ii) the intracellular localization and (iii) the functions of the protein. PMID:25105276

  3. Preliminary characterization of the structural proteins of the coronaviruses, sialodacryoadenitis virus and Parker's rat coronavirus.

    PubMed Central

    Barker, M G; Percy, D H; Hovland, D J; MacInnes, J I

    1994-01-01

    A procedure was developed for the partial purification of the rat coronaviruses, sialodacryoadenitis virus (SDAV) and Parker's rat coronavirus (PRC). The SDAV and PRC were replicated in L-2 cell monolayer cultures, precipitated with ammonium sulphate, and further concentrated using sucrose density gradient centrifugation. The major SDAV and PRC proteins were identified by immunoblotting and compared with those of the JHM strain of mouse hepatitis virus (MHV-JHM). Monoclonal antibodies (MAb) against the M protein of JHM recognized proteins interpreted to be slightly smaller in immunoblots of SDAV and PRC (22.8 vs 23K for JHM). Similarly, a monoclonal antibody against the JHM N protein reacted with proteins of 53K in SDAV and PRC (vs 56 K for JHM). Polyclonal antisera to all three viruses also cross-reacted with the M and N proteins. Some cross-reactivity amongst the S proteins was observed. Based on these data, the structural proteins of the rat coronaviruses, SDAV and PRC are closely related to those of MHV-JHM. Images Fig. 1. Fig. 2. Fig. 2. PMID:8004548

  4. Trafficking motifs in the SARS-coronavirus nucleocapsid protein

    SciTech Connect

    You, Jae-Hwan; Reed, Mark L.; Hiscox, Julian A. . E-mail: j.a.hiscox@leeds.ac.uk

    2007-07-13

    The severe acute respiratory syndrome-coronavirus nucleocapsid (N) protein is involved in virus replication and modulation of cell processes. In this latter respect control may in part be achieved through the sub-cellular localisation of the protein. N protein predominately localises in the cytoplasm (the site of virus replication and assembly) but also in the nucleus/nucleolus. Using a combination of live-cell and confocal microscopy coupled to mutagenesis we identified a cryptic nucleolar localisation signal in the central part of the N protein. In addition, based on structural comparison to the avian coronavirus N protein, a nuclear export signal was identified in the C-terminal region of the protein.

  5. The Nucleocapsid Protein of Human Coronavirus NL63

    PubMed Central

    Zuwała, Kaja; Golda, Anna; Kabala, Wojciech; Burmistrz, Michał; Zdzalik, Michal; Nowak, Paulina; Kedracka-Krok, Sylwia; Zarebski, Mirosław; Dobrucki, Jerzy; Florek, Dominik; Zeglen, Sławomir; Wojarski, Jacek; Potempa, Jan; Dubin, Grzegorz; Pyrc, Krzysztof

    2015-01-01

    Human coronavirus (HCoV) NL63 was first described in 2004 and is associated with respiratory tract disease of varying severity. At the genetic and structural level, HCoV-NL63 is similar to other members of the Coronavirinae subfamily, especially human coronavirus 229E (HCoV-229E). Detailed analysis, however, reveals several unique features of the pathogen. The coronaviral nucleocapsid protein is abundantly present in infected cells. It is a multi-domain, multi-functional protein important for viral replication and a number of cellular processes. The aim of the present study was to characterize the HCoV-NL63 nucleocapsid protein. Biochemical analyses revealed that the protein shares characteristics with homologous proteins encoded in other coronaviral genomes, with the N-terminal domain responsible for nucleic acid binding and the C-terminal domain involved in protein oligomerization. Surprisingly, analysis of the subcellular localization of the N protein of HCoV-NL63 revealed that, differently than homologous proteins from other coronaviral species except for SARS-CoV, it is not present in the nucleus of infected or transfected cells. Furthermore, no significant alteration in cell cycle progression in cells expressing the protein was observed. This is in stark contrast with results obtained for other coronaviruses, except for the SARS-CoV. PMID:25700263

  6. Envelope protein palmitoylations are crucial for murine coronavirus assembly.

    PubMed

    Boscarino, Joseph A; Logan, Hillary L; Lacny, Jason J; Gallagher, Thomas M

    2008-03-01

    The coronavirus assembly process encloses a ribonucleoprotein genome into vesicles containing the lipid-embedded proteins S (spike), E (envelope), and M (membrane). This process depends on interactions with membranes that may involve palmitoylation, a common posttranslational lipidation of cysteine residues. To determine whether specific palmitoylations influence coronavirus assembly, we introduced plasmid DNAs encoding mouse hepatitis coronavirus (MHV) S, E, M, and N (nucleocapsid) into 293T cells and found that virus-like particles (VLPs) were robustly assembled and secreted into culture medium. Palmitate adducts predicted on cysteines 40, 44, and 47 of the 83-residue E protein were then evaluated by constructing mutant cDNAs with alanine or glycine codon substitutions at one or more of these positions. Triple-substituted proteins (E.Ts) lacked palmitate adducts. Both native E and E.T proteins localized at identical perinuclear locations, and both copurified with M proteins, but E.T was entirely incompetent for VLP production. In the presence of the E.T proteins, the M protein subunits accumulated into detergent-insoluble complexes that failed to secrete from cells, while native E proteins mobilized M into detergent-soluble secreted forms. Many of these observations were corroborated in the context of natural MHV infections, with native E, but not E.T, complementing debilitated recombinant MHVs lacking E. Our findings suggest that palmitoylations are essential for E to act as a vesicle morphogenetic protein and further argue that palmitoylated E proteins operate by allowing the primary coronavirus assembly subunits to assume configurations that can mobilize into secreted lipid vesicles and virions. PMID:18184706

  7. Development of a SARS Coronavirus Vaccine from Recombinant Spike Protein Plus Delta Inulin Adjuvant.

    PubMed

    McPherson, Clifton; Chubet, Richard; Holtz, Kathy; Honda-Okubo, Yoshikazu; Barnard, Dale; Cox, Manon; Petrovsky, Nikolai

    2016-01-01

    Given periodic outbreaks of fatal human infections caused by coronaviruses, development of an optimal coronavirus vaccine platform capable of rapid production is an ongoing priority. This chapter describes the use of an insect cell expression system for rapid production of a recombinant vaccine against severe acute respiratory syndrome coronavirus (SARS). Detailed methods are presented for expression, purification, and release testing of SARS recombinant spike protein antigen, followed by adjuvant formulation and animal testing. The methods herein described for rapid development of a highly protective SARS vaccine are equally suited to rapid development of vaccines against other fatal human coronavirus infections, e.g., the MERS coronavirus. PMID:27076136

  8. Coronavirus envelope (E) protein remains at the site of assembly

    SciTech Connect

    Venkatagopalan, Pavithra; Daskalova, Sasha M.; Lopez, Lisa A.; Dolezal, Kelly A.; Hogue, Brenda G.

    2015-04-15

    Coronaviruses (CoVs) assemble at endoplasmic reticulum Golgi intermediate compartment (ERGIC) membranes and egress from cells in cargo vesicles. Only a few molecules of the envelope (E) protein are assembled into virions. The role of E in morphogenesis is not fully understood. The cellular localization and dynamics of mouse hepatitis CoV A59 (MHV) E protein were investigated to further understanding of its role during infection. E protein localized in the ERGIC and Golgi with the amino and carboxy termini in the lumen and cytoplasm, respectively. E protein does not traffic to the cell surface. MHV was genetically engineered with a tetracysteine tag at the carboxy end of E. Fluorescence recovery after photobleaching (FRAP) showed that E is mobile in ERGIC/Golgi membranes. Correlative light electron microscopy (CLEM) confirmed the presence of E in Golgi cisternae. The results provide strong support that E proteins carry out their function(s) at the site of budding/assembly. - Highlights: • Mouse hepatitis coronavirus (MHV-CoV) E protein localizes in the ERGIC and Golgi. • MHV-CoV E does not transport to the cell surface. • MHV-CoV can be genetically engineered with a tetracysteine tag appended to E. • First FRAP and correlative light electron microscopy of a CoV E protein. • Live-cell imaging shows that E is mobile in ERGIC/Golgi membranes.

  9. Coronavirus envelope (E) protein remains at the site of assembly.

    PubMed

    Venkatagopalan, Pavithra; Daskalova, Sasha M; Lopez, Lisa A; Dolezal, Kelly A; Hogue, Brenda G

    2015-04-01

    Coronaviruses (CoVs) assemble at endoplasmic reticulum Golgi intermediate compartment (ERGIC) membranes and egress from cells in cargo vesicles. Only a few molecules of the envelope (E) protein are assembled into virions. The role of E in morphogenesis is not fully understood. The cellular localization and dynamics of mouse hepatitis CoV A59 (MHV) E protein were investigated to further understanding of its role during infection. E protein localized in the ERGIC and Golgi with the amino and carboxy termini in the lumen and cytoplasm, respectively. E protein does not traffic to the cell surface. MHV was genetically engineered with a tetracysteine tag at the carboxy end of E. Fluorescence recovery after photobleaching (FRAP) showed that E is mobile in ERGIC/Golgi membranes. Correlative light electron microscopy (CLEM) confirmed the presence of E in Golgi cisternae. The results provide strong support that E proteins carry out their function(s) at the site of budding/assembly. PMID:25726972

  10. Feline Coronavirus 3c Protein: A Candidate for a Virulence Marker?

    PubMed

    Hora, A S; Tonietti, P O; Taniwaki, S A; Asano, K M; Maiorka, P; Richtzenhain, L J; Brandão, P E

    2016-01-01

    Feline infectious peritonitis virus (FIPV) is highly virulent and responsible for the highly fatal disease feline infectious peritonitis (FIP), whereas feline enteric coronavirus (FECV) is widespread among the feline population and typically causes asymptomatic infections. Some candidates for genetic markers capable of differentiating these two pathotypes of a unique virus (feline coronavirus) have been proposed by several studies. In the present survey, in order to search for markers that can differentiate FECV and FIPV, several clones of the 3a-c, E, and M genes were sequenced from samples obtained from cats with or without FIP. All genes showed genetic diversity and suggested the presence of FCoV mutant spectrum capable of producing a virulent pathotype in an individual-specific way. In addition, all the feline coronavirus FIPV strains demonstrated a truncated 3c protein, and the 3c gene was the only observed pathotypic marker for FCoVs, showing that 3c gene is a candidate marker for the distinction between the two pathotypes when the mutant spectrum is taken into account. PMID:27243037

  11. Genetic and antigenic characterization of recombinant nucleocapsid proteins derived from canine coronavirus and canine respiratory coronavirus in China.

    PubMed

    Lu, Shuai; Chen, Yingzhu; Qin, Kun; Zhou, Jianfang; Lou, Yongliang; Tan, Wenjie

    2016-06-01

    To characterize the antigenicity of nucleocapsid proteins (NP) derived from canine coronavirus (CCoV) and canine respiratory coronavirus (CRCoV) in China, the N genes of CCoV (CCoV-BJ70) and CRCoV (CRCoV-BJ202) were cloned from swabs obtained from diseased pet dogs in Beijing and then sequenced. The recombinant NPs (rNPs) were expressed in Escherichia coli and purified by nickel-affinity column and size exclusion chromatography. Sequencing data indicated that the N genes of CCoV-BJ70 and CRCoV-BJ202 belonging to two distinctly different groups were relatively conserved within each subgroup. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results showed that rNPs of CCoV and CRCoV were expressed efficiently and isolated with a final purity of over 95%. Western blot analysis revealed the rNP from CRCoV could cross-react with mice antisera against human coronavirus (HCoV-229E, NL63, OC43, HKU1), while rNP of CCoV had cross-reactivity with only anti-sera against viruses belonging to the same group (HCoV-229E and NL63). In summary, CCoV and CRCoV rNPs were successfully expressed in E. coli and showed antigenic cross-reactivity with antisera raised against human coronaviruses. These findings indicate that further serologic studies on coronavirus infections at the animal-human interface are needed. PMID:27084706

  12. The Nucleocapsid Protein of Coronaviruses Acts as a Viral Suppressor of RNA Silencing in Mammalian Cells

    PubMed Central

    Cui, Lei; Wang, Haiying; Ji, Yanxi; Yang, Jie; Xu, Shan; Huang, Xingyu; Wang, Zidao; Qin, Lei; Tien, Po; Zhou, Xi

    2015-01-01

    ABSTRACT RNA interference (RNAi) is a process of eukaryotic posttranscriptional gene silencing that functions in antiviral immunity in plants, nematodes, and insects. However, recent studies provided strong supports that RNAi also plays a role in antiviral mechanism in mammalian cells. To combat RNAi-mediated antiviral responses, many viruses encode viral suppressors of RNA silencing (VSR) to facilitate their replication. VSRs have been widely studied for plant and insect viruses, but only a few have been defined for mammalian viruses currently. We identified a novel VSR from coronaviruses, a group of medically important mammalian viruses including Severe acute respiratory syndrome coronavirus (SARS-CoV), and showed that the nucleocapsid protein (N protein) of coronaviruses suppresses RNAi triggered by either short hairpin RNAs or small interfering RNAs in mammalian cells. Mouse hepatitis virus (MHV) is closely related to SARS-CoV in the family Coronaviridae and was used as a coronavirus replication model. The replication of MHV increased when the N proteins were expressed in trans, while knockdown of Dicer1 or Ago2 transcripts facilitated the MHV replication in mammalian cells. These results support the hypothesis that RNAi is a part of the antiviral immunity responses in mammalian cells. IMPORTANCE RNAi has been well known to play important antiviral roles from plants to invertebrates. However, recent studies provided strong supports that RNAi is also involved in antiviral response in mammalian cells. An important indication for RNAi-mediated antiviral activity in mammals is the fact that a number of mammalian viruses encode potent suppressors of RNA silencing. Our results demonstrate that coronavirus N protein could function as a VSR through its double-stranded RNA binding activity. Mutational analysis of N protein allowed us to find out the critical residues for the VSR activity. Using the MHV-A59 as the coronavirus replication model, we showed that ectopic

  13. Middle East Respiratory Syndrome Coronavirus NS4b Protein Inhibits Host RNase L Activation

    PubMed Central

    Thornbrough, Joshua M.; Jha, Babal K.; Yount, Boyd; Goldstein, Stephen A.; Li, Yize; Elliott, Ruth; Sims, Amy C.; Baric, Ralph S.; Silverman, Robert H.

    2016-01-01

    ABSTRACT Middle East respiratory syndrome coronavirus (MERS-CoV) is the first highly pathogenic human coronavirus to emerge since severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002. Like many coronaviruses, MERS-CoV carries genes that encode multiple accessory proteins that are not required for replication of the genome but are likely involved in pathogenesis. Evasion of host innate immunity through interferon (IFN) antagonism is a critical component of viral pathogenesis. The IFN-inducible oligoadenylate synthetase (OAS)-RNase L pathway activates upon sensing of viral double-stranded RNA (dsRNA). Activated RNase L cleaves viral and host single-stranded RNA (ssRNA), which leads to translational arrest and subsequent cell death, preventing viral replication and spread. Here we report that MERS-CoV, a lineage C Betacoronavirus, and related bat CoV NS4b accessory proteins have phosphodiesterase (PDE) activity and antagonize OAS-RNase L by enzymatically degrading 2′,5′-oligoadenylate (2-5A), activators of RNase L. This is a novel function for NS4b, which has previously been reported to antagonize IFN signaling. NS4b proteins are distinct from lineage A Betacoronavirus PDEs and rotavirus gene-encoded PDEs, in having an amino-terminal nuclear localization signal (NLS) and are localized mostly to the nucleus. However, the expression level of cytoplasmic MERS-CoV NS4b protein is sufficient to prevent activation of RNase L. Finally, this is the first report of an RNase L antagonist expressed by a human or bat coronavirus and provides a specific mechanism by which this occurs. Our findings provide a potential mechanism for evasion of innate immunity by MERS-CoV while also identifying a potential target for therapeutic intervention. PMID:27025250

  14. Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate

    PubMed Central

    Cottam, Eleanor M; Maier, Helena J; Manifava, Maria; Vaux, Laura C; Chandra-Schoenfelder, Priya; Gerner, Wilhelm; Britton, Paul; Ktistakis, Nick T

    2011-01-01

    Autophagy is a cellular response to starvation which generates autophagosomes to carry cellular organelles and long-lived proteins to lysosomes for degradation. Degradation through autophagy can provide an innate defense against virus infection, or conversely autophagosomes can promote infection by facilitating assembly of replicase proteins. We demonstrate that the avian coronavirus, infectious bronchitis virus (IBV), activates autophagy. A screen of individual IBV nonstructural proteins (nsps) showed that autophagy was activated by IBV nsp6. This property was shared with nsp6 of mammalian coronaviruses mouse hepatitis virus, and severe acute respiratory syndrome virus, and the equivalent nsp5–7 of the arterivirus porcine reproductive and respiratory syndrome virus. These multiple-spanning transmembrane proteins located to the endoplasmic reticulum (ER) where they generated Atg5 and LC3II -positive vesicles, and vesicle formation was dependent on Atg5 and class III PI3 kinase. The vesicles recruited double-FYVE-domain containing protein (DFCP) indicating localized concentration of phosphatidylinositol 3 phosphate, and therefore shared many features with omegasomes formed from the ER in response to starvation. Omegasomes induced by viral nsp6 matured into autophagosomes that delivered LC3 to lysosomes and therefore recruited and recycled the proteins needed for autophagosome nucleation, expansion, cellular trafficking and delivery of cargo to lysosomes. The coronavirus nsp6 proteins activated omegasome and autophagosome formation independently of starvation, but activation did not involve direct inhibition of mTOR signaling, activation of sirtuin 1 or induction of ER stress. PMID:21799305

  15. The nonstructural protein 8 (nsp8) of the SARS coronavirus interacts with its ORF6 accessory protein

    SciTech Connect

    Kumar, Purnima; Gunalan, Vithiagaran; Liu Boping; Chow, Vincent T.K.; Druce, Julian; Birch, Chris; Catton, Mike; Fielding, Burtram C.; Tan, Yee-Joo; Lal, Sunil K.

    2007-09-30

    Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) caused a severe outbreak in several regions of the world in 2003. The SARS-CoV genome is predicted to contain 14 functional open reading frames (ORFs). The first ORF (1a and 1b) encodes a large polyprotein that is cleaved into nonstructural proteins (nsp). The other ORFs encode for four structural proteins (spike, membrane, nucleocapsid and envelope) as well as eight SARS-CoV-specific accessory proteins (3a, 3b, 6, 7a, 7b, 8a, 8b and 9b). In this report we have cloned the predicted nsp8 gene and the ORF6 gene of the SARS-CoV and studied their abilities to interact with each other. We expressed the two proteins as fusion proteins in the yeast two-hybrid system to demonstrate protein-protein interactions and tested the same using a yeast genetic cross. Further the strength of the interaction was measured by challenging growth of the positive interaction clones on increasing gradients of 2-amino trizole. The interaction was then verified by expressing both proteins separately in-vitro in a coupled-transcription translation system and by coimmunoprecipitation in mammalian cells. Finally, colocalization experiments were performed in SARS-CoV infected Vero E6 mammalian cells to confirm the nsp8-ORF6 interaction. To the best of our knowledge, this is the first report of the interaction between a SARS-CoV accessory protein and nsp8 and our findings suggest that ORF6 protein may play a role in virus replication.

  16. Canine Enteric Coronaviruses: Emerging Viral Pathogens with Distinct Recombinant Spike Proteins

    PubMed Central

    Licitra, Beth N.; Duhamel, Gerald E.; Whittaker, Gary R.

    2014-01-01

    Canine enteric coronavirus (CCoV) is an alphacoronavirus infecting dogs that is closely related to enteric coronaviruses of cats and pigs. While CCoV has traditionally caused mild gastro-intestinal clinical signs, there are increasing reports of lethal CCoV infections in dogs, with evidence of both gastrointestinal and systemic viral dissemination. Consequently, CCoV is now considered to be an emerging infectious disease of dogs. In addition to the two known serotypes of CCoV, novel recombinant variants of CCoV have been found containing spike protein N-terminal domains (NTDs) that are closely related to those of feline and porcine strains. The increase in disease severity in dogs and the emergence of novel CCoVs can be attributed to the high level of recombination within the spike gene that can occur during infection by more than one CCoV type in the same host. PMID:25153347

  17. Coronavirus Infection Modulates the Unfolded Protein Response and Mediates Sustained Translational Repression▿

    PubMed Central

    Bechill, John; Chen, Zhongbin; Brewer, Joseph W.; Baker, Susan C.

    2008-01-01

    During coronavirus replication, viral proteins induce the formation of endoplasmic reticulum (ER)-derived double-membrane vesicles for RNA synthesis, and viral structural proteins assemble virions at the ER-Golgi intermediate compartment. We hypothesized that the association and intense utilization of the ER during viral replication would induce the cellular unfolded protein response (UPR), a signal transduction cascade that acts to modulate translation, membrane biosynthesis, and the levels of ER chaperones. Here, we report that infection by the murine coronavirus mouse hepatitis virus (MHV) triggers the proximal UPR transducers, as revealed by monitoring the IRE1-mediated splicing of XBP-1 mRNA and the cleavage of ATF6α. However, we detected minimal downstream induction of UPR target genes, including ERdj4, ER degradation-enhancing α-mannosidase-like protein, and p58IPK, or expression of UPR reporter constructs. Translation initiation factor eIF2α is highly phosphorylated during MHV infection, and translation of cellular mRNAs is attenuated. Furthermore, we found that the critical homeostasis regulator GADD34, which recruits protein phosphatase 1 to dephosphorylate eIF2α during the recovery phase of the UPR, is not expressed during MHV infection. These results suggest that MHV modifies the UPR by impeding the induction of UPR-responsive genes, thereby favoring a sustained shutdown of the synthesis of host cell proteins while the translation of viral proteins escalates. The role of this modified response and its potential relevance to viral mechanisms for the evasion of innate defense signaling pathways during coronavirus replication are discussed. PMID:18305036

  18. Feline Coronavirus 3c Protein: A Candidate for a Virulence Marker?

    PubMed Central

    Hora, A. S.; Tonietti, P. O.; Taniwaki, S. A.; Asano, K. M.; Maiorka, P.; Richtzenhain, L. J.; Brandão, P. E.

    2016-01-01

    Feline infectious peritonitis virus (FIPV) is highly virulent and responsible for the highly fatal disease feline infectious peritonitis (FIP), whereas feline enteric coronavirus (FECV) is widespread among the feline population and typically causes asymptomatic infections. Some candidates for genetic markers capable of differentiating these two pathotypes of a unique virus (feline coronavirus) have been proposed by several studies. In the present survey, in order to search for markers that can differentiate FECV and FIPV, several clones of the 3a–c, E, and M genes were sequenced from samples obtained from cats with or without FIP. All genes showed genetic diversity and suggested the presence of FCoV mutant spectrum capable of producing a virulent pathotype in an individual-specific way. In addition, all the feline coronavirus FIPV strains demonstrated a truncated 3c protein, and the 3c gene was the only observed pathotypic marker for FCoVs, showing that 3c gene is a candidate marker for the distinction between the two pathotypes when the mutant spectrum is taken into account. PMID:27243037

  19. SARS/avian coronaviruses.

    PubMed

    Monceyron Jonassen, C

    2006-01-01

    In the hunt for the aetiology of the SARS outbreak in 2003, a newly developed virus DNA micro-array was successfully used to hybridise PCR products obtained by random amplification of nucleic acids extracted from a cell culture infected with material from a SARS patient. The SARS agent was found to hybridise with micro-array probes from both coronaviruses and astroviruses, but one of the coronavirus probes and the four astrovirus probes contained redundant sequences, spanning a highly conserved motif, named s2m, found at the 3' end of the genomes of almost all astroviruses, one picornavirus, and the poultry coronaviruses. The three other coronavirus probes, that hybridised with the SARS agent, were located in the replicase gene, and it could be concluded that the SARS agent was a novel coronavirus, harbouring s2m. The presence of this motif in different virus families is probably the result of recombinations between unrelated viruses, but its presence in both poultry and SARS coronaviruses could suggest a bird involvement in the history of the SARS coronavirus. A recent screening of wild birds for the presence of coronaviruses, using a pan-coronavirus RT-PCR, led to the identification of novel coronaviruses in the three species studied. Phylogenetic analyses performed on both replicase gene and nucleocapsid protein could not add support to a close relationship between avian and SARS coronaviruses, but all the novel avian coronaviruses were found to harbour s2m. The motif is inserted at a homologous place in avian and SARS coronavirus genomes, but in a somewhat different context for the SARS coronavirus. If the presence of s2m in these viruses is a result of two separate recombination events, this suggests that its particular position in these genomes is the only one that would not be deleterious for coronaviral replication, or that it is the result of a copy-choice recombination between coronaviruses, following an ancestral introduction in the coronavirus family by

  20. Identification of a Receptor-Binding Domain in the S Protein of the Novel Human Coronavirus Middle East Respiratory Syndrome Coronavirus as an Essential Target for Vaccine Development

    PubMed Central

    Du, Lanying; Zhao, Guangyu; Kou, Zhihua; Ma, Cuiqing; Sun, Shihui; Poon, Vincent K. M.; Lu, Lu; Wang, Lili; Debnath, Asim K.; Zheng, Bo-Jian

    2013-01-01

    A novel human Middle East respiratory syndrome coronavirus (MERS-CoV) caused outbreaks of severe acute respiratory syndrome (SARS)-like illness with a high mortality rate, raising concerns of its pandemic potential. Dipeptidyl peptidase-4 (DPP4) was recently identified as its receptor. Here we showed that residues 377 to 662 in the S protein of MERS-CoV specifically bound to DPP4-expressing cells and soluble DPP4 protein and induced significant neutralizing antibody responses, suggesting that this region contains the receptor-binding domain (RBD), which has a potential to be developed as a MERS-CoV vaccine. PMID:23824801

  1. Identification of phosphorylation sites in the nucleocapsid protein (N protein) of SARS-coronavirus

    NASA Astrophysics Data System (ADS)

    Lin, Liang; Shao, Jianmin; Sun, Maomao; Liu, Jinxiu; Xu, Gongjin; Zhang, Xumin; Xu, Ningzhi; Wang, Rong; Liu, Siqi

    2007-12-01

    After decoding the genome of SARS-coronavirus (SARS-CoV), next challenge is to understand how this virus causes the illness at molecular bases. Of the viral structural proteins, the N protein plays a pivot role in assembly process of viral particles as well as viral replication and transcription. The SARS-CoV N proteins expressed in the eukaryotes, such as yeast and HEK293 cells, appeared in the multiple spots on two-dimensional electrophoresis (2DE), whereas the proteins expressed in E. coli showed a single 2DE spotE These 2DE spots were further examined by Western blot and MALDI-TOF/TOF MS, and identified as the N proteins with differently apparent pI values and similar molecular mass of 50 kDa. In the light of the observations and other evidences, a hypothesis was postulated that the SARS-CoV N protein could be phosphorylated in eukaryotes. To locate the plausible regions of phosphorylation in the N protein, two truncated N proteins were generated in E. coli and treated with PKC[alpha]. The two truncated N proteins after incubation of PKC[alpha] exhibited the differently electrophoretic behaviors on 2DE, suggesting that the region of 1-256 aa in the N protein was the possible target for PKC[alpha] phosphorylation. Moreover, the SARS-CoV N protein expressed in yeast were partially digested with trypsin and carefully analyzed by MALDI-TOF/TOF MS. In contrast to the completely tryptic digestion, these partially digested fragments generated two new peptide mass signals with neutral loss, and MS/MS analysis revealed two phosphorylated peptides located at the "dense serine" island in the N protein with amino acid sequences, GFYAEGSRGGSQASSRSSSR and GNSGNSTPGSSRGNSPARMASGGGK. With the PKC[alpha] phosphorylation treatment and the partially tryptic digestion, the N protein expressed in E. coli released the same peptides as observed in yeast cells. Thus, this investigation provided the preliminary data to determine the phosphorylation sites in the SARS-CoV N protein, and

  2. Replication of murine coronavirus requires multiple cysteines in the endodomain of spike protein

    SciTech Connect

    Yang, Jinhua; Lv, Jun; Wang, Yuyan; Gao, Shuang; Yao, Qianqian; Qu, Di; Ye, Rong

    2012-06-05

    A conserved cysteine-rich motif located between the transmembrane domain and the endodomain is essential for membrane fusion and assembly of coronavirus spike (S) protein. Here, we proved that three cysteines within the motif, but not dependent on position, are minimally required for the survival of the recombinant mouse hepatitis virus. When the carboxy termini with these mutated motifs of S proteins were respectively introduced into a heterogeneous protein, both incorporation into lipid rafts and S-palmitoylation of these recombinant proteins showed a similar quantity requirement to cysteine residues. Meanwhile, the redistribution of these proteins on cellular surface indicated that the absence of the positively charged rather than cysteine residues in the motif might lead the dramatic reduction in syncytial formation of some mutants with the deleted motifs. These results suggest that multiple cysteine as well as charged residues concurrently improves the membrane-associated functions of S protein in viral replication and cytopathogenesis.

  3. Proteolytic Activation of the Porcine Epidemic Diarrhea Coronavirus Spike Fusion Protein by Trypsin in Cell Culture

    PubMed Central

    Wicht, Oliver; Li, Wentao; Willems, Lione; Meuleman, Tom J.; Wubbolts, Richard W.; van Kuppeveld, Frank J. M.; Rottier, Peter J. M.

    2014-01-01

    ABSTRACT Isolation of porcine epidemic diarrhea coronavirus (PEDV) from clinical material in cell culture requires supplementation of trypsin. This may relate to the confinement of PEDV natural infection to the protease-rich small intestine of pigs. Our study focused on the role of protease activity on infection by investigating the spike protein of a PEDV isolate (wtPEDV) using a reverse genetics system based on the trypsin-independent cell culture-adapted strain DR13 (caPEDV). We demonstrate that trypsin acts on the wtPEDV spike protein after receptor binding. We mapped the genetic determinant for trypsin-dependent cell entry to the N-terminal region of the fusion subunit of this class I fusion protein, revealing a conserved arginine just upstream of the putative fusion peptide as the potential cleavage site. Whereas coronaviruses are typically processed by endogenous proteases of the producer or target cell, PEDV S protein activation strictly required supplementation of a protease, enabling us to study mechanistic details of proteolytic processing. IMPORTANCE Recurring PEDV epidemics constitute a serious animal health threat and an economic burden, particularly in Asia but, as of recently, also on the North-American subcontinent. Understanding the biology of PEDV is critical for combatting the infection. Here, we provide new insight into the protease-dependent cell entry of PEDV. PMID:24807723

  4. Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture.

    PubMed

    Wicht, Oliver; Li, Wentao; Willems, Lione; Meuleman, Tom J; Wubbolts, Richard W; van Kuppeveld, Frank J M; Rottier, Peter J M; Bosch, Berend Jan

    2014-07-01

    Isolation of porcine epidemic diarrhea coronavirus (PEDV) from clinical material in cell culture requires supplementation of trypsin. This may relate to the confinement of PEDV natural infection to the protease-rich small intestine of pigs. Our study focused on the role of protease activity on infection by investigating the spike protein of a PEDV isolate (wtPEDV) using a reverse genetics system based on the trypsin-independent cell culture-adapted strain DR13 (caPEDV). We demonstrate that trypsin acts on the wtPEDV spike protein after receptor binding. We mapped the genetic determinant for trypsin-dependent cell entry to the N-terminal region of the fusion subunit of this class I fusion protein, revealing a conserved arginine just upstream of the putative fusion peptide as the potential cleavage site. Whereas coronaviruses are typically processed by endogenous proteases of the producer or target cell, PEDV S protein activation strictly required supplementation of a protease, enabling us to study mechanistic details of proteolytic processing. Importance: Recurring PEDV epidemics constitute a serious animal health threat and an economic burden, particularly in Asia but, as of recently, also on the North-American subcontinent. Understanding the biology of PEDV is critical for combatting the infection. Here, we provide new insight into the protease-dependent cell entry of PEDV. PMID:24807723

  5. Genome-Wide Screen Reveals Valosin-Containing Protein Requirement for Coronavirus Exit from Endosomes

    PubMed Central

    Wong, Hui Hui; Kumar, Pankaj; Tay, Felicia Pei Ling; Moreau, Dimitri

    2015-01-01

    ABSTRACT Coronaviruses are RNA viruses with a large zoonotic reservoir and propensity for host switching, representing a real threat for public health, as evidenced by severe acute respiratory syndrome (SARS) and the emerging Middle East respiratory syndrome (MERS). Cellular factors required for their replication are poorly understood. Using genome-wide small interfering RNA (siRNA) screening, we identified 83 novel genes supporting infectious bronchitis virus (IBV) replication in human cells. Thirty of these hits can be placed in a network of interactions with viral proteins and are involved in RNA splicing, membrane trafficking, and ubiquitin conjugation. In addition, our screen reveals an unexpected role for valosin-containing protein (VCP/p97) in early steps of infection. Loss of VCP inhibits a previously uncharacterized degradation of the nucleocapsid N protein. This inhibition derives from virus accumulation in early endosomes, suggesting a role for VCP in the maturation of virus-loaded endosomes. The several host factors identified in this study may provide avenues for targeted therapeutics. IMPORTANCE Coronaviruses are RNA viruses representing a real threat for public health, as evidenced by SARS and the emerging MERS. However, cellular factors required for their replication are poorly understood. Using genome-wide siRNA screening, we identified novel genes supporting infectious bronchitis virus (IBV) replication in human cells. The several host factors identified in this study may provide directions for future research on targeted therapeutics. PMID:26311884

  6. The crystal structure of ORF-9b, a lipid binding protein from the SARS coronavirus.

    PubMed

    Meier, Christoph; Aricescu, A Radu; Assenberg, Rene; Aplin, Robin T; Gilbert, Robert J C; Grimes, Jonathan M; Stuart, David I

    2006-07-01

    To achieve the greatest output from their limited genomes, viruses frequently make use of alternative open reading frames, in which translation is initiated from a start codon within an existing gene and, being out of frame, gives rise to a distinct protein product. These alternative protein products are, as yet, poorly characterized structurally. Here we report the crystal structure of ORF-9b, an alternative open reading frame within the nucleocapsid (N) gene from the SARS coronavirus. The protein has a novel fold, a dimeric tent-like beta structure with an amphipathic surface, and a central hydrophobic cavity that binds lipid molecules. This cavity is likely to be involved in membrane attachment and, in mammalian cells, ORF-9b associates with intracellular vesicles, consistent with a role in the assembly of the virion. Analysis of ORF-9b and other overlapping genes suggests that they provide snapshots of the early evolution of novel protein folds. PMID:16843897

  7. Use of recombinant nucleocapsid proteins for serological diagnosis of Feline coronavirus infection by three immunochromatographic tests.

    PubMed

    Takano, Tomomi; Ishihara, Yuka; Matsuoka, Masafumi; Yokota, Shoko; Matsuoka-Kobayashi, Yukie; Doki, Tomoyoshi; Hohdatsu, Tsutomu

    2013-10-26

    Three types of immunochromatographic assays (ICAs) were designed to detect anti-feline coronavirus (FCoV) antibodies. Recombinant FCoV nucleocapsid protein (rNP) was used as a conjugate or test line in all 3 ICA kits (CJIgG/TNP, CJNP/TNP, and CJNP/TPA). All three ICA kits were capable of detecting anti-FCoV antibodies; however, non-specific positive reactions of anti-FCoV antibody-negative plasma samples with the test line were observed in 2 ICA kits (CJIgG/TNP and CJNP/TNP), in which rNP was used as the test line. On the other hand, the specific detection of anti-FCoV antibodies was possible in all plasma, serum, whole blood, and ascitic fluid samples using the ICA kit with protein A blotted as the test line (CJNP/TPA). In addition, the specificity and sensitivity of ICA (CJNP/TPA) were equivalent to those of the reference ELISA. The development of simple antibody test methods using the principle of ICA (CJNP/TPA) for other coronavirus and feline viral infections is expected in the future. PMID:24513291

  8. Use of recombinant nucleocapsid proteins for serological diagnosis offeline coronavirus infection by three immunochromatographic tests.

    PubMed

    Takano, Tomomi; Ishihara, Yuka; Matsuoka, Masafumi; Yokota, Shoko; Matsuoka-Kobayashi, Yukie; Doki, Tomoyoshi; Hohdatsu, Tsutomu

    2014-02-01

    Three types of immunochromatographic assays (ICAs) were designed to detect anti-feline coronavirus (FCoV) antibodies. Recombinant FCoV nucleocapsid protein (rNP) was used as a conjugate or test line in all 3 ICA kits (CJIgG/TNP, CJNP/TNP, and CJNP/TPA). All three ICA kits were capable of detecting anti-FCoV antibodies; however, non-specific positive reactions of anti-FCoV antibody-negative plasma samples with the test line were observed in 2 ICA kits (CJIgG/TNP and CJNP/TNP), in which rNP was used as the test line. On the other hand, the specific detection of anti-FCoV antibodies was possible in all plasma, serum, whole blood, and ascitic fluid samples using the ICA kit with protein A blotted as the test line (CJNP/TPA). In addition, the specificity and sensitivity of ICA (CJNP/TPA) were equivalent to those of the reference ELISA. The development of simple antibody test methods using the principle of ICA (CJNP/TPA) for other coronavirus and feline viral infections is expected in the future. PMID:24516876

  9. Coronavirus Infections

    MedlinePlus

    Coronaviruses are common viruses that most people get some time in their life. They are common throughout the world, and they can infect people and animals. Several different coronaviruses can infect people ...

  10. Expression and purification of SARS coronavirus proteins using SUMO-fusions.

    PubMed

    Zuo, Xun; Mattern, Michael R; Tan, Robin; Li, Shuisen; Hall, John; Sterner, David E; Shoo, Joshua; Tran, Hiep; Lim, Peter; Sarafianos, Stefan G; Kazi, Lubna; Navas-Martin, Sonia; Weiss, Susan R; Butt, Tauseef R

    2005-07-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) proteins belong to a large group of proteins that is difficult to express in traditional expression systems. The ability to express and purify SARS-CoV proteins in large quantities is critical for basic research and for development of pharmaceutical agents. The work reported here demonstrates: (1) fusion of SUMO (small ubiquitin-related modifier), a 100 amino acid polypeptide, to the N-termini of SARS-CoV proteins dramatically enhances expression in Escherichia coli cells and (2) 6x His-tagged SUMO-fusions facilitate rapid purification of the viral proteins on a large scale. We have exploited the natural chaperoning properties of SUMO to develop an expression system suitable for proteins that cannot be expressed by traditional methodologies. A unique feature of the system is the SUMO tag, which enhances expression, facilitates purification, and can be efficiently cleaved by a SUMO-specific protease to generate native protein with a desired N-terminus. We have purified various SARS-CoV proteins under either native or denaturing conditions. These purified proteins have been used to generate highly specific polyclonal antibodies. Our study suggests that the SUMO-fusion technology will be useful for enhancing expression and purification of the viral proteins for structural and functional studies as well as for therapeutic uses. PMID:15939295

  11. Coronavirus receptor switch explained from the stereochemistry of protein-carbohydrate interactions and a single mutation.

    PubMed

    Bakkers, Mark J G; Zeng, Qinghong; Feitsma, Louris J; Hulswit, Ruben J G; Li, Zeshi; Westerbeke, Aniek; van Kuppeveld, Frank J M; Boons, Geert-Jan; Langereis, Martijn A; Huizinga, Eric G; de Groot, Raoul J

    2016-05-31

    Hemagglutinin-esterases (HEs) are bimodular envelope proteins of orthomyxoviruses, toroviruses, and coronaviruses with a carbohydrate-binding "lectin" domain appended to a receptor-destroying sialate-O-acetylesterase ("esterase"). In concert, these domains facilitate dynamic virion attachment to cell-surface sialoglycans. Most HEs (type I) target 9-O-acetylated sialic acids (9-O-Ac-Sias), but one group of coronaviruses switched to using 4-O-Ac-Sias instead (type II). This specificity shift required quasisynchronous adaptations in the Sia-binding sites of both lectin and esterase domains. Previously, a partially disordered crystal structure of a type II HE revealed how the shift in lectin ligand specificity was achieved. How the switch in esterase substrate specificity was realized remained unresolved, however. Here, we present a complete structure of a type II HE with a receptor analog in the catalytic site and identify the mutations underlying the 9-O- to 4-O-Ac-Sia substrate switch. We show that (i) common principles pertaining to the stereochemistry of protein-carbohydrate interactions were at the core of the transition in lectin ligand and esterase substrate specificity; (ii) in consequence, the switch in O-Ac-Sia specificity could be readily accomplished via convergent intramolecular coevolution with only modest architectural changes in lectin and esterase domains; and (iii) a single, inconspicuous Ala-to-Ser substitution in the catalytic site was key to the emergence of the type II HEs. Our findings provide fundamental insights into how proteins "see" sugars and how this affects protein and virus evolution. PMID:27185912

  12. Coronavirus JHM: Cell-Free Synthesis of Structural Protein p60

    PubMed Central

    Siddell, Stuart G.; Wege, Helmut; Barthel, Andrea; ter Meulen, Volker

    1980-01-01

    Sac(-) cells infected with murine coronavirus strain JHM shut off host cell protein synthesis and synthesized polypeptides with molecular weights of 150,000, 60,000, and 23,000. The 60,000- and 23,000-molecular-weight polypeptides comigrated with virion structural proteins p60 and p23, and the 60,000-molecular-weight protein was identified as p60 by tryptic peptide fingerprinting. Polyadenylate-containing RNA [poly(A) RNA] extracted from the cytoplasm of infected cells directed the synthesis of both 60,000- and 23,000-molecular-weight polypeptides in messenger-dependent cell-free systems derived from mouse L-cells and rabbit reticulocytes. The reticulocyte system also synthesized a 120,000-molecular-weight polypeptide that was specifically immunoprecipitated by antiserum raised against JHM virions. The identity of the 60,000- and 23,000-molecular-weight in vitro products was established by comigration with virion proteins, immunoprecipitation, and in the case of p60, tryptic peptide fingerprinting. The cytoplasmic poly(A) RNAs which encoded p60 and p23 sedimented in sucroseformamide gradients at 17S and 19S, respectively, and were clearly separable. These RNAs were among the major poly(A) RNA species synthesized in the cytoplasm of actinomycin D-treated cells late in infection, and the in vitro translation of size-fractionated RNA released from polysomes confirmed that they represent physiological mRNA's. These results suggest that the expression of the coronavirus JHM genome involves more than one subgenomic mRNA. Images PMID:7365865

  13. SARS coronavirus protein 7a interacts with human Ap4A-hydrolase

    PubMed Central

    2010-01-01

    The SARS coronavirus (SARS-CoV) open reading frame 7a (ORF 7a) encodes a 122 amino acid accessory protein. It has no significant sequence homology with any other known proteins. The 7a protein is present in the virus particle and has been shown to interact with several host proteins; thereby implicating it as being involved in several pathogenic processes including apoptosis, inhibition of cellular protein synthesis, and activation of p38 mitogen activated protein kinase. In this study we present data demonstrating that the SARS-CoV 7a protein interacts with human Ap4A-hydrolase (asymmetrical diadenosine tetraphosphate hydrolase, EC 3.6.1.17). Ap4A-hydrolase is responsible for metabolizing the "allarmone" nucleotide Ap4A and therefore likely involved in regulation of cell proliferation, DNA replication, RNA processing, apoptosis and DNA repair. The interaction between 7a and Ap4A-hydrolase was identified using yeast two-hybrid screening. The interaction was confirmed by co-immunoprecipitation from cultured human cells transiently expressing V5-His tagged 7a and HA tagged Ap4A-hydrolase. Human tissue culture cells transiently expressing 7a and Ap4A-hydrolase tagged with EGFP and Ds-Red2 respectively show these proteins co-localize in the cytoplasm. PMID:20144233

  14. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities.

    PubMed

    Subissi, Lorenzo; Posthuma, Clara C; Collet, Axelle; Zevenhoven-Dobbe, Jessika C; Gorbalenya, Alexander E; Decroly, Etienne; Snijder, Eric J; Canard, Bruno; Imbert, Isabelle

    2014-09-16

    In addition to members causing milder human infections, the Coronaviridae family includes potentially lethal zoonotic agents causing severe acute respiratory syndrome (SARS) and the recently emerged Middle East respiratory syndrome. The ∼30-kb positive-stranded RNA genome of coronaviruses encodes a replication/transcription machinery that is unusually complex and composed of 16 nonstructural proteins (nsps). SARS-CoV nsp12, the canonical RNA-dependent RNA polymerase (RdRp), exhibits poorly processive RNA synthesis in vitro, at odds with the efficient replication of a very large RNA genome in vivo. Here, we report that SARS-CoV nsp7 and nsp8 activate and confer processivity to the RNA-synthesizing activity of nsp12. Using biochemical assays and reverse genetics, the importance of conserved nsp7 and nsp8 residues was probed. Whereas several nsp7 mutations affected virus replication to a limited extent, the replacement of two nsp8 residues (P183 and R190) essential for interaction with nsp12 and a third (K58) critical for the interaction of the polymerase complex with RNA were all lethal to the virus. Without a loss of processivity, the nsp7/nsp8/nsp12 complex can associate with nsp14, a bifunctional enzyme bearing 3'-5' exoribonuclease and RNA cap N7-guanine methyltransferase activities involved in replication fidelity and 5'-RNA capping, respectively. The identification of this tripartite polymerase complex that in turn associates with the nsp14 proofreading enzyme sheds light on how coronaviruses assemble an RNA-synthesizing machinery to replicate the largest known RNA genomes. This protein complex is a fascinating example of the functional integration of RNA polymerase, capping, and proofreading activities. PMID:25197083

  15. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities

    PubMed Central

    Subissi, Lorenzo; Posthuma, Clara C.; Collet, Axelle; Zevenhoven-Dobbe, Jessika C.; Gorbalenya, Alexander E.; Decroly, Etienne; Snijder, Eric J.; Canard, Bruno; Imbert, Isabelle

    2014-01-01

    In addition to members causing milder human infections, the Coronaviridae family includes potentially lethal zoonotic agents causing severe acute respiratory syndrome (SARS) and the recently emerged Middle East respiratory syndrome. The ∼30-kb positive-stranded RNA genome of coronaviruses encodes a replication/transcription machinery that is unusually complex and composed of 16 nonstructural proteins (nsps). SARS-CoV nsp12, the canonical RNA-dependent RNA polymerase (RdRp), exhibits poorly processive RNA synthesis in vitro, at odds with the efficient replication of a very large RNA genome in vivo. Here, we report that SARS-CoV nsp7 and nsp8 activate and confer processivity to the RNA-synthesizing activity of nsp12. Using biochemical assays and reverse genetics, the importance of conserved nsp7 and nsp8 residues was probed. Whereas several nsp7 mutations affected virus replication to a limited extent, the replacement of two nsp8 residues (P183 and R190) essential for interaction with nsp12 and a third (K58) critical for the interaction of the polymerase complex with RNA were all lethal to the virus. Without a loss of processivity, the nsp7/nsp8/nsp12 complex can associate with nsp14, a bifunctional enzyme bearing 3′-5′ exoribonuclease and RNA cap N7-guanine methyltransferase activities involved in replication fidelity and 5′-RNA capping, respectively. The identification of this tripartite polymerase complex that in turn associates with the nsp14 proofreading enzyme sheds light on how coronaviruses assemble an RNA-synthesizing machinery to replicate the largest known RNA genomes. This protein complex is a fascinating example of the functional integration of RNA polymerase, capping, and proofreading activities. PMID:25197083

  16. Absence of E protein arrests transmissible gastroenteritis coronavirus maturation in the secretory pathway

    SciTech Connect

    Ortego, Javier; Ceriani, Juan E.; Patino, Cristina; Plana, Juan; Enjuanes, Luis

    2007-11-25

    A recombinant transmissible gastroenteritis coronavirus (rTGEV) in which E gene was deleted (rTGEV-{delta}E) has been engineered. This deletion mutant only grows in cells expressing E protein (E{sup +} cells) indicating that E was an essential gene for TGEV replication. Electron microscopy studies of rTGEV-{delta}E infected BHK-pAPN-E{sup -} cells showed that only immature intracellular virions were assembled. These virions were non-infectious and not secreted to the extracellular medium in BHK-pAPN-E{sup -} cells. RNA and protein composition analysis by RNase-gold and immunoelectron microscopy showed that rTGEV-{delta}E virions contained RNA and also all the structural TGEV proteins, except the deleted E protein. Nevertheless, full virion maturation was blocked. Studies of the rTGEV-{delta}E subcellular localization by confocal and immunoelectron microscopy in infected E{sup -} cells showed that in the absence of E protein virus trafficking was arrested in the intermediate compartment. Therefore, the absence of E protein in TGEV resulted in two actions, a blockade of virus trafficking in the membranes of the secretory pathway, and prevention of full virus maturation.

  17. Suppression of Host Gene Expression by nsp1 Proteins of Group 2 Bat Coronaviruses

    PubMed Central

    Tohya, Yukinobu; Narayanan, Krishna; Kamitani, Wataru; Huang, Cheng; Lokugamage, Kumari; Makino, Shinji

    2009-01-01

    nsp1 protein of severe acute respiratory syndrome coronavirus (SARS-CoV), a group 2b CoV, suppresses host gene expression by promoting host mRNA degradation and translation inhibition. The present study analyzed the activities of nsp1 proteins from the group 2 bat CoV strains Rm1, 133, and HKU9-1, belonging to groups 2b, 2c, and 2d, respectively. The host mRNA degradation and translational suppression activities of nsp1 of SARS-CoV and Rm1 nsp1 were similar and stronger than the activities of the nsp1 proteins of 133 and HKU9-1. Rm1 nsp1 expression in trans strongly inhibited the induction of type I interferon (IFN-I) and IFN-stimulated genes in cells infected with an IFN-inducing SARS-CoV mutant, while 133 and HKU9-1 nsp1 proteins had relatively moderate IFN-inhibitory activities. The results of our studies suggested a conserved function among nsp1 proteins of SARS-CoV and group 2 bat CoVs. PMID:19264783

  18. 3C protein of feline coronavirus inhibits viral replication independently of the autophagy pathway.

    PubMed

    Hsieh, Li-En; Huang, Wei-Pang; Tang, Da-Jay; Wang, Ying-Ting; Chen, Ching-Tang; Chueh, Ling-Ling

    2013-12-01

    Feline coronavirus (FCoV) can cause either asymptomatic enteric infection or fatal peritonitis in cats. Although the mutation of FCoV accessory gene 3c has been suggested to be related to the occurrence of feline infectious peritonitis (FIP), how the 3C protein is involved in this phenomenon remains unknown. To investigate the role of the 3C protein, a full-length 3c gene was transiently expressed and the cytoplasmic distribution of the protein was found to be primarily in the perinuclear region. Using 3c-stable expression cells, the replication of a 3c-defective FCoV strain was titrated and a significant decrease in replication (p<0.05) was observed. The mechanism underlying the decreased FIPV replication caused by the 3C protein was further investigated; neither the induction nor inhibition of autophagy rescued the viral replication. Taken together, our data suggest that the 3C protein might have a virulence-suppressing effect in FCoV-infected cats. Deletion of the 3c gene could therefore cause more efficient viral replication, which leads to a fatal infection. PMID:24050534

  19. Cleavage of spike protein of SARS coronavirus by protease factor Xa is associated with viral infectivity

    SciTech Connect

    Du, Lanying; Kao, Richard Y.; Zhou, Yusen; He, Yuxian; Zhao, Guangyu; Wong, Charlotte; Jiang, Shibo; Yuen, Kwok-Yung; Jin, Dong-Yan; Zheng, Bo-Jian . E-mail: bzheng@hkucc.hku.hk

    2007-07-20

    The spike (S) protein of SARS coronavirus (SARS-CoV) has been known to recognize and bind to host receptors, whose conformational changes then facilitate fusion between the viral envelope and host cell membrane, leading to viral entry into target cells. However, other functions of SARS-CoV S protein such as proteolytic cleavage and its implications to viral infection are incompletely understood. In this study, we demonstrated that the infection of SARS-CoV and a pseudovirus bearing the S protein of SARS-CoV was inhibited by a protease inhibitor Ben-HCl. Also, the protease Factor Xa, a target of Ben-HCl abundantly expressed in infected cells, was able to cleave the recombinant and pseudoviral S protein into S1 and S2 subunits, and the cleavage was inhibited by Ben-HCl. Furthermore, this cleavage correlated with the infectivity of the pseudovirus. Taken together, our study suggests a plausible mechanism by which SARS-CoV cleaves its S protein to facilitate viral infection.

  20. Expression, purification and characterization of recombinant severe acute respiratory syndrome coronavirus non-structural protein 1

    PubMed Central

    Brucz, Kimberly; Miknis, Zachary J.; Schultz, L. Wayne; Umland, Timothy C.

    2007-01-01

    The coronavirus (CoV) responsible for severe acute respiratory syndrome (SARS), SARS-CoV, encodes two large polyproteins (pp1a and pp1ab) that are processed by two viral proteases to yield mature non-structural proteins (nsps). Many of these nsps have essential roles in viral replication, but several have no assigned function and possess amino acid sequences that are unique to the CoV family. One such protein is SARS-CoV nsp1, which is processed from the N-terminus of both pp1a and pp1ab. The mature SARS-CoV protein is present in cells several hours post-infection and co-localizes to the viral replication complex, but its function in the viral life cycle remains unknown. Furthermore, nsp1 sequences are highly divergent across the CoV family, and it has been suggested that this is due to nsp1 possessing a function specific to viral interactions with its host cell or acting as a host specific virulence factor. In order to initiate structural and biophysical studies of SARS-CoV nsp1, a recombinant expression system and a purification protocol have been developed, yielding milligram quantities of highly purified SARS-CoV nsp1. The purified protein was characterized using circular dichroism, size exclusion chromatography, and multi-angle light scattering. PMID:17187987

  1. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis.

    PubMed

    Nieto-Torres, Jose L; DeDiego, Marta L; Verdiá-Báguena, Carmina; Jimenez-Guardeño, Jose M; Regla-Nava, Jose A; Fernandez-Delgado, Raul; Castaño-Rodriguez, Carlos; Alcaraz, Antonio; Torres, Jaume; Aguilella, Vicente M; Enjuanes, Luis

    2014-05-01

    Deletion of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) envelope (E) gene attenuates the virus. E gene encodes a small multifunctional protein that possesses ion channel (IC) activity, an important function in virus-host interaction. To test the contribution of E protein IC activity in virus pathogenesis, two recombinant mouse-adapted SARS-CoVs, each containing one single amino acid mutation that suppressed ion conductivity, were engineered. After serial infections, mutant viruses, in general, incorporated compensatory mutations within E gene that rendered active ion channels. Furthermore, IC activity conferred better fitness in competition assays, suggesting that ion conductivity represents an advantage for the virus. Interestingly, mice infected with viruses displaying E protein IC activity, either with the wild-type E protein sequence or with the revertants that restored ion transport, rapidly lost weight and died. In contrast, mice infected with mutants lacking IC activity, which did not incorporate mutations within E gene during the experiment, recovered from disease and most survived. Knocking down E protein IC activity did not significantly affect virus growth in infected mice but decreased edema accumulation, the major determinant of acute respiratory distress syndrome (ARDS) leading to death. Reduced edema correlated with lung epithelia integrity and proper localization of Na+/K+ ATPase, which participates in edema resolution. Levels of inflammasome-activated IL-1β were reduced in the lung airways of the animals infected with viruses lacking E protein IC activity, indicating that E protein IC function is required for inflammasome activation. Reduction of IL-1β was accompanied by diminished amounts of TNF and IL-6 in the absence of E protein ion conductivity. All these key cytokines promote the progression of lung damage and ARDS pathology. In conclusion, E protein IC activity represents a new determinant for SARS-CoV virulence. PMID:24788150

  2. Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Ion Channel Activity Promotes Virus Fitness and Pathogenesis

    PubMed Central

    Nieto-Torres, Jose L.; DeDiego, Marta L.; Verdiá-Báguena, Carmina; Jimenez-Guardeño, Jose M.; Regla-Nava, Jose A.; Fernandez-Delgado, Raul; Castaño-Rodriguez, Carlos; Alcaraz, Antonio; Torres, Jaume; Aguilella, Vicente M.; Enjuanes, Luis

    2014-01-01

    Deletion of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) envelope (E) gene attenuates the virus. E gene encodes a small multifunctional protein that possesses ion channel (IC) activity, an important function in virus-host interaction. To test the contribution of E protein IC activity in virus pathogenesis, two recombinant mouse-adapted SARS-CoVs, each containing one single amino acid mutation that suppressed ion conductivity, were engineered. After serial infections, mutant viruses, in general, incorporated compensatory mutations within E gene that rendered active ion channels. Furthermore, IC activity conferred better fitness in competition assays, suggesting that ion conductivity represents an advantage for the virus. Interestingly, mice infected with viruses displaying E protein IC activity, either with the wild-type E protein sequence or with the revertants that restored ion transport, rapidly lost weight and died. In contrast, mice infected with mutants lacking IC activity, which did not incorporate mutations within E gene during the experiment, recovered from disease and most survived. Knocking down E protein IC activity did not significantly affect virus growth in infected mice but decreased edema accumulation, the major determinant of acute respiratory distress syndrome (ARDS) leading to death. Reduced edema correlated with lung epithelia integrity and proper localization of Na+/K+ ATPase, which participates in edema resolution. Levels of inflammasome-activated IL-1β were reduced in the lung airways of the animals infected with viruses lacking E protein IC activity, indicating that E protein IC function is required for inflammasome activation. Reduction of IL-1β was accompanied by diminished amounts of TNF and IL-6 in the absence of E protein ion conductivity. All these key cytokines promote the progression of lung damage and ARDS pathology. In conclusion, E protein IC activity represents a new determinant for SARS-CoV virulence. PMID:24788150

  3. A facile inhibitor screening of SARS coronavirus N protein using nanoparticle-based RNA oligonucleotide

    PubMed Central

    Roh, Changhyun

    2012-01-01

    Hundreds of million people worldwide have been infected with severe acute respiratory syndrome (SARS), and the rate of global death from SARS has remarkably increased. Hence, the development of efficient drug treatments for the biological effects of SARS is highly needed. We have previously shown that quantum dots (QDs)-conjugated RNA oligonucleotide is sensitive to the specific recognition of the SARS-associated coronavirus (SARS-CoV) nucleocapsid (N) protein. In this study, we found that a designed biochip could analyze inhibitors of the SARS-CoV N protein using nanoparticle-based RNA oligonucleotide. Among the polyphenolic compounds examined, (−)-catechin gallate and (−)-gallocatechin gallate demonstrated a remarkable inhibition activity on SARS-CoV N protein. (−)-catechin gallate and (−)-gallocatechin gallate attenuated the binding affinity in a concentrated manner as evidenced by QDs-conjugated RNA oligonucleotide on a designed biochip. At a concentration of 0.05 μg mL−1, (−)-catechin gallate and (−)-gallocatechin gallate showed more than 40% inhibition activity on a nanoparticle-based RNA oligonucleotide biochip system. PMID:22619553

  4. Retroviruses Pseudotyped with the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Efficiently Infect Cells Expressing Angiotensin-Converting Enzyme 2

    PubMed Central

    Moore, Michael J.; Dorfman, Tatyana; Li, Wenhui; Wong, Swee Kee; Li, Yanhan; Kuhn, Jens H.; Coderre, James; Vasilieva, Natalya; Han, Zhongchao; Greenough, Thomas C.; Farzan, Michael; Choe, Hyeryun

    2004-01-01

    Infection of receptor-bearing cells by coronaviruses is mediated by their spike (S) proteins. The coronavirus (SARS-CoV) that causes severe acute respiratory syndrome (SARS) infects cells expressing the receptor angiotensin-converting enzyme 2 (ACE2). Here we show that codon optimization of the SARS-CoV S-protein gene substantially enhanced S-protein expression. We also found that two retroviruses, simian immunodeficiency virus (SIV) and murine leukemia virus, both expressing green fluorescent protein and pseudotyped with SARS-CoV S protein or S-protein variants, efficiently infected HEK293T cells stably expressing ACE2. Infection mediated by an S-protein variant whose cytoplasmic domain had been truncated and altered to include a fragment of the cytoplasmic tail of the human immunodeficiency virus type 1 envelope glycoprotein was, in both cases, substantially more efficient than that mediated by wild-type S protein. Using S-protein-pseudotyped SIV, we found that the enzymatic activity of ACE2 made no contribution to S-protein-mediated infection. Finally, we show that a soluble and catalytically inactive form of ACE2 potently blocked infection by S-protein-pseudotyped retrovirus and by SARS-CoV. These results permit studies of SARS-CoV entry inhibitors without the use of live virus and suggest a candidate therapy for SARS. PMID:15367630

  5. Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein.

    PubMed

    Xia, Shuai; Liu, Qi; Wang, Qian; Sun, Zhiwu; Su, Shan; Du, Lanying; Ying, Tianlei; Lu, Lu; Jiang, Shibo

    2014-12-19

    The recent outbreak of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) infection has led to more than 800 laboratory-confirmed MERS cases with a high case fatality rate (∼35%), posing a serious threat to global public health and calling for the development of effective and safe therapeutic and prophylactic strategies to treat and prevent MERS-CoV infection. Here we discuss the most recent studies on the structure of the MERS-CoV spike protein and its role in virus binding and entry, and the development of MERS-CoV entry/fusion inhibitors targeting the S1 subunit, particularly the receptor-binding domain (RBD), and the S2 subunit, especially the HR1 region, of the MERS-CoV spike protein. We then look ahead to future applications of these viral entry/fusion inhibitors, either alone or in combination with specific and nonspecific MERS-CoV replication inhibitors, for the treatment and prevention of MERS-CoV infection. PMID:25451066

  6. SARS Coronavirus 3b Accessory Protein Modulates Transcriptional Activity of RUNX1b

    PubMed Central

    Varshney, Bhavna; Agnihotram, Sudhakar; Tan, Yee-Joo; Baric, Ralph; Lal, Sunil K.

    2012-01-01

    Background The causative agent of severe acute respiratory syndrome, SARS coronavirus (SARS-CoV) genome encodes several unique group specific accessory proteins with unknown functions. Among them, accessory protein 3b (also known as ORF4) was lately identified as one of the viral interferon antagonist. Recently our lab uncovered a new role for 3b in upregulation of AP-1 transcriptional activity and its downstream genes. Thus, we believe that 3b might play an important role in SARS-CoV pathogenesis and therefore is of considerable interest. The current study aims at identifying novel host cellular interactors of the 3b protein. Methodology/Principal Findings In this study, using yeast two-hybrid and co-immunoprecipitation techniques, we have identified a host transcription factor RUNX1b (Runt related transcription factor, isoform b) as a novel interacting partner for SARS-CoV 3b protein. Chromatin immunoprecipitaion (ChIP) and reporter gene assays in 3b expressing jurkat cells showed recruitment of 3b on the RUNX1 binding element that led to an increase in RUNX1b transactivation potential on the IL2 promoter. Kinase assay and pharmacological inhibitor treatment implied that 3b also affect RUNX1b transcriptional activity by regulating its ERK dependent phosphorylation levels. Additionally, mRNA levels of MIP-1α, a RUNX1b target gene upregulated in SARS-CoV infected monocyte-derived dendritic cells, were found to be elevated in 3b expressing U937 monocyte cells. Conclusions/Significance These results unveil a novel interaction of SARS-CoV 3b with the host factor, RUNX1b, and speculate its physiological relevance in upregulating cytokines and chemokine levels in state of SARS virus infection. PMID:22253733

  7. Conformational States of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Ectodomain

    PubMed Central

    Li, Fang; Berardi, Marcelo; Li, Wenhui; Farzan, Michael; Dormitzer, Philip R.; Harrison, Stephen C.

    2006-01-01

    The severe acute respiratory syndrome coronavirus enters cells through the activities of a spike protein (S) which has receptor-binding (S1) and membrane fusion (S2) regions. We have characterized four sequential states of a purified recombinant S ectodomain (S-e) comprising S1 and the ectodomain of S2. They are S-e monomers, uncleaved S-e trimers, cleaved S-e trimers, and dissociated S1 monomers and S2 trimer rosettes. Lowered pH induces an irreversible transition from flexible, L-shaped S-e monomers to clove-shaped trimers. Protease cleavage of the trimer occurs at the S1-S2 boundary; an ensuing S1 dissociation leads to a major rearrangement of the trimeric S2 and to formation of rosettes likely to represent clusters of elongated, postfusion trimers of S2 associated through their fusion peptides. The states and transitions of S suggest conformational changes that mediate viral entry into cells. PMID:16809285

  8. Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination

    PubMed Central

    Lau, Susanna K. P.; Feng, Yun; Chen, Honglin; Luk, Hayes K. H.; Yang, Wei-Hong; Li, Kenneth S. M.; Zhang, Yu-Zhen; Huang, Yi; Song, Zhi-Zhong; Chow, Wang-Ngai; Fan, Rachel Y. Y.; Ahmed, Syed Shakeel; Yeung, Hazel C.; Lam, Carol S. F.; Cai, Jian-Piao; Wong, Samson S. Y.; Chan, Jasper F. W.; Yuen, Kwok-Yung

    2015-01-01

    ABSTRACT Despite the identification of horseshoe bats as the reservoir of severe acute respiratory syndrome (SARS)-related coronaviruses (SARSr-CoVs), the origin of SARS-CoV ORF8, which contains the 29-nucleotide signature deletion among human strains, remains obscure. Although two SARS-related Rhinolophus sinicus bat CoVs (SARSr-Rs-BatCoVs) previously detected in Chinese horseshoe bats (Rhinolophus sinicus) in Yunnan, RsSHC014 and Rs3367, possessed 95% genome identities to human and civet SARSr-CoVs, their ORF8 protein exhibited only 32.2 to 33% amino acid identities to that of human/civet SARSr-CoVs. To elucidate the origin of SARS-CoV ORF8, we sampled 348 bats of various species in Yunnan, among which diverse alphacoronaviruses and betacoronaviruses, including potentially novel CoVs, were identified, with some showing potential interspecies transmission. The genomes of two betacoronaviruses, SARSr-Rf-BatCoV YNLF_31C and YNLF_34C, from greater horseshoe bats (Rhinolophus ferrumequinum), possessed 93% nucleotide identities to human/civet SARSr-CoV genomes. Although these two betacoronaviruses displayed lower similarities than SARSr-Rs-BatCoV RsSHC014 and Rs3367 in S protein to civet SARSr-CoVs, their ORF8 proteins demonstrated exceptionally high (80.4 to 81.3%) amino acid identities to that of human/civet SARSr-CoVs, compared to SARSr-BatCoVs from other horseshoe bats (23.2 to 37.3%). Potential recombination events were identified around ORF8 between SARSr-Rf-BatCoVs and SARSr-Rs-BatCoVs, leading to the generation of civet SARSr-CoVs. The expression of ORF8 subgenomic mRNA suggested that the ORF8 protein may be functional in SARSr-Rf-BatCoVs. The high Ka/Ks ratio among human SARS-CoVs compared to that among SARSr-BatCoVs supported that ORF8 is under strong positive selection during animal-to-human transmission. Molecular clock analysis using ORF1ab showed that SARSr-Rf-BatCoV YNLF_31C and YNLF_34C diverged from civet/human SARSr-CoVs in approximately 1990. SARS

  9. Identification of functionally important negatively charged residues in the carboxy end of mouse hepatitis coronavirus A59 nucleocapsid protein.

    PubMed

    Verma, Sandhya; Bednar, Valerie; Blount, Andrew; Hogue, Brenda G

    2006-05-01

    The coronavirus nucleocapsid (N) protein is a multifunctional viral gene product that encapsidates the RNA genome and also plays some as yet not fully defined role in viral RNA replication and/or transcription. A number of conserved negatively charged amino acids are located within domain III in the carboxy end of all coronavirus N proteins. Previous studies suggested that the negatively charged residues are involved in virus assembly by mediating interaction between the membrane (M) protein carboxy tail and nucleocapsids. To determine the importance of these negatively charged residues, a series of alanine and other charged-residue substitutions were introduced in place of those in the N gene within a mouse hepatitis coronavirus A59 infectious clone. Aspartic acid residues 440 and 441 were identified as functionally important. Viruses could not be isolated when both residues were replaced by positively charged amino acids. When either amino acid was replaced by a positively charged residue or both were changed to alanine, viruses were recovered that contained second-site changes within N, but not in the M or envelope protein. The compensatory role of the new changes was confirmed by the construction of new viruses. A few viruses were recovered that retained the D441-to-arginine change and no compensatory changes. These viruses exhibited a small-plaque phenotype and produced significantly less virus. Overall, results from our analysis of a large panel of plaque-purified recovered viruses indicate that the negatively charged residues at positions 440 and 441 are key residues that appear to be involved in virus assembly. PMID:16611893

  10. Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets

    PubMed Central

    Yang, Yang; Ye, Fei; Zhu, Na; Wang, Wenling; Deng, Yao; Zhao, Zhengdong; Tan, Wenjie

    2015-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel and highly pathogenic human coronavirus and has quickly spread to other countries in the Middle East, Europe, North Africa and Asia since 2012. Previous studies have shown that MERS-CoV ORF4b antagonizes the early antiviral alpha/beta interferon (IFN-α/β) response, which may significantly contribute to MERS-CoV pathogenesis; however, the underlying mechanism is poorly understood. Here, we found that ORF4b in the cytoplasm could specifically bind to TANK binding kinase 1 (TBK1) and IκB kinase epsilon (IKKε), suppress the molecular interaction between mitochondrial antiviral signaling protein (MAVS) and IKKε, and inhibit IFN regulatory factor 3 (IRF3) phosphorylation and subsequent IFN-β production. Further analysis showed that ORF4b could also inhibit IRF3 and IRF7-induced production of IFN-β, whereas deletion of the nuclear localization signal of ORF4b abrogated its ability to inhibit IRF3 and IRF7-induced production of IFN-β, but not IFN-β production induced by RIG-I, MDA5, MAVS, IKKε, and TBK-1, suggesting that ORF4b could inhibit the induction of IFN-β in both the cytoplasm and nucleus. Collectively, these results indicate that MERS-CoV ORF4b inhibits the induction of type I IFN through a direct interaction with IKKε/TBK1 in the cytoplasm, and also in the nucleus with unknown mechanism. Viruses have evolved multiple strategies to evade or thwart a host’s antiviral responses. A novel human coronavirus (HCoV), Middle East respiratory syndrome coronavirus (MERS-CoV), is distinguished from other coronaviruses by its high pathogenicity and mortality. However, virulence determinants that distinguish MERS-CoV from other HCoVs have yet to be identified. MERS-CoV ORF4b antagonizes the early antiviral response, which may contribute to MERS-CoV pathogenesis. Here, we report the identification of the interferon (IFN) antagonism mechanism of MERS-CoV ORF4b. MERS-CoV ORF4b inhibits the production

  11. Analysis of Constructed E Gene Mutants of Mouse Hepatitis Virus Confirms a Pivotal Role for E Protein in Coronavirus Assembly

    PubMed Central

    Fischer, Françoise; Stegen, Carola F.; Masters, Paul S.; Samsonoff, William A.

    1998-01-01

    Expression studies have shown that the coronavirus small envelope protein E and the much more abundant membrane glycoprotein M are both necessary and sufficient for the assembly of virus-like particles in cells. As a step toward understanding the function of the mouse hepatitis virus (MHV) E protein, we carried out clustered charged-to-alanine mutagenesis on the E gene and incorporated the resulting mutations into the MHV genome by targeted recombination. Of the four possible clustered charged-to-alanine E gene mutants, one was apparently lethal and one had a wild-type phenotype. The two other mutants were partially temperature sensitive, forming small plaques at the nonpermissive temperature. Revertant analyses of these two mutants demonstrated that the created mutations were responsible for the temperature-sensitive phenotype of each and provided support for possible interactions among E protein monomers. Both temperature-sensitive mutants were also found to be markedly thermolabile when grown at the permissive temperature, suggesting that there was a flaw in their assembly. Most significantly, when virions of one of the mutants were examined by electron microscopy, they were found to have strikingly aberrant morphology in comparison to the wild type: most mutant virions had pinched and elongated shapes that were rarely seen among wild-type virions. These results demonstrate an important, probably essential, role for the E protein in coronavirus morphogenesis. PMID:9733825

  12. The nsp2 Replicase Proteins of Murine Hepatitis Virus and Severe Acute Respiratory Syndrome Coronavirus Are Dispensable for Viral Replication

    PubMed Central

    Graham, Rachel L.; Sims, Amy C.; Brockway, Sarah M.; Baric, Ralph S.; Denison, Mark R.

    2005-01-01

    The positive-stranded RNA genome of the coronaviruses is translated from ORF1 to yield polyproteins that are proteolytically processed into intermediate and mature nonstructural proteins (nsps). Murine hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV) polyproteins incorporate 16 protein domains (nsps), with nsp1 and nsp2 being the most variable among the coronaviruses and having no experimentally confirmed or predicted functions in replication. To determine if nsp2 is essential for viral replication, MHV and SARS-CoV genome RNA was generated with deletions of the nsp2 coding sequence (MHVΔnsp2 and SARSΔnsp2, respectively). Infectious MHVΔnsp2 and SARSΔnsp2 viruses recovered from electroporated cells had 0.5 to 1 log10 reductions in peak titers in single-cycle growth assays, as well as a reduction in viral RNA synthesis that was not specific for any positive-stranded RNA species. The Δnsp2 mutant viruses lacked expression of both nsp2 and an nsp2-nsp3 precursor, but cleaved the engineered chimeric nsp1-nsp3 cleavage site as efficiently as the native nsp1-nsp2 cleavage site. Replication complexes in MHVΔnsp2-infected cells lacked nsp2 but were morphologically indistinguishable from those of wild-type MHV by immunofluorescence. nsp2 expressed in cells by stable retroviral transduction was specifically recruited to viral replication complexes upon infection with MHVΔnsp2. These results demonstrate that while nsp2 of MHV and SARS-CoV is dispensable for viral replication in cell culture, deletion of the nsp2 coding sequence attenuates viral growth and RNA synthesis. These findings also provide a system for the study of determinants of nsp targeting and function. PMID:16227261

  13. The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication.

    PubMed

    Graham, Rachel L; Sims, Amy C; Brockway, Sarah M; Baric, Ralph S; Denison, Mark R

    2005-11-01

    The positive-stranded RNA genome of the coronaviruses is translated from ORF1 to yield polyproteins that are proteolytically processed into intermediate and mature nonstructural proteins (nsps). Murine hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV) polyproteins incorporate 16 protein domains (nsps), with nsp1 and nsp2 being the most variable among the coronaviruses and having no experimentally confirmed or predicted functions in replication. To determine if nsp2 is essential for viral replication, MHV and SARS-CoV genome RNA was generated with deletions of the nsp2 coding sequence (MHVDeltansp2 and SARSDeltansp2, respectively). Infectious MHVDeltansp2 and SARSDeltansp2 viruses recovered from electroporated cells had 0.5 to 1 log10 reductions in peak titers in single-cycle growth assays, as well as a reduction in viral RNA synthesis that was not specific for any positive-stranded RNA species. The Deltansp2 mutant viruses lacked expression of both nsp2 and an nsp2-nsp3 precursor, but cleaved the engineered chimeric nsp1-nsp3 cleavage site as efficiently as the native nsp1-nsp2 cleavage site. Replication complexes in MHVDeltansp2-infected cells lacked nsp2 but were morphologically indistinguishable from those of wild-type MHV by immunofluorescence. nsp2 expressed in cells by stable retroviral transduction was specifically recruited to viral replication complexes upon infection with MHVDeltansp2. These results demonstrate that while nsp2 of MHV and SARS-CoV is dispensable for viral replication in cell culture, deletion of the nsp2 coding sequence attenuates viral growth and RNA synthesis. These findings also provide a system for the study of determinants of nsp targeting and function. PMID:16227261

  14. A key role for the carboxy-terminal tail of the murine coronavirus nucleocapsid protein in coordination of genome packaging.

    PubMed

    Kuo, Lili; Koetzner, Cheri A; Masters, Paul S

    2016-07-01

    The prototype coronavirus mouse hepatitis virus (MHV) exhibits highly selective packaging of its genomic positive-stranded RNA into assembled virions, despite the presence in infected cells of a large excess of subgenomic viral mRNAs. One component of this selectivity is the MHV packaging signal (PS), an RNA structure found only in genomic RNA and not in subgenomic RNAs. It was previously shown that a major determinant of PS recognition is the second of the two RNA-binding domains of the viral nucleocapsid (N) protein. We have now found that PS recognition additionally depends upon a segment of the carboxy-terminal tail (domain N3) of the N protein. Since domain N3 is also the region of N protein that interacts with the membrane (M) protein, this finding suggests a mechanism by which selective genome packaging is accomplished, through the coupling of genome encapsidation to virion assembly. PMID:27105451

  15. Proteolytic activation of the SARS-coronavirus spike protein: Cutting enzymes at the cutting edge of antiviral research

    PubMed Central

    Simmons, Graham; Zmora, Pawel; Gierer, Stefanie; Heurich, Adeline; Pöhlmann, Stefan

    2013-01-01

    The severe acute respiratory syndrome (SARS) pandemic revealed that zoonotic transmission of animal coronaviruses (CoV) to humans poses a significant threat to public health and warrants surveillance and the development of countermeasures. The activity of host cell proteases, which cleave and activate the SARS-CoV spike (S) protein, is essential for viral infectivity and constitutes a target for intervention. However, the identities of the proteases involved have been unclear. Pioneer studies identified cathepsins and type II transmembrane serine proteases as cellular activators of SARS-CoV and demonstrated that several emerging viruses might exploit these enzymes to promote their spread. Here, we will review the proteolytic systems hijacked by SARS-CoV for S protein activation, we will discuss their contribution to viral spread in the host and we will outline antiviral strategies targeting these enzymes. This paper forms part of a series of invited articles in Antiviral Research on “From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses.” PMID:24121034

  16. Mutation in spike protein cleavage site and pathogenesis of feline coronavirus.

    PubMed

    Licitra, Beth N; Millet, Jean K; Regan, Andrew D; Hamilton, Brian S; Rinaldi, Vera D; Duhamel, Gerald E; Whittaker, Gary R

    2013-07-01

    Feline coronaviruses (FCoV) exist as 2 biotypes: feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV). FECV causes subclinical infections; FIPV causes feline infectious peritonitis (FIP), a systemic and fatal disease. It is thought that mutations in FECV enable infection of macrophages, causing FIP. However, the molecular basis for this biotype switch is unknown. We examined a furin cleavage site in the region between receptor-binding (S1) and fusion (S2) domains of the spike of serotype 1 FCoV. FECV sequences were compared with FIPV sequences. All FECVs had a conserved furin cleavage motif. For FIPV, there was a correlation with the disease and >1 substitution in the S1/S2 motif. Fluorogenic peptide assays confirmed that the substitutions modulate furin cleavage. We document a functionally relevant S1/S2 mutation that arises when FIP develops in a cat. These insights into FIP pathogenesis may be useful in development of diagnostic, prevention, and treatment measures against coronaviruses. PMID:23763835

  17. Mutation in Spike Protein Cleavage Site and Pathogenesis of Feline Coronavirus

    PubMed Central

    Licitra, Beth N.; Millet, Jean K.; Regan, Andrew D.; Hamilton, Brian S.; Rinaldi, Vera D.; Duhamel, Gerald E.

    2013-01-01

    Feline coronaviruses (FCoV) exist as 2 biotypes: feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV). FECV causes subclinical infections; FIPV causes feline infectious peritonitis (FIP), a systemic and fatal disease. It is thought that mutations in FECV enable infection of macrophages, causing FIP. However, the molecular basis for this biotype switch is unknown. We examined a furin cleavage site in the region between receptor-binding (S1) and fusion (S2) domains of the spike of serotype 1 FCoV. FECV sequences were compared with FIPV sequences. All FECVs had a conserved furin cleavage motif. For FIPV, there was a correlation with the disease and >1 substitution in the S1/S2 motif. Fluorogenic peptide assays confirmed that the substitutions modulate furin cleavage. We document a functionally relevant S1/S2 mutation that arises when FIP develops in a cat. These insights into FIP pathogenesis may be useful in development of diagnostic, prevention, and treatment measures against coronaviruses. PMID:23763835

  18. About Coronavirus

    MedlinePlus

    ... or surfaces then touching your mouth, nose, or eyes. Also see MERS-CoV Transmission and How SARS Spreads . Q: When can I get infected? A: In the United States, people usually get infected with common human coronaviruses in the fall and winter. However, you ...

  19. Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus.

    PubMed Central

    Krempl, C; Schultze, B; Laude, H; Herrler, G

    1997-01-01

    Enteropathogenic transmissible gastroenteritis virus (TGEV), a porcine coronavirus, is able to agglutinate erythrocytes because of sialic acid binding activity. Competitive inhibitors that may mask the sialic acid binding activity can be inactivated by sialidase treatment of virions. Here, we show that TGEV virions with efficient hemagglutinating activity were also obtained when cells were treated with sialidase prior to infection. This method was used to analyze TGEV mutants for hemagglutinating activity. Recently, mutants with strongly reduced enteropathogenicity that have point mutations or a deletion of four amino acids within residues 145 to 155 of the S protein have been described. Here, we show that in addition to their reduced pathogenicity, these mutants also have lost hemagglutinating activity. These results connect sialic acid binding activity with the enteropathogenicity of TGEV. PMID:9060696

  20. Coronavirus Pathogenesis and the Emerging Pathogen Severe Acute Respiratory Syndrome Coronavirus

    PubMed Central

    Weiss, Susan R.; Navas-Martin, Sonia

    2005-01-01

    Coronaviruses are a family of enveloped, single-stranded, positive-strand RNA viruses classified within the Nidovirales order. This coronavirus family consists of pathogens of many animal species and of humans, including the recently isolated severe acute respiratory syndrome coronavirus (SARS-CoV). This review is divided into two main parts; the first concerns the animal coronaviruses and their pathogenesis, with an emphasis on the functions of individual viral genes, and the second discusses the newly described human emerging pathogen, SARS-CoV. The coronavirus part covers (i) a description of a group of coronaviruses and the diseases they cause, including the prototype coronavirus, murine hepatitis virus, which is one of the recognized animal models for multiple sclerosis, as well as viruses of veterinary importance that infect the pig, chicken, and cat and a summary of the human viruses; (ii) a short summary of the replication cycle of coronaviruses in cell culture; (iii) the development and application of reverse genetics systems; and (iv) the roles of individual coronavirus proteins in replication and pathogenesis. The SARS-CoV part covers the pathogenesis of SARS, the developing animal models for infection, and the progress in vaccine development and antiviral therapies. The data gathered on the animal coronaviruses continue to be helpful in understanding SARS-CoV. PMID:16339739

  1. The expression and antigenicity of a truncated spike-nucleocapsid fusion protein of severe acute respiratory syndrome-associated coronavirus

    PubMed Central

    Mu, Feng; Niu, Dongsheng; Mu, Jingsong; He, Bo; Han, Weiguo; Fan, Baoxing; Huang, Shengyong; Qiu, Yan; You, Bo; Chen, Weijun

    2008-01-01

    Background In the absence of effective drugs, controlling SARS relies on the rapid identification of cases and appropriate management of the close contacts, or effective vaccines for SARS. Therefore, developing specific and sensitive laboratory tests for SARS as well as effective vaccines are necessary for national authorities. Results Genes encoding truncated nucleocapsid (N) and spike (S) proteins of SARSCoV were cloned into the expression vector pQE30 and fusionally expressed in Escherichia coli M15. The fusion protein was analyzed for reactivity with SARS patients' sera and with anti-sera against the two human coronaviruses HCoV 229E and HCoV OC43 by ELISA, IFA and immunoblot assays. Furthermore, to evaluate the antigen-specific humoral antibody and T-cell responses in mice, the fusion protein was injected into 6-week-old BALB/c mice and a neutralization test as well as a T-cell analysis was performed. To evaluate the antiviral efficacy of immunization, BALB/c mice were challenged intranasally with SARSCoV at day 33 post injection and viral loads were determined by fluorescent quantitative RT-PCR. Serological results showed that the diagnostic sensitivity and specificity of the truncated S-N fusion protein derived the SARS virus were > 99% (457/460) and 100.00% (650/650), respectively. Furthermore there was no cross-reactivity with other two human coronaviruses. High titers of antibodies to SRASCoV appeared in the immunized mice and the neutralization test showed that antibodies to the fusion protein could inhibit SARSCoV. The T cell proliferation showed that the fusion protein could induce an antigen-specific T-cell response. Fluorescent quantitative RT-PCR showed that BALB/c mice challenged intranasally with SARSCoV at day 33 post injection were completely protected from virus replication. Conclusion The truncated S-N fusion protein is a suitable immunodiagnostic antigen and vaccine candidate. PMID:19038059

  2. The PDZ-Binding Motif of Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Is a Determinant of Viral Pathogenesis

    PubMed Central

    Jimenez-Guardeño, Jose M.; Nieto-Torres, Jose L.; DeDiego, Marta L.; Regla-Nava, Jose A.; Fernandez-Delgado, Raul; Castaño-Rodriguez, Carlos; Enjuanes, Luis

    2014-01-01

    A recombinant severe acute respiratory syndrome coronavirus (SARS-CoV) lacking the envelope (E) protein is attenuated in vivo. Here we report that E protein PDZ-binding motif (PBM), a domain involved in protein-protein interactions, is a major determinant of virulence. Elimination of SARS-CoV E protein PBM by using reverse genetics caused a reduction in the deleterious exacerbation of the immune response triggered during infection with the parental virus and virus attenuation. Cellular protein syntenin was identified to bind the E protein PBM during SARS-CoV infection by using three complementary strategies, yeast two-hybrid, reciprocal coimmunoprecipitation and confocal microscopy assays. Syntenin redistributed from the nucleus to the cell cytoplasm during infection with viruses containing the E protein PBM, activating p38 MAPK and leading to the overexpression of inflammatory cytokines. Silencing of syntenin using siRNAs led to a decrease in p38 MAPK activation in SARS-CoV infected cells, further reinforcing their functional relationship. Active p38 MAPK was reduced in lungs of mice infected with SARS-CoVs lacking E protein PBM as compared with the parental virus, leading to a decreased expression of inflammatory cytokines and to virus attenuation. Interestingly, administration of a p38 MAPK inhibitor led to an increase in mice survival after infection with SARS-CoV, confirming the relevance of this pathway in SARS-CoV virulence. Therefore, the E protein PBM is a virulence domain that activates immunopathology most likely by using syntenin as a mediator of p38 MAPK induced inflammation. PMID:25122212

  3. A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates.

    PubMed

    Muthumani, Karuppiah; Falzarano, Darryl; Reuschel, Emma L; Tingey, Colleen; Flingai, Seleeke; Villarreal, Daniel O; Wise, Megan; Patel, Ami; Izmirly, Abdullah; Aljuaid, Abdulelah; Seliga, Alecia M; Soule, Geoff; Morrow, Matthew; Kraynyak, Kimberly A; Khan, Amir S; Scott, Dana P; Feldmann, Friederike; LaCasse, Rachel; Meade-White, Kimberly; Okumura, Atsushi; Ugen, Kenneth E; Sardesai, Niranjan Y; Kim, J Joseph; Kobinger, Gary; Feldmann, Heinz; Weiner, David B

    2015-08-19

    First identified in 2012, Middle East respiratory syndrome (MERS) is caused by an emerging human coronavirus, which is distinct from the severe acute respiratory syndrome coronavirus (SARS-CoV), and represents a novel member of the lineage C betacoronoviruses. Since its identification, MERS coronavirus (MERS-CoV) has been linked to more than 1372 infections manifesting with severe morbidity and, often, mortality (about 495 deaths) in the Arabian Peninsula, Europe, and, most recently, the United States. Human-to-human transmission has been documented, with nosocomial transmission appearing to be an important route of infection. The recent increase in cases of MERS in the Middle East coupled with the lack of approved antiviral therapies or vaccines to treat or prevent this infection are causes for concern. We report on the development of a synthetic DNA vaccine against MERS-CoV. An optimized DNA vaccine encoding the MERS spike protein induced potent cellular immunity and antigen-specific neutralizing antibodies in mice, macaques, and camels. Vaccinated rhesus macaques seroconverted rapidly and exhibited high levels of virus-neutralizing activity. Upon MERS viral challenge, all of the monkeys in the control-vaccinated group developed characteristic disease, including pneumonia. Vaccinated macaques were protected and failed to demonstrate any clinical or radiographic signs of pneumonia. These studies demonstrate that a consensus MERS spike protein synthetic DNA vaccine can induce protective responses against viral challenge, indicating that this strategy may have value as a possible vaccine modality against this emerging pathogen. PMID:26290414

  4. A synthetic consensus anti–spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates

    PubMed Central

    Muthumani, Karuppiah; Falzarano, Darryl; Reuschel, Emma L.; Tingey, Colleen; Flingai, Seleeke; Villarreal, Daniel O.; Wise, Megan; Patel, Ami; Izmirly, Abdullah; Aljuaid, Abdulelah; Seliga, Alecia M.; Soule, Geoff; Morrow, Matthew; Kraynyak, Kimberly A.; Khan, Amir S.; Scott, Dana P.; Feldmann, Friederike; LaCasse, Rachel; Meade-White, Kimberly; Okumura, Atsushi; Ugen, Kenneth E.; Sardesai, Niranjan Y.; Kim, J. Joseph; Kobinger, Gary; Feldmann, Heinz; Weiner, David B.

    2015-01-01

    First identified in 2012, Middle East respiratory syndrome (MERS) is caused by an emerging human coronavirus, which is distinct from the severe acute respiratory syndrome coronavirus (SARS-CoV), and represents a novel member of the lineage C betacoronoviruses. Since its identification, MERS coronavirus (MERS-CoV) has been linked to more than 1372 infections manifesting with severe morbidity and, often, mortality (about 495 deaths) in the Arabian Peninsula, Europe, and, most recently, the United States. Human-to-human transmission has been documented, with nosocomial transmission appearing to be an important route of infection. The recent increase in cases of MERS in the Middle East coupled with the lack of approved antiviral therapies or vaccines to treat or prevent this infection are causes for concern. We report on the development of a synthetic DNA vaccine against MERS-CoV. An optimized DNA vaccine encoding the MERS spike protein induced potent cellular immunity and antigen-specific neutralizing antibodies in mice, macaques, and camels. Vaccinated rhesus macaques seroconverted rapidly and exhibited high levels of virus-neutralizing activity. Upon MERS viral challenge, all of the monkeys in the control-vaccinated group developed characteristic disease, including pneumonia. Vaccinated macaques were protected and failed to demonstrate any clinical or radiographic signs of pneumonia. These studies demonstrate that a consensus MERS spike protein synthetic DNA vaccine can induce protective responses against viral challenge, indicating that this strategy may have value as a possible vaccine modality against this emerging pathogen. PMID:26290414

  5. Coronavirus nonstructural protein 1: common and distinct functions in the regulation of host and viral gene expression

    PubMed Central

    Narayanan, Krishna; Ramirez, Sydney I.; Lokugamage, Kumari G.; Makino, Shinji

    2014-01-01

    The recent emergence of two highly pathogenic human coronaviruses (CoVs), severe acute respiratory syndrome CoV and Middle East respiratory syndrome CoV, has ignited a strong interest in the identification of viral factors that determine the virulence and pathogenesis of CoVs. The nonstructural protein 1 (nsp1) of CoVs has attracted considerable attention in this regard as a potential virulence factor and a target for CoV vaccine development because of accumulating evidence that point to its role in the downregulation of host innate immune responses to CoV infection. Studies have revealed both functional conservation and mechanistic divergence among the nsp1 of different mammalian CoVs in perturbing host gene expression and antiviral responses. This review summarizes the current knowledge about the biological functions of CoV nsp1 that provides an insight into the novel strategies utilized by this viral protein to modulate host and viral gene expression during CoV infection. PMID:25432065

  6. RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex.

    PubMed

    Bouvet, Mickaël; Imbert, Isabelle; Subissi, Lorenzo; Gluais, Laure; Canard, Bruno; Decroly, Etienne

    2012-06-12

    The replication/transcription complex of severe acute respiratory syndrome coronavirus is composed of at least 16 nonstructural proteins (nsp1-16) encoded by the ORF-1a/1b. This complex includes replication enzymes commonly found in positive-strand RNA viruses, but also a set of RNA-processing activities unique to some nidoviruses. The nsp14 protein carries both exoribonuclease (ExoN) and (guanine-N7)-methyltransferase (N7-MTase) activities. The nsp14 ExoN activity ensures a yet-uncharacterized function in the virus life cycle and must be regulated to avoid nonspecific RNA degradation. In this work, we show that the association of nsp10 with nsp14 stimulates >35-fold the ExoN activity of the latter while playing no effect on N7-MTase activity. Nsp10 mutants unable to interact with nsp14 are not proficient for ExoN activation. The nsp10/nsp14 complex hydrolyzes double-stranded RNA in a 3' to 5' direction as well as a single mismatched nucleotide at the 3'-end mimicking an erroneous replication product. In contrast, di-, tri-, and longer unpaired ribonucleotide stretches, as well as 3'-modified RNAs, resist nsp10/nsp14-mediated excision. In addition to the activation of nsp16-mediated 2'-O-MTase activity, nsp10 also activates nsp14 in an RNA processing function potentially connected to a replicative mismatch repair mechanism. PMID:22635272

  7. Recombinant nucleocapsid protein-based enzyme-linked immunosorbent assay for detection of antibody to turkey coronavirus.

    PubMed

    Abdelwahab, Mohamed; Loa, Chien Chang; Wu, Ching Ching; Lin, Tsang Long

    2015-06-01

    Nucleocapsid (N) protein gene of turkey coronavirus (TCoV) was expressed in a prokaryotic system and used to develop an enzyme-linked immunosorbent assay (ELISA) for detection of antibody to TCoV. Anti-TCoV hyperimmune turkey serum and normal turkey serum were used as positive or negative controls for optimization of the ELISA. Goat anti-turkey IgG (H+L) conjugated with horseradish peroxidase was used as detector antibody. Three hundred and twenty two turkey sera from the field were used to evaluate the performance of ELISA and determine the cut-off point of ELISA. The established ELISA was also examined with serum samples obtained from turkeys experimentally infected with TCoV. Those serum samples were collected at various time intervals from 1 to 63 days post-infection. The optimum conditions for differentiation between anti-TCoV hyperimmune serum and normal turkey serum were recombinant TCoV N protein concentration at 20 μg/ml, serum dilution at 1:800, and conjugate dilution at 1:10,000. Of the 322 sera from the field, 101 were positive for TCoV by immunofluorescent antibody assay (IFA). The sensitivity and specificity of the ELISA relative to IFA test were 86.0% and 96.8%, respectively, using the optimum cut-off point of 0.2 as determined by logistic regression method. Reactivity of anti-rotavirus, anti-reovirus, anti-adenovirus, or anti-enterovirus antibodies with the recombinant N protein coated on the ELISA plates was not detected. These results indicated that the established antibody-capture ELISA in conjunction with recombinant TCoV N protein as the coating protein can be utilized for detection of antibodies to TCoV in turkey flocks. PMID:25745958

  8. Design of an epitope-based peptide vaccine against spike protein of human coronavirus: an in silico approach

    PubMed Central

    Oany, Arafat Rahman; Emran, Abdullah-Al; Jyoti, Tahmina Pervin

    2014-01-01

    Human coronavirus (HCoV), a member of Coronaviridae family, is the causative agent of upper respiratory tract infections and “atypical pneumonia”. Despite severe epidemic outbreaks on several occasions and lack of antiviral drug, not much progress has been made with regard to an epitope-based vaccine designed for HCoV. In this study, a computational approach was adopted to identify a multiepitope vaccine candidate against this virus that could be suitable to trigger a significant immune response. Sequences of the spike proteins were collected from a protein database and analyzed with an in silico tool, to identify the most immunogenic protein. Both T cell immunity and B cell immunity were checked for the peptides to ensure that they had the capacity to induce both humoral and cell-mediated immunity. The peptide sequence from 88–94 amino acids and the sequence KSSTGFVYF were found as the most potential B cell and T cell epitopes, respectively. Furthermore, conservancy analysis was also done using in silico tools and showed a conservancy of 64.29% for all epitopes. The peptide sequence could interact with as many as 16 human leukocyte antigens (HLAs) and showed high cumulative population coverage, ranging from 75.68% to 90.73%. The epitope was further tested for binding against the HLA molecules, using in silico docking techniques, to verify the binding cleft epitope interaction. The allergenicity of the epitopes was also evaluated. This computational study of design of an epitope-based peptide vaccine against HCoVs allows us to determine novel peptide antigen targets in spike proteins on intuitive grounds, albeit the preliminary results thereof require validation by in vitro and in vivo experiments. PMID:25187696

  9. HLA-A*0201 T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus nucleocapsid and spike proteins

    SciTech Connect

    Tsao, Y.-P.; Lin, J.-Y.; Jan, J.-T.; Leng, C.-H.; Chu, C.-C.; Yang, Y.-C.; Chen, S.-L. . E-mail: showlic@ha.mc.ntu.edu.tw

    2006-05-26

    The immunogenicity of HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) peptide in severe acute respiratory syndrome coronavirus (SARS-CoV) nuclear capsid (N) and spike (S) proteins was determined by testing the proteins' ability to elicit a specific cellular immune response after immunization of HLA-A2.1 transgenic mice and in vitro vaccination of HLA-A2.1 positive human peripheral blood mononuclearcytes (PBMCs). First, we screened SARS N and S amino acid sequences for allele-specific motif matching those in human HLA-A2.1 MHC-I molecules. From HLA peptide binding predictions (http://thr.cit.nih.gov/molbio/hla{sub b}ind/), ten each potential N- and S-specific HLA-A2.1-binding peptides were synthesized. The high affinity HLA-A2.1 peptides were validated by T2-cell stabilization assays, with immunogenicity assays revealing peptides N223-231, N227-235, and N317-325 to be First identified HLA-A*0201-restricted CTL epitopes of SARS-CoV N protein. In addition, previous reports identified three HLA-A*0201-restricted CTL epitopes of S protein (S978-986, S1203-1211, and S1167-1175), here we found two novel peptides S787-795 and S1042-1050 as S-specific CTL epitopes. Moreover, our identified N317-325 and S1042-1050 CTL epitopes could induce recall responses when IFN-{gamma} stimulation of blood CD8{sup +} T-cells revealed significant difference between normal healthy donors and SARS-recovered patients after those PBMCs were in vitro vaccinated with their cognate antigen. Our results would provide a new insight into the development of therapeutic vaccine in SARS.

  10. Structural Insights into Immune Recognition of the Severe Acute Respiratory Syndrome Coronavirus S Protein Receptor Binding Domain

    SciTech Connect

    Pak, J.; Sharon, C; Satkunarajah, M; Thierry, C; Cameron, C; Kelvin, D; Seetharaman, J; Cochrane, A; Plummer, F; et. al.

    2009-01-01

    The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for host cell attachment and fusion of the viral and host cell membranes. Within S the receptor binding domain (RBD) mediates the interaction with angiotensin-converting enzyme 2 (ACE2), the SARS-CoV host cell receptor. Both S and the RBD are highly immunogenic and both have been found to elicit neutralizing antibodies. Reported here is the X-ray crystal structure of the RBD in complex with the Fab of a neutralizing mouse monoclonal antibody, F26G19, elicited by immunization with chemically inactivated SARS-CoV. The RBD-F26G19 Fab complex represents the first example of the structural characterization of an antibody elicited by an immune response to SARS-CoV or any fragment of it. The structure reveals that the RBD surface recognized by F26G19 overlaps significantly with the surface recognized by ACE2 and, as such, suggests that F26G19 likely neutralizes SARS-CoV by blocking the virus-host cell interaction.

  11. Recombinant Receptor Binding Domain Protein Induces Partial Protective Immunity in Rhesus Macaques Against Middle East Respiratory Syndrome Coronavirus Challenge☆

    PubMed Central

    Lan, Jiaming; Yao, Yanfeng; Deng, Yao; Chen, Hong; Lu, Guangwen; Wang, Wen; Bao, Linlin; Deng, Wei; Wei, Qiang; Gao, George F.; Qin, Chuan; Tan, Wenjie

    2015-01-01

    Background Development an effective vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) is urgent and limited information is available on vaccination in nonhuman primate (NHP) model. We herein report of evaluating a recombinant receptor-binding domain (rRBD) protein vaccine in a rhesus macaque model. Methods Nine monkeys were randomly assigned to high-dose, low-dose and mock groups,which were immunized with different doses of rRBD plus alum adjuvant or adjuvant alone at different time points (0, 8, 25 weeks). Immunological analysis was conducted after each immunisation. Monkeys were challenged with MERS-CoV at 14 days after the final immunisation followed by observation for clinical signs and chest X-rays. Nasal, oropharyngeal and rectal swabs were also collected for analyses. Monkeys were euthanized 3 days after challenge and multiple specimens from tissues were collected for pathological, virological and immunological tests. Conclusion Robust and sustained immunological responses (including neutralisation antibody) were elicited by the rRBD vaccination. Besides, rRBD vaccination alleviated pneumonia with evidence of reduced tissue impairment and clinical manifestation in monkeys. Furthermore, the rRBD vaccine decreased viral load of lung, trachea and oropharyngeal swabs of monkeys. These data in NHP paves a way for further development of an effective human vaccine against MERS-CoV infection. PMID:26629538

  12. A Coronavirus E Protein Is Present in Two Distinct Pools with Different Effects on Assembly and the Secretory Pathway

    PubMed Central

    Westerbeck, Jason W.

    2015-01-01

    ABSTRACT Coronaviruses (CoVs) assemble by budding into the lumen of the early Golgi complex prior to exocytosis. The small CoV envelope (E) protein plays roles in assembly, virion release, and pathogenesis. CoV E has a single hydrophobic domain (HD), is targeted to Golgi complex membranes, and has cation channel activity in vitro. However, the precise functions of the CoV E protein during infection are still enigmatic. Structural data for the severe acute respiratory syndrome (SARS)-CoV E protein suggest that it assembles into a homopentamer. Specific residues in the HD regulate the ion-conducting pore formed by SARS-CoV E in artificial bilayers and the pathogenicity of the virus during infection. The E protein from the avian infectious bronchitis virus (IBV) has dramatic effects on the secretory system which require residues in the HD. Here, we use the known structural data from SARS-CoV E to infer the residues important for ion channel activity and the oligomerization of IBV E. We present biochemical data for the formation of two distinct oligomeric pools of IBV E in transfected and infected cells and the residues required for their formation. A high-order oligomer of IBV E is required for the production of virus-like particles (VLPs), implicating this form of the protein in virion assembly. Additionally, disruption of the secretory pathway by IBV E correlates with a form that is likely monomeric, suggesting that the effects on the secretory pathway are independent of E ion channel activity. IMPORTANCE CoVs are important human pathogens with significant zoonotic potential, as demonstrated by the emergence of SARS-CoV and Middle East respiratory syndrome (MERS)-CoV. Progress has been made toward identifying potential vaccine candidates in mouse models of CoV infection, including the use of attenuated viruses that lack the CoV E protein or express E-protein mutants. However, no approved vaccines or antiviral therapeutics exist. We previously reported that the

  13. Receptor Recognition Mechanisms of Coronaviruses: a Decade of Structural Studies

    PubMed Central

    2014-01-01

    Receptor recognition by viruses is the first and essential step of viral infections of host cells. It is an important determinant of viral host range and cross-species infection and a primary target for antiviral intervention. Coronaviruses recognize a variety of host receptors, infect many hosts, and are health threats to humans and animals. The receptor-binding S1 subunit of coronavirus spike proteins contains two distinctive domains, the N-terminal domain (S1-NTD) and the C-terminal domain (S1-CTD), both of which can function as receptor-binding domains (RBDs). S1-NTDs and S1-CTDs from three major coronavirus genera recognize at least four protein receptors and three sugar receptors and demonstrate a complex receptor recognition pattern. For example, highly similar coronavirus S1-CTDs within the same genus can recognize different receptors, whereas very different coronavirus S1-CTDs from different genera can recognize the same receptor. Moreover, coronavirus S1-NTDs can recognize either protein or sugar receptors. Structural studies in the past decade have elucidated many of the puzzles associated with coronavirus-receptor interactions. This article reviews the latest knowledge on the receptor recognition mechanisms of coronaviruses and discusses how coronaviruses have evolved their complex receptor recognition pattern. It also summarizes important principles that govern receptor recognition by viruses in general. PMID:25428871

  14. Crystal structure-based exploration of the important role of Arg106 in the RNA-binding domain of human coronavirus OC43 nucleocapsid protein

    PubMed Central

    Chen, I-Jung; Yuann, Jeu-Ming P.; Chang, Yu-Ming; Lin, Shing-Yen; Zhao, Jincun; Perlman, Stanley; Shen, Yo-Yu; Huang, Tai-Huang; Hou, Ming-Hon

    2013-01-01

    Human coronavirus OC43 (HCoV-OC43) is a causative agent of the common cold. The nucleocapsid (N) protein, which is a major structural protein of CoVs, binds to the viral RNA genome to form the virion core and results in the formation of the ribonucleoprotein (RNP) complex. We have solved the crystal structure of the N-terminal domain of HCoV-OC43 N protein (N-NTD) (residues 58 to 195) to a resolution of 2.0Å. The HCoV-OC43 N-NTD is a single domain protein composed of a five-stranded β-sheet core and a long extended loop, similar to that observed in the structures of N-NTDs from other coronaviruses. The positively charged loop of the HCoV-OC43 N-NTD contains a structurally well-conserved positively charged residue, R106. To assess the role of R106 in RNA binding, we undertook a series of site-directed mutagenesis experiments and docking simulations to characterize the interaction between R106 and RNA. The results show that R106 plays an important role in the interaction between the N protein and RNA. In addition, we showed that, in cells transfected with plasmids that encoded the mutant (R106A) N protein and infected with virus, the level of the matrix protein gene was decreased by 7-fold compared to cells that were transfected with the wild-type N protein. This finding suggests that R106, by enhancing binding of the N protein to viral RNA plays a critical role in the viral replication. The results also indicate that the strength of N protein/RNA interactions is critical for HCoV-OC43 replication. PMID:23501675

  15. SARS Coronavirus E Protein in Phospholipid Bilayers: An X-Ray Study

    PubMed Central

    Khattari, Z.; Brotons, G.; Akkawi, M.; Arbely, E.; Arkin, I. T.; Salditt, T.

    2006-01-01

    We investigated the structure of the hydrophobic domain of the severe acute respiratory syndrome E protein in model lipid membranes by x-ray reflectivity and x-ray scattering. In particular, we used x-ray reflectivity to study the location of an iodine-labeled residue within the lipid bilayer. The label imposes spatial constraints on the protein topology. Experimental data taken as a function of protein/lipid ratio P/L and different swelling states support the hairpin conformation of severe acute respiratory syndrome E protein reported previously. Changes in the bilayer thickness and acyl-chain ordering are presented as a function of P/L, and discussed in view of different structural models. PMID:16361349

  16. Some serum acute phase proteins and immunoglobulins concentrations in calves with rotavirus, coronavirus, E. coli F5 and Eimeria species

    PubMed Central

    Balikci, E; Al, M

    2014-01-01

    The purpose of this study was to evaluate the changes in the serum concentrations of haptoglobin (Hp), serum amyloid A (SAA) and IgG, IgA in calves with diarrhea caused by rotavirus, coronavirus, Escherichia coli F5 and Eimeria species. The experiment was carried out on 40 diarrhoeic and 10 non-diarrhoeic calves (group C). A total of 13 calves were infected with rotavirus or coronavirus (group V), 12 calves with E. coli F5 (group B) and 15 calves with Eimeria species (group P). SAA and Hp levels of calves in groups V, B and P were statistically higher than group C (P<0.05). SAA and Hp levels of the group B and group P were significantly higher than the group V (P<0.05). SAA and Hp levels in group B were not significantly higher than the group P. The levels of IgG and IgA were found to be lower in groups B and V compared to other groups. There was a negative correlation between immunoglobulins and the levels of serum Hp and SAA in groups B and V (r=-0.315 and r=-0.369, respectively, P<0.05). Serum SAA, Hp, IgA and IgG levels could be useful for the diagnosis and differential diagnosis of diarrhea caused by rotavirus, coronavirus, E. coli F5 and Eimeria species. PMID:27175138

  17. The transmembrane domain of the severe acute respiratory syndrome coronavirus ORF7b protein is necessary and sufficient for its retention in the Golgi complex.

    PubMed

    Schaecher, Scott R; Diamond, Michael S; Pekosz, Andrew

    2008-10-01

    The severe acute respiratory syndrome coronavirus (SARS-CoV) ORF7b (also called 7b) protein is an integral membrane protein that is translated from a bicistronic open reading frame encoded within subgenomic RNA 7. When expressed independently or during virus infection, ORF7b accumulates in the Golgi compartment, colocalizing with both cis- and trans-Golgi markers. To identify the domains of this protein that are responsible for Golgi localization, we have generated a set of mutant proteins and analyzed their subcellular localizations by indirect immunofluorescence confocal microscopy. The N- and C-terminal sequences are dispensable, but the ORF7b transmembrane domain (TMD) is essential for Golgi compartment localization. When the TMD of human CD4 was replaced with the ORF7b TMD, the resulting chimeric protein localized to the Golgi complex. Scanning alanine mutagenesis identified two regions in the carboxy-terminal portion of the TMD that eliminated the Golgi complex localization of the chimeric CD4 proteins or ORF7b protein. Collectively, these data demonstrate that the Golgi complex retention signal of the ORF7b protein resides solely within the TMD. PMID:18632859

  18. Nonstructural Proteins 7 and 8 of Feline Coronavirus Form a 2:1 Heterotrimer That Exhibits Primer-Independent RNA Polymerase Activity

    PubMed Central

    Xiao, Yibei; Ma, Qingjun; Restle, Tobias; Shang, Weifeng; Svergun, Dmitri I.; Ponnusamy, Rajesh; Sczakiel, Georg

    2012-01-01

    Nonstructural proteins 7 and 8 of severe acute respiratory syndrome coronavirus (SARS-CoV) have previously been shown by X-ray crystallography to form an 8:8 hexadecamer. In addition, it has been demonstrated that N-terminally His6-tagged SARS-CoV Nsp8 is a primase able to synthesize RNA oligonucleotides with a length of up to 6 nucleotides. We present here the 2.6-Å crystal structure of the feline coronavirus (FCoV) Nsp7:Nsp8 complex, which is a 2:1 heterotrimer containing two copies of the α-helical Nsp7 with conformational differences between them, and one copy of Nsp8 that consists of an α/β domain and a long-α-helix domain. The same stoichiometry is found for the Nsp7:Nsp8 complex in solution, as demonstrated by chemical cross-linking, size exclusion chromatography, and small-angle X-ray scattering. Furthermore, we show that FCoV Nsp8, like its SARS-CoV counterpart, is able to synthesize short oligoribonucleotides of up to 6 nucleotides in length when carrying an N-terminal His6 tag. Remarkably, the same protein harboring the sequence GPLG instead of the His6 tag at its N terminus exhibits a substantially increased, primer-independent RNA polymerase activity. Upon addition of Nsp7, the RNA polymerase activity is further enhanced so that RNA up to template length (67 nucleotides) can be synthesized. Further, we show that the unprocessed intermediate polyprotein Nsp7-10 of human coronavirus (HCoV) 229E is also capable of synthesizing oligoribonucleotides up to a chain length of six. These results indicate that in case of FCoV as well as of HCoV 229E, the formation of a hexadecameric Nsp7:Nsp8 complex is not necessary for RNA polymerase activity. Further, the FCoV Nsp7:Nsp8 complex functions as a noncanonical RNA polymerase capable of synthesizing RNA of up to template length. PMID:22318142

  19. Molecular mechanisms of coronavirus RNA capping and methylation.

    PubMed

    Chen, Yu; Guo, Deyin

    2016-02-01

    The 5'-cap structures of eukaryotic mRNAs are important for RNA stability, pre-mRNA splicing, mRNA export, and protein translation. Many viruses have evolved mechanisms for generating their own cap structures with methylation at the N7 position of the capped guanine and the ribose 2'-Oposition of the first nucleotide, which help viral RNAs escape recognition by the host innate immune system. The RNA genomes of coronavirus were identified to have 5'-caps in the early 1980s. However, for decades the RNA capping mechanisms of coronaviruses remained unknown. Since 2003, the outbreak of severe acute respiratory syndrome coronavirus has drawn increased attention and stimulated numerous studies on the molecular virology of coronaviruses. Here, we review the current understanding of the mechanisms adopted by coronaviruses to produce the 5'-cap structure and methylation modification of viral genomic RNAs. PMID:26847650

  20. Drug Targets for Rational Design against Emerging Coronaviruses.

    PubMed

    Zhao, Qi; Weber, Erin; Yang, Haitao

    2013-07-26

    The recent, fatal outbreak of the novel coronavirus strain in the Middle East highlights the real threat posed by this unique virus family. Neither pharmaceutical cures nor preventive vaccines are clinically available to fight against coronavirus associated syndromes, not to mention a lack of symptom soothing drugs. Development of treatment options is complicated by the unpredictable, recurring instances of cross-species viral transmission. The vastly distributing virus reservoir and the rapid rate of host-species exchange of coronavirus demands wide spectrum potency in an ideal therapeutic. Through summarizing the available information and progress in coronavirus research, this review provides a systematic assessment of the potential wide-spectrum features on the most popular drug targets including viral proteases, spike protein, RNA polymerases and editing enzymes as well as host-virus interaction pathways associated with coronaviruses. PMID:23885693

  1. Drug targets for rational design against emerging coronaviruses.

    PubMed

    Zhao, Qi; Weber, Erin; Yang, Haitao

    2013-04-01

    The recent, fatal outbreak of the novel coronavirus strain in the Middle East highlights the real threat posed by this unique virus family. Neither pharmaceutical cures nor preventive vaccines are clinically available to fight against coronavirus associated syndromes, not to mention a lack of symptom soothing drugs. Development of treatment options is complicated by the unpredictable, recurring instances of cross-species viral transmission. The vastly distributing virus reservoir and the rapid rate of host-species exchange of coronavirus demands wide spectrum potency in an ideal therapeutic. Through summarizing the available information and progress in coronavirus research, this review provides a systematic assessment of the potential wide-spectrum features on the most popular drug targets including viral proteases, spike protein, RNA polymerases and editing enzymes as well as host-virus interaction pathways associated with coronaviruses. PMID:23895136

  2. Mucosal Immunization with Surface-Displayed Severe Acute Respiratory Syndrome Coronavirus Spike Protein on Lactobacillus casei Induces Neutralizing Antibodies in Mice

    PubMed Central

    Lee, Jong-Soo; Poo, Haryoung; Han, Dong P.; Hong, Seung-Pyo; Kim, Kwang; Cho, Michael W.; Kim, Eun; Sung, Moon-Hee; Kim, Chul-Joong

    2006-01-01

    Induction of mucosal immunity may be important for preventing SARS-CoV infections. For safe and effective delivery of viral antigens to the mucosal immune system, we have developed a novel surface antigen display system for lactic acid bacteria using the poly-γ-glutamic acid synthetase A protein (PgsA) of Bacillus subtilis as an anchoring matrix. Recombinant fusion proteins comprised of PgsA and the Spike (S) protein segments SA (residues 2 to 114) and SB (residues 264 to 596) were stably expressed in Lactobacillus casei. Surface localization of the fusion protein was verified by cellular fractionation analyses, immunofluorescence microscopy, and flow cytometry. Oral and nasal inoculations of recombinant L. casei into mice resulted in high levels of serum immunoglobulin G (IgG) and mucosal IgA, as demonstrated by enzyme-linked immunosorbent assays using S protein peptides. More importantly, these antibodies exhibited potent neutralizing activities against severe acute respiratory syndrome (SARS) pseudoviruses. Orally immunized mice mounted a greater neutralizing-antibody response than those immunized intranasally. Three new neutralizing epitopes were identified on the S protein using a peptide neutralization interference assay (residues 291 to 308, 520 to 529, and 564 to 581). These results indicate that mucosal immunization with recombinant L. casei expressing SARS-associated coronavirus S protein on its surface provides an effective means for eliciting protective immune response against the virus. PMID:16571824

  3. The ns12.9 Accessory Protein of Human Coronavirus OC43 Is a Viroporin Involved in Virion Morphogenesis and Pathogenesis

    PubMed Central

    Zhang, Ronghua; Wang, Kai; Ping, Xianqiang; Yu, Wenjing

    2015-01-01

    ABSTRACT An accessory gene between the S and E gene loci is contained in all coronaviruses (CoVs), and its function has been studied in some coronaviruses. This gene locus in human coronavirus OC43 (HCoV-OC43) encodes the ns12.9 accessory protein; however, its function during viral infection remains unknown. Here, we engineered a recombinant mutant virus lacking the ns12.9 protein (HCoV-OC43-Δns12.9) to characterize the contributions of ns12.9 in HCoV-OC43 replication. The ns12.9 accessory protein is a transmembrane protein and forms ion channels in both Xenopus oocytes and yeast through homo-oligomerization, suggesting that ns12.9 is a newly recognized viroporin. HCoV-OC43-Δns12.9 presented at least 10-fold reduction of viral titer in vitro and in vivo. Intriguingly, exogenous ns12.9 and heterologous viroporins with ion channel activity could compensate for the production of HCoV-OC43-Δns12.9, indicating that the ion channel activity of ns12.9 plays a significant role in the production of infectious virions. Systematic dissection of single-cycle replication revealed that ns12.9 protein had no measurable effect on virus entry, subgenomic mRNA (sgmRNA) synthesis, and protein expression. Further characterization revealed that HCoV-OC43-Δns12.9 was less efficient in virion morphogenesis than recombinant wild-type virus (HCoV-OC43-WT). Moreover, reduced viral replication, inflammatory response, and virulence in HCoV-OC43-Δns12.9-infected mice were observed compared to the levels for HCoV-OC43-WT-infected mice. Taken together, our results demonstrated that the ns12.9 accessory protein functions as a viroporin and is involved in virion morphogenesis and the pathogenesis of HCoV-OC43 infection. IMPORTANCE HCoV-OC43 was isolated in the 1960s and is a major agent of the common cold. The functions of HCoV-OC43 structural proteins have been well studied, but few studies have focused on its accessory proteins. In the present study, we demonstrated that the ns12.9 protein

  4. Regulation of Stress Responses and Translational Control by Coronavirus

    PubMed Central

    Fung, To Sing; Liao, Ying; Liu, Ding Xiang

    2016-01-01

    Similar to other viruses, coronavirus infection triggers cellular stress responses in infected host cells. The close association of coronavirus replication with the endoplasmic reticulum (ER) results in the ER stress responses, which impose a challenge to the viruses. Viruses, in turn, have come up with various mechanisms to block or subvert these responses. One of the ER stress responses is inhibition of the global protein synthesis to reduce the amount of unfolded proteins inside the ER lumen. Viruses have evolved the capacity to overcome the protein translation shutoff to ensure viral protein production. Here, we review the strategies exploited by coronavirus to modulate cellular stress response pathways. The involvement of coronavirus-induced stress responses and translational control in viral pathogenesis will also be briefly discussed. PMID:27384577

  5. Regulation of Stress Responses and Translational Control by Coronavirus.

    PubMed

    Fung, To Sing; Liao, Ying; Liu, Ding Xiang

    2016-01-01

    Similar to other viruses, coronavirus infection triggers cellular stress responses in infected host cells. The close association of coronavirus replication with the endoplasmic reticulum (ER) results in the ER stress responses, which impose a challenge to the viruses. Viruses, in turn, have come up with various mechanisms to block or subvert these responses. One of the ER stress responses is inhibition of the global protein synthesis to reduce the amount of unfolded proteins inside the ER lumen. Viruses have evolved the capacity to overcome the protein translation shutoff to ensure viral protein production. Here, we review the strategies exploited by coronavirus to modulate cellular stress response pathways. The involvement of coronavirus-induced stress responses and translational control in viral pathogenesis will also be briefly discussed. PMID:27384577

  6. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis

    PubMed Central

    Millet, Jean Kaoru; Whittaker, Gary R.

    2015-01-01

    Coronaviruses are a large group of enveloped, single-stranded positive-sense RNA viruses that infect a wide range of avian and mammalian species, including humans. The emergence of deadly human coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV) have bolstered research in these viral and often zoonotic pathogens. While coronavirus cell and tissue tropism, host range, and pathogenesis are initially controlled by interactions between the spike envelope glycoprotein and host cell receptor, it is becoming increasingly apparent that proteolytic activation of spike by host cell proteases also plays a critical role. Coronavirus spike proteins are the main determinant of entry as they possess both receptor binding and fusion functions. Whereas binding to the host cell receptor is an essential first step in establishing infection, the proteolytic activation step is often critical for the fusion function of spike, as it allows for controlled release of the fusion peptide into target cellular membranes. Coronaviruses have evolved multiple strategies for proteolytic activation of spike, and a large number of host proteases have been shown to proteolytically process the spike protein. These include, but are not limited to, endosomal cathepsins, cell surface transmembrane protease/serine (TMPRSS) proteases, furin, and trypsin. This review focuses on the diversity of strategies coronaviruses have evolved to proteolytically activate their fusion protein during spike protein biosynthesis and the critical entry step of their life cycle, and highlights important findings on how proteolytic activation of coronavirus spike influences tissue and cell tropism, host range and pathogenicity. PMID:25445340

  7. Severe acute respiratory syndrome coronavirus protein nsp1 is a novel eukaryotic translation inhibitor that represses multiple steps of translation initiation.

    PubMed

    Lokugamage, Kumari G; Narayanan, Krishna; Huang, Cheng; Makino, Shinji

    2012-12-01

    Severe acute respiratory syndrome (SARS) coronavirus nonstructural protein 1 (nsp1) binds to the 40S ribosomal subunit and inhibits translation, and it also induces a template-dependent endonucleolytic cleavage of host mRNAs. nsp1 inhibits the translation of cap-dependent and internal ribosome entry site (IRES)-driven mRNAs, including SARS coronavirus mRNAs, hepatitis C virus (HCV), and cricket paralysis virus (CrPV) IRES-driven mRNAs that are resistant to nsp1-induced RNA cleavage. We used an nsp1 mutant, nsp1-CD, lacking the RNA cleavage function, to delineate the mechanism of nsp1-mediated translation inhibition and identify the translation step(s) targeted by nsp1. nsp1 and nsp1-CD had identical inhibitory effects on mRNA templates that are resistant to nsp1-induced RNA cleavage, implying the validity of using nsp1-CD to dissect the translation inhibition function of nsp1. We provide evidence for a novel mode of action of nsp1. nsp1 inhibited the translation initiation step by targeting at least two separate stages: 48S initiation complex formation and the steps involved in the formation of the 80S initiation complex from the 48S complex. nsp1 had a differential, mRNA template-dependent, inhibitory effect on 48S and 80S initiation complex formation. nsp1 inhibited different steps of translation initiation on CrPV and HCV IRES, both of which initiate translation via an IRES-40S binary complex intermediate; nsp1 inhibited binary complex formation on CrPV IRES and 48S complex formation on HCV IRES. Collectively, the data revealed that nsp1 inhibited translation by exerting its effect on multiple stages of translation initiation, depending on the mechanism of initiation operating on the mRNA template. PMID:23035226

  8. Coronavirus infection of spotted hyenas in the Serengeti ecosystem.

    PubMed

    East, Marion L; Moestl, Karin; Benetka, Viviane; Pitra, Christian; Höner, Oliver P; Wachter, Bettina; Hofer, Heribert

    2004-08-19

    Sera from 38 free-ranging spotted hyenas (Crocuta crocuta) in the Serengeti ecosystem, Tanzania, were screened for exposure to coronavirus of antigenic group 1. An immunofluorescence assay indicated high levels of exposure to coronavirus among Serengeti hyenas: 95% when considering sera with titer levels of > or = 1:10 and 74% when considering sera with titer levels of > or = 1:40. Cubs had generally lower mean titer levels than adults. Exposure among Serengeti hyenas to coronavirus was also confirmed by a serum neutralisation assay and an ELISA. Application of RT-PCR to 27 fecal samples revealed viral RNA in three samples (11%). All three positive fecal samples were from the 15 juvenile animals (<24 months of age) sampled, and none from the 12 adults sampled. No viral RNA was detected in tissue samples (lymph node, intestine, lung) from 11 individuals. Sequencing of two amplified products from the S protein gene of a positive sample revealed the presence of coronavirus specific RNA with a sequence homology to canine coronavirus of 76 and 78% and to feline coronavirus type II of 80 and 84%, respectively. Estimation of the phylogenetic relationship among coronavirus isolates indicated considerable divergence of the hyena variant from those in European, American and Japanese domestic cats and dogs. From long-term observations of several hundred known individuals, the only clinical sign in hyenas consistent with those described for coronavirus infections in dogs and cats was diarrhea. There was no evidence that coronavirus infection in hyenas caused clinical signs similar to feline infectious peritonitis in domestic cats or was a direct cause of mortality in hyenas. To our knowledge, this is the first report of coronavirus infection in Hyaenidae. PMID:15288921

  9. Infectious Bronchitis Coronavirus Inhibits STAT1 Signaling and Requires Accessory Proteins for Resistance to Type I Interferon Activity

    PubMed Central

    Kint, Joeri; Dickhout, Annemiek; Kutter, Jasmin; Maier, Helena J.; Britton, Paul; Koumans, Joseph; Pijlman, Gorben P.; Fros, Jelke J.; Wiegertjes, Geert F.

    2015-01-01

    ABSTRACT The innate immune response is the first line of defense against viruses, and type I interferon (IFN) is a critical component of this response. Similar to other viruses, the gammacoronavirus infectious bronchitis virus (IBV) has evolved under evolutionary pressure to evade and counteract the IFN response to enable its survival. Previously, we reported that IBV induces a delayed activation of the IFN response. In the present work, we describe the resistance of IBV to IFN and the potential role of accessory proteins herein. We show that IBV is fairly resistant to the antiviral state induced by IFN and identify that viral accessory protein 3a is involved in resistance to IFN, as its absence renders IBV less resistant to IFN treatment. In addition to this, we found that independently of its accessory proteins, IBV inhibits IFN-mediated phosphorylation and translocation of STAT1. In summary, we show that IBV uses multiple strategies to counteract the IFN response. IMPORTANCE In the present study, we show that infectious bronchitis virus (IBV) is resistant to IFN treatment and identify a role for accessory protein 3a in the resistance against the type I IFN response. We also demonstrate that, in a time-dependent manner, IBV effectively interferes with IFN signaling and that its accessory proteins are dispensable for this activity. This study demonstrates that the gammacoronavirus IBV, similar to its mammalian counterparts, has evolved multiple strategies to efficiently counteract the IFN response of its avian host, and it identifies accessory protein 3a as multifaceted antagonist of the avian IFN system. PMID:26401035

  10. Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3

    PubMed Central

    Lui, Pak-Yin; Wong, Lok-Yin Roy; Fung, Cheuk-Lai; Siu, Kam-Leung; Yeung, Man-Lung; Yuen, Kit-San; Chan, Chi-Ping; Woo, Patrick Chiu-Yat; Yuen, Kwok-Yung; Jin, Dong-Yan

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) infection has claimed hundreds of lives and has become a global threat since its emergence in Saudi Arabia in 2012. The ability of MERS-CoV to evade the host innate antiviral response may contribute to its severe pathogenesis. Many MERS-CoV-encoded proteins were identified to have interferon (IFN)-antagonizing properties, which correlates well with the reduced IFN levels observed in infected patients and ex vivo models. In this study, we fully characterized the IFN-antagonizing property of the MERS-CoV M protein. Expression of MERS-CoV M protein suppressed type I IFN expression in response to Sendai virus infection or poly(I:C) induction. This suppressive effect was found to be specific for the activation of IFN regulatory factor 3 (IRF3) but not nuclear factor-κB. MERS-CoV M protein interacted with TRAF3 and disrupted TRAF3–TBK1 association leading to reduced IRF3 activation. M proteins from MERS-CoV and SARS-CoV have three highly similar conserved N-terminal transmembrane domains and a C-terminal region. Using chimeric and truncation mutants, the N-terminal transmembrane domains of the MERS-CoV M protein were found to be sufficient for its inhibitory effect on IFN expression, whereas the C-terminal domain was unable to induce this suppression. Collectively, our findings suggest a common and conserved mechanism through which highly pathogenic MERS-CoV and SARS-CoV harness their M proteins to suppress type I IFN expression at the level of TBK1-dependent phosphorylation and activation of IRF3 resulting in evasion of the host innate antiviral response. PMID:27094905

  11. Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3.

    PubMed

    Lui, Pak-Yin; Wong, Lok-Yin Roy; Fung, Cheuk-Lai; Siu, Kam-Leung; Yeung, Man-Lung; Yuen, Kit-San; Chan, Chi-Ping; Woo, Patrick Chiu-Yat; Yuen, Kwok-Yung; Jin, Dong-Yan

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) infection has claimed hundreds of lives and has become a global threat since its emergence in Saudi Arabia in 2012. The ability of MERS-CoV to evade the host innate antiviral response may contribute to its severe pathogenesis. Many MERS-CoV-encoded proteins were identified to have interferon (IFN)-antagonizing properties, which correlates well with the reduced IFN levels observed in infected patients and ex vivo models. In this study, we fully characterized the IFN-antagonizing property of the MERS-CoV M protein. Expression of MERS-CoV M protein suppressed type I IFN expression in response to Sendai virus infection or poly(I:C) induction. This suppressive effect was found to be specific for the activation of IFN regulatory factor 3 (IRF3) but not nuclear factor-κB. MERS-CoV M protein interacted with TRAF3 and disrupted TRAF3-TBK1 association leading to reduced IRF3 activation. M proteins from MERS-CoV and SARS-CoV have three highly similar conserved N-terminal transmembrane domains and a C-terminal region. Using chimeric and truncation mutants, the N-terminal transmembrane domains of the MERS-CoV M protein were found to be sufficient for its inhibitory effect on IFN expression, whereas the C-terminal domain was unable to induce this suppression. Collectively, our findings suggest a common and conserved mechanism through which highly pathogenic MERS-CoV and SARS-CoV harness their M proteins to suppress type I IFN expression at the level of TBK1-dependent phosphorylation and activation of IRF3 resulting in evasion of the host innate antiviral response. PMID:27094905

  12. Phylogenetic and phylogeographic mapping of the avian coronavirus spike protein-encoding gene in wild and synanthropic birds.

    PubMed

    Durães-Carvalho, Ricardo; Caserta, Leonardo C; Barnabé, Ana C S; Martini, Matheus C; Simas, Paulo V M; Santos, Márcia M B; Salemi, Marco; Arns, Clarice W

    2015-04-01

    The evolution and population dynamics of avian coronaviruses (AvCoVs) remain underexplored. In the present study, in-depth phylogenetic and Bayesian phylogeographic studies were conducted to investigate the evolutionary dynamics of AvCoVs detected in wild and synanthropic birds. A total of 500 samples, including tracheal and cloacal swabs collected from 312 wild birds belonging to 42 species, were analysed using molecular assays. A total of 65 samples (13%) from 22 bird species were positive for AvCoV. Molecular evolution analyses revealed that the sequences from samples collected in Brazil did not cluster with any of the AvCoV S1 gene sequences deposited in the GenBank database. Bayesian framework analysis estimated an AvCoV strain from Sweden (1999) as the most recent common ancestor of the AvCoVs detected in this study. Furthermore, the analysis inferred an increase in the AvCoV dynamic demographic population in different wild and synanthropic bird species, suggesting that birds may be potential new hosts responsible for spreading this virus. PMID:25771408

  13. A single amino acid substitution (R441A) in the receptor-binding domain of SARS coronavirus spike protein disrupts the antigenic structure and binding activity

    SciTech Connect

    He Yuxian . E-mail: yhe@nybloodcenter.org; Li Jingjing; Jiang Shibo

    2006-05-26

    The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) has two major functions: interacting with the receptor to mediate virus entry and inducing protective immunity. Coincidently, the receptor-binding domain (RBD, residues 318-510) of SAR-CoV S protein is a major antigenic site to induce neutralizing antibodies. Here, we used RBD-Fc, a fusion protein containing the RBD and human IgG1 Fc, as a model in the studies and found that a single amino acid substitution in the RBD (R441A) could abolish the immunogenicity of RBD to induce neutralizing antibodies in immunized mice and rabbits. With a panel of anti-RBD mAbs as probes, we observed that R441A substitution was able to disrupt the majority of neutralizing epitopes in the RBD, suggesting that this residue is critical for the antigenic structure responsible for inducing protective immune responses. We also demonstrated that the RBD-Fc bearing R441A mutation could not bind to soluble and cell-associated angiotensin-converting enzyme 2 (ACE2), the functional receptor for SARS-CoV and failed to block S protein-mediated pseudovirus entry, indicating that this point mutation also disrupted the receptor-binding motif (RBM) in the RBD. Taken together, these data provide direct evidence to show that a single amino acid residue at key position in the RBD can determine the major function of SARS-CoV S protein and imply for designing SARS vaccines and therapeutics.

  14. Nuclear Magnetic Resonance Structure of the Nucleic Acid-Binding Domain of Severe Acute Respiratory Syndrome Coronavirus Nonstructural Protein 3▿

    PubMed Central

    Serrano, Pedro; Johnson, Margaret A.; Chatterjee, Amarnath; Neuman, Benjamin W.; Joseph, Jeremiah S.; Buchmeier, Michael J.; Kuhn, Peter; Wüthrich, Kurt

    2009-01-01

    The nuclear magnetic resonance (NMR) structure of a globular domain of residues 1071 to 1178 within the previously annotated nucleic acid-binding region (NAB) of severe acute respiratory syndrome coronavirus nonstructural protein 3 (nsp3) has been determined, and N- and C-terminally adjoining polypeptide segments of 37 and 25 residues, respectively, have been shown to form flexibly extended linkers to the preceding globular domain and to the following, as yet uncharacterized domain. This extension of the structural coverage of nsp3 was obtained from NMR studies with an nsp3 construct comprising residues 1066 to 1181 [nsp3(1066-1181)] and the constructs nsp3(1066-1203) and nsp3(1035-1181). A search of the protein structure database indicates that the globular domain of the NAB represents a new fold, with a parallel four-strand β-sheet holding two α-helices of three and four turns that are oriented antiparallel to the β-strands. Two antiparallel two-strand β-sheets and two 310-helices are anchored against the surface of this barrel-like molecular core. Chemical shift changes upon the addition of single-stranded RNAs (ssRNAs) identified a group of residues that form a positively charged patch on the protein surface as the binding site responsible for the previously reported affinity for nucleic acids. This binding site is similar to the ssRNA-binding site of the sterile alpha motif domain of the Saccharomyces cerevisiae Vts1p protein, although the two proteins do not share a common globular fold. PMID:19828617

  15. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor

    SciTech Connect

    Peng, Guiqing; Sun, Dawei; Rajashankar, Kanagalaghatta R.; Qian, Zhaohui; Holmes, Kathryn V.; Li, Fang

    2011-09-28

    Coronaviruses have evolved diverse mechanisms to recognize different receptors for their cross-species transmission and host-range expansion. Mouse hepatitis coronavirus (MHV) uses the N-terminal domain (NTD) of its spike protein as its receptor-binding domain. Here we present the crystal structure of MHV NTD complexed with its receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a). Unexpectedly, MHV NTD contains a core structure that has the same {beta}-sandwich fold as human galectins (S-lectins) and additional structural motifs that bind to the N-terminal Ig-like domain of mCEACAM1a. Despite its galectin fold, MHV NTD does not bind sugars, but instead binds mCEACAM1a through exclusive protein-protein interactions. Critical contacts at the interface have been confirmed by mutagenesis, providing a structural basis for viral and host specificities of coronavirus/CEACAM1 interactions. Sugar-binding assays reveal that galectin-like NTDs of some coronaviruses such as human coronavirus OC43 and bovine coronavirus bind sugars. Structural analysis and mutagenesis localize the sugar-binding site in coronavirus NTDs to be above the {beta}-sandwich core. We propose that coronavirus NTDs originated from a host galectin and retained sugar-binding functions in some contemporary coronaviruses, but evolved new structural features in MHV for mCEACAM1a binding.

  16. Influence of hydrophobic and electrostatic residues on SARS-coronavirus S2 protein stability: Insights into mechanisms of general viral fusion and inhibitor design

    PubMed Central

    Aydin, Halil; Al-Khooly, Dina; Lee, Jeffrey E

    2014-01-01

    Severe acute respiratory syndrome (SARS) is an acute respiratory disease caused by the SARS-coronavirus (SARS-CoV). SARS-CoV entry is facilitated by the spike protein (S), which consists of an N-terminal domain (S1) responsible for cellular attachment and a C-terminal domain (S2) that mediates viral and host cell membrane fusion. The SARS-CoV S2 is a potential drug target, as peptidomimetics against S2 act as potent fusion inhibitors. In this study, site-directed mutagenesis and thermal stability experiments on electrostatic, hydrophobic, and polar residues to dissect their roles in stabilizing the S2 postfusion conformation was performed. It was shown that unlike the pH-independent retroviral fusion proteins, SARS-CoV S2 is stable over a wide pH range, supporting its ability to fuse at both the plasma membrane and endosome. A comprehensive SARS-CoV S2 analysis showed that specific hydrophobic positions at the C-terminal end of the HR2, rather than electrostatics are critical for fusion protein stabilization. Disruption of the conserved C-terminal hydrophobic residues destabilized the fusion core and reduced the melting temperature by 30°C. The importance of the C-terminal hydrophobic residues led us to identify a 42-residue substructure on the central core that is structurally conserved in all existing CoV S2 fusion proteins (root mean squared deviation = 0.4 Å). This is the first study to identify such a conserved substructure and likely represents a common foundation to facilitate viral fusion. We have discussed the role of key residues in the design of fusion inhibitors and the potential of the substructure as a general target for the development of novel therapeutics against CoV infections. PMID:24519901

  17. Antibody to severe acute respiratory syndrome (SARS)-associated coronavirus spike protein domain 2 cross-reacts with lung epithelial cells and causes cytotoxicity

    PubMed Central

    Lin, Y S; Lin, C F; Fang, Y T; Kuo, Y M; Liao, P C; Yeh, T M; Hwa, K Y; Shieh, C C K; Yen, J H; Wang, H J; Su, I J; Lei, H Y

    2005-01-01

    Both viral effect and immune-mediated mechanism are involved in the pathogenesis of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infection. In this study, we showed that in SARS patient sera there were autoantibodies (autoAbs) that reacted with A549 cells, the type-2 pneumocytes, and that these autoAbs were mainly IgG. The autoAbs were detectable 20 days after fever onset. Tests of non-SARS-pneumonia patients did not show the same autoAb production as in SARS patients. After sera IgG bound to A549 cells, cytotoxicity was induced. Cell cytotoxicity and the anti-epithelial cell IgG level were positively correlated. Preabsorption and binding assays indicated the existence of cross-reactive epitopes on SARS-CoV spike protein domain 2 (S2). Furthermore, treatment of A549 cells with anti-S2 Abs and IFN-γ resulted in an increase in the adherence of human peripheral blood mononuclear cells to these epithelial cells. Taken together, we have demonstrated that the anti-S2 Abs in SARS patient sera cause cytotoxic injury as well as enhance immune cell adhesion to epithelial cells. The onset of autoimmune responses in SARS-CoV infection may be implicated in SARS pathogenesis. PMID:16045740

  18. Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion

    SciTech Connect

    Simmons, Graham; Bertram, Stephanie; Glowacka, Ilona; Steffen, Imke; Chaipan, Chawaree; Agudelo, Juliet; Lu Kai; Rennekamp, Andrew J.; Hofmann, Heike; Bates, Paul; Poehlmann, Stefan

    2011-05-10

    Severe acute respiratory syndrome coronavirus (SARS-CoV) poses a considerable threat to human health. Activation of the viral spike (S)-protein by host cell proteases is essential for viral infectivity. However, the cleavage sites in SARS-S and the protease(s) activating SARS-S are incompletely defined. We found that R667 was dispensable for SARS-S-driven virus-cell fusion and for SARS-S-activation by trypsin and cathepsin L in a virus-virus fusion assay. Mutation T760R, which optimizes the minimal furin consensus motif 758-RXXR-762, and furin overexpression augmented SARS-S activity, but did not result in detectable SARS-S cleavage. Finally, SARS-S-driven cell-cell fusion was independent of cathepsin L, a protease essential for virus-cell fusion. Instead, a so far unknown leupeptin-sensitive host cell protease activated cellular SARS-S for fusion with target cells expressing high levels of ACE2. Thus, different host cell proteases activate SARS-S for virus-cell and cell-cell fusion and SARS-S cleavage at R667 and 758-RXXR-762 can be dispensable for SARS-S activation.

  19. A novel human coronavirus: Middle East respiratory syndrome human coronavirus.

    PubMed

    Geng, HeYuan; Tan, WenJie

    2013-08-01

    In 2012, a novel coronavirus, initially named as human coronavirus EMC (HCoV-EMC) but recently renamed as Middle East respiratory syndrome human coronavirus (MERS-CoV), was identified in patients who suffered severe acute respiratory infection and subsequent renal failure that resulted in death. Ongoing epidemiological investigations together with retrospective studies have found 61 laboratory-confirmed cases of infection with this novel coronavirus, including 34 deaths to date. This novel coronavirus is culturable and two complete genome sequences are now available. Furthermore, molecular detection and indirect immunofluorescence assay have been developed. The present paper summarises the limited recent advances of this novel human coronavirus, including its discovery, genomic characterisation and detection. PMID:23917839

  20. Genotyping bovine coronaviruses.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine coronaviruses (BoCV) are enveloped, single-stranded, positive-sense RNA viruses of the Coronaviridae family. Infection is associated with enteritis and pneumonia in calves and Winter Dysentery in adult cattle. Strains, isolated more than 50 years ago, are used in vaccines and as laboratory ...

  1. Amino acid changes in the spike protein of feline coronavirus correlate with systemic spread of virus from the intestine and not with feline infectious peritonitis.

    PubMed

    Porter, Emily; Tasker, Séverine; Day, Michael J; Harley, Ross; Kipar, Anja; Siddell, Stuart G; Helps, Christopher R

    2014-01-01

    Recent evidence suggests that a mutation in the spike protein gene of feline coronavirus (FCoV), which results in an amino acid change from methionine to leucine at position 1058, may be associated with feline infectious peritonitis (FIP). Tissue and faecal samples collected post mortem from cats diagnosed with or without FIP were subjected to RNA extraction and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) to detect FCoV RNA. In cats with FIP, 95% of tissue, and 81% of faecal samples were PCR-positive, as opposed to 22% of tissue, and 60% of faecal samples in cats without FIP. Relative FCoV copy numbers were significantly higher in the cats with FIP, both in tissues (P < 0.001) and faeces (P = 0.02). PCR-positive samples underwent pyrosequencing encompassing position 1058 of the FCoV spike protein. This identified a methionine codon at position 1058, consistent with the shedding of an enteric form of FCoV, in 77% of the faecal samples from cats with FIP, and in 100% of the samples from cats without FIP. In contrast, 91% of the tissue samples from cats with FIP and 89% from cats without FIP had a leucine codon at position 1058, consistent with a systemic form of FCoV. These results suggest that the methionine to leucine substitution at position 1058 in the FCoV spike protein is indicative of systemic spread of FCoV from the intestine, rather than a virus with the potential to cause FIP. PMID:24767677

  2. Angiotensin-converting enzyme 2 (ACE2) from raccoon dog can serve as an efficient receptor for the spike protein of severe acute respiratory syndrome coronavirus.

    PubMed

    Xu, Lili; Zhang, Yanfang; Liu, Yun; Chen, Zhiwei; Deng, Hongkui; Ma, Zhongbin; Wang, Hualin; Hu, Zhihong; Deng, Fei

    2009-11-01

    Raccoon dog is one of the suspected intermediate hosts of severe acute respiratory syndrome coronavirus (SARS-CoV). In this study, the angiotensin-converting enzyme 2 (ACE2) gene of raccoon dog (rdACE2) was cloned and sequenced. The amino acid sequence of rdACE2 has identities of 99.3, 89.2, 83.9 and 80.4 % to ACE2 proteins from dog, masked palm civet (pcACE2), human (huACE2) and bat, respectively. There are six amino acid changes in rdACE2 compared with huACE2, and four changes compared with pcACE2, within the 18 residues of ACE2 known to make direct contact with the SARS-CoV S protein. A HeLa cell line stably expressing rdACE2 was established; Western blot analyses and an enzyme-activity assay indicated that the cell line expressed ACE2 at a similar level to two previously established cell lines that express ACE2 from human and masked palm civet, respectively. Human immunodeficiency virus-backboned pseudoviruses expressing spike proteins derived from human SARS-CoV or SARS-CoV-like viruses of masked palm civets and raccoon dogs were tested for their entry efficiency into these cell lines. The results showed that rdACE2 is a more efficient receptor for human SARS-CoV, but not for SARS-CoV-like viruses of masked palm civets and raccoon dogs, than huACE2 or pcACE2. This study provides useful data to elucidate the role of raccoon dog in SARS outbreaks. PMID:19625462

  3. Amino acid changes in the spike protein of feline coronavirus correlate with systemic spread of virus from the intestine and not with feline infectious peritonitis

    PubMed Central

    2014-01-01

    Recent evidence suggests that a mutation in the spike protein gene of feline coronavirus (FCoV), which results in an amino acid change from methionine to leucine at position 1058, may be associated with feline infectious peritonitis (FIP). Tissue and faecal samples collected post mortem from cats diagnosed with or without FIP were subjected to RNA extraction and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) to detect FCoV RNA. In cats with FIP, 95% of tissue, and 81% of faecal samples were PCR-positive, as opposed to 22% of tissue, and 60% of faecal samples in cats without FIP. Relative FCoV copy numbers were significantly higher in the cats with FIP, both in tissues (P < 0.001) and faeces (P = 0.02). PCR-positive samples underwent pyrosequencing encompassing position 1058 of the FCoV spike protein. This identified a methionine codon at position 1058, consistent with the shedding of an enteric form of FCoV, in 77% of the faecal samples from cats with FIP, and in 100% of the samples from cats without FIP. In contrast, 91% of the tissue samples from cats with FIP and 89% from cats without FIP had a leucine codon at position 1058, consistent with a systemic form of FCoV. These results suggest that the methionine to leucine substitution at position 1058 in the FCoV spike protein is indicative of systemic spread of FCoV from the intestine, rather than a virus with the potential to cause FIP. PMID:24767677

  4. A study on antigenicity and receptor-binding ability of fragment 450-650 of the spike protein of SARS coronavirus

    SciTech Connect

    Zhao Jincun; Wang Wei; Yuan Zhihong; Jia Rujing; Zhao Zhendong; Xu Xiaojun; Lv Ping; Zhang Yan; Jiang Chengyu; Gao Xiaoming . E-mail: xmgao@bjmu.edu.cn

    2007-03-15

    The spike (S) protein of SARS coronavirus (SARS-CoV) is responsible for viral binding with ACE2 molecules. Its receptor-binding motif (S-RBM) is located between residues 424 and 494, which folds into 2 anti-parallel {beta}-sheets, {beta}5 and {beta}6. We have previously demonstrated that fragment 450-650 of the S protein (S450-650) is predominantly recognized by convalescent sera of SARS patients. The N-terminal 60 residues (450-510) of the S450-650 fragment covers the entire {beta}6 strand of S-RBM. In the present study, we demonstrate that patient sera predominantly recognized 2 linear epitopes outside the {beta}6 fragment, while the mouse antisera, induced by immunization of BALB/c mice with recombinant S450-650, mainly recognized the {beta}6 strand-containing region. Unlike patient sera, however, the mouse antisera were unable to inhibit the infectivity of S protein-expressing (SARS-CoV-S) pseudovirus. Fusion protein between green fluorescence protein (GFP) and S450-650 (S450-650-GFP) was able to stain Vero E6 cells and deletion of the {beta}6 fragment rendered the fusion product (S511-650-GFP) unable to do so. Similarly, recombinant S450-650, but not S511-650, was able to block the infection of Vero E6 cells by the SARS-CoV-S pseudovirus. Co-precipitation experiments confirmed that S450-650 was able to specifically bind with ACE2 molecules in lysate of Vero E6 cells. However, the ability of S450-510, either alone or in fusion with GFP, to bind with ACE2 was significantly poorer compared with S450-650. Our data suggest a possibility that, although the {beta}6 strand alone is able to bind with ACE2 with relatively high affinity, residues outside the S-RBM could also assist the receptor binding of SARS-CoV-S protein.

  5. SOY PROTEIN ISOLATE INDUCES CYP3A1 AND CYP3A2 IN PREPUBERTAL RATS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feeding soy diets has been shown to induce cytochrome P450s in gene family CYP3A in Sprague-Dawley rat liver. We compared expression of CYP3A enzymes on PND33 rats fed casein or soy protein isolate (SPI+)-based AIN-93G diets continuously from gestational day 4 through PND 33 or the diets were switc...

  6. An eight-year epidemiologic study based on baculovirus-expressed type-specific spike proteins for the differentiation of type I and II feline coronavirus infections

    PubMed Central

    2014-01-01

    Background Feline infectious peritonitis (FIP) is a fatal disease caused by feline coronavirus (FCoV). FCoVs are divided into two serotypes with markedly different infection rates among cat populations around the world. A baculovirus-expressed type-specific domain of the spike proteins of FCoV was used to survey the infection of the two viruses over the past eight years in Taiwan. Results An immunofluorescence assay based on cells infected with the recombinant viruses that was capable of distinguishing between the two types of viral infection was established. A total of 833 cases from a teaching hospital was surveyed for prevalence of different FCoV infections. Infection of the type I FCoV was dominant, with a seropositive rate of 70.4%, whereas 3.5% of cats were infected with the type II FCoV. In most cases, results derived from serotyping and genotyping were highly agreeable. However, 16.7% (4/24) FIP cats and 9.8% (6/61) clinically healthy cats were found to possess antibodies against both viruses. Moreover, most of the cats (84.6%, 22/26) infected with a genotypic untypable virus bearing a type I FCoV antibody. Conclusion A relatively simple serotyping method to distinguish between two types of FCoV infection was developed. Based on this method, two types of FCoV infection in Taiwan was first carried out. Type I FCoV was found to be predominant compared with type II virus. Results derived from serotyping and genotyping support our current understanding of evolution of disease-related FCoV and transmission of FIP. PMID:25123112

  7. A Conformation-Dependent Neutralizing Monoclonal Antibody Specifically Targeting Receptor-Binding Domain in Middle East Respiratory Syndrome Coronavirus Spike Protein

    PubMed Central

    Du, Lanying; Zhao, Guangyu; Yang, Yang; Qiu, Hongjie; Wang, Lili; Kou, Zhihua; Tao, Xinrong; Yu, Hong; Sun, Shihui; Tseng, Chien-Te K.; Jiang, Shibo

    2014-01-01

    ABSTRACT Prophylactic and therapeutic strategies are urgently needed to combat infections caused by the newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV). Here, we have developed a neutralizing monoclonal antibody (MAb), designated Mersmab1, which potently blocks MERS-CoV entry into human cells. Biochemical assays reveal that Mersmab1 specifically binds to the receptor-binding domain (RBD) of the MERS-CoV spike protein and thereby competitively blocks the binding of the RBD to its cellular receptor, dipeptidyl peptidase 4 (DPP4). Furthermore, alanine scanning of the RBD has identified several residues at the DPP4-binding surface that serve as neutralizing epitopes for Mersmab1. These results suggest that if humanized, Mersmab1 could potentially function as a therapeutic antibody for treating and preventing MERS-CoV infections. Additionally, Mersmab1 may facilitate studies of the conformation and antigenicity of MERS-CoV RBD and thus will guide rational design of MERS-CoV subunit vaccines. IMPORTANCE MERS-CoV is spreading in the human population and causing severe respiratory diseases with over 40% fatality. No vaccine is currently available to prevent MERS-CoV infections. Here, we have produced a neutralizing monoclonal antibody with the capacity to effectively block MERS-CoV entry into permissive human cells. If humanized, this antibody may be used as a prophylactic and therapeutic agent against MERS-CoV infections. Specifically, when given to a person (e.g., a patient's family member or a health care worker) either before or after exposure to MERS-CoV, the humanized antibody may prevent or inhibit MERS-CoV infection, thereby stopping the spread of MERS-CoV in humans. This antibody can also serve as a useful tool to guide the design of effective MERS-CoV vaccines. PMID:24719424

  8. Regulation of drug sensitivity by ribosomal protein S3a.

    PubMed

    Hu, Z B; Minden, M D; McCulloch, E A; Stahl, J

    2000-02-01

    When bcl-2 is immunoprecipitated from (32)P-labeled cell extracts of all-trans retinoic acid (ATRA)-treated acute myeloblastic leukemia (AML) blasts, a phosphorylated protein of approximately 30 kd is coprecipitated. This protein has been identified as ribosomal protein S3a. The biologic effects of S3a include favoring apoptosis and enhancing the malignant phenotype. We sought to determine whether S3a, like bcl-2, influenced the response of cells to chemotherapeutic drugs and ATRA. Cell lines were studied in which S3a was genetically increased or disrupted; increased S3a was regularly associated with increased plating efficiency and increased sensitivity to either cytosine arabinoside (ara-C) or doxorubicin (DNR). S3a did not affect the sensitivity of cells to paclitaxel. Pulse exposures to either (3)HTdR or ara-C showed a greater percentage of clonogenic cells in the S phase of the cell cycle in cells with increased S3a than in controls. Cells with increased S3a responded to ATRA by increased ara-C or DNR sensitivity, whereas cells with reduced S3a protein were either protected by ATRA or not affected. We studied cryopreserved blast cells from patients with AML or chronic myelomonocytic leukemia (CMML). S3a protein levels were heterogeneous in these populations. In 32 cryopreserved blast populations, S3a levels were significantly correlated with both bcl-2 and with cell growth in culture. As in cell lines, high S3a in cryopreserved blasts was associated with ATRA-induced sensitization to ara-C. No significant association was seen between S3a levels and response to treatment. PMID:10648421

  9. Solution Structure of Mouse Hepatitis Virus (MHV) nsp3a and Determinants of the Interaction with MHV Nucleocapsid (N) Protein

    PubMed Central

    Keane, Sarah C.

    2013-01-01

    Coronaviruses (CoVs) are positive-sense, single-stranded, enveloped RNA viruses that infect a variety of vertebrate hosts. The CoV nucleocapsid (N) protein contains two structurally independent RNA binding domains, designated the N-terminal domain (NTD) and the dimeric C-terminal domain (CTD), joined by a charged linker region rich in serine and arginine residues (SR-rich linker). An important goal in unraveling N function is to molecularly characterize N-protein interactions. Recent genetic evidence suggests that N interacts with nsp3a, a component of the viral replicase. Here we present the solution nuclear magnetic resonance (NMR) structure of mouse hepatitis virus (MHV) nsp3a and show, using isothermal titration calorimetry, that MHV N219, an N construct that extends into the SR-rich linker (residues 60 to 219), binds cognate nsp3a with high affinity (equilibrium association constant [Ka], [1.4 ± 0.3] × 106 M−1). In contrast, neither N197, an N construct containing only the folded NTD (residues 60 to 197), nor the CTD dimer (residues 260 to 380) binds nsp3a with detectable affinity. This indicates that the key nsp3a binding determinants localize to the SR-rich linker, a finding consistent with those of reverse genetics studies. NMR chemical shift perturbation analysis reveals that the N-terminal region of an MHV N SR-rich linker peptide (residues 198 to 230) binds to the acidic face of MHV nsp3a containing the acidic α2 helix with an affinity (expressed as Ka) of 8.1 × 103 M−1. These studies reveal that the SR-rich linker of MHV N is necessary but not sufficient to maintain this high-affinity binding to N. PMID:23302895

  10. Characterisation of different forms of the accessory gp3 canine coronavirus type I protein identified in cats.

    PubMed

    d'Orengiani, Anne-Laure Pham-Hung d'Alexandry; Duarte, Lidia; Pavio, Nicole; Le Poder, Sophie

    2015-04-16

    ORF3 is a supplemental open reading frame coding for an accessory glycoprotein gp3 of unknown function, only present in genotype I canine strain (CCoV-I) and some atypical feline FCoV strains. In these latter hosts, the ORF3 gene systematically displays one or two identical deletions leading to the synthesis of truncated proteins gp3-Δ1 and gp3-Δ2. As deletions in CoV accessory proteins have already been involved in tissue or host switch, studies of these different gp3 proteins were conducted in canine and feline cell. All proteins oligomerise through covalent bonds, are N-glycosylated and are maintained in the ER in non-infected but also in CCoV-II infected cells, without any specific retention signal. However, deletions influence their level of expression. In canine cells, all proteins are expressed with similar level whereas in feline cells, the expression of gp3-Δ1 is higher than the two other forms of gp3. None of the gp3 proteins modulate the viral replication cycle of heterologous genotype II CCoV in canine cell line, leading to the conclusion that the gp3 proteins are probably advantageous only for CCoV-I and atypical FCoV strains. PMID:25665789

  11. Detection of bat coronaviruses from Miniopterus fuliginosus in Japan.

    PubMed

    Shirato, Kazuya; Maeda, Ken; Tsuda, Shumpei; Suzuki, Kazuo; Watanabe, Shumpei; Shimoda, Hiroshi; Ueda, Naoya; Iha, Koichiro; Taniguchi, Satoshi; Kyuwa, Shigeru; Endoh, Daiji; Matsuyama, Shutoku; Kurane, Ichiro; Saijo, Masayuki; Morikawa, Shigeru; Yoshikawa, Yasuhiro; Akashi, Hiroomi; Mizutani, Tetsuya

    2012-02-01

    Bats have great potential as reservoirs for emerging viruses such as severe acute respiratory syndrome-coronavirus. In this study, bat coronaviruses (BtCoVs) were detected by RT-PCR from intestinal and fecal specimens of Miniopterus fuliginosus breeding colonies in Wakayama Prefecture caves, where we previously identified bat betaherpesvirus 2. Two primer sets were used for the detection of BtCoV: one was for the RNA-dependent RNA polymerase (RdRp) region and the other was for the spike (S) protein region. Eleven and 73% of intestinal and fecal specimens, respectively, were positive for RdRp region, and 2 and 40% of those were positive for S protein region. Sequencing and phylogenetic analysis showed that the detected BtCoV belonged to the group 1 (alpha) coronaviruses. These data suggest that BtCoV is endemic in M. fuliginosus in Japan. PMID:21877208

  12. Recombination in Avian Gamma-Coronavirus Infectious Bronchitis Virus

    PubMed Central

    Thor, Sharmi W.; Hilt, Deborah A.; Kissinger, Jessica C.; Paterson, Andrew H.; Jackwood, Mark W.

    2011-01-01

    Recombination in the family Coronaviridae has been well documented and is thought to be a contributing factor in the emergence and evolution of different coronaviral genotypes as well as different species of coronavirus. However, there are limited data available on the frequency and extent of recombination in coronaviruses in nature and particularly for the avian gamma-coronaviruses where only recently the emergence of a turkey coronavirus has been attributed solely to recombination. In this study, the full-length genomes of eight avian gamma-coronavirus infectious bronchitis virus (IBV) isolates were sequenced and along with other full-length IBV genomes available from GenBank were analyzed for recombination. Evidence of recombination was found in every sequence analyzed and was distributed throughout the entire genome. Areas that have the highest occurrence of recombination are located in regions of the genome that code for nonstructural proteins 2, 3 and 16, and the structural spike glycoprotein. The extent of the recombination observed, suggests that this may be one of the principal mechanisms for generating genetic and antigenic diversity within IBV. These data indicate that reticulate evolutionary change due to recombination in IBV, likely plays a major role in the origin and adaptation of the virus leading to new genetic types and strains of the virus. PMID:21994806

  13. From SARS coronavirus to novel animal and human coronaviruses

    PubMed Central

    To, Kelvin K. W.; Hung, Ivan F. N.; Chan, Jasper F. W.

    2013-01-01

    In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) caused one of the most devastating epidemics known to the developed world. There were two important lessons from this epidemic. Firstly, coronaviruses, in addition to influenza viruses, can cause severe and rapidly spreading human infections. Secondly, bats can serve as the origin and natural animal reservoir of deadly human viruses. Since then, researchers around the world, especially those in Asia where SARS-CoV was first identified, have turned their focus to find novel coronaviruses infecting humans, bats, and other animals. Two human coronaviruses, HCoV-HKU1 and HCoV-NL63, were identified shortly after the SARS-CoV epidemic as common causes of human respiratory tract infections. In 2012, a novel human coronavirus, now called Middle East respiratory syndrome coronavirus (MERS-CoV), has emerged in the Middle East to cause fatal human infections in three continents. MERS-CoV human infection is similar to SARS-CoV in having a high fatality rate and the ability to spread from person to person which resulted in secondary cases among close contacts including healthcare workers without travel history to the Middle East. Both viruses also have close relationships with bat coronaviruses. New cases of MERS-CoV infection in humans continue to occur with the origins of the virus still unknown in many cases. A multifaceted approach is necessary to control this evolving MERS-CoV outbreak. Source identification requires detailed epidemiological studies of the infected patients and enhanced surveillance of MERS-CoV or similar coronaviruses in humans and animals. Early diagnosis of infected patients and appropriate infection control measures will limit the spread in hospitals, while social distancing strategies may be necessary to control the outbreak in communities if it remained uncontrolled as in the SARS epidemic. PMID:23977429

  14. Proteins Associated with SF3a60 in T. brucei

    PubMed Central

    Nyambega, Benson; Helbig, Claudia; Masiga, Daniel K.; Clayton, Christine; Levin, Mariano J.

    2014-01-01

    Trypanosoma brucei relies on Spliced leader trans splicing to generate functional messenger RNAs. Trans splicing joins the specialized SL exon from the SL RNA to pre-mRNAs and is mediated by the trans-spliceosome, which is made up of small nuclear ribonucleoprotein particles and non-snRNP factors. Although the trans spliceosome is essential for trypanosomatid gene expression, not all spliceosomal protein factors are known and of these, only a few are completely characterized. In this study, we have characterized the trypanosome Splicing Factor, SF3a60, the only currently annotated SF3a component. As expected, epitope-tagged SF3a60 localizes in the trypanosome nucleus. SF3a60 is essential for cell viability but its depletion seem to have no detectable effect on trans-splicing. In addition, we used SF3a60 as bait in a Yeast-2-hybrid system screen and identified its interacting protein factors. The interactions with SF3a120, SF3a66 and SAP130 were confirmed by tandem affinity purification and mass spectrometry. PMID:24651488

  15. Deficient incorporation of spike protein into virions contributes to the lack of infectivity following establishment of a persistent, non-productive infection in oligodendroglial cell culture by murine coronavirus

    SciTech Connect

    Liu Yin; Herbst, Werner; Cao Jianzhong; Zhang Xuming

    2011-01-05

    Infection of mouse oligodendrocytes with a recombinant mouse hepatitis virus (MHV) expressing a green fluorescence protein facilitated specific selection of virus-infected cells and subsequent establishment of persistence. Interestingly, while viral genomic RNAs persisted in infected cells over 14 subsequent passages with concomitant synthesis of viral subgenomic mRNAs and structural proteins, no infectious virus was isolated beyond passage 2. Further biochemical and electron microscopic analyses revealed that virions, while assembled, contained little spike in the envelope, indicating that lack of infectivity during persistence was likely due to deficiency in spike incorporation. This type of non-lytic, non-productive persistence in oligodendrocytes is unique among animal viruses and resembles MHV persistence previously observed in the mouse central nervous system. Thus, establishment of such a culture system that can recapitulate the in vivo phenomenon will provide a powerful approach for elucidating the mechanisms of coronavirus persistence in glial cells at the cellular and molecular levels.

  16. Peptides Interfering 3A Protein Dimerization Decrease FMDV Multiplication

    PubMed Central

    de la Torre, Beatriz G.; Valle, Javier; Andreu, David; Sobrino, Francisco

    2015-01-01

    Nonstructural protein 3A is involved in relevant functions in foot-and-mouth disease virus (FMDV) replication. FMDV 3A can form homodimers and preservation of the two hydrophobic α-helices (α1 and α2) that stabilize the dimer interface is essential for virus replication. In this work, small peptides mimicking residues involved in the dimer interface were used to interfere with dimerization and thus gain insight on its biological function. The dimer interface peptides α1, α2 and that spanning the two hydrophobic α-helices, α12, impaired in vitro dimer formation of a peptide containing the two α-helices, this effect being higher with peptide α12. To assess the effect of dimer inhibition in cultured cells, the interfering peptides were N-terminally fused to a heptaarginine (R7) sequence to favor their intracellular translocation. Thus, when fused to R7, interference peptides (100 μM) were able to inhibit dimerization of transiently expressed 3A, the higher inhibitions being found with peptides α1 and α12. The 3A dimerization impairment exerted by the peptides correlated with significant, specific reductions in the viral yield recovered from peptide-treated FMDV infected cells. In this case, α2 was the only peptide producing significant reductions at concentrations lower than 100 μM. Thus, dimer interface peptides constitute a tool to understand the structure-function relationship of this viral protein and point to 3A dimerization as a potential antiviral target. PMID:26505190

  17. ERM proteins regulate growth cone responses to Sema3A

    PubMed Central

    Mintz, C. David; Carcea, Ioana; McNickle, Daniel G.; Dickson, Tracey C.; Ge, Yongchao; Salton, Stephen R.J.; Benson, Deanna L.

    2008-01-01

    Axonal growth cones initiate and sustain directed growth in response to cues in their environment. A variety of events such as receptor internalization, kinase activation, and actin rearrangement can be stimulated by guidance cues and are essential for mediating targeted growth cone behavior. Surprisingly little is known about how such disparate actions are coordinated. Our data suggest that ezrin, radixin, and moesin (ERMs), a family of highly homologous, multifunctional proteins may be able to coordinate growth cone responses to the guidance cue, Sema3A. We show that active ERMs concentrate asymmetrically in neocortical growth cones, are rapidly and transiently inactivated by Sema3A, and are required for Sema3A-mediated growth cone collapse and guidance. The FERM domain of active ERMs regulates internalization of the Sema3A receptor, Npn1 and its co-receptor, L1CAM, while the ERM C-terminal domain binds and caps F-actin. Our data support a model in which ERMs can coordinate membrane and actin dynamics in response to Sema3A. PMID:18651636

  18. Recombinant Canine Coronaviruses in Dogs, Europe

    PubMed Central

    Mari, Viviana; Elia, Gabriella; Addie, Diane D.; Camero, Michele; Lucente, Maria Stella; Martella, Vito; Buonavoglia, Canio

    2010-01-01

    Coronaviruses of potential recombinant origin with porcine transmissible gastroenteritis virus (TGEV), referred to as a new subtype (IIb) of canine coronavirus (CCoV), were recently identified in dogs in Europe. To assess the distribution of the TGEV-like CCoV subtype, during 2001–2008 we tested fecal samples from dogs with gastroenteritis. Of 1,172 samples, 493 (42.06%) were positive for CCoV. CCoV-II was found in 218 samples, and CCoV-I and CCoV-II genotypes were found in 182. Approximately 20% of the samples with CCoV-II had the TGEV-like subtype; detection rates varied according to geographic origin. The highest and lowest rates of prevalence for CCoV-II infection were found in samples from Hungary and Greece (96.87% and 3.45%, respectively). Sequence and phylogenetic analyses showed that the CCoV-IIb strains were related to prototype TGEV-like strains in the 5′ and the 3′ ends of the spike protein gene. PMID:20031041

  19. First complete genome sequence of European turkey coronavirus suggests complex recombination history related with US turkey and guinea fowl coronaviruses.

    PubMed

    Brown, P A; Touzain, F; Briand, F X; Gouilh, A M; Courtillon, C; Allée, C; Lemaitre, E; De Boisséson, C; Blanchard, Y; Eterradossi, N

    2016-01-01

    A full-length genome sequence of 27,739  nt was determined for the only known European turkey coronavirus (TCoV) isolate. In general, the order, number and size of ORFs were consistent with other gammacoronaviruses. Three points of recombination were predicted, one towards the end of 1a, a second in 1b just upstream of S and a third in 3b. Phylogenetic analysis of the four regions defined by these three points supported the previous notion that European and American viruses do indeed have different evolutionary pathways. Very close relationships were revealed between the European TCoV and the European guinea fowl coronavirus in all regions except one, and both were shown to be closely related to the European infectious bronchitis virus (IBV) Italy 2005. None of these regions of sequence grouped European and American TCoVs. The region of sequence containing the S gene was unique in grouping all turkey and guinea fowl coronaviruses together, separating them from IBVs. Interestingly the French guinea fowl virus was more closely related to the North American viruses. These data demonstrate that European turkey and guinea fowl coronaviruses share a common genetic backbone (most likely an ancestor of IBV Italy 2005) and suggest that this recombined in two separate events with different, yet related, unknown avian coronaviruses, acquiring their S-3a genes. The data also showed that the North American viruses do not share a common backbone with European turkey and guinea fowl viruses; however, they do share similar S-3a genes with guinea fowl virus. PMID:26585962

  20. Animal models for SARS and MERS coronaviruses

    PubMed Central

    Gretebeck, Lisa M; Subbarao, Kanta

    2015-01-01

    The emergence of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV), two strains of animal coronaviruses that crossed the species barrier to infect and cause severe respiratory infections in humans within the last 12 years, have taught us that coronaviruses represent a global threat that does not recognize international borders. We can expect to see other novel coronaviruses emerge in the future. An ideal animal model should reflect the clinical signs, viral replication and pathology seen in humans. In this review, we present factors to consider in establishing an animal model for the study of novel coronaviruses and compare the different animal models that have been employed to study SARS-CoV and MERS-CoV. PMID:26184451

  1. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor

    SciTech Connect

    Wu, Kailang; Li, Weikai; Peng, Guiqing; Li, Fang

    2010-03-04

    NL63 coronavirus (NL63-CoV), a prevalent human respiratory virus, is the only group I coronavirus known to use angiotensin-converting enzyme 2 (ACE2) as its receptor. Incidentally, ACE2 is also used by group II SARS coronavirus (SARS-CoV). We investigated how different groups of coronaviruses recognize the same receptor, whereas homologous group I coronaviruses recognize different receptors. We determined the crystal structure of NL63-CoV spike protein receptor-binding domain (RBD) complexed with human ACE2. NL63-CoV RBD has a novel {beta}-sandwich core structure consisting of 2 layers of {beta}-sheets, presenting 3 discontinuous receptor-binding motifs (RBMs) to bind ACE2. NL63-CoV and SARS-CoV have no structural homology in RBD cores or RBMs; yet the 2 viruses recognize common ACE2 regions, largely because of a 'virus-binding hotspot' on ACE2. Among group I coronaviruses, RBD cores are conserved but RBMs are variable, explaining how these viruses recognize different receptors. These results provide a structural basis for understanding viral evolution and virus-receptor interactions.

  2. A human coronavirus OC43 variant harboring persistence-associated mutations in the S glycoprotein differentially induces the unfolded protein response in human neurons as compared to wild-type virus

    SciTech Connect

    Favreau, Dominique J.; Desforges, Marc; St-Jean, Julien R.; Talbot, Pierre J.

    2009-12-20

    We have reported that human respiratory coronavirus OC43 (HCoV-OC43) is neurotropic and neuroinvasive in humans and mice, and that neurons are the primary target of infection in mice, leading to neurodegenerative disabilities. We now report that an HCoV-OC43 mutant harboring two persistence-associated S glycoprotein point mutations (H183R and Y241H), induced a stronger unfolded protein response (UPR) and translation attenuation in infected human neurons. There was a major contribution of the IRE1/XBP1 pathway, followed by caspase-3 activation and nuclear fragmentation, with no significant role of the ATF6 and eIF2-alpha/ATF4 pathways. Our results show the importance of discrete molecular viral S determinants in virus-neuronal cell interactions that lead to increased production of viral proteins and infectious particles, enhanced UPR activation, and increased cytotoxicity and cell death. As this mutant virus is more neurovirulent in mice, our results also suggest that two mutations in the S glycoprotein could eventually modulate viral neuropathogenesis.

  3. Receptor usage and cell entry of porcine epidemic diarrhea coronavirus.

    PubMed

    Liu, Chang; Tang, Jian; Ma, Yuanmei; Liang, Xueya; Yang, Yang; Peng, Guiqing; Qi, Qianqian; Jiang, Shibo; Li, Jianrong; Du, Lanying; Li, Fang

    2015-06-01

    Porcine epidemic diarrhea coronavirus (PEDV) has significantly damaged America's pork industry. Here we investigate the receptor usage and cell entry of PEDV. PEDV recognizes protein receptor aminopeptidase N from pig and human and sugar coreceptor N-acetylneuraminic acid. Moreover, PEDV infects cells from pig, human, monkey, and bat. These results support the idea of bats as an evolutionary origin for PEDV, implicate PEDV as a potential threat to other species, and suggest antiviral strategies to control its spread. PMID:25787280

  4. Emergence of Pathogenic Coronaviruses in Cats by Homologous Recombination between Feline and Canine Coronaviruses

    PubMed Central

    Terada, Yutaka; Matsui, Nobutaka; Noguchi, Keita; Kuwata, Ryusei; Shimoda, Hiroshi; Soma, Takehisa; Mochizuki, Masami; Maeda, Ken

    2014-01-01

    Type II feline coronavirus (FCoV) emerged via double recombination between type I FCoV and type II canine coronavirus (CCoV). In this study, two type I FCoVs, three type II FCoVs and ten type II CCoVs were genetically compared. The results showed that three Japanese type II FCoVs, M91-267, KUK-H/L and Tokyo/cat/130627, also emerged by homologous recombination between type I FCoV and type II CCoV and their parent viruses were genetically different from one another. In addition, the 3′-terminal recombination sites of M91-267, KUK-H/L and Tokyo/cat/130627 were different from one another within the genes encoding membrane and spike proteins, and the 5′-terminal recombination sites were also located at different regions of ORF1. These results indicate that at least three Japanese type II FCoVs emerged independently. Sera from a cat experimentally infected with type I FCoV was unable to neutralize type II CCoV infection, indicating that cats persistently infected with type I FCoV may be superinfected with type II CCoV. Our previous study reported that few Japanese cats have antibody against type II FCoV. All of these observations suggest that type II FCoV emerged inside the cat body and is unable to readily spread among cats, indicating that these recombination events for emergence of pathogenic coronaviruses occur frequently. PMID:25180686

  5. European Surveillance for Pantropic Canine Coronavirus

    PubMed Central

    Cordonnier, Nathalie; Demeter, Zoltan; Egberink, Herman; Elia, Gabriella; Grellet, Aurélien; Le Poder, Sophie; Mari, Viviana; Martella, Vito; Ntafis, Vasileios; von Reitzenstein, Marcela; Rottier, Peter J.; Rusvai, Miklos; Shields, Shelly; Xylouri, Eftychia; Xu, Zach; Buonavoglia, Canio

    2013-01-01

    Highly virulent pantropic canine coronavirus (CCoV) strains belonging to subtype IIa were recently identified in dogs. To assess the distribution of such strains in Europe, tissue samples were collected from 354 dogs that had died after displaying systemic disease in France (n = 92), Hungary (n = 75), Italy (n = 69), Greece (n = 87), The Netherlands (n = 27), Belgium (n = 4), and Bulgaria (n = 1). A total of 124 animals tested positive for CCoV, with 33 of them displaying the virus in extraintestinal tissues. Twenty-four CCoV strains (19.35% of the CCoV-positive dogs) detected in internal organs were characterized as subtype IIa and consequently assumed to be pantropic CCoVs. Sequence and phylogenetic analyses of the 5′ end of the spike protein gene showed that pantropic CCoV strains are closely related to each other, with the exception of two divergent French viruses that clustered with enteric strains. PMID:23100349

  6. European surveillance for pantropic canine coronavirus.

    PubMed

    Decaro, Nicola; Cordonnier, Nathalie; Demeter, Zoltan; Egberink, Herman; Elia, Gabriella; Grellet, Aurélien; Le Poder, Sophie; Mari, Viviana; Martella, Vito; Ntafis, Vasileios; von Reitzenstein, Marcela; Rottier, Peter J; Rusvai, Miklos; Shields, Shelly; Xylouri, Eftychia; Xu, Zach; Buonavoglia, Canio

    2013-01-01

    Highly virulent pantropic canine coronavirus (CCoV) strains belonging to subtype IIa were recently identified in dogs. To assess the distribution of such strains in Europe, tissue samples were collected from 354 dogs that had died after displaying systemic disease in France (n = 92), Hungary (n = 75), Italy (n = 69), Greece (n = 87), The Netherlands (n = 27), Belgium (n = 4), and Bulgaria (n = 1). A total of 124 animals tested positive for CCoV, with 33 of them displaying the virus in extraintestinal tissues. Twenty-four CCoV strains (19.35% of the CCoV-positive dogs) detected in internal organs were characterized as subtype IIa and consequently assumed to be pantropic CCoVs. Sequence and phylogenetic analyses of the 5' end of the spike protein gene showed that pantropic CCoV strains are closely related to each other, with the exception of two divergent French viruses that clustered with enteric strains. PMID:23100349

  7. Structure of the C-terminal domain of nsp4 from feline coronavirus

    SciTech Connect

    Manolaridis, Ioannis; Wojdyla, Justyna A.; Panjikar, Santosh; Berglind, Hanna; Nordlund, Pär; Coutard, Bruno; Tucker, Paul A.

    2009-08-01

    The structure of the cytosolic C-terminal domain of nonstructural protein 4 from feline coronavirus has been determined and analyzed. Coronaviruses are a family of positive-stranded RNA viruses that includes important pathogens of humans and other animals. The large coronavirus genome (26–31 kb) encodes 15–16 nonstructural proteins (nsps) that are derived from two replicase polyproteins by autoproteolytic processing. The nsps assemble into the viral replication–transcription complex and nsp3, nsp4 and nsp6 are believed to anchor this enzyme complex to modified intracellular membranes. The largest part of the coronavirus nsp4 subunit is hydrophobic and is predicted to be embedded in the membranes. In this report, a conserved C-terminal domain (∼100 amino-acid residues) has been delineated that is predicted to face the cytoplasm and has been isolated as a soluble domain using library-based construct screening. A prototypical crystal structure at 2.8 Å resolution was obtained using nsp4 from feline coronavirus. Unmodified and SeMet-substituted proteins were crystallized under similar conditions, resulting in tetragonal crystals that belonged to space group P4{sub 3}. The phase problem was initially solved by single isomorphous replacement with anomalous scattering (SIRAS), followed by molecular replacement using a SIRAS-derived composite model. The structure consists of a single domain with a predominantly α-helical content displaying a unique fold that could be engaged in protein–protein interactions.

  8. Coronaviruses in poultry and other birds.

    PubMed

    Cavanagh, Dave

    2005-12-01

    The number of avian species in which coronaviruses have been detected has doubled in the past couple of years. While the coronaviruses in these species have all been in coronavirus Group 3, as for the better known coronaviruses of the domestic fowl (infectious bronchitis virus [IBV], in Gallus gallus), turkey (Meleagris gallopavo) and pheasant (Phasianus colchicus), there is experimental evidence to suggest that birds are not limited to infection with Group 3 coronaviruses. In China coronaviruses have been isolated from peafowl (Pavo), guinea fowl (Numida meleagris; also isolated in Brazil), partridge (Alectoris) and also from a non-gallinaceous bird, the teal (Anas), all of which were being reared in the vicinity of domestic fowl. These viruses were closely related in genome organization and in gene sequences to IBV. Indeed, gene sequencing and experimental infection of chickens indicated that the peafowl isolate was the H120 IB vaccine strain, while the teal isolate was possibly a field strain of a nephropathogenic IBV. Thus the host range of IBV does extend beyond the chicken. Most recently, Group 3 coronaviruses have been detected in greylag goose (Anser anser), mallard duck (Anas platyrhynchos) and pigeon (Columbia livia). It is clear from the partial genome sequencing of these viruses that they are not IBV, as they have two additional small genes near the 3' end of the genome. Twenty years ago a coronavirus was isolated after inoculation of mice with tissue from the coastal shearwater (Puffinus puffinus). While it is not certain whether the virus was actually from the shearwater or from the mice, recent experiments have shown that bovine coronavirus (a Group 2 coronavirus) can infect and also cause enteric disease in turkeys. Experiments with some Group 1 coronaviruses (all from mammals, to date) have shown that they are not limited to replicating or causing disease in a single host. SARS-coronavirus has a wide host range. Clearly there is the potential for

  9. SARS: lessons learned from other coronaviruses.

    PubMed

    Navas-Martin, Sonia; Weiss, Susan R

    2003-01-01

    The identification of a new coronavirus as the etiological agent of severe acute respiratory syndrome (SARS) has evoked much new interest in the molecular biology and pathogenesis of coronaviruses. This review summarizes present knowledge on coronavirus molecular biology and pathogenesis with particular emphasis on mouse hepatitis virus (MHV). MHV, a member of coronavirus group 2, is a natural pathogen of the mouse; MHV infection of the mouse is considered one of the best models for the study of demyelinating disease, such as multiple sclerosis, in humans. As a result of the SARS epidemic, coronaviruses can now be considered as emerging pathogens. Future research on SARS needs to be based on all the knowledge that coronavirologists have generated over more than 30 years of research. PMID:14733734

  10. 40 CFR 174.505 - Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... protein (mCry3A) in corn; exemption from the requirement of a tolerance. 174.505 Section 174.505... thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn are exempt from the requirement...

  11. 40 CFR 174.505 - Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... protein (mCry3A) in corn; exemption from the requirement of a tolerance. 174.505 Section 174.505... thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn are exempt from the requirement...

  12. 40 CFR 174.505 - Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... protein (mCry3A) in corn; exemption from the requirement of a tolerance. 174.505 Section 174.505... thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn are exempt from the requirement...

  13. 40 CFR 174.505 - Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... protein (mCry3A) in corn; exemption from the requirement of a tolerance. 174.505 Section 174.505... thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn are exempt from the requirement...

  14. First genome sequences of buffalo coronavirus from water buffaloes in Bangladesh.

    PubMed

    Lau, S K P; Tsang, A K L; Shakeel Ahmed, S; Mahbub Alam, M; Ahmed, Z; Wong, P-C; Yuen, K-Y; Woo, P C Y

    2016-05-01

    We report the complete genome sequences of a buffalo coronavirus (BufCoV HKU26) detected from the faecal samples of two domestic water buffaloes (Bubalus bubalis) in Bangladesh. They possessed 98-99% nucleotide identities to bovine coronavirus (BCoV) genomes, supporting BufCoV HKU26 as a member of Betacoronavirus 1. Nevertheless, BufCoV HKU26 possessed distinct accessory proteins between spike and envelope compared to BCoV. Sugar-binding residues in the N-terminal domain of S protein in BCoV are conserved in BufCoV HKU26. PMID:27274850

  15. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer

    PubMed Central

    Frenz, Brandon; Rottier, Peter J.M.; DiMaio, Frank; Rey, Félix A.; Veesler, David

    2016-01-01

    The tremendous pandemic potential of coronaviruses was demonstrated twice in the last decades by two global outbreaks of deadly pneumonia. Entry of coronaviruses into cells is mediated by the transmembrane spike glycoprotein S, which forms a trimer carrying receptor-binding and membrane fusion functions1. S also contains the principal antigenic determinants and is the target of neutralizing antibodies. Here we present the structure of a murine coronavirus S trimer ectodomain determined at 4.0 Å resolution by single particle cryo-electron microscopy. It reveals the metastable pre-fusion architecture of S and highlights key interactions stabilizing it. The structure shares a common core with paramyxovirus F proteins2,3, implicating mechanistic similarities and an evolutionary connection between these viral fusion proteins. The accessibility of the highly conserved fusion peptide at the periphery of the trimer indicates potential vaccinology strategies to elicit broadly neutralizing antibodies against coronaviruses. Finally, comparison with crystal structures of human coronavirus S domains allows rationalization of the molecular basis for species specificity based on the use of spatially contiguous but distinct domains. PMID:26855426

  16. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer.

    PubMed

    Walls, Alexandra C; Tortorici, M Alejandra; Bosch, Berend-Jan; Frenz, Brandon; Rottier, Peter J M; DiMaio, Frank; Rey, Félix A; Veesler, David

    2016-03-01

    The tremendous pandemic potential of coronaviruses was demonstrated twice in the past few decades by two global outbreaks of deadly pneumonia. Entry of coronaviruses into cells is mediated by the transmembrane spike glycoprotein S, which forms a trimer carrying receptor-binding and membrane fusion functions. S also contains the principal antigenic determinants and is the target of neutralizing antibodies. Here we present the structure of a mouse coronavirus S trimer ectodomain determined at 4.0 Å resolution by single particle cryo-electron microscopy. It reveals the metastable pre-fusion architecture of S and highlights key interactions stabilizing it. The structure shares a common core with paramyxovirus F proteins, implicating mechanistic similarities and an evolutionary connection between these viral fusion proteins. The accessibility of the highly conserved fusion peptide at the periphery of the trimer indicates potential vaccinology strategies to elicit broadly neutralizing antibodies against coronaviruses. Finally, comparison with crystal structures of human coronavirus S domains allows rationalization of the molecular basis for species specificity based on the use of spatially contiguous but distinct domains. PMID:26855426

  17. Incorporation of Spike and Membrane Glycoproteins into Coronavirus Virions

    PubMed Central

    Ujike, Makoto; Taguchi, Fumihiro

    2015-01-01

    The envelopes of coronaviruses (CoVs) contain primarily three proteins; the two major glycoproteins spike (S) and membrane (M), and envelope (E), a non-glycosylated protein. Unlike other enveloped viruses, CoVs bud and assemble at the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC). For efficient virion assembly, these proteins must be targeted to the budding site and to interact with each other or the ribonucleoprotein. Thus, the efficient incorporation of viral envelope proteins into CoV virions depends on protein trafficking and protein–protein interactions near the ERGIC. The goal of this review is to summarize recent findings on the mechanism of incorporation of the M and S glycoproteins into the CoV virion, focusing on protein trafficking and protein–protein interactions. PMID:25855243

  18. Biochemical Characterization of Middle East Respiratory Syndrome Coronavirus Helicase

    PubMed Central

    Lazarus, Hilary

    2016-01-01

    ABSTRACT Middle East respiratory syndrome coronavirus (MERS-CoV) helicase is a superfamily 1 helicase containing seven conserved motifs. We have cloned, expressed, and purified a Strep-fused recombinant MERS-CoV nonstructural protein 13 (M-nsp13) helicase. Characterization of its biochemical properties showed that it unwound DNA and RNA similarly to severe acute respiratory syndrome CoV nsp13 (S-nsp13) helicase. We showed that M-nsp13 unwound in a 5′-to-3′ direction and efficiently unwound the partially duplex RNA substrates with a long loading strand relative to those of the RNA substrates with a short or no loading strand. Moreover, the Km of ATP for M-nsp13 is inversely proportional to the length of the 5′ loading strand of the partially duplex RNA substrates. Finally, we also showed that the rate of unwinding (ku) of M-nsp13 is directly proportional to the length of the 5′ loading strand of the partially duplex RNA substrate. These results provide insights that enhance our understanding of the biochemical properties of M-nsp13. IMPORTANCE Coronaviruses are known to cause a wide range of diseases in humans and animals. Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel coronavirus discovered in 2012 and is responsible for acute respiratory syndrome in humans in the Middle East, Europe, North Africa, and the United States of America. Helicases are motor proteins that catalyze the processive separation of double-stranded nucleic acids into two single-stranded nucleic acids by utilizing the energy derived from ATP hydrolysis. MERS-CoV helicase is one of the most important viral replication enzymes of this coronavirus. Herein, we report the first bacterial expression, enzyme purification, and biochemical characterization of MERS-CoV helicase. The knowledge obtained from this study might be used to identify an inhibitor of MERS-CoV replication, and the helicase might be used as a therapeutic target.

  19. Genomic Analysis and Surveillance of the Coronavirus Dominant in Ducks in China

    PubMed Central

    Liu, Shuo; Hou, Guang-Yu; Jiang, Wen-Ming; Wang, Su-Chun; Li, Jin-Ping; Yu, Jian-Min; Chen, Ji-Ming

    2015-01-01

    The genetic diversity, evolution, distribution, and taxonomy of some coronaviruses dominant in birds other than chickens remain enigmatic. In this study we sequenced the genome of a newly identified coronavirus dominant in ducks (DdCoV), and performed a large-scale surveillance of coronaviruses in chickens and ducks using a conserved RT-PCR assay. The viral genome harbors a tandem repeat which is rare in vertebrate RNA viruses. The repeat is homologous to some proteins of various cellular organisms, but its origin remains unknown. Many substitutions, insertions, deletions, and some frameshifts and recombination events have occurred in the genome of the DdCoV, as compared with the coronavirus dominant in chickens (CdCoV). The distances between DdCoV and CdCoV are large enough to separate them into different species within the genus Gammacoronavirus. Our surveillance demonstrated that DdCoVs and CdCoVs belong to different lineages and occupy different ecological niches, further supporting that they should be classified into different species. Our surveillance also demonstrated that DdCoVs and CdCoVs are prevalent in live poultry markets in some regions of China. In conclusion, this study shed novel insight into the genetic diversity, evolution, distribution, and taxonomy of the coronaviruses circulating in chickens and ducks. PMID:26053682

  20. Systems approaches to coronavirus pathogenesis

    PubMed Central

    Schäfer, Alexandra; Baric, Ralph S.; Ferris, Martin T.

    2014-01-01

    Coronaviruses comprise a large group of emergent human and animal pathogens, including the highly pathogenic SARS-CoV and MERS-CoV strains that cause significant morbidity and mortality in infected individuals, especially the elderly. As emergent viruses may cause episodic outbreaks of disease over time, human samples are limited. Systems biology and genetic technologies maximize opportunities for identifying critical host and viral genetic factors that regulate susceptibility and virus-induced disease severity. These approaches provide discovery platforms that highlight and allow targeted confirmation of critical targets for prophylactics and therapeutics, especially critical in an outbreak setting. Although poorly understood, it has long been recognized that host regulation of virus-associated disease severity is multigenic. The advent of systems genetic and biology resources provide new opportunities for deconvoluting the complex genetic interactions and expression networks that regulate pathogenic or protective host response patterns following virus infection. Using SARS-CoV as a model, dynamic transcriptional network changes and disease-associated phenotypes have been identified in different genetic backgrounds, leading to the promise of population-wide discovery of the underpinnings of Coronavirus pathogenesis. PMID:24842079

  1. Genotyping coronaviruses associated with feline infectious peritonitis.

    PubMed

    Lewis, Catherine S; Porter, Emily; Matthews, David; Kipar, Anja; Tasker, Séverine; Helps, Christopher R; Siddell, Stuart G

    2015-06-01

    Feline coronavirus (FCoV) infections are endemic among cats worldwide. The majority of infections are asymptomatic or result in only mild enteric disease. However, approximately 5 % of cases develop feline infectious peritonitis (FIP), a systemic disease that is a frequent cause of death in young cats. In this study, we report the complete coding genome sequences of six FCoVs: three from faecal samples from healthy cats and three from tissue lesion samples from cats with confirmed FIP. The six samples were obtained over a period of 8 weeks at a single-site cat rescue and rehoming centre in the UK. We found amino acid differences located at 44 positions across an alignment of the six virus translatomes and, at 21 of these positions, the differences fully or partially discriminated between the genomes derived from the faecal samples and the genomes derived from the tissue lesion samples. In this study, two amino acid differences fully discriminated the two classes of genomes: these were both located in the S2 domain of the virus surface glycoprotein gene. We also identified deletions in the 3c protein ORF of genomes from two of the FIP samples. Our results support previous studies that implicate S protein mutations in the pathogenesis of FIP. PMID:25667330

  2. Genotyping coronaviruses associated with feline infectious peritonitis

    PubMed Central

    Lewis, Catherine S.; Porter, Emily; Matthews, David; Kipar, Anja; Tasker, Séverine; Helps, Christopher R.

    2015-01-01

    Feline coronavirus (FCoV) infections are endemic among cats worldwide. The majority of infections are asymptomatic or result in only mild enteric disease. However, approximately 5 % of cases develop feline infectious peritonitis (FIP), a systemic disease that is a frequent cause of death in young cats. In this study, we report the complete coding genome sequences of six FCoVs: three from faecal samples from healthy cats and three from tissue lesion samples from cats with confirmed FIP. The six samples were obtained over a period of 8 weeks at a single-site cat rescue and rehoming centre in the UK. We found amino acid differences located at 44 positions across an alignment of the six virus translatomes and, at 21 of these positions, the differences fully or partially discriminated between the genomes derived from the faecal samples and the genomes derived from the tissue lesion samples. In this study, two amino acid differences fully discriminated the two classes of genomes: these were both located in the S2 domain of the virus surface glycoprotein gene. We also identified deletions in the 3c protein ORF of genomes from two of the FIP samples. Our results support previous studies that implicate S protein mutations in the pathogenesis of FIP. PMID:25667330

  3. Identification of a Novel Coronavirus in Bats

    PubMed Central

    Poon, L. L. M.; Chu, D. K. W.; Chan, K. H.; Wong, O. K.; Ellis, T. M.; Leung, Y. H. C.; Lau, S. K. P.; Woo, P. C. Y.; Suen, K. Y.; Yuen, K. Y.; Guan, Y.; Peiris, J. S. M.

    2005-01-01

    Exotic wildlife can act as reservoirs of diseases that are endemic in the area or can be the source of new emerging diseases through interspecies transmission. The recent emergence of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) highlights the importance of virus surveillance in wild animals. Here, we report the identification of a novel bat coronavirus through surveillance of coronaviruses in wildlife. Analyses of the RNA sequence from the ORF1b and S-gene regions indicated that the virus is a group 1 coronavirus. The virus was detected in fecal and respiratory samples from three bat species (Miniopterus spp.). In particular, 63% (12 of 19) of fecal samples from Miniopterus pusillus were positive for the virus. These findings suggest that this virus might be commonly circulating in M. pusillus in Hong Kong. PMID:15681402

  4. Establishment of serological test to detect antibody against ferret coronavirus

    PubMed Central

    MINAMI, Shohei; TERADA, Yutaka; SHIMODA, Hiroshi; TAKIZAWA, Masaki; ONUMA, Mamoru; OTA, Akihiko; OTA, Yuichi; AKABANE, Yoshihito; TAMUKAI, Kenichi; WATANABE, Keiichiro; NAGANUMA, Yumiko; KANAGAWA, Eiichi; NAKAMURA, Kaneichi; OHASHI, Masanari; TAKAMI, Yoshinori; MIWA, Yasutsugu; TANOUE, Tomoaki; OHWAKI, Masao; OHTA, Jouji; UNE, Yumi; MAEDA, Ken

    2016-01-01

    Since there is no available serological methods to detect antibodies to ferret coronavirus (FRCoV), an enzyme-linked immunosorbent assay (ELISA) using recombinant partial nucleocapsid (N) proteins of the ferret coronavirus (FRCoV) Yamaguchi-1 strain was developed to establish a serological method for detection of FRCoV infection. Many serum samples collected from ferrets recognized both a.a. 1–179 and a.a. 180–374 of the N protein, but two serum samples did not a.a. 180–374 of the N protein. This different reactivity was also confirmed by immunoblot analysis using the serum from the ferret.Therefore, the a.a. 1–179 of the N protein was used as an ELISA antigen. Serological test was carried out using sera or plasma of ferrets in Japan. Surprisingly, 89% ferrets in Japan had been infected with FRCoV. These results indicated that our established ELISA using a.a. 1–179 of the N protein is useful for detection of antibody to FRCoV for diagnosis and seroepidemiology of FRCoV infection. PMID:26935842

  5. Microevolution of Outbreak-Associated Middle East Respiratory Syndrome Coronavirus, South Korea, 2015

    PubMed Central

    Seong, Moon-Woo; Kim, So Yeon; Corman, Victor Max; Kim, Taek Soo; Cho, Sung Im; Kim, Man Jin; Lee, Seung Jun; Lee, Jee-Soo; Seo, Soo Hyun; Ahn, Ji Soo; Yu, Byeong Su; Park, Nare; Oh, Myoung-don; Park, Wan Beom; Lee, Ji Yeon; Kim, Gayeon; Joh, Joon Sung; Jeong, Ina; Kim, Eui Chong

    2016-01-01

    During the 2015 Middle East respiratory syndrome coronavirus outbreak in South Korea, we sequenced full viral genomes of strains isolated from 4 patients early and late during infection. Patients represented at least 4 generations of transmission. We found no evidence of changes in the evolutionary rate and no reason to suspect adaptive changes in viral proteins. PMID:26814649

  6. Microevolution of Outbreak-Associated Middle East Respiratory Syndrome Coronavirus, South Korea, 2015.

    PubMed

    Seong, Moon-Woo; Kim, So Yeon; Corman, Victor Max; Kim, Taek Soo; Cho, Sung Im; Kim, Man Jin; Lee, Seung Jun; Lee, Jee-Soo; Seo, Soo Hyun; Ahn, Ji Soo; Yu, Byeong Su; Park, Nare; Oh, Myoung-don; Park, Wan Beom; Lee, Ji Yeon; Kim, Gayeon; Joh, Joon Sung; Jeong, Ina; Kim, Eui Chong; Drosten, Christian; Park, Sung Sup

    2016-02-01

    During the 2015 Middle East respiratory syndrome coronavirus outbreak in South Korea, we sequenced full viral genomes of strains isolated from 4 patients early and late during infection. Patients represented at least 4 generations of transmission. We found no evidence of changes in the evolutionary rate and no reason to suspect adaptive changes in viral proteins. PMID:26814649

  7. HTCC: Broad Range Inhibitor of Coronavirus Entry

    PubMed Central

    Milewska, Aleksandra; Kaminski, Kamil; Ciejka, Justyna; Kosowicz, Katarzyna; Zeglen, Slawomir; Wojarski, Jacek; Nowakowska, Maria; Szczubiałka, Krzysztof; Pyrc, Krzysztof

    2016-01-01

    To date, six human coronaviruses have been known, all of which are associated with respiratory infections in humans. With the exception of the highly pathogenic SARS and MERS coronaviruses, human coronaviruses (HCoV-NL63, HCoV-OC43, HCoV-229E, and HCoV-HKU1) circulate worldwide and typically cause the common cold. In most cases, infection with these viruses does not lead to severe disease, although acute infections in infants, the elderly, and immunocompromised patients may progress to severe disease requiring hospitalization. Importantly, no drugs against human coronaviruses exist, and only supportive therapy is available. Previously, we proposed the cationically modified chitosan, N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC), and its hydrophobically-modified derivative (HM-HTCC) as potent inhibitors of the coronavirus HCoV-NL63. Here, we show that HTCC inhibits interaction of a virus with its receptor and thus blocks the entry. Further, we demonstrate that HTCC polymers with different degrees of substitution act as effective inhibitors of all low-pathogenic human coronaviruses. PMID:27249425

  8. Molecular Determinants of Species Specificity in the Coronavirus Receptor Aminopeptidase N (CD13): Influence of N-Linked Glycosylation

    PubMed Central

    Wentworth, David E.; Holmes, Kathryn V.

    2001-01-01

    Aminopeptidase N (APN), a 150-kDa metalloprotease also called CD13, serves as a receptor for serologically related coronaviruses of humans (human coronavirus 229E [HCoV-229E]), pigs, and cats. These virus-receptor interactions can be highly species specific; for example, the human coronavirus can use human APN (hAPN) but not porcine APN (pAPN) as its cellular receptor, and porcine coronaviruses can use pAPN but not hAPN. Substitution of pAPN amino acids 283 to 290 into hAPN for the corresponding amino acids 288 to 295 introduced an N-glycosylation sequon at amino acids 291 to 293 that blocked HCoV-229E receptor activity of hAPN. Substitution of two amino acids that inserted an N-glycosylation site at amino acid 291 also resulted in a mutant hAPN that lacked receptor activity because it failed to bind HCoV-229E. Single amino acid revertants that removed this sequon at amino acids 291 to 293 but had one or five pAPN amino acid substitution(s) in this region all regained HCoV-229E binding and receptor activities. To determine if other N-linked glycosylation differences between hAPN, feline APN (fAPN), and pAPN account for receptor specificity of pig and cat coronaviruses, a mutant hAPN protein that, like fAPN and pAPN, lacked a glycosylation sequon at 818 to 820 was studied. This sequon is within the region that determines receptor activity for porcine and feline coronaviruses. Mutant hAPN lacking the sequon at amino acids 818 to 820 maintained HCoV-229E receptor activity but did not gain receptor activity for porcine or feline coronaviruses. Thus, certain differences in glycosylation between coronavirus receptors from different species are critical determinants in the species specificity of infection. PMID:11559807

  9. Evidence for coronavirus discontinuous transcription.

    PubMed Central

    Jeong, Y S; Makino, S

    1994-01-01

    Coronavirus subgenomic mRNA possesses a 5'-end leader sequence which is derived from the 5' end of genomic RNA and is linked to the mRNA body sequence. This study examined whether coronavirus transcription involves a discontinuous transcription step; the possibility that a leader sequence from mouse hepatitis virus (MHV) genomic RNA could be used for MHV subgenomic defective interfering (DI) RNA transcription was examined. This was tested by using helper viruses and DI RNAs that were easily distinguishable. MHV JHM variant JHM(2), which synthesizes a subgenomic mRNA encoding the HE gene, and variant JHM(3-9), which does not synthesize this mRNA, were used. An MHV DI RNA, DI(J3-9), was constructed to contain a JHM(3-9)-derived leader sequence and an inserted intergenic region derived from the region preceding the MHV JHM HE gene. DI(J3-9) replicated efficiently in JHM(2)- or JHM(3-9)-infected cells, whereas synthesis of subgenomic DI RNAs was observed only in JHM(2)-infected cells. Sequence analyses demonstrated that the 5' regions of both helper virus genomic RNAs and genomic DI RNAs maintained their original sequences in DI RNA-replicating cells, indicating that the genomic leader sequences derived from JHM(2) functioned for subgenomic DI RNA transcription. Replication and transcription of DI(J3-9) were observed in cells infected with an MHV A59 strain whose leader sequence was similar to that of JHM(2), except for one nucleotide substitution within the leader sequence. The 5' region of the helper virus genomic RNA and that of the DI RNA were the same as their original structures in virus-infected cells, and the leader sequence of DI(J3-9) subgenomic DI RNA contained the MHV A59-derived leader sequence. The leader sequence of subgenomic DI RNA was derived from that of helper virus; therefore, the genomic leader sequence had a trans-acting property indicative of a discontinuous step in coronavirus transcription. Images PMID:8139040

  10. Detection of group 1 coronaviruses in bats in North America

    USGS Publications Warehouse

    Dominguez, S.R.; O'Shea, T.J.; Oko, L.M.; Holmes, K.V.

    2007-01-01

    The epidemic of severe acute respiratory syndrome (SARS) was caused by a newly emerged coronavirus (SARS-CoV). Bats of several species in southern People's Republic of China harbor SARS-like CoVs and may be reservoir hosts for them. To determine whether bats in North America also harbor coronaviruses, we used reverse transcription-PCR to detect coronavirus RNA in bats. We found coronavirus RNA in 6 of 28 fecal specimens from bats of 2 of 7 species tested. The prevalence of viral RNA shedding was high: 17% in Eptesicus fuscus and 50% in Myotis occultus. Sequence analysis of a 440-bp amplicon in gene 1b showed that these Rocky Mountain bat coronaviruses formed 3 clusters in phylogenetic group 1 that were distinct from group 1 coronaviruses of Asian bats. Because of the potential for bat coronaviruses to cause disease in humans and animals, further surveillance and characterization of bat coronaviruses in North America are needed.

  11. Structure of the C-terminal domain of nsp4 from feline coronavirus

    PubMed Central

    Manolaridis, Ioannis; Wojdyla, Justyna A.; Panjikar, Santosh; Snijder, Eric J.; Gorbalenya, Alexander E.; Berglind, Hanna; Nordlund, Pär; Coutard, Bruno; Tucker, Paul A.

    2009-01-01

    Coronaviruses are a family of positive-stranded RNA viruses that includes important pathogens of humans and other animals. The large coronavirus genome (26–31 kb) encodes 15–16 nonstructural proteins (nsps) that are derived from two replicase polyproteins by autoproteolytic processing. The nsps assemble into the viral replication–transcription complex and nsp3, nsp4 and nsp6 are believed to anchor this enzyme complex to modified intracellular membranes. The largest part of the coronavirus nsp4 subunit is hydrophobic and is predicted to be embedded in the membranes. In this report, a conserved C-terminal domain (∼100 amino-acid residues) has been delineated that is predicted to face the cytoplasm and has been isolated as a soluble domain using library-based construct screening. A prototypical crystal structure at 2.8 Å resolution was obtained using nsp4 from feline coronavirus. Unmodified and SeMet-substituted proteins were crystallized under similar conditions, resulting in tetragonal crystals that belonged to space group P43. The phase problem was initially solved by single isomorphous replacement with anomalous scattering (SIRAS), followed by molecular replacement using a SIRAS-derived composite model. The structure consists of a single domain with a predominantly α-helical content displaying a unique fold that could be engaged in protein–protein interactions. PMID:19622868

  12. Coronaviruses Induce Entry-Independent, Continuous Macropinocytosis

    PubMed Central

    Freeman, Megan Culler; Peek, Christopher T.; Becker, Michelle M.; Smith, Everett Clinton

    2014-01-01

    ABSTRACT Macropinocytosis is exploited by many pathogens for entry into cells. Coronaviruses (CoVs) such as severe acute respiratory syndrome (SARS) CoV and Middle East respiratory syndrome CoV are important human pathogens; however, macropinocytosis during CoV infection has not been investigated. We demonstrate that the CoVs SARS CoV and murine hepatitis virus (MHV) induce macropinocytosis, which occurs late during infection, is continuous, and is not associated with virus entry. MHV-induced macropinocytosis results in vesicle internalization, as well as extended filopodia capable of fusing with distant cells. MHV-induced macropinocytosis requires fusogenic spike protein on the cell surface and is dependent on epidermal growth factor receptor activation. Inhibition of macropinocytosis reduces supernatant viral titers and syncytia but not intracellular virus titers. These results indicate that macropinocytosis likely facilitates CoV infection through enhanced cell-to-cell spreading. Our studies are the first to demonstrate virus use of macropinocytosis for a role other than entry and suggest a much broader potential exploitation of macropinocytosis in virus replication and host interactions. PMID:25096879

  13. Fine level epitope mapping and conservation analysis of two novel linear B-cell epitopes of the avian infectious bronchitis coronavirus nucleocapsid protein.

    PubMed

    Han, Zongxi; Zhao, Fei; Shao, Yuhao; Liu, Xiaoli; Kong, Xiangang; Song, Yang; Liu, Shengwang

    2013-01-01

    The nucleocapsid (N) protein of the infectious bronchitis virus (IBV) may play an essential role in the replication and translation of viral RNA. The N protein can also induce high titers of cross-reactive antibodies and cell-mediated immunity, which protects chickens from acute infection. In this study, we generated two monoclonal antibodies (mAbs), designated as 6D10 and 4F10, which were directed against the N protein of IBV using the whole viral particles as immunogens. Both of the mAbs do not cross react with Newcastle disease virus (NDV), infectious laryngotracheitis virus (ILTV) and subtype H9 avian influenza virus (AIV). After screening a phage display peptide library and peptide scanning, we identified two linear B-cell epitopes that were recognized by the mAbs 6D10 and 4F10, which corresponded to the amino acid sequences (242)FGPRTK(247) and (195)DLIARAAKI(203), respectively, in the IBV N protein. Alignments of amino acid sequences from a large number of IBV isolates indicated that the two epitopes, especially (242)FGPRTK(247), were well conserved among IBV strains. This conclusion was further confirmed by the relationships of 18 heterologous sequences to the 2 mAbs. The novel mAbs and the epitopes identified will be useful for developing diagnostic assays for IBV infections. PMID:23123213

  14. Discovery of a Novel Coronavirus, China Rattus Coronavirus HKU24, from Norway Rats Supports the Murine Origin of Betacoronavirus 1 and Has Implications for the Ancestor of Betacoronavirus Lineage A

    PubMed Central

    Lau, Susanna K. P.; Woo, Patrick C. Y.; Li, Kenneth S. M.; Tsang, Alan K. L.; Fan, Rachel Y. Y.; Luk, Hayes K. H.; Cai, Jian-Piao; Chan, Kwok-Hung; Zheng, Bo-Jian; Wang, Ming

    2014-01-01

    ABSTRACT We discovered a novel Betacoronavirus lineage A coronavirus, China Rattus coronavirus (ChRCoV) HKU24, from Norway rats in China. ChRCoV HKU24 occupied a deep branch at the root of members of Betacoronavirus 1, being distinct from murine coronavirus and human coronavirus HKU1. Its unique putative cleavage sites between nonstructural proteins 1 and 2 and in the spike (S) protein and low sequence identities to other lineage A betacoronaviruses (βCoVs) in conserved replicase domains support ChRCoV HKU24 as a separate species. ChRCoV HKU24 possessed genome features that resemble those of both Betacoronavirus 1 and murine coronavirus, being closer to Betacoronavirus 1 in most predicted proteins but closer to murine coronavirus by G+C content, the presence of a single nonstructural protein (NS4), and an absent transcription regulatory sequence for the envelope (E) protein. Its N-terminal domain (NTD) demonstrated higher sequence identity to the bovine coronavirus (BCoV) NTD than to the mouse hepatitis virus (MHV) NTD, with 3 of 4 critical sugar-binding residues in BCoV and 2 of 14 contact residues at the MHV NTD/murine CEACAM1a interface being conserved. Molecular clock analysis dated the time of the most recent common ancestor of ChRCoV HKU24, Betacoronavirus 1, and rabbit coronavirus HKU14 to about the year 1400. Cross-reactivities between other lineage A and B βCoVs and ChRCoV HKU24 nucleocapsid but not spike polypeptide were demonstrated. Using the spike polypeptide-based Western blot assay, we showed that only Norway rats and two oriental house rats from Guangzhou, China, were infected by ChRCoV HKU24. Other rats, including Norway rats from Hong Kong, possessed antibodies only against N protein and not against the spike polypeptide, suggesting infection by βCoVs different from ChRCoV HKU24. ChRCoV HKU24 may represent the murine origin of Betacoronavirus 1, and rodents are likely an important reservoir for ancestors of lineage A βCoVs. IMPORTANCE While

  15. The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world

    PubMed Central

    Egloff, Marie-Pierre; Ferron, François; Campanacci, Valérie; Longhi, Sonia; Rancurel, Corinne; Dutartre, Hélène; Snijder, Eric J.; Gorbalenya, Alexander E.; Cambillau, Christian; Canard, Bruno

    2004-01-01

    The recently identified etiological agent of the severe acute respiratory syndrome (SARS) belongs to Coronaviridae (CoV), a family of viruses replicating by a poorly understood mechanism. Here, we report the crystal structure at 2.7-Å resolution of nsp9, a hitherto uncharacterized subunit of the SARS-CoV replicative polyproteins. We show that SARS-CoV nsp9 is a single-stranded RNA-binding protein displaying a previously unreported, oligosaccharide/oligonucleotide fold-like fold. The presence of this type of protein has not been detected in the replicative complexes of RNA viruses, and its presence may reflect the unique and complex CoV viral replication/transcription machinery. PMID:15007178

  16. Association of the GTP-binding protein Rab3A with bovine adrenal chromaffin granules

    SciTech Connect

    Darchen, F.; Hammel, F.; Monteils, M.P.; Scherman, D. ); Zahraoui, A.; Tavitian, A. )

    1990-08-01

    The Rab3A protein belongs to a large family of small GTP-binding proteins that are present in eukaryotic cells and that share amino acid identities with the Ras proteins (products of the ras protooncogenes). Rab3A, which is specifically located in nervous and endocrine tissues, is suspected to play a key role in secretion. Its localization was investigated in bovine adrenal gland by using a polyclonal antibody. Rab3A was detected in adrenal medulla but not in adrenal cortex. In cultured adrenal medulla cells, Rab3A was specifically expressed in the catecholamine-secreting chromaffin cells. Subcellular fractionation suggested that Rab3A is about 30% cytosolic and that particulate Rab3A is associated with the membrane of chromaffin granules (the catecholamine storage organelles) and with a second compartment likely to be the plasma membrane. The Rab3A localization on chromaffin granule membranes was confirmed by immunoadsorption with an antibody against dopamine {beta}-hydroxylase. Rab3A was not extracted from this membrane by NaCl or KBr but was partially extracted by urea and totally solubilized by Triton X-100, suggesting either an interaction with an intrinsic protein or a membrane association through fatty acid acylation. This study suggests that Rab3A, which may also be located on other secretory vesicles containing noncharacterized small GTP-binding proteins, is involved in their biogenesis or in the regulated secretion process.

  17. Coronaviruses: An Overview of Their Replication and Pathogenesis

    PubMed Central

    Fehr, Anthony R.; Perlman, Stanley

    2015-01-01

    Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, an unusually large RNA genome, and a unique replication strategy. Coronaviruses cause a variety of diseases in mammals and birds ranging from enteritis in cows and pigs and upper respiratory disease chickens to potentially lethal human respiratory infections. Here we provide a brief introduction to coronaviruses discussing their replication and pathogenicity, and current prevention and treatment strategies. We will also discuss the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the recently identified Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV). PMID:25720466

  18. Recombinant protein-based enzyme-linked immunosorbent assay and immunochromatographic tests for detection of immunoglobulin G antibodies to severe acute respiratory syndrome (SARS) coronavirus in SARS patients.

    PubMed

    Guan, Ming; Chen, Hsiao Ying; Foo, Shen Yun; Tan, Yee-Joo; Goh, Phuay-Yee; Wee, Shock Hwa

    2004-03-01

    An enzyme-linked immunosorbent assay (ELISA) and a rapid immunochromatographic test for detection of immunoglobulin G (IgG) antibodies in severe acute respiratory syndrome (SARS) patients were developed by utilizing the well-characterized recombinant proteins Gst-N and Gst-U274. The ELISA detected IgG antibodies to SARS-CoV in all 74 convalescent-phase samples from SARS patients while weakly cross-reacting to only 1 of the 210 control sera from healthy donors. This finding thus led to a kit sensitivity, specificity, and accuracy of 100, 99.5, and 99.6%, respectively. The test thus provided a positive predictive value (PPV) of 98.7% and a negative predictive value (NPV) of 100%. In addition, the ELISA gave a positive delta of 5.4 and a negative delta of 3.6, indicating an excellent differentiation between positives and negatives. The same recombinant proteins were also applied to a newly developed platform for the development of a 15-min rapid test. The resulting rapid test has an excellent agreement of 99.6%, with a kappa value of 1.00, with the ELISA. Again, this rapid test was able to detect 100% of the samples tested (n = 42) while maintaining a specificity of 99.0% (n = 210). The PPV and NPV for the rapid test thus reached 95.3 and 100%, respectively. PMID:15013977

  19. Isolation and Characterization of a Novel Betacoronavirus Subgroup A Coronavirus, Rabbit Coronavirus HKU14, from Domestic Rabbits

    PubMed Central

    Lau, Susanna K. P.; Woo, Patrick C. Y.; Yip, Cyril C. Y.; Fan, Rachel Y. Y.; Huang, Yi; Wang, Ming; Guo, Rongtong; Lam, Carol S. F.; Tsang, Alan K. L.; Lai, Kenneth K. Y.; Chan, Kwok-Hung; Che, Xiao-Yan; Zheng, Bo-Jian

    2012-01-01

    We describe the isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14 (RbCoV HKU14), from domestic rabbits. The virus was detected in 11 (8.1%) of 136 rabbit fecal samples by reverse transcriptase PCR (RT-PCR), with a viral load of up to 108 copies/ml. RbCoV HKU14 was able to replicate in HRT-18G and RK13 cells with cytopathic effects. Northern blotting confirmed the production of subgenomic mRNAs coding for the HE, S, NS5a, E, M, and N proteins. Subgenomic mRNA analysis revealed a transcription regulatory sequence, 5′-UCUAAAC-3′. Phylogenetic analysis showed that RbCoV HKU14 formed a distinct branch among Betacoronavirus subgroup A coronaviruses, being most closely related to but separate from the species Betacoronavirus 1. A comparison of the conserved replicase domains showed that RbCoV HKU14 possessed <90% amino acid identities to most members of Betacoronavirus 1 in ADP-ribose 1″-phosphatase (ADRP) and nidoviral uridylate-specific endoribonuclease (NendoU), indicating that RbCoV HKU14 should represent a separate species. RbCoV HKU14 also possessed genomic features distinct from those of other Betacoronavirus subgroup A coronaviruses, including a unique NS2a region with a variable number of small open reading frames (ORFs). Recombination analysis revealed possible recombination events during the evolution of RbCoV HKU14 and members of Betacoronavirus 1, which may have occurred during cross-species transmission. Molecular clock analysis using RNA-dependent RNA polymerase (RdRp) genes dated the most recent common ancestor of RbCoV HKU14 to around 2002, suggesting that this virus has emerged relatively recently. Antibody against RbCoV was detected in 20 (67%) of 30 rabbit sera tested by an N-protein-based Western blot assay, whereas neutralizing antibody was detected in 1 of these 20 rabbits. PMID:22398294

  20. Membrane ectopeptidases targeted by human coronaviruses

    PubMed Central

    Bosch, Berend Jan; Smits, Saskia L.; Haagmans, Bart L.

    2014-01-01

    Six coronaviruses, including the recently identified Middle East respiratory syndrome coronavirus, are known to target the human respiratory tract causing mild to severe disease. Their interaction with receptors expressed on cells located in the respiratory tract is an essential first step in the infection. Thus far three membrane ectopeptidases, dipeptidyl peptidase 4 (DPP4), angiotensin-converting enzyme 2 (ACE2) and aminopeptidase N (APN), have been identified as entry receptors for four human-infecting coronaviruses. Although the catalytic activity of the ACE2, APN, and DPP4 peptidases is not required for virus entry, co-expression of other host proteases allows efficient viral entry. In addition, evolutionary conservation of these receptors may permit interspecies transmissions. Because of the physiological function of these peptidase systems, pathogenic host responses may be potentially amplified and cause acute respiratory distress. PMID:24762977

  1. Detection of feline coronavirus using microcantilever sensors

    NASA Astrophysics Data System (ADS)

    Velanki, Sreepriya; Ji, Hai-Feng

    2006-11-01

    This work demonstrated the feasibility of detecting severe acute respiratory syndrome associated coronavirus (SARS-CoV) using microcantilever technology by showing that the feline coronavirus (FIP) type I virus can be detected by a microcantilever modified by feline coronavirus (FIP) type I anti-viral antiserum. A microcantilever modified by FIP type I anti-viral antiserum was developed for the detection of FIP type I virus. When the FIP type I virus positive sample is injected into the fluid cell where the microcantilever is held, the microcantilever bends upon the recognition of the FIP type I virus by the antiserum on the surface of the microcantilever. A negative control sample that does not contain FIP type I virus did not cause any bending of the microcantilever. The detection limit of the sensor was 0.1 µg ml-1 when the assay time was <1 h.

  2. Severe Acute Respiratory Syndrome-Coronavirus Papain-Like Novel Protease Inhibitors: Design, Synthesis, Protein-Ligand X-ray Structure and Biological Evaluation

    SciTech Connect

    Ghosh, Arun K.; Takayama, Jun; Rao, Kalapala Venkateswar; Ratia, Kiira; Chaudhuri, Rima; Mulhearn, Debbie C.; Lee, Hyun; Nichols, Daniel B.; Baliji, Surendranath; Baker, Susan C.; Johnson, Michael E.; Mesecar, Andrew D.

    2012-02-21

    The design, synthesis, X-ray crystal structure, molecular modeling, and biological evaluation of a series of new generation SARS-CoV PLpro inhibitors are described. A new lead compound 3 (6577871) was identified via high-throughput screening of a diverse chemical library. Subsequently, we carried out lead optimization and structure-activity studies to provide a series of improved inhibitors that show potent PLpro inhibition and antiviral activity against SARS-CoV infected Vero E6 cells. Interestingly, the (S)-Me inhibitor 15h (enzyme IC{sub 50} = 0.56 {mu}M; antiviral EC{sub 50} = 9.1 {mu}M) and the corresponding (R)-Me 15g (IC{sub 50} = 0.32 {mu}M; antiviral EC{sub 50} = 9.1 {mu}M) are the most potent compounds in this series, with nearly equivalent enzymatic inhibition and antiviral activity. A protein-ligand X-ray structure of 15g-bound SARS-CoV PLpro and a corresponding model of 15h docked to PLpro provide intriguing molecular insight into the ligand-binding site interactions.

  3. Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus.

    PubMed

    Sevajol, Marion; Subissi, Lorenzo; Decroly, Etienne; Canard, Bruno; Imbert, Isabelle

    2014-12-19

    The successive emergence of highly pathogenic coronaviruses (CoVs) such as the Severe Acute Respiratory Syndrome (SARS-CoV) in 2003 and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in 2012 has stimulated a number of studies on the molecular biology. This research has provided significant new insight into functions and activities of the replication/transcription multi-protein complex. The latter directs both continuous and discontinuous RNA synthesis to replicate and transcribe the large coronavirus genome made of a single-stranded, positive-sense RNA of ∼30 kb. In this review, we summarize our current understanding of SARS-CoV enzymes involved in RNA biochemistry, such as the in vitro characterization of a highly active and processive RNA polymerase complex which can associate with methyltransferase and 3'-5' exoribonuclease activities involved in RNA capping, and RNA proofreading, respectively. The recent discoveries reveal fascinating RNA-synthesizing machinery, highlighting the unique position of coronaviruses in the RNA virus world. PMID:25451065

  4. The CRMP Family of Proteins and Their Role in Sema3A Signaling

    PubMed Central

    Schmidt, Eric F.; Strittmatter, Stephen M.

    2010-01-01

    The CRMP proteins were originally identified as mediators of Sema3A signaling and neuronal differentiation. Much has been learned about the mechanism by which CRMPs regulate cellular responses to Sema3A. In this review, the evidence for CRMP as a component of the Sema3A signaling cascade and the modulation of CRMP by plexin and phosphorylation are considered. In addition, current knowledge of the function of CRMP in a variety of cellular processes, including regulation of the cytoskeleton and endocytosis, is discussed in relationship to the mechanisms of axonal growth cone Sema3A response. The secreted protein Sema3A (collapsin-1) was the first identified vertebrate semaphorin. Sema3A acts primarily as a repulsive axon guidance cue, and can cause a dramatic collapse of the growth cone lamellipodium. This process results from the redistribution of the F-actin cytoskeleton1,2 and endocytosis of the growth cone cell membrane.2–4 Neuropilin-1 (NP1) and members of the class A plexins (PlexA) form a Sema3A receptor complex, with NP1 serving as a high-affinity ligand binding partner, and PlexA transducing the signal into the cell via its large intracellular domain. Although the effect of Sema3A on growth cones was first described nearly 15 years ago, the intracellular signaling pathways that lead to the cellular effects have only recently begun to be understood. Monomeric G-proteins, various kinases, the redox protein, MICAL, and protein turnover have all been implicated in PlexA transduction. In addition, the collapsin-response-mediator protein (CRMP) family of cytosolic phosphoproteins plays a crucial role in Sema3A/NP1/PlexA signal transduction. Current knowledge regarding CRMP functions are reviewed here. PMID:17607942

  5. Suppression of cytochrome P450 3A protein levels by proteasome inhibitors.

    SciTech Connect

    Zangar, Richard C. ); Kocarek, Thomas A.; Shen, Shang; Bollinger, Nikki ); Dahn, Michael S.; Lee, Donna W.

    2003-06-01

    We have previously reported that CYP3A cross-links with polyubiquitinated proteins in microsomes from nicardipine-treated rats in a process that is distinct from classical polyubiquitination. To further examine the role of the proteasome in CYP3A degradation, we investigated the effects of proteasome inhibitors lactacystin, MG132, proteasome inhibitor 1, and hemin in primary cultures of rat and human hepatocytes. With the exception of hemin, these agents increased the total pool of ubiquitinated proteins in microsomes isolated from rat hepatocytes, indicating that lactacystin, MG132, and proteasome inhibitor 1 effectively inhibited the proteasome in these cells. All four agents caused a reduction in the amount of the major approximately 55-kDa CYP3A band, opposite to what would be expected if the ubiquitin-proteasome pathway degraded CYP3A. Only hemin treatment caused an increase in high molecular mass (HMM) CYP3A bands. Because hemin treatment did not alter levels of ubiquitin in CYP3 A immunoprecipitates, the HMM CYP3A bands formed in response to hemin treatment clearly were not due to proteasome inhibition. Rather, because hemin treatment also caused an increase in HMM CYP3A in the detergent-insoluble fraction of the 10,000g pellet, the HMM CYP3A seems to represent a large protein complex that is unlikely to primarily represent ubiquitination.

  6. The 3A Protein from Multiple Picornaviruses Utilizes the Golgi Adaptor Protein ACBD3 To Recruit PI4KIIIβ

    PubMed Central

    Greninger, Alexander L.; Knudsen, Giselle M.; Betegon, Miguel; Burlingame, Alma L.

    2012-01-01

    The activity of phosphatidylinositol 4-kinase class III beta (PI4KIIIβ) has been shown to be required for the replication of multiple picornaviruses; however, it is unclear whether a physical association between PI4KIIIβ and the viral replication machinery exists and, if it does, whether association is necessary. We examined the ability of the 3A protein from 18 different picornaviruses to form a complex with PI4KIIIβ by affinity purification of Strep-Tagged transiently transfected constructs followed by mass spectrometry and Western blotting for putative interacting targets. We found that the 3A proteins of Aichi virus, bovine kobuvirus, poliovirus, coxsackievirus B3, and human rhinovirus 14 all copurify with PI4KIIIβ. Furthermore, we found that multiple picornavirus 3A proteins copurify with the Golgi adaptor protein acyl coenzyme A (acyl-CoA) binding domain protein 3 (ACBD3/GPC60), including those from Aichi virus, bovine kobuvirus, human rhinovirus 14, poliovirus, and coxsackievirus B2, B3, and B5. Affinity purification of ACBD3 confirmed interaction with multiple picornaviral 3A proteins and revealed the ability to bind PI4KIIIβ in the absence of 3A. Mass-spectrometric analysis of transiently expressed Aichi virus, bovine kobuvirus, and human klassevirus 3A proteins demonstrated that the N-terminal glycines of these 3A proteins are myristoylated. Alanine-scanning mutagenesis along the entire length of Aichi virus 3A followed by transient expression and affinity purification revealed that copurification of PI4KIIIβ could be eliminated by mutation of specific residues, with little or no effect on recruitment of ACBD3. One mutation at the N terminus, I5A, significantly reduced copurification of both ACBD3 and PI4KIIIβ. The dependence of Aichi virus replication on the activity of PI4KIIIβ was confirmed by both chemical and genetic inhibition. Knockdown of ACBD3 by small interfering RNA (siRNA) also prevented replication of both Aichi virus and poliovirus

  7. Coronaviruses in bats from Mexico.

    PubMed

    Anthony, S J; Ojeda-Flores, R; Rico-Chávez, O; Navarrete-Macias, I; Zambrana-Torrelio, C M; Rostal, M K; Epstein, J H; Tipps, T; Liang, E; Sanchez-Leon, M; Sotomayor-Bonilla, J; Aguirre, A A; Ávila-Flores, R; Medellín, R A; Goldstein, T; Suzán, G; Daszak, P; Lipkin, W I

    2013-05-01

    Bats are reservoirs for a wide range of human pathogens including Nipah, Hendra, rabies, Ebola, Marburg and severe acute respiratory syndrome coronavirus (CoV). The recent implication of a novel beta (β)-CoV as the cause of fatal respiratory disease in the Middle East emphasizes the importance of surveillance for CoVs that have potential to move from bats into the human population. In a screen of 606 bats from 42 different species in Campeche, Chiapas and Mexico City we identified 13 distinct CoVs. Nine were alpha (α)-CoVs; four were β-CoVs. Twelve were novel. Analyses of these viruses in the context of their hosts and ecological habitat indicated that host species is a strong selective driver in CoV evolution, even in allopatric populations separated by significant geographical distance; and that a single species/genus of bat can contain multiple CoVs. A β-CoV with 96.5 % amino acid identity to the β-CoV associated with human disease in the Middle East was found in a Nyctinomops laticaudatus bat, suggesting that efforts to identify the viral reservoir should include surveillance of the bat families Molossidae/Vespertilionidae, or the closely related Nycteridae/Emballonuridae. While it is important to investigate unknown viral diversity in bats, it is also important to remember that the majority of viruses they carry will not pose any clinical risk, and bats should not be stigmatized ubiquitously as significant threats to public health. PMID:23364191

  8. Coronaviruses in bats from Mexico

    PubMed Central

    Ojeda-Flores, R.; Rico-Chávez, O.; Navarrete-Macias, I.; Zambrana-Torrelio, C. M.; Rostal, M. K.; Epstein, J. H.; Tipps, T.; Liang, E.; Sanchez-Leon, M.; Sotomayor-Bonilla, J.; Aguirre, A. A.; Ávila-Flores, R.; Medellín, R. A.; Goldstein, T.; Suzán, G.; Daszak, P.

    2013-01-01

    Bats are reservoirs for a wide range of human pathogens including Nipah, Hendra, rabies, Ebola, Marburg and severe acute respiratory syndrome coronavirus (CoV). The recent implication of a novel beta (β)-CoV as the cause of fatal respiratory disease in the Middle East emphasizes the importance of surveillance for CoVs that have potential to move from bats into the human population. In a screen of 606 bats from 42 different species in Campeche, Chiapas and Mexico City we identified 13 distinct CoVs. Nine were alpha (α)-CoVs; four were β-CoVs. Twelve were novel. Analyses of these viruses in the context of their hosts and ecological habitat indicated that host species is a strong selective driver in CoV evolution, even in allopatric populations separated by significant geographical distance; and that a single species/genus of bat can contain multiple CoVs. A β-CoV with 96.5 % amino acid identity to the β-CoV associated with human disease in the Middle East was found in a Nyctinomops laticaudatus bat, suggesting that efforts to identify the viral reservoir should include surveillance of the bat families Molossidae/Vespertilionidae, or the closely related Nycteridae/Emballonuridae. While it is important to investigate unknown viral diversity in bats, it is also important to remember that the majority of viruses they carry will not pose any clinical risk, and bats should not be stigmatized ubiquitously as significant threats to public health. PMID:23364191

  9. Suppression of Coronavirus Replication by Cyclophilin Inhibitors

    PubMed Central

    Tanaka, Yoshikazu; Sato, Yuka; Sasaki, Takashi

    2013-01-01

    Coronaviruses infect a variety of mammalian and avian species and cause serious diseases in humans, cats, mice, and birds in the form of severe acute respiratory syndrome (SARS), feline infectious peritonitis (FIP), mouse hepatitis, and avian infectious bronchitis, respectively. No effective vaccine or treatment has been developed for SARS-coronavirus or FIP virus, both of which cause lethal diseases. It has been reported that a cyclophilin inhibitor, cyclosporin A (CsA), could inhibit the replication of coronaviruses. CsA is a well-known immunosuppressive drug that binds to cellular cyclophilins to inhibit calcineurin, a calcium-calmodulin-activated serine/threonine-specific phosphatase. The inhibition of calcineurin blocks the translocation of nuclear factor of activated T cells from the cytosol into the nucleus, thus preventing the transcription of genes encoding cytokines such as interleukin-2. Cyclophilins are peptidyl-prolyl isomerases with physiological functions that have been described for many years to include chaperone and foldase activities. Also, many viruses require cyclophilins for replication; these include human immunodeficiency virus, vesicular stomatitis virus, and hepatitis C virus. However, the molecular mechanisms leading to the suppression of viral replication differ for different viruses. This review describes the suppressive effects of CsA on coronavirus replication. PMID:23698397

  10. Suppression of coronavirus replication by cyclophilin inhibitors.

    PubMed

    Tanaka, Yoshikazu; Sato, Yuka; Sasaki, Takashi

    2013-05-01

    Coronaviruses infect a variety of mammalian and avian species and cause serious diseases in humans, cats, mice, and birds in the form of severe acute respiratory syndrome (SARS), feline infectious peritonitis (FIP), mouse hepatitis, and avian infectious bronchitis, respectively. No effective vaccine or treatment has been developed for SARS-coronavirus or FIP virus, both of which cause lethal diseases. It has been reported that a cyclophilin inhibitor, cyclosporin A (CsA), could inhibit the replication of coronaviruses. CsA is a well-known immunosuppressive drug that binds to cellular cyclophilins to inhibit calcineurin, a calcium-calmodulin-activated serine/threonine-specific phosphatase. The inhibition of calcineurin blocks the translocation of nuclear factor of activated T cells from the cytosol into the nucleus, thus preventing the transcription of genes encoding cytokines such as interleukin-2. Cyclophilins are peptidyl-prolyl isomerases with physiological functions that have been described for many years to include chaperone and foldase activities. Also, many viruses require cyclophilins for replication; these include human immunodeficiency virus, vesicular stomatitis virus, and hepatitis C virus. However, the molecular mechanisms leading to the suppression of viral replication differ for different viruses. This review describes the suppressive effects of CsA on coronavirus replication. PMID:23698397

  11. Hemagglutinating Encephalomyelitis Coronavirus Infection in Pigs, Argentina

    PubMed Central

    Cappuccio, Javier; Piñeyro, Pablo; Basso, Walter; Moré, Gastón; Kienast, Mariana; Schonfeld, Sergio; Cáncer, José L.; Arauz, Sandra; Pintos, María E.; Nanni, Mariana; Machuca, Mariana; Hirano, Norio; Perfumo, Carlos J.

    2008-01-01

    We describe an outbreak of vomiting, wasting, and encephalomyelitis syndrome in piglets in Argentina, caused by porcine hemagglutinating encephalomyelitis coronavirus (PHE-CoV) infection. Diagnosis was made by epidemiologic factors, pathologic features, immunohistochemistry, reverse transcription–PCR, and genomic sequencing. This study documents PHE-CoV infection in South America. PMID:18325268

  12. Serological diagnosis of feline coronavirus infection by immunochromatographic test.

    PubMed

    Takano, Tomomi; Hohdatsu, Tsutomu

    2015-01-01

    The immunochromatographic assay (ICA) is a simple antibody-antigen detection method, the results of which can be rapidly obtained at a low cost. We designed an ICA to detect anti-feline coronavirus (FCoV) antibodies. A colloidal gold-labeled recombinant FCoV nucleocapsid protein (rNP) is used as a conjugate. The Protein A and affinity-purified cat anti-FCoV IgG are blotted on the test line and the control line, respectively, of the nitrocellulose membrane. The specific detection of anti-FCoV antibodies was possible in all heparin-anticoagulated plasma, serum, whole blood, and ascitic fluid samples from anti-FCoV antibody positive cats, and nonspecific reaction was not noted in samples from anti-FCoV antibody negative cats. PMID:25720468

  13. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds.

    PubMed

    Báez-Santos, Yahira M; St John, Sarah E; Mesecar, Andrew D

    2015-03-01

    Over 10 years have passed since the deadly human coronavirus that causes severe acute respiratory syndrome (SARS-CoV) emerged from the Guangdong Province of China. Despite the fact that the SARS-CoV pandemic infected over 8500 individuals, claimed over 800 lives and cost billions of dollars in economic loss worldwide, there still are no clinically approved antiviral drugs, vaccines or monoclonal antibody therapies to treat SARS-CoV infections. The recent emergence of the deadly human coronavirus that causes Middle East respiratory syndrome (MERS-CoV) is a sobering reminder that new and deadly coronaviruses can emerge at any time with the potential to become pandemics. Therefore, the continued development of therapeutic and prophylactic countermeasures to potentially deadly coronaviruses is warranted. The coronaviral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro), are attractive antiviral drug targets because they are essential for coronaviral replication. Although the primary function of PLpro and 3CLpro are to process the viral polyprotein in a coordinated manner, PLpro has the additional function of stripping ubiquitin and ISG15 from host-cell proteins to aid coronaviruses in their evasion of the host innate immune responses. Therefore, targeting PLpro with antiviral drugs may have an advantage in not only inhibiting viral replication but also inhibiting the dysregulation of signaling cascades in infected cells that may lead to cell death in surrounding, uninfected cells. This review provides an up-to-date discussion on the SARS-CoV papain-like protease including a brief overview of the SARS-CoV genome and replication followed by a more in-depth discussion on the structure and catalytic mechanism of SARS-CoV PLpro, the multiple cellular functions of SARS-CoV PLpro, the inhibition of SARS-CoV PLpro by small molecule inhibitors, and the prospect of inhibiting papain-like protease from other coronaviruses. This paper forms part of a series of

  14. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling

    PubMed Central

    Jones, Joshua D.; Chung, Betty Y.-W.; Siddell, Stuart G.; Brierley, Ian

    2016-01-01

    Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global “snap-shot” of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal

  15. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling.

    PubMed

    Irigoyen, Nerea; Firth, Andrew E; Jones, Joshua D; Chung, Betty Y-W; Siddell, Stuart G; Brierley, Ian

    2016-02-01

    Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal

  16. Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition

    SciTech Connect

    Versteeg, Gijs A.; Bredenbeek, Peter J.; Worm, Sjoerd H.E. van den; Spaan, Willy J.M. . E-mail: w.j.m.spaan@lumc.nl

    2007-04-25

    Many viruses encode antagonists to prevent interferon (IFN) induction. Infection of fibroblasts with the murine hepatitis coronavirus (MHV) and SARS-coronavirus (SARS-CoV) did not result in nuclear translocation of interferon-regulatory factor 3 (IRF3), a key transcription factor involved in IFN induction, and induction of IFN mRNA transcription. Furthermore, MHV and SARS-CoV infection could not prevent IFN induction by poly (I:C) or Sendai virus, suggesting that these CoVs do not inactivate IRF3-mediated transcription regulation, but apparently prevent detection of replicative RNA by cellular sensory molecules. Our data indicate that shielding of viral RNA to host cell sensors might be the main general mechanism for coronaviruses to prevent IFN induction.

  17. 40 CFR 174.509 - Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Bacillus thuringiensis Cry3A protein...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.509 Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Cry3A protein are...

  18. 40 CFR 174.509 - Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Bacillus thuringiensis Cry3A protein...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.509 Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Cry3A protein are...

  19. 40 CFR 174.509 - Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Bacillus thuringiensis Cry3A protein...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.509 Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Cry3A protein are...

  20. 40 CFR 174.509 - Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Bacillus thuringiensis Cry3A protein...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.509 Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Cry3A protein are...

  1. The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent

    PubMed Central

    te Velthuis, Aartjan J. W.; Arnold, Jamie J.; Cameron, Craig E.; van den Worm, Sjoerd H. E.; Snijder, Eric J.

    2010-01-01

    An RNA-dependent RNA polymerase (RdRp) is the central catalytic subunit of the RNA-synthesizing machinery of all positive-strand RNA viruses. Usually, RdRp domains are readily identifiable by comparative sequence analysis, but biochemical confirmation and characterization can be hampered by intrinsic protein properties and technical complications. It is presumed that replication and transcription of the ∼30-kb severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) RNA genome are catalyzed by an RdRp domain in the C-terminal part of nonstructural protein 12 (nsp12), one of 16 replicase subunits. However, thus far full-length nsp12 has proven refractory to expression in bacterial systems, which has hindered both the biochemical characterization of coronavirus RNA synthesis and RdRp-targeted antiviral drug design. Here, we describe a combined strategy involving bacterial expression of an nsp12 fusion protein and its in vivo cleavage to generate and purify stable SARS-CoV nsp12 (106 kDa) with a natural N-terminus and C-terminal hexahistidine tag. This recombinant protein possesses robust in vitro RdRp activity, as well as a significant DNA-dependent activity that may facilitate future inhibitor studies. The SARS-CoV nsp12 is primer dependent on both homo- and heteropolymeric templates, supporting the likeliness of a close enzymatic collaboration with the intriguing RNA primase activity that was recently proposed for coronavirus nsp8. PMID:19875418

  2. Retargeting of Coronavirus by Substitution of the Spike Glycoprotein Ectodomain: Crossing the Host Cell Species Barrier

    PubMed Central

    Kuo, Lili; Godeke, Gert-Jan; Raamsman, Martin J. B.; Masters, Paul S.; Rottier, Peter J. M.

    2000-01-01

    Coronaviruses generally have a narrow host range, infecting one or just a few species. Using targeted RNA recombination, we constructed a mutant of the coronavirus mouse hepatitis virus (MHV) in which the ectodomain of the spike glycoprotein (S) was replaced with the highly divergent ectodomain of the S protein of feline infectious peritonitis virus. The resulting chimeric virus, designated fMHV, acquired the ability to infect feline cells and simultaneously lost the ability to infect murine cells in tissue culture. This reciprocal switch of species specificity strongly supports the notion that coronavirus host cell range is determined primarily at the level of interactions between the S protein and the virus receptor. The isolation of fMHV allowed the localization of the region responsible for S protein incorporation into virions to the carboxy-terminal 64 of the 1,324 residues of this protein. This establishes a basis for further definition of elements involved in virion assembly. In addition, fMHV is potentially the ideal recipient virus for carrying out reverse genetics of MHV by targeted RNA recombination, since it presents the possibility of selecting recombinants, no matter how defective, that have regained the ability to replicate in murine cells. PMID:10627550

  3. Cellular peptidyl-prolyl cis/trans isomerase Pin1 facilitates replication of feline coronavirus.

    PubMed

    Tanaka, Yoshikazu; Amano, Arisa; Morisaki, Masateru; Sato, Yuka; Sasaki, Takashi

    2016-02-01

    Although feline coronavirus (FCoV) causes feline infectious peritonitis (FIP), which is a fatal infectious disease, there are no effective therapeutic medicines or vaccines. Previously, in vitro studies have shown that cyclosporin (CsA) and FK506 inhibit virus replication in diverse coronaviruses. CsA and FK506 are targets of clinically relevant immunosuppressive drugs and bind to cellular cyclophilins (Cyps) or FK506 binding proteins (FKBPs), respectively. Both Cyp and FKBP have peptidyl-prolyl cis-trans isomerase (PPIase) activity. However, protein interacting with NIMA (Pin1), a member of the parvulin subfamily of PPIases that differs from Cyps and FKBPs, is essential for various signaling pathways. Here we demonstrated that genetic silencing or knockout of Pin1 resulted in decreased FCoV replication in vitro. Dipentamethylene thiuram monosulfide, a specific inhibitor of Pin1, inhibited FCoV replication. These data indicate that Pin1 modulates FCoV propagation. PMID:26675666

  4. Genetic diversity of coronaviruses in Miniopterus fuliginosus bats.

    PubMed

    Du, Jiang; Yang, Li; Ren, Xianwen; Zhang, Junpeng; Dong, Jie; Sun, Lilian; Zhu, Yafang; Yang, Fan; Zhang, Shuyi; Wu, Zhiqiang; Jin, Qi

    2016-06-01

    Coronaviruses, such as severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus, pose significant public health threats. Bats have been suggested to act as natural reservoirs for both these viruses, and periodic monitoring of coronaviruses in bats may thus provide important clues about emergent infectious viruses. The Eastern bent-wing bat Miniopterus fuliginosus is distributed extensively throughout China. We therefore analyzed the genetic diversity of coronaviruses in samples of M. fuliginosus collected from nine Chinese provinces during 2011-2013. The only coronavirus genus found was Alphacoronavirus. We established six complete and five partial genomic sequences of alphacoronaviruses, which revealed that they could be divided into two distinct lineages, with close relationships to coronaviruses in Miniopterus magnater and Miniopterus pusillus. Recombination was confirmed by detecting putative breakpoints of Lineage 1 coronaviruses in M. fuliginosus and M. pusillus (Wu et al., 2015), which supported the results of topological and phylogenetic analyses. The established alphacoronavirus genome sequences showed high similarity to other alphacoronaviruses found in other Miniopterus species, suggesting that their transmission in different Miniopterus species may provide opportunities for recombination with different alphacoronaviruses. The genetic information for these novel alphacoronaviruses will improve our understanding of the evolution and genetic diversity of coronaviruses, with potentially important implications for the transmission of human diseases. PMID:27125516

  5. Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity.

    PubMed

    Chen, Xiaojuan; Wang, Kai; Xing, Yaling; Tu, Jian; Yang, Xingxing; Zhao, Qian; Li, Kui; Chen, Zhongbin

    2014-12-01

    Autophagy plays important roles in modulating viral replication and antiviral immune response. Coronavirus infection is associated with the autophagic process, however, little is known about the mechanisms of autophagy induction and its contribution to coronavirus regulation of host innate responses. Here, we show that the membrane-associated papain-like protease PLP2 (PLP2-TM) of coronaviruses acts as a novel autophagy-inducing protein. Intriguingly, PLP2-TM induces incomplete autophagy process by increasing the accumulation of autophagosomes but blocking the fusion of autophagosomes with lysosomes. Furthermore, PLP2-TM interacts with the key autophagy regulators, LC3 and Beclin1, and promotes Beclin1 interaction with STING, the key regulator for antiviral IFN signaling. Finally, knockdown of Beclin1 partially reverses PLP2-TM's inhibitory effect on innate immunity which resulting in decreased coronavirus replication. These results suggested that coronavirus papain-like protease induces incomplete autophagy by interacting with Beclin1, which in turn modulates coronavirus replication and antiviral innate immunity. PMID:25311841

  6. The Structure and Functions of Coronavirus Genomic 3’ and 5’ Ends

    PubMed Central

    Yang, Dong; Leibowitz, Julian L.

    2015-01-01

    Coronaviruses (CoVs) are an important cause of illness in humans and animals. Most human coronaviruses commonly cause relatively mild respiratory illnesses; however two zoonotic coronaviruses, SARS-CoV and MERS-CoV, can cause severe illness and death. Investigations over the past thirty-five years have illuminated many aspects of coronavirus replication. The focus of this review is the functional analysis of conserved RNA secondary structures in the 5’ and 3’ of the betacoronavirus genomes. The 5’ 350 nucleotides folds into a set of RNA secondary structures which are well conserved, and reverse genetic studies indicate that these structures play an important role in the discontinuous synthesis of subgenomic RNAs in the betacoronaviruses. These cis-acting elements extend 3’ of the 5’UTR into ORF1a. The 3’UTR is similarly conserved and contains all of the cis-acting sequences necessary for viral replication. Two competing conformations near the 5’ end of the 3’UTR have been shown to make up a potential molecular switch. There is some evidence that an association between the 3’ and 5’UTRs is necessary for subgenomic RNA synthesis, but the basis for this association is not yet clear. A number of host RNA proteins have been shown to bind to the 5’ and 3’ cis-acting regions, but the significance of these in viral replication is not clear. Two viral proteins have been identified as binding to the 5’ cis-acting region, nsp1 and N protein. A genetic interaction between nsp8 and nsp9 and the region of the 3’UTR that contains the putative molecular switch suggests that these two proteins bind to this region. PMID:25736566

  7. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection.

    PubMed

    Ng, Oi-Wing; Chia, Adeline; Tan, Anthony T; Jadi, Ramesh S; Leong, Hoe Nam; Bertoletti, Antonio; Tan, Yee-Joo

    2016-04-12

    Severe acute respiratory syndrome (SARS) is a highly contagious infectious disease which first emerged in late 2002, caused by a then novel human coronavirus, SARS coronavirus (SARS-CoV). The virus is believed to have originated from bats and transmitted to human through intermediate animals such as civet cats. The re-emergence of SARS-CoV remains a valid concern due to the continual persistence of zoonotic SARS-CoVs and SARS-like CoVs (SL-CoVs) in bat reservoirs. In this study, the screening for the presence of SARS-specific T cells in a cohort of three SARS-recovered individuals at 9 and 11 years post-infection was carried out, and all memory T cell responses detected target the SARS-CoV structural proteins. Two CD8(+) T cell responses targeting the SARS-CoV membrane (M) and nucleocapsid (N) proteins were characterized by determining their HLA restriction and minimal T cell epitope regions. Furthermore, these responses were found to persist up to 11 years post-infection. An absence of cross-reactivity of these CD8(+) T cell responses against the newly-emerged Middle East respiratory syndrome coronavirus (MERS-CoV) was also demonstrated. The knowledge of the persistence of SARS-specific celullar immunity targeting the viral structural proteins in SARS-recovered individuals is important in the design and development of SARS vaccines, which are currently unavailable. PMID:26954467

  8. Genetic relatedness of the novel human group C betacoronavirus to Tylonycteris bat coronavirus HKU4 and Pipistrellus bat coronavirus HKU5

    PubMed Central

    Woo, Patrick CY; Lau, Susanna KP; Li, Kenneth SM; Tsang, Alan KL; Yuen, Kwok-Yung

    2012-01-01

    The recent outbreak of severe respiratory infections associated with a novel group C betacoronavirus (HCoV-EMC) from Saudi Arabia has drawn global attention to another highly probable “SARS-like” animal-to-human interspecies jumping event in coronavirus (CoV). The genome of HCoV-EMC is most closely related to Tylonycteris bat coronavirus HKU4 (Ty-BatCoV HKU4) and Pipistrellus bat coronavirus HKU5 (Pi-BatCoV HKU5) we discovered in 2006. Phylogenetically, HCoV-EMC is clustered with Ty-BatCoV HKU4/Pi-BatCoV HKU5 with high bootstrap supports, indicating that HCoV-EMC is a group C betaCoV. The major difference between HCoV-EMC and Ty-BatCoV HKU4/Pi-BatCoV HKU5 is in the region between S and E, where HCoV-EMC possesses five ORFs (NS3a-NS3e) instead of four, with low (31%–62%) amino acid identities to Ty-BatCoV HKU4/Pi-BatCoV HKU5. Comparison of the seven conserved replicase domains for species demarcation shows that HCoV-EMC is a novel CoV species. More intensive surveillance studies in bats and other animals may reveal the natural host of HCoV-EMC. PMID:26038405

  9. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor.

    PubMed

    Ge, Xing-Yi; Li, Jia-Lu; Yang, Xing-Lou; Chmura, Aleksei A; Zhu, Guangjian; Epstein, Jonathan H; Mazet, Jonna K; Hu, Ben; Zhang, Wei; Peng, Cheng; Zhang, Yu-Ji; Luo, Chu-Ming; Tan, Bing; Wang, Ning; Zhu, Yan; Crameri, Gary; Zhang, Shu-Yi; Wang, Lin-Fa; Daszak, Peter; Shi, Zheng-Li

    2013-11-28

    The 2002-3 pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV) was one of the most significant public health events in recent history. An ongoing outbreak of Middle East respiratory syndrome coronavirus suggests that this group of viruses remains a key threat and that their distribution is wider than previously recognized. Although bats have been suggested to be the natural reservoirs of both viruses, attempts to isolate the progenitor virus of SARS-CoV from bats have been unsuccessful. Diverse SARS-like coronaviruses (SL-CoVs) have now been reported from bats in China, Europe and Africa, but none is considered a direct progenitor of SARS-CoV because of their phylogenetic disparity from this virus and the inability of their spike proteins to use the SARS-CoV cellular receptor molecule, the human angiotensin converting enzyme II (ACE2). Here we report whole-genome sequences of two novel bat coronaviruses from Chinese horseshoe bats (family: Rhinolophidae) in Yunnan, China: RsSHC014 and Rs3367. These viruses are far more closely related to SARS-CoV than any previously identified bat coronaviruses, particularly in the receptor binding domain of the spike protein. Most importantly, we report the first recorded isolation of a live SL-CoV (bat SL-CoV-WIV1) from bat faecal samples in Vero E6 cells, which has typical coronavirus morphology, 99.9% sequence identity to Rs3367 and uses ACE2 from humans, civets and Chinese horseshoe bats for cell entry. Preliminary in vitro testing indicates that WIV1 also has a broad species tropism. Our results provide the strongest evidence to date that Chinese horseshoe bats are natural reservoirs of SARS-CoV, and that intermediate hosts may not be necessary for direct human infection by some bat SL-CoVs. They also highlight the importance of pathogen-discovery programs targeting high-risk wildlife groups in emerging disease hotspots as a strategy for pandemic preparedness. PMID:24172901

  10. Differential Sensitivity of Bat Cells to Infection by Enveloped RNA Viruses: Coronaviruses, Paramyxoviruses, Filoviruses, and Influenza Viruses

    PubMed Central

    Hoffmann, Markus; Müller, Marcel Alexander; Drexler, Jan Felix; Glende, Jörg; Erdt, Meike; Gützkow, Tim; Losemann, Christoph; Binger, Tabea; Deng, Hongkui; Schwegmann-Weßels, Christel; Esser, Karl-Heinz; Drosten, Christian; Herrler, Georg

    2013-01-01

    Bats (Chiroptera) host major human pathogenic viruses including corona-, paramyxo, rhabdo- and filoviruses. We analyzed six different cell lines from either Yinpterochiroptera (including African flying foxes and a rhinolophid bat) or Yangochiroptera (genera Carollia and Tadarida) for susceptibility to infection by different enveloped RNA viruses. None of the cells were sensitive to infection by transmissible gastroenteritis virus (TGEV), a porcine coronavirus, or to infection mediated by the Spike (S) protein of SARS-coronavirus (SARS-CoV) incorporated into pseudotypes based on vesicular stomatitis virus (VSV). The resistance to infection was overcome if cells were transfected to express the respective cellular receptor, porcine aminopeptidase N for TGEV or angiotensin-converting enzyme 2 for SARS-CoV. VSV pseudotypes containing the S proteins of two bat SARS-related CoV (Bg08 and Rp3) were unable to infect any of the six tested bat cell lines. By contrast, viral pseudotypes containing the surface protein GP of Marburg virus from the family Filoviridae infected all six cell lines though at different efficiency. Notably, all cells were sensitive to infection by two paramyxoviruses (Sendai virus and bovine respiratory syncytial virus) and three influenza viruses from different subtypes. These results indicate that bat cells are more resistant to infection by coronaviruses than to infection by paramyxoviruses, filoviruses and influenza viruses. Furthermore, these results show a receptor-dependent restriction of the infection of bat cells by CoV. The implications for the isolation of coronaviruses from bats are discussed. PMID:24023659

  11. Differential sensitivity of bat cells to infection by enveloped RNA viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses.

    PubMed

    Hoffmann, Markus; Müller, Marcel Alexander; Drexler, Jan Felix; Glende, Jörg; Erdt, Meike; Gützkow, Tim; Losemann, Christoph; Binger, Tabea; Deng, Hongkui; Schwegmann-Weßels, Christel; Esser, Karl-Heinz; Drosten, Christian; Herrler, Georg

    2013-01-01

    Bats (Chiroptera) host major human pathogenic viruses including corona-, paramyxo, rhabdo- and filoviruses. We analyzed six different cell lines from either Yinpterochiroptera (including African flying foxes and a rhinolophid bat) or Yangochiroptera (genera Carollia and Tadarida) for susceptibility to infection by different enveloped RNA viruses. None of the cells were sensitive to infection by transmissible gastroenteritis virus (TGEV), a porcine coronavirus, or to infection mediated by the Spike (S) protein of SARS-coronavirus (SARS-CoV) incorporated into pseudotypes based on vesicular stomatitis virus (VSV). The resistance to infection was overcome if cells were transfected to express the respective cellular receptor, porcine aminopeptidase N for TGEV or angiotensin-converting enzyme 2 for SARS-CoV. VSV pseudotypes containing the S proteins of two bat SARS-related CoV (Bg08 and Rp3) were unable to infect any of the six tested bat cell lines. By contrast, viral pseudotypes containing the surface protein GP of Marburg virus from the family Filoviridae infected all six cell lines though at different efficiency. Notably, all cells were sensitive to infection by two paramyxoviruses (Sendai virus and bovine respiratory syncytial virus) and three influenza viruses from different subtypes. These results indicate that bat cells are more resistant to infection by coronaviruses than to infection by paramyxoviruses, filoviruses and influenza viruses. Furthermore, these results show a receptor-dependent restriction of the infection of bat cells by CoV. The implications for the isolation of coronaviruses from bats are discussed. PMID:24023659

  12. Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin

    PubMed Central

    Wilhelmsen, Kevin; Litjens, Sandy H.M.; Kuikman, Ingrid; Tshimbalanga, Ntambua; Janssen, Hans; van den Bout, Iman; Raymond, Karine; Sonnenberg, Arnoud

    2005-01-01

    Despite their importance in cell biology, the mechanisms that maintain the nucleus in its proper position in the cell are not well understood. This is primarily the result of an incomplete knowledge of the proteins in the outer nuclear membrane (ONM) that are able to associate with the different cytoskeletal systems. Two related ONM proteins, nuclear envelope spectrin repeat (nesprin)–1 and –2, are known to make direct connections with the actin cytoskeleton through their NH2-terminal actin-binding domain (ABD). We have now isolated a third member of the nesprin family that lacks an ABD and instead binds to the plakin family member plectin, which can associate with the intermediate filament (IF) system. Overexpression of nesprin-3 results in a dramatic recruitment of plectin to the nuclear perimeter, which is where these two molecules are colocalized with both keratin-6 and -14. Importantly, plectin binds to the integrin α6β4 at the cell surface and to nesprin-3 at the ONM in keratinocytes, suggesting that there is a continuous connection between the nucleus and the extracellular matrix through the IF cytoskeleton. PMID:16330710

  13. Discovery of a novel bottlenose dolphin coronavirus reveals a distinct species of marine mammal coronavirus in Gammacoronavirus.

    PubMed

    Woo, Patrick C Y; Lau, Susanna K P; Lam, Carol S F; Tsang, Alan K L; Hui, Suk-Wai; Fan, Rachel Y Y; Martelli, Paolo; Yuen, Kwok-Yung

    2014-01-01

    While gammacoronaviruses mainly comprise infectious bronchitis virus (IBV) and its closely related bird coronaviruses (CoVs), the only mammalian gammacoronavirus was discovered from a white beluga whale (beluga whale CoV [BWCoV] SW1) in 2008. In this study, we discovered a novel gammacoronavirus from fecal samples from three Indo-Pacific bottlenose dolphins (Tursiops aduncus), which we named bottlenose dolphin CoV (BdCoV) HKU22. All the three BdCoV HKU22-positive samples were collected on the same date, suggesting a cluster of infection, with viral loads of 1 × 10(3) to 1 × 10(5) copies per ml. Clearance of virus was associated with a specific antibody response against the nucleocapsid of BdCoV HKU22. Complete genome sequencing and comparative genome analysis showed that BdCoV HKU22 and BWCoV SW1 have similar genome characteristics and structures. Their genome size is about 32,000 nucleotides, the largest among all CoVs, as a result of multiple unique open reading frames (NS5a, NS5b, NS5c, NS6, NS7, NS8, NS9, and NS10) between their membrane (M) and nucleocapsid (N) protein genes. Although comparative genome analysis showed that BdCoV HKU22 and BWCoV SW1 should belong to the same species, a major difference was observed in the proteins encoded by their spike (S) genes, which showed only 74.3 to 74.7% amino acid identities. The high ratios of the number of synonymous substitutions per synonymous site (Ks) to the number of nonsynonymous substitutions per nonsynonymous site (Ka) in multiple regions of the genome, especially the S gene (Ka/Ks ratio, 2.5), indicated that BdCoV HKU22 may be evolving rapidly, supporting a recent transmission event to the bottlenose dolphins. We propose a distinct species, Cetacean coronavirus, in Gammacoronavirus, to include BdCoV HKU22 and BWCoV SW1, whereas IBV and its closely related bird CoVs represent another species, Avian coronavirus, in Gammacoronavirus. PMID:24227844

  14. Discovery of a Novel Bottlenose Dolphin Coronavirus Reveals a Distinct Species of Marine Mammal Coronavirus in Gammacoronavirus

    PubMed Central

    Woo, Patrick C. Y.; Lau, Susanna K. P.; Lam, Carol S. F.; Tsang, Alan K. L.; Hui, Suk-Wai; Fan, Rachel Y. Y.; Martelli, Paolo

    2014-01-01

    While gammacoronaviruses mainly comprise infectious bronchitis virus (IBV) and its closely related bird coronaviruses (CoVs), the only mammalian gammacoronavirus was discovered from a white beluga whale (beluga whale CoV [BWCoV] SW1) in 2008. In this study, we discovered a novel gammacoronavirus from fecal samples from three Indo-Pacific bottlenose dolphins (Tursiops aduncus), which we named bottlenose dolphin CoV (BdCoV) HKU22. All the three BdCoV HKU22-positive samples were collected on the same date, suggesting a cluster of infection, with viral loads of 1 × 103 to 1 × 105 copies per ml. Clearance of virus was associated with a specific antibody response against the nucleocapsid of BdCoV HKU22. Complete genome sequencing and comparative genome analysis showed that BdCoV HKU22 and BWCoV SW1 have similar genome characteristics and structures. Their genome size is about 32,000 nucleotides, the largest among all CoVs, as a result of multiple unique open reading frames (NS5a, NS5b, NS5c, NS6, NS7, NS8, NS9, and NS10) between their membrane (M) and nucleocapsid (N) protein genes. Although comparative genome analysis showed that BdCoV HKU22 and BWCoV SW1 should belong to the same species, a major difference was observed in the proteins encoded by their spike (S) genes, which showed only 74.3 to 74.7% amino acid identities. The high ratios of the number of synonymous substitutions per synonymous site (Ks) to the number of nonsynonymous substitutions per nonsynonymous site (Ka) in multiple regions of the genome, especially the S gene (Ka/Ks ratio, 2.5), indicated that BdCoV HKU22 may be evolving rapidly, supporting a recent transmission event to the bottlenose dolphins. We propose a distinct species, Cetacean coronavirus, in Gammacoronavirus, to include BdCoV HKU22 and BWCoV SW1, whereas IBV and its closely related bird CoVs represent another species, Avian coronavirus, in Gammacoronavirus. PMID:24227844

  15. The Chemorepulsive Protein Semaphorin 3A and Perineuronal Net-Mediated Plasticity

    PubMed Central

    de Winter, F.; Kwok, J. C. F.; Fawcett, J. W.; Vo, T. T.; Carulli, D.; Verhaagen, J.

    2016-01-01

    During postnatal development, closure of critical periods coincides with the appearance of extracellular matrix structures, called perineuronal nets (PNN), around various neuronal populations throughout the brain. The absence or presence of PNN strongly correlates with neuronal plasticity. It is not clear how PNN regulate plasticity. The repulsive axon guidance proteins Semaphorin (Sema) 3A and Sema3B are also prominently expressed in the postnatal and adult brain. In the neocortex, Sema3A accumulates in the PNN that form around parvalbumin positive inhibitory interneurons during the closure of critical periods. Sema3A interacts with high-affinity with chondroitin sulfate E, a component of PNN. The localization of Sema3A in PNN and its inhibitory effects on developing neurites are intriguing features and may clarify how PNN mediate structural neural plasticity. In the cerebellum, enhanced neuronal plasticity as a result of an enriched environment correlates with reduced Sema3A expression in PNN. Here, we first review the distribution of Sema3A and Sema3B expression in the rat brain and the biochemical interaction of Sema3A with PNN. Subsequently, we review what is known so far about functional correlates of changes in Sema3A expression in PNN. Finally, we propose a model of how Semaphorins in the PNN may influence local connectivity. PMID:27057361

  16. Molecular pathology of emerging coronavirus infections

    PubMed Central

    Gralinski, Lisa E; Baric, Ralph S

    2015-01-01

    Respiratory viruses can cause a wide spectrum of pulmonary diseases, ranging from mild, upper respiratory tract infections to severe and life-threatening lower respiratory tract infections, including the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Viral clearance and subsequent recovery from infection require activation of an effective host immune response; however, many immune effector cells may also cause injury to host tissues. Severe acute respiratory syndrome (SARS) coronavirus and Middle East respiratory syndrome (MERS) coronavirus cause severe infection of the lower respiratory tract, with 10% and 35% overall mortality rates, respectively; however, >50% mortality rates are seen in the aged and immunosuppressed populations. While these viruses are susceptible to interferon treatment in vitro, they both encode numerous genes that allow for successful evasion of the host immune system until after high virus titres have been achieved. In this review, we discuss the importance of the innate immune response and the development of lung pathology following human coronavirus infection. PMID:25270030

  17. 40 CFR 174.505 - Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of a tolerance. 174.505 Section 174.505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED...

  18. The Angelman syndrome protein Ube3a/E6AP is required for Golgi acidification and surface protein sialylation.

    PubMed

    Condon, Kathryn H; Ho, Jianghai; Robinson, Camenzind G; Hanus, Cyril; Ehlers, Michael D

    2013-02-27

    Angelman syndrome (AS) is a severe disorder of postnatal brain development caused by neuron-specific loss of the HECT (homologous to E6AP carboxy terminus) domain E3 ubiquitin ligase Ube3a/E6AP. The cellular role of Ube3a remains enigmatic despite recent descriptions of synaptic and behavioral deficits in AS mouse models. Although neuron-specific imprinting is thought to limit the disease to the brain, Ube3a is expressed ubiquitously, suggesting a broader role in cellular function. In the current study, we demonstrate a profound structural disruption and cisternal swelling of the Golgi apparatus (GA) in the cortex of AS (UBE3A(m-/p+)) mice. In Ube3a knockdown cell lines and UBE3A(m-/p+) cortical neurons, the GA is severely under-acidified, leading to osmotic swelling. Both in vitro and in vivo, the loss of Ube3a and corresponding elevated pH of the GA is associated with a marked reduction in protein sialylation, a process highly dependent on intralumenal Golgi pH. Altered ion homeostasis of the GA may provide a common cellular pathophysiology underlying the diverse plasticity and neurodevelopmental deficits associated with AS. PMID:23447592

  19. Analysis of putative recombination hot sites in the S gene of canine coronaviruses.

    PubMed

    Wang, Y Y; Lu, C P

    2009-01-01

    The S gene sequence of Canine coronavirus strain 1-71 (CCoV 1-71) was cloned, sequenced, and compared to those of other CCoVs, Transmissible gastroenteritis virus (TGEV), and Feline coronavirus (FCoV). The sequence analysis showed that CCoV 1-71 displayed a 98.8-99.8% identity with CCoVs strains V1, K378, and GP. Four putative recombination sites were found at the 5'-end of the S gene, namely at nt 53, 75, 425, 991. Both sequences flanking each site were significantly different. Three recombination hot regions were found on the S gene, namely at nt 337-437, 1545-3405, and 4203-4356, which shared a common recombination signal with Group 2 coronaviruses. The G/CTAAAAA/GT sequence downstream of the recombination site may represent a specific recombination signal in CCoVs. The CCoV 1-71 S protein sequence was found to be similar to those of other CCoVs except for several N-glycosylation sites at the N-terminus of the S protein, which could be related to the differences in virulence and cell tropism in individual CCoVs. This study indicated that the similarity of CCoVs in virulence and tropism was mostly acquired by the homologous RNA recombination and not only by simple mutation and selection. PMID:19537912

  20. Genetic characterization of coronaviruses from domestic ferrets, Japan.

    PubMed

    Terada, Yutaka; Minami, Shohei; Noguchi, Keita; Mahmoud, Hassan Y A H; Shimoda, Hiroshi; Mochizuki, Masami; Une, Yumi; Maeda, Ken

    2014-02-01

    We detected ferret coronaviruses in 44 (55.7%) of 79 pet ferrets tested in Japan and classified the viruses into 2 genotypes on the basis of genotype-specific PCR. Our results show that 2 ferret coronaviruses that cause feline infectious peritonitis-like disease and epizootic catarrhal enteritis are enzootic among ferrets in Japan. PMID:24447852

  1. ACBD3 Interaction with TBC1 Domain 22 Protein Is Differentially Affected by Enteroviral and Kobuviral 3A Protein Binding

    PubMed Central

    Greninger, Alexander L.; Knudsen, Giselle M.; Betegon, Miguel; Burlingame, Alma L.; DeRisi, Joseph L.

    2013-01-01

    ABSTRACT Despite wide sequence divergence, multiple picornaviruses use the Golgi adaptor acyl coenzyme A (acyl-CoA) binding domain protein 3 (ACBD3/GCP60) to recruit phosphatidylinositol 4-kinase class III beta (PI4KIIIβ/PI4KB), a factor required for viral replication. The molecular basis of this convergent interaction and the cellular function of ACBD3 are not fully understood. Using affinity purification-mass spectrometry, we identified the putative Rab33 GTPase-activating proteins TBC1D22A and TBC1D22B as ACBD3-interacting factors. Fine-scale mapping of binding determinants within ACBD3 revealed that the interaction domains for TBC1D22A/B and PI4KB are identical. Affinity purification confirmed that PI4KB and TBC1D22A/B interactions with ACBD3 are mutually exclusive, suggesting a possible regulatory mechanism for recruitment of PI4KB. The C-terminal Golgi dynamics (GOLD) domain of ACBD3 has been previously shown to bind the 3A replication protein from Aichi virus. We find that the 3A proteins from several additional picornaviruses, including hepatitis A virus, human parechovirus 1, and human klassevirus, demonstrate an interaction with ACBD3 by mammalian two-hybrid assay; however, we also find that the enterovirus and kobuvirus 3A interactions with ACBD3 are functionally distinct with respect to TBC1D22A/B and PI4KB recruitment. These data reinforce the notion that ACBD3 organizes numerous cellular functionalities and that RNA virus replication proteins likely modulate these interactions by more than one mechanism. PMID:23572552

  2. Protease inhibitors targeting coronavirus and filovirus entry.

    PubMed

    Zhou, Yanchen; Vedantham, Punitha; Lu, Kai; Agudelo, Juliet; Carrion, Ricardo; Nunneley, Jerritt W; Barnard, Dale; Pöhlmann, Stefan; McKerrow, James H; Renslo, Adam R; Simmons, Graham

    2015-04-01

    In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their envelope glycoproteins by host cell proteases. The respective enzymes are thus excellent targets for antiviral intervention. In cell culture, activation of Ebola virus, as well as SARS- and MERS-coronavirus can be accomplished by the endosomal cysteine proteases, cathepsin L (CTSL) and cathepsin B (CTSB). In addition, SARS- and MERS-coronavirus can use serine proteases localized at the cell surface, for their activation. However, it is currently unclear which protease(s) facilitate viral spread in the infected host. We report here that the cysteine protease inhibitor K11777, ((2S)-N-[(1E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[(E)-4-methylpiperazine-1-carbonyl]amino}-3-phenylpropanamide) and closely-related vinylsulfones act as broad-spectrum antivirals by targeting cathepsin-mediated cell entry. K11777 is already in advanced stages of development for a number of parasitic diseases, such as Chagas disease, and has proven to be safe and effective in a range of animal models. K11777 inhibition of SARS-CoV and Ebola virus entry was observed in the sub-nanomolar range. In order to assess whether cysteine or serine proteases promote viral spread in the host, we compared the antiviral activity of an optimized K11777-derivative with that of camostat, an inhibitor of TMPRSS2 and related serine proteases. Employing a pathogenic animal model of SARS-CoV infection, we demonstrated that viral spread and pathogenesis of SARS-CoV is driven by serine rather than cysteine proteases and can be effectively prevented by camostat. Camostat has been clinically used to treat chronic pancreatitis, and thus represents an exciting potential therapeutic for respiratory coronavirus infections. Our results indicate that camostat, or similar serine protease inhibitors, might be an effective option for treatment of SARS and

  3. Bluetongue Virus Nonstructural Protein NS3/NS3a Is Not Essential for Virus Replication

    PubMed Central

    van Gennip, René G. P.; van de Water, Sandra G. P.; van Rijn, Piet A.

    2014-01-01

    Orbiviruses form the largest genus of the family Reoviridae consisting of at least 23 different virus species. One of these is the bluetongue virus (BTV) and causes severe hemorrhagic disease in ruminants, and is transmitted by bites of Culicoides midges. BTV is a non-enveloped virus which is released from infected cells by cell lysis and/or a unique budding process induced by nonstructural protein NS3/NS3a encoded by genome segment 10 (Seg-10). Presence of both NS3 and NS3a is highly conserved in Culicoides borne orbiviruses which is suggesting an essential role in virus replication. We used reverse genetics to generate BTV mutants to study the function of NS3/NS3a in virus replication. Initially, BTV with small insertions in Seg-10 showed no CPE but after several passages these BTV mutants reverted to CPE phenotype comparable to wtBTV, and NS3/NS3a expression returned by repair of the ORF. These results show that there is a strong selection for functional NS3/NS3a. To abolish NS3 and/or NS3a expression, Seg-10 with one or two mutated start codons (mutAUG1, mutAUG2 and mutAUG1+2) were used to generate BTV mutants. Surprisingly, all three BTV mutants were generated and the respective AUGMet→GCCAla mutations were maintained. The lack of expression of NS3, NS3a, or both proteins was confirmed by westernblot analysis and immunostaining of infected cells with NS3/NS3a Mabs. Growth of mutAUG1 and mutAUG1+2 virus in BSR cells was retarded in both insect and mammalian cells, and particularly virus release from insect cells was strongly reduced. Our findings now enable research on the role of RNA sequences of Seg-10 independent of known gene products, and on the function of NS3/NS3a proteins in both types of cells as well as in the host and insect vector. PMID:24465709

  4. Left-right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A-/- mice analysis.

    PubMed

    Takeda, S; Yonekawa, Y; Tanaka, Y; Okada, Y; Nonaka, S; Hirokawa, N

    1999-05-17

    KIF3A is a classical member of the kinesin superfamily proteins (KIFs), ubiquitously expressed although predominantly in neural tissues, and which forms a heterotrimeric KIF3 complex with KIF3B or KIF3C and an associated protein, KAP3. To elucidate the function of the kif3A gene in vivo, we made kif3A knockout mice. kif3A-/- embryos displayed severe developmental abnormalities characterized by neural tube degeneration and mesodermal and caudal dysgenesis and died during the midgestational period at approximately 10.5 dpc (days post coitum), possibly resulting from cardiovascular insufficiency. Whole mount in situ hybridization of Pax6 revealed a normal pattern while staining by sonic hedgehog (shh) and Brachyury (T) exhibited abnormal patterns in the anterior-posterior (A-P) direction at both mesencephalic and thoracic levels. These results suggest that KIF3A might be involved in mesodermal patterning and in turn neurogenesis. PMID:10330409

  5. The Angelman Syndrome Protein Ube3a/E6AP is Required for Golgi Acidification and Surface Protein Sialylation

    PubMed Central

    Condon, Kathryn H.; Ho, Jianghai; Robinson, Camenzind G.; Hanus, Cyril; Ehlers, Michael D.

    2013-01-01

    Angelman syndrome (AS) is a severe disorder of postnatal brain development caused by neuron-specific loss of the HECT (homologous to E6AP carboxy terminus) domain E3 ubiquitin ligase Ube3a/E6AP. The cellular role of Ube3a remains enigmatic despite recent descriptions of synaptic and behavioral deficits in AS mouse models. Although neuron-specific imprinting is thought to limit the disease to the brain, Ube3a is expressed ubiquitously, suggesting a broader role in cellular function. In the current study, we demonstrate a profound structural disruption and cisternal swelling of the Golgi apparatus (GA) in the cortex of AS (UBE3Am−/p+) mice. In Ube3a knockdown cell lines and UBE3Am−/p+ cortical neurons, the GA is severely under-acidified, leading to osmotic swelling. Both in vitro and in vivo, the loss of Ube3a and corresponding elevated pH of the GA is associated with a marked reduction in protein sialylation, a process highly dependent on intralumenal Golgi pH. Altered ion homeostasis of the GA may provide a common cellular pathophysiology underlying the diverse plasticity and neurodevelopmental deficits associated with AS. PMID:23447592

  6. p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1.

    PubMed

    Ma-Lauer, Yue; Carbajo-Lozoya, Javier; Hein, Marco Y; Müller, Marcel A; Deng, Wen; Lei, Jian; Meyer, Benjamin; Kusov, Yuri; von Brunn, Brigitte; Bairad, Dev Raj; Hünten, Sabine; Drosten, Christian; Hermeking, Heiko; Leonhardt, Heinrich; Mann, Matthias; Hilgenfeld, Rolf; von Brunn, Albrecht

    2016-08-30

    Highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) has developed strategies to inhibit host immune recognition. We identify cellular E3 ubiquitin ligase ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) as an interacting partner of the viral SARS-unique domain (SUD) and papain-like protease (PL(pro)), and, as a consequence, the involvement of cellular p53 as antagonist of coronaviral replication. Residues 95-144 of RCHY1 and 389-652 of SUD (SUD-NM) subdomains are crucial for interaction. Association with SUD increases the stability of RCHY1 and augments RCHY1-mediated ubiquitination as well as degradation of p53. The calcium/calmodulin-dependent protein kinase II delta (CAMK2D), which normally influences RCHY1 stability by phosphorylation, also binds to SUD. In vivo phosphorylation shows that SUD does not regulate phosphorylation of RCHY1 via CAMK2D. Similarly to SUD, the PL(pro)s from SARS-CoV, MERS-CoV, and HCoV-NL63 physically interact with and stabilize RCHY1, and thus trigger degradation of endogenous p53. The SARS-CoV papain-like protease is encoded next to SUD within nonstructural protein 3. A SUD-PL(pro) fusion interacts with RCHY1 more intensively and causes stronger p53 degradation than SARS-CoV PL(pro) alone. We show that p53 inhibits replication of infectious SARS-CoV as well as of replicons and human coronavirus NL63. Hence, human coronaviruses antagonize the viral inhibitor p53 via stabilizing RCHY1 and promoting RCHY1-mediated p53 degradation. SUD functions as an enhancer to strengthen interaction between RCHY1 and nonstructural protein 3, leading to a further increase in in p53 degradation. The significance of these findings is that down-regulation of p53 as a major player in antiviral innate immunity provides a long-sought explanation for delayed activities of respective genes. PMID:27519799

  7. [Visual Detection of Human Coronavirus NL63 by Reverse Transcription Loop-Mediated Isothermal Amplification].

    PubMed

    Geng, Heyuan; Wang, Shengqiang; Xie, Xiaoqian; Xiao, Yu; Zhang, Ting; Tan, Wenjie; Su, Chuan

    2016-01-01

    A simple and sensitive assay for rapid detection of human coronavirus NL63 (HCoV-NL63) was developed by colorimetic reverse transcription loop-mediated isothermal amplification (RT-LAMP). The method employed six specially designed primers that recognized eight distinct regions of the HCoV-NL63 nucleocapsid protein gene for amplification of target sequences under isothermal conditions at 63 degrees C for 1 h Amplification of RT-LAMP was monitored by addition of calcein before amplification. A positive reaction was confirmed by change from light-brown to yellow-green under visual detection. Specificity of the RT-LAMP assay was validated by cross-reaction with different human coronaviruses, norovirus, influenza A virus, and influenza B virus. Sensitivity was evaluated by serial dilution of HCoV-NL63 RNA from 1.6 x 10(9) to 1.6 x 10(1) per reaction. The RT-LAMP assay could achieve 1,600 RNA copies per reaction with high specificity. Hence, our colorimetric RT-LAMP assay could be used for rapid detection of human coronavirus NL63. PMID:27295884

  8. Core Structure of S2 from the Human Coronavirus NL63 Spike Glycoprotein

    SciTech Connect

    Zheng,Q.; Deng, Y.; Liu, J.; van der Hoek, L.; Berkhout, B.; Lu, M.

    2006-01-01

    Human coronavirus NL63 (HCoV-NL63) has recently been identified as a causative agent of acute respiratory tract illnesses in infants and young children. The HCoV-NL63 spike (S) protein mediates virion attachment to cells and subsequent fusion of the viral and cellular membranes. This viral entry process is a primary target for vaccine and drug development. HCoV-NL63 S is expressed as a single-chain glycoprotein and consists of an N-terminal receptor-binding domain (S1) and a C-terminal transmembrane fusion domain (S2). The latter contains two highly conserved heptad-repeat (HR) sequences that are each extended by 14 amino acids relative to those of the SARS coronavirus or the prototypic murine coronavirus, mouse hepatitis virus. Limited proteolysis studies of the HCoV-NL63 S2 fusion core identify an {alpha}-helical domain composed of a trimer of the HR segments N57 and C42. The crystal structure of this complex reveals three C42 helices entwined in an oblique and antiparallel manner around a central triple-stranded coiled coil formed by three N57 helices. The overall geometry comprises distinctive high-affinity conformations of interacting cross-sectional layers of the six helices. As a result, this structure is unusually stable, with an apparent melting temperature of 78 {sup o}C in the presence of the denaturant guanidine hydrochloride at 5 M concentration. The extended HR regions may therefore be required to prime the group 1 S glycoproteins for their fusion-activating conformational changes during viral entry. Our results provide an initial basis for understanding an intriguing interplay between the presence or absence of proteolytic maturation among the coronavirus groups and the membrane fusion activity of their S glycoproteins. This study also suggests a potential strategy for the development of improved HCoV-NL63 fusion inhibitors.

  9. Coronavirus Infection and Diversity in Bats in the Australasian Region.

    PubMed

    Smith, C S; de Jong, C E; Meers, J; Henning, J; Wang, L- F; Field, H E

    2016-03-01

    Following the SARS outbreak, extensive surveillance was undertaken globally to detect and identify coronavirus diversity in bats. This study sought to identify the diversity and prevalence of coronaviruses in bats in the Australasian region. We identified four different genotypes of coronavirus, three of which (an alphacoronavirus and two betacoronaviruses) are potentially new species, having less than 90% nucleotide sequence identity with the most closely related described viruses. We did not detect any SARS-like betacoronaviruses, despite targeting rhinolophid bats, the putative natural host taxa. Our findings support the virus-host co-evolution hypothesis, with the detection of Miniopterus bat coronavirus HKU8 (previously reported in Miniopterus species in China, Hong Kong and Bulgaria) in Australian Miniopterus species. Similarly, we detected a novel betacoronavirus genotype from Pteropus alecto which is most closely related to Bat coronavirus HKU9 identified in other pteropodid bats in China, Kenya and the Philippines. We also detected possible cross-species transmission of bat coronaviruses, and the apparent enteric tropism of these viruses. Thus, our findings are consistent with a scenario wherein the current diversity and host specificity of coronaviruses reflects co-evolution with the occasional host shift. PMID:27048154

  10. Solution structure of RicC3, a 2S albumin storage protein from Ricinus communis.

    PubMed

    Pantoja-Uceda, David; Bruix, Marta; Giménez-Gallego, Guillermo; Rico, Manuel; Santoro, Jorge

    2003-12-01

    The three-dimensional structure in aqueous solution of recombinant (15)N labeled RicC3, a 2S albumin protein from the seeds of castor bean (Ricinus communis), has been determined by NMR methods. The computed structures were based on 1564 upper limit distance constraints derived from NOE cross-correlation intensities measured in the 2D-NOESY and 3D-HSQC-NOESY experiments, 70 phi torsion angle constraints obtained from (3)J(HNH)(alpha) couplings measured in the HNHA experiment, and 30 psi torsion angle constraints derived from (3)J(H)(alpha)(Ni+1) couplings measured in the HNHB experiment. The computed structures showed a RMSD radius of 0.64 A for the structural core. The resulting structure consists of five amphipatic helices arranged in a right-handed super helix, a folding motif first observed in nonspecific lipid transfer proteins. Different than the latter, RicC3 does have not an internal cavity, a fact that can be related to the exchange in the pairing of disulfide bridges in the segment.CXC. Previous attempts to determine high resolution structures of a 2S albumin protein by either X-ray crystallography or NMR methods failed because of the heterogeneity of the protein prepared from natural sources. Both 2S albumins and nonspecific lipid transfer proteins belong to the prolamine superfamily, some of whose members are food allergens. The solution structure for recombinant RicC3 determined here is a suitable representative structure for the broad family of seed 2S albumin proteins, which may help to establish meaningful relationships between structure and allergenicity. RicC3 is also the peptidic component of the immunomodulator Inmunoferon, a widely used pharmaceutical product, and its structure is expected to help understand its pharmaceutical activity. PMID:14636051

  11. βA3/A1-CRYSTALLIN: MORE THAN A LENS PROTEIN

    PubMed Central

    Zigler, J. Samuel; Sinha, Debasish

    2014-01-01

    Crystallins, the highly abundant proteins of the ocular lens, are essential determinants of the transparency and refractivity required for lens function. Initially thought to be lens-specific and to have evolved as lens proteins, it is now clear that crystallins were recruited to the lens from proteins that existed before lenses evolved. Crystallins are expressed outside of the lens and most have been shown to have cellular functions distinct from their roles as structural elements in the lens. For one major crystallin group, the β/γ-crystallin superfamily, no such functions have yet been established. We have explored possible functions for the polypeptides (βA3- and βA1-crystallins) encoded by Cryba1, one of the 6 β-crystallin genes, using a spontaneous rat mutant and genetically engineered mouse models. βA3- and βA1-crystallins are expressed in astrocytes and retinal pigment epithelial (RPE) cells. In both cell types, these proteins appear to be required for the proper acidification of the lysosomes. In RPE cells, elevated pH in the lysosomes is shown to impair the critical processes of phagocytosis and autophagy, leading to accumulation of undigested cargo in (auto) phagolysosomes. We postulate that this accumulation may cause pathological changes in the cells resembling some of those characteristic of age-related macular degeneration (AMD). Our studies also suggest an important regulatory function of βA3/A1-crystallin in astrocytes. We provide evidence that the cellular function of βA3/A1-crystallin involves its interaction with V-ATPase, the proton pump responsible for acidification of the endolysosomal system. PMID:25461968

  12. Reversal of the Progression of Fatal Coronavirus Infection in Cats by a Broad-Spectrum Coronavirus Protease Inhibitor

    PubMed Central

    Kim, Yunjeong; Liu, Hongwei; Galasiti Kankanamalage, Anushka C.; Weerasekara, Sahani; Hua, Duy H.; Groutas, William C.; Chang, Kyeong-Ok; Pedersen, Niels C.

    2016-01-01

    Coronaviruses infect animals and humans causing a wide range of diseases. The diversity of coronaviruses in many mammalian species is contributed by relatively high mutation and recombination rates during replication. This dynamic nature of coronaviruses may facilitate cross-species transmission and shifts in tissue or cell tropism in a host, resulting in substantial change in virulence. Feline enteric coronavirus (FECV) causes inapparent or mild enteritis in cats, but a highly fatal disease, called feline infectious peritonitis (FIP), can arise through mutation of FECV to FIP virus (FIPV). The pathogenesis of FIP is intimately associated with immune responses and involves depletion of T cells, features shared by some other coronaviruses like Severe Acute Respiratory Syndrome Coronavirus. The increasing risks of highly virulent coronavirus infections in humans or animals call for effective antiviral drugs, but no such measures are yet available. Previously, we have reported the inhibitors that target 3C-like protease (3CLpro) with broad-spectrum activity against important human and animal coronaviruses. Here, we evaluated the therapeutic efficacy of our 3CLpro inhibitor in laboratory cats with FIP. Experimental FIP is 100% fatal once certain clinical and laboratory signs become apparent. We found that antiviral treatment led to full recovery of cats when treatment was started at a stage of disease that would be otherwise fatal if left untreated. Antiviral treatment was associated with a rapid improvement in fever, ascites, lymphopenia and gross signs of illness and cats returned to normal health within 20 days or less of treatment. Significant reduction in viral titers was also observed in cats. These results indicate that continuous virus replication is required for progression of immune-mediated inflammatory disease of FIP. These findings may provide important insights into devising therapeutic strategies and selection of antiviral compounds for further

  13. Reversal of the Progression of Fatal Coronavirus Infection in Cats by a Broad-Spectrum Coronavirus Protease Inhibitor.

    PubMed

    Kim, Yunjeong; Liu, Hongwei; Galasiti Kankanamalage, Anushka C; Weerasekara, Sahani; Hua, Duy H; Groutas, William C; Chang, Kyeong-Ok; Pedersen, Niels C

    2016-03-01

    Coronaviruses infect animals and humans causing a wide range of diseases. The diversity of coronaviruses in many mammalian species is contributed by relatively high mutation and recombination rates during replication. This dynamic nature of coronaviruses may facilitate cross-species transmission and shifts in tissue or cell tropism in a host, resulting in substantial change in virulence. Feline enteric coronavirus (FECV) causes inapparent or mild enteritis in cats, but a highly fatal disease, called feline infectious peritonitis (FIP), can arise through mutation of FECV to FIP virus (FIPV). The pathogenesis of FIP is intimately associated with immune responses and involves depletion of T cells, features shared by some other coronaviruses like Severe Acute Respiratory Syndrome Coronavirus. The increasing risks of highly virulent coronavirus infections in humans or animals call for effective antiviral drugs, but no such measures are yet available. Previously, we have reported the inhibitors that target 3C-like protease (3CLpro) with broad-spectrum activity against important human and animal coronaviruses. Here, we evaluated the therapeutic efficacy of our 3CLpro inhibitor in laboratory cats with FIP. Experimental FIP is 100% fatal once certain clinical and laboratory signs become apparent. We found that antiviral treatment led to full recovery of cats when treatment was started at a stage of disease that would be otherwise fatal if left untreated. Antiviral treatment was associated with a rapid improvement in fever, ascites, lymphopenia and gross signs of illness and cats returned to normal health within 20 days or less of treatment. Significant reduction in viral titers was also observed in cats. These results indicate that continuous virus replication is required for progression of immune-mediated inflammatory disease of FIP. These findings may provide important insights into devising therapeutic strategies and selection of antiviral compounds for further

  14. Isolation and Characterization of a Novel Bat Coronavirus Closely Related to the Direct Progenitor of Severe Acute Respiratory Syndrome Coronavirus.

    PubMed

    Yang, Xing-Lou; Hu, Ben; Wang, Bo; Wang, Mei-Niang; Zhang, Qian; Zhang, Wei; Wu, Li-Jun; Ge, Xing-Yi; Zhang, Yun-Zhi; Daszak, Peter; Wang, Lin-Fa; Shi, Zheng-Li

    2016-03-01

    We report the isolation and characterization of a novel bat coronavirus which is much closer to the severe acute respiratory syndrome coronavirus (SARS-CoV) in genomic sequence than others previously reported, particularly in its S gene. Cell entry and susceptibility studies indicated that this virus can use ACE2 as a receptor and infect animal and human cell lines. Our results provide further evidence of the bat origin of the SARS-CoV and highlight the likelihood of future bat coronavirus emergence in humans. PMID:26719272

  15. The Evolutionary Processes of Canine Coronaviruses

    PubMed Central

    Pratelli, Annamaria

    2011-01-01

    Since the first identification of the virus in 1971, the disease caused by canine coronavirus (CCoV) has not been adequately investigated, and the role that the virus plays in canine enteric illness has not been well established. Only after the emergence in 2002 of SARS in human has new attention been focused on coronaviruses. As a consequence of the relatively high mutation frequency of RNA-positive stranded viruses, CCoV has evolved and, with the biomolecular techniques developed over the last two decades, new virus strains, serotypes, and subtypes have been identified in infected dogs. Considering the widespread nature of CCoV infections among dog populations, several studies have been carried out, focusing upon the epidemiological relevance of these viruses and underlining the need for further investigation into the biology of CCoVs and into the pathogenetic role of the infections. This paper reports the evolutionary processes of CCoVs with a note onto recent diagnostic methods. PMID:22315601

  16. Rapid inactivation of SARS-like coronaviruses.

    SciTech Connect

    Kapil, Sanjay; Oberst, R. D.; Bieker, Jill Marie; Tucker, Mark David; Souza, Caroline Ann; Williams, Cecelia Victoria

    2004-03-01

    Chemical disinfection and inactivation of viruses is largely understudied, but is very important especially in the case of highly infectious viruses. The purpose of this LDRD was to determine the efficacy of the Sandia National Laboratories developed decontamination formulations against Bovine Coronavirus (BCV) as a surrogate for the coronavirus that causes Severe Acute Respiratory Syndrome (SARS) in humans. The outbreak of SARS in late 2002 resulted from a highly infectious virus that was able to survive and remain infectious for extended periods. For this study, preliminary testing with Escherichia coli MS-2 (MS-2) and Escherichia coli T4 (T4) bacteriophages was conducted to develop virucidal methodology for verifying the inactivation after treatment with the test formulations following AOAC germicidal methodologies. After the determination of various experimental parameters (i.e. exposure, concentration) of the formulations, final testing was conducted on BCV. All experiments were conducted with various organic challenges (horse serum, bovine feces, compost) for results that more accurately represent field use condition. The MS-2 and T4 were slightly more resistant than BCV and required a 2 minute exposure while BCV was completely inactivated after a 1 minute exposure. These results were also consistent for the testing conducted in the presence of the various organic challenges indicating that the test formulations are highly effective for real world application.

  17. MERS coronavirus: data gaps for laboratory preparedness.

    PubMed

    de Sousa, Rita; Reusken, Chantal; Koopmans, Marion

    2014-01-01

    Since the emergence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in 2012, many questions remain on modes of transmission and sources of virus. In outbreak situations, especially with emerging organisms causing severe human disease, it is important to understand the full spectrum of disease, and shedding kinetics in relation to infectivity and the ability to transmit the microorganism. Laboratory response capacity during the early stages of an outbreak focuses on development of virological and immunological methods for patient diagnosis, for contact tracing, and for epidemiological studies into sources, modes of transmission, identification of risk groups, and animal reservoirs. However, optimal use of this core public health laboratory capacity requires a fundamental understanding of kinetics of viral shedding and antibody response, of assay validation and of interpretation of test outcomes. We reviewed available data from MERS-CoV case reports, and compared this with data on kinetics of shedding and immune response from published literature on other human coronaviruses (hCoVs). We identify and discuss important data gaps, and biases that limit the laboratory preparedness to this novel disease. Public health management will benefit from standardised reporting of methods used, details of test outcomes by sample type, sampling date, in relation to symptoms and risk factors, along with the currently reported demographic, clinical and epidemiological findings. PMID:24286807

  18. Rapid Identification of Emerging Pathogens: Coronavirus

    PubMed Central

    Hofstadler, Steven A.; Blyn, Lawrence B.; Eshoo, Mark W.; Hall, Thomas A.; Massire, Christian; Levene, Harold M.; Hannis, James C.; Harrell, Patina M.; Neuman, Benjamin; Buchmeier, Michael J.; Jiang, Yun; Ranken, Raymond; Drader, Jared J.; Samant, Vivek; Griffey, Richard H.; McNeil, John A.; Crooke, Stanley T.; Ecker, David J.

    2005-01-01

    We describe a new approach for infectious disease surveillance that facilitates rapid identification of known and emerging pathogens. The process uses broad-range polymerase chain reaction (PCR) to amplify nucleic acid targets from large groupings of organisms, electrospray ionization mass spectrometry for accurate mass measurements of PCR products, and base composition signature analysis to identify organisms in a sample. We demonstrate this principle by using 14 isolates of 9 diverse Coronavirus spp., including the severe acute respiratory syndrome–associated coronavirus (SARS-CoV). We show that this method could identify and distinguish between SARS and other known CoV, including the human CoV 229E and OC43, individually and in a mixture of all 3 human viruses. The sensitivity of detection, measured by using titered SARS-CoV spiked into human serum, was ≈1 PFU/mL. This approach, applicable to the surveillance of bacterial, viral, fungal, or protozoal pathogens, is capable of automated analysis of >900 PCR reactions per day. PMID:15757550

  19. GBF1- and ACBD3-Independent Recruitment of PI4KIIIβ to Replication Sites by Rhinovirus 3A Proteins

    PubMed Central

    Dorobantu, Cristina M.; Ford-Siltz, Lauren A.; Sittig, Simone P.; Lanke, Kjerstin H. W.; Belov, George A.; van der Schaar, Hilde M.

    2014-01-01

    PI4KIIIβ recruitment to Golgi membranes relies on GBF1/Arf and ACBD3. Enteroviruses such as poliovirus and coxsackievirus recruit PI4KIIIβ to their replication sites via their 3A proteins. Here, we show that human rhinovirus (HRV) 3A also recruited PI4KIIIβ to replication sites. Unlike other enterovirus 3A proteins, HRV 3A failed to bind GBF1. Although HRV 3A was previously shown to interact with ACBD3, our data suggest that PI4KIIIβ recruitment occurred independently of both GBF1 and ACBD3. PMID:25410869

  20. Pax-3, a novel murine DNA binding protein expressed during early neurogenesis.

    PubMed Central

    Goulding, M D; Chalepakis, G; Deutsch, U; Erselius, J R; Gruss, P

    1991-01-01

    We describe the isolation and characterization of Pax-3, a novel murine paired box gene expressed exclusively during embryogenesis. Pax-3 encodes a 479 amino acid protein with an Mr of 56 kd containing both a paired domain and a paired-type homeodomain. The Pax-3 protein is a DNA binding protein that specifically recognizes the e5 sequence present upstream of the Drosophila even-skipped gene. Pax-3 transcripts are first detected in 8.5 day mouse embryos where they are restricted to the dorsal part of the neuroepithelium and to the adjacent segmented dermomyotome. During early neurogenesis, Pax-3 expression is limited to mitotic cells in the ventricular zone of the developing spinal cord and to distinct regions in the hindbrain, midbrain and diencephalon. In 10-12 day embryos, expression of Pax-3 is also seen in neural crest cells of the developing spinal ganglia, the craniofacial mesectoderm and in limb mesenchyme of 10 and 11 day embryos. Images PMID:2022185

  1. Inhibition of endoplasmic reticulum-to-Golgi traffic by poliovirus protein 3A: genetic and ultrastructural analysis.

    PubMed Central

    Doedens, J R; Giddings, T H; Kirkegaard, K

    1997-01-01

    Poliovirus protein 3A, only 87 amino acids in length, is a potent inhibitor of protein secretion in mammalian cells, blocking anterograde protein traffic from the endoplasmic reticulum (ER) to the Golgi complex. The function of viral protein 3A in blocking protein secretion is extremely sensitive to mutations near the N terminus of the protein. Deletion of the first 10 amino acids or insertion of a single amino acid between amino acids 15 and 16, a mutation that causes a cold-sensitive defect in poliovirus RNA replication, abrogates the inhibition of protein secretion although wild-type amounts of the mutant proteins are expressed. Immunofluorescence light microscopy and immunoelectron microscopy demonstrate that 3A protein, expressed in the absence of other viral proteins, colocalizes with membranes derived from the ER. The precise topology of 3A with respect to ER membranes is not known, but it is likely to be associated with the cytosolic surface of the ER. Although the glycosylation of 3A in translation extracts has been reported, we show that tunicamycin, under conditions in which glycosylation of cellular proteins is inhibited, has no effect on poliovirus growth. Therefore, glycosylation of 3A plays no functional role in the viral replicative cycle. Electron microscopy reveals that the ER dilates dramatically in the presence of 3A protein. The absence of accumulated vesicles and the swelling of the ER-derived membranes argues that ER-to-Golgi traffic is inhibited at the step of vesicle formation or budding from the ER. PMID:9371562

  2. Interaction of foot-and-mouth disease virus non-structural protein 3A with host protein DCTN3 is important for viral virulence in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-structural protein 3A of foot-and-mouth disease virus (FMDV) is a partially conserved protein of 153 amino acids in most FMDVs examined to date. The role of 3A in virus growth and virulence within the natural host is not well understood. Using a yeast two-hybrid approach, we identified cellular ...

  3. SARS and MERS: recent insights into emerging coronaviruses.

    PubMed

    de Wit, Emmie; van Doremalen, Neeltje; Falzarano, Darryl; Munster, Vincent J

    2016-08-01

    The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 marked the second introduction of a highly pathogenic coronavirus into the human population in the twenty-first century. The continuing introductions of MERS-CoV from dromedary camels, the subsequent travel-related viral spread, the unprecedented nosocomial outbreaks and the high case-fatality rates highlight the need for prophylactic and therapeutic measures. Scientific advancements since the 2002-2003 severe acute respiratory syndrome coronavirus (SARS-CoV) pandemic allowed for rapid progress in our understanding of the epidemiology and pathogenesis of MERS-CoV and the development of therapeutics. In this Review, we detail our present understanding of the transmission and pathogenesis of SARS-CoV and MERS-CoV, and discuss the current state of development of measures to combat emerging coronaviruses. PMID:27344959

  4. Antiviral Drugs Specific for Coronaviruses in Preclinical Development

    PubMed Central

    Adedeji, Adeyemi O.; Sarafianos, Stefan G.

    2014-01-01

    Coronaviruses are positive stranded RNA viruses that cause respiratory, enteric and central nervous system diseases in many species, including humans. Until recently, the relatively low burden of disease in humans caused by few of these viruses impeded the development of coronavirus specific therapeutics. However, the emergence of severe acute respiratory syndrome coronavirus (SARS-CoV), and more recently, Middle East respiratory syndrome coronavirus (MERS-CoV), has impelled the development of such drugs. This review focuses on some newly identified SARS-CoV inhibitors, with known mechanisms of action and their potential to inhibit the novel MERS-CoV. The clinical development of optimized versions of such compounds could be beneficial for the treatment and control of SARS-CoV, the current MERS-CoV and other future SARS-like epidemics. PMID:24997250

  5. A decade after SARS: strategies for controlling emerging coronaviruses.

    PubMed

    Graham, Rachel L; Donaldson, Eric F; Baric, Ralph S

    2013-12-01

    Two novel coronaviruses have emerged in humans in the twenty-first century: severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), both of which cause acute respiratory distress syndrome (ARDS) and are associated with high mortality rates. There are no clinically approved vaccines or antiviral drugs available for either of these infections; thus, the development of effective therapeutic and preventive strategies that can be readily applied to new emergent strains is a research priority. In this Review, we describe the emergence and identification of novel human coronaviruses over the past 10 years, discuss their key biological features, including tropism and receptor use, and summarize approaches for developing broadly effective vaccines. PMID:24217413

  6. Tissue-specific Variation of Ube3a Protein Expression in Rodents and in a Mouse Model of Angelman Syndrome

    PubMed Central

    Gustin, Richard M.; Bichell, Terry Jo; Bubser, Michael; Daily, Jennifer; Filonova, Irina; Mrelashvili, Davit; Deutch, Ariel Y.; Colbran, Roger J.; Weeber, Edwin J.; Haas, Kevin F.

    2010-01-01

    Angelman syndrome (AS) is a neurogenetic disorder caused by loss of maternal UBE3A expression or mutation-induced dysfunction of its protein product, the E3 ubiquitin-protein ligase, UBE3A. In humans and rodents, UBE3A/Ube3a transcript is maternally imprinted in several brain regions, but the distribution of native UBE3A/Ube3a1 protein expression has not been comprehensively examined. To address this, we systematically evaluated Ube3a expression in the brain and peripheral tissues of wild-type (WT) and Ube3a maternal knockout mice (AS mice). Immunoblot and immunohistochemical analyses revealed a marked loss of Ube3a protein in hippocampus, hypothalamus, olfactory bulb, cerebral cortex, striatum, thalamus, midbrain, and cerebellum in AS mice relative to WT littermates. Also, Ube3a expression in heart and liver of AS mice showed greater than the predicted 50% reduction relative to WT mice. Co-localization studies showed Ube3a expression to be primarily neuronal in all brain regions and present in GABAergic interneurons as well as principal neurons. These findings suggest that neuronal function throughout the brain is compromised in AS. PMID:20423730

  7. Coronavirus species specificity: murine coronavirus binds to a mouse-specific epitope on its carcinoembryonic antigen-related receptor glycoprotein.

    PubMed Central

    Compton, S R; Stephensen, C B; Snyder, S W; Weismiller, D G; Holmes, K V

    1992-01-01

    Like most coronaviruses, the coronavirus mouse hepatitis virus (MHV) exhibits strong species specificity, causing natural infection only in mice. MHV-A59 virions use as a receptor a 110- to 120-kDa glycoprotein (MHVR) in the carcinoembryonic antigen (CEA) family of glycoproteins (G. S. Dveksler, M. N. Pensiero, C. B. Cardellichio, R. K. Williams, G. S. Jiang, K. V. Holmes, and C. W. Dieffenbach, J. Virol. 65:6881-6891, 1991; and R. K. Williams, G. S. Jiang, and K. V. Holmes, Proc. Natl. Acad. Sci. USA 88:5533-5536, 1991). The role of virus-receptor interactions in determining the species specificity of MHV-A59 was examined by comparing the binding of virus and antireceptor antibodies to cell lines and intestinal brush border membranes (BBM) from many species. Polyclonal antireceptor antiserum (anti-MHVR) raised by immunization of SJL/J mice with BALB/c BBM recognized MHVR specifically in immunoblots of BALB/c BBM but not in BBM from adult SJL/J mice that are resistant to infection with MHV-A59, indicating a major difference in epitopes between MHVR and its SJL/J homolog which does not bind MHV (7). Anti-MHVR bound to plasma membranes of MHV-susceptible murine cell lines but not to membranes of human, cat, dog, monkey, or hamster cell lines. Cell lines from these species were resistant to MHV-A59 infection, and only the murine cell lines tested were susceptible. Pretreatment of murine fibroblasts with anti-MHVR prevented binding of radiolabeled virions to murine cells and prevented virus infection. Solid-phase virus-binding assays and virus overlay protein blot assays showed that MHV-A59 virions bound to MHVR on intestinal BBM from MHV-susceptible mouse strains but not to proteins on intestinal BBM from humans, cats, dogs, pigs, cows, rabbits, rats, cotton rats, or chickens. In immunoblots of BBM from these species, both polyclonal and monoclonal antireceptor antibodies that block MHV-A59 infection of murine cells recognized only the murine CEA-related glycoprotein

  8. Phosphodiesterase 3A binds to 14-3-3 proteins in response to PMA-induced phosphorylation of Ser428

    PubMed Central

    Pozuelo Rubio, Mercedes; Campbell, David G.; Morrice, Nicholas A.; Mackintosh, Carol

    2005-01-01

    PDE3A (phosphodiesterase 3A) was identified as a phosphoprotein that co-immunoprecipitates with endogenous 14-3-3 proteins from HeLa cell extracts, and binds directly to 14-3-3 proteins in a phosphorylation-dependent manner. Among cellular stimuli tested, PMA promoted maximal binding of PDE3A to 14-3-3 proteins. While p42/p44 MAPK (mitogen-activated protein kinase), SAPK2 (stress-activated protein kinase 2)/p38 and PKC (protein kinase C) were all activated by PMA in HeLa cells, the PMA-induced binding of PDE3A to 14-3-3 proteins was inhibited by the non-specific PKC inhibitors Ro 318220 and H-7, but not by PD 184352, which inhibits MAPK activation, nor by SB 203580 and BIRB0796, which inhibit SAPK2 activation. Binding of PDE3A to 14-3-3 proteins was also blocked by the DNA replication inhibitors aphidicolin and mimosine, but the PDE3A–14-3-3 interaction was not cell-cycle-regulated. PDE3A isolated from cells was able to bind to 14-3-3 proteins after in vitro phosphorylation with PKC isoforms. Using MS/MS of IMAC (immobilized metal ion affinity chromatography)-enriched tryptic phosphopeptides and phosphospecific antibodies, at least five sites on PDE3A were found to be phosphorylated in vivo, of which Ser428 was selectively phosphorylated in response to PMA and dephosphorylated in cells treated with aphidicolin and mimosine. Phosphorylation of Ser428 therefore correlated with 14-3-3 binding to PDE3A. Ser312 of PDE3A was phosphorylated in an H-89-sensitive response to forskolin, indicative of phosphorylation by PKA (cAMP-dependent protein kinase), but phosphorylation at this site did not stimulate 14-3-3 binding. Thus 14-3-3 proteins can discriminate between sites in a region of multisite phosphorylation on PDE3A. An additional observation was that the cytoskeletal cross-linker protein plectin-1 coimmunoprecipitated with PDE3A independently of 14-3-3 binding. PMID:16153182

  9. Palmitoylation of SARS-CoV S protein is necessary for partitioning into detergent-resistant membranes and cell-cell fusion but not interaction with M protein

    SciTech Connect

    McBride, Corrin E.; Machamer, Carolyn E.

    2010-09-15

    Coronaviruses are enveloped RNA viruses that generally cause mild disease in humans. However, the recently emerged coronavirus that caused severe acute respiratory syndrome (SARS-CoV) is the most pathogenic human coronavirus discovered to date. The SARS-CoV spike (S) protein mediates virus entry by binding cellular receptors and inducing fusion between the viral envelope and the host cell membrane. Coronavirus S proteins are palmitoylated, which may affect function. Here, we created a non-palmitoylated SARS-CoV S protein by mutating all nine cytoplasmic cysteine residues. Palmitoylation of SARS-CoV S was required for partitioning into detergent-resistant membranes and for cell-cell fusion. Surprisingly, however, palmitoylation of S was not required for interaction with SARS-CoV M protein. This contrasts with the requirement for palmitoylation of mouse hepatitis virus S protein for interaction with M protein and may point to important differences in assembly and infectivity of these two coronaviruses.

  10. Mutations That Hamper Dimerization of Foot-and-Mouth Disease Virus 3A Protein Are Detrimental for Infectivity

    PubMed Central

    González-Magaldi, Mónica; Postigo, Raúl; de la Torre, Beatriz G.; Vieira, Yuri A.; Rodríguez-Pulido, Miguel; López-Viñas, Eduardo; Gómez-Puertas, Paulino; Andreu, David; Kremer, Leonor; Rosas, María F.

    2012-01-01

    Foot-and-mouth disease virus (FMDV) nonstructural protein 3A plays important roles in virus replication, virulence, and host range. In other picornaviruses, homodimerization of 3A has been shown to be relevant for its biological activity. In this work, FMDV 3A homodimerization was evidenced by an in situ protein fluorescent ligation assay. A molecular model of the FMDV 3A protein, derived from the nuclear magnetic resonance (NMR) structure of the poliovirus 3A protein, predicted a hydrophobic interface spanning residues 25 to 44 as the main determinant for 3A dimerization. Replacements L38E and L41E, involving charge acquisition at residues predicted to contribute to the hydrophobic interface, reduced the dimerization signal in the protein ligation assay and prevented the detection of dimer/multimer species in both transiently expressed 3A proteins and in synthetic peptides reproducing the N terminus of 3A. These replacements also led to production of infective viruses that replaced the acidic residues introduced (E) by nonpolar amino acids, indicating that preservation of the hydrophobic interface is essential for virus replication. Replacements that favored (Q44R) or impaired (Q44D) the polar interactions predicted between residues Q44 and D32 did not abolish dimer formation of transiently expressed 3A, indicating that these interactions are not critical for 3A dimerization. Nevertheless, while Q44R led to recovery of viruses that maintained the mutation, Q44D resulted in selection of infective viruses with substitution D44E with acidic charge but with structural features similar to those of the parental virus, suggesting that Q44 is involved in functions other than 3A dimerization. PMID:22787230

  11. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses.

    PubMed

    Su, Shuo; Wong, Gary; Shi, Weifeng; Liu, Jun; Lai, Alexander C K; Zhou, Jiyong; Liu, Wenjun; Bi, Yuhai; Gao, George F

    2016-06-01

    Human coronaviruses (HCoVs) were first described in the 1960s for patients with the common cold. Since then, more HCoVs have been discovered, including those that cause severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), two pathogens that, upon infection, can cause fatal respiratory disease in humans. It was recently discovered that dromedary camels in Saudi Arabia harbor three different HCoV species, including a dominant MERS HCoV lineage that was responsible for the outbreaks in the Middle East and South Korea during 2015. In this review we aim to compare and contrast the different HCoVs with regard to epidemiology and pathogenesis, in addition to the virus evolution and recombination events which have, on occasion, resulted in outbreaks amongst humans. PMID:27012512

  12. Characterization of pantropic canine coronavirus from Brazil.

    PubMed

    Pinto, Luciane D; Barros, Iracema N; Budaszewski, Renata F; Weber, Matheus N; Mata, Helena; Antunes, Jéssica R; Boabaid, Fabiana M; Wouters, Angélica T B; Driemeier, David; Brandão, Paulo E; Canal, Cláudio W

    2014-12-01

    Characterization of canine coronavirus (CCoV) strains currently in circulation is essential for understanding viral evolution. The aim of this study was to determine the presence of pantropic CCoV type IIa in tissue samples from five puppies that died in Southern Brazil as a result of severe gastroenteritis. Reverse-transcriptase PCR was used to generate amplicons for sequence analysis. Phylogenetic analysis of the CCoV-IIa strains indicated that they were similar to those found in other countries, suggesting a common ancestor of these Brazilian isolates. This is the first report of pantropic CCoV-II in puppies from Latin America and our findings highlight that CCoV should be included as a differential diagnosis when dogs present with clinical signs and lesions typically seen with canine parvovirus infection. PMID:25294661

  13. Update on Human Rhinovirus and Coronavirus Infections.

    PubMed

    Greenberg, Stephen B

    2016-08-01

    Human rhinovirus (HRV) and coronavirus (HCoV) infections are associated with both upper respiratory tract illness ("the common cold") and lower respiratory tract illness (pneumonia). New species of HRVs and HCoVs have been diagnosed in the past decade. More sensitive diagnostic tests such as reverse transcription-polymerase chain reaction have expanded our understanding of the role these viruses play in both immunocompetent and immunosuppressed hosts. Recent identification of severe acute respiratory syndrome and Middle East respiratory syndrome viruses causing serious respiratory illnesses has led to renewed efforts for vaccine development. The role these viruses play in patients with chronic lung disease such as asthma makes the search for antiviral agents of increased importance. PMID:27486736

  14. Mitochondrial ATAD3A combines with GRP78 to regulate the WASF3 metastasis-promoting protein.

    PubMed

    Teng, Y; Ren, X; Li, H; Shull, A; Kim, J; Cowell, J K

    2016-01-21

    AAA domain containing 3A (ATAD3A) is an integral mitochondrial membrane protein with unknown function, although we now show that high-level expression is associated with poor survival in breast cancer patients. Using a mass spectrometry approach we have demonstrated that ATAD3A interacts with the WASF3 metastasis-promoting protein. Knockdown of ATAD3A leads to decreased WASF3 protein levels in breast and colon cancer cells. Silencing ATAD3A also results in loss of both cell anchorage-independent growth and invasion and suppression of tumor growth and metastasis in vivo using immuno-compromised mice. HSP70 is responsible for stabilizing WASF3 in the cytoplasm, but inactivation of HSP70 does not lead to the loss of WASF3 stability at the mitochondrial membrane, where presumably it is protected through its interaction with ATAD3A. In response to endoplasmic reticulum (ER) stress, increases in the GRP78 protein level leads to increased WASF3 protein levels. We also show that ATAD3A was present in a WASF3-GRP78 complex, and suppression of GRP78 led to destabilization of WASF3 at the mitochondrial membrane, which was ATAD3A dependent. Furthermore, ATAD3A-mediated suppression of CDH1/E-cadherin occurs through its regulation of GRP78-mediated WASF3 stability. Proteolysis experiments using isolated mitochondria demonstrates the presence of the N-terminal end of WASF3 within the mitochondria, which is the interaction site with the N-terminal end of ATAD3A. It appears, therefore, that stabilization of WASF3 function occurs through its interaction with ATAD3A and GRP78, which may provide a bridge between the ER and mitochondria, allowing communication between the two organelles. These findings also suggest that pharmacologic inhibition of ATAD3A could be an effective therapeutic strategy to treat human cancer. PMID:25823022

  15. A Three-Stemmed mRNA Pseudoknot in the SARS Coronavirus Frameshift Signal

    PubMed Central

    2005-01-01

    A wide range of RNA viruses use programmed −1 ribosomal frameshifting for the production of viral fusion proteins. Inspection of the overlap regions between ORF1a and ORF1b of the SARS-CoV genome revealed that, similar to all coronaviruses, a programmed −1 ribosomal frameshift could be used by the virus to produce a fusion protein. Computational analyses of the frameshift signal predicted the presence of an mRNA pseudoknot containing three double-stranded RNA stem structures rather than two. Phylogenetic analyses showed the conservation of potential three-stemmed pseudoknots in the frameshift signals of all other coronaviruses in the GenBank database. Though the presence of the three-stemmed structure is supported by nuclease mapping and two-dimensional nuclear magnetic resonance studies, our findings suggest that interactions between the stem structures may result in local distortions in the A-form RNA. These distortions are particularly evident in the vicinity of predicted A-bulges in stems 2 and 3. In vitro and in vivo frameshifting assays showed that the SARS-CoV frameshift signal is functionally similar to other viral frameshift signals: it promotes efficient frameshifting in all of the standard assay systems, and it is sensitive to a drug and a genetic mutation that are known to affect frameshifting efficiency of a yeast virus. Mutagenesis studies reveal that both the specific sequences and structures of stems 2 and 3 are important for efficient frameshifting. We have identified a new RNA structural motif that is capable of promoting efficient programmed ribosomal frameshifting. The high degree of conservation of three-stemmed mRNA pseudoknot structures among the coronaviruses suggests that this presents a novel target for antiviral therapeutics. PMID:15884978

  16. Isolation of avian infectious bronchitis coronavirus from domestic peafowl (Pavo cristatus) and teal (Anas).

    PubMed

    Liu, Shengwang; Chen, Jianfei; Chen, Jinding; Kong, Xiangang; Shao, Yuhao; Han, Zongxi; Feng, Li; Cai, Xuehui; Gu, Shoulin; Liu, Ming

    2005-03-01

    Coronavirus-like viruses, designated peafowl/China/LKQ3/2003 (pf/CH/LKQ3/03) and teal/China/LDT3/2003 (tl/CH/LDT3/03), were isolated from a peafowl and a teal during virological surveillance in Guangdong province, China. Partial genomic sequence analysis showed that these isolates had the S-3-M-5-N gene order that is typical of avian coronaviruses. The spike, membrane and nucleocapsid protein genes of pf/CH/LKQ3/03 had >99 % identity to those of the avian infectious bronchitis coronavirus H120 vaccine strain (Massachusetts serotype) and other Massachusetts serotype isolates. Furthermore, when pf/CH/LKQ3/03 was inoculated experimentally into chickens (specific-pathogen-free), no disease signs were apparent. tl/CH/LDT3/03 had a spike protein gene with 95 % identity to that of a Chinese infectious bronchitis virus (IBV) isolate, although more extensive sequencing revealed the possibility that this strain may have undergone recombination. When inoculated into chickens, tl/CH/LDT3/03 resulted in the death of birds from nephritis. Taken together, this information suggests that pf/CH/LKQ3/03 might be a revertant, attenuated vaccine IBV strain, whereas tl/CH/LDT3/03 is a nephropathogenic field IBV strain, generated through recombination. The replication and non-pathogenic nature of IBV in domestic peafowl and teal under field conditions raises questions as to the role of these hosts as carriers of IBV and the potential that they may have to transmit virus to susceptible chicken populations. PMID:15722532

  17. Downregulation of Mouse Hepatic CYP3A Protein by 3-Methylcholanthrene Does Not Require Cytochrome P450-Dependent Metabolism

    PubMed Central

    Lee, Chunja; Ding, Xinxin

    2013-01-01

    The aryl hydrocarbon receptor (AHR)–dependent induction of cytochromes P450 (P450) such as CYP1A1 by 3-methylcholanthrene (MC) and related polycyclic aromatic hydrocarbons is well characterized. We reported previously that MC treatment triggers a pronounced downregulation, particularly at the protein level, of mouse hepatic Cyp3a11, a counterpart of the key human drug-metabolizing enzyme CYP3A4. To determine whether this effect of MC requires hepatic microsomal P450 activity, we studied liver Cpr-null (LCN) mice with hepatocyte-specific conditional deletion of the NADPH-cytochrome P450 oxidoreductase gene. In vehicle-treated animals, basal levels of CYP3A11 mRNA and CYP3A protein immunoreactivity were elevated by approximately 9-fold in LCN mice compared with wild-type (WT) mice, whereas CYP3A catalytic activity was profoundly compromised in LCN mice. MC treatment caused suppression of CYP3A11 mRNA, CYP3A protein immunoreactivity, and CYP3A catalytic activity in WT mice, and the MC effects at the mRNA and protein levels were maintained in LCN mice. Flavin-containing monooxygenase-3 (Fmo3) induction by MC was suggested previously to occur via an AHR-dependent mechanism requiring conversion of the parent compound to DNA-damaging reactive metabolites; however, hepatic FMO3 mRNA levels were dramatically increased by MC in both WT and LCN mice. MC did not function as a mechanism-based inactivator of CYP3A enzymes in hepatic microsomes prepared from untreated WT mice, under conditions in which 1-aminobenzotriazole caused marked NADPH-dependent loss of total P450 content and CYP3A catalytic activity. These results indicate that MC downregulates mouse hepatic CYP3A protein via a pretranslational mechanism that does not require hepatic microsomal P450-dependent activity. PMID:23846873

  18. Mitochondrial ATAD3A combines with GRP78 to regulate the WASF3 metastasis-promoting protein

    PubMed Central

    Teng, Yong; Ren, Xiaoou; Li, Honglin; Shull, Austin; Kim, Jaejik; Cowell, John K

    2015-01-01

    ATAD3A is an integral mitochondrial membrane protein with unknown function, although we now show that high-level expression is associated with poor survival in breast cancer patients. Using a mass spectrometry approach we have demonstrated that ATAD3A interacts with the WASF3 metastasis promoting protein. Knockdown of ATAD3A leads to decreased WASF3 protein levels in breast and colon cancer cells. Silencing ATAD3A also results in loss of both cell anchorage-independent growth and invasion and suppression of tumor growth and metastasis in vivo using immuno-compromised mice. HSP70 is responsible for stabilizing WASF3 in the cytoplasm, but inactivation of HSP70 does not lead to loss of WASF3 stability at the mitochondrial membrane, where presumably it is protected through its interaction with ATAD3A. In response to endoplasmic reticulum stress, increases in the GRP78 protein level leads to increased WASF3 protein levels. We also show that ATAD3A was present in a WASF3-GRP78 complex and suppression of GRP78 led to destabilization of WASF3 at the mitochondrial membrane, which was ATAD3A dependent. Furthermore, ATAD3A-mediated suppression of CDH1/E-cadherin occurs through its regulation of GRP78-mediated WASF3 stability. Proteolysis experiments using isolated mitochondria demonstrates the presence of the N-terminal end of WASF3 within the mitochondria which is the interaction site with the N-terminal end of ATAD3A. It appears, therefore, that stabilization of WASF3 function occurs through its interaction with ATAD3A and GRP78, which may provide a bridge between the endoplasmic reticulum and mitochondria, allowing communication between the two organelles. These findings also suggest that pharmacologic inhibition of ATAD3A could be an effective therapeutic strategy to treat human cancer. PMID:25823022

  19. Cellular HIV-1 Inhibition by Truncated Old World Primate APOBEC3A Proteins Lacking a Complete Deaminase Domain

    PubMed Central

    Katuwal, Miki; Wang, Yaqiong; Schmitt, Kimberly; Guo, Kejun; Halemano, Kalani; Santiago, Mario L.; Stephens, Edward B.

    2014-01-01

    The APOBEC3 (A3) deaminases are retrovirus restriction factors that were proposed as inhibitory components of HIV-1 gene therapy vectors. However, A3 mutational activity may induce undesired genomic damage and enable HIV-1 to evade drugs and immune responses. Here, we show that A3A protein from Colobus guereza (colA3A) can restrict HIV-1 replication in producer cells in a deaminase-independent manner without inducing DNA damage. Neither HIV-1 reverse transcription nor integration were significantly affected by colA3A, but capsid protein synthesis was inhibited. The determinants for colA3A restriction mapped to the N-terminal region. These properties extend to A3A from mandrills and De Brazza’s monkeys. Surprisingly, truncated colA3A proteins expressing only the N-terminal 100 amino acids effectively exclude critical catalytic regions but retained potent cellular restriction activity. These highlight a unique mechanism of cellular HIV-1 restriction by several Old World monkey A3A proteins that may be exploited for functional HIV-1 cure strategies. PMID:25262471

  20. Non-structural protein NS3/NS3a is required for propagation of bluetongue virus in Culicoides sonorensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Bluetongue virus (BTV) causes non-contagious haemorrhagic disease in ruminants and is transmitted by Culicoides spp. biting midges. BTV encodes four non-structural proteins of which NS3/NS3a is functional in virus release. NS3/NS3a is not essential for in vitro virus replication. However...

  1. Mechanisms involved in the protection of UV-induced protein inactivation by the corneal crystallin ALDH3A1.

    PubMed

    Estey, Tia; Cantore, Miriam; Weston, Philip A; Carpenter, John F; Petrash, J Mark; Vasiliou, Vasilis

    2007-02-16

    Various lines of evidence have shown that ALDH3A1 (aldehyde dehydrogenase 3A1) plays a critical and multifaceted role in protecting the cornea from UV-induced oxidative stress. ALDH3A1 is a corneal crystallin, which is defined as a protein recruited into the cornea for structural purposes without losing its primary function (i.e. metabolism). Although the primary role of ALDH3A1 in the metabolism of toxic aldehydes has been clearly demonstrated, including the detoxification of aldehydes produced during UV-induced lipid peroxidation, the structural role of ALDH3A1 in the cornea remains elusive. We therefore examined the potential contribution of ALDH3A1 in maintaining the optical integrity of the cornea by suppressing the aggregation and/or inactivation of other proteins through chaperone-like activity and other protective mechanisms. We found that ALDH3A1 underwent a structural transition near physiological temperatures to form a partially unfolded conformation that is suggestive of chaperone activity. Although this structural transition alone did not correlate with any protection, ALDH3A1 substantially reduced the inactivation of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal and malondialdehyde when co-incubated with NADP(+), reinforcing the importance of the metabolic function of this corneal enzyme in the detoxification of toxic aldehydes. A large excess of ALDH3A1 also protected glucose-6-phosphate dehydrogenase from inactivation because of direct exposure to UVB light, which suggests that ALDH3A1 may shield other proteins from damaging UV rays. Collectively, these data demonstrate that ALDH3A1 can reduce protein inactivation and/or aggregation not only by detoxification of reactive aldehydes but also by directly absorbing UV energy. This study provides for the first time mechanistic evidence supporting the structural role of the corneal crystallin ALDH3A1 as a UV-absorbing constituent of the cornea. PMID:17158879

  2. Angelman Syndrome Protein Ube3a Regulates Synaptic Growth and Endocytosis by Inhibiting BMP Signaling in Drosophila

    PubMed Central

    Kaur, Kuldeep; Zhu, Yong-chuan; Zhao, Hui; Wang, Qifu; Jin, Shan; Zhao, Guoli; Xiong, Zhi-Qi; Zhang, Yong Q.

    2016-01-01

    Altered expression of the E3 ubiquitin ligase UBE3A, which is involved in protein degradation through the proteasome-mediated pathway, is associated with neurodevelopmental and behavioral defects observed in Angelman syndrome (AS) and autism. However, little is known about the neuronal function of UBE3A and the pathogenesis of UBE3A-associated disorders. To understand the in vivo function of UBE3A in the nervous system, we generated multiple mutations of ube3a, the Drosophila ortholog of UBE3A. We found a significantly increased number of total boutons and satellite boutons in conjunction with compromised endocytosis in the neuromuscular junctions (NMJs) of ube3a mutants compared to the wild type. Genetic and biochemical analysis showed upregulation of bone morphogenetic protein (BMP) signaling in the nervous system of ube3a mutants. An immunochemical study revealed a specific increase in the protein level of Thickveins (Tkv), a type I BMP receptor, but not other BMP receptors Wishful thinking (Wit) and Saxophone (Sax), in ube3a mutants. Ube3a was associated with and specifically ubiquitinated lysine 227 within the cytoplasmic tail of Tkv, and promoted its proteasomal degradation in Schneider 2 cells. Negative regulation of Tkv by Ube3a was conserved in mammalian cells. These results reveal a critical role for Ube3a in regulating NMJ synapse development by repressing BMP signaling. This study sheds new light onto the neuronal functions of UBE3A and provides novel perspectives for understanding the pathogenesis of UBE3A-associated disorders. PMID:27232889

  3. Angelman Syndrome Protein Ube3a Regulates Synaptic Growth and Endocytosis by Inhibiting BMP Signaling in Drosophila.

    PubMed

    Li, Wenhua; Yao, Aiyu; Zhi, Hui; Kaur, Kuldeep; Zhu, Yong-Chuan; Jia, Mingyue; Zhao, Hui; Wang, Qifu; Jin, Shan; Zhao, Guoli; Xiong, Zhi-Qi; Zhang, Yong Q

    2016-05-01

    Altered expression of the E3 ubiquitin ligase UBE3A, which is involved in protein degradation through the proteasome-mediated pathway, is associated with neurodevelopmental and behavioral defects observed in Angelman syndrome (AS) and autism. However, little is known about the neuronal function of UBE3A and the pathogenesis of UBE3A-associated disorders. To understand the in vivo function of UBE3A in the nervous system, we generated multiple mutations of ube3a, the Drosophila ortholog of UBE3A. We found a significantly increased number of total boutons and satellite boutons in conjunction with compromised endocytosis in the neuromuscular junctions (NMJs) of ube3a mutants compared to the wild type. Genetic and biochemical analysis showed upregulation of bone morphogenetic protein (BMP) signaling in the nervous system of ube3a mutants. An immunochemical study revealed a specific increase in the protein level of Thickveins (Tkv), a type I BMP receptor, but not other BMP receptors Wishful thinking (Wit) and Saxophone (Sax), in ube3a mutants. Ube3a was associated with and specifically ubiquitinated lysine 227 within the cytoplasmic tail of Tkv, and promoted its proteasomal degradation in Schneider 2 cells. Negative regulation of Tkv by Ube3a was conserved in mammalian cells. These results reveal a critical role for Ube3a in regulating NMJ synapse development by repressing BMP signaling. This study sheds new light onto the neuronal functions of UBE3A and provides novel perspectives for understanding the pathogenesis of UBE3A-associated disorders. PMID:27232889

  4. LYR3, a high-affinity LCO-binding protein of Medicago truncatula, interacts with LYK3, a key symbiotic receptor.

    PubMed

    Fliegmann, Judith; Jauneau, Alain; Pichereaux, Carole; Rosenberg, Charles; Gasciolli, Virginie; Timmers, Antonius C J; Burlet-Schiltz, Odile; Cullimore, Julie; Bono, Jean-Jacques

    2016-05-01

    LYR3, LYK3, and NFP are lysin motif-containing receptor-like kinases (LysM-RLKs) from Medicago truncatula, involved in perception of symbiotic lipo-chitooligosaccharide (LCO) signals. Here, we show that LYR3, a high-affinity LCO-binding protein, physically interacts with LYK3, a key player regulating symbiotic interactions. In vitro, LYR3 is phosphorylated by the active kinase domain of LYK3. Fluorescence lifetime imaging/Förster resonance energy transfer (FLIM/FRET) experiments in tobacco protoplasts show that the interaction between LYR3 and LYK3 at the plasma membrane is disrupted or inhibited by addition of LCOs. Moreover, LYR3 attenuates the cell death response, provoked by coexpression of NFP and LYK3 in tobacco leaves. PMID:27129432

  5. Isolation and propagation of coronaviruses in embryonated eggs.

    PubMed

    Guy, James S

    2015-01-01

    The embryonated egg is a complex structure comprised of an embryo and its supporting membranes (chorioallantoic, amniotic, yolk). The developing embryo and its membranes provide the diversity of cell types that are needed for successful replication of a wide variety of different viruses. Within the family Coronaviridae the embryonated egg has been used as a host system primarily for two avian coronaviruses within the genus Gammacoronavirus, infectious bronchitis virus (IBV) and turkey coronavirus (TCoV). The embryonated egg also has been shown to be suitable for isolation and propagation of pheasant coronavirus, a proposed member of the Gammacoronavirus genus. IBV and pheasant coronavirus replicate well in the embryonated chicken egg, regardless of inoculation route; however, the allantoic route is favored as these viruses replicate well in epithelium lining the chorioallantoic membrane, with high virus titers found in these membranes and associated allantoic fluids. TCoV replicates only in epithelium lining the embryo intestines and bursa of Fabricius, thus amniotic inoculation is required for isolation and propagation of this virus. Embryonated eggs also provide a potential host system for detection and characterization of other, novel coronaviruses. PMID:25720472

  6. Coronaviruses: emerging and re-emerging pathogens in humans and animals.

    PubMed

    Lau, Susanna K P; Chan, Jasper F W

    2015-01-01

    The severe acute respiratory syndrome coronavirus (SARS-CoV) and recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) epidemics have proven the ability of coronaviruses to cross species barrier and emerge rapidly in humans. Other coronaviruses such as porcine epidemic diarrhea virus (PEDV) are also known to cause major disease epidemics in animals with huge economic loss. This special issue in Virology Journal aims to highlight the advances and key discoveries in the animal origin, viral evolution, epidemiology, diagnostics and pathogenesis of the emerging and re-emerging coronaviruses in both humans and animals. PMID:26690088

  7. Coronavirus genotype diversity and prevalence of infection in wild carnivores in the Serengeti National Park, Tanzania.

    PubMed

    Goller, Katja V; Fickel, Jörns; Hofer, Heribert; Beier, Sandra; East, Marion L

    2013-04-01

    Knowledge of coronaviruses in wild carnivores is limited. This report describes coronavirus genetic diversity, species specificity and infection prevalence in three wild African carnivores. Coronavirus RNA was recovered from fresh feces from spotted hyena and silver-backed jackal, but not bat-eared fox. Analysis of sequences of membrane (M) and spike (S) gene fragments revealed strains in the genus Alphacoronavirus, including three distinct strains in hyenas and one distinct strain in a jackal. Coronavirus RNA prevalence was higher in feces from younger (17 %) than older (3 %) hyenas, highlighting the importance of young animals for coronavirus transmission in wild carnivores. PMID:23212740

  8. Inferring the hosts of coronavirus using dual statistical models based on nucleotide composition.

    PubMed

    Tang, Qin; Song, Yulong; Shi, Mijuan; Cheng, Yingyin; Zhang, Wanting; Xia, Xiao-Qin

    2015-01-01

    Many coronaviruses are capable of interspecies transmission. Some of them have caused worldwide panic as emerging human pathogens in recent years, e.g., severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). In order to assess their threat to humans, we explored to infer the potential hosts of coronaviruses using a dual-model approach based on nineteen parameters computed from spike genes of coronaviruses. Both the support vector machine (SVM) model and the Mahalanobis distance (MD) discriminant model achieved high accuracies in leave-one-out cross-validation of training data consisting of 730 representative coronaviruses (99.86% and 98.08% respectively). Predictions on 47 additional coronaviruses precisely conformed to conclusions or speculations by other researchers. Our approach is implemented as a web server that can be accessed at http://bioinfo.ihb.ac.cn/seq2hosts. PMID:26607834

  9. Inferring the hosts of coronavirus using dual statistical models based on nucleotide composition

    PubMed Central

    Tang, Qin; Shi, Mijuan; Cheng, Yingyin; Zhang, Wanting; Xia, Xiao-Qin

    2015-01-01

    Many coronaviruses are capable of interspecies transmission. Some of them have caused worldwide panic as emerging human pathogens in recent years, e.g., severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). In order to assess their threat to humans, we explored to infer the potential hosts of coronaviruses using a dual-model approach based on nineteen parameters computed from spike genes of coronaviruses. Both the support vector machine (SVM) model and the Mahalanobis distance (MD) discriminant model achieved high accuracies in leave-one-out cross-validation of training data consisting of 730 representative coronaviruses (99.86% and 98.08% respectively). Predictions on 47 additional coronaviruses precisely conformed to conclusions or speculations by other researchers. Our approach is implemented as a web server that can be accessed at http://bioinfo.ihb.ac.cn/seq2hosts. PMID:26607834

  10. Identification of cellular proteome using two-dimensional difference gel electrophoresis in ST cells infected with transmissible gastroenteritis coronavirus

    PubMed Central

    2013-01-01

    Background Transmissible gastroenteritis coronavirus (TGEV) is an enteropathogenic coronavirus that causes diarrhea in pigs, which is correlated with high morbidity and mortality in suckling piglets. Information remains limited about the comparative protein expression of host cells in response to TGEV infection. In this study, cellular protein response to TGEV infection in swine testes (ST) cells was analyzed, using the proteomic method of two-dimensional difference gel electrophoresis (2D DIGE) coupled with MALDI-TOF-TOF/MS identification. Results 33 differentially expressed protein spots, of which 23 were up-regulated and 10 were down-regulated were identified. All the protein spots were successfully identified. The identified proteins were involved in the regulation of essential processes such as cellular structure and integrity, RNA processing, protein biosynthesis and modification, vesicle transport, signal transduction, and the mitochondrial pathway. Western blot analysis was used to validate the changes of alpha tubulin, keratin 19, and prohibitin during TGEV infection. Conclusions To our knowledge, we have performed the first analysis of the proteomic changes in host cell during TGEV infection. 17 altered cellular proteins that differentially expressed in TGEV infection were identified. The present study provides protein-related information that should be useful for understanding the host cell response to TGEV infection and the underlying mechanism of TGEV replication and pathogenicity. PMID:23855489

  11. [DREAM/Calsenilin/KChIP3: a new multifunctional protein in nervous system].

    PubMed

    Zhang, Ying; Wang, Yun

    2005-07-01

    A newly found transcription factor-DREAM can bind specifically with downstream regulatory element of genes, such as PPD, Hrk and c-Fos, and repress gene expression. It represents the first known Ca2+ binding protein to function as a DNA-binding transcription regulator. This provides a new mechanism of Ca2+ dependent regulation of gene expression in addition to protein kinase/phosphatase signaling pathway. In fact, DREAM, calsenilin and KChIP3, which are identified by different laboratories, are the same protein. So DREAM is a multifunctional protein, including PS interacting protein, Kv4 regulatory protein and transcription factor. The distribution, function and regulation of DREAM, as well as relationship between DREAM and pain, are reviewed in the present article. PMID:16270816

  12. The three-dimensional structure of the seed storage protein phaseolin at 3 A resolution.

    PubMed Central

    Lawrence, M C; Suzuki, E; Varghese, J N; Davis, P C; Van Donkelaar, A; Tulloch, P A; Colman, P M

    1990-01-01

    The polypeptides of the trimeric seed storage protein phaseolin comprise two structurally similar units each made up of a beta-barrel and an alpha-helical domain. The beta-barrel has the 'jelly-roll' folding topology of the viral coat proteins and the alpha-helical domain shows structural similarity to the helix-turn-helix motif found in certain DNA-binding proteins. PMID:2295315

  13. HCV 3a Core Protein Increases Lipid Droplet Cholesteryl Ester Content via a Mechanism Dependent on Sphingolipid Biosynthesis

    PubMed Central

    Alfonso-Garcia, Alba; Branche, Emilie; Conzelmann, Stéphanie; Parisot, Clotilde; Potma, Eric O.; Riezman, Howard; Negro, Francesco

    2014-01-01

    Hepatitis C virus (HCV) infected patients often develop steatosis and the HCV core protein alone can induce this phenomenon. To gain new insights into the pathways leading to steatosis, we performed lipidomic profiling of HCV core protein expressing-Huh-7 cells and also assessed the lipid profile of purified lipid droplets isolated from HCV 3a core expressing cells. Cholesteryl esters, ceramides and glycosylceramides, but not triglycerides, increased specifically in cells expressing the steatogenic HCV 3a core protein. Accordingly, inhibitors of cholesteryl ester biosynthesis such as statins and acyl-CoA cholesterol acyl transferase inhibitors prevented the increase of cholesteryl ester production and the formation of large lipid droplets in HCV core 3a-expressing cells. Furthermore, inhibition of de novo sphingolipid biosynthesis by myriocin - but not of glycosphingolipid biosynthesis by miglustat - affected both lipid droplet size and cholesteryl ester level. The lipid profile of purified lipid droplets, isolated from HCV 3a core-expressing cells, confirmed the particular increase of cholesteryl ester. Thus, both sphingolipid and cholesteryl ester biosynthesis are affected by the steatogenic core protein of HCV genotype 3a. These results may explain the peculiar lipid profile of HCV-infected patients with steatosis. PMID:25522003

  14. Highly diversified coronaviruses in neotropical bats.

    PubMed

    Corman, Victor Max; Rasche, Andrea; Diallo, Thierno Diawo; Cottontail, Veronika M; Stöcker, Andreas; Souza, Breno Frederico de Carvalho Dominguez; Corrêa, Jefferson Ivan; Carneiro, Aroldo José Borges; Franke, Carlos Roberto; Nagy, Martina; Metz, Markus; Knörnschild, Mirjam; Kalko, Elisabeth K V; Ghanem, Simon J; Morales, Karen D Sibaja; Salsamendi, Egoitz; Spínola, Manuel; Herrler, Georg; Voigt, Christian C; Tschapka, Marco; Drosten, Christian; Drexler, Jan Felix

    2013-09-01

    Bats host a broad diversity of coronaviruses (CoVs), including close relatives of human pathogens. There is only limited data on neotropical bat CoVs. We analysed faecal, blood and intestine specimens from 1562 bats sampled in Costa Rica, Panama, Ecuador and Brazil for CoVs by broad-range PCR. CoV RNA was detected in 50 bats representing nine different species, both frugivorous and insectivorous. These bat CoVs were unrelated to known human or animal pathogens, indicating an absence of recent zoonotic spill-over events. Based on RNA-dependent RNA polymerase (RdRp)-based grouping units (RGUs) as a surrogate for CoV species identification, the 50 viruses represented five different alphacoronavirus RGUs and two betacoronavirus RGUs. Closely related alphacoronaviruses were detected in Carollia perspicillata and C. brevicauda across a geographical distance exceeding 5600 km. Our study expands the knowledge on CoV diversity in neotropical bats and emphasizes the association of distinct CoVs and bat host genera. PMID:23761408

  15. Possible SARS Coronavirus Transmission during Cardiopulmonary Resuscitation

    PubMed Central

    Loutfy, Mona; McDonald, L. Clifford; Martinez, Kenneth F.; Ofner, Mariana; Wong, Tom; Wallington, Tamara; Gold, Wayne L.; Mederski, Barbara; Green, Karen; Low, Donald E.

    2004-01-01

    Infection of healthcare workers with the severe acute respiratory syndrome–associated coronavirus (SARS-CoV) is thought to occur primarily by either contact or large respiratory droplet transmission. However, infrequent healthcare worker infections occurred despite the use of contact and droplet precautions, particularly during certain aerosol-generating medical procedures. We investigated a possible cluster of SARS-CoV infections in healthcare workers who used contact and droplet precautions during attempted cardiopulmonary resuscitation of a SARS patient. Unlike previously reported instances of transmission during aerosol-generating procedures, the index case-patient was unresponsive, and the intubation procedure was performed quickly and without difficulty. However, before intubation, the patient was ventilated with a bag-valve-mask that may have contributed to aerosolization of SARS-CoV. On the basis of the results of this investigation and previous reports of SARS transmission during aerosol-generating procedures, a systematic approach to the problem is outlined, including the use of the following: 1) administrative controls, 2) environmental engineering controls, 3) personal protective equipment, and 4) quality control. PMID:15030699

  16. Coronaviruses - drug discovery and therapeutic options.

    PubMed

    Zumla, Alimuddin; Chan, Jasper F W; Azhar, Esam I; Hui, David S C; Yuen, Kwok-Yung

    2016-05-01

    In humans, infections with the human coronavirus (HCoV) strains HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-HKU1 usually result in mild, self-limiting upper respiratory tract infections, such as the common cold. By contrast, the CoVs responsible for severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which were discovered in Hong Kong, China, in 2003, and in Saudi Arabia in 2012, respectively, have received global attention over the past 12 years owing to their ability to cause community and health-care-associated outbreaks of severe infections in human populations. These two viruses pose major challenges to clinical management because there are no specific antiviral drugs available. In this Review, we summarize the epidemiology, virology, clinical features and current treatment strategies of SARS and MERS, and discuss the discovery and development of new virus-based and host-based therapeutic options for CoV infections. PMID:26868298

  17. Proteomic analysis in pterygium; upregulated protein expression of ALDH3A1, PDIA3, and PRDX2

    PubMed Central

    Kim, Sun Woong; Lee, Jonghoon; Lee, Boram

    2014-01-01

    Purpose To identify differentially expressed proteins in the pterygium compared to healthy conjunctiva using a proteomic analysis. Methods Pterygial and healthy conjunctival tissues were obtained from 24 patients undergoing pterygium excision. Total proteins of the pterygia and healthy conjunctiva were analyzed with one-dimensional electrophoresis, and protein bands of interest were excised and subjected to liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-MS/MS) using Thermo’s Finnigan ProteomeX workstation LTQ linear ion trap MS/MS. Using bioinformatics, differentially expressed proteins were classified, and three proteins closely involved in the response to oxidative stress were selected for further validation. Differential expression of these proteins was confirmed with western blot and immunohistochemistry. Results A web-based gene ontology program, DAVID, was used to classify 230 proteins that were differentially expressed in pterygial tissues. Among these genes, we chose three proteins, aldehyde dehydrogenase, dimeric NADP-preferring (ALDH3A1), protein disulfide-isomerase A3 (PDIA3), and peroxiredoxin-2 (PRDX2), that were significantly upregulated in pterygium and further increased in recurrent pterygium. Immunohistochemistry and western blot analysis confirmed that these three proteins were mainly detected in the basal epithelial layer, and their expression was significantly increased in the pterygium compared to normal conjunctiva. Conclusions This study reported increased expression of ALDH3A1, PDIA3, and PRDX2 in pterygia using a proteomic approach. These proteins are presumed to have a protective role against oxidative stress-induced apoptosis. This result is consistent with the hypothesis that oxidative stress is a significant factor in the pathogenesis of pterygia. PMID:25221425

  18. Epstein–Barr virus nuclear antigen 3A protein regulates CDKN2B transcription via interaction with MIZ-1

    PubMed Central

    Bazot, Quentin; Deschamps, Thibaut; Tafforeau, Lionel; Siouda, Maha; Leblanc, Pascal; Harth-Hertle, Marie L.; Rabourdin-Combe, Chantal; Lotteau, Vincent; Kempkes, Bettina; Tommasino, Massimo; Gruffat, Henri; Manet, Evelyne

    2014-01-01

    The Epstein–Barr virus (EBV) nuclear antigen 3 family of protein is critical for the EBV-induced primary B-cell growth transformation process. Using a yeast two-hybrid screen we identified 22 novel cellular partners of the EBNA3s. Most importantly, among the newly identified partners, five are known to play direct and important roles in transcriptional regulation. Of these, the Myc-interacting zinc finger protein-1 (MIZ-1) is a transcription factor initially characterized as a binding partner of MYC. MIZ-1 activates the transcription of a number of target genes including the cell cycle inhibitor CDKN2B. Focusing on the EBNA3A/MIZ-1 interaction we demonstrate that binding occurs in EBV-infected cells expressing both proteins at endogenous physiological levels and that in the presence of EBNA3A, a significant fraction of MIZ-1 translocates from the cytoplasm to the nucleus. Moreover, we show that a trimeric complex composed of a MIZ-1 recognition DNA element, MIZ-1 and EBNA3A can be formed, and that interaction of MIZ-1 with nucleophosmin (NPM), one of its coactivator, is prevented by EBNA3A. Finally, we show that, in the presence of EBNA3A, expression of the MIZ-1 target gene, CDKN2B, is downregulated and repressive H3K27 marks are established on its promoter region suggesting that EBNA3A directly counteracts the growth inhibitory action of MIZ-1. PMID:25092922

  19. A Chimeric Virus-Mouse Model System for Evaluating the Function and Inhibition of Papain-Like Proteases of Emerging Coronaviruses

    PubMed Central

    Deng, Xufang; Agnihothram, Sudhakar; Mielech, Anna M.; Nichols, Daniel B.; Wilson, Michael W.; StJohn, Sarah E.; Larsen, Scott D.; Mesecar, Andrew D.; Lenschow, Deborah J.; Baric, Ralph S.

    2014-01-01

    ABSTRACT To combat emerging coronaviruses, developing safe and efficient platforms to evaluate viral protease activities and the efficacy of protease inhibitors is a high priority. Here, we exploit a biosafety level 2 (BSL-2) chimeric Sindbis virus system to evaluate protease activities and the efficacy of inhibitors directed against the papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus (SARS-CoV), a biosafety level 3 (BSL-3) pathogen. We engineered Sindbis virus to coexpress PLpro and a substrate, murine interferon-stimulated gene 15 (ISG15), and found that PLpro mediates removal of ISG15 (deISGylation) from cellular proteins. Mutation of the catalytic cysteine residue of PLpro or addition of a PLpro inhibitor blocked deISGylation in virus-infected cells. Thus, deISGylation is a marker of PLpro activity. Infection of alpha/beta interferon receptor knockout (IFNAR−/−) mice with these chimeric viruses revealed that PLpro deISGylation activity removed ISG15-mediated protection during viral infection. Importantly, administration of a PLpro inhibitor protected these mice from lethal infection, demonstrating the efficacy of a coronavirus protease inhibitor in a mouse model. However, this PLpro inhibitor was not sufficient to protect the mice from lethal infection with SARS-CoV MA15, suggesting that further optimization of the delivery and stability of PLpro inhibitors is needed. We extended the chimeric-virus platform to evaluate the papain-like protease/deISGylating activity of Middle East respiratory syndrome coronavirus (MERS-CoV) to provide a small-animal model to evaluate PLpro inhibitors of this recently emerged pathogen. This platform has the potential to be universally adaptable to other viral and cellular enzymes that have deISGylating activities. IMPORTANCE Evaluating viral protease inhibitors in a small-animal model is a critical step in the path toward antiviral drug development. We modified a biosafety level 2 chimeric virus

  20. Human Coronavirus NL63 and 229E Seroconversion in Children▿

    PubMed Central

    Dijkman, Ronald; Jebbink, Maarten F.; El Idrissi, Nawal Bahia; Pyrc, Krzysztof; Müller, Marcel A.; Kuijpers, Taco W.; Zaaijer, Hans L.; van der Hoek, Lia

    2008-01-01

    In 2004, the novel respiratory human coronavirus NL63 (HCoV-NL63) was identified, and subsequent research revealed that the virus has spread worldwide. HCoV-229E is a close relative of HCoV-NL63, and infection with either virus can lead to the hospitalization of young children, immunocompromised persons, and the elderly. Children infected with HCoV-NL63 often develop croup, with obstruction of the airway. In this study we investigated at which age children are confronted for the first time with an HCoV-NL63 infection and, thus, at which age they seroconvert to HCoV-NL63 positivity. We designed a recombinant HCoV-229E and a recombinant HCoV-NL63 nucleocapsid protein enzyme-linked immunosorbent assay and performed a seroepidemiology survey on longitudinal and cross-sectional serum samples. The longitudinal serum samples were collected from 13 newborns, and data for those newborns were available from multiple time points spanning a period of at least 18 months. For the cross-sectional survey we tested serum samples of 139 children, including newborns to children 16 years of age. In examinations of the longitudinal serum samples we observed that all of the children had maternal anti-NL63 and anti-229E antibodies at birth that disappeared within 3 months. Seven of the 13 children became HCoV-NL63 seropositive during follow-up, whereas only 2 became HCoV-229E seropositive. The serology data of the cross-sectional serum samples revealed that 75% and 65% of the children in the age group 2.5 to 3.5 years were HCoV-NL63 and HCoV-229E seropositive, respectively. We conclude that on average, HCoV-NL63 and HCoV-229E seroconversion occurs before children reach the age of 3.5 years. PMID:18495857

  1. SARS-like cluster of circulating bat coronavirus pose threat for human emergence

    PubMed Central

    Menachery, Vineet D.; Yount, Boyd L.; Debbink, Kari; Agnihothram, Sudhakar; Gralinski, Lisa E.; Plante, Jessica A.; Graham, Rachel L.; Scobey, Trevor; Ge, Xing-Yi; Donaldson, Eric F.; Randell, Scott H.; Lanzavecchia, Antonio; Marasco, Wayne A.; Shi, Zhengli-Li; Baric, Ralph S.

    2016-01-01

    The emergence of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome (MERS)-CoV underscores the threat of cross-species transmission events leading to outbreaks in humans. In this study, we examine the disease potential for SARS-like CoVs currently circulating in Chinese horseshoe bat populations. Utilizing the SARS-CoV infectious clone, we generated and characterized a chimeric virus expressing the spike of bat coronavirus SHC014 in a mouse adapted SARS-CoV backbone. The results indicate that group 2b viruses encoding the SHC014 spike in a wild type backbone can efficiently utilize multiple ACE2 receptor orthologs, replicate efficiently in primary human airway cells, and achieve in vitro titers equivalent to epidemic strains of SARS-CoV. Additionally, in vivo experiments demonstrate replication of the chimeric virus in mouse lung with notable pathogenesis. Evaluation of available SARS-based immune-therapeutic and prophylactic modalities revealed poor efficacy; both monoclonal antibody and vaccine approaches failed to neutralize and protect from CoVs utilizing the novel spike protein. Importantly, based on these findings, we synthetically rederived an infectious full length SHC014 recombinant virus and demonstrate robust viral replication both in vitro and in vivo. Together, the work highlights a continued risk of SARS-CoV reemergence from viruses currently circulating in bat populations. PMID:26552008

  2. Foot-and-mouth disease virus non-structural protein 3A inhibits the interferon-β signaling pathway.

    PubMed

    Li, Dan; Lei, Caoqi; Xu, Zhisheng; Yang, Fan; Liu, Huanan; Zhu, Zixiang; Li, Shu; Liu, Xiangtao; Shu, Hongbing; Zheng, Haixue

    2016-01-01

    Foot-and-mouth disease virus (FMDV) is the etiological agent of FMD, which affects cloven-hoofed animals. The pathophysiology of FMDV has not been fully understood and the evasion of host innate immune system is still unclear. Here, the FMDV non-structural protein 3A was identified as a negative regulator of virus-triggered IFN-β signaling pathway. Overexpression of the FMDV 3A inhibited Sendai virus-triggered activation of IRF3 and the expressions of RIG-I/MDA5. Transient transfection and co-immunoprecipitation experiments suggested that FMDV 3A interacts with RIG-I, MDA5 and VISA, which is dependent on the N-terminal 51 amino acids of 3A. Furthermore, 3A also inhibited the expressions of RIG-I, MDA5, and VISA by disrupting their mRNA levels. These results demonstrated that 3A inhibits the RLR-mediated IFN-β induction and uncovered a novel mechanism by which the FMDV 3A protein evades the host innate immune system. PMID:26883855

  3. Foot-and-mouth disease virus non-structural protein 3A inhibits the interferon-β signaling pathway

    PubMed Central

    Li, Dan; Lei, Caoqi; Xu, Zhisheng; Yang, Fan; Liu, Huanan; Zhu, Zixiang; Li, Shu; Liu, Xiangtao; Shu, Hongbing; Zheng, Haixue

    2016-01-01

    Foot-and-mouth disease virus (FMDV) is the etiological agent of FMD, which affects cloven-hoofed animals. The pathophysiology of FMDV has not been fully understood and the evasion of host innate immune system is still unclear. Here, the FMDV non-structural protein 3A was identified as a negative regulator of virus-triggered IFN-β signaling pathway. Overexpression of the FMDV 3A inhibited Sendai virus-triggered activation of IRF3 and the expressions of RIG-I/MDA5. Transient transfection and co-immunoprecipitation experiments suggested that FMDV 3A interacts with RIG-I, MDA5 and VISA, which is dependent on the N-terminal 51 amino acids of 3A. Furthermore, 3A also inhibited the expressions of RIG-I, MDA5, and VISA by disrupting their mRNA levels. These results demonstrated that 3A inhibits the RLR-mediated IFN-β induction and uncovered a novel mechanism by which the FMDV 3A protein evades the host innate immune system. PMID:26883855

  4. A partial deletion in non-structural protein 3A can attenuate foot-and-mouth disease virus in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The role of non-structural protein 3A in foot-and-mouth disease virus (FMDV) on the virulence in cattle has received significant attention. Particularly, a characteristic 10–20 amino acid deletion has been implicated as being responsible for virus attenuation in cattle: a 10 amino acid deletion in t...

  5. 40 CFR 174.509 - Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance. 174.509 Section 174.509 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS PROCEDURES AND REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and...

  6. Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-Dependent Manner

    PubMed Central

    Burkard, Christine; Verheije, Monique H.; Wicht, Oliver; van Kasteren, Sander I.; van Kuppeveld, Frank J.; Haagmans, Bart L.; Pelkmans, Lucas; Rottier, Peter J. M.; Bosch, Berend Jan; de Haan, Cornelis A. M.

    2014-01-01

    Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal microenvironment induce conformational changes in the viral fusion proteins leading to viral and host membrane fusion. In the present study we investigated the entry of coronaviruses (CoVs). Using siRNA gene silencing, we found that proteins known to be important for late endosomal maturation and endosome-lysosome fusion profoundly promote infection of cells with mouse hepatitis coronavirus (MHV). Using recombinant MHVs expressing reporter genes as well as a novel, replication-independent fusion assay we confirmed the importance of clathrin-mediated endocytosis and demonstrated that trafficking of MHV to lysosomes is required for fusion and productive entry to occur. Nevertheless, MHV was shown to be less sensitive to perturbation of endosomal pH than vesicular stomatitis virus and influenza A virus, which fuse in early and late endosomes, respectively. Our results indicate that entry of MHV depends on proteolytic processing of its fusion protein S by lysosomal proteases. Fusion of MHV was severely inhibited by a pan-lysosomal protease inhibitor, while trafficking of MHV to lysosomes and processing by lysosomal proteases was no longer required when a furin cleavage site was introduced in the S protein immediately upstream of the fusion peptide. Also entry of feline CoV was shown to depend on trafficking to lysosomes and processing by lysosomal proteases. In contrast, MERS-CoV, which contains a minimal furin cleavage site just upstream of the fusion peptide, was negatively affected by inhibition of furin, but not of lysosomal proteases. We conclude that a proteolytic cleavage site in the CoV S protein directly upstream of the fusion peptide is an essential determinant of the intracellular site of fusion. PMID:25375324

  7. Design and Construction of Chimeric VP8-S2 Antigen for Bovine Rotavirus and Bovine Coronavirus

    PubMed Central

    Nasiri, Khadijeh; Nassiri, Mohammadreza; Tahmoorespur, Mojtaba; Haghparast, Alireza; Zibaee, Saeed

    2016-01-01

    Purpose: Bovine Rotavirus and Bovine Coronavirus are the most important causes of diarrhea in newborn calves and in some other species such as pigs and sheep. Rotavirus VP8 subunit is the major determinant of the viral infectivity and neutralization. Spike glycoprotein of coronavirus is responsible for induction of neutralizing antibody response. Methods: In the present study, several prediction programs were used to predict B and T-cells epitopes, secondary and tertiary structures, antigenicity ability and enzymatic degradation sites. Finally, a chimeric antigen was designed using computational techniques. The chimeric VP8-S2 antigen was constructed. It was cloned and sub-cloned into pGH and pET32a(+) expression vector. The recombinant pET32a(+)-VP8-S2 vector was transferred into E.oli BL21CodonPlus (DE3) as expression host. The recombinant VP8-S2 protein was purified by Ni-NTA chromatography column. Results: The results of colony PCR, enzyme digestion and sequencing showed that the VP8-S2 chimeric antigen has been successfully cloned and sub-cloned into pGH and pET32a(+).The results showed that E.coli was able to express VP8-S2 protein appropriately. This protein was expressed by induction of IPTG at concentration of 1mM and it was confirmed by Ni–NTA column, dot-blotting analysis and SDS-PAGE electrophoresis. Conclusion: The results of this study showed that E.coli can be used as an appropriate host to produce the recombinant VP8-S2 protein. This recombinant protein may be suitable to investigate to produce immunoglobulin, recombinant vaccine and diagnostic kit in future studies after it passes biological activity tests in vivo in animal model and or other suitable procedure. PMID:27123423

  8. Murine Coronavirus Ubiquitin-Like Domain Is Important for Papain-Like Protease Stability and Viral Pathogenesis

    PubMed Central

    Mielech, Anna M.; Deng, Xufang; Chen, Yafang; Kindler, Eveline; Wheeler, Dorthea L.; Mesecar, Andrew D.; Thiel, Volker; Perlman, Stanley

    2015-01-01

    ABSTRACT Ubiquitin-like domains (Ubls) now are recognized as common elements adjacent to viral and cellular proteases; however, their function is unclear. Structural studies of the papain-like protease (PLP) domains of coronaviruses (CoVs) revealed an adjacent Ubl domain in severe acute respiratory syndrome CoV, Middle East respiratory syndrome CoV, and the murine CoV, mouse hepatitis virus (MHV). Here, we tested the effect of altering the Ubl adjacent to PLP2 of MHV on enzyme activity, viral replication, and pathogenesis. Using deletion and substitution approaches, we identified sites within the Ubl domain, residues 785 to 787 of nonstructural protein 3, which negatively affect protease activity, and valine residues 785 and 787, which negatively affect deubiquitinating activity. Using reverse genetics, we engineered Ubl mutant viruses and found that AM2 (V787S) and AM3 (V785S) viruses replicate efficiently at 37°C but generate smaller plaques than wild-type (WT) virus, and AM2 is defective for replication at higher temperatures. To evaluate the effect of the mutation on protease activity, we purified WT and Ubl mutant PLP2 and found that the proteases exhibit similar specific activities at 25°C. However, the thermal stability of the Ubl mutant PLP2 was significantly reduced at 30°C, thereby reducing the total enzymatic activity. To determine if the destabilizing mutation affects viral pathogenesis, we infected C57BL/6 mice with WT or AM2 virus and found that the mutant virus is highly attenuated, yet it replicates sufficiently to elicit protective immunity. These studies revealed that modulating the Ubl domain adjacent to the PLP reduces protease stability and viral pathogenesis, revealing a novel approach to coronavirus attenuation. IMPORTANCE Introducing mutations into a protein or virus can have either direct or indirect effects on function. We asked if changes in the Ubl domain, a conserved domain adjacent to the coronavirus papain-like protease, altered

  9. G protein signaling modulator-3: a leukocyte regulator of inflammation in health and disease

    PubMed Central

    Billard, Matthew J; Gall, Bryan J; Richards, Kristy L; Siderovski, David P; Tarrant, Teresa K

    2014-01-01

    G protein signaling modulator-3 (GPSM3), also known as G18 or AGS4, is a member of a family of proteins containing one or more copies of a small regulatory motif known as the GoLoco (or GPR) motif. GPSM3 interacts directly with Gα and Gβ subunits of heterotrimeric G proteins to regulate downstream intracellular signals initiated by G protein coupled receptors (GPCRs) that are activated via binding to their cognate ligands. GPSM3 has a selective tissue distribution and is highly expressed in immune system cells; genome-wide association studies (GWAS) have recently revealed that single nucleotide polymorphisms (SNPs) in GPSM3 are associated with chronic inflammatory diseases. This review highlights the current knowledge of GPSM3 function in normal and pathologic immune-mediated conditions. PMID:25143870

  10. The NMDAR subunit NR3A interacts with microtubule-associated protein 1S in the brain

    PubMed Central

    Eriksson, Maria; Samuelsson, Helena; Samuelsson, Eva-Britt; Liu, Leyuan; McKeehan, Wallace L; Benedikz, Eirikur; Sundström, Erik

    2011-01-01

    When screening a brain cDNA library, we found that the N-methyl-d-aspartate receptor subunit NR3A binds to microtubule-associated protein (MAP) 1S/chromosome 19 open reading frame 5 (C19ORF5). The interaction was confirmed in vitro and in vivo, and binding of MAP1S was localized to the membrane-proximal part of the NR3A C-terminus. MAP1S belongs to the same family as MAP1A and MAP1B, and was found to be abundant in both postnatal and adult rat brain. In hippocampal neurons the distribution-pattern of MAP1S resembled that of β-tubulin III, but a fraction of the protein colocalized with synaptic markers synapsin and postsynaptic density protein 95 (PSD95), in β-tubulin III-negative filopodia-like protrusions. There was coexistance between MAP1S and NR3A immunoreactivity in neurite shafts and occasionally in filopodia-like processes. MAP1S potentially links NR3A to the cytoskeleton, and may stabilize NR3A-containing receptors at the synapse and regulate their movement between synaptic and extrasynaptic sites. PMID:17658481

  11. Isolation and Characterization of Dromedary Camel Coronavirus UAE-HKU23 from Dromedaries of the Middle East: Minimal Serological Cross-Reactivity between MERS Coronavirus and Dromedary Camel Coronavirus UAE-HKU23

    PubMed Central

    Woo, Patrick C. Y.; Lau, Susanna K. P.; Fan, Rachel Y. Y.; Lau, Candy C. Y.; Wong, Emily Y. M.; Joseph, Sunitha; Tsang, Alan K. L.; Wernery, Renate; Yip, Cyril C. Y.; Tsang, Chi-Ching; Wernery, Ulrich; Yuen, Kwok-Yung

    2016-01-01

    Recently, we reported the discovery of a dromedary camel coronavirus UAE-HKU23 (DcCoV UAE-HKU23) from dromedaries in the Middle East. In this study, DcCoV UAE-HKU23 was successfully isolated in two of the 14 dromedary fecal samples using HRT-18G cells, with cytopathic effects observed five days after inoculation. Northern blot analysis revealed at least seven distinct RNA species, corresponding to predicted subgenomic mRNAs and confirming the core sequence of transcription regulatory sequence motifs as 5′-UCUAAAC-3′ as we predicted previously. Antibodies against DcCoV UAE-HKU23 were detected in 58 (98.3%) and 59 (100%) of the 59 dromedary sera by immunofluorescence and neutralization antibody tests, respectively. There was significant correlation between the antibody titers determined by immunofluorescence and neutralization assays (Pearson coefficient = 0.525, p < 0.0001). Immunization of mice using recombinant N proteins of DcCoV UAE-HKU23 and Middle East respiratory syndrome coronavirus (MERS-CoV), respectively, and heat-inactivated DcCoV UAE-HKU23 showed minimal cross-antigenicity between DcCoV UAE-HKU23 and MERS-CoV by Western blot and neutralization antibody assays. Codon usage and genetic distance analysis of RdRp, S and N genes showed that the 14 strains of DcCoV UAE-HKU23 formed a distinct cluster, separated from those of other closely related members of Betacoronavirus 1, including alpaca CoV, confirming that DcCoV UAE-HKU23 is a novel member of Betacoronavirus 1. PMID:27164099

  12. Isolation and Characterization of Dromedary Camel Coronavirus UAE-HKU23 from Dromedaries of the Middle East: Minimal Serological Cross-Reactivity between MERS Coronavirus and Dromedary Camel Coronavirus UAE-HKU23.

    PubMed

    Woo, Patrick C Y; Lau, Susanna K P; Fan, Rachel Y Y; Lau, Candy C Y; Wong, Emily Y M; Joseph, Sunitha; Tsang, Alan K L; Wernery, Renate; Yip, Cyril C Y; Tsang, Chi-Ching; Wernery, Ulrich; Yuen, Kwok-Yung

    2016-01-01

    Recently, we reported the discovery of a dromedary camel coronavirus UAE-HKU23 (DcCoV UAE-HKU23) from dromedaries in the Middle East. In this study, DcCoV UAE-HKU23 was successfully isolated in two of the 14 dromedary fecal samples using HRT-18G cells, with cytopathic effects observed five days after inoculation. Northern blot analysis revealed at least seven distinct RNA species, corresponding to predicted subgenomic mRNAs and confirming the core sequence of transcription regulatory sequence motifs as 5'-UCUAAAC-3' as we predicted previously. Antibodies against DcCoV UAE-HKU23 were detected in 58 (98.3%) and 59 (100%) of the 59 dromedary sera by immunofluorescence and neutralization antibody tests, respectively. There was significant correlation between the antibody titers determined by immunofluorescence and neutralization assays (Pearson coefficient = 0.525, p < 0.0001). Immunization of mice using recombinant N proteins of DcCoV UAE-HKU23 and Middle East respiratory syndrome coronavirus (MERS-CoV), respectively, and heat-inactivated DcCoV UAE-HKU23 showed minimal cross-antigenicity between DcCoV UAE-HKU23 and MERS-CoV by Western blot and neutralization antibody assays. Codon usage and genetic distance analysis of RdRp, S and N genes showed that the 14 strains of DcCoV UAE-HKU23 formed a distinct cluster, separated from those of other closely related members of Betacoronavirus 1, including alpaca CoV, confirming that DcCoV UAE-HKU23 is a novel member of Betacoronavirus 1. PMID:27164099

  13. Utility of feline coronavirus antibody tests.

    PubMed

    Addie, Diane D; le Poder, Sophie; Burr, Paul; Decaro, Nicola; Graham, Elizabeth; Hofmann-Lehmann, Regina; Jarrett, Oswald; McDonald, Michael; Meli, Marina L

    2015-02-01

    Eight different tests for antibodies to feline coronavirus (FCoV) were evaluated for attributes that are important in situations in veterinary practice. We compared four indirect immunofluorescent antibody tests (IFAT), one enzyme-linked immunosorbent assay (ELISA) (FCoV Immunocomb; Biogal) and three rapid immunochromatographic (RIM) tests against a panel of samples designated by consensus as positive or negative. Specificity was 100% for all but the two IFATs based on transmissible gastroenteritis virus (TGEV), at 83.3% and 97.5%. The IFAT and ELISA tests were best for obtaining an antibody titre and for working in the presence of virus. The RIM tests were the best for obtaining a result quickly (10-15 mins); of these, the Speed F-Corona was the most sensitive, at 92.4%, followed by FASTest feline infectious peritonitis (FIP; 84.6%) and Anigen Rapid FCoV antibody test (64.1%). Sensitivity was 100% for the ELISA, one FCoV IFAT and one TGEV IFAT; and 98.2% for a second TGEV IFA and 96.1% for a second FCoV IFAT. All tests worked with effusions, even when only blood products were stipulated in the instruction manual. The ELISA and Anigen RIM tests were best for small quantities of sample. The most appropriate FCoV antibody test to use depends on the reason for testing: in excluding a diagnosis of FIP, sensitivity, specificity, small sample quantity, rapidity and ability to work in the presence of virus all matter. For FCoV screening, speed and sensitivity are important, and for FCoV elimination antibody titre is essential. PMID:24966245

  14. Effect of coronavirus infection on reproductive performance of turkey hens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Turkey coronavirus (TCoV) infection causes enteritis in turkeys of varying ages with high mortality in young birds. In older birds, field evidence indicates possible involvement of TCoV in egg production drops in turkey hens. However, no experimental studies have been conducted to demonstrate TCoV...

  15. Middle East Respiratory Syndrome Coronavirus in Bats, Saudi Arabia

    PubMed Central

    Memish, Ziad A.; Mishra, Nischay; Olival, Kevin J.; Fagbo, Shamsudeen F.; Kapoor, Vishal; Epstein, Jonathan H.; AlHakeem, Rafat; Durosinloun, Abdulkareem; Al Asmari, Mushabab; Islam, Ariful; Kapoor, Amit; Briese, Thomas; Daszak, Peter; Al Rabeeah, Abdullah A.

    2013-01-01

    The source of human infection with Middle East respiratory syndrome coronavirus remains unknown. Molecular investigation indicated that bats in Saudi Arabia are infected with several alphacoronaviruses and betacoronaviruses. Virus from 1 bat showed 100% nucleotide identity to virus from the human index case-patient. Bats might play a role in human infection. PMID:24206838

  16. Engineering Coronaviruses to Evaluate Emergence and Pathogenic Potential.

    PubMed

    Lau, Susanna K P; Woo, Patrick C Y

    2016-06-01

    A recent study provides a platform for generating infectious coronavirus genomes using sequence data, examining their capabilities of replicating in human cells and causing diseases in animal models, and evaluating therapeutics and vaccines. Similar approaches could be used to assess the potential of human emergence and pathogenicity for other viruses. PMID:27095615

  17. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins.

    PubMed

    Harder, Edward; Damm, Wolfgang; Maple, Jon; Wu, Chuanjie; Reboul, Mark; Xiang, Jin Yu; Wang, Lingle; Lupyan, Dmitry; Dahlgren, Markus K; Knight, Jennifer L; Kaus, Joseph W; Cerutti, David S; Krilov, Goran; Jorgensen, William L; Abel, Robert; Friesner, Richard A

    2016-01-12

    The parametrization and validation of the OPLS3 force field for small molecules and proteins are reported. Enhancements with respect to the previous version (OPLS2.1) include the addition of off-atom charge sites to represent halogen bonding and aryl nitrogen lone pairs as well as a complete refit of peptide dihedral parameters to better model the native structure of proteins. To adequately cover medicinal chemical space, OPLS3 employs over an order of magnitude more reference data and associated parameter types relative to other commonly used small molecule force fields (e.g., MMFF and OPLS_2005). As a consequence, OPLS3 achieves a high level of accuracy across performance benchmarks that assess small molecule conformational propensities and solvation. The newly fitted peptide dihedrals lead to significant improvements in the representation of secondary structure elements in simulated peptides and native structure stability over a number of proteins. Together, the improvements made to both the small molecule and protein force field lead to a high level of accuracy in predicting protein-ligand binding measured over a wide range of targets and ligands (less than 1 kcal/mol RMS error) representing a 30% improvement over earlier variants of the OPLS force field. PMID:26584231

  18. A Simple Technique for the Prediction of Interacting Proteins Reveals a Direct Brn-3a-Androgen Receptor Interaction*

    PubMed Central

    Berwick, Daniel C.; Diss, James K. J.; Budhram-Mahadeo, Vishwanie S.; Latchman, David S.

    2010-01-01

    The formation of multiprotein complexes constitutes a key step in determining the function of any translated gene product. Thus, the elucidation of interacting partners for a protein of interest is of fundamental importance to cell biology. Here we describe a simple methodology for the prediction of novel interactors. We have applied this to the developmental transcription factor Brn-3a to predict and verify a novel interaction between Brn-3a and the androgen receptor (AR). We demonstrate that these transcription factors form complexes within the nucleus of ND7 neuroblastoma cells, while in vitro pull-down assays show direct association. As a functional consequence of the Brn-3a-AR interaction, the factors bind cooperatively to multiple elements within the promoter of the voltage-gated sodium channel, Nav1.7, leading to a synergistic increase in its expression. Thus, these data define AR as a direct Brn-3a interactor and verify a simple interacting protein prediction methodology that is likely to be useful for many other proteins. PMID:20228055

  19. Activators of G-protein Signaling 3: A drug addiction molecular gateway

    PubMed Central

    Bowers, M. Scott

    2010-01-01

    Drug addiction is marked by continued drug-seeking behavior despite deleterious consequences and a heightened propensity to relapse notwithstanding long, drug-free periods. The enduring nature of addiction has been hypothesized to arise from perturbations in intracellular signaling, gene expression, and brain circuitry induced by substance abuse. Ameliorating some of these aberrations should abate behavioral and neurochemical markers associated with an “addiction phenotype”. This review summarizes data showing that protein expression and signaling through the non-receptor Activator of heterotrimeric G-protein Signaling 3 (AGS3) is altered by commonly abused substances in rat and in vitro addiction models. AGS3 structure and function are unrelated to the more broadly studied Regulator of G-protein Signaling (RGS) family. Thus, the unique role of AGS3 is the focus of this review. Intriguingly, AGS3 protein changes persist into drug abstinence. Accordingly, studies probing the role of AGS3 in the neurochemistry of drug-seeking behavior and relapse are reviewed in detail. To illuminate this work, AGS3 structure, cellular localization, and function are covered so that an idealized AGS3-targeted pharmacotherapy can be proposed. PMID:20700046

  20. Identification and proteomic analysis of distinct UBE3A/E6AP protein complexes.

    PubMed

    Martínez-Noël, Gustavo; Galligan, Jeffrey T; Sowa, Mathew E; Arndt, Verena; Overton, Thomas M; Harper, J Wade; Howley, Peter M

    2012-08-01

    The E6AP ubiquitin ligase catalyzes the high-risk human papillomaviruses' E6-mediated ubiquitylation of p53, contributing to the neoplastic progression of cells infected by these viruses. Defects in the activity and the dosage of E6AP are linked to Angelman syndrome and to autism spectrum disorders, respectively, highlighting the need for precise control of the enzyme. With the exception of HERC2, which modulates the ubiquitin ligase activity of E6AP, little is known about the regulation or function of E6AP normally. Using a proteomic approach, we have identified and validated several new E6AP-interacting proteins, including HIF1AN, NEURL4, and mitogen-activated protein kinase 6 (MAPK6). E6AP exists as part of several different protein complexes, including the proteasome and an independent high-molecular-weight complex containing HERC2, NEURL4, and MAPK6. In examining the functional consequence of its interaction with the proteasome, we found that UBE3C (another proteasome-associated ubiquitin ligase), but not E6AP, contributes to proteasomal processivity in mammalian cells. We also found that E6 associates with the HERC2-containing high-molecular-weight complex through its binding to E6AP. These proteomic studies reveal a level of complexity for E6AP that has not been previously appreciated and identify a number of new cellular proteins through which E6AP may be regulated or functioning. PMID:22645313

  1. Fibroblast growth factor 3, a protein with a dual subcellular fate, is interacting with human ribosomal protein S2

    SciTech Connect

    Antoine, Marianne; Reimers, Kerstin; Wirz, Werner; Gressner, Axel M.; Mueller, Robert; Kiefer, Paul . E-mail: pkiefer@ukaachen.de

    2005-12-16

    The secreted isoform of fibroblast growth factor 3 (FGF3) induces a mitogenic cell response, while the nuclear form inhibits cell proliferation. Recently, we identified a nucleolar FGF3-binding protein which is implicated in processing of pre-rRNA as a possible target of nuclear FGF3 signalling. Here, we report a second candidate protein identified by a yeast two-hybrid screen for nuclear FGF3 action, ribosomal protein S2, rpS2. Recombinant rpS2 binds to in vitro translated FGF3 and to nuclear FGF3 extracted from transfected COS-1 cells. Characterization of the FGF3 binding domain of rpS2 showed that both the Arg-Gly-rich N-terminal region and a short carboxyl-terminal sequence of rpS2 are necessary for FGF3 binding. Mapping the S2 binding domains of FGF3 revealed that these domains are important for both NoBP and rpS2 interaction. Transient co-expression of rpS2 and nuclear FGF3 resulted in a reduced nucleolar localization of the FGF. These findings suggest that the nuclear form of FGF3 inhibits cell proliferation by interfering with ribosomal biogenesis.

  2. Detection and Prevalence Patterns of Group I Coronaviruses in Bats, Northern Germany

    PubMed Central

    Gloza-Rausch, Florian; Ipsen, Anne; Seebens, Antje; Göttsche, Matthias; Panning, Marcus; Drexler, Jan Felix; Petersen, Nadine; Annan, Augustina; Grywna, Klaus; Müller, Marcel; Pfefferle, Susanne

    2008-01-01

    We tested 315 bats from 7 different bat species in northern Germany for coronaviruses by reverse transcription–PCR. The overall prevalence was 9.8%. There were 4 lineages of group I coronaviruses in association with 4 different species of verspertilionid bats (Myotis dasycneme, M. daubentonii, Pipistrellus nathusii, P. pygmaeus). The lineages formed a monophyletic clade of bat coronaviruses found in northern Germany. The clade of bat coronaviruses have a sister relationship with a clade of Chinese type I coronaviruses that were also associated with the Myotis genus (M. ricketti). Young age and ongoing lactation, but not sex or existing gravidity, correlated significantly with coronavirus detection. The virus is probably maintained on the population level by amplification and transmission in maternity colonies, rather than being maintained in individual bats. PMID:18400147

  3. Sushi Domain-Containing Protein 3: A Potential Target for Breast Cancer.

    PubMed

    Yu, Zhenghong; Jiang, Enze; Wang, Xinxing; Shi, Yaqin; Shangguan, Anna Junjie; Zhang, Luo; Li, Jie

    2015-06-01

    Aromatase inhibitors (AIs) are the most effective endocrine treatment for estrogen receptor α-positive (ERα+) postmenopausal breast cancer. Identification of biomarkers that are able to predict AIs responsiveness of patients is a key for successful treatment. The currently used biomarkers for tamoxifen responsiveness, which including ERα as well as progesterone receptor can only predict part of the potential responders to AIs treatment. Sushi domain-containing protein 3 (SUSD3) is a potential novel biomarker of AIs responsiveness. The lack of SUSD3 expression in breast cancer tissue can be an important predictor for non-responsiveness to AI. Here we reviewed the property and function of SUSD3, its usage as a biomarker and the practicability for SUSD3 to become a target for immune therapy. We suggest this protein can be potentially measured or targeted for prevention, diagnostic, and therapeutic purposes for estrogen or progesterone-dependent disorders including breast cancer in women. PMID:25556073

  4. Central ions and lateral asparagine/glutamine zippers stabilize the post-fusion hairpin conformation of the SARS coronavirus spike glycoprotein

    SciTech Connect

    Duquerroy, Stephane; Rey, Felix A.

    2005-05-10

    The coronavirus spike glycoprotein is a class I membrane fusion protein with two characteristic heptad repeat regions (HR1 and HR2) in its ectodomain. Here, we report the X-ray structure of a previously characterized HR1/HR2 complex of the severe acute respiratory syndrome coronavirus spike protein. As expected, the HR1 and HR2 segments are organized in antiparallel orientations within a rod-like molecule. The HR1 helices form an exceptionally long (120 A) internal coiled coil stabilized by hydrophobic and polar interactions. A striking arrangement of conserved asparagine and glutamine residues of HR1 propagates from two central chloride ions, providing hydrogen-bonding 'zippers' that strongly constrain the path of the HR2 main chain, forcing it to adopt an extended conformation at either end of a short HR2 {alpha}-helix.

  5. Detection of an Antigenic Group 2 Coronavirus in an Adult Alpaca with Enteritis▿

    PubMed Central

    Genova, Suzanne G.; Streeter, Robert N.; Simpson, Katharine M.; Kapil, Sanjay

    2008-01-01

    Antigenic group 2 coronavirus was detected in a fecal sample of an adult alpaca by reverse transcription-PCR. The presence of alpaca coronavirus (ApCoV) in the small intestine was demonstrated by immune histochemistry with an antinucleocapsid monoclonal antibody that reacts with group 2 coronaviruses. Other common causes of diarrhea in adult camelids were not detected. We conclude that nutritional stress may have predisposed the alpaca to severe ApCoV infection. PMID:18716008

  6. STT3, a highly conserved protein required for yeast oligosaccharyl transferase activity in vivo.

    PubMed Central

    Zufferey, R; Knauer, R; Burda, P; Stagljar, I; te Heesen, S; Lehle, L; Aebi, M

    1995-01-01

    N-linked glycosylation is a ubiquitous protein modification, and is essential for viability in eukaryotic cells. A lipid-linked core-oligosaccharide is assembled at the membrane of the endoplasmic reticulum and transferred to selected asparagine residues of nascent polypeptide chains by the oligosaccharyl transferase (OTase) complex. Based on the synthetic lethal phenotype of double mutations affecting the assembly of the lipid-linked core-oligosaccharide and the OTase activity, we have performed a novel screen for mutants in Saccharomyces cerevisiae with altered N-linked glycosylation. Besides novel mutants deficient in the assembly of the lipid-linked oligosaccharide (alg mutants), we identified the STT3 locus as being required for OTase activity in vivo. The essential STT3 protein is approximately 60% identical in amino acid sequence to its human homologue. A mutation in the STT3 locus affects substrate specificity of the OTase complex in vivo and in vitro. In stt3-3 cells very little glycosyl transfer occurs from incomplete lipid-linked oligosaccharide, whereas the transfer of full-length Glc3Man9GlcNAc2 is hardly affected as compared with wild-type cells. Depletion of the STT3 protein results in loss of transferase activity in vivo and a deficiency in the assembly of OTase complex. Images PMID:7588624

  7. Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution

    PubMed Central

    Zeng, Qinghong; Langereis, Martijn A.; van Vliet, Arno L. W.; Huizinga, Eric G.; de Groot, Raoul J.

    2008-01-01

    The hemagglutinin-esterases (HEs) are a family of viral envelope glycoproteins that mediate reversible attachment to O-acetylated sialic acids by acting both as lectins and as receptor-destroying enzymes (RDEs). Related HEs occur in influenza C, toro-, and coronaviruses, apparently as a result of relatively recent lateral gene transfer events. Here, we report the crystal structure of a coronavirus (CoV) HE in complex with its receptor. We show that CoV HE arose from an influenza C-like HE fusion protein (HEF). In the process, HE was transformed from a trimer into a dimer, whereas remnants of the fusion domain were adapted to establish novel monomer–monomer contacts. Whereas the structural design of the RDE-acetylesterase domain remained unaltered, the HE receptor-binding domain underwent remodeling to such extent that the ligand is now bound in opposite orientation. This is surprising, because the architecture of the HEF site was preserved in influenza A HA over a much larger evolutionary distance, a switch in receptor specificity and extensive antigenic variation notwithstanding. Apparently, HA and HEF are under more stringent selective constraints than HE, limiting their exploration of alternative binding-site topologies. We attribute the plasticity of the CoV HE receptor-binding site to evolutionary flexibility conferred by functional redundancy between HE and its companion spike protein S. Our findings offer unique insights into the structural and functional consequences of independent protein evolution after interviral gene exchange and open potential avenues to broad-spectrum antiviral drug design. PMID:18550812

  8. In Vitro Reconstitution of SARS-Coronavirus mRNA Cap Methylation

    PubMed Central

    Bouvet, Mickaël; Debarnot, Claire; Imbert, Isabelle; Selisko, Barbara; Snijder, Eric J.; Canard, Bruno; Decroly, Etienne

    2010-01-01

    SARS-coronavirus (SARS-CoV) genome expression depends on the synthesis of a set of mRNAs, which presumably are capped at their 5′ end and direct the synthesis of all viral proteins in the infected cell. Sixteen viral non-structural proteins (nsp1 to nsp16) constitute an unusually large replicase complex, which includes two methyltransferases putatively involved in viral mRNA cap formation. The S-adenosyl-L-methionine (AdoMet)-dependent (guanine-N7)-methyltransferase (N7-MTase) activity was recently attributed to nsp14, whereas nsp16 has been predicted to be the AdoMet-dependent (nucleoside-2′O)-methyltransferase. Here, we have reconstituted complete SARS-CoV mRNA cap methylation in vitro. We show that mRNA cap methylation requires a third viral protein, nsp10, which acts as an essential trigger to complete RNA cap-1 formation. The obligate sequence of methylation events is initiated by nsp14, which first methylates capped RNA transcripts to generate cap-0 7MeGpppA-RNAs. The latter are then selectively 2′O-methylated by the 2′O-MTase nsp16 in complex with its activator nsp10 to give rise to cap-1 7MeGpppA2′OMe-RNAs. Furthermore, sensitive in vitro inhibition assays of both activities show that aurintricarboxylic acid, active in SARS-CoV infected cells, targets both MTases with IC50 values in the micromolar range, providing a validated basis for anti-coronavirus drug design. PMID:20421945

  9. Screening and identification of severe acute respiratory syndrome-associated coronavirus-specific CTL epitopes.

    PubMed

    Zhou, Minghai; Xu, Dongping; Li, Xiaojuan; Li, Hongtao; Shan, Ming; Tang, Jiaren; Wang, Min; Wang, Fu-Sheng; Zhu, Xiaodong; Tao, Hua; He, Wei; Tien, Po; Gao, George F

    2006-08-15

    Severe acute respiratory syndrome (SARS) is a highly contagious and life-threatening disease that emerged in China in November 2002. A novel SARS-associated coronavirus was identified as its principal etiologic agent; however, the immunopathogenesis of SARS and the role of special CTLs in virus clearance are still largely uncharacterized. In this study, potential HLA-A*0201-restricted spike (S) and nucleocapsid protein-derived peptides were selected from an online database and screened for potential CTL epitopes by in vitro refolding and T2 cell-stabilization assays. The antigenicity of nine peptides which could refold with HLA-A*0201 molecules was assessed with an IFN-gamma ELISPOT assay to determine the capacity to stimulate CTLs from PBMCs of HLA-A2(+) SARS-recovered donors. A novel HLA-A*0201-restricted decameric epitope P15 (S411-420, KLPDDFMGCV) derived from the S protein was identified and found to localize within the angiotensin-converting enzyme 2 receptor-binding region of the S1 domain. P15 could significantly enhance the expression of HLA-A*0201 molecules on the T2 cell surface, stimulate IFN-gamma-producing CTLs from the PBMCs of former SARS patients, and induce specific CTLs from P15-immunized HLA-A2.1 transgenic mice in vivo. Furthermore, significant P15-specific CTLs were induced from HLA-A2.1-transgenic mice immunized by a DNA vaccine encoding the S protein; suggesting that P15 was a naturally processed epitope. Thus, P15 may be a novel SARS-associated coronavirus-specific CTL epitope and a potential target for characterization of virus control mechanisms and evaluation of candidate SARS vaccines. PMID:16887973

  10. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2

    PubMed Central

    Li, Wenhui; Zhang, Chengsheng; Sui, Jianhua; Kuhn, Jens H; Moore, Michael J; Luo, Shiwen; Wong, Swee-Kee; Huang, I-Chueh; Xu, Keming; Vasilieva, Natalya; Murakami, Akikazu; He, Yaqing; Marasco, Wayne A; Guan, Yi; Choe, Hyeryun; Farzan, Michael

    2005-01-01

    Human angiotensin-converting enzyme 2 (ACE2) is a functional receptor for SARS coronavirus (SARS-CoV). Here we identify the SARS-CoV spike (S)-protein-binding site on ACE2. We also compare S proteins of SARS-CoV isolated during the 2002–2003 SARS outbreak and during the much less severe 2003–2004 outbreak, and from palm civets, a possible source of SARS-CoV found in humans. All three S proteins bound to and utilized palm-civet ACE2 efficiently, but the latter two S proteins utilized human ACE2 markedly less efficiently than did the S protein obtained during the earlier human outbreak. The lower affinity of these S proteins could be complemented by altering specific residues within the S-protein-binding site of human ACE2 to those of civet ACE2, or by altering S-protein residues 479 and 487 to residues conserved during the 2002–2003 outbreak. Collectively, these data describe molecular interactions important to the adaptation of SARS-CoV to human cells, and provide insight into the severity of the 2002–2003 SARS epidemic. PMID:15791205

  11. Human Coronavirus-Associated Influenza-Like Illness in the Community Setting in Peru.

    PubMed

    Razuri, Hugo; Malecki, Monika; Tinoco, Yeny; Ortiz, Ernesto; Guezala, M Claudia; Romero, Candice; Estela, Abel; Breña, Patricia; Morales, Maria-Luisa; Reaves, Erik J; Gomez, Jorge; Uyeki, Timothy M; Widdowson, Marc-Alain; Azziz-Baumgartner, Eduardo; Bausch, Daniel G; Schildgen, Verena; Schildgen, Oliver; Montgomery, Joel M

    2015-11-01

    We present findings describing the epidemiology of non-severe acute respiratory syndrome human coronavirus-associated influenza-like illness from a population-based active follow-up study in four different regions of Peru. In 2010, the prevalence of infections by human coronaviruses 229E, OC43, NL63, or HKU1 was 6.4% in participants with influenza-like illness who tested negative for influenza viruses. Ten of 11 human coronavirus infections were identified in the fall-winter season. Human coronaviruses are present in different regions of Peru and are relatively frequently associated with influenza-like illness in Peru. PMID:26324726

  12. Discovery of SLC3A2 Cell Membrane Protein as a Potential Gastric Cancer Biomarker: Implications in Molecular Imaging

    PubMed Central

    Yang, Yixuan; Toy, Weiyi; Choong, Lee Yee; Hou, Peiling; Ashktorab, Hassan; Smoot, Duane T; Yeoh, Khay Guan; Lim, Yoon Pin

    2013-01-01

    Despite decreasing incidence and mortality, gastric cancer remains the second leading cause of cancer-related deaths in the world. Successful management of gastric cancer is hampered by lack of highly sensitive and specific biomarkers especially for early cancer detection. Cell surface proteins that are aberrantly expressed between normal and cancer cells are potentially useful for cancer imaging and therapy due to easy accessibility of these targets. Combining two-phase partition and isobaric tags for relative and absolute quantification methods, we compared the relative expression levels of membrane proteins between noncancer and gastric cancer cells. About 33% of the data set was found to be plasma membrane and associated proteins using this approach (compared to only 11% in whole cell analysis), several of which have never been previously implicated in gastric cancer. Upregulation of SLC3A2 in gastric cancer cells was validated by immunoblotting of a panel of 13 gastric cancer cell lines and immunohistochemistry on tissue microarrays comprising 85 matched pairs of normal and tumor tissues. Immunofluorescence and immunohistochemistry both confirmed the plasma membrane localization of SLC3A2 in gastric cancer cells. The data supported the notion that SLC3A2 is a potential biomarker that could be exploited for molecular imaging-based detection of gastric cancer. PMID:23116296

  13. Secreted Frizzled-related protein-2 (sFRP2) augments canonical Wnt3a-induced signaling

    SciTech Connect

    Marschall, Zofia von; Fisher, Larry W.

    2010-09-24

    Research highlights: {yields} sFRP2 enhances the Wnt3a-induced {beta}-catenin stabilization and its nuclear translocation. {yields} sFRP2 enhances LRP6 phosphorylation and Wnt3a/{beta}-catenin transcriptional reporter activity. {yields} Dickkopf-1 (DKK1) fully antagonizes both Wnt3a/sFRP2-induced LRP6 phosphorylation and transcriptional activity. {yields} sFRP2 enhances expression of genes known to be regulated by Wnt3a signaling. -- Abstract: Secreted Frizzled-related proteins (sFRP) are involved in embryonic development as well as pathological conditions including bone and myocardial disorders and cancer. Because of their sequence homology with the Wnt-binding domain of Frizzled, they have generally been considered antagonists of canonical Wnt signaling. However, additional activities of various sFRPs including both synergism and mimicry of Wnt signaling as well as functions other than modulation of Wnt signaling have been reported. Using human embryonic kidney cells (HEK293A), we found that sFRP2 enhanced Wnt3a-dependent phosphorylation of LRP6 as well as both cytosolic {beta}-catenin levels and its nuclear translocation. While addition of recombinant sFRP2 had no activity by itself, Top/Fop luciferase reporter assays showed a dose-dependent increase of Wnt3a-mediated transcriptional activity. sFRP2 enhancement of Wnt3a signaling was abolished by treatment with the Wnt antagonist, Dickkopf-1 (DKK1). Wnt-signaling pathway qPCR arrays showed that sFRP2 enhanced the Wnt3a-mediated transcriptional up-regulation of several genes regulated by Wnt3a including its antagonists, DKK1, and Naked cuticle-1 homolog (NKD1). These results support sFRP2's role as an enhancer of Wnt/{beta}-catenin signaling, a result with biological impact for both normal development and diverse pathologies such as tumorigenesis.

  14. Sequence comparison of porcine respiratory coronavirus isolates reveals heterogeneity in the S, 3, and 3-1 genes.

    PubMed Central

    Vaughn, E M; Halbur, P G; Paul, P S

    1995-01-01

    Four new porcine respiratory coronavirus (PRCV) isolates were genetically characterized. Subgenomic mRNA patterns and the nucleotide sequences of the 5' ends of the S genes, the open reading frame (ORF) 3/3a genes, and the ORF 3-1/3b genes of these PRCV isolates were determined and compared with those of other PRCV and transmissible gastroenteritis virus (TGEV) isolates. The S, ORF 3/3a, and ORF 3-1/3b genes are under intense study because of their possible roles in determining tissue tropism and virulence. Northern (RNA) blot analysis of subgenomic mRNAs revealed that mRNA 2, which encodes for the S gene, of the PRCV isolates migrated faster than the mRNA 2 of TGEV. The PRCV isolates AR310 and LEPP produced eight subgenomic mRNA species, the same number as produced by the virulent Miller strain of TGEV. However, the PRCV isolates IA1894 and ISU-1 produced only seven subgenomic mRNA species. All four of the PRCV isolates were found to have a large in-frame deletion in the 5' end of the S gene; however, the size and location of the deletion varied. Analysis of the ORF 3/3a gene nucleotide sequences from the four PRCV isolates also showed a high degree of variability in this area. The ORF 3 gene of the PRCV isolates AR310 and LEPP was preceded by a CTAAAC leader RNA-binding site, and the ORF 3 gene was predicted to yield a protein of 72 amino acids, the same size as that of the virulent Miller strain of TGEV. The PRCV isolates AR310 and LEPP are the first PRCV isolates found to have an intact ORF 3 gene. The ORF 3a gene of the PRCV isolate IA1894 was preceded by a CTAAAC leader RNA-binding site and was predicted to yield a truncated protein of 54 amino acids due to a 23-nucleotide deletion. The CTAAAC leader RNA-binding site and ATG start codon of ORF 3 gene of the PRCV isolate ISU-1 were removed because of a 168-nucleotide deletion. Analysis of the ORF 3-1/3b gene nucleotide sequences from the four PRCV nucleotides isolates also showed variability. PMID:7707547

  15. Npl3, a new link between RNA-binding proteins and the maintenance of genome integrity

    PubMed Central

    Santos-Pereira, José M; Herrero, Ana B; Moreno, Sergio; Aguilera, Andrés

    2014-01-01

    The mRNA is co-transcriptionally bound by a number of RNA-binding proteins (RBPs) that contribute to its processing and formation of an export-competent messenger ribonucleoprotein particle (mRNP). In the last few years, increasing evidence suggests that RBPs play a key role in preventing transcription-associated genome instability. Part of this instability is mediated by the accumulation of co-transcriptional R loops, which may impair replication fork (RF) progression due to collisions between transcription and replication machineries. In addition, some RBPs have been implicated in DNA repair and/or the DNA damage response (DDR). Recently, the Npl3 protein, one of the most abundant heterogeneous nuclear ribonucleoproteins (hnRNPs) in yeast, has been shown to prevent transcription-associated genome instability and accumulation of RF obstacles, partially associated with R-loop formation. Interestingly, Npl3 seems to have additional functions in DNA repair, and npl3∆ mutants are highly sensitive to genotoxic agents, such as the antitumor drug trabectedin. Here we discuss the role of Npl3 in particular, and RBPs in general, in the connection of transcription with replication and genome instability, and its effect on the DDR. PMID:24694687

  16. Activator of G protein signaling 3: a gatekeeper of cocaine sensitization and drug seeking.

    PubMed

    Bowers, M Scott; McFarland, Krista; Lake, Russell W; Peterson, Yuri K; Lapish, Christopher C; Gregory, Mary Lee; Lanier, Stephen M; Kalivas, Peter W

    2004-04-22

    Chronic cocaine administration reduces G protein signaling efficacy. Here, we report that the expression of AGS3, which binds to GialphaGDP and inhibits GDP dissociation, was upregulated in the prefrontal cortex (PFC) during late withdrawal from repeated cocaine administration. Increased AGS3 was mimicked in the PFC of drug-naive rats by microinjecting a peptide containing the Gialpha binding domain (GPR) of AGS3 fused to the cell permeability domain of HIV-Tat. Infusion of Tat-GPR mimicked the phenotype of chronic cocaine-treated rats by manifesting sensitized locomotor behavior and drug seeking and by increasing glutamate transmission in nucleus accumbens. By preventing cocaine withdrawal-induced AGS3 expression with antisense oligonucleotides, signaling through Gialpha was normalized, and both cocaine-induced relapse to drug seeking and locomotor sensitization were prevented. When antisense oligonucleotide infusion was discontinued, drug seeking and sensitization were restored. It is proposed that AGS3 gates the expression of cocaine-induced plasticity by regulating G protein signaling in the PFC. PMID:15091342

  17. Signal transduction by Tga3, a novel G protein alpha subunit of Trichoderma atroviride.

    PubMed

    Zeilinger, Susanne; Reithner, Barbara; Scala, Valeria; Peissl, Isabel; Lorito, Matteo; Mach, Robert L

    2005-03-01

    Trichoderma species are used commercially as biocontrol agents against a number of phytopathogenic fungi due to their mycoparasitic characterisitics. The mycoparasitic response is induced when Trichoderma specifically recognizes the presence of the host fungus and transduces the host-derived signals to their respective regulatory targets. We made deletion mutants of the tga3 gene of Trichoderma atroviride, which encodes a novel G protein alpha subunit that belongs to subgroup III of fungal Galpha proteins. Deltatga3 mutants had changes in vegetative growth, conidiation, and conidial germination and reduced intracellular cyclic AMP levels. These mutants were avirulent in direct confrontation assays with Rhizoctonia solani or Botrytis cinerea, and mycoparasitism-related infection structures were not formed. When induced with colloidal chitin or N-acetylglucosamine in liquid culture, the mutants had reduced extracellular chitinase activity even though the chitinase-encoding genes ech42 and nag1 were transcribed at a significantly higher rate than they were in the wild type. Addition of exogenous cyclic AMP did not suppress the altered phenotype or restore mycoparasitic overgrowth, although it did restore the ability to produce the infection structures. Thus, T. atroviride Tga3 has a general role in vegetative growth and can alter mycoparasitism-related characteristics, such as infection structure formation and chitinase gene expression. PMID:15746364

  18. Protein Delivery of an Artificial Transcription Factor Restores Widespread Ube3a Expression in an Angelman Syndrome Mouse Brain.

    PubMed

    Bailus, Barbara J; Pyles, Benjamin; McAlister, Michelle M; O'Geen, Henriette; Lockwood, Sarah H; Adams, Alexa N; Nguyen, Jennifer Trang T; Yu, Abigail; Berman, Robert F; Segal, David J

    2016-03-01

    Angelman syndrome (AS) is a neurological genetic disorder caused by loss of expression of the maternal copy of UBE3A in the brain. Due to brain-specific genetic imprinting at this locus, the paternal UBE3A is silenced by a long antisense transcript. Inhibition of the antisense transcript could lead to unsilencing of paternal UBE3A, thus providing a therapeutic approach for AS. However, widespread delivery of gene regulators to the brain remains challenging. Here, we report an engineered zinc finger-based artificial transcription factor (ATF) that, when injected i.p. or s.c., crossed the blood-brain barrier and increased Ube3a expression in the brain of an adult mouse model of AS. The factor displayed widespread distribution throughout the brain. Immunohistochemistry of both the hippocampus and cerebellum revealed an increase in Ube3a upon treatment. An ATF containing an alternative DNA-binding domain did not activate Ube3a. We believe this to be the first report of an injectable engineered zinc finger protein that can cause widespread activation of an endogenous gene in the brain. These observations have important implications for the study and treatment of AS and other neurological disorders. PMID:26727042

  19. Protein Delivery of an Artificial Transcription Factor Restores Widespread Ube3a Expression in an Angelman Syndrome Mouse Brain

    PubMed Central

    Bailus, Barbara J; Pyles, Benjamin; McAlister, Michelle M; O'Geen, Henriette; Lockwood, Sarah H; Adams, Alexa N; Nguyen, Jennifer Trang T; Yu, Abigail; Berman, Robert F; Segal, David J

    2016-01-01

    Angelman syndrome (AS) is a neurological genetic disorder caused by loss of expression of the maternal copy of UBE3A in the brain. Due to brain-specific genetic imprinting at this locus, the paternal UBE3A is silenced by a long antisense transcript. Inhibition of the antisense transcript could lead to unsilencing of paternal UBE3A, thus providing a therapeutic approach for AS. However, widespread delivery of gene regulators to the brain remains challenging. Here, we report an engineered zinc finger-based artificial transcription factor (ATF) that, when injected i.p. or s.c., crossed the blood–brain barrier and increased Ube3a expression in the brain of an adult mouse model of AS. The factor displayed widespread distribution throughout the brain. Immunohistochemistry of both the hippocampus and cerebellum revealed an increase in Ube3a upon treatment. An ATF containing an alternative DNA-binding domain did not activate Ube3a. We believe this to be the first report of an injectable engineered zinc finger protein that can cause widespread activation of an endogenous gene in the brain. These observations have important implications for the study and treatment of AS and other neurological disorders. PMID:26727042

  20. Recombinant Canine Coronaviruses Related to Transmissible Gastroenteritis Virus of Swine Are Circulating in Dogs▿

    PubMed Central

    Decaro, Nicola; Mari, Viviana; Campolo, Marco; Lorusso, Alessio; Camero, Michele; Elia, Gabriella; Martella, Vito; Cordioli, Paolo; Enjuanes, Luis; Buonavoglia, Canio

    2009-01-01

    Four canine coronavirus type II (CCoV-II) strains were identified in the guts and internal organs of pups which had died of acute gastroenteritis. The CCoV-II strains were strictly related to porcine transmissible gastroenteritis virus (TGEV) in the N-terminal domain of the spike protein, whereas in the other parts of the genome, a higher genetic relatedness to recent CCoV-II isolates was observed. Experimental infection of dogs with a TGEV-like isolate induced mild gastroenteritis without any systemic involvement. By virus neutralization tests, antigenic differences between reference and TGEV-like CCoVs were found. Our data support the potential recombinant origin of the TGEV-like CCoVs. PMID:19036814

  1. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human

    PubMed Central

    Song, Huai-Dong; Tu, Chang-Chun; Zhang, Guo-Wei; Wang, Sheng-Yue; Zheng, Kui; Lei, Lian-Cheng; Chen, Qiu-Xia; Gao, Yu-Wei; Zhou, Hui-Qiong; Xiang, Hua; Zheng, Hua-Jun; Chern, Shur-Wern Wang; Cheng, Feng; Pan, Chun-Ming; Xuan, Hua; Chen, Sai-Juan; Luo, Hui-Ming; Zhou, Duan-Hua; Liu, Yu-Fei; He, Jian-Feng; Qin, Peng-Zhe; Li, Ling-Hui; Ren, Yu-Qi; Liang, Wen-Jia; Yu, Ye-Dong; Anderson, Larry; Wang, Ming; Xu, Rui-Heng; Wu, Xin-Wei; Zheng, Huan-Ying; Chen, Jin-Ding; Liang, Guodong; Gao, Yang; Liao, Ming; Fang, Ling; Jiang, Li-Yun; Li, Hui; Chen, Fang; Di, Biao; He, Li-Juan; Lin, Jin-Yan; Tong, Suxiang; Kong, Xiangang; Du, Lin; Hao, Pei; Tang, Hua; Bernini, Andrea; Yu, Xiao-Jing; Spiga, Ottavia; Guo, Zong-Ming; Pan, Hai-Yan; He, Wei-Zhong; Manuguerra, Jean-Claude; Fontanet, Arnaud; Danchin, Antoine; Niccolai, Neri; Li, Yi-Xue; Wu, Chung-I; Zhao, Guo-Ping

    2005-01-01

    The genomic sequences of severe acute respiratory syndrome coronaviruses from human and palm civet of the 2003/2004 outbreak in the city of Guangzhou, China, were nearly identical. Phylogenetic analysis suggested an independent viral invasion from animal to human in this new episode. Combining all existing data but excluding singletons, we identified 202 single-nucleotide variations. Among them, 17 are polymorphic in palm civets only. The ratio of nonsynonymous/synonymous nucleotide substitution in palm civets collected 1 yr apart from different geographic locations is very high, suggesting a rapid evolving process of viral proteins in civet as well, much like their adaptation in the human host in the early 2002–2003 epidemic. Major genetic variations in some critical genes, particularly the Spike gene, seemed essential for the transition from animal-to-human transmission to human-to-human transmission, which eventually caused the first severe acute respiratory syndrome outbreak of 2002/2003. PMID:15695582

  2. LRAD3, a Novel LDL Receptor Family Member that Modulates Amyloid Precursor Protein Trafficking

    PubMed Central

    Ranganathan, Sripriya; Noyes, Nathaniel C.; Migliorini, Mary; Winkles, Jeffrey A.; Battey, Frances D.; Hyman, Bradley T.; Smith, Elizabeth; Yepes, Manuel; Mikhailenko, Irina; Strickland, Dudley K.

    2011-01-01

    We have identified a novel LDL receptor family member, termed LDL receptor class A domain containing 3 (LRAD3), which is expressed in neurons. The LRAD3 gene encodes an approximately 50 kDa type I transmembrane receptor with an ectodomain containing three LDLa repeats, a transmembrane domain and a cytoplasmic domain containing a conserved dileucine internalization motif and two polyproline motifs with potential to interact with WW domain containing proteins. Immunohistochemical analysis of mouse brain reveals LRAD3 expression in the cortex and hippocampus. In the mouse hippocampal derived cell line, HT22, LRAD3 partially co-localizes with amyloid precursor protein (APP), and interacts with APP as revealed by co-immunoprecipitation experiments. To identify the portion of APP that interacts with LRAD3, we employed solid phase binding assays which demonstrated that LRAD3 failed to bind to a soluble APP fragment (sAPPα) released following α-secretase cleavage. In contrast, C99, the β-secretase product that remains cell associated, co-precipitated with LRAD3, confirming that regions within this portion of APP are important for associating with LRAD3. The association of LRAD3 with APP increases the amyloidogenic pathway of APP processing, resulting in a decrease in sAPPα production and increased Aβ peptide production. Pulse-chase experiments confirm that LRAD3 expression significantly decreases the cellular half-live of mature APP. These results reveal that LRAD3 influences APP processing and raises the possibility that LRAD3 alters APP function in neurons including its downstream signaling. PMID:21795536

  3. A phase trial of the oral Lactobacillus casei vaccine polarizes Th2 cell immunity against transmissible gastroenteritis coronavirus infection.

    PubMed

    Jiang, Xinpeng; Hou, Xingyu; Tang, Lijie; Jiang, Yanping; Ma, Guangpeng; Li, Yijing

    2016-09-01

    Transmissible gastroenteritis coronavirus (TGEV) is a member of the genus Coronavirus, family Coronaviridae, order Nidovirales. TGEV is an enteropathogenic coronavirus that causes highly fatal acute diarrhoea in newborn pigs. An oral Lactobacillus casei (L. casei) vaccine against anti-transmissible gastroenteritis virus developed in our laboratory was used to study mucosal immune responses. In this L. casei vaccine, repetitive peptides expressed by L. casei (specifically the MDP and tuftsin fusion protein (MT)) were repeated 20 times and the D antigenic site of the TGEV spike (S) protein was repeated 6 times. Immunization with recombinant Lactobacillus is crucial for investigations of the effect of immunization, such as the first immunization time and dose. The first immunization is more important than the last immunization in the series. The recombinant Lactobacillus elicited specific systemic and mucosal immune responses. Recombinant L. casei had a strong potentiating effect on the cellular immunity induced by the oral L. casei vaccine. However, during TGEV infection, the systemic and local immune responses switched from Th1 to Th2-based immune responses. The systemic humoral immune response was stronger than the cellular immune response after TGEV infection. We found that the recombinant Lactobacillus stimulated IL-17 expression in both the systemic and mucosal immune responses against TGEV infection. Furthermore, the Lactobacillus vaccine stimulated an anti-TGEV infection Th17 pathway. The histopathological examination showed tremendous potential for recombinant Lactobacillus to enable rapid and effective treatment for TGEV with an intestinal tropism in piglets. The TGEV immune protection was primarily dependent on mucosal immunity. PMID:27020282

  4. Crystal Structure of CCM3, a Cerebral Cavernous Malformation Protein Critical for Vascular Integrity

    SciTech Connect

    Li, X.; Zhang, R; Zhang, H; He, Y; Ji, W; Min, W; Boggon, T

    2010-01-01

    CCM3 mutations are associated with cerebral cavernous malformation (CCM), a disease affecting 0.1-0.5% of the human population. CCM3 (PDCD10, TFAR15) is thought to form a CCM complex with CCM1 and CCM2; however, the molecular basis for these interactions is not known. We have determined the 2.5 {angstrom} crystal structure of CCM3. This structure shows an all {alpha}-helical protein containing two domains, an N-terminal dimerization domain with a fold not previously observed, and a C-terminal focal adhesion targeting (FAT)-homology domain. We show that CCM3 binds CCM2 via this FAT-homology domain and that mutation of a highly conserved FAK-like hydrophobic pocket (HP1) abrogates CCM3-CCM2 interaction. This CCM3 FAT-homology domain also interacts with paxillin LD motifs using the same surface, and partial CCM3 co-localization with paxillin in cells is lost on HP1 mutation. Disease-related CCM3 truncations affect the FAT-homology domain suggesting a role for the FAT-homology domain in the etiology of CCM.

  5. Crystal Structure of CCM3, a Cerebral Cavernous Malformation Protein Critical for Vascular Integrity*

    PubMed Central

    Li, Xiaofeng; Zhang, Rong; Zhang, Haifeng; He, Yun; Ji, Weidong; Min, Wang; Boggon, Titus J.

    2010-01-01

    CCM3 mutations are associated with cerebral cavernous malformation (CCM), a disease affecting 0.1–0.5% of the human population. CCM3 (PDCD10, TFAR15) is thought to form a CCM complex with CCM1 and CCM2; however, the molecular basis for these interactions is not known. We have determined the 2.5 Å crystal structure of CCM3. This structure shows an all α-helical protein containing two domains, an N-terminal dimerization domain with a fold not previously observed, and a C-terminal focal adhesion targeting (FAT)-homology domain. We show that CCM3 binds CCM2 via this FAT-homology domain and that mutation of a highly conserved FAK-like hydrophobic pocket (HP1) abrogates CCM3-CCM2 interaction. This CCM3 FAT-homology domain also interacts with paxillin LD motifs using the same surface, and partial CCM3 co-localization with paxillin in cells is lost on HP1 mutation. Disease-related CCM3 truncations affect the FAT-homology domain suggesting a role for the FAT-homology domain in the etiology of CCM. PMID:20489202

  6. Cerebral pyogranuloma associated with systemic coronavirus infection in a ferret.

    PubMed

    Gnirs, K; Quinton, J F; Dally, C; Nicolier, A; Ruel, Y

    2016-01-01

    A 2-year-old male ferret was presented with central nervous system signs. Computed tomography (CT) of the brain revealed a well-defined contrast-enhancing lesion on the rostral forebrain that appeared extraparenchymal. Surgical excision of the mass was performed and the ferret was euthanised during the procedure. Histopathology of the excised mass showed multiple meningeal nodular lesions with infiltrates of epithelioid macrophages, occasionally centred on degenerated neutrophils and surrounded by a broad rim of plasma cells, features consistent with pyogranulomatous meningitis. The histopathological features in this ferret were similar to those in cats with feline infectious peritonitis. Definitive diagnosis was assessed by immunohistochemistry, confirming a ferret systemic coronavirus (FSCV) associated disease. This is the first case of coronavirus granuloma described on CT-scan in the central nervous system of a ferret. PMID:26046449

  7. Role of sialic acids in feline enteric coronavirus infections.

    PubMed

    Desmarets, Lowiese M B; Theuns, Sebastiaan; Roukaerts, Inge D M; Acar, Delphine D; Nauwynck, Hans J

    2014-09-01

    To initiate infections, many coronaviruses use sialic acids, either as receptor determinants or as attachment factors helping the virus find its receptor underneath the heavily glycosylated mucus layer. In the present study, the role of sialic acids in serotype I feline enteric coronavirus (FECV) infections was studied in feline intestinal epithelial cell cultures. Treatment of cells with neuraminidase (NA) enhanced infection efficiency, showing that terminal sialic acid residues on the cell surface were not receptor determinants and even hampered efficient virus-receptor engagement. Knowing that NA treatment of coronaviruses can unmask viral sialic acid binding activity, replication of untreated and NA-treated viruses was compared, showing that NA treatment of the virus enhanced infectivity in untreated cells, but was detrimental in NA-treated cells. By using sialylated compounds as competitive inhibitors, it was demonstrated that sialyllactose (2,6-α-linked over 2,3-α-linked) notably reduced infectivity of NA-treated viruses, whereas bovine submaxillary mucin inhibited both treated and untreated viruses. In desialylated cells, however, viruses were less prone to competitive inhibition with sialylated compounds. In conclusion, this study demonstrated that FECV had a sialic acid binding capacity, which was partially masked by virus-associated sialic acids, and that attachment to sialylated compounds could facilitate enterocyte infections. However, sialic acid binding was not a prerequisite for the initiation of infection and virus-receptor engagement was even more efficient after desialylation of cells, indicating that FECV requires sialidases for efficient enterocyte infections. PMID:24876305

  8. Detection of coronaviruses in bats of various species in Italy.

    PubMed

    Lelli, Davide; Papetti, Alice; Sabelli, Cristiano; Rosti, Enrica; Moreno, Ana; Boniotti, Maria B

    2013-11-01

    Bats are natural reservoirs for many mammalian coronaviruses, which have received renewed interest after the discovery of the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) CoV in humans. This study describes the identification and molecular characterization of alphacoronaviruses and betacoronaviruses in bats in Italy, from 2010 to 2012. Sixty-nine faecal samples and 126 carcasses were tested using pan-coronavirus RT-PCR. Coronavirus RNAs were detected in seven faecal samples and nine carcasses. A phylogenetic analysis of RNA-dependent RNA polymerase sequence fragments aided in identifying two alphacoronaviruses from Kuhl's pipistrelle (Pipistrellus kuhlii), three clade 2b betacoronaviruses from lesser horseshoe bats (Rhinolophus hipposideros), and 10 clade 2c betacoronaviruses from Kuhl's pipistrelle, common noctule (Nyctalus noctula), and Savi's pipistrelle (Hypsugo savii). This study fills a substantive gap in the knowledge on bat-CoV ecology in Italy, and extends the current knowledge on clade 2c betacoronaviruses with new sequences obtained from bats that have not been previously described as hosts of these viruses. PMID:24184965

  9. Detection of Coronaviruses in Bats of Various Species in Italy

    PubMed Central

    Lelli, Davide; Papetti, Alice; Sabelli, Cristiano; Rosti, Enrica; Moreno, Ana; Boniotti, Maria B.

    2013-01-01

    Bats are natural reservoirs for many mammalian coronaviruses, which have received renewed interest after the discovery of the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) CoV in humans. This study describes the identification and molecular characterization of alphacoronaviruses and betacoronaviruses in bats in Italy, from 2010 to 2012. Sixty-nine faecal samples and 126 carcasses were tested using pan-coronavirus RT-PCR. Coronavirus RNAs were detected in seven faecal samples and nine carcasses. A phylogenetic analysis of RNA-dependent RNA polymerase sequence fragments aided in identifying two alphacoronaviruses from Kuhl’s pipistrelle (Pipistrellus kuhlii), three clade 2b betacoronaviruses from lesser horseshoe bats (Rhinolophus hipposideros), and 10 clade 2c betacoronaviruses from Kuhl’s pipistrelle, common noctule (Nyctalus noctula), and Savi’s pipistrelle (Hypsugo savii). This study fills a substantive gap in the knowledge on bat-CoV ecology in Italy, and extends the current knowledge on clade 2c betacoronaviruses with new sequences obtained from bats that have not been previously described as hosts of these viruses. PMID:24184965

  10. Identification and Characterization of a Novel Alpaca Respiratory Coronavirus Most Closely Related to the Human Coronavirus 229E

    PubMed Central

    Crossley, Beate M.; Mock, Richard E.; Callison, Scott A.; Hietala, Sharon K.

    2012-01-01

    In 2007, a novel coronavirus associated with an acute respiratory disease in alpacas (Alpaca Coronavirus, ACoV) was isolated. Full-length genomic sequencing of the ACoV demonstrated the genome to be consistent with other Alphacoronaviruses. A putative additional open-reading frame was identified between the nucleocapsid gene and 3'UTR. The ACoV was genetically most similar to the common human coronavirus (HCoV) 229E with 92.2% nucleotide identity over the entire genome. A comparison of spike gene sequences from ACoV and from HCoV-229E isolates recovered over a span of five decades showed the ACoV to be most similar to viruses isolated in the 1960’s to early 1980’s. The true origin of the ACoV is unknown, however a common ancestor between the ACoV and HCoV-229E appears to have existed prior to the 1960’s, suggesting virus transmission, either as a zoonosis or anthroponosis, has occurred between alpacas and humans. PMID:23235471

  11. Coronavirus Nsp10, a Critical Co-factor for Activation of Multiple Replicative Enzymes*

    PubMed Central

    Bouvet, Mickaël; Lugari, Adrien; Posthuma, Clara C.; Zevenhoven, Jessika C.; Bernard, Stéphanie; Betzi, Stéphane; Imbert, Isabelle; Canard, Bruno; Guillemot, Jean-Claude; Lécine, Patrick; Pfefferle, Susanne; Drosten, Christian; Snijder, Eric J.; Decroly, Etienne; Morelli, Xavier

    2014-01-01

    The RNA-synthesizing machinery of the severe acute respiratory syndrome Coronavirus (SARS-CoV) is composed of 16 non-structural proteins (nsp1–16) encoded by ORF1a/1b. The 148-amino acid nsp10 subunit contains two zinc fingers and is known to interact with both nsp14 and nsp16, stimulating their respective 3′-5′ exoribonuclease and 2′-O-methyltransferase activities. Using alanine-scanning mutagenesis, in cellulo bioluminescence resonance energy transfer experiments, and in vitro pulldown assays, we have now identified the key residues on the nsp10 surface that interact with nsp14. The functional consequences of mutations introduced at these positions were first evaluated biochemically by monitoring nsp14 exoribonuclease activity. Disruption of the nsp10-nsp14 interaction abrogated the nsp10-driven activation of the nsp14 exoribonuclease. We further showed that the nsp10 surface interacting with nsp14 overlaps with the surface involved in the nsp10-mediated activation of nsp16 2′-O-methyltransferase activity, suggesting that nsp10 is a major regulator of SARS-CoV replicase function. In line with this notion, reverse genetics experiments supported an essential role of the nsp10 surface that interacts with nsp14 in SARS-CoV replication, as several mutations that abolished the interaction in vitro yielded a replication-negative viral phenotype. In contrast, mutants in which the nsp10-nsp16 interaction was disturbed proved to be crippled but viable. These experiments imply that the nsp10 surface that interacts with nsp14 and nsp16 and possibly other subunits of the viral replication complex may be a target for the development of antiviral compounds against pathogenic coronaviruses. PMID:25074927

  12. Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes.

    PubMed

    Bouvet, Mickaël; Lugari, Adrien; Posthuma, Clara C; Zevenhoven, Jessika C; Bernard, Stéphanie; Betzi, Stéphane; Imbert, Isabelle; Canard, Bruno; Guillemot, Jean-Claude; Lécine, Patrick; Pfefferle, Susanne; Drosten, Christian; Snijder, Eric J; Decroly, Etienne; Morelli, Xavier

    2014-09-12

    The RNA-synthesizing machinery of the severe acute respiratory syndrome Coronavirus (SARS-CoV) is composed of 16 non-structural proteins (nsp1-16) encoded by ORF1a/1b. The 148-amino acid nsp10 subunit contains two zinc fingers and is known to interact with both nsp14 and nsp16, stimulating their respective 3'-5' exoribonuclease and 2'-O-methyltransferase activities. Using alanine-scanning mutagenesis, in cellulo bioluminescence resonance energy transfer experiments, and in vitro pulldown assays, we have now identified the key residues on the nsp10 surface that interact with nsp14. The functional consequences of mutations introduced at these positions were first evaluated biochemically by monitoring nsp14 exoribonuclease activity. Disruption of the nsp10-nsp14 interaction abrogated the nsp10-driven activation of the nsp14 exoribonuclease. We further showed that the nsp10 surface interacting with nsp14 overlaps with the surface involved in the nsp10-mediated activation of nsp16 2'-O-methyltransferase activity, suggesting that nsp10 is a major regulator of SARS-CoV replicase function. In line with this notion, reverse genetics experiments supported an essential role of the nsp10 surface that interacts with nsp14 in SARS-CoV replication, as several mutations that abolished the interaction in vitro yielded a replication-negative viral phenotype. In contrast, mutants in which the nsp10-nsp16 interaction was disturbed proved to be crippled but viable. These experiments imply that the nsp10 surface that interacts with nsp14 and nsp16 and possibly other subunits of the viral replication complex may be a target for the development of antiviral compounds against pathogenic coronaviruses. PMID:25074927

  13. 3K3A-activated protein C stimulates postischemic neuronal repair by human neural stem cells in mice.

    PubMed

    Wang, Yaoming; Zhao, Zhen; Rege, Sanket V; Wang, Min; Si, Gabriel; Zhou, Yi; Wang, Su; Griffin, John H; Goldman, Steven A; Zlokovic, Berislav V

    2016-09-01

    Activated protein C (APC) is a blood protease with anticoagulant activity and cell-signaling activities mediated by the activation of protease-activated receptor 1 (F2R, also known as PAR1) and F2RL1 (also known as PAR3) via noncanonical cleavage. Recombinant variants of APC, such as the 3K3A-APC (Lys191-193Ala) mutant in which three Lys residues (KKK191-193) were replaced with alanine, and/or its other mutants with reduced (>90%) anticoagulant activity, engineered to reduce APC-associated bleeding risk while retaining normal cell-signaling activity, have shown benefits in preclinical models of ischemic stroke, brain trauma, multiple sclerosis, amyotrophic lateral sclerosis, sepsis, ischemic and reperfusion injury of heart, kidney and liver, pulmonary, kidney and gastrointestinal inflammation, diabetes and lethal body radiation. On the basis of proof-of-concept studies and an excellent safety profile in humans, 3K3A-APC has advanced to clinical trials as a neuroprotectant in ischemic stroke. Recently, 3K3A-APC has been shown to stimulate neuronal production by human neural stem and progenitor cells (NSCs) in vitro via a PAR1-PAR3-sphingosine-1-phosphate-receptor 1-Akt pathway, which suggests the potential for APC-based treatment as a strategy for structural repair in the human central nervous (CNS) system. Here we report that late postischemic treatment of mice with 3K3A-APC stimulates neuronal production by transplanted human NSCs, promotes circuit restoration and improves functional recovery. Thus, 3K3A-APC-potentiated neuronal recruitment from engrafted NSCs might offer a new approach to the treatment of stroke and related neurological disorders. PMID:27548576

  14. Susceptibility to viral infection is enhanced by stable expression of 3A or 3AB proteins from foot-and-mouth disease virus

    SciTech Connect

    Rosas, Maria F.; Vieira, Yuri A.; Postigo, Raul; Martin-Acebes, Miguel A.; Armas-Portela, Rosario; Martinez-Salas, Encarnacion; Sobrino, Francisco

    2008-10-10

    The foot-and-mouth disease virus (FMDV) 3A protein is involved in virulence and host range. A distinguishing feature of FMDV 3B among picornaviruses is that three non-identical copies are encoded in the viral RNA and required for optimal replication in cell culture. Here, we have studied the involvement of the 3AB region on viral infection using constitutive and transient expression systems. BHK-21 stably transformed clones expressed low levels of FMDV 3A or 3A(B) proteins in the cell cytoplasm. Transformed cells stably expressing these proteins did not exhibit inner cellular rearrangements detectable by electron microscope analysis. Upon FMDV infection, clones expressing either 3A alone or 3A(B) proteins showed a significant increase in the percentage of infected cells, the number of plaque forming units and the virus yield. The 3A-enhancing effect was specific for FMDV as no increase in viral multiplication was observed in transformed clones infected with another picornavirus, encephalomyocarditis virus, or the negative-strand RNA virus vesicular stomatitis virus. A potential role of 3A protein in viral RNA translation was discarded by the lack of effect on FMDV IRES-dependent translation. Increased viral susceptibility was not caused by a released factor; neither the supernatant of transformed clones nor the addition of purified 3A protein to the infection medium was responsible for this effect. Unlike stable expression, high levels of 3A or 3A(B) protein transient expression led to unspecific inhibition of viral infection. Therefore, the effect observed on viral yield, which inversely correlated with the intracellular levels of 3A protein, suggests a transacting role operating on the FMDV multiplication cycle.

  15. Mutations in Encephalomyocarditis Virus 3A Protein Uncouple the Dependency of Genome Replication on Host Factors Phosphatidylinositol 4-Kinase IIIα and Oxysterol-Binding Protein

    PubMed Central

    Dorobantu, Cristina M.; Albulescu, Lucian; Lyoo, Heyrhyoung; van Kampen, Mirjam; De Francesco, Raffaele; Lohmann, Volker; Harak, Christian; van der Schaar, Hilde M.; Strating, Jeroen R. P. M.; Gorbalenya, Alexander E.

    2016-01-01

    ABSTRACT Positive-strand RNA [(+)RNA] viruses are true masters of reprogramming host lipid trafficking and synthesis to support virus genome replication. Via their membrane-associated 3A protein, picornaviruses of the genus Enterovirus (e.g., poliovirus, coxsackievirus, and rhinovirus) subvert Golgi complex-localized phosphatidylinositol 4-kinase IIIβ (PI4KB) to generate “replication organelles” (ROs) enriched in phosphatidylinositol 4-phosphate (PI4P). PI4P lipids serve to accumulate oxysterol-binding protein (OSBP), which subsequently transfers cholesterol to the ROs in a PI4P-dependent manner. Single-point mutations in 3A render enteroviruses resistant to both PI4KB and OSBP inhibition, indicating coupled dependency on these host factors. Recently, we showed that encephalomyocarditis virus (EMCV), a picornavirus that belongs to the Cardiovirus genus, also builds PI4P/cholesterol-enriched ROs. Like the hepatitis C virus (HCV) of the Flaviviridae family, it does so by hijacking the endoplasmic reticulum (ER)-localized phosphatidylinositol 4-kinase IIIα (PI4KA). Here we provide genetic evidence for the critical involvement of EMCV protein 3A in this process. Using a genetic screening approach, we selected EMCV mutants with single amino acid substitutions in 3A, which rescued RNA virus replication upon small interfering RNA (siRNA) knockdown or pharmacological inhibition of PI4KA. In the presence of PI4KA inhibitors, the mutants no longer induced PI4P, OSBP, or cholesterol accumulation at ROs, which aggregated into large cytoplasmic clusters. In contrast to the enterovirus escape mutants, we observed little if any cross-resistance of EMCV mutants to OSBP inhibitors, indicating an uncoupled level of dependency of their RNA replication on PI4KA and OSBP activities. This report may contribute to a better understanding of the roles of PI4KA and OSBP in membrane modifications induced by (+)RNA viruses. IMPORTANCE Positive-strand RNA viruses modulate lipid

  16. Mutations in Encephalomyocarditis Virus 3A Protein Uncouple the Dependency of Genome Replication on Host Factors Phosphatidylinositol 4-Kinase IIIα and Oxysterol-Binding Protein.

    PubMed

    Dorobantu, Cristina M; Albulescu, Lucian; Lyoo, Heyrhyoung; van Kampen, Mirjam; De Francesco, Raffaele; Lohmann, Volker; Harak, Christian; van der Schaar, Hilde M; Strating, Jeroen R P M; Gorbalenya, Alexander E; van Kuppeveld, Frank J M

    2016-01-01

    Positive-strand RNA [(+)RNA] viruses are true masters of reprogramming host lipid trafficking and synthesis to support virus genome replication. Via their membrane-associated 3A protein, picornaviruses of the genus Enterovirus (e.g., poliovirus, coxsackievirus, and rhinovirus) subvert Golgi complex-localized phosphatidylinositol 4-kinase IIIβ (PI4KB) to generate "replication organelles" (ROs) enriched in phosphatidylinositol 4-phosphate (PI4P). PI4P lipids serve to accumulate oxysterol-binding protein (OSBP), which subsequently transfers cholesterol to the ROs in a PI4P-dependent manner. Single-point mutations in 3A render enteroviruses resistant to both PI4KB and OSBP inhibition, indicating coupled dependency on these host factors. Recently, we showed that encephalomyocarditis virus (EMCV), a picornavirus that belongs to the Cardiovirus genus, also builds PI4P/cholesterol-enriched ROs. Like the hepatitis C virus (HCV) of the Flaviviridae family, it does so by hijacking the endoplasmic reticulum (ER)-localized phosphatidylinositol 4-kinase IIIα (PI4KA). Here we provide genetic evidence for the critical involvement of EMCV protein 3A in this process. Using a genetic screening approach, we selected EMCV mutants with single amino acid substitutions in 3A, which rescued RNA virus replication upon small interfering RNA (siRNA) knockdown or pharmacological inhibition of PI4KA. In the presence of PI4KA inhibitors, the mutants no longer induced PI4P, OSBP, or cholesterol accumulation at ROs, which aggregated into large cytoplasmic clusters. In contrast to the enterovirus escape mutants, we observed little if any cross-resistance of EMCV mutants to OSBP inhibitors, indicating an uncoupled level of dependency of their RNA replication on PI4KA and OSBP activities. This report may contribute to a better understanding of the roles of PI4KA and OSBP in membrane modifications induced by (+)RNA viruses. IMPORTANCE Positive-strand RNA viruses modulate lipid homeostasis to

  17. Modified vaccinia virus Ankara as a vaccine against feline coronavirus: immunogenicity and efficacy.

    PubMed

    Hebben, Matthias; Duquesne, Véronique; Cronier, Joëlle; Rossi, Bernard; Aubert, André

    2004-04-01

    Feline infectious peritonitis virus (FIPV) is a coronavirus that induces a fatal systemic disease mediated by an inappropriate immune response. Most previous vaccination attempts against FIPV were unsuccessful because IgG antibodies against the surface protein enhance the infection. However, two studies have shown that poxvirus vectors (vaccinia WR and canarypox) expressing only the FIPV membrane (M) protein can elicit a partially protective immunity which is supposed to be cell-mediated (Virology 181 (1991) 327; International patent WO 97/20054 (1997)). In our study, we report the construction of another poxvirus, the modified vaccinia virus Ankara (MVA), as an expression vector for the FIPV M protein. In this vector, the M gene has been inserted downstream a strong early/late promoter, whereas the two previously described poxviruses expressed the M protein during their early stage only. The immunogenicity of the recombinant MVA-M was evaluated in the murine model which revealed an effect of the vector on the Th1/Th2 balance. The vaccine was then tested in cats to evaluate its efficacy in an FIPV 79-1146 challenge. Vaccinated kittens developed FIPV-specific antibodies after immunization, however, none of them was protected against FIPV. Our results suggest a crucial role for the type of poxviral promoter that must be used to induce an effective immune response against FIPV. PMID:15123156

  18. Prediction and biochemical analysis of putative cleavage sites of the 3C-like protease of Middle East respiratory syndrome coronavirus.

    PubMed

    Wu, Andong; Wang, Yi; Zeng, Cong; Huang, Xingyu; Xu, Shan; Su, Ceyang; Wang, Min; Chen, Yu; Guo, Deyin

    2015-10-01

    Coronavirus 3C-like protease (3CLpro) is responsible for the cleavage of coronaviral polyprotein 1a/1ab (pp1a/1ab) to produce the mature non-structural proteins (nsps) of nsp4-16. The nsp5 of the newly emerging Middle East respiratory syndrome coronavirus (MERS-CoV) was identified as 3CLpro and its canonical cleavage sites (between nsps) were predicted based on sequence alignment, but the cleavability of these cleavage sites remains to be experimentally confirmed and putative non-canonical cleavage sites (inside one nsp) within the pp1a/1ab awaits further analysis. Here, we proposed a method for predicting coronaviral 3CLpro cleavage sites which balances the prediction accuracy and false positive outcomes. By applying this method to MERS-CoV, the 11 canonical cleavage sites were readily identified and verified by the biochemical assays. The Michaelis constant of the canonical cleavage sites of MERS-CoV showed that the substrate specificity of MERS-CoV 3CLpro is relatively conserved. Interestingly, nine putative non-canonical cleavage sites were predicted and three of them could be cleaved by MERS-CoV nsp5. These results pave the way for identification and functional characterization of new nsp products of coronaviruses. PMID:26036787

  19. SARS-coronavirus spike S2 domain flanked by cysteine residues C822 and C833 is important for activation of membrane fusion

    SciTech Connect

    Madu, Ikenna G.; Belouzard, Sandrine; Whittaker, Gary R.

    2009-10-25

    The S2 domain of the coronavirus spike (S) protein is known to be responsible for mediating membrane fusion. In addition to a well-recognized cleavage site at the S1-S2 boundary, a second proteolytic cleavage site has been identified in the severe acute respiratory syndrome coronavirus (SARS-CoV) S2 domain (R797). C-terminal to this S2 cleavage site is a conserved region flanked by cysteine residues C822 and C833. Here, we investigated the importance of this well conserved region for SARS-CoV S-mediated fusion activation. We show that the residues between C822-C833 are well conserved across all coronaviruses. Mutagenic analysis of SARS-CoV S, combined with cell-cell fusion and pseudotyped virion infectivity assays, showed a critical role for the core-conserved residues C822, D830, L831, and C833. Based on available predictive models, we propose that the conserved domain flanked by cysteines 822 and 833 forms a loop structure that interacts with components of the SARS-CoV S trimer to control the activation of membrane fusion.

  20. Development of Monoclonal Antibody and Diagnostic Test for Middle East Respiratory Syndrome Coronavirus Using Cell-Free Synthesized Nucleocapsid Antigen

    PubMed Central

    Yamaoka, Yutaro; Matsuyama, Shutoku; Fukushi, Shuetsu; Matsunaga, Satoko; Matsushima, Yuki; Kuroyama, Hiroyuki; Kimura, Hirokazu; Takeda, Makoto; Chimuro, Tomoyuki; Ryo, Akihide

    2016-01-01

    Protein nativity is one of the most critical factors for the quality of antigens used as immunogens and the reactivities of the resultant antibodies. The preparation and purification of native viral antigens in conventional cell-based protein expression systems are often accompanied by technical hardships. These challenges are attributable mainly to protein aggregation and insolubility during expression and purification, as well as to very low expression levels associated with the toxicity of some viral proteins. Here, we describe a novel approach for the production of monoclonal antibodies (mAbs) against nucleocapsid protein (NP) of the Middle East respiratory syndrome coronavirus (MERS-CoV). Using a wheat germ cell-free protein synthesis system, we successfully prepared large amounts of MERS-CoV NP antigen in a state that was highly soluble and intact for immunization. Following mouse immunization and hybridoma generation, we selected seven hybridoma clones that produced mAbs with exclusive reactivity against MERS-CoV NP. Epitope mapping and subsequent bioinformatic analysis revealed that these mAbs recognized epitopes located within relatively highly conserved regions of the MERS-CoV amino-acid sequence. Consistently, the mAbs exhibited no obvious cross-reactivity with NPs derived from other related viruses, including SARS coronavirus. After determining the optimal combinations of these mAbs, we developed an enzyme-linked immunosorbent assay and a rapid immunochromatographic antigen detection test that can be reliably used for laboratory diagnosis of MERS-CoV. Thus, this study provides strong evidence that the wheat germ cell-free system is useful for the production of diagnostic mAbs against emerging pathogens. PMID:27148198

  1. Development of Monoclonal Antibody and Diagnostic Test for Middle East Respiratory Syndrome Coronavirus Using Cell-Free Synthesized Nucleocapsid Antigen.

    PubMed

    Yamaoka, Yutaro; Matsuyama, Shutoku; Fukushi, Shuetsu; Matsunaga, Satoko; Matsushima, Yuki; Kuroyama, Hiroyuki; Kimura, Hirokazu; Takeda, Makoto; Chimuro, Tomoyuki; Ryo, Akihide

    2016-01-01

    Protein nativity is one of the most critical factors for the quality of antigens used as immunogens and the reactivities of the resultant antibodies. The preparation and purification of native viral antigens in conventional cell-based protein expression systems are often accompanied by technical hardships. These challenges are attributable mainly to protein aggregation and insolubility during expression and purification, as well as to very low expression levels associated with the toxicity of some viral proteins. Here, we describe a novel approach for the production of monoclonal antibodies (mAbs) against nucleocapsid protein (NP) of the Middle East respiratory syndrome coronavirus (MERS-CoV). Using a wheat germ cell-free protein synthesis system, we successfully prepared large amounts of MERS-CoV NP antigen in a state that was highly soluble and intact for immunization. Following mouse immunization and hybridoma generation, we selected seven hybridoma clones that produced mAbs with exclusive reactivity against MERS-CoV NP. Epitope mapping and subsequent bioinformatic analysis revealed that these mAbs recognized epitopes located within relatively highly conserved regions of the MERS-CoV amino-acid sequence. Consistently, the mAbs exhibited no obvious cross-reactivity with NPs derived from other related viruses, including SARS coronavirus. After determining the optimal combinations of these mAbs, we developed an enzyme-linked immunosorbent assay and a rapid immunochromatographic antigen detection test that can be reliably used for laboratory diagnosis of MERS-CoV. Thus, this study provides strong evidence that the wheat germ cell-free system is useful for the production of diagnostic mAbs against emerging pathogens. PMID:27148198

  2. Recommendations for a Standardized Avian Coronavirus (AvCoV) Nomenclature: Outcome from Discussions Within the Framework of the European Union COST Action FA1207: "Towards Control of Avian Coronaviruses: Strategies for Vaccination, Diagnosis and Surveillance".

    PubMed

    2016-06-01

    Viruses within the Coronaviridae family show variations within their genome sequences, especially within the major structural protein, the Spike (S) glycoprotein gene. Therefore, many different antigenic forms, serotypes, or variant strains of avian coronaviruses (AvCoV) exist worldwide. Only a few of them, the so called protectotypes, cross protect against different serotypes. New serotypes arise by recombination or spontaneous mutations. From time to time, antigenic virus variants appear which differ significantly from known serotypes. The result of this variability is an inconsistent nomenclature and classification of virus strains. Furthermore, there are currently no standard classification methods defined. Within the framework of the COST Action FA1207 "Towards control of avian coronaviruses: strategies for diagnosis, surveillance, and vaccination" (working groups "Molecular virology" and "Epidemiology"), we aimed at defining and developing a unified and internationally standardized nomenclature and classification of AvCoVs. We recommend the use of "CoV Genus/AvCov/host/country/specimen id/year" to refer to AvCoV strains. PMID:27309279

  3. Submaxillary gland androgen-regulated protein 3A expression is an unfavorable risk factor for the survival of oropharyngeal squamous cell carcinoma patients after surgery.

    PubMed

    Koffler, Jennifer; Holzinger, Dana; Sanhueza, Gustavo Acuña; Flechtenmacher, Christa; Zaoui, Karim; Lahrmann, Bernd; Grabe, Niels; Plinkert, Peter K; Hess, Jochen

    2013-03-01

    Recently, increased expression of the submaxillary gland androgen-regulated protein 3A (SMR3A) was found in recurrent tumors of an orthotopic floor-of-mouth mouse tumor model after surgery. However, SMR3A expression in the pathogenesis of human malignancy and its correlation with the clinical outcome have not been addressed so far. We analyzed tissue microarrays with specimens from oropharyngeal squamous cell carcinoma (OPSCC) patients (n = 157) by immunohistochemistry and compared SMR3A expression with clinical and pathological features by statistical analysis. Strong SMR3A expression was found in almost 36 % of all primary OPSCCs. Although, SMR3A protein levels were not associated with any clinical or histopathological feature tested, univariate Kaplan-Meier analysis revealed a significant correlation between high SMR3A protein expression and poor progression-free (p = 0.02) and overall survival (p = 0.03). Furthermore, high SMR3A expression was an independent marker for poor clinical outcome [HR (SMR3A(high) vs. SMR3(low)) = 2.32; 95 % CI = 1.03-5.23] concerning overall survival in a multivariate analysis of OPSCC patients with surgery as primary therapy (n = 100). Our data demonstrate for the first time increased SMR3A protein expression in the pathogenesis of OPSCC, which serves as an unfavorable risk factor for patient survival. PMID:23053383

  4. Isolation of a coronavirus from a green-cheeked Amazon parrot (Amazon viridigenalis Cassin).

    PubMed

    Gough, Richard E; Drury, Sally E; Culver, Francesca; Britton, Paul; Cavanagh, Dave

    2006-04-01

    A virus (AV71/99) was isolated from a green-cheeked Amazon parrot by propagation and passage in both primary embryo liver cells derived from blue and yellow macaw (Ara ararauna) embryos and chicken embryo liver cells. Electron microscopic examination of cytopathic agents derived from both types of cell cultures suggested that it was a coronavirus. This was confirmed using a pan-coronavirus reverse transcriptase polymerase chain reaction that amplified part of gene 1 that encodes the RNA-dependent RNA polymerase. The deduced sequence of 66 amino acids had 66 to 74% amino acid identity with the corresponding sequence of coronaviruses in groups 1, 2 and 3. Several other oligonucleotide primer pairs that give PCR products corresponding to genes 3, 5, N and the 3'-untranslated region of infectious bronchitis virus, turkey coronavirus and pheasant coronavirus (all in group 3) failed to do so with RNA from the parrot coronavirus. This is the first demonstration of a coronavirus in a psittacine species. PMID:16595304

  5. Asymptomatic Middle East Respiratory Syndrome Coronavirus Infection in Rabbits

    PubMed Central

    van den Brand, Judith M. A.; Provacia, Lisette B.; Raj, V. Stalin; Stittelaar, Koert J.; Getu, Sarah; de Waal, Leon; Bestebroer, Theo M.; van Amerongen, Geert; Verjans, Georges M. G. M.; Fouchier, Ron A. M.; Smits, Saskia L.; Kuiken, Thijs; Osterhaus, Albert D. M. E.

    2015-01-01

    The ability of Middle East respiratory syndrome coronavirus (MERS-CoV) to infect small animal species may be restricted given the fact that mice, ferrets, and hamsters were shown to resist MERS-CoV infection. We inoculated rabbits with MERS-CoV. Although virus was detected in the lungs, neither significant histopathological changes nor clinical symptoms were observed. Infectious virus, however, was excreted from the upper respiratory tract, indicating a potential route of MERS-CoV transmission in some animal species. PMID:25810539

  6. Treatment strategies for Middle East respiratory syndrome coronavirus

    PubMed Central

    Modjarrad, Kayvon

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV), an emerging infectious disease of growing global importance, has caused severe acute respiratory disease in more than 1600 people, resulting in almost 600 deaths. The high case fatality rate, growing geographic distribution and vaguely defined epidemiology of this novel pathogen have created an urgent need for effective public health countermeasures, including safe and effective treatment strategies. Despite the relatively few numbers of cases to date, research and development of MERS-CoV therapeutic candidates is advancing quickly. This review surveys the landscape of these efforts and assesses their potential for use in affected populations. PMID:26866060

  7. A Coronavirus Associated with Runting Stunting Syndrome in Broiler Chickens.

    PubMed

    Hauck, Rüdiger; Gallardo, Rodrigo A; Woolcock, Peter R; Shivaprasad, H L

    2016-06-01

    Runting stunting syndrome (RSS) is a disease condition that affects broilers and causes impaired growth and poor feed conversion because of enteritis characterized by pale and distended small intestines with watery contents. The etiology of the disease is multifactorial, and a large variety of viral agents have been implicated. Here we describe the detection and isolation of an infectious bronchitis virus (IBV) -like coronavirus from the intestines of a flock of 60,000 14-day-old brown/red broiler chicks. The birds showed typical clinical signs of RSS including stunting and uneven growth. At necropsy, the small intestines were pale and distended with watery contents. Histopathology of the intestines revealed increased cellularity of the lamina propria, blunting of villi, and cystic changes in the crypts. Negative stain electron microscopy of the intestinal contents revealed coronavirus particles. Transmission electron microscopy of the intestine confirmed coronavirus in the cytoplasm of enterocytes. Using immunohistochemistry (IHC), IBV antigen was detected in the intestinal epithelial cells as well as in the proventriculus and pancreas. There were no lesions in the respiratory system, and no IBV antigen was detected in trachea, lung, air sac, conjunctiva, and cecal tonsils. A coronavirus was isolated from the intestine of chicken embryos but not from the allantoic sac inoculated with the intestinal contents of the broiler chicks. Sequencing of the S1 gene showed nucleic acid sequence identities of 93.8% to the corresponding region of IBV California 99 and of 85.7% to IBV Arkansas. Nucleic acid sequence identities to other IBV genotypes were lower. The histopathologic lesions in the intestines were reproduced after experimental infection of specific-pathogen-free chickens inoculated in the conjunctiva and nares. Five days after infection, six of nine investigated birds showed enteritis associated with IBV antigen as detected by IHC. In contrast to the field

  8. Evidence for zoonotic origins of Middle East respiratory syndrome coronavirus.

    PubMed

    Han, Hui-Ju; Yu, Hao; Yu, Xue-Jie

    2016-02-01

    Middle East respiratory syndrome (MERS) is an emerging infectious disease, caused by Middle East respiratory syndrome coronavirus (MERS-CoV) and is considered to be a zoonosis. However, the natural reservoirs of MERS-CoV remain obscure, with bats and camels as the most suspected sources. In this article, we review the evidence supporting a bat/camel origin of human MERS-CoV infection and current knowledge on the modes of camel-to-human transmission of MERS-CoV. PMID:26572912

  9. Middle East respiratory syndrome coronavirus: a comprehensive review.

    PubMed

    Shehata, Mahmoud M; Gomaa, Mokhtar R; Ali, Mohamed A; Kayali, Ghazi

    2016-06-01

    The Middle East respiratory syndrome coronavirus was first identified in 2012 and has since then remained uncontrolled. Cases have been mostly reported in the Middle East, however travel-associated cases and outbreaks have also occurred. Nosocomial and zoonotic transmission of the virus appear to be the most important routes. The infection is severe and highly fatal thus necessitating rapid and efficacious interventions. Here, we performed a comprehensive review of published literature and summarized the epidemiology of the virus. In addition, we summarized the virological aspects of the infection and reviewed the animal models used as well as vaccination and antiviral tested against it. PMID:26791756

  10. Recognition of Lys48-Linked Di-ubiquitin and Deubiquitinating Activities of the SARS Coronavirus Papain-like Protease.

    PubMed

    Békés, Miklós; van der Heden van Noort, Gerbrand J; Ekkebus, Reggy; Ovaa, Huib; Huang, Tony T; Lima, Christopher D

    2016-05-19

    Deubiquitinating enzymes (DUBs) recognize and cleave linkage-specific polyubiquitin (polyUb) chains, but mechanisms underlying specificity remain elusive in many cases. The severe acute respiratory syndrome (SARS) coronavirus papain-like protease (PLpro) is a DUB that cleaves ISG15, a two-domain Ub-like protein, and Lys48-linked polyUb chains, releasing diUb(Lys48) products. To elucidate this specificity, we report the 2.85 Å crystal structure of SARS PLpro bound to a diUb(Lys48) activity-based probe. SARS PLpro binds diUb(Lys48) in an extended conformation via two contact sites, S1 and S2, which are proximal and distal to the active site, respectively. We show that specificity for polyUb(Lys48) chains is predicated on contacts in the S2 site and enhanced by an S1-S1' preference for a Lys48 linkage across the active site. In contrast, ISG15 specificity is dominated by contacts in the S1 site. Determinants revealed for polyUb(Lys48) specificity should prove useful in understanding PLpro deubiquitinating activities in coronavirus infections. PMID:27203180

  11. Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault's rousettes to pomona leaf-nosed bats: first evidence of interspecies transmission of coronavirus between bats of different suborders.

    PubMed

    Lau, Susanna K P; Li, Kenneth S M; Tsang, Alan K L; Shek, Chung-Tong; Wang, Ming; Choi, Garnet K Y; Guo, Rongtong; Wong, Beatrice H L; Poon, Rosana W S; Lam, Carol S F; Wang, Sylvia Y H; Fan, Rachel Y Y; Chan, Kwok-Hung; Zheng, Bo-Jian; Woo, Patrick C Y; Yuen, Kwok-Yung

    2012-11-01

    Although coronaviruses are known to infect various animals by adapting to new hosts, interspecies transmission events are still poorly understood. During a surveillance study from 2005 to 2010, a novel alphacoronavirus, BatCoV HKU10, was detected in two very different bat species, Ro-BatCoV HKU10 in Leschenault's rousettes (Rousettus leschenaulti) (fruit bats in the suborder Megachiroptera) in Guangdong and Hi-BatCoV HKU10 in Pomona leaf-nosed bats (Hipposideros pomona) (insectivorous bats in the suborder Microchiroptera) in Hong Kong. Although infected bats appeared to be healthy, Pomona leaf-nosed bats carrying Hi-BatCoV HKU10 had lower body weights than uninfected bats. To investigate possible interspecies transmission between the two bat species, the complete genomes of two Ro-BatCoV HKU10 and six Hi-BatCoV HKU10 strains were sequenced. Genome and phylogenetic analyses showed that Ro-BatCoV HKU10 and Hi-BatCoV HKU10 represented a novel alphacoronavirus species, sharing highly similar genomes except in the genes encoding spike proteins, which had only 60.5% amino acid identities. Evolution of the spike protein was also rapid in Hi-BatCoV HKU10 strains from 2005 to 2006 but stabilized thereafter. Molecular-clock analysis dated the most recent common ancestor of all BatCoV HKU10 strains to 1959 (highest posterior density regions at 95% [HPDs], 1886 to 2002) and that of Hi-BatCoV HKU10 to 1986 (HPDs, 1956 to 2004). The data suggested recent interspecies transmission from Leschenault's rousettes to Pomona leaf-nosed bats in southern China. Notably, the rapid adaptive genetic change in BatCoV HKU10 spike protein by ~40% amino acid divergence after recent interspecies transmission was even greater than the ~20% amino acid divergence between spike proteins of severe acute respiratory syndrome-related Rhinolophus bat coronavirus (SARSr-CoV) in bats and civets. This study provided the first evidence for interspecies transmission of coronavirus between bats of different

  12. Susceptibility of northern corn rootworm Diabrotica barberi Smith & Lawrence (Coleoptera: Chrysomelidae) to mCry3A and eCry3.1Ab Bacillus thuringiensis proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Susceptibility of the northern corn rootworm (NCR), to mCry3A and eCry3.1Ab proteins derived from Bacillus thuringiensis (Bt) was determined using a diet bioassay. Northern corn rootworm neonates were exposed to different concentrations of mCry3A and eCry3.1Ab, incorporated into artificial diet. Lar...

  13. Susceptibility of Northern Corn Rootworm Diabrotica barberi Smith (Coleoptera: Chrysomelidae) to mCry3A and eCry3.1Ab Bacillus thuringiensis proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Susceptibility of the northern corn rootworm (NCR), to mCry3A and eCry3.1Ab proteins derived from Bacillus thuringiensis (Bt) was determined using a diet bioassay. Northern corn rootworm neonates were exposed to different concentrations of mCry3A and eCry3.1Ab, incorporated into artificial diet. Lar...

  14. Experimental infection of young rabbits with a rabbit enteric coronavirus.

    PubMed Central

    Descôteaux, J P; Lussier, G

    1990-01-01

    The clinical signs and lesions caused by the rabbit enteric coronavirus (RECV) were studied in young rabbits orally inoculated with a suspension containing RECV particles. The inoculated animals were observed daily for evidence of diarrhea. Fecal samples and specimens from the small intestine and from the gut associated lymphoid tissue (GALT) were collected from 2 h to 29 days postinoculation (PI) and processed for immune electron microscopy (IEM) and light microscopy. Coronavirus particles were detected in the cecal contents of most inoculated animals from 6 h to 29 days PI. Lesions were first observed 6 h PI and were characterized by a loss of the brush border of mature enterocytes located at the tips of intestinal villi and by necrosis of these cells. At 48 h PI, short intestinal villi and hypertrophic crypts were noted. In the GALT, complete necrosis of the M cells as well as necrosis of the enterocytes lining the villi above the lymphoid follicules with hypertrophy of the corresponding crypts were observed in all the animals. Five inoculated rabbits had diarrhea three days PI. The presence of RECV particles in the feces of the sick animals and the microscopic lesions observed in the small intestine suggested that the virus was responsible for the clinical signs. A few inoculated rabbits remained free of diarrhea. Fecal material collected at postmortem examination contained RECV particles. The results suggest that the virus could also produce a subclinical infection. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:2174299

  15. Proteome Profile of Swine Testicular Cells Infected with Porcine Transmissible Gastroenteritis Coronavirus

    PubMed Central

    Ma, Ruili; Zhang, Yanming; Liu, Haiquan; Ning, Pengbo

    2014-01-01

    The interactions occurring between a virus and a host cell during a viral infection are complex. The purpose of this paper was to analyze altered cellular protein levels in porcine transmissible gastroenteritis coronavirus (TGEV)-infected swine testicular (ST) cells in order to determine potential virus-host interactions. A proteomic approach using isobaric tags for relative and absolute quantitation (iTRAQ)-coupled two-dimensional liquid chromatography-tandem mass spectrometry identification was conducted on the TGEV-infected ST cells. The results showed that the 4-plex iTRAQ-based quantitative approach identified 4,112 proteins, 146 of which showed significant changes in expression 48 h after infection. At 64 h post infection, 219 of these proteins showed significant change, further indicating that a larger number of proteomic changes appear to occur during the later stages of infection. Gene ontology analysis of the altered proteins showed enrichment in multiple biological processes, including cell adhesion, response to stress, generation of precursor metabolites and energy, cell motility, protein complex assembly, growth, developmental maturation, immune system process, extracellular matrix organization, locomotion, cell-cell signaling, neurological system process, and cell junction organization. Changes in the expression levels of transforming growth factor beta 1 (TGF-β1), caspase-8, and heat shock protein 90 alpha (HSP90α) were also verified by western blot analysis. To our knowledge, this study is the first time the response profile of ST host cells following TGEV infection has been analyzed using iTRAQ technology, and our description of the late proteomic changes that are occurring after the time of vigorous viral production are novel. Therefore, this study provides a solid foundation for further investigation, and will likely help us to better understand the mechanisms of TGEV infection and pathogenesis. PMID:25333634

  16. Crystallization and preliminary X-ray diffraction analysis of Nsp15 from SARS coronavirus

    SciTech Connect

    Ricagno, Stéfano; Coutard, Bruno; Grisel, Sacha; Brémond, Nicolas; Dalle, Karen; Tocque, Fabienne; Campanacci, Valérie; Lichière, Julie; Lantez, Violaine; Debarnot, Claire; Cambillau, Christian; Canard, Bruno; Egloff, Marie-Pierre

    2006-04-01

    Crystals of Nsp15 from the aetiological agent of SARS have been grown at room temperature. Crystals have cubic symmetry and diffract to a maximum resolution of 2.7 Å. The non-structural protein Nsp15 from the aetiological agent of SARS (severe acute respiratory syndrome) has recently been characterized as a uridine-specific endoribonuclease. This enzyme plays an essential role in viral replication and transcription since a mutation in the related H229E human coronavirus nsp15 gene can abolish viral RNA synthesis. SARS full-length Nsp15 (346 amino acids) has been cloned and expressed in Escherichia coli with an N-terminal hexahistidine tag and has been purified to homogeneity. The protein was subsequently crystallized using PEG 8000 or 10 000 as precipitants. Small cubic crystals of the apoenzyme were obtained from 100 nl nanodrops. They belong to space group P4{sub 1}32 or P4{sub 3}32, with unit-cell parameters a = b = c = 166.8 Å. Diffraction data were collected to a maximum resolution of 2.7 Å.

  17. A Mouse Model for Betacoronavirus Subgroup 2c Using a Bat Coronavirus Strain HKU5 Variant

    PubMed Central

    Agnihothram, Sudhakar; Yount, Boyd L.; Donaldson, Eric F.; Huynh, Jeremy; Menachery, Vineet D.; Gralinski, Lisa E.; Graham, Rachel L.; Becker, Michelle M.; Tomar, Sakshi; Scobey, Trevor D.; Osswald, Heather L.; Whitmore, Alan; Gopal, Robin; Ghosh, Arun K.; Mesecar, Andrew; Zambon, Maria; Heise, Mark; Denison, Mark R.; Baric, Ralph S.

    2014-01-01

    ABSTRACT Cross-species transmission of zoonotic coronaviruses (CoVs) can result in pandemic disease outbreaks. Middle East respiratory syndrome CoV (MERS-CoV), identified in 2012, has caused 182 cases to date, with ~43% mortality, and no small animal model has been reported. MERS-CoV and Pipistrellus bat coronavirus (BtCoV) strain HKU5 of Betacoronavirus (β-CoV) subgroup 2c share >65% identity at the amino acid level in several regions, including nonstructural protein 5 (nsp5) and the nucleocapsid (N) protein, which are significant drug and vaccine targets. BtCoV HKU5 has been described in silico but has not been shown to replicate in culture, thus hampering drug and vaccine studies against subgroup 2c β-CoVs. We report the synthetic reconstruction and testing of BtCoV HKU5 containing the severe acute respiratory syndrome (SARS)-CoV spike (S) glycoprotein ectodomain (BtCoV HKU5-SE). This virus replicates efficiently in cell culture and in young and aged mice, where the virus targets airway and alveolar epithelial cells. Unlike some subgroup 2b SARS-CoV vaccines that elicit a strong eosinophilia following challenge, we demonstrate that BtCoV HKU5 and MERS-CoV N-expressing Venezuelan equine encephalitis virus replicon particle (VRP) vaccines do not cause extensive eosinophilia following BtCoV HKU5-SE challenge. Passage of BtCoV HKU5-SE in young mice resulted in enhanced virulence, causing 20% weight loss, diffuse alveolar damage, and hyaline membrane formation in aged mice. Passaged virus was characterized by mutations in the nsp13, nsp14, open reading frame 5 (ORF5) and M genes. Finally, we identified an inhibitor active against the nsp5 proteases of subgroup 2c β-CoVs. Synthetic-genome platforms capable of reconstituting emerging zoonotic viral pathogens or their phylogenetic relatives provide new strategies for identifying broad-based therapeutics, evaluating vaccine outcomes, and studying viral pathogenesis. PMID:24667706

  18. Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft.

    PubMed

    Ge, Xing-Yi; Wang, Ning; Zhang, Wei; Hu, Ben; Li, Bei; Zhang, Yun-Zhi; Zhou, Ji-Hua; Luo, Chu-Ming; Yang, Xing-Lou; Wu, Li-Jun; Wang, Bo; Zhang, Yun; Li, Zong-Xiao; Shi, Zheng-Li

    2016-02-01

    Since the 2002-2003 severe acute respiratory syndrome (SARS) outbreak prompted a search for the natural reservoir of the SARS coronavirus, numerous alpha- and betacoronaviruses have been discovered in bats around the world. Bats are likely the natural reservoir of alpha- and betacoronaviruses, and due to the rich diversity and global distribution of bats, the number of bat coronaviruses will likely increase. We conducted a surveillance of coronaviruses in bats in an abandoned mineshaft in Mojiang County, Yunnan Province, China, from 2012-2013. Six bat species were frequently detected in the cave: Rhinolophus sinicus, Rhinolophus affinis, Hipposideros pomona, Miniopterus schreibersii, Miniopterus fuliginosus, and Miniopterus fuscus. By sequencing PCR products of the coronavirus RNA-dependent RNA polymerase gene (RdRp), we found a high frequency of infection by a diverse group of coronaviruses in different bat species in the mineshaft. Sequenced partial RdRp fragments had 80%-99% nucleic acid sequence identity with well-characterized Alphacoronavirus species, including BtCoV HKU2, BtCoV HKU8, and BtCoV1, and unassigned species BtCoV HKU7 and BtCoV HKU10. Additionally, the surveillance identified two unclassified betacoronaviruses, one new strain of SARS-like coronavirus, and one potentially new betacoronavirus species. Furthermore, coronavirus co-infection was detected in all six bat species, a phenomenon that fosters recombination and promotes the emergence of novel virus strains. Our findings highlight the importance of bats as natural reservoirs of coronaviruses and the potentially zoonotic source of viral pathogens. PMID:26920708

  19. Synergism and Antagonism between Bacillus thuringiensis Vip3A and Cry1 Proteins in Heliothis virescens, Diatraea saccharalis and Spodoptera frugiperda

    PubMed Central

    Lemes, Ana Rita Nunes; Davolos, Camila Chiaradia; Legori, Paula Cristina Brunini Crialesi; Fernandes, Odair Aparecido; Ferré, Juan; Lemos, Manoel Victor Franco; Desiderio, Janete Apparecida

    2014-01-01

    Second generation Bt crops (insect resistant crops carrying Bacillus thuringiensis genes) combine more than one gene that codes for insecticidal proteins in the same plant to provide better control of agricultural pests. Some of the new combinations involve co-expression of cry and vip genes. Because Cry and Vip proteins have different midgut targets and possibly different mechanisms of toxicity, it is important to evaluate possible synergistic or antagonistic interactions between these two classes of toxins. Three members of the Cry1 class of proteins and three from the Vip3A class were tested against Heliothis virescens for possible interactions. At the level of LC50, Cry1Ac was the most active protein, whereas the rest of proteins tested were similarly active. However, at the level of LC90, Cry1Aa and Cry1Ca were the least active proteins, and Cry1Ac and Vip3A proteins were not significantly different. Under the experimental conditions used in this study, we found an antagonistic effect of Cry1Ca with the three Vip3A proteins. The interaction between Cry1Ca and Vip3Aa was also tested on two other species of Lepidoptera. Whereas antagonism was observed in Spodoptera frugiperda, synergism was found in Diatraea saccharalis. In all cases, the interaction between Vip3A and Cry1 proteins was more evident at the LC90 level than at the LC50 level. The fact that the same combination of proteins may result in a synergistic or an antagonistic interaction may be an indication that there are different types of interactions within the host, depending on the insect species tested. PMID:25275646

  20. Identification of SARS-like coronaviruses in horseshoe bats (Rhinolophus hipposideros) in Slovenia.

    PubMed

    Rihtaric, Danijela; Hostnik, Peter; Steyer, Andrej; Grom, Joze; Toplak, Ivan

    2010-04-01

    Bats have been identified as a natural reservoir for an increasing number of emerging zoonotic viruses, such as Hendra virus, Nipah virus, Ebola virus, Marburg virus, rabies and other lyssaviruses. Recently, a large number of viruses closely related to members of the genus Coronavirus have been associated with severe acute respiratory syndrome (SARS) and detected in bat species. In this study, samples were collected from 106 live bats of seven different bat species from 27 different locations in Slovenia. Coronaviruses were detected by RT-PCR in 14 out of 36 horseshoe bat (Rhinolophus hipposideros) fecal samples, with 38.8% virus prevalence. Sequence analysis of a 405-nucleotide region of the highly conserved RNA polymerase gene (pol) showed that all coronaviruses detected in this study are genetically closely related, with 99.5-100% nucleotide identity, and belong to group 2 of the coronaviruses. The most closely related virus sequence in GenBank was SARS bat isolate Rp3/2004 (DQ071615) within the SARS-like CoV cluster, sharing 85% nucleotide identity and 95.6% amino acid identity. The potential risk of a new group of bat coronaviruses as a reservoir for human infections is highly suspected, and further molecular epidemiologic studies of these bat coronaviruses are needed. PMID:20217155

  1. A Massachusetts prototype like coronavirus isolated from wild peafowls is pathogenic to chickens.

    PubMed

    Sun, Lei; Zhang, Gui-Hong; Jiang, Jing-Wei; Fu, Jia-Dong; Ren, Tao; Cao, Wei-Sheng; Xin, Chao-An; Liao, Ming; Liu, Wen-Jun

    2007-12-01

    Coronavirus infection was investigated in apparently healthy wild peafowls in Guangdong province of China in 2003, while severe acute respiratory syndrome (SARS) broke out there. No SARS-like coronavirus had been isolated but a novel avian coronavirus strain, Peafowl/GD/KQ6/2003 (KQ6), was identified. Sequence analysis revealed that KQ6 was an avian coronavirus infectious bronchitis virus (IBV), a member of coronavirus in group 3. The genome sequence of KQ6 had extremely high degree of identity with that of a Massachusetts prototype IBV M41. KQ6 was pathogenic to chickens but non-pathogenic to peafowls under experimental conditions. Seventeen out of fifty-four (31.48%) peafowl serum samples were tested positive for specific antibodies against IBV. Present results indicate that the peafowl isolate KQ6 is a Massachusetts prototype like coronavirus strain which undergoes few genetic changes and peafowl might have acted as a natural reservoir of IBV for very long time. PMID:17629993

  2. Prevalence and phylogeny of coronaviruses in wild birds from the Bering Strait area (Beringia).

    PubMed

    Muradrasoli, Shaman; Bálint, Adám; Wahlgren, John; Waldenström, Jonas; Belák, Sándor; Blomberg, Jonas; Olsen, Björn

    2010-01-01

    Coronaviruses (CoVs) can cause mild to severe disease in humans and animals, their host range and environmental spread seem to have been largely underestimated, and they are currently being investigated for their potential medical relevance. Infectious bronchitis virus (IBV) belongs to gamma-coronaviruses and causes a costly respiratory viral disease in chickens. The role of wild birds in the epidemiology of IBV is poorly understood. In the present study, we examined 1,002 cloacal and faecal samples collected from 26 wild bird species in the Beringia area for the presence of CoVs, and then we performed statistical and phylogenetic analyses. We detected diverse CoVs by RT-PCR in wild birds in the Beringia area. Sequence analysis showed that the detected viruses are gamma-coronaviruses related to IBV. These findings suggest that wild birds are able to carry gamma-coronaviruses asymptomatically. We concluded that CoVs are widespread among wild birds in Beringia, and their geographic spread and frequency is higher than previously realised. Thus, Avian CoV can be efficiently disseminated over large distances and could be a genetic reservoir for future emerging pathogenic CoVs. Considering the great animal health and economic impact of IBV as well as the recent emergence of novel coronaviruses such as SARS-coronavirus, it is important to investigate the role of wildlife reservoirs in CoV infection biology and epidemiology. PMID:21060827

  3. Release of Severe Acute Respiratory Syndrome Coronavirus Nuclear Import Block Enhances Host Transcription in Human Lung Cells

    PubMed Central

    Tilton, Susan C.; Menachery, Vineet D.; Gralinski, Lisa E.; Schäfer, Alexandra; Matzke, Melissa M.; Webb-Robertson, Bobbie-Jo M.; Chang, Jean; Luna, Maria L.; Long, Casey E.; Shukla, Anil K.; Bankhead, Armand R.; Burkett, Susan E.; Zornetzer, Gregory; Tseng, Chien-Te Kent; Metz, Thomas O.; Pickles, Raymond; McWeeney, Shannon; Smith, Richard D.; Katze, Michael G.; Waters, Katrina M.; Baric, Ralph S.

    2013-01-01

    The severe acute respiratory syndrome coronavirus accessory protein ORF6 antagonizes interferon signaling by blocking karyopherin-mediated nuclear import processes. Viral nuclear import antagonists, expressed by several highly pathogenic RNA viruses, likely mediate pleiotropic effects on host gene expression, presumably interfering with transcription factors, cytokines, hormones, and/or signaling cascades that occur in response to infection. By bioinformatic and systems biology approaches, we evaluated the impact of nuclear import antagonism on host expression networks by using human lung epithelial cells infected with either wild-type virus or a mutant that does not express ORF6 protein. Microarray analysis revealed significant changes in differential gene expression, with approximately twice as many upregulated genes in the mutant virus samples by 48 h postinfection, despite identical viral titers. Our data demonstrated that ORF6 protein expression attenuates the activity of numerous karyopherin-dependent host transcription factors (VDR, CREB1, SMAD4, p53, EpasI, and Oct3/4) that are critical for establishing antiviral responses and regulating key host responses during virus infection. Results were confirmed by proteomic and chromatin immunoprecipitation assay analyses and in parallel microarray studies using infected primary human airway epithelial cell cultures. The data strongly support the hypothesis that viral antagonists of nuclear import actively manipulate host responses in specific hierarchical patterns, contributing to the viral pathogenic potential in vivo. Importantly, these studies and modeling approaches not only provide templates for evaluating virus antagonism of nuclear import processes but also can reveal candidate cellular genes and pathways that may significantly influence disease outcomes following severe acute respiratory syndrome coronavirus infection in vivo. PMID:23365422

  4. Sclerostin inhibition of Wnt-3a-induced C3H10T1/2 cell differentiation is indirect and mediated by bone morphogenetic proteins.

    PubMed

    Winkler, David G; Sutherland, May S Kung; Ojala, Ethan; Turcott, Eileen; Geoghegan, James C; Shpektor, Diana; Skonier, John E; Yu, Changpu; Latham, John A

    2005-01-28

    High bone mass diseases are caused both by activating mutations in the Wnt pathway and by loss of SOST, a bone morphogenetic protein (BMP) antagonist, leading to the activation of BMP signaling. Given the phenotypic similarity between mutations that activate these signaling pathways, it seems likely that BMPs and Wnts operate in parallel or represent components of the same pathway, modulating osteoblast differentiation. In this study, we show that in C3H10T1/2 cells, Wnt-3A and BMP-6 proteins were inducers of osteoblast differentiation, as measured by alkaline phosphatase (ALP) induction. Surprisingly, sclerostin, noggin, and human BMP receptor 1A (BMPR1A)-FC fusion proteins blocked Wnt-3A-induced ALP as well as BMP-6-induced ALP activity. Dkk-1, a Wnt inhibitor, blocked Wnt-induced ALP activity but not BMP-induced ALP activity. Early Wnt-3A signaling as measured by beta-catenin accumulation was not affected by the BMP antagonists but was blocked by Dkk-1. Wnt-3A induced the appearance of BMP-4 mRNA 12 h prior to that of ALP in C3H10T1/2 cells. We propose that sclerostin and other BMP antagonists do not block Wnt signaling directly. Sclerostin blocks Wnt-induced ALP activity by blocking the activity of BMP proteins produced by Wnt treatment. The expression of BMP proteins in this autocrine loop is essential for Wnt-3A-induced osteoblast differentiation. PMID:15545262

  5. False-Positive Results in a Recombinant Severe Acute Respiratory Syndrome-Associated Coronavirus (SARS-CoV) Nucleocapsid-Based Western Blot Assay Were Rectified by the Use of Two Subunits (S1 and S2) of Spike for Detection of Antibody to SARS-CoV

    PubMed Central

    Maache, Mimoun; Komurian-Pradel, Florence; Rajoharison, Alain; Perret, Magali; Berland, Jean-Luc; Pouzol, Stéphane; Bagnaud, Audrey; Duverger, Blandine; Xu, Jianguo; Osuna, Antonio; Paranhos-Baccalà, Glaucia

    2006-01-01

    To evaluate the reactivity of the recombinant proteins expressed in Escherichia coli strain BL21(DE3), a Western blot assay was performed by using a panel of 78 serum samples obtained, respectively, from convalescent-phase patients infected with severe acute respiratory syndrome-associated coronavirus (SARS-CoV) (30 samples) and from healthy donors (48 samples). As antigen for detection of SARS-CoV, the nucleocapsid protein (N) showed high sensitivity and strong reactivity with all samples from SARS-CoV patients and cross-reacted with all serum samples from healthy subjects, with either those obtained from China (10 samples) or those obtained from France (38 serum samples), giving then a significant rate of false positives. Specifically, our data indicated that the two subunits, S1 (residues 14 to 760) and S2 (residues 761 to 1190), resulted from the divided spike reacted with all samples from SARS-CoV patients and without any cross-reactivity with any of the healthy serum samples. Consequently, these data revealed the nonspecific nature of N protein in serodiagnosis of SARS-CoV compared with the S1 and S2, where the specificity is of 100%. Moreover, the reported results indicated that the use of one single protein as a detection antigen of SARS-CoV infection may lead to false-positive diagnosis. These may be rectified by using more than one protein for the serodiagnosis of SARS-CoV. PMID:16522785

  6. The SARS-Unique Domain (SUD) of SARS Coronavirus Contains Two Macrodomains That Bind G-Quadruplexes

    PubMed Central

    Tan, Jinzhi; Vonrhein, Clemens; Smart, Oliver S.; Bricogne, Gerard; Bollati, Michela; Kusov, Yuri; Hansen, Guido; Mesters, Jeroen R.; Schmidt, Christian L.; Hilgenfeld, Rolf

    2009-01-01

    Since the outbreak of severe acute respiratory syndrome (SARS) in 2003, the three-dimensional structures of several of the replicase/transcriptase components of SARS coronavirus (SARS-CoV), the non-structural proteins (Nsps), have been determined. However, within the large Nsp3 (1922 amino-acid residues), the structure and function of the so-called SARS-unique domain (SUD) have remained elusive. SUD occurs only in SARS-CoV and the highly related viruses found in certain bats, but is absent from all other coronaviruses. Therefore, it has been speculated that it may be involved in the extreme pathogenicity of SARS-CoV, compared to other coronaviruses, most of which cause only mild infections in humans. In order to help elucidate the function of the SUD, we have determined crystal structures of fragment 389–652 (“SUDcore”) of Nsp3, which comprises 264 of the 338 residues of the domain. Both the monoclinic and triclinic crystal forms (2.2 and 2.8 Å resolution, respectively) revealed that SUDcore forms a homodimer. Each monomer consists of two subdomains, SUD-N and SUD-M, with a macrodomain fold similar to the SARS-CoV X-domain. However, in contrast to the latter, SUD fails to bind ADP-ribose, as determined by zone-interference gel electrophoresis. Instead, the entire SUDcore as well as its individual subdomains interact with oligonucleotides known to form G-quadruplexes. This includes oligodeoxy- as well as oligoribonucleotides. Mutations of selected lysine residues on the surface of the SUD-N subdomain lead to reduction of G-quadruplex binding, whereas mutations in the SUD-M subdomain abolish it. As there is no evidence for Nsp3 entering the nucleus of the host cell, the SARS-CoV genomic RNA or host-cell mRNA containing long G-stretches may be targets of SUD. The SARS-CoV genome is devoid of G-stretches longer than 5–6 nucleotides, but more extended G-stretches are found in the 3′-nontranslated regions of mRNAs coding for certain host-cell proteins involved

  7. Antigen-capture blocking enzyme-linked immunosorbent assay based on a baculovirus recombinant antigen to differentiate Transmissible gastroenteritis virus from Porcine respiratory coronavirus antibodies.

    PubMed

    López, Lissett; Venteo, Angel; García, Marga; Camuñas, Ana; Ranz, Ana; García, Julia; Sarraseca, Javier; Anaya, Carmen; Rueda, Paloma

    2009-09-01

    A new commercially available antigen-capture, blocking enzyme-linked immunosorbent assay (antigen-capture b-ELISA), based on baculovirus truncated-S recombinant protein of Transmissible gastroenteritis virus (TGEV) and 3 specific monoclonal antibodies, was developed and evaluated by examining a panel of 453 positive Porcine respiratory coronavirus (PRCoV), 31 positive TGEV, and 126 negative field sera by using another commercially available differential coronavirus b-ELISA as the reference technique to differentiate TGEV- from PRCoV-induced antibodies. The recombinant S protein-based ELISA appeared to be 100% sensitive for TGEV and PRCoV detection and highly specific for TGEV and PRCoV detection (100% and 92.06%, respectively), when qualitative results (positive or negative) were compared with those of the reference technique. In variability experiments, the ELISA gave consistent results when the same serum was evaluated on different wells and different plates. These results indicated that truncated recombinant S protein is a suitable alternative to the complete virus as antigen in ELISA assays. The use of recombinant S protein as antigen offers great advantages because it is an easy-to-produce, easy-to-standardize, noninfectious antigen that does not require further purification or concentration. Those advantages represent an important improvement for antigen preparation, in comparison with other assays in which an inactivated virus from mammalian cell cultures is used. PMID:19737754

  8. Severe Acute Respiratory Syndrome Coronavirus ORF7a Inhibits Bone Marrow Stromal Antigen 2 Virion Tethering through a Novel Mechanism of Glycosylation Interference

    PubMed Central

    Taylor, Justin K.; Coleman, Christopher M.; Postel, Sandra; Sisk, Jeanne M.; Bernbaum, John G.; Venkataraman, Thiagarajan; Sundberg, Eric J.

    2015-01-01

    ABSTRACT Severe acute respiratory syndrome (SARS) emerged in November 2002 as a case of atypical pneumonia in China, and the causative agent of SARS was identified to be a novel coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV). Bone marrow stromal antigen 2 (BST-2; also known as CD317 or tetherin) was initially identified to be a pre-B-cell growth promoter, but it also inhibits the release of virions of the retrovirus human immunodeficiency virus type 1 (HIV-1) by tethering budding virions to the host cell membrane. Further work has shown that BST-2 restricts the release of many other viruses, including the human coronavirus 229E (hCoV-229E), and the genomes of many of these viruses encode BST-2 antagonists to overcome BST-2 restriction. Given the previous studies on BST-2, we aimed to determine if BST-2 has the ability to restrict SARS-CoV and if the SARS-CoV genome encodes any proteins that modulate BST-2's antiviral function. Through an in vitro screen, we identified four potential BST-2 modulators encoded by the SARS-CoV genome: the papain-like protease (PLPro), nonstructural protein 1 (nsp1), ORF6, and ORF7a. As the function of ORF7a in SARS-CoV replication was previously unknown, we focused our study on ORF7a. We found that BST-2 does restrict SARS-CoV, but the loss of ORF7a leads to a much greater restriction, confirming the role of ORF7a as an inhibitor of BST-2. We further characterized the mechanism of BST-2 inhibition by ORF7a and found that ORF7a localization changes when BST-2 is overexpressed and ORF7a binds directly to BST-2. Finally, we also show that SARS-CoV ORF7a blocks the restriction activity of BST-2 by blocking the glycosylation of BST-2. IMPORTANCE The severe acute respiratory syndrome coronavirus (SARS-CoV) emerged from zoonotic sources in 2002 and caused over 8,000 infections and 800 deaths in 37 countries around the world. Identifying host factors that regulate SARS-CoV pathogenesis is critical to understanding how

  9. Characterization of SEMA3A-Encoded Semaphorin as a Naturally Occurring Kv4.3 Protein Inhibitor and its Contribution to Brugada Syndrome

    PubMed Central

    Boczek, Nicole J.; Ye, Dan; Johnson, Eric K.; Wang, Wei; Crotti, Lia; Tester, David J.; Dagradi, Federica; Mizusawa, Yuka; Torchio, Margherita; Alders, Marielle; Giudicessi, John R.; Wilde, Arthur A.; Schwartz, Peter J.; Nerbonne, Jeanne M.; Ackerman, Michael J.

    2016-01-01

    Rational SEMA3A-encoded semaphorin is a chemorepellent that disrupts neural patterning in the nervous and cardiac systems. In addition, SEMA3A has an amino acid motif that is analogous to hanatoxin, an inhibitor of voltage-gated K+ channels. SEMA3A knockout mice exhibit an abnormal ECG pattern and are prone to ventricular arrhythmias and sudden cardiac death. Objective To determine whether SEMA3A is a naturally occurring protein inhibitor of Kv4.3 (Ito) channels and its potential contribution to Brugada syndrome (BrS). Methods and Results Kv4.3, Nav1.5, Cav1.2, or Kv4.2 were co-expressed or perfused with SEMA3A in HEK293 cells and electrophysiological properties were examined via whole-cell patch clamp technique. SEMA3A selectively altered Kv4.3 by significantly reducing peak current density without perturbing Kv4.3 cell-surface protein expression. SEMA3A also reduced Ito current density in cardiomyocytes derived from human induced pluripotent stem cells. Disruption of a putative toxin binding domain on Kv4.3 was used to assess physical interactions between SEMA3A and Kv4.3. These findings in combination with co-immunoprecipitations of SEMA3A and Kv4.3 revealed a potential direct binding interaction between these proteins. Comprehensive mutational analysis of SEMA3A was performed on 198 unrelated SCN5A-genotype negative patients with BrS and two rare SEMA3A missense mutations were identified. The SEMA3A mutations disrupted SEMA3A’s ability to inhibit Kv4.3 channels, resulting in a significant gain of Kv4.3 current compared to WT-SEMA3A. Conclusions This study is the first to demonstrate semaphorin3A as a naturally occurring protein that selectively inhibits Kv4.3 and SEMA3A as a possible BrS-susceptibility gene through a Kv4.3 gain-of-function mechanism. PMID:24963029

  10. Coronavirus and Influenza Virus Proteolytic Priming Takes Place in Tetraspanin-Enriched Membrane Microdomains

    PubMed Central

    Earnest, James T.; Hantak, Michael P.; Park, Jung-Eun

    2015-01-01

    ABSTRACT Coronaviruses (CoVs) and low-pathogenicity influenza A viruses (LP IAVs) depend on target cell proteases to cleave their viral glycoproteins and prime them for virus-cell membrane fusion. Several proteases cluster into tetraspanin-enriched microdomains (TEMs), suggesting that TEMs are preferred virus entry portals. Here we found that several CoV receptors and virus-priming proteases were indeed present in TEMs. Isolated TEMs, when mixed with CoV and LP IAV pseudoparticles, cleaved viral fusion proteins to fusion-primed fragments and potentiated viral transductions. That entering viruses utilize TEMs as a protease source was further confirmed using tetraspanin antibodies and tetraspanin short hairpin RNAs (shRNAs). Tetraspanin antibodies inhibited CoV and LP IAV infections, but their virus-blocking activities were overcome by expressing excess TEM-associated proteases. Similarly, cells with reduced levels of the tetraspanin CD9 resisted CoV pseudoparticle transductions but were made susceptible by overproducing TEM-associated proteases. These findings indicated that antibodies and CD9 depletions interfere with viral proteolytic priming in ways that are overcome by surplus proteases. TEMs appear to be exploited by some CoVs and LP IAVs for appropriate coengagement with cell receptors and proteases. IMPORTANCE Enveloped viruses use their surface glycoproteins to catalyze membrane fusion, an essential cell entry step. Host cell components prime these viral surface glycoproteins to catalyze membrane fusion at specific times and places during virus cell entry. Among these priming components are proteases, which cleave viral surface glycoproteins, unleashing them to refold in ways that catalyze virus-cell membrane fusions. For some enveloped viruses, these proteases are known to reside on target cell surfaces. This research focuses on coronavirus and influenza A virus cell entry and identifies TEMs as sites of viral proteolysis, thereby defining subcellular

  11. Development of Medical Countermeasures to Middle East Respiratory Syndrome Coronavirus.

    PubMed

    Uyeki, Timothy M; Erlandson, Karl J; Korch, George; O'Hara, Michael; Wathen, Michael; Hu-Primmer, Jean; Hojvat, Sally; Stemmy, Erik J; Donabedian, Armen

    2016-07-01

    Preclinical development of and research on potential Middle East respiratory syndrome coronavirus (MERS-CoV) medical countermeasures remain preliminary; advancements are needed before most countermeasures are ready to be tested in human clinical trials. Research priorities include standardization of animal models and virus stocks for studying disease pathogenesis and efficacy of medical countermeasures; development of MERS-CoV diagnostics; improved access to nonhuman primates to support preclinical research; studies to better understand and control MERS-CoV disease, including vaccination studies in camels; and development of a standardized clinical trial protocol. Partnering with clinical trial networks in affected countries to evaluate safety and efficacy of investigational therapeutics will strengthen efforts to identify successful medical countermeasures. PMID:27191188

  12. Middle East respiratory syndrome coronavirus: epidemiology and disease control measures

    PubMed Central

    Al-Tawfiq, Jaffar A; Memish, Ziad A

    2014-01-01

    The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in 2012 resulted in an increased concern of the spread of the infection globally. MERS-CoV infection had previously caused multiple health-care-associated outbreaks and resulted in transmission of the virus within families. Community onset MERS-CoV cases continue to occur. Dromedary camels are currently the most likely animal to be linked to human MERS-CoV cases. Serologic tests showed significant infection in adult camels compared to juvenile camels. The control of MERS-CoV infection relies on prompt identification of cases within health care facilities, with institutions applying appropriate infection control measures. In addition, determining the exact route of transmission from camels to humans would further add to the control measures of MERS-CoV infection. PMID:25395865

  13. CORONAVIRUS REVERSE GENETIC SYSTEMS: INFECTIOUS CLONES AND REPLICONS

    PubMed Central

    Almazán, Fernando; Sola, Isabel; Zuñiga, Sonia; Marquez-Jurado, Silvia; Morales, Lucia; Becares, Martina; Enjuanes, Luis

    2016-01-01

    Coronaviruses (CoVs) infect humans and many animal species, and are associated with respiratory, enteric, hepatic, and central nervous system diseases. The large size of the CoV genome and the instability of some CoV replicase gene sequences during its propagation in bacteria, represent serious obstacles for the development of reverse genetic systems similar to those used for smaller positive sense RNA viruses. To overcome these limitations, several alternatives to more conventional plasmid-based approaches have been established in the last thirteen years. In this report, we briefly review and discuss the different reverse genetic systems developed for CoVs, paying special attention to the severe acute respiratory syndrome CoV (SARS-CoV). PMID:24930446

  14. A rare cause of acute flaccid paralysis: Human coronaviruses.

    PubMed

    Turgay, Cokyaman; Emine, Tekin; Ozlem, Koken; Muhammet, S Paksu; Haydar, A Tasdemir

    2015-01-01

    Acute flaccid paralysis (AFP) is a life-threatening clinical entity characterized by weakness in the whole body muscles often accompanied by respiratory and bulbar paralysis. The most common cause is Gullian-Barre syndrome, but infections, spinal cord diseases, neuromuscular diseases such as myasthenia gravis, drugs and toxins, periodic hypokalemic paralysis, electrolyte disturbances, and botulism should be considered as in the differential diagnosis. Human coronaviruses (HCoVs) cause common cold, upper and lower respiratory tract disease, but in the literature presentation with the lower respiratory tract infection and AFP has not been reported previously. In this study, pediatric case admitted with lower respiratory tract infection and AFP, who detected for HCoV 229E and OC43 co-infection by the real-time polymerase chain reaction, has been reported for the first time. PMID:26557177

  15. A rare cause of acute flaccid paralysis: Human coronaviruses

    PubMed Central

    Turgay, Cokyaman; Emine, Tekin; Ozlem, Koken; Muhammet, S. Paksu; Haydar, A. Tasdemir

    2015-01-01

    Acute flaccid paralysis (AFP) is a life-threatening clinical entity characterized by weakness in the whole body muscles often accompanied by respiratory and bulbar paralysis. The most common cause is Gullian–Barre syndrome, but infections, spinal cord diseases, neuromuscular diseases such as myasthenia gravis, drugs and toxins, periodic hypokalemic paralysis, electrolyte disturbances, and botulism should be considered as in the differential diagnosis. Human coronaviruses (HCoVs) cause common cold, upper and lower respiratory tract disease, but in the literature presentation with the lower respiratory tract infection and AFP has not been reported previously. In this study, pediatric case admitted with lower respiratory tract infection and AFP, who detected for HCoV 229E and OC43 co-infection by the real-time polymerase chain reaction, has been reported for the first time. PMID:26557177

  16. Stillbirth during infection with Middle East respiratory syndrome coronavirus.

    PubMed

    Payne, Daniel C; Iblan, Ibrahim; Alqasrawi, Sultan; Al Nsour, Mohannad; Rha, Brian; Tohme, Rania A; Abedi, Glen R; Farag, Noha H; Haddadin, Aktham; Al Sanhouri, Tarek; Jarour, Najwa; Swerdlow, David L; Jamieson, Denise J; Pallansch, Mark A; Haynes, Lia M; Gerber, Susan I; Al Abdallat, Mohammad Mousa

    2014-06-15

    We conducted an epidemiologic investigation among survivors of an outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in Jordan. A second-trimester stillbirth occurred during the course of an acute respiratory illness that was attributed to MERS-CoV on the basis of exposure history and positive results of MERS-CoV serologic testing. This is the first occurrence of stillbirth during an infection with MERS-CoV and may have bearing upon the surveillance and management of pregnant women in settings of unexplained respiratory illness potentially due to MERS-CoV. Future prospective investigations of MERS-CoV should ascertain pregnancy status and obtain further pregnancy-related data, including biological specimens for confirmatory testing. PMID:24474813

  17. Stillbirth During Infection With Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Payne, Daniel C.; Iblan, Ibrahim; Alqasrawi, Sultan; Al Nsour, Mohannad; Rha, Brian; Tohme, Rania A.; Abedi, Glen R.; Farag, Noha H.; Haddadin, Aktham; Sanhouri, Tarek Al; Jarour, Najwa; Swerdlow, David L.; Jamieson, Denise J.; Pallansch, Mark A.; Haynes, Lia M.; Gerber, Susan I.; Al Abdallat, Mohammad Mousa

    2015-01-01

    We conducted an epidemiologic investigation among survivors of an outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in Jordan. A second-trimester stillbirth occurred during the course of an acute respiratory illness that was attributed to MERS-CoV on the basis of exposure history and positive results of MERS-CoV serologic testing. This is the first occurrence of stillbirth during an infection with MERS-CoV and may have bearing upon the surveillance and management of pregnant women in settings of unexplained respiratory illness potentially due to MERS-CoV. Future prospective investigations of MERS-CoV should ascertain pregnancy status and obtain further pregnancy-related data, including biological specimens for confirmatory testing. PMID:24474813

  18. Development of Medical Countermeasures to Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Erlandson, Karl J.; Korch, George; O’Hara, Michael; Wathen, Michael; Hu-Primmer, Jean; Hojvat, Sally; Stemmy, Erik J.; Donabedian, Armen

    2016-01-01

    Preclinical development of and research on potential Middle East respiratory syndrome coronavirus (MERS-CoV) medical countermeasures remain preliminary; advancements are needed before most countermeasures are ready to be tested in human clinical trials. Research priorities include standardization of animal models and virus stocks for studying disease pathogenesis and efficacy of medical countermeasures; development of MERS-CoV diagnostics; improved access to nonhuman primates to support preclinical research; studies to better understand and control MERS-CoV disease, including vaccination studies in camels; and development of a standardized clinical trial protocol. Partnering with clinical trial networks in affected countries to evaluate safety and efficacy of investigational therapeutics will strengthen efforts to identify successful medical countermeasures. PMID:27191188

  19. Middle East respiratory syndrome coronavirus: update for clinicians.

    PubMed

    Rasmussen, Sonja A; Gerber, Susan I; Swerdlow, David L

    2015-06-01

    Although much recent focus has been on the recognition of Ebola virus disease among travelers from West Africa, cases of Middle East respiratory syndrome coronavirus (MERS-CoV), including travel-associated cases, continue to be reported. US clinicians need to be familiar with recommendations regarding when to suspect MERS-CoV, how to make a diagnosis, and what infection control measures need to be instituted when a case is suspected. Infection control is especially critical, given that most cases have been healthcare-associated. Two cases of MERS-CoV were identified in the United States in May 2014; because these cases were detected promptly and appropriate control measures were put in place quickly, no secondary cases occurred. This paper summarizes information that US clinicians need to know to prevent secondary cases of MERS-CoV from occurring in the United States. PMID:25701855

  20. Serologic survey for canine coronavirus in wolves from Alaska

    USGS Publications Warehouse

    Zarnke, R.L.; Evermann, J.; Ver Hoef, J.M.; McNay, M.E.; Boertje, R.D.; Gardner, C.L.; Adams, L.G.; Dale, B.W.; Burch, J.

    2001-01-01

    Wolves (Canis lupus) were captured in three areas of Interior Alaska (USA). Four hundred twenty-five sera were tested for evidence of exposure to canine coronavirus by means of an indirect fluorescent antibody procedure. Serum antibody prevalence averaged 70% (167/ 240) during the spring collection period and 25% (46/185) during the autumn collection period. Prevalence was 0% (0/42) in the autumn pup cohort (age 4-5 mo), and 60% (58/97) in the spring pup cohort (age 9-10 mo). Prevalence was lowest in the Eastern Interior study area. A statistical model indicates that prevalence increased slightly each year in all three study areas. These results indicate that transmission occurs primarily during the winter months, antibody decay is quite rapid, and reexposure during the summer is rare.

  1. Novel Coronavirus and Astrovirus in Delaware Bay Shorebirds

    PubMed Central

    Honkavuori, Kirsi S.; Briese, Thomas; Krauss, Scott; Sanchez, Maria D.; Jain, Komal; Hutchison, Stephen K.; Webster, Robert G.; Lipkin, W. Ian

    2014-01-01

    Background Wild birds are an important but to some extent under-studied reservoir for emerging pathogens. We used unbiased sequencing methods for virus discovery in shorebird samples from the Delaware Bay, USA; an important feeding ground for thousands of migratory birds. Findings Analysis of shorebird fecal samples indicated the presence of a novel astrovirus and coronavirus. A sanderling sample yielded sequences with distant homology to avian nephritis virus 1, an astrovirus associated with acute nephritis in poultry. A ruddy turnstone sample yielded sequences with homology to deltacoronaviruses. Conclusions Our findings highlight shorebirds as a virus reservoir and the need to closely monitor wild bird populations for the emergence of novel virus variants. PMID:24699424

  2. Human Coronavirus NL63 Utilizes Heparan Sulfate Proteoglycans for Attachment to Target Cells

    PubMed Central

    Milewska, Aleksandra; Zarebski, Miroslaw; Nowak, Paulina; Stozek, Karol; Potempa, Jan

    2014-01-01

    ABSTRACT Human coronavirus NL63 (HCoV-NL63) is an alphacoronavirus that was first identified in 2004 in the nasopharyngeal aspirate from a 7-month-old patient with a respiratory tract infection. Previous studies showed that HCoV-NL63 and the genetically distant severe acute respiratory syndrome (SARS)-CoV employ the same receptor for host cell entry, angiotensin-converting enzyme 2 (ACE2), but it is largely unclear whether ACE2 interactions are sufficient to allow HCoV-NL63 binding to cells. The present study showed that directed expression of angiotensin-converting enzyme 2 (ACE2) on cells previously resistant to HCoV-NL63 renders them susceptible, showing that ACE2 protein acts as a functional receptor and that its expression is required for infection. However, comparative analysis showed that directed expression or selective scission of the ACE2 protein had no measurable effect on virus adhesion. In contrast, binding of HCoV-NL63 to heparan sulfates was required for viral attachment and infection of target cells, showing that these molecules serve as attachment receptors for HCoV-NL63. IMPORTANCE ACE2 protein was proposed as a receptor for HCoV-NL63 already in 2005, but an in-depth analysis of early events during virus infection had not been performed thus far. Here, we show that the ACE2 protein is required for viral entry but that it is not the primary binding site on the cell surface. Conducted research showed that heparan sulfate proteoglycans function as adhesion molecules, increasing the virus density on cell surface and possibly facilitating the interaction between HCoV-NL63 and its receptor. Obtained results show that the initial events during HCoV-NL63 infection are more complex than anticipated and that a newly described interaction may be essential for understanding the infection process and, possibly, also assist in drug design. PMID:25187545

  3. Link of a ubiquitous human coronavirus to dromedary camels.

    PubMed

    Corman, Victor M; Eckerle, Isabella; Memish, Ziad A; Liljander, Anne M; Dijkman, Ronald; Jonsdottir, Hulda; Juma Ngeiywa, Kisi J Z; Kamau, Esther; Younan, Mario; Al Masri, Malakita; Assiri, Abdullah; Gluecks, Ilona; Musa, Bakri E; Meyer, Benjamin; Müller, Marcel A; Hilali, Mosaad; Bornstein, Set; Wernery, Ulrich; Thiel, Volker; Jores, Joerg; Drexler, Jan Felix; Drosten, Christian

    2016-08-30

    The four human coronaviruses (HCoVs) are globally endemic respiratory pathogens. The Middle East respiratory syndrome (MERS) coronavirus (CoV) is an emerging CoV with a known zoonotic source in dromedary camels. Little is known about the origins of endemic HCoVs. Studying these viruses' evolutionary history could provide important insight into CoV emergence. In tests of MERS-CoV-infected dromedaries, we found viruses related to an HCoV, known as HCoV-229E, in 5.6% of 1,033 animals. Human- and dromedary-derived viruses are each monophyletic, suggesting ecological isolation. One gene of dromedary viruses exists in two versions in camels, full length and deleted, whereas only the deleted version exists in humans. The deletion increased in size over a succession starting from camelid viruses via old human viruses to contemporary human viruses. Live isolates of dromedary 229E viruses were obtained and studied to assess human infection risks. The viruses used the human entry receptor aminopeptidase N and replicated in human hepatoma cells, suggesting a principal ability to cause human infections. However, inefficient replication in several mucosa-derived cell lines and airway epithelial cultures suggested lack of adaptation to the human host. Dromedary viruses were as sensitive to the human type I interferon response as HCoV-229E. Antibodies in human sera neutralized dromedary-derived viruses, suggesting population immunity against dromedary viruses. Although no current epidemic risk seems to emanate from these viruses, evolutionary inference suggests that the endemic human virus HCoV-229E may constitute a descendant of camelid-associated viruses. HCoV-229E evolution provides a scenario for MERS-CoV emergence. PMID:27528677

  4. Human βA3/A1-crystallin splicing mutation causes cataracts by activating the unfolded protein response and inducing apoptosis in differentiating lens fiber cells.

    PubMed

    Ma, Zhiwei; Yao, Wenliang; Chan, Chi-Chao; Kannabiran, Chitra; Wawrousek, Eric; Hejtmancik, J Fielding

    2016-06-01

    βγ-Crystallins, having a uniquely stable two domain four Greek key structure, are crucial for transparency of the eye lens,. Mutations in lens crystallins have been proposed to cause cataract formation by a variety of mechanisms most of which involve destabilization of the protein fold. The underlying molecular mechanism for autosomal dominant zonular cataracts with sutural opacities in an Indian family caused by a c.215+1G>A splice mutation in the βA3/A1-crystallin gene CRYBA1 was elucidated using three transgenic mice models. This mutation causes a splice defect in which the mutant mRNA escapes nonsense mediated decay by skipping both exons 3 and 4. Skipping these exons results in an in-frame deletion of the mRNA and synthesis of an unstable p.Ile33_Ala119del mutant βA3/A1-crystallin protein. Transgenic expression of mutant βA3/A1-crystallin but not the wild type protein results in toxicity and abnormalities in the maturation and orientation of differentiating lens fibers in c.97_357del CRYBA1 transgenic mice, leading to a small spherical lens, cataract, and often lens capsule rupture. On a cellular level, the lenses accumulated p.Ile33_Ala119del βA3/A1-crystallin with resultant activation of the stress signaling pathway - unfolded protein response (UPR) and inhibition of normal protein synthesis, culminating in apoptosis. This highlights the mechanistic contrast between mild mutations that destabilize crystallins and other proteins, resulting in their being bound by the α-crystallins that buffer lens cells against damage by denatured proteins, and severely misfolded proteins that are not bound by α-crystallin but accumulate and have a direct toxic effect on lens cells, resulting in early onset cataracts. PMID:26851658

  5. Structural and Functional Analyses of the Severe Acute Respiratory Syndrome Coronavirus Endoribonuclease Nsp15

    SciTech Connect

    Bhardwaj, Kanchan; Palaninathan, Satheesh; Alcantara, Joanna Maria Ortiz; Yi, Lillian Li; Guarino, Linda; Sacchettini, James C.; Kao, C. Cheng

    2008-03-31

    The severe acute respiratory syndrome (SARS) coronavirus encodes several RNA-processing enzymes that are unusual for RNA viruses, including Nsp15 (nonstructural protein 15), a hexameric endoribonuclease that preferentially cleaves 3' of uridines. We solved the structure of a catalytically inactive mutant version of Nsp15, which was crystallized as a hexamer. The structure contains unreported flexibility in the active site of each subunit. Substitutions in the active site residues serine 293 and proline 343 allowed Nsp15 to cleave at cytidylate, whereas mutation of leucine 345 rendered Nsp15 able to cleave at purines as well as pyrimidines. Mutations that targeted the residues involved in subunit interactions generally resulted in the formation of catalytically inactive monomers. The RNA-binding residues were mapped by a method linking reversible cross-linking, RNA affinity purification, and peptide fingerprinting. Alanine substitution of several residues in the RNA-contacting portion of Nsp15 did not affect hexamer formation but decreased the affinity of RNA binding and reduced endonuclease activity. This suggests a model for Nsp15 hexamer interaction with RNA.

  6. Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus

    PubMed Central

    Corti, Davide; Zhao, Jincun; Pedotti, Mattia; Simonelli, Luca; Agnihothram, Sudhakar; Fett, Craig; Fernandez-Rodriguez, Blanca; Foglierini, Mathilde; Agatic, Gloria; Vanzetta, Fabrizia; Gopal, Robin; Langrish, Christopher J.; Barrett, Nicholas A; Sallusto, Federica; Baric, Ralph S.; Varani, Luca; Zambon, Maria; Perlman, Stanley; Lanzavecchia, Antonio

    2015-01-01

    Middle East Respiratory Syndrome (MERS) is a highly lethal pulmonary infection caused by a previously unidentified coronavirus (CoV), likely transmitted to humans by infected camels. There is no licensed vaccine or antiviral for MERS, therefore new prophylactic and therapeutic strategies to combat human infections are needed. In this study, we describe, for the first time, to our knowledge, the isolation of a potent MERS-CoV–neutralizing antibody from memory B cells of an infected individual. The antibody, named LCA60, binds to a novel site on the spike protein and potently neutralizes infection of multiple MERS-CoV isolates by interfering with the binding to the cellular receptor CD26. Importantly, using mice transduced with adenovirus expressing human CD26 and infected with MERS-CoV, we show that LCA60 can effectively protect in both prophylactic and postexposure settings. This antibody can be used for prophylaxis, for postexposure prophylaxis of individuals at risk, or for the treatment of human cases of MERS-CoV infection. The fact that it took only 4 mo from the initial screening of B cells derived from a convalescent patient for the development of a stable chinese hamster ovary (CHO) cell line producing neutralizing antibodies at more than 5 g/L provides an example of a rapid pathway toward the generation of effective antiviral therapies against emerging viruses. PMID:26216974

  7. In vitro and in vivo expression of foreign genes by transmissible gastroenteritis coronavirus-derived minigenomes.

    PubMed

    Alonso, Sara; Sola, Isabel; Teifke, Jens P; Reimann, Ilona; Izeta, Ander; Balasch, Mónica; Plana-Durán, Juan; Moormann, Rob J M; Enjuanes, Luis

    2002-03-01

    A helper-dependent expression system based on transmissible gastroenteritis coronavirus (TGEV) has been developed using a minigenome of 3.9 kb (M39). Expression of the reporter gene beta-glucuronidase (GUS) (2-8 microg per 10(6) cells) and the porcine respiratory and reproductive syndrome virus (PRRSV) ORF5 (1-2 microg per 10(6) cells) has been shown using a TGEV-derived minigenome. GUS expression levels increased about eightfold with the m.o.i. and were maintained for more than eight passages in cell culture. Nevertheless, instability of the GUS and ORF5 subgenomic mRNAs was observed from passages five and four, respectively. About a quarter of the cells in culture expressing the helper virus also produced the reporter gene as determined by studying GUS mRNA production by in situ hybridization or immunodetection to visualize the protein synthesized. Expression of GUS was detected in the lungs, but not in the gut, of swine immunized with the virus vector. Around a quarter of lung cells showing replication of the helper virus were also positive for the reporter gene. Interestingly, strong humoral immune responses to both GUS and PRRSV ORF5 were induced in swine with this virus vector. The large cloning capacity and the tissue specificity of the TGEV-derived minigenomes suggest that these virus vectors are very promising for vaccine development. PMID:11842252

  8. Genetic analysis of porcine respiratory coronavirus, an attenuated variant of transmissible gastroenteritis virus.

    PubMed Central

    Wesley, R D; Woods, R D; Cheung, A K

    1991-01-01

    The genome and transcriptional pattern of a newly identified respiratory variant of transmissible gastroenteritis virus were analyzed and compared with those of classical enterotropic transmissible gastroenteritis virus. The transcriptional patterns of the two viruses indicated that differences occurred in RNAs 1 and 2(S) and that RNA 3 was absent in the porcine respiratory coronavirus (PRCV) variant. The smaller RNA 2(S) of PRCV was due to a 681-nucleotide (nt) deletion after base 62 of the PRCV peplomer or spike (S) gene. The PRCV S gene still retained information for the 16-amino-acid signal peptide and the first 6 amino acid residues at the N terminus of the mature S protein, but the adjacent 227 residues were deleted. Two additional deletions (3 and 5 nt) were detected in the PRCV genome downstream of the S gene. The 3-nt deletion occurred in a noncoding region; however, the 5-nt deletion shortened the potential open reading frame A polypeptide from 72 to 53 amino acid residues. Significantly, a C-to-T substitution was detected in the last base position of the transcription recognition sequence upstream of open reading frame A, which rendered RNA 3 nondetectable in PRCV-infected cell cultures. Images PMID:1851885

  9. Direct interaction of the resistance to inhibitors of cholinesterase type 3 protein with the serotonin receptor type 3A intracellular domain.

    PubMed

    Nishtala, Sita Nirupama; Mnatsakanyan, Nelli; Pandhare, Akash; Leung, Chun; Jansen, Michaela

    2016-05-01

    Pentameric ligand-gated ion channels (pLGIC) are expressed in both excitable and non-excitable cells that are targeted by numerous clinically used drugs. Assembly from five identical or homologous subunits yields homo- or heteromeric pentamers, respectively. The protein known as Resistance to Inhibitors of Cholinesterase (RIC-3) was identified to interfere with assembly and functional maturation of pLGICs. We have shown previously for serotonin type 3A homopentamers (5-HT3A ) that the interaction with RIC-3 requires the intracellular domain (ICD) of this pLGIC. After expression in Xenopus laevis oocytes RIC-3 attenuated serotonin-induced currents in 5-HT3A wild-type channels, but not in functional 5-HT3A glvM3M4 channels that have the 115-amino acid ICD replaced by a heptapeptide. In complementary experiments we have shown that engineering the Gloeobacter violaceus ligand-gated ion channel (GLIC) to contain the 5-HT3A -ICD confers sensitivity to RIC-3 in oocytes to otherwise insensitive GLIC. In this study, we identify endogenous RIC-3 protein expression in X. laevis oocytes. We purified RIC-3 to homogeneity after expression in Echericia coli. By using heterologously over-expressed and purified RIC-3 and the chimera consisting of the 5-HT3A -ICD and the extracellular and transmembrane domains of GLIC in pull-down experiments, we demonstrate a direct and specific interaction between the two proteins. This result further underlines that the domain within 5-HT3 A R that mediates the interaction with RIC-3 is the ICD. Importantly, this is the first experimental evidence that the interaction between 5-HT3 A R-ICD and RIC-3 does not require other proteins. In addition, we demonstrate that the pentameric assembly of the GLIC-5-HT3A -ICD chimera interacts with RIC-3. We hypothesized that pentameric ligand-gated ion channels (pLGICs) associate directly with the chaperone protein RIC-3 (resistance to inhibitors of cholinesterase type 3), and that the interaction does not

  10. Comparative molecular epidemiology of two closely related coronaviruses, bovine coronavirus (BCoV) and human coronavirus OC43 (HCoV-OC43), reveals a different evolutionary pattern.

    PubMed

    Kin, Nathalie; Miszczak, Fabien; Diancourt, Laure; Caro, Valérie; Moutou, François; Vabret, Astrid; Ar Gouilh, Meriadeg

    2016-06-01

    Bovine coronaviruses (BCoVs) are widespread around the world and cause enteric or respiratory infections among cattle. The current study includes 13 samples from BCoVs collected in Normandy during an 11-year period (from 2003 to 2014), 16 French HCoV-OC43s, and 113 BCoVs or BCoVs-like sequence data derived from partial or complete genome sequences available on GenBank. According to a genotyping method developed previously for HCoV-OC43, BCoVs and BCoVs-like are distributed on three main sub-clusters named C1, C2, and C3. Sub-cluster C1 includes BCoVs and BCoVs-like from America and Asia. Sub-cluster C2 includes BCoVs from Europe. Sub-cluster C3 includes prototype, vaccine, or attenuated BCoV strains. The phylogenetic analyses revealed the monophyletic status of the BCoVs from France reported here for the first time. Moreover, BCoV exhibits a relative genetic stability when compared to HCoV-OC43 we previously described from the same region. The numerous recombination detected between HCoV-OC43 were much less frequent for BCoV. The analysis points thus to the influence of different evolutive constraints in these two close groups. PMID:26969241

  11. Differentiation between Human Coronaviruses NL63 and 229E Using a Novel Double-Antibody Sandwich Enzyme-Linked Immunosorbent Assay Based on Specific Monoclonal Antibodies ▿

    PubMed Central

    Sastre, Patricia; Dijkman, Ronald; Camuñas, Ana; Ruiz, Tamara; Jebbink, Maarten F.; van der Hoek, Lia; Vela, Carmen; Rueda, Paloma

    2011-01-01

    Human coronaviruses (HCoVs) are responsible for respiratory tract infections ranging from common colds to severe acute respiratory syndrome. HCoV-NL63 and HCoV-229E are two of the four HCoVs that circulate worldwide and are close phylogenetic relatives. HCoV infections can lead to hospitalization of children, elderly individuals, and immunocompromised patients. Globally, approximately 5% of all upper and lower respiratory tract infections in hospitalized children are caused by HCoV-229E and HCoV-NL63. The latter virus has recently been associated with the childhood disease croup. Thus, differentiation between the two viruses is relevant for epidemiology studies. The aim of this study was to develop a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) as a potential tool for identification and differentiation between HCoV-NL63 and HCoV-229E. The nucleocapsid (N) proteins of HCoV-NL63 and HCoV-229E were expressed in an Escherichia coli system and used to immunize mice in order to obtain monoclonal antibodies (MAbs) specific for each virus. Three specific MAbs to HCoV-NL63, one MAb specific to HCoV-229E, and four MAbs that recognized both viruses were obtained. After their characterization, three MAbs were selected in order to develop a differential DAS-ELISA. The described assay could detect up to 3 ng/ml of N protein and 50 50% tissue culture infective doses/ml of virus stock. No cross-reactivity with other human coronaviruses or closely related animal coronaviruses was found. The newly developed DAS-ELISA was species specific, and therefore, it could be considered a potential tool for detection and differentiation of HCoV-NL63 and HCoV-229E infections. PMID:21084464

  12. Yeast-based assays for the high-throughput screening of inhibitors of coronavirus RNA cap guanine-N7-methyltransferase.

    PubMed

    Sun, Ying; Wang, Zidao; Tao, Jiali; Wang, Yi; Wu, Andong; Yang, Ziwen; Wang, Kaimei; Shi, Liqiao; Chen, Yu; Guo, Deyin

    2014-04-01

    The 5'-cap structure is a distinct feature of eukaryotic mRNAs and is important for RNA stability and protein translation by providing a molecular signature for the distinction of self or non-self mRNA. Eukaryotic viruses generally modify the 5'-end of their RNAs to mimic the cellular mRNA structure, thereby facilitating viral replication in host cells. However, the molecular organization and biochemical mechanisms of the viral capping apparatus typically differ from its cellular counterpart, which makes viral capping enzymes attractive targets for drug discovery. Our previous work showed that SARS coronavirus (SARS-CoV) non-structural protein 14 represents a structurally novel and unique guanine-N7-methyltransferase (N7-MTase) that is able to functionally complement yeast cellular N7-MTase. In the present study, we developed a yeast-based system for identifying and screening inhibitors against coronavirus N7-MTase using both 96-well and 384-well microtiter plates. The MTase inhibitors previously identified by in vitro biochemical assays were tested, and some, such as sinefungin, effectively suppressed N7-MTase in the yeast system. However, other compounds, such as ATA and AdoHcy, did not exert an inhibitory effect within a cellular context. These results validated the yeast assay system for inhibitor screening yet also demonstrated the difference between cell-based and in vitro biochemical assays. The yeast system was applied to the screening of 3000 natural product extracts, and three were observed to more potently inhibit the activity of coronavirus than human N7-MTase. PMID:24530452

  13. Differentiation between human coronaviruses NL63 and 229E using a novel double-antibody sandwich enzyme-linked immunosorbent assay based on specific monoclonal antibodies.

    PubMed

    Sastre, Patricia; Dijkman, Ronald; Camuñas, Ana; Ruiz, Tamara; Jebbink, Maarten F; van der Hoek, Lia; Vela, Carmen; Rueda, Paloma

    2011-01-01

    Human coronaviruses (HCoVs) are responsible for respiratory tract infections ranging from common colds to severe acute respiratory syndrome. HCoV-NL63 and HCoV-229E are two of the four HCoVs that circulate worldwide and are close phylogenetic relatives. HCoV infections can lead to hospitalization of children, elderly individuals, and immunocompromised patients. Globally, approximately 5% of all upper and lower respiratory tract infections in hospitalized children are caused by HCoV-229E and HCoV-NL63. The latter virus has recently been associated with the childhood disease croup. Thus, differentiation between the two viruses is relevant for epidemiology studies. The aim of this study was to develop a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) as a potential tool for identification and differentiation between HCoV-NL63 and HCoV-229E. The nucleocapsid (N) proteins of HCoV-NL63 and HCoV-229E were expressed in an Escherichia coli system and used to immunize mice in order to obtain monoclonal antibodies (MAbs) specific for each virus. Three specific MAbs to HCoV-NL63, one MAb specific to HCoV-229E, and four MAbs that recognized both viruses were obtained. After their characterization, three MAbs were selected in order to develop a differential DAS-ELISA. The described assay could detect up to 3 ng/ml of N protein and 50 50% tissue culture infective doses/ml of virus stock. No cross-reactivity with other human coronaviruses or closely related animal coronaviruses was found. The newly developed DAS-ELISA was species specific, and therefore, it could be considered a potential tool for detection and differentiation of HCoV-NL63 and HCoV-229E infections. PMID:21084464

  14. DNMT3A R882 mutants interact with polycomb proteins to block haematopoietic stem and leukaemic cell differentiation

    PubMed Central

    Koya, Junji; Kataoka, Keisuke; Sato, Tomohiko; Bando, Masashige; Kato, Yuki; Tsuruta-Kishino, Takako; Kobayashi, Hiroshi; Narukawa, Kensuke; Miyoshi, Hiroyuki; Shirahige, Katsuhiko; Kurokawa, Mineo

    2016-01-01

    Despite the clinical impact of DNMT3A mutation on acute myeloid leukaemia, the molecular mechanisms regarding how this mutation causes leukaemogenesis in vivo are largely unknown. Here we show that, in murine transplantation experiments, recipients transplanted with DNMT3A mutant-transduced cells exhibit aberrant haematopoietic stem cell (HSC) accumulation. Differentiation-associated genes are downregulated without accompanying changes in methylation status of their promoter-associated CpG islands in DNMT3A mutant-transduced stem/progenitor cells, representing a DNA methylation-independent role of mutated DNMT3A. DNMT3A R882H also promotes monoblastic transformation in vitro in combination with HOXA9. Molecularly, the DNMT3A mutant interacts with polycomb repressive complex 1 (PRC1), causing transcriptional silencing, revealing a DNA methylation-independent role of DNMT3A mutation. Suppression of PRC1 impairs aberrant HSC accumulation and monoblastic transformation. From our data, it is shown that DNMT3A mutants can block the differentiation of HSCs and leukaemic cells via PRC1. This interaction could be targetable in DNMT3A-mutated leukaemias. PMID:27010239

  15. Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines

    PubMed Central

    Koukourakis, Michael I.; Kalamida, Dimitra; Giatromanolaki, Alexandra; Zois, Christos E.; Sivridis, Efthimios; Pouliliou, Stamatia; Mitrakas, Achilleas; Gatter, Kevin C.; Harris, Adrian L.

    2015-01-01

    LC3s (MAP1-LC3A, B and C) are structural proteins of autophagosomal membranes, widely used as biomarkers of autophagy. Whether these three LC3 proteins have a similar biological role in autophagy remains obscure. We examine in parallel the subcellular expression patterns of the three LC3 proteins in a panel of human cancer cell lines, as well as in normal MRC5 fibroblasts and HUVEC, using confocal microscopy and western blot analysis of cell fractions. In the cytoplasm, there was a minimal co-localization between LC3A, B and C staining, suggesting that the relevant autophagosomes are formed by only one out of the three LC3 proteins. LC3A showed a perinuclear and nuclear localization, while LC3B was equally distributed throughout the cytoplasm and localized in the nucleolar regions. LC3C was located in the cytoplasm and strongly in the nuclei (excluding nucleoli), where it extensively co-localized with the LC3A and the Beclin-1 autophagy initiating protein. Beclin 1 is known to contain a nuclear trafficking signal. Blocking nuclear export function by Leptomycin B resulted in nuclear accumulation of all LC3 and Beclin-1 proteins, while Ivermectin that blocks nuclear import showed reduction of accumulation, but not in all cell lines. Since endogenous LC3 proteins are used as major markers of autophagy in clinical studies and cell lines, it is essential to check the specificity of the antibodies used, as the kinetics of these molecules are not identical and may have distinct biological roles. The distinct subcellular expression patterns of LC3s provide a basis for further studies. PMID:26378792

  16. Proteomic analysis of chicken embryonic trachea and kidney tissues after infection in ovo by avian infectious bronchitis coronavirus

    PubMed Central

    2011-01-01

    Background Avian infectious bronchitis (IB) is one of the most serious diseases of economic importance in chickens; it is caused by the avian infectious coronavirus (IBV). Information remains limited about the comparative protein expression profiles of chicken embryonic tissues in response to IBV infection in ovo. In this study, we analyzed the changes of protein expression in trachea and kidney tissues from chicken embryos, following IBV infection in ovo, using two-dimensional gel electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-TOF MS). Results 17 differentially expressed proteins from tracheal tissues and 19 differentially expressed proteins from kidney tissues were identified. These proteins mostly related to the cytoskeleton, binding of calcium ions, the stress response, anti-oxidative, and macromolecular metabolism. Some of these altered proteins were confirmed further at the mRNA level using real-time RT-PCR. Moreover, western blotting analysis further confirmed the changes of annexin A5 and HSPB1 during IBV infection. Conclusions To the best of our knowledge, we have performed the first analysis of the proteomic changes in chicken embryonic trachea and kidney tissues during IBV infection in ovo. The data obtained should facilitate a better understanding of the pathogenesis of IBV infection. PMID:21385394

  17. Lactococcus lactis is an Efficient Expression System for Mammalian Membrane Proteins Involved in Liver Detoxification, CYP3A4, and MGST1.

    PubMed

    Bakari, Sana; Lembrouk, Mehdi; Sourd, Laura; Ousalem, Fares; André, François; Orlowski, Stéphane; Delaforge, Marcel; Frelet-Barrand, Annie

    2016-04-01

    Despite the great importance of human membrane proteins involved in detoxification mechanisms, their wide use for biochemical approaches is still hampered by several technical difficulties considering eukaryotic protein expression in order to obtain the large amounts of protein required for functional and/or structural studies. Lactococcus lactis has emerged recently as an alternative heterologous expression system to Escherichia coli for proteins that are difficult to express. The aim of this work was to check its ability to express mammalian membrane proteins involved in liver detoxification, i.e., CYP3A4 and two isoforms of MGST1 (rat and human). Genes were cloned using two different strategies, i.e., classical or Gateway-compatible cloning, and we checked the possible influence of two affinity tags (6×-His-tag and Strep-tag II). Interestingly, all proteins could be successfully expressed in L. lactis at higher yields than those previously obtained for these proteins with classical expression systems (E. coli, Saccharomyces cerevisiae) or those of other eukaryotic membrane proteins expressed in L. lactis. In addition, rMGST1 was fairly active after expression in L. lactis. This study highlights L. lactis as an attractive system for efficient expression of mammalian detoxification membrane proteins at levels compatible with further functional and structural studies. PMID:26961909

  18. FhCaBP3: a Fasciola hepatica calcium binding protein with EF-hand and dynein light chain domains.

    PubMed

    Banford, Samantha; Drysdale, Orla; Hoey, Elizabeth M; Trudgett, Alan; Timson, David J

    2013-04-01

    A DNA sequence encoding a protein with predicted EF-hand and dynein light chain binding domains was identified in a Fasciola hepatica EST library. Sequence analysis of the encoded protein revealed that the most similar known protein was the Fasciola gigantica protein FgCaBP3 and so this newly identified protein was named FhCaBP3. Molecular modelling of FhCaBP3 predicted a highly flexible N-terminal region, followed by a domain containing two EF-hand motifs the second of which is likely to be a functioning divalent ion binding site. The C-terminal domain of the protein contains a dynein light chain like region. Interestingly, molecular modelling predicts that calcium ion binding to the N-terminal domain destabilises the β-sheet structure of the C-terminal domain. FhCaBP3 can be expressed in, and purified from, Escherichia coli. The recombinant protein dimerises and the absence of calcium ions appeared to promote dimerisation. Native gel shift assays demonstrated that the protein bound to calcium and manganese ions, but not to magnesium, barium, zinc, strontium, nickel, copper or cadmium ions. FhCaBP3 interacted with the calmodulin antagonists trifluoperazine, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and chlorpromazine as well as the myosin regulatory light chain-binding drug praziquantel. Despite sequence and structural similarities to other members of the same protein family from F. hepatica, FhCaBP3 has different biochemical properties to the other well characterised family members, FH22 and FhCaBP4. This suggests that each member of this trematode calcium-binding family has discrete functional roles within the organism. PMID:23142130

  19. Regulation of the Intracellular Localization of Foxo3a by Stress-Activated Protein Kinase Signaling Pathways in Skeletal Muscle Cells ▿

    PubMed Central

    Clavel, Stephan; Siffroi-Fernandez, Sandrine; Coldefy, Anne Sophie; Boulukos, Kim; Pisani, Didier F.; Dérijard, Benoît

    2010-01-01

    Muscle atrophy is a debilitating process associated with many chronic wasting diseases, like cancer, diabetes, sepsis, and renal failure. Rapid loss of muscle mass occurs mainly through the activation of protein breakdown by the ubiquitin proteasome pathway. Foxo3a transcription factor is critical for muscle atrophy, since it activates the expression of ubiquitin ligase Atrogin-1. In several models of atrophy, inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway induces nuclear import of Foxo3a through an Akt-dependent process. This study aimed to identify signaling pathways involved in the control of Foxo3a nuclear translocation in muscle cells. We observed that after nuclear import of Foxo3a by PI3K/Akt pathway inhibition, activation of stress-activated protein kinase (SAPK) pathways induced nuclear export of Foxo3a through CRM1. This mechanism involved the c-Jun NH2-terminal kinase (JNK) signaling pathway and was independent of Akt. Likewise, we showed that inhibition of p38 induced a massive nuclear relocalization of Foxo3a. Our results thus suggest that SAPKs are involved in the control of Foxo3a nucleocytoplasmic translocation in C2C12 cells. Moreover, activation of SAPKs decreases the expression of Atrogin-1, and stable C2C12 myotubes, in which the p38 pathway is constitutively activated, present partial protection against atrophy. PMID:19917721

  20. Structural basis of FYCO1 and MAP1LC3A interaction reveals a novel binding mode for Atg8-family proteins.

    PubMed

    Cheng, Xiaofang; Wang, Yingli; Gong, Yukang; Li, Faxiang; Guo, Yujiao; Hu, Shichen; Liu, Jianping; Pan, Lifeng

    2016-08-01

    FYCO1 (FYVE and coiled-coil domain containing 1) functions as an autophagy adaptor in directly linking autophagosomes with the microtubule-based kinesin motor, and plays an essential role in the microtubule plus end-directed transport of autophagic vesicles. The specific association of FYCO1 with autophagosomes is mediated by its interaction with Atg8-family proteins decorated on the outer surface of autophagosome. However, the mechanistic basis governing the interaction between FYCO1 and Atg8-family proteins is largely unknown. Here, using biochemical and structural analyses, we demonstrated that FYCO1 contains a unique LC3-interacting region (LIR), which discriminately binds to mammalian Atg8 orthologs and preferentially binds to the MAP1LC3A and MAP1LC3B. In addition to uncovering the detailed molecular mechanism underlying the FYCO1 LIR and MAP1LC3A interaction, the determined FYCO1-LIR-MAP1LC3A complex structure also reveals a unique LIR binding mode for Atg8-family proteins, and demonstrates, first, the functional relevance of adjacent sequences C-terminal to the LIR core motif for binding to Atg8-family proteins. Taken together, our findings not only provide new mechanistic insight into FYCO1-mediated transport of autophagosomes, but also expand our understanding of the interaction modes between LIR motifs and Atg8-family proteins in general. PMID:27246247

  1. Negative regulation of DNMT3A de novo DNA methylation by frequently overexpressed UHRF family proteins as a mechanism for widespread DNA hypomethylation in cancer

    PubMed Central

    Jia, Yuanhui; Li, Pishun; Fang, Lan; Zhu, Haijun; Xu, Liangliang; Cheng, Hao; Zhang, Junying; Li, Fei; Feng, Yan; Li, Yan; Li, Jialun; Wang, Ruiping; Du, James X; Li, Jiwen; Chen, Taiping; Ji, Hongbin; Han, Jackie; Yu, Wenqiang; Wu, Qihan; Wong, Jiemin

    2016-01-01

    Global DNA hypomethylation is a most common epigenetic alteration in cancer, but the mechanism remains elusive. Previous studies demonstrate that UHRF1 but not UHRF2 is required for mediating DNA maintenance methylation by DNMT1. Here we report unexpectedly a conserved function for UHRF1 and UHRF2: inhibiting de novo DNA methylation by functioning as E3 ligases promoting DNMT3A degradation. UHRF1/2 are frequently overexpressed in cancers and we present evidence that UHRF1/2 overexpression downregulates DNMT3A proteins and consequently leads to DNA hypomethylation. Abrogating this negative regulation on DNMT3A or overexpression of DNMT3A leads to increased DNA methylation and impaired tumor growth. We propose a working model that UHRF1/2 safeguards the fidelity of DNA methylation and suggests that UHRF1/2 overexpression is likely a causal factor for widespread DNA hypomethylation in cancer via suppressing DNMT3A. PMID:27462454

  2. Mutations of 3c and spike protein genes correlate with the occurrence of feline infectious peritonitis.

    PubMed

    Bank-Wolf, Barbara Regina; Stallkamp, Iris; Wiese, Svenja; Moritz, Andreas; Tekes, Gergely; Thiel, Heinz-Jürgen

    2014-10-10

    The genes encoding accessory proteins 3a, 3b, 3c, 7a and 7b, the S2 domain of the spike (S) protein gene and the membrane (M) protein gene of feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FECV) samples were amplified, cloned and sequenced. For this faeces and/or ascites samples from 19 cats suffering from feline infectious peritonitis (FIP) as well as from 20 FECV-infected healthy cats were used. Sequence comparisons revealed that 3c genes of animals with FIP were heavily affected by nucleotide deletions and point mutations compared to animals infected with FECV; these alterations resulted either in early termination or destruction of the translation initiation codon. Two ascites-derived samples of cats with FIP which displayed no alterations of ORF3c harboured mutations in the S2 domain of the S protein gene which resulted in amino acid exchanges or deletions. Moreover, changes in 3c were often accompanied by mutations in S2. In contrast, in samples obtained from faeces of healthy cats, the ORF3c was never affected by such mutations. Similarly ORF3c from faecal samples of the cats with FIP was mostly intact and showed only in a few cases the same mutations found in the respective ascites samples. The genes encoding 3a, 3b, 7a and 7b displayed no mutations linked to the feline coronavirus (FCoV) biotype. The M protein gene was found to be conserved between FECV and FIPV samples. Our findings suggest that mutations of 3c and spike protein genes correlate with the occurrence of FIP. PMID:25150756

  3. The emergence of the Middle East Respiratory Syndrome coronavirus (MERS-CoV)

    PubMed Central

    Milne-Price, Shauna; Miazgowicz, Kerri L.; Munster, Vincent J.

    2014-01-01

    On September 20, 2012, a Saudi Arabian physician reported the isolation of a novel coronavirus from a patient with pneumonia on ProMED-mail. Within a few days the same virus was detected in a Qatari patient receiving intensive care in a London hospital, a situation reminiscent of the role air travel played in the spread of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) in 2002. SARS-CoV originated in China’s Guangdong Province and affected more than 8000 patients in 26 countries before it was contained six months later. Over a year after the emergence of this novel coronavirus—Middle East Respiratory Syndrome coronavirus (MERS-CoV)—it has caused 178 laboratory confirmed cases and 76 deaths The emergence of a second highly pathogenic coronavirus within a decade highlights the importance of a coordinated global response incorporating reservoir surveillance, high-containment capacity with fundamental and applied research programs, and dependable communication pathways to ensure outbreak containment. Here we review the current state of knowledge on the epidemiology, ecology, molecular biology, clinical features and intervention strategies of the novel coronavirus, MERS-CoV. PMID:24585737

  4. Stability of bovine coronavirus on lettuce surfaces under household refrigeration conditions

    PubMed Central

    Mullis, Lisa; Saif, Linda J.; Zhang, Yongbin; Zhang, Xuming; Azevedo, Marli S.P.

    2016-01-01

    Fecal suspensions with an aerosol route of transmission were responsible for a cluster of severe acute respiratory syndrome (SARS) cases in 2003 in Hong Kong. Based on that event, the World Health Organization recommended that research be implemented to define modes of transmission of SARS coronavirus through sewage, feces, food and water. Environmental studies have shown that animal coronaviruses remain infectious in water and sewage for up to a year depending on the temperature and humidity. In this study, we examined coronavirus stability on lettuce surfaces. A cell culture adapted bovine coronavirus, diluted in growth media or in bovine fecal suspensions to simulate fecal contamination was used to spike romaine lettuce. qRT-PCR detected viral RNA copy number ranging from 6.6 × 104 to 1.7 × 106 throughout the experimental period of 30 days. Whereas infectious viruses were detected for at least 14 days, the amount of infectious virus varied, depending upon the diluent used for spiking the lettuce. UV and confocal microscopic observation indicated attachment of residual labeled virions to the lettuce surface after the elution procedure, suggesting that rates of inactivation or detection of the virus may be underestimated. Thus, it is possible that contaminated vegetables may be potential vehicles for coronavirus zoonotic transmission to humans. PMID:22265299

  5. Stability of bovine coronavirus on lettuce surfaces under household refrigeration conditions.

    PubMed

    Mullis, Lisa; Saif, Linda J; Zhang, Yongbin; Zhang, Xuming; Azevedo, Marli S P

    2012-05-01

    Fecal suspensions with an aerosol route of transmission were responsible for a cluster of severe acute respiratory syndrome (SARS) cases in 2003 in Hong Kong. Based on that event, the World Health Organization recommended that research be implemented to define modes of transmission of SARS coronavirus through sewage, feces, food and water. Environmental studies have shown that animal coronaviruses remain infectious in water and sewage for up to a year depending on the temperature and humidity. In this study, we examined coronavirus stability on lettuce surfaces. A cell culture adapted bovine coronavirus, diluted in growth media or in bovine fecal suspensions to simulate fecal contamination was used to spike romaine lettuce. qRT-PCR detected viral RNA copy number ranging from 6.6 × 10⁴ to 1.7 × 10⁶ throughout the experimental period of 30 days. Whereas infectious viruses were detected for at least 14 days, the amount of infectious virus varied, depending upon the diluent used for spiking the lettuce. UV and confocal microscopic observation indicated attachment of residual labeled virions to the lettuce surface after the elution procedure, suggesting that rates of inactivation or detection of the virus may be underestimated. Thus, it is possible that contaminated vegetables may be potential vehicles for coronavirus zoonotic transmission to humans. PMID:22265299

  6. Critical Assessment of the Important Residues Involved in the Dimerization and Catalysis of MERS Coronavirus Main Protease

    PubMed Central

    Ho, Bo-Lin; Cheng, Shu-Chun; Shi, Lin; Wang, Ting-Yun; Ho, Kuan-I; Chou, Chi-Yuan

    2015-01-01

    Background A highly pathogenic human coronavirus (CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), has emerged in Jeddah and other places in Saudi Arabia, and has quickly spread to European and Asian countries since September 2012. Up to the 1st October 2015 it has infected at least 1593 people with a global fatality rate of about 35%. Studies to understand the virus are necessary and urgent. In the present study, MERS-CoV main protease (Mpro) is expressed; the dimerization of the protein and its relationship to catalysis are investigated. Methods and Results The crystal structure of MERS-CoV Mpro indicates that it shares a similar scaffold to that of other coronaviral Mpro and consists of chymotrypsin-like domains I and II and a helical domain III of five helices. Analytical ultracentrifugation analysis demonstrated that MERS-CoV Mpro undergoes a monomer to dimer conversion in the presence of a peptide substrate. Glu169 is a key residue and plays a dual role in both dimerization and catalysis. The mutagenesis of other residues found on the dimerization interface indicate that dimerization of MERS-CoV Mpro is required for its catalytic activity. One mutation, M298R, resulted in a stable dimer with a higher level of proteolytic activity than the wild-type enzyme. Conclusions MERS-CoV Mpro shows substrate-induced dimerization and potent proteolytic activity. A critical assessment of the residues important to these processes provides insights into the correlation between dimerization and catalysis within the coronaviral Mpro family. PMID:26658006

  7. Structural Analysis of Major Species Barriers between Humans and Palm Civets for Severe Acute Respiratory Syndrome Coronavirus Infections

    SciTech Connect

    Li, Fang

    2008-09-23

    It is believed that a novel coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV), was passed from palm civets to humans and caused the epidemic of SARS in 2002 to 2003. The major species barriers between humans and civets for SARS-CoV infections are the specific interactions between a defined receptor-binding domain (RBD) on a viral spike protein and its host receptor, angiotensin-converting enzyme 2 (ACE2). In this study a chimeric ACE2 bearing the critical N-terminal helix from civet and the remaining peptidase domain from human was constructed, and it was shown that this construct has the same receptor activity as civet ACE2. In addition, crystal structures of the chimeric ACE2 complexed with RBDs from various human and civet SARS-CoV strains were determined. These structures, combined with a previously determined structure of human ACE2 complexed with the RBD from a human SARS-CoV strain, have revealed a structural basis for understanding the major species barriers between humans and civets for SARS-CoV infections. They show that the major species barriers are determined by interactions between four ACE2 residues (residues 31, 35, 38, and 353) and two RBD residues (residues 479 and 487), that early civet SARS-CoV isolates were prevented from infecting human cells due to imbalanced salt bridges at the hydrophobic virus/receptor interface, and that SARS-CoV has evolved to gain sustained infectivity for human cells by eliminating unfavorable free charges at the interface through stepwise mutations at positions 479 and 487. These results enhance our understanding of host adaptations and cross-species infections of SARS-CoV and other emerging animal viruses.

  8. Characterization of Human GTPBP3, a GTP-Binding Protein Involved in Mitochondrial tRNA Modification▿ †

    PubMed Central

    Villarroya, Magda; Prado, Silvia; Esteve, Juan M.; Soriano, Miguel A.; Aguado, Carmen; Pérez-Martínez, David; Martínez-Ferrandis, José I.; Yim, Lucía; Victor, Victor M.; Cebolla, Elvira; Montaner, Asunción; Knecht, Erwin; Armengod, M.-Eugenia

    2008-01-01

    Human GTPBP3 is an evolutionarily conserved, multidomain protein involved in mitochondrial tRNA modification. Characterization of its biochemical properties and the phenotype conferred by GTPBP3 inactivation is crucial to understanding the role of this protein in tRNA maturation and its effects on mitochondrial respiration. We show that the two most abundant GTPBP3 isoforms exhibit moderate affinity for guanine nucleotides like their bacterial homologue, MnmE, although they hydrolyze GTP at a 100-fold lower rate. This suggests that regulation of the GTPase activity, essential for the tRNA modification function of MnmE, is different in GTPBP3. In fact, potassium-induced dimerization of the G domain leads to stimulation of the GTPase activity in MnmE but not in GTPBP3. The GTPBP3 N-terminal domain mediates a potassium-independent dimerization, which appears as an evolutionarily conserved property of the protein family, probably related to the construction of the binding site for the one-carbon-unit donor in the modification reaction. Partial inactivation of GTPBP3 by small interfering RNA reduces oxygen consumption, ATP production, and mitochondrial protein synthesis, while the degradation of these proteins slightly increases. It also results in mitochondria with defective membrane potential and increased superoxide levels. These phenotypic traits suggest that GTPBP3 defects contribute to the pathogenesis of some oxidative phosphorylation diseases. PMID:18852288

  9. Up-Regulation of Mcl-1 and Bak by Coronavirus Infection of Human, Avian and Animal Cells Modulates Apoptosis and Viral Replication

    PubMed Central

    Zhong, Yanxin; Liao, Ying; Fang, Shouguo; Tam, James P.; Liu, Ding Xiang

    2012-01-01

    Virus-induced apoptosis and viral mechanisms that regulate this cell death program are key issues in understanding virus-host interactions and viral pathogenesis. Like many other human and animal viruses, coronavirus infection of mammalian cells induces apoptosis. In this study, the global gene expression profiles are first determined in IBV-infected Vero cells at 24 hours post-infection by Affymetrix array, using avian coronavirus infectious bronchitis virus (IBV) as a model system. It reveals an up-regulation at the transcriptional level of both pro-apoptotic Bak and pro-survival myeloid cell leukemia-1 (Mcl-1). These results were further confirmed both in vivo and in vitro, in IBV-infected embryonated chicken eggs, chicken fibroblast cells and mammalian cells at transcriptional and translational levels, respectively. Interestingly, the onset of apoptosis occurred earlier in IBV-infected mammalian cells silenced with short interfering RNA targeting Mcl-1 (siMcl-1), and was delayed in cells silenced with siBak. IBV progeny production and release were increased in infected Mcl-1 knockdown cells compared to similarly infected control cells, while the contrary was observed in infected Bak knockdown cells. Furthermore, IBV infection-induced up-regulation of GADD153 regulated the expression of Mcl-1. Inhibition of the mitogen-activated protein/extracellular signal-regulated kinase (MEK/ERK) and phosphoinositide 3-kinase (PI3K/Akt) signaling pathways by chemical inhibitors and knockdown of GADD153 by siRNA demonstrated the involvement of ER-stress response in regulation of IBV-induced Mcl-1 expression. These results illustrate the sophisticated regulatory strategies evolved by a coronavirus to modulate both virus-induced apoptosis and viral replication during its replication cycle. PMID:22253918

  10. Identification and characterization of a serine-like proteinase of the murine coronavirus MHV-A59.

    PubMed Central

    Lu, Y; Lu, X; Denison, M R

    1995-01-01

    Gene 1 of the murine coronavirus, MHV-A59, encodes approximately 800 kDa of protein products within two overlapping open reading frames (ORFs 1a and 1b). The gene is expressed as a polyprotein that is processed into individual proteins, presumably by virus-encoded proteinases. ORF 1a has been predicted to encode proteins with similarity to viral and cellular proteinases, such as papain, and to the 3C proteinases of the picornaviruses (A. E. Gorbalenya, A. P. Donchenko, V. M. Blinov, and E. V. Koonin, FEBS Lett. 243:103-114, 1989; A. E. Gorbalenya, E. V. Koonin, A. P. Donchenko, and V. M. Blinov, Nucleic Acids Res. 17:4847-4861, 1989). We have cloned into a T7 transcription vector a cDNA fragment containing the putative 3C-like proteinase domain of MHV-A59, along with portions of the flanking hydrophobic domains. The construct was used to express a polypeptide in a combined in vitro transcription-translation system. Major polypeptides with molecular masses of 38 and 33 kDa were detected at early times, whereas polypeptides with molecular masses of 32 and 27 kDa were predominant after 30 to 45 min and appeared to be products of specific proteolysis of larger precursors. Mutations at the putative catalytic histidine and cysteine residues abolished the processing of the 27-kDa protein. Translation products of the pGpro construct were able to cleave the 27-kDa protein in trans from polypeptides expressed from the noncleaving histidine or cysteine mutants. The amino-terminal cleavage of the 27-kDa protein occurred at a glutamine-serine dipeptide as previously predicted. This study provides experimental confirmation that the coronaviruses express an active proteinase within the 3C-like proteinase domain of gene 1 ORF 1a and that this proteinase utilizes at least one canonical QS dipeptide as a cleavage site in vitro. PMID:7745703

  11. Changes in mGlu5 receptor-dependent synaptic plasticity and coupling to homer proteins in the hippocampus of Ube3A hemizygous mice modeling angelman syndrome.

    PubMed

    Pignatelli, Marco; Piccinin, Sonia; Molinaro, Gemma; Di Menna, Luisa; Riozzi, Barbara; Cannella, Milena; Motolese, Marta; Vetere, Gisella; Catania, Maria Vincenza; Battaglia, Giuseppe; Nicoletti, Ferdinando; Nisticò, Robert; Bruno, Valeria

    2014-03-26

    Angelman syndrome (AS) is caused by the loss of Ube3A, an ubiquitin ligase that commits specific proteins to proteasomal degradation. How this defect causes autism and other pathological phenotypes associated with AS is unknown. Long-term depression (LTD) of excitatory synaptic transmission mediated by type 5 metabotropic glutamate (mGlu5) receptors was enhanced in hippocampal slices of Ube3A(m-/p+) mice, which model AS. No changes were found in NMDA-dependent LTD induced by low-frequency stimulation. mGlu5 receptor-dependent LTD in AS mice was sensitive to the protein synthesis inhibitor anisomycin, and relied on the same signaling pathways as in wild-type mice, e.g., the mitogen-activated protein kinase (MAPK) pathway, the phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycine pathway, and protein tyrosine phosphatase. Neither the stimulation of MAPK and PI3K nor the increase in Arc (activity-regulated cytoskeleton-associated protein) levels in response to mGlu5 receptor activation were abnormal in hippocampal slices from AS mice compared with wild-type mice. mGlu5 receptor expression and mGlu1/5 receptor-mediated polyphosphoinositide hydrolysis were also unchanged in the hippocampus of AS mice. In contrast, AS mice showed a reduced expression of the short Homer protein isoform Homer 1a, and an increased coupling of mGlu5 receptors to Homer 1b/c proteins in the hippocampus. These findings support the link between Homer proteins and monogenic autism, and lay the groundwork for the use of mGlu5 receptor antagonists in AS. PMID:24672001

  12. Coronavirus genomic and subgenomic minus-strand RNAs copartition in membrane-protected replication complexes.

    PubMed Central

    Sethna, P B; Brian, D A

    1997-01-01

    The majority of porcine transmissible gastroenteritis coronavirus plus-strand RNAs (genome and subgenomic mRNAs), at the time of peak RNA synthesis (5 h postinfection), were not found in membrane-protected complexes in lysates of cells prepared by Dounce homogenization but were found to be susceptible to micrococcal nuclease (85%) or to sediment to a pellet in a cesium chloride gradient (61%). They therefore are probably free molecules in solution or components of easily dissociable complexes. By contrast, the majority of minus-strand RNAs (genome length and subgenomic mRNA length) were found to be resistant to micrococcal nuclease (69%) or to remain suspended in association with membrane-protected complexes following isopycnic sedimentation in a cesium chloride gradient (85%). Furthermore, 35% of the suspended minus strands were in a dense complex (1.20 to 1.24 g/ml) that contained an RNA plus-to-minus-strand molar ratio of approximately 8:1 and viral structural proteins S, M, and N, and 65% were in a light complex (1.15 to 1.17 g/ml) that contained nearly equimolar amounts of plus- and minus-strand RNAs and only trace amounts of proteins M and N. In no instance during fractionation were genome-length minus strands found segregated from sub-genome-length minus strands. These results indicate that all minus-strand species are components of similarly structured membrane-associated replication complexes and support the concept that all are active in the synthesis of plus-strand RNAs. PMID:9311859

  13. The Disruption of the Cytoskeleton during Semaphorin 3A induced Growth Cone Collapse Correlates with Differences in Actin Organization and Associated Binding Proteins

    PubMed Central

    Brown, Jacquelyn A; Bridgman, Paul C

    2010-01-01

    Repulsive guidance cues induce growth cone collapse or collapse and retraction. Collapse results from disruption and loss of the actin cytoskeleton. Actin rich regions of growth cones contain binding proteins that influence filament organization, such as Arp2/3, cortactin, and fascin, but little is known about the role that these proteins play in collapse. Here we show that Semaphorin 3A (Sema 3A), which is repulsive to mouse dorsal root ganglion neurons, has unequal effects on actin binding proteins and their associated filaments. The immunofluorescence staining intensity of Arp-2 and cortactin decreases relative to total protein, while in unextracted growth cones fascin increases. Fascin and myosin IIB staining redistribute and show increased overlap. The degree of actin filament loss during collapse correlates with filament superstructures detected by rotary shadow electron microscopy. Collapse results in the loss of branched f-actin meshworks, while actin bundles are partially retained to varying degrees. Taken together with the known affects of Sema 3A on actin, this suggests a model for collapse that follows a sequence; depolymerization of actin meshworks followed by partial depolymerization of fascin associated actin bundles and their movement to the neurite to complete collapse. The relocated fascin associated actin bundles may provide the substrate for actomyosin contractions that produce retraction. PMID:19513995

  14. Wnt3a, a Protein Secreted by Mesenchymal Stem Cells Is Neuroprotective and Promotes Neurocognitive Recovery Following Traumatic Brain Injury.

    PubMed

    Zhao, Yuhai; Gibb, Stuart L; Zhao, Jing; Moore, Anthony N; Hylin, Michael J; Menge, Tyler; Xue, Hasen; Baimukanova, Gyulnar; Potter, Daniel; Johnson, Evan M; Holcomb, John B; Cox, Charles S; Dash, Pramod K; Pati, Shibani

    2016-05-01

    Intravenous administration of bone marrow derived mesenchymal stem cells (MSCs) has been shown to reduce blood brain barrier compromise and improve neurocognition following traumatic brain injury (TBI). These effects occur in the absence of engraftment and differentiation of these cells in the injured brain. Recent studies have shown that soluble factors produced by MSCs mediate a number of the therapeutic effects. In this study, we sought to determine if intravenous administration of MSCs (IV-MSCs) could enhance hippocampal neurogenesis following TBI. Our results demonstrate that IV-MSC treatment attenuates loss of neural stem cells and promotes hippocampal neurogenesis in TBI injured mice. As Wnt signaling has been implicated in neurogenesis, we measured circulating Wnt3a levels in serum following IV-MSC administration and found a significant increase in Wnt3a. Concurrent with this increase, we detected increased activation of the Wnt/β-catenin signaling pathway in hippocampal neurons. Furthermore, IV recombinant Wnt3a treatment provided neuroprotection, promoted neurogenesis, and improved neurocognitive function in TBI injured mice. Taken together, our results demonstrate a role for Wnt3a in the therapeutic potential of MSCs and identify Wnt3a as a potential stand-alone therapy or as part of a combination therapeutic strategy for the treatment of TBI. Stem Cells 2016;34:1263-1272. PMID:26840479

  15. microProtein Prediction Program (miP3): A Software for Predicting microProteins and Their Target Transcription Factors.

    PubMed

    de Klein, Niek; Magnani, Enrico; Banf, Michael; Rhee, Seung Yon

    2015-01-01

    An emerging concept in transcriptional regulation is that a class of truncated transcription factors (TFs), called microProteins (miPs), engages in protein-protein interactions with TF complexes and provides feedback controls. A handful of miP examples have been described in the literature but the extent of their prevalence is unclear. Here we present an algorithm that predicts miPs and their target TFs from a sequenced genome. The algorithm is called miP prediction program (miP3), which is implemented in Python. The software will help shed light on the prevalence, biological roles, and evolution of miPs. Moreover, miP3 can be used to predict other types of miP-like proteins that may have evolved from other functional classes such as kinases and receptors. The program is freely available and can be applied to any sequenced genome. PMID:26060811

  16. Phytophthora infestans RXLR-WY Effector AVR3a Associates with Dynamin-Related Protein 2 Required for Endocytosis of the Plant Pattern Recognition Receptor FLS2.

    PubMed

    Chaparro-Garcia, Angela; Schwizer, Simon; Sklenar, Jan; Yoshida, Kentaro; Petre, Benjamin; Bos, Jorunn I B; Schornack, Sebastian; Jones, Alexandra M E; Bozkurt, Tolga O; Kamoun, Sophien

    2015-01-01

    Pathogens utilize effectors to suppress basal plant defense known as PTI (Pathogen-associated molecular pattern-triggered immunity). However, our knowledge of PTI suppression by filamentous plant pathogens, i.e. fungi and oomycetes, remains fragmentary. Previous work revealed that the co-receptor BAK1/SERK3 contributes to basal immunity against the potato pathogen Phytophthora infestans. Moreover BAK1/SERK3 is required for the cell death induced by P. infestans elicitin INF1, a protein with characteristics of PAMPs. The P. infestans host-translocated RXLR-WY effector AVR3a is known to supress INF1-mediated cell death by binding the plant E3 ligase CMPG1. In contrast, AVR3aKI-Y147del, a deletion mutant of the C-terminal tyrosine of AVR3a, fails to bind CMPG1 and does not suppress INF1-mediated cell death. Here, we studied the extent to which AVR3a and its variants perturb additional BAK1/SERK3-dependent PTI responses in N. benthamiana using the elicitor/receptor pair flg22/FLS2 as a model. We found that all tested variants of AVR3a suppress defense responses triggered by flg22 and reduce internalization of activated FLS2. Moreover, we discovered that AVR3a associates with the Dynamin-Related Protein 2 (DRP2), a plant GTPase implicated in receptor-mediated endocytosis. Interestingly, silencing of DRP2 impaired ligand-induced FLS2 internalization but did not affect internalization of the growth receptor BRI1. Our results suggest that AVR3a associates with a key cellular trafficking and membrane-remodeling complex involved in immune receptor-mediated endocytosis. We conclude that AVR3a is a multifunctional effector that can suppress BAK1/SERK3-mediated immunity through at least two different pathways. PMID:26348328

  17. Protein Kinase C-mediated Phosphorylation and Activation of PDE3A Regulate cAMP Levels in Human Platelets*S⃞

    PubMed Central

    Hunter, Roger W.; MacKintosh, Carol; Hers, Ingeborg

    2009-01-01

    The elevation of [cAMP]i is an important mechanism of platelet inhibition and is regulated by the opposing activity of adenylyl cyclase and phosphodiesterase (PDE). In this study, we demonstrate that a variety of platelet agonists, including thrombin, significantly enhance the activity of PDE3A in a phosphorylation-dependent manner. Stimulation of platelets with the PAR-1 agonist SFLLRN resulted in rapid and transient phosphorylation of PDE3A on Ser312, Ser428, Ser438, Ser465, and Ser492, in parallel with the PKC (protein kinase C) substrate, pleckstrin. Furthermore, phosphorylation and activation of PDE3A required the activation of PKC, but not of PI3K/PKB, mTOR/p70S6K, or ERK/RSK. Activation of PKC by phorbol esters also resulted in phosphorylation of the same PDE3A sites in a PKC-dependent, PKB-independent manner. This was further supported by the finding that IGF-1, which strongly activates PI3K/PKB, but not PKC, did not regulate PDE3A. Platelet activation also led to a PKC-dependent association between PDE3A and 14-3-3 proteins. In contrast, cAMP-elevating agents such as PGE1 and forskolin-induced phosphorylation of Ser312 and increased PDE3A activity, but did not stimulate 14-3-3 binding. Finally, complete antagonism of PGE1-evoked cAMP accumulation by thrombin required both Gi and PKC activation. Together, these results demonstrate that platelet activation stimulates PKC-dependent phosphorylation of PDE3A on Ser312, Ser428, Ser438, Ser465, and Ser492 leading to a subsequent increase in cAMP hydrolysis and 14-3-3 binding. PMID:19261611

  18. Phytophthora infestans RXLR-WY Effector AVR3a Associates with Dynamin-Related Protein 2 Required for Endocytosis of the Plant Pattern Recognition Receptor FLS2

    PubMed Central

    Chaparro-Garcia, Angela; Schwizer, Simon; Sklenar, Jan; Yoshida, Kentaro; Petre, Benjamin; Bos, Jorunn I. B.; Schornack, Sebastian; Jones, Alexandra M. E.; Bozkurt, Tolga O.; Kamoun, Sophien

    2015-01-01

    Pathogens utilize effectors to suppress basal plant defense known as PTI (Pathogen-associated molecular pattern-triggered immunity). However, our knowledge of PTI suppression by filamentous plant pathogens, i.e. fungi and oomycetes, remains fragmentary. Previous work revealed that the co-receptor BAK1/SERK3 contributes to basal immunity against the potato pathogen Phytophthora infestans. Moreover BAK1/SERK3 is required for the cell death induced by P. infestans elicitin INF1, a protein with characteristics of PAMPs. The P. infestans host-translocated RXLR-WY effector AVR3a is known to supress INF1-mediated cell death by binding the plant E3 ligase CMPG1. In contrast, AVR3aKI-Y147del, a deletion mutant of the C-terminal tyrosine of AVR3a, fails to bind CMPG1 and does not suppress INF1-mediated cell death. Here, we studied the extent to which AVR3a and its variants perturb additional BAK1/SERK3-dependent PTI responses in N. benthamiana using the elicitor/receptor pair flg22/FLS2 as a model. We found that all tested variants of AVR3a suppress defense responses triggered by flg22 and reduce internalization of activated FLS2. Moreover, we discovered that AVR3a associates with the Dynamin-Related Protein 2 (DRP2), a plant GTPase implicated in receptor-mediated endocytosis. Interestingly, silencing of DRP2 impaired ligand-induced FLS2 internalization but did not affect internalization of the growth receptor BRI1. Our results suggest that AVR3a associates with a key cellular trafficking and membrane-remodeling complex involved in immune receptor-mediated endocytosis. We conclude that AVR3a is a multifunctional effector that can suppress BAK1/SERK3-mediated immunity through at least two different pathways. PMID:26348328

  19. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences.

    PubMed

    Drexler, Jan Felix; Gloza-Rausch, Florian; Glende, Jörg; Corman, Victor Max; Muth, Doreen; Goettsche, Matthias; Seebens, Antje; Niedrig, Matthias; Pfefferle, Susanne; Yordanov, Stoian; Zhelyazkov, Lyubomir; Hermanns, Uwe; Vallo, Peter; Lukashev, Alexander; Müller, Marcel Alexander; Deng, Hongkui; Herrler, Georg; Drosten, Christian

    2010-11-01

    Bats may host emerging viruses, including coronaviruses (CoV). We conducted an evaluation of CoV in rhinolophid and vespertilionid bat species common in Europe. Rhinolophids carried severe acute respiratory syndrome (SARS)-related CoV at high frequencies and concentrations (26% of animals are positive; up to 2.4×10(8) copies per gram of feces), as well as two Alphacoronavirus clades, one novel and one related to the HKU2 clade. All three clades present in Miniopterus bats in China (HKU7, HKU8, and 1A related) were also present in European Miniopterus bats. An additional novel Alphacoronavirus clade (bat CoV [BtCoV]/BNM98-30) was detected in Nyctalus leisleri. A CoV grouping criterion was developed by comparing amino acid identities across an 816-bp fragment of the RNA-dependent RNA polymerases (RdRp) of all accepted mammalian CoV species (RdRp-based grouping units [RGU]). Criteria for defining separate RGU in mammalian CoV were a >4.8% amino acid distance for alphacoronaviruses and a >6.3% distance for betacoronaviruses. All the above-mentioned novel clades represented independent RGU. Strict associations between CoV RGU and host bat genera were confirmed for six independent RGU represented simultaneously in China and Europe. A SARS-related virus (BtCoV/BM48-31/Bulgaria/2008) from a Rhinolophus blasii (Rhi bla) bat was fully sequenced. It is predicted that proteins 3b and 6 were highly divergent from those proteins in all known SARS-related CoV. Open reading frame 8 (ORF8) was surprisingly absent. Surface expression of spike and staining with sera of SARS survivors suggested low antigenic overlap with SARS CoV. However, the receptor binding domain of SARS CoV showed higher similarity with that of BtCoV/BM48-31/Bulgaria/2008 than with that of any Chinese bat-borne CoV. Critical spike domains 472 and 487 were identical and similar, respectively. This study underlines the importance of assessments of the zoonotic potential of widely distributed bat-borne CoV. PMID

  20. Arabidopsis PEROXIN11c-e, FISSION1b, and DYNAMIN-RELATED PROTEIN3A Cooperate in Cell Cycle–Associated Replication of Peroxisomes[W

    PubMed Central

    Lingard, Matthew J.; Gidda, Satinder K.; Bingham, Scott; Rothstein, Steven J.; Mullen, Robert T.; Trelease, Richard N.

    2008-01-01

    Although participation of PEROXIN11 (PEX11), FISSION1 (FISl), and DYNAMIN-RELATED PROTEIN (DRP) has been well established during induced peroxisome proliferation in response to external stimuli, their roles in cell cycle–associated constitutive replication/duplication have not been fully explored. Herein, bimolecular fluorescence complementation experiments with Arabidopsis thaliana suspension cells revealed homooligomerization of all five PEX11 isoforms (PEX11a-e) and heterooligomerizations of all five PEX11 isoforms with FIS1b, but not FIS1a nor DRP3A. Intracellular protein targeting experiments demonstrated that FIS1b, but not FIS1a nor DRP3A, targeted to peroxisomes only when coexpressed with PEX11d or PEX11e. Simultaneous silencing of PEX11c-e or individual silencing of DRP3A, but not FIS1a nor FIS1b, resulted in ∼40% reductions in peroxisome number. During G2 in synchronized cell cultures, peroxisomes sequentially enlarged, elongated, and then doubled in number, which correlated with peaks in PEX11, FIS1, and DRP3A expression. Overall, these data support a model for the replication of preexisting peroxisomes wherein PEX11c, PEX11d, and PEX11e act cooperatively during G2 to promote peroxisome elongation and recruitment of FIS1b to the peroxisome membrane, where DRP3A stimulates fission of elongated peroxisomes into daughter peroxisomes, which are then distributed between daughter cells. PMID:18539750

  1. Pyogranulomatous panophthalmitis with systemic coronavirus disease in a domestic ferret (Mustela putorius furo).

    PubMed

    Lindemann, Dana M; Eshar, David; Schumacher, Loni L; Almes, Kelli M; Rankin, Amy J

    2016-03-01

    A 15-month-old spayed female ferret (Mustela putorius furo) presented for lethargy and weight loss of 2 weeks duration. Upon physical examination, a 2-mm-diameter focal area of opacity was noted in the left cornea. In addition, the ferret was quiet, in poor body condition, and dehydrated. A complete blood count and plasma biochemistry revealed a severe nonregenerative anemia, azotemia, hyperproteinemia, hypoalbuminemia, and mild hyperphosphatemia and hyperchloremia. Urinalysis revealed hyposthenuria. Whole body radiographs showed multifocal thoracic nodular disease, splenomegaly, and renomegaly. Abdominal ultrasonography confirmed bilaterally enlarged kidneys, hypoechoic liver and spleen, and a caudal abdominal hypoechoic mobile nodule. The ferret was humanely euthanized, and a postmortem examination with subsequent histopathology showed multifocal necrotizing pyogranulomas in the lung, spleen, kidneys, mesenteric lymph nodes, and serosa of the duodenum. Pyogranulomatous panophthalmitis was diagnosed in the left eye. The multisystemic granulomatous lesions were suggestive of ferret systemic coronavirus (FRSCV). The presence of coronavirus in the left eye was confirmed by positive immunohistochemistry. Reverse transcriptase polymerase chain reaction (RT-PCR) on formalin fixed paraffin embedded tissue from the lung, spleen, and kidney was negative for FRSCV and positive for ferret enteric coronavirus (FRECV). Systemic coronavirus disease in ferrets closely resembles feline infectious peritonitis (FIP) in domestic cats, which can manifest with anterior uveitis, chorioretinitis, optic neuritis, and retinal detachment. To the authors' knowledge, this is the first report of ocular lesions in a ferret with systemic coronavirus disease, suggesting that ferrets presented with similar ocular lesions should also be evaluated for evidence of coronavirus infection. PMID:25918975

  2. Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii.

    PubMed

    Bonente, Giulia; Ballottari, Matteo; Truong, Thuy B; Morosinotto, Tomas; Ahn, Tae K; Fleming, Graham R; Niyogi, Krishna K; Bassi, Roberto

    2011-01-01

    In photosynthetic organisms, feedback dissipation of excess absorbed light energy balances harvesting of light with metabolic energy consumption. This mechanism prevents photodamage caused by reactive oxygen species produced by the reaction of chlorophyll (Chl) triplet states with O₂. Plants have been found to perform the heat dissipation in specific proteins, binding Chls and carotenoids (Cars), that belong to the Lhc family, while triggering of the process is performed by the PsbS subunit, needed for lumenal pH detection. PsbS is not found in algae, suggesting important differences in energy-dependent quenching (qE) machinery. Consistent with this suggestion, a different Lhc-like gene product, called LhcSR3 (formerly known as LI818) has been found to be essential for qE in Chlamydomonas reinhardtii. In this work, we report the production of two recombinant LhcSR isoforms from C. reinhardtii and their biochemical and spectroscopic characterization. We found the following: (i) LhcSR isoforms are Chl a/b- and xanthophyll-binding proteins, contrary to higher plant PsbS; (ii) the LhcSR3 isoform, accumulating in high light, is a strong quencher of Chl excited states, exhibiting a very fast fluorescence decay, with lifetimes below 100 ps, capable of dissipating excitation energy from neighbor antenna proteins; (iii) the LhcSR3 isoform is highly active in the transient formation of Car radical cation, a species proposed to act as a quencher in the heat dissipation process. Remarkably, the radical cation signal is detected at wavelengths corresponding to the Car lutein, rather than to zeaxanthin, implying that the latter, predominant in plants, is not essential; (iv) LhcSR3 is responsive to low pH, the trigger of non-photochemical quenching, since it binds the non-photochemical quenching inhibitor dicyclohexylcarbodiimide, and increases its energy dissipation properties upon acidification. This is the first report of an isolated Lhc protein constitutively active in

  3. Crystallization and preliminary X-ray diffraction analysis of Sfh3, a member of the Sec14 protein superfamily

    SciTech Connect

    Ren, Jihui; Schaaf, Gabriel; Bankaitis, Vytas A.; Ortlund, Eric A.; Pathak, Manish C.

    2012-03-26

    Sec14 is the major phosphatidylinositol (PtdIns)/phosphatidylcholine (PtdCho) transfer protein in the yeast Saccharomyces cerevisiae and is the founding member of the Sec14 protein superfamily. Recent functional data suggest that Sec14 functions as a nanoreactor for PtdCho-regulated presentation of PtdIns to PtdIns kinase to affect membrane trafficking. Extrapolation of this concept to other members of the Sec14 superfamily suggests a mechanism by which a comprehensive cohort of Sec14-like nanoreactors sense correspondingly diverse pools of lipid metabolites. In turn, metabolic information is translated to signaling circuits driven by phosphoinositide metabolism. Sfh3, one of five Sec14 homologs in yeast, exhibits several interesting functional features, including its unique localization to lipid particles and microsomes. This localization forecasts novel regulatory interfaces between neutral lipid metabolism and phosphoinositide signaling. To launch a detailed structural and functional characterization of Sfh3, the recombinant protein was purified to homogeneity, diffraction-quality crystals were produced and a native X-ray data set was collected to 2.2 {angstrom} resolution. To aid in phasing, SAD X-ray diffraction data were collected to 1.93 {angstrom} resolution from an SeMet-labeled crystal at the Southeast Regional Collaborative Access Team at the Advanced Photon Source. Here, the cloning and purification of Sfh3 and the preliminary diffraction of Sfh3 crystals are reported, enabling structural analyses that are expected to reveal novel principles governing ligand binding and functional specificity for Sec14-superfamily proteins.

  4. Glomerulonephritis in a ferret with feline coronavirus infection.

    PubMed

    Fujii, Yuta; Tochitani, Tomoaki; Kouchi, Mami; Matsumoto, Izumi; Yamada, Toru; Funabashi, Hitoshi

    2015-09-01

    A male domestic ferret (Mustela putorius furo), which was purchased from outside of Japan at 13 weeks of age, was euthanized at 18 months of age because of poor health. At autopsy, the liver, spleen, and mesenteric lymph node were enlarged, and white foci were observed on the outer surface of the liver. The outer surface of the mesenteric lymph node was dark red. Histologically, granulomas were observed in the liver, spleen, bone marrow, and lymph nodes, composed mainly of aggregated epithelioid macrophages, some of which were positive to an anti-feline coronavirus (FCoV; Alphacoronavirus 1) antibody in immunohistochemistry. Mesangioproliferative glomerulonephritis was observed, and periodic acid-Schiff-positive deposits were observed along glomerular capillary walls. These deposits stained pale red with periodic acid-methenamine silver stain and red with Masson trichrome stain, and were also observed in the mesangial matrix. In affected glomeruli, glomerular capillary walls and mesangial areas were positive for anti-ferret immunoglobulin G. By electron microscopy, subepithelial and mesangial electron-dense deposits were observed consistent with immune complex deposition. The deposition of immune complexes may have been associated with FCoV infection. PMID:26319601

  5. M gene analysis of canine coronavirus strains detected in Korea

    PubMed Central

    Jeoung, Seok-Young; Ann, So-Yun; Kim, Hyun-Tae

    2014-01-01

    The purpose of this study was to investigate the genetic features of canine coronavirus (CCV) strains detected in Korea. M gene sequences obtained for isolates from 22 dogs with enteritis over a 5-year period were evaluated. Sequence comparison revealed that the 22 Korean CCV strains had an 87.2 to 100% nucleotide homology. Comparing to the typical reference CCV strains (type II), the nucleotide sequence of Korean strains had homology ranged from 86.3% to 98.3% (89.1% to 99.2% for the amino acid sequence) and 87.7% to 97.8% (92.4% to 100% for the amino acid sequence) when compared to FCoV-like CCV strains (type I). Three amino acid variations in the M gene were characteristic for the Korean CCV strains. Phylogenetic analysis demonstrated that the 22 Korean CCV strains belonged to four typical CCV clusters (i.e., a unique Korean CCV cluster, a type II and transmissible gastroenteritis virus cluster, an intermediate cluster between type I and II, and a type I cluster). This study was the first to identify genetic differences of the M gene from Korean CCV strains and provided a platform for molecular identification of different Korean CCV strains. PMID:25234323

  6. Sites of feline coronavirus persistence in healthy cats.

    PubMed

    Kipar, Anja; Meli, Marina L; Baptiste, Keith E; Bowker, Laurel J; Lutz, Hans

    2010-07-01

    Feline coronavirus (FCoV) is transmitted via the faecal-oral route and primarily infects enterocytes, but subsequently spreads by monocyte-associated viraemia. In some infected cats, virulent virus mutants induce feline infectious peritonitis (FIP), a fatal systemic disease that can develop in association with viraemia. Persistently infected, healthy carriers are believed to be important in the epidemiology of FIP, as they represent a constant source of FCoV, shed either persistently or intermittently in faeces. So far, the sites of virus persistence have not been determined definitely. The purpose of this study was to examine virus distribution and viral load in organs and gut compartments of specified-pathogen-free cats, orally infected with non-virulent type I FCoV, over different time periods and with or without detectable viraemia. The colon was identified as the major site of FCoV persistence and probable source for recurrent shedding, but the virus was shown also to persist in several other organs, mainly in tissue macrophages. These might represent additional sources for recurrent viraemia. PMID:20237226

  7. Enhanced surveillance and investigation of coronavirus: what is required?

    PubMed

    Pebody, R G; Nicoll, A; Buchholz, U; Zambon, M; Mounts, A

    2013-01-01

    Following the discovery in September 2012 of 2 patients, both with links to the Eastern Mediterranean Region, with serious respiratory illness due to novel coronavirus, all countries have instigated surveillance and laboratory activities to detect further cases, with intensive case-contact investigations undertaken on laboratory confirmation of cases. A total of 30 cases, of whom 18 have died, and at least 3 clusters have been detected to date (1 cluster among health-care workers and another 2 clusters among family members). To date, transmission studies have shown a low risk of onward human transmission, with clinical presentation remaining severe for the majority. Many questions remain including the zoonotic source and geographical extent of infection. Surveillance has been extended to include clusters of cases or health-care workers with severe, undiagnosed respiratory illness regardless of travel history. Environmental studies, on-going surveillance and linked case-contact investigations will provide a critical role in answering some of these issues. PMID:23888796

  8. Quarantine protects Falkland Islands (Malvinas) cats from feline coronavirus infection.

    PubMed

    Addie, Diane D; McDonald, Mike; Audhuy, Stéphane; Burr, Paul; Hollins, Jonathan; Kovacic, Rémi; Lutz, Hans; Luxton, Zoe; Mazar, Shlomit; Meli, Marina L

    2012-02-01

    Feline coronavirus (FCoV) causes feline infectious peritonitis (FIP). Since 2002, when 20 cats on the Falkland Islands were found to be FCoV seronegative, only seronegative cats could be imported. Between 2005-2007, 95 pet and 10 feral cats tested negative by indirect immunofluorescence antibody (IFA) analysis using two strains of type II FCoV, two transmissible gastroenteritis virus assays, an enzyme-linked immunosorbent assay and rapid immunomigration test. Twenty-four samples (23%) showed non-specific fluorescence, mostly attributable to anti-nuclear antibodies (ANA). The reason for ANA was unclear: reactive samples were negative for Erhlichia canis antibodies; seven were feline immunodeficiency virus positive, but 15 were negative. It was not possible to determine retrospectively whether the cats had autoimmune disease, hyperthyroidism treatment, or recent vaccination which may also cause ANA. The FCoV/ FIP-free status of the Falkland Islands cats should be maintained by FCoV testing incoming cats. However, ANA can complicate interpretation of IFA tests. PMID:22314098

  9. High expression in involuting reproductive tissues of uterocalin/24p3, a lipocalin and acute phase protein.

    PubMed Central

    Ryon, Joel; Bendickson, Lee; Nilsen-Hamilton, Marit

    2002-01-01

    During reproduction the mass and number of cells in the uterus and the mammary gland increase rapidly and then diminish more rapidly after their reproductive functions are completed. The diminishment of tissue mass, known as involution, involves an ordered series of events that includes apoptosis of resident cells, neutrophil invasion, the release of degradative enzymes and phagocytosis of cellular debris. Local signals are believed to regulate the progression of involution in each tissue. Here we show that the mammary gland and uterus express high levels of uterocalin, a protein that specifically induces apoptosis in neutrophils and other leucocytes. In the mammary gland, uterocalin expression is induced by weaning. In both tissues, uterocalin is expressed at extremely high levels such that it constitutes an average of 0.2-0.5% of the total extractable protein at its peak. Epithelial cells in the uterus and mammary gland produce uterocalin. In each case, the protein is secreted into the tissue lumen, with mammary-derived uterocalin being found in the milk. The period of highest uterocalin expression in vivo is consistent with the hypothesis that one of its physiological roles is to induce apoptosis of infiltrating neutrophils and thereby delay the entry of neutrophils into the tissue. It is proposed that the role of uterocalin during involution is to provide a window of time during which resident cells are protected from the degradative enzymes, free radicals and other secreted products of activated phagocytes to allow these cells to prepare to survive the processes of involution. PMID:12067275

  10. AlgR3, a protein resembling eukaryotic histone H1, regulates alginate synthesis in Pseudomonas aeruginosa.

    PubMed Central

    Kato, J; Misra, T K; Chakrabarty, A M

    1990-01-01

    A regulatory mutation (alg52) in a Pseudomonas aeruginosa alginate-negative mutant (strain 8882) is complemented efficiently by the gene algR2 and somewhat inefficiently by a second gene termed algR3. algR3 and algR2 are located on a 4.4-kilobase-pair HindIII-BamHI fragment, which has been completely sequenced. algR2 has previously been characterized. Introduction of kanamycin-resistance cassettes and deletion-subcloning experiments involving various open reading frames in the HindIII-BamHI fragment have localized the algR3 gene, which encodes a 340-amino acid polypeptide. This highly basic regulatory protein contains 17% lysine and 36% alanine. The predicted amino acid sequence shows no significant similarity with any bacterial proteins and yet is highly similar to the sea urchin Lytechinus pictus histone H1 subtype of protein. Promoter localization by reverse transcriptase mapping of the algR3 gene shows the presence of Escherichia coli sigma 70 recognition sequences, and coupled transcription/translation experiments in E. coli demonstrate the presence of a 39-kDa polypeptide encoded by the cloned algR3 gene. Images PMID:2109318

  11. Crystallization and preliminary X-ray crystallographic studies of Drep-3, a DFF-related protein from Drosophila melanogaster

    SciTech Connect

    Park, Hyun Ho; Tookes, Hansel Emory; Wu, Hao

    2006-06-01

    The D. melanogaster Drep-3 protein has been crystallized. Crystals were obtained at 293 K that diffracted to 2.8 Å resolution and belonged to space group P2{sub 1}2{sub 1}2{sub 1}. During apoptosis, DNA fragmentation is mainly mediated by the caspase-activated DFF40 nuclease. DFF40 exists as a heterodimeric complex with its inhibitor DFF45. Upon apoptosis induction, DFF45 is cleaved by caspases to allow DFF40 activation. Drep-3 is a recently identified regulator of the DFF40 system in Drosophila melanogaster. Here, Drep-3 was expressed with a C-terminal His tag in Escherichia coli and the protein was purified to homogeneity. Multi-angle light-scattering analysis showed that Drep-3 is a homotetramer in solution. Native and selenomethionine-substituted Drep-3 proteins were crystallized at 293 K and X-ray diffraction data were collected to 2.8 and 3.0 Å resolution, respectively. The crystals belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 56.9, b = 125.4, c = 168.7 Å. The asymmetric unit is estimated to contain one homotetramer.

  12. TRF3, a TATA-box-binding protein-related factor, is vertebrate-specific and widely expressed.

    PubMed

    Persengiev, Stephan P; Zhu, Xiaochun; Dixit, Bharat L; Maston, Glenn A; Kittler, Ellen L W; Green, Michael R

    2003-12-01

    TATA-box-binding protein (TBP) is a highly conserved RNA polymerase II general transcription factor that binds to the core promoter and initiates assembly of the preinitiation complex. Two proteins with high homology to TBP have been found: TBP-related factor 1 (TRF1), described only in Drosophila melanogaster, and TRF2, which is broadly distributed in metazoans. Here, we report the identification and characterization of an additional TBP-related factor, TRF3. TRF3 is virtually identical to TBP in the C-terminal core domain, including all residues involved in DNA binding and interaction with other general transcription factors. Like other TBP family members, the N-terminal region of TRF3 is divergent. The TRF3 gene is present and expressed in vertebrates, from fish through humans, but absent from the genomes of the urochordate Ciona intestinalis and the lower eukaryotes D. melanogaster and Caenorhabditis elegans. TRF3 is a nuclear protein that is present in all human and mouse tissues and cell lines examined. Despite the highly homologous TBP-like C-terminal core domain, gel filtration analysis indicates that the native molecular weight of TRF3 is substantially less than that of TFIID. Interestingly, after mitosis, reimport of TRF3 into the nucleus occurs subsequent to TBP and other basal transcription factors. In summary, TRF3 is a highly conserved vertebrate-specific TRF whose phylogenetic conservation, expression pattern, and other properties are distinct from those of TBP and all other TRFs. PMID:14634207

  13. Recent Progress in Studies of Arterivirus- and Coronavirus-Host Interactions

    PubMed Central

    Zhong, Yanxin; Tan, Yong Wah; Liu, Ding Xiang

    2012-01-01

    Animal coronaviruses, such as infectious bronchitis virus (IBV), and arteriviruses, such as porcine reproductive and respiratory syndrome virus (PRRSV), are able to manifest highly contagious infections in their specific native hosts, thereby arising in critical economic damage to animal industries. This review discusses recent progress in studies of virus-host interactions during animal and human coronavirus and arterivirus infections, with emphasis on IBV-host cell interactions. These interactions may be directly involved in viral replication or lead to the alteration of certain signaling pathways, such as cell stress response and innate immunity, to facilitate viral replication and pathogenesis. PMID:22816036

  14. The Saccharomyces cerevisiae DNA polymerase alpha catalytic subunit interacts with Cdc68/Spt16 and with Pob3, a protein similar to an HMG1-like protein.

    PubMed Central

    Wittmeyer, J; Formosa, T

    1997-01-01

    We have used DNA polymerase alpha affinity chromatography to identify factors involved in eukaryotic DNA replication in the yeast Saccharomyces cerevisiae. Two proteins that bound to the catalytic subunit of DNA polymerase alpha (Pol1 protein) are encoded by the essential genes CDC68/SPT16 and POB3. The binding of both proteins was enhanced when extracts lacking a previously characterized polymerase binding protein, Ctf4, were used. This finding suggests that Cdc68 and Pob3 may compete with Ctf4 for binding to Pol1. Pol1 and Pob3 were coimmunoprecipitated from whole-cell extracts with antiserum directed against Cdc68, and Pol1 was immunoprecipitated from whole-cell extracts with antiserum directed against the amino terminus of Pob3, suggesting that these proteins may form a complex in vivo. CDC68 also interacted genetically with POL1 and CTF4 mutations; the maximum permissive temperature of double mutants was lower than for any single mutant. Overexpression of Cdc68 in a pol1 mutant strain dramatically decreased cell viability, consistent with the formation or modulation of an essential complex by these proteins in vivo. A mutation in CDC68/SPT16 had previously been shown to cause pleiotropic effects on the regulation of transcription (J. A. Prendergrast et al., Genetics 124:81-90, 1990; E. A. Malone et al., Mol. Cell. Biol. 11:5710-5717, 1991; A. Rowley et al., Mol. Cell. Biol. 11:5718-5726, 1991), with a spectrum of phenotypes similar to those caused by mutations in the genes encoding histone proteins H2A and H2B (Malone et al., Mol. Cell. Biol. 11:5710-5717, 1991). We show that at the nonpermissive temperature, cdc68-1 mutants arrest as unbudded cells with a 1C DNA content, consistent with a possible role for Cdc68 in the prereplicative stage of the cell cycle. The cdc68-1 mutation caused elevated rates of chromosome fragment loss, a phenotype characteristic of genes whose native products are required for normal DNA metabolism. However, this mutation did not

  15. LdARL-3A, a Leishmania promastigote-specific ADP-ribosylation factor-like protein, is essential for flagellum integrity.

    PubMed

    Cuvillier, A; Redon, F; Antoine, J C; Chardin, P; DeVos, T; Merlin, G

    2000-06-01

    The small G protein-encoding LdARL-3A gene, a homologue of the human ARL-3 gene, was isolated from Leishmania donovani, and its protein product characterised. It is unique in the Leishmania genome and expressed only in the extracellular promastigote insect form, but not in the intracellular amastigote mammalian form, as shown by northern blots and western blots developed with a specific anti-C terminus immune serum. Indirect immunofluorescence microscopy revealed distinct labelled spots regularly distributed on the plasma membrane, including the part lining the flagellum and the flagellar pocket. By transfection experiments, it was found that wild-type LdARL-3A-overexpressing promastigotes reached higher densities in culture, but released significantly less secreted acid phosphatase in the extracellular medium than the parental strain. When LdARL-3A blocked under the GDP-bound 'inactive' form or with an inactivated potential myristoylation site was overexpressed, the cells displayed an apparent wild-type phenotype, but died earlier in the stationary phase; in contrast to parental cells, they showed a diffuse pattern of fluorescence labelling in the cytoplasm and on the cell membrane. Strikingly, when a constitutively 'active' form of LdARL-3A (blocked under the GTP-bound form) was overexpressed, the promastigotes were immobile with a very short flagellum, a slow growth rate and a low level of acid phosphatase secretion; the length of the flagellum was inversely proportional to mutant protein expression. We concluded that LdARL-3A could be an essential gene involved in flagellum biogenesis; it may provide new approaches for control of the parasite at the insect stage. PMID:10806117

  16. CORONAVIRUS VIRULENCE GENES WITH MAIN FOCUS ON SARS-CoV ENVELOPE GENE

    PubMed Central

    DeDiego, Marta L.; Nieto-Torres, Jose L.; Jimenez-Guardeño, Jose M.; Regla-Nava, Jose A.; Castaño-Rodriguez, Carlos; Fernandez-Delgado, Raul; Usera, Fernando; Enjuanes, Luis

    2014-01-01

    Coronavirus (CoV) infection is usually detected by cellular sensors, which trigger the activation of the innate immune system. Nevertheless, CoVs have evolved viral proteins that target different signaling pathways to counteract innate immune responses. Some CoV proteins act as antagonists of interferon (IFN) by inhibiting IFN production or signaling, aspects that are briefly addressed in this review. After CoV infection, potent cytokines relevant in controlling virus infections and priming adaptive immune responses are also generated. However, an uncontrolled induction of these proinflammatory cytokines can lead to pathogenesis and disease severity as described for SARS-CoV and MERS-CoV. The cellular pathways mediated by interferon regulatory factor (IRF)-3 and 7, activating transcription factor (ATF)-2/jun, activator protein (AP)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor of activated T cells (NF-AT), are the main drivers of the inflammatory response triggered after viral infections, with NF-κB pathway the most frequently activated. Key CoV proteins involved in the regulation of these pathways and the proinflammatory immune response are revisited in this manuscript. It has been shown that the envelope (E) protein plays a variable role in CoV morphogenesis, depending on the CoV genus, being absolutely essential in some cases (genus α CoVs such as TGEV, and genus β CoVs such as MERS-CoV), but not in others (genus β CoVs such as MHV or SARS-CoV). A comprehensive accumulation of data has shown that the relatively small E protein elicits a strong influence on the interaction of SARS-CoV with the host. In fact, after infection with viruses in which this protein has been deleted, increased cellular stress and unfolded protein responses, apoptosis, and augmented host immune responses were observed. In contrast, the presence of E protein activated a pathogenic inflammatory response that may cause death in animal

  17. Structure of Main Protease from Human Coronavirus NL63: Insights for Wide Spectrum Anti-Coronavirus Drug Design

    PubMed Central

    Wang, Fenghua; Chen, Cheng; Tan, Wenjie; Yang, Kailin; Yang, Haitao

    2016-01-01

    First identified in The Netherlands in 2004, human coronavirus NL63 (HCoV-NL63) was found to cause worldwide infections. Patients infected by HCoV-NL63 are typically young children with upper and lower respiratory tract infection, presenting with symptoms including croup, bronchiolitis, and pneumonia. Unfortunately, there are currently no effective antiviral therapy to contain HCoV-NL63 infection. CoV genomes encode an integral viral component, main protease (Mpro), which is essential for viral replication through proteolytic processing of RNA replicase machinery. Due to the sequence and structural conservation among all CoVs, Mpro has been recognized as an attractive molecular target for rational anti-CoV drug design. Here we present the crystal structure of HCoV-NL63 Mpro in complex with a Michael acceptor inhibitor N3. Structural analysis, consistent with biochemical inhibition results, reveals the molecular mechanism of enzyme inhibition at the highly conservative substrate-recognition pocket. We show such molecular target remains unchanged across 30 clinical isolates of HCoV-NL63 strains. Through comparative study with Mpros from other human CoVs (including the deadly SARS-CoV and MERS-CoV) and their related zoonotic CoVs, our structure of HCoV-NL63 Mpro provides critical insight into rational development of wide spectrum antiviral therapeutics to treat infections caused by human CoVs. PMID:26948040

  18. Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana.

    PubMed

    Pfefferle, Susanne; Oppong, Samuel; Drexler, Jan Felix; Gloza-Rausch, Florian; Ipsen, Anne; Seebens, Antje; Müller, Marcel A; Annan, Augustina; Vallo, Peter; Adu-Sarkodie, Yaw; Kruppa, Thomas F; Drosten, Christian

    2009-09-01

    We tested 12 bat species in Ghana for coronavirus (CoV) RNA. The virus prevalence in insectivorous bats (n = 123) was 9.76%. CoV was not detected in 212 fecal samples from Eidolon helvum fruit bats. Leaf-nosed bats pertaining to Hipposideros ruber by morphology had group 1 and group 2 CoVs. Virus concentrations were < or =45,000 copies/100 mg of bat feces. The diversified group 1 CoV shared a common ancestor with the human common cold virus hCoV-229E but not with hCoV-NL63, disputing hypotheses of common human descent. The most recent common ancestor of hCoV-229E and GhanaBt-CoVGrp1 existed in approximately 1686-1800 ad. The GhanaBt-CoVGrp2 shared an old ancestor (approximately 2,400 years) with the severe acute respiratory syndrome-like group of CoV. PMID:19788804

  19. Middle East respiratory syndrome coronavirus (MERS-CoV): animal to human interaction.

    PubMed

    Omrani, Ali S; Al-Tawfiq, Jaffar A; Memish, Ziad A

    2015-01-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel enzootic betacoronavirus that was first described in September 2012. The clinical spectrum of MERS-CoV infection in humans ranges from an asymptomatic or mild respiratory illness to severe pneumonia and multi-organ failure; overall mortality is around 35.7%. Bats harbour several betacoronaviruses that are closely related to MERS-CoV but more research is needed to establish the relationship between bats and MERS-CoV. The seroprevalence of MERS-CoV antibodies is very high in dromedary camels in Eastern Africa and the Arabian Peninsula. MERS-CoV RNA and viable virus have been isolated from dromedary camels, including some with respiratory symptoms. Furthermore, near-identical strains of MERS-CoV have been isolated from epidemiologically linked humans and camels, confirming inter-transmission, most probably from camels to humans. Though inter-human spread within health care settings is responsible for the majority of reported MERS-CoV cases, the virus is incapable at present of causing sustained human-to-human transmission. Clusters can be readily controlled with implementation of appropriate infection control procedures. Phylogenetic and sequencing data strongly suggest that MERS-CoV originated from bat ancestors after undergoing a recombination event in the spike protein, possibly in dromedary camels in Africa, before its exportation to the Arabian Peninsula along the camel trading routes. MERS-CoV serosurveys are needed to investigate possible unrecognized human infections in Africa. Amongst the important measures to control MERS-CoV spread are strict regulation of camel movement, regular herd screening and isolation of infected camels, use of personal protective equipment by camel handlers and enforcing rules banning all consumption of unpasteurized camel milk and urine. PMID:26924345

  20. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats

    PubMed Central

    Lau, Susanna K. P.; Woo, Patrick C. Y.; Li, Kenneth S. M.; Huang, Yi; Tsoi, Hoi-Wah; Wong, Beatrice H. L.; Wong, Samson S. Y.; Leung, Suet-Yi; Chan, Kwok-Hung; Yuen, Kwok-Yung

    2005-01-01

    Although the finding of severe acute respiratory syndrome coronavirus (SARS-CoV) in caged palm civets from live animal markets in China has provided evidence for interspecies transmission in the genesis of the SARS epidemic, subsequent studies suggested that the civet may have served only as an amplification host for SARS-CoV. In a surveillance study for CoV in noncaged animals from the wild areas of the Hong Kong Special Administration Region, we identified a CoV closely related to SARS-CoV (bat-SARS-CoV) from 23 (39%) of 59 anal swabs of wild Chinese horseshoe bats (Rhinolophus sinicus) by using RT-PCR. Sequencing and analysis of three bat-SARS-CoV genomes from samples collected at different dates showed that bat-SARS-CoV is closely related to SARS-CoV from humans and civets. Phylogenetic analysis showed that bat-SARS-CoV formed a distinct cluster with SARS-CoV as group 2b CoV, distantly related to known group 2 CoV. Most differences between the bat-SARS-CoV and SARS-CoV genomes were observed in the spike genes, ORF 3 and ORF 8, which are the regions where most variations also were observed between human and civet SARS-CoV genomes. In addition, the presence of a 29-bp insertion in ORF 8 of bat-SARS-CoV genome, not in most human SARS-CoV genomes, suggests that it has a common ancestor with civet SARS-CoV. Antibody against recombinant bat-SARS-CoV nucleocapsid protein was detected in 84% of Chinese horseshoe bats by using an enzyme immunoassay. Neutralizing antibody to human SARS-CoV also was detected in bats with lower viral loads. Precautions should be exercised in the handling of these animals. PMID:16169905

  1. Prevalence of canine coronavirus (CCoV) in dog in Japan: detection of CCoV RNA and retrospective serological analysis

    PubMed Central

    TAKANO, Tomomi; YAMASHITA, Saya; MURATA-OHKUBO, Michiko; SATOH, Kumi; DOKI, Tomoyoshi; HOHDATSU, Tsutomu

    2015-01-01

    We collected rectal swabs from dogs in Japan during 2011 to 2014, and canine coronavirus (CCoV) nucleocapsid gene was detected by RT-PCR. The relationship between CCoV infection and the manifestation of diarrhea symptoms was investigated, and a correlation was noted (df=1, χ2=8.90, P<0.005). The types of CCoV detected in samples from CCoV-infected dogs were CCoV-I in 88.9% and CCoV-II in 7.4%, respectively. We retrospectively investigated the seroprevalence of CCoV-I in dogs in Japan during 1998 to 2006. The sera were tested with a neutralizing antibody test. In the absence of CCoV-I laboratory strain, we used feline coronavirus (FCoV)-I that shares high sequence homology in the S protein with CCoV-I. 77.7% of the sera were positive for neutralizing anti-FCoV-I antibodies. PMID:26460314

  2. Middle East respiratory syndrome coronavirus shows poor replication but significant induction of antiviral responses in human monocyte-derived macrophages and dendritic cells.

    PubMed

    Tynell, Janne; Westenius, Veera; Rönkkö, Esa; Munster, Vincent J; Melén, Krister; Österlund, Pamela; Julkunen, Ilkka

    2016-02-01

    In this study we assessed the ability of Middle East respiratory syndrome coronavirus (MERS-CoV) to replicate and induce innate immunity in human monocyte-derived macrophages and dendritic cells (MDDCs), and compared it with severe acute respiratory syndrome coronavirus (SARS-CoV). Assessments of viral protein and RNA levels in infected cells showed that both viruses were impaired in their ability to replicate in these cells. Some induction of IFN-λ1, CXCL10 and MxA mRNAs in both macrophages and MDDCs was seen in response to MERS-CoV infection, but almost no such induction was observed in response to SARS-CoV infection. ELISA and Western blot assays showed clear production of CXCL10 and MxA in MERS-CoV-infected macrophages and MDDCs. Our data suggest that SARS-CoV and MERS-CoV replicate poorly in human macrophages and MDDCs, but MERS-CoV is nonetheless capable of inducing a readily detectable host innate immune response. Our results highlight a clear difference between the viruses in activating host innate immune responses in macrophages and MDDCs, which may contribute to the pathogenesis of infection. PMID:26602089

  3. Development of an equine coronavirus-specific enzyme-linked immunosorbent assay to determine serologic responses in naturally infected horses.

    PubMed

    Kooijman, Lotte J; Mapes, Samantha M; Pusterla, Nicola

    2016-07-01

    Equine coronavirus (EqCoV) infection has been documented in most reports through quantitative qPCR analysis of feces and viral genome sequencing. Although qPCR is used to detect antigen during the acute disease phase, there is no equine-specific antibody test available to study EqCoV seroprevalence in various horse populations. We developed an enzyme-linked immunosorbent assay (ELISA) targeting antibodies to the spike (S) protein of EqCoV and validated its use, using acute and convalescent sera from 83 adult horses involved in 6 outbreaks. The EqCoV S protein-based ELISA was able to reliably detect antibodies to EqCoV in naturally infected horses. The greatest seroconversion rate was observed in horses with clinical signs compatible with EqCoV infection and EqCoV qPCR detection in feces. The EqCoV S protein-based ELISA could be used effectively for seroepidemiologic studies in order to better characterize the overall infection rate of EqCoV in various horse populations. PMID:27216723

  4. Combined neurothrombectomy or thrombolysis with adjunctive delivery of 3K3A-activated protein C in acute ischemic stroke

    PubMed Central

    Amar, Arun Paul; Griffin, John H.; Zlokovic, Berislav V.

    2015-01-01

    In the treatment of acute ischemic stroke (AIS), vessel recanalization correlates with improved functional status and reduced mortality. Mechanical neurothrombectomy achieves a higher likelihood of revascularization than intravenous thrombolysis (IVT), but there remains significant discrepancy between rates of recanalization and rates of favorable outcome. The poor neurological recovery among some stroke patients despite successful recanalization confirms the need for adjuvant therapy, such as pharmacological neuroprotection. Prior clinical trials of neuroprotectant drugs failed perhaps due to inability of the agent to reach the ischemic tissue beyond the occluded artery. A protocol that couples mechanical neurothrombectomy with concurrent delivery of a neuroprotectant overcomes this pitfall. Activated protein C (APC) exerts pleiotropic anti-inflammatory, anti-apoptotic, antithrombotic, cytoprotective, and neuroregenerative effects in stroke and appears a compelling candidate for this novel approach. PMID:26388732

  5. Transmissible gastroenteritis virus; identification of M protein-binding peptide ligands with antiviral and diagnostic potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The membrane (M) protein is one of the major structural proteins of coronavirus particles. In this study, the M protein of transmissible gastroenteritis virus (TGEV) was used to biopan a 12-mer phage display random peptide library. Three phages expressing TGEV-M-binding peptides were identified and ...

  6. Identification and Survey of a Novel Avian Coronavirus in Ducks

    PubMed Central

    Chen, Gui-Qian; Zhuang, Qing-Ye; Wang, Kai-Cheng; Liu, Shuo; Shao, Jian-Zhong; Jiang, Wen-Ming; Hou, Guang-Yu; Li, Jin-Ping; Yu, Jian-Min; Li, Yi-Ping; Chen, Ji-Ming

    2013-01-01

    The rapid discovery of novel viruses using next generation sequencing (NGS) technologies including DNA-Seq and RNA-Seq, has greatly expanded our understanding of viral diversity in recent years. The timely identification of novel viruses using NGS technologies is also important for us to control emerging infectious diseases caused by novel viruses. In this study, we identified a novel duck coronavirus (CoV), distinct with chicken infectious bronchitis virus (IBV), using RNA-Seq. The novel duck-specific CoV was a potential novel species within the genus Gammacoronavirus, as indicated by sequences of three regions in the viral 1b gene. We also performed a survey of CoVs in domestic fowls in China using reverse-transcription polymerase chain reaction (RT-PCR), targeting the viral nucleocapsid (N) gene. A total of 102 CoV positives were identified through the survey. Phylogenetic analysis of the viral N sequences suggested that CoVs in domestic fowls have diverged into several region-specific or host-specific clades or subclades in the world, and IBVs can infect ducks, geese and pigeons, although they mainly circulate in chickens. Moreover, this study provided novel data supporting the notion that some host-specific CoVs other than IBVs circulate in ducks, geese and pigeons, and indicated that the novel duck-specific CoV identified through RNA-Seq in this study is genetically closer to some CoVs circulating in wild water fowls. Taken together, this study shed new insight into the diversity, distribution, evolution and control of avian CoVs. PMID:24023656

  7. Antibodies against MERS Coronavirus in Dromedary Camels, Kenya, 1992–2013

    PubMed Central

    Corman, Victor M.; Jores, Joerg; Meyer, Benjamin; Younan, Mario; Liljander, Anne; Said, Mohammed Y.; Gluecks, Ilona; Lattwein, Erik; Bosch, Berend-Jan; Drexler, Jan Felix; Bornstein, Set; Müller, Marcel A.

    2014-01-01

    Dromedary camels are a putative source for human infections with Middle East respiratory syndrome coronavirus. We showed that camels sampled in different regions in Kenya during 1992–2013 have antibodies against this virus. High densities of camel populations correlated with increased seropositivity and might be a factor in predicting long-term virus maintenance. PMID:25075637

  8. Experimental Infection and Response to Rechallenge of Alpacas with Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Crameri, Gary; Klein, Reuben; Foord, Adam; Yu, Meng; Riddell, Sarah; Haining, Jessica; Johnson, Dayna; Hemida, Maged G.; Barr, Jennifer; Peiris, Malik; Middleton, Deborah; Wang, Lin-Fa

    2016-01-01

    We conducted a challenge/rechallenge trial in which 3 alpacas were infected with Middle East respiratory syndrome coronavirus. The alpacas shed virus at challenge but were refractory to further shedding at rechallenge on day 21. The trial indicates that alpacas may be suitable models for infection and shedding dynamics of this virus. PMID:27070733

  9. Acute Middle East Respiratory Syndrome Coronavirus Infection in Livestock Dromedaries, Dubai, 2014

    PubMed Central

    Corman, Victor M.; Wong, Emily Y.M.; Tsang, Alan K.L.; Muth, Doreen; Lau, Susanna K. P.; Khazanehdari, Kamal; Zirkel, Florian; Ali, Mansoor; Nagy, Peter; Juhasz, Jutka; Wernery, Renate; Joseph, Sunitha; Syriac, Ginu; Elizabeth, Shyna K.; Patteril, Nissy Annie Georgy; Woo, Patrick C. Y.; Drosten, Christian

    2015-01-01

    Camels carry Middle East respiratory syndrome coronavirus, but little is known about infection age or prevalence. We studied >800 dromedaries of all ages and 15 mother–calf pairs. This syndrome constitutes an acute, epidemic, and time-limited infection in camels <4 years of age, particularly calves. Delayed social separation of calves might reduce human infection risk. PMID:25989145

  10. Experimental Infection and Response to Rechallenge of Alpacas with Middle East Respiratory Syndrome Coronavirus.

    PubMed

    Crameri, Gary; Durr, Peter A; Klein, Reuben; Foord, Adam; Yu, Meng; Riddell, Sarah; Haining, Jessica; Johnson, Dayna; Hemida, Maged G; Barr, Jennifer; Peiris, Malik; Middleton, Deborah; Wang, Lin-Fa

    2016-06-01

    We conducted a challenge/rechallenge trial in which 3 alpacas were infected with Middle East respiratory syndrome coronavirus. The alpacas shed virus at challenge but were refractory to further shedding at rechallenge on day 21. The trial indicates that alpacas may be suitable models for infection and shedding dynamics of this virus. PMID:27070733

  11. Deletion Variants of Middle East Respiratory Syndrome Coronavirus from Humans, Jordan, 2015

    PubMed Central

    Lamers, Mart M.; Raj, V. Stalin; Shafei, Mah’d; Ali, Sami Sheikh; Abdallh, Sultan M.; Gazo, Mahmoud; Nofal, Samer; Lu, Xiaoyan; Erdman, Dean D.; Koopmans, Marion P.; Abdallat, Mohammad

    2016-01-01

    We characterized Middle East respiratory syndrome coronaviruses from a hospital outbreak in Jordan in 2015. The viruses from Jordan were highly similar to isolates from Riyadh, Saudi Arabia, except for deletions in open reading frames 4a and 3. Transmissibility and pathogenicity of this strain remains to be determined. PMID:26981770

  12. Development of Broad-Spectrum Halomethyl Ketone Inhibitors Against Coronavirus Main Protease 3CL(pro)

    SciTech Connect

    Bacha,U.; Barilla, J.; Gabelli, S.; Kiso, Y.; Amzel, L.; Freire, E.

    2008-01-01

    Coronaviruses comprise a large group of RNA viruses with diverse host specificity. The emergence of highly pathogenic strains like the SARS coronavirus (SARS-CoV), and the discovery of two new coronaviruses, NL-63 and HKU1, corroborates the high rate of mutation and recombination that have enabled them to cross species barriers and infect novel hosts. For that reason, the development of broad-spectrum antivirals that are effective against several members of this family is highly desirable. This goal can be accomplished by designing inhibitors against a target, such as the main protease 3CLpro (Mpro), which is highly conserved among all coronaviruses. Here 3CLpro derived from the SARS-CoV was used as the primary target to identify a new class of inhibitors containing a halomethyl ketone warhead. The compounds are highly potent against SARS 3CLpro with Ki's as low as 300 nm. The crystal structure of the complex of one of the compounds with 3CLpro indicates that this inhibitor forms a thioether linkage between the halomethyl carbon of the warhead and the catalytic Cys 145. Furthermore, Structure Activity Relationship (SAR) studies of these compounds have led to the identification of a pharmacophore that accurately defines the essential molecular features required for the high affinity.

  13. Enhanced MERS coronavirus surveillance of travelers from the Middle East to England.

    PubMed

    Thomas, Helen Lucy; Zhao, Hongxin; Green, Helen K; Boddington, Nicola L; Carvalho, Carlos F A; Osman, Husam K; Sadler, Carol; Zambon, Maria; Bermingham, Alison; Pebody, Richard G

    2014-09-01

    During the first year of enhanced MERS coronavirus surveillance in England, 77 persons traveling from the Middle East had acute respiratory illness and were tested for the virus. Infection was confirmed in 2 travelers with acute respiratory distress syndrome and 2 of their contacts. Patients with less severe manifestations tested negative. PMID:25148267

  14. Enhanced MERS Coronavirus Surveillance of Travelers from the Middle East to England

    PubMed Central

    Thomas, Helen Lucy; Zhao, Hongxin; Green, Helen K.; Boddington, Nicola L.; Carvalho, Carlos F.A.; Osman, Husam K.; Sadler, Carol; Zambon, Maria; Bermingham, Alison

    2014-01-01

    During the first year of enhanced MERS coronavirus surveillance in England, 77 persons traveling from the Middle East had acute respiratory illness and were tested for the virus. Infection was confirmed in 2 travelers with acute respiratory distress syndrome and 2 of their contacts. Patients with less severe manifestations tested negative. PMID:25148267

  15. Transmission of bovine coronavirus and serologic responses in feedlot calves under field conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To compare shedding patterns and serologic responses to bovine coronavirus (BCV) in feedlot calves shipped from a single ranch in New Mexico (NM calves) versus calves assembled from local sale barns in Arkansas (AR calves) and to evaluate the role of BCV on disease and performance. Animals: 103 fee...

  16. Complete Genome Sequence of Middle East Respiratory Syndrome Coronavirus Isolated from a Dromedary Camel in Egypt

    PubMed Central

    Shehata, Mahmoud M.; El Shesheny, Rabeh; Gomaa, Mokhtar R.; Ali, Mohamed A.; Kayali, Ghazi

    2016-01-01

    We generated the near-full genome sequence of Middle East respiratory syndrome coronavirus (MERS-CoV) from a collected nasal sample of dromedary camel in Egypt. The newly characterized Egyptian strain has high similarity to the previously characterized Egyptian virus and both of viruses fell into a cluster distinct from other MERS-CoVs. PMID:27125484

  17. First Case of Systemic Coronavirus Infection in a Domestic Ferret (Mustela putorius furo) in Peru.

    PubMed

    Lescano, J; Quevedo, M; Gonzales-Viera, O; Luna, L; Keel, M K; Gregori, F

    2015-12-01

    A domestic ferret from Lima, Peru, died after ten days of non-specific clinical signs. Based on pathology, immunohistochemistry and molecular analysis, ferret systemic coronavirus (FRSCV)-associated disease was diagnosed for the first time in South America. This report highlights the potential spread of pathogens by the international pet trade. PMID:26301572

  18. Enteric disease in postweaned beef calves associated with a Bovine coronavirus clade 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine coronavirus (BoCV) infections are associated with varied clinical presentations including neonatal diarrhea, winter dysentery in dairy cattle, and respiratory disease in various ages of cattle. This report presents information on BoCV infections associated with enteric disease of postweaned b...

  19. The TLQP-21 Peptide Activates the G-protein-coupled receptor C3aR1 via a Folding-upon-Binding Mechanism

    PubMed Central

    Severini, Cinzia; Gopinath, Tata; Braun, Patrick D.; Sassano, Maria F.; Gurney, Allison; Roth, Bryan L.; Vulchanova, Lucy; Possenti, Roberta; Veglia, Gianluigi; Bartolomucci, Alessandro

    2014-01-01

    SUMMARY TLQP-21, a VGF-encoded peptide is emerging as a novel target for obesity-associated disorders. TLQP-21 is found in the sympathetic nerve terminals in the adipose tissue and targets the G-protein-coupled-receptor (GPCR) Complement-3a-Receptor1 (C3aR1). So far, the mechanisms of TLQP-21-induced receptor activation remained unexplored. Here, we report that TLQP-21 is intrinsically disordered and undergoes a disorder-to-order transition, adopting an α-helical conformation, upon targeting cells expressing the C3aR1. We determined that the hot spots for TLQP-21 are located at the C-terminus, with mutations in the last four amino acids progressively reducing the bioactivity and, a single site mutation (R21A) or C-terminal amidation abolishing its function completely. Interestingly, the human TLQP-21 sequence carrying a S20A substitution activates the human C3aR1 receptor with lower potency compared to the rodent sequence. These studies reveal the mechanism of action of TLQP-21 and provide molecular templates for designing agonists and antagonists to modulate C3aR1 functions. PMID:25456411

  20. The TLQP-21 peptide activates the G-protein-coupled receptor C3aR1 via a folding-upon-binding mechanism.

    PubMed

    Cero, Cheryl; Vostrikov, Vitaly V; Verardi, Raffaello; Severini, Cinzia; Gopinath, Tata; Braun, Patrick D; Sassano, Maria F; Gurney, Allison; Roth, Bryan L; Vulchanova, Lucy; Possenti, Roberta; Veglia, Gianluigi; Bartolomucci, Alessandro

    2014-12-01

    TLQP-21, a VGF-encoded peptide is emerging as a novel target for obesity-associated disorders. TLQP-21 is found in the sympathetic nerve terminals in the adipose tissue and targets the G-protein-coupled receptor complement-3a receptor1 (C3aR1). The mechanisms of TLQP-21-induced receptor activation remain unexplored. Here, we report that TLQP-21 is intrinsically disordered and undergoes a disorder-to-order transition, adopting an α-helical conformation upon targeting cells expressing the C3aR1. We determined that the hot spots for TLQP-21 are located at the C terminus, with mutations in the last four amino acids progressively reducing the bioactivity and, a single site mutation (R21A) or C-terminal amidation abolishing its function completely. Additionally, the human TLQP-21 sequence carrying a S20A substitution activates the human C3aR1 receptor with lower potency compared to the rodent sequence. These studies reveal the mechanism of action of TLQP-21 and provide molecular templates for designing agonists and antagonists to modulate C3aR1 functions. PMID:25456411

  1. Diagnostic application of recombinant non-structural protein 3A to detect antibodies induced by foot-and-mouth disease virus infection.

    PubMed

    Biswal, Jitendra K; Ranjan, Rajeev; Pattnaik, Bramhadev

    2016-05-01

    Detection of antibodies to the non-structural proteins (NSPs) of FMD virus (FMDV) is the preferred differential diagnostic method for identification of FMD-infected animals in the vaccinated population. Nevertheless, due to the observed variability in the antibody response to NSPs, the likelihood of screening or confirming the FMD infection status in animals is increased if an antibody profile to multiple NSPs is considered for diagnosis. In order to develop and evaluate an additional NSP-based diagnostic assay, in this study, the recombinant 3A protein of FMDV was expressed in Escherichia coli and used as an antigen for detection of FMD infection specific antibodies. At the fixed cut-off value of 45 percentage of positivity, the diagnostic sensitivity and specificity of 3A indirect-ELISA (I-ELISA) were found to be 95.7% and 96.3%, respectively. In FMD naturally infected cattle, about 85% of clinically infected and 75% of asymptomatic in-contact populations were found positive at 13 months post-outbreak. The 3A I-ELISA was further evaluated with the bovine serum samples collected randomly from different parts of the country. Furthermore, the performance of newly developed 3A I-ELISA was compared with the extensively used in-house r3AB3 I-ELISA, and the overall concordance in test results was found to be 93.62%. The r3A I-ELISA could be useful as a screening or confirmatory assay in the sero-surveillance of FMD in India irrespective of extensive bi-annual vaccination. PMID:26995490

  2. ATP1A1-Mediated Src Signaling Inhibits Coronavirus Entry into Host Cells

    PubMed Central

    Burkard, Christine; Verheije, Monique H.; Haagmans, Bart L.; van Kuppeveld, Frank J.; Rottier, Peter J. M.; Bosch, Berend-Jan

    2015-01-01

    ABSTRACT In addition to transporting ions, the multisubunit Na+,K+-ATPase also functions by relaying cardiotonic steroid (CTS)-binding-induced signals into cells. In this study, we analyzed the role of Na+,K+-ATPase and, in particular, of its ATP1A1 α subunit during coronavirus (CoV) infection. As controls, the vesicular stomatitis virus (VSV) and influenza A virus (IAV) were included. Using gene silencing, the ATP1A1 protein was shown to be critical for infection of cells with murine hepatitis virus (MHV), feline infectious peritonitis virus (FIPV), and VSV but not with IAV. Lack of ATP1A1 did not affect virus binding to host cells but resulted in inhibited entry of MHV and VSV. Consistently, nanomolar concentrations of the cardiotonic steroids ouabain and bufalin, which are known not to affect the transport function of Na+,K+-ATPase, inhibited infection of cells with MHV, FIPV, Middle East respiratory syndrome (MERS)-CoV, and VSV, but not IAV, when the compounds were present during virus inoculation. Cardiotonic steroids were shown to inhibit entry of MHV at an early stage, resulting in accumulation of virions close to the cell surface and, as a consequence, in reduced fusion. In agreement with an early block in infection, the inhibition of VSV by CTSs could be bypassed by low-pH shock. Viral RNA replication was not affected when these compounds were added after virus entry. The antiviral effect of ouabain could be relieved by the addition of different Src kinase inhibitors, indicating that Src signaling mediated via ATP1A1 plays a crucial role in the inhibition of CoV and VSV infections. IMPORTANCE Coronaviruses (CoVs) are important pathogens of animals and humans, as demonstrated by the recent emergence of new human CoVs of zoonotic origin. Antiviral drugs targeting CoV infections are lacking. In the present study, we show that the ATP1A1 subunit of Na+,K+-ATPase, an ion transporter and signaling transducer, supports CoV infection. Targeting ATP1A1 either by

  3. Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice.

    PubMed

    Yount, Boyd; Roberts, Rhonda S; Sims, Amy C; Deming, Damon; Frieman, Matthew B; Sparks, Jennifer; Denison, Mark R; Davis, Nancy; Baric, Ralph S

    2005-12-01

    SARS coronavirus (SARS-CoV) encodes several unique group-specific open reading frames (ORFs) relative to other known coronaviruses. To determine the significance of the SARS-CoV group-specific ORFs in virus replication in vitro and in mice, we systematically deleted five of the eight group-specific ORFs, ORF3a, OF3b, ORF6, ORF7a, and ORF7b, and characterized recombinant virus replication and gene expression in vitro. Deletion of the group-specific ORFs of SARS-CoV, either alone or in various combinations, did not dramatically influence replication efficiency in cell culture or in the levels of viral RNA synthesis. The greatest reduction in virus growth was noted following ORF3a deletion. SARS-CoV spike (S) glycoprotein does not encode a rough endoplasmic reticulum (rER)/Golgi retention signal, and it has been suggested that ORF3a interacts with and targets S glycoprotein retention in the rER/Golgi apparatus. Deletion of ORF3a did not alter subcellular localization of the S glycoprotein from distinct punctuate localization in the rER/Golgi apparatus. These data suggest that ORF3a plays little role in the targeting of S localization in the rER/Golgi apparatus. In addition, insertion of the 29-bp deletion fusing ORF8a/b into the single ORF8, noted in early-stage SARS-CoV human and civet cat isolates, had little if any impact on in vitro growth or RNA synthesis. All recombinant viruses replicated to wild-type levels in the murine model, suggesting that either the group-specific ORFs play little role in in vivo replication efficiency or that the mouse model is not of sufficient quality for discerning the role of the group-specific ORFs in disease origin and development. PMID:16282490

  4. Apoptosis by aloe-emodin is mediated through down-regulation of calpain-2 and ubiquitin-protein ligase E3A in human hepatoma Huh-7 cells.

    PubMed

    Jeon, Won; Jeon, Young Keul; Nam, Myeong Jin

    2012-02-01

    Natural flavonoids are associated with anti-proliferation of cancer growth. However, the antioxidant and anti-proliferation effects of AE (aloe-emodin) have not been well studied. We have investigated how AE affects the proliferation of hepatic hepatocellular carcinoma cells and exerts an anti-cancer effect. The cytotoxic effect of AE was demonstrated using an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay and Huh-7 cells were inhibited by AE treatment in both dose- and time-dependent manners. The IC(50) level of AE was ∼75 μM. AE also has anti-proliferative effects via induction of DNA damage and apoptosis. 2-DE (two-dimensional electrophoresis) revealed that several proteins were related to the anti-cancer effects of AE. CAPN2 (calpain-2) and UBE3A (ubiquitin-protein ligase E3A), which are associated with the apoptosis signalling pathway, were verified by Western blotting. AE exhibited potent anti-proliferative effects on Huh-7 cells via down-regulation of CAPN2 and UBE3A. The findings support the possibility of AE being a chemopreventative agent. PMID:21861846

  5. Infection of human alveolar macrophages by human coronavirus strain 229E

    PubMed Central

    Funk, C. Joel; Wang, Jieru; Ito, Yoko; Travanty, Emily A.; Voelker, Dennis R.; Holmes, Kathryn V.

    2012-01-01

    Human coronavirus strain 229E (HCoV-229E) commonly causes upper respiratory tract infections. However, lower respiratory tract infections can occur in some individuals, indicating that cells in the distal lung are susceptible to HCoV-229E. This study determined the virus susceptibility of primary cultures of human alveolar epithelial cells and alveolar macrophages (AMs). Fluorescent antibody staining indicated that HCoV-229E could readily infect AMs, but no evidence was found for infection in differentiated alveolar epithelial type II cells and only a very low level of infection in type II cells transitioning to the type I-like cell phenotype. However, a human bronchial epithelial cell line (16HBE) was readily infected. The innate immune response of AMs to HCoV-229E infection was evaluated for cytokine production and interferon (IFN) gene expression. AMs secreted significant amounts of tumour necrosis factor alpha (TNF-α), regulated on activation normal T-cell expressed and secreted (RANTES/CCL5) and macrophage inflammatory protein 1β (MIP-1β/CCL4) in response to HCoV-229E infection, but these cells exhibited no detectable increase in IFN-β or interleukin-29 in mRNA levels. AMs from smokers had reduced secretion of TNF-α compared with non-smokers in response to HCoV-229E infection. Surfactant protein A (SP-A) and SP-D are part of the innate immune system in the distal lung. Both surfactant proteins bound to HCoV-229E, and pre-treatment of HCoV-229E with SP-A or SP-D inhibited infection of 16HBE cells. In contrast, there was a modest reduction in infection in AMs by SP-A, but not by SP-D. In summary, AMs are an important target for HCoV-229E, and they can mount a pro-inflammatory innate immune response to infection. PMID:22090214

  6. Genetic ablation of N-linked glycosylation reveals two key folding pathways for R345W fibulin-3, a secreted protein associated with retinal degeneration

    PubMed Central

    Hulleman, John D.; Kelly, Jeffery W.

    2015-01-01

    An R345W mutation in the N-glycoprotein, fibulin-3 (F3), results in inefficient F3 folding/secretion and higher intracellular F3 levels. Inheritance of this mutation causes the retinal dystrophy malattia leventinese. N-Linked glycosylation is a common cotranslational protein modification that can regulate protein folding efficiency and energetics. Therefore, we explored how N-glycosylation alters the protein homeostasis or proteostasis of wild-type (WT) and R345W F3 in ARPE-19 cells. Enzymatic and lectin binding assays confirmed that WT and R345W F3 are both primarily N-glycosylated at Asn249. Tunicamycin treatment selectively reduced R345W F3 secretion by 87% (vs. WT F3). Genetic elimination of F3 N-glycosylation (via an N249Q mutation) caused R345W F3 to aggregate intracellularly and adopt an altered secreted conformation. The endoplasmic reticulum (ER) chaperones GRP78 (glucose-regulated protein 78) and GRP94 (glucose-regulated protein 94), and the ER lectins calnexin and calreticulin were identified as F3 binding partners by immunoprecipitation. Significantly more N249Q and N249Q/R345W F3 interacted with GRP94, while substantially less N249Q and N249Q/R345W interacted with the ER lectins than their N-glycosylated counterparts. Inhibition of GRP94 ATPase activity reduced only N249Q/R345W F3 secretion (by 62%), demonstrating this variant’s unique reliance on GRP94 for secretion. These observations suggest that R345W F3, but not WT F3, requires N-glycosylation to acquire a stable, native-like structure.—Hulleman, J. D., Kelly, J. W. Genetic ablation of N-linked glycosylation reveals two key folding pathways for R345W fibulin-3, a secreted protein associated with retinal degeneration. PMID:25389134

  7. A cis-acting function for the coronavirus leader in defective interfering RNA replication.

    PubMed Central

    Chang, R Y; Hofmann, M A; Sethna, P B; Brian, D A

    1994-01-01

    To test the hypothesis that the 65-nucleotide (nt) leader on subgenomic mRNAs suffices as a 5'-terminal cis-acting signal for RNA replication, a corollary to the notion that coronavirus mRNAs behave as replicons, synthetic RNA transcripts of a cloned, reporter-containing N mRNA (mRNA 7) of the bovine coronavirus with a precise 5' terminus and a 3' poly(A) of 68 nt were tested for replication after being transfected into helper virus-infected cells. No replication was observed, but synthetic transcripts of a cloned reporter-containing defective interfering (DI) RNA differing from the N mRNA construct by 433 nt of continuous 5'-proximal genomic sequence between the leader and the N open reading frame did replicate and become packaged, indicating the insufficiency of the leader alone as a 5' signal for replication of transfected RNA molecules. The leader was shown to be a necessary part of the cis-acting signal for DI RNA replication, however, since removal of terminal bases that destroyed a predicted intraleader stem-loop also destroyed replicating ability. Surprisingly, when the same stem-loop was disrupted by base substitutions, replication appeared only minimally impaired and the leader was found to have rapidly reverted to wild type during DI RNA replication, a phenomenon reminiscent of high-frequency leader switching in the mouse hepatitis coronavirus. These results suggest that once a minimal structural requirement for leader is fulfilled for initiation of DI RNA replication, the wild-type leader is strongly preferred for subsequent replication. They also demonstrate that, in contrast to reported natural mouse hepatitis coronavirus DI RNAs, the DI RNA of the bovine coronavirus does not require sequence elements originating from discontinuous downstream regions within the polymerase gene for replication or for packaging. Images PMID:7966615

  8. Protective Effect of Intranasal Regimens Containing Peptidic Middle East Respiratory Syndrome Coronavirus Fusion Inhibitor Against MERS-CoV Infection.

    PubMed

    Channappanavar, Rudragouda; Lu, Lu; Xia, Shuai; Du, Lanying; Meyerholz, David K; Perlman, Stanley; Jiang, Shibo

    2015-12-15

    To gain entry into the target cell, Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) uses its spike (S) protein S2 subunit to fuse with the plasma or endosomal membrane. Previous work identified a peptide derived from the heptad repeat (HR) 2 domain in S2 subunit, HR2P, which potently blocked MERS-CoV S protein-mediated membrane fusion. Here, we tested an HR2P analogue with improved pharmaceutical property, HR2P-M2, for its inhibitory activity against MERS-CoV infection in vitro and in vivo. HR2P-M2 was highly effective in inhibiting MERS-CoV S protein-mediated cell-cell fusion and infection by pseudoviruses expressing MERS-CoV S protein with or without mutation in the HR1 region. It interacted with the HR1 peptide to form stable α-helical complex and blocked six-helix bundle formation between the HR1 and HR2 domains in the viral S protein. Intranasally administered HR2P-M2 effectively protected adenovirus serotype-5-human dipeptidyl peptidase 4-transduced mice from infection by MERS-CoV strains with or without mutations in the HR1 region of S protein, with >1000-fold reduction of viral titers in lung, and the protection was enhanced by combining HR2P-M2 with interferon β. These results indicate that this combination regimen merits further development to prevent MERS in high-risk populations, including healthcare workers and patient family members, and to treat MERS-CoV-infected patients. PMID:26164863

  9. The Ubiquitin-Proteasome System Plays an Important Role during Various Stages of the Coronavirus Infection Cycle ▿

    PubMed Central

    Raaben, Matthijs; Posthuma, Clara C.; Verheije, Monique H.; te Lintelo, Eddie G.; Kikkert, Marjolein; Drijfhout, Jan W.; Snijder, Eric J.; Rottier, Peter J. M.; de Haan, Cornelis A. M.

    2010-01-01

    The ubiquitin-proteasome system (UPS) is a key player in regulating the intracellular sorting and degradation of proteins. In this study we investigated the role of the UPS in different steps of the coronavirus (CoV) infection cycle. Inhibition of the proteasome by different chemical compounds (i.e., MG132, epoxomicin, and Velcade) appeared to not only impair entry but also RNA synthesis and subsequent protein expression of different CoVs (i.e., mouse hepatitis virus [MHV], feline infectious peritonitis virus, and severe acute respiratory syndrome CoV). MHV assembly and release were, however, not appreciably affected by these compounds. The inhibitory effect on CoV protein expression did not appear to result from a general inhibition of translation due to induction of a cellular stress response by the inhibitors. Stress-induced phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) generally results in impaired initiation of protein synthesis, but the sensitivity of MHV infection to proteasome inhibitors was unchanged in cells lacking a phosphorylatable eIF2α. MHV infection was affected not only by inhibition of the proteasome but also by interfering with protein ubiquitination. Viral protein expression was reduced in cells expressing a temperature-sensitive ubiquitin-activating enzyme E1 at the restrictive temperature, as well as in cells in which ubiquitin was depleted by using small interfering RNAs. Under these conditions, the susceptibility of the cells to virus infection was, however, not affected, excluding an important role of ubiquitination in virus entry. Our observations reveal an important role of the UPS in multiple steps of the CoV infection cycle and identify the UPS as a potential drug target to modulate the impact of CoV infection. PMID:20484504

  10. Rewiring the severe acute respiratory syndrome coronavirus (SARS-CoV) transcription circuit: Engineering a recombination-resistant genome

    NASA Astrophysics Data System (ADS)

    Yount, Boyd; Roberts, Rhonda S.; Lindesmith, Lisa; Baric, Ralph S.

    2006-08-01

    Live virus vaccines provide significant protection against many detrimental human and animal diseases, but reversion to virulence by mutation and recombination has reduced appeal. Using severe acute respiratory syndrome coronavirus as a model, we engineered a different transcription regulatory circuit and isolated recombinant viruses. The transcription network allowed for efficient expression of the viral transcripts and proteins, and the recombinant viruses replicated to WT levels. Recombinant genomes were then constructed that contained mixtures of the WT and mutant regulatory circuits, reflecting recombinant viruses that might occur in nature. Although viable viruses could readily be isolated from WT and recombinant genomes containing homogeneous transcription circuits, chimeras that contained mixed regulatory networks were invariantly lethal, because viable chimeric viruses were not isolated. Mechanistically, mixed regulatory circuits promoted inefficient subgenomic transcription from inappropriate start sites, resulting in truncated ORFs and effectively minimize viral structural protein expression. Engineering regulatory transcription circuits of intercommunicating alleles successfully introduces genetic traps into a viral genome that are lethal in RNA recombinant progeny viruses. regulation | systems biology | vaccine design

  11. The carboxy-terminal half of nonstructural protein 3A is not essential for foot-and-mouth disease virus replication in cultured cell lines.

    PubMed

    Behura, Mrutyunjay; Mohapatra, Jajati K; Pandey, Laxmi K; Das, Biswajit; Bhatt, Mukesh; Subramaniam, Saravanan; Pattnaik, Bramhadev

    2016-05-01

    In foot-and-mouth disease (FMD)-endemic parts of the globe, control is mainly implemented by preventive vaccination with an inactivated purified vaccine. ELISAs detecting antibodies to the viral nonstructural proteins (NSP) distinguish FMD virus (FMDV)-infected animals in the vaccinated population (DIVA). However, residual NSPs present in the vaccines are suspected to be a cause of occasional false positive results, and therefore, an epitope-deleted negative marker vaccine strategy is considered a more logical option. In this study, employing a serotype Asia 1 FMDV infectious cDNA clone, it is demonstrated that while large deletions differing in size and location in the carboxy-terminal half of 3A downstream of the putative hydrophobic membrane-binding domain (deletion of residues 86-110, 101-149, 81-149 and 81-153) are tolerated by the virus without affecting its infectivity in cultured cell lines, deletions in the amino-terminal half (residues 5-54, 21-50, 21-80, 55-80 and 5-149) containing the dimerization and the transmembrane domains are deleterious to its multiplication. Most importantly, the virus could dispense with the entire carboxy-terminal half of 3A (residues 81-153) including the residues involved in the formation of the 3A-3B1 cleavage junction. The rescue of a replication-competent FMDV variant carrying the largest deletion ever in 3A (residues 81-153) and the fact that the deleted region contains a series of linear B-cell epitopes inspired us to devise an indirect ELISA based on a recombinant 3A carboxy-terminal fragment and to evaluate its potential to serve as a companion diagnostic assay for differential serosurveillance if the 3A-truncated virus is used as a marker vaccine. PMID:26935917

  12. Autosomal Dominant Retinal Dystrophies Caused by a Founder Splice Site Mutation, c.828+3A>T, in PRPH2 and Protein Haplotypes in trans as Modifiers

    PubMed Central

    Shankar, Suma P.; Hughbanks-Wheaton, Dianna K.; Birch, David G.; Sullivan, Lori S.; Conneely, Karen N.; Bowne, Sara J.; Stone, Edwin M.; Daiger, Stephen P.

    2016-01-01

    Purpose We determined the phenotypic variation, disease progression, and potential modifiers of autosomal dominant retinal dystrophies caused by a splice site founder mutation, c.828+3A>T, in the PRPH2 gene. Methods A total of 62 individuals (19 families) harboring the PRPH2 c.828+3A>T mutation, had phenotype analysis by fundus appearance, electrophysiology, and visual fields. The PRPH2 haplotypes in trans were sequenced for potential modifying variants and generalized estimating equations (GEE) used for statistical analysis. Results Several distinct phenotypes caused by the PRPH2 c.828+3A>T mutation were observed and fell into two clinical categories: Group I (N = 44) with mild pattern dystrophies (PD) and Group II (N = 18) with more severe cone-rod dystrophy (CRD), retinitis pigmentosa (RP), and central areolar chorioretinal dystrophy (CACD). The PRPH2 Gln304-Lys310-Asp338 protein haplotype in trans was found in Group I only (29.6% vs. 0%), whereas the Glu304-Lys310-Gly338 haplotype was predominant in Group II (94.4% vs. 70.4%). Generalized estimating equations analysis for PD versus the CRD/CACD/RP phenotypes in individuals over 43 years alone with the PRPH2 haplotypes in trans and age as predictors, adjusted for correlation within families, confirmed a significant effect of haplotype on severity (P = 0.03) with an estimated odds ratio of 7.16 (95% confidence interval [CI] = [2.8, 18.4]). Conclusions The PRPH2 c.828+3A>T mutation results in multiple distinct phenotypes likely modified by protein haplotypes in trans; the odds of having the CACD/RP-like phenotype (versus the PD phenotype) are 7.16 times greater with a Glu304-Lys310-Gly338 haplotype in trans. Further functional studies of the modifying haplotypes in trans and PRPH2 splice variants may offer therapeutic targets. PMID:26842753

  13. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

    PubMed Central

    Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.; Wu, Jing; Ong, Su Sien; Schuetz, Erin G.; Chen, Taosheng

    2013-01-01

    Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotics detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet-drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that cautions should be taken for PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. PMID:23707768

  14. Novel deletion of the E3A ubiquitin protein ligase gene detected by multiplex ligation-dependent probe amplification in a patient with Angelman syndrome

    PubMed Central

    Calì, Francesco; Ragalmuto, Alda; Chiavetta, Valeria; Calabrese, Giuseppe; Fichera, Marco; Vinci, Mirella; Ruggeri, Giuseppa; Schinocca, Pietro; Sturnio, Maurizio; Romano, Salvatore; Elia, Maurizio

    2010-01-01

    Angelman syndrome (AS) is a severe neurobehavioural disorder caused by failure of expression of the maternal copy of the imprinted domain located on 15q11-q13. There are different mechanisms leading to AS: maternal microdeletion, uniparental disomy, defects in a putative imprinting centre, mutations of the E3 ubiquitin protein ligase (UBE3A) gene. However, some of suspected cases of AS are still scored negative to all the latter mutations. Recently, it has been shown that a proportion of negative cases bear large deletions overlapping one or more exons of the UBE3A gene. These deletions are difficult to detect by conventional gene-scanning methods due to the masking effect by the non-deleted allele. In this study, we have used for the first time multiplex ligation-dependent probe amplification (MLPA) and comparative multiplex dosage analysis (CMDA) to search for large deletions affecting the UBE3A gene. Using this approach, we identified a novel causative deletion involving exon 8 in an affected sibling. Based on our results, we propose the use of MLPA as a fast, accurate and inexpensive test to detect large deletions in the UBE3A gene in a small but significant percentage of AS patients. PMID:21072004

  15. The United Kingdom public health response to an imported laboratory confirmed case of a novel coronavirus in September 2012.

    PubMed

    Pebody, R G; Chand, M A; Thomas, H L; Green, H K; Boddington, N L; Carvalho, C; Brown, C S; Anderson, S R; Rooney, C; Crawley-Boevey, E; Irwin, D J; Aarons, E; Tong, C; Newsholme, W; Price, N; Langrish, C; Tucker, D; Zhao, H; Phin, N; Crofts, J; Bermingham, A; Gilgunn-Jones, E; Brown, K E; Evans, B; Catchpole, M; Watson, J M

    2012-01-01

    On 22 September 2012, a novel coronavirus, very closely related to that from a fatal case in Saudi Arabia three months previously, was detected in a previously well adult transferred to intensive care in London from Qatar with severe respiratory illness. Strict respiratory isolation was instituted. Ten days after last exposure, none of 64 close contacts had developed severe disease, with 13 of 64 reporting mild respiratory symptoms. The novel coronavirus was not detected in 10 of 10 symptomatic contacts tested. PMID:23078799

  16. Wnt3a Protein Reduces Growth Factor-Driven Expansion of Human Hematopoietic Stem and Progenitor Cells in Serum-Free Cultures

    PubMed Central

    Duinhouwer, Lucia E.; Tüysüz, Nesrin; Rombouts, Elwin W. J. C.; ter Borg, Mariette N. D.; Mastrobattista, Enrico; Spanholtz, Jan; Cornelissen, Jan J.; ten Berge, Derk; Braakman, Eric

    2015-01-01

    Ex vivo expansion of hematopoietic stem and progenitor cells (HSPC) is a promising approach to improve insufficient engraftment after umbilical cord blood stem cell transplantation (UCB-SCT). Although culturing HSPC with hematopoietic cytokines results in robust proliferation, it is accompanied with extensive differentiation and loss of self-renewal capacity. Wnt signaling has been implicated in regulating HSPC fate decisions in vivo and in promoting HSPC self-renewal by inhibition of differentiation, but the effects of Wnt on the ex vivo expansion of HSPC are controversial. Here, we demonstrate that exogenous Wnt3a protein suppresses rather than promotes the expansion of UCB-derived CD34+ cells in serum free expansion cultures. The reduced expansion was also observed in cultures initiated with Lin-CD34+CD38lowCD45RA-CD90+ cells which are highly enriched in HSC and was also observed in response to activation of beta-catenin signaling by GSK3 inhibition. The presence of Wnt3a protein during the culture reduced the frequency of multilineage CFU-GEMM and the long-term repopulation ability of the expanded HSPC. These data suggest that Wnt signaling reduces expansion of human HSPC in growth factor-driven expansion cultures by promoting differentiation of HSPC. PMID:25807521

  17. The Drosophila erect wing gene, which is important for both neuronal and muscle development, encodes a protein which is similar to the sea urchin P3A2 DNA binding protein.

    PubMed Central

    DeSimone, S M; White, K

    1993-01-01

    The erect wing (ewg) locus of Drosophila melanogaster encodes a vital function important for the development of the nervous system and the indirect flight muscles. In order to understand the ewg function at a molecular level, cDNA clones were isolated. Sequence analysis of cDNAs revealed a single open reading frame (ORF) encoding a protein of 733 residues. The translational start for this ORF is a CTG codon. A 225-amino-acid region of this protein is 71% identical to the DNA binding region of the Strongylocentrotus purpuratus P3A2 DNA binding protein. Additionally, the ORF contains large acidic and basic domains characteristic of those in proteins involved in nuclear regulatory functions. Immunoblot analysis using polyclonal anti-EWG antisera generated against a bacterial fusion protein reveals a single, 116-kDa protein present throughout development, beginning at approximately stage 12 of embryogenesis, which is enriched in adult heads and absent from embryos carrying certain ewg alleles. Additionally, we show that EWG is localized specifically to the nuclei of virtually all embryonic neurons. Finally, a minigene consisting of an ewg cDNA under control of the hsp70 promoter can provide the ewg function in transgenic ewg mutant flies. Images PMID:8388540

  18. SARS Coronavirus-unique Domain (SUD): Three-domain Molecular Architecture in Solution and RNA Binding

    PubMed Central

    Johnson, Margaret A.; Chatterjee, Amarnath; Neuman, Benjamin W.; Wüthrich, Kurt

    2010-01-01

    The nonstructural protein 3 (nsp3) of the severe acute respiratory syndrome coronavirus (SARS-CoV) includes a “SARS-unique region” (SUD) consisting of three globular domains separated by short linker peptide segments. This paper reports NMR structure determinations of the C-terminal domain (SUD-C) and of a two-domain construct (SUD-MC) containing the middle domain (SUD-M) and the C-terminal domain, and NMR data on the conformational states of the N-terminal domain (SUD-N) and the SUD-NM two-domain construct. Both SUD-N and SUD-NM are monomeric and globular in solution, and in SUD-NM there is high mobility in the two-residue interdomain linking sequence, with no preferred relative orientation of the two domains. SUD-C adopts a frataxin-like fold and has structural similarity to DNA-binding domains of DNA-modifying enzymes. The structures of both SUD-M (previously determined) and SUD-C (from the present study) are maintained in SUD-MC, where the two domains are flexibly linked. Gel shift experiments showed that both SUD-C and SUD-MC bind to single-stranded RNA and recognize purine bases more strongly than pyrimidine bases, whereby SUD-MC binds to a more restricted set of purine-containing RNA sequences than SUD-M. NMR chemical shift perturbation experiments with observation of the 15N-labeled proteins further resulted in the delineation of the RNA binding sites, i.e., in SUD-M a positively charged surface area with a pronounced cavity, and in SUD-C several residues of an antiparallel β-sheet. Overall, the present data provide evidence for molecular mechanisms involving concerted actions of SUD-M and SUD-C, which result in specific RNA-binding that might be unique to the SUD, and thus to the SARS-CoV. PMID:20493876

  19. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

    SciTech Connect

    Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.; Wu, Jing; Ong, Su Sien; Schuetz, Erin G.; Chen, Taosheng

    2013-10-01

    Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotic detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet–drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that caution should be taken in PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. - Highlights: • Piperine induces PXR-mediated CYP3A4 and MDR1 expression. • Piperine activates PXR by binding to PXR and recruiting coactivator SRC-1. • Piperine induces PXR activation in vivo. • Caution should be taken in piperine consumption during drug treatment.

  20. Gene cloning, functional expression and secretion of the S-layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a in Lactococcus lactis.

    PubMed

    Novotny, René; Scheberl, Andrea; Giry-Laterriere, Marc; Messner, Paul; Schäffer, Christina

    2005-01-01

    The ~93-kDa surface layer protein SgsE of Geobacillus stearothermophilus NRS 2004/3a forms a regular crystalline array providing a nanopatterned matrix for the future display of biologically relevant molecules. Lactococcus lactis NZ9000 was established as a safe expression host for the controlled targeted production of SgsE based on the broad host-range plasmid pNZ124Sph, into which the nisA promoter was introduced. SgsE devoid of its signal peptide-encoding sequence was cloned into the new vector and purified from the cytoplasm at a yield of 220 mg l- of expression culture. Secretion constructs were based on the signal peptide of the Lactobacillus brevis SlpA protein or the L. lactis Usp45 protein, allowing isolation of 95 mg of secreted rSgsE l-1. N-terminal sequencing confirmed correct processing of SgsE in L. lactis NZ9000. The ability of rSgsE to self-assemble in suspension and to recrystallize on solid supports was demonstrated by electron and atomic force microscopy. PMID:15675069

  1. Phage-display for identifying peptides that bind the spike protein of transmissible gastroenteritis virus and possess diagnostic potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spike (S) protein is a key structural protein of coronaviruses including, the porcine transmissible gastroenteritis virus (TGEV). The S protein is a type I membrane glycoprotein located in the viral envelope and is responsible for mediating the binding of viral particles to specific cell recepto...

  2. Human Coronaviruses: Insights into Environmental Resistance and Its Influence on the Development of New Antiseptic Strategies

    PubMed Central

    Geller, Chloé; Varbanov, Mihayl; Duval, Raphaël E.

    2012-01-01

    The Coronaviridae family, an enveloped RNA virus family, and, more particularly, human coronaviruses (HCoV), were historically known to be responsible for a large portion of common colds and other upper respiratory tract infections. HCoV are now known to be involved in more serious respiratory diseases, i.e. bronchitis, bronchiolitis or pneumonia, especially in young children and neonates, elderly people and immunosuppressed patients. They have also been involved in nosocomial viral infections. In 2002–2003, the outbreak of severe acute respiratory syndrome (SARS), due to a newly discovered coronavirus, the SARS-associated coronavirus (SARS-CoV); led to a new awareness of the medical importance of the Coronaviridae family. This pathogen, responsible for an emerging disease in humans, with high risk of fatal outcome; underline the pressing need for new approaches to the management of the infection, and primarily to its prevention. Another interesting feature of coronaviruses is their potential environmental resistance, despite the accepted fragility of enveloped viruses. Indeed, several studies have described the ability of HCoVs (i.e. HCoV 229E, HCoV OC43 (also known as betacoronavirus 1), NL63, HKU1 or SARS-CoV) to survive in different environmental conditions (e.g. temperature and humidity), on different supports found in hospital settings such as aluminum, sterile sponges or latex surgical gloves or in biological fluids. Finally, taking into account the persisting lack of specific antiviral treatments (there is, in fact, no specific treatment available to fight coronaviruses infections), the Coronaviridae specificities (i.e. pathogenicity, potential environmental resistance) make them a challenging model for the development of efficient means of prevention, as an adapted antisepsis-disinfection, to prevent the environmental spread of such infective agents. This review will summarize current knowledge on the capacity of human coronaviruses to survive in the

  3. Crystal structure of murine coronavirus receptor sCEACAM1a[1,4],a member of the carcinoembtyonic antigen family

    SciTech Connect

    Tan, K.; Zelus, B. D.; Meijers, R.; Liu, J.-H.; Bergelson, J. M.; Zhang, R.; Duke, N.; Joachimi