Science.gov

Sample records for coronavirus envelope protein

  1. Envelope protein palmitoylations are crucial for murine coronavirus assembly.

    PubMed

    Boscarino, Joseph A; Logan, Hillary L; Lacny, Jason J; Gallagher, Thomas M

    2008-03-01

    The coronavirus assembly process encloses a ribonucleoprotein genome into vesicles containing the lipid-embedded proteins S (spike), E (envelope), and M (membrane). This process depends on interactions with membranes that may involve palmitoylation, a common posttranslational lipidation of cysteine residues. To determine whether specific palmitoylations influence coronavirus assembly, we introduced plasmid DNAs encoding mouse hepatitis coronavirus (MHV) S, E, M, and N (nucleocapsid) into 293T cells and found that virus-like particles (VLPs) were robustly assembled and secreted into culture medium. Palmitate adducts predicted on cysteines 40, 44, and 47 of the 83-residue E protein were then evaluated by constructing mutant cDNAs with alanine or glycine codon substitutions at one or more of these positions. Triple-substituted proteins (E.Ts) lacked palmitate adducts. Both native E and E.T proteins localized at identical perinuclear locations, and both copurified with M proteins, but E.T was entirely incompetent for VLP production. In the presence of the E.T proteins, the M protein subunits accumulated into detergent-insoluble complexes that failed to secrete from cells, while native E proteins mobilized M into detergent-soluble secreted forms. Many of these observations were corroborated in the context of natural MHV infections, with native E, but not E.T, complementing debilitated recombinant MHVs lacking E. Our findings suggest that palmitoylations are essential for E to act as a vesicle morphogenetic protein and further argue that palmitoylated E proteins operate by allowing the primary coronavirus assembly subunits to assume configurations that can mobilize into secreted lipid vesicles and virions. PMID:18184706

  2. Coronavirus envelope (E) protein remains at the site of assembly

    SciTech Connect

    Venkatagopalan, Pavithra; Daskalova, Sasha M.; Lopez, Lisa A.; Dolezal, Kelly A.; Hogue, Brenda G.

    2015-04-15

    Coronaviruses (CoVs) assemble at endoplasmic reticulum Golgi intermediate compartment (ERGIC) membranes and egress from cells in cargo vesicles. Only a few molecules of the envelope (E) protein are assembled into virions. The role of E in morphogenesis is not fully understood. The cellular localization and dynamics of mouse hepatitis CoV A59 (MHV) E protein were investigated to further understanding of its role during infection. E protein localized in the ERGIC and Golgi with the amino and carboxy termini in the lumen and cytoplasm, respectively. E protein does not traffic to the cell surface. MHV was genetically engineered with a tetracysteine tag at the carboxy end of E. Fluorescence recovery after photobleaching (FRAP) showed that E is mobile in ERGIC/Golgi membranes. Correlative light electron microscopy (CLEM) confirmed the presence of E in Golgi cisternae. The results provide strong support that E proteins carry out their function(s) at the site of budding/assembly. - Highlights: • Mouse hepatitis coronavirus (MHV-CoV) E protein localizes in the ERGIC and Golgi. • MHV-CoV E does not transport to the cell surface. • MHV-CoV can be genetically engineered with a tetracysteine tag appended to E. • First FRAP and correlative light electron microscopy of a CoV E protein. • Live-cell imaging shows that E is mobile in ERGIC/Golgi membranes.

  3. Coronavirus envelope (E) protein remains at the site of assembly.

    PubMed

    Venkatagopalan, Pavithra; Daskalova, Sasha M; Lopez, Lisa A; Dolezal, Kelly A; Hogue, Brenda G

    2015-04-01

    Coronaviruses (CoVs) assemble at endoplasmic reticulum Golgi intermediate compartment (ERGIC) membranes and egress from cells in cargo vesicles. Only a few molecules of the envelope (E) protein are assembled into virions. The role of E in morphogenesis is not fully understood. The cellular localization and dynamics of mouse hepatitis CoV A59 (MHV) E protein were investigated to further understanding of its role during infection. E protein localized in the ERGIC and Golgi with the amino and carboxy termini in the lumen and cytoplasm, respectively. E protein does not traffic to the cell surface. MHV was genetically engineered with a tetracysteine tag at the carboxy end of E. Fluorescence recovery after photobleaching (FRAP) showed that E is mobile in ERGIC/Golgi membranes. Correlative light electron microscopy (CLEM) confirmed the presence of E in Golgi cisternae. The results provide strong support that E proteins carry out their function(s) at the site of budding/assembly. PMID:25726972

  4. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis.

    PubMed

    Nieto-Torres, Jose L; DeDiego, Marta L; Verdiá-Báguena, Carmina; Jimenez-Guardeño, Jose M; Regla-Nava, Jose A; Fernandez-Delgado, Raul; Castaño-Rodriguez, Carlos; Alcaraz, Antonio; Torres, Jaume; Aguilella, Vicente M; Enjuanes, Luis

    2014-05-01

    Deletion of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) envelope (E) gene attenuates the virus. E gene encodes a small multifunctional protein that possesses ion channel (IC) activity, an important function in virus-host interaction. To test the contribution of E protein IC activity in virus pathogenesis, two recombinant mouse-adapted SARS-CoVs, each containing one single amino acid mutation that suppressed ion conductivity, were engineered. After serial infections, mutant viruses, in general, incorporated compensatory mutations within E gene that rendered active ion channels. Furthermore, IC activity conferred better fitness in competition assays, suggesting that ion conductivity represents an advantage for the virus. Interestingly, mice infected with viruses displaying E protein IC activity, either with the wild-type E protein sequence or with the revertants that restored ion transport, rapidly lost weight and died. In contrast, mice infected with mutants lacking IC activity, which did not incorporate mutations within E gene during the experiment, recovered from disease and most survived. Knocking down E protein IC activity did not significantly affect virus growth in infected mice but decreased edema accumulation, the major determinant of acute respiratory distress syndrome (ARDS) leading to death. Reduced edema correlated with lung epithelia integrity and proper localization of Na+/K+ ATPase, which participates in edema resolution. Levels of inflammasome-activated IL-1β were reduced in the lung airways of the animals infected with viruses lacking E protein IC activity, indicating that E protein IC function is required for inflammasome activation. Reduction of IL-1β was accompanied by diminished amounts of TNF and IL-6 in the absence of E protein ion conductivity. All these key cytokines promote the progression of lung damage and ARDS pathology. In conclusion, E protein IC activity represents a new determinant for SARS-CoV virulence. PMID:24788150

  5. Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Ion Channel Activity Promotes Virus Fitness and Pathogenesis

    PubMed Central

    Nieto-Torres, Jose L.; DeDiego, Marta L.; Verdiá-Báguena, Carmina; Jimenez-Guardeño, Jose M.; Regla-Nava, Jose A.; Fernandez-Delgado, Raul; Castaño-Rodriguez, Carlos; Alcaraz, Antonio; Torres, Jaume; Aguilella, Vicente M.; Enjuanes, Luis

    2014-01-01

    Deletion of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) envelope (E) gene attenuates the virus. E gene encodes a small multifunctional protein that possesses ion channel (IC) activity, an important function in virus-host interaction. To test the contribution of E protein IC activity in virus pathogenesis, two recombinant mouse-adapted SARS-CoVs, each containing one single amino acid mutation that suppressed ion conductivity, were engineered. After serial infections, mutant viruses, in general, incorporated compensatory mutations within E gene that rendered active ion channels. Furthermore, IC activity conferred better fitness in competition assays, suggesting that ion conductivity represents an advantage for the virus. Interestingly, mice infected with viruses displaying E protein IC activity, either with the wild-type E protein sequence or with the revertants that restored ion transport, rapidly lost weight and died. In contrast, mice infected with mutants lacking IC activity, which did not incorporate mutations within E gene during the experiment, recovered from disease and most survived. Knocking down E protein IC activity did not significantly affect virus growth in infected mice but decreased edema accumulation, the major determinant of acute respiratory distress syndrome (ARDS) leading to death. Reduced edema correlated with lung epithelia integrity and proper localization of Na+/K+ ATPase, which participates in edema resolution. Levels of inflammasome-activated IL-1β were reduced in the lung airways of the animals infected with viruses lacking E protein IC activity, indicating that E protein IC function is required for inflammasome activation. Reduction of IL-1β was accompanied by diminished amounts of TNF and IL-6 in the absence of E protein ion conductivity. All these key cytokines promote the progression of lung damage and ARDS pathology. In conclusion, E protein IC activity represents a new determinant for SARS-CoV virulence. PMID:24788150

  6. The PDZ-Binding Motif of Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Is a Determinant of Viral Pathogenesis

    PubMed Central

    Jimenez-Guardeño, Jose M.; Nieto-Torres, Jose L.; DeDiego, Marta L.; Regla-Nava, Jose A.; Fernandez-Delgado, Raul; Castaño-Rodriguez, Carlos; Enjuanes, Luis

    2014-01-01

    A recombinant severe acute respiratory syndrome coronavirus (SARS-CoV) lacking the envelope (E) protein is attenuated in vivo. Here we report that E protein PDZ-binding motif (PBM), a domain involved in protein-protein interactions, is a major determinant of virulence. Elimination of SARS-CoV E protein PBM by using reverse genetics caused a reduction in the deleterious exacerbation of the immune response triggered during infection with the parental virus and virus attenuation. Cellular protein syntenin was identified to bind the E protein PBM during SARS-CoV infection by using three complementary strategies, yeast two-hybrid, reciprocal coimmunoprecipitation and confocal microscopy assays. Syntenin redistributed from the nucleus to the cell cytoplasm during infection with viruses containing the E protein PBM, activating p38 MAPK and leading to the overexpression of inflammatory cytokines. Silencing of syntenin using siRNAs led to a decrease in p38 MAPK activation in SARS-CoV infected cells, further reinforcing their functional relationship. Active p38 MAPK was reduced in lungs of mice infected with SARS-CoVs lacking E protein PBM as compared with the parental virus, leading to a decreased expression of inflammatory cytokines and to virus attenuation. Interestingly, administration of a p38 MAPK inhibitor led to an increase in mice survival after infection with SARS-CoV, confirming the relevance of this pathway in SARS-CoV virulence. Therefore, the E protein PBM is a virulence domain that activates immunopathology most likely by using syntenin as a mediator of p38 MAPK induced inflammation. PMID:25122212

  7. The Coronavirus Nucleocapsid Is a Multifunctional Protein

    PubMed Central

    McBride, Ruth; van Zyl, Marjorie; Fielding, Burtram C.

    2014-01-01

    The coronavirus nucleocapsid (N) is a structural protein that forms complexes with genomic RNA, interacts with the viral membrane protein during virion assembly and plays a critical role in enhancing the efficiency of virus transcription and assembly. Recent studies have confirmed that N is a multifunctional protein. The aim of this review is to highlight the properties and functions of the N protein, with specific reference to (i) the topology; (ii) the intracellular localization and (iii) the functions of the protein. PMID:25105276

  8. Differential Sensitivity of Bat Cells to Infection by Enveloped RNA Viruses: Coronaviruses, Paramyxoviruses, Filoviruses, and Influenza Viruses

    PubMed Central

    Hoffmann, Markus; Müller, Marcel Alexander; Drexler, Jan Felix; Glende, Jörg; Erdt, Meike; Gützkow, Tim; Losemann, Christoph; Binger, Tabea; Deng, Hongkui; Schwegmann-Weßels, Christel; Esser, Karl-Heinz; Drosten, Christian; Herrler, Georg

    2013-01-01

    Bats (Chiroptera) host major human pathogenic viruses including corona-, paramyxo, rhabdo- and filoviruses. We analyzed six different cell lines from either Yinpterochiroptera (including African flying foxes and a rhinolophid bat) or Yangochiroptera (genera Carollia and Tadarida) for susceptibility to infection by different enveloped RNA viruses. None of the cells were sensitive to infection by transmissible gastroenteritis virus (TGEV), a porcine coronavirus, or to infection mediated by the Spike (S) protein of SARS-coronavirus (SARS-CoV) incorporated into pseudotypes based on vesicular stomatitis virus (VSV). The resistance to infection was overcome if cells were transfected to express the respective cellular receptor, porcine aminopeptidase N for TGEV or angiotensin-converting enzyme 2 for SARS-CoV. VSV pseudotypes containing the S proteins of two bat SARS-related CoV (Bg08 and Rp3) were unable to infect any of the six tested bat cell lines. By contrast, viral pseudotypes containing the surface protein GP of Marburg virus from the family Filoviridae infected all six cell lines though at different efficiency. Notably, all cells were sensitive to infection by two paramyxoviruses (Sendai virus and bovine respiratory syncytial virus) and three influenza viruses from different subtypes. These results indicate that bat cells are more resistant to infection by coronaviruses than to infection by paramyxoviruses, filoviruses and influenza viruses. Furthermore, these results show a receptor-dependent restriction of the infection of bat cells by CoV. The implications for the isolation of coronaviruses from bats are discussed. PMID:24023659

  9. Differential sensitivity of bat cells to infection by enveloped RNA viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses.

    PubMed

    Hoffmann, Markus; Müller, Marcel Alexander; Drexler, Jan Felix; Glende, Jörg; Erdt, Meike; Gützkow, Tim; Losemann, Christoph; Binger, Tabea; Deng, Hongkui; Schwegmann-Weßels, Christel; Esser, Karl-Heinz; Drosten, Christian; Herrler, Georg

    2013-01-01

    Bats (Chiroptera) host major human pathogenic viruses including corona-, paramyxo, rhabdo- and filoviruses. We analyzed six different cell lines from either Yinpterochiroptera (including African flying foxes and a rhinolophid bat) or Yangochiroptera (genera Carollia and Tadarida) for susceptibility to infection by different enveloped RNA viruses. None of the cells were sensitive to infection by transmissible gastroenteritis virus (TGEV), a porcine coronavirus, or to infection mediated by the Spike (S) protein of SARS-coronavirus (SARS-CoV) incorporated into pseudotypes based on vesicular stomatitis virus (VSV). The resistance to infection was overcome if cells were transfected to express the respective cellular receptor, porcine aminopeptidase N for TGEV or angiotensin-converting enzyme 2 for SARS-CoV. VSV pseudotypes containing the S proteins of two bat SARS-related CoV (Bg08 and Rp3) were unable to infect any of the six tested bat cell lines. By contrast, viral pseudotypes containing the surface protein GP of Marburg virus from the family Filoviridae infected all six cell lines though at different efficiency. Notably, all cells were sensitive to infection by two paramyxoviruses (Sendai virus and bovine respiratory syncytial virus) and three influenza viruses from different subtypes. These results indicate that bat cells are more resistant to infection by coronaviruses than to infection by paramyxoviruses, filoviruses and influenza viruses. Furthermore, these results show a receptor-dependent restriction of the infection of bat cells by CoV. The implications for the isolation of coronaviruses from bats are discussed. PMID:24023659

  10. Preliminary characterization of the structural proteins of the coronaviruses, sialodacryoadenitis virus and Parker's rat coronavirus.

    PubMed Central

    Barker, M G; Percy, D H; Hovland, D J; MacInnes, J I

    1994-01-01

    A procedure was developed for the partial purification of the rat coronaviruses, sialodacryoadenitis virus (SDAV) and Parker's rat coronavirus (PRC). The SDAV and PRC were replicated in L-2 cell monolayer cultures, precipitated with ammonium sulphate, and further concentrated using sucrose density gradient centrifugation. The major SDAV and PRC proteins were identified by immunoblotting and compared with those of the JHM strain of mouse hepatitis virus (MHV-JHM). Monoclonal antibodies (MAb) against the M protein of JHM recognized proteins interpreted to be slightly smaller in immunoblots of SDAV and PRC (22.8 vs 23K for JHM). Similarly, a monoclonal antibody against the JHM N protein reacted with proteins of 53K in SDAV and PRC (vs 56 K for JHM). Polyclonal antisera to all three viruses also cross-reacted with the M and N proteins. Some cross-reactivity amongst the S proteins was observed. Based on these data, the structural proteins of the rat coronaviruses, SDAV and PRC are closely related to those of MHV-JHM. Images Fig. 1. Fig. 2. Fig. 2. PMID:8004548

  11. CORONAVIRUS VIRULENCE GENES WITH MAIN FOCUS ON SARS-CoV ENVELOPE GENE

    PubMed Central

    DeDiego, Marta L.; Nieto-Torres, Jose L.; Jimenez-Guardeño, Jose M.; Regla-Nava, Jose A.; Castaño-Rodriguez, Carlos; Fernandez-Delgado, Raul; Usera, Fernando; Enjuanes, Luis

    2014-01-01

    Coronavirus (CoV) infection is usually detected by cellular sensors, which trigger the activation of the innate immune system. Nevertheless, CoVs have evolved viral proteins that target different signaling pathways to counteract innate immune responses. Some CoV proteins act as antagonists of interferon (IFN) by inhibiting IFN production or signaling, aspects that are briefly addressed in this review. After CoV infection, potent cytokines relevant in controlling virus infections and priming adaptive immune responses are also generated. However, an uncontrolled induction of these proinflammatory cytokines can lead to pathogenesis and disease severity as described for SARS-CoV and MERS-CoV. The cellular pathways mediated by interferon regulatory factor (IRF)-3 and 7, activating transcription factor (ATF)-2/jun, activator protein (AP)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor of activated T cells (NF-AT), are the main drivers of the inflammatory response triggered after viral infections, with NF-κB pathway the most frequently activated. Key CoV proteins involved in the regulation of these pathways and the proinflammatory immune response are revisited in this manuscript. It has been shown that the envelope (E) protein plays a variable role in CoV morphogenesis, depending on the CoV genus, being absolutely essential in some cases (genus α CoVs such as TGEV, and genus β CoVs such as MERS-CoV), but not in others (genus β CoVs such as MHV or SARS-CoV). A comprehensive accumulation of data has shown that the relatively small E protein elicits a strong influence on the interaction of SARS-CoV with the host. In fact, after infection with viruses in which this protein has been deleted, increased cellular stress and unfolded protein responses, apoptosis, and augmented host immune responses were observed. In contrast, the presence of E protein activated a pathogenic inflammatory response that may cause death in animal

  12. Trafficking motifs in the SARS-coronavirus nucleocapsid protein

    SciTech Connect

    You, Jae-Hwan; Reed, Mark L.; Hiscox, Julian A. . E-mail: j.a.hiscox@leeds.ac.uk

    2007-07-13

    The severe acute respiratory syndrome-coronavirus nucleocapsid (N) protein is involved in virus replication and modulation of cell processes. In this latter respect control may in part be achieved through the sub-cellular localisation of the protein. N protein predominately localises in the cytoplasm (the site of virus replication and assembly) but also in the nucleus/nucleolus. Using a combination of live-cell and confocal microscopy coupled to mutagenesis we identified a cryptic nucleolar localisation signal in the central part of the N protein. In addition, based on structural comparison to the avian coronavirus N protein, a nuclear export signal was identified in the C-terminal region of the protein.

  13. The Nucleocapsid Protein of Human Coronavirus NL63

    PubMed Central

    Zuwała, Kaja; Golda, Anna; Kabala, Wojciech; Burmistrz, Michał; Zdzalik, Michal; Nowak, Paulina; Kedracka-Krok, Sylwia; Zarebski, Mirosław; Dobrucki, Jerzy; Florek, Dominik; Zeglen, Sławomir; Wojarski, Jacek; Potempa, Jan; Dubin, Grzegorz; Pyrc, Krzysztof

    2015-01-01

    Human coronavirus (HCoV) NL63 was first described in 2004 and is associated with respiratory tract disease of varying severity. At the genetic and structural level, HCoV-NL63 is similar to other members of the Coronavirinae subfamily, especially human coronavirus 229E (HCoV-229E). Detailed analysis, however, reveals several unique features of the pathogen. The coronaviral nucleocapsid protein is abundantly present in infected cells. It is a multi-domain, multi-functional protein important for viral replication and a number of cellular processes. The aim of the present study was to characterize the HCoV-NL63 nucleocapsid protein. Biochemical analyses revealed that the protein shares characteristics with homologous proteins encoded in other coronaviral genomes, with the N-terminal domain responsible for nucleic acid binding and the C-terminal domain involved in protein oligomerization. Surprisingly, analysis of the subcellular localization of the N protein of HCoV-NL63 revealed that, differently than homologous proteins from other coronaviral species except for SARS-CoV, it is not present in the nucleus of infected or transfected cells. Furthermore, no significant alteration in cell cycle progression in cells expressing the protein was observed. This is in stark contrast with results obtained for other coronaviruses, except for the SARS-CoV. PMID:25700263

  14. Development of a SARS Coronavirus Vaccine from Recombinant Spike Protein Plus Delta Inulin Adjuvant.

    PubMed

    McPherson, Clifton; Chubet, Richard; Holtz, Kathy; Honda-Okubo, Yoshikazu; Barnard, Dale; Cox, Manon; Petrovsky, Nikolai

    2016-01-01

    Given periodic outbreaks of fatal human infections caused by coronaviruses, development of an optimal coronavirus vaccine platform capable of rapid production is an ongoing priority. This chapter describes the use of an insect cell expression system for rapid production of a recombinant vaccine against severe acute respiratory syndrome coronavirus (SARS). Detailed methods are presented for expression, purification, and release testing of SARS recombinant spike protein antigen, followed by adjuvant formulation and animal testing. The methods herein described for rapid development of a highly protective SARS vaccine are equally suited to rapid development of vaccines against other fatal human coronavirus infections, e.g., the MERS coronavirus. PMID:27076136

  15. Coronavirus Pathogenesis and the Emerging Pathogen Severe Acute Respiratory Syndrome Coronavirus

    PubMed Central

    Weiss, Susan R.; Navas-Martin, Sonia

    2005-01-01

    Coronaviruses are a family of enveloped, single-stranded, positive-strand RNA viruses classified within the Nidovirales order. This coronavirus family consists of pathogens of many animal species and of humans, including the recently isolated severe acute respiratory syndrome coronavirus (SARS-CoV). This review is divided into two main parts; the first concerns the animal coronaviruses and their pathogenesis, with an emphasis on the functions of individual viral genes, and the second discusses the newly described human emerging pathogen, SARS-CoV. The coronavirus part covers (i) a description of a group of coronaviruses and the diseases they cause, including the prototype coronavirus, murine hepatitis virus, which is one of the recognized animal models for multiple sclerosis, as well as viruses of veterinary importance that infect the pig, chicken, and cat and a summary of the human viruses; (ii) a short summary of the replication cycle of coronaviruses in cell culture; (iii) the development and application of reverse genetics systems; and (iv) the roles of individual coronavirus proteins in replication and pathogenesis. The SARS-CoV part covers the pathogenesis of SARS, the developing animal models for infection, and the progress in vaccine development and antiviral therapies. The data gathered on the animal coronaviruses continue to be helpful in understanding SARS-CoV. PMID:16339739

  16. Retroviruses Pseudotyped with the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Efficiently Infect Cells Expressing Angiotensin-Converting Enzyme 2

    PubMed Central

    Moore, Michael J.; Dorfman, Tatyana; Li, Wenhui; Wong, Swee Kee; Li, Yanhan; Kuhn, Jens H.; Coderre, James; Vasilieva, Natalya; Han, Zhongchao; Greenough, Thomas C.; Farzan, Michael; Choe, Hyeryun

    2004-01-01

    Infection of receptor-bearing cells by coronaviruses is mediated by their spike (S) proteins. The coronavirus (SARS-CoV) that causes severe acute respiratory syndrome (SARS) infects cells expressing the receptor angiotensin-converting enzyme 2 (ACE2). Here we show that codon optimization of the SARS-CoV S-protein gene substantially enhanced S-protein expression. We also found that two retroviruses, simian immunodeficiency virus (SIV) and murine leukemia virus, both expressing green fluorescent protein and pseudotyped with SARS-CoV S protein or S-protein variants, efficiently infected HEK293T cells stably expressing ACE2. Infection mediated by an S-protein variant whose cytoplasmic domain had been truncated and altered to include a fragment of the cytoplasmic tail of the human immunodeficiency virus type 1 envelope glycoprotein was, in both cases, substantially more efficient than that mediated by wild-type S protein. Using S-protein-pseudotyped SIV, we found that the enzymatic activity of ACE2 made no contribution to S-protein-mediated infection. Finally, we show that a soluble and catalytically inactive form of ACE2 potently blocked infection by S-protein-pseudotyped retrovirus and by SARS-CoV. These results permit studies of SARS-CoV entry inhibitors without the use of live virus and suggest a candidate therapy for SARS. PMID:15367630

  17. Genetic and antigenic characterization of recombinant nucleocapsid proteins derived from canine coronavirus and canine respiratory coronavirus in China.

    PubMed

    Lu, Shuai; Chen, Yingzhu; Qin, Kun; Zhou, Jianfang; Lou, Yongliang; Tan, Wenjie

    2016-06-01

    To characterize the antigenicity of nucleocapsid proteins (NP) derived from canine coronavirus (CCoV) and canine respiratory coronavirus (CRCoV) in China, the N genes of CCoV (CCoV-BJ70) and CRCoV (CRCoV-BJ202) were cloned from swabs obtained from diseased pet dogs in Beijing and then sequenced. The recombinant NPs (rNPs) were expressed in Escherichia coli and purified by nickel-affinity column and size exclusion chromatography. Sequencing data indicated that the N genes of CCoV-BJ70 and CRCoV-BJ202 belonging to two distinctly different groups were relatively conserved within each subgroup. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results showed that rNPs of CCoV and CRCoV were expressed efficiently and isolated with a final purity of over 95%. Western blot analysis revealed the rNP from CRCoV could cross-react with mice antisera against human coronavirus (HCoV-229E, NL63, OC43, HKU1), while rNP of CCoV had cross-reactivity with only anti-sera against viruses belonging to the same group (HCoV-229E and NL63). In summary, CCoV and CRCoV rNPs were successfully expressed in E. coli and showed antigenic cross-reactivity with antisera raised against human coronaviruses. These findings indicate that further serologic studies on coronavirus infections at the animal-human interface are needed. PMID:27084706

  18. Coronavirus receptor switch explained from the stereochemistry of protein-carbohydrate interactions and a single mutation.

    PubMed

    Bakkers, Mark J G; Zeng, Qinghong; Feitsma, Louris J; Hulswit, Ruben J G; Li, Zeshi; Westerbeke, Aniek; van Kuppeveld, Frank J M; Boons, Geert-Jan; Langereis, Martijn A; Huizinga, Eric G; de Groot, Raoul J

    2016-05-31

    Hemagglutinin-esterases (HEs) are bimodular envelope proteins of orthomyxoviruses, toroviruses, and coronaviruses with a carbohydrate-binding "lectin" domain appended to a receptor-destroying sialate-O-acetylesterase ("esterase"). In concert, these domains facilitate dynamic virion attachment to cell-surface sialoglycans. Most HEs (type I) target 9-O-acetylated sialic acids (9-O-Ac-Sias), but one group of coronaviruses switched to using 4-O-Ac-Sias instead (type II). This specificity shift required quasisynchronous adaptations in the Sia-binding sites of both lectin and esterase domains. Previously, a partially disordered crystal structure of a type II HE revealed how the shift in lectin ligand specificity was achieved. How the switch in esterase substrate specificity was realized remained unresolved, however. Here, we present a complete structure of a type II HE with a receptor analog in the catalytic site and identify the mutations underlying the 9-O- to 4-O-Ac-Sia substrate switch. We show that (i) common principles pertaining to the stereochemistry of protein-carbohydrate interactions were at the core of the transition in lectin ligand and esterase substrate specificity; (ii) in consequence, the switch in O-Ac-Sia specificity could be readily accomplished via convergent intramolecular coevolution with only modest architectural changes in lectin and esterase domains; and (iii) a single, inconspicuous Ala-to-Ser substitution in the catalytic site was key to the emergence of the type II HEs. Our findings provide fundamental insights into how proteins "see" sugars and how this affects protein and virus evolution. PMID:27185912

  19. Cleavage of spike protein of SARS coronavirus by protease factor Xa is associated with viral infectivity

    SciTech Connect

    Du, Lanying; Kao, Richard Y.; Zhou, Yusen; He, Yuxian; Zhao, Guangyu; Wong, Charlotte; Jiang, Shibo; Yuen, Kwok-Yung; Jin, Dong-Yan; Zheng, Bo-Jian . E-mail: bzheng@hkucc.hku.hk

    2007-07-20

    The spike (S) protein of SARS coronavirus (SARS-CoV) has been known to recognize and bind to host receptors, whose conformational changes then facilitate fusion between the viral envelope and host cell membrane, leading to viral entry into target cells. However, other functions of SARS-CoV S protein such as proteolytic cleavage and its implications to viral infection are incompletely understood. In this study, we demonstrated that the infection of SARS-CoV and a pseudovirus bearing the S protein of SARS-CoV was inhibited by a protease inhibitor Ben-HCl. Also, the protease Factor Xa, a target of Ben-HCl abundantly expressed in infected cells, was able to cleave the recombinant and pseudoviral S protein into S1 and S2 subunits, and the cleavage was inhibited by Ben-HCl. Furthermore, this cleavage correlated with the infectivity of the pseudovirus. Taken together, our study suggests a plausible mechanism by which SARS-CoV cleaves its S protein to facilitate viral infection.

  20. Analysis of Constructed E Gene Mutants of Mouse Hepatitis Virus Confirms a Pivotal Role for E Protein in Coronavirus Assembly

    PubMed Central

    Fischer, Françoise; Stegen, Carola F.; Masters, Paul S.; Samsonoff, William A.

    1998-01-01

    Expression studies have shown that the coronavirus small envelope protein E and the much more abundant membrane glycoprotein M are both necessary and sufficient for the assembly of virus-like particles in cells. As a step toward understanding the function of the mouse hepatitis virus (MHV) E protein, we carried out clustered charged-to-alanine mutagenesis on the E gene and incorporated the resulting mutations into the MHV genome by targeted recombination. Of the four possible clustered charged-to-alanine E gene mutants, one was apparently lethal and one had a wild-type phenotype. The two other mutants were partially temperature sensitive, forming small plaques at the nonpermissive temperature. Revertant analyses of these two mutants demonstrated that the created mutations were responsible for the temperature-sensitive phenotype of each and provided support for possible interactions among E protein monomers. Both temperature-sensitive mutants were also found to be markedly thermolabile when grown at the permissive temperature, suggesting that there was a flaw in their assembly. Most significantly, when virions of one of the mutants were examined by electron microscopy, they were found to have strikingly aberrant morphology in comparison to the wild type: most mutant virions had pinched and elongated shapes that were rarely seen among wild-type virions. These results demonstrate an important, probably essential, role for the E protein in coronavirus morphogenesis. PMID:9733825

  1. Identification of functionally important negatively charged residues in the carboxy end of mouse hepatitis coronavirus A59 nucleocapsid protein.

    PubMed

    Verma, Sandhya; Bednar, Valerie; Blount, Andrew; Hogue, Brenda G

    2006-05-01

    The coronavirus nucleocapsid (N) protein is a multifunctional viral gene product that encapsidates the RNA genome and also plays some as yet not fully defined role in viral RNA replication and/or transcription. A number of conserved negatively charged amino acids are located within domain III in the carboxy end of all coronavirus N proteins. Previous studies suggested that the negatively charged residues are involved in virus assembly by mediating interaction between the membrane (M) protein carboxy tail and nucleocapsids. To determine the importance of these negatively charged residues, a series of alanine and other charged-residue substitutions were introduced in place of those in the N gene within a mouse hepatitis coronavirus A59 infectious clone. Aspartic acid residues 440 and 441 were identified as functionally important. Viruses could not be isolated when both residues were replaced by positively charged amino acids. When either amino acid was replaced by a positively charged residue or both were changed to alanine, viruses were recovered that contained second-site changes within N, but not in the M or envelope protein. The compensatory role of the new changes was confirmed by the construction of new viruses. A few viruses were recovered that retained the D441-to-arginine change and no compensatory changes. These viruses exhibited a small-plaque phenotype and produced significantly less virus. Overall, results from our analysis of a large panel of plaque-purified recovered viruses indicate that the negatively charged residues at positions 440 and 441 are key residues that appear to be involved in virus assembly. PMID:16611893

  2. The nonstructural protein 8 (nsp8) of the SARS coronavirus interacts with its ORF6 accessory protein

    SciTech Connect

    Kumar, Purnima; Gunalan, Vithiagaran; Liu Boping; Chow, Vincent T.K.; Druce, Julian; Birch, Chris; Catton, Mike; Fielding, Burtram C.; Tan, Yee-Joo; Lal, Sunil K.

    2007-09-30

    Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) caused a severe outbreak in several regions of the world in 2003. The SARS-CoV genome is predicted to contain 14 functional open reading frames (ORFs). The first ORF (1a and 1b) encodes a large polyprotein that is cleaved into nonstructural proteins (nsp). The other ORFs encode for four structural proteins (spike, membrane, nucleocapsid and envelope) as well as eight SARS-CoV-specific accessory proteins (3a, 3b, 6, 7a, 7b, 8a, 8b and 9b). In this report we have cloned the predicted nsp8 gene and the ORF6 gene of the SARS-CoV and studied their abilities to interact with each other. We expressed the two proteins as fusion proteins in the yeast two-hybrid system to demonstrate protein-protein interactions and tested the same using a yeast genetic cross. Further the strength of the interaction was measured by challenging growth of the positive interaction clones on increasing gradients of 2-amino trizole. The interaction was then verified by expressing both proteins separately in-vitro in a coupled-transcription translation system and by coimmunoprecipitation in mammalian cells. Finally, colocalization experiments were performed in SARS-CoV infected Vero E6 mammalian cells to confirm the nsp8-ORF6 interaction. To the best of our knowledge, this is the first report of the interaction between a SARS-CoV accessory protein and nsp8 and our findings suggest that ORF6 protein may play a role in virus replication.

  3. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis

    PubMed Central

    Millet, Jean Kaoru; Whittaker, Gary R.

    2015-01-01

    Coronaviruses are a large group of enveloped, single-stranded positive-sense RNA viruses that infect a wide range of avian and mammalian species, including humans. The emergence of deadly human coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV) have bolstered research in these viral and often zoonotic pathogens. While coronavirus cell and tissue tropism, host range, and pathogenesis are initially controlled by interactions between the spike envelope glycoprotein and host cell receptor, it is becoming increasingly apparent that proteolytic activation of spike by host cell proteases also plays a critical role. Coronavirus spike proteins are the main determinant of entry as they possess both receptor binding and fusion functions. Whereas binding to the host cell receptor is an essential first step in establishing infection, the proteolytic activation step is often critical for the fusion function of spike, as it allows for controlled release of the fusion peptide into target cellular membranes. Coronaviruses have evolved multiple strategies for proteolytic activation of spike, and a large number of host proteases have been shown to proteolytically process the spike protein. These include, but are not limited to, endosomal cathepsins, cell surface transmembrane protease/serine (TMPRSS) proteases, furin, and trypsin. This review focuses on the diversity of strategies coronaviruses have evolved to proteolytically activate their fusion protein during spike protein biosynthesis and the critical entry step of their life cycle, and highlights important findings on how proteolytic activation of coronavirus spike influences tissue and cell tropism, host range and pathogenicity. PMID:25445340

  4. The Nucleocapsid Protein of Coronaviruses Acts as a Viral Suppressor of RNA Silencing in Mammalian Cells

    PubMed Central

    Cui, Lei; Wang, Haiying; Ji, Yanxi; Yang, Jie; Xu, Shan; Huang, Xingyu; Wang, Zidao; Qin, Lei; Tien, Po; Zhou, Xi

    2015-01-01

    ABSTRACT RNA interference (RNAi) is a process of eukaryotic posttranscriptional gene silencing that functions in antiviral immunity in plants, nematodes, and insects. However, recent studies provided strong supports that RNAi also plays a role in antiviral mechanism in mammalian cells. To combat RNAi-mediated antiviral responses, many viruses encode viral suppressors of RNA silencing (VSR) to facilitate their replication. VSRs have been widely studied for plant and insect viruses, but only a few have been defined for mammalian viruses currently. We identified a novel VSR from coronaviruses, a group of medically important mammalian viruses including Severe acute respiratory syndrome coronavirus (SARS-CoV), and showed that the nucleocapsid protein (N protein) of coronaviruses suppresses RNAi triggered by either short hairpin RNAs or small interfering RNAs in mammalian cells. Mouse hepatitis virus (MHV) is closely related to SARS-CoV in the family Coronaviridae and was used as a coronavirus replication model. The replication of MHV increased when the N proteins were expressed in trans, while knockdown of Dicer1 or Ago2 transcripts facilitated the MHV replication in mammalian cells. These results support the hypothesis that RNAi is a part of the antiviral immunity responses in mammalian cells. IMPORTANCE RNAi has been well known to play important antiviral roles from plants to invertebrates. However, recent studies provided strong supports that RNAi is also involved in antiviral response in mammalian cells. An important indication for RNAi-mediated antiviral activity in mammals is the fact that a number of mammalian viruses encode potent suppressors of RNA silencing. Our results demonstrate that coronavirus N protein could function as a VSR through its double-stranded RNA binding activity. Mutational analysis of N protein allowed us to find out the critical residues for the VSR activity. Using the MHV-A59 as the coronavirus replication model, we showed that ectopic

  5. Middle East Respiratory Syndrome Coronavirus NS4b Protein Inhibits Host RNase L Activation

    PubMed Central

    Thornbrough, Joshua M.; Jha, Babal K.; Yount, Boyd; Goldstein, Stephen A.; Li, Yize; Elliott, Ruth; Sims, Amy C.; Baric, Ralph S.; Silverman, Robert H.

    2016-01-01

    ABSTRACT Middle East respiratory syndrome coronavirus (MERS-CoV) is the first highly pathogenic human coronavirus to emerge since severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002. Like many coronaviruses, MERS-CoV carries genes that encode multiple accessory proteins that are not required for replication of the genome but are likely involved in pathogenesis. Evasion of host innate immunity through interferon (IFN) antagonism is a critical component of viral pathogenesis. The IFN-inducible oligoadenylate synthetase (OAS)-RNase L pathway activates upon sensing of viral double-stranded RNA (dsRNA). Activated RNase L cleaves viral and host single-stranded RNA (ssRNA), which leads to translational arrest and subsequent cell death, preventing viral replication and spread. Here we report that MERS-CoV, a lineage C Betacoronavirus, and related bat CoV NS4b accessory proteins have phosphodiesterase (PDE) activity and antagonize OAS-RNase L by enzymatically degrading 2′,5′-oligoadenylate (2-5A), activators of RNase L. This is a novel function for NS4b, which has previously been reported to antagonize IFN signaling. NS4b proteins are distinct from lineage A Betacoronavirus PDEs and rotavirus gene-encoded PDEs, in having an amino-terminal nuclear localization signal (NLS) and are localized mostly to the nucleus. However, the expression level of cytoplasmic MERS-CoV NS4b protein is sufficient to prevent activation of RNase L. Finally, this is the first report of an RNase L antagonist expressed by a human or bat coronavirus and provides a specific mechanism by which this occurs. Our findings provide a potential mechanism for evasion of innate immunity by MERS-CoV while also identifying a potential target for therapeutic intervention. PMID:27025250

  6. Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate

    PubMed Central

    Cottam, Eleanor M; Maier, Helena J; Manifava, Maria; Vaux, Laura C; Chandra-Schoenfelder, Priya; Gerner, Wilhelm; Britton, Paul; Ktistakis, Nick T

    2011-01-01

    Autophagy is a cellular response to starvation which generates autophagosomes to carry cellular organelles and long-lived proteins to lysosomes for degradation. Degradation through autophagy can provide an innate defense against virus infection, or conversely autophagosomes can promote infection by facilitating assembly of replicase proteins. We demonstrate that the avian coronavirus, infectious bronchitis virus (IBV), activates autophagy. A screen of individual IBV nonstructural proteins (nsps) showed that autophagy was activated by IBV nsp6. This property was shared with nsp6 of mammalian coronaviruses mouse hepatitis virus, and severe acute respiratory syndrome virus, and the equivalent nsp5–7 of the arterivirus porcine reproductive and respiratory syndrome virus. These multiple-spanning transmembrane proteins located to the endoplasmic reticulum (ER) where they generated Atg5 and LC3II -positive vesicles, and vesicle formation was dependent on Atg5 and class III PI3 kinase. The vesicles recruited double-FYVE-domain containing protein (DFCP) indicating localized concentration of phosphatidylinositol 3 phosphate, and therefore shared many features with omegasomes formed from the ER in response to starvation. Omegasomes induced by viral nsp6 matured into autophagosomes that delivered LC3 to lysosomes and therefore recruited and recycled the proteins needed for autophagosome nucleation, expansion, cellular trafficking and delivery of cargo to lysosomes. The coronavirus nsp6 proteins activated omegasome and autophagosome formation independently of starvation, but activation did not involve direct inhibition of mTOR signaling, activation of sirtuin 1 or induction of ER stress. PMID:21799305

  7. Canine Enteric Coronaviruses: Emerging Viral Pathogens with Distinct Recombinant Spike Proteins

    PubMed Central

    Licitra, Beth N.; Duhamel, Gerald E.; Whittaker, Gary R.

    2014-01-01

    Canine enteric coronavirus (CCoV) is an alphacoronavirus infecting dogs that is closely related to enteric coronaviruses of cats and pigs. While CCoV has traditionally caused mild gastro-intestinal clinical signs, there are increasing reports of lethal CCoV infections in dogs, with evidence of both gastrointestinal and systemic viral dissemination. Consequently, CCoV is now considered to be an emerging infectious disease of dogs. In addition to the two known serotypes of CCoV, novel recombinant variants of CCoV have been found containing spike protein N-terminal domains (NTDs) that are closely related to those of feline and porcine strains. The increase in disease severity in dogs and the emergence of novel CCoVs can be attributed to the high level of recombination within the spike gene that can occur during infection by more than one CCoV type in the same host. PMID:25153347

  8. Coronavirus Infection Modulates the Unfolded Protein Response and Mediates Sustained Translational Repression▿

    PubMed Central

    Bechill, John; Chen, Zhongbin; Brewer, Joseph W.; Baker, Susan C.

    2008-01-01

    During coronavirus replication, viral proteins induce the formation of endoplasmic reticulum (ER)-derived double-membrane vesicles for RNA synthesis, and viral structural proteins assemble virions at the ER-Golgi intermediate compartment. We hypothesized that the association and intense utilization of the ER during viral replication would induce the cellular unfolded protein response (UPR), a signal transduction cascade that acts to modulate translation, membrane biosynthesis, and the levels of ER chaperones. Here, we report that infection by the murine coronavirus mouse hepatitis virus (MHV) triggers the proximal UPR transducers, as revealed by monitoring the IRE1-mediated splicing of XBP-1 mRNA and the cleavage of ATF6α. However, we detected minimal downstream induction of UPR target genes, including ERdj4, ER degradation-enhancing α-mannosidase-like protein, and p58IPK, or expression of UPR reporter constructs. Translation initiation factor eIF2α is highly phosphorylated during MHV infection, and translation of cellular mRNAs is attenuated. Furthermore, we found that the critical homeostasis regulator GADD34, which recruits protein phosphatase 1 to dephosphorylate eIF2α during the recovery phase of the UPR, is not expressed during MHV infection. These results suggest that MHV modifies the UPR by impeding the induction of UPR-responsive genes, thereby favoring a sustained shutdown of the synthesis of host cell proteins while the translation of viral proteins escalates. The role of this modified response and its potential relevance to viral mechanisms for the evasion of innate defense signaling pathways during coronavirus replication are discussed. PMID:18305036

  9. Feline Coronavirus 3c Protein: A Candidate for a Virulence Marker?

    PubMed Central

    Hora, A. S.; Tonietti, P. O.; Taniwaki, S. A.; Asano, K. M.; Maiorka, P.; Richtzenhain, L. J.; Brandão, P. E.

    2016-01-01

    Feline infectious peritonitis virus (FIPV) is highly virulent and responsible for the highly fatal disease feline infectious peritonitis (FIP), whereas feline enteric coronavirus (FECV) is widespread among the feline population and typically causes asymptomatic infections. Some candidates for genetic markers capable of differentiating these two pathotypes of a unique virus (feline coronavirus) have been proposed by several studies. In the present survey, in order to search for markers that can differentiate FECV and FIPV, several clones of the 3a–c, E, and M genes were sequenced from samples obtained from cats with or without FIP. All genes showed genetic diversity and suggested the presence of FCoV mutant spectrum capable of producing a virulent pathotype in an individual-specific way. In addition, all the feline coronavirus FIPV strains demonstrated a truncated 3c protein, and the 3c gene was the only observed pathotypic marker for FCoVs, showing that 3c gene is a candidate marker for the distinction between the two pathotypes when the mutant spectrum is taken into account. PMID:27243037

  10. Feline Coronavirus 3c Protein: A Candidate for a Virulence Marker?

    PubMed

    Hora, A S; Tonietti, P O; Taniwaki, S A; Asano, K M; Maiorka, P; Richtzenhain, L J; Brandão, P E

    2016-01-01

    Feline infectious peritonitis virus (FIPV) is highly virulent and responsible for the highly fatal disease feline infectious peritonitis (FIP), whereas feline enteric coronavirus (FECV) is widespread among the feline population and typically causes asymptomatic infections. Some candidates for genetic markers capable of differentiating these two pathotypes of a unique virus (feline coronavirus) have been proposed by several studies. In the present survey, in order to search for markers that can differentiate FECV and FIPV, several clones of the 3a-c, E, and M genes were sequenced from samples obtained from cats with or without FIP. All genes showed genetic diversity and suggested the presence of FCoV mutant spectrum capable of producing a virulent pathotype in an individual-specific way. In addition, all the feline coronavirus FIPV strains demonstrated a truncated 3c protein, and the 3c gene was the only observed pathotypic marker for FCoVs, showing that 3c gene is a candidate marker for the distinction between the two pathotypes when the mutant spectrum is taken into account. PMID:27243037

  11. SARS/avian coronaviruses.

    PubMed

    Monceyron Jonassen, C

    2006-01-01

    In the hunt for the aetiology of the SARS outbreak in 2003, a newly developed virus DNA micro-array was successfully used to hybridise PCR products obtained by random amplification of nucleic acids extracted from a cell culture infected with material from a SARS patient. The SARS agent was found to hybridise with micro-array probes from both coronaviruses and astroviruses, but one of the coronavirus probes and the four astrovirus probes contained redundant sequences, spanning a highly conserved motif, named s2m, found at the 3' end of the genomes of almost all astroviruses, one picornavirus, and the poultry coronaviruses. The three other coronavirus probes, that hybridised with the SARS agent, were located in the replicase gene, and it could be concluded that the SARS agent was a novel coronavirus, harbouring s2m. The presence of this motif in different virus families is probably the result of recombinations between unrelated viruses, but its presence in both poultry and SARS coronaviruses could suggest a bird involvement in the history of the SARS coronavirus. A recent screening of wild birds for the presence of coronaviruses, using a pan-coronavirus RT-PCR, led to the identification of novel coronaviruses in the three species studied. Phylogenetic analyses performed on both replicase gene and nucleocapsid protein could not add support to a close relationship between avian and SARS coronaviruses, but all the novel avian coronaviruses were found to harbour s2m. The motif is inserted at a homologous place in avian and SARS coronavirus genomes, but in a somewhat different context for the SARS coronavirus. If the presence of s2m in these viruses is a result of two separate recombination events, this suggests that its particular position in these genomes is the only one that would not be deleterious for coronaviral replication, or that it is the result of a copy-choice recombination between coronaviruses, following an ancestral introduction in the coronavirus family by

  12. Identification of a Receptor-Binding Domain in the S Protein of the Novel Human Coronavirus Middle East Respiratory Syndrome Coronavirus as an Essential Target for Vaccine Development

    PubMed Central

    Du, Lanying; Zhao, Guangyu; Kou, Zhihua; Ma, Cuiqing; Sun, Shihui; Poon, Vincent K. M.; Lu, Lu; Wang, Lili; Debnath, Asim K.; Zheng, Bo-Jian

    2013-01-01

    A novel human Middle East respiratory syndrome coronavirus (MERS-CoV) caused outbreaks of severe acute respiratory syndrome (SARS)-like illness with a high mortality rate, raising concerns of its pandemic potential. Dipeptidyl peptidase-4 (DPP4) was recently identified as its receptor. Here we showed that residues 377 to 662 in the S protein of MERS-CoV specifically bound to DPP4-expressing cells and soluble DPP4 protein and induced significant neutralizing antibody responses, suggesting that this region contains the receptor-binding domain (RBD), which has a potential to be developed as a MERS-CoV vaccine. PMID:23824801

  13. Identification of phosphorylation sites in the nucleocapsid protein (N protein) of SARS-coronavirus

    NASA Astrophysics Data System (ADS)

    Lin, Liang; Shao, Jianmin; Sun, Maomao; Liu, Jinxiu; Xu, Gongjin; Zhang, Xumin; Xu, Ningzhi; Wang, Rong; Liu, Siqi

    2007-12-01

    After decoding the genome of SARS-coronavirus (SARS-CoV), next challenge is to understand how this virus causes the illness at molecular bases. Of the viral structural proteins, the N protein plays a pivot role in assembly process of viral particles as well as viral replication and transcription. The SARS-CoV N proteins expressed in the eukaryotes, such as yeast and HEK293 cells, appeared in the multiple spots on two-dimensional electrophoresis (2DE), whereas the proteins expressed in E. coli showed a single 2DE spotE These 2DE spots were further examined by Western blot and MALDI-TOF/TOF MS, and identified as the N proteins with differently apparent pI values and similar molecular mass of 50 kDa. In the light of the observations and other evidences, a hypothesis was postulated that the SARS-CoV N protein could be phosphorylated in eukaryotes. To locate the plausible regions of phosphorylation in the N protein, two truncated N proteins were generated in E. coli and treated with PKC[alpha]. The two truncated N proteins after incubation of PKC[alpha] exhibited the differently electrophoretic behaviors on 2DE, suggesting that the region of 1-256 aa in the N protein was the possible target for PKC[alpha] phosphorylation. Moreover, the SARS-CoV N protein expressed in yeast were partially digested with trypsin and carefully analyzed by MALDI-TOF/TOF MS. In contrast to the completely tryptic digestion, these partially digested fragments generated two new peptide mass signals with neutral loss, and MS/MS analysis revealed two phosphorylated peptides located at the "dense serine" island in the N protein with amino acid sequences, GFYAEGSRGGSQASSRSSSR and GNSGNSTPGSSRGNSPARMASGGGK. With the PKC[alpha] phosphorylation treatment and the partially tryptic digestion, the N protein expressed in E. coli released the same peptides as observed in yeast cells. Thus, this investigation provided the preliminary data to determine the phosphorylation sites in the SARS-CoV N protein, and

  14. Replication of murine coronavirus requires multiple cysteines in the endodomain of spike protein

    SciTech Connect

    Yang, Jinhua; Lv, Jun; Wang, Yuyan; Gao, Shuang; Yao, Qianqian; Qu, Di; Ye, Rong

    2012-06-05

    A conserved cysteine-rich motif located between the transmembrane domain and the endodomain is essential for membrane fusion and assembly of coronavirus spike (S) protein. Here, we proved that three cysteines within the motif, but not dependent on position, are minimally required for the survival of the recombinant mouse hepatitis virus. When the carboxy termini with these mutated motifs of S proteins were respectively introduced into a heterogeneous protein, both incorporation into lipid rafts and S-palmitoylation of these recombinant proteins showed a similar quantity requirement to cysteine residues. Meanwhile, the redistribution of these proteins on cellular surface indicated that the absence of the positively charged rather than cysteine residues in the motif might lead the dramatic reduction in syncytial formation of some mutants with the deleted motifs. These results suggest that multiple cysteine as well as charged residues concurrently improves the membrane-associated functions of S protein in viral replication and cytopathogenesis.

  15. Proteolytic Activation of the Porcine Epidemic Diarrhea Coronavirus Spike Fusion Protein by Trypsin in Cell Culture

    PubMed Central

    Wicht, Oliver; Li, Wentao; Willems, Lione; Meuleman, Tom J.; Wubbolts, Richard W.; van Kuppeveld, Frank J. M.; Rottier, Peter J. M.

    2014-01-01

    ABSTRACT Isolation of porcine epidemic diarrhea coronavirus (PEDV) from clinical material in cell culture requires supplementation of trypsin. This may relate to the confinement of PEDV natural infection to the protease-rich small intestine of pigs. Our study focused on the role of protease activity on infection by investigating the spike protein of a PEDV isolate (wtPEDV) using a reverse genetics system based on the trypsin-independent cell culture-adapted strain DR13 (caPEDV). We demonstrate that trypsin acts on the wtPEDV spike protein after receptor binding. We mapped the genetic determinant for trypsin-dependent cell entry to the N-terminal region of the fusion subunit of this class I fusion protein, revealing a conserved arginine just upstream of the putative fusion peptide as the potential cleavage site. Whereas coronaviruses are typically processed by endogenous proteases of the producer or target cell, PEDV S protein activation strictly required supplementation of a protease, enabling us to study mechanistic details of proteolytic processing. IMPORTANCE Recurring PEDV epidemics constitute a serious animal health threat and an economic burden, particularly in Asia but, as of recently, also on the North-American subcontinent. Understanding the biology of PEDV is critical for combatting the infection. Here, we provide new insight into the protease-dependent cell entry of PEDV. PMID:24807723

  16. Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture.

    PubMed

    Wicht, Oliver; Li, Wentao; Willems, Lione; Meuleman, Tom J; Wubbolts, Richard W; van Kuppeveld, Frank J M; Rottier, Peter J M; Bosch, Berend Jan

    2014-07-01

    Isolation of porcine epidemic diarrhea coronavirus (PEDV) from clinical material in cell culture requires supplementation of trypsin. This may relate to the confinement of PEDV natural infection to the protease-rich small intestine of pigs. Our study focused on the role of protease activity on infection by investigating the spike protein of a PEDV isolate (wtPEDV) using a reverse genetics system based on the trypsin-independent cell culture-adapted strain DR13 (caPEDV). We demonstrate that trypsin acts on the wtPEDV spike protein after receptor binding. We mapped the genetic determinant for trypsin-dependent cell entry to the N-terminal region of the fusion subunit of this class I fusion protein, revealing a conserved arginine just upstream of the putative fusion peptide as the potential cleavage site. Whereas coronaviruses are typically processed by endogenous proteases of the producer or target cell, PEDV S protein activation strictly required supplementation of a protease, enabling us to study mechanistic details of proteolytic processing. Importance: Recurring PEDV epidemics constitute a serious animal health threat and an economic burden, particularly in Asia but, as of recently, also on the North-American subcontinent. Understanding the biology of PEDV is critical for combatting the infection. Here, we provide new insight into the protease-dependent cell entry of PEDV. PMID:24807723

  17. Genome-Wide Screen Reveals Valosin-Containing Protein Requirement for Coronavirus Exit from Endosomes

    PubMed Central

    Wong, Hui Hui; Kumar, Pankaj; Tay, Felicia Pei Ling; Moreau, Dimitri

    2015-01-01

    ABSTRACT Coronaviruses are RNA viruses with a large zoonotic reservoir and propensity for host switching, representing a real threat for public health, as evidenced by severe acute respiratory syndrome (SARS) and the emerging Middle East respiratory syndrome (MERS). Cellular factors required for their replication are poorly understood. Using genome-wide small interfering RNA (siRNA) screening, we identified 83 novel genes supporting infectious bronchitis virus (IBV) replication in human cells. Thirty of these hits can be placed in a network of interactions with viral proteins and are involved in RNA splicing, membrane trafficking, and ubiquitin conjugation. In addition, our screen reveals an unexpected role for valosin-containing protein (VCP/p97) in early steps of infection. Loss of VCP inhibits a previously uncharacterized degradation of the nucleocapsid N protein. This inhibition derives from virus accumulation in early endosomes, suggesting a role for VCP in the maturation of virus-loaded endosomes. The several host factors identified in this study may provide avenues for targeted therapeutics. IMPORTANCE Coronaviruses are RNA viruses representing a real threat for public health, as evidenced by SARS and the emerging MERS. However, cellular factors required for their replication are poorly understood. Using genome-wide siRNA screening, we identified novel genes supporting infectious bronchitis virus (IBV) replication in human cells. The several host factors identified in this study may provide directions for future research on targeted therapeutics. PMID:26311884

  18. Incorporation of Spike and Membrane Glycoproteins into Coronavirus Virions

    PubMed Central

    Ujike, Makoto; Taguchi, Fumihiro

    2015-01-01

    The envelopes of coronaviruses (CoVs) contain primarily three proteins; the two major glycoproteins spike (S) and membrane (M), and envelope (E), a non-glycosylated protein. Unlike other enveloped viruses, CoVs bud and assemble at the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC). For efficient virion assembly, these proteins must be targeted to the budding site and to interact with each other or the ribonucleoprotein. Thus, the efficient incorporation of viral envelope proteins into CoV virions depends on protein trafficking and protein–protein interactions near the ERGIC. The goal of this review is to summarize recent findings on the mechanism of incorporation of the M and S glycoproteins into the CoV virion, focusing on protein trafficking and protein–protein interactions. PMID:25855243

  19. Genotyping bovine coronaviruses.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine coronaviruses (BoCV) are enveloped, single-stranded, positive-sense RNA viruses of the Coronaviridae family. Infection is associated with enteritis and pneumonia in calves and Winter Dysentery in adult cattle. Strains, isolated more than 50 years ago, are used in vaccines and as laboratory ...

  20. The crystal structure of ORF-9b, a lipid binding protein from the SARS coronavirus.

    PubMed

    Meier, Christoph; Aricescu, A Radu; Assenberg, Rene; Aplin, Robin T; Gilbert, Robert J C; Grimes, Jonathan M; Stuart, David I

    2006-07-01

    To achieve the greatest output from their limited genomes, viruses frequently make use of alternative open reading frames, in which translation is initiated from a start codon within an existing gene and, being out of frame, gives rise to a distinct protein product. These alternative protein products are, as yet, poorly characterized structurally. Here we report the crystal structure of ORF-9b, an alternative open reading frame within the nucleocapsid (N) gene from the SARS coronavirus. The protein has a novel fold, a dimeric tent-like beta structure with an amphipathic surface, and a central hydrophobic cavity that binds lipid molecules. This cavity is likely to be involved in membrane attachment and, in mammalian cells, ORF-9b associates with intracellular vesicles, consistent with a role in the assembly of the virion. Analysis of ORF-9b and other overlapping genes suggests that they provide snapshots of the early evolution of novel protein folds. PMID:16843897

  1. Use of recombinant nucleocapsid proteins for serological diagnosis offeline coronavirus infection by three immunochromatographic tests.

    PubMed

    Takano, Tomomi; Ishihara, Yuka; Matsuoka, Masafumi; Yokota, Shoko; Matsuoka-Kobayashi, Yukie; Doki, Tomoyoshi; Hohdatsu, Tsutomu

    2014-02-01

    Three types of immunochromatographic assays (ICAs) were designed to detect anti-feline coronavirus (FCoV) antibodies. Recombinant FCoV nucleocapsid protein (rNP) was used as a conjugate or test line in all 3 ICA kits (CJIgG/TNP, CJNP/TNP, and CJNP/TPA). All three ICA kits were capable of detecting anti-FCoV antibodies; however, non-specific positive reactions of anti-FCoV antibody-negative plasma samples with the test line were observed in 2 ICA kits (CJIgG/TNP and CJNP/TNP), in which rNP was used as the test line. On the other hand, the specific detection of anti-FCoV antibodies was possible in all plasma, serum, whole blood, and ascitic fluid samples using the ICA kit with protein A blotted as the test line (CJNP/TPA). In addition, the specificity and sensitivity of ICA (CJNP/TPA) were equivalent to those of the reference ELISA. The development of simple antibody test methods using the principle of ICA (CJNP/TPA) for other coronavirus and feline viral infections is expected in the future. PMID:24516876

  2. Use of recombinant nucleocapsid proteins for serological diagnosis of Feline coronavirus infection by three immunochromatographic tests.

    PubMed

    Takano, Tomomi; Ishihara, Yuka; Matsuoka, Masafumi; Yokota, Shoko; Matsuoka-Kobayashi, Yukie; Doki, Tomoyoshi; Hohdatsu, Tsutomu

    2013-10-26

    Three types of immunochromatographic assays (ICAs) were designed to detect anti-feline coronavirus (FCoV) antibodies. Recombinant FCoV nucleocapsid protein (rNP) was used as a conjugate or test line in all 3 ICA kits (CJIgG/TNP, CJNP/TNP, and CJNP/TPA). All three ICA kits were capable of detecting anti-FCoV antibodies; however, non-specific positive reactions of anti-FCoV antibody-negative plasma samples with the test line were observed in 2 ICA kits (CJIgG/TNP and CJNP/TNP), in which rNP was used as the test line. On the other hand, the specific detection of anti-FCoV antibodies was possible in all plasma, serum, whole blood, and ascitic fluid samples using the ICA kit with protein A blotted as the test line (CJNP/TPA). In addition, the specificity and sensitivity of ICA (CJNP/TPA) were equivalent to those of the reference ELISA. The development of simple antibody test methods using the principle of ICA (CJNP/TPA) for other coronavirus and feline viral infections is expected in the future. PMID:24513291

  3. Coronavirus Infections

    MedlinePlus

    Coronaviruses are common viruses that most people get some time in their life. They are common throughout the world, and they can infect people and animals. Several different coronaviruses can infect people ...

  4. A Coronavirus E Protein Is Present in Two Distinct Pools with Different Effects on Assembly and the Secretory Pathway

    PubMed Central

    Westerbeck, Jason W.

    2015-01-01

    ABSTRACT Coronaviruses (CoVs) assemble by budding into the lumen of the early Golgi complex prior to exocytosis. The small CoV envelope (E) protein plays roles in assembly, virion release, and pathogenesis. CoV E has a single hydrophobic domain (HD), is targeted to Golgi complex membranes, and has cation channel activity in vitro. However, the precise functions of the CoV E protein during infection are still enigmatic. Structural data for the severe acute respiratory syndrome (SARS)-CoV E protein suggest that it assembles into a homopentamer. Specific residues in the HD regulate the ion-conducting pore formed by SARS-CoV E in artificial bilayers and the pathogenicity of the virus during infection. The E protein from the avian infectious bronchitis virus (IBV) has dramatic effects on the secretory system which require residues in the HD. Here, we use the known structural data from SARS-CoV E to infer the residues important for ion channel activity and the oligomerization of IBV E. We present biochemical data for the formation of two distinct oligomeric pools of IBV E in transfected and infected cells and the residues required for their formation. A high-order oligomer of IBV E is required for the production of virus-like particles (VLPs), implicating this form of the protein in virion assembly. Additionally, disruption of the secretory pathway by IBV E correlates with a form that is likely monomeric, suggesting that the effects on the secretory pathway are independent of E ion channel activity. IMPORTANCE CoVs are important human pathogens with significant zoonotic potential, as demonstrated by the emergence of SARS-CoV and Middle East respiratory syndrome (MERS)-CoV. Progress has been made toward identifying potential vaccine candidates in mouse models of CoV infection, including the use of attenuated viruses that lack the CoV E protein or express E-protein mutants. However, no approved vaccines or antiviral therapeutics exist. We previously reported that the

  5. Expression and purification of SARS coronavirus proteins using SUMO-fusions.

    PubMed

    Zuo, Xun; Mattern, Michael R; Tan, Robin; Li, Shuisen; Hall, John; Sterner, David E; Shoo, Joshua; Tran, Hiep; Lim, Peter; Sarafianos, Stefan G; Kazi, Lubna; Navas-Martin, Sonia; Weiss, Susan R; Butt, Tauseef R

    2005-07-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) proteins belong to a large group of proteins that is difficult to express in traditional expression systems. The ability to express and purify SARS-CoV proteins in large quantities is critical for basic research and for development of pharmaceutical agents. The work reported here demonstrates: (1) fusion of SUMO (small ubiquitin-related modifier), a 100 amino acid polypeptide, to the N-termini of SARS-CoV proteins dramatically enhances expression in Escherichia coli cells and (2) 6x His-tagged SUMO-fusions facilitate rapid purification of the viral proteins on a large scale. We have exploited the natural chaperoning properties of SUMO to develop an expression system suitable for proteins that cannot be expressed by traditional methodologies. A unique feature of the system is the SUMO tag, which enhances expression, facilitates purification, and can be efficiently cleaved by a SUMO-specific protease to generate native protein with a desired N-terminus. We have purified various SARS-CoV proteins under either native or denaturing conditions. These purified proteins have been used to generate highly specific polyclonal antibodies. Our study suggests that the SUMO-fusion technology will be useful for enhancing expression and purification of the viral proteins for structural and functional studies as well as for therapeutic uses. PMID:15939295

  6. Coronavirus JHM: Cell-Free Synthesis of Structural Protein p60

    PubMed Central

    Siddell, Stuart G.; Wege, Helmut; Barthel, Andrea; ter Meulen, Volker

    1980-01-01

    Sac(-) cells infected with murine coronavirus strain JHM shut off host cell protein synthesis and synthesized polypeptides with molecular weights of 150,000, 60,000, and 23,000. The 60,000- and 23,000-molecular-weight polypeptides comigrated with virion structural proteins p60 and p23, and the 60,000-molecular-weight protein was identified as p60 by tryptic peptide fingerprinting. Polyadenylate-containing RNA [poly(A) RNA] extracted from the cytoplasm of infected cells directed the synthesis of both 60,000- and 23,000-molecular-weight polypeptides in messenger-dependent cell-free systems derived from mouse L-cells and rabbit reticulocytes. The reticulocyte system also synthesized a 120,000-molecular-weight polypeptide that was specifically immunoprecipitated by antiserum raised against JHM virions. The identity of the 60,000- and 23,000-molecular-weight in vitro products was established by comigration with virion proteins, immunoprecipitation, and in the case of p60, tryptic peptide fingerprinting. The cytoplasmic poly(A) RNAs which encoded p60 and p23 sedimented in sucroseformamide gradients at 17S and 19S, respectively, and were clearly separable. These RNAs were among the major poly(A) RNA species synthesized in the cytoplasm of actinomycin D-treated cells late in infection, and the in vitro translation of size-fractionated RNA released from polysomes confirmed that they represent physiological mRNA's. These results suggest that the expression of the coronavirus JHM genome involves more than one subgenomic mRNA. Images PMID:7365865

  7. SARS coronavirus protein 7a interacts with human Ap4A-hydrolase

    PubMed Central

    2010-01-01

    The SARS coronavirus (SARS-CoV) open reading frame 7a (ORF 7a) encodes a 122 amino acid accessory protein. It has no significant sequence homology with any other known proteins. The 7a protein is present in the virus particle and has been shown to interact with several host proteins; thereby implicating it as being involved in several pathogenic processes including apoptosis, inhibition of cellular protein synthesis, and activation of p38 mitogen activated protein kinase. In this study we present data demonstrating that the SARS-CoV 7a protein interacts with human Ap4A-hydrolase (asymmetrical diadenosine tetraphosphate hydrolase, EC 3.6.1.17). Ap4A-hydrolase is responsible for metabolizing the "allarmone" nucleotide Ap4A and therefore likely involved in regulation of cell proliferation, DNA replication, RNA processing, apoptosis and DNA repair. The interaction between 7a and Ap4A-hydrolase was identified using yeast two-hybrid screening. The interaction was confirmed by co-immunoprecipitation from cultured human cells transiently expressing V5-His tagged 7a and HA tagged Ap4A-hydrolase. Human tissue culture cells transiently expressing 7a and Ap4A-hydrolase tagged with EGFP and Ds-Red2 respectively show these proteins co-localize in the cytoplasm. PMID:20144233

  8. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities.

    PubMed

    Subissi, Lorenzo; Posthuma, Clara C; Collet, Axelle; Zevenhoven-Dobbe, Jessika C; Gorbalenya, Alexander E; Decroly, Etienne; Snijder, Eric J; Canard, Bruno; Imbert, Isabelle

    2014-09-16

    In addition to members causing milder human infections, the Coronaviridae family includes potentially lethal zoonotic agents causing severe acute respiratory syndrome (SARS) and the recently emerged Middle East respiratory syndrome. The ∼30-kb positive-stranded RNA genome of coronaviruses encodes a replication/transcription machinery that is unusually complex and composed of 16 nonstructural proteins (nsps). SARS-CoV nsp12, the canonical RNA-dependent RNA polymerase (RdRp), exhibits poorly processive RNA synthesis in vitro, at odds with the efficient replication of a very large RNA genome in vivo. Here, we report that SARS-CoV nsp7 and nsp8 activate and confer processivity to the RNA-synthesizing activity of nsp12. Using biochemical assays and reverse genetics, the importance of conserved nsp7 and nsp8 residues was probed. Whereas several nsp7 mutations affected virus replication to a limited extent, the replacement of two nsp8 residues (P183 and R190) essential for interaction with nsp12 and a third (K58) critical for the interaction of the polymerase complex with RNA were all lethal to the virus. Without a loss of processivity, the nsp7/nsp8/nsp12 complex can associate with nsp14, a bifunctional enzyme bearing 3'-5' exoribonuclease and RNA cap N7-guanine methyltransferase activities involved in replication fidelity and 5'-RNA capping, respectively. The identification of this tripartite polymerase complex that in turn associates with the nsp14 proofreading enzyme sheds light on how coronaviruses assemble an RNA-synthesizing machinery to replicate the largest known RNA genomes. This protein complex is a fascinating example of the functional integration of RNA polymerase, capping, and proofreading activities. PMID:25197083

  9. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities

    PubMed Central

    Subissi, Lorenzo; Posthuma, Clara C.; Collet, Axelle; Zevenhoven-Dobbe, Jessika C.; Gorbalenya, Alexander E.; Decroly, Etienne; Snijder, Eric J.; Canard, Bruno; Imbert, Isabelle

    2014-01-01

    In addition to members causing milder human infections, the Coronaviridae family includes potentially lethal zoonotic agents causing severe acute respiratory syndrome (SARS) and the recently emerged Middle East respiratory syndrome. The ∼30-kb positive-stranded RNA genome of coronaviruses encodes a replication/transcription machinery that is unusually complex and composed of 16 nonstructural proteins (nsps). SARS-CoV nsp12, the canonical RNA-dependent RNA polymerase (RdRp), exhibits poorly processive RNA synthesis in vitro, at odds with the efficient replication of a very large RNA genome in vivo. Here, we report that SARS-CoV nsp7 and nsp8 activate and confer processivity to the RNA-synthesizing activity of nsp12. Using biochemical assays and reverse genetics, the importance of conserved nsp7 and nsp8 residues was probed. Whereas several nsp7 mutations affected virus replication to a limited extent, the replacement of two nsp8 residues (P183 and R190) essential for interaction with nsp12 and a third (K58) critical for the interaction of the polymerase complex with RNA were all lethal to the virus. Without a loss of processivity, the nsp7/nsp8/nsp12 complex can associate with nsp14, a bifunctional enzyme bearing 3′-5′ exoribonuclease and RNA cap N7-guanine methyltransferase activities involved in replication fidelity and 5′-RNA capping, respectively. The identification of this tripartite polymerase complex that in turn associates with the nsp14 proofreading enzyme sheds light on how coronaviruses assemble an RNA-synthesizing machinery to replicate the largest known RNA genomes. This protein complex is a fascinating example of the functional integration of RNA polymerase, capping, and proofreading activities. PMID:25197083

  10. Absence of E protein arrests transmissible gastroenteritis coronavirus maturation in the secretory pathway

    SciTech Connect

    Ortego, Javier; Ceriani, Juan E.; Patino, Cristina; Plana, Juan; Enjuanes, Luis

    2007-11-25

    A recombinant transmissible gastroenteritis coronavirus (rTGEV) in which E gene was deleted (rTGEV-{delta}E) has been engineered. This deletion mutant only grows in cells expressing E protein (E{sup +} cells) indicating that E was an essential gene for TGEV replication. Electron microscopy studies of rTGEV-{delta}E infected BHK-pAPN-E{sup -} cells showed that only immature intracellular virions were assembled. These virions were non-infectious and not secreted to the extracellular medium in BHK-pAPN-E{sup -} cells. RNA and protein composition analysis by RNase-gold and immunoelectron microscopy showed that rTGEV-{delta}E virions contained RNA and also all the structural TGEV proteins, except the deleted E protein. Nevertheless, full virion maturation was blocked. Studies of the rTGEV-{delta}E subcellular localization by confocal and immunoelectron microscopy in infected E{sup -} cells showed that in the absence of E protein virus trafficking was arrested in the intermediate compartment. Therefore, the absence of E protein in TGEV resulted in two actions, a blockade of virus trafficking in the membranes of the secretory pathway, and prevention of full virus maturation.

  11. Suppression of Host Gene Expression by nsp1 Proteins of Group 2 Bat Coronaviruses

    PubMed Central

    Tohya, Yukinobu; Narayanan, Krishna; Kamitani, Wataru; Huang, Cheng; Lokugamage, Kumari; Makino, Shinji

    2009-01-01

    nsp1 protein of severe acute respiratory syndrome coronavirus (SARS-CoV), a group 2b CoV, suppresses host gene expression by promoting host mRNA degradation and translation inhibition. The present study analyzed the activities of nsp1 proteins from the group 2 bat CoV strains Rm1, 133, and HKU9-1, belonging to groups 2b, 2c, and 2d, respectively. The host mRNA degradation and translational suppression activities of nsp1 of SARS-CoV and Rm1 nsp1 were similar and stronger than the activities of the nsp1 proteins of 133 and HKU9-1. Rm1 nsp1 expression in trans strongly inhibited the induction of type I interferon (IFN-I) and IFN-stimulated genes in cells infected with an IFN-inducing SARS-CoV mutant, while 133 and HKU9-1 nsp1 proteins had relatively moderate IFN-inhibitory activities. The results of our studies suggested a conserved function among nsp1 proteins of SARS-CoV and group 2 bat CoVs. PMID:19264783

  12. 3C protein of feline coronavirus inhibits viral replication independently of the autophagy pathway.

    PubMed

    Hsieh, Li-En; Huang, Wei-Pang; Tang, Da-Jay; Wang, Ying-Ting; Chen, Ching-Tang; Chueh, Ling-Ling

    2013-12-01

    Feline coronavirus (FCoV) can cause either asymptomatic enteric infection or fatal peritonitis in cats. Although the mutation of FCoV accessory gene 3c has been suggested to be related to the occurrence of feline infectious peritonitis (FIP), how the 3C protein is involved in this phenomenon remains unknown. To investigate the role of the 3C protein, a full-length 3c gene was transiently expressed and the cytoplasmic distribution of the protein was found to be primarily in the perinuclear region. Using 3c-stable expression cells, the replication of a 3c-defective FCoV strain was titrated and a significant decrease in replication (p<0.05) was observed. The mechanism underlying the decreased FIPV replication caused by the 3C protein was further investigated; neither the induction nor inhibition of autophagy rescued the viral replication. Taken together, our data suggest that the 3C protein might have a virulence-suppressing effect in FCoV-infected cats. Deletion of the 3c gene could therefore cause more efficient viral replication, which leads to a fatal infection. PMID:24050534

  13. Expression, purification and characterization of recombinant severe acute respiratory syndrome coronavirus non-structural protein 1

    PubMed Central

    Brucz, Kimberly; Miknis, Zachary J.; Schultz, L. Wayne; Umland, Timothy C.

    2007-01-01

    The coronavirus (CoV) responsible for severe acute respiratory syndrome (SARS), SARS-CoV, encodes two large polyproteins (pp1a and pp1ab) that are processed by two viral proteases to yield mature non-structural proteins (nsps). Many of these nsps have essential roles in viral replication, but several have no assigned function and possess amino acid sequences that are unique to the CoV family. One such protein is SARS-CoV nsp1, which is processed from the N-terminus of both pp1a and pp1ab. The mature SARS-CoV protein is present in cells several hours post-infection and co-localizes to the viral replication complex, but its function in the viral life cycle remains unknown. Furthermore, nsp1 sequences are highly divergent across the CoV family, and it has been suggested that this is due to nsp1 possessing a function specific to viral interactions with its host cell or acting as a host specific virulence factor. In order to initiate structural and biophysical studies of SARS-CoV nsp1, a recombinant expression system and a purification protocol have been developed, yielding milligram quantities of highly purified SARS-CoV nsp1. The purified protein was characterized using circular dichroism, size exclusion chromatography, and multi-angle light scattering. PMID:17187987

  14. First genome sequences of buffalo coronavirus from water buffaloes in Bangladesh.

    PubMed

    Lau, S K P; Tsang, A K L; Shakeel Ahmed, S; Mahbub Alam, M; Ahmed, Z; Wong, P-C; Yuen, K-Y; Woo, P C Y

    2016-05-01

    We report the complete genome sequences of a buffalo coronavirus (BufCoV HKU26) detected from the faecal samples of two domestic water buffaloes (Bubalus bubalis) in Bangladesh. They possessed 98-99% nucleotide identities to bovine coronavirus (BCoV) genomes, supporting BufCoV HKU26 as a member of Betacoronavirus 1. Nevertheless, BufCoV HKU26 possessed distinct accessory proteins between spike and envelope compared to BCoV. Sugar-binding residues in the N-terminal domain of S protein in BCoV are conserved in BufCoV HKU26. PMID:27274850

  15. A facile inhibitor screening of SARS coronavirus N protein using nanoparticle-based RNA oligonucleotide

    PubMed Central

    Roh, Changhyun

    2012-01-01

    Hundreds of million people worldwide have been infected with severe acute respiratory syndrome (SARS), and the rate of global death from SARS has remarkably increased. Hence, the development of efficient drug treatments for the biological effects of SARS is highly needed. We have previously shown that quantum dots (QDs)-conjugated RNA oligonucleotide is sensitive to the specific recognition of the SARS-associated coronavirus (SARS-CoV) nucleocapsid (N) protein. In this study, we found that a designed biochip could analyze inhibitors of the SARS-CoV N protein using nanoparticle-based RNA oligonucleotide. Among the polyphenolic compounds examined, (−)-catechin gallate and (−)-gallocatechin gallate demonstrated a remarkable inhibition activity on SARS-CoV N protein. (−)-catechin gallate and (−)-gallocatechin gallate attenuated the binding affinity in a concentrated manner as evidenced by QDs-conjugated RNA oligonucleotide on a designed biochip. At a concentration of 0.05 μg mL−1, (−)-catechin gallate and (−)-gallocatechin gallate showed more than 40% inhibition activity on a nanoparticle-based RNA oligonucleotide biochip system. PMID:22619553

  16. Different evolutionary patterns of classical swine fever virus envelope proteins.

    PubMed

    Li, Yan; Yang, Zexiao; Zhang, Mingwang

    2016-03-01

    Classical swine fever virus (CSFV) is the causative agent of classical swine fever, which is a highly contagious disease of the domestic pig as well as wild boar. The proteins E(rns), E1, and E2 are components of the viral envelope membrane. They are also implicated in virus attachment and entry, replication, and (or) anti-immune response. Here, we studied the genetic variations of these envelope proteins in the evolution of CSFV. The results reveal that the envelope proteins underwent different evolutionary fates. In E(rns) and E1, but not E2, a number of amino acid sites experienced functional divergence. Furthermore, the diversification in E(rns) and E1 was generally episodic because the divergence-related changes of E1 only occurred with the separation of 2 major groups of CSFV and that of E(rns) took place with the division of 1 major group. The major divergence-related sites of E(rns) are located on one of the substrate-binding regions of the RNase domain and C-terminal extension. These functional domains have been reported to block activation of the innate immune system and attachment and entry into host cells, respectively. Our results may shed some light on the divergent roles of the envelope proteins. PMID:26911308

  17. Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein.

    PubMed

    Xia, Shuai; Liu, Qi; Wang, Qian; Sun, Zhiwu; Su, Shan; Du, Lanying; Ying, Tianlei; Lu, Lu; Jiang, Shibo

    2014-12-19

    The recent outbreak of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) infection has led to more than 800 laboratory-confirmed MERS cases with a high case fatality rate (∼35%), posing a serious threat to global public health and calling for the development of effective and safe therapeutic and prophylactic strategies to treat and prevent MERS-CoV infection. Here we discuss the most recent studies on the structure of the MERS-CoV spike protein and its role in virus binding and entry, and the development of MERS-CoV entry/fusion inhibitors targeting the S1 subunit, particularly the receptor-binding domain (RBD), and the S2 subunit, especially the HR1 region, of the MERS-CoV spike protein. We then look ahead to future applications of these viral entry/fusion inhibitors, either alone or in combination with specific and nonspecific MERS-CoV replication inhibitors, for the treatment and prevention of MERS-CoV infection. PMID:25451066

  18. Palmitoylation of SARS-CoV S protein is necessary for partitioning into detergent-resistant membranes and cell-cell fusion but not interaction with M protein

    SciTech Connect

    McBride, Corrin E.; Machamer, Carolyn E.

    2010-09-15

    Coronaviruses are enveloped RNA viruses that generally cause mild disease in humans. However, the recently emerged coronavirus that caused severe acute respiratory syndrome (SARS-CoV) is the most pathogenic human coronavirus discovered to date. The SARS-CoV spike (S) protein mediates virus entry by binding cellular receptors and inducing fusion between the viral envelope and the host cell membrane. Coronavirus S proteins are palmitoylated, which may affect function. Here, we created a non-palmitoylated SARS-CoV S protein by mutating all nine cytoplasmic cysteine residues. Palmitoylation of SARS-CoV S was required for partitioning into detergent-resistant membranes and for cell-cell fusion. Surprisingly, however, palmitoylation of S was not required for interaction with SARS-CoV M protein. This contrasts with the requirement for palmitoylation of mouse hepatitis virus S protein for interaction with M protein and may point to important differences in assembly and infectivity of these two coronaviruses.

  19. SARS Coronavirus 3b Accessory Protein Modulates Transcriptional Activity of RUNX1b

    PubMed Central

    Varshney, Bhavna; Agnihotram, Sudhakar; Tan, Yee-Joo; Baric, Ralph; Lal, Sunil K.

    2012-01-01

    Background The causative agent of severe acute respiratory syndrome, SARS coronavirus (SARS-CoV) genome encodes several unique group specific accessory proteins with unknown functions. Among them, accessory protein 3b (also known as ORF4) was lately identified as one of the viral interferon antagonist. Recently our lab uncovered a new role for 3b in upregulation of AP-1 transcriptional activity and its downstream genes. Thus, we believe that 3b might play an important role in SARS-CoV pathogenesis and therefore is of considerable interest. The current study aims at identifying novel host cellular interactors of the 3b protein. Methodology/Principal Findings In this study, using yeast two-hybrid and co-immunoprecipitation techniques, we have identified a host transcription factor RUNX1b (Runt related transcription factor, isoform b) as a novel interacting partner for SARS-CoV 3b protein. Chromatin immunoprecipitaion (ChIP) and reporter gene assays in 3b expressing jurkat cells showed recruitment of 3b on the RUNX1 binding element that led to an increase in RUNX1b transactivation potential on the IL2 promoter. Kinase assay and pharmacological inhibitor treatment implied that 3b also affect RUNX1b transcriptional activity by regulating its ERK dependent phosphorylation levels. Additionally, mRNA levels of MIP-1α, a RUNX1b target gene upregulated in SARS-CoV infected monocyte-derived dendritic cells, were found to be elevated in 3b expressing U937 monocyte cells. Conclusions/Significance These results unveil a novel interaction of SARS-CoV 3b with the host factor, RUNX1b, and speculate its physiological relevance in upregulating cytokines and chemokine levels in state of SARS virus infection. PMID:22253733

  20. Conformational States of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Ectodomain

    PubMed Central

    Li, Fang; Berardi, Marcelo; Li, Wenhui; Farzan, Michael; Dormitzer, Philip R.; Harrison, Stephen C.

    2006-01-01

    The severe acute respiratory syndrome coronavirus enters cells through the activities of a spike protein (S) which has receptor-binding (S1) and membrane fusion (S2) regions. We have characterized four sequential states of a purified recombinant S ectodomain (S-e) comprising S1 and the ectodomain of S2. They are S-e monomers, uncleaved S-e trimers, cleaved S-e trimers, and dissociated S1 monomers and S2 trimer rosettes. Lowered pH induces an irreversible transition from flexible, L-shaped S-e monomers to clove-shaped trimers. Protease cleavage of the trimer occurs at the S1-S2 boundary; an ensuing S1 dissociation leads to a major rearrangement of the trimeric S2 and to formation of rosettes likely to represent clusters of elongated, postfusion trimers of S2 associated through their fusion peptides. The states and transitions of S suggest conformational changes that mediate viral entry into cells. PMID:16809285

  1. Potential enhancement of osteoclastogenesis by severe acute respiratory syndrome coronavirus 3a/X1 protein.

    PubMed

    Obitsu, Saemi; Ahmed, Nursarat; Nishitsuji, Hironori; Hasegawa, Atsuhiko; Nakahama, Ken-ichi; Morita, Ikuo; Nishigaki, Kazuo; Hayashi, Takaya; Masuda, Takao; Kannagi, Mari

    2009-01-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) causes a lung disease with high mortality. In addition, osteonecrosis and bone abnormalities with reduced bone density have been observed in patients following recovery from SARS, which were partly but not entirely explained by the short-term use of steroids. Here, we demonstrate that human monocytes, potential precursors of osteoclasts, partly express angiotensin converting enzyme 2 (ACE2), a cellular receptor of SARS-CoV, and that expression of an accessory protein of SARS-CoV, 3a/X1, in murine macrophage cell line RAW264.7 cells, enhanced NF-kappaB activity and differentiation into osteoclast-like cells in the presence of receptor activator of NF-kappaB ligand (RANKL). Furthermore, human epithelial A549 cells expressed ACE2, and expression of 3a/X1 in these cells up-regulated TNF-alpha, which is known to accelerate osteoclastogenesis. 3a/X1 also enhanced RANKL expression in mouse stromal ST2 cells. These findings indicate that SARS-CoV 3a/X1 might promote osteoclastogenesis by direct and indirect mechanisms. PMID:19685004

  2. Thioaptamers Targeting Dengue Virus Type-2 Envelope Protein Domain III

    PubMed Central

    Gandham, Sai Hari A.; Volk, David E.; Rao, Lokesh G. L.; Neerathilingam, Muniasamy; Gorenstein, David G.

    2014-01-01

    Thioaptamers targeting the dengue-2 virus (DENV-2) envelope protein domain III (EDIII) were developed. EDIII, which contains epitopes for binding neutralizing antibodies, is the putative host-receptor binding domain and is thus an attractive target for development of vaccines, anti-viral therapeutic and diagnostic agents. Thioaptamer DENTA-1 bound to DENV-2 EDIII adjacent to a known neutralizing antibody binding site with a dissociation constant of 154 nM. PMID:25261724

  3. Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination

    PubMed Central

    Lau, Susanna K. P.; Feng, Yun; Chen, Honglin; Luk, Hayes K. H.; Yang, Wei-Hong; Li, Kenneth S. M.; Zhang, Yu-Zhen; Huang, Yi; Song, Zhi-Zhong; Chow, Wang-Ngai; Fan, Rachel Y. Y.; Ahmed, Syed Shakeel; Yeung, Hazel C.; Lam, Carol S. F.; Cai, Jian-Piao; Wong, Samson S. Y.; Chan, Jasper F. W.; Yuen, Kwok-Yung

    2015-01-01

    ABSTRACT Despite the identification of horseshoe bats as the reservoir of severe acute respiratory syndrome (SARS)-related coronaviruses (SARSr-CoVs), the origin of SARS-CoV ORF8, which contains the 29-nucleotide signature deletion among human strains, remains obscure. Although two SARS-related Rhinolophus sinicus bat CoVs (SARSr-Rs-BatCoVs) previously detected in Chinese horseshoe bats (Rhinolophus sinicus) in Yunnan, RsSHC014 and Rs3367, possessed 95% genome identities to human and civet SARSr-CoVs, their ORF8 protein exhibited only 32.2 to 33% amino acid identities to that of human/civet SARSr-CoVs. To elucidate the origin of SARS-CoV ORF8, we sampled 348 bats of various species in Yunnan, among which diverse alphacoronaviruses and betacoronaviruses, including potentially novel CoVs, were identified, with some showing potential interspecies transmission. The genomes of two betacoronaviruses, SARSr-Rf-BatCoV YNLF_31C and YNLF_34C, from greater horseshoe bats (Rhinolophus ferrumequinum), possessed 93% nucleotide identities to human/civet SARSr-CoV genomes. Although these two betacoronaviruses displayed lower similarities than SARSr-Rs-BatCoV RsSHC014 and Rs3367 in S protein to civet SARSr-CoVs, their ORF8 proteins demonstrated exceptionally high (80.4 to 81.3%) amino acid identities to that of human/civet SARSr-CoVs, compared to SARSr-BatCoVs from other horseshoe bats (23.2 to 37.3%). Potential recombination events were identified around ORF8 between SARSr-Rf-BatCoVs and SARSr-Rs-BatCoVs, leading to the generation of civet SARSr-CoVs. The expression of ORF8 subgenomic mRNA suggested that the ORF8 protein may be functional in SARSr-Rf-BatCoVs. The high Ka/Ks ratio among human SARS-CoVs compared to that among SARSr-BatCoVs supported that ORF8 is under strong positive selection during animal-to-human transmission. Molecular clock analysis using ORF1ab showed that SARSr-Rf-BatCoV YNLF_31C and YNLF_34C diverged from civet/human SARSr-CoVs in approximately 1990. SARS

  4. Inactivation of enveloped virus by laser-driven protein aggregation

    NASA Astrophysics Data System (ADS)

    Tsen, Shaw-Wei D.; Chapa, Travis; Beatty, Wandy; Tsen, Kong-Thon; Yu, Dong; Achilefu, Samuel

    2012-12-01

    Ultrafast lasers in the visible and near-infrared range have emerged as a potential new method for pathogen reduction of blood products and pharmaceuticals. However, the mechanism of enveloped virus inactivation by this method is unknown. We report the inactivation as well as the molecular and structural effects caused by visible (425 nm) femtosecond laser irradiation on murine cytomegalovirus (MCMV), an enveloped, double-stranded DNA virus. Our results show that laser irradiation (1) caused a 5-log reduction in MCMV titer, (2) did not cause significant changes to the global structure of MCMV virions including membrane and capsid, as assessed by electron microscopy, (3) produced no evidence of double-strand breaks or crosslinking in MCMV genomic DNA, and (4) caused selective aggregation of viral capsid and tegument proteins. We propose a model in which ultrafast laser irradiation induces partial unfolding of viral proteins by disrupting hydrogen bonds and/or hydrophobic interactions, leading to aggregation of closely associated viral proteins and inactivation of the virus. These results provide new insight into the inactivation of enveloped viruses by visible femtosecond lasers at the molecular level, and help pave the way for the development of a new ultrafast laser technology for pathogen reduction.

  5. Inactivation of enveloped virus by laser-driven protein aggregation.

    PubMed

    Tsen, Shaw-Wei D; Chapa, Travis; Beatty, Wandy; Tsen, Kong-Thon; Yu, Dong; Achilefu, Samuel

    2012-12-01

    Ultrafast lasers in the visible and near-infrared range have emerged as a potential new method for pathogen reduction of blood products and pharmaceuticals. However, the mechanism of enveloped virus inactivation by this method is unknown. We report the inactivation as well as the molecular and structural effects caused by visible (425 nm) femtosecond laser irradiation on murine cytomegalovirus (MCMV), an enveloped, double-stranded DNA virus. Our results show that laser irradiation (1) caused a 5-log reduction in MCMV titer, (2) did not cause significant changes to the global structure of MCMV virions including membrane and capsid, as assessed by electron microscopy, (3) produced no evidence of double-strand breaks or crosslinking in MCMV genomic DNA, and (4) caused selective aggregation of viral capsid and tegument proteins. We propose a model in which ultrafast laser irradiation induces partial unfolding of viral proteins by disrupting hydrogen bonds and/or hydrophobic interactions, leading to aggregation of closely associated viral proteins and inactivation of the virus. These results provide new insight into the inactivation of enveloped viruses by visible femtosecond lasers at the molecular level, and help pave the way for the development of a new ultrafast laser technology for pathogen reduction. PMID:23224114

  6. Coronaviruses: An Overview of Their Replication and Pathogenesis

    PubMed Central

    Fehr, Anthony R.; Perlman, Stanley

    2015-01-01

    Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, an unusually large RNA genome, and a unique replication strategy. Coronaviruses cause a variety of diseases in mammals and birds ranging from enteritis in cows and pigs and upper respiratory disease chickens to potentially lethal human respiratory infections. Here we provide a brief introduction to coronaviruses discussing their replication and pathogenicity, and current prevention and treatment strategies. We will also discuss the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the recently identified Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV). PMID:25720466

  7. Deficient incorporation of spike protein into virions contributes to the lack of infectivity following establishment of a persistent, non-productive infection in oligodendroglial cell culture by murine coronavirus

    SciTech Connect

    Liu Yin; Herbst, Werner; Cao Jianzhong; Zhang Xuming

    2011-01-05

    Infection of mouse oligodendrocytes with a recombinant mouse hepatitis virus (MHV) expressing a green fluorescence protein facilitated specific selection of virus-infected cells and subsequent establishment of persistence. Interestingly, while viral genomic RNAs persisted in infected cells over 14 subsequent passages with concomitant synthesis of viral subgenomic mRNAs and structural proteins, no infectious virus was isolated beyond passage 2. Further biochemical and electron microscopic analyses revealed that virions, while assembled, contained little spike in the envelope, indicating that lack of infectivity during persistence was likely due to deficiency in spike incorporation. This type of non-lytic, non-productive persistence in oligodendrocytes is unique among animal viruses and resembles MHV persistence previously observed in the mouse central nervous system. Thus, establishment of such a culture system that can recapitulate the in vivo phenomenon will provide a powerful approach for elucidating the mechanisms of coronavirus persistence in glial cells at the cellular and molecular levels.

  8. Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets

    PubMed Central

    Yang, Yang; Ye, Fei; Zhu, Na; Wang, Wenling; Deng, Yao; Zhao, Zhengdong; Tan, Wenjie

    2015-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel and highly pathogenic human coronavirus and has quickly spread to other countries in the Middle East, Europe, North Africa and Asia since 2012. Previous studies have shown that MERS-CoV ORF4b antagonizes the early antiviral alpha/beta interferon (IFN-α/β) response, which may significantly contribute to MERS-CoV pathogenesis; however, the underlying mechanism is poorly understood. Here, we found that ORF4b in the cytoplasm could specifically bind to TANK binding kinase 1 (TBK1) and IκB kinase epsilon (IKKε), suppress the molecular interaction between mitochondrial antiviral signaling protein (MAVS) and IKKε, and inhibit IFN regulatory factor 3 (IRF3) phosphorylation and subsequent IFN-β production. Further analysis showed that ORF4b could also inhibit IRF3 and IRF7-induced production of IFN-β, whereas deletion of the nuclear localization signal of ORF4b abrogated its ability to inhibit IRF3 and IRF7-induced production of IFN-β, but not IFN-β production induced by RIG-I, MDA5, MAVS, IKKε, and TBK-1, suggesting that ORF4b could inhibit the induction of IFN-β in both the cytoplasm and nucleus. Collectively, these results indicate that MERS-CoV ORF4b inhibits the induction of type I IFN through a direct interaction with IKKε/TBK1 in the cytoplasm, and also in the nucleus with unknown mechanism. Viruses have evolved multiple strategies to evade or thwart a host’s antiviral responses. A novel human coronavirus (HCoV), Middle East respiratory syndrome coronavirus (MERS-CoV), is distinguished from other coronaviruses by its high pathogenicity and mortality. However, virulence determinants that distinguish MERS-CoV from other HCoVs have yet to be identified. MERS-CoV ORF4b antagonizes the early antiviral response, which may contribute to MERS-CoV pathogenesis. Here, we report the identification of the interferon (IFN) antagonism mechanism of MERS-CoV ORF4b. MERS-CoV ORF4b inhibits the production

  9. The nsp2 Replicase Proteins of Murine Hepatitis Virus and Severe Acute Respiratory Syndrome Coronavirus Are Dispensable for Viral Replication

    PubMed Central

    Graham, Rachel L.; Sims, Amy C.; Brockway, Sarah M.; Baric, Ralph S.; Denison, Mark R.

    2005-01-01

    The positive-stranded RNA genome of the coronaviruses is translated from ORF1 to yield polyproteins that are proteolytically processed into intermediate and mature nonstructural proteins (nsps). Murine hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV) polyproteins incorporate 16 protein domains (nsps), with nsp1 and nsp2 being the most variable among the coronaviruses and having no experimentally confirmed or predicted functions in replication. To determine if nsp2 is essential for viral replication, MHV and SARS-CoV genome RNA was generated with deletions of the nsp2 coding sequence (MHVΔnsp2 and SARSΔnsp2, respectively). Infectious MHVΔnsp2 and SARSΔnsp2 viruses recovered from electroporated cells had 0.5 to 1 log10 reductions in peak titers in single-cycle growth assays, as well as a reduction in viral RNA synthesis that was not specific for any positive-stranded RNA species. The Δnsp2 mutant viruses lacked expression of both nsp2 and an nsp2-nsp3 precursor, but cleaved the engineered chimeric nsp1-nsp3 cleavage site as efficiently as the native nsp1-nsp2 cleavage site. Replication complexes in MHVΔnsp2-infected cells lacked nsp2 but were morphologically indistinguishable from those of wild-type MHV by immunofluorescence. nsp2 expressed in cells by stable retroviral transduction was specifically recruited to viral replication complexes upon infection with MHVΔnsp2. These results demonstrate that while nsp2 of MHV and SARS-CoV is dispensable for viral replication in cell culture, deletion of the nsp2 coding sequence attenuates viral growth and RNA synthesis. These findings also provide a system for the study of determinants of nsp targeting and function. PMID:16227261

  10. The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication.

    PubMed

    Graham, Rachel L; Sims, Amy C; Brockway, Sarah M; Baric, Ralph S; Denison, Mark R

    2005-11-01

    The positive-stranded RNA genome of the coronaviruses is translated from ORF1 to yield polyproteins that are proteolytically processed into intermediate and mature nonstructural proteins (nsps). Murine hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV) polyproteins incorporate 16 protein domains (nsps), with nsp1 and nsp2 being the most variable among the coronaviruses and having no experimentally confirmed or predicted functions in replication. To determine if nsp2 is essential for viral replication, MHV and SARS-CoV genome RNA was generated with deletions of the nsp2 coding sequence (MHVDeltansp2 and SARSDeltansp2, respectively). Infectious MHVDeltansp2 and SARSDeltansp2 viruses recovered from electroporated cells had 0.5 to 1 log10 reductions in peak titers in single-cycle growth assays, as well as a reduction in viral RNA synthesis that was not specific for any positive-stranded RNA species. The Deltansp2 mutant viruses lacked expression of both nsp2 and an nsp2-nsp3 precursor, but cleaved the engineered chimeric nsp1-nsp3 cleavage site as efficiently as the native nsp1-nsp2 cleavage site. Replication complexes in MHVDeltansp2-infected cells lacked nsp2 but were morphologically indistinguishable from those of wild-type MHV by immunofluorescence. nsp2 expressed in cells by stable retroviral transduction was specifically recruited to viral replication complexes upon infection with MHVDeltansp2. These results demonstrate that while nsp2 of MHV and SARS-CoV is dispensable for viral replication in cell culture, deletion of the nsp2 coding sequence attenuates viral growth and RNA synthesis. These findings also provide a system for the study of determinants of nsp targeting and function. PMID:16227261

  11. Actin Interacts with Dengue Virus 2 and 4 Envelope Proteins

    PubMed Central

    Jitoboam, Kunlakanya; Phaonakrop, Narumon; Libsittikul, Sirikwan; Thepparit, Chutima; Roytrakul, Sittiruk; Smith, Duncan R.

    2016-01-01

    Dengue virus (DENV) remains a significant public health problem in many tropical and sub-tropical countries worldwide. The DENV envelope (E) protein is the major antigenic determinant and the protein that mediates receptor binding and endosomal fusion. In contrast to some other DENV proteins, relatively few cellular interacting proteins have been identified. To address this issue a co-immuoprecipitation strategy was employed. The predominant co-immunoprecipitating proteins identified were actin and actin related proteins, however the results suggested that actin was the only bona fide interacting partner. Actin was shown to interact with the E protein of DENV 2 and 4, and the interaction between actin and DENV E protein was shown to occur in a truncated DENV consisting of only domains I and II. Actin was shown to decrease during infection, but this was not associated with a decrease in gene transcription. Actin-related proteins also showed a decrease in expression during infection that was not transcriptionally regulated. Cytoskeletal reorganization was not observed during infection, suggesting that the interaction between actin and E protein has a cell type specific component. PMID:27010925

  12. A key role for the carboxy-terminal tail of the murine coronavirus nucleocapsid protein in coordination of genome packaging.

    PubMed

    Kuo, Lili; Koetzner, Cheri A; Masters, Paul S

    2016-07-01

    The prototype coronavirus mouse hepatitis virus (MHV) exhibits highly selective packaging of its genomic positive-stranded RNA into assembled virions, despite the presence in infected cells of a large excess of subgenomic viral mRNAs. One component of this selectivity is the MHV packaging signal (PS), an RNA structure found only in genomic RNA and not in subgenomic RNAs. It was previously shown that a major determinant of PS recognition is the second of the two RNA-binding domains of the viral nucleocapsid (N) protein. We have now found that PS recognition additionally depends upon a segment of the carboxy-terminal tail (domain N3) of the N protein. Since domain N3 is also the region of N protein that interacts with the membrane (M) protein, this finding suggests a mechanism by which selective genome packaging is accomplished, through the coupling of genome encapsidation to virion assembly. PMID:27105451

  13. Protein folding in the cell envelope of Escherichia coli.

    PubMed

    De Geyter, Jozefien; Tsirigotaki, Alexandra; Orfanoudaki, Georgia; Zorzini, Valentina; Economou, Anastassios; Karamanou, Spyridoula

    2016-01-01

    While the entire proteome is synthesized on cytoplasmic ribosomes, almost half associates with, localizes in or crosses the bacterial cell envelope. In Escherichia coli a variety of mechanisms are important for taking these polypeptides into or across the plasma membrane, maintaining them in soluble form, trafficking them to their correct cell envelope locations and then folding them into the right structures. The fidelity of these processes must be maintained under various environmental conditions including during stress; if this fails, proteases are called in to degrade mislocalized or aggregated proteins. Various soluble, diffusible chaperones (acting as holdases, foldases or pilotins) and folding catalysts are also utilized to restore proteostasis. These responses can be general, dealing with multiple polypeptides, with functional overlaps and operating within redundant networks. Other chaperones are specialized factors, dealing only with a few exported proteins. Several complex machineries have evolved to deal with binding to, integration in and crossing of the outer membrane. This complex protein network is responsible for fundamental cellular processes such as cell wall biogenesis; cell division; the export, uptake and degradation of molecules; and resistance against exogenous toxic factors. The underlying processes, contributing to our fundamental understanding of proteostasis, are a treasure trove for the development of novel antibiotics, biopharmaceuticals and vaccines. PMID:27573113

  14. Proteolytic activation of the SARS-coronavirus spike protein: Cutting enzymes at the cutting edge of antiviral research

    PubMed Central

    Simmons, Graham; Zmora, Pawel; Gierer, Stefanie; Heurich, Adeline; Pöhlmann, Stefan

    2013-01-01

    The severe acute respiratory syndrome (SARS) pandemic revealed that zoonotic transmission of animal coronaviruses (CoV) to humans poses a significant threat to public health and warrants surveillance and the development of countermeasures. The activity of host cell proteases, which cleave and activate the SARS-CoV spike (S) protein, is essential for viral infectivity and constitutes a target for intervention. However, the identities of the proteases involved have been unclear. Pioneer studies identified cathepsins and type II transmembrane serine proteases as cellular activators of SARS-CoV and demonstrated that several emerging viruses might exploit these enzymes to promote their spread. Here, we will review the proteolytic systems hijacked by SARS-CoV for S protein activation, we will discuss their contribution to viral spread in the host and we will outline antiviral strategies targeting these enzymes. This paper forms part of a series of invited articles in Antiviral Research on “From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses.” PMID:24121034

  15. Crystal Structure of the Japanese Encephalitis Virus Envelope Protein

    SciTech Connect

    Luca, Vincent C.; AbiMansour, Jad; Nelson, Christopher A.; Fremont, Daved H.

    2012-03-13

    Japanese encephalitis virus (JEV) is the leading global cause of viral encephalitis. The JEV envelope protein (E) facilitates cellular attachment and membrane fusion and is the primary target of neutralizing antibodies. We have determined the 2.1-{angstrom} resolution crystal structure of the JEV E ectodomain refolded from bacterial inclusion bodies. The E protein possesses the three domains characteristic of flavivirus envelopes and epitope mapping of neutralizing antibodies onto the structure reveals determinants that correspond to the domain I lateral ridge, fusion loop, domain III lateral ridge, and domain I-II hinge. While monomeric in solution, JEV E assembles as an antiparallel dimer in the crystal lattice organized in a highly similar fashion as seen in cryo-electron microscopy models of mature flavivirus virions. The dimer interface, however, is remarkably small and lacks many of the domain II contacts observed in other flavivirus E homodimers. In addition, uniquely conserved histidines within the JEV serocomplex suggest that pH-mediated structural transitions may be aided by lateral interactions outside the dimer interface in the icosahedral virion. Our results suggest that variation in dimer structure and stability may significantly influence the assembly, receptor interaction, and uncoating of virions.

  16. Mutation in spike protein cleavage site and pathogenesis of feline coronavirus.

    PubMed

    Licitra, Beth N; Millet, Jean K; Regan, Andrew D; Hamilton, Brian S; Rinaldi, Vera D; Duhamel, Gerald E; Whittaker, Gary R

    2013-07-01

    Feline coronaviruses (FCoV) exist as 2 biotypes: feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV). FECV causes subclinical infections; FIPV causes feline infectious peritonitis (FIP), a systemic and fatal disease. It is thought that mutations in FECV enable infection of macrophages, causing FIP. However, the molecular basis for this biotype switch is unknown. We examined a furin cleavage site in the region between receptor-binding (S1) and fusion (S2) domains of the spike of serotype 1 FCoV. FECV sequences were compared with FIPV sequences. All FECVs had a conserved furin cleavage motif. For FIPV, there was a correlation with the disease and >1 substitution in the S1/S2 motif. Fluorogenic peptide assays confirmed that the substitutions modulate furin cleavage. We document a functionally relevant S1/S2 mutation that arises when FIP develops in a cat. These insights into FIP pathogenesis may be useful in development of diagnostic, prevention, and treatment measures against coronaviruses. PMID:23763835

  17. Mutation in Spike Protein Cleavage Site and Pathogenesis of Feline Coronavirus

    PubMed Central

    Licitra, Beth N.; Millet, Jean K.; Regan, Andrew D.; Hamilton, Brian S.; Rinaldi, Vera D.; Duhamel, Gerald E.

    2013-01-01

    Feline coronaviruses (FCoV) exist as 2 biotypes: feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV). FECV causes subclinical infections; FIPV causes feline infectious peritonitis (FIP), a systemic and fatal disease. It is thought that mutations in FECV enable infection of macrophages, causing FIP. However, the molecular basis for this biotype switch is unknown. We examined a furin cleavage site in the region between receptor-binding (S1) and fusion (S2) domains of the spike of serotype 1 FCoV. FECV sequences were compared with FIPV sequences. All FECVs had a conserved furin cleavage motif. For FIPV, there was a correlation with the disease and >1 substitution in the S1/S2 motif. Fluorogenic peptide assays confirmed that the substitutions modulate furin cleavage. We document a functionally relevant S1/S2 mutation that arises when FIP develops in a cat. These insights into FIP pathogenesis may be useful in development of diagnostic, prevention, and treatment measures against coronaviruses. PMID:23763835

  18. Nucleocytoplasmic transport of nucleocapsid proteins of enveloped RNA viruses

    PubMed Central

    Wulan, Wahyu N.; Heydet, Deborah; Walker, Erin J.; Gahan, Michelle E.; Ghildyal, Reena

    2015-01-01

    Most viruses with non-segmented single stranded RNA genomes complete their life cycle in the cytoplasm of infected cells. However, despite undergoing replication in the cytoplasm, the structural proteins of some of these RNA viruses localize to the nucleus at specific times in the virus life cycle, primarily early in infection. Limited evidence suggests that this enhances successful viral replication by interfering with or inhibiting the host antiviral response. Nucleocapsid proteins of RNA viruses have a well-established, essential cytoplasmic role in virus replication and assembly. Intriguingly, nucleocapsid proteins of some RNA viruses also localize to the nucleus/nucleolus of infected cells. Their nuclear function is less well understood although significant advances have been made in recent years. This review will focus on the nucleocapsid protein of cytoplasmic enveloped RNA viruses, including their localization to the nucleus/nucleolus and function therein. A greater understanding of the nuclear localization of nucleocapsid proteins has the potential to enhance therapeutic strategies as it can be a target for the development of live-attenuated vaccines or antiviral drugs. PMID:26082769

  19. Structural changes of envelope proteins during alphavirus fusion

    SciTech Connect

    Li, Long; Jose, Joyce; Xiang, Ye; Kuhn, Richard J.; Rossmann, Michael G.

    2010-12-08

    Alphaviruses are enveloped RNA viruses that have a diameter of about 700 {angstrom} and can be lethal human pathogens. Entry of virus into host cells by endocytosis is controlled by two envelope glycoproteins, E1 and E2. The E2-E1 heterodimers form 80 trimeric spikes on the icosahedral virus surface, 60 with quasi-three-fold symmetry and 20 coincident with the icosahedral three-fold axes arranged with T = 4 quasi-symmetry. The E1 glycoprotein has a hydrophobic fusion loop at one end and is responsible for membrane fusion. The E2 protein is responsible for receptor binding and protects the fusion loop at neutral pH. The lower pH in the endosome induces the virions to undergo an irreversible conformational change in which E2 and E1 dissociate and E1 forms homotrimers, triggering fusion of the viral membrane with the endosomal membrane and then releasing the viral genome into the cytoplasm. Here we report the structure of an alphavirus spike, crystallized at low pH, representing an intermediate in the fusion process and clarifying the maturation process. The trimer of E2-E1 in the crystal structure is similar to the spikes in the neutral pH virus except that the E2 middle region is disordered, exposing the fusion loop. The amino- and carboxy-terminal domains of E2 each form immunoglobulin-like folds, consistent with the receptor attachment properties of E2.

  20. About Coronavirus

    MedlinePlus

    ... or surfaces then touching your mouth, nose, or eyes. Also see MERS-CoV Transmission and How SARS Spreads . Q: When can I get infected? A: In the United States, people usually get infected with common human coronaviruses in the fall and winter. However, you ...

  1. Mechanisms of Oxidative Protein Folding in the Bacterial Cell Envelope

    PubMed Central

    2010-01-01

    Abstract Disulfide-bond formation is important for the correct folding of a great number of proteins that are exported to the cell envelope of bacteria. Bacterial cells have evolved elaborate systems to promote the joining of two cysteines to form a disulfide bond and to repair misoxidized proteins. In the past two decades, significant advances have occurred in our understanding of the enzyme systems (DsbA, DsbB, DsbC, DsbG, and DsbD) used by the gram-negative bacterium Escherichia coli to ensure that correct pairs of cysteines are joined during the process of protein folding. However, a number of fundamental questions about these processes remain, especially about how they occur inside the cell. In addition, recent recognition of the increasing diversity among bacteria in the disulfide bond–forming capacity and in the systems for introducing disulfide bonds into proteins is raising new questions. We review here the marked progress in this field and discuss important questions that remain for future studies. Antioxid. Redox Signal. 13, 1231–1246. PMID:20367276

  2. Structure of Yellow Fever Virus Envelope Protein Domain III

    PubMed Central

    Volk, David E.; May, Fiona J.; Gandham, Sai H. A.; Anderson, Anjenique; Von Lindern, Jana J.; Beasley, David W. C.; Barrett, Alan D. T.; Gorenstein, David G.

    2009-01-01

    The structure of recombinant domain III of the envelope protein (rED3) of yellow fever virus (YFV), containing the major neutralization site, was determined using NMR spectroscopy. The amino acid sequence and structure of the YFV-rED3 shows differences from ED3s of other mosquito-borne flaviviruses; in particular, the partially surface-exposed BC loop where methionine-304 and valine-324 were identified as being critical for the structure of the loop. Variations in the structure and surface chemistry of ED3 between flaviviruses affect neutralization sites and may affect host cell receptor interactions and play a role in the observed variations in viral pathogenesis and tissue tropism. PMID:19818466

  3. Baculoviral display of the green fluorescent protein and rubella virus envelope proteins.

    PubMed

    Mottershead, D; van der Linden, I; von Bonsdorff, C H; Keinänen, K; Oker-Blom, C

    1997-09-29

    The ability to display heterologous proteins and peptides on the surface of different types of bacteriophage has proven extremely useful in protein structure/function studies. To display such proteins in a eucaryotic environment, we have produced a vector allowing for fusion of proteins to the amino-terminus of the Autographa californica nuclear polyhedrosis virus (AcNPV) major envelope glycoprotein, gp64. Such fusion proteins incorporate into the baculoviral virion and display the FLAG epitope tag. We have further produced recombinant baculoviruses displaying the green fluorescent protein (GFP) and the rubella virus envelope proteins, E1 and E2. The incorporation of the GFPgp64, E1gp64, and E2gp64 fusion proteins into the baculovirus particle was demonstrated by western blot analysis of purified budded virus. This is the first report of the display of the GFP protein or the individual rubella virus spike proteins on the surface of an enveloped virus. Such a eucaryotic viral display system may be useful for the display of proteins dependent on glycosylation for activity and for targeting of recombinant baculoviruses to novel host cell types as a gene transfer vehicle. PMID:9325155

  4. Several Novel Nuclear Envelope Transmembrane Proteins Identified in Skeletal Muscle Have Cytoskeletal Associations*

    PubMed Central

    Wilkie, Gavin S.; Korfali, Nadia; Swanson, Selene K.; Malik, Poonam; Srsen, Vlastimil; Batrakou, Dzmitry G.; de las Heras, Jose; Zuleger, Nikolaj; Kerr, Alastair R. W.; Florens, Laurence; Schirmer, Eric C.

    2011-01-01

    Nuclear envelopes from liver and a neuroblastoma cell line have previously been analyzed by proteomics; however, most diseases associated with the nuclear envelope affect muscle. To determine whether muscle has unique nuclear envelope proteins, rat skeletal muscle nuclear envelopes were prepared and analyzed by multidimensional protein identification technology. Many novel muscle-specific proteins were identified that did not appear in previous nuclear envelope data sets. Nuclear envelope residence was confirmed for 11 of these by expression of fusion proteins and by antibody staining of muscle tissue cryosections. Moreover, transcript levels for several of the newly identified nuclear envelope transmembrane proteins increased during muscle differentiation using mouse and human in vitro model systems. Some of these proteins tracked with microtubules at the nuclear surface in interphase cells and accumulated at the base of the microtubule spindle in mitotic cells, suggesting they may associate with complexes that connect the nucleus to the cytoskeleton. The finding of tissue-specific proteins in the skeletal muscle nuclear envelope proteome argues the importance of analyzing nuclear envelopes from all tissues linked to disease and suggests that general investigation of tissue differences in organellar proteomes might yield critical insights. PMID:20876400

  5. Several novel nuclear envelope transmembrane proteins identified in skeletal muscle have cytoskeletal associations.

    PubMed

    Wilkie, Gavin S; Korfali, Nadia; Swanson, Selene K; Malik, Poonam; Srsen, Vlastimil; Batrakou, Dzmitry G; de las Heras, Jose; Zuleger, Nikolaj; Kerr, Alastair R W; Florens, Laurence; Schirmer, Eric C

    2011-01-01

    Nuclear envelopes from liver and a neuroblastoma cell line have previously been analyzed by proteomics; however, most diseases associated with the nuclear envelope affect muscle. To determine whether muscle has unique nuclear envelope proteins, rat skeletal muscle nuclear envelopes were prepared and analyzed by multidimensional protein identification technology. Many novel muscle-specific proteins were identified that did not appear in previous nuclear envelope data sets. Nuclear envelope residence was confirmed for 11 of these by expression of fusion proteins and by antibody staining of muscle tissue cryosections. Moreover, transcript levels for several of the newly identified nuclear envelope transmembrane proteins increased during muscle differentiation using mouse and human in vitro model systems. Some of these proteins tracked with microtubules at the nuclear surface in interphase cells and accumulated at the base of the microtubule spindle in mitotic cells, suggesting they may associate with complexes that connect the nucleus to the cytoskeleton. The finding of tissue-specific proteins in the skeletal muscle nuclear envelope proteome argues the importance of analyzing nuclear envelopes from all tissues linked to disease and suggests that general investigation of tissue differences in organellar proteomes might yield critical insights. PMID:20876400

  6. Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus.

    PubMed Central

    Krempl, C; Schultze, B; Laude, H; Herrler, G

    1997-01-01

    Enteropathogenic transmissible gastroenteritis virus (TGEV), a porcine coronavirus, is able to agglutinate erythrocytes because of sialic acid binding activity. Competitive inhibitors that may mask the sialic acid binding activity can be inactivated by sialidase treatment of virions. Here, we show that TGEV virions with efficient hemagglutinating activity were also obtained when cells were treated with sialidase prior to infection. This method was used to analyze TGEV mutants for hemagglutinating activity. Recently, mutants with strongly reduced enteropathogenicity that have point mutations or a deletion of four amino acids within residues 145 to 155 of the S protein have been described. Here, we show that in addition to their reduced pathogenicity, these mutants also have lost hemagglutinating activity. These results connect sialic acid binding activity with the enteropathogenicity of TGEV. PMID:9060696

  7. Green Fluorescent Protein-Tagged Retroviral Envelope Protein for Analysis of Virus-Cell Interactions

    PubMed Central

    Spitzer, Dirk; Dittmar, Kurt E. J.; Rohde, Manfred; Hauser, Hansjörg; Wirth, Dagmar

    2003-01-01

    Fluorescent retroviral envelope (Env) proteins were developed for direct visualization of viral particles. By fusing the enhanced green fluorescent protein (eGFP) to the N terminus of the amphotropic 4070A envelope protein, extracellular presentation of eGFP was achieved. Viruses incorporated the modified Env protein and efficiently infected cells. We used the GFP-tagged viruses for staining retrovirus receptor-positive cells, thereby circumventing indirect labeling techniques. By generating cells which conditionally expressed the GFP-tagged Env protein, we could confirm an inverse correlation between retroviral Env expression and infectivity (superinfection). eGFP-tagged virus particles are suitable for monitoring the dynamics of virus-cell interactions. PMID:12719600

  8. The expression and antigenicity of a truncated spike-nucleocapsid fusion protein of severe acute respiratory syndrome-associated coronavirus

    PubMed Central

    Mu, Feng; Niu, Dongsheng; Mu, Jingsong; He, Bo; Han, Weiguo; Fan, Baoxing; Huang, Shengyong; Qiu, Yan; You, Bo; Chen, Weijun

    2008-01-01

    Background In the absence of effective drugs, controlling SARS relies on the rapid identification of cases and appropriate management of the close contacts, or effective vaccines for SARS. Therefore, developing specific and sensitive laboratory tests for SARS as well as effective vaccines are necessary for national authorities. Results Genes encoding truncated nucleocapsid (N) and spike (S) proteins of SARSCoV were cloned into the expression vector pQE30 and fusionally expressed in Escherichia coli M15. The fusion protein was analyzed for reactivity with SARS patients' sera and with anti-sera against the two human coronaviruses HCoV 229E and HCoV OC43 by ELISA, IFA and immunoblot assays. Furthermore, to evaluate the antigen-specific humoral antibody and T-cell responses in mice, the fusion protein was injected into 6-week-old BALB/c mice and a neutralization test as well as a T-cell analysis was performed. To evaluate the antiviral efficacy of immunization, BALB/c mice were challenged intranasally with SARSCoV at day 33 post injection and viral loads were determined by fluorescent quantitative RT-PCR. Serological results showed that the diagnostic sensitivity and specificity of the truncated S-N fusion protein derived the SARS virus were > 99% (457/460) and 100.00% (650/650), respectively. Furthermore there was no cross-reactivity with other two human coronaviruses. High titers of antibodies to SRASCoV appeared in the immunized mice and the neutralization test showed that antibodies to the fusion protein could inhibit SARSCoV. The T cell proliferation showed that the fusion protein could induce an antigen-specific T-cell response. Fluorescent quantitative RT-PCR showed that BALB/c mice challenged intranasally with SARSCoV at day 33 post injection were completely protected from virus replication. Conclusion The truncated S-N fusion protein is a suitable immunodiagnostic antigen and vaccine candidate. PMID:19038059

  9. A synthetic consensus anti–spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates

    PubMed Central

    Muthumani, Karuppiah; Falzarano, Darryl; Reuschel, Emma L.; Tingey, Colleen; Flingai, Seleeke; Villarreal, Daniel O.; Wise, Megan; Patel, Ami; Izmirly, Abdullah; Aljuaid, Abdulelah; Seliga, Alecia M.; Soule, Geoff; Morrow, Matthew; Kraynyak, Kimberly A.; Khan, Amir S.; Scott, Dana P.; Feldmann, Friederike; LaCasse, Rachel; Meade-White, Kimberly; Okumura, Atsushi; Ugen, Kenneth E.; Sardesai, Niranjan Y.; Kim, J. Joseph; Kobinger, Gary; Feldmann, Heinz; Weiner, David B.

    2015-01-01

    First identified in 2012, Middle East respiratory syndrome (MERS) is caused by an emerging human coronavirus, which is distinct from the severe acute respiratory syndrome coronavirus (SARS-CoV), and represents a novel member of the lineage C betacoronoviruses. Since its identification, MERS coronavirus (MERS-CoV) has been linked to more than 1372 infections manifesting with severe morbidity and, often, mortality (about 495 deaths) in the Arabian Peninsula, Europe, and, most recently, the United States. Human-to-human transmission has been documented, with nosocomial transmission appearing to be an important route of infection. The recent increase in cases of MERS in the Middle East coupled with the lack of approved antiviral therapies or vaccines to treat or prevent this infection are causes for concern. We report on the development of a synthetic DNA vaccine against MERS-CoV. An optimized DNA vaccine encoding the MERS spike protein induced potent cellular immunity and antigen-specific neutralizing antibodies in mice, macaques, and camels. Vaccinated rhesus macaques seroconverted rapidly and exhibited high levels of virus-neutralizing activity. Upon MERS viral challenge, all of the monkeys in the control-vaccinated group developed characteristic disease, including pneumonia. Vaccinated macaques were protected and failed to demonstrate any clinical or radiographic signs of pneumonia. These studies demonstrate that a consensus MERS spike protein synthetic DNA vaccine can induce protective responses against viral challenge, indicating that this strategy may have value as a possible vaccine modality against this emerging pathogen. PMID:26290414

  10. A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates.

    PubMed

    Muthumani, Karuppiah; Falzarano, Darryl; Reuschel, Emma L; Tingey, Colleen; Flingai, Seleeke; Villarreal, Daniel O; Wise, Megan; Patel, Ami; Izmirly, Abdullah; Aljuaid, Abdulelah; Seliga, Alecia M; Soule, Geoff; Morrow, Matthew; Kraynyak, Kimberly A; Khan, Amir S; Scott, Dana P; Feldmann, Friederike; LaCasse, Rachel; Meade-White, Kimberly; Okumura, Atsushi; Ugen, Kenneth E; Sardesai, Niranjan Y; Kim, J Joseph; Kobinger, Gary; Feldmann, Heinz; Weiner, David B

    2015-08-19

    First identified in 2012, Middle East respiratory syndrome (MERS) is caused by an emerging human coronavirus, which is distinct from the severe acute respiratory syndrome coronavirus (SARS-CoV), and represents a novel member of the lineage C betacoronoviruses. Since its identification, MERS coronavirus (MERS-CoV) has been linked to more than 1372 infections manifesting with severe morbidity and, often, mortality (about 495 deaths) in the Arabian Peninsula, Europe, and, most recently, the United States. Human-to-human transmission has been documented, with nosocomial transmission appearing to be an important route of infection. The recent increase in cases of MERS in the Middle East coupled with the lack of approved antiviral therapies or vaccines to treat or prevent this infection are causes for concern. We report on the development of a synthetic DNA vaccine against MERS-CoV. An optimized DNA vaccine encoding the MERS spike protein induced potent cellular immunity and antigen-specific neutralizing antibodies in mice, macaques, and camels. Vaccinated rhesus macaques seroconverted rapidly and exhibited high levels of virus-neutralizing activity. Upon MERS viral challenge, all of the monkeys in the control-vaccinated group developed characteristic disease, including pneumonia. Vaccinated macaques were protected and failed to demonstrate any clinical or radiographic signs of pneumonia. These studies demonstrate that a consensus MERS spike protein synthetic DNA vaccine can induce protective responses against viral challenge, indicating that this strategy may have value as a possible vaccine modality against this emerging pathogen. PMID:26290414

  11. RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex.

    PubMed

    Bouvet, Mickaël; Imbert, Isabelle; Subissi, Lorenzo; Gluais, Laure; Canard, Bruno; Decroly, Etienne

    2012-06-12

    The replication/transcription complex of severe acute respiratory syndrome coronavirus is composed of at least 16 nonstructural proteins (nsp1-16) encoded by the ORF-1a/1b. This complex includes replication enzymes commonly found in positive-strand RNA viruses, but also a set of RNA-processing activities unique to some nidoviruses. The nsp14 protein carries both exoribonuclease (ExoN) and (guanine-N7)-methyltransferase (N7-MTase) activities. The nsp14 ExoN activity ensures a yet-uncharacterized function in the virus life cycle and must be regulated to avoid nonspecific RNA degradation. In this work, we show that the association of nsp10 with nsp14 stimulates >35-fold the ExoN activity of the latter while playing no effect on N7-MTase activity. Nsp10 mutants unable to interact with nsp14 are not proficient for ExoN activation. The nsp10/nsp14 complex hydrolyzes double-stranded RNA in a 3' to 5' direction as well as a single mismatched nucleotide at the 3'-end mimicking an erroneous replication product. In contrast, di-, tri-, and longer unpaired ribonucleotide stretches, as well as 3'-modified RNAs, resist nsp10/nsp14-mediated excision. In addition to the activation of nsp16-mediated 2'-O-MTase activity, nsp10 also activates nsp14 in an RNA processing function potentially connected to a replicative mismatch repair mechanism. PMID:22635272

  12. Coronavirus nonstructural protein 1: common and distinct functions in the regulation of host and viral gene expression

    PubMed Central

    Narayanan, Krishna; Ramirez, Sydney I.; Lokugamage, Kumari G.; Makino, Shinji

    2014-01-01

    The recent emergence of two highly pathogenic human coronaviruses (CoVs), severe acute respiratory syndrome CoV and Middle East respiratory syndrome CoV, has ignited a strong interest in the identification of viral factors that determine the virulence and pathogenesis of CoVs. The nonstructural protein 1 (nsp1) of CoVs has attracted considerable attention in this regard as a potential virulence factor and a target for CoV vaccine development because of accumulating evidence that point to its role in the downregulation of host innate immune responses to CoV infection. Studies have revealed both functional conservation and mechanistic divergence among the nsp1 of different mammalian CoVs in perturbing host gene expression and antiviral responses. This review summarizes the current knowledge about the biological functions of CoV nsp1 that provides an insight into the novel strategies utilized by this viral protein to modulate host and viral gene expression during CoV infection. PMID:25432065

  13. Dual Protein Localization to the Envelope and Thylakoid Membranes Within the Chloroplast.

    PubMed

    Klasek, Laura; Inoue, Kentaro

    2016-01-01

    The chloroplast houses various metabolic processes essential for plant viability. This organelle originated from an ancestral cyanobacterium via endosymbiosis and maintains the three membranes of its progenitor. Among them, the outer envelope membrane functions mainly in communication with cytoplasmic components while the inner envelope membrane houses selective transport of various metabolites and the biosynthesis of several compounds, including membrane lipids. These two envelope membranes also play essential roles in import of nuclear-encoded proteins and in organelle division. The third membrane, the internal membrane system known as the thylakoid, houses photosynthetic electron transport and chemiosmotic phosphorylation. The inner envelope and thylakoid membranes share similar lipid composition. Specific targeting pathways determine their defined proteomes and, thus, their distinct functions. Nonetheless, several proteins have been shown to exist in both the envelope and thylakoid membranes. These proteins include those that play roles in protein transport, tetrapyrrole biosynthesis, membrane dynamics, or transport of nucleotides or inorganic phosphate. In this review, we summarize the current knowledge about proteins localized to both the envelope and thylakoid membranes in the chloroplast, discussing their roles in each membrane and potential mechanisms of their dual localization. Addressing the unanswered questions about these dual-localized proteins should help advance our understanding of chloroplast development, protein transport, and metabolic regulation. PMID:26944623

  14. OOCYTE ENVELOPE PROTEINS AND VITELLOGENIN IN MALE SHEEPHEAD MINNOW EXPOSED TO ESTRADIOL

    EPA Science Inventory

    Oocyte Envelope Proteins and Vitellogenin Expression in Male Sheepshead Minnows Exposed to Estradiol (Abstract). To be presented at the 22nd Annual Meeting of the Society of Environmental Toxicology and Chemistry: Changing Environmental Awareness: Societal Concerns and Scientifi...

  15. Recombinant nucleocapsid protein-based enzyme-linked immunosorbent assay for detection of antibody to turkey coronavirus.

    PubMed

    Abdelwahab, Mohamed; Loa, Chien Chang; Wu, Ching Ching; Lin, Tsang Long

    2015-06-01

    Nucleocapsid (N) protein gene of turkey coronavirus (TCoV) was expressed in a prokaryotic system and used to develop an enzyme-linked immunosorbent assay (ELISA) for detection of antibody to TCoV. Anti-TCoV hyperimmune turkey serum and normal turkey serum were used as positive or negative controls for optimization of the ELISA. Goat anti-turkey IgG (H+L) conjugated with horseradish peroxidase was used as detector antibody. Three hundred and twenty two turkey sera from the field were used to evaluate the performance of ELISA and determine the cut-off point of ELISA. The established ELISA was also examined with serum samples obtained from turkeys experimentally infected with TCoV. Those serum samples were collected at various time intervals from 1 to 63 days post-infection. The optimum conditions for differentiation between anti-TCoV hyperimmune serum and normal turkey serum were recombinant TCoV N protein concentration at 20 μg/ml, serum dilution at 1:800, and conjugate dilution at 1:10,000. Of the 322 sera from the field, 101 were positive for TCoV by immunofluorescent antibody assay (IFA). The sensitivity and specificity of the ELISA relative to IFA test were 86.0% and 96.8%, respectively, using the optimum cut-off point of 0.2 as determined by logistic regression method. Reactivity of anti-rotavirus, anti-reovirus, anti-adenovirus, or anti-enterovirus antibodies with the recombinant N protein coated on the ELISA plates was not detected. These results indicated that the established antibody-capture ELISA in conjunction with recombinant TCoV N protein as the coating protein can be utilized for detection of antibodies to TCoV in turkey flocks. PMID:25745958

  16. Design of an epitope-based peptide vaccine against spike protein of human coronavirus: an in silico approach

    PubMed Central

    Oany, Arafat Rahman; Emran, Abdullah-Al; Jyoti, Tahmina Pervin

    2014-01-01

    Human coronavirus (HCoV), a member of Coronaviridae family, is the causative agent of upper respiratory tract infections and “atypical pneumonia”. Despite severe epidemic outbreaks on several occasions and lack of antiviral drug, not much progress has been made with regard to an epitope-based vaccine designed for HCoV. In this study, a computational approach was adopted to identify a multiepitope vaccine candidate against this virus that could be suitable to trigger a significant immune response. Sequences of the spike proteins were collected from a protein database and analyzed with an in silico tool, to identify the most immunogenic protein. Both T cell immunity and B cell immunity were checked for the peptides to ensure that they had the capacity to induce both humoral and cell-mediated immunity. The peptide sequence from 88–94 amino acids and the sequence KSSTGFVYF were found as the most potential B cell and T cell epitopes, respectively. Furthermore, conservancy analysis was also done using in silico tools and showed a conservancy of 64.29% for all epitopes. The peptide sequence could interact with as many as 16 human leukocyte antigens (HLAs) and showed high cumulative population coverage, ranging from 75.68% to 90.73%. The epitope was further tested for binding against the HLA molecules, using in silico docking techniques, to verify the binding cleft epitope interaction. The allergenicity of the epitopes was also evaluated. This computational study of design of an epitope-based peptide vaccine against HCoVs allows us to determine novel peptide antigen targets in spike proteins on intuitive grounds, albeit the preliminary results thereof require validation by in vitro and in vivo experiments. PMID:25187696

  17. HLA-A*0201 T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus nucleocapsid and spike proteins

    SciTech Connect

    Tsao, Y.-P.; Lin, J.-Y.; Jan, J.-T.; Leng, C.-H.; Chu, C.-C.; Yang, Y.-C.; Chen, S.-L. . E-mail: showlic@ha.mc.ntu.edu.tw

    2006-05-26

    The immunogenicity of HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) peptide in severe acute respiratory syndrome coronavirus (SARS-CoV) nuclear capsid (N) and spike (S) proteins was determined by testing the proteins' ability to elicit a specific cellular immune response after immunization of HLA-A2.1 transgenic mice and in vitro vaccination of HLA-A2.1 positive human peripheral blood mononuclearcytes (PBMCs). First, we screened SARS N and S amino acid sequences for allele-specific motif matching those in human HLA-A2.1 MHC-I molecules. From HLA peptide binding predictions (http://thr.cit.nih.gov/molbio/hla{sub b}ind/), ten each potential N- and S-specific HLA-A2.1-binding peptides were synthesized. The high affinity HLA-A2.1 peptides were validated by T2-cell stabilization assays, with immunogenicity assays revealing peptides N223-231, N227-235, and N317-325 to be First identified HLA-A*0201-restricted CTL epitopes of SARS-CoV N protein. In addition, previous reports identified three HLA-A*0201-restricted CTL epitopes of S protein (S978-986, S1203-1211, and S1167-1175), here we found two novel peptides S787-795 and S1042-1050 as S-specific CTL epitopes. Moreover, our identified N317-325 and S1042-1050 CTL epitopes could induce recall responses when IFN-{gamma} stimulation of blood CD8{sup +} T-cells revealed significant difference between normal healthy donors and SARS-recovered patients after those PBMCs were in vitro vaccinated with their cognate antigen. Our results would provide a new insight into the development of therapeutic vaccine in SARS.

  18. Structural Insights into Immune Recognition of the Severe Acute Respiratory Syndrome Coronavirus S Protein Receptor Binding Domain

    SciTech Connect

    Pak, J.; Sharon, C; Satkunarajah, M; Thierry, C; Cameron, C; Kelvin, D; Seetharaman, J; Cochrane, A; Plummer, F; et. al.

    2009-01-01

    The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for host cell attachment and fusion of the viral and host cell membranes. Within S the receptor binding domain (RBD) mediates the interaction with angiotensin-converting enzyme 2 (ACE2), the SARS-CoV host cell receptor. Both S and the RBD are highly immunogenic and both have been found to elicit neutralizing antibodies. Reported here is the X-ray crystal structure of the RBD in complex with the Fab of a neutralizing mouse monoclonal antibody, F26G19, elicited by immunization with chemically inactivated SARS-CoV. The RBD-F26G19 Fab complex represents the first example of the structural characterization of an antibody elicited by an immune response to SARS-CoV or any fragment of it. The structure reveals that the RBD surface recognized by F26G19 overlaps significantly with the surface recognized by ACE2 and, as such, suggests that F26G19 likely neutralizes SARS-CoV by blocking the virus-host cell interaction.

  19. Recombinant Receptor Binding Domain Protein Induces Partial Protective Immunity in Rhesus Macaques Against Middle East Respiratory Syndrome Coronavirus Challenge☆

    PubMed Central

    Lan, Jiaming; Yao, Yanfeng; Deng, Yao; Chen, Hong; Lu, Guangwen; Wang, Wen; Bao, Linlin; Deng, Wei; Wei, Qiang; Gao, George F.; Qin, Chuan; Tan, Wenjie

    2015-01-01

    Background Development an effective vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) is urgent and limited information is available on vaccination in nonhuman primate (NHP) model. We herein report of evaluating a recombinant receptor-binding domain (rRBD) protein vaccine in a rhesus macaque model. Methods Nine monkeys were randomly assigned to high-dose, low-dose and mock groups,which were immunized with different doses of rRBD plus alum adjuvant or adjuvant alone at different time points (0, 8, 25 weeks). Immunological analysis was conducted after each immunisation. Monkeys were challenged with MERS-CoV at 14 days after the final immunisation followed by observation for clinical signs and chest X-rays. Nasal, oropharyngeal and rectal swabs were also collected for analyses. Monkeys were euthanized 3 days after challenge and multiple specimens from tissues were collected for pathological, virological and immunological tests. Conclusion Robust and sustained immunological responses (including neutralisation antibody) were elicited by the rRBD vaccination. Besides, rRBD vaccination alleviated pneumonia with evidence of reduced tissue impairment and clinical manifestation in monkeys. Furthermore, the rRBD vaccine decreased viral load of lung, trachea and oropharyngeal swabs of monkeys. These data in NHP paves a way for further development of an effective human vaccine against MERS-CoV infection. PMID:26629538

  20. Discovery of a Novel Coronavirus, China Rattus Coronavirus HKU24, from Norway Rats Supports the Murine Origin of Betacoronavirus 1 and Has Implications for the Ancestor of Betacoronavirus Lineage A

    PubMed Central

    Lau, Susanna K. P.; Woo, Patrick C. Y.; Li, Kenneth S. M.; Tsang, Alan K. L.; Fan, Rachel Y. Y.; Luk, Hayes K. H.; Cai, Jian-Piao; Chan, Kwok-Hung; Zheng, Bo-Jian; Wang, Ming

    2014-01-01

    ABSTRACT We discovered a novel Betacoronavirus lineage A coronavirus, China Rattus coronavirus (ChRCoV) HKU24, from Norway rats in China. ChRCoV HKU24 occupied a deep branch at the root of members of Betacoronavirus 1, being distinct from murine coronavirus and human coronavirus HKU1. Its unique putative cleavage sites between nonstructural proteins 1 and 2 and in the spike (S) protein and low sequence identities to other lineage A betacoronaviruses (βCoVs) in conserved replicase domains support ChRCoV HKU24 as a separate species. ChRCoV HKU24 possessed genome features that resemble those of both Betacoronavirus 1 and murine coronavirus, being closer to Betacoronavirus 1 in most predicted proteins but closer to murine coronavirus by G+C content, the presence of a single nonstructural protein (NS4), and an absent transcription regulatory sequence for the envelope (E) protein. Its N-terminal domain (NTD) demonstrated higher sequence identity to the bovine coronavirus (BCoV) NTD than to the mouse hepatitis virus (MHV) NTD, with 3 of 4 critical sugar-binding residues in BCoV and 2 of 14 contact residues at the MHV NTD/murine CEACAM1a interface being conserved. Molecular clock analysis dated the time of the most recent common ancestor of ChRCoV HKU24, Betacoronavirus 1, and rabbit coronavirus HKU14 to about the year 1400. Cross-reactivities between other lineage A and B βCoVs and ChRCoV HKU24 nucleocapsid but not spike polypeptide were demonstrated. Using the spike polypeptide-based Western blot assay, we showed that only Norway rats and two oriental house rats from Guangzhou, China, were infected by ChRCoV HKU24. Other rats, including Norway rats from Hong Kong, possessed antibodies only against N protein and not against the spike polypeptide, suggesting infection by βCoVs different from ChRCoV HKU24. ChRCoV HKU24 may represent the murine origin of Betacoronavirus 1, and rodents are likely an important reservoir for ancestors of lineage A βCoVs. IMPORTANCE While

  1. Structure and biological properties of solubilized envelope proteins of Bordetella pertussis.

    PubMed Central

    Robinson, A; Hawkins, D C

    1983-01-01

    The structure and biological properties of solubilized envelope proteins of Bordetella pertussis have been examined. Several envelope proteins were found to be specific for phase I strains of B. pertussis and could be isolated by selective detergent extraction. These proteins had molecular weights of 90,000, 86,000, 81,000, 33,000, 31,000, and 30,000 and were reduced or absent in envelope preparations from Bordetella bronchiseptica, Bordetella parapertussis, or phase IV strains of B. pertussis. When the envelope preparations from phase I B. pertussis were assayed in the mouse intracerebral protection test they were found to be highly protective, and there was a strong correlation between the protective potency and the lymphocytosis-promoting factor (LPF) content of different preparations. Treatment with glutaraldehyde reduced the LPF activity, toxicity, and protective potency of the envelope extracts. Similarly affinity chromatography of envelope proteins on columns of haptoglobin coupled to Sepharose 4B reduced both the LPF content and the protective potency. The addition of a small amount of purified LPF to the haptoglobin-treated proteins restored the protective potency. The LPF by itself was nonprotective, indicating a potentiating role of LPF in the mouse intracerebral challenge test. Images PMID:6299946

  2. Canine distemper virus envelope protein interactions modulated by hydrophobic residues in the fusion protein globular head.

    PubMed

    Avila, Mislay; Khosravi, Mojtaba; Alves, Lisa; Ader-Ebert, Nadine; Bringolf, Fanny; Zurbriggen, Andreas; Plemper, Richard K; Plattet, Philippe

    2015-01-15

    Membrane fusion for morbillivirus cell entry relies on critical interactions between the viral fusion (F) and attachment (H) envelope glycoproteins. Through extensive mutagenesis of an F cavity recently proposed to contribute to F's interaction with the H protein, we identified two neighboring hydrophobic residues responsible for severe F-to-H binding and fusion-triggering deficiencies when they were mutated in combination. Since both residues reside on one side of the F cavity, the data suggest that H binds the F globular head domain sideways. PMID:25355896

  3. Sequence analysis and protein import studies of an outer chloroplast envelope polypeptide.

    PubMed Central

    Salomon, M; Fischer, K; Flügge, U I; Soll, J

    1990-01-01

    A chloroplast outer envelope membrane protein was cloned and sequenced and from the sequence it was possible to deduce a polypeptide of 6.7 kDa. It has only one membrane-spanning region; the C terminus extends into the cytosol, whereas the N terminus is exposed to the space between the two envelope membranes. The protein was synthesized in an in vitro transcription-translation system to study its routing into isolated chloroplasts. The import studies revealed that the 6.7-kDa protein followed a different and heretofore undescribed translocation pathway in the respect that (i) it does not have a cleavable transit sequence, (ii) it does not require ATP hydrolysis for import, and (iii) protease-sensitive components that are responsible for recognition of precursor proteins destined for the inside of the chloroplasts are not involved in routing the 6.7-kDa polypeptide to the outer chloroplast envelope. Images PMID:2377616

  4. Nuclear envelope-associated endosomes deliver surface proteins to the nucleus.

    PubMed

    Chaumet, Alexandre; Wright, Graham D; Seet, Sze Hwee; Tham, Keit Min; Gounko, Natalia V; Bard, Frederic

    2015-01-01

    Endocytosis directs molecular cargo along three main routes: recycling to the cell surface, transport to the Golgi apparatus or degradation in endolysosomes. Pseudomonas exotoxin A (PE) is a bacterial protein that typically traffics to the Golgi and then the endoplasmic reticulum before translocating to the cytosol. Here we show that a substantial fraction of internalized PE is also located in nuclear envelope-associated endosomes (NAE), which display limited mobility, exhibit a propensity to undergo fusion and readily discharge their contents into the nuclear envelope. Electron microscopy and protein trapping in the nucleus indicate that NAE mediate PE transfer into the nucleoplasm. RNAi screening further revealed that NAE-mediated transfer depends on the nuclear envelope proteins SUN1 and SUN2, as well as the Sec61 translocon complex. These data reveal a novel endosomal route from the cell surface to the nucleoplasm that facilitates the accumulation of extracellular and cell surface proteins in the nucleus. PMID:26356418

  5. A Betabaculovirus-Encoded gp64 Homolog Codes for a Functional Envelope Fusion Protein

    PubMed Central

    Ardisson-Araújo, Daniel M. P.; Melo, Fernando L.; Clem, Rollie J.; Wolff, José L. C.

    2015-01-01

    The GP64 envelope fusion protein is a hallmark of group I alphabaculoviruses. However, the Diatraea saccharalis granulovirus genome sequence revealed the first betabaculovirus species harboring a gp64 homolog (disa118). In this work, we have shown that this homolog encodes a functional envelope fusion protein and could enable the infection and fusogenic abilities of a gp64-null prototype baculovirus. Therefore, GP64 may complement or may be in the process of replacing F protein activity in this virus lineage. PMID:26537678

  6. A Betabaculovirus-Encoded gp64 Homolog Codes for a Functional Envelope Fusion Protein.

    PubMed

    Ardisson-Araújo, Daniel M P; Melo, Fernando L; Clem, Rollie J; Wolff, José L C; Ribeiro, Bergmann M

    2016-02-01

    The GP64 envelope fusion protein is a hallmark of group I alphabaculoviruses. However, the Diatraea saccharalis granulovirus genome sequence revealed the first betabaculovirus species harboring a gp64 homolog (disa118). In this work, we have shown that this homolog encodes a functional envelope fusion protein and could enable the infection and fusogenic abilities of a gp64-null prototype baculovirus. Therefore, GP64 may complement or may be in the process of replacing F protein activity in this virus lineage. PMID:26537678

  7. Receptor Recognition Mechanisms of Coronaviruses: a Decade of Structural Studies

    PubMed Central

    2014-01-01

    Receptor recognition by viruses is the first and essential step of viral infections of host cells. It is an important determinant of viral host range and cross-species infection and a primary target for antiviral intervention. Coronaviruses recognize a variety of host receptors, infect many hosts, and are health threats to humans and animals. The receptor-binding S1 subunit of coronavirus spike proteins contains two distinctive domains, the N-terminal domain (S1-NTD) and the C-terminal domain (S1-CTD), both of which can function as receptor-binding domains (RBDs). S1-NTDs and S1-CTDs from three major coronavirus genera recognize at least four protein receptors and three sugar receptors and demonstrate a complex receptor recognition pattern. For example, highly similar coronavirus S1-CTDs within the same genus can recognize different receptors, whereas very different coronavirus S1-CTDs from different genera can recognize the same receptor. Moreover, coronavirus S1-NTDs can recognize either protein or sugar receptors. Structural studies in the past decade have elucidated many of the puzzles associated with coronavirus-receptor interactions. This article reviews the latest knowledge on the receptor recognition mechanisms of coronaviruses and discusses how coronaviruses have evolved their complex receptor recognition pattern. It also summarizes important principles that govern receptor recognition by viruses in general. PMID:25428871

  8. Shrimp arginine kinase being a binding protein of WSSV envelope protein VP31

    NASA Astrophysics Data System (ADS)

    Ma, Cuiyan; Gao, Qiang; Liang, Yan; Li, Chen; Liu, Chao; Huang, Jie

    2016-03-01

    Viral entry into the host is the earliest stage of infection in the viral life cycle in which attachment proteins play a key role. VP31 (WSV340/WSSV396), an envelope protein of white spot syndrome virus (WSSV), contains an Arg-Gly-Asp (RGD) peptide domain known as a cellular attachment site. At present, the process of VP31 interacting with shrimp host cells has not been explored. Therefore, the VP31 gene was cloned into pET30a (+), expressed in Escherichia coli strain BL21 and purified with immobilized metal ion affinity chromatography. Four gill cellular proteins of shrimp (Fenneropenaeus chinensis) were pulled down by an affinity column coupled with recombinant VP31 (rVP31), and the amino acid sequences were identified with MALDI-TOF/TOF mass spectrometry. Hemocyanin, beta-actin, arginine kinase (AK), and an unknown protein were suggested as the putative VP31 receptor proteins. SDS-PAGE showed that AK is the predominant binding protein of VP31. An i n vitro binding activity experiment indicated that recombinant AK's (rAK) binding activity with rVP31 is comparable to that with the same amount of WSSV. These results suggested that AK, as a member of the phosphagen kinase family, plays a role in WSSV infection. This is the first evidence showing that AK is a binding protein of VP31. Further studies on this topic will elucidate WSSV infection mechanism in the future.

  9. Functional incorporation of green fluorescent protein into hepatitis B virus envelope particles

    SciTech Connect

    Lambert, Carsten; Thome, Nicole; Kluck, Christoph J.; Prange, Reinhild . E-mail: prange@mail.uni-mainz.de

    2004-12-05

    The envelope of hepatitis B virus (HBV), containing the L, M, and S proteins, is essential for virus entry and maturation. For direct visualization of HBV, we determined whether envelope assembly could accommodate the green fluorescent protein (GFP). While the C-terminal addition of GFP to S trans-dominant negatively inhibited empty envelope particle secretion, the N-terminal GFP fusion to S (GFP.S) was co-integrated into the envelope, giving rise to fluorescent particles. Microscopy and topogenesis analyses demonstrated that the proper intracellular distribution and folding of GFP.S, required for particle export were rescued by interprotein interactions with wild-type S. Thereby, a dual location of GFP, inside and outside the envelope, was observed. GFP.S was also efficiently packaged into the viral envelope, and these GFP-tagged virions retained the capacity for attachment to HBV receptor-positive cells in vitro. Together, GFP-tagged virions should be suitable to monitor HBV uptake and egress in live hepatocytes.

  10. Crystal structure-based exploration of the important role of Arg106 in the RNA-binding domain of human coronavirus OC43 nucleocapsid protein

    PubMed Central

    Chen, I-Jung; Yuann, Jeu-Ming P.; Chang, Yu-Ming; Lin, Shing-Yen; Zhao, Jincun; Perlman, Stanley; Shen, Yo-Yu; Huang, Tai-Huang; Hou, Ming-Hon

    2013-01-01

    Human coronavirus OC43 (HCoV-OC43) is a causative agent of the common cold. The nucleocapsid (N) protein, which is a major structural protein of CoVs, binds to the viral RNA genome to form the virion core and results in the formation of the ribonucleoprotein (RNP) complex. We have solved the crystal structure of the N-terminal domain of HCoV-OC43 N protein (N-NTD) (residues 58 to 195) to a resolution of 2.0Å. The HCoV-OC43 N-NTD is a single domain protein composed of a five-stranded β-sheet core and a long extended loop, similar to that observed in the structures of N-NTDs from other coronaviruses. The positively charged loop of the HCoV-OC43 N-NTD contains a structurally well-conserved positively charged residue, R106. To assess the role of R106 in RNA binding, we undertook a series of site-directed mutagenesis experiments and docking simulations to characterize the interaction between R106 and RNA. The results show that R106 plays an important role in the interaction between the N protein and RNA. In addition, we showed that, in cells transfected with plasmids that encoded the mutant (R106A) N protein and infected with virus, the level of the matrix protein gene was decreased by 7-fold compared to cells that were transfected with the wild-type N protein. This finding suggests that R106, by enhancing binding of the N protein to viral RNA plays a critical role in the viral replication. The results also indicate that the strength of N protein/RNA interactions is critical for HCoV-OC43 replication. PMID:23501675

  11. The Novel Nuclear Envelope Protein KAKU4 Modulates Nuclear Morphology in Arabidopsis[W

    PubMed Central

    Goto, Chieko; Tamura, Kentaro; Fukao, Yoichiro; Shimada, Tomoo; Hara-Nishimura, Ikuko

    2014-01-01

    In animals, the nuclear lamina is a fibrillar meshwork on the inner surface of the nuclear envelope, composed of coiled-coil lamin proteins and lamin binding membrane proteins. Plants also have a meshwork on the inner surface of the nuclear envelope, but little is known about its composition other than the presence of members of the CROWDED NUCLEI (CRWN) protein family, possible plant lamin analogs. Here, we describe a candidate lamina component, based on two Arabidopsis thaliana mutants (kaku2 and kaku4) with aberrant nuclear morphology. The responsible gene in kaku2 encodes CRWN1, and the responsible gene in kaku4 encodes a plant-specific protein of unknown function (KAKU4) that physically interacts with CRWN1 and its homolog CRWN4. Immunogold labeling revealed that KAKU4 localizes at the inner nuclear membrane. KAKU4 deforms the nuclear envelope in a dose-dependent manner, in association with nuclear membrane invagination and stack formation. The KAKU4-dependent nuclear envelope deformation was enhanced by overaccumulation of CRWN1, although KAKU4 can deform the nuclear envelope even in the absence of CRWN1 and/or CRWN4. Together, these results suggest that plants have evolved a unique lamina-like structure to modulate nuclear shape and size. PMID:24824484

  12. Arterivirus Minor Envelope Proteins Are a Major Determinant of Viral Tropism in Cell Culture

    PubMed Central

    Tian, Debin; Wei, Zuzhang; Zevenhoven-Dobbe, Jessika C.; Liu, Runxia; Tong, Guangzhi

    2012-01-01

    Arteriviruses are enveloped positive-strand RNA viruses for which the attachment proteins and cellular receptors have remained largely controversial. Arterivirus particles contain at least eight envelope proteins, an unusually large number among RNA viruses. These appear to segregate into three groups: major structural components (major glycoprotein GP5 and membrane protein [M]), minor glycoproteins (GP2a, GP3, and GP4), and small hydrophobic proteins (E and the recently discovered ORF5a protein). Biochemical studies previously suggested that the GP5-M heterodimer of porcine reproductive and respiratory syndrome virus (PRRSV) interacts with porcine sialoadhesin (pSn) in porcine alveolar macrophages (PAM). However, another study proposed that minor protein GP4, along with GP2a, interacts with CD163, another reported cellular receptor for PRRSV. In this study, we provide genetic evidence that the minor envelope proteins are the major determinant of arterivirus entry into cultured cells. A PRRSV infectious cDNA clone was equipped with open reading frames (ORFs) encoding minor envelope and E proteins of equine arteritis virus (EAV), the only known arterivirus displaying a broad tropism in cultured cells. Although PRRSV and EAV are only distantly related and utilize diversified transcription-regulating sequences (TRSs), a viable chimeric progeny virus was rescued. Strikingly, this chimeric virus (vAPRRS-EAV2ab34) acquired the broad in vitro cell tropism of EAV, demonstrating that the minor envelope proteins play a critical role as viral attachment proteins. We believe that chimeric arteriviruses of this kind will be a powerful tool for further dissection of the arterivirus replicative cycle, including virus entry, subgenomic RNA synthesis, and virion assembly. PMID:22258262

  13. Co-evolution analysis to predict protein-protein interactions within influenza virus envelope.

    PubMed

    Mintaev, Ramil R; Alexeevski, Andrei V; Kordyukova, Larisa V

    2014-04-01

    Interactions between integral membrane proteins hemagglutinin (HA), neuraminidase (NA), M2 and membrane-associated matrix protein M1 of influenza A virus are thought to be crucial for assembly of functionally competent virions. We hypothesized that the amino acid residues located at the interface of two different proteins are under physical constraints and thus probably co-evolve. To predict co-evolving residue pairs, the EvFold ( http://evfold.org ) program searching the (nontransitive) Direct Information scores was applied for large samplings of amino acid sequences from Influenza Research Database ( http://www.fludb.org/ ). Having focused on the HA, NA, and M2 cytoplasmic tails as well as C-terminal domain of M1 (being the less conserved among the protein domains) we captured six pairs of correlated positions. Among them, there were one, two, and three position pairs for HA-M2, HA-M1, and M2-M1 protein pairs, respectively. As expected, no co-varying positions were found for NA-HA, NA-M1, and NA-M2 pairs obviously due to high conservation of the NA cytoplasmic tail. The sum of frequencies calculated for two major amino acid patterns observed in pairs of correlated positions was up to 0.99 meaning their high to extreme evolutionary sustainability. Based on the predictions a hypothetical model of pair-wise protein interactions within the viral envelope was proposed. PMID:24712535

  14. Computational analysis reveal inhibitory action of nimbin against dengue viral envelope protein.

    PubMed

    Lavanya, P; Ramaiah, Sudha; Anbarasu, Anand

    2015-12-01

    Dengue has emerged to be global health problem worldwide. Hence there is an immediate need to adopt new strategies in the development of effective anti-dengue drugs. Extracts from the leaves of Azadirachta indica has been traditionally used in folk medicine for viral infections. In the present study we report the anti-viral potency of nimbin, the active compound from the neem leaf extract against the envelope protein of dengue virus. Progression of viral entry into the host cell is facilitated by the envelope protein of dengue virus, suggesting; it as an effective anti-viral target. Nimbin is found to be effective against the envelope protein of all four types of dengue virus (dengue 1-4), which is evident from our in silico analysis. Our findings suggest the clinical importance of nimbin, which can serve as effective lead compound for further analysis. PMID:26645034

  15. The Nuclear Envelope Protein, LAP1B, Is a Novel Protein Phosphatase 1 Substrate

    PubMed Central

    Santos, Mariana; Rebelo, Sandra; Van Kleeff, Paula J. M.; Kim, Connie E.; Dauer, William T.; Fardilha, Margarida; da Cruz e Silva, Odete A.; da Cruz e Silva, Edgar F.

    2013-01-01

    Protein phosphatase 1 (PP1) binding proteins are quintessential regulators, determining substrate specificity and defining subcellular localization and activity of the latter. Here, we describe a novel PP1 binding protein, the nuclear membrane protein lamina associated polypeptide 1B (LAP1B), which interacts with the DYT1 dystonia protein torsinA. The PP1 binding domain in LAP1B was here identified as the REVRF motif at amino acids 55-59. The LAP1B:PP1 complex can be immunoprecipitated from cells in culture and rat cortex and the complex was further validated by yeast co-transformations and blot overlay assays. PP1, which is enriched in the nucleus, binds to the N-terminal nuclear domain of LAP1B, as shown by immunocolocalization and domain specific binding studies. PP1 dephosphorylates LAP1B, confirming the physiological relevance of this interaction. These findings place PP1 at a key position to participate in the pathogenesis of DYT1 dystonia and related nuclear envelope-based diseases. PMID:24116158

  16. SARS Coronavirus E Protein in Phospholipid Bilayers: An X-Ray Study

    PubMed Central

    Khattari, Z.; Brotons, G.; Akkawi, M.; Arbely, E.; Arkin, I. T.; Salditt, T.

    2006-01-01

    We investigated the structure of the hydrophobic domain of the severe acute respiratory syndrome E protein in model lipid membranes by x-ray reflectivity and x-ray scattering. In particular, we used x-ray reflectivity to study the location of an iodine-labeled residue within the lipid bilayer. The label imposes spatial constraints on the protein topology. Experimental data taken as a function of protein/lipid ratio P/L and different swelling states support the hairpin conformation of severe acute respiratory syndrome E protein reported previously. Changes in the bilayer thickness and acyl-chain ordering are presented as a function of P/L, and discussed in view of different structural models. PMID:16361349

  17. Distinct Pathways Mediate the Sorting of Tail-Anchored Proteins to the Plastid Outer Envelope

    PubMed Central

    Dhanoa, Preetinder K.; Richardson, Lynn G. L.; Smith, Matthew D.; Gidda, Satinder K.; Henderson, Matthew P. A.; Andrews, David W.; Mullen, Robert T.

    2010-01-01

    Background Tail-anchored (TA) proteins are a distinct class of membrane proteins that are sorted post-translationally to various organelles and function in a number of important cellular processes, including redox reactions, vesicular trafficking and protein translocation. While the molecular targeting signals and pathways responsible for sorting TA proteins to their correct intracellular destinations in yeasts and mammals have begun to be characterized, relatively little is known about TA protein biogenesis in plant cells, especially for those sorted to the plastid outer envelope. Methodology/Principal Findings Here we investigated the biogenesis of three plastid TA proteins, including the 33-kDa and 34-kDa GTPases of the translocon at the outer envelope of chloroplasts (Toc33 and Toc34) and a novel 9-kDa protein of unknown function that we define here as an outer envelope TA protein (OEP9). Using a combination of in vivo and in vitro assays we show that OEP9 utilizes a different sorting pathway than that used by Toc33 and Toc34. For instance, while all three TA proteins interact with the cytosolic OEP chaperone/receptor, AKR2A, the plastid targeting information within OEP9 is distinct from that within Toc33 and Toc34. Toc33 and Toc34 also appear to differ from OEP9 in that their insertion is dependent on themselves and the unique lipid composition of the plastid outer envelope. By contrast, the insertion of OEP9 into the plastid outer envelope occurs in a proteinaceous-dependent, but Toc33/34-independent manner and membrane lipids appear to serve primarily to facilitate normal thermodynamic integration of this TA protein. Conclusions/Significance Collectively, the results provide evidence in support of at least two sorting pathways for plastid TA outer envelope proteins and shed light on not only the complex diversity of pathways involved in the targeting and insertion of proteins into plastids, but also the molecular mechanisms that underlie the delivery of TA

  18. Sortases and the Art of Anchoring Proteins to the Envelopes of Gram-Positive Bacteria

    PubMed Central

    Marraffini, Luciano A.; DeDent, Andrea C.; Schneewind, Olaf

    2006-01-01

    The cell wall envelopes of gram-positive bacteria represent a surface organelle that not only functions as a cytoskeletal element but also promotes interactions between bacteria and their environment. Cell wall peptidoglycan is covalently and noncovalently decorated with teichoic acids, polysaccharides, and proteins. The sum of these molecular decorations provides bacterial envelopes with species- and strain-specific properties that are ultimately responsible for bacterial virulence, interactions with host immune systems, and the development of disease symptoms or successful outcomes of infections. Surface proteins typically carry two topogenic sequences, i.e., N-terminal signal peptides and C-terminal sorting signals. Sortases catalyze a transpeptidation reaction by first cleaving a surface protein substrate at the cell wall sorting signal. The resulting acyl enzyme intermediates between sortases and their substrates are then resolved by the nucleophilic attack of amino groups, typically provided by the cell wall cross bridges of peptidoglycan precursors. The surface protein linked to peptidoglycan is then incorporated into the envelope and displayed on the microbial surface. This review focuses on the mechanisms of surface protein anchoring to the cell wall envelope by sortases and the role that these enzymes play in bacterial physiology and pathogenesis. PMID:16524923

  19. Characterization of the VP39 envelope protein from Singapore grouper iridovirus.

    PubMed

    Zhang, Honglian; Zhou, Sheng; Xia, Liqun; Huang, Xiaohong; Huang, Youhua; Cao, Jianhao; Qin, Qiwei

    2015-12-01

    Singapore grouper iridovirus (SGIV) is a major pathogen that causes heavy economic losses to the grouper aquaculture industry in China and Southeast Asian countries. In the present study, a viral envelope protein, VP39, encoded by SGIV ORF39L, was identified and characterized. SGIV ORF39L was found in all sequenced iridoviruses and is now considered to be a core gene of the family Iridoviridae. ORF39L was classified as a late gene during in vitro infection using reverse transcription-polymerase chain reaction, western blotting, and a drug inhibition analysis. An indirect immunofluorescence assay revealed that the VP39 protein was confined to the cytoplasm, especially at viral assembly sites. Western blot and matrix-assisted laser desorption/ionization-time of flight tandem mass spectrometry analyses suggested that VP39 is an envelope protein. Immunogold electron microscopy further confirmed that VP39 is a viral envelope protein. Furthermore, a mouse anti-VP39 polyclonal antibody exhibited SGIV-neutralizing activity in vitro, suggesting that VP39 is involved in SGIV infection. Taken together, the current data suggest that VP39 represents a conserved envelope protein of iridoviruses that contributes to viral infection. PMID:26524136

  20. Effects of retroviral envelope-protein cleavage upon trafficking, incorporation, and membrane fusion

    SciTech Connect

    Apte, Swapna; Sanders, David Avram

    2010-09-15

    Retroviral envelope glycoproteins undergo proteolytic processing by cellular subtilisin-like proprotein convertases at a polybasic amino-acid site in order to produce the two functional subunits, SU and TM. Most previous studies have indicated that envelope-protein cleavage is required for rendering the protein competent for promoting membrane fusion and for virus infectivity. We have investigated the role of proteolytic processing of the Moloney murine leukemia virus envelope-protein through site-directed mutagenesis of the residues near the SU-TM cleavage site and have established that uncleaved glycoprotein is unable either to be incorporated into virus particles efficiently or to induce membrane fusion. Additionally, the results suggest that cleavage of the envelope protein plays an important role in intracellular trafficking of protein via the cellular secretory pathway. Based on our results it was concluded that a positively charged residue located at either P2 or P4 along with the arginine at P1 is essential for cleavage.

  1. Crystal Structure of Major Envelope Protein VP24 from White Spot Syndrome Virus

    PubMed Central

    Sun, Lifang; Su, Yintao; Zhao, Yanhe; Fu, Zheng-qing; Wu, Yunkun

    2016-01-01

    White spot syndrome virus (WSSV) is one of the major and most serious pathogen in the shrimp industry. As one of the most abundant envelope protein, VP24 acts as a core protein interacting with other structure proteins and plays an important role in virus assembly and infection. Here, we have presented the crystal structure of VP24 from WSSV. In the structure, VP24 consists of a nine-stranded β–barrel fold with mostly antiparallel β-strands, and the loops extending out the β–barrel at both N-terminus and C-terminus, which is distinct to those of the other two major envelope proteins VP28 and VP26. Structural comparison of VP24 with VP26 and VP28 reveals opposite electrostatic surface potential properties of them. These structural differences could provide insight into their differential functional mechanisms and roles for virus assembly and infection. Moreover, the structure reveals a trimeric assembly, suggesting a likely natural conformation of VP24 in viral envelope. Therefore, in addition to confirming the evolutionary relationship among the three abundant envelope proteins of WSSV, our structural studies also facilitate a better understanding of the molecular mechanism underlying special roles of VP24 in WSSV assembly and infection. PMID:27572278

  2. Phage-display for identifying peptides that bind the spike protein of transmissible gastroenteritis virus and possess diagnostic potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spike (S) protein is a key structural protein of coronaviruses including, the porcine transmissible gastroenteritis virus (TGEV). The S protein is a type I membrane glycoprotein located in the viral envelope and is responsible for mediating the binding of viral particles to specific cell recepto...

  3. Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Memon, A. R.; Thompson, G. A. Jr; Roux, S. J.

    1993-01-01

    Three GTP-binding proteins with apparent molecular masses of 27, 28 and 30 kDa have been detected in isolated nuclei of etiolated pea plumules. After LDS-PAGE and transfer to nitrocellulose these proteins bind [32P]GTP in the presence of excess ATP, suggesting that they are monomeric G proteins. When nuclei are disrupted, three proteins co-purify with the nuclear envelope fraction and are highly enriched in this fraction. The level of [32P]GTP-binding for all three protein bands is significantly increased when harvested pea plumules are irradiated by red light, and this effect is reversed by far-red light. The results indicate that GTP-binding activity associated with the nuclear envelope of plant cells is photoreversibly regulated by the pigment phytochrome.

  4. The nuclear envelope LEM-domain protein emerin

    PubMed Central

    Berk, Jason M; Tifft, Kathryn E; Wilson, Katherine L

    2013-01-01

    Emerin, a conserved LEM-domain protein, is among the few nuclear membrane proteins for which extensive basic knowledge—biochemistry, partners, functions, localizations, posttranslational regulation, roles in development and links to human disease—is available. This review summarizes emerin and its emerging roles in nuclear “lamina” structure, chromatin tethering, gene regulation, mitosis, nuclear assembly, development, signaling and mechano-transduction. We also highlight many open questions, exploration of which will be critical to understand how this intriguing nuclear membrane protein and its “family” influence the genome. PMID:23873439

  5. TMEM120A and B: Nuclear Envelope Transmembrane Proteins Important for Adipocyte Differentiation

    PubMed Central

    Batrakou, Dzmitry G.; de las Heras, Jose I.; Czapiewski, Rafal; Mouras, Rabah; Schirmer, Eric C.

    2015-01-01

    Recent work indicates that the nuclear envelope is a major signaling node for the cell that can influence tissue differentiation processes. Here we present two nuclear envelope trans-membrane proteins TMEM120A and TMEM120B that are paralogs encoded by the Tmem120A and Tmem120B genes. The TMEM120 proteins are expressed preferentially in fat and both are induced during 3T3-L1 adipocyte differentiation. Knockdown of one or the other protein altered expression of several genes required for adipocyte differentiation, Gata3, Fasn, Glut4, while knockdown of both together additionally affected Pparg and Adipoq. The double knockdown also increased the strength of effects, reducing for example Glut4 levels by 95% compared to control 3T3-L1 cells upon pharmacologically induced differentiation. Accordingly, TMEM120A and B knockdown individually and together impacted on adipocyte differentiation/metabolism as measured by lipid accumulation through binding of Oil Red O and coherent anti-Stokes Raman scattering microscopy (CARS). The nuclear envelope is linked to several lipodystrophies through mutations in lamin A; however, lamin A is widely expressed. Thus it is possible that the TMEM120A and B fat-specific nuclear envelope transmembrane proteins may play a contributory role in the tissue-specific pathology of this disorder or in the wider problem of obesity. PMID:26024229

  6. Effects of glycosylation on antigenicity and immunogenicity of classical swine fever virus envelope proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Classical swine fever virus (CSFV) harbors three envelope glycoproteins (E(rns), E1 and E2). Previous studies have demonstrated that removal of specific glycosylation sites within these proteins yielded attenuated and immunogenic CSFV mutants. Here we analyzed the effects of lack of glycosylation of...

  7. Envelope protein complexes of Mycobacterium avium subsp. paratuberculosis and their antigenicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne’s disease, a chronic enteric disease of ruminant animals. In the present study, blue native PAGE electrophoresis and 2D SDS-PAGE were used to separate MAP envelope protein complexes, followed by mass spectrometry (MS) ...

  8. Some serum acute phase proteins and immunoglobulins concentrations in calves with rotavirus, coronavirus, E. coli F5 and Eimeria species

    PubMed Central

    Balikci, E; Al, M

    2014-01-01

    The purpose of this study was to evaluate the changes in the serum concentrations of haptoglobin (Hp), serum amyloid A (SAA) and IgG, IgA in calves with diarrhea caused by rotavirus, coronavirus, Escherichia coli F5 and Eimeria species. The experiment was carried out on 40 diarrhoeic and 10 non-diarrhoeic calves (group C). A total of 13 calves were infected with rotavirus or coronavirus (group V), 12 calves with E. coli F5 (group B) and 15 calves with Eimeria species (group P). SAA and Hp levels of calves in groups V, B and P were statistically higher than group C (P<0.05). SAA and Hp levels of the group B and group P were significantly higher than the group V (P<0.05). SAA and Hp levels in group B were not significantly higher than the group P. The levels of IgG and IgA were found to be lower in groups B and V compared to other groups. There was a negative correlation between immunoglobulins and the levels of serum Hp and SAA in groups B and V (r=-0.315 and r=-0.369, respectively, P<0.05). Serum SAA, Hp, IgA and IgG levels could be useful for the diagnosis and differential diagnosis of diarrhea caused by rotavirus, coronavirus, E. coli F5 and Eimeria species. PMID:27175138

  9. Characterization of the fusion core in zebrafish endogenous retroviral envelope protein

    SciTech Connect

    Shi, Jian; Zhang, Huaidong; Gong, Rui; Xiao, Gengfu

    2015-05-08

    Zebrafish endogenous retrovirus (ZFERV) is the unique endogenous retrovirus in zebrafish, as yet, containing intact open reading frames of its envelope protein gene in zebrafish genome. Similarly, several envelope proteins of endogenous retroviruses in human and other mammalian animal genomes (such as syncytin-1 and 2 in human, syncytin-A and B in mouse) were identified and shown to be functional in induction of cell–cell fusion involved in placental development. ZFERV envelope protein (Env) gene appears to be also functional in vivo because it is expressible. After sequence alignment, we found ZFERV Env shares similar structural profiles with syncytin and other type I viral envelopes, especially in the regions of N- and C-terminal heptad repeats (NHR and CHR) which were crucial for membrane fusion. We expressed the regions of N + C protein in the ZFERV Env (residues 459–567, including predicted NHR and CHR) to characterize the fusion core structure. We found N + C protein could form a stable coiled-coil trimer that consists of three helical NHR regions forming a central trimeric core, and three helical CHR regions packing into the grooves on the surface of the central core. The structural characterization of the fusion core revealed the possible mechanism of fusion mediated by ZFERV Env. These results gave comprehensive explanation of how the ancient virus infects the zebrafish and integrates into the genome million years ago, and showed a rational clue for discovery of physiological significance (e.g., medicate cell–cell fusion). - Highlights: • ZFERV Env shares similar structural profiles with syncytin and other type I viral envelopes. • The fusion core of ZFERV Env forms stable coiled-coil trimer including three NHRs and three CHRs. • The structural mechanism of viral entry mediated by ZFERV Env is disclosed. • The results are helpful for further discovery of physiological function of ZFERV Env in zebrafish.

  10. Bacterial expression of antigenic sites A and D in the spike protein of transmissible gastroenteritis virus and evaluation of their inhibitory effects on viral infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spike (S) protein is a key structural protein of coronaviruses including, the porcine transmissible gastroenteritis virus (TGEV). The S protein is a type I membrane glycoprotein located in the viral envelope and is responsible for mediating the binding of viral particles to specific cell recepto...

  11. Chloroplast envelope protein targeting fidelity is independent of cytosolic components in dual organelle assays

    PubMed Central

    Kriechbaumer, Verena; Abell, Ben M.

    2012-01-01

    The general mechanisms of intracellular protein targeting are well established, and depend on a targeting sequence in the protein, which is recognized by a targeting factor. Once a membrane protein is delivered to the correct organelle its targeting sequence can be recognized by receptors and a translocase, leading to membrane insertion. However, the relative contribution of each step for generating fidelity and efficiency of the overall process has not been systematically addressed. Here, we use tail-anchored (TA) membrane proteins in cell-free competitive targeting assays to chloroplasts to show that targeting can occur efficiently and with high fidelity in the absence of all cytosolic components, suggesting that chloroplast envelope protein targeting is primarily dependent on events at the outer envelope. Efficiency of targeting was increased by the addition of complete cytosol, and by Hsp70 or Hsp90, depending on the protein, but none of these cytosolic components influenced the fidelity of targeting. Our results suggest that the main role of targeting factors in chloroplast localization is to increase targeting efficiency by maintaining recognition competency at the outer envelope. PMID:22783268

  12. Transcription and identification of an envelope protein gene (p22) from shrimp white spot syndrome virus.

    PubMed

    Zhang, Xiaobo; Huang, Canhua; Xu, Xun; Hew, Choy L

    2002-02-01

    White spot syndrome virus (WSSV) is one of the most virulent pathogens causing high mortality in shrimp. In the present study, an open reading frame (termed the p22 gene) was revealed from a WSSV cDNA library. The gene was expressed as a fusion protein with glutathione S-transferase (GST) in Escherichia coli and purified. Specific antibody was raised using the purified fusion protein (GST-P22). Temporal analysis showed that the p22 gene was a late gene. After binding between purified WSSV virions and anti-GST-P22 IgG followed by labelling with gold-labelled secondary antibody, the gold particles, under a transmission electron microscope, could be found along the outer envelope of WSSV virions. This experiment suggests that the p22 gene encodes an envelope protein of the virus. PMID:11807241

  13. Reduction of a 4q35-encoded nuclear envelope protein in muscle differentiation

    SciTech Connect

    Ostlund, Cecilia; Guan, Tinglu; Figlewicz, Denise A.; Hays, Arthur P.; Worman, Howard J.; Gerace, Larry; Schirmer, Eric C.

    2009-11-13

    Muscular dystrophy and peripheral neuropathy have been linked to mutations in genes encoding nuclear envelope proteins; however, the molecular mechanisms underlying these disorders remain unresolved. Nuclear envelope protein p19A is a protein of unknown function encoded by a gene at chromosome 4q35. p19A levels are significantly reduced in human muscle as cells differentiate from myoblasts to myotubes; however, its levels are not similarly reduced in all differentiation systems tested. Because 4q35 has been linked to facioscapulohumeral muscular dystrophy (FSHD) and some adjacent genes are reportedly misregulated in the disorder, levels of p19A were analyzed in muscle samples from patients with FSHD. Although p19A was increased in most cases, an absolute correlation was not observed. Nonetheless, p19A downregulation in normal muscle differentiation suggests that in the cases where its gene is inappropriately re-activated it could affect muscle differentiation and contribute to disease pathology.

  14. Characteristics of Epstein-Barr Virus Envelope Protein gp42

    PubMed Central

    Shaw, Pamela L.; Kirschner, Austin N.; Jardetzky, Theodore S.; Longnecker, Richard

    2010-01-01

    Epstein-Barr virus (EBV) glycoprotein 42 (gp42) is a membrane protein essential for fusion and entry of EBV into host B-lymphocytes. Gp42 is a member of the protein fold family C-type lectin or lectin-like domains (CLECT or CTLD) and specifically is classified as a natural-killer receptor (NKR)- like CLECT. Literature review and phylogenetic comparison show that EBV gp42 shares a common structure with other NKR-like CLECTs and possibly with many viral CTLDs, but does not appear to exhibit some common binding characteristics of many CTLDs, such as features required for calcium binding. The flexible N-terminal region adjacent to the CTLD fold is important for binding to other EBV glycoproteins and for a cleavage site that is necessary for infection of host cells. From structural studies of gp42 unbound and bound to receptor and extensive mutational analysis, a general model of how gp42 triggers membrane fusion utilizing both the flexible N-terminal region and the CTLD domain has emerged. PMID:20162447

  15. Analysis of Pseudomonas aeruginosa Cell Envelope Proteome by Capture of Surface-Exposed Proteins on Activated Magnetic Nanoparticles

    PubMed Central

    Vecchietti, Davide; Di Silvestre, Dario; Miriani, Matteo; Bonomi, Francesco; Marengo, Mauro; Bragonzi, Alessandra; Cova, Lara; Franceschi, Eleonora; Mauri, Pierluigi; Bertoni, Giovanni

    2012-01-01

    We report on specific magneto-capturing followed by Multidimensional Protein Identification Technology (MudPIT) for the analysis of surface-exposed proteins of intact cells of the bacterial opportunistic pathogen Pseudomonas aeruginosa. The magneto-separation of cell envelope fragments from the soluble cytoplasmic fraction allowed the MudPIT identification of the captured and neighboring proteins. Remarkably, we identified 63 proteins captured directly by nanoparticles and 67 proteins embedded in the cell envelope fragments. For a high number of proteins, our analysis strongly indicates either surface exposure or localization in an envelope district. The localization of most identified proteins was only predicted or totally unknown. This novel approach greatly improves the sensitivity and specificity of the previous methods, such as surface shaving with proteases that was also tested on P. aeruginosa. The magneto-capture procedure is simple, safe, and rapid, and appears to be well-suited for envelope studies in highly pathogenic bacteria. PMID:23226459

  16. The transmembrane domain of the severe acute respiratory syndrome coronavirus ORF7b protein is necessary and sufficient for its retention in the Golgi complex.

    PubMed

    Schaecher, Scott R; Diamond, Michael S; Pekosz, Andrew

    2008-10-01

    The severe acute respiratory syndrome coronavirus (SARS-CoV) ORF7b (also called 7b) protein is an integral membrane protein that is translated from a bicistronic open reading frame encoded within subgenomic RNA 7. When expressed independently or during virus infection, ORF7b accumulates in the Golgi compartment, colocalizing with both cis- and trans-Golgi markers. To identify the domains of this protein that are responsible for Golgi localization, we have generated a set of mutant proteins and analyzed their subcellular localizations by indirect immunofluorescence confocal microscopy. The N- and C-terminal sequences are dispensable, but the ORF7b transmembrane domain (TMD) is essential for Golgi compartment localization. When the TMD of human CD4 was replaced with the ORF7b TMD, the resulting chimeric protein localized to the Golgi complex. Scanning alanine mutagenesis identified two regions in the carboxy-terminal portion of the TMD that eliminated the Golgi complex localization of the chimeric CD4 proteins or ORF7b protein. Collectively, these data demonstrate that the Golgi complex retention signal of the ORF7b protein resides solely within the TMD. PMID:18632859

  17. Nonstructural Proteins 7 and 8 of Feline Coronavirus Form a 2:1 Heterotrimer That Exhibits Primer-Independent RNA Polymerase Activity

    PubMed Central

    Xiao, Yibei; Ma, Qingjun; Restle, Tobias; Shang, Weifeng; Svergun, Dmitri I.; Ponnusamy, Rajesh; Sczakiel, Georg

    2012-01-01

    Nonstructural proteins 7 and 8 of severe acute respiratory syndrome coronavirus (SARS-CoV) have previously been shown by X-ray crystallography to form an 8:8 hexadecamer. In addition, it has been demonstrated that N-terminally His6-tagged SARS-CoV Nsp8 is a primase able to synthesize RNA oligonucleotides with a length of up to 6 nucleotides. We present here the 2.6-Å crystal structure of the feline coronavirus (FCoV) Nsp7:Nsp8 complex, which is a 2:1 heterotrimer containing two copies of the α-helical Nsp7 with conformational differences between them, and one copy of Nsp8 that consists of an α/β domain and a long-α-helix domain. The same stoichiometry is found for the Nsp7:Nsp8 complex in solution, as demonstrated by chemical cross-linking, size exclusion chromatography, and small-angle X-ray scattering. Furthermore, we show that FCoV Nsp8, like its SARS-CoV counterpart, is able to synthesize short oligoribonucleotides of up to 6 nucleotides in length when carrying an N-terminal His6 tag. Remarkably, the same protein harboring the sequence GPLG instead of the His6 tag at its N terminus exhibits a substantially increased, primer-independent RNA polymerase activity. Upon addition of Nsp7, the RNA polymerase activity is further enhanced so that RNA up to template length (67 nucleotides) can be synthesized. Further, we show that the unprocessed intermediate polyprotein Nsp7-10 of human coronavirus (HCoV) 229E is also capable of synthesizing oligoribonucleotides up to a chain length of six. These results indicate that in case of FCoV as well as of HCoV 229E, the formation of a hexadecameric Nsp7:Nsp8 complex is not necessary for RNA polymerase activity. Further, the FCoV Nsp7:Nsp8 complex functions as a noncanonical RNA polymerase capable of synthesizing RNA of up to template length. PMID:22318142

  18. Drug Targets for Rational Design against Emerging Coronaviruses.

    PubMed

    Zhao, Qi; Weber, Erin; Yang, Haitao

    2013-07-26

    The recent, fatal outbreak of the novel coronavirus strain in the Middle East highlights the real threat posed by this unique virus family. Neither pharmaceutical cures nor preventive vaccines are clinically available to fight against coronavirus associated syndromes, not to mention a lack of symptom soothing drugs. Development of treatment options is complicated by the unpredictable, recurring instances of cross-species viral transmission. The vastly distributing virus reservoir and the rapid rate of host-species exchange of coronavirus demands wide spectrum potency in an ideal therapeutic. Through summarizing the available information and progress in coronavirus research, this review provides a systematic assessment of the potential wide-spectrum features on the most popular drug targets including viral proteases, spike protein, RNA polymerases and editing enzymes as well as host-virus interaction pathways associated with coronaviruses. PMID:23885693

  19. Drug targets for rational design against emerging coronaviruses.

    PubMed

    Zhao, Qi; Weber, Erin; Yang, Haitao

    2013-04-01

    The recent, fatal outbreak of the novel coronavirus strain in the Middle East highlights the real threat posed by this unique virus family. Neither pharmaceutical cures nor preventive vaccines are clinically available to fight against coronavirus associated syndromes, not to mention a lack of symptom soothing drugs. Development of treatment options is complicated by the unpredictable, recurring instances of cross-species viral transmission. The vastly distributing virus reservoir and the rapid rate of host-species exchange of coronavirus demands wide spectrum potency in an ideal therapeutic. Through summarizing the available information and progress in coronavirus research, this review provides a systematic assessment of the potential wide-spectrum features on the most popular drug targets including viral proteases, spike protein, RNA polymerases and editing enzymes as well as host-virus interaction pathways associated with coronaviruses. PMID:23895136

  20. Molecular mechanisms of coronavirus RNA capping and methylation.

    PubMed

    Chen, Yu; Guo, Deyin

    2016-02-01

    The 5'-cap structures of eukaryotic mRNAs are important for RNA stability, pre-mRNA splicing, mRNA export, and protein translation. Many viruses have evolved mechanisms for generating their own cap structures with methylation at the N7 position of the capped guanine and the ribose 2'-Oposition of the first nucleotide, which help viral RNAs escape recognition by the host innate immune system. The RNA genomes of coronavirus were identified to have 5'-caps in the early 1980s. However, for decades the RNA capping mechanisms of coronaviruses remained unknown. Since 2003, the outbreak of severe acute respiratory syndrome coronavirus has drawn increased attention and stimulated numerous studies on the molecular virology of coronaviruses. Here, we review the current understanding of the mechanisms adopted by coronaviruses to produce the 5'-cap structure and methylation modification of viral genomic RNAs. PMID:26847650

  1. In vitro and in vivo screening for novel essential cell-envelope proteins in Pseudomonas aeruginosa

    PubMed Central

    Fernández-Piñar, Regina; Lo Sciuto, Alessandra; Rossi, Alice; Ranucci, Serena; Bragonzi, Alessandra; Imperi, Francesco

    2015-01-01

    The Gram-negative bacterium Pseudomonas aeruginosa represents a prototype of multi-drug resistant opportunistic pathogens for which novel therapeutic options are urgently required. In order to identify new candidates as potential drug targets, we combined large-scale transposon mutagenesis data analysis and bioinformatics predictions to retrieve a set of putative essential genes which are conserved in P. aeruginosa and predicted to encode cell envelope or secreted proteins. By generating unmarked deletion or conditional mutants, we confirmed the in vitro essentiality of two periplasmic proteins, LptH and LolA, responsible for lipopolysaccharide and lipoproteins transport to the outer membrane respectively, and confirmed that they are important for cell envelope stability. LptH was also found to be essential for P. aeruginosa ability to cause infection in different animal models. Conversely, LolA-depleted cells appeared only partially impaired in pathogenicity, indicating that this protein likely plays a less relevant role during bacterial infection. Finally, we ruled out any involvement of the other six proteins under investigation in P. aeruginosa growth, cell envelope stability and virulence. Besides proposing LptH as a very promising drug target in P. aeruginosa, this study confirms the importance of in vitro and in vivo validation of potential essential genes identified through random transposon mutagenesis. PMID:26621210

  2. Mucosal Immunization with Surface-Displayed Severe Acute Respiratory Syndrome Coronavirus Spike Protein on Lactobacillus casei Induces Neutralizing Antibodies in Mice

    PubMed Central

    Lee, Jong-Soo; Poo, Haryoung; Han, Dong P.; Hong, Seung-Pyo; Kim, Kwang; Cho, Michael W.; Kim, Eun; Sung, Moon-Hee; Kim, Chul-Joong

    2006-01-01

    Induction of mucosal immunity may be important for preventing SARS-CoV infections. For safe and effective delivery of viral antigens to the mucosal immune system, we have developed a novel surface antigen display system for lactic acid bacteria using the poly-γ-glutamic acid synthetase A protein (PgsA) of Bacillus subtilis as an anchoring matrix. Recombinant fusion proteins comprised of PgsA and the Spike (S) protein segments SA (residues 2 to 114) and SB (residues 264 to 596) were stably expressed in Lactobacillus casei. Surface localization of the fusion protein was verified by cellular fractionation analyses, immunofluorescence microscopy, and flow cytometry. Oral and nasal inoculations of recombinant L. casei into mice resulted in high levels of serum immunoglobulin G (IgG) and mucosal IgA, as demonstrated by enzyme-linked immunosorbent assays using S protein peptides. More importantly, these antibodies exhibited potent neutralizing activities against severe acute respiratory syndrome (SARS) pseudoviruses. Orally immunized mice mounted a greater neutralizing-antibody response than those immunized intranasally. Three new neutralizing epitopes were identified on the S protein using a peptide neutralization interference assay (residues 291 to 308, 520 to 529, and 564 to 581). These results indicate that mucosal immunization with recombinant L. casei expressing SARS-associated coronavirus S protein on its surface provides an effective means for eliciting protective immune response against the virus. PMID:16571824

  3. Restoration of flagellar clockwise rotation in bacterial envelopes by insertion of the chemotaxis protein CheY.

    PubMed Central

    Ravid, S; Matsumura, P; Eisenbach, M

    1986-01-01

    When cells of the bacterium Salmonella typhimurium are incubated with penicillin and lysed in a dilute buffer, flagellated cytoplasm-free envelopes are formed. When the envelopes are tethered to glass by their flagella and then energized, some of them spin. The direction of rotation of wild-type envelopes is exclusively counterclockwise (CCW). We perturbed this system by including in the lysis medium (and hence in the envelopes) the chemotaxis protein CheY. As a result, some of the envelopes rotated exclusively clockwise (CW). The fraction of envelopes that did so increased with the concentration of CheY; at a concentration of 48 microM (pH 8), all functional envelopes spun CW. The fraction also increased with the pH of the lysis medium in the range of 6.6-8.4. The results were the same in the presence or absence of intracellular Ca2+. Reconstituted envelopes failed to respond to chemotactic stimuli. None of them changed the direction of their rotation. However, when the intracellular pH was lowered to 6.6 or below, envelopes that spun CW stopped rotating, while envelopes that spun CCW continued to rotate. This phenomenon was reversible. We conclude that CheY per se, without any additional free cytoplasmic mediators, interacts with a switch at the base of the flagellum to cause CW rotation. PMID:3532103

  4. The ns12.9 Accessory Protein of Human Coronavirus OC43 Is a Viroporin Involved in Virion Morphogenesis and Pathogenesis

    PubMed Central

    Zhang, Ronghua; Wang, Kai; Ping, Xianqiang; Yu, Wenjing

    2015-01-01

    ABSTRACT An accessory gene between the S and E gene loci is contained in all coronaviruses (CoVs), and its function has been studied in some coronaviruses. This gene locus in human coronavirus OC43 (HCoV-OC43) encodes the ns12.9 accessory protein; however, its function during viral infection remains unknown. Here, we engineered a recombinant mutant virus lacking the ns12.9 protein (HCoV-OC43-Δns12.9) to characterize the contributions of ns12.9 in HCoV-OC43 replication. The ns12.9 accessory protein is a transmembrane protein and forms ion channels in both Xenopus oocytes and yeast through homo-oligomerization, suggesting that ns12.9 is a newly recognized viroporin. HCoV-OC43-Δns12.9 presented at least 10-fold reduction of viral titer in vitro and in vivo. Intriguingly, exogenous ns12.9 and heterologous viroporins with ion channel activity could compensate for the production of HCoV-OC43-Δns12.9, indicating that the ion channel activity of ns12.9 plays a significant role in the production of infectious virions. Systematic dissection of single-cycle replication revealed that ns12.9 protein had no measurable effect on virus entry, subgenomic mRNA (sgmRNA) synthesis, and protein expression. Further characterization revealed that HCoV-OC43-Δns12.9 was less efficient in virion morphogenesis than recombinant wild-type virus (HCoV-OC43-WT). Moreover, reduced viral replication, inflammatory response, and virulence in HCoV-OC43-Δns12.9-infected mice were observed compared to the levels for HCoV-OC43-WT-infected mice. Taken together, our results demonstrated that the ns12.9 accessory protein functions as a viroporin and is involved in virion morphogenesis and the pathogenesis of HCoV-OC43 infection. IMPORTANCE HCoV-OC43 was isolated in the 1960s and is a major agent of the common cold. The functions of HCoV-OC43 structural proteins have been well studied, but few studies have focused on its accessory proteins. In the present study, we demonstrated that the ns12.9 protein

  5. Two-dimensional polyacylamide gel electrophoresis of envelope proteins of Escherichia coli.

    PubMed

    Johnson, W C; Silhavy, T J; Boos, W

    1975-03-01

    A method of separating envelope proteins by two-dimensional polyacrylamide gel electrophoresis is described. Escherichia coli envelopes (inner and outer membranes) were prepared by French pressing and washed by repeated centrifugation. Membrane proteins were solubilized with guanidine thiocyanate and were dialyzed against urea prior to two-dimensional electrophoretic analysis. The slab gel apparatus and conditions were similar to the technique developed by Metz and Bogorad (1974) for the separation of ribosomal proteins. This separation occurs in 8 M urea for the first dimension and in 0.2% sodium dodecyl sulfate for the second dimension. The technique separates about 70 different membrane proteins in a highly reproducible fashion according to both intrinsic charge and molecular weight. Some examples of alterations in the membrane protein pattern are demonstrated. These alterations are caused by a mutation affecting a sugar transport system and by growth in the presence of D-fucose, inducer of the transport system. A further example of membrane protein changes introduced by growth at the nonpermissive temperature of a temperature-sensitive cell division mutant is shown. Finally, it is demonstrated that the major outer membrane component of Escherichia coli K-12 contains more than four proteins of similar molecular weight. PMID:803821

  6. Energetic cost of protein import across the envelope membranes of chloroplasts.

    PubMed

    Shi, Lan-Xin; Theg, Steven M

    2013-01-15

    Chloroplasts are the organelles of green plants in which light energy is transduced into chemical energy, forming ATP and reduced carbon compounds upon which all life depends. The expenditure of this energy is one of the central issues of cellular metabolism. Chloroplasts contain ~3,000 proteins, among which less than 100 are typically encoded in the plastid genome. The rest are encoded in the nuclear genome, synthesized in the cytosol, and posttranslationally imported into the organelle in an energy-dependent process. We report here a measurement of the amount of ATP hydrolyzed to import a protein across the chloroplast envelope membranes--only the second complete accounting of the cost in Gibbs free energy of protein transport to be undertaken. Using two different precursors prepared by three distinct techniques, we show that the import of a precursor protein into chloroplasts is accompanied by the hydrolysis of ~650 ATP molecules. This translates to a ΔG(protein) (transport) of some 27,300 kJ/mol protein imported. We estimate that protein import across the plastid envelope membranes consumes ~0.6% of the total light-saturated energy output of the organelle. PMID:23277572

  7. Mutational analyses of fs(1)Ya, an essential, developmentally regulated, nuclear envelope protein in Drosophila

    SciTech Connect

    Liu, Jun; Song, Kiwon; Wolfner, M.F.

    1995-12-01

    The fs(1)Ya protein (YA) is an essential, maternally encoded, nuclear lamina protein that is under both developmental and cell cycle control. A strong Ya mutation results in early arrest of embryos. To define the function of YA in the nuclear envelope during early embryonic development, we characterized the phenotypes of four Ya mutant alleles and determined their molecular lesions. Ya mutant embryos arrest with abnormal nuclear envelopes prior to the first mitotic division; a proportion of embryos from two leaky Ya mutants proceed beyond this but arrest after several abnormal divisions. Ya unfertilized eggs contain nuclei of different sizes and condensation states, apparently due to abnormal fusion of the meiotic products immediately after meiosis. Lamin is localized at the periphery of the uncondensed nuclei in these eggs. These results suggest that Ya function is required during and after egg maturation to facilitate proper chromatin condensation, rather than to allow a lamin-containing nuclear envelope to form. Two leaky Ya alleles that partially complement have lesions at opposite ends of the YA protein, suggesting that the N- and C-termini are important for YA function might interact with itself either directly or indirectly. 27 refs., 6 figs.

  8. Regulation of Stress Responses and Translational Control by Coronavirus

    PubMed Central

    Fung, To Sing; Liao, Ying; Liu, Ding Xiang

    2016-01-01

    Similar to other viruses, coronavirus infection triggers cellular stress responses in infected host cells. The close association of coronavirus replication with the endoplasmic reticulum (ER) results in the ER stress responses, which impose a challenge to the viruses. Viruses, in turn, have come up with various mechanisms to block or subvert these responses. One of the ER stress responses is inhibition of the global protein synthesis to reduce the amount of unfolded proteins inside the ER lumen. Viruses have evolved the capacity to overcome the protein translation shutoff to ensure viral protein production. Here, we review the strategies exploited by coronavirus to modulate cellular stress response pathways. The involvement of coronavirus-induced stress responses and translational control in viral pathogenesis will also be briefly discussed. PMID:27384577

  9. Regulation of Stress Responses and Translational Control by Coronavirus.

    PubMed

    Fung, To Sing; Liao, Ying; Liu, Ding Xiang

    2016-01-01

    Similar to other viruses, coronavirus infection triggers cellular stress responses in infected host cells. The close association of coronavirus replication with the endoplasmic reticulum (ER) results in the ER stress responses, which impose a challenge to the viruses. Viruses, in turn, have come up with various mechanisms to block or subvert these responses. One of the ER stress responses is inhibition of the global protein synthesis to reduce the amount of unfolded proteins inside the ER lumen. Viruses have evolved the capacity to overcome the protein translation shutoff to ensure viral protein production. Here, we review the strategies exploited by coronavirus to modulate cellular stress response pathways. The involvement of coronavirus-induced stress responses and translational control in viral pathogenesis will also be briefly discussed. PMID:27384577

  10. Severe acute respiratory syndrome coronavirus protein nsp1 is a novel eukaryotic translation inhibitor that represses multiple steps of translation initiation.

    PubMed

    Lokugamage, Kumari G; Narayanan, Krishna; Huang, Cheng; Makino, Shinji

    2012-12-01

    Severe acute respiratory syndrome (SARS) coronavirus nonstructural protein 1 (nsp1) binds to the 40S ribosomal subunit and inhibits translation, and it also induces a template-dependent endonucleolytic cleavage of host mRNAs. nsp1 inhibits the translation of cap-dependent and internal ribosome entry site (IRES)-driven mRNAs, including SARS coronavirus mRNAs, hepatitis C virus (HCV), and cricket paralysis virus (CrPV) IRES-driven mRNAs that are resistant to nsp1-induced RNA cleavage. We used an nsp1 mutant, nsp1-CD, lacking the RNA cleavage function, to delineate the mechanism of nsp1-mediated translation inhibition and identify the translation step(s) targeted by nsp1. nsp1 and nsp1-CD had identical inhibitory effects on mRNA templates that are resistant to nsp1-induced RNA cleavage, implying the validity of using nsp1-CD to dissect the translation inhibition function of nsp1. We provide evidence for a novel mode of action of nsp1. nsp1 inhibited the translation initiation step by targeting at least two separate stages: 48S initiation complex formation and the steps involved in the formation of the 80S initiation complex from the 48S complex. nsp1 had a differential, mRNA template-dependent, inhibitory effect on 48S and 80S initiation complex formation. nsp1 inhibited different steps of translation initiation on CrPV and HCV IRES, both of which initiate translation via an IRES-40S binary complex intermediate; nsp1 inhibited binary complex formation on CrPV IRES and 48S complex formation on HCV IRES. Collectively, the data revealed that nsp1 inhibited translation by exerting its effect on multiple stages of translation initiation, depending on the mechanism of initiation operating on the mRNA template. PMID:23035226

  11. Energetic cost of protein import across the envelope membranes of chloroplasts

    PubMed Central

    Shi, Lan-Xin; Theg, Steven M.

    2013-01-01

    Chloroplasts are the organelles of green plants in which light energy is transduced into chemical energy, forming ATP and reduced carbon compounds upon which all life depends. The expenditure of this energy is one of the central issues of cellular metabolism. Chloroplasts contain ∼3,000 proteins, among which less than 100 are typically encoded in the plastid genome. The rest are encoded in the nuclear genome, synthesized in the cytosol, and posttranslationally imported into the organelle in an energy-dependent process. We report here a measurement of the amount of ATP hydrolyzed to import a protein across the chloroplast envelope membranes—only the second complete accounting of the cost in Gibbs free energy of protein transport to be undertaken. Using two different precursors prepared by three distinct techniques, we show that the import of a precursor protein into chloroplasts is accompanied by the hydrolysis of ∼650 ATP molecules. This translates to a ΔGprotein transport of some 27,300 kJ/mol protein imported. We estimate that protein import across the plastid envelope membranes consumes ∼0.6% of the total light-saturated energy output of the organelle. PMID:23277572

  12. Coronavirus infection of spotted hyenas in the Serengeti ecosystem.

    PubMed

    East, Marion L; Moestl, Karin; Benetka, Viviane; Pitra, Christian; Höner, Oliver P; Wachter, Bettina; Hofer, Heribert

    2004-08-19

    Sera from 38 free-ranging spotted hyenas (Crocuta crocuta) in the Serengeti ecosystem, Tanzania, were screened for exposure to coronavirus of antigenic group 1. An immunofluorescence assay indicated high levels of exposure to coronavirus among Serengeti hyenas: 95% when considering sera with titer levels of > or = 1:10 and 74% when considering sera with titer levels of > or = 1:40. Cubs had generally lower mean titer levels than adults. Exposure among Serengeti hyenas to coronavirus was also confirmed by a serum neutralisation assay and an ELISA. Application of RT-PCR to 27 fecal samples revealed viral RNA in three samples (11%). All three positive fecal samples were from the 15 juvenile animals (<24 months of age) sampled, and none from the 12 adults sampled. No viral RNA was detected in tissue samples (lymph node, intestine, lung) from 11 individuals. Sequencing of two amplified products from the S protein gene of a positive sample revealed the presence of coronavirus specific RNA with a sequence homology to canine coronavirus of 76 and 78% and to feline coronavirus type II of 80 and 84%, respectively. Estimation of the phylogenetic relationship among coronavirus isolates indicated considerable divergence of the hyena variant from those in European, American and Japanese domestic cats and dogs. From long-term observations of several hundred known individuals, the only clinical sign in hyenas consistent with those described for coronavirus infections in dogs and cats was diarrhea. There was no evidence that coronavirus infection in hyenas caused clinical signs similar to feline infectious peritonitis in domestic cats or was a direct cause of mortality in hyenas. To our knowledge, this is the first report of coronavirus infection in Hyaenidae. PMID:15288921

  13. Western Blot Detection of Human Anti-Chikungunya Virus Antibody with Recombinant Envelope 2 Protein.

    PubMed

    Yang, Zhaoshou; Lee, Jihoo; Ahn, Hye-Jin; Chong, Chom-Kyu; Dias, Ronaldo F; Nam, Ho-Woo

    2016-04-01

    Chikungunya virus (CHIKV), a tropical pathogen, has re-emerged and has massive outbreaks abruptly all over the world. Containing many dominant epitopes, the envelope E2 protein of CHIKV has been explored for the vaccination or diagnosis. In the present study, the antigenicity of a recombinant expressed intrinsically disorder domain (IUD) of E2 was tested for the detection of the antibody against CHIKV through western blot method. The gene of the IUD of E2 was inserted into 2 different vectors and expressed as recombinant GST-E2 and recombinant MBP-E2 fusion protein, respectively. Two kinds of fusion proteins were tested with 30 CHIKV patient sera and 30 normal sera, respectively. Both proteins were detected by 25 patients sera (83.3%) and 1 normal serum (3.3%). This test showed a relatively high sensitivity and very high specificity of the recombinant E2 proteins to be used as diagnostic antigens against CHIKV infection. PMID:27180586

  14. Western Blot Detection of Human Anti-Chikungunya Virus Antibody with Recombinant Envelope 2 Protein

    PubMed Central

    Yang, Zhaoshou; Lee, Jihoo; Ahn, Hye-Jin; Chong, Chom-Kyu; Dias, Ronaldo F.; Nam, Ho-Woo

    2016-01-01

    Chikungunya virus (CHIKV), a tropical pathogen, has re-emerged and has massive outbreaks abruptly all over the world. Containing many dominant epitopes, the envelope E2 protein of CHIKV has been explored for the vaccination or diagnosis. In the present study, the antigenicity of a recombinant expressed intrinsically disorder domain (IUD) of E2 was tested for the detection of the antibody against CHIKV through western blot method. The gene of the IUD of E2 was inserted into 2 different vectors and expressed as recombinant GST-E2 and recombinant MBP-E2 fusion protein, respectively. Two kinds of fusion proteins were tested with 30 CHIKV patient sera and 30 normal sera, respectively. Both proteins were detected by 25 patients sera (83.3%) and 1 normal serum (3.3%). This test showed a relatively high sensitivity and very high specificity of the recombinant E2 proteins to be used as diagnostic antigens against CHIKV infection. PMID:27180586

  15. In Situ Detection of Interactions Between Nuclear Envelope Proteins and Partners.

    PubMed

    Barateau, Alice; Buendia, Brigitte

    2016-01-01

    Proximity ligation assay (PLA) appears as a quick and easy technique to visualize within fixed cells the occurrence and in situ distribution of protein complexes. PLA has been validated to detect protein-protein interactions within the nuclear compartment. Here, we describe a protocol which allows the detection of interactions between A-type nuclear lamins and either LEM-domain proteins (such as emerin, integrated within the inner nuclear membrane, and LAP2α which accumulates within the nucleoplasm) or gene regulatory factors (e.g., the transcription factor SREBP1). The distinct amounts and patterns of PLA signals obtained for various complexes highlight the pertinence of using PLA to reveal in situ where and to which extent nuclear envelope proteins bind specific partners. PMID:27147040

  16. Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons

    PubMed Central

    Henry, Camille; Agrebi, Rym; Vergnes, Alexandra; Oheix, Emmanuel; Bos, Julia; Leverrier, Pauline; Espinosa, Leon; Szewczyk, Joanna; Vertommen, Didier; Iranzo, Olga; Collet, Jean-François; Barras, Frédéric

    2015-01-01

    The reactive species of oxygen (ROS) and chlorine (RCS) damage cellular components, potentially leading to cell death. In proteins, the sulfur-containing amino acid methionine (Met) is converted to methionine sulfoxide (Met-O), which can cause a loss of biological activity. To rescue proteins with Met-O residues, living cells express methionine sulfoxide reductases (Msrs) in most subcellular compartments, including the cytosol, mitochondria and chloroplasts 1-3. Here, we report the identification of an enzymatic system, MsrPQ, repairing Met-O containing proteins in the bacterial cell envelope, a compartment particularly exposed to the ROS and RCS generated by the host defense mechanisms. MsrP, a molybdo-enzyme, and MsrQ, a heme-binding membrane protein, are widely conserved throughout Gram-negative bacteria, including major human pathogens. MsrPQ synthesis is induced by hypochlorous acid (HOCl), a powerful antimicrobial released by neutrophils. Consistently, MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from Met oxidation, including the primary periplasmic chaperone SurA. For this activity, MsrPQ uses electrons from the respiratory chain, which represents a novel mechanism to import reducing equivalents into the bacterial cell envelope. A remarkable feature of MsrPQ is its capacity to reduce both R- and S- diastereoisomers of Met-O, making this oxidoreductase complex functionally different from previously identified Msrs. The discovery that a large class of bacteria contain a single, non-stereospecific enzymatic complex fully protecting Met residues from oxidation should prompt search for similar systems in eukaryotic subcellular oxidizing compartments, including the endoplasmic reticulum (ER). PMID:26641313

  17. Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons.

    PubMed

    Gennaris, Alexandra; Ezraty, Benjamin; Henry, Camille; Agrebi, Rym; Vergnes, Alexandra; Oheix, Emmanuel; Bos, Julia; Leverrier, Pauline; Espinosa, Leon; Szewczyk, Joanna; Vertommen, Didier; Iranzo, Olga; Collet, Jean-François; Barras, Frédéric

    2015-12-17

    The reactive species of oxygen and chlorine damage cellular components, potentially leading to cell death. In proteins, the sulfur-containing amino acid methionine is converted to methionine sulfoxide, which can cause a loss of biological activity. To rescue proteins with methionine sulfoxide residues, living cells express methionine sulfoxide reductases (Msrs) in most subcellular compartments, including the cytosol, mitochondria and chloroplasts. Here we report the identification of an enzymatic system, MsrPQ, repairing proteins containing methionine sulfoxide in the bacterial cell envelope, a compartment particularly exposed to the reactive species of oxygen and chlorine generated by the host defence mechanisms. MsrP, a molybdo-enzyme, and MsrQ, a haem-binding membrane protein, are widely conserved throughout Gram-negative bacteria, including major human pathogens. MsrPQ synthesis is induced by hypochlorous acid, a powerful antimicrobial released by neutrophils. Consistently, MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation, including the primary periplasmic chaperone SurA. For this activity, MsrPQ uses electrons from the respiratory chain, which represents a novel mechanism to import reducing equivalents into the bacterial cell envelope. A remarkable feature of MsrPQ is its capacity to reduce both rectus (R-) and sinister (S-) diastereoisomers of methionine sulfoxide, making this oxidoreductase complex functionally different from previously identified Msrs. The discovery that a large class of bacteria contain a single, non-stereospecific enzymatic complex fully protecting methionine residues from oxidation should prompt a search for similar systems in eukaryotic subcellular oxidizing compartments, including the endoplasmic reticulum. PMID:26641313

  18. Glycolipid analyses of light-harvesting chlorosomes from envelope protein mutants of Chlorobaculum tepidum.

    PubMed

    Tsukatani, Yusuke; Mizoguchi, Tadashi; Thweatt, Jennifer; Tank, Marcus; Bryant, Donald A; Tamiaki, Hitoshi

    2016-06-01

    Chlorosomes are large and efficient light-harvesting organelles in green photosynthetic bacteria, and they characteristically contain large numbers of bacteriochlorophyll c, d, or e molecules. Self-aggregated bacteriochlorophyll pigments are surrounded by a monolayer envelope membrane comprised of glycolipids and Csm proteins. Here, we analyzed glycolipid compositions of chlorosomes from the green sulfur bacterium Chlorobaculum tepidum mutants lacking one, two, or three Csm proteins by HPLC equipped with an evaporative light-scattering detector. The ratio of monogalactosyldiacylglyceride (MGDG) to rhamnosylgalactosyldiacylglyceride (RGDG) was smaller in chlorosomes from mutants lacking two or three proteins in CsmC/D/H motif family than in chlorosomes from the wild-type, whereas chlorosomes lacking CsmIJ showed relatively less RGDG than MGDG. The results suggest that the CsmC, CsmD, CsmH, and other chlorosome proteins are involved in organizing MGDG and RGDG and thereby affect the size and shape of the chlorosome. PMID:26869354

  19. Inhibition of hepatitis C virus infection by DNA aptamer against envelope protein.

    PubMed

    Yang, Darong; Meng, Xianghe; Yu, Qinqin; Xu, Li; Long, Ying; Liu, Bin; Fang, Xiaohong; Zhu, Haizhen

    2013-10-01

    Hepatitis C virus (HCV) envelope protein (E1E2) is essential for virus binding to host cells. Aptamers have been demonstrated to have strong promising applications in drug development. In the current study, a cDNA fragment encoding the entire E1E2 gene of HCV was cloned. E1E2 protein was expressed and purified. Aptamers for E1E2 were selected by the method of selective evolution of ligands by exponential enrichment (SELEX), and the antiviral actions of the aptamers were examined. The mechanism of their antiviral activity was investigated. The data show that selected aptamers for E1E2 specifically recognize the recombinant E1E2 protein and E1E2 protein from HCV-infected cells. CD81 protein blocks the binding of aptamer E1E2-6 to E1E2 protein. Aptamers against E1E2 inhibit HCV infection in an infectious cell culture system although they have no effect on HCV replication in a replicon cell line. Beta interferon (IFN-β) and IFN-stimulated genes (ISGs) are not induced in virus-infected hepatocytes with aptamer treatment, suggesting that E1E2-specific aptamers do not induce innate immunity. E2 protein is essential for the inhibition of HCV infection by aptamer E1E2-6, and the aptamer binding sites are located in E2. Q412R within E1E2 is the major resistance substitution identified. The data indicate that an aptamer against E1E2 exerts its antiviral effects through inhibition of virus binding to host cells. Aptamers against E1E2 can be used with envelope protein to understand the mechanisms of HCV entry and fusion. The aptamers may hold promise for development as therapeutic drugs for hepatitis C patients. PMID:23877701

  20. Inhibition of Hepatitis C Virus Infection by DNA Aptamer against Envelope Protein

    PubMed Central

    Yang, Darong; Meng, Xianghe; Yu, Qinqin; Xu, Li; Long, Ying; Liu, Bin; Fang, Xiaohong

    2013-01-01

    Hepatitis C virus (HCV) envelope protein (E1E2) is essential for virus binding to host cells. Aptamers have been demonstrated to have strong promising applications in drug development. In the current study, a cDNA fragment encoding the entire E1E2 gene of HCV was cloned. E1E2 protein was expressed and purified. Aptamers for E1E2 were selected by the method of selective evolution of ligands by exponential enrichment (SELEX), and the antiviral actions of the aptamers were examined. The mechanism of their antiviral activity was investigated. The data show that selected aptamers for E1E2 specifically recognize the recombinant E1E2 protein and E1E2 protein from HCV-infected cells. CD81 protein blocks the binding of aptamer E1E2-6 to E1E2 protein. Aptamers against E1E2 inhibit HCV infection in an infectious cell culture system although they have no effect on HCV replication in a replicon cell line. Beta interferon (IFN-β) and IFN-stimulated genes (ISGs) are not induced in virus-infected hepatocytes with aptamer treatment, suggesting that E1E2-specific aptamers do not induce innate immunity. E2 protein is essential for the inhibition of HCV infection by aptamer E1E2-6, and the aptamer binding sites are located in E2. Q412R within E1E2 is the major resistance substitution identified. The data indicate that an aptamer against E1E2 exerts its antiviral effects through inhibition of virus binding to host cells. Aptamers against E1E2 can be used with envelope protein to understand the mechanisms of HCV entry and fusion. The aptamers may hold promise for development as therapeutic drugs for hepatitis C patients. PMID:23877701

  1. Molecular docking analyses of Avicennia marinaderived phytochemicals against white spot syndrome virus (WSSV) envelope protein-VP28

    PubMed Central

    Sahu, Sunil Kumar; Kathiresan, Kandasamy; Singh, Reena; Senthilraja, Poomalai

    2012-01-01

    White spot syndrome (WSS) is one of the most common and most disastrous diseases of shrimp worldwide. It causes up to 100% mortality within 3 to 4 days in commercial shrimp farms, resulting in large economic losses to the shrimp farming industry. VP28 envelope protein of WSSV is reported to play a key role in the systemic infection in shrimps. Considering the most sombre issue of viral disease in cultivated shrimp, the present study was undertaken to substantiate the inhibition potential of Avicennia marinaderived phytochemicals against the WSSV envelope protein VP28. Seven A. marina-derived phytochemicals namely stigmasterol, triterpenoid, betulin, lupeol, avicenol-A, betulinic acid and quercetin were docked against the WSSV protein VP28 by using Argus lab molecular docking software. The chemical structures of the phytochemicals were retrieved from Pubchem database and generated from SMILES notation. Similarly the protein structure of the envelope protein was obtained from protein data bank (PDB-ID: 2ED6). Binding sites were predicted by using ligand explorer software. Among the phytochemicals screened, stigmasterol, lupeol and betulin showed the best binding exhibiting the potential to block VP28 envelope protein of WSSV, which could possibly inhibit the attachment of WSSV to the host species. Further experimental studies will provide a clear understanding on the mode of action of these phytochemicals individually or synergistically against WSSV envelope protein and can be used as an inhibitory drug to reduce white spot related severe complications in crustaceans. PMID:23144547

  2. Nuclear Envelope Protein SUN2 Promotes Cyclophilin-A-Dependent Steps of HIV Replication

    PubMed Central

    Lahaye, Xavier; Satoh, Takeshi; Gentili, Matteo; Cerboni, Silvia; Silvin, Aymeric; Conrad, Cécile; Ahmed-Belkacem, Abdelhakim; Rodriguez, Elisa C.; Guichou, Jean-François; Bosquet, Nathalie; Piel, Matthieu; Le Grand, Roger; King, Megan C.; Pawlotsky, Jean-Michel; Manel, Nicolas

    2016-01-01

    Summary During the early phase of replication, HIV reverse transcribes its RNA and crosses the nuclear envelope while escaping host antiviral defenses. The host factor Cyclophilin A (CypA) is essential for these steps and binds the HIV capsid; however, the mechanism underlying this effect remains elusive. Here, we identify related capsid mutants in HIV-1, HIV-2, and SIVmac that are restricted by CypA. This antiviral restriction of mutated viruses is conserved across species and prevents nuclear import of the viral cDNA. Importantly, the inner nuclear envelope protein SUN2 is required for the antiviral activity of CypA. We show that wild-type HIV exploits SUN2 in primary CD4+ T cells as an essential host factor that is required for the positive effects of CypA on reverse transcription and infection. Altogether, these results establish essential CypA-dependent functions of SUN2 in HIV infection at the nuclear envelope. PMID:27149839

  3. Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3.

    PubMed

    Lui, Pak-Yin; Wong, Lok-Yin Roy; Fung, Cheuk-Lai; Siu, Kam-Leung; Yeung, Man-Lung; Yuen, Kit-San; Chan, Chi-Ping; Woo, Patrick Chiu-Yat; Yuen, Kwok-Yung; Jin, Dong-Yan

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) infection has claimed hundreds of lives and has become a global threat since its emergence in Saudi Arabia in 2012. The ability of MERS-CoV to evade the host innate antiviral response may contribute to its severe pathogenesis. Many MERS-CoV-encoded proteins were identified to have interferon (IFN)-antagonizing properties, which correlates well with the reduced IFN levels observed in infected patients and ex vivo models. In this study, we fully characterized the IFN-antagonizing property of the MERS-CoV M protein. Expression of MERS-CoV M protein suppressed type I IFN expression in response to Sendai virus infection or poly(I:C) induction. This suppressive effect was found to be specific for the activation of IFN regulatory factor 3 (IRF3) but not nuclear factor-κB. MERS-CoV M protein interacted with TRAF3 and disrupted TRAF3-TBK1 association leading to reduced IRF3 activation. M proteins from MERS-CoV and SARS-CoV have three highly similar conserved N-terminal transmembrane domains and a C-terminal region. Using chimeric and truncation mutants, the N-terminal transmembrane domains of the MERS-CoV M protein were found to be sufficient for its inhibitory effect on IFN expression, whereas the C-terminal domain was unable to induce this suppression. Collectively, our findings suggest a common and conserved mechanism through which highly pathogenic MERS-CoV and SARS-CoV harness their M proteins to suppress type I IFN expression at the level of TBK1-dependent phosphorylation and activation of IRF3 resulting in evasion of the host innate antiviral response. PMID:27094905

  4. Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3

    PubMed Central

    Lui, Pak-Yin; Wong, Lok-Yin Roy; Fung, Cheuk-Lai; Siu, Kam-Leung; Yeung, Man-Lung; Yuen, Kit-San; Chan, Chi-Ping; Woo, Patrick Chiu-Yat; Yuen, Kwok-Yung; Jin, Dong-Yan

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) infection has claimed hundreds of lives and has become a global threat since its emergence in Saudi Arabia in 2012. The ability of MERS-CoV to evade the host innate antiviral response may contribute to its severe pathogenesis. Many MERS-CoV-encoded proteins were identified to have interferon (IFN)-antagonizing properties, which correlates well with the reduced IFN levels observed in infected patients and ex vivo models. In this study, we fully characterized the IFN-antagonizing property of the MERS-CoV M protein. Expression of MERS-CoV M protein suppressed type I IFN expression in response to Sendai virus infection or poly(I:C) induction. This suppressive effect was found to be specific for the activation of IFN regulatory factor 3 (IRF3) but not nuclear factor-κB. MERS-CoV M protein interacted with TRAF3 and disrupted TRAF3–TBK1 association leading to reduced IRF3 activation. M proteins from MERS-CoV and SARS-CoV have three highly similar conserved N-terminal transmembrane domains and a C-terminal region. Using chimeric and truncation mutants, the N-terminal transmembrane domains of the MERS-CoV M protein were found to be sufficient for its inhibitory effect on IFN expression, whereas the C-terminal domain was unable to induce this suppression. Collectively, our findings suggest a common and conserved mechanism through which highly pathogenic MERS-CoV and SARS-CoV harness their M proteins to suppress type I IFN expression at the level of TBK1-dependent phosphorylation and activation of IRF3 resulting in evasion of the host innate antiviral response. PMID:27094905

  5. Identification of unique SUN-interacting nuclear envelope proteins with diverse functions in plants.

    PubMed

    Zhou, Xiao; Graumann, Katja; Wirthmueller, Lennart; Jones, Jonathan D G; Meier, Iris

    2014-06-01

    Although a plethora of nuclear envelope (NE) transmembrane proteins (NETs) have been identified in opisthokonts, plant NETs are largely unknown. The only known NET homologues in plants are Sad1/UNC-84 (SUN) proteins, which bind Klarsicht/ANC-1/Syne-1 homology (KASH) proteins. Therefore, de novo identification of plant NETs is necessary. Based on similarities between opisthokont KASH proteins and the only known plant KASH proteins, WPP domain-interacting proteins, we used a computational method to identify the KASH subset of plant NETs. Ten potential plant KASH protein families were identified, and five candidates from four of these families were verified for their NE localization, depending on SUN domain interaction. Of those, Arabidopsis thaliana SINE1 is involved in actin-dependent nuclear positioning in guard cells, whereas its paralogue SINE2 contributes to innate immunity against an oomycete pathogen. This study dramatically expands our knowledge of plant KASH proteins and suggests that plants and opisthokonts have recruited different KASH proteins to perform NE regulatory functions. PMID:24891605

  6. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins

    SciTech Connect

    Maric, Martina; Haugo, Alison C.; Dauer, William; Johnson, David; Roller, Richard J.

    2014-07-15

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. - Highlights: • We show that wild-type HSV can induce breakdown of the nuclear envelope in a specific cell system. • The viral fusion proteins gB and gH are required for induction of nuclear envelope breakdown. • Nuclear envelope breakdown cannot compensate for deletion of the HSV UL34 gene.

  7. Coat as a Dagger: The Use of Capsid Proteins to Perforate Membranes during Non-Enveloped DNA Viruses Trafficking

    PubMed Central

    Bilkova, Eva; Forstova, Jitka; Abrahamyan, Levon

    2014-01-01

    To get access to the replication site, small non-enveloped DNA viruses have to cross the cell membrane using a limited number of capsid proteins, which also protect the viral genome in the extracellular environment. Most of DNA viruses have to reach the nucleus to replicate. The capsid proteins involved in transmembrane penetration are exposed or released during endosomal trafficking of the virus. Subsequently, the conserved domains of capsid proteins interact with cellular membranes and ensure their efficient permeabilization. This review summarizes our current knowledge concerning the role of capsid proteins of small non-enveloped DNA viruses in intracellular membrane perturbation in the early stages of infection. PMID:25055856

  8. A Single Herpesvirus Protein Can Mediate Vesicle Formation in the Nuclear Envelope*

    PubMed Central

    Lorenz, Michael; Vollmer, Benjamin; Unsay, Joseph D.; Klupp, Barbara G.; García-Sáez, Ana J.; Mettenleiter, Thomas C.; Antonin, Wolfram

    2015-01-01

    Herpesviruses assemble capsids in the nucleus and egress by unconventional vesicle-mediated trafficking through the nuclear envelope. Capsids bud at the inner nuclear membrane into the nuclear envelope lumen. The resulting intralumenal vesicles fuse with the outer nuclear membrane, delivering the capsids to the cytoplasm. Two viral proteins are required for vesicle formation, the tail-anchored pUL34 and its soluble interactor, pUL31. Whether cellular proteins are involved is unclear. Using giant unilamellar vesicles, we show that pUL31 and pUL34 are sufficient for membrane budding and scission. pUL34 function can be bypassed by membrane tethering of pUL31, demonstrating that pUL34 is required for pUL31 membrane recruitment but not for membrane remodeling. pUL31 can inwardly deform membranes by oligomerizing on their inner surface to form buds that constrict to vesicles. Therefore, a single viral protein can mediate all events necessary for membrane budding and abscission. PMID:25605719

  9. Functional dissection of the Moloney murine leukemia virus envelope protein gp70.

    PubMed

    Bae, Y; Kingsman, S M; Kingsman, A J

    1997-03-01

    The envelope protein of Moloney murine leukemia virus (Mo-MLV) is a complex glycoprotein that mediates receptor binding and entry via fusion with cell membranes. By using a series of substitution mutations and truncations in the Mo-MLV external envelope surface protein gp70, we have identified regions important for these processes. Firstly, truncations of gp70 revealed that the minimal continuous receptor-binding region is amino acids 9 to 230, in broad agreement with other studies. Secondly, within this region there are two key basic amino acids, Arg-83 and Arg-95, that are essential for receptor binding and may interact with a negatively charged residue(s) or with the pi electrons of the aromatic ring on a hydrophobic residue(s) in the basic amino acid transporter protein that is the Mo-MLV ecotropic receptor. Finally, we showed that outside the minimal receptor-binding region at amino acids 2 to 8, there is a region that is essential for postbinding fusion events. PMID:9032341

  10. Accurate and Efficient Resolution of Overlapping Isotopic Envelopes in Protein Tandem Mass Spectra

    PubMed Central

    Xiao, Kaijie; Yu, Fan; Fang, Houqin; Xue, Bingbing; Liu, Yan; Tian, Zhixin

    2015-01-01

    It has long been an analytical challenge to accurately and efficiently resolve extremely dense overlapping isotopic envelopes (OIEs) in protein tandem mass spectra to confidently identify proteins. Here, we report a computationally efficient method, called OIE_CARE, to resolve OIEs by calculating the relative deviation between the ideal and observed experimental abundance. In the OIE_CARE method, the ideal experimental abundance of a particular overlapping isotopic peak (OIP) is first calculated for all the OIEs sharing this OIP. The relative deviation (RD) of the overall observed experimental abundance of this OIP relative to the summed ideal value is then calculated. The final individual abundance of the OIP for each OIE is the individual ideal experimental abundance multiplied by 1 + RD. Initial studies were performed using higher-energy collisional dissociation tandem mass spectra on myoglobin (with direct infusion) and the intact E. coli proteome (with liquid chromatographic separation). Comprehensive data at the protein and proteome levels, high confidence and good reproducibility were achieved. The resolving method reported here can, in principle, be extended to resolve any envelope-type overlapping data for which the corresponding theoretical reference values are available. PMID:26439836

  11. Role of protein disulfide isomerase and other thiol-reactive proteins in HIV-1 envelope protein-mediated fusion

    SciTech Connect

    Ou Wu . E-mail: wou@niaid.nih.gov; Silver, Jonathan . E-mail: jsilver@nih.gov

    2006-07-05

    Cell-surface protein disulfide isomerase (PDI) has been proposed to promote disulfide bond rearrangements in HIV-1 envelope protein (Env) that accompany Env-mediated fusion. We evaluated the role of PDI in ways that have not been previously tested by downregulating PDI with siRNA and by overexpressing wild-type or variant forms of PDI in transiently and stably transfected cells. These manipulations, as well as treatment with anti-PDI antibodies, had only small effects on infection or cell fusion mediated by NL4-3 or AD8 strains of HIV-1. However, the cell-surface thiol-reactive reagent 5, 5'-dithiobis(2-nitrobenzoic acid) (DTNB) had a much stronger inhibitory effect in our system, suggesting that cell-surface thiol-containing molecules other than PDI, acting alone or in concert, have a greater effect than PDI on HIV-1 Env-mediated fusion. We evaluated one such candidate, thioredoxin, a PDI family member reported to reduce a labile disulfide bond in CD4. We found that the ability of thioredoxin to reduce the disulfide bond in CD4 is enhanced in the presence of HIV-1 Env gp120 and that thioredoxin also reduces disulfide bonds in gp120 directly in the absence of CD4. We discuss the implications of these observations for identification of molecules involved in disulfide rearrangements in Env during fusion.

  12. The small envelope protein of porcine reproductive and respiratory syndrome virus possesses ion channel protein-like properties

    SciTech Connect

    Lee, Changhee; Yoo, Dongwan . E-mail: dyoo@uoguelph.ca

    2006-11-10

    The small envelope (E) protein of porcine reproductive and respiratory syndrome virus (PRRSV) is a hydrophobic 73 amino acid protein encoded in the internal open reading frame (ORF) of the bicistronic mRNA2. As a first step towards understanding the biological role of E protein during PRRSV replication, E gene expression was blocked in a full-length infectious clone by mutating the ATG translational initiation to GTG, such that the full-length mutant genomic clone was unable to synthesize the E protein. DNA transfection of PRRSV-susceptible cells with the E gene knocked-out genomic clone showed the absence of virus infectivity. P129-{delta}E-transfected cells however produced virion particles in the culture supernatant, and these particles contained viral genomic RNA, demonstrating that the E protein is essential for PRRSV infection but dispensable for virion assembly. Electron microscopy suggests that the P129-{delta}E virions assembled in the absence of E had a similar appearance to the wild-type particles. Strand-specific RT-PCR demonstrated that the E protein-negative, non-infectious P129-{delta}E virus particles were able to enter cells but further steps of replication were interrupted. The entry of PRRSV has been suggested to be via receptor-mediated endocytosis, and lysomotropic basic compounds and known ion-channel blocking agents both inhibited PRRSV replication effectively during the uncoating process. The expression of E protein in Escherichia coli-mediated cell growth arrests and increased the membrane permeability. Cross-linking experiments in cells infected with PRRSV or transfected with E gene showed that the E protein was able to form homo-oligomers. Taken together, our data suggest that the PRRSV E protein is likely an ion-channel protein embedded in the viral envelope and facilitates uncoating of virus and release of the genome in the cytoplasm.

  13. Proteomic analysis of shrimp white spot syndrome viral proteins and characterization of a novel envelope protein VP466.

    PubMed

    Huang, Canhua; Zhang, Xiaobo; Lin, Qingsong; Xu, Xun; Hu, Zhihong; Hew, Choy-L

    2002-03-01

    White spot syndrome virus (WSSV) is at present one of the major pathogens in shrimp culture worldwide. The complete genome of this virus has been sequenced recently. To identify the structural and functional proteins of WSSV, the purified virions were separated by SDS-PAGE. Twenty-four protein bands were excised, in-gel digested with trypsin, and subjected to matrix-assisted laser desorption ionization-time of flight mass spectrometry and electrospray ionization tandem mass spectrometry, respectively. Eighteen proteins matching the open reading frames of WSSV genome were identified. Except for three known structural proteins and collagen, the functions of the remaining 14 proteins were unknown. Temporal analysis revealed that all the genes were transcribed in the late stage of WSSV infection except for vp121. Of the newly identified proteins, VP466 (derived from band 16) was further characterized. The cDNA encoding VP466 was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein. Specific antibody was generated with the purified GST-VP466 fusion protein. Western blot showed that the mouse anti-GST-VP466 antibody bound specifically to a 51-kDa protein of WSSV. Immunogold labeling revealed that VP466 protein is a component of the viral envelope. Results in this investigation thus proved the effectiveness of proteomic approaches for discovering new proteins of WSSV. PMID:12096122

  14. The HERV-K Human Endogenous Retrovirus Envelope Protein Antagonizes Tetherin Antiviral Activity

    PubMed Central

    Lemaître, Cécile; Harper, Francis; Pierron, Gérard

    2014-01-01

    ABSTRACT Endogenous retroviruses are the remnants of past retroviral infections that are scattered within mammalian genomes. In humans, most of these elements are old degenerate sequences that have lost their coding properties. The HERV-K(HML2) family is an exception: it recently amplified in the human genome and corresponds to the most active proviruses, with some intact open reading frames and the potential to encode viral particles. Here, using a reconstructed consensus element, we show that HERV-K(HML2) proviruses are able to inhibit Tetherin, a cellular restriction factor that is active against most enveloped viruses and acts by keeping the viral particles attached to the cell surface. More precisely, we identify the Envelope protein (Env) as the viral effector active against Tetherin. Through immunoprecipitation experiments, we show that the recognition of Tetherin is mediated by the surface subunit of Env. Similar to Ebola glycoprotein, HERV-K(HML2) Env does not mediate Tetherin degradation or cell surface removal; therefore, it uses a yet-undescribed mechanism to inactivate Tetherin. We also assessed all natural complete alleles of endogenous HERV-K(HML2) Env described to date for their ability to inhibit Tetherin and found that two of them (out of six) can block Tetherin restriction. However, due to their recent amplification, HERV-K(HML2) elements are extremely polymorphic in the human population, and it is likely that individuals will not all possess the same anti-Tetherin potential. Because of Tetherin's role as a restriction factor capable of inducing innate immune responses, this could have functional consequences for individual responses to infection. IMPORTANCE Tetherin, a cellular protein initially characterized for its role against HIV-1, has been proven to counteract numerous enveloped viruses. It blocks the release of viral particles from producer cells, keeping them tethered to the cell surface. Several viruses have developed strategies to

  15. Inner nuclear envelope protein SUN1 plays a prominent role in mammalian mRNA export

    PubMed Central

    Li, Ping; Noegel, Angelika A.

    2015-01-01

    Nuclear export of messenger ribonucleoproteins (mRNPs) through the nuclear pore complex (NPC) can be roughly classified into two forms: bulk and specific export, involving an nuclear RNA export factor 1 (NXF1)-dependent pathway and chromosome region maintenance 1 (CRM1)-dependent pathway, respectively. SUN proteins constitute the inner nuclear envelope component of the linker of nucleoskeleton and cytoskeleton (LINC) complex. Here, we show that mammalian cells require SUN1 for efficient nuclear mRNP export. The results indicate that both SUN1 and SUN2 interact with heterogeneous nuclear ribonucleoprotein (hnRNP) F/H and hnRNP K/J. SUN1 depletion inhibits the mRNP export, with accumulations of both hnRNPs and poly(A)+RNA in the nucleus. Leptomycin B treatment indicates that SUN1 functions in mammalian mRNA export involving the NXF1-dependent pathway. SUN1 mediates mRNA export through its association with mRNP complexes via a direct interaction with NXF1. Additionally, SUN1 associates with the NPC through a direct interaction with Nup153, a nuclear pore component involved in mRNA export. Taken together, our results reveal that the inner nuclear envelope protein SUN1 has additional functions aside from being a central component of the LINC complex and that it is an integral component of the mammalian mRNA export pathway suggesting a model whereby SUN1 recruits NXF1-containing mRNP onto the nuclear envelope and hands it over to Nup153. PMID:26476453

  16. Phylogenetic and phylogeographic mapping of the avian coronavirus spike protein-encoding gene in wild and synanthropic birds.

    PubMed

    Durães-Carvalho, Ricardo; Caserta, Leonardo C; Barnabé, Ana C S; Martini, Matheus C; Simas, Paulo V M; Santos, Márcia M B; Salemi, Marco; Arns, Clarice W

    2015-04-01

    The evolution and population dynamics of avian coronaviruses (AvCoVs) remain underexplored. In the present study, in-depth phylogenetic and Bayesian phylogeographic studies were conducted to investigate the evolutionary dynamics of AvCoVs detected in wild and synanthropic birds. A total of 500 samples, including tracheal and cloacal swabs collected from 312 wild birds belonging to 42 species, were analysed using molecular assays. A total of 65 samples (13%) from 22 bird species were positive for AvCoV. Molecular evolution analyses revealed that the sequences from samples collected in Brazil did not cluster with any of the AvCoV S1 gene sequences deposited in the GenBank database. Bayesian framework analysis estimated an AvCoV strain from Sweden (1999) as the most recent common ancestor of the AvCoVs detected in this study. Furthermore, the analysis inferred an increase in the AvCoV dynamic demographic population in different wild and synanthropic bird species, suggesting that birds may be potential new hosts responsible for spreading this virus. PMID:25771408

  17. The selective biotin tagging and thermolysin proteolysis of chloroplast outer envelope proteins reveals information on protein topology and association into complexes

    PubMed Central

    Hardré, Hélène; Kuhn, Lauriane; Albrieux, Catherine; Jouhet, Juliette; Michaud, Morgane; Seigneurin-Berny, Daphné; Falconet, Denis; Block, Maryse A.; Maréchal, Eric

    2014-01-01

    The understanding of chloroplast function requires the precise localization of proteins in each of its sub-compartments. High-sensitivity mass spectrometry has allowed the inventory of proteins in thylakoid, stroma, and envelope fractions. Concerning membrane association, proteins can be either integral or peripheral or even soluble proteins bound transiently to a membrane complex. We sought a method providing information at the surface of the outer envelope membrane (OEM), based on specific tagging with biotin or proteolysis using thermolysin, a non-membrane permeable protease. To evaluate this method, envelope, thylakoid, and stroma proteins were separated by two-dimensional electrophoresis and analyzed by immunostaining and mass spectrometry. A short selection of proteins associated to the chloroplast envelope fraction was checked after superficial treatments of intact chloroplasts. We showed that this method could allow the characterization of OEM embedded proteins facing the cytosol, as well as peripheral and soluble proteins associated via tight or lose interactions. Some stromal proteins were associated with biotinylated spots and analyzes are still needed to determine whether polypeptides were tagged prior import or if they co-migrated with OEM proteins. This method also suggests that some proteins associated with the inner envelope membrane (IEM) might need the integrity of a trans-envelope (IEM–OEM) protein complex (e.g., division ring-forming components) or at least an intact OEM partner. Following this evaluation, proteomic analyzes should be refined and the putative role of inter-membrane space components stabilizing trans-envelope complexes demonstrated. For future comprehensive studies, perspectives include the dynamic analyses of OEM proteins and IEM–OEM complexes in various physiological contexts and using virtually any other purified membrane organelle. PMID:24999344

  18. A single amino acid substitution (R441A) in the receptor-binding domain of SARS coronavirus spike protein disrupts the antigenic structure and binding activity

    SciTech Connect

    He Yuxian . E-mail: yhe@nybloodcenter.org; Li Jingjing; Jiang Shibo

    2006-05-26

    The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) has two major functions: interacting with the receptor to mediate virus entry and inducing protective immunity. Coincidently, the receptor-binding domain (RBD, residues 318-510) of SAR-CoV S protein is a major antigenic site to induce neutralizing antibodies. Here, we used RBD-Fc, a fusion protein containing the RBD and human IgG1 Fc, as a model in the studies and found that a single amino acid substitution in the RBD (R441A) could abolish the immunogenicity of RBD to induce neutralizing antibodies in immunized mice and rabbits. With a panel of anti-RBD mAbs as probes, we observed that R441A substitution was able to disrupt the majority of neutralizing epitopes in the RBD, suggesting that this residue is critical for the antigenic structure responsible for inducing protective immune responses. We also demonstrated that the RBD-Fc bearing R441A mutation could not bind to soluble and cell-associated angiotensin-converting enzyme 2 (ACE2), the functional receptor for SARS-CoV and failed to block S protein-mediated pseudovirus entry, indicating that this point mutation also disrupted the receptor-binding motif (RBM) in the RBD. Taken together, these data provide direct evidence to show that a single amino acid residue at key position in the RBD can determine the major function of SARS-CoV S protein and imply for designing SARS vaccines and therapeutics.

  19. Nuclear Magnetic Resonance Structure of the Nucleic Acid-Binding Domain of Severe Acute Respiratory Syndrome Coronavirus Nonstructural Protein 3▿

    PubMed Central

    Serrano, Pedro; Johnson, Margaret A.; Chatterjee, Amarnath; Neuman, Benjamin W.; Joseph, Jeremiah S.; Buchmeier, Michael J.; Kuhn, Peter; Wüthrich, Kurt

    2009-01-01

    The nuclear magnetic resonance (NMR) structure of a globular domain of residues 1071 to 1178 within the previously annotated nucleic acid-binding region (NAB) of severe acute respiratory syndrome coronavirus nonstructural protein 3 (nsp3) has been determined, and N- and C-terminally adjoining polypeptide segments of 37 and 25 residues, respectively, have been shown to form flexibly extended linkers to the preceding globular domain and to the following, as yet uncharacterized domain. This extension of the structural coverage of nsp3 was obtained from NMR studies with an nsp3 construct comprising residues 1066 to 1181 [nsp3(1066-1181)] and the constructs nsp3(1066-1203) and nsp3(1035-1181). A search of the protein structure database indicates that the globular domain of the NAB represents a new fold, with a parallel four-strand β-sheet holding two α-helices of three and four turns that are oriented antiparallel to the β-strands. Two antiparallel two-strand β-sheets and two 310-helices are anchored against the surface of this barrel-like molecular core. Chemical shift changes upon the addition of single-stranded RNAs (ssRNAs) identified a group of residues that form a positively charged patch on the protein surface as the binding site responsible for the previously reported affinity for nucleic acids. This binding site is similar to the ssRNA-binding site of the sterile alpha motif domain of the Saccharomyces cerevisiae Vts1p protein, although the two proteins do not share a common globular fold. PMID:19828617

  20. Expression and characterization of a soluble rubella virus E1 envelope protein.

    PubMed

    Seto, N O; Gillam, S

    1994-10-01

    Individual specific antigenic rubella virus (RV) structural proteins are required for accurate serological diagnosis of acute and congenital rubella infections as well as rubella immune status. The RV envelope glycoprotein E1 is the major target antigen and plays an important role in viral-specific immune responses. The native virion is difficult to produce in large quantities and the protein subunits are also difficult to isolate without loss of antigenicity. The production of a soluble RV E1 (designated E1 delta Tm) using the baculovirus-insect cell expression system is described. In contrast to wild-type RV E1, the genetically engineered E1 delta Tm protein lacks a transmembrane anchor. It behaved as a secretory protein and was secreted abundantly from insect cells. Pulse-chase studies were used to examine the synthesis, glycosylation, and secretion of E1 delta Tm by the insect cells. The secreted E1 delta Tm protein was purified from serum-free medium by one-step immunochromatography. The purified E1 delta Tm protein retained full antigenicity and may be a convenient source of E1 protein for use in diagnostic assay and rubella vaccine development. PMID:7852960

  1. Envelope Proteins of White Spot Syndrome Virus (WSSV) Interact with Litopenaeus vannamei Peritrophin-Like Protein (LvPT)

    PubMed Central

    Xie, Shijun; Zhang, Xiaojun; Zhang, Jiquan; Li, Fuhua; Xiang, Jianhai

    2015-01-01

    White spot syndrome virus (WSSV) is a major pathogen in shrimp cultures. The interactions between viral proteins and their receptors on the surface of cells in a frontier target tissue are crucial for triggering an infection. In this study, a yeast two-hybrid (Y2H) library was constructed using cDNA obtained from the stomach and gut of Litopenaeus vannamei, to ascertain the role of envelope proteins in WSSV infection. For this purpose, VP37 was used as the bait in the Y2H library screening. Forty positive clones were detected after screening. The positive clones were analyzed and discriminated, and two clones belonging to the peritrophin family were subsequently confirmed as genuine positive clones. Sequence analysis revealed that both clones could be considered as the same gene, LV-peritrophin (LvPT). Co-immunoprecipitation confirmed the interaction between LvPT and VP37. Further studies in the Y2H system revealed that LvPT could also interact with other WSSV envelope proteins such as VP32, VP38A, VP39B, and VP41A. The distribution of LvPT in tissues revealed that LvPT was mainly expressed in the stomach than in other tissues. In addition, LvPT was found to be a secretory protein, and its chitin-binding ability was also confirmed. PMID:26692362

  2. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor

    SciTech Connect

    Peng, Guiqing; Sun, Dawei; Rajashankar, Kanagalaghatta R.; Qian, Zhaohui; Holmes, Kathryn V.; Li, Fang

    2011-09-28

    Coronaviruses have evolved diverse mechanisms to recognize different receptors for their cross-species transmission and host-range expansion. Mouse hepatitis coronavirus (MHV) uses the N-terminal domain (NTD) of its spike protein as its receptor-binding domain. Here we present the crystal structure of MHV NTD complexed with its receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a). Unexpectedly, MHV NTD contains a core structure that has the same {beta}-sandwich fold as human galectins (S-lectins) and additional structural motifs that bind to the N-terminal Ig-like domain of mCEACAM1a. Despite its galectin fold, MHV NTD does not bind sugars, but instead binds mCEACAM1a through exclusive protein-protein interactions. Critical contacts at the interface have been confirmed by mutagenesis, providing a structural basis for viral and host specificities of coronavirus/CEACAM1 interactions. Sugar-binding assays reveal that galectin-like NTDs of some coronaviruses such as human coronavirus OC43 and bovine coronavirus bind sugars. Structural analysis and mutagenesis localize the sugar-binding site in coronavirus NTDs to be above the {beta}-sandwich core. We propose that coronavirus NTDs originated from a host galectin and retained sugar-binding functions in some contemporary coronaviruses, but evolved new structural features in MHV for mCEACAM1a binding.

  3. The Flavivirus Precursor Membrane-Envelope Protein Complex: Structure and Maturation

    SciTech Connect

    Li, Long; Lok, Shee-Mei; Yu, I-Mei; Zhang, Ying; Kuhn, Richard J.; Chen, Jue; Rossmann, Michael G.

    2008-09-17

    Many viruses go through a maturation step in the final stages of assembly before being transmitted to another host. The maturation process of flaviviruses is directed by the proteolytic cleavage of the precursor membrane protein (prM), turning inert virus into infectious particles. We have determined the 2.2 angstrom resolution crystal structure of a recombinant protein in which the dengue virus prM is linked to the envelope glycoprotein E. The structure represents the prM-E heterodimer and fits well into the cryo-electron microscopy density of immature virus at neutral pH. The pr peptide {beta}-barrel structure covers the fusion loop in E, preventing fusion with host cell membranes. The structure provides a basis for identifying the stages of its pH-directed conformational metamorphosis during maturation, ending with release of pr when budding from the host.

  4. Enhanced proliferation of primary rat type II pneumocytes by Jaagsiekte sheep retrovirus envelope protein

    SciTech Connect

    Johnson, Chassidy; Jahid, Sohail; Voelker, Dennis R.; Fan Hung

    2011-04-10

    Jaagsiekte sheep retrovirus (JSRV) is the causative agent of a contagious lung cancer in sheep. The envelope protein (Env) is the oncogene, as it can transform cell lines in culture and induce tumors in animals, although the mechanisms for transformation are not yet clear because a system to perform transformation assays in differentiated type II pneumocytes does not exist. In this study we report culture of primary rat type II pneumocytes in conditions that favor prolonged expression of markers for type II pneumocytes. Env-expressing cultures formed more colonies that were larger in size and were viable for longer periods of time compared to vector control samples. The cells that remained in culture longer were confirmed to be derived from type II pneumocytes because they expressed surfactant protein C, cytokeratin, displayed alkaline phosphatase activity and were positive for Nile red. This system will be useful to study JSRV Env in the targets of transformation.

  5. Nuclear Pore Basket Proteins Are Tethered to the Nuclear Envelope and Can Regulate Membrane Curvature

    PubMed Central

    Mészáros, Noémi; Cibulka, Jakub; Mendiburo, Maria Jose; Romanauska, Anete; Schneider, Maren; Köhler, Alwin

    2015-01-01

    Summary Nuclear pore complexes (NPCs) are selective transport channels embedded in the nuclear envelope. The cylindrical NPC core forms a protein coat lining a highly curved membrane opening and has a basket-like structure appended to the nucleoplasmic side. How NPCs interact with lipids, promoting membrane bending and NPC integrity, is poorly understood. Here we show that the NPC basket proteins Nup1 and Nup60 directly induce membrane curvature by amphipathic helix insertion into the lipid bilayer. In a cell-free system, both Nup1 and Nup60 transform spherical liposomes into highly curved membrane structures. In vivo, high levels of the Nup1/Nup60 amphipathic helices cause deformation of the yeast nuclear membrane, whereas adjacent helical regions contribute to anchoring the basket to the NPC core. Basket amphipathic helices are functionally linked to distinct transmembrane nucleoporins of the NPC core, suggesting a key contribution to the membrane remodeling events that underlie NPC assembly. PMID:25942622

  6. Influence of hydrophobic and electrostatic residues on SARS-coronavirus S2 protein stability: Insights into mechanisms of general viral fusion and inhibitor design

    PubMed Central

    Aydin, Halil; Al-Khooly, Dina; Lee, Jeffrey E

    2014-01-01

    Severe acute respiratory syndrome (SARS) is an acute respiratory disease caused by the SARS-coronavirus (SARS-CoV). SARS-CoV entry is facilitated by the spike protein (S), which consists of an N-terminal domain (S1) responsible for cellular attachment and a C-terminal domain (S2) that mediates viral and host cell membrane fusion. The SARS-CoV S2 is a potential drug target, as peptidomimetics against S2 act as potent fusion inhibitors. In this study, site-directed mutagenesis and thermal stability experiments on electrostatic, hydrophobic, and polar residues to dissect their roles in stabilizing the S2 postfusion conformation was performed. It was shown that unlike the pH-independent retroviral fusion proteins, SARS-CoV S2 is stable over a wide pH range, supporting its ability to fuse at both the plasma membrane and endosome. A comprehensive SARS-CoV S2 analysis showed that specific hydrophobic positions at the C-terminal end of the HR2, rather than electrostatics are critical for fusion protein stabilization. Disruption of the conserved C-terminal hydrophobic residues destabilized the fusion core and reduced the melting temperature by 30°C. The importance of the C-terminal hydrophobic residues led us to identify a 42-residue substructure on the central core that is structurally conserved in all existing CoV S2 fusion proteins (root mean squared deviation = 0.4 Å). This is the first study to identify such a conserved substructure and likely represents a common foundation to facilitate viral fusion. We have discussed the role of key residues in the design of fusion inhibitors and the potential of the substructure as a general target for the development of novel therapeutics against CoV infections. PMID:24519901

  7. Oral and parenteral immunization of chickens (Gallus gallus) against West Nile virus with recombinant envelope protein

    USGS Publications Warehouse

    Fassbinder-Orth, C. A.; Hofmeister, E.K.; Weeks-Levy, C.; Karasov, W.H.

    2009-01-01

    West Nile virus (WNV) causes morbidity and mortality in humans, horses, and in more than 315 bird species in North America. Currently approved WNV vaccines are designed for parenteral administration and, as yet, no effective oral WNV vaccines have been developed. WNV envelope (E) protein is a highly antigenic protein that elicits the majority of virus-neutralizing antibodies during a WNV immune response. Leghorn chickens were given three vaccinations (each 2 wk apart) of E protein orally (20 ??g or 100 ??g/dose), of E protein intramuscularly (IM, 20 ??g/dose), or of adjuvant only (control group) followed by a WNV challenge. Viremias were measured post-WNV infection, and three new enzyme-linked immunosorbent assays were developed for quantifying IgM, IgY, and IgA-mediated immune response of birds following WNV infection. WNV viremia levels were significantly lower in the IM group than in both oral groups and the control group. Total WNV E protein-specific IgY production was significantly greater, and WNV nonstructural 1-specific IgY was significantly less, in the IM group compared to all other treatment groups. The results of this study indicate that IM vaccination of chickens with E protein is protective against WNV infection and results in a significantly different antibody production profile as compared to both orally vaccinated and nonvaccinated birds. ?? 2009 American Association of Avian Pathologists.

  8. Proteomic analysis of Brucella abortus cell envelope and identification of immunogenic candidate proteins for vaccine development.

    PubMed

    Connolly, Joseph P; Comerci, Diego; Alefantis, Timothy G; Walz, Alexander; Quan, Marian; Chafin, Ryan; Grewal, Paul; Mujer, Cesar V; Ugalde, Rodolfo A; DelVecchio, Vito G

    2006-07-01

    Brucella abortus is the etiologic agent of bovine brucellosis and causes a chronic disease in humans known as undulant fever. In livestock the disease is characterized by abortion and sterility. Live, attenuated vaccines such as S19 and RB51 have been used to control the spread of the disease in animals; however, they are considered unsafe for human use and they induce abortion in pregnant cattle. For the development of a safer and equally efficacious vaccine, immunoproteomics was utilized to identify novel candidate proteins from B. abortus cell envelope (CE). A total of 163 proteins were identified using 2-DE with MALDI-TOF MS and LC-MS/MS. Some of the major protein components include outer-membrane protein (OMP) 25, OMP31, Omp2b porin, and 60 kDa chaperonin GroEL. 2-DE Western blot analyses probed with antiserum from bovine and a human patient infected with Brucella identified several new immunogenic proteins such as fumarate reductase flavoprotein subunit, F0F1-type ATP synthase alpha subunit, and cysteine synthase A. The elucidation of the immunome of B. abortus CE identified a number of candidate proteins for developing vaccines against Brucella infection in bovine and humans. PMID:16739129

  9. Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion

    SciTech Connect

    Simmons, Graham; Bertram, Stephanie; Glowacka, Ilona; Steffen, Imke; Chaipan, Chawaree; Agudelo, Juliet; Lu Kai; Rennekamp, Andrew J.; Hofmann, Heike; Bates, Paul; Poehlmann, Stefan

    2011-05-10

    Severe acute respiratory syndrome coronavirus (SARS-CoV) poses a considerable threat to human health. Activation of the viral spike (S)-protein by host cell proteases is essential for viral infectivity. However, the cleavage sites in SARS-S and the protease(s) activating SARS-S are incompletely defined. We found that R667 was dispensable for SARS-S-driven virus-cell fusion and for SARS-S-activation by trypsin and cathepsin L in a virus-virus fusion assay. Mutation T760R, which optimizes the minimal furin consensus motif 758-RXXR-762, and furin overexpression augmented SARS-S activity, but did not result in detectable SARS-S cleavage. Finally, SARS-S-driven cell-cell fusion was independent of cathepsin L, a protease essential for virus-cell fusion. Instead, a so far unknown leupeptin-sensitive host cell protease activated cellular SARS-S for fusion with target cells expressing high levels of ACE2. Thus, different host cell proteases activate SARS-S for virus-cell and cell-cell fusion and SARS-S cleavage at R667 and 758-RXXR-762 can be dispensable for SARS-S activation.

  10. Antibody to severe acute respiratory syndrome (SARS)-associated coronavirus spike protein domain 2 cross-reacts with lung epithelial cells and causes cytotoxicity

    PubMed Central

    Lin, Y S; Lin, C F; Fang, Y T; Kuo, Y M; Liao, P C; Yeh, T M; Hwa, K Y; Shieh, C C K; Yen, J H; Wang, H J; Su, I J; Lei, H Y

    2005-01-01

    Both viral effect and immune-mediated mechanism are involved in the pathogenesis of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infection. In this study, we showed that in SARS patient sera there were autoantibodies (autoAbs) that reacted with A549 cells, the type-2 pneumocytes, and that these autoAbs were mainly IgG. The autoAbs were detectable 20 days after fever onset. Tests of non-SARS-pneumonia patients did not show the same autoAb production as in SARS patients. After sera IgG bound to A549 cells, cytotoxicity was induced. Cell cytotoxicity and the anti-epithelial cell IgG level were positively correlated. Preabsorption and binding assays indicated the existence of cross-reactive epitopes on SARS-CoV spike protein domain 2 (S2). Furthermore, treatment of A549 cells with anti-S2 Abs and IFN-γ resulted in an increase in the adherence of human peripheral blood mononuclear cells to these epithelial cells. Taken together, we have demonstrated that the anti-S2 Abs in SARS patient sera cause cytotoxic injury as well as enhance immune cell adhesion to epithelial cells. The onset of autoimmune responses in SARS-CoV infection may be implicated in SARS pathogenesis. PMID:16045740

  11. A novel human coronavirus: Middle East respiratory syndrome human coronavirus.

    PubMed

    Geng, HeYuan; Tan, WenJie

    2013-08-01

    In 2012, a novel coronavirus, initially named as human coronavirus EMC (HCoV-EMC) but recently renamed as Middle East respiratory syndrome human coronavirus (MERS-CoV), was identified in patients who suffered severe acute respiratory infection and subsequent renal failure that resulted in death. Ongoing epidemiological investigations together with retrospective studies have found 61 laboratory-confirmed cases of infection with this novel coronavirus, including 34 deaths to date. This novel coronavirus is culturable and two complete genome sequences are now available. Furthermore, molecular detection and indirect immunofluorescence assay have been developed. The present paper summarises the limited recent advances of this novel human coronavirus, including its discovery, genomic characterisation and detection. PMID:23917839

  12. Contribution of Protein and Lipid Components to the Salt Response of Envelopes of an Extremely Halophilic Bacterium1

    PubMed Central

    Kushner, D. J.; Onishi, H.

    1966-01-01

    Kushner, D. J. (National Research Council, Ottawa, Ontario, Canada), and H. Onishi. Contribution of protein and lipid components to the salt response of envelopes of an extremely halophilic bacterium. J. Bacteriol. 91:653–660. 1966.—Removal of protein from envelopes of Halobacterium cutirubrum by peptic digestion left residues that required little or no salt for stability. The salt requirement of envelopes was also lowered by incubation in 0.1 m MgCl2, and could be lowered even further by digestion with trypsin or chymotrypsin in 0.1 m MgCl2. Dissolution of envelopes in low salt concentrations made their protein more susceptible to attack by these and other proteolytic enzymes. Removal of lipids raised the requirement for divalent cations, particularly for Mg++; it slightly increased the Na+ requirement and did not affect the requirement for K+. It was concluded that the requirement for high salt concentrations in extreme halophiles is due to mutual repulsion between negatively charged groups on proteins rather than to repulsion between negatively charged phosphate groups on the lipids. The latter act primarily as sites on which divalent cations, especially Mg++ which is required in high concentrations by growing cells, are bound. In this manner, the phosphate groups support envelope structure. PMID:5327362

  13. Immunogenicity of a novel tetravalent vaccine formulation with four recombinant lipidated dengue envelope protein domain IIIs in mice

    PubMed Central

    Chiang, Chen-Yi; Pan, Chien-Hsiung; Chen, Mei-Yu; Hsieh, Chun-Hsiang; Tsai, Jy-Ping; Liu, Hsueh-Hung; Liu, Shih-Jen; Chong, Pele; Leng, Chih-Hsiang; Chen, Hsin-Wei

    2016-01-01

    We developed a novel platform to express high levels of recombinant lipoproteins with intrinsic adjuvant properties. Based on this technology, our group developed recombinant lipidated dengue envelope protein domain IIIs as vaccine candidates against dengue virus. This work aims to evaluate the immune responses in mice to the tetravalent formulation. We demonstrate that 4 serotypes of recombinant lipidated dengue envelope protein domain III induced both humoral and cellular immunity against all 4 serotypes of dengue virus on the mixture that formed the tetravalent formulation. Importantly, the immune responses induced by the tetravalent formulation in the absence of the exogenous adjuvant were functional in clearing the 4 serotypes of dengue virus in vivo. We affirm that the tetravalent formulation of recombinant lipidated dengue envelope protein domain III is a potential vaccine candidate against dengue virus and suggest further detailed studies of this formulation in nonhuman primates. PMID:27470096

  14. Immunogenicity of a novel tetravalent vaccine formulation with four recombinant lipidated dengue envelope protein domain IIIs in mice.

    PubMed

    Chiang, Chen-Yi; Pan, Chien-Hsiung; Chen, Mei-Yu; Hsieh, Chun-Hsiang; Tsai, Jy-Ping; Liu, Hsueh-Hung; Liu, Shih-Jen; Chong, Pele; Leng, Chih-Hsiang; Chen, Hsin-Wei

    2016-01-01

    We developed a novel platform to express high levels of recombinant lipoproteins with intrinsic adjuvant properties. Based on this technology, our group developed recombinant lipidated dengue envelope protein domain IIIs as vaccine candidates against dengue virus. This work aims to evaluate the immune responses in mice to the tetravalent formulation. We demonstrate that 4 serotypes of recombinant lipidated dengue envelope protein domain III induced both humoral and cellular immunity against all 4 serotypes of dengue virus on the mixture that formed the tetravalent formulation. Importantly, the immune responses induced by the tetravalent formulation in the absence of the exogenous adjuvant were functional in clearing the 4 serotypes of dengue virus in vivo. We affirm that the tetravalent formulation of recombinant lipidated dengue envelope protein domain III is a potential vaccine candidate against dengue virus and suggest further detailed studies of this formulation in nonhuman primates. PMID:27470096

  15. Structural, Antigenic, and Evolutionary Characterizations of the Envelope Protein of Newly Emerging Duck Tembusu Virus

    PubMed Central

    Huang, Bing; Ma, Xiuli; Li, Yufeng; Yuan, Xiaoyuan; Qin, Zhuoming; Wang, Dan; Chakravarty, Suvobrata; Li, Feng; Song, Minxun; Sun, Huaichang

    2013-01-01

    Since the first reported cases of ducks infected with a previously unknown flavivirus in eastern China in April 2010, the virus, provisionally designated Duck Tembusu Virus (DTMUV), has spread widely in domestic ducks in China and caused significant economic losses to poultry industry. In this study, we examined in detail structural, antigenic, and evolutionary properties of envelope (E) proteins of six DTMUV isolates spanning 2010–2012, each being isolated from individual farms with different geographical locations where disease outbreaks were documented. Structural analysis showed that E proteins of DTMUV and its closely related flavivirus (Japanese Encephalitis Virus) shared a conserved array of predicted functional domains and motifs. Among the six DTMUV strains, mutations were observed only at thirteen amino acid positions across three separate domains of the E protein. Interestingly, these genetic polymorphisms resulted in no detectable change in viral neutralization properties as demonstrated in a serum neutralization assay. Furthermore, phylogenetic analysis of the nucleotide sequences of the E proteins showed that viruses evolved into two distinct genotypes, termed as DTMUV.I and DTMUV.II, with II emerging as the dominant genotype. New findings described here shall give insights into the antigenicity and evolution of this new pathogen and provide guidance for further functional studies of the E protein for which no effective vaccine has yet been developed. PMID:23990944

  16. Amino acid changes in the spike protein of feline coronavirus correlate with systemic spread of virus from the intestine and not with feline infectious peritonitis

    PubMed Central

    2014-01-01

    Recent evidence suggests that a mutation in the spike protein gene of feline coronavirus (FCoV), which results in an amino acid change from methionine to leucine at position 1058, may be associated with feline infectious peritonitis (FIP). Tissue and faecal samples collected post mortem from cats diagnosed with or without FIP were subjected to RNA extraction and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) to detect FCoV RNA. In cats with FIP, 95% of tissue, and 81% of faecal samples were PCR-positive, as opposed to 22% of tissue, and 60% of faecal samples in cats without FIP. Relative FCoV copy numbers were significantly higher in the cats with FIP, both in tissues (P < 0.001) and faeces (P = 0.02). PCR-positive samples underwent pyrosequencing encompassing position 1058 of the FCoV spike protein. This identified a methionine codon at position 1058, consistent with the shedding of an enteric form of FCoV, in 77% of the faecal samples from cats with FIP, and in 100% of the samples from cats without FIP. In contrast, 91% of the tissue samples from cats with FIP and 89% from cats without FIP had a leucine codon at position 1058, consistent with a systemic form of FCoV. These results suggest that the methionine to leucine substitution at position 1058 in the FCoV spike protein is indicative of systemic spread of FCoV from the intestine, rather than a virus with the potential to cause FIP. PMID:24767677

  17. Amino acid changes in the spike protein of feline coronavirus correlate with systemic spread of virus from the intestine and not with feline infectious peritonitis.

    PubMed

    Porter, Emily; Tasker, Séverine; Day, Michael J; Harley, Ross; Kipar, Anja; Siddell, Stuart G; Helps, Christopher R

    2014-01-01

    Recent evidence suggests that a mutation in the spike protein gene of feline coronavirus (FCoV), which results in an amino acid change from methionine to leucine at position 1058, may be associated with feline infectious peritonitis (FIP). Tissue and faecal samples collected post mortem from cats diagnosed with or without FIP were subjected to RNA extraction and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) to detect FCoV RNA. In cats with FIP, 95% of tissue, and 81% of faecal samples were PCR-positive, as opposed to 22% of tissue, and 60% of faecal samples in cats without FIP. Relative FCoV copy numbers were significantly higher in the cats with FIP, both in tissues (P < 0.001) and faeces (P = 0.02). PCR-positive samples underwent pyrosequencing encompassing position 1058 of the FCoV spike protein. This identified a methionine codon at position 1058, consistent with the shedding of an enteric form of FCoV, in 77% of the faecal samples from cats with FIP, and in 100% of the samples from cats without FIP. In contrast, 91% of the tissue samples from cats with FIP and 89% from cats without FIP had a leucine codon at position 1058, consistent with a systemic form of FCoV. These results suggest that the methionine to leucine substitution at position 1058 in the FCoV spike protein is indicative of systemic spread of FCoV from the intestine, rather than a virus with the potential to cause FIP. PMID:24767677

  18. Angiotensin-converting enzyme 2 (ACE2) from raccoon dog can serve as an efficient receptor for the spike protein of severe acute respiratory syndrome coronavirus.

    PubMed

    Xu, Lili; Zhang, Yanfang; Liu, Yun; Chen, Zhiwei; Deng, Hongkui; Ma, Zhongbin; Wang, Hualin; Hu, Zhihong; Deng, Fei

    2009-11-01

    Raccoon dog is one of the suspected intermediate hosts of severe acute respiratory syndrome coronavirus (SARS-CoV). In this study, the angiotensin-converting enzyme 2 (ACE2) gene of raccoon dog (rdACE2) was cloned and sequenced. The amino acid sequence of rdACE2 has identities of 99.3, 89.2, 83.9 and 80.4 % to ACE2 proteins from dog, masked palm civet (pcACE2), human (huACE2) and bat, respectively. There are six amino acid changes in rdACE2 compared with huACE2, and four changes compared with pcACE2, within the 18 residues of ACE2 known to make direct contact with the SARS-CoV S protein. A HeLa cell line stably expressing rdACE2 was established; Western blot analyses and an enzyme-activity assay indicated that the cell line expressed ACE2 at a similar level to two previously established cell lines that express ACE2 from human and masked palm civet, respectively. Human immunodeficiency virus-backboned pseudoviruses expressing spike proteins derived from human SARS-CoV or SARS-CoV-like viruses of masked palm civets and raccoon dogs were tested for their entry efficiency into these cell lines. The results showed that rdACE2 is a more efficient receptor for human SARS-CoV, but not for SARS-CoV-like viruses of masked palm civets and raccoon dogs, than huACE2 or pcACE2. This study provides useful data to elucidate the role of raccoon dog in SARS outbreaks. PMID:19625462

  19. Identification of the Receptor Binding Domain of the Mouse Mammary Tumor Virus Envelope Protein

    PubMed Central

    Zhang, Yuanming; Rassa, John C.; deObaldia, Maria Elena; Albritton, Lorraine M.; Ross, Susan R.

    2003-01-01

    Mouse mammary tumor virus (MMTV) is a betaretrovirus that infects rodent cells and uses mouse transferrin receptor 1 for cell entry. To characterize the interaction of MMTV with its receptor, we aligned the MMTV envelope surface (SU) protein with that of Friend murine leukemia virus (F-MLV) and identified a putative receptor-binding domain (RBD) that included a receptor binding sequence (RBS) of five amino acids and a heparin-binding domain (HBD). Mutation of the HBD reduced virus infectivity, and soluble heparan sulfate blocked infection of cells by wild-type pseudovirus. Interestingly, some but not all MMTV-like elements found in primary and cultured human breast cancer cell lines, termed h-MTVs, had sequence alterations in the putative RBS. Single substitution of one of the amino acids found in an h-MTV RBS variant in the RBD of MMTV, Phe40 to Ser, did not alter species tropism but abolished both virus binding to cells and infectivity. Neutralizing anti-SU monoclonal antibodies also recognized a glutathione S-transferase fusion protein that contained the five-amino-acid RBS region from MMTV. The critical Phe40 residue is located on a surface of the MMTV RBD model that is distant from and may be structurally more rigid than the region of F-MLV RBD that contains its critical binding site residues. This suggests that, in contrast to other murine retroviruses, binding to its receptor may result in few or no changes in MMTV envelope protein conformation. PMID:12970432

  20. Infectious Entry Pathway Mediated by the Human Endogenous Retrovirus K Envelope Protein

    PubMed Central

    Robinson, Lindsey R.

    2016-01-01

    ABSTRACT Endogenous retroviruses (ERVs), the majority of which exist as degraded remnants of ancient viruses, comprise approximately 8% of the human genome. The youngest human ERVs (HERVs) belong to the HERV-K(HML-2) subgroup and were endogenized within the past 1 million years. The viral envelope protein (ENV) facilitates the earliest events of endogenization (cellular attachment and entry), and here, we characterize the requirements for HERV-K ENV to mediate infectious cell entry. Cell-cell fusion assays indicate that a minimum of two events are required for fusion, proteolytic processing by furin-like proteases and exposure to acidic pH. We generated an infectious autonomously replicating recombinant vesicular stomatitis virus (VSV) in which the glycoprotein was replaced by HERV-K ENV. HERV-K ENV imparts an endocytic entry pathway that requires dynamin-mediated membrane scission and endosomal acidification but is distinct from clathrin-dependent or macropinocytic uptake pathways. The lack of impediments to the replication of the VSV core in eukaryotic cells allowed us to broadly survey the HERV-K ENV-dictated tropism. Unlike extant betaretroviral envelopes, which impart a narrow species tropism, we found that HERV-K ENV mediates broad tropism encompassing cells from multiple mammalian and nonmammalian species. We conclude that HERV-K ENV dictates an evolutionarily conserved entry pathway and that the restriction of HERV-K to primate genomes reflects downstream stages of the viral replication cycle. IMPORTANCE Approximately 8% of the human genome is of retroviral origin. While many of those viral genomes have become inactivated, some copies of the most recently endogenized human retrovirus, HERV-K, can encode individual functional proteins. Here, we characterize the envelope protein (ENV) of the virus to define how it mediates infection of cells. We demonstrate that HERV-K ENV undergoes a proteolytic processing step and triggers membrane fusion in response to

  1. Porcine reproductive and respiratory syndrome virus envelope (E) protein interacts with mitochondrial proteins and induces apoptosis.

    PubMed

    Pujhari, Sujit; Zakhartchouk, Alexander N

    2016-07-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses for the swine industry worldwide. The PRRSV E protein, encoded by ORF 2b, is one of the non-glycosylated minor structural proteins. In this study, we present evidence for the interaction of the E protein with mitochondrial proteins ATP5A (part of ATP synthase complex), prohibitin, and ADP/ATP translocase. We additionally demonstrate partial mitochondrial localization of the E protein in transfected cells. To functionally investigate these interactions, we infected MARC-145 cells with PRRSV or alphavirus replicon particles (VRPs) expressing PRRSV E protein. In infected cells, production of ATP was significantly reduced. The E protein also induced apoptosis by activating caspase-3, which results in PARP cleavage. Taken together, these data suggest that the PRRSV E protein interacts with mitochondrial proteins and induces apoptosis by inhibiting ATP production. PMID:27068165

  2. Cell envelope of Bordetella pertussis: immunological and biochemical analyses and characterization of a major outer membrane porin protein

    SciTech Connect

    Armstrong, S.K.

    1986-01-01

    Surface molecules of Bordetella pertussis which may be important in metabolism, pathogenesis, and immunity to whooping cough were examined using cell fractionation and /sup 125/I cell surface labeling. Antigenic envelope proteins were examined by immunofluorescence microscopy and Western blotting procedures using monoclonal antibodies and convalescent sera. A surface protein with a high M/sub r/, missing in a mutant lacking the filamentous hemagglutinin, was identified in virulent Bordetella pertussis but was absent in virulent B. pertussis strains. At least three envelope proteins were found only in virulent B. pertussis strains and were absent or diminished in avirulent and most phenotypically modulated strains. Transposon-induced mutants unable to produce hemolysin, dermonecrotic toxin, pertussis toxin, and filamentous hemagglutinin also lacked these three envelope proteins, confirming that virulence-associated envelope proteins were genetically regulated with other virulence-associated traits. Two dimensional gel electrophoresis revealed at least five heat modifiable proteins which migrated as higher or lower M/sub r/ moieties if solubilized at 25/sup 0/C instead of 100/sup 0/C.

  3. The 32-kilodalton envelope protein of vaccinia virus synthesized in Escherichia coli binds with specificity to cell surfaces.

    PubMed Central

    Lai, C F; Gong, S C; Esteban, M

    1991-01-01

    The nature of interaction between vaccinia virus and the surface of host cells as the first step in virus infection is undefined. A 32-kDa virus envelope protein has been identified as a cell surface binding protein (J.-S. Maa, J. F. Rodriguez, and M. Esteban, J. Biol. Chem. 265:1569-1577, 1990). To carry out studies on the structure-function relationship of this protein, the 32-kDa protein was obtained from Escherichia coli cells harboring the expression plasmid pT7Ek32. The recombinant polypeptide was found to have structural properties similar to those of the native virus envelope protein. Binding studies of 125I-labeled 32-kDa protein to cultured cells of various origins revealed that the E. coli-produced 32-kDa protein exhibited selectivity, specificity, and saturability. Scatchard analysis indicated about 4.5 x 10(4) sites per cell with a high affinity (Kd = 1.8 x 10(-9) M), suggesting interaction of the 32-kDa protein with a specific receptor. The availability of large quantities of the 32-kDa virus protein in bacteria will permit further structural and functional studies of this virus envelope protein and facilitate identification of the specific cell surface receptor. Images PMID:1985213

  4. Dystonin/Bpag1 is a necessary endoplasmic reticulum/nuclear envelope protein in sensory neurons

    SciTech Connect

    Young, Kevin G.; Kothary, Rashmi

    2008-09-10

    Dystonin/Bpag1 proteins are cytoskeletal linkers whose loss of function in mice results in a hereditary sensory neuropathy with a progressive loss of limb coordination starting in the second week of life. These mice, named dystonia musculorum (dt), succumb to the disease and die of unknown causes prior to sexual maturity. Previous evidence indicated that cytoskeletal defects in the axon are a primary cause of dt neurodegeneration. However, more recent data suggests that other factors may be equally important contributors to the disease process. In the present study, we demonstrate perikaryal defects in dorsal root ganglion (DRG) neurons at stages preceding the onset of loss of limb coordination in dt mice. Abnormalities include alterations in endoplasmic reticulum (ER) chaperone protein expression, indicative of an ER stress response. Dystonin in sensory neurons localized in association with the ER and nuclear envelope (NE). A fusion protein ofthe dystonin-a2 isoform, which harbors an N-terminal transmembrane domain, associated with and reorganized the ER in cell culture. This isoform also interacts with the NE protein nesprin-3{alpha}, but not nesprin-3{beta}. Defects in dt mice, as demonstrated here, may ultimately result in pathogenesis involving ER dysfunction and contribute significantly to the dt phenotype.

  5. Docking studies towards exploring antiviral compounds against envelope protein of yellow fever virus.

    PubMed

    Umamaheswari, Amineni; Kumar, Manne Muni; Pradhan, Dibyabhaba; Marisetty, Hemanthkumar

    2011-03-01

    Yellow fever is among one of the most lethal viral diseases for which approved antiviral therapies were yet to be discovered. Herein, functional assignment of complete YFV proteome was done through support vector machine. Major envelope (E) protein that mediates entry of YFV into host cell was selected as a potent molecular target. Three dimensional structure of the molecular target was predicted using Modeller9v7. The model was optimized in Maestro9.0 applying OPLS AA force field and was evaluated using PROCHECK, ProSA, ProQ and Profile 3D. The BOG pocket residues Val48, Glu197, Thr200, Ile204, Thr265, Thr268 and Gly278 were located in YFV E protein using SiteMap2.3. More than one million compounds of Ligandinfo Meta database were explored using a computational virtual screening protocol targeting BOG pocket of the E protein. Finally, ten top ranked lead molecules with strong binding affinity to BOG pocket of YFV E protein were identified based on XP Gscore. Drug likeliness and comparative bioactivity analysis for these leads using QikProp3.2 had shown that these molecules would have the potential to act as better drug. Thus, the 10 lead molecules suggested in the present study would be of interest as promising starting point for designing antiviral compound against yellow fever. PMID:21369890

  6. The dengue virus type 2 envelope protein fusion peptide is essential for membrane fusion

    SciTech Connect

    Huang, Claire Y.-H.; Butrapet, Siritorn; Moss, Kelly J.; Childers, Thomas; Erb, Steven M.; Calvert, Amanda E.; Silengo, Shawn J.; Kinney, Richard M.; Blair, Carol D.; Roehrig, John T.

    2010-01-20

    The flaviviral envelope (E) protein directs virus-mediated membrane fusion. To investigate membrane fusion as a requirement for virus growth, we introduced 27 unique mutations into the fusion peptide of an infectious cDNA clone of dengue 2 virus and recovered seven stable mutant viruses. The fusion efficiency of the mutants was impaired, demonstrating for the first time the requirement for specific FP AAs in optimal fusion. Mutant viruses exhibited different growth kinetics and/or genetic stabilities in different cell types and adult mosquitoes. Virus particles could be recovered following RNA transfection of cells with four lethal mutants; however, recovered viruses could not re-infect cells. These viruses could enter cells, but internalized virus appeared to be retained in endosomal compartments of infected cells, thus suggesting a fusion blockade. Mutations of the FP also resulted in reduced virus reactivity with flavivirus group-reactive antibodies, confirming earlier reports using virus-like particles.

  7. Protease inhibitors targeting coronavirus and filovirus entry.

    PubMed

    Zhou, Yanchen; Vedantham, Punitha; Lu, Kai; Agudelo, Juliet; Carrion, Ricardo; Nunneley, Jerritt W; Barnard, Dale; Pöhlmann, Stefan; McKerrow, James H; Renslo, Adam R; Simmons, Graham

    2015-04-01

    In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their envelope glycoproteins by host cell proteases. The respective enzymes are thus excellent targets for antiviral intervention. In cell culture, activation of Ebola virus, as well as SARS- and MERS-coronavirus can be accomplished by the endosomal cysteine proteases, cathepsin L (CTSL) and cathepsin B (CTSB). In addition, SARS- and MERS-coronavirus can use serine proteases localized at the cell surface, for their activation. However, it is currently unclear which protease(s) facilitate viral spread in the infected host. We report here that the cysteine protease inhibitor K11777, ((2S)-N-[(1E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[(E)-4-methylpiperazine-1-carbonyl]amino}-3-phenylpropanamide) and closely-related vinylsulfones act as broad-spectrum antivirals by targeting cathepsin-mediated cell entry. K11777 is already in advanced stages of development for a number of parasitic diseases, such as Chagas disease, and has proven to be safe and effective in a range of animal models. K11777 inhibition of SARS-CoV and Ebola virus entry was observed in the sub-nanomolar range. In order to assess whether cysteine or serine proteases promote viral spread in the host, we compared the antiviral activity of an optimized K11777-derivative with that of camostat, an inhibitor of TMPRSS2 and related serine proteases. Employing a pathogenic animal model of SARS-CoV infection, we demonstrated that viral spread and pathogenesis of SARS-CoV is driven by serine rather than cysteine proteases and can be effectively prevented by camostat. Camostat has been clinically used to treat chronic pancreatitis, and thus represents an exciting potential therapeutic for respiratory coronavirus infections. Our results indicate that camostat, or similar serine protease inhibitors, might be an effective option for treatment of SARS and

  8. Plasticity of a critical antigenic determinant in the West Nile virus NY99 envelope protein domain III.

    PubMed

    Plante, Jessica A; Torres, Maricela; Huang, Claire Y-H; Beasley, David W C

    2016-09-01

    West Nile virus (WNV) is a mosquito-borne flavivirus that causes febrile illness, encephalitis, and occasionally death in humans. The envelope protein is the main component of the WNV virion surface, and domain III of the envelope protein (EIII) is both a putative receptor binding domain and a target of highly specific, potently neutralizing antibodies. Envelope E-332 (E-332) is known to have naturally occurring variation and to be a key determinant of neutralization for anti-EIII antibodies. A panel of viruses containing all possible amino acid substitutions at E-332 was constructed. E-332 was found to be highly tolerant of mutation, and almost all of these changes had large impacts on antigenicity of EIII but only limited effects on growth or virulence phenotypes. PMID:27284640

  9. A study on antigenicity and receptor-binding ability of fragment 450-650 of the spike protein of SARS coronavirus

    SciTech Connect

    Zhao Jincun; Wang Wei; Yuan Zhihong; Jia Rujing; Zhao Zhendong; Xu Xiaojun; Lv Ping; Zhang Yan; Jiang Chengyu; Gao Xiaoming . E-mail: xmgao@bjmu.edu.cn

    2007-03-15

    The spike (S) protein of SARS coronavirus (SARS-CoV) is responsible for viral binding with ACE2 molecules. Its receptor-binding motif (S-RBM) is located between residues 424 and 494, which folds into 2 anti-parallel {beta}-sheets, {beta}5 and {beta}6. We have previously demonstrated that fragment 450-650 of the S protein (S450-650) is predominantly recognized by convalescent sera of SARS patients. The N-terminal 60 residues (450-510) of the S450-650 fragment covers the entire {beta}6 strand of S-RBM. In the present study, we demonstrate that patient sera predominantly recognized 2 linear epitopes outside the {beta}6 fragment, while the mouse antisera, induced by immunization of BALB/c mice with recombinant S450-650, mainly recognized the {beta}6 strand-containing region. Unlike patient sera, however, the mouse antisera were unable to inhibit the infectivity of S protein-expressing (SARS-CoV-S) pseudovirus. Fusion protein between green fluorescence protein (GFP) and S450-650 (S450-650-GFP) was able to stain Vero E6 cells and deletion of the {beta}6 fragment rendered the fusion product (S511-650-GFP) unable to do so. Similarly, recombinant S450-650, but not S511-650, was able to block the infection of Vero E6 cells by the SARS-CoV-S pseudovirus. Co-precipitation experiments confirmed that S450-650 was able to specifically bind with ACE2 molecules in lysate of Vero E6 cells. However, the ability of S450-510, either alone or in fusion with GFP, to bind with ACE2 was significantly poorer compared with S450-650. Our data suggest a possibility that, although the {beta}6 strand alone is able to bind with ACE2 with relatively high affinity, residues outside the S-RBM could also assist the receptor binding of SARS-CoV-S protein.

  10. Mutations within a putative cysteine loop of the transmembrane protein of an attenuated immunodeficiency-inducing feline leukemia virus variant inhibit envelope protein processing.

    PubMed Central

    Burns, C C; Poss, M L; Thomas, E; Overbaugh, J

    1995-01-01

    A replication-defective feline leukemia virus molecular clone, 61B, has been shown to cause immunodeficiency in cats and cytopathicity in T cells after a long latency period when coinfected with a minimally pathogenic helper virus (J. Overbaugh, E. A. Hoover, J. I. Mullins, D. P. W. Burns, L. Rudensey, S. L. Quackenbush, V. Stallard, and P. R. Donahue, Virology 188:558-569, 1992). The long-latency phenotype of 61B has been mapped to four mutations in the extracellular domain of the envelope transmembrane protein, and we report here that these mutations cause a defect in envelope protein processing. Immunoprecipitation analyses demonstrated that the 61B gp85 envelope precursor was produced but that further processing to generate the surface protein (SU/gp70) and the transmembrane protein (TM/p15E) did not occur. The 61B precursor was not expressed on the cell surface and appeared to be retained in the endoplasmic reticulum or Golgi apparatus. Two of the four 61B-specific amino acid changes are located within a putative cysteine loop in a region of TM that is conserved among retroviruses. Introduction of these two amino acid changes into a replication-competent highly cytopathic virus resulted in the production of noninfectious virus that exhibited an envelope-protein-processing defect. This analysis suggests that mutations in a conserved region within a putative cysteine loop affect retroviral envelope protein maturation and viral infectivity. PMID:7884859

  11. SUN proteins facilitate the removal of membranes from chromatin during nuclear envelope breakdown

    PubMed Central

    Turgay, Yagmur; Champion, Lysie; Balazs, Csaba; Held, Michael; Toso, Alberto; Gerlich, Daniel W.; Meraldi, Patrick

    2014-01-01

    SUN proteins reside in the inner nuclear membrane and form complexes with KASH proteins of the outer nuclear membrane that connect the nuclear envelope (NE) to the cytoskeleton. These complexes have well-established functions in nuclear anchorage and migration in interphase, but little is known about their involvement in mitotic processes. Our analysis demonstrates that simultaneous depletion of human SUN1 and SUN2 delayed removal of membranes from chromatin during NE breakdown (NEBD) and impaired the formation of prophase NE invaginations (PNEIs), similar to microtubule depolymerization or down-regulation of the dynein cofactors NudE/EL. In addition, overexpression of dominant-negative SUN and KASH constructs reduced the occurrence of PNEI, indicating a requirement for functional SUN–KASH complexes in NE remodeling. Codepletion of SUN1/2 slowed cell proliferation and resulted in an accumulation of morphologically defective and disoriented mitotic spindles. Quantification of mitotic timing revealed a delay between NEBD and chromatin separation, indicating a role of SUN proteins in bipolar spindle assembly and mitotic progression. PMID:24662567

  12. Boosting of HIV-1 Neutralizing Antibody Responses by a Distally Related Retroviral Envelope Protein

    PubMed Central

    Uchtenhagen, Hannes; Schiffner, Torben; Bowles, Emma; Heyndrickx, Leo; LaBranche, Celia; Applequist, Steven E.; Jansson, Marianne; De Silva, Thushan; Back, Jaap Willem; Achour, Adnane; Scarlatti, Gabriella; Fomsgaard, Anders; Montefiori, David; Stewart-Jones, Guillaume; Spetz, Anna-Lena

    2014-01-01

    Our knowledge of the binding sites for neutralizing antibodies (NAbs) that recognize a broad range of HIV-1 strains (bNAb) has substantially increased in recent years. However, gaps remain in our understanding of how to focus B-cell responses to vulnerable conserved sites within the HIV-1 envelope glycoprotein (Env). Here we report an immunization strategy composed of a trivalent HIV-1 (clade B envs) DNA prime, followed by a SIVmac239 gp140 Env protein boost that aimed to focus the immune response to structurally conserved parts of the HIV-1 and SIV Envs. Heterologous NAb titres, primarily to tier 1 HIV-1 isolates, elicited during the trivalent HIV-1 env prime, were significantly increased by the SIVmac239 gp140 protein boost in rabbits. Epitope mapping of antibody binding reactivity revealed preferential recognition of the C1, C2, V2, V3 and V5 regions. These results provide a proof of concept that a distally related retroviral SIV Env protein boost can increase pre-existing NAb responses against HIV-1. PMID:24829409

  13. Duck tembusu virus and its envelope protein induce programmed cell death.

    PubMed

    Shaozhou, Wulin; Li, Chenxi; Zhang, Qingshan; Meng, Runzhe; Gao, Youlan; Liu, Hongyu; Bai, Xiaofei; Chen, Yuhuan; Liu, Ming; Liu, Siguo; Zhang, Yun

    2015-08-01

    The cytopathic effect produced in cells infected with duck tembusu virus (DTMUV) suggests that this emerging virus may induce apoptosis in primary cultures of duck embryo fibroblasts (DEF). Here, we present evidence that DTMUV infection of cultured cells activates apoptosis and that the ability of DTMUV to induce apoptosis is not restricted to cell type because DTMUV-induced apoptosis in duck and mammalian host cells. We further investigated which viral components induce apoptosis in DTMUV-infected host cells. The major envelope glycoprotein (E) was investigated for its apoptotic activities in expressed cells. Transient expression of the E protein alone triggered apoptosis in DEF, Vero, and BHK cells. Expression of the E protein resulted in activation of caspase-3-like proteases in cultured cells. These results indicate that infection of cells with DTMUV or expression of DTMUV E protein alone induces apoptosis, providing the basis for future to define the molecules that play key roles in the fate of DTMUV-infected cells. PMID:26056013

  14. Human endogenous retrovirus envelope proteins target dendritic cells to suppress T-cell activation.

    PubMed

    Hummel, Jonas; Kämmerer, Ulrike; Müller, Nora; Avota, Elita; Schneider-Schaulies, Sibylle

    2015-06-01

    Though mostly defective, human endogenous retroviruses (HERV) can retain open reading frames, which are especially expressed in the placenta. There, the envelope (env) proteins of HERV-W (Syncytin-1), HERV-FRD (Syncytin-2), and HERV-K (HML-2) were implicated in tolerance against the semi-allogenic fetus. Here, we show that the known HERV env-binding receptors ASCT-1 and -2 and MFSD2 are expressed by DCs and T-cells. When used as effectors in coculture systems, CHO cells transfected to express Syncytin-1, -2, or HML-2 did not affect T-cell expansion or overall LPS-driven phenotypic DC maturation, however, promoted release of IL-12 and TNF-α rather than IL-10. In contrast, HERV env expressing choriocarcinoma cell lines suppressed T-cell proliferation and LPS-induced TNF-α and IL-12 release, however, promoted IL-10 accumulation, indicating that these effects might not rely on HERV env interactions. However, DCs conditioned by choriocarcinoma, but also transgenic CHO cells failed to promote allogenic T-cell expansion. This was associated with a loss of DC/T-cell conjugate frequencies, impaired Ca(2+) mobilization, and aberrant patterning of f-actin and tyrosine phosphorylated proteins in T-cells. Altogether, these findings suggest that HERV env proteins target T-cell activation indirectly by modulating the stimulatory activity of DCs. PMID:25752285

  15. Expression of Leukemia-Associated Nup98 Fusion Proteins Generates an Aberrant Nuclear Envelope Phenotype

    PubMed Central

    Fahrenkrog, Birthe; Martinelli, Valérie; Nilles, Nadine; Fruhmann, Gernot; Chatel, Guillaume; Juge, Sabine; Sauder, Ursula; Di Giacomo, Danika; Mecucci, Cristina; Schwaller, Jürg

    2016-01-01

    Chromosomal translocations involving the nucleoporin NUP98 have been described in several hematopoietic malignancies, in particular acute myeloid leukemia (AML). In the resulting chimeric proteins, Nup98's N-terminal region is fused to the C-terminal region of about 30 different partners, including homeodomain (HD) transcription factors. While transcriptional targets of distinct Nup98 chimeras related to immortalization are relatively well described, little is known about other potential cellular effects of these fusion proteins. By comparing the sub-nuclear localization of a large number of Nup98 fusions with HD and non-HD partners throughout the cell cycle we found that while all Nup98 chimeras were nuclear during interphase, only Nup98-HD fusion proteins exhibited a characteristic speckled appearance. During mitosis, only Nup98-HD fusions were concentrated on chromosomes. Despite the difference in localization, all tested Nup98 chimera provoked morphological alterations in the nuclear envelope (NE), in particular affecting the nuclear lamina and the lamina-associated polypeptide 2α (LAP2α). Importantly, such aberrations were not only observed in transiently transfected HeLa cells but also in mouse bone marrow cells immortalized by Nup98 fusions and in cells derived from leukemia patients harboring Nup98 fusions. Our findings unravel Nup98 fusion-associated NE alterations that may contribute to leukemogenesis. PMID:27031510

  16. The role of HCV e2 protein glycosylation in functioning of virus envelope proteins in insect and Mammalian cells.

    PubMed

    Orlova, O V; Drutsa, V L; Spirin, P V; Prasolov, V S; Rubtsov, P M; Kochetkov, S N; Beljelarskaya, S N

    2015-01-01

    The hepatitis C virus (HCV) envelope proteins E1 and E2, being virion components, are involved in the formation of infectious particles in infected cells. The detailed structure of the infectious particle of HCV remains poorly understood. Moreover, the virion assembly and release of virions by the cell are the least understood processes. It is believed that virion properties depend on glycosylation of the virus envelope proteins in a cell, while glycansat several glycosylation sites of these proteins play a pivotal role in protein functioning and the HCV life cycle. N-glycans of glycoproteins can influence viral particle formation, virus binding to cell surface, and HCV pathogenesis. We studied the effect of glycans on the folding ofthe E2 glycoprotein, formation of functional glycoprotein complexes and virus particles in insect and mammalian cells. In order to investigate these processes, point mutations of the N-glycosylation sites of HCV protein E2 (genotype 1b strain 274933RU) were generated and the mutant proteins were further analyzed in the baculovirus expression system. Elimination of the single glycosylation sites of the E2 glycoprotein, except for the N6 site, did not affect its synthesis efficiency in Sf9 insect cells, while the electrophoretic mobility of mutant proteins increased in proportion to the decrease in the number of glycosylation sites. The level of synthesis of HCV glycoprotein E2 in human HEK293T cells depended on the presence of glycans at the N1 and N8 glycosylation sites in contrast to Sf9 cells. At the same time, elimination of glycans at the N1, N2, and N10 sites led to the accumulation of unproductive E1E2 dimers as aggregates and productive assembly suppression of virus-like particles both in insect and mammalian cells. In addition, elimination of single glycosylation sites of HCV E2 had no impact on the RNA synthesis of structural proteins and formation of virus-like particles in insect and mammalian cells. PMID:25927005

  17. Transmembrane protein TMEM170A is a newly discovered regulator of ER and nuclear envelope morphogenesis in human cells

    PubMed Central

    Christodoulou, Andri; Santarella-Mellwig, Rachel; Santama, Niovi

    2016-01-01

    ABSTRACT The mechanism of endoplasmic reticulum (ER) morphogenesis is incompletely understood. ER tubules are shaped by the reticulons (RTNs) and DP1/Yop1p family members, but the mechanism of ER sheet formation is much less clear. Here, we characterize TMEM170A, a human transmembrane protein, which localizes in ER and nuclear envelope membranes. Silencing or overexpressing TMEM170A in HeLa K cells alters ER shape and morphology. Ultrastructural analysis reveals that downregulation of TMEM170A specifically induces tubular ER formation, whereas overexpression of TMEM170A induces ER sheet formation, indicating that TMEM170A is a newly discovered ER-sheet-promoting protein. Additionally, downregulation of TMEM170A alters nuclear shape and size, decreases the density of nuclear pore complexes (NPCs) in the nuclear envelope and causes either a reduction in inner nuclear membrane (INM) proteins or their relocalization to the ER. TMEM170A interacts with RTN4, a member of the reticulon family; simultaneous co-silencing of TMEM170A and RTN4 rescues ER, NPC and nuclear-envelope-related phenotypes, implying that the two proteins have antagonistic effects on ER membrane organization, and nuclear envelope and NPC formation. PMID:26906412

  18. An eight-year epidemiologic study based on baculovirus-expressed type-specific spike proteins for the differentiation of type I and II feline coronavirus infections

    PubMed Central

    2014-01-01

    Background Feline infectious peritonitis (FIP) is a fatal disease caused by feline coronavirus (FCoV). FCoVs are divided into two serotypes with markedly different infection rates among cat populations around the world. A baculovirus-expressed type-specific domain of the spike proteins of FCoV was used to survey the infection of the two viruses over the past eight years in Taiwan. Results An immunofluorescence assay based on cells infected with the recombinant viruses that was capable of distinguishing between the two types of viral infection was established. A total of 833 cases from a teaching hospital was surveyed for prevalence of different FCoV infections. Infection of the type I FCoV was dominant, with a seropositive rate of 70.4%, whereas 3.5% of cats were infected with the type II FCoV. In most cases, results derived from serotyping and genotyping were highly agreeable. However, 16.7% (4/24) FIP cats and 9.8% (6/61) clinically healthy cats were found to possess antibodies against both viruses. Moreover, most of the cats (84.6%, 22/26) infected with a genotypic untypable virus bearing a type I FCoV antibody. Conclusion A relatively simple serotyping method to distinguish between two types of FCoV infection was developed. Based on this method, two types of FCoV infection in Taiwan was first carried out. Type I FCoV was found to be predominant compared with type II virus. Results derived from serotyping and genotyping support our current understanding of evolution of disease-related FCoV and transmission of FIP. PMID:25123112

  19. A Conformation-Dependent Neutralizing Monoclonal Antibody Specifically Targeting Receptor-Binding Domain in Middle East Respiratory Syndrome Coronavirus Spike Protein

    PubMed Central

    Du, Lanying; Zhao, Guangyu; Yang, Yang; Qiu, Hongjie; Wang, Lili; Kou, Zhihua; Tao, Xinrong; Yu, Hong; Sun, Shihui; Tseng, Chien-Te K.; Jiang, Shibo

    2014-01-01

    ABSTRACT Prophylactic and therapeutic strategies are urgently needed to combat infections caused by the newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV). Here, we have developed a neutralizing monoclonal antibody (MAb), designated Mersmab1, which potently blocks MERS-CoV entry into human cells. Biochemical assays reveal that Mersmab1 specifically binds to the receptor-binding domain (RBD) of the MERS-CoV spike protein and thereby competitively blocks the binding of the RBD to its cellular receptor, dipeptidyl peptidase 4 (DPP4). Furthermore, alanine scanning of the RBD has identified several residues at the DPP4-binding surface that serve as neutralizing epitopes for Mersmab1. These results suggest that if humanized, Mersmab1 could potentially function as a therapeutic antibody for treating and preventing MERS-CoV infections. Additionally, Mersmab1 may facilitate studies of the conformation and antigenicity of MERS-CoV RBD and thus will guide rational design of MERS-CoV subunit vaccines. IMPORTANCE MERS-CoV is spreading in the human population and causing severe respiratory diseases with over 40% fatality. No vaccine is currently available to prevent MERS-CoV infections. Here, we have produced a neutralizing monoclonal antibody with the capacity to effectively block MERS-CoV entry into permissive human cells. If humanized, this antibody may be used as a prophylactic and therapeutic agent against MERS-CoV infections. Specifically, when given to a person (e.g., a patient's family member or a health care worker) either before or after exposure to MERS-CoV, the humanized antibody may prevent or inhibit MERS-CoV infection, thereby stopping the spread of MERS-CoV in humans. This antibody can also serve as a useful tool to guide the design of effective MERS-CoV vaccines. PMID:24719424

  20. Iron transport in Mycobacterium smegmatis: occurrence of iron-regulated envelope proteins as potential receptors for iron uptake.

    PubMed

    Hall, R M; Sritharan, M; Messenger, A J; Ratledge, C

    1987-08-01

    Cell-envelope fractions were isolated from the rapidly growing saprophyte Mycobacterium smegmatis following growth in glycerol/asparagine medium under both iron-limited (0.02 microgram Fe ml-1) and iron-sufficient (2.0 to 4.0 micrograms Fe ml-1) conditions. Examination of these preparations by SDS-PAGE demonstrated the production of at least four additional proteins when iron was limiting. These iron-regulated envelope proteins (IREPs) were ascribed apparent molecular masses of 180 kDa (protein I), 84 kDa (protein II), 29 kDa (protein III) and 25 kDa (protein IV). All four proteins were present in both cell-wall and membrane preparations but spheroplast preparations were devoid of the 29 kDa protein. Attempts at labelling the proteins with 55FeCl3 or 55Fe-exochelin, the siderophore for iron uptake, were unsuccessful, though this was attributed to the denatured state of the proteins following electrophoresis. Antibodies were raised to each of the four proteins: the one raised to protein III inhibited exochelin-mediated iron uptake into iron-deficiently grown cells by 70% but was ineffective against iron uptake into iron-sufficiently grown cells. As exochelin is taken up into both types of cells by a similar process, protein III may not be a simple receptor for iron uptake though the results imply some function connected with this process. The role of the other IREPs is less certain. PMID:3127539

  1. Production of Hepatitis C Virus Lacking the Envelope-Encoding Genes for Single-Cycle Infection by Providing Homologous Envelope Proteins or Vesicular Stomatitis Virus Glycoproteins in trans ▿ †

    PubMed Central

    Li, Rui; Qin, Yan; He, Ying; Tao, Wanyin; Zhang, Nan; Tsai, Cheguo; Zhou, Paul; Zhong, Jin

    2011-01-01

    Hepatitis C virus (HCV) infection is a major worldwide health problem. The envelope glycoproteins are the major components of viral particles. Here we developed a trans-complementation system that allows the production of infectious HCV particles in whose genome the regions encoding envelope proteins are deleted (HCVΔE). The lack of envelope proteins could be efficiently complemented by the expression of homologous envelope proteins in trans. HCVΔE production could be enhanced significantly by previously described adaptive mutations in NS3 and NS5A. Moreover, HCVΔE could be propagated and passaged in packaging cells stably expressing HCV envelope proteins, resulting in only single-round infection in wild-type cells. Interestingly, we found that vesicular stomatitis virus (VSV) glycoproteins could efficiently rescue the production of HCV lacking endogenous envelope proteins, which no longer required apolipoprotein E for virus production. VSV glycoprotein-mediated viral entry could allow for the bypass of the natural HCV entry process and the delivery of HCV replicon RNA into HCV receptor-deficient cells. Our development provides a new tool for the production of single-cycle infectious HCV particles, which should be useful for studying individual steps of the HCV life cycle and may also provide a new strategy for HCV vaccine development. PMID:21159872

  2. Structures of the Zika Virus Envelope Protein and Its Complex with a Flavivirus Broadly Protective Antibody.

    PubMed

    Dai, Lianpan; Song, Jian; Lu, Xishan; Deng, Yong-Qiang; Musyoki, Abednego Moki; Cheng, Huijun; Zhang, Yanfang; Yuan, Yuan; Song, Hao; Haywood, Joel; Xiao, Haixia; Yan, Jinghua; Shi, Yi; Qin, Cheng-Feng; Qi, Jianxun; Gao, George F

    2016-05-11

    Zika virus (ZIKV), a mosquito-borne flavivirus, is a current global public health concern. The flavivirus envelope (E) glycoprotein is responsible for virus entry and represents a major target of neutralizing antibodies for other flaviviruses. Here, we report the structures of ZIKV E protein at 2.0 Å and in complex with a flavivirus broadly neutralizing murine antibody 2A10G6 at 3.0 Å. ZIKV-E resembles all the known flavivirus E structures but contains a unique, positively charged patch adjacent to the fusion loop region of the juxtaposed monomer, which may influence host attachment. The ZIKV-E-2A10G6 complex structure reveals antibody recognition of a highly conserved fusion loop. 2A10G6 binds to ZIKV-E with high affinity in vitro and neutralizes currently circulating ZIKV strains in vitro and in mice. The E protein fusion loop epitope represents a potential candidate for therapeutic antibodies against ZIKV. PMID:27158114

  3. Bloch spin waves and emergent structure in protein folding with HIV envelope glycoprotein as an example

    NASA Astrophysics Data System (ADS)

    Dai, Jin; Niemi, Antti J.; He, Jianfeng; Sieradzan, Adam; Ilieva, Nevena

    2016-03-01

    We inquire how structure emerges during the process of protein folding. For this we scrutinize collective many-atom motions during all-atom molecular dynamics simulations. We introduce, develop, and employ various topological techniques, in combination with analytic tools that we deduce from the concept of integrable models and structure of discrete nonlinear Schrödinger equation. The example we consider is an α -helical subunit of the HIV envelope glycoprotein gp41. The helical structure is stable when the subunit is part of the biological oligomer. But in isolation, the helix becomes unstable, and the monomer starts deforming. We follow the process computationally. We interpret the evolving structure both in terms of a backbone based Heisenberg spin chain and in terms of a side chain based XY spin chain. We find that in both cases the formation of protein supersecondary structure is akin the formation of a topological Bloch domain wall along a spin chain. During the process we identify three individual Bloch walls and we show that each of them can be modelled with a precision of tenths to several angstroms in terms of a soliton solution to a discrete nonlinear Schrödinger equation.

  4. Bloch spin waves and emergent structure in protein folding with HIV envelope glycoprotein as an example.

    PubMed

    Dai, Jin; Niemi, Antti J; He, Jianfeng; Sieradzan, Adam; Ilieva, Nevena

    2016-03-01

    We inquire how structure emerges during the process of protein folding. For this we scrutinize collective many-atom motions during all-atom molecular dynamics simulations. We introduce, develop, and employ various topological techniques, in combination with analytic tools that we deduce from the concept of integrable models and structure of discrete nonlinear Schrödinger equation. The example we consider is an α-helical subunit of the HIV envelope glycoprotein gp41. The helical structure is stable when the subunit is part of the biological oligomer. But in isolation, the helix becomes unstable, and the monomer starts deforming. We follow the process computationally. We interpret the evolving structure both in terms of a backbone based Heisenberg spin chain and in terms of a side chain based XY spin chain. We find that in both cases the formation of protein supersecondary structure is akin the formation of a topological Bloch domain wall along a spin chain. During the process we identify three individual Bloch walls and we show that each of them can be modelled with a precision of tenths to several angstroms in terms of a soliton solution to a discrete nonlinear Schrödinger equation. PMID:27078392

  5. Baculovirus Envelope Protein ODV-E66 Is a Novel Chondroitinase with Distinct Substrate Specificity*

    PubMed Central

    Sugiura, Nobuo; Setoyama, Yuka; Chiba, Mie; Kimata, Koji; Watanabe, Hideto

    2011-01-01

    Chondroitin sulfate is a linear polysaccharide of alternating d-glucuronic acid and N-acetyl-d-galactosamine residues with sulfate groups at various positions of the sugars. It interacts with and regulates cytokine and growth factor signal transduction, thus influencing development, organ morphogenesis, inflammation, and infection. We found chondroitinase activity in medium conditioned by baculovirus-infected insect cells and identified a novel chondroitinase. Sequence analysis revealed that the enzyme was a truncated form of occlusion-derived virus envelope protein 66 (ODV-E66) of Autographa californica nucleopolyhedrovirus. The enzyme was a novel chondroitin lyase with distinct substrate specificity. The enzyme was active over a wide range of pH (pH 4–9) and temperature (30–60 °C) and was unaffected by divalent metal ions. The ODV-E66 truncated protein digested chondroitin most efficiently followed by chondroitin 6-sulfate. It degraded hyaluronan to a minimal extent but did not degrade dermatan sulfate, heparin, and N-acetylheparosan. Further analysis using chemo-enzymatically synthesized substrates revealed that the enzyme specifically acted on glucuronate residues in non-sulfated and chondroitin 6-sulfate structures but not in chondroitin 4-sulfate structures. These results suggest that this chondroitinase is useful for detailed structural and compositional analysis of chondroitin sulfate, preparation of specific chondroitin oligosaccharides, and study of baculovirus infection mechanism. PMID:21715327

  6. Structural Organization of Baculovirus Occlusion Bodies and Protective Role of Multilayered Polyhedron Envelope Protein.

    PubMed

    Sajjan, Dayanand B; Hinchigeri, Shivayogeppa B

    2016-03-01

    Baculoviruses are the ingenious insect pathogens. Outside the host, baculovirus occlusion bodies (OB) provide stability to occlusion-derived viruses (ODV) embedded within. The OB is an organized structure, chiefly composed of proteins namely polyhedrin, polyhedron envelope protein (PEP) and P10. Currently, the structural organization of OB is poorly understood and the role of OB proteins in conferring the stability to ODV is unknown. Here we have shown that the assembly of polyhedrin unit cells into an OB is a rapid process; the PEP forms in multiple layers; the PEP layers predominantly contribute to ODV viability. Full-grown OBs (n = 36) were found to be 4.0 ± 1.0 µm in diameter and possessed a peculiar geometry of a truncated rhombic dodecahedron. The atomic force microscopy (AFM) study on the structure of OBs at different stages of growth in insect cells revealed polyhedrin assembly and thickness of PEP layers. The thickness of PEP layers at 53 h post-transfection (hpt) ranged from 56 to 80 nm. Mature PEP layers filled up approximately one third of the OB volume. The size of ODV nucleocapsid was found to be 433 ± 10 nm in length. The zeta potential and particle size distribution study of viruses revealed the protective role of PEP layers. The presence of a multilayered PEP confers a viable advantage to the baculoviruses compared to single-layered PEP. Thus, these findings may help in developing PEP layer-based biopolymers for protein-based nanodevices, nanoelectrodes and more stable biopesticides. PMID:26787118

  7. Characterisation of different forms of the accessory gp3 canine coronavirus type I protein identified in cats.

    PubMed

    d'Orengiani, Anne-Laure Pham-Hung d'Alexandry; Duarte, Lidia; Pavio, Nicole; Le Poder, Sophie

    2015-04-16

    ORF3 is a supplemental open reading frame coding for an accessory glycoprotein gp3 of unknown function, only present in genotype I canine strain (CCoV-I) and some atypical feline FCoV strains. In these latter hosts, the ORF3 gene systematically displays one or two identical deletions leading to the synthesis of truncated proteins gp3-Δ1 and gp3-Δ2. As deletions in CoV accessory proteins have already been involved in tissue or host switch, studies of these different gp3 proteins were conducted in canine and feline cell. All proteins oligomerise through covalent bonds, are N-glycosylated and are maintained in the ER in non-infected but also in CCoV-II infected cells, without any specific retention signal. However, deletions influence their level of expression. In canine cells, all proteins are expressed with similar level whereas in feline cells, the expression of gp3-Δ1 is higher than the two other forms of gp3. None of the gp3 proteins modulate the viral replication cycle of heterologous genotype II CCoV in canine cell line, leading to the conclusion that the gp3 proteins are probably advantageous only for CCoV-I and atypical FCoV strains. PMID:25665789

  8. Nucleotide sequence variation of the envelope protein gene identifies two distinct genotypes of yellow fever virus.

    PubMed Central

    Chang, G J; Cropp, B C; Kinney, R M; Trent, D W; Gubler, D J

    1995-01-01

    The evolution of yellow fever virus over 67 years was investigated by comparing the nucleotide sequences of the envelope (E) protein genes of 20 viruses isolated in Africa, the Caribbean, and South America. Uniformly weighted parsimony algorithm analysis defined two major evolutionary yellow fever virus lineages designated E genotypes I and II. E genotype I contained viruses isolated from East and Central Africa. E genotype II viruses were divided into two sublineages: IIA viruses from West Africa and IIB viruses from America, except for a 1979 virus isolated from Trinidad (TRINID79A). Unique signature patterns were identified at 111 nucleotide and 12 amino acid positions within the yellow fever virus E gene by signature pattern analysis. Yellow fever viruses from East and Central Africa contained unique signatures at 60 nucleotide and five amino acid positions, those from West Africa contained unique signatures at 25 nucleotide and two amino acid positions, and viruses from America contained such signatures at 30 nucleotide and five amino acid positions in the E gene. The dissemination of yellow fever viruses from Africa to the Americas is supported by the close genetic relatedness of genotype IIA and IIB viruses and genetic evidence of a possible second introduction of yellow fever virus from West Africa, as illustrated by the TRINID79A virus isolate. The E protein genes of American IIB yellow fever viruses had higher frequencies of amino acid substitutions than did genes of yellow fever viruses of genotypes I and IIA on the basis of comparisons with a consensus amino acid sequence for the yellow fever E gene. The great variation in the E proteins of American yellow fever virus probably results from positive selection imposed by virus interaction with different species of mosquitoes or nonhuman primates in the Americas. PMID:7637022

  9. Further analysis of the involvement of the envelope anion channel PIRAC in chloroplast protein import.

    PubMed

    van den Wijngaard, P W; Demmers, J A; Thompson, S J; Wienk, H L; de Kruijff, B; Vredenberg, W J

    2000-06-01

    The ability of preferredoxin to inactivate a 50-pS anion channel of the chloroplast inner membrane in the presence of an energy source was investigated using single-channel recordings. It was found that preferredoxin cannot inactivate the channel when GTP is the only energy source present. From this it is concluded that the precursor has to interact with the, translocon of the inner membrane of chloroplasts (Tic) complex to be able to inactivate the 50-pS anion channel. The ability of two mutants of preferredoxin with deletions in their transit sequence to inactivate the channel was also tested. Both mutants have been shown to have a similar binding affinity for the chloroplast envelope, but only one is able to fully translocate. The mutants were both able to inactivate the channel in a similar manner. From this it is concluded that full translocation is not necessary for the inactivation of the channel. It is also shown that preferredoxin is capable of inactivating the 50-pS anion channel in the chloroplast-attached configuration as was previously found in the inside-out configuration. From this it is concluded that stromal factors do not influence the protein-import-induced inactivation of the 50-pS anion channel of the chloroplast inner membrane. Finally the effect of the anion channel blocker 4, 4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) on the channel activity and on protein import was investigated. It was found that DIDS blocked the channel. Furthermore the addition of the channel blocker reduces the efficiency of import to 52%. This leads to the conclusion that correct functioning of the channel is important for protein import. PMID:10849000

  10. Expression, Purification, Crystallization of Two Major Envelope Proteins from White Spot Syndrome Virus

    SciTech Connect

    Tang,X.; Hew, C.

    2007-01-01

    White spot syndrome virus (WSSV) is a major virulent pathogen known to infect penaeid shrimp and other crustaceans. VP26 and VP28, two major envelope proteins from WSSV, have been identified and overexpressed in Escherichia coli. In order to facilitate purification and crystallization, predicted N-terminal transmembrane regions of approximately 35 amino acids have been truncated from both VP26 and VP28. Truncated VP26 and VP28 and their corresponding SeMet-labelled proteins were purified and the SeMet proteins were crystallized by the hanging-drop vapor-diffusion method. Crystals of SeMet-labelled VP26 were obtained using a reservoir consisting of 0.1 M citric acid pH 3.5, 3.0 M sodium chloride and 1%(w/v) polyethylene glycol 3350, whereas SeMet VP28 was crystallized using a reservoir solution consisting of 25% polyethylene glycol 8000, 0.2 M calcium acetate, 0.1 M Na HEPES pH 7.5 and 1.5%(w/v) 1,2,3-heptanetriol. Crystals of SeMet-labelled VP26 diffract to 2.2 {angstrom} resolution and belong to space group R32, with unit-cell parameters a = b = 73.92, c = 199.31 {angstrom}. SeMet-labelled VP28 crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 105.33, b = 106.71, c = 200.37 {angstrom}, and diffracts to 2.0 {angstrom} resolution.

  11. Expression, purification and crystallization of two major envelope proteins from white spot syndrome virus

    SciTech Connect

    Tang, Xuhua; Hew, Choy Leong

    2007-07-01

    The crystallization of the N-terminal transmembrane region-truncated VP26 and VP28 of white spot syndrome virus is described. White spot syndrome virus (WSSV) is a major virulent pathogen known to infect penaeid shrimp and other crustaceans. VP26 and VP28, two major envelope proteins from WSSV, have been identified and overexpressed in Escherichia coli. In order to facilitate purification and crystallization, predicted N-terminal transmembrane regions of approximately 35 amino acids have been truncated from both VP26 and VP28. Truncated VP26 and VP28 and their corresponding SeMet-labelled proteins were purified and the SeMet proteins were crystallized by the hanging-drop vapour-diffusion method. Crystals of SeMet-labelled VP26 were obtained using a reservoir consisting of 0.1 M citric acid pH 3.5, 3.0 M sodium chloride and 1%(w/v) polyethylene glycol 3350, whereas SeMet VP28 was crystallized using a reservoir solution consisting of 25% polyethylene glycol 8000, 0.2 M calcium acetate, 0.1 M Na HEPES pH 7.5 and 1.5%(w/v) 1,2,3-heptanetriol. Crystals of SeMet-labelled VP26 diffract to 2.2 Å resolution and belong to space group R32, with unit-cell parameters a = b = 73.92, c = 199.31 Å. SeMet-labelled VP28 crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 105.33, b = 106.71, c = 200.37 Å, and diffracts to 2.0 Å resolution.

  12. Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope

    PubMed Central

    Navarre, William Wiley; Schneewind, Olaf

    1999-01-01

    The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins. PMID:10066836

  13. Detection of bat coronaviruses from Miniopterus fuliginosus in Japan.

    PubMed

    Shirato, Kazuya; Maeda, Ken; Tsuda, Shumpei; Suzuki, Kazuo; Watanabe, Shumpei; Shimoda, Hiroshi; Ueda, Naoya; Iha, Koichiro; Taniguchi, Satoshi; Kyuwa, Shigeru; Endoh, Daiji; Matsuyama, Shutoku; Kurane, Ichiro; Saijo, Masayuki; Morikawa, Shigeru; Yoshikawa, Yasuhiro; Akashi, Hiroomi; Mizutani, Tetsuya

    2012-02-01

    Bats have great potential as reservoirs for emerging viruses such as severe acute respiratory syndrome-coronavirus. In this study, bat coronaviruses (BtCoVs) were detected by RT-PCR from intestinal and fecal specimens of Miniopterus fuliginosus breeding colonies in Wakayama Prefecture caves, where we previously identified bat betaherpesvirus 2. Two primer sets were used for the detection of BtCoV: one was for the RNA-dependent RNA polymerase (RdRp) region and the other was for the spike (S) protein region. Eleven and 73% of intestinal and fecal specimens, respectively, were positive for RdRp region, and 2 and 40% of those were positive for S protein region. Sequencing and phylogenetic analysis showed that the detected BtCoV belonged to the group 1 (alpha) coronaviruses. These data suggest that BtCoV is endemic in M. fuliginosus in Japan. PMID:21877208

  14. Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-Dependent Manner

    PubMed Central

    Burkard, Christine; Verheije, Monique H.; Wicht, Oliver; van Kasteren, Sander I.; van Kuppeveld, Frank J.; Haagmans, Bart L.; Pelkmans, Lucas; Rottier, Peter J. M.; Bosch, Berend Jan; de Haan, Cornelis A. M.

    2014-01-01

    Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal microenvironment induce conformational changes in the viral fusion proteins leading to viral and host membrane fusion. In the present study we investigated the entry of coronaviruses (CoVs). Using siRNA gene silencing, we found that proteins known to be important for late endosomal maturation and endosome-lysosome fusion profoundly promote infection of cells with mouse hepatitis coronavirus (MHV). Using recombinant MHVs expressing reporter genes as well as a novel, replication-independent fusion assay we confirmed the importance of clathrin-mediated endocytosis and demonstrated that trafficking of MHV to lysosomes is required for fusion and productive entry to occur. Nevertheless, MHV was shown to be less sensitive to perturbation of endosomal pH than vesicular stomatitis virus and influenza A virus, which fuse in early and late endosomes, respectively. Our results indicate that entry of MHV depends on proteolytic processing of its fusion protein S by lysosomal proteases. Fusion of MHV was severely inhibited by a pan-lysosomal protease inhibitor, while trafficking of MHV to lysosomes and processing by lysosomal proteases was no longer required when a furin cleavage site was introduced in the S protein immediately upstream of the fusion peptide. Also entry of feline CoV was shown to depend on trafficking to lysosomes and processing by lysosomal proteases. In contrast, MERS-CoV, which contains a minimal furin cleavage site just upstream of the fusion peptide, was negatively affected by inhibition of furin, but not of lysosomal proteases. We conclude that a proteolytic cleavage site in the CoV S protein directly upstream of the fusion peptide is an essential determinant of the intracellular site of fusion. PMID:25375324

  15. [Envelope protein of Jaagsiekte sheep retrovious expressed in NIH3T3 cells promotes cell proliferation].

    PubMed

    DU, Fangyuan; Chen, Dayong; Zhang, Yufei; Sun, Xiaolin; Guo, Wenqing; Liu, Shuying

    2016-09-01

    Objective To explore the influence of the exogenous Jaagsiekte sheep retrovious (exJSRV) envelope protein (Env) on NIH3T3 cell proliferation. Methods A recombinant plasmid pcDNA4/myc-His/exJSRV- env carrying exJSRV- env gene was constructed, and then the correctness of the recombinant plasmid was identified by PCR, restriction enzyme digestion and sequencing. The recombinant plasmid pcDNA4/myc-His/exJSRV- env was transiently transfected into NIH3T3 cells by Lipofectamine(TM) LTX. After the transfection of the recombinant plasmid, the expression of exJSRV- env was detected by reverse transcription PCR and Western blotting. The effect of Env on cell proliferation was investigated by CCK-8 assay and plate colony formation assay. Results The recombinant eukaryotic expression plasmid containing exJSRV- env was successfully constructed as identified by PCR, restriction enzyme identification and sequencing. After the recombinant plasmid was transiently transfected into NIH3T3 cells, reverse transcription PCR and Western blotting showed the expression of exJSRV- env , and Env promoted NIH3T3 cell proliferation significantly. Conclusion JSRV Env was expressed successfully in the NIH3T3 cells and promoted the proliferation of NIH3T3 cells. PMID:27609573

  16. Infectious Bronchitis Coronavirus Inhibits STAT1 Signaling and Requires Accessory Proteins for Resistance to Type I Interferon Activity

    PubMed Central

    Kint, Joeri; Dickhout, Annemiek; Kutter, Jasmin; Maier, Helena J.; Britton, Paul; Koumans, Joseph; Pijlman, Gorben P.; Fros, Jelke J.; Wiegertjes, Geert F.

    2015-01-01

    ABSTRACT The innate immune response is the first line of defense against viruses, and type I interferon (IFN) is a critical component of this response. Similar to other viruses, the gammacoronavirus infectious bronchitis virus (IBV) has evolved under evolutionary pressure to evade and counteract the IFN response to enable its survival. Previously, we reported that IBV induces a delayed activation of the IFN response. In the present work, we describe the resistance of IBV to IFN and the potential role of accessory proteins herein. We show that IBV is fairly resistant to the antiviral state induced by IFN and identify that viral accessory protein 3a is involved in resistance to IFN, as its absence renders IBV less resistant to IFN treatment. In addition to this, we found that independently of its accessory proteins, IBV inhibits IFN-mediated phosphorylation and translocation of STAT1. In summary, we show that IBV uses multiple strategies to counteract the IFN response. IMPORTANCE In the present study, we show that infectious bronchitis virus (IBV) is resistant to IFN treatment and identify a role for accessory protein 3a in the resistance against the type I IFN response. We also demonstrate that, in a time-dependent manner, IBV effectively interferes with IFN signaling and that its accessory proteins are dispensable for this activity. This study demonstrates that the gammacoronavirus IBV, similar to its mammalian counterparts, has evolved multiple strategies to efficiently counteract the IFN response of its avian host, and it identifies accessory protein 3a as multifaceted antagonist of the avian IFN system. PMID:26401035

  17. Crystal Structures of Major Envelope Proteins VP26 and VP28 from White Spot Syndrome Virus Shed Light on Their Evolutionary Relationship

    SciTech Connect

    Tang,X.; Wu, J.; Sivaraman, J.; Hew, C.

    2007-01-01

    White spot syndrome virus (WSSV) is a virulent pathogen known to infect various crustaceans. It has bacilliform morphology with a tail-like appendage at one end. The envelope consists of four major proteins. Envelope structural proteins play a crucial role in viral infection and are believed to be the first molecules to interact with the host. Here, we report the localization and crystal structure of major envelope proteins VP26 and VP28 from WSSV at resolutions of 2.2 and 2.0 {angstrom}, respectively. These two proteins alone account for approximately 60% of the envelope, and their structures represent the first two structural envelope proteins of WSSV. Structural comparisons among VP26, VP28, and other viral proteins reveal an evolutionary relationship between WSSV envelope proteins and structural proteins from other viruses. Both proteins adopt {beta}-barrel architecture with a protruding N-terminal region. We have investigated the localization of VP26 and VP28 using immunoelectron microscopy. This study suggests that VP26 and VP28 are located on the outer surface of the virus and are observed as a surface protrusion in the WSSV envelope, and this is the first convincing observation for VP26. Based on our studies combined with the literature, we speculate that the predicted N-terminal transmembrane region of VP26 and VP28 may anchor on the viral envelope membrane, making the core {beta}-barrel protrude outside the envelope, possibly to interact with the host receptor or to fuse with the host cell membrane for effective transfer of the viral infection. Furthermore, it is tempting to extend this host interaction mode to other structural viral proteins of similar structures. Our finding has the potential to extend further toward drug and vaccine development against WSSV.

  18. The intracellular production and secretion of HIV-1 envelope protein in the methylotrophic yeast Pichia pastoris.

    PubMed

    Scorer, C A; Buckholz, R G; Clare, J J; Romanos, M A

    1993-12-22

    The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein, gp120 (ENV), is required in large quantities for immunological studies and as a potential vaccine component. We have expressed the DNA encoding gp120 in a highly efficient expression system based on the methylotrophic yeast, Pichia pastoris. The native gene was found to contain a sequence which resembled a Saccharomyces cerevisiae polyadenylation consensus and acted as a premature polyadenylation site in P. pastoris, resulting in the production of truncated mRNA. As full-length mRNA was produced in S. cerevisiae, this indicates differences in mRNA 3'-end formation between the two yeasts. Inactivation of this site by site-directed mutagenesis revealed several additional fortuitous polyadenylation sites within the gene. We have designed and constructed a 69%-synthetic gene with increased G + C content which overcomes this transcriptional problem, giving rise to full-length mRNA. High levels of intracellular, insoluble, unglycosylated ENV were produced [1.25 mg/ml in high-density (2 x 10(10) cells per ml) fermentations]. ENV also was secreted from P. pastoris using the S. cerevisiae alpha-factor prepro secretion leader and the S. cerevisiae invertase signal sequence. However, a high proportion of the secreted product was found to be hyperglycosylated, in contrast to other foreign proteins secreted from P. pastoris. There also was substantial proteolytic degradation, but this was minimized by maintaining a low pH on induction. Insoluble, yeast-derived ENV proteins are being considered as vaccine antigens and the P. pastoris system offers an efficient method of production. PMID:8293993

  19. Nuclear envelope proteins modulate proliferation of vascular smooth muscle cells during cyclic stretch application

    PubMed Central

    Qi, Ying-Xin; Yao, Qing-Ping; Huang, Kai; Shi, Qian; Zhang, Ping; Wang, Guo-Liang; Han, Yue; Bao, Han; Wang, Lu; Li, Hai-Peng; Shen, Bao-Rong; Wang, Yingxiao; Chien, Shu; Jiang, Zong-Lai

    2016-01-01

    Cyclic stretch is an important inducer of vascular smooth muscle cell (VSMC) proliferation, which is crucial in vascular remodeling during hypertension. However, the molecular mechanism remains unclear. We studied the effects of emerin and lamin A/C, two important nuclear envelope proteins, on VSMC proliferation in hypertension and the underlying mechano-mechanisms. In common carotid artery of hypertensive rats in vivo and in cultured cells subjected to high (15%) cyclic stretch in vitro, VSMC proliferation was increased significantly, and the expression of emerin and lamin A/C was repressed compared with normotensive or normal (5%) cyclic stretch controls. Using targeted siRNA to mimic the repressed expression of emerin or lamin A/C induced by 15% stretch, we found that VSMC proliferation was enhanced under static and 5%-stretch conditions. Overexpression of emerin or lamin A/C reversed VSMC proliferation induced by 15% stretch. Hence, emerin and lamin A/C play critical roles in suppressing VSMC hyperproliferation induced by hyperstretch. ChIP-on-chip and MOTIF analyses showed that the DNAs binding with emerin contain three transcription factor motifs: CCNGGA, CCMGCC, and ABTTCCG; DNAs binding with lamin A/C contain the motifs CVGGAA, GCCGCYGC, and DAAGAAA. Protein/DNA array proved that altered emerin or lamin A/C expression modulated the activation of various transcription factors. Furthermore, accelerating local expression of emerin or lamin A/C reversed cell proliferation in the carotid artery of hypertensive rats in vivo. Our findings establish the pathogenetic role of emerin and lamin A/C repression in stretch-induced VSMC proliferation and suggest mechanobiological mechanism underlying this process that involves the sequence-specific binding of emerin and lamin A/C to specific transcription factor motifs. PMID:27114541

  20. Recombination in Avian Gamma-Coronavirus Infectious Bronchitis Virus

    PubMed Central

    Thor, Sharmi W.; Hilt, Deborah A.; Kissinger, Jessica C.; Paterson, Andrew H.; Jackwood, Mark W.

    2011-01-01

    Recombination in the family Coronaviridae has been well documented and is thought to be a contributing factor in the emergence and evolution of different coronaviral genotypes as well as different species of coronavirus. However, there are limited data available on the frequency and extent of recombination in coronaviruses in nature and particularly for the avian gamma-coronaviruses where only recently the emergence of a turkey coronavirus has been attributed solely to recombination. In this study, the full-length genomes of eight avian gamma-coronavirus infectious bronchitis virus (IBV) isolates were sequenced and along with other full-length IBV genomes available from GenBank were analyzed for recombination. Evidence of recombination was found in every sequence analyzed and was distributed throughout the entire genome. Areas that have the highest occurrence of recombination are located in regions of the genome that code for nonstructural proteins 2, 3 and 16, and the structural spike glycoprotein. The extent of the recombination observed, suggests that this may be one of the principal mechanisms for generating genetic and antigenic diversity within IBV. These data indicate that reticulate evolutionary change due to recombination in IBV, likely plays a major role in the origin and adaptation of the virus leading to new genetic types and strains of the virus. PMID:21994806

  1. Identification and characterization of a prawn white spot syndrome virus gene that encodes an envelope protein VP31

    SciTech Connect

    Li Li; Xie Xixian; Yang Feng . E-mail: mbiotech@public.xm.fj.cn

    2005-09-15

    Based on a combination of SDS-PAGE and mass spectrometry, a protein with an apparent molecular mass of 31 kDa (termed as VP31) was identified from purified shrimp white spot syndrome virus (WSSV) envelope fraction. The resulting amino acid (aa) sequence matched an open reading frame (WSV340) of the WSSV genome. This ORF contained 783 nucleotides (nt), encoding 261 aa. A fragment of WSV340 was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein with a 6His-tag, and then specific antibody was raised. Western blot analysis and the immunoelectron microscope method (IEM) confirmed that VP31 was present exclusively in the viral envelope fraction. The neutralization experiment suggested that VP31 might play an important role in WSSV infectivity.

  2. Expression, immunogenicity and diagnostic value of envelope proteins from an Egyptian hepatitis C virus isolate.

    PubMed

    Shawky, Heba; Maghraby, Amany S; Solliman, Mohei El-Din; El-Mokadem, Mehreshan T; Sherif, Mohamed M; Arafa, Azza; Bahgat, Mahmoud M

    2015-04-01

    The present work aimed at 1) characterization of the E1 and E2 proteins (HCV-E) from an Egyptian hepatitis C virus genotype 4a (HCV-4a) isolate at the molecular and immunological level, 2) in silico identification of the B- and T-cell epitopes responsible for the immunogenicity of HCV-E, and 3) evaluation of the diagnostic potential of both the recombinant HCV-E and antibodies raised using mammalian expression constructs encoding the protein. The region encoding the E1 and E2 proteins was amplified by RT-PCR from RNA isolated from blood of a human infected with HCV-4 and cloned into the pSC-TA plasmid, and the sequence was verified and used to construct a neighbor-joining phylogenetic tree. The translated nucleotide sequence was used to predict the HCV-E secondary structure using the PREDICT-PROTEIN server and PSI-PRED. A 3D model of HCV-E was generated using the online tool 3Dpro. B- and T-cell epitopes were predicted using the online tools BCPred and Epijen v1.0, respectively. The HCV-E-encoding sequence was later subcloned into the mammalian expression plasmid pQE, and the constructs that were generated were used to immunize mice in the absence and presence of adjuvants of plant origin. The maximum sequence identity obtained by nucleotide and protein BLAST analysis with previously published HCV-E sequences was 85 and 77 %, respectively. The B-cell epitope CFTPSPVVV at position 203 and the T-cell epitope ALSTGLIHL at position 380 were found to be highly conserved among all HCV genotypes. Both ELISA and Western blotting experiments on crude and purified recombinant HCV envelope proteins using mouse antisera raised using the HCV-E mammalian expression construct confirmed the specific antigenicity of the expressed protein. The antibodies raised in mice using the HCV-E-encoding construct could efficiently capture circulating antigens in patients' sera with good sensitivity that correlated with liver enzyme levels (r = 0.4052, P < 0.0001 for ALT; r = -0.5439, P = 0

  3. From SARS coronavirus to novel animal and human coronaviruses

    PubMed Central

    To, Kelvin K. W.; Hung, Ivan F. N.; Chan, Jasper F. W.

    2013-01-01

    In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) caused one of the most devastating epidemics known to the developed world. There were two important lessons from this epidemic. Firstly, coronaviruses, in addition to influenza viruses, can cause severe and rapidly spreading human infections. Secondly, bats can serve as the origin and natural animal reservoir of deadly human viruses. Since then, researchers around the world, especially those in Asia where SARS-CoV was first identified, have turned their focus to find novel coronaviruses infecting humans, bats, and other animals. Two human coronaviruses, HCoV-HKU1 and HCoV-NL63, were identified shortly after the SARS-CoV epidemic as common causes of human respiratory tract infections. In 2012, a novel human coronavirus, now called Middle East respiratory syndrome coronavirus (MERS-CoV), has emerged in the Middle East to cause fatal human infections in three continents. MERS-CoV human infection is similar to SARS-CoV in having a high fatality rate and the ability to spread from person to person which resulted in secondary cases among close contacts including healthcare workers without travel history to the Middle East. Both viruses also have close relationships with bat coronaviruses. New cases of MERS-CoV infection in humans continue to occur with the origins of the virus still unknown in many cases. A multifaceted approach is necessary to control this evolving MERS-CoV outbreak. Source identification requires detailed epidemiological studies of the infected patients and enhanced surveillance of MERS-CoV or similar coronaviruses in humans and animals. Early diagnosis of infected patients and appropriate infection control measures will limit the spread in hospitals, while social distancing strategies may be necessary to control the outbreak in communities if it remained uncontrolled as in the SARS epidemic. PMID:23977429

  4. Targeted gene transfer to lymphocytes using murine leukaemia virus vectors pseudotyped with spleen necrosis virus envelope proteins.

    PubMed

    Engelstädter, M; Buchholz, C J; Bobkova, M; Steidl, S; Merget-Millitzer, H; Willemsen, R A; Stitz, J; Cichutek, K

    2001-08-01

    In contrast to murine leukaemia virus (MLV)-derived vector systems, vector particles derived from the avian spleen necrosis virus (SNV) have been successfully targeted to subsets of human cells by envelope modification with antibody fragments (scFv). However, an in vivo application of the SNV vector system in gene transfer protocols is hampered by its lack of resistance against human complement. To overcome this limitation we established pseudotyping of MLV vector particles produced in human packaging cell lines with the SNV envelope (Env) protein. Three variants of SNV Env proteins differing in the length of their cytoplasmic domains were all efficiently incorporated into MLV core particles. These pseudotype particles infected the SNV permissive cell line D17 at titers of up to 10(5) IU/ml. A stable packaging cell line (MS4) of human origin released MLV(SNV) pseudotype vectors that were resistant against human complement inactivation. To redirect their tropism to human T cells, MS4 cells were transfected with the expression gene encoding the scFv 7A5 in fusion with the transmembrane domain (TM) of the SNV Env protein, previously shown to retarget SNV vector particles to human lymphocytes. MLV(SNV-7A5)-vector particles released from these cells were selectively infectious for human T cell lines. The data provide a proof of principle for targeting MLV-derived vectors to subpopulations of human cells through pseudotyping with SNV targeting envelopes. PMID:11509952

  5. Analogs of LDL Receptor Ligand Motifs in Dengue Envelope and Capsid Proteins as Potential Codes for Cell Entry

    PubMed Central

    Guevara, Juan; Romo, Jamie; McWhorter, Troy; Guevara, Natalia Valentinova

    2016-01-01

    It is established that cell entry of low density lipoprotein particles (LLPs) containing Apo B100 and Apo E is mediated by receptors and GAGs. Receptor ligand motifs, XBBBXXBX, XBBXBX, and ΨBΨXB, and mono- and bipartite NLS sequences are abundant in Apo E and Apo B100 as well as in envelope and capsid proteins of Dengue viruses 1–4 (DENV1–4). Synthetic, fluorescence-labeled peptides of sequences in DENV2 envelope protein, and DENV3 capsid that include these motifs were used to conduct a qualitative assessment of cell binding and entry capacity using HeLa cells. DENV2 envelope peptide, Dsp2EP, 0564Gly-Gly0595, was shown to bind and remain at the cell surface. In contrast, DENV3 capsid protein peptide, Dsp3CP, 0002Asn-Gln0028, readily enters HeLa cells and accumulates at discrete loci in the nucleus. FITC-labeled dengue synthetic peptides colocalize with Low Density Lipoprotein-CM-DiI and Apo E-CM-DiI to a degree that suggests that Dengue viruses may utilize cell entry pathways used by LLPs. PMID:27123468

  6. Species-specific sequences of abalone lysin, the sperm protein that creates a hole in the egg envelope.

    PubMed Central

    Vacquier, V D; Carner, K R; Stout, C D

    1990-01-01

    Abalone eggs are contained within a rigid, elevated vitelline envelope through which the sperm must pass before reaching the egg cell membrane. Abalone spermatozoa possess an acrosomal protein called lysin that creates a hole in the egg vitelline envelope by a nonenzymatic mechanism. Lysins from two species of abalone, termed pink and red, which share the same habitat, exhibit species specificity in the dissolution of isolated egg envelopes. Cloning and sequencing the cDNAs for pink and red abalone lysins reveal transcript lengths of approximately 660 nucleotides. The open reading frames of 465 (pink) and 462 (red) nucleotides show a 13% difference. The 3' untranslated regions before the poly(A) tails are 170 (pink) and 165 (red) nucleotides long and differ from each other by about 7%. The protein sequences show nearly identical signal sequences of 18 amino acids for both lysins. The mature protein is 137 amino acids in the pink abalone and 136 in the red abalone; the two mature lysins differ in 29 of 137 amino acids (21%). The most variable region, which may account for lysin's species specificity, is at the NH2 terminus, where 11 of the 15 amino acids differ between the two species. Predictions of secondary structure indicate that both lysins contain four homologous amphiphilic alpha-helices. Images PMID:2377618

  7. Equine Tetherin Blocks Retrovirus Release and Its Activity Is Antagonized by Equine Infectious Anemia Virus Envelope Protein

    PubMed Central

    Yin, Xin; Hu, Zhe; Gu, Qinyong; Wu, Xingliang; Zheng, Yong-Hui; Wei, Ping

    2014-01-01

    Human tetherin is a host restriction factor that inhibits replication of enveloped viruses by blocking viral release. Tetherin has an unusual topology that includes an N-terminal cytoplasmic tail, a single transmembrane domain, an extracellular domain, and a C-terminal glycosylphosphatidylinositol anchor. Tetherin is not well conserved across species, so it inhibits viral replication in a species-specific manner. Thus, studies of tetherin activities from different species provide an important tool for understanding its antiviral mechanism. Here, we report cloning of equine tetherin and characterization of its antiviral activity. Equine tetherin shares 53%, 40%, 36%, and 34% amino acid sequence identity with feline, human, simian, and murine tetherins, respectively. Like the feline tetherin, equine tetherin has a shorter N-terminal domain than human tetherin. Equine tetherin is localized on the cell surface and strongly blocks human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus (SIV), and equine infectious anemia virus (EIAV) release from virus-producing cells. The antiviral activity of equine tetherin is neutralized by EIAV envelope protein, but not by the HIV-1 accessory protein Vpu, which is a human tetherin antagonist, and EIAV envelope protein does not counteract human tetherin. These results shed new light on our understanding of the species-specific tetherin antiviral mechanism. PMID:24227834

  8. Exogenous hepatitis B virus envelope proteins induce endoplasmic reticulum stress: involvement of cannabinoid axis in liver cancer cells

    PubMed Central

    Montalbano, Roberta; Honrath, Birgit; Wissniowski, Thaddeus Till; Elxnat, Moritz; Roth, Silvia; Ocker, Matthias; Quint, Karl; Churin, Yuri; Roederfeld, Martin; Schroeder, Dirk; Glebe, Dieter; Roeb, Elke; Fazio, Pietro Di

    2016-01-01

    HBV represents the most common chronic viral infection and major cause of hepatocellular carcinoma (HCC), although its exact role in liver tumorigenesis is unclear. Massive storage of the small (SHBs), middle (MHBs) and large surface (LHBs) HBV envelope proteins leads to cell stress and sustained inflammatory responses. Cannabinoid (CB) system is involved in the pathogenesis of liver diseases, stimulating acute and chronic inflammation, liver damage and fibrogenesis; it triggers endoplasmic reticulum (ER) stress response. The aim of our work was to investigate the activation of ER stress pathway after ectopic HBV envelope proteins expression, in liver cancer cells, and the role exerted by CB receptors. PCR, immunofluorescence and western blotting showed that exogenous LHBs and MHBs induce a clear ER stress response in Huh-7 cells expressing CB1 receptor. Up-regulation of the chaperone BiP/GRP78 (Binding Immunoglobulin Protein/Glucose-Regulated Protein 78) and of the transcription factor CHOP/GADD153 (C/EBP Homologous Protein/Growth Arrest and DNA Damage inducible gene 153), phosphorylation of PERK (PKR-like ER Kinase) and eIF2α (Eukaryotic Initiation Factor 2α) and splicing of XBP1 (X-box binding protein 1) was observed. CB1−/− HepG2 cells did not show any ER stress activation. Inhibition of CB1 receptor counteracted BiP expression in transfected Huh-7 and in HBV+ PLC/PRF/5 cells; whereas no effect was observed in HBV− HLF cells. These results suggest that HBV envelope proteins are able to induce the ER stress pathway. CB1 expression is directly correlated with ER stress function. Further investigations are needed to clarify the involvement of cannabinoid in HCC progression after HBV infection. PMID:26967385

  9. Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution

    PubMed Central

    Zeng, Qinghong; Langereis, Martijn A.; van Vliet, Arno L. W.; Huizinga, Eric G.; de Groot, Raoul J.

    2008-01-01

    The hemagglutinin-esterases (HEs) are a family of viral envelope glycoproteins that mediate reversible attachment to O-acetylated sialic acids by acting both as lectins and as receptor-destroying enzymes (RDEs). Related HEs occur in influenza C, toro-, and coronaviruses, apparently as a result of relatively recent lateral gene transfer events. Here, we report the crystal structure of a coronavirus (CoV) HE in complex with its receptor. We show that CoV HE arose from an influenza C-like HE fusion protein (HEF). In the process, HE was transformed from a trimer into a dimer, whereas remnants of the fusion domain were adapted to establish novel monomer–monomer contacts. Whereas the structural design of the RDE-acetylesterase domain remained unaltered, the HE receptor-binding domain underwent remodeling to such extent that the ligand is now bound in opposite orientation. This is surprising, because the architecture of the HEF site was preserved in influenza A HA over a much larger evolutionary distance, a switch in receptor specificity and extensive antigenic variation notwithstanding. Apparently, HA and HEF are under more stringent selective constraints than HE, limiting their exploration of alternative binding-site topologies. We attribute the plasticity of the CoV HE receptor-binding site to evolutionary flexibility conferred by functional redundancy between HE and its companion spike protein S. Our findings offer unique insights into the structural and functional consequences of independent protein evolution after interviral gene exchange and open potential avenues to broad-spectrum antiviral drug design. PMID:18550812

  10. In silico analysis of an envelope domain III-based multivalent fusion protein as a potential dengue vaccine candidate

    PubMed Central

    2016-01-01

    Purpose Dengue virus infection is now a global problem. Currently, there is no licensed vaccine or proven antiviral treatment against this virus. All four serotypes (1-4) of dengue virus can infect human. An effective dengue vaccine should be tetravalent to induce protective immune responses against all four serotypes. Most of dengue vaccine candidates are monovalent, or in the form of physically mixed multivalent formulations. Recently envelope protein domain III of virus is considered as a vaccine candidate, which plays critical roles in the most important viral activities. Development of a tetravalent protein subunit vaccine is very important for equal induction of immune system and prevention of unbalanced immunity. Here, we have presented and used a rational approach to design a tetravalent dengue vaccine candidate. Materials and Methods We designed a multi domain antigen by fusing four consensus domain III sequences together with appropriate hydrophobic linkers and used several types of bioinformatics software and neural networks to predict structural and immunological properties of the designed tetravalent antigen. Results We designed a tetravalent protein (EDIIIF) based on domain III of dengue virus envelope protein. According to the results of the bioinformatics analysis, the constructed models for EDIIIF protein were structurally stable and potentially immunogenic. Conclusion The designed tetravalent protein can be considered as a potential dengue vaccine candidate. The presented approach can be used for rational design and in silico evaluation of chimeric dengue vaccine candidates. PMID:26866023