Science.gov

Sample records for correctly folded recombinant

  1. Designed coiled coils promote folding of a recombinant bacterial collagen.

    PubMed

    Yoshizumi, Ayumi; Fletcher, Jordan M; Yu, Zhuoxin; Persikov, Anton V; Bartlett, Gail J; Boyle, Aimee L; Vincent, Thomas L; Woolfson, Derek N; Brodsky, Barbara

    2011-05-20

    Collagen triple helices fold slowly and inefficiently, often requiring adjacent globular domains to assist this process. In the Streptococcus pyogenes collagen-like protein Scl2, a V domain predicted to be largely α-helical, occurs N-terminal to the collagen triple helix (CL). Here, we replace this natural trimerization domain with a de novo designed, hyperstable, parallel, three-stranded, α-helical coiled coil (CC), either at the N terminus (CC-CL) or the C terminus (CL-CC) of the collagen domain. CD spectra of the constructs are consistent with additivity of independently and fully folded CC and CL domains, and the proteins retain their distinctive thermal stabilities, CL at ∼37 °C and CC at >90 °C. Heating the hybrid proteins to 50 °C unfolds CL, leaving CC intact, and upon cooling, the rate of CL refolding is somewhat faster for CL-CC than for CC-CL. A construct with coiled coils on both ends, CC-CL-CC, retains the ∼37 °C thermal stability for CL but shows less triple helix at low temperature and less denaturation at 50 °C. Most strikingly however, in CC-CL-CC, the CL refolds slower than in either CC-CL or CL-CC by almost two orders of magnitude. We propose that a single CC promotes folding of the CL domain via nucleation and in-register growth from one end, whereas initiation and growth from both ends in CC-CL-CC results in mismatched registers that frustrate folding. Bioinformatics analysis of natural collagens lends support to this because, where present, there is generally only one coiled-coil domain close to the triple helix, and it is nearly always N-terminal to the collagen repeat. PMID:21454493

  2. Further corrections to the theory of cosmological recombination

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    1990-01-01

    Krolik (1989) pointed out that frequency redistribution due to scattering is more important than cosmological expansion in determining the Ly-alpha frequency profile during cosmological recombination, and that its effects substantially modify the rate of recombination. Although the first statement is true, the second statement is not: a basic symmetry of photon scattering leads to identical cancellations which almost completely erase the effects of both coherent and incoherent scattering. Only a small correction due to atomic recoil alters the line profile from the prediction of pure cosmological expansion, so that the pace of cosmological recombination can be well approximated by ignoring Ly-alpha scattering.

  3. Mechanisms for Rescue of Correctable Folding Defects in CFTRΔF508

    PubMed Central

    Grove, Diane E.; Rosser, Meredith F.N.; Ren, Hong Yu; Naren, Anjaparavanda P.

    2009-01-01

    Premature degradation of CFTRΔF508 causes cystic fibrosis (CF). CFTRΔF508 folding defects are conditional and folding correctors are being developed as CF therapeutics. How the cellular environment impacts CFTRΔF508 folding efficiency and the identity of CFTRΔF508's correctable folding defects is unclear. We report that inactivation of the RMA1 or CHIP ubiquitin ligase permits a pool of CFTRΔF508 to escape the endoplasmic reticulum. Combined RMA1 or CHIP inactivation and Corr-4a treatment enhanced CFTRΔF508 folding to 3–7-fold greater levels than those elicited by Corr-4a. Some, but not all, folding defects in CFTRΔF508 are correctable. CHIP and RMA1 recognize different regions of CFTR and a large pool of nascent CFTRΔF508 is ubiquitinated by RMA1 before Corr-4a action. RMA1 recognizes defects in CFTRΔF508 related to misassembly of a complex that contains MSD1, NBD1, and the R-domain. Corr-4a acts on CFTRΔF508 after MSD2 synthesis and was ineffective at rescue of ΔF508 dependent folding defects in amino-terminal regions. In contrast, misfolding caused by the rare CF-causing mutation V232D in MSD1 was highly correctable by Corr-4a. Overall, correction of folding defects recognized by RMA1 and/or global modulation of ER quality control has the potential to increase CFTRΔF508 folding and provide a therapeutic approach for CF. PMID:19625452

  4. Determination of Size of Folding Nuclei of Fibrils Formed from Recombinant Aβ(1-40) Peptide.

    PubMed

    Grigorashvili, E I; Selivanova, O M; Dovidchenko, N V; Dzhus, U F; Mikhailina, A O; Suvorina, M Yu; Marchenkov, V V; Surin, A K; Galzitskaya, O V

    2016-05-01

    We have developed a highly efficient method for purification of the recombinant product Aβ(1-40) peptide. The concentration dependence of amyloid formation by recombinant Aβ(1-40) peptide was studied using fluorescence spectroscopy and electron microscopy. We found that the process of amyloid formation is preceded by lag time, which indicates that the process is nucleation-dependent. Further exponential growth of amyloid fibrils is followed by branching scenarios. Based on the experimental data on the concentration dependence, the sizes of the folding nuclei of fibrils were calculated. It turned out that the size of the primary nucleus is one "monomer" and the size of the secondary nucleus is zero. This means that the nucleus for new aggregates can be a surface of the fibrils themselves. Using electron microscopy, we have demonstrated that fibrils of these peptides are formed by the association of rounded ring structures. PMID:27297904

  5. Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview

    PubMed Central

    Gasser, Brigitte; Saloheimo, Markku; Rinas, Ursula; Dragosits, Martin; Rodríguez-Carmona, Escarlata; Baumann, Kristin; Giuliani, Maria; Parrilli, Ermenegilda; Branduardi, Paola; Lang, Christine; Porro, Danilo; Ferrer, Pau; Tutino, Maria Luisa; Mattanovich, Diethard; Villaverde, Antonio

    2008-01-01

    Different species of microorganisms including yeasts, filamentous fungi and bacteria have been used in the past 25 years for the controlled production of foreign proteins of scientific, pharmacological or industrial interest. A major obstacle for protein production processes and a limit to overall success has been the abundance of misfolded polypeptides, which fail to reach their native conformation. The presence of misfolded or folding-reluctant protein species causes considerable stress in host cells. The characterization of such adverse conditions and the elicited cell responses have permitted to better understand the physiology and molecular biology of conformational stress. Therefore, microbial cell factories for recombinant protein production are depicted here as a source of knowledge that has considerably helped to picture the extremely rich landscape of in vivo protein folding, and the main cellular players of this complex process are described for the most important cell factories used for biotechnological purposes. PMID:18394160

  6. Synchrotron radiation circular dichroism spectroscopy study of recombinant T β4 folding

    NASA Astrophysics Data System (ADS)

    Huang, Yung-Chin; Chu, Hsueh-Liang; Chen, Peng-Jen; Chang, Chia-Ching

    Thymosin beta 4 (T β4) is a 43-amino acid small peptide, has been demonstrated that it can promote cardiac repair, wound repair, tissue protection, and involve in the proliferation of blood cell precursor stem cells of bone marrow. Moreover, T β4 has been identified as a multifunction intrinsically disordered protein, which is lacking the stable tertiary structure. Owing to the small size and disordered character, the T β4 protein degrades rapidly and the storage condition is critical. Therefore, it is not easy to reveal its folding mechanism of native T β4. However, recombinant T β4 protein (rT β4), which fused with a 5-kDa peptide in its amino-terminal, is stable and possesses identical function of T β4. Therefore, rT β4 can be used to study its folding mechanism. By using over-critical folding process, stable folding intermediates of rT β4 can be obtained. Structure analysis of folding intermediates by synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies indicate that rT β4 is a random coli major protein and its hydrophobic region becomes compact gradually. Moreover, the rT β4 folding is a two state transition. Thermal denaturation analysis indicates that rT β4 lacks stable tertiary structure. These results indicated that rT β4, similar to T β4, is an intrinsically disordered protein. Research is supported by MOST, Taiwan. MOST 103-2112-M-009-011-MY3. Corresponding author: Chia-Ching Chang; ccchang01@faculty.nctu.edu.tw.

  7. Correction for the iatrogenic form of banana fold and sensuous triangle deformity.

    PubMed

    Pereira, Luiz Haroldo; Sterodimas, Aris

    2008-11-01

    The "banana fold," or the infragluteal fold, is a fat deposit on the posterior thigh near the gluteal crease and parallel to it. The "sensuous triangle" is found at the junction of the lateral buttocks, the lateral thigh, and the posterior thigh. The iatrogenic forms of banana fold and sensuous triangle deformity are produced by excessive liposuction. The authors' experience using autologous fat transplantation to treat tissue defects led them to use this technique for correcting iatrogenic forms of banana fold and sensuous triangle deformity. The simplicity of the procedure, the low incidence of complications, and the high satisfaction rate makes autologous fat transplantation an attractive option for correcting iatrogenic complications of liposuction. PMID:18663513

  8. Subcision using a spinal needle cannula and a thread for prominent nasolabial fold correction.

    PubMed

    Lee, Sang-Yeul; Sung, Kun-Yong

    2013-05-01

    Deepening of the nasolabial crease is an esthetically unpleasing aging phenomenon occurring in the midface. Various treatment modalities have been introduced to improve the appearance of prominent nasolabial folds, all of which have pros and cons. Currently, a minimally invasive technique using synthetic dermal fillers is most commonly used. A simple and easy subcision procedure using a wire scalpel has also been used and reported to be effective for prominent nasolabial fold correction, with minimal complications. As an alternative to the wire scalpel, we used a 20-gauge metal type spinal needle cannula (Hakko Co.) and 4-0 Vicryl suture (Ethicon Inc.) for subcision of nasolabial folds. This technique is less expensive than the use of a wire scalpel and easily available when needed. Therefore, on the basis of favorable results, our modified subcision technique may be considered effective for prominent nasolabial fold correction. PMID:23730604

  9. Native and recombinant Pg-AMP1 show different antibacterial activity spectrum but similar folding behavior.

    PubMed

    Porto, William F; Nolasco, Diego O; Franco, Octavio L

    2014-05-01

    Glycine-rich proteins (GRPs) derived from plants compose a family of proteins and peptides that share a glycine repeat domain and they can perform diverse functions. Two structural conformations have been proposed for GRPs: glycine loops arranged as a Velcro and an anti-parallel β-sheet with several β-strands. The antimicrobial peptide Pg-AMP1 is the only plant GRP with antibacterial activity reported so far and its structure remains unclear. Recently, its recombinant expression was reported, where the recombinant peptide had an additional methionine residue at the N-terminal and a histidine tag at the C-terminal (His6-tag). These changes seem to change the peptide's activity, generating a broader spectrum of antibacterial activity. In this report, through ab initio molecular modelling and molecular dynamics, it was observed that both native and recombinant peptide structures were composed of an N-terminal α-helix and a dynamic loop that represents two-thirds of the protein. In contrast to previous reports, it was observed that there is a tendency to adopt a globular fold instead of an extended one, which could be in both, glycine loops or anti-parallel β-sheet conformation. The recombinant peptide showed a slightly higher solvated potential energy compared to the native form, which could be related to the His6-tag exposition. In fact, the His6-tag could be mainly responsible for the broader spectrum of activity, but it does not seem to cause great structural changes. However, novel studies are needed for a better characterization of its pharmacological properties so that in the future novel drugs may be produced based on this peptide. PMID:24582624

  10. Folded or Not? Tracking Bet v 1 Conformation in Recombinant Allergen Preparations

    PubMed Central

    Seutter von Loetzen, Christian; Schweimer, Kristian; Bellinghausen, Iris; Treudler, Regina; Simon, Jan C.; Vogel, Lothar; Völker, Elke; Randow, Stefanie; Reuter, Andreas; Rösch, Paul; Vieths, Stefan; Holzhauser, Thomas; Schiller, Dirk

    2015-01-01

    Background Recombinant Bet v 1a (rBet v 1a) has been used in allergy research for more than three decades, including clinical application of so-called hypoallergens. Quantitative IgE binding to rBet v 1a depends on its native protein conformation, which might be compromised upon heterologous expression, purification, or mutational engineering of rBet v 1a. Objective To correlate experimental/theoretical comparisons of IgE binding of defined molar ratios of folded/misfolded recombinant Bet v 1a variants and to determine accuracy and precision of immuno- and physicochemical assays routinely used to assess the quality of recombinant allergen preparations. Methods rBet v 1a and its misfolded variant rBet v 1aS112P/R145P were heterologously expressed and purified from Escherichia coli. Structural integrities and oligomerisation of the recombinant allergens were evaluated by 1H-nuclear magnetic resonance (1H-NMR), circular dichroism (CD) spectroscopy, and dynamic light scattering (DLS). IgE binding of defined combinations of rBet v 1a and rBet v 1aS112P/R145P was assessed using immunoblotting (IB), enzyme-linked immunosorbent assay (ELISA) and mediator release (MR) of humanized rat basophilic leukemia cells sensitized with serum IgE of subjects allergic to birch pollen. Experimental and theoretically expected results of the analyses were compared. Results 1H-NMR spectra of rBet v 1a and rBet v 1aS112P/R145P demonstrate a native and highly disordered protein conformations, respectively. The CD spectra suggested typical alpha-helical and beta-sheet secondary structure content of rBet v 1a and random coil for rBet v 1aS112P/R145P. The hydrodynamic radii (RH) of 2.49 ± 0.39 nm (rBet v 1a) and 3.1 ± 0.56 nm (rBet v 1aS112P/R145P) showed monomeric dispersion of both allergens in solution. Serum IgE of birch pollen allergic subjects bound to 0.1% rBet v 1a in the presence of 99.9% of non-IgE binding rBet v 1aS112P/R145P. Immunoblot analysis overestimated, whereas ELISA and

  11. Optimal correction of distinct CFTR folding mutants in rectal cystic fibrosis organoids.

    PubMed

    Dekkers, Johanna F; Gogorza Gondra, Ricardo A; Kruisselbrink, Evelien; Vonk, Annelotte M; Janssens, Hettie M; de Winter-de Groot, Karin M; van der Ent, Cornelis K; Beekman, Jeffrey M

    2016-08-01

    Small-molecule therapies that restore defects in cystic fibrosis transmembrane conductance regulator (CFTR) gating (potentiators) or trafficking (correctors) are being developed for cystic fibrosis (CF) in a mutation-specific fashion. Options for pharmacological correction of CFTR-p.Phe508del (F508del) are being extensively studied but correction of other trafficking mutants that may also benefit from corrector treatment remains largely unknown.We studied correction of the folding mutants CFTR-p.Phe508del, -p.Ala455Glu (A455E) and -p.Asn1303Lys (N1303K) by VX-809 and 18 other correctors (C1-C18) using a functional CFTR assay in human intestinal CF organoids.Function of both CFTR-p.Phe508del and -p.Ala455Glu was enhanced by a variety of correctors but no residual or corrector-induced activity was associated with CFTR-p.Asn1303Lys. Importantly, VX-809-induced correction was most dominant for CFTR-p.Phe508del, while correction of CFTR-p.Ala455Glu was highest by a subgroup of compounds called bithiazoles (C4, C13, C14 and C17) and C5.These data support the development of mutation-specific correctors for optimal treatment of different CFTR trafficking mutants, and identify C5 and bithiazoles as the most promising compounds for correction of CFTR-p.Ala455Glu. PMID:27103391

  12. Efficient production of a correctly folded mouse α-defensin, cryptdin-4, by refolding during inclusion body solubilization.

    PubMed

    Tomisawa, Satoshi; Sato, Yuji; Kamiya, Masakatsu; Kumaki, Yasuhiro; Kikukawa, Takashi; Kawano, Keiichi; Demura, Makoto; Nakamura, Kiminori; Ayabe, Tokiyoshi; Aizawa, Tomoyasu

    2015-08-01

    Mammalian α-defensins contribute to innate immunity by exerting antimicrobial activity against various pathogens. To perform structural and functional analysis of α-defensins, large amounts of α-defensins are essential. Although many expression systems for the production of recombinant α-defensins have been developed, attempts to obtain large amounts of α-defensins have been only moderately successful. Therefore, in this study, we applied a previously developed aggregation-prone protein coexpression method for the production of mouse α-defensin cryptdin-4 (Crp4) in order to enhance the formation of inclusion bodies in Escherichia coli expression system. By using this method, we succeeded in obtaining a large amount of Crp4 in the form of inclusion bodies. Moreover, we attempted to refold Crp4 directly during the inclusion-body solubilization step under oxidative conditions. Surprisingly, even without any purification, Crp4 was efficiently refolded during the solubilization step of inclusion bodies, and the yield was better than that of the conventional refolding method. NMR spectra of purified Crp4 suggested that it was folded into its correct tertiary structure. Therefore, the method described in this study not only enhances the expression of α-defensin as inclusion bodies, but also eliminates the cumbersome and time-consuming refolding step. PMID:25913370

  13. Evaluation of Subcision for the Correction of the Prominent Nasolabial Folds

    PubMed Central

    Robati, R. M.; Abdollahimajd, F.; Robati, A. M.

    2015-01-01

    Background. A prominent nasolabial fold (NLF) is a cosmetic problem. Currently, numerous therapeutic modalities are available for pronounced NLFs with variable efficacy. Objective. To determine the efficacy and safety of subcision using a hypodermic needle for the correction of the prominent NLFs and its effect on skin elasticity. Methods. Sixteen patients with prominent NLFs underwent subcision. The investigators' assessment of improvement and the patients' satisfaction were both recorded 1 and 6 months after the procedure. Also, we evaluate the skin elasticity of NLFs before and after the treatment using a sensitive biometrologic device with the measurement of cutaneous resonance running time (CRRT). Results. Thirteen (81.25%) patients showed a moderate improvement at 1st month and 13 (81.25%) patients had at least a mild improvement at 6th month. There was no persistent side effect lasting more than a few days. Mean CRRT at 1 and 6 months after the treatment was significantly higher compared to the baseline. Conclusion. Subcision may be considered effective for the correction of pronounced NLFs. However, further controlled studies with larger sample size are necessary to assess the efficacy of this technique in particular with use of more objective assessment of skin biometric characteristics. This trial is registered with IRCT201108097270N1 (registered on January 27, 2012). PMID:26788052

  14. Calcium Hydroxylapatite With Integral Lidocaine Provides Improved Pain Control for the Correction of Nasolabial Folds.

    PubMed

    Schachter, Daniel; Bertucci, Vince; Solish, Nowell

    2016-08-01

    Calcium hydroxylapatite microspheres in a carrier gel (CaHA; Radiesse®: Merz North America, Inc., Raleigh, NC) is approved by the United States Food and Drug Administration for subdermal implantation for the correction of moderate-to-severe facial wrinkles and folds, such as nasolabial folds (NLFs). Lidocaine is often mixed with injectable dermal fillers to reduce injection pain. A new formulation of CaHA has been developed with the convenience of integral 0.3% lidocaine, CaHA (+).
    This multicenter, split-face, double-blind study randomized subjects to receive treatment with CaHA (+) in one NLF and CaHA without lidocaine in the contralateral NLF. The pain level for each NLF was evaluated immediately following the injection using a 10-cm visual analog scale (VAS), and every 15 minutes for 60 minutes plus follow-up visits. Additional endpoints included aesthetic outcomes and subject preference. All subjects (N=102) received treatment.
    CaHA (+) treatment resulted in a statistically and clinically significant reduction in pain ratings immediately after injection compared with CaHA. The mean difference in VAS scores for pain was -4.41 (P<0.0001). In 90% of subjects, the VAS scores were ≥2.0 cm lower for the CaHA (+)-treated NLF. A significant reduction in pain ratings throughout the first hour after injection was observed with CaHA (+) compared with CaHA (P<0.0001). Both treatment groups achieved significant aesthetic improvement; however, the pain differential resulted in a subject-reported preference for CaHA (+). CaHA (+) with integral lidocaine significantly reduces pain and is as effective as CaHA.

    J Drugs Dermatol. 2016;15(8):1005-1010. PMID:27538003

  15. A High Through-put Platform for Recombinant Antibodies to Folded Proteins*

    PubMed Central

    Hornsby, Michael; Paduch, Marcin; Miersch, Shane; Sääf, Annika; Matsuguchi, Tet; Lee, Brian; Wypisniak, Karolina; Doak, Allison; King, Daniel; Usatyuk, Svitlana; Perry, Kimberly; Lu, Vince; Thomas, William; Luke, Judy; Goodman, Jay; Hoey, Robert J.; Lai, Darson; Griffin, Carly; Li, Zhijian; Vizeacoumar, Franco J.; Dong, Debbie; Campbell, Elliot; Anderson, Stephen; Zhong, Nan; Gräslund, Susanne; Koide, Shohei; Moffat, Jason; Sidhu, Sachdev; Kossiakoff, Anthony; Wells, James

    2015-01-01

    Antibodies are key reagents in biology and medicine, but commercial sources are rarely recombinant and thus do not provide a permanent and renewable resource. Here, we describe an industrialized platform to generate antigens and validated recombinant antibodies for 346 transcription factors (TFs) and 211 epigenetic antigens. We describe an optimized automated phage display and antigen expression pipeline that in aggregate produced about 3000 sequenced Fragment antigen-binding domain that had high affinity (typically EC50<20 nm), high stability (Tm∼80 °C), good expression in E. coli (∼5 mg/L), and ability to bind antigen in complex cell lysates. We evaluated a subset of Fabs generated to homologous SCAN domains for binding specificities. These Fragment antigen-binding domains were monospecific to their target SCAN antigen except in rare cases where they cross-reacted with a few highly related antigens. Remarkably, immunofluorescence experiments in six cell lines for 270 of the TF antigens, each having multiple antibodies, show that ∼70% stain predominantly in the cytosol and ∼20% stain in the nucleus which reinforces the dominant role that translocation plays in TF biology. These cloned antibody reagents are being made available to the academic community through our web site recombinant-antibodies.org to allow a more system-wide analysis of TF and chromatin biology. We believe these platforms, infrastructure, and automated approaches will facilitate the next generation of renewable antibody reagents to the human proteome in the coming decade. PMID:26290498

  16. Exploration of twin‐arginine translocation for expression and purification of correctly folded proteins in Escherichia coli

    PubMed Central

    Fisher, Adam C.; Kim, Jae‐Young; Perez‐Rodriguez, Ritsdeliz; Tullman‐Ercek, Danielle; Fish, Wallace R.; Henderson, Lee A.; DeLisa, Matthew P.

    2008-01-01

    Summary Historically, the general secretory (Sec) pathway of Gram‐negative bacteria has served as the primary route by which heterologous proteins are delivered to the periplasm in numerous expression and engineering applications. Here we have systematically examined the twin‐arginine translocation (Tat) pathway as an alternative, and possibly advantageous, secretion pathway for heterologous proteins. Overall, we found that: (i) export efficiency and periplasmic yield of a model substrate were affected by the composition of the Tat signal peptide, (ii) Tat substrates were correctly processed at their N‐termini upon reaching the periplasm and (iii) proteins fused to maltose‐binding protein (MBP) were reliably exported by the Tat system, but only when correctly folded; aberrantly folded MBP fusions were excluded by the Tat pathway's folding quality control feature. We also observed that Tat export yield was comparable to Sec for relatively small, well‐folded proteins, higher relative to Sec for proteins that required cytoplasmic folding, and lower relative to Sec for larger, soluble fusion proteins. Interestingly, the specific activity of material purified from the periplasm was higher for certain Tat substrates relative to their Sec counterparts, suggesting that Tat expression can give rise to relatively pure and highly active proteins in one step. PMID:21261860

  17. Studies on recombinant single chain Jacalin lectin reveal reduced affinity for saccharides despite normal folding like native Jacalin

    PubMed Central

    Sahasrabuddhe, Anagh A.; Gaikwad, Sushama M.; Krishnasastry, M.V.; Khan, M. Islam

    2004-01-01

    Sugar binding studies, inactivation, unfolding, and refolding of native Jacalin (nJacalin) from Artocarpus integrifolia and recombinant single-chain Jacalin (rJacalin) expressed in Escherichia coli were studied by intrinsic fluorescence and thermal and chemical denaturation approaches. Interestingly, rJacalin does not undergo any proteolytic processing in an E. coli environment. It has 100fold less affinity for methyl-α-galactose (Ka: 2.48 × 102) in comparison to nJacalin (Ka: 1.58 × 104), and it also binds Thomsen-Friedenreich (TF) disaccharide (Galβ1–3GalNAc) with less affinity. Overall sugar binding characteristics of rJacalin are qualitatively similar to that of nJacalin (Galrecombinant lectins. The stability of rJacalin is dramatically reduced in the extreme pH range unlike nJacalin. Both lectins do not bind 1-anilino-8-naphthalene sulfonic acid (ANS) in the pH range of 5 to 12 but they do in the pH range of 1–3. Solute quenching studies of the lectin using acrylamide, KI, and CsCl indicated that the tryptophan residues have full accessibility to the neutral quencher and poor accessibility to ionic quenchers. In summary, biophysical and biochemical studies on the native versus recombinant Jacalin suggest that post-translational modification, i.e., the processing of Jacalin into two chains is probably not a prerequisite for sugar binding but may be required for higher affinity. PMID:15557267

  18. Acid denaturation of recombinant porcine growth hormone: formation and self-association of folding intermediates.

    PubMed

    Parkinson, E J; Morris, M B; Bastiras, S

    2000-10-10

    We have investigated the conformational changes incurred during the acid-induced unfolding and self-association of recombinant porcine growth hormone (pGH). Acidification (pH 8 to pH 2) of pGH resulted in intrinsic fluorescence, UV absorbance, and near-UV CD transitions centered at pH 4.10. At pH 2.0, a red shift in the fluorescence emission maximum of approximately 3 nm and a 15% loss of the far-UV CD signal at 222 nm imply that the protein did not become extensively unfolded. Acidification in the presence of 4 M urea resulted in similar pH-dependent transitions. However, these occurred at a higher pH (approximately 5.2). At pH 2.0 + 4 M urea, an 8 nm red shift in the fluorescence emission maximum suggests that unfolding was greater than in the absence of urea. The presence of a prominent peak centered at 298 nm in the near-UV CD spectrum, which is absent without urea, signifies further differences in the intermediates generated at pH 2. Sedimentation equilibrium experiments in the analytical ultracentrifuge showed that native pGH and the partially unfolded intermediates reversibly self-associate. Self-association was strongly promoted at pH 2 while urea reduced self-association at both pH 8 and pH 2. These results demonstrate that acidification of pGH in the absence or presence of 4 M urea induced the formation of molten globule-like states with measurable differences in conformation. Similarities and differences in these structural conformations with respect to other growth hormones are discussed. PMID:11015214

  19. The Endoplasmic Reticulum-based Acetyltransferases, ATase1 and ATase2, Associate with the Oligosaccharyltransferase to Acetylate Correctly Folded Polypeptides*

    PubMed Central

    Ding, Yun; Dellisanti, Cosma D.; Ko, Mi Hee; Czajkowski, Cynthia; Puglielli, Luigi

    2014-01-01

    The endoplasmic reticulum (ER) has two membrane-bound acetyltransferases responsible for the endoluminal Nϵ-lysine acetylation of ER-transiting and -resident proteins. Mutations that impair the ER-based acetylation machinery are associated with developmental defects and a familial form of spastic paraplegia. Deficient ER acetylation in the mouse leads to defects of the immune and nervous system. Here, we report that both ATase1 and ATase2 form homo- and heterodimers and associate with members of the oligosaccharyltransferase (OST) complex. In contrast to the OST, the ATases only modify correctly folded polypetides. Collectively, our studies suggest that one of the functions of the ATases is to work in concert with the OST and “select” correctly folded from unfolded/misfolded transiting polypeptides. PMID:25301944

  20. Determination of ion recombination correction factors for a liquid ionization chamber in megavoltage photon beams

    NASA Astrophysics Data System (ADS)

    Choi, Sang Hyoun; Kim, Kum-Bae; Ji, Young Hoon; Kim, Chan Hyeong; Kim, Seonghoon; Huh, Hyun Do

    2015-05-01

    The aim of this study is to determine the ion recombination correction factor for a liquid ionization chamber in a high energy photon beam by using our experimental method. The ion recombination correction factors were determined by using our experimental method and were compared with theoretical and experimental methods proposed by using the theoretical method (Greening, Johansson) and the two-dose rate method in a cobalt beam and a high energy photon beam. In order to apply the liquid ionization chamber in a reference and small field dosimetry, we acquired the absorbed dose to water correction coefficient, the beam quality correction factor, and the influence quantities for the microLion chamber according to the TRS-398 protocol and applied the results to a high energy photon beam used in clinical fields. As a result, our experimental method for ion recombination in a cobalt beam agreed with the results from the heoretical method (Greening theory) better than it did with the results from the two-dose rate method. For high energy photon beams, the two-dose rate and our experimental methods were in good agreement, less than 2% deviation, while the theoretical general collection efficiency (Johansson et al.) deviated greatly from the experimental values. When we applied the factors for the absorbed dose to water measurement, the absorbed dose to water for the microLion chamber was in good agreement, within 1%, compared with the values for the PTW 30013 chamber in 6 and 10 MV Clinac iX and 6 and 15 MV Oncor impression. With these results, not only can the microLion ionization chamber be used to measure the absorbed dose to water in a reference condition, it can also be used to a the chamber for small, non-standard field dosimetry.

  1. Correct folding of an α-helix and a β-hairpin using a polarized 2D torsional potential.

    PubMed

    Gao, Ya; Li, Yongxiu; Mou, Lirong; Lin, Bingbing; Zhang, John Z H; Mei, Ye

    2015-01-01

    A new modification to the AMBER force field that incorporates the coupled two-dimensional main chain torsion energy has been evaluated for the balanced representation of secondary structures. In this modified AMBER force field (AMBER03(2D)), the main chain torsion energy is represented by 2-dimensional Fourier expansions with parameters fitted to the potential energy surface generated by high-level quantum mechanical calculations of small peptides in solution. Molecular dynamics simulations are performed to study the folding of two model peptides adopting either α-helix or β-hairpin structures. Both peptides are successfully folded into their native structures using an AMBER03(2D) force field with the implementation of a polarization scheme (AMBER03(2D)p). For comparison, simulations using a standard AMBER03 force field with and without polarization, as well as AMBER03(2D) without polarization, fail to fold both peptides successfully. The correction to secondary structure propensity in the AMBER03 force field and the polarization effect are critical to folding Trpzip2; without these factors, a helical structure is obtained. This study strongly suggests that this new force field is capable of providing a more balanced preference for helical and extended conformations. The electrostatic polarization effect is shown to be indispensable to the growth of secondary structures. PMID:26039188

  2. Analysis of epitope-specific immune responses induced by vaccination with structurally folded and unfolded recombinant Bet v 1 allergen derivatives in man.

    PubMed

    Pree, Ines; Reisinger, Jürgen; Focke, Margit; Vrtala, Susanne; Pauli, Gabrielle; van Hage, Marianne; Cromwell, Oliver; Gadermaier, Elisabeth; Egger, Cornelia; Reider, Norbert; Horak, Friedrich; Valenta, Rudolf; Niederberger, Verena

    2007-10-15

    Previously, we have constructed recombinant derivatives of the major birch pollen allergen, Bet v 1, with a more than 100-fold reduced ability to induce IgE-mediated allergic reactions. These derivatives differed from each other because the two recombinant Bet v 1 fragments represented unfolded molecules whereas the recombinant trimer resembled most of the structural fold of the Bet v 1 allergen. In this study, we analyzed the Ab (IgE, IgG subclass, IgA, IgM) response to Bet v 1, recombinant and synthetic Bet v 1-derived peptides in birch pollen allergic patients who had been vaccinated with the derivatives or adjuvant alone. Furthermore, we studied the induction of IgE-mediated skin responses in these patients using Bet v 1 and Bet v 1 fragments. Both types of vaccines induced a comparable IgG1 and IgG4 response against new sequential epitopes which overlap with the conformational IgE epitopes of Bet v 1. This response was 4- to 5-fold higher than that induced by immunotherapy with birch pollen extract. Trimer more than fragments induced also IgE responses against new epitopes and a transient increase in skin sensitivity to the fragments at the beginning of therapy. However, skin reactions to Bet v 1 tended to decrease one year after treatment in both actively treated groups. We demonstrate that vaccination with folded and unfolded recombinant allergen derivatives induces IgG Abs against new epitopes. These data may be important for the development of therapeutic as well as prophylactic vaccines based on recombinant allergens. PMID:17911617

  3. Ion recombination corrections of ionization chambers in flattening filter-free photon radiation.

    PubMed

    Wang, Yuenan; Easterling, Stephen B; Ting, Joseph Y

    2012-01-01

    The flattening filter free (FFF) X-rays can provide much higher dose rate at the treatment target compared to the conventional flattened X-rays. However, the substantial increase of dose rate for FFF beams may affect the ion recombination correction factor, which is required for accurate measurements using ionization chambers in clinical dosimetry. The purpose of this work is to investigate the ion recombination of three types of commonly used ion chambers (Farmer, PinPoint and plane-parallel) in the FFF photon radiation. Both 6 MV and 10 MV flattened and FFF beams were fully commissioned on a Varian TrueBeam linear accelerator. The ion recombination correction factor, P(ion), was determined using the two-voltage technique for a 0.6 cc Farmer chamber, a 0.015 cc PinPoint chamber, and a 0.02 cc parallel-plate chamber at different source-to-axis distances (SAD) in a solid water phantom or water tank phantom at a depth of 10 cm in a 10 × 10 cm(2) field. Good repeatability of measurements was demonstrated. Less than 1% difference in P(ion) between the flattened and FFF photons for all three ion chambers was observed. At a SAD of 100 cm and a depth of 10 cm for a 10 × 10 cm(2) field, P(ion) for the Farmer chamber was 1.004 and 1.008 for the 6 MV flattened and FFF beams, respectively. At the same setup using the Farmer chamber, P(ion) was 1.002 and 1.015 for the 10MV flattened and FFF beams, respectively. All P(ion) results for the Farmer, PinPoint, or parallel plate chamber in the 6 MV and 10 MV flattened and FFF beams were within 2% from the unity (1 ≤ P(ion) < 1.02). The P(ion) ratio of the FFF to flattened beams was 0.99~1.01 for both 6 MV and 10 MV photons. The ion recombination effect of the Farmer, PinPoint, and plane-parallel chamber in the FFF beams is not substantially different from that in the conventional flattened beams. PMID:22955642

  4. Effective-range corrections to three-body recombination for atoms with large scattering length

    SciTech Connect

    Hammer, H.-W.; Laehde, Timo A.; Platter, L.

    2007-03-15

    Few-body systems with large scattering length a have universal properties that do not depend on the details of their interactions at short distances. The rate constant for three-body recombination of bosonic atoms of mass m into a shallow dimer scales as ({Dirac_h}/2{pi})a{sup 4}/m times a log-periodic function of the scattering length. We calculate the leading and subleading corrections to the rate constant, which are due to the effective range of the atoms, and study the correlation between the rate constant and the atom-dimer scattering length. Our results are applied to {sup 4}He atoms as a test case.

  5. VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1.

    PubMed

    Ren, Hong Yu; Grove, Diane E; De La Rosa, Oxana; Houck, Scott A; Sopha, Pattarawut; Van Goor, Fredrick; Hoffman, Beth J; Cyr, Douglas M

    2013-10-01

    Cystic fibrosis (CF) is a fatal genetic disorder associated with defective hydration of lung airways due to the loss of chloride transport through the CF transmembrane conductance regulator protein (CFTR). CFTR contains two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory domain, and its channel assembly requires multiple interdomain contacts. The most common CF-causing mutation, F508del, occurs in NBD1 and results in misfolding and premature degradation of F508del-CFTR. VX-809 is an investigational CFTR corrector that partially restores CFTR function in people who are homozygous for F508del-CFTR. To identify the folding defect(s) in F508del-CFTR that must be repaired to treat CF, we explored the mechanism of VX-809 action. VX-809 stabilized an N-terminal domain in CFTR that contains only MSD1 and efficaciously restored function to CFTR forms that have missense mutations in MSD1. The action of VX-809 on MSD1 appears to suppress folding defects in F508del-CFTR by enhancing interactions among the NBD1, MSD1, and MSD2 domains. The ability of VX-809 to correct F508del-CFTR is enhanced when combined with mutations that improve F508del-NBD1 interaction with MSD2. These data suggest that the use of VX-809 in combination with an additional CFTR corrector that suppresses folding defects downstream of MSD1 may further enhance CFTR function in people with F508del-CFTR. PMID:23924900

  6. VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1

    PubMed Central

    Ren, Hong Yu; Grove, Diane E.; De La Rosa, Oxana; Houck, Scott A.; Sopha, Pattarawut; Van Goor, Fredrick; Hoffman, Beth J.; Cyr, Douglas M.

    2013-01-01

    Cystic fibrosis (CF) is a fatal genetic disorder associated with defective hydration of lung airways due to the loss of chloride transport through the CF transmembrane conductance regulator protein (CFTR). CFTR contains two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory domain, and its channel assembly requires multiple interdomain contacts. The most common CF-causing mutation, F508del, occurs in NBD1 and results in misfolding and premature degradation of F508del-CFTR. VX-809 is an investigational CFTR corrector that partially restores CFTR function in people who are homozygous for F508del-CFTR. To identify the folding defect(s) in F508del-CFTR that must be repaired to treat CF, we explored the mechanism of VX-809 action. VX-809 stabilized an N-terminal domain in CFTR that contains only MSD1 and efficaciously restored function to CFTR forms that have missense mutations in MSD1. The action of VX-809 on MSD1 appears to suppress folding defects in F508del-CFTR by enhancing interactions among the NBD1, MSD1, and MSD2 domains. The ability of VX-809 to correct F508del-CFTR is enhanced when combined with mutations that improve F508del-NBD1 interaction with MSD2. These data suggest that the use of VX-809 in combination with an additional CFTR corrector that suppresses folding defects downstream of MSD1 may further enhance CFTR function in people with F508del-CFTR. PMID:23924900

  7. Determination of the ion recombination correction factor for intraoperative electron beams.

    PubMed

    Ghorbanpour Besheli, Majid; Simiantonakis, Ioannis; Zink, Klemens; Budach, Wilfried

    2016-03-01

    The ion recombination correction factor (ks) is determined for the Advanced Markus chamber exposed to electron beams produced by a dedicated intraoperative radiation therapy (IORT) accelerator at medium dose-per-pulse values. The authors evaluate five different methods. Three of them are known as Boag's modified expressions, which are based on the two-voltage-analysis method and include the free-electron component. In the fourth method the IAEA TRS-398 protocol is applied, which uses the same two-voltage-analysis method but ignores the free-electron component, and finally the fifth approach is known as the Jaffé plot. ks values were obtained in the range of 4 mGy/pulse to 42 mGy/pulse and were compared with ks values determined by means of radiochromic films, which are independent of the dose rate. It was found that ks values that resulted from the three Boag's modified expressions and the TRS-398 protocol deviated by on average 1.5% and 1.4%, respectively, from the reference ks values based on film dosimetry. These results are within the estimated relative uncertainty of ±3%. On the other hand, the absolute deviation of each method depends on the dose-per-pulse value at which the method is investigated. In conclusion, in the medium dose-per-pulse range all Boag's modified expressions could be used for ks determination. Above a dose-per-pulse value of 35 mGy/pulse, the TRS-398 approach should be avoided. At 27 mGy/pulse and a maximum operation voltage of 300 V the ks value resulting from the Jaffé plot showed a 0.3% deviation from the reference value. More investigation on the Jaffé plot is necessary at higher dose-per-pulse values. PMID:26164499

  8. Ion recombination correction factors (P(ion)) for Varian TrueBeam high-dose-rate therapy beams.

    PubMed

    Kry, Stephen F; Popple, Richard; Molineu, Andrea; Followill, David S

    2012-01-01

    Ion recombination is approximately corrected for in the Task Group 51 protocol by Pion, which is calculated by a two-voltage measurement. This measurement approach may be a poor estimate of the true recombination, particularly if Pion is large (greater than 1.05). Concern exists that Pion in high-dose-per-pulse beams, such as flattening filter free (FFF) beams, may be unacceptably high, rendering the two-voltage measurement technique inappropriate. Therefore, Pion was measured for flattened beams of 6, 10, 15, and 18 MV and for FFF beams of 6 and 10 MV. The values for the FFF beams were verified with 1/V versus 1/Q curves (Jaffé plots). Pion was also measured for electron beams of 6, 12, 16, 18, and 20 MeV on a traditional accelerator, as well as on the high-dose-rate Varian TrueBeam accelerator. The measurements were made at a range of depths and with PTW, NEL, and Exradin Farmer-type chambers. Consistent with the increased dose per pulse, Pion was higher for FFF beams than for flattening filter beams. However, for all beams, measurement locations, and chambers examined, Pion never exceeded 1.018. Additionally, Pion was always within 0.3% of the recombination calculated from the Jaffé plots. We conclude that ion recombination can be adequately accounted for in high-dose-rate FFF beams using Pion determined with the standard two-voltage technique. PMID:23149774

  9. Charge Neutralization of the Central Lysine Cluster in Prion Protein (PrP) Promotes PrPSc-like Folding of Recombinant PrP Amyloids*

    PubMed Central

    Groveman, Bradley R.; Kraus, Allison; Raymond, Lynne D.; Dolan, Michael A.; Anson, Kelsie J.; Dorward, David W.; Caughey, Byron

    2015-01-01

    The structure of the infectious form of prion protein, PrPSc, remains unclear. Most pure recombinant prion protein (PrP) amyloids generated in vitro are not infectious and lack the extent of the protease-resistant core and solvent exclusion of infectious PrPSc, especially within residues ∼90–160. Polyanionic cofactors can enhance infectivity and PrPSc-like characteristics of such fibrils, but the mechanism of this enhancement is unknown. In considering structural models of PrPSc multimers, we identified an obstacle to tight packing that might be overcome with polyanionic cofactors, namely, electrostatic repulsion between four closely spaced cationic lysines within a central lysine cluster of residues 101–110. For example, in our parallel in-register intermolecular β-sheet model of PrPSc, not only would these lysines be clustered within the 101–110 region of the primary sequence, but they would have intermolecular spacings of only ∼4.8 Å between stacked β-strands. We have now performed molecular dynamics simulations predicting that neutralization of the charges on these lysine residues would allow more stable parallel in-register packing in this region. We also show empirically that substitution of these clustered lysine residues with alanines or asparagines results in recombinant PrP amyloid fibrils with extended proteinase-K resistant β-sheet cores and infrared spectra that are more reminiscent of bona fide PrPSc. These findings indicate that charge neutralization at the central lysine cluster is critical for the folding and tight packing of N-proximal residues within PrP amyloid fibrils. This charge neutralization may be a key aspect of the mechanism by which anionic cofactors promote PrPSc formation. PMID:25416779

  10. Safety and Efficacy of Growth Factor Concentrate in the Treatment of Nasolabial Fold Correction: Split Face Pilot Study

    PubMed Central

    Sevilla, Gema P; Dhurat, Rachita S; Shetty, Geetanjali; Kadam, Prashant P; Totey, Satish M

    2015-01-01

    Background: Growth factors have long been known as an effective treatment for facial wrinkles. We developed growth factor concentrate (GFC) from the platelets and evaluated their clinical outcome in nasolabial folds. Aims and Objectives: We evaluated safety and efficacy of autologous GFC on patients with nasolabial folds. Materials and Methods: Study was conducted on 80 patients for nasolabial folds in two groups. Group I (20) received bilateral single injection of GFC and group II (60) received single injection of GFC on the right side of the face and platelet-rich plasma (PRP) on the left side of the face. Severity of nasolabial folds was determined at the baseline and 3 months of follow-up visits based on wrinkle severity rating scale (WSRS), Global aesthetic improvement scale (GAIS) and atlas photographic grading at rest and at full smile. Objective clinical assessment and subjective satisfaction scale was determined for overall improvement at the end of the study. Results: In group I, 2 subjects showed improvement after GFC treatment with the score of 3.1–4 (76–100%), 3 subjects with the score of 2.1–3 (51–75%), 14 with the score of 1.1–2 (26–50%) and 1 subject with the score of 0–1 (<25%) at the end of study. In group II, 51 subjects were evaluated at the end of study where, 34 (66%) showed superior improvements after GFC, 6 (11%) patients showed similar improvement on both side of the face, 10 (19.6%) patients showed no noticeable improvement on the either side of the face and only 1 patient (1.96%) showed superior improvement for PRP at the end of the study. Overall improvement score analysis showed that GFC was significantly superior to PRP (P < 0.001). Conclusion: Present study is a strong evidence to support the use of GFC for nasolabial folds. The results showed that the single application of GFC is highly effective and safe. PMID:26538718

  11. Recombinant human erythropoietin (rHuEPO): more than just the correction of uremic anemia.

    PubMed

    Buemi, Michele; Aloisi, Carmela; Cavallaro, Emanuela; Corica, Francesco; Floccari, Fulvio; Grasso, Giovanni; Lasco, Antonino; Pettinato, Giuseppina; Ruello, Antonella; Sturiale, Alessio; Frisina, Nicola

    2002-01-01

    Hematopoiesis is controlled by numerous interdependent humoral and endocrine factors. Erythropoietin (EPO), a hydrophobic sialoglycoproteic hormone, plays a crucial role in the regulation of hematopoiesis, and induces proliferation, maturation and differentiation of the erythroid cell line precursors. Thanks to recombinant DNA techniques, different recombinant hormones can now be produced at low cost and in large amounts. This has led to greater understanding of the pathophysiological factors regulating hematopoiesis. This in turn, hasprompted the search for new therapeutic approaches. EPO might also be used to treat patients with different types of anemia: uremics, newborns, patients with anemia from cancer or myeloproliferative disease, thalassemia, bone marrow transplants, chronic infectious diseases. Besides erythroid cells, EPO affects other blood cell lines, such as myeloid cells, lymphocytes and megakaryocytes. It can also enhance polymorphonuclear cell phagocytosis and reduce macrophage activation, thus modulating the inflammatory process. Hematopoietic and endothelial cells probably have the same origin, and the discovery of eyrthropoietin receptors also on mesangial, myocardial and smooth muscle cells has prompted research into the non-erythropoietic function of the hormone. EPO has an important, direct, hemodynamic and vasoactive effect, which does not depend only on an increase in hematocrit and viscosity. Moreover, EPO and its receptors have been found in the brain, suggesting a role in preventing neuronal death. Finally, the recently discovered interaction between EPO and vascular endothelial growth factor (VEGF), and the ability of EPO to stimulate endothelial cell mitosis and motility may be of importance in neovascularization and wound healing. PMID:12018644

  12. 76 FR 72903 - Folding Metal Tables and Chairs From the People's Republic of China: Notice of Correction to the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... Antidumping Duty Administrative Review and New Shipper Review, and Revocation of the Order in Part, 76 FR... Order in Part, 76 FR 35832, 35836 (June 20, 2011) (``Preliminary Results''). \\4\\ Id. This correction is... merchandise entered, or withdrawn from warehouse, for consumption on or after June 1, 2010, and to refund...

  13. Comparative study of the effectiveness and safety of porcine and bovine atelocollagen in Asian nasolabial fold correction.

    PubMed

    Moon, Suk-Ho; Lee, Yoon-Jae; Rhie, Jong-Won; Suh, Dong-Sam; Oh, Deuk-Young; Lee, Joong-Ho; Kim, Young-Jin; Kim, Sue-Min; Jun, Young-Joon

    2015-06-01

    Bovine-derived collagen has been used for soft-tissue augmentation since 1977. However, there are issues regarding the possibility of bovine spongiform encephalopathy (BSE). Researchers discovered that the histologic structure of porcine-derived collagen is similar to that of human dermal collagen and that it is free from the risk of BSE. This study was conducted to establish the effectiveness and safety of porcine-derived collagen compared to bovine-derived collagen. The 73 patients included in this study were healthy volunteers who responded to an advertisement approved by the Institutional Review Board (IRB). They had visited the authors' hospital complaining of wrinkles on their nasolabial fold. Either porcine (TheraFill®) or bovine atelocollagen was randomly injected into each side of their nasolabial folds, and the five-grade Wrinkle Severity Rating Scale (WSRS) was used to evaluate the wrinkles before and after the injection. The average age of the 73 study patients was 46.18 years. The WSRS scores of the porcine and bovine atelocollagen-injected patients were 2.90 ± 0.71 and 2.85 ± 0.72 at the baseline and 2.15 ± 0.70 and 2.21 ± 0.67 after 6 months. There were no statistically significant differences between the two groups. Adverse effects of the porcine atelocollagen injection were seen in 12 patients, with the most common symptom being redness. This study showed that porcine atelocollagen can be used easily and without the need for the skin testing which is necessary before bovine atelocollagen injection. The efficacy of porcine atelocollagen is also similar to that of bovine atelocollagen. PMID:25272190

  14. Restoration of NBD1 thermal stability is necessary and sufficient to correct ∆F508 CFTR folding and assembly.

    PubMed

    He, Lihua; Aleksandrov, Andrei A; An, Jianli; Cui, Liying; Yang, Zhengrong; Brouillette, Christie G; Riordan, John R

    2015-01-16

    Cystic fibrosis transmembrane conductance regulator (CFTR) (ABCC7), unique among ABC exporters as an ion channel, regulates ion and fluid transport in epithelial tissues. Loss of function due to mutations in the cftr gene causes cystic fibrosis. The most common cystic-fibrosis-causing mutation, the deletion of F508 (ΔF508) from the first nucleotide binding domain (NBD1) of CFTR, results in misfolding of the protein and clearance by cellular quality control systems. The ΔF508 mutation has two major impacts on CFTR: reduced thermal stability of NBD1 and disruption of its interface with membrane-spanning domains (MSDs). It is unknown if these two defects are independent and need to be targeted separately. To address this question, we varied the extent of stabilization of NBD1 using different second-site mutations and NBD1 binding small molecules with or without NBD1/MSD interface mutation. Combinations of different NBD1 changes had additive corrective effects on ∆F508 maturation that correlated with their ability to increase NBD1 thermostability. These effects were much larger than those caused by interface modification alone and accounted for most of the correction achieved by modifying both the domain and the interface. Thus, NBD1 stabilization plays a dominant role in overcoming the ΔF508 defect. Furthermore, the dual target approach resulted in a locked-open ion channel that was constitutively active in the absence of the normally obligatory dependence on phosphorylation by protein kinase A. Thus, simultaneous targeting of both the domain and the interface, as well as being non-essential for correction of biogenesis, may disrupt normal regulation of channel function. PMID:25083918

  15. Restoration of NBD1 thermal stability is necessary and sufficient to correct ΔF508 CFTR folding and assembly

    PubMed Central

    He, Lihua; Aleksandrov, Andrei A; An, Jianli; Cui, Liying; Yang, Zhengrong; Brouillette, Christie G.; Riordan, John R

    2015-01-01

    CFTR (ABCC7), unique among ABC exporters as an ion channel, regulates ion and fluid transport in epithelial tissues. Loss of function due to mutations in the cftr gene causes cystic fibrosis (CF). The most common CF-causing mutation, the deletion of F508 (ΔF508) from the first nucleotide binding domain (NBD1) of CFTR, results in misfolding of the protein and clearance by cellular quality control systems. The ΔF508 mutation has two major impacts on CFTR: reduced thermal stability of NBD1 and disruption of its interface with membrane-spanning domains (MSDs). It is unknown if these two defects are independent and need to be targeted separately. To address this question we varied the extent of stabilization of NBD1 using different second site mutations and NBD1 binding small molecules with or without NBD1/MSD interface mutation. Combinations of different NBD1 changes had additive corrective effects on ΔF508 maturation that correlated with their ability to increase NBD1 thermostability. These effects were much larger than those caused by interface modification alone and accounted for most of the correction achieved by modifying both the domain and the interface. Thus, NBD1 stabilization plays a dominant role in overcoming the ΔF508 defect. Furthermore, the dual target approach resulted in a locked-open ion channel that was constitutively active in the absence of the normally obligatory dependence on phosphorylation by protein kinase A. Thus, simultaneous targeting of both the domain and the interface, as well as being non-essential for correction of biogenesis, may disrupt normal regulation of channel function. PMID:25083918

  16. Oxidative folding of peptides with cystine-knot architectures: kinetic studies and optimization of folding conditions.

    PubMed

    Reinwarth, Michael; Glotzbach, Bernhard; Tomaszowski, Michael; Fabritz, Sebastian; Avrutina, Olga; Kolmar, Harald

    2013-01-01

    Bioactive peptides often contain several disulfide bonds that provide the main contribution to conformational rigidity and structural, thermal, or biological stability. Among them, cystine-knot peptides-commonly named "knottins"-make up a subclass with several thousand natural members. Hence, they are considered promising frameworks for peptide-based pharmaceuticals. Although cystine-knot peptides are available through chemical and recombinant synthetic routes, oxidative folding to afford the bioactive isomers still remains a crucial step. We therefore investigated the oxidative folding of ten protease-inhibiting peptides from two knottin families, as well as that of an HIV entry inhibitor and of aprotinin, under two conventional sets of folding conditions and by a newly developed procedure. Kinetic studies identified folding conditions that resulted in correctly folded miniproteins with high rates of conversion even for highly hydrophobic and aggregation-prone peptides in concentrated solutions. PMID:23229141

  17. Correction.

    PubMed

    2015-11-01

    In the article by Heuslein et al, which published online ahead of print on September 3, 2015 (DOI: 10.1161/ATVBAHA.115.305775), a correction was needed. Brett R. Blackman was added as the penultimate author of the article. The article has been corrected for publication in the November 2015 issue. PMID:26490278

  18. Correction.

    PubMed

    2015-12-01

    In the article by Narayan et al (Narayan O, Davies JE, Hughes AD, Dart AM, Parker KH, Reid C, Cameron JD. Central aortic reservoir-wave analysis improves prediction of cardiovascular events in elderly hypertensives. Hypertension. 2015;65:629–635. doi: 10.1161/HYPERTENSIONAHA.114.04824), which published online ahead of print December 22, 2014, and appeared in the March 2015 issue of the journal, some corrections were needed.On page 632, Figure, panel A, the label PRI has been corrected to read RPI. In panel B, the text by the upward arrow, "10% increase in kd,” has been corrected to read, "10% decrease in kd." The corrected figure is shown below.The authors apologize for these errors. PMID:26558821

  19. Combination of recombinant factor VIIa and fibrinogen corrects clot formation in primary immune thrombocytopenia at very low platelet counts.

    PubMed

    Larsen, Ole H; Stentoft, Jesper; Radia, Deepti; Ingerslev, Jørgen; Sørensen, Benny

    2013-01-01

    Haemostatic treatment modalities alternative to platelet transfusion are desirable to control serious acute bleeds in primary immune thrombocytopenia (ITP). This study challenged the hypothesis that recombinant activated factor VII (rFVIIa) combined with fibrinogen concentrate may correct whole blood (WB) clot formation in ITP. Blood from ITP patients (n = 12) was drawn into tubes containing 3·2% citrate and corn trypsin inhibitor 18·3 μg/ml. WB [mean platelet count 22 × 10(9) /l (range 0-42)] was spiked in vitro with buffer, donor platelets (+40 × 10(9) /l), rFVIIa (1 or 4 μg/ml), fibrinogen (1 or 3 mg/ml), or combinations of rFVIIa and fibrinogen. Coagulation profiles were recorded by tissue factor (0·03 pmol/l) activated thromboelastometry. Coagulation in ITP was characterized by a prolonged clotting time (CT, 1490 s (mean)) and a low maximum velocity (MaxVel, 3·4 mm × 100/s) and maximum clot firmness (MCF, 38·2 mm). Fibrinogen showed no haemostatic effect, whereas rFVIIa reduced the CT and increased the MaxVel. The combination of fibrinogen and rFVIIa revealed a significant synergistic effect, improving all parameters (CT 794 s, MaxVel 7·9 mm × 100/s, MCF 50·7 mm) even at very low platelet counts. These data suggest that rFVIIa combined with fibrinogen corrects the coagulopathy of ITP even at very low platelet counts, and may represent an alternative to platelet transfusion. PMID:23151086

  20. Correction

    NASA Astrophysics Data System (ADS)

    1995-04-01

    Seismic images of the Brooks Range, Arctic Alaska, reveal crustal-scale duplexing: Correction Geology, v. 23, p. 65 68 (January 1995) The correct Figure 4A, for the loose insert, is given here. See Figure 4A below. Corrected inserts will be available to those requesting copies of the article from the senior author, Gary S. Fuis, U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025. Figure 4A. P-wave velocity model of Brooks Range region (thin gray contours) with migrated wide-angle reflections (heavy red lines) and migreated vertical-incidence reflections (short black lines) superimposed. Velocity contour interval is 0.25 km/s; 4,5, and 6 km/s contours are labeled. Estimated error in velocities is one contour interval. Symbols on faults shown at top are as in Figure 2 caption.

  1. Correction.

    PubMed

    2016-02-01

    Neogi T, Jansen TLTA, Dalbeth N, et al. 2015 Gout classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis 2015;74:1789–98. The name of the 20th author was misspelled. The correct spelling is Janitzia Vazquez-Mellado. We regret the error. PMID:26881284

  2. Correction.

    PubMed

    2016-02-01

    In the article by Guessous et al (Guessous I, Pruijm M, Ponte B, Ackermann D, Ehret G, Ansermot N, Vuistiner P, Staessen J, Gu Y, Paccaud F, Mohaupt M, Vogt B, Pechère-Bertschi A, Martin PY, Burnier M, Eap CB, Bochud M. Associations of ambulatory blood pressure with urinary caffeine and caffeine metabolite excretions. Hypertension. 2015;65:691–696. doi: 10.1161/HYPERTENSIONAHA.114.04512), which published online ahead of print December 8, 2014, and appeared in the March 2015 issue of the journal, a correction was needed.One of the author surnames was misspelled. Antoinette Pechère-Berstchi has been corrected to read Antoinette Pechère-Bertschi.The authors apologize for this error. PMID:26763012

  3. Complete correction of hyperphenylalaninemia following liver-directed, recombinant AAV2/8 vector-mediated gene therapy in murine phenylketonuria

    PubMed Central

    Harding, CO; Gillingham, MB; Hamman, K; Clark, H; Goebel-Daghighi, E; Bird, A; Koeberl, DD

    2009-01-01

    Novel recombinant adeno-associated virus vectors pseudo-typed with serotype 8 capsid (rAAV2/8) have recently shown exciting promise as effective liver-directed gene transfer reagents. We have produced a novel liver-specific rAAV2/8 vector expressing the mouse phenylalanine hydroxylase (Pah) cDNA and have administered this vector to hyperphenylalaninemic PAH-deficient Pahenu2 mice, a model of human phenylketonuria (PKU). Our hypothesis was that this vector would produce sufficient hepatocyte transduction frequency and PAH activity to correct blood phenylalanine levels in murine PKU. Portal vein injection of recombinant AAV2/8 vector into five adult Pahenu2 mice yielded complete and stable (up to 17 weeks) correction of serum phenylalanine levels. Liver PAH activity was corrected to 11.5±2.4% of wild type liver activity and was associated with a significant increase in phenylalanine clearance following parenteral phenylalanine challenge. Although questions of long-term safety and stability of expression remain, recombinant AAV2/8-mediated, liver-directed gene therapy is a promising novel treatment approach for PKU and allied inborn errors of metabolism. PMID:16319949

  4. Complete correction of hyperphenylalaninemia following liver-directed, recombinant AAV2/8 vector-mediated gene therapy in murine phenylketonuria.

    PubMed

    Harding, C O; Gillingham, M B; Hamman, K; Clark, H; Goebel-Daghighi, E; Bird, A; Koeberl, D D

    2006-03-01

    Novel recombinant adeno-associated virus vectors pseudotyped with serotype 8 capsid (rAAV2/8) have recently shown exciting promise as effective liver-directed gene transfer reagents. We have produced a novel liver-specific rAAV2/8 vector expressing the mouse phenylalanine hydroxylase (Pah) cDNA and have administered this vector to hyperphenylalaninemic PAH-deficient Pah(enu2) mice, a model of human phenylketonuria (PKU). Our hypothesis was that this vector would produce sufficient hepatocyte transduction frequency and PAH activity to correct blood phenylalanine levels in murine PKU. Portal vein injection of recombinant AAV2/8 vector into five adult Pah(enu2) mice yielded complete and stable (up to 17 weeks) correction of serum phenylalanine levels. Liver PAH activity was corrected to 11.5+/-2.4% of wild type liver activity and was associated with a significant increase in phenylalanine clearance following parenteral phenylalanine challenge. Although questions of long-term safety and stability of expression remain, recombinant AAV2/8-mediated, liver-directed gene therapy is a promising novel treatment approach for PKU and allied inborn errors of metabolism. PMID:16319949

  5. Correction.

    PubMed

    2015-05-22

    The Circulation Research article by Keith and Bolli (“String Theory” of c-kitpos Cardiac Cells: A New Paradigm Regarding the Nature of These Cells That May Reconcile Apparently Discrepant Results. Circ Res. 2015:116:1216-1230. doi: 10.1161/CIRCRESAHA.116.305557) states that van Berlo et al (2014) observed that large numbers of fibroblasts and adventitial cells, some smooth muscle and endothelial cells, and rare cardiomyocytes originated from c-kit positive progenitors. However, van Berlo et al reported that only occasional fibroblasts and adventitial cells derived from c-kit positive progenitors in their studies. Accordingly, the review has been corrected to indicate that van Berlo et al (2014) observed that large numbers of endothelial cells, with some smooth muscle cells and fibroblasts, and more rarely cardiomyocytes, originated from c-kit positive progenitors in their murine model. The authors apologize for this error, and the error has been noted and corrected in the online version of the article, which is available at http://circres.ahajournals.org/content/116/7/1216.full ( PMID:25999426

  6. Correction

    NASA Astrophysics Data System (ADS)

    1998-12-01

    Alleged mosasaur bite marks on Late Cretaceous ammonites are limpet (patellogastropod) home scars Geology, v. 26, p. 947 950 (October 1998) This article had the following printing errors: p. 947, Abstract, line 11, “sepia” should be “septa” p. 947, 1st paragraph under Introduction, line 2, “creep” should be “deep” p. 948, column 1, 2nd paragraph, line 7, “creep” should be “deep” p. 949, column 1, 1st paragraph, line 1, “creep” should be “deep” p. 949, column 1, 1st paragraph, line 5, “19774” should be “1977)” p. 949, column 1, 4th paragraph, line 7, “in particular” should be “In particular” CORRECTION Mammalian community response to the latest Paleocene thermal maximum: An isotaphonomic study in the northern Bighorn Basin, Wyoming Geology, v. 26, p. 1011 1014 (November 1998) An error appeared in the References Cited. The correct reference appears below: Fricke, H. C., Clyde, W. C., O'Neil, J. R., and Gingerich, P. D., 1998, Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: Oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming): Earth and Planetary Science Letters, v. 160, p. 193 208.

  7. A galaxy of folds.

    PubMed

    Alva, Vikram; Remmert, Michael; Biegert, Andreas; Lupas, Andrei N; Söding, Johannes

    2010-01-01

    Many protein classification systems capture homologous relationships by grouping domains into families and superfamilies on the basis of sequence similarity. Superfamilies with similar 3D structures are further grouped into folds. In the absence of discernable sequence similarity, these structural similarities were long thought to have originated independently, by convergent evolution. However, the growth of databases and advances in sequence comparison methods have led to the discovery of many distant evolutionary relationships that transcend the boundaries of superfamilies and folds. To investigate the contributions of convergent versus divergent evolution in the origin of protein folds, we clustered representative domains of known structure by their sequence similarity, treating them as point masses in a virtual 2D space which attract or repel each other depending on their pairwise sequence similarities. As expected, families in the same superfamily form tight clusters. But often, superfamilies of the same fold are linked with each other, suggesting that the entire fold evolved from an ancient prototype. Strikingly, some links connect superfamilies with different folds. They arise from modular peptide fragments of between 20 and 40 residues that co-occur in the connected folds in disparate structural contexts. These may be descendants of an ancestral pool of peptide modules that evolved as cofactors in the RNA world and from which the first folded proteins arose by amplification and recombination. Our galaxy of folds summarizes, in a single image, most known and many yet undescribed homologous relationships between protein superfamilies, providing new insights into the evolution of protein domains. PMID:19937658

  8. Protein folds and protein folding

    PubMed Central

    Schaeffer, R. Dustin; Daggett, Valerie

    2011-01-01

    The classification of protein folds is necessarily based on the structural elements that distinguish domains. Classification of protein domains consists of two problems: the partition of structures into domains and the classification of domains into sets of similar structures (or folds). Although similar topologies may arise by convergent evolution, the similarity of their respective folding pathways is unknown. The discovery and the characterization of the majority of protein folds will be followed by a similar enumeration of available protein folding pathways. Consequently, understanding the intricacies of structural domains is necessary to understanding their collective folding pathways. We review the current state of the art in the field of protein domain classification and discuss methods for the systematic and comprehensive study of protein folding across protein fold space via atomistic molecular dynamics simulation. Finally, we discuss our large-scale Dynameomics project, which includes simulations of representatives of all autonomous protein folds. PMID:21051320

  9. NOTE: Determination of the recombination correction factor kS for some specific plane-parallel and cylindrical ionization chambers in pulsed photon and electron beams

    NASA Astrophysics Data System (ADS)

    Bruggmoser, G.; Saum, R.; Schmachtenberg, A.; Schmid, F.; Schüle, E.

    2007-01-01

    It has been shown from an evaluation of the inverse reading of the dosemeter (1/M) against the inverse of the polarizing voltage (1/V), obtained with a number of commercially available ionization chambers, using dose per pulse values between 0.16 and 5 mGy, that a linear relationship between the recombination correction factor kS and dose per pulse (DPP) can be found. At dose per pulse values above 1 mGy the method of a general equation with coefficients dependent on the chamber type gives more accurate results than the Boag method. This method was already proposed by Burns and McEwen (1998, Phys. Med. Biol. 43 2033) and avoids comprehensive and time-consuming measurements of Jaffé plots which are a prerequisite for the application of the multi-voltage analysis (MVA) or the two-voltage analysis (TVA). We evaluated and verified the response of ionization chambers on the recombination effect in pulsed accelerator beams for both photons and electrons. Our main conclusions are: (1) The correction factor kS depends only on the DPP and the chamber type. There is no influence of radiation type and energy. (2) For all the chambers investigated there is a linear relationship between kS and DPP up to 5 mGy/pulse, and for two chambers we could show linearity up to 40 mGy/pulse. (3) A general formalism, such as that of Boag, characterizes chambers exclusively by the distance of the electrodes and gives a trend for the correction factor, and therefore (4) a general formalism has to reflect the influence of the chamber construction on the recombination by the introduction of chamber-type dependent coefficients.

  10. Transtensional folding

    NASA Astrophysics Data System (ADS)

    Fossen, Haakon; Teyssier, Christian; Whitney, Donna L.

    2014-05-01

    For now three decades transpression has dominated the concepts that underlie oblique tectonics, but in more recent years transtension has garnered much interest as a simple model that can be applied to shallow and deep crustal tectonics. One fundamental aspect that distinguishes transtension from transpression is that material lines in transtension rotate toward the direction of oblique divergence. Another point that may be less intuitive when thinking of transtension is that while transtensional strain involves shortening in the vertical direction, one of the horizontal axes is also a shortening axis, whatever the angle of divergence. It is the combination of these two shortening axes that leads to constrictional finite strain in transtension. The existence of a horizontal shortening strain axis implies that transtension offers the potential for folds of horizontal layers to form and then rotate toward the direction of oblique divergence. An investigation of transtensional folding using 3D strain modeling reveals that folding is more likely for simple shear dominated transtension (large wrench component). Transtensional folds can only accumulate a fixed amount of horizontal shortening and tightness that are prescribed by the angle of oblique divergence, regardless of finite strain. Transtensional folds are characterized by hinge-parallel stretching that exceeds that expected from pure wrenching. In addition, the magnitude of hinge-parallel stretching always exceeds hinge-perpendicular shortening, causing constrictional fabrics and hinge-parallel boudinage to develop. Because the dominant vertical strain axis is shortening, transtensional fold growth is generally suppressed, but when folds do develop their limbs enter the field of shortening, resulting in possible fold interference patterns akin to cascading folds. Application of these transtensional folding principles to regions of oblique rifting (i.e. Gulf of California) or exhumation of deep crust (i.e. Western

  11. Correction: BTI-Tnao38, a new cell line derived from Trichoplusia ni, is permissive for AcMNPV infection and produces high levels of recombinant proteins.

    PubMed

    Hashimoto, Yoshi; Zhang, Sheng; Zhang, Shiying; Chen, Yun-Ru; Blissard, Gary W

    2012-01-01

    After publication we discovered an error in the identification of the origin of the cell line reported in our article in BMC Biotechnology (2010, 10:50), entitled "Ao38, a new cell line from eggs of the black witch moth, Ascalapha odorata (Lepidoptera: Noctuidae), is permissive for AcMNPV infection and produces high levels of recombinant proteins". Upon analysis of primary A. odorata cultures, we found that they were contaminated with cells of Trichoplusia ni origin. The origin of the Ao38 cell line was determined as T. ni using three marker genes and the Ao38 cell line was renamed BTI-Tnao38. References to the origin of the cell line as Ascalapha odorata should be replaced with "a cell line of Trichoplusia ni origin". The absence of TNCL virus detection in the BTI-Tnao38 (Ao38) cell line was confirmed using a highly sensitive RT-PCR protocol capable of detecting TNCL virus RNA at approximately 0.018 copies/cell. Because of these observations, we have revised the title of the original article to "Correction: BTI-Tnao38, a new cell line derived from Trichoplusia ni, is permissive for AcMNPV infection and produces high levels of recombinant proteins" and two additional authors were added to reflect their contributions to the analysis of this cell line. PMID:22531032

  12. NMR and MD Studies Reveal That the Isolated Dengue NS3 Protease Is an Intrinsically Disordered Chymotrypsin Fold Which Absolutely Requests NS2B for Correct Folding and Functional Dynamics

    PubMed Central

    Gupta, Garvita; Lim, Liangzhong; Song, Jianxing

    2015-01-01

    Dengue genome encodes a two component protease complex (NS2B-NS3pro) essential for the viral maturation/infectivity, thus representing a key drug target. Previously, due to its “complete insolubility”, the isolated NS3pro could not be experimentally studied and it remains elusive what structure it adopts without NS2B and why NS2B is indispensable. Here as facilitated by our previous discovery, the isolated NS3pro has been surprisingly deciphered by NMR to be the first intrinsically-disordered chymotrypsin-like fold, which exists in a loosely-packed state with non-native long-range interactions as revealed by paramagnetic relaxation enhancement (PRE). The disordered NS3pro appears to be needed for binding a human host factor to trigger the membrane remodeling. Moreover, we have in vitro refolded the NS3pro in complex with either NS2B (48–100) or the full-length NS2B (1–130) anchored into the LMPC micelle, and the two complexes have similar activities but different dynamics. We also performed molecular dynamics (MD) simulations and the results revealed that NS2B shows the highest structural fluctuations in the complex, thus providing the dynamic basis for the observation on its conformational exchange between open and closed states. Remarkably, the NS2B cofactor plays a central role in maintaining the correlated motion network required for the catalysis as we previously decoded for the SARS 3CL protease. Indeed, a truncated NS2B (48–100;Δ77–84) with the flexible loop deleted is able to trap the NS2B-NS3pro complex in a highly dynamic and catalytically-impotent state. Taken together, our study implies potential strategies to perturb the NS2B-NS3pro interface for design of inhibitors for treating dengue infection. PMID:26258523

  13. A Phase III, Randomized, Multi-Center, Double-Masked, Matched-Pairs, Active-Controlled Trial to Compare the Efficacy and Safety between Neuramis Deep and Restylane in the Correction of Nasolabial Folds

    PubMed Central

    Pak, Changsik; Park, Jihoon; Hong, Jinmyung; Jeong, Jaehoon; Bang, Saik

    2015-01-01

    Background We conducted this clinical study to compare the efficacy and safety between Neuramis Deep and Restylane in the correction of nasolabial folds. Methods In this phase III, randomized, multi-center, double-masked, matched-pairs, active-controlled trial (ClinicalTrials.gov Identifier: NCT01585220), we evaluated a total of 67 subjects (n=67). All the subjects underwent Neuramis Deep treatment on one side and Restylane on the contralateral side of the bilateral nasolabial folds at a ratio of 1:1. To compare the efficacy of Neuramis Deep and Restylane, we evaluated the Wrinkle Severity Rating Scale scores and those of the Global Aesthetic Improvement Scale. In addition, we compared the safety of Neuramis Deep and Restylane based on adverse events, physical examination, and clinical laboratory tests. Results Neuramis Deep was not inferior in improving the nasolabial folds as compared with Restylane. In addition, there was no significant difference in the efficacy between Neuramis Deep and Restylane. There were no significant differences in safety parameters between Neuramis Deep and Restylane. Conclusions In conclusion, our results indicate that Neuramis Deep may be a safe, effective material for improving the nasolabial folds. However, further studies are warranted to compare the tolerability of Neuramis Deep and Restylane based on histopathologic findings. PMID:26618119

  14. Resequencing at ≥40-Fold Depth of the Parental Genomes of a Solanum lycopersicum × S. pimpinellifolium Recombinant Inbred Line Population and Characterization of Frame-Shift InDels That Are Highly Likely to Perturb Protein Function

    PubMed Central

    Kevei, Zoltan; King, Robert C.; Mohareb, Fady; Sergeant, Martin J.; Awan, Sajjad Z.; Thompson, Andrew J.

    2015-01-01

    A recombinant in-bred line population derived from a cross between Solanum lycopersicum var. cerasiforme (E9) and S. pimpinellifolium (L5) has been used extensively to discover quantitative trait loci (QTL), including those that act via rootstock genotype, however, high-resolution single-nucleotide polymorphism genotyping data for this population are not yet publically available. Next-generation resequencing of parental lines allows the vast majority of polymorphisms to be characterized and used to progress from QTL to causative gene. We sequenced E9 and L5 genomes to 40- and 44-fold depth, respectively, and reads were mapped to the reference Heinz 1706 genome. In L5 there were three clear regions on chromosome 1, chromosome 4, and chromosome 8 with increased rates of polymorphism. Two other regions were highly polymorphic when we compared Heinz 1706 with both E9 and L5 on chromosome 1 and chromosome 10, suggesting that the reference sequence contains a divergent introgression in these locations. We also identified a region on chromosome 4 consistent with an introgression from S. pimpinellifolium into Heinz 1706. A large dataset of polymorphisms for the use in fine-mapping QTL in a specific tomato recombinant in-bred line population was created, including a high density of InDels validated as simple size-based polymerase chain reaction markers. By careful filtering and interpreting the SnpEff prediction tool, we have created a list of genes that are predicted to have highly perturbed protein functions in the E9 and L5 parental lines. PMID:25809074

  15. Targeted disruption of the Artemis murine counterpart results in SCID and defective V(D)J recombination that is partially corrected with bone marrow transplantation.

    PubMed

    Li, Lanying; Salido, Eduardo; Zhou, Yungui; Bhattacharyya, Swati; Yannone, Steven M; Dunn, Elizabeth; Meneses, Juanito; Feeney, Ann J; Cowan, Morton J

    2005-02-15

    Artemis is a mammalian protein, the absence of which results in SCID in Athabascan-speaking Native Americans (SCIDA). This novel protein has been implicated in DNA double-strand break repair and V(D)J recombination. We have cloned the Artemis murine counterpart, mArt, and generated a mouse with a targeted disruption of mArt. Artemis-deficient mice show a similar T-B- NK+ immunodeficiency phenotype, and carry a profound impairment in coding joint rearrangement, while retaining intact signal ends and close to normal signal joint formation. mArt-/- embryonic fibroblasts show increased sensitivity to ionizing radiation. Hemopoietic stem cell (HSC) transplantation using 500-5000 enriched congenic, but not allogeneic mismatched HSC corrected the T cell and partially corrected the B cell defect. Large numbers (40,000) of allogeneic mismatched HSC or pretreatment with 300 cGy of radiation overcame graft resistance, resulting in limited B cell engraftment. Our results suggest that the V(D)J and DNA repair defects seen in this mArt-/- mouse model are comparable to those in humans with Artemis deficiency, and that the recovery of immunity following HSC transplantation favors T rather than B cell reconstitution, consistent with what is seen in children with this form of SCID. PMID:15699179

  16. Folding of a miniprotein with mixed fold.

    PubMed

    Mohanty, Sandipan; Hansmann, U H E

    2007-07-21

    Using the 28 residue betabetaalpha protein FSD-EY as a target system, we examine correction terms for the ECEPP/3 force field. We find an increased probability of formation of the native state at low temperatures resulting from a reduced propensity to form alpha helices and increased formation of beta sheets. Our analysis of the observed folding events suggests that the C-terminal helix of FSD-EY is much more stable than the N-terminal beta hairpin and forms first. The hydrophobic groups of the helix provide a template which promotes the formation of the beta hairpin that is never observed to form without the helix. PMID:17655464

  17. XRD-based 40Ar/39Ar age correction for fine-grained illite, with application to folded carbonates in the Monterrey Salient (northern Mexico)

    NASA Astrophysics Data System (ADS)

    Fitz-Díaz, Elisa; Hall, Chris M.; van der Pluijm, Ben A.

    2016-05-01

    Due to their minute size, 40Ar/39Ar analysis of illite faces significant analytical challenges, including mineral characterization and, especially, effects of grain size and crystallography on 39Ar recoil. Quantifying the effects of 39Ar recoil requires the use of sample vacuum encapsulation during irradiation, which permits the measurement of the fraction of recoiled 39Ar as well as the 39Ar and 40Ar∗ retained within illite crystals that are released during step heating. Total-Gas Ages (TGA) are calculated by using both recoiled and retained argon, which is functionally equivalent to K-Ar ages, while Retention Ages (RA) only involve retained Ar in the crystal. Natural applications have shown that TGA fits stratigraphic constraints of geological processes when the average illite crystallite thickness (ICT) is smaller than 10 nm, and that RA matches these constraints for ICTs larger than 50 nm. We propose a new age correction method that takes into account the average ICT and corresponding recoiled 39Ar for a sample, with X-ray Corrected Ages (XCA) lying between Total-Gas and Retention Ages depending on ICT. This correction is particularly useful in samples containing authigenic illite formed in the anchizone, with typical ICT values between 10 and 50 nm. In three samples containing authigenic illite from Cretaceous carbonates in the Monterrey Salient in northern Mexico, there is a range in TGAs among the different size-fractions of 46-49, 36-43 and 40-52 Ma, while RAs range from 54-64, 47-52 and 53-54 Ma, respectively. XCA calculations produce tighter age ranges for these samples of 52.5-56, 45.5-48.5 and 49-52.5 Ma, respectively. In an apparent age vs ICT or %2M 1illite plot, authigenic illite grains show a slope that is in general slightly positive for TGA, slightly negative for RA, but close to zero for XCA, with thinner crystallites showing more dispersion than thicker ones. In order to test if dispersion is due to a different formation history or the result

  18. A Novel Melanocortin-4 Receptor Mutation MC4R-P272L Associated with Severe Obesity Has Increased Propensity To Be Ubiquitinated in the ER in the Face of Correct Folding

    PubMed Central

    Granell, Susana; Serra-Juhé, Clara; Martos-Moreno, Gabriel Á.; Díaz, Francisca; Pérez-Jurado, Luis A.; Baldini, Giulia; Argente, Jesús

    2012-01-01

    Heterozygous mutations in the melanocortin-4 receptor (MC4R) gene represent the most frequent cause of monogenic obesity in humans. MC4R mutation analysis in a cohort of 77 children with morbid obesity identified previously unreported heterozygous mutations (P272L, N74I) in two patients inherited from their obese mothers. A rare polymorphism (I251L, allelic frequency: 1/100) reported to protect against obesity was found in another obese patient. When expressed in neuronal cells, the cell surface abundance of wild-type MC4R and of the N74I and I251L variants and the cAMP generated by these receptors in response to exposure to the agonist, α-MSH, were not different. Conversely, MC4R P272L was retained in the endoplasmic reticulum and had reduced cell surface expression and signaling (by ≈3-fold). The chemical chaperone PBA, which promotes protein folding of wild-type MC4R, had minimal effects on the distribution and signaling of the P272L variant. In contrast, incubation with UBE-41, a specific inhibitor of ubiquitin activating enzyme E1, inhibited ubiquitination of MC4R P272L and increased its cell surface expression and signaling to similar levels as wild-type MC4R. UBE41 had much less profound effects on MC4R I316S, another obesity-linked MC4R variant trapped in the ER. These data suggest that P272L is retained in the ER by a propensity to be ubiquitinated in the face of correct folding, which is only minimally shared by MC4R I316S. Thus, studies that combine clinical screening of obese patients and investigation of the functional defects of the obesity-linked MC4R variants can identify specific ways to correct these defects and are the first steps towards personalized medicine. PMID:23251400

  19. Pharmacological chaperones facilitate the post-ER transport of recombinant N370S mutant β-glucocerebrosidase in plant cells: Evidence that N370S is a folding mutant

    PubMed Central

    Babajani, Gholamreza; Tropak, Michael B.; Mahuran, Don J.; Kermode, Allison R.

    2012-01-01

    Gaucher disease is a prevalent lysosomal storage disease in which affected individuals inherit mutations in the gene (GBA1) encoding lysosomal acid β-glucosidase (glucocerebrosidase, GCase, EC 3.2.1.45). One of the most prevalent disease-causing mutations in humans is a N370S missense mutation in the GCase protein. As part of a larger endeavor to study the fate of mutant human proteins expressed in plant cells, the N370S mutant protein along with the wild-type- (WT)-GCase, both equipped with a signal peptide, were synthesized in transgenic tobacco BY2 cells, which do not possess lysosomes. The enzymatic activity of plant-recombinant N370S GCase lines was significantly lower (by 81–95%) than that of the WT-GCase lines. In contrast to the WT-GCase protein, which was efficiently secreted from tobacco BY2 cells, and detected in large amounts in the culture medium, only a small proportion of the N370S GCase was secreted. Pharmacological chaperones such as N-(n-nonyl) deoxynojirimycin and ambroxol increased the steady-state mutant protein levels both inside the plant cells and in the culture medium. These findings contradict the assertion that small molecule chaperones increase N370S GCase activity (as assayed in treated patient cell lysates) by stabilizing the enzyme in the lysosome, and suggest that the mutant protein is impaired in its ability to obtain its functional folded conformation, which is a requirement for exiting the lumen of the ER. PMID:22592100

  20. Automated high-throughput dense matrix protein folding screen using a liquid handling robot combined with microfluidic capillary electrophoresis.

    PubMed

    An, Philip; Winters, Dwight; Walker, Kenneth W

    2016-04-01

    Modern molecular genetics technology has made it possible to swiftly sequence, clone and mass-produce recombinant DNA for the purpose of expressing heterologous genes of interest; however, recombinant protein production systems have struggled to keep pace. Mammalian expression systems are typically favored for their ability to produce and secrete proteins in their native state, but bacterial systems benefit from rapid cell line development and robust growth. The primary drawback to prokaryotic expression systems are that recombinant proteins are generally not secreted at high levels or correctly folded, and are often insoluble, necessitating post-expression protein folding to obtain the active product. In order to harness the advantages of prokaryotic expression, high-throughput methods for executing protein folding screens and the subsequent analytics to identify lead conditions are required. Both of these tasks can be accomplished using a Biomek 3000 liquid handling robot to prepare the folding screen and to subsequently prepare the reactions for assessment using Caliper microfluidic capillary electrophoresis. By augmenting a protein folding screen with automation, the primary disadvantage of Escherichia coli expression has been mitigated, namely the labor intensive identification of the required protein folding conditions. Furthermore, a rigorous, quantitative method for identifying optimal protein folding buffer aids in the rapid development of an optimal production process. PMID:26678961

  1. Partial correction of the CFTR-dependent ABPA mouse model with recombinant adeno-associated virus gene transfer of truncated CFTR gene.

    PubMed

    Mueller, Christian; Torrez, Daniel; Braag, Sofia; Martino, Ashley; Clarke, Tracy; Campbell-Thompson, Martha; Flotte, Terence R

    2008-01-01

    Recently, we have developed a model of airway inflammation in a CFTR knockout mouse utilizing Aspergillus fumigatus crude protein extract (Af-cpe) to mimic allergic bronchopulmonary aspergillosis (ABPA) 1, an unusual IgE-mediated hypersensitivity syndrome seen in up to 15% of cystic fibrosis (CF) patients and rarely elsewhere. We hypothesized that replacement of CFTR via targeted gene delivery to airway epithelium would correct aberrant epithelial cytokine signaling and ameliorate the ABPA phenotype in CFTR-deficient (CFTR 489X - /-, FABP-hCFTR + / +) mice. CFTR knockout mice underwent intra-tracheal (IT) delivery of recombinant adeno-associated virus serotype 5 (rAAV5Delta-264CFTR) or rAAV5-GFP at 2.58 x 10(12) viral genomes/mouse. All mice were then sensitized with two serial injections (200 microg) of crude Af antigen via the intra-peritoneal (IP) route. Untreated mice were sensitized without virus exposure. Challenges were performed 2 weeks after final sensitization, using a 0.25% solution containing Aspergillus fumigatus crude protein extract delivered by inhalation on three consecutive days. The rAAV5Delta-264CFTR-treated mice had lower total serum IgE levels (172513 ng/ml +/- 1312) than rAAV5-GFP controls (26 892 ng/ml +/- 3715) (p = 0.037) and non-treated, sensitized controls (24 816 +/- 4219 ng/ml). Serum IgG1 levels also were lower in mice receiving the CFTR vector. Interestingly, splenocytes from rAAV5Delta-264CFTR-treated mice secreted less IL-13, INFg, TNFa, RANTES and GM-CSF after ConA stimulation. Gene therapy with rAAV5Delta-264CFTR attenuated the hyper-IgE response in this reproducible CF mouse model of ABPA, with systemic effects also evident in the cytokine response of stimulated splenocytes. PMID:18023072

  2. Improving protein fold recognition by random forest

    PubMed Central

    2014-01-01

    Background Recognizing the correct structural fold among known template protein structures for a target protein (i.e. fold recognition) is essential for template-based protein structure modeling. Since the fold recognition problem can be defined as a binary classification problem of predicting whether or not the unknown fold of a target protein is similar to an already known template protein structure in a library, machine learning methods have been effectively applied to tackle this problem. In our work, we developed RF-Fold that uses random forest - one of the most powerful and scalable machine learning classification methods - to recognize protein folds. Results RF-Fold consists of hundreds of decision trees that can be trained efficiently on very large datasets to make accurate predictions on a highly imbalanced dataset. We evaluated RF-Fold on the standard Lindahl's benchmark dataset comprised of 976 × 975 target-template protein pairs through cross-validation. Compared with 17 different fold recognition methods, the performance of RF-Fold is generally comparable to the best performance in fold recognition of different difficulty ranging from the easiest family level, the medium-hard superfamily level, and to the hardest fold level. Based on the top-one template protein ranked by RF-Fold, the correct recognition rate is 84.5%, 63.4%, and 40.8% at family, superfamily, and fold levels, respectively. Based on the top-five template protein folds ranked by RF-Fold, the correct recognition rate increases to 91.5%, 79.3% and 58.3% at family, superfamily, and fold levels. Conclusions The good performance achieved by the RF-Fold demonstrates the random forest's effectiveness for protein fold recognition. PMID:25350499

  3. Folding and Purification of Insoluble (Inclusion Body) Proteins from Escherichia coli.

    PubMed

    Wingfield, Paul T; Palmer, Ira; Liang, Shu-Mei

    2014-01-01

    Heterologous expression of recombinant proteins in E. coli often results in the formation of insoluble and inactive protein aggregates, commonly referred to as inclusion bodies. To obtain the native (i.e., correctly folded) and hence active form of the protein from such aggregates, four steps are usually followed: (1) the cells are lysed, (2) the cell wall and outer membrane components are removed, (3) the aggregates are solubilized (or extracted) with strong protein denaturants, and (4) the solubilized, denatured proteins are folded with concomitant oxidation of reduced cysteine residues into the correct disulfide bonds to obtain the native protein. This unit features three different approaches to the final step of protein folding and purification. In the first, guanidine·HCl is used as the denaturant, after which the solubilized protein is folded (before purification) in an "oxido-shuffling" buffer system to increase the rate of protein oxidation. In the second, acetic acid is used to solubilize the protein, which is then partially purified by gel filtration before folding; the protein is then folded and oxidized by simple dialysis against water. Thirdly, folding and purification of a fusion protein using metal-chelate affinity chromatography are described. PMID:25367010

  4. λ Recombination and Recombineering.

    PubMed

    Murphy, Kenan C

    2016-05-01

    The bacteriophage λ Red homologous recombination system has been studied over the past 50 years as a model system to define the mechanistic details of how organisms exchange DNA segments that share extended regions of homology. The λ Red system proved useful as a system to study because recombinants could be easily generated by co-infection of genetically marked phages. What emerged from these studies was the recognition that replication of phage DNA was required for substantial Red-promoted recombination in vivo, and the critical role that double-stranded DNA ends play in allowing the Red proteins access to the phage DNA chromosomes. In the past 16 years, however, the λ Red recombination system has gained a new notoriety. When expressed independently of other λ functions, the Red system is able to promote recombination of linear DNA containing limited regions of homology (∼50 bp) with the Escherichia coli chromosome, a process known as recombineering. This review explains how the Red system works during a phage infection, and how it is utilized to make chromosomal modifications of E. coli with such efficiency that it changed the nature and number of genetic manipulations possible, leading to advances in bacterial genomics, metabolic engineering, and eukaryotic genetics. PMID:27223821

  5. Folding of proteins with diverse folds.

    PubMed

    Mohanty, Sandipan; Hansmann, Ulrich H E

    2006-11-15

    Using parallel tempering simulations with high statistics, we investigate the folding and thermodynamic properties of three small proteins with distinct native folds: the all-helical 1RIJ, the all-sheet beta3s, and BBA5, which has a mixed helix-sheet fold. In all three cases, simulations with our energy function find the native structures as global minima in free energy at experimentally relevant temperatures. However, the folding process strongly differs for the three molecules, indicating that the folding mechanism is correlated with the form of the native structure. PMID:16950845

  6. Effects of Ca2+ on refolding of the recombinant hemolytic lectin CEL-III.

    PubMed

    Hisamatsu, Keigo; Unno, Hideaki; Goda, Shuichiro; Hatakeyama, Tomomitsu

    2009-05-01

    CEL-III is a hemolytic lectin isolated from Cucumaria echinata. Although recombinant CEL-III (rCEL-III) expressed in Escherichia coli showed very weak hemolytic activity compared with native protein, it was considerably enhanced by refolding in the presence of Ca(2+). This suggests that Ca(2+) supported correct folding of the carbohydrate-binding domains of rCEL-III, leading to effective binding to the cell surface and subsequent self-oligomerization. PMID:19420692

  7. Use of recombinant activated factor VII for reduction of perioperative blood loss during elective surgical correction of spine deformity in a Jehovah's Witness. Case report.

    PubMed

    Kącka, Katarzyna; Kącki, Wojciech; Merak, Joanna; Błęka, Adam

    2010-01-01

    Planned surgical procedures at patients who refuse allogenic blood transfusion because of religious convictions are important problem, not only medical but also ethical and juristical. At the study authors report the successful use of activated recombinant factor VII (rFVIIa) for the reduction of perioperative blood loss in four years old child - Jehovah's Witness, who had planned Torode kyphectomy. Applied perioperative management together with preparing to surgery with erythropoietin allowed for reduction of blood loss and avoiding of blood transfusion. Authors state, that appropriate perioperative proceeding makes a possibility of safe surgical procedures also at patients who refuse the transfusion. PMID:21057153

  8. Recombinant Production of Human Aquaporin-1 to an Exceptional High Membrane Density in Saccharomyces cerevisiae

    PubMed Central

    Bomholt, Julie; Hélix-Nielsen, Claus; Scharff-Poulsen, Peter; Pedersen, Per Amstrup

    2013-01-01

    In the present paper we explored the capacity of yeast Saccharomyces cerevisiae as host for heterologous expression of human Aquaporin-1. Aquaporin-1 cDNA was expressed from a galactose inducible promoter situated on a plasmid with an adjustable copy number. Human Aquaporin-1 was C-terminally tagged with yeast enhanced GFP for quantification of functional expression, determination of sub-cellular localization, estimation of in vivo folding efficiency and establishment of a purification protocol. Aquaporin-1 was found to constitute 8.5 percent of total membrane protein content after expression at 15°C in a yeast host over-producing the Gal4p transcriptional activator and growth in amino acid supplemented minimal medium. In-gel fluorescence combined with western blotting showed that low accumulation of correctly folded recombinant Aquaporin-1 at 30°C was due to in vivo mal-folding. Reduction of the expression temperature to 15°C almost completely prevented Aquaporin-1 mal-folding. Bioimaging of live yeast cells revealed that recombinant Aquaporin-1 accumulated in the yeast plasma membrane. A detergent screen for solubilization revealed that CYMAL-5 was superior in solubilizing recombinant Aquaporin-1 and generated a monodisperse protein preparation. A single Ni-affinity chromatography step was used to obtain almost pure Aquaporin-1. Recombinant Aquaporin-1 produced in S. cerevisiae was not N-glycosylated in contrast to the protein found in human erythrocytes. PMID:23409185

  9. Let Them Fold

    ERIC Educational Resources Information Center

    Grant, Nicholas; Tobin, Alexander

    1972-01-01

    Directions are given for seven activities involving the folding of paper strips to illustrate geometric concepts. Properties of pentagons, triangles, hexagons, and Mobius bands resulting from the various foldings are discussed. (DT)

  10. Cellular pathways controlling integron cassette site folding.

    PubMed

    Loot, Céline; Bikard, David; Rachlin, Anna; Mazel, Didier

    2010-08-01

    By mobilizing small DNA units, integrons have a major function in the dissemination of antibiotic resistance among bacteria. The acquisition of gene cassettes occurs by recombination between the attI and attC sites catalysed by the IntI1 integron integrase. These recombination reactions use an unconventional mechanism involving a folded single-stranded attC site. We show that cellular bacterial processes delivering ssDNA, such as conjugation and replication, favour proper folding of the attC site. By developing a very sensitive in vivo assay, we also provide evidence that attC sites can recombine as cruciform structures by extrusion from double-stranded DNA. Moreover, we show an influence of DNA superhelicity on attC site extrusion in vitro and in vivo. We show that the proper folding of the attC site depends on both the propensity to form non-recombinogenic structures and the length of their variable terminal structures. These results draw the network of cell processes that regulate integron recombination. PMID:20628355

  11. Teaching polymers to fold

    SciTech Connect

    Judson, R.S. )

    1992-12-10

    A new method is presented for predicting folding pathways of polymers. The folding pathway is described as a generic program or sequence of logical steps of such a form that a computer can carry them out to produce a folded structure. A genetic (GA) is used to learn specific sequences or folding pathways that carry a denatured conformation into a target final conformation. The method is demonstrated on a model 2-dimensional polymer for which the global energy minimum is known. The GA learns a program that will fold a denatured polymer into its global energy minimum conformation. 27 refs., 4 figs.

  12. Mechanics of Curved Folds

    NASA Astrophysics Data System (ADS)

    Dias, Marcelo A.; Santangelo, Christian D.

    2011-03-01

    Despite an almost two thousand year history, origami, the art of folding paper, remains a challenge both artistically and scientifically. Traditionally, origami is practiced by folding along straight creases. A whole new set of shapes can be explored, however, if, instead of straight creases, one folds along arbitrary curves. We present a mechanical model for curved fold origami in which the energy of a plastically-deformed crease is balanced by the bending energy of developable regions on either side of the crease. Though geometry requires that a sheet buckle when folded along a closed curve, its shape depends on the elasticity of the sheet. NSF DMR-0846582.

  13. Folded supersymmetry with a twist

    NASA Astrophysics Data System (ADS)

    Cohen, Timothy; Craig, Nathaniel; Lou, Hou Keong; Pinner, David

    2016-03-01

    Folded supersymmetry ( f-SUSY) stabilizes the weak scale against radiative corrections from the top sector via scalar partners whose gauge quantum numbers differ from their Standard Model counterparts. This non-trivial pairing of states can be realized in extra-dimensional theories with appropriate supersymmetry-breaking boundary conditions. We present a class of calculable f-SUSY models that are parametrized by a non-trivial twist in 5D boundary conditions and can accommodate the observed Higgs mass and couplings. Although the distinctive phenomenology associated with the novel folded states should provide strong evidence for this mechanism, the most stringent constraints are currently placed by conventional supersymmetry searches. These models remain minimally fine-tuned in light of LHC8 data and provide a range of both standard and exotic signatures accessible at LHC13.

  14. STIS MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2013-10-01

    The performance of MAMA microchannel plates can be monitored using a MAMA fold distribution procedure. The fold distribution provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of change in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the STIS MAMA Fold Distribution, Proposal 13149, as Cycle 20.

  15. STIS MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2012-10-01

    The performance of MAMA microchannel plates can be monitored using a MAMA fold distribution procedure. The fold distribution provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of change in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the STIS MAMA Fold Distribution, Proposal 12778, as Cycle 19.

  16. STIS MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2010-09-01

    The performance of MAMA microchannel plates can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the STIS MAMA Fold Analysis {11863} during Cycle 17.

  17. STIS MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2011-10-01

    The performance of MAMA microchannel plates can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the STIS MAMA Fold Analysis, Proposal 12416, as Cycle 18.

  18. Fast protein folding kinetics

    PubMed Central

    Gelman, Hannah; Gruebele, Martin

    2014-01-01

    Fast folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast folding proteins has provided insight into the mechanisms which allow some proteins to find their native conformation well less than 1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even “slow” folding processes: fast folders are small, relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast folding proteins and provides an overview of the major findings of fast folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general as well as some work that is left to do. PMID:24641816

  19. Genetic Recombination

    ERIC Educational Resources Information Center

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  20. Multiply folded graphene

    NASA Astrophysics Data System (ADS)

    Kim, Kwanpyo; Lee, Zonghoon; Malone, Brad D.; Chan, Kevin T.; Alemán, Benjamín; Regan, William; Gannett, Will; Crommie, M. F.; Cohen, Marvin L.; Zettl, A.

    2011-06-01

    The folding of paper, hide, and woven fabric has been used for millennia to achieve enhanced articulation, curvature, and visual appeal for intrinsically flat, two-dimensional materials. For graphene, an ideal two-dimensional material, folding may transform it to complex shapes with new and distinct properties. Here, we present experimental results that folded structures in graphene, termed grafold, exist, and their formations can be controlled by introducing anisotropic surface curvature during graphene synthesis or transfer processes. Using pseudopotential-density-functional-theory calculations, we also show that double folding modifies the electronic band structure of graphene. Furthermore, we demonstrate the intercalation of C60 into the grafolds. Intercalation or functionalization of the chemically reactive folds further expands grafold's mechanical, chemical, optical, and electronic diversity.

  1. SU-E-T-625: Use and Choice of Ionization Chambers for the Commissioning of Flattened and Flattening-Filter-Free Photon Beams: Determination of Recombination Correction Factor (ks)

    SciTech Connect

    Stucchi, C; Mongioj, V; Carrara, M; Pignoli, E; Bonfantini, F; Bresolin, A

    2014-06-15

    Purpose: To evaluate the recombination effect for some ionization chambers to be used for linacs commissioning for Flattened Filter (FF) and Flattening Filter Free (FFF) photon beams. Methods: A Varian TrueBeam linac with five photon beams was used: 6, 10 and 15 MV FF and 6 and 10 MV FFF. Measurements were performed in a water tank and in a plastic water phantom with different chambers: a mini-ion chamber (IC CC01, IBA), a plane-parallel ion chamber (IC PPC05, IBA) and two Farmer chambers (NE2581 and FPC05-IBA). Measurement conditions were Source- Surface Distance of 100 cm, two field sizes (10x10 and 40x40 cm2) and five depths (1cm, maximum buildup, 5cm, 10cm and 20cm). The ion recombination factors (kS), obtained from the Jaffe's plots (voltage interval 50-400 V), were evaluated at the recommended operating voltage of +300V. Results: Dose Per Pulse (DPP) at dmax was 0.4 mGy/pulse for FF beams, 1.0 mGy/pulse and 1.9 mGy/pulse for 6MV and 10 MV FFF beams respectively. For all measurement conditions, kS ranged between 0.996 and 0.999 for IC PPC05, 0.997 and 1.008 for IC CC01. For the FPC05 IBA Farmer IC, kS varied from 1.001 to 1.011 for FF beams, from 1.004 to 1.015 for 6 MV FFF and from 1.009 to 1.025 for 10 MV FFF. Whereas, for NE2581 IC the values ranged from 1.002 to 1.009 for all energy beams and measurement conditions. Conclusion: kS depends on the chamber volume and the DPP, which in turn depends on energy beam but is independent of dose rate. Ion chambers with small active volume can be reliably used for dosimetry of FF and FFF beams even without kS correction. On the contrary, for absolute dosimetry of FFF beams by Farmer ICs it is necessary to evaluate and apply the kS correction. Partially supported by Lega Italiana Lotta contro i Tumori (LILT)

  2. Production of recombinant proteins in microalgae at pilot greenhouse scale.

    PubMed

    Gimpel, Javier A; Hyun, James S; Schoepp, Nathan G; Mayfield, Stephen P

    2015-02-01

    Recombinant protein production in microalgae chloroplasts can provide correctly folded proteins in significant quantities and potentially inexpensive costs compared to other heterologous protein production platforms. The best results have been achieved by using the psbA promoter and 5' untranslated region (UTR) to drive the expression of heterologous genes in a psbA-deficient, non-photosynthetic, algal host. Unfortunately, using such a strategy makes the system unviable for large scale cultivation using natural sunlight for photosynthetic growth. In this study we characterized eight different combinations of 5' regulatory regions and psbA coding sequences for their ability to restore photosynthesis in a psbA-deficient Chlamydomonas reinhardtii, while maintaining robust accumulation of a commercially viable recombinant protein driven by the psbA promoter/5'UTR. The recombinant protein corresponded to bovine Milk Amyloid A (MAA), which is present in milk colostrum and could be used to prevent infectious diarrhea in mammals. This approach allowed us to identify photosynthetic strains that achieved constitutive production of MAA when grown photosynthetically in 100 L bags in a greenhouse. Under these conditions, the maximum MAA expression achieved was 1.86% of total protein, which corresponded to 3.28 mg/L of culture medium. Within our knowledge, this is the first report of a recombinant protein being produced this way in microalgae. PMID:25116083

  3. Recombinant renewable polyclonal antibodies

    PubMed Central

    Ferrara, Fortunato; D’Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew RM

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products. PMID:25530082

  4. Cosmological Recombination

    NASA Astrophysics Data System (ADS)

    Wong, Wan Yan

    2008-11-01

    In this thesis we focus on studying the physics of cosmological recombination and how the details of recombination affect the Cosmic Microwave Background (CMB) anisotropies. We present a detailed calculation of the spectral line distortions on the CMB spectrum arising from the Lyman-alpha and the lowest two-photon transitions in the recombination of hydrogen (H), and the corresponding lines from helium (He). The peak of these distortions mainly comes from the Lyman-alpha transition and occurs at about 170 microns, which is the Wien part of the CMB. The major theoretical limitation for extracting cosmological parameters from the CMB sky lies in the precision with which we can calculate the cosmological recombination process. With this motivation, we perform a multi-level calculation of the recombination of H and He with the addition of the spin-forbidden transition for neutral helium (He I), plus the higher order two-photon transitions for H and among singlet states of He I. We find that the inclusion of the spin-forbidden transition results in more than a percent change in the ionization fraction, while the other transitions give much smaller effects. Last we modify RECFAST by introducing one more parameter to reproduce recent numerical results for the speed-up of helium recombination. Together with the existing hydrogen `fudge factor', we vary these two parameters to account for the remaining dominant uncertainties in cosmological recombination. By using a Markov Chain Monte Carlo method with Planck forecast data, we find that we need to determine the parameters to better than 10% for He I and 1% for H, in order to obtain negligible effects on the cosmological parameters.

  5. Programmable matter by folding

    PubMed Central

    Hawkes, E.; An, B.; Benbernou, N. M.; Tanaka, H.; Kim, S.; Demaine, E. D.; Rus, D.; Wood, R. J.

    2010-01-01

    Programmable matter is a material whose properties can be programmed to achieve specific shapes or stiffnesses upon command. This concept requires constituent elements to interact and rearrange intelligently in order to meet the goal. This paper considers achieving programmable sheets that can form themselves in different shapes autonomously by folding. Past approaches to creating transforming machines have been limited by the small feature sizes, the large number of components, and the associated complexity of communication among the units. We seek to mitigate these difficulties through the unique concept of self-folding origami with universal crease patterns. This approach exploits a single sheet composed of interconnected triangular sections. The sheet is able to fold into a set of predetermined shapes using embedded actuation. To implement this self-folding origami concept, we have developed a scalable end-to-end planning and fabrication process. Given a set of desired objects, the system computes an optimized design for a single sheet and multiple controllers to achieve each of the desired objects. The material, called programmable matter by folding, is an example of a system capable of achieving multiple shapes for multiple functions. PMID:20616049

  6. Folding without charges

    PubMed Central

    Kurnik, Martin; Hedberg, Linda; Danielsson, Jens; Oliveberg, Mikael

    2012-01-01

    Surface charges of proteins have in several cases been found to function as “structural gatekeepers,” which avoid unwanted interactions by negative design, for example, in the control of protein aggregation and binding. The question is then if side-chain charges, due to their desolvation penalties, play a corresponding role in protein folding by avoiding competing, misfolded traps? To find out, we removed all 32 side-chain charges from the 101-residue protein S6 from Thermus thermophilus. The results show that the charge-depleted S6 variant not only retains its native structure and cooperative folding transition, but folds also faster than the wild-type protein. In addition, charge removal unleashes pronounced aggregation on longer timescales. S6 provides thus an example where the bias toward native contacts of a naturally evolved protein sequence is independent of charges, and point at a fundamental difference in the codes for folding and intermolecular interaction: specificity in folding is governed primarily by hydrophobic packing and hydrogen bonding, whereas solubility and binding relies critically on the interplay of side-chain charges. PMID:22454493

  7. Synthesizing folded band chaos.

    PubMed

    Corron, Ned J; Hayes, Scott T; Pethel, Shawn D; Blakely, Jonathan N

    2007-04-01

    A randomly driven linear filter that synthesizes Lorenz-like, reverse-time chaos is shown also to produce Rössler-like folded band wave forms when driven using a different encoding of the random source. The relationship between the topological entropy of the random source, dissipation in the linear filter, and the positive Lyapunov exponent for the reverse-time wave form is exposed. The two drive encodings are viewed as grammar restrictions on a more general encoding that produces a chaotic superset encompassing both the Lorenz butterfly and Rössler folded band paradigms of nonlinear dynamics. PMID:17500950

  8. Learning Protein Folding Energy Functions

    PubMed Central

    Guan, Wei; Ozakin, Arkadas; Gray, Alexander; Borreguero, Jose; Pandit, Shashi; Jagielska, Anna; Wroblewska, Liliana; Skolnick, Jeffrey

    2014-01-01

    A critical open problem in ab initio protein folding is protein energy function design, which pertains to defining the energy of protein conformations in a way that makes folding most efficient and reliable. In this paper, we address this issue as a weight optimization problem and utilize a machine learning approach, learning-to-rank, to solve this problem. We investigate the ranking-via-classification approach, especially the RankingSVM method and compare it with the state-of-the-art approach to the problem using the MINUIT optimization package. To maintain the physicality of the results, we impose non-negativity constraints on the weights. For this we develop two efficient non-negative support vector machine (NNSVM) methods, derived from L2-norm SVM and L1-norm SVMs, respectively. We demonstrate an energy function which maintains the correct ordering with respect to structure dissimilarity to the native state more often, is more efficient and reliable for learning on large protein sets, and is qualitatively superior to the current state-of-the-art energy function. PMID:25311546

  9. Folding pathways of the Tetrahymena ribozyme

    PubMed Central

    Mitchell, David; Russell, Rick

    2014-01-01

    Like many structured RNAs, the Tetrahymena group I intron ribozyme folds through multiple pathways and intermediates. Under standard conditions in vitro, a small fraction reaches the native state (N) with kobs ≈ 0.6 min–1, while the remainder forms a long-lived misfolded conformation (M) thought to differ in topology. These alternative outcomes reflect a pathway that branches late in folding, after disruption of a trapped intermediate (Itrap). Here, we use catalytic activity to probe the folding transitions from Itrap to the native and misfolded states. We show that mutations predicted to weaken the core helix P3 do not increase the rate of folding from Itrap but they increase the fraction that reaches the native state rather than forming the misfolded state. Thus, P3 is disrupted during folding to the native state but not to the misfolded state, and P3 disruption occurs after the rate-limiting step. Interestingly, P3-strengthening mutants also increase native folding. Additional experiments show that these mutants are rapidly committed to folding to the native state, although they reach the native state with approximately the same rate constant as the wild-type ribozyme (~1 min–1). Thus, the P3-strengthening mutants populate a distinct pathway that includes at least one intermediate but avoids the M state, most likely because P3 and the correct topology are formed early. Our results highlight multiple pathways in RNA folding and illustrate how kinetic competitions between rapid events can have long-lasting effects because the ‘choice’ is enforced by energy barriers that grow larger as folding progresses. PMID:24747051

  10. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  11. Circular permutant GFP insertion folding reporters

    SciTech Connect

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2013-04-16

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  12. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2008-06-24

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  13. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2011-06-14

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  14. Circular permutant GFP insertion folding reporters

    DOEpatents

    Waldo, Geoffrey S; Cabantous, Stephanie

    2013-02-12

    Provided are methods of assaying and improving protein folding using circular permutants of fluorescent proteins, including circular permutants of GFP variants and combinations thereof. The invention further provides various nucleic acid molecules and vectors incorporating such nucleic acid molecules, comprising polynucleotides encoding fluorescent protein circular permutants derived from superfolder GFP, which polynucleotides include an internal cloning site into which a heterologous polynucleotide may be inserted in-frame with the circular permutant coding sequence, and which when expressed are capable of reporting on the degree to which a polypeptide encoded by such an inserted heterologous polynucleotide is correctly folded by correlation with the degree of fluorescence exhibited.

  15. Modelling of lateral fold growth and fold linkage: Applications to fold-and-thrust belt tectonics

    NASA Astrophysics Data System (ADS)

    Grasemann, Bernhard; Schmalholz, Stefan

    2013-04-01

    We use a finite element model to investigate the three-dimensional fold growth and interference of two initially isolated fold segments. The most critical parameter, which controls the fold linkage mode, is the phase difference between the laterally growing fold hinge lines: 1) "Linear-linkage" yields a sub-cylindrical fold with a saddle at the location where the two initial folds linked. 2) "Oblique-linkage" produces a curved fold resembling a Type II refold structure. 3) "Oblique-no-linkage" results in two curved folds with fold axes plunging in opposite directions. 4) "Linear-no-linkage" yields a fold train of two separate sub-cylindrical folds with fold axes plunging in opposite directions. The transition from linkage to no-linkage occurs when the fold separation between the initially isolated folds is slightly larger than one half of the low-amplitude fold wavelength. The model results compare well with previously published plasticine analogue models and can be directly applied to the investigation of fold growth history in fold-and-thust belts. An excellent natural example of lateral fold linkage is described from the Zagros fold-and-thrust belt in the Kurdistan Region of Iraq. The fold growth in this region is not controlled by major thrust faults but the shortening of the Paleozoic to Cenozoic passive margin sediments of the Arabian plate occurred mainly by detachment folding. The sub-cylindrical anticlines with hinge-parallel lengths of more than 50 km have not developed from single sub-cylindrical embryonic folds but they have merged from different fold segments that joined laterally during fold amplification and lateral fold growth. Linkage points are marked by geomorphological saddle points which are structurally the lowermost points of antiforms and points of principal curvatures with opposite sign. Linkage points can significantly influence the migration of mineral-rich fluids and hydrocarbons and are therefore of great economic importance.

  16. Insertion DNA Accelerates Meiotic Interchromosomal Recombination in Arabidopsis thaliana.

    PubMed

    Sun, Xiao-Qin; Li, Ding-Hong; Xue, Jia-Yu; Yang, Si-Hai; Zhang, Yan-Mei; Li, Mi-Mi; Hang, Yue-Yu

    2016-08-01

    Nucleotide insertions/deletions are ubiquitous in eukaryotic genomes, and the resulting hemizygous (unpaired) DNA has significant, heritable effects on adjacent DNA. However, little is known about the genetic behavior of insertion DNA. Here, we describe a binary transgenic system to study the behavior of insertion DNA during meiosis. Transgenic Arabidopsis lines were generated to carry two different defective reporter genes on nonhomologous chromosomes, designated as "recipient" and "donor" lines. Double hemizygous plants (harboring unpaired DNA) were produced by crossing between the recipient and the donor, and double homozygous lines (harboring paired DNA) via self-pollination. The transfer of the donor's unmutated sequence to the recipient generated a functional β-glucuronidase gene, which could be visualized by histochemical staining and corroborated by polymerase chain reaction amplification and sequencing. More than 673 million seedlings were screened, and the results showed that meiotic ectopic recombination in the hemizygous lines occurred at a frequency  >6.49-fold higher than that in the homozygous lines. Gene conversion might have been exclusively or predominantly responsible for the gene correction events. The direct measurement of ectopic recombination events provided evidence that an insertion, in the absence of an allelic counterpart, could scan the entire genome for homologous counterparts with which to pair. Furthermore, the unpaired (hemizygous) architectures could accelerate ectopic recombination between itself and interchromosomal counterparts. We suggest that the ectopic recombination accelerated by hemizygous architectures may be a general mechanism for interchromosomal recombination through ubiquitously dispersed repeat sequences in plants, ultimately contributing to genetic renovation and eukaryotic evolution. PMID:27189569

  17. Improving Protein Fold Recognition by Deep Learning Networks

    PubMed Central

    Jo, Taeho; Hou, Jie; Eickholt, Jesse; Cheng, Jianlin

    2015-01-01

    For accurate recognition of protein folds, a deep learning network method (DN-Fold) was developed to predict if a given query-template protein pair belongs to the same structural fold. The input used stemmed from the protein sequence and structural features extracted from the protein pair. We evaluated the performance of DN-Fold along with 18 different methods on Lindahl’s benchmark dataset and on a large benchmark set extracted from SCOP 1.75 consisting of about one million protein pairs, at three different levels of fold recognition (i.e., protein family, superfamily, and fold) depending on the evolutionary distance between protein sequences. The correct recognition rate of ensembled DN-Fold for Top 1 predictions is 84.5%, 61.5%, and 33.6% and for Top 5 is 91.2%, 76.5%, and 60.7% at family, superfamily, and fold levels, respectively. We also evaluated the performance of single DN-Fold (DN-FoldS), which showed the comparable results at the level of family and superfamily, compared to ensemble DN-Fold. Finally, we extended the binary classification problem of fold recognition to real-value regression task, which also show a promising performance. DN-Fold is freely available through a web server at http://iris.rnet.missouri.edu/dnfold. PMID:26634993

  18. Improving Protein Fold Recognition by Deep Learning Networks.

    PubMed

    Jo, Taeho; Hou, Jie; Eickholt, Jesse; Cheng, Jianlin

    2015-01-01

    For accurate recognition of protein folds, a deep learning network method (DN-Fold) was developed to predict if a given query-template protein pair belongs to the same structural fold. The input used stemmed from the protein sequence and structural features extracted from the protein pair. We evaluated the performance of DN-Fold along with 18 different methods on Lindahl's benchmark dataset and on a large benchmark set extracted from SCOP 1.75 consisting of about one million protein pairs, at three different levels of fold recognition (i.e., protein family, superfamily, and fold) depending on the evolutionary distance between protein sequences. The correct recognition rate of ensembled DN-Fold for Top 1 predictions is 84.5%, 61.5%, and 33.6% and for Top 5 is 91.2%, 76.5%, and 60.7% at family, superfamily, and fold levels, respectively. We also evaluated the performance of single DN-Fold (DN-FoldS), which showed the comparable results at the level of family and superfamily, compared to ensemble DN-Fold. Finally, we extended the binary classification problem of fold recognition to real-value regression task, which also show a promising performance. DN-Fold is freely available through a web server at http://iris.rnet.missouri.edu/dnfold. PMID:26634993

  19. Improving Protein Fold Recognition by Deep Learning Networks

    NASA Astrophysics Data System (ADS)

    Jo, Taeho; Hou, Jie; Eickholt, Jesse; Cheng, Jianlin

    2015-12-01

    For accurate recognition of protein folds, a deep learning network method (DN-Fold) was developed to predict if a given query-template protein pair belongs to the same structural fold. The input used stemmed from the protein sequence and structural features extracted from the protein pair. We evaluated the performance of DN-Fold along with 18 different methods on Lindahl’s benchmark dataset and on a large benchmark set extracted from SCOP 1.75 consisting of about one million protein pairs, at three different levels of fold recognition (i.e., protein family, superfamily, and fold) depending on the evolutionary distance between protein sequences. The correct recognition rate of ensembled DN-Fold for Top 1 predictions is 84.5%, 61.5%, and 33.6% and for Top 5 is 91.2%, 76.5%, and 60.7% at family, superfamily, and fold levels, respectively. We also evaluated the performance of single DN-Fold (DN-FoldS), which showed the comparable results at the level of family and superfamily, compared to ensemble DN-Fold. Finally, we extended the binary classification problem of fold recognition to real-value regression task, which also show a promising performance. DN-Fold is freely available through a web server at http://iris.rnet.missouri.edu/dnfold.

  20. Optimal protein-folding codes from spin-glass theory.

    PubMed Central

    Goldstein, R A; Luthey-Schulten, Z A; Wolynes, P G

    1992-01-01

    Protein-folding codes embodied in sequence-dependent energy functions can be optimized using spin-glass theory. Optimal folding codes for associative-memory Hamiltonians based on aligned sequences are deduced. A screening method based on these codes correctly recognizes protein structures in the "twilight zone" of sequence identity in the overwhelming majority of cases. Simulated annealing for the optimally encoded Hamiltonian generally leads to qualitatively correct structures. Images PMID:1594594

  1. Beyond the cytoplasm of Escherichia coli: localizing recombinant proteins where you want them.

    PubMed

    Boock, Jason T; Waraho-Zhmayev, Dujduan; Mizrachi, Dario; DeLisa, Matthew P

    2015-01-01

    Recombinant protein expression in Escherichia coli represents a cornerstone of the biotechnology enterprise. While cytoplasmic expression in this host has received the most attention, achieving substantial yields of correctly folded proteins in this compartment can sometimes be met with difficulties. These issues can often be overcome by targeting protein expression to extracytoplasmic compartments (e.g., membrane, periplasm) or to the culture medium. This chapter discusses various strategies for exporting proteins out of the cytoplasm as well as tools for monitoring and optimizing these different export mechanisms. PMID:25447860

  2. The uteroglobin fold.

    PubMed

    Callebaut, I; Poupon, A; Bally, R; Demaret, J P; Housset, D; Delettré, J; Hossenlopp, P; Mornon, J P

    2000-01-01

    Uteroglobin (UTG) forms a fascinating homodimeric structure that binds small- to medium-sized ligands through an internal hydrophobic cavity, located at the interface between the two monomers. Previous studies have shown that UTG fold is not limited to the UTG/CC10 family, whose sequence/structure relationships are highlighted here, but can be extended to the cap domain of Xanthobacter autotrophicus haloalkane dehalogenase. We show here that UTG fold is adopted by several other cap domains within the alpha/beta hydrolase family, making it a well-suited "geode" structure allowing it to sequester various hydrophobic molecules. Additionally, some data about a new crystal form of oxidized rabbit UTG are presented, completing previous structural studies, as well as results from molecular dynamics, suggesting an alternative way for the ligand to reach the internal cavity. PMID:11193783

  3. The protein folding network

    NASA Astrophysics Data System (ADS)

    Rao, Francesco; Caflisch, Amedeo

    2004-03-01

    Networks are everywhere. The conformation space of a 20-residue antiparallel beta-sheet peptide [1], sampled by molecular dynamics simulations, is mapped to a network. Conformations are nodes of the network, and the transitions between them are links. As previously found for the World-Wide Web as well as for social and biological networks , the conformation space contains highly connected hubs like the native state which is the most populated free energy basin. Furthermore, the network shows a hierarchical modularity [2] which is consistent with the funnel mechanism of folding [3] and is not observed for a random heteropolymer lacking a native state. Here we show that the conformation space network describes the free energy landscape without requiring projections into arbitrarily chosen reaction coordinates. The network analysis provides a basis for understanding the heterogeneity of the folding transition state and the existence of multiple pathways. [1] P. Ferrara and A. Caflisch, Folding simulations of a three-stranded antiparallel beta-sheet peptide, PNAS 97, 10780-10785 (2000). [2] Ravasz, E. and Barabási, A. L. Hierarchical organization in complex networks. Phys. Rev. E 67, 026112 (2003). [3] Dill, K. and Chan, H From Levinthal to pathways to funnels. Nature Struct. Biol. 4, 10-19 (1997)

  4. Ab initio RNA folding

    NASA Astrophysics Data System (ADS)

    Cragnolini, Tristan; Derreumaux, Philippe; Pasquali, Samuela

    2015-06-01

    RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding.

  5. Chirality and protein folding

    NASA Astrophysics Data System (ADS)

    Kwiecinska, Joanna I.; Cieplak, Marek

    2005-05-01

    There are several simple criteria of folding to a native state in model proteins. One of them involves crossing of a threshold value of the root mean square deviation distance away from the native state. Another checks whether all native contacts are established, i.e. whether the interacting amino acids come closer than some characteristic distance. We use Go-like models of proteins and show that such simple criteria may prompt one to declare folding even though fragments of the resulting conformations have a wrong sense of chirality. We propose that a better condition of folding should augment the simple criteria with the requirement that most of the local values of the chirality should be nearly native. The kinetic discrepancy between the simple and compound criteria can be substantially reduced in the Go-like models by providing the Hamiltonian with a term which favours native values of the local chirality. We study the effects of this term as a function of its amplitude and compare it to other models such as ones with side groups and ones with angle-dependent potentials.

  6. Folding within seconds

    NASA Astrophysics Data System (ADS)

    Kenkmann, Thomas

    2002-03-01

    Hypervelocity impacts of cosmic projectiles larger than ˜200 m diameter are capable of forming complex craters on Earth. At these craters, shock loading, shock damage, and excavation flow are followed by a gravity-driven collapse of the deep transient cavity. Such impact structures are characterized by a central uplift, a flat crater floor, and a terraced crater rim. Collapse-induced deformation features, like folds and brittle fault zones, have many similarities to tectonic structures. Typical deformation patterns of complex terrestrial impact craters of 5 15 km diameter are compiled and analyzed with respect to their kinematic development. Unlike their tectonic counterparts, deformation structures are always the result of non-plane-strain deformation and are formed in a single event that takes place in seconds to minutes. To understand the high-strain-rate processes, the microstructure of an impact-induced fold of the Crooked Creek impact crater (˜7 km diameter), Missouri, United States, is investigated in detail. A period of 20 30 s at the most is determined for the collapse phase of this crater. The gross plastic deformation behavior of the fold is achieved by localized brittle deformation along millimeter- to centimeter-spaced fault zones, forming a network of veins. Shock damage has fractured ˜40% of grain boundaries. The onset of collapse and associated deformation started in rocks with a reduced cohesion and is friction controlled.

  7. Ab initio RNA folding.

    PubMed

    Cragnolini, Tristan; Derreumaux, Philippe; Pasquali, Samuela

    2015-06-17

    RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding. PMID:25993396

  8. Folded waveguide coupler

    DOEpatents

    Owens, Thomas L.

    1988-03-01

    A resonant cavity waveguide coupler for ICRH of a magnetically confined plasma. The coupler consists of a series of inter-leaved metallic vanes disposed withn an enclosure analogous to a very wide, simple rectangular waveguide that has been "folded" several times. At the mouth of the coupler, a polarizing plate is provided which has coupling apertures aligned with selected folds of the waveguide through which rf waves are launched with magnetic fields of the waves aligned in parallel with the magnetic fields confining the plasma being heated to provide coupling to the fast magnetosonic wave within the plasma in the frequency usage of from about 50-200 mHz. A shorting plate terminates the back of the cavity at a distance approximately equal to one-half the guide wavelength from the mouth of the coupler to ensure that the electric field of the waves launched through the polarizing plate apertures are small while the magnetic field is near a maximum. Power is fed into the coupler folded cavity by means of an input coaxial line feed arrangement at a point which provides an impedance match between the cavity and the coaxial input line.

  9. Kinematics of constant arc length folding for different fold shapes

    NASA Astrophysics Data System (ADS)

    Ghassemi, Mohammad R.; Schmalholz, Stefan M.; Ghassemi, Ali R.

    2010-06-01

    Basic mathematical functions are applied for the two-dimensional geometrical and kinematical analysis of different fold shapes. Relationships between different fold parameters are established and related to the bulk shortening taking place during folding under upper crustal conditions. The bulk shortening taking place during constant arc length folding is mathematically related to the bulk shortening during homogenous pure shear using a particular aspect ratio, which is for folding the ratio of amplitude to half wavelength and for pure shear the ratio of vertical to horizontal length of the deformed, initially square body. The evolution of the fold aspect ratio with bulk shortening is similar for a wide range of fold shapes and indicates that the fold aspect ratio allows a good estimate of the bulk shortening. The change of the geometry of individual layers across a multilayer sequence in disharmonic folding indicates a specific kinematics of multilayer folding, referred to here as "wrap folding", which does not require significant flexural slip nor flexural flow. The kinematic analysis indicates that there is a critical value for constant arc length folding between shortening values of 30-40% (depending on the fold geometry). For shortening values smaller than the critical value limb rotation and fold amplitude growth are dominating. For shortening larger than this value, faulting, boudinage and foliation development are likely the dominating deformation process during continued shortening. The kinematical analysis of constant arc length folding can be used for estimating the bulk shortening taking place during multilayer folding which is an important component of the deformation of crustal rocks during the early history of shortening. The bulk shortening is estimated for a natural, multilayer detachment fold and the shortening estimates based on the kinematic analysis are compared and supported by numerical finite element simulations of multilayer detachment

  10. Information from folds: A review

    NASA Astrophysics Data System (ADS)

    Hudleston, Peter J.; Treagus, Susan H.

    2010-12-01

    Folds are spectacular geological structures that are seen in layered rock on many different scales. To mark 30 years of the Journal of Structural Geology, we review the information that can be gained from studies of folds in theory, experiment and nature. We first review theoretical considerations and modeling, from classical approaches to current developments. The subject is dominated by single-layer fold theory, with the assumption of perfect layer-parallel shortening, but we also review multilayer fold theory and modeling, and folding of layers that are oblique to principal stresses and strains. This work demonstrates that viscosity ratio, degree of non-linearity of the flow law, anisotropy, and the thickness and spacing distribution of layers of different competence are all important in determining the nature and strength of the folding instability. Theory and modeling provide the basis for obtaining rheological information from natural folds, through analysis of wavelength/thickness ratios of single layer folds, and fold shapes. They also provide a basis for estimating the bulk strain from folded layers. Information about folding mechanisms can be obtained by analysis of cleavage and fabric patterns in folded rocks, and the history of deformation can be revealed by understanding how asymmetry can develop in folds, by how folds develop in shear zones, and how folds develop in more complex three-dimensional deformations.

  11. Peptide folding simulations.

    PubMed

    Gnanakaran, S; Nymeyer, Hugh; Portman, John; Sanbonmatsu, Kevin Y; García, Angel E

    2003-04-01

    Developments in the design of small peptides that mimic proteins in complexity, recent advances in nanosecond time-resolved spectroscopy methods to study peptides and the development of modern, highly parallel simulation algorithms have come together to give us a detailed picture of peptide folding dynamics. Two newly implemented simulation techniques, parallel replica dynamics and replica exchange molecular dynamics, can now describe directly from simulations the kinetics and thermodynamics of peptide formation, respectively. Given these developments, the simulation community now has the tools to verify and validate simulation protocols and models (forcefields). PMID:12727509

  12. Folds on Europa

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image, acquired by NASA's Galileo spacecraft on September 26, 1998, shows features on the surface of Jupiter's moon Europa that a scientific report published today interprets as signs of compressive folding.

    The imaged area is in the Astypalaea Linea region of Europa's southern hemisphere, seen with low-angle sunshine coming from the upper right. North is toward the top.

    Astypalaea Linea is the smooth, gray area that stretches from north to south across the image mosaic. It is thought to have formed by a combination of pulling apart and sliding of the icy surface. The telltale fold features are within the smoother portions of the surface between the more dominant ridges, which are attributed to upwelling of material through surface ice. In the smooth areas, the surface has gentle swells and dips, which show most clearly in the version on the right, processed to accentuate broader-scale shapes. For example, a dip about 15 kilometers (about 10 miles) wide cuts diagonally across the northern half of the largest smooth area, and a rise runs parallel to that in the southern half of the smooth area. closeup detail

    Louise M. Prockter, at Johns Hopkins University, and Robert T. Pappalardo, at Brown University, report in the journal Science today that those rises, or anticlines, and dips, or synclines, appear to be the result of compression causing the crust to fold.

    Additional evidence comes from smaller features more visible in the version on the left, covering the same area. At the crest of the gentle rise in the largest smooth area are small fractures that could be caused by the stretching stress of bending the surface layer upwards. Similarly, at the bottom of the adjacent dip are small, wrinkle-like ridges that could be caused by stress from bending the surface layer downwards.

    The Jet Propulsion Laboratory, Pasadena, Calif., manages the Galileo mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California

  13. Protein folding. Translational tuning optimizes nascent protein folding in cells.

    PubMed

    Kim, Soo Jung; Yoon, Jae Seok; Shishido, Hideki; Yang, Zhongying; Rooney, LeeAnn A; Barral, Jose M; Skach, William R

    2015-04-24

    In cells, biosynthetic machinery coordinates protein synthesis and folding to optimize efficiency and minimize off-pathway outcomes. However, it has been difficult to delineate experimentally the mechanisms responsible. Using fluorescence resonance energy transfer, we studied cotranslational folding of the first nucleotide-binding domain from the cystic fibrosis transmembrane conductance regulator. During synthesis, folding occurred discretely via sequential compaction of N-terminal, α-helical, and α/β-core subdomains. Moreover, the timing of these events was critical; premature α-subdomain folding prevented subsequent core formation. This process was facilitated by modulating intrinsic folding propensity in three distinct ways: delaying α-subdomain compaction, facilitating β-strand intercalation, and optimizing translation kinetics via codon usage. Thus, de novo folding is translationally tuned by an integrated cellular response that shapes the cotranslational folding landscape at critical stages of synthesis. PMID:25908822

  14. Pharmacological correction of misfolding of ABC proteins.

    PubMed

    Rudashevskaya, Elena L; Stockner, Thomas; Trauner, Michael; Freissmuth, Michael; Chiba, Peter

    2014-06-01

    The endoplasmic reticulum (ER) quality control system distinguishes between correctly and incorrectly folded proteins to prevent processing of aberrantly folded conformations along the secretory pathway. Non-synonymous mutations can lead to misfolding of ABC proteins and associated disease phenotypes. Specific phenotypes may at least partially be corrected by small molecules, so-called pharmacological chaperones. Screening for folding correctors is expected to open an avenue for treatment of diseases such as cystic fibrosis and intrahepatic cholestasis. PMID:25027379

  15. Pharmacological correction of misfolding of ABC proteins☆

    PubMed Central

    Rudashevskaya, Elena L.; Stockner, Thomas; Trauner, Michael; Freissmuth, Michael; Chiba, Peter

    2014-01-01

    The endoplasmic reticulum (ER) quality control system distinguishes between correctly and incorrectly folded proteins to prevent processing of aberrantly folded conformations along the secretory pathway. Non-synonymous mutations can lead to misfolding of ABC proteins and associated disease phenotypes. Specific phenotypes may at least partially be corrected by small molecules, so-called pharmacological chaperones. Screening for folding correctors is expected to open an avenue for treatment of diseases such as cystic fibrosis and intrahepatic cholestasis. PMID:25027379

  16. To Nick or Not to Nick: Comparison of I-SceI Single- and Double-Strand Break-Induced Recombination in Yeast and Human Cells

    PubMed Central

    Katz, Samantha S.; Gimble, Frederick S.; Storici, Francesca

    2014-01-01

    Genetic modification of a chromosomal locus to replace an existing dysfunctional allele with a corrected sequence can be accomplished through targeted gene correction using the cell's homologous recombination (HR) machinery. Gene targeting is stimulated by generation of a DNA double-strand break (DSB) at or near the site of correction, but repair of the break via non-homologous end-joining without using the homologous template can lead to deleterious genomic changes such as in/del mutations, or chromosomal rearrangements. By contrast, generation of a DNA single-strand break (SSB), or nick, can stimulate gene correction without the problems of DSB repair because the uncut DNA strand acts as a template to permit healing without alteration of genetic material. Here, we examine the ability of a nicking variant of the I-SceI endonuclease (K223I I-SceI) to stimulate gene targeting in yeast Saccharomyces cerevisiae and in human embryonic kidney (HEK-293) cells. K223I I-SceI is proficient in both yeast and human cells and promotes gene correction up to 12-fold. We show that K223I I-SceI-driven recombination follows a different mechanism than wild-type I-SceI-driven recombination, thus indicating that the initial DNA break that stimulates recombination is not a low-level DSB but a nick. We also demonstrate that K223I I-SceI efficiently elevates gene targeting at loci distant from the break site in yeast cells. These findings establish the capability of the I-SceI nickase to enhance recombination in yeast and human cells, strengthening the notion that nicking enzymes could be effective tools in gene correction strategies for applications in molecular biology, biotechnology, and gene therapy. PMID:24558436

  17. How the genome folds

    NASA Astrophysics Data System (ADS)

    Lieberman Aiden, Erez

    2012-02-01

    I describe Hi-C, a novel technology for probing the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. Working with collaborators at the Broad Institute and UMass Medical School, we used Hi-C to construct spatial proximity maps of the human genome at a resolution of 1Mb. These maps confirm the presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, a knot-free conformation that enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus. The fractal globule is distinct from the more commonly used globular equilibrium model. Our results demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.

  18. Protein folding in the ER.

    SciTech Connect

    Stevens, F. J.; Argon, Y.; Biosciences Division; Univ. of Chicago

    1999-10-01

    The endoplasmic reticulum (ER) is a major protein folding compartment for secreted, plasma membrane and organelle proteins. Each of these newly-synthesized polypeptides folds in a deterministic process, affected by the unique conditions that exist in the ER. An understanding of protein folding in the ER is a fundamental biomolecular challenge at two levels. The first level addresses how the amino acid sequence programs that polypeptide to efficiently arrive at a particular fold out of a multitude of alternatives, and how different sequences obtain similar folds. At the second level are the issues introduced by folding not in the cytosol, but in the ER, including the risk of aggregation in a molecularly crowded environment, accommodation of post-translational modifications and the compatibility with subsequent intracellular trafficking. This review discusses both the physicochemical and cell biological constraints of folding, which are the challenges that the ER molecular chaperones help overcome.

  19. Evolutionary optimization of protein folding.

    PubMed

    Debès, Cédric; Wang, Minglei; Caetano-Anollés, Gustavo; Gräter, Frauke

    2013-01-01

    Nature has shaped the make up of proteins since their appearance, [Formula: see text]3.8 billion years ago. However, the fundamental drivers of structural change responsible for the extraordinary diversity of proteins have yet to be elucidated. Here we explore if protein evolution affects folding speed. We estimated folding times for the present-day catalog of protein domains directly from their size-modified contact order. These values were mapped onto an evolutionary timeline of domain appearance derived from a phylogenomic analysis of protein domains in 989 fully-sequenced genomes. Our results show a clear overall increase of folding speed during evolution, with known ultra-fast downhill folders appearing rather late in the timeline. Remarkably, folding optimization depends on secondary structure. While alpha-folds showed a tendency to fold faster throughout evolution, beta-folds exhibited a trend of folding time increase during the last [Formula: see text]1.5 billion years that began during the "big bang" of domain combinations. As a consequence, these domain structures are on average slow folders today. Our results suggest that fast and efficient folding of domains shaped the universe of protein structure. This finding supports the hypothesis that optimization of the kinetic and thermodynamic accessibility of the native fold reduces protein aggregation propensities that hamper cellular functions. PMID:23341762

  20. High efficiency recombineering in lactic acid bacteria

    PubMed Central

    van Pijkeren, Jan-Peter; Britton, Robert A.

    2012-01-01

    The ability to efficiently generate targeted point mutations in the chromosome without the need for antibiotics, or other means of selection, is a powerful strategy for genome engineering. Although oligonucleotide-mediated recombineering (ssDNA recombineering) has been utilized in Escherichia coli for over a decade, the successful adaptation of ssDNA recombineering to Gram-positive bacteria has not been reported. Here we describe the development and application of ssDNA recombineering in lactic acid bacteria. Mutations were incorporated in the chromosome of Lactobacillus reuteri and Lactococcus lactis without selection at frequencies ranging between 0.4% and 19%. Whole genome sequence analysis showed that ssDNA recombineering is specific and not hypermutagenic. To highlight the utility of ssDNA recombineering we reduced the intrinsic vancomymycin resistance of L. reuteri >100-fold. By creating a single amino acid change in the d-Ala-d-Ala ligase enzyme we reduced the minimum inhibitory concentration for vancomycin from >256 to 1.5 µg/ml, well below the clinically relevant minimum inhibitory concentration. Recombineering thus allows high efficiency mutagenesis in lactobacilli and lactococci, and may be used to further enhance beneficial properties and safety of strains used in medicine and industry. We expect that this work will serve as a blueprint for the adaptation of ssDNA recombineering to other Gram-positive bacteria. PMID:22328729

  1. Graphene folding on flat substrates

    SciTech Connect

    Chen, Xiaoming; Zhao, Yadong; Ke, Changhong; Zhang, Liuyang; Wang, Xianqiao

    2014-10-28

    We present a combined experimental-theoretical study of graphene folding on flat substrates. The structure and deformation of the folded graphene sheet are experimentally characterized by atomic force microscopy. The local graphene folding behaviors are interpreted based on nonlinear continuum mechanics modeling and molecular dynamics simulations. Our study on self-folding of a trilayer graphene sheet reports a bending stiffness of about 6.57 eV, which is about four times the reported values for monolayer graphene. Our results reveal that an intriguing free sliding phenomenon occurs at the interlayer van der Waals interfaces during the graphene folding process. This work demonstrates that it is a plausible venue to quantify the bending stiffness of graphene based on its self-folding conformation on flat substrates. The findings reported in this work are useful to a better understanding of the mechanical properties of graphene and in the pursuit of its applications.

  2. COS NUV MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2010-09-01

    The performance of the MAMA microchannel plate can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the COS MAMA Fold Analysis {11891} during Cycle 17.

  3. COS NUV MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2012-10-01

    The performance of the MAMA microchannel plate can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the COS MAMA Fold Analysis {12723} during Cycle 19.

  4. Limited cooperativity in protein folding.

    PubMed

    Muñoz, Victor; Campos, Luis A; Sadqi, Mourad

    2016-02-01

    Theory and simulations predict that the structural concert of protein folding reactions is relatively low. Experimentally, folding cooperativity has been difficult to study, but in recent years we have witnessed major advances. New analytical procedures in terms of conformational ensembles rather than discrete states, experimental techniques with improved time, structural, or single-molecule resolution, and combined thermodynamic and kinetic analysis of fast folding have contributed to demonstrate a general scenario of limited cooperativity in folding. Gradual structural disorder is already apparent on the unfolded and native states of slow, two-state folding proteins, and it greatly increases in magnitude for fast folding domains. These results demonstrate a direct link between how fast a single-domain protein folds and unfolds, and how cooperative (or structurally diverse) is its equilibrium unfolding process. Reducing cooperativity also destabilizes the native structure because it affects unfolding more than folding. We can thus define a continuous cooperativity scale that goes from the 'pliable' two-state character of slow folders to the gradual unfolding of one-state downhill, and eventually to intrinsically disordered proteins. The connection between gradual unfolding and intrinsic disorder is appealing because it suggests a conformational rheostat mechanism to explain the allosteric effects of folding coupled to binding. PMID:26845039

  5. Compact intermediates in RNA folding

    SciTech Connect

    Woodson, S.A.

    2011-12-14

    Large noncoding RNAs fold into their biologically functional structures via compact yet disordered intermediates, which couple the stable secondary structure of the RNA with the emerging tertiary fold. The specificity of the collapse transition, which coincides with the assembly of helical domains, depends on RNA sequence and counterions. It determines the specificity of the folding pathways and the magnitude of the free energy barriers to the ensuing search for the native conformation. By coupling helix assembly with nascent tertiary interactions, compact folding intermediates in RNA also play a crucial role in ligand binding and RNA-protein recognition.

  6. Paradoxical Vocal Fold Movement (PVFM)

    MedlinePlus

    ... Careers Certification Publications Events Advocacy Continuing Education Practice Management Research Home / Information for the Public / Speech, Language and Swallowing / Disorders and Diseases Paradoxical Vocal Fold ...

  7. Folding superfunnel to describe cooperative folding of interacting proteins.

    PubMed

    Smeller, László

    2016-07-01

    This paper proposes a generalization of the well-known folding funnel concept of proteins. In the funnel model the polypeptide chain is treated as an individual object not interacting with other proteins. Since biological systems are considerably crowded, protein-protein interaction is a fundamental feature during the life cycle of proteins. The folding superfunnel proposed here describes the folding process of interacting proteins in various situations. The first example discussed is the folding of the freshly synthesized protein with the aid of chaperones. Another important aspect of protein-protein interactions is the folding of the recently characterized intrinsically disordered proteins, where binding to target proteins plays a crucial role in the completion of the folding process. The third scenario where the folding superfunnel is used is the formation of aggregates from destabilized proteins, which is an important factor in case of several conformational diseases. The folding superfunnel constructed here with the minimal assumption about the interaction potential explains all three cases mentioned above. Proteins 2016; 84:1009-1016. © 2016 Wiley Periodicals, Inc. PMID:27090200

  8. Understanding the folding rates and folding nuclei of globular proteins.

    PubMed

    Finkelstein, Alexei V; Ivankov, Dmitry N; Garbuzynskiy, Sergiy O; Galzitskaya, Oxana V

    2007-12-01

    The first part of this paper contains an overview of protein structures, their spontaneous formation ("folding"), and the thermodynamic and kinetic aspects of this phenomenon, as revealed by in vitro experiments. It is stressed that universal features of folding are observed near the point of thermodynamic equilibrium between the native and denatured states of the protein. Here the "two-state" ("denatured state" <--> "native state") transition proceeds without accumulation of metastable intermediates, but includes only the unstable "transition state". This state, which is the most unstable in the folding pathway, and its structured core (a "nucleus") are distinguished by their essential influence on the folding/unfolding kinetics. In the second part of the paper, a theory of protein folding rates and related phenomena is presented. First, it is shown that the protein size determines the range of a protein's folding rates in the vicinity of the point of thermodynamic equilibrium between the native and denatured states of the protein. Then, we present methods for calculating folding and unfolding rates of globular proteins from their sizes, stabilities and either 3D structures or amino acid sequences. Finally, we show that the same theory outlines the location of the protein folding nucleus (i.e., the structured part of the transition state) in reasonable agreement with experimental data. PMID:18220841

  9. Glucocorticoids alleviate intestinal ER stress by enhancing protein folding and degradation of misfolded proteins

    PubMed Central

    Das, Indrajit; Png, Chin Wen; Oancea, Iulia; Hasnain, Sumaira Z.; Lourie, Rohan; Proctor, Martina; Eri, Rajaraman D.; Sheng, Yong; Crane, Denis I.; Florin, Timothy H.

    2013-01-01

    Endoplasmic reticulum (ER) stress in intestinal secretory cells has been linked with colitis in mice and inflammatory bowel disease (IBD). Endogenous intestinal glucocorticoids are important for homeostasis and glucocorticoid drugs are efficacious in IBD. In Winnie mice with intestinal ER stress caused by misfolding of the Muc2 mucin, the glucocorticoid dexamethasone (DEX) suppressed ER stress and activation of the unfolded protein response (UPR), substantially restoring goblet cell Muc2 production. In mice lacking inflammation, a glucocorticoid receptor antagonist increased ER stress, and DEX suppressed ER stress induced by the N-glycosylation inhibitor, tunicamycin (Tm). In cultured human intestinal secretory cells, in a glucocorticoid receptor-dependent manner, DEX suppressed ER stress and UPR activation induced by blocking N-glycosylation, reducing ER Ca2+ or depleting glucose. DEX up-regulated genes encoding chaperones and elements of ER-associated degradation (ERAD), including EDEM1. Silencing EDEM1 partially inhibited DEX’s suppression of misfolding-induced ER stress, showing that DEX enhances ERAD. DEX inhibited Tm-induced MUC2 precursor accumulation, promoted production of mature mucin, and restored ER exit and secretion of Winnie mutant recombinant Muc2 domains, consistent with enhanced protein folding. In IBD, glucocorticoids are likely to ameliorate ER stress by promoting correct folding of secreted proteins and enhancing removal of misfolded proteins from the ER. PMID:23650437

  10. The prosegment catalyzes native folding of Plasmodium falciparum plasmepsin II.

    PubMed

    Jaafar, Ahmad Haniff; Xiao, Huogen; Dee, Derek R; Bryksa, Brian C; Bhaumik, Prasenjit; Yada, Rickey Y

    2016-10-01

    Plasmepsin II is a malarial pepsin-like aspartic protease produced as a zymogen containing an N-terminal prosegment domain that is removed during activation. Despite structural similarities between active plasmepsin II and pepsin, their prosegments adopt different conformations in the respective zymogens. In contrast to pepsinogen, the proplasmepsin II prosegment is 80 residues longer, contains a transmembrane region and is non-essential for recombinant expression in an active form, thus calling into question the prosegment's precise function. The present study examines the role of the prosegment in the folding mechanism of plasmepsin II. Both a shorter (residues 77-124) and a longer (residues 65-124) prosegment catalyze plasmepsin II folding at rates more than four orders of magnitude faster compared to folding without prosegment. Native plasmepsin II is kinetically trapped and requires the prosegment both to catalyze folding and to shift the folding equilibrium towards the native conformation. Thus, despite low sequence identity and distinct zymogen conformations, the folding landscapes of plasmepsin II and pepsin, both with and without prosegment, are qualitatively identical. These results imply a conserved and unusual feature of the pepsin-like protease topology that necessitates prosegment-assisted folding. PMID:27378574

  11. Structural Bridges through Fold Space

    PubMed Central

    Edwards, Hannah; Deane, Charlotte M.

    2015-01-01

    Several protein structure classification schemes exist that partition the protein universe into structural units called folds. Yet these schemes do not discuss how these units sit relative to each other in a global structure space. In this paper we construct networks that describe such global relationships between folds in the form of structural bridges. We generate these networks using four different structural alignment methods across multiple score thresholds. The networks constructed using the different methods remain a similar distance apart regardless of the probability threshold defining a structural bridge. This suggests that at least some structural bridges are method specific and that any attempt to build a picture of structural space should not be reliant on a single structural superposition method. Despite these differences all representations agree on an organisation of fold space into five principal community structures: all-α, all-β sandwiches, all-β barrels, α/β and α + β. We project estimated fold ages onto the networks and find that not only are the pairings of unconnected folds associated with higher age differences than bridged folds, but this difference increases with the number of networks displaying an edge. We also examine different centrality measures for folds within the networks and how these relate to fold age. While these measures interpret the central core of fold space in varied ways they all identify the disposition of ancestral folds to fall within this core and that of the more recently evolved structures to provide the peripheral landscape. These findings suggest that evolutionary information is encoded along these structural bridges. Finally, we identify four highly central pivotal folds representing dominant topological features which act as key attractors within our landscapes. PMID:26372166

  12. Pseudoknots in RNA folding landscapes

    PubMed Central

    Kucharík, Marcel; Hofacker, Ivo L.; Stadler, Peter F.; Qin, Jing

    2016-01-01

    Motivation: The function of an RNA molecule is not only linked to its native structure, which is usually taken to be the ground state of its folding landscape, but also in many cases crucially depends on the details of the folding pathways such as stable folding intermediates or the timing of the folding process itself. To model and understand these processes, it is necessary to go beyond ground state structures. The study of rugged RNA folding landscapes holds the key to answer these questions. Efficient coarse-graining methods are required to reduce the intractably vast energy landscapes into condensed representations such as barrier trees or basin hopping graphs (BHG) that convey an approximate but comprehensive picture of the folding kinetics. So far, exact and heuristic coarse-graining methods have been mostly restricted to the pseudoknot-free secondary structures. Pseudoknots, which are common motifs and have been repeatedly hypothesized to play an important role in guiding folding trajectories, were usually excluded. Results: We generalize the BHG framework to include pseudoknotted RNA structures and systematically study the differences in predicted folding behavior depending on whether pseudoknotted structures are allowed to occur as folding intermediates or not. We observe that RNAs with pseudoknotted ground state structures tend to have more pseudoknotted folding intermediates than RNAs with pseudoknot-free ground state structures. The occurrence and influence of pseudoknotted intermediates on the folding pathway, however, appear to depend very strongly on the individual RNAs so that no general rule can be inferred. Availability and implementation: The algorithms described here are implemented in C++ as standalone programs. Its source code and Supplemental material can be freely downloaded from http://www.tbi.univie.ac.at/bhg.html. Contact: qin@bioinf.uni-leipzig.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID

  13. Automatic recognizing of vocal fold disorders from glottis images.

    PubMed

    Huang, Chang-Chiun; Leu, Yi-Shing; Kuo, Chung-Feng Jeffrey; Chu, Wen-Lin; Chu, Yueng-Hsiang; Wu, Han-Cheng

    2014-09-01

    The laryngeal video stroboscope is an important instrument to test glottal diseases and read vocal fold images and voice quality for physician clinical diagnosis. This study is aimed to develop a medical system with functionality of automatic intelligent recognition of dynamic images. The static images of glottis opening to the largest extent and closing to the smallest extent were screened automatically using color space transformation and image preprocessing. The glottal area was also quantized. As the tongue base movements affected the position of laryngoscope and saliva would result in unclear images, this study used the gray scale adaptive entropy value to set the threshold in order to establish an elimination system. The proposed system can improve the effect of automatically captured images of glottis and achieve an accuracy rate of 96%. In addition, the glottal area and area segmentation threshold were calculated effectively. The glottis area segmentation was corrected, and the glottal area waveform pattern was drawn automatically to assist in vocal fold diagnosis. When developing the intelligent recognition system for vocal fold disorders, this study analyzed the characteristic values of four vocal fold patterns, namely, normal vocal fold, vocal fold paralysis, vocal fold polyp, and vocal fold cyst. It also used the support vector machine classifier to identify vocal fold disorders and achieved an identification accuracy rate of 98.75%. The results can serve as a very valuable reference for diagnosis. PMID:25313026

  14. COS NUV MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2013-10-01

    The performance of the MAMA microchannel plate can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as Cycle 20 proposal 13128.

  15. Problem Solving through Paper Folding

    ERIC Educational Resources Information Center

    Wares, Arsalan

    2014-01-01

    The purpose of this article is to describe a couple of challenging mathematical problems that involve paper folding. These problem-solving tasks can be used to foster geometric and algebraic thinking among students. The context of paper folding makes some of the abstract mathematical ideas involved relatively concrete. When implemented…

  16. How do chaperonins fold protein?

    PubMed Central

    Motojima, Fumihiro

    2015-01-01

    Protein folding is a biological process that is essential for the proper functioning of proteins in all living organisms. In cells, many proteins require the assistance of molecular chaperones for their folding. Chaperonins belong to a class of molecular chaperones that have been extensively studied. However, the mechanism by which a chaperonin mediates the folding of proteins is still controversial. Denatured proteins are folded in the closed chaperonin cage, leading to the assumption that denatured proteins are completely encapsulated inside the chaperonin cage. In contrast to the assumption, we recently found that denatured protein interacts with hydrophobic residues at the subunit interfaces of the chaperonin, and partially protrude out of the cage. In this review, we will explain our recent results and introduce our model for the mechanism by which chaperonins accelerate protein folding, in view of recent findings.

  17. RECOMBINATION RATE COEFFICIENTS OF Be-LIKE Si

    SciTech Connect

    Orban, I.; Boehm, S.; Schuch, R.; Loch, S. D.

    2010-10-01

    Recombination of Be-like Si{sup 10+} over the 0-43 eV electron-ion energy range is measured at the CRYRING electron cooler. In addition to radiative and dielectronic recombination, the recombination spectrum also shows strong contributions from trielectronic recombination. Below 100 meV, several very strong resonances associated with a spin-flip of the excited electron dominate the spectrum and also dominate the recombination in the photoionized plasma. The resonant plasma rate coefficients corrected for the experimental field ionization are in good agreement with calculated results by Gu and with AUTOSTRUCTURE calculations. All other calculations significantly underestimate the plasma rate coefficients at low temperatures.

  18. CosmoRec: Cosmological Recombination code

    NASA Astrophysics Data System (ADS)

    Chluba, Jens; Thomas, Rajat Mani

    2013-04-01

    CosmoRec solves the recombination problem including recombinations to highly excited states, corrections to the 2s-1s two-photon channel, HI Lyn-feedback, n>2 two-photon profile corrections, and n≥2 Raman-processes. The code can solve the radiative transfer equation of the Lyman-series photon field to obtain the required modifications to the rate equations of the resolved levels, and handles electron scattering, the effect of HeI intercombination transitions, and absorption of helium photons by hydrogen. It also allows accounting for dark matter annihilation and optionally includes detailed helium radiative transfer effects.

  19. 100-fold but not 50-fold dystrophin overexpression aggravates electrocardiographic defects in the mdx model of Duchenne muscular dystrophy

    PubMed Central

    Yue, Yongping; Wasala, Nalinda B; Bostick, Brian; Duan, Dongsheng

    2016-01-01

    Dystrophin gene replacement holds the promise of treating Duchenne muscular dystrophy. Supraphysiological expression is a concern for all gene therapy studies. In the case of Duchenne muscular dystrophy, Chamberlain and colleagues found that 50-fold overexpression did not cause deleterious side effect in skeletal muscle. To determine whether excessive dystrophin expression in the heart is safe, we studied two lines of transgenic mdx mice that selectively expressed a therapeutic minidystrophin gene in the heart at 50-fold and 100-fold of the normal levels. In the line with 50-fold overexpression, minidystrophin showed sarcolemmal localization and electrocardiogram abnormalities were corrected. However, in the line with 100-fold overexpression, we not only detected sarcolemmal minidystrophin expression but also observed accumulation of minidystrophin vesicles in the sarcoplasm. Excessive minidystrophin expression did not correct tachycardia, a characteristic feature of Duchenne muscular dystrophy. Importantly, several electrocardiogram parameters (QT interval, QRS duration and the cardiomyopathy index) became worse than that of mdx mice. Our data suggests that the mouse heart can tolerate 50-fold minidystrophin overexpression, but 100-fold overexpression leads to cardiac toxicity. PMID:27419194

  20. 100-fold but not 50-fold dystrophin overexpression aggravates electrocardiographic defects in the mdx model of Duchenne muscular dystrophy.

    PubMed

    Yue, Yongping; Wasala, Nalinda B; Bostick, Brian; Duan, Dongsheng

    2016-01-01

    Dystrophin gene replacement holds the promise of treating Duchenne muscular dystrophy. Supraphysiological expression is a concern for all gene therapy studies. In the case of Duchenne muscular dystrophy, Chamberlain and colleagues found that 50-fold overexpression did not cause deleterious side effect in skeletal muscle. To determine whether excessive dystrophin expression in the heart is safe, we studied two lines of transgenic mdx mice that selectively expressed a therapeutic minidystrophin gene in the heart at 50-fold and 100-fold of the normal levels. In the line with 50-fold overexpression, minidystrophin showed sarcolemmal localization and electrocardiogram abnormalities were corrected. However, in the line with 100-fold overexpression, we not only detected sarcolemmal minidystrophin expression but also observed accumulation of minidystrophin vesicles in the sarcoplasm. Excessive minidystrophin expression did not correct tachycardia, a characteristic feature of Duchenne muscular dystrophy. Importantly, several electrocardiogram parameters (QT interval, QRS duration and the cardiomyopathy index) became worse than that of mdx mice. Our data suggests that the mouse heart can tolerate 50-fold minidystrophin overexpression, but 100-fold overexpression leads to cardiac toxicity. PMID:27419194

  1. Homologous recombination is required for AAV-mediated gene targeting

    PubMed Central

    Vasileva, Ana; Linden, R. Michael; Jessberger, Rolf

    2006-01-01

    High frequencies of gene targeting can be achieved by infection of mammalian cells with recombinant adeno-associated virus (rAAV) vectors [D. W. Russell and R. K. Hirata (1998) Nature Genet., 18, 325–330; D. W. Russell and R. K. Hirata (2000) J. Virol., 74, 4612–4620; R. Hirata et al. (2002) Nat. Biotechnol., 20, 735–738], but the mechanism of targeting is unclear and random integration often occurs in parallel. We assessed the role of specific DNA repair and recombination pathways in rAAV gene targeting by measuring correction of a mutated enhanced green fluorescent protein (EGFP) gene in cells where homologous recombination (HR) or non-homologous end-joining (NHEJ) had been suppressed by RNAi. EGFP-negative cells were transduced with rAAV vectors carrying a different inactivating deletion in the EGFP, and in parallel with rAAV vectors carrying red fluorescent protein (RFP). Expression of RFP accounted for viral transduction efficiency and long-term random integration. Approximately 0.02% of the infected GFP-negative cells were stably converted to GFP positive cells. Silencing of the essential NHEJ component DNA-PK had no significant effect on the frequency of targeting at any time point examined. Silencing of the SNF2/SWI2 family members RAD54L or RAD54B, which are important for HR, reduced the rate of stable rAAV gene targeting ∼5-fold. Further, partial silencing of the Rad51 paralogue XRCC3 completely abolished stable long-term EGFP expression. These results show that rAAV gene targeting requires the Rad51/Rad54 pathway of HR. PMID:16822856

  2. Fast events in protein folding

    SciTech Connect

    Woodruff, W.; Callender, R.; Causgrove, T.; Dyer, R.; Williams, S.

    1996-04-01

    The primary objective of this work was to develop a molecular understanding of how proteins achieve their native three-dimensional (folded) structures. This requires the identification and characterization of intermediates in the protein folding process on all relevant timescales, from picoseconds to seconds. The short timescale events in protein folding have been entirely unknown. Prior to this work, state-of-the-art experimental approaches were limited to milliseconds or longer, when much of the folding process is already over. The gap between theory and experiment is enormous: current theoretical and computational methods cannot realistically model folding processes with lifetimes longer than one nanosecond. This unique approach to employ laser pump-probe techniques that combine novel methods of laser flash photolysis with time-resolved vibrational spectroscopic probes of protein transients. In this scheme, a short (picosecond to nanosecond) laser photolysis pulse was used to produce an instantaneous pH or temperature jump, thereby initiating a protein folding or unfolding reaction. Structure-specific, time-resolved vibrational probes were then used to identify and characterize protein folding intermediates.

  3. Folding and escape of nascent proteins at ribosomal exit tunnel

    NASA Astrophysics Data System (ADS)

    Bui, Phuong Thuy; Hoang, Trinh Xuan

    2016-03-01

    We investigate the interplay between post-translational folding and escape of two small single-domain proteins at the ribosomal exit tunnel by using Langevin dynamics with coarse-grained models. It is shown that at temperatures lower or near the temperature of the fastest folding, folding proceeds concomitantly with the escape process, resulting in vectorial folding and enhancement of foldability of nascent proteins. The concomitance between the two processes, however, deteriorates as temperature increases. Our folding simulations as well as free energy calculation by using umbrella sampling show that, at low temperatures, folding at the tunnel follows one or two specific pathways without kinetic traps. It is shown that the escape time can be mapped to a one-dimensional diffusion model with two different regimes for temperatures above and below the folding transition temperature. Attractive interactions between amino acids and attractive sites on the tunnel wall lead to a free energy barrier along the escape route of the protein. It is suggested that this barrier slows down the escape process and consequently promotes correct folding of the released nascent protein.

  4. Folding and escape of nascent proteins at ribosomal exit tunnel.

    PubMed

    Bui, Phuong Thuy; Hoang, Trinh Xuan

    2016-03-01

    We investigate the interplay between post-translational folding and escape of two small single-domain proteins at the ribosomal exit tunnel by using Langevin dynamics with coarse-grained models. It is shown that at temperatures lower or near the temperature of the fastest folding, folding proceeds concomitantly with the escape process, resulting in vectorial folding and enhancement of foldability of nascent proteins. The concomitance between the two processes, however, deteriorates as temperature increases. Our folding simulations as well as free energy calculation by using umbrella sampling show that, at low temperatures, folding at the tunnel follows one or two specific pathways without kinetic traps. It is shown that the escape time can be mapped to a one-dimensional diffusion model with two different regimes for temperatures above and below the folding transition temperature. Attractive interactions between amino acids and attractive sites on the tunnel wall lead to a free energy barrier along the escape route of the protein. It is suggested that this barrier slows down the escape process and consequently promotes correct folding of the released nascent protein. PMID:26957181

  5. The two dimensional fold test in paleomagnetism using ipython notebook

    NASA Astrophysics Data System (ADS)

    Setiabudidaya, Dedi; Piper, John D. A.

    2016-01-01

    One aspect of paleomagnetic analysis prone to controversy is the result of the fold test used to evaluate the age of a magnetisation component relative to the age of a structural event. Initially, the fold test was conducted by comparing the Fisherian precision parameter (k) to results from different limbs of a fold structure before and after tilt adjustment. To accommodate synfolding magnetisation, the tilt correction can be performed in stepwise fashion to both limbs simultaneously, here called one dimensional (1D) fold test. The two dimensional (2D) fold test described in this paper is carried out by applying stepwise tilt adjustment to each limb of the fold separately. The rationale for this is that tilts observed on contrasting limbs of deformed structure may not be synchronous or even belong to the same episode of deformation. A program for the procedure is presented here which generates two dimensional values of the k-parameter visually presented in contoured form. The use of ipython notebook enables this 2D fold test to be performed interactively and yield a more precise evaluation than the primitive 1D fold test.

  6. Recognizing the fold of a protein structure.

    PubMed

    Harrison, Andrew; Pearl, Frances; Sillitoe, Ian; Slidel, Tim; Mott, Richard; Thornton, Janet; Orengo, Christine

    2003-09-22

    This paper reports a graph-theoretic program, GRATH, that rapidly, and accurately, matches a novel structure against a library of domain structures to find the most similar ones. GRATH generates distributions of scores by comparing the novel domain against the different types of folds that have been classified previously in the CATH database of structural domains. GRATH uses a measure of similarity that details the geometric information, number of secondary structures and number of residues within secondary structures, that any two protein structures share. Although GRATH builds on well established approaches for secondary structure comparison, a novel scoring scheme has been introduced to allow ranking of any matches identified by the algorithm. More importantly, we have benchmarked the algorithm using a large dataset of 1702 non-redundant structures from the CATH database which have already been classified into fold groups, with manual validation. This has facilitated introduction of further constraints, optimization of parameters and identification of reliable thresholds for fold identification. Following these benchmarking trials, the correct fold can be identified with the top score with a frequency of 90%. It is identified within the ten most likely assignments with a frequency of 98%. GRATH has been implemented to use via a server (http://www.biochem.ucl.ac.uk/cgi-bin/cath/Grath.pl). GRATH's speed and accuracy means that it can be used as a reliable front-end filter for the more accurate, but computationally expensive, residue based structure comparison algorithm SSAP, currently used to classify domain structures in the CATH database. With an increasing number of structures being solved by the structural genomics initiatives, the GRATH server also provides an essential resource for determining whether newly determined structures are related to any known structures from which functional properties may be inferred. PMID:14512345

  7. Functionally Relevant Specific Packing Can Determine Protein Folding Routes.

    PubMed

    Yadahalli, Shilpa; Gosavi, Shachi

    2016-01-29

    Functional residues can modulate the folding mechanisms of proteins. In some proteins, mutations to such residues can radically change the primary folding route. Is it possible then to learn more about the functional regions of a protein by investigating just its choice of folding route? The folding and the function of the protein Escherichia coli ribonuclease H (ecoRNase-H) have been extensively studied and its folding route is known to near-residue resolution. Here, we computationally study the folding of ecoRNase-H using molecular dynamics simulations of structure-based models of increasing complexity. The differences between a model that correctly predicts the experimentally determined folding route and a simpler model that does not can be attributed to a set of six aromatic residues clustered together in a region of the protein called CORE. This clustering, which we term "specific" packing, drives CORE to fold early and determines the folding route. Both the residues involved in specific packing and their packing are largely conserved across E. coli-like RNase-Hs from diverse species. Residue conservation is usually implicated in function. Here, the identified residues either are known to bind substrate in ecoRNase-H or pack against the substrate in the homologous human RNase-H where a substrate-bound crystal structure exists. Thus, the folding mechanism of ecoRNase-H is a byproduct of functional demands upon its sequence. Using our observations on specific packing, we suggest mutations to an engineered HIV RNase-H to make its function better. Our results show that understanding folding route choice in proteins can provide unexpected insights into their function. PMID:26724535

  8. Fog spontaneously folds mosquito wings

    NASA Astrophysics Data System (ADS)

    Dickerson, Andrew K.; Liu, Xing; Zhu, Ting; Hu, David L.

    2015-02-01

    The flexibility of insect wings confers aerodynamic benefits, but can also present a hazard if exposed to fog or dew. Fog can cause water to accumulate on wings, bending them into tight taco shapes and rendering them useless for flight. In this combined experimental and theoretical study, we use high-speed video to film the spontaneous folding of isolated mosquito wings due to the evaporation of a water drop. We predict shapes of the deformed wing using two-dimensional elastica theory, considering both surface tension and Laplace pressure. We also recommend fold-resistant geometries for the wings of flapping micro-aerial vehicles. Our work reveals the mechanism of insect wing folding and provides a framework for further study of capillarity-driven folding in both natural and biomimetic systems at small scales.

  9. Protein folding by motion planning

    NASA Astrophysics Data System (ADS)

    Thomas, Shawna; Song, Guang; Amato, Nancy M.

    2005-12-01

    We investigate a novel approach for studying protein folding that has evolved from robotics motion planning techniques called probabilistic roadmap methods (PRMs). Our focus is to study issues related to the folding process, such as the formation of secondary and tertiary structures, assuming we know the native fold. A feature of our PRM-based framework is that the large sets of folding pathways in the roadmaps it produces, in just a few hours on a desktop PC, provide global information about the protein's energy landscape. This is an advantage over other simulation methods such as molecular dynamics or Monte Carlo methods which require more computation and produce only a single trajectory in each run. In our initial studies, we obtained encouraging results for several small proteins. In this paper, we investigate more sophisticated techniques for analyzing the folding pathways in our roadmaps. In addition to more formally revalidating our previous results, we present a case study showing that our technique captures known folding differences between the structurally similar proteins G and L. This research was supported in part by NSF CAREER Award CCR-9624315, NSF Grants ACI-9872126, EIA-9975018, EIA-0103742, EIA-9805823, ACR-0113971, CCR-0113974, EIA-9810937, EIA-0079874 and the Texas Higher Education Coordinating Board grant ATP-000512-0261-2001. ST was supported in part by an NSF Graduate Research Fellowship. GS was supported in part by an IBM PhD Fellowship.

  10. Cortical folding and the potential for prognostic neuroimaging in schizophrenia

    PubMed Central

    Guo, Shuixia; Iwabuchi, Sarina; Balain, Vijender; Feng, Jianfeng; Liddle, Peter; Palaniyappan, Lena

    2015-01-01

    In 41 patients with schizophrenia, we used neuroanatomical information derived from structural imaging to identify patients with more severe illness, characterised by high symptom burden, low processing speed, high degree of illness persistence and lower social and occupational functional capacity. Cortical folding, but not thickness or volume, showed a high discriminatory ability in correctly identifying patients with more severe illness. PMID:26206860

  11. Cortical folding and the potential for prognostic neuroimaging in schizophrenia.

    PubMed

    Guo, Shuixia; Iwabuchi, Sarina; Balain, Vijender; Feng, Jianfeng; Liddle, Peter; Palaniyappan, Lena

    2015-11-01

    In 41 patients with schizophrenia, we used neuroanatomical information derived from structural imaging to identify patients with more severe illness, characterised by high symptom burden, low processing speed, high degree of illness persistence and lower social and occupational functional capacity. Cortical folding, but not thickness or volume, showed a high discriminatory ability in correctly identifying patients with more severe illness. PMID:26206860

  12. Production of recombinant albumin by a herd of cloned transgenic cattle.

    PubMed

    Echelard, Yann; Williams, Jennifer L; Destrempes, Margaret M; Koster, Julie A; Overton, Susan A; Pollock, Daniel P; Rapiejko, Karen T; Behboodi, Esmail; Masiello, Nicholas C; Gavin, William G; Pommer, Jerry; Van Patten, Scott M; Faber, David C; Cibelli, Jose B; Meade, Harry M

    2009-06-01

    Purified plasma derived human albumin has been available as a therapeutic product since World War II. However, cost effective recombinant production of albumin has been challenging due to the amount needed and the complex folding pattern of the protein. In an effort to provide an abundant source of recombinant albumin, a herd of transgenic cows expressing high levels of rhA in their milk was generated. Expression cassettes efficiently targeting the secretion of human albumin to the lactating mammary gland were obtained and tested in transgenic mice. A high expressing transgene was transfected in primary bovine cell lines to produce karyoplasts for use in a somatic cell nuclear transfer program. Founder transgenic cows were produced from four independent cell lines. Expression levels varying from 1-2 g/l to more than 40 g/l of correctly folded albumin were observed. The animals expressing the highest levels of rhA exhibited shortened lactation whereas cows yielding 1-2 g/l had normal milk production. This herd of transgenic cattle is an easily scalable and well characterized source of rhA for biomedical uses. PMID:19031005

  13. Recombinant protein production technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  14. Nonlinear vs. linear biasing in Trp-cage folding simulations

    SciTech Connect

    Spiwok, Vojtěch Oborský, Pavel; Králová, Blanka; Pazúriková, Jana

    2015-03-21

    Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionality reduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200 ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energy minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In terms of sampling efficiency, both methods are comparable.

  15. Nonlinear vs. linear biasing in Trp-cage folding simulations

    NASA Astrophysics Data System (ADS)

    Spiwok, Vojtěch; Oborský, Pavel; Pazúriková, Jana; Křenek, Aleš; Králová, Blanka

    2015-03-01

    Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionality reduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200 ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energy minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In terms of sampling efficiency, both methods are comparable.

  16. Therapeutic Recombinant Monoclonal Antibodies

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  17. Recombineering homologous recombination constructs in Drosophila.

    PubMed

    Carreira-Rosario, Arnaldo; Scoggin, Shane; Shalaby, Nevine A; Williams, Nathan David; Hiesinger, P Robin; Buszczak, Michael

    2013-01-01

    The continued development of techniques for fast, large-scale manipulation of endogenous gene loci will broaden the use of Drosophila melanogaster as a genetic model organism for human-disease related research. Recent years have seen technical advancements like homologous recombination and recombineering. However, generating unequivocal null mutations or tagging endogenous proteins remains a substantial effort for most genes. Here, we describe and demonstrate techniques for using recombineering-based cloning methods to generate vectors that can be used to target and manipulate endogenous loci in vivo. Specifically, we have established a combination of three technologies: (1) BAC transgenesis/recombineering, (2) ends-out homologous recombination and (3) Gateway technology to provide a robust, efficient and flexible method for manipulating endogenous genomic loci. In this protocol, we provide step-by-step details about how to (1) design individual vectors, (2) how to clone large fragments of genomic DNA into the homologous recombination vector using gap repair, and (3) how to replace or tag genes of interest within these vectors using a second round of recombineering. Finally, we will also provide a protocol for how to mobilize these cassettes in vivo to generate a knockout, or a tagged gene via knock-in. These methods can easily be adopted for multiple targets in parallel and provide a means for manipulating the Drosophila genome in a timely and efficient manner. PMID:23893070

  18. Folding of a finite length power law layer

    NASA Astrophysics Data System (ADS)

    Schmid, Daniel W.; Podladchikov, Yuri Y.; Marques, Fernando O.

    2004-03-01

    Folding of an isolated finite length power law layer embedded in a Newtonian viscous matrix is investigated and compared to conventional folding experiments where the layer is of infinite length or in direct contact with lateral boundaries. The approach employed is a combination of the complex potential method for the basic state and the thin plate approximation for the linear stability analysis and is verified by finite element models. The resulting theory reveals that the aspect ratio of a layer has a first-order influence on the development of folds. The aspect ratio competes with the effective viscosity contrast for dominant influence on the folding process. If the aspect ratio is substantially larger than the effective viscosity contrast, the conventional theories are applicable. In other situations, where the aspect ratio is smaller than the effective viscosity contrast, substantial corrections must be taken into account, which lead to a new folding mode that is mainly characterized by decreasing growth rates with increasing effective viscosity contrast (relative to the far-field shortening rate). This new folding mode helps explain the absence of large wavelength to thickness ratio folds in nature, which may be due to the limitations of aspect ratios rather than large effective viscosity contrasts.

  19. Rapid compaction during RNA folding

    NASA Astrophysics Data System (ADS)

    Russell, Rick; Millett, Ian S.; Tate, Mark W.; Kwok, Lisa W.; Nakatani, Bradley; Gruner, Sol M.; Mochrie, Simon G. J.; Pande, Vijay; Doniach, Sebastian; Herschlag, Daniel; Pollack, Lois

    2002-04-01

    We have used small angle x-ray scattering and computer simulations with a coarse-grained model to provide a time-resolved picture of the global folding process of the Tetrahymena group I RNA over a time window of more than five orders of magnitude. A substantial phase of compaction is observed on the low millisecond timescale, and the overall compaction and global shape changes are largely complete within one second, earlier than any known tertiary contacts are formed. This finding indicates that the RNA forms a nonspecifically collapsed intermediate and then searches for its tertiary contacts within a highly restricted subset of conformational space. The collapsed intermediate early in folding of this RNA is grossly akin to molten globule intermediates in protein folding.

  20. Chaperone-mediated native folding of a β-scorpion toxin in the periplasm of Escherichia coli☆

    PubMed Central

    O'Reilly, A.O.; Cole, A.R.; Lopes, J.L.S.; Lampert, A.; Wallace, B.A.

    2014-01-01

    Background Animal neurotoxin peptides are valuable probes for investigating ion channel structure/function relationships and represent lead compounds for novel therapeutics and insecticides. However, misfolding and aggregation are common outcomes when toxins containing multiple disulfides are expressed in bacteria. Methods The β-scorpion peptide toxin Bj-xtrIT from Hottentotta judaica and four chaperone enzymes (DsbA, DsbC, SurA and FkpA) were co-secreted into the oxidizing environment of the Escherichia coli periplasm. Expressed Bj-xtrIT was purified and analyzed by HPLC and FPLC chromatography. Its thermostability was assessed using synchrotron radiation circular dichroism spectroscopy and its crystal structure was determined. Results Western blot analysis showed that robust expression was only achieved when cells co-expressed the chaperones. The purified samples were homogenous and monodisperse and the protein was thermostable. The crystal structure of the recombinant toxin confirmed that it adopts the native disulfide connectivity and fold. Conclusions The chaperones enabled correct folding of the four-disulfide-bridged Bj-xtrIT toxin. There was no apparent sub-population of misfolded Bj-xtrIT, which attests to the effectiveness of this expression method. General significance We report the first example of a disulfide-linked scorpion toxin natively folded during bacterial expression. This method eliminates downstream processing steps such as oxidative refolding or cleavage of a fusion-carrier and therefore enables efficient production of insecticidal Bj-xtrIT. Periplasmic chaperone activity may produce native folding of other extensively disulfide-reticulated proteins including animal neurotoxins. This work is therefore relevant to venomics and studies of a wide range of channels and receptors. PMID:23999087

  1. Photoionization and Recombination

    NASA Technical Reports Server (NTRS)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  2. The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss.

    PubMed Central

    Chambers, S R; Hunter, N; Louis, E J; Borts, R H

    1996-01-01

    Efficient genetic recombination requires near-perfect homology between participating molecules. Sequence divergence reduces the frequency of recombination, a process that is dependent on the activity of the mismatch repair system. The effects of chromosomal divergence in diploids of Saccharomyces cerevisiae in which one copy of chromosome III is derived from a closely related species, Saccharomyces paradoxus, have been examined. Meiotic recombination between the diverged chromosomes is decreased by 25-fold. Spore viability is reduced with an observable increase in the number of tetrads with only two or three viable spores. Asci with only two viable spores are disomic for chromosome III, consistent with meiosis I nondisjunction of the homeologs. Asci with three viable spores are highly enriched for recombinants relative to tetrads with four viable spores. In 96% of the class with three viable spores, only one spore possesses a recombinant chromosome III, suggesting that the recombination process itself contributes to meiotic death. This phenomenon is dependent on the activities of the mismatch repair genes PMS1 and MSH2. A model of mismatch-stimulated chromosome loss is proposed to account for this observation. As expected, crossing over is increased in pms1 and msh2 mutants. Furthermore, genetic exchange in pms1 msh2 double mutants is affected to a greater extent than in either mutant alone, suggesting that the two proteins act independently to inhibit homeologous recombination. All mismatch repair-deficient strains exhibited reductions in the rate of chromosome III nondisjunction. PMID:8887641

  3. Polymer principles and protein folding.

    PubMed Central

    Dill, K. A.

    1999-01-01

    This paper surveys the emerging role of statistical mechanics and polymer theory in protein folding. In the polymer perspective, the folding code is more a solvation code than a code of local phipsi propensities. The polymer perspective resolves two classic puzzles: (1) the Blind Watchmaker's Paradox that biological proteins could not have originated from random sequences, and (2) Levinthal's Paradox that the folded state of a protein cannot be found by random search. Both paradoxes are traditionally framed in terms of random unguided searches through vast spaces, and vastness is equated with impossibility. But both processes are partly guided. The searches are more akin to balls rolling down funnels than balls rolling aimlessly on flat surfaces. In both cases, the vastness of the search is largely irrelevant to the search time and success. These ideas are captured by energy and fitness landscapes. Energy landscapes give a language for bridging between microscopics and macroscopics, for relating folding kinetics to equilibrium fluctuations, and for developing new and faster computational search strategies. PMID:10386867

  4. Osmolyte solutions and protein folding

    PubMed Central

    Hu, Char Y; Roesgen, Joerg

    2009-01-01

    In this brief review we discuss the evolution of recent thought regarding the role and mechanism of osmolytes with respect to protein stability. Osmolytes are naturally occurring intracellular compounds that change the protein folding landscape. Contributions from experiments are considered in the context of current theory and simulation results. PMID:19960095

  5. Predicting RNA pseudoknot folding thermodynamics.

    PubMed

    Cao, Song; Chen, Shi-Jie

    2006-01-01

    Based on the experimentally determined atomic coordinates for RNA helices and the self-avoiding walks of the P (phosphate) and C4 (carbon) atoms in the diamond lattice for the polynucleotide loop conformations, we derive a set of conformational entropy parameters for RNA pseudoknots. Based on the entropy parameters, we develop a folding thermodynamics model that enables us to compute the sequence-specific RNA pseudoknot folding free energy landscape and thermodynamics. The model is validated through extensive experimental tests both for the native structures and for the folding thermodynamics. The model predicts strong sequence-dependent helix-loop competitions in the pseudoknot stability and the resultant conformational switches between different hairpin and pseudoknot structures. For instance, for the pseudoknot domain of human telomerase RNA, a native-like and a misfolded hairpin intermediates are found to coexist on the (equilibrium) folding pathways, and the interplay between the stabilities of these intermediates causes the conformational switch that may underlie a human telomerase disease. PMID:16709732

  6. Prolonged activity of a recombinant factor VIII-Fc fusion protein in hemophilia A mice and dogs.

    PubMed

    Dumont, Jennifer A; Liu, Tongyao; Low, Susan C; Zhang, Xin; Kamphaus, George; Sakorafas, Paul; Fraley, Cara; Drager, Douglas; Reidy, Thomas; McCue, Justin; Franck, Helen W G; Merricks, Elizabeth P; Nichols, Timothy C; Bitonti, Alan J; Pierce, Glenn F; Jiang, Haiyan

    2012-03-29

    Despite proven benefits, prophylactic treatment for hemophilia A is hampered by the short half-life of factor VIII. A recombinant factor VIII-Fc fusion protein (rFVIIIFc) was constructed to determine the potential for reduced frequency of dosing. rFVIIIFc has an ∼ 2-fold longer half-life than rFVIII in hemophilia A (HemA) mice and dogs. The extension of rFVIIIFc half-life requires interaction of Fc with the neonatal Fc receptor (FcRn). In FcRn knockout mice, the extension of rFVIIIFc half-life is abrogated, and is restored in human FcRn transgenic mice. The Fc fusion has no impact on FVIII-specific activity. rFVIIIFc has comparable acute efficacy as rFVIII in treating tail clip injury in HemA mice, and fully corrects whole blood clotting time (WBCT) in HemA dogs immediately after dosing. Furthermore, consistent with prolonged half-life, rFVIIIFc shows 2-fold longer prophylactic efficacy in protecting HemA mice from tail vein transection bleeding induced 24-48 hours after dosing. In HemA dogs, rFVIIIFc also sustains partial correction of WBCT 1.5- to 2-fold longer than rFVIII. rFVIIIFc was well tolerated in both species. Thus, the rescue of FVIII by Fc fusion to provide prolonged protection presents a novel pathway for FVIII catabolism, and warrants further investigation. PMID:22246033

  7. Structure-Guided Recombination Creates an Artificial Family of Cytochromes P450

    PubMed Central

    Otey, Christopher R; Landwehr, Marco; Endelman, Jeffrey B; Hiraga, Kaori; Bloom, Jesse D

    2006-01-01

    Creating artificial protein families affords new opportunities to explore the determinants of structure and biological function free from many of the constraints of natural selection. We have created an artificial family comprising ˜3,000 P450 heme proteins that correctly fold and incorporate a heme cofactor by recombining three cytochromes P450 at seven crossover locations chosen to minimize structural disruption. Members of this protein family differ from any known sequence at an average of 72 and by as many as 109 amino acids. Most (>73%) of the properly folded chimeric P450 heme proteins are catalytically active peroxygenases; some are more thermostable than the parent proteins. A multiple sequence alignment of 955 chimeras, including both folded and not, is a valuable resource for sequence-structure-function studies. Logistic regression analysis of the multiple sequence alignment identifies key structural contributions to cytochrome P450 heme incorporation and peroxygenase activity and suggests possible structural differences between parents CYP102A1 and CYP102A2. PMID:16594730

  8. Homogeneous Crystal Nucleation: To Fold or Not to Fold?

    NASA Astrophysics Data System (ADS)

    Crist, Buckley

    2007-03-01

    Recent simulations and related theories have addressed interesting aspects of homogeneous nucleation of polymer crystals in very dilute solutions; embryos and very small crystals are composed of folded chains. At the same time there has been renewed activity with experimental studies of homogeneous nucleation in molten polymers, either with dispersed droplets or with microphase-separated block copolymers. Compared to dilute solutions, melts offer enhanced possibilities for nucleation by fringed micelle structures with stems from different chains. Basal or ``end'' surface energy is estimated for unfolded and folded chain nuclei and employed with classical nucleation theory to distinguish between nucleation rates in the two cases. The effect of chain length on the nucleation barrier offers a way to test model predictions.

  9. Stable Expression of Lentiviral Antigens by Quality-Controlled Recombinant Mycobacterium bovis BCG Vectors

    PubMed Central

    Hart, Bryan E.; Asrican, Rose; Lim, So-Yon; Sixsmith, Jaimie D.; Lukose, Regy; Souther, Sommer J. R.; Rayasam, Swati D. G.; Saelens, Joseph W.; Chen, Ching-ju; Seay, Sarah A.; Berney-Meyer, Linda; Magtanong, Leslie; Vermeul, Kim; Pajanirassa, Priyadharshini; Jimenez, Amanda E.; Ng, Tony W.; Tobin, David M.; Porcelli, Steven A.; Larsen, Michelle H.; Schmitz, Joern E.; Haynes, Barton F.; Jacobs, William R.; Lee, Sunhee

    2015-01-01

    The well-established safety profile of the tuberculosis vaccine strain, Mycobacterium bovis bacille Calmette-Guérin (BCG), makes it an attractive vehicle for heterologous expression of antigens from clinically relevant pathogens. However, successful generation of recombinant BCG strains possessing consistent insert expression has encountered challenges in stability. Here, we describe a method for the development of large recombinant BCG accession lots which stably express the lentiviral antigens, human immunodeficiency virus (HIV) gp120 and simian immunodeficiency virus (SIV) Gag, using selectable leucine auxotrophic complementation. Successful establishment of vaccine stability stems from stringent quality control criteria which not only screen for highly stable complemented BCG ΔleuCD transformants but also thoroughly characterize postproduction quality. These parameters include consistent production of correctly sized antigen, retention of sequence-pure plasmid DNA, freeze-thaw recovery, enumeration of CFU, and assessment of cellular aggregates. Importantly, these quality assurance procedures were indicative of overall vaccine stability, were predictive for successful antigen expression in subsequent passaging both in vitro and in vivo, and correlated with induction of immune responses in murine models. This study has yielded a quality-controlled BCG ΔleuCD vaccine expressing HIV gp120 that retained stable full-length expression after 1024-fold amplification in vitro and following 60 days of growth in mice. A second vaccine lot expressed full-length SIV Gag for >1068-fold amplification in vitro and induced potent antigen-specific T cell populations in vaccinated mice. Production of large, well-defined recombinant BCG ΔleuCD lots can allow confidence that vaccine materials for immunogenicity and protection studies are not negatively affected by instability or differences between freshly grown production batches. PMID:25924766

  10. Stable Expression of Lentiviral Antigens by Quality-Controlled Recombinant Mycobacterium bovis BCG Vectors.

    PubMed

    Hart, Bryan E; Asrican, Rose; Lim, So-Yon; Sixsmith, Jaimie D; Lukose, Regy; Souther, Sommer J R; Rayasam, Swati D G; Saelens, Joseph W; Chen, Ching-Ju; Seay, Sarah A; Berney-Meyer, Linda; Magtanong, Leslie; Vermeul, Kim; Pajanirassa, Priyadharshini; Jimenez, Amanda E; Ng, Tony W; Tobin, David M; Porcelli, Steven A; Larsen, Michelle H; Schmitz, Joern E; Haynes, Barton F; Jacobs, William R; Lee, Sunhee; Frothingham, Richard

    2015-07-01

    The well-established safety profile of the tuberculosis vaccine strain, Mycobacterium bovis bacille Calmette-Guérin (BCG), makes it an attractive vehicle for heterologous expression of antigens from clinically relevant pathogens. However, successful generation of recombinant BCG strains possessing consistent insert expression has encountered challenges in stability. Here, we describe a method for the development of large recombinant BCG accession lots which stably express the lentiviral antigens, human immunodeficiency virus (HIV) gp120 and simian immunodeficiency virus (SIV) Gag, using selectable leucine auxotrophic complementation. Successful establishment of vaccine stability stems from stringent quality control criteria which not only screen for highly stable complemented BCG ΔleuCD transformants but also thoroughly characterize postproduction quality. These parameters include consistent production of correctly sized antigen, retention of sequence-pure plasmid DNA, freeze-thaw recovery, enumeration of CFU, and assessment of cellular aggregates. Importantly, these quality assurance procedures were indicative of overall vaccine stability, were predictive for successful antigen expression in subsequent passaging both in vitro and in vivo, and correlated with induction of immune responses in murine models. This study has yielded a quality-controlled BCG ΔleuCD vaccine expressing HIV gp120 that retained stable full-length expression after 10(24)-fold amplification in vitro and following 60 days of growth in mice. A second vaccine lot expressed full-length SIV Gag for >10(68)-fold amplification in vitro and induced potent antigen-specific T cell populations in vaccinated mice. Production of large, well-defined recombinant BCG ΔleuCD lots can allow confidence that vaccine materials for immunogenicity and protection studies are not negatively affected by instability or differences between freshly grown production batches. PMID:25924766

  11. Bovine Pancreatic Trypsin Inhibitor-Trypsin Complex as a Detection System for Recombinant Proteins

    NASA Astrophysics Data System (ADS)

    Borjigin, Jimo; Nathans, Jeremy

    1993-01-01

    Bovine pancreatic trypsin inhibitor (BPTI) binds to trypsin and anhydrotrypsin (an enzymatically inactive derivative of trypsin) with affinities of 6 x 10-14 and 1.1 x 10-13 M, respectively. We have taken advantage of the high affinity and specificity of this binding reaction to develop a protein tagging system in which biotinylated trypsin or biotinylated anhydrotrypsin is used as the reagent to detect recombinant fusion proteins into which BPTI has been inserted. Two proteins, opsin and growth hormone, were used as targets for insertional mutagenesis with BPTI. In each case, both domains of the fusion protein appear to be correctly folded. The fusion proteins can be specifically and efficiently detected by biotinylated trypsin or biotinylated anhydrotrypsin, as demonstrated by staining of transfected cells, protein blotting, affinity purification, and a mobility shift assay in SDS/polyacrylamide gels.

  12. Construction of recombinant HEK293 cell lines for the expression of the neurotensin receptor NTSR1.

    PubMed

    Xiao, Su; Shiloach, Joseph; Grisshammer, Reinhard

    2015-01-01

    G protein-coupled receptors (GPCRs) are associated with a wide array of diseases and are targets of most of the medicines sold worldwide. Despite their clinical importance, only 25 unique GPCR structures have been determined as of April 2014. The first step for structural studies is to establish the expression of correctly folded, functional receptors in recombinant host cells at quantities to allow subsequent purification and crystallization trials. Here we describe the T-REx™-inducible expression system to construct and select a stable HEK293 cell line for high-level expression of functional neurotensin receptor type I (NTSR1). We also present the protocols used for the adaptation of the cells into suspension culture, as well as the optimization of the induction parameters for NTSR1 expression, which led to 1 mg of purified NTSR1 per liter suspension culture in bioreactors. PMID:25563176

  13. Investigation of the parallel tempering method for protein folding

    NASA Astrophysics Data System (ADS)

    Schug, Alexander; Herges, Thomas; Verma, Abhinav; Wenzel, Wolfgang

    2005-05-01

    We investigate the suitability and efficiency of an adapted version of the parallel tempering method for all-atom protein folding. We have recently developed an all-atom free energy force field (PFF01) for protein structure prediction with stochastic optimization methods. Here we report reproducible folding of the 20-amino-acid trp-cage protein and the conserved 40-amino-acid three-helix HIV accessory protein with an adapted parallel tempering method. We find that the native state, for both proteins, is correctly predicted to 2 Å backbone root mean square deviation and analyse the efficiency of the simulation approach.

  14. Co- and Post-Translational Protein Folding in the ER.

    PubMed

    Ellgaard, Lars; McCaul, Nicholas; Chatsisvili, Anna; Braakman, Ineke

    2016-06-01

    The biophysical rules that govern folding of small, single-domain proteins in dilute solutions are now quite well understood. The mechanisms underlying co-translational folding of multidomain and membrane-spanning proteins in complex cellular environments are often less clear. The endoplasmic reticulum (ER) produces a plethora of membrane and secretory proteins, which must fold and assemble correctly before ER exit - if these processes fail, misfolded species accumulate in the ER or are degraded. The ER differs from other cellular organelles in terms of the physicochemical environment and the variety of ER-specific protein modifications. Here, we review chaperone-assisted co- and post-translational folding and assembly in the ER and underline the influence of protein modifications on these processes. We emphasize how method development has helped advance the field by allowing researchers to monitor the progression of folding as it occurs inside living cells, while at the same time probing the intricate relationship between protein modifications during folding. PMID:26947578

  15. Folding and Biogenesis of Mitochondrial Small Tim Proteins

    PubMed Central

    Ceh-Pavia, Efrain; Spiller, Michael P.; Lu, Hui

    2013-01-01

    Correct and timely folding is critical to the function of all proteins. The importance of this is illustrated in the biogenesis of the mitochondrial intermembrane space (IMS) “small Tim” proteins. Biogenesis of the small Tim proteins is regulated by dedicated systems or pathways, beginning with synthesis in the cytosol and ending with assembly of individually folded proteins into functional complexes in the mitochondrial IMS. The process is mostly centered on regulating the redox states of the conserved cysteine residues: oxidative folding is crucial for protein function in the IMS, but oxidized (disulfide bonded) proteins cannot be imported into mitochondria. How the redox-sensitive small Tim precursor proteins are maintained in a reduced, import-competent form in the cytosol is not well understood. Recent studies suggest that zinc and the cytosolic thioredoxin system play a role in the biogenesis of these proteins. In the IMS, the mitochondrial import and assembly (MIA) pathway catalyzes both import into the IMS and oxidative folding of the small Tim proteins. Finally, assembly of the small Tim complexes is a multistep process driven by electrostatic and hydrophobic interactions; however, the chaperone function of the complex might require destabilization of these interactions to accommodate the substrate. Here, we review how folding of the small Tim proteins is regulated during their biogenesis, from maintenance of the unfolded precursors in the cytosol, to their import, oxidative folding, complex assembly and function in the IMS. PMID:23945562

  16. Recombination of cluster ions

    NASA Technical Reports Server (NTRS)

    Johnsen, Rainer

    1993-01-01

    Some of our recent work on molecular band emissions from recombination of molecular dimer ions (N4(+) and CO(+) CO) is discussed. Much of the experimental work was done by Y. S. Cao; the results on N4(+) recombination have been published. A brief progress report is given on our ongoing measurements of neutral products of recombination using the flowing-afterglow Langmuir-probe technique in conjunction with laser-induced fluorescence.

  17. Plastic folding of buckling structures.

    PubMed

    Colin, Jérôme; Coupeau, Christophe; Grilhé, Jean

    2007-07-27

    Atomic force microscopy observations of the free surface of gold thin films deposited on silicon substrates have evidenced the buckling of the films and the formation of blister patterns undergoing plastic folding. The classical elastic buckling and plastic deformation of the films are analyzed in the framework of the Föppl-Von Kármán theory of thin plates introducing the notion of low-angle tilt boundaries and dislocation distributions to describe this folding effect. It is demonstrated that, in agreement with elementary plasticity of bent crystals, the presence of such tilt-boundaries results in the formation of buckling patterns of lower energy than "classical" elastic blisters. PMID:17678376

  18. Quantitative Morphology of Epithelial Folds.

    PubMed

    Štorgel, Nick; Krajnc, Matej; Mrak, Polona; Štrus, Jasna; Ziherl, Primož

    2016-01-01

    The shape of spatially modulated epithelial morphologies such as villi and crypts is usually associated with the epithelium-stroma area mismatch leading to buckling. We propose an alternative mechanical model based on intraepithelial stresses generated by differential tensions of apical, lateral, and basal sides of cells as well as on the elasticity of the basement membrane. We use it to theoretically study longitudinal folds in simple epithelia and we identify four types of corrugated morphologies: compact, invaginated, evaginated, and wavy. The obtained tissue contours and thickness profiles are compared to epithelial folds observed in invertebrates and vertebrates, and for most samples, the agreement is within the estimated experimental error. Our model establishes the groove-crest modulation of tissue thickness as a morphometric parameter that can, together with the curvature profile, be used to estimate the relative differential apicobasal tension in the epithelium. PMID:26745429

  19. Folding and assembly of proteorhodopsin.

    PubMed

    Klyszejko, Adriana L; Shastri, Sarika; Mari, Stefania A; Grubmüller, Helmut; Muller, Daniel J; Glaubitz, Clemens

    2008-02-01

    Proteorhodopsins (PRs), the recently discovered light-driven proton pumps, play a major role in supplying energy for microbial organisms of oceans. In contrast to PR, rhodopsins found in Archaea and Eukarya are structurally well characterized. Using single-molecule microscopy and spectroscopy, we observed the oligomeric assembly of native PR molecules and detected their folding in the membrane. PR showed unfolding patterns identical with those of bacteriorhodopsin and halorhodopsin, indicating that PR folds similarly to archaeal rhodopsins. Surprisingly, PR predominantly assembles into hexameric oligomers, with a smaller fraction assembling into pentamers. Within these oligomers, PR arranged into radial assemblies. We suggest that this structural assembly of PR may have functional implications. PMID:18155728

  20. Recombination in electron coolers

    NASA Astrophysics Data System (ADS)

    Wolf, A.; Gwinner, G.; Linkemann, J.; Saghiri, A. A.; Schmitt, M.; Schwalm, D.; Grieser, M.; Beutelspacher, M.; Bartsch, T.; Brandau, C.; Hoffknecht, A.; Müller, A.; Schippers, S.; Uwira, O.; Savin, D. W.

    2000-02-01

    An introduction to electron-ion recombination processes is given and recent measurements are described as examples, focusing on low collision energies. Discussed in particular are fine-structure-mediated dielectronic recombination of fluorine-like ions, the moderate recombination enhancement by factors of typically 1.5-4 found for most ion species at relative electron-ion energies below about 10 meV, and the much larger enhancement occurring for specific highly charged ions of complex electronic structure, apparently caused by low-energy dielectronic recombination resonances. Recent experiments revealing dielectronic resonances with very large natural width are also described.

  1. Evolutionary Strategies for Protein Folding

    NASA Astrophysics Data System (ADS)

    Murthy Gopal, Srinivasa; Wenzel, Wolfgang

    2006-03-01

    The free energy approach for predicting the protein tertiary structure describes the native state of a protein as the global minimum of an appropriate free-energy forcefield. The low-energy region of the free-energy landscape of a protein is extremely rugged. Efficient optimization methods must therefore speed up the search for the global optimum by avoiding high energy transition states, adapt large scale moves or accept unphysical intermediates. Here we investigate an evolutionary strategies(ES) for optimizing a protein conformation in our all-atom free-energy force field([1],[2]). A set of random conformations is evolved using an ES to get a diverse population containing low energy structure. The ES is shown to balance energy improvement and yet maintain diversity in structures. The ES is implemented as a master-client model for distributed computing. Starting from random structures and by using this optimization technique, we were able to fold a 20 amino-acid helical protein and 16 amino-acid beta hairpin[3]. We compare ES to basin hopping method. [1]T. Herges and W. Wenzel,Biophys.J. 87,3100(2004) [2] A. Verma and W. Wenzel Stabilization and folding of beta-sheet and alpha-helical proteins in an all-atom free energy model(submitted)(2005) [3] S. M. Gopal and W. Wenzel Evolutionary Strategies for Protein Folding (in preparation)

  2. Recombinant bacteria for mosquito control.

    PubMed

    Federici, B A; Park, H-W; Bideshi, D K; Wirth, M C; Johnson, J J

    2003-11-01

    Bacterial insecticides have been used for the control of nuisance and vector mosquitoes for more than two decades. Nevertheless, due primarily to their high cost and often only moderate efficacy, these insecticides remain of limited use in tropical countries where mosquito-borne diseases are prevalent. Recently, however, recombinant DNA techniques have been used to improve bacterial insecticide efficacy by markedly increasing the synthesis of mosquitocidal proteins and by enabling new endotoxin combinations from different bacteria to be produced within single strains. These new strains combine mosquitocidal Cry and Cyt proteins of Bacillus thuringiensis with the binary toxin of Bacillus sphaericus, improving efficacy against Culex species by 10-fold and greatly reducing the potential for resistance through the presence of Cyt1A. Moreover, although intensive use of B. sphaericus against Culex populations in the field can result in high levels of resistance, most of this can be suppressed by combining this bacterial species with Cyt1A; the latter enables the binary toxin of this species to enter midgut epithelial cells via the microvillar membrane in the absence of a midgut receptor. The availability of these novel strains and newly discovered mosquitocidal proteins, such as the Mtx toxins of B. sphaericus, offers the potential for constructing a range of recombinant bacterial insecticides for more effective control of the mosquito vectors of filariasis, Dengue fever and malaria. PMID:14506223

  3. Modulating Cellular Recombination Potential through Alterations in RecA Structure and Regulation

    PubMed Central

    Bakhlanova, Irina V.; Dudkina, Alexandra V.; Baitin, Dima M.; Knight, Kendall L.; Cox, Michael M.; Lanzov, Vladislav A.

    2010-01-01

    The wild type E. coli RecA protein is a recombinase platform with unrealized recombination potential. We have explored the factors affecting recombination during conjugation with a quantitative assay. Regulatory proteins that affect RecA function have the capacity to increase or decrease recombination frequencies by factors up to 6 fold. Autoinhibition by the RecA C-terminus can affect recombination frequency by factors up to 4 fold. The greatest changes in recombination frequency measured here are brought about by point mutations in the recA gene. RecA variants can increase recombination frequencies by more than 50 fold. The RecA protein thus possesses an inherently broad functional range. The RecA protein of Escherichia coli (EcRecA) is not optimized for recombination function. Instead, much of the recombination potential of EcRecA is structurally suppressed, probably reflecting cellular requirements. One point mutation in EcRecA with a particularly dramatic effect on recombination frequency, D112R, exhibits an enhanced capacity to load onto SSB-coated ssDNA, overcome the effects of regulatory proteins such as PsiB and RecX, and to pair homologous DNAs. Comparisons of key RecA protein mutants reveal two components to RecA recombination function – filament formation and the inherent DNA pairing activity of the formed filaments. PMID:21143322

  4. Ventricular-Fold Dynamics in Human Phonation

    ERIC Educational Resources Information Center

    Bailly, Lucie; Bernardoni, Nathalie Henrich; Müller, Frank; Rohlfs, Anna-Katharina; Hess, Markus

    2014-01-01

    Purpose: In this study, the authors aimed (a) to provide a classification of the ventricular-fold dynamics during voicing, (b) to study the aerodynamic impact of these motions on vocal-fold vibrations, and (c) to assess whether ventricular-fold oscillations could be sustained by aerodynamic coupling with the vocal folds. Method: A 72-sample…

  5. Protein folding in a force clamp

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek; Szymczak, P.

    2006-05-01

    Kinetics of folding of a protein held in a force clamp are compared to an unconstrained folding. The comparison is made within a simple topology-based dynamical model of ubiquitin. We demonstrate that the experimentally observed variations in the end-to-end distance reflect microscopic events during folding. However, the folding scenarios in and out of the force clamp are distinct.

  6. Jitter Correction

    NASA Technical Reports Server (NTRS)

    Waegell, Mordecai J.; Palacios, David M.

    2011-01-01

    Jitter_Correct.m is a MATLAB function that automatically measures and corrects inter-frame jitter in an image sequence to a user-specified precision. In addition, the algorithm dynamically adjusts the image sample size to increase the accuracy of the measurement. The Jitter_Correct.m function takes an image sequence with unknown frame-to-frame jitter and computes the translations of each frame (column and row, in pixels) relative to a chosen reference frame with sub-pixel accuracy. The translations are measured using a Cross Correlation Fourier transformation method in which the relative phase of the two transformed images is fit to a plane. The measured translations are then used to correct the inter-frame jitter of the image sequence. The function also dynamically expands the image sample size over which the cross-correlation is measured to increase the accuracy of the measurement. This increases the robustness of the measurement to variable magnitudes of inter-frame jitter

  7. Membranes Do Not Tell Proteins How To Fold.

    PubMed

    Popot, Jean-Luc; Engelman, Donald M

    2016-01-12

    Which properties of the membrane environment are essential for the folding and oligomerization of transmembrane proteins? Because the lipids that surround membrane proteins in situ spontaneously organize into bilayers, it may seem intuitive that interactions with the bilayer provide both hydrophobic and topological constraints that help the protein to achieve a stable and functional three-dimensional structure. However, one may wonder whether folding is actually driven by the membrane environment or whether the folded state just reflects an adaptation of integral proteins to the medium in which they function. Also, apart from the overall transmembrane orientation, might the asymmetry inherent in biosynthesis processes cause proteins to fold to out-of-equilibrium, metastable topologies? Which of the features of a bilayer are essential for membrane protein folding, and which are not? To which extent do translocons dictate transmembrane topologies? Recent data show that many membrane proteins fold and oligomerize very efficiently in media that bear little similarity to a membrane, casting doubt on the essentiality of many bilayer constraints. In the following discussion, we argue that some of the features of bilayers may contribute to protein folding, stability and regulation, but they are not required for the basic three-dimensional structure to be achieved. This idea, if correct, would imply that evolution has steered membrane proteins toward an accommodation to biosynthetic pathways and a good fit into their environment, but that their folding is not driven by the latter or dictated by insertion apparatuses. In other words, the three-dimensional structure of membrane proteins is essentially determined by intramolecular interactions and not by bilayer constraints and insertion pathways. Implications are discussed. PMID:26649989

  8. Quantifying the similarities within fold space.

    PubMed

    Harrison, Andrew; Pearl, Frances; Mott, Richard; Thornton, Janet; Orengo, Christine

    2002-11-01

    We have used GRATH, a graph-based structure comparison algorithm, to map the similarities between the different folds observed in the CATH domain structure database. Statistical analysis of the distributions of the fold similarities has allowed us to assess the significance for any similarity. Therefore we have examined whether it is best to represent folds as discrete entities or whether, in fact, a more accurate model would be a continuum wherein folds overlap via common motifs. To do this we have introduced a new statistical measure of fold similarity, termed gregariousness. For a particular fold, gregariousness measures how many other folds have a significant structural overlap with that fold, typically comprising 40% or more of the larger structure. Gregarious folds often contain commonly occurring super-secondary structural motifs, such as beta-meanders, greek keys, alpha-beta plait motifs or alpha-hairpins, which are matching similar motifs in other folds. Apart from one example, all the most gregarious folds matching 20% or more of the other folds in the database, are alpha-beta proteins. They also occur in highly populated architectural regions of fold space, adopting sandwich-like arrangements containing two or more layers of alpha-helices and beta-strands.Domains that exhibit a low gregariousness, are those that have very distinctive folds, with few common motifs or motifs that are packed in unusual arrangements. Most of the superhelices exhibit low gregariousness despite containing some commonly occurring super-secondary structural motifs. In these folds, these common motifs are combined in an unusual way and represent a small proportion of the fold (<10%). Our results suggest that fold space may be considered as continuous for some architectural arrangements (e.g. alpha-beta sandwiches), in that super-secondary motifs can be used to link neighbouring fold groups. However, in other regions of fold space much more discrete topologies are observed with

  9. Genetic recombination. [Escherichia coli

    SciTech Connect

    Stahl, F.W.

    1987-02-01

    The molecular pathways of gene recombination are explored and compared in studies of the model organisms, Escherichia coli and phase lambda. In the discussion of data from these studies it seems that recombination varies with the genetic idiosyncrasies of the organism and may also vary within a single organism.

  10. Folded MEMS approach to NMRG

    NASA Astrophysics Data System (ADS)

    Gundeti, Venu Madhav

    Atomic gyroscopes have a potential for good performance advantages and several attempts are being made to miniaturize them. This thesis describes the efforts made in implementing a Folded MEMS based NMRG. The micro implementations of all the essential components for NMRG (Nuclear Magnetic Resonance Gyroscope) are described in detail in regards to their design, fabrication, and characterization. A set of micro-scale Helmholtz coils are described and the homogeneity of the generated magnetic field is analyzed for different designs of heaters. The dielectric mirrors and metallic mirrors are compared in terms of reflectivity and polarization change up on reflection. A pyramid shaped folded backbone structure is designed, fabricated, and assembled along with all the required components. A novel double-folded structure 1/4th the size of original version is fabricated and assembled. Design and modeling details of a 5 layered shield with shielding factor > 106 and total volume of around 90 cc are also presented. A table top setup for characterization of atomic vapor cell is described in detail. A micro vapor cell based Rb magnetometer with a sensitivity of 108 pT/√Hz is demonstrated. The challenges due to DC heating are addressed and mitigated using an AC heater. Several experiments related to measuring the relaxation time of Xe are provided along with results. For Xe131, relaxation times of T1 = 23.78 sec, T2 = 18.06 sec and for Xe129, T1 = 21.65 sec and T2 = 20.45 sec are reported.

  11. Paradoxic vocal fold movement disorder.

    PubMed

    Matrka, Laura

    2014-02-01

    Paradoxical Vocal Fold Movement Disorder (PVFMD) is a cause of dyspnea that can mimic or occur alongside asthma or other pulmonary disease. Treatment with Laryngeal Control Therapy is very effective once the entity is properly diagnosed and contributing comorbidities are managed appropriately. In understanding the etiology of PVFMD, focus has broadened beyond psychiatric factors alone to include the spectrum of laryngeal irritants (laryngopharyngeal reflux, allergic and sinus disease, sicca, and possibly obstructive sleep apnea). The following is a discussion of the history, terminology, epidemiology, diagnosis, comorbid conditions, and treatment of this entity. PMID:24286687

  12. Hydrodynamic interactions in protein folding

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek; Niewieczerzał, Szymon

    2009-03-01

    We incorporate hydrodynamic interactions (HIs) in a coarse-grained and structure-based model of proteins by employing the Rotne-Prager hydrodynamic tensor. We study several small proteins and demonstrate that HIs facilitate folding. We also study HIV-1 protease and show that HIs make the flap closing dynamics faster. The HIs are found to affect time correlation functions in the vicinity of the native state even though they have no impact on same time characteristics of the structure fluctuations around the native state.

  13. Hydrodynamic interactions in protein folding.

    PubMed

    Cieplak, Marek; Niewieczerzał, Szymon

    2009-03-28

    We incorporate hydrodynamic interactions (HIs) in a coarse-grained and structure-based model of proteins by employing the Rotne-Prager hydrodynamic tensor. We study several small proteins and demonstrate that HIs facilitate folding. We also study HIV-1 protease and show that HIs make the flap closing dynamics faster. The HIs are found to affect time correlation functions in the vicinity of the native state even though they have no impact on same time characteristics of the structure fluctuations around the native state. PMID:19334888

  14. Hydrogen Bonds in Polymer Folding

    NASA Astrophysics Data System (ADS)

    Borg, Jesper; Jensen, Mogens H.; Sneppen, Kim; Tiana, Guido

    2001-02-01

    We studied the thermodynamics of a homopolymeric chain with both van der Waals and directed hydrogen bond interaction. The effect of hydrogen bonds is to reduce dramatically the entropy of low-lying states and to give rise to long-range order and to conformations displaying secondary structures. For compact polymers a transition is found between helix-rich states and low-entropy sheet-dominated states. The consequences of this transition for protein folding and, in particular, for the problem of prions are discussed.

  15. Chaperonin-mediated Protein Folding

    PubMed Central

    Horwich, Arthur L.

    2013-01-01

    We have been studying chaperonins these past twenty years through an initial discovery of an action in protein folding, analysis of structure, and elucidation of mechanism. Some of the highlights of these studies were presented recently upon sharing the honor of the 2013 Herbert Tabor Award with my early collaborator, Ulrich Hartl, at the annual meeting of the American Society for Biochemistry and Molecular Biology in Boston. Here, some of the major findings are recounted, particularly recognizing my collaborators, describing how I met them and how our great times together propelled our thinking and experiments. PMID:23803606

  16. A versatile selection system for folding competent proteins using genetic complementation in a eukaryotic host

    PubMed Central

    Lyngsø, Christina; Kjaerulff, Søren; Müller, Sven; Bratt, Tomas; Mortensen, Uffe H; Dal Degan, Florence

    2010-01-01

    Recombinant expression of native or modified eukaryotic proteins is pivotal for structural and functional studies and for industrial and pharmaceutical production of proteins. However, it is often impeded by the lack of proper folding. Here, we present a stringent and broadly applicable eukaryotic in vivo selection system for folded proteins. It is based on genetic complementation of the Schizosaccharomyces pombe growth marker gene invertase fused C-terminally to a protein library. The fusion proteins are directed to the secretion system, utilizing the ability of the eukaryotic protein quality-control systems to retain misfolded proteins in the ER and redirect them for cytosolic degradation, thereby only allowing folded proteins to reach the cell surface. Accordingly, the folding potential of the tested protein determines the ability of autotrophic colony growth. This system was successfully demonstrated using a complex insertion mutant library of TNF-α, from which different folding competent mutant proteins were uncovered. PMID:20082307

  17. Intermediates and the folding of proteins L and G

    SciTech Connect

    Brown, Scott; Head-Gordon, Teresa

    2003-07-01

    We use a minimalist protein model, in combination with a sequence design strategy, to determine differences in primary structure for proteins L and G that are responsible for the two proteins folding through distinctly different folding mechanisms. We find that the folding of proteins L and G are consistent with a nucleation-condensation mechanism, each of which is described as helix-assisted {beta}-1 and {beta}-2 hairpin formation, respectively. We determine that the model for protein G exhibits an early intermediate that precedes the rate-limiting barrier of folding and which draws together misaligned secondary structure elements that are stabilized by hydrophobic core contacts involving the third {beta}-strand, and presages the later transition state in which the correct strand alignment of these same secondary structure elements is restored. Finally the validity of the targeted intermediate ensemble for protein G was analyzed by fitting the kinetic data to a two-step first order reversible reaction, proving that protein G folding involves an on-pathway early intermediate, and should be populated and therefore observable by experiment.

  18. Kinematics and thermodynamics of a folding heteropolymer.

    PubMed Central

    Fukugita, M; Lancaster, D; Mitchard, M G

    1993-01-01

    In order to elucidate the folding dynamics of protein, we have carried out numerical simulations of a heteropolymer model of self-interacting random chains. We find that folding propensity depends strongly on sequence and that both folding and nonfolding sequences exist. Furthermore we show that folding is a two-step process: the transition from coil state to unique folded state takes place through a globule phase. In addition to the continuous coil-globule transition, there exists an abrupt transition that separates the unique folded state from the globule state and ensures the stability of the native state. PMID:8327518

  19. Fold assessment for comparative protein structure modeling.

    PubMed

    Melo, Francisco; Sali, Andrej

    2007-11-01

    Accurate and automated assessment of both geometrical errors and incompleteness of comparative protein structure models is necessary for an adequate use of the models. Here, we describe a composite score for discriminating between models with the correct and incorrect fold. To find an accurate composite score, we designed and applied a genetic algorithm method that searched for a most informative subset of 21 input model features as well as their optimized nonlinear transformation into the composite score. The 21 input features included various statistical potential scores, stereochemistry quality descriptors, sequence alignment scores, geometrical descriptors, and measures of protein packing. The optimized composite score was found to depend on (1) a statistical potential z-score for residue accessibilities and distances, (2) model compactness, and (3) percentage sequence identity of the alignment used to build the model. The accuracy of the composite score was compared with the accuracy of assessment by single and combined features as well as by other commonly used assessment methods. The testing set was representative of models produced by automated comparative modeling on a genomic scale. The composite score performed better than any other tested score in terms of the maximum correct classification rate (i.e., 3.3% false positives and 2.5% false negatives) as well as the sensitivity and specificity across the whole range of thresholds. The composite score was implemented in our program MODELLER-8 and was used to assess models in the MODBASE database that contains comparative models for domains in approximately 1.3 million protein sequences. PMID:17905832

  20. LAF: Theoretical Model of Large Amplitude Folding of a Single Viscous Layer

    NASA Astrophysics Data System (ADS)

    Adamuszek, M.; Schmid, D. W.; Dabrowski, M.

    2012-04-01

    We present a theoretical model for Large Amplitude Folding (LAF) during buckling of a single, viscous layer. The model accurately predicts the evolution of geometrical fold parameters (amplitude, wavelength, and thickness) and is not restricted to any viscosity ratio or type of perturbation. The model employs two corrections to the formula of the initial growth rate of folds that is calculated using the thick-plate solution of Fletcher (Tectonophysics, 1977). The growth rate is modified by incorporating 1) the evolution of wavelength to thickness ratio, after Fletcher (American Journal of Science, 1974) and 2) the reduction of the growth rate, originally introduced by Schmalholz and Podladchikov (EPSL, 2000). The former correction is a consequence of the layer shortening and thickening. The latter modification is the result of using an effective rate of layer shortening as the driving force for fold growth, rather than the applied background shortening rate. The effective rate of the layer shortening is approximated by the rate of fold arclength shortening. In the model, we use an analytical expression derived based on the evolution of sinusoidal waveforms. These two modifications to the growth rate were already separately employed in previous studies. Through comparison with numerical models, we show that the simultaneous application of both corrections in LAF provides a better prediction of the evolution of the fold geometry parameters up to large amplitudes, compared to the models with only one correction. Our studies of the fold evolution from initial single and multiple (random noise, step and bell-shape function) waveforms show a remarkable fit between LAF and the numerical results. In the multiple waveform models, we predict a coupling between the components. In LAF, folds developed from initial random perturbations exhibit irregular but periodic shapes, characteristic for folds observed in nature. We also show that the evolution of folds from localized

  1. Protein folding in a force-clamp

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek; Szymczak, Piotr

    2006-03-01

    Kinetics of folding of a protein held in a force-clamp are compared to an unconstrained folding. The comparison is made within a simple topology-based dynamical model of ubiquitin. We demonstrate that the experimentally observed rapid changes in the end-to-end distance mirror microscopic events during folding. However, the folding scenarios in and out of the force-clamp are distinct.

  2. [Recombinant antibodies against bioweapons].

    PubMed

    Thullier, Philippe; Pelat, Thibaut; Vidal, Dominique

    2009-12-01

    The threat posed by bioweapons (BW) could lead to the re-emergence of such deadly diseases as plague or smallpox, now eradicated from industrialized countries. The development of recombinant antibodies allows tackling this risk because these recombinant molecules are generally well tolerated in human medicine, may be utilized for prophylaxis and treatment, and because antibodies neutralize many BW. Recombinant antibodies neutralizing the lethal toxin of anthrax, botulinum toxins and the smallpox virus have in particular been isolated recently, with different technologies. Our approach, which uses phage-displayed immune libraries built from non-human primates (M. fascicularis) to obtain recombinant antibodies, which may later be super-humanized (germlinized), has allowed us to obtain such BWs-neutralizing antibodies. PMID:20035695

  3. Recombinant conotoxin, TxVIA, produced in yeast has insecticidal activity.

    PubMed

    Bruce, C; Fitches, E C; Chougule, N; Bell, H A; Gatehouse, J A

    2011-07-01

    Conotoxins are a diverse collection of more than 50,000 peptides produced by predatory marine snails of the genus Conus in order to immobilize their prey. Many conotoxins modulate the activity of ion channels, and show high specificity to their targets; as a result, some have valuable pharmaceutical applications. However, obtaining active peptide is difficult and to date has only been achieved though natural collection, chemical synthesis, or the use of prokaryotic expression systems, which often have the disadvantage of requiring subsequent steps to correctly fold the peptide. This paper reports the production of a conotoxin, TxVIA from Conus textile, as a biologically active recombinant protein, using the yeast Pichia pastoris as expression host. The presence of the pro-peptide was found to be necessary for the expression of biologically active conotoxin. We also show that TxVIA is not, as previously reported, mollusc-specific, but also shows insecticidal activity when injected into lepidopteran (cabbage moth) and dipteran (house fly) larvae. In contrast, recombinant TxVIA was not found to be molluscicidal to the grey field slug Deroceras reticulatum. PMID:21640131

  4. Extracting Information from Folds in Rocks.

    ERIC Educational Resources Information Center

    Hudleston, Peter John

    1986-01-01

    Describes the three processes of folding in rocks: buckling, bending, and passive folding. Discusses how geometrical properties and strain distributions help to identify which processes produce natural folds, and also provides information about the mechanical properties of rocks, and the sense of shear in shear zones. (TW)

  5. Folded Symplectic Toric Four-Manifolds

    ERIC Educational Resources Information Center

    Lee, Christopher R.

    2009-01-01

    A folded symplectic form on an even-dimensional manifold is a closed two-form that degenerates in a suitably controlled way along a smooth hypersurface. When a torus having half the dimension of the manifold acts in a way preserving the folded symplectic form and admitting a moment map, the manifold is called a folded symplectic toric manifold.…

  6. Dynamics of Folds in the Plane

    ERIC Educational Resources Information Center

    Krylov, Nikolai A.; Rogers, Edwin L.

    2011-01-01

    Take a strip of paper and fold a crease intersecting the long edges, creating two angles. Choose one edge and consider the angle with the crease. Fold the opposite edge along the crease, creating a new crease that bisects the angle. Fold again, this time using the newly created crease and the initial edge, creating a new angle along the chosen…

  7. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  8. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  9. Production and secretion of recombinant proteins in Dictyostelium discoideum.

    PubMed

    Dittrich, W; Williams, K L; Slade, M B

    1994-06-01

    We have expressed useful amounts of three recombinant proteins in a new eukaryotic host/vector system. The cellular slime mold Dictyostelium discoideum efficiently secreted two recombinant products, a soluble form of the normally cell surface associated D. discoideum glycoprotein (PsA) and the heterologous protein glutathione-S-transferase (GST) from Schistosoma japonicum, while the enzyme beta-glucuronidase (GUS) from Escherichia coli was cell associated. Up to 20mg/l of recombinant PsA and 1mg/l of GST were obtained after purification from a standard, peptone based growth medium. The secretion signal peptide was correctly cleaved from the recombinant GST- and PsA-proteins and the expression of recombinant PsA was shown to be stable for at least one hundred generations in the absence of selection. PMID:7764951

  10. Correction of murine β-thalassemia after minimal lentiviral gene transfer and homeostatic in vivo erythroid expansion

    PubMed Central

    Negre, Olivier; Fusil, Floriane; Colomb, Charlotte; Roth, Shoshannah; Gillet-Legrand, Beatrix; Henri, Annie; Beuzard, Yves; Bushman, Frederic; Leboulch, Philippe

    2011-01-01

    A challenge for gene therapy of genetic diseases is to maintain corrected cell populations in subjects undergoing transplantation in cases in which the corrected cells do not have intrinsic selective advantage over nontransduced cells. For inherited hematopoietic disorders, limitations include inefficient transduction of stem cell pools, the requirement for toxic myelosuppression, and a lack of optimal methods for cell selection after transduction. Here, we have designed a lentiviral vector that encodes human β-globin and a truncated erythropoietin receptor, both under erythroid-specific transcriptional control. This truncated receptor confers enhanced sensitivity to erythropoietin and a benign course in human carriers. Transplantation of marrow transduced with the vector into syngenic thalassemic mice, which have elevated plasma erythropoietin levels, resulted in long-term correction of the disease even at low ratios of transduced/untransduced cells. Amplification of the red over the white blood cell lineages was self-controlled and averaged ∼ 100-fold instead of ∼ 5-fold for β-globin expression alone. There was no detectable amplification of white blood cells or alteration of hematopoietic homeostasis. Notwithstanding legitimate safety concerns in the context of randomly integrating vectors, this approach may prove especially valuable in combination with targeted integration or in situ homologous recombination/repair and may lower the required level of pretransplantation myelosuppression. PMID:21436071

  11. A CORRECTION.

    PubMed

    Johnson, D

    1940-03-22

    IN a recently published volume on "The Origin of Submarine Canyons" the writer inadvertently credited to A. C. Veatch an excerpt from a submarine chart actually contoured by P. A. Smith, of the U. S. Coast and Geodetic Survey. The chart in question is Chart IVB of Special Paper No. 7 of the Geological Society of America entitled "Atlantic Submarine Valleys of the United States and the Congo Submarine Valley, by A. C. Veatch and P. A. Smith," and the excerpt appears as Plate III of the volume fist cited above. In view of the heavy labor involved in contouring the charts accompanying the paper by Veatch and Smith and the beauty of the finished product, it would be unfair to Mr. Smith to permit the error to go uncorrected. Excerpts from two other charts are correctly ascribed to Dr. Veatch. PMID:17839404

  12. Simulating the folding of HP-sequences with a minimalist model in an inhomogeneous medium.

    PubMed

    Alas, S J; González-Pérez, P P

    2016-01-01

    The phenomenon of protein folding is a fundamental issue in the field of the computational molecular biology. The protein folding inside the cells is performed in a highly inhomogeneous, tortuous, and correlated environment. Therefore, it is important to include in the theoretical studies the medium where the protein folding is developed. In this work we present the combination of three models to mimic the protein folding inside of an inhomogeneous medium. The models used here are Hydrophobic-Polar (HP) in 2D square arrangement, Evolutionary Algorithms (EA), and the Dual Site Bond Model (DSBM). The DSBM model is used to simulate the environment where the HP beads are folded; in this case the medium is correlated and is fractal-like. The analysis of five benchmark HP sequences shows that the inhomogeneous space provided with a given correlation length and fractal dimension plays an important role for correct folding of these sequences, which does not occur in a homogeneous space. PMID:27020756

  13. Folding of viscous sheets and filaments

    NASA Astrophysics Data System (ADS)

    Skorobogatiy, M.; Mahadevan, L.

    2000-12-01

    We consider the nonlinear folding behavior of a viscous filament or a sheet under the influence of an external force such as gravity. Everyday examples of this phenomenon are provided by the periodic folding of a sheet of honey as it impinges on toast, or the folding of a stream of shampoo as it falls on one's hand. To understand the evolution of a fold, we formulate and solve a free-boundary problem for the phenomenon, give scaling laws for the size of the folds and the frequency with which they are laid out, and verify these experimentally.

  14. A successful strategy for the recovering of active P21, an insoluble recombinant protein of Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    Santos, Marlus Alves Dos; Teixeira, Francesco Brugnera; Moreira, Heline Hellen Teixeira; Rodrigues, Adele Aud; Machado, Fabrício Castro; Clemente, Tatiana Mordente; Brigido, Paula Cristina; Silva, Rebecca Tavares E.; Purcino, Cecílio; Gomes, Rafael Gonçalves Barbosa; Bahia, Diana; Mortara, Renato Arruda; Munte, Claudia Elisabeth; Horjales, Eduardo; da Silva, Claudio Vieira

    2014-03-01

    Structural studies of proteins normally require large quantities of pure material that can only be obtained through heterologous expression systems and recombinant technique. In these procedures, large amounts of expressed protein are often found in the insoluble fraction, making protein purification from the soluble fraction inefficient, laborious, and costly. Usually, protein refolding is avoided due to a lack of experimental assays that can validate correct folding and that can compare the conformational population to that of the soluble fraction. Herein, we propose a validation method using simple and rapid 1D 1H nuclear magnetic resonance (NMR) spectra that can efficiently compare protein samples, including individual information of the environment of each proton in the structure.

  15. Understanding Protein Non-Folding

    PubMed Central

    Uversky, Vladimir N.; Dunker, A. Keith

    2010-01-01

    This review describes the family of intrinsically disordered proteins, members of which fail to form rigid 3-D structures under physiological conditions, either along their entire lengths or only in localized regions. Instead, these intriguing proteins/regions exist as dynamic ensembles within which atom positions and backbone Ramachandran angles exhibit extreme temporal fluctuations without specific equilibrium values. Many of these intrinsically disordered proteins are known to carry out important biological functions which, in fact, depend on the absence of specific 3-D structure. The existence of such proteins does not fit the prevailing structure-function paradigm, which states that unique 3-D structure is a prerequisite to function. Thus, the protein structure-function paradigm has to be expanded to include intrinsically disordered proteins and alternative relationships among protein sequence, structure, and function. This shift in the paradigm represents a major breakthrough for biochemistry, biophysics and molecular biology, as it opens new levels of understanding with regard to the complex life of proteins. This review will try to answer the following questions: How were intrinsically disordered proteins discovered? Why don't these proteins fold? What is so special about intrinsic disorder? What are the functional advantages of disordered proteins/regions? What is the functional repertoire of these proteins? What are the relationships between intrinsically disordered proteins and human diseases? PMID:20117254

  16. Expression, purification, and characterization of recombinant human L-chain ferritin.

    PubMed

    Zou, Wenyan; Liu, Xiaoyu; Zhao, Xi; Wang, Jie; Chen, Dianhua; Li, Jiahuang; Ji, Lina; Hua, Zichun

    2016-03-01

    Ferritins form nanocage architectures and demonstrate their potential to serve as functional nanomaterials with potential applications in medical imaging and therapy. In our study, the cDNA of human L-chain ferritin was cloned into plasmid pET-28a for its overexpression in Escherichia coli. However, the recombinant human L-chain ferritin (rLF) was prone to form inclusion bodies. Molecular chaperones were co-expressed with rLF to facilitate its correct folding. Our results showed that the solubility of rLF was increased about 3-fold in the presence of molecular chaperones, including GroEL, GroES and trigger factor. Taking advantage of its N-terminal His-tag, rLF was then purified with Ni-affinity chromatography. With a yield of 10 mg/L from bacterial culture, the purified rLF was analyzed by circular dichroism spectrometry for its secondary structure. Furthermore, the rLF nanocages were characterized using dynamic light scattering and transmission electron microscopy. PMID:26621552

  17. Folded waveguide cavity coupler for ICRF heating

    SciTech Connect

    Owens, T.L.

    1986-01-01

    This paper introduces a new type of waveguide coupler for ion cyclotron range of frequencies (ICRF) heating which is an adaptation of a concept known as a ''folded waveguide'' reported by Barrow and Schaevitz in connection with low-frequency waveguide transmission systems. The basic idea involves ''folding'' a simple rectangular waveguide to form a more compact structure. Cutoff for the folded waveguide occurs when one-half of a free-space wavelength equals the path length around the ''folds'' of the structure. By adding a large number of folds, the path length around the folds can be made large, leading to very low cutoff frequencies relative to those for simple rectangular waveguides having comparable outside dimensions. Folded waveguide couplers are practical for frequencies as low as 60 MHz for some ports found on present-day experients.

  18. Regulation and targeting of recombination in extrachromosomal substrates carrying immunoglobulin switch region sequences.

    PubMed Central

    Leung, H; Maizels, N

    1994-01-01

    We have used extrachromosomal substrates carrying immunoglobulin heavy-chain S mu and S gamma 3 switch region sequences to study activation and targeting of recombination by a transcriptional enhancer element. Substrates are transiently introduced into activated primary murine B cells, in which recombination involving S-region sequences deletes a conditionally lethal marker, and recombination is measured by transformation of Escherichia coli in the second step of the assay. Previously we found that as many as 25% of replicated substrates recombined during 40-h transfection of lipopolysaccharide (LPS)-stimulated primary cells and that efficient recombination was dependent on the presence of S-region sequences as well as a transcriptional activator region in the constructs (H. Leung and N. Maizels, Proc. Natl. Acad. Sci. USA 89:4154-4158, 1992). Here we show that recombination of the switch substrates is threefold more efficient in LPS-cultured primary B cells than in the T-cell line EL4; the activities responsible for switch substrate recombination thus appear to be more abundant or more active in cells which can carry out chromosomal switch recombination. We test the role of the transcriptional activator region and show that the immunoglobulin heavy-chain intron enhancer (E mu) alone stimulates recombination as well as E mu combined with a heavy-chain promoter and that mutations that diminish enhancer-dependent transcription 500-fold diminish recombinational activation less than 2-fold. These observations suggest that the enhancer stimulates recombination by a mechanism that does not depend on transcript production or that is insensitive to the level of transcript production over a very broad range. Furthermore, we find that E mu stimulates recombination when located either upstream or downstream of S mu but that the position of the recombinational activator does affect the targeting of recombination junctions, suggesting that the relatively imprecise targeting of

  19. Recombinational Landscape and Population Genomics of Caenorhabditis elegans

    PubMed Central

    Rockman, Matthew V.; Kruglyak, Leonid

    2009-01-01

    Recombination rate and linkage disequilibrium, the latter a function of population genomic processes, are the critical parameters for mapping by linkage and association, and their patterns in Caenorhabditis elegans are poorly understood. We performed high-density SNP genotyping on a large panel of recombinant inbred advanced intercross lines (RIAILs) of C. elegans to characterize the landscape of recombination and, on a panel of wild strains, to characterize population genomic patterns. We confirmed that C. elegans autosomes exhibit discrete domains of nearly constant recombination rate, and we show, for the first time, that the pattern holds for the X chromosome as well. The terminal domains of each chromosome, spanning about 7% of the genome, exhibit effectively no recombination. The RIAILs exhibit a 5.3-fold expansion of the genetic map. With median marker spacing of 61 kb, they are a powerful resource for mapping quantitative trait loci in C. elegans. Among 125 wild isolates, we identified only 41 distinct haplotypes. The patterns of genotypic similarity suggest that some presumed wild strains are laboratory contaminants. The Hawaiian strain, CB4856, exhibits genetic isolation from the remainder of the global population, whose members exhibit ample evidence of intercrossing and recombining. The population effective recombination rate, estimated from the pattern of linkage disequilibrium, is correlated with the estimated meiotic recombination rate, but its magnitude implies that the effective rate of outcrossing is extremely low, corroborating reports of selection against recombinant genotypes. Despite the low population, effective recombination rate and extensive linkage disequilibrium among chromosomes, which are techniques that account for background levels of genomic similarity, permit association mapping in wild C. elegans strains. PMID:19283065

  20. Statistical mechanics of simple models of protein folding and design.

    PubMed Central

    Pande, V S; Grosberg, A Y; Tanaka, T

    1997-01-01

    It is now believed that the primary equilibrium aspects of simple models of protein folding are understood theoretically. However, current theories often resort to rather heavy mathematics to overcome some technical difficulties inherent in the problem or start from a phenomenological model. To this end, we take a new approach in this pedagogical review of the statistical mechanics of protein folding. The benefit of our approach is a drastic mathematical simplification of the theory, without resort to any new approximations or phenomenological prescriptions. Indeed, the results we obtain agree precisely with previous calculations. Because of this simplification, we are able to present here a thorough and self contained treatment of the problem. Topics discussed include the statistical mechanics of the random energy model (REM), tests of the validity of REM as a model for heteropolymer freezing, freezing transition of random sequences, phase diagram of designed ("minimally frustrated") sequences, and the degree to which errors in the interactions employed in simulations of either folding and design can still lead to correct folding behavior. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 6 PMID:9414231

  1. Regulation of Meiotic Recombination

    SciTech Connect

    Gregory p. Copenhaver

    2011-11-09

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system

  2. Stress and strain evolution of folding rocks

    NASA Astrophysics Data System (ADS)

    Llorens, Maria-Gema; Griera, Albert; Bons, Paul; Gomez-Rivas, Enrique; Weikusat, Ilka

    2015-04-01

    One of the main objectives of structural geology is to unravel rock deformation histories. Fold shapes can be used to estimate the orientation and amount of strain associated with folding. However, much more information on rheology and kinematics can potentially be extracted from fold geometries (Llorens et al., 2013a). We can study the development of folds, quantify the relationships between the different parameters that determine their geometries and estimate their mechanical evolution. This approach allows us to better understand and predict not only rock but also ice deformation. One of the main parameters in fold development is the viscosity contrast between the folding layer and the matrix in which it is embedded (m), since it determines the initial fold wavelength and the amplification rate of the developing folds. Moreover, non-linear viscous rheology influences fold geometry too (Llorens et al., 2013b). We present a series of 2-dimensional simulations of folding of viscous single layers in pure and simple shear. We vary different parameters in order to compare and determine their influence on the resulting fold patterns and the associated mechanical response of the material. To perform these simulations we use the software platform ELLE (www.elle.ws) with the non-linear viscous finite element code BASIL. The results show that layers thicken at the beginning of deformation in all simulations, and visible folds start earlier or later depending on the viscosity contrast. When folds start to nucleate the layer maximum shear strain decreases, moving away from the theoretical trend for homogeneous strain (no folding). This allows the accurate determination of the onset of folding. Maximum deviatoric stresses are higher in power-law than in linear-viscosity materials, and it is initially double in pure shear than in simple shear conditions. Therefore, folding a competent layer requires less work in simple than in pure shear. The maximum deviatoric stress

  3. The energy landscape for folding and function

    NASA Astrophysics Data System (ADS)

    Onuchic, Jose

    2006-03-01

    Globally the energy landscape of a folding protein resembles a partially rough funnel. The local roughness of the funnel reflects transient trapping of the protein configurations in local free energy minima. The kinetics of folding is best considered as a progressive organization of an ensemble of partially folded structures through which the protein passes through on its way to the folded structure. The folding mechanisms for several fast-folding proteins can be described using an energy landscape theory to set up the correspondence with simulations of protein minimalist models. Using these simulations together with analytical theory, we can learn about good (minimally frustrated) folding sequences and non-folding (frustrated) sequences. An important idea that emerges from this theory is that subtle features of the protein landscape can profoundly affect the apparent mechanism of folding. Experiments on the dependence of the folding/unfolding times, and the stability of these proteins to denaturant concentration and site-directed mutagenesis, and on the early events of folding allow to infer the global characteristics of the landscape. In addition to need to minimize energetic frustration, the topology of the native fold also plays a major role in the folding mechanism. Some folding motifs are easier to design than others suggesting the possibility that evolution not only selected sequences with sufficiently small energetic frustration but also selected more easily designable native structures. Several proteins (such as CI2 and SH3) have sufficiently reduced energetic frustration) that much of the heterogeneity observed in their transition state ensemble (TSE) is determined by topology. Topological effects go beyond the structure of the TSE. The overall structure of the on-route and off-route (traps) intermediates for the folding of more complex proteins is also influenced by topology. Utilizing this theoretical framework, simulations of minimalist models and

  4. Asymmetric hindwing foldings in rove beetles

    PubMed Central

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-01-01

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right–left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use. PMID:25368178

  5. Kinetic partitioning mechanism of HDV ribozyme folding

    NASA Astrophysics Data System (ADS)

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing

    2014-01-01

    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  6. Kinetic partitioning mechanism of HDV ribozyme folding

    SciTech Connect

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing

    2014-01-14

    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  7. Reduced alphabet for protein folding prediction.

    PubMed

    Huang, Jitao T; Wang, Titi; Huang, Shanran R; Li, Xin

    2015-04-01

    What are the key building blocks that would have been needed to construct complex protein folds? This is an important issue for understanding protein folding mechanism and guiding de novo protein design. Twenty naturally occurring amino acids and eight secondary structures consist of a 28-letter alphabet to determine folding kinetics and mechanism. Here we predict folding kinetic rates of proteins from many reduced alphabets. We find that a reduced alphabet of 10 letters achieves good correlation with folding rates, close to the one achieved by full 28-letter alphabet. Many other reduced alphabets are not significantly correlated to folding rates. The finding suggests that not all amino acids and secondary structures are equally important for protein folding. The foldable sequence of a protein could be designed using at least 10 folding units, which can either promote or inhibit protein folding. Reducing alphabet cardinality without losing key folding kinetic information opens the door to potentially faster machine learning and data mining applications in protein structure prediction, sequence alignment and protein design. PMID:25641420

  8. Viscoelastic properties of the false vocal fold

    NASA Astrophysics Data System (ADS)

    Chan, Roger W.

    2001-05-01

    The biomechanical properties of vocal fold tissues have been the focus of many previous studies, as vocal fold viscoelasticity critically dictates the acoustics and biomechanics of phonation. However, not much is known about the viscoelastic response of the ventricular fold or false vocal fold. It has been shown both clinically and in computer simulations that the false vocal fold may contribute significantly to the aerodynamics and sound generation processes of human voice production, with or without flow-induced oscillation of the false fold. To better understand the potential role of the false fold in phonation, this paper reports some preliminary measurements on the linear and nonlinear viscoelastic behavior of false vocal fold tissues. Linear viscoelastic shear properties of human false fold tissue samples were measured by a high-frequency controlled-strain rheometer as a function of frequency, and passive uniaxial tensile stress-strain response of the tissue samples was measured by a muscle lever system as a function of strain and loading rate. Elastic moduli (Young's modulus and shear modulus) of the false fold tissues were calculated from the measured data. [Work supported by NIH.

  9. Some aspects of vocal fold bowing.

    PubMed

    Tanaka, S; Hirano, M; Chijiwa, K

    1994-05-01

    Bowing of the vocal fold frequently occurs in patients with vocal fold paralysis (VFP), those with sulcus vocalis, and those who have had laser surgery. Additionally, there are vocal folds that present bowing with no noticeable organic lesion. For the purpose of investigating the causes and mechanisms of vocal fold bowing, consecutive fiberscopic videorecordings of 127 patients with VFP, 33 with sulcus vocalis, 33 with laser surgery, and 33 with dysphonia having no clinically noticeable organic lesion were reviewed. Sixty-nine percent of the paralyzed vocal folds had bowing, and the occurrence of bowing was significantly related to the activity of the thyroarytenoid muscle as measured by electromyography. The cricothyroid activity had no significant relationship to vocal fold bowing. All vocal folds with sulcus presented with bowing. Thirty-five percent of the vocal folds that had had laser surgery had bowing. The extent of tissue removal was closely related to the occurrence of bowing. Twelve cases with no organic lesion had vocal fold bowing. Of these 12 patients, 8 were male and 9 were older than 60 years. Some aging process in the mucosa was presumed to be the cause of the bowing in this age group of patients without clinically noticeable organic lesions. Causes of vocal fold bowing in the younger group of patients without organic lesions were not determined in this study. PMID:8179251

  10. Asymmetric hindwing foldings in rove beetles.

    PubMed

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-11-18

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use. PMID:25368178

  11. Protein folding at atomic resolution: analysis of autonomously folding supersecondary structure motifs by nuclear magnetic resonance.

    PubMed

    Sborgi, Lorenzo; Verma, Abhinav; Sadqi, Mourad; de Alba, Eva; Muñoz, Victor

    2013-01-01

    The study of protein folding has been conventionally hampered by the assumption that all single-domain proteins fold by an all-or-none process (two-state folding) that makes it impossible to resolve folding mechanisms experimentally. Here we describe an experimental method for the thermodynamic analysis of protein folding at atomic resolution using nuclear magnetic resonance (NMR). The method is specifically developed for the study of small proteins that fold autonomously into basic supersecondary structure motifs, and that do so in the sub-millisecond timescale (folding archetypes). From the NMR experiments we obtain hundreds of atomic unfolding curves that are subsequently analyzed leading to the determination of the characteristic network of folding interactions. The application of this approach to a comprehensive catalog of elementary folding archetypes holds the promise of becoming the first experimental approach capable of unraveling the basic rules connecting protein structure and folding mechanism. PMID:22987355

  12. Making recombinant proteins in filamentous fungi- are we expecting too much?

    PubMed

    Nevalainen, Helena; Peterson, Robyn

    2014-01-01

    Hosts used for the production of recombinant proteins are typically high-protein secreting mutant strains that have been selected for a specific purpose, such as efficient production of cellulose-degrading enzymes. Somewhat surprisingly, sequencing of the genomes of a series of mutant strains of the cellulolytic Trichoderma reesei, widely used as an expression host for recombinant gene products, has shed very little light on the nature of changes that boost high-level protein secretion. While it is generally agreed and shown that protein secretion in filamentous fungi occurs mainly through the hyphal tip, there is growing evidence that secretion of proteins also takes place in sub-apical regions. Attempts to increase correct folding and thereby the yields of heterologous proteins in fungal hosts by co-expression of cellular chaperones and foldases have resulted in variable success; underlying reasons have been explored mainly at the transcriptional level. The observed physiological changes in fungal strains experiencing increasing stress through protein overexpression under strong gene promoters also reflect the challenge the host organisms are experiencing. It is evident, that as with other eukaryotes, fungal endoplasmic reticulum is a highly dynamic structure. Considering the above, there is an emerging body of work exploring the use of weaker expression promoters to avoid undue stress. Filamentous fungi have been hailed as candidates for the production of pharmaceutically relevant proteins for therapeutic use. One of the biggest challenges in terms of fungally produced heterologous gene products is their mode of glycosylation; fungi lack the functionally important terminal sialylation of the glycans that occurs in mammalian cells. Finally, exploration of the metabolic pathways and fluxes together with the development of sophisticated fermentation protocols may result in new strategies to produce recombinant proteins in filamentous fungi. PMID:24578701

  13. Fold Recognition Using Sequence Fingerprints of Protein Local Substructures

    SciTech Connect

    Kryshtafovych, A A; Hvidsten, T; Komorowski, J; Fidelis, K

    2003-06-04

    A protein local substructure (descriptor) is a set of several short non-overlapping fragments of the polypeptide chain. Each descriptor describes local environment of a particular residue and includes only those segments that are located in the proximity of this residue. Similar descriptors from the representative set of proteins were analyzed to reveal links between the substructures and sequences of their segments. Using detected sequence-based fingerprints specific geometrical conformations are assigned to new sequences. The ability of the approach to recognize correct SCOP folds was tested on 273 sequences from the 49 most popular folds. Good predictions were obtained in 85% of cases. No performance drop was observed with decreasing sequence similarity between target sequences and sequences from the training set of proteins.

  14. [Management of T1a vocal fold carcinoma].

    PubMed

    Reiter, R; Brosch, S; Smith, E; Pickhard, A

    2013-12-01

    About 2/3 of the larynx carcinomas affect the vocal chords. The main risk factor is smoking. Carcinomas in this localisation often arise from leukoplakias with dysplasia. A typical symptom is dysphonia. Arrest of vibration in microlaryngostroboscopy is a hint that a carcinoma could be present. Transoral laser cordectomy or radiotherapy show equivalent oncological results and results in quality of voice in the treatment of vocal fold carcinoma (T1a). As lymph node and distant metastasis are very rare, follow-up can concentrate on microlaryngoscopy. In case of a suspicious area on the vocal fold, biopsy of the affected tissue is needed to plan correct treatment. The prognosis of the T1 vocal chord carcinoma is quite good with a 5-year survival rate of almost 100%. PMID:23929210

  15. The Skp chaperone helps fold soluble proteins in vitro by inhibiting aggregation.

    PubMed

    Entzminger, Kevin C; Chang, Christine; Myhre, Ryan O; McCallum, Katie C; Maynard, Jennifer A

    2012-06-19

    The periplasmic seventeen kilodalton protein (Skp) chaperone has been characterized primarily for its role in outer membrane protein (OMP) biogenesis, during which the jellyfish-like trimeric protein encapsulates partially folded OMPs, protecting them from the aqueous environment until delivery to the BAM outer membrane protein insertion complex. However, Skp is increasingly recognized as a chaperone that also assists in folding soluble proteins in the bacterial periplasm. In this capacity, Skp coexpression increases the active yields of many recombinant proteins and bacterial virulence factors. Using a panel of single-chain antibodies and a single-chain T-cell receptor (collectively termed scFvs) possessing varying stabilities and biophysical characteristics, we performed in vivo expression and in vitro folding and aggregation assays in the presence or absence of Skp. For Skp-sensitive scFvs, the presence of Skp during in vitro refolding assays reduced aggregation but did not alter the observed folding rates, resulting in a higher overall yield of active protein. Of the proteins analyzed, Skp sensitivity in all assays correlated with the presence of folding intermediates, as observed with urea denaturation studies. These results are consistent with Skp acting as a holdase, sequestering partially folded intermediates and thereby preventing aggregation. Because not all soluble proteins are sensitive to Skp coexpression, we hypothesize that the presence of a long-lived protein folding intermediate renders a protein sensitive to Skp. Improved understanding of the bacterial periplasmic protein folding machinery may assist in high-level recombinant protein expression and may help identify novel approaches to block bacterial virulence. PMID:22650963

  16. Recombinant protein production and streptomycetes.

    PubMed

    Anné, Jozef; Maldonado, Bárbara; Van Impe, Jan; Van Mellaert, Lieve; Bernaerts, Kristel

    2012-04-30

    The biopharmaceutical market has come a long way since 1982, when the first biopharmaceutical product, recombinant human insulin, was launched. Just over 200 biopharma products have already gained approval. The global market for biopharmaceuticals which is currently valued at over US$99 billion has been growing at an impressive compound annual growth rate over the previous years. To produce these biopharmaceuticals and other industrially important heterologous proteins, different prokaryotic and eukaryotic expression systems are used. All expression systems have some advantages as well as some disadvantages that should be considered in selecting which one to use. Choosing the best one requires evaluating the options--from yield to glycosylation, to proper folding, to economics of scale-up. No host cell from which all the proteins can be universally expressed in large quantities has been found so far. Therefore, it is important to provide a variety of host-vector expression systems in order to increase the opportunities to screen for the most suitable expression conditions or host cell. In this overview, we focus on Streptomyces lividans, a Gram-positive bacterium with a proven excellence in secretion capacity, as host for heterologous protein production. We will discuss its advantages and disadvantages, and how with systems biology approaches strains can be developed to better producing cell factories. PMID:21777629

  17. Precise genotyping and recombination detection of Enterovirus

    PubMed Central

    2015-01-01

    Enteroviruses (EV) with different genotypes cause diverse infectious diseases in humans and mammals. A correct EV typing result is crucial for effective medical treatment and disease control; however, the emergence of novel viral strains has impaired the performance of available diagnostic tools. Here, we present a web-based tool, named EVIDENCE (EnteroVirus In DEep conception, http://symbiont.iis.sinica.edu.tw/evidence), for EV genotyping and recombination detection. We introduce the idea of using mixed-ranking scores to evaluate the fitness of prototypes based on relatedness and on the genome regions of interest. Using phylogenetic methods, the most possible genotype is determined based on the closest neighbor among the selected references. To detect possible recombination events, EVIDENCE calculates the sequence distance and phylogenetic relationship among sequences of all sliding windows scanning over the whole genome. Detected recombination events are plotted in an interactive figure for viewing of fine details. In addition, all EV sequences available in GenBank were collected and revised using the latest classification and nomenclature of EV in EVIDENCE. These sequences are built into the database and are retrieved in an indexed catalog, or can be searched for by keywords or by sequence similarity. EVIDENCE is the first web-based tool containing pipelines for genotyping and recombination detection, with updated, built-in, and complete reference sequences to improve sensitivity and specificity. The use of EVIDENCE can accelerate genotype identification, aiding clinical diagnosis and enhancing our understanding of EV evolution. PMID:26678286

  18. Precise genotyping and recombination detection of Enterovirus.

    PubMed

    Lin, Chieh-Hua; Wang, Yu-Bin; Chen, Shu-Hwa; Hsiung, Chao Agnes; Lin, Chung-Yen

    2015-01-01

    Enteroviruses (EV) with different genotypes cause diverse infectious diseases in humans and mammals. A correct EV typing result is crucial for effective medical treatment and disease control; however, the emergence of novel viral strains has impaired the performance of available diagnostic tools. Here, we present a web-based tool, named EVIDENCE (EnteroVirus In DEep conception, http://symbiont.iis.sinica.edu.tw/evidence), for EV genotyping and recombination detection. We introduce the idea of using mixed-ranking scores to evaluate the fitness of prototypes based on relatedness and on the genome regions of interest. Using phylogenetic methods, the most possible genotype is determined based on the closest neighbor among the selected references. To detect possible recombination events, EVIDENCE calculates the sequence distance and phylogenetic relationship among sequences of all sliding windows scanning over the whole genome. Detected recombination events are plotted in an interactive figure for viewing of fine details. In addition, all EV sequences available in GenBank were collected and revised using the latest classification and nomenclature of EV in EVIDENCE. These sequences are built into the database and are retrieved in an indexed catalog, or can be searched for by keywords or by sequence similarity. EVIDENCE is the first web-based tool containing pipelines for genotyping and recombination detection, with updated, built-in, and complete reference sequences to improve sensitivity and specificity. The use of EVIDENCE can accelerate genotype identification, aiding clinical diagnosis and enhancing our understanding of EV evolution. PMID:26678286

  19. Protein Folding in Confined and Crowded Environments

    PubMed Central

    Zhou, Huan-Xiang

    2007-01-01

    Confinement and crowding are two major factors that can potentially impact protein folding in cellular environments. Theories based on considerations of excluded volumes predict disparate effects on protein folding stability for confinement and crowding: confinement can stabilize proteins by over 10kBT but crowding has a very modest effect on stability. On the other hand, confinement and crowding are both predicted to favor conformations of the unfolded state which are compact, and consequently may increase the folding rate. These predictions are largely borne out by experimental studies of protein folding under confined and crowded conditions in the test tube. Protein folding in cellular environments is further complicated by interactions with surrounding surfaces and other factors. Concerted theoretical modeling and test-tube and in vivo experiments promise to elucidate the complexity of protein folding in cellular environments. PMID:17719556

  20. Folding with thermal-mechanical feedback: Discussion

    NASA Astrophysics Data System (ADS)

    Treagus, Susan H.; Hudleston, Peter J.

    2009-07-01

    A recent paper in this Journal by Bruce Hobbs, Klaus Regenauer-Lieb and Alison Ord [Hobbs, B., Regenauer-Lieb, K., Ord, A., 2008. Folding with thermal-mechanical feedback. Journal of Structural Geology 30, 1572-1592] presents an alternative theory to the traditional Biot-Ramberg theory for folding of viscous rocks that involves non-equilibrium thermodynamics and thermal-mechanical feedback. The authors convey a strong message throughout their paper that the folds produced by this theoretical and numerical modelling are geologically realistic and provide a better explanation for many natural folds than the traditional theory. They promise the same approach for boudinage, and present this folding paper as part of a "unified framework for rock deformation processes". Readers of the Journal of Structural Geology might be led to conclude that this paper provides a good alternative model for folding of rocks. Our discussion will disagree, on four counts.

  1. Meiotic recombination mechanisms.

    PubMed

    Grelon, Mathilde

    2016-01-01

    Meiosis is a specialized cell division at the origin of the haploid cells that eventually develop into the gametes. It therefore lies at the heart of Mendelian heredity. Recombination and redistribution of the homologous chromosomes arising during meiosis constitute an important source of genetic diversity, conferring to meiosis a particularly important place in the evolution and the diversification of the species. Our understanding of the molecular mechanisms governing meiotic recombination has considerably progressed these last decades, benefiting from complementary approaches led on various model species. An overview of these mechanisms will be provided as well as a discussion on the implications of these recent discoveries. PMID:27180110

  2. Acquired retinal folds in the cat.

    PubMed

    MacMillan, A D

    1976-06-01

    Retinal folds were found in 5 cats. The apparent cause of the folding was varied: in 1 cat the folds appeared after a localized retinal detachment; in 2 cats the condition accompanied other intraocular abnormalities associated with feline infectious peritonitis; 1 cat had active keratitis, and the retinal changes were thought to have been injury related; and 1 cat, bilaterally affected, had chronic glomerulonephritis. PMID:945253

  3. [Design of a medical folding fridge].

    PubMed

    Sun, Jianjun; Wei, Jiancang; Wu, Taihu; Meng, Xingju

    2011-07-01

    This article introduces a design of a medical folding fridge, which consists of three major components, base, folding frame and insulated cover. The base has a cooling system. The frame and cover are expanded during normal use and folded during storage or transportation. The device is compact, durable, transportable and well environmental adaptable. The system design is proved proper and the temperature inside is reliable. It is very suitable for temperature sensitive supplies stored in the medical emergency field. PMID:22097750

  4. Dependence of Internal Friction on Folding Mechanism

    PubMed Central

    2016-01-01

    An outstanding challenge in protein folding is understanding the origin of “internal friction” in folding dynamics, experimentally identified from the dependence of folding rates on solvent viscosity. A possible origin suggested by simulation is the crossing of local torsion barriers. However, it was unclear why internal friction varied from protein to protein or for different folding barriers of the same protein. Using all-atom simulations with variable solvent viscosity, in conjunction with transition-path sampling to obtain reaction rates and analysis via Markov state models, we are able to determine the internal friction in the folding of several peptides and miniproteins. In agreement with experiment, we find that the folding events with greatest internal friction are those that mainly involve helix formation, while hairpin formation exhibits little or no evidence of friction. Via a careful analysis of folding transition paths, we show that internal friction arises when torsion angle changes are an important part of the folding mechanism near the folding free energy barrier. These results suggest an explanation for the variation of internal friction effects from protein to protein and across the energy landscape of the same protein. PMID:25721133

  5. COS Side 2 NUV MAMA Fold Test

    NASA Astrophysics Data System (ADS)

    Bacinski, John

    2013-10-01

    The performance of the MAMA microchannel plate can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the COS MAMA Fold Analysis {13128} during Cycle 20.This proposal is an exact duplication of nominal COS MAMA Fold Analysis {proposal 13128, Cycle 20}. Any changes 13128 or subsequent cycle submissions should be reflected in this proposal and vice versa.

  6. Protein Folding and Self-Organized Criticality

    NASA Astrophysics Data System (ADS)

    Bajracharya, Arun; Murray, Joelle

    Proteins are known to fold into tertiary structures that determine their functionality in living organisms. However, the complex dynamics of protein folding and the way they consistently fold into the same structures is not fully understood. Self-organized criticality (SOC) has provided a framework for understanding complex systems in various systems (earthquakes, forest fires, financial markets, and epidemics) through scale invariance and the associated power law behavior. In this research, we use a simple hydrophobic-polar lattice-bound computational model to investigate self-organized criticality as a possible mechanism for generating complexity in protein folding.

  7. Acclimation to temperature and irradiance modulates PSII charge recombination.

    PubMed

    Ivanov, A G; Sane, P V; Krol, M; Gray, G R; Balseris, A; Savitch, L V; Oquist, G; Hüner, N P A

    2006-05-15

    Acclimation of wild type and the chlorina F2 mutant of barley to either high light or low temperature results in a 2- to 3-fold increase in non-photochemical quenching which occurred independently of either energy-dependent quenching (qE), xanthophyll cycle-mediated antenna quenching or state transitions. Results of in vivo thermoluminescence measurements used to address this conundrum indicated that excitation pressure regulates the temperature gap for S(2)Q(B)(-) and S(2)Q(A)(-) charge recombinations within photosystem II reaction centers. This is discussed in terms of photoprotection through non-radiative charge recombination. PMID:16674953

  8. Effects of the rad52 gene on recombination in Saccharomyces cerevisiae

    SciTech Connect

    Prakash, S.; Prakash, L.; Burke, W.; Montelone, B.A.

    1980-01-01

    Effects of the rad 52 mutation in Saccharomyces cerevisiae on meiotic, ..gamma..-ray-induced, uv-induced and spontaneous mitotic recombination were studied. The rad52/rad52 diploids undergo premeiotic DNA synthesis; sporulation occurs but inviable spores are produced. Both intra and intergenic recombination during meiosis were examined in cells transferred from sporulation medium to vegetative medium at different time intervals. No intragenic recombination was observed at the his1-1/his1-315 and trp-5-2/trp5-48 heteroalleles. Gene-centromere recombination also was not observed in rad/52/rad52 diploids. No ..gamma..-ray- or uv-induced intragenic mitotic recombination is seen in rad52/rad52 diploids. The rate of spontaneous mitotic recombination is lowered five-fold at the his1-1/his1-315 and leu1-c/leu1-12 heteroalleles. Spontaneous reversion rates of both his1-1 and his1-315 were elevated 10 to 20 fold in rad52/rad52 diploids. The RAD52 gene function is required for spontaneous mitotic recombination, uv- and ..gamma..-ray-induced mitotic recombination and mitotic recombination.

  9. Recombination clumping factor during cosmic reionization

    SciTech Connect

    Kaurov, Alexander A.; Gnedin, Nickolay Y. E-mail: gnedin@fnal.gov

    2014-06-01

    We discuss the role of recombinations in the intergalactic medium, and the related concept of the clumping factor, during cosmic reionization. The clumping factor is, in general, a local quantity that depends on both the local overdensity and the scale below which the baryon density field can be assumed smooth. That scale, called the filtering scale, depends on over-density and local thermal history. We present a method for building a self-consistent analytical model of inhomogeneous reionization, assuming the linear growth rate of the density fluctuation, which simultaneously accounts for these effects. We show that taking into account the local clumping factor introduces significant corrections to the total recombination rate, compared to the model with a globally uniform clumping factor.

  10. Recombinant DNA for Teachers.

    ERIC Educational Resources Information Center

    Duvall, James G., III

    1992-01-01

    A science teacher describes his experience at a workshop to learn to teach the Cold Spring Harbor DNA Science Laboratory Protocols. These protocols lead students through processes for taking E. coli cells and transforming them into a new antibiotic resistant strain. The workshop featured discussions of the role of DNA recombinant technology in…

  11. Recombineering Pseudomonas syringae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we report the identification of functions that promote genomic recombination of linear DNA introduced into Pseudomonas cells by electroporation. The genes encoding these functions were identified in Pseudomonas syringae pv. syringae B728a based on similarity to the lambda Red Exo/Beta and RecE...

  12. Oligonucleotide recombination in bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Today, there are more than 1,500 completed or draft bacterial genome sequences available for public access. To functionally analyze these genomes and to test the hypotheses that are generated from the sequence information we require new and generically useful tools. Recombineering (genetic engineer...

  13. Overexpression and purification of folded domain of prostate cancer related proteins MSMB and PSA.

    PubMed

    Tiwary, Mohini; Agarwal, Nipanshu; Dinda, Amit; Yadav, Subhash C

    2016-05-01

    Overexpression of domains of a human protein using recombinant DNA technology has been challenging because individual domains intend to accumulate as non-soluble aggregate when expressed separately. Studies on identifying right sequences for a domain to be able to fold independently may help understand the folding pattern and underlying protein-engineering events to isolate the functional domains of a protein. In this report, individual domains of prostate cancer related biomarkers; MSMB and PSA were overexpressed in bacterial system and purified in their folded forms using affinity chromatography. The western blotting experiment using domain specific antibodies further confirmed these proteins. The designed nucleotide sequences domains were truncated using fold index software and folding were predicted by phyre2 and I-TASSER software. Other parameters were optimized for their overexpression and purification using Co-NTA affinity chromatography. Purified domains of each protein showed secondary structures such as α + β type for PSA, α/β and β type for the each domains of PSA and MSMB respectively. This is the first report on producing PSA and MSMB individual domains in functional folded forms. This study may help produce the folded domain of many such proteins to be used for better diagnostic purpose. PMID:27038170

  14. Combining in Vitro Folding with Cell Free Protein Synthesis for Membrane Protein Expression.

    PubMed

    Focke, Paul J; Hein, Christopher; Hoffmann, Beate; Matulef, Kimberly; Bernhard, Frank; Dötsch, Volker; Valiyaveetil, Francis I

    2016-08-01

    Cell free protein synthesis (CFPS) has emerged as a promising methodology for protein expression. While polypeptide production is very reliable and efficient using CFPS, the correct cotranslational folding of membrane proteins during CFPS is still a challenge. In this contribution, we describe a two-step protocol in which the integral membrane protein is initially expressed by CFPS as a precipitate followed by an in vitro folding procedure using lipid vesicles for converting the protein precipitate to the correctly folded protein. We demonstrate the feasibility of using this approach for the K(+) channels KcsA and MVP and the amino acid transporter LeuT. We determine the crystal structure of the KcsA channel obtained by CFPS and in vitro folding to show the structural similarity to the cellular expressed KcsA channel and to establish the feasibility of using this two-step approach for membrane protein production for structural studies. Our studies show that the correct folding of these membrane proteins with complex topologies can take place in vitro without the involvement of the cellular machinery for membrane protein biogenesis. This indicates that the folding instructions for these complex membrane proteins are contained entirely within the protein sequence. PMID:27384110

  15. Retinal and Choroidal Folds in Papilledema

    PubMed Central

    Sibony, Patrick A.; Kupersmith, Mark J.; Feldon, Steven E.; Wang, Jui-Kai; Garvin, Mona

    2015-01-01

    Purpose To determine the frequency, patterns, associations, and biomechanical implications of retinal and choroidal folds in papilledema due to idiopathic intracranial hypertension (IIH). Methods Retinal and choroidal folds were studied in patients enrolled in the IIH Treatment Trial using fundus photography (n = 165 study eyes) and spectral-domain optical coherence tomography (SD-OCT; n = 125). We examined the association between folds and peripapillary shape, retinal nerve fiber layer (RNFL) thickness, disc volume, Frisén grade, acuity, perimetric mean deviation, intraocular pressure, intracranial pressure, and refractive error. Results We identified three types of folds in IIH patients with papilledema: peripapillary wrinkles (PPW), retinal folds (RF), and choroidal folds (CF). Frequency, with photos, was 26%, 19%, and 1%, respectively; SD-OCT frequency was 46%, 47%, and 10%. At least one type of fold was present in 41% of patients with photos and 73% with SD-OCT. Spectral-domain OCT was more sensitive. Structural parameters related to the severity of papilledema were associated with PPW and RF, whereas anterior deformation of the peripapillary RPE/basement membrane layer was associated with CF and RF. Folds were not associated with vision loss at baseline. Conclusions Folds in papilledema are biomechanical signs of stress/strain on the optic nerve head and load-bearing structures induced by intracranial hypertension. Folds are best imaged with SD-OCT. The patterns of retinal and choroidal folds are the products of a complex interplay between the degree of papilledema and anterior deformation of the load-bearing structures (sclera and possibly the lamina cribrosa), both modulated by structural geometry and material properties of the optic nerve head. (ClinicalTrials.gov number, NCT01003639.) PMID:26335066

  16. Guiding the folding pathway of DNA origami

    NASA Astrophysics Data System (ADS)

    Dunn, Katherine E.; Dannenberg, Frits; Ouldridge, Thomas E.; Kwiatkowska, Marta; Turberfield, Andrew J.; Bath, Jonathan

    2015-09-01

    DNA origami is a robust assembly technique that folds a single-stranded DNA template into a target structure by annealing it with hundreds of short `staple' strands. Its guiding design principle is that the target structure is the single most stable configuration. The folding transition is cooperative and, as in the case of proteins, is governed by information encoded in the polymer sequence. A typical origami folds primarily into the desired shape, but misfolded structures can kinetically trap the system and reduce the yield. Although adjusting assembly conditions or following empirical design rules can improve yield, well-folded origami often need to be separated from misfolded structures. The problem could in principle be avoided if assembly pathway and kinetics were fully understood and then rationally optimized. To this end, here we present a DNA origami system with the unusual property of being able to form a small set of distinguishable and well-folded shapes that represent discrete and approximately degenerate energy minima in a vast folding landscape, thus allowing us to probe the assembly process. The obtained high yield of well-folded origami structures confirms the existence of efficient folding pathways, while the shape distribution provides information about individual trajectories through the folding landscape. We find that, similarly to protein folding, the assembly of DNA origami is highly cooperative; that reversible bond formation is important in recovering from transient misfoldings; and that the early formation of long-range connections can very effectively enforce particular folds. We use these insights to inform the design of the system so as to steer assembly towards desired structures. Expanding the rational design process to include the assembly pathway should thus enable more reproducible synthesis, particularly when targeting more complex structures. We anticipate that this expansion will be essential if DNA origami is to continue its

  17. Microbial host selection and periplasmic folding in Escherichia coli affect the biochemical characteristics of a cutinase from Fusarium oxysporum.

    PubMed

    Nikolaivits, Efstratios; Kokkinou, Areti; Karpusas, Michael; Topakas, Evangelos

    2016-11-01

    A cutinase from the mesophilic fungus Fusarium oxysporum (FoCut5a) was functionally expressed in different hosts and their recombinant products were characterized regarding their activity, thermostability and tolerance in organic solvents. The cutinase gene cut5a was expressed in the BL21 and Origami 2 Escherichia coli strains and the resulting protein was folded either in the cytoplasm or in the periplasmic space, with the aim of correct formation of disulfide bonds. Increase of thermostability occurred when the enzyme was expressed in the oxidative cytoplasm of Origami 2. All expression products showed maximum enzyme activity at 40 °C, while thermostability increased by 73% when expressed in the Origami strain compared to the cytoplasmic expression in BL21 cells. The melting temperature of each protein construct was determined by fluorescence spectroscopy showing an additional transition at about 63 °C for enzymes expressed in Origami cells, indicating the co-presence of a different thermostable species. Kinetic studies performed on three p-nitrophenyl synthetic esters of aliphatic acids (C2, C4, C12) indicated that this cutinase shows higher affinity for the hydrolysis of the butyl ester. PMID:27302766

  18. From local structure to a global framework: recognition of protein folds

    PubMed Central

    Joseph, Agnel Praveen; de Brevern, Alexandre G.

    2014-01-01

    Protein folding has been a major area of research for many years. Nonetheless, the mechanisms leading to the formation of an active biological fold are still not fully apprehended. The huge amount of available sequence and structural information provides hints to identify the putative fold for a given sequence. Indeed, protein structures prefer a limited number of local backbone conformations, some being characterized by preferences for certain amino acids. These preferences largely depend on the local structural environment. The prediction of local backbone conformations has become an important factor to correctly identifying the global protein fold. Here, we review the developments in the field of local structure prediction and especially their implication in protein fold recognition. PMID:24740960

  19. Genomic homologous recombination in planta.

    PubMed Central

    Gal, S; Pisan, B; Hohn, T; Grimsley, N; Hohn, B

    1991-01-01

    A system for monitoring intrachromosomal homologous recombination in whole plants is described. A multimer of cauliflower mosaic virus (CaMV) sequences, arranged such that CaMV could only be produced by recombination, was integrated into Brassica napus nuclear DNA. This set-up allowed scoring of recombination events by the appearance of viral symptoms. The repeated homologous regions were derived from two different strains of CaMV so that different recombinant viruses (i.e. different recombination events) could be distinguished. In most of the transgenic plants, a single major virus species was detected. About half of the transgenic plants contained viruses of the same type, suggesting a hotspot for recombination. The remainder of the plants contained viruses with cross-over sites distributed throughout the rest of the homologous sequence. Sequence analysis of two recombinant molecules suggest that mismatch repair is linked to the recombination process. Images PMID:2026150

  20. Energy Landscapes and Solved Protein Folding Problems

    NASA Astrophysics Data System (ADS)

    Wolynes, Peter

    2004-03-01

    Peter G. Wolynes Center for Theoretical Biological Physics Department of Chemistry and Biochemistry and Physics University of California, San Diego La Jolla, CA 92093-0371 Fifteen years ago, how proteins folded into organized structures on the basis of their sequence was a great mystery. By characterizing the energy landscapes of proteins with tools from the statistical mechanics of disordered systems like spin glasses, a "new view' of the folding process became possible. Energy landscape theory provided an incentive to pursue heroic new experiments and to carry out difficult computer simulations addressing protein folding mechanisms. Many aspects of folding kinetics revealed by these studies can be quantitatively understood using the simple idea that the topography of the energy landscape is that of a "rugged funnel". Energy landscape theory provided a quantitative means of characterizing which amino acid sequences can rapidly fold. Algorithms based on energy landscape theory have been used to successfully design novel sequences that fold to a given structure in the laboratory. Energy landscape ideas have begun to transform the prediction of protein structure from sequence data from being an art to being a science. The success of energy landscape- based algorithms in predicting protein structure from sequence will be highlighted. While there is still much to learn about folding mechanisms and much work to do achieving universally reliable structure prediction, many parts of what used to be called "the protein folding problem" can now be considered solved.

  1. Stochastic Resonance in Protein Folding Dynamics.

    PubMed

    Davtyan, Aram; Platkov, Max; Gruebele, Martin; Papoian, Garegin A

    2016-05-01

    Although protein folding reactions are usually studied under static external conditions, it is likely that proteins fold in a locally fluctuating cellular environment in vivo. To mimic such behavior in in vitro experiments, the local temperature of the solvent can be modulated either harmonically or using correlated noise. In this study, coarse-grained molecular simulations are used to investigate these possibilities, and it is found that both periodic and correlated random fluctuations of the environment can indeed accelerate folding kinetics if the characteristic frequencies of the applied fluctuations are commensurate with the internal timescale of the folding reaction; this is consistent with the phenomenon of stochastic resonance observed in many other condensed-matter processes. To test this theoretical prediction, the folding dynamics of phosphoglycerate kinase under harmonic temperature fluctuations are experimentally probed using Förster resonance energy transfer fluorescence measurements. To analyze these experiments, a combination of theoretical approaches is developed, including stochastic simulations of folding kinetics and an analytical mean-field kinetic theory. The experimental observations are consistent with the theoretical predictions of stochastic resonance in phosphoglycerate kinase folding. When combined with an alternative experiment on the protein VlsE using a power spectrum analysis, elaborated in Dave et al., ChemPhysChem 2016, 10.1002/cphc.201501041, the overall data overwhelmingly point to the experimental confirmation of stochastic resonance in protein folding dynamics. PMID:26992148

  2. Protein folding: When ribosomes pick the structure

    NASA Astrophysics Data System (ADS)

    Sivertsson, Elin M.; Itzhaki, Laura S.

    2014-05-01

    Anfinsen's principle tells us that the folded structure of a protein is determined solely by its sequence. Now, it has been shown that the rate at which a polypeptide chain is synthesized in the cell can affect which of two alternative folded structures it adopts.

  3. Folding Polyominoes from One Level to Two

    ERIC Educational Resources Information Center

    Frederickson, Greg N.

    2011-01-01

    For any given polyomino, is it possible to cut it into pieces and then hinge the pieces, so that the polyomino folds up into a similar version of itself but two levels thick? While we don't know how to do this for every polyomino, the article does show how to cut, hinge, and fold polyominoes from several infinite classes, providing an…

  4. Truss Structure Could Be Folded For Transport

    NASA Technical Reports Server (NTRS)

    Theer, Douglas S.

    1996-01-01

    Proposed truss structure comprises cubical bays and folded for compactness during transport. When folded, truss 1/25.6 as long as when fully extended. Conceived for transport and deployment in outerspace, suitable for terrestrial structures that must be transported compactly and erected quickly.

  5. Transformation-associated recombination between diverged and homologous DNA repeats is induced by strand breaks

    SciTech Connect

    Larionov, V.; Kouprina, N. |; Edlarov, M. |; Perkins, E.; Porter, G.; Resnick, M.A.

    1993-12-31

    Rearrangement and deletion within plasmid DNA is commonly observed during transformation. We have examined the mechanisms of transformation-associated recombination in the yeast Saccharomyces cerevisiae using a plasmid system which allowed the effects of physical state and/or extent of homology on recombination to be studied. The plasmid contains homologous or diverged (19%) DNA repeats separated by a genetically detectable color marker. Recombination during transformation for covalently closed circular plasmids was over 100-fold more frequent than during mitotic growth. The frequency of recombination is partly dependent on the method of transformation in that procedures involving lithium acetate or spheroplasting yield higher frequencies than electroporation. When present in the repeats, unique single-strand breaks that are ligatable, as well as double-strand breaks, lead to high levels of recombination between diverged and identical repeats. The transformation-associated recombination between repeat DNA`s is under the influence of the RADS2, RADI and the RNCI genes,

  6. Cooperative Tertiary Interaction Network Guides RNA Folding

    SciTech Connect

    Behrouzi, Reza; Roh, Joon Ho; Kilburn, Duncan; Briber, R.M.; Woodson, Sarah A.

    2013-04-08

    Noncoding RNAs form unique 3D structures, which perform many regulatory functions. To understand how RNAs fold uniquely despite a small number of tertiary interaction motifs, we mutated the major tertiary interactions in a group I ribozyme by single-base substitutions. The resulting perturbations to the folding energy landscape were measured using SAXS, ribozyme activity, hydroxyl radical footprinting, and native PAGE. Double- and triple-mutant cycles show that most tertiary interactions have a small effect on the stability of the native state. Instead, the formation of core and peripheral structural motifs is cooperatively linked in near-native folding intermediates, and this cooperativity depends on the native helix orientation. The emergence of a cooperative interaction network at an early stage of folding suppresses nonnative structures and guides the search for the native state. We suggest that cooperativity in noncoding RNAs arose from natural selection of architectures conducive to forming a unique, stable fold.

  7. Molecular gymnastics: serpin structure, folding and misfolding.

    PubMed

    Whisstock, James C; Bottomley, Stephen P

    2006-12-01

    The native state of serpins represents a long-lived intermediate or metastable structure on the serpin folding pathway. Upon interaction with a protease, the serpin trap is sprung and the molecule continues to fold into a more stable conformation. However, thermodynamic stability can also be achieved through alternative, unproductive folding pathways that result in the formation of inactive conformations. Our increasing understanding of the mechanism of protease inhibition and the dynamics of native serpin structures has begun to reveal how evolution has harnessed the actual process of protein folding (rather than the final folded outcome) to elegantly achieve function. The cost of using metastability for function, however, is an increased propensity for misfolding. PMID:17079131

  8. Protein folding at single-molecule resolution

    PubMed Central

    Ferreon, Allan Chris M.; Deniz, Ashok A.

    2011-01-01

    The protein folding reaction carries great significance for cellular function and hence continues to be the research focus of a large interdisciplinary protein science community. Single-molecule methods are providing new and powerful tools for dissecting the mechanisms of this complex process by virtue of their ability to provide views of protein structure and dynamics without associated ensemble averaging. This review briefly introduces common FRET and force methods, and then explores several areas of protein folding where single-molecule experiments have yielded insights. These include exciting new information about folding landscapes, dynamics, intermediates, unfolded ensembles, intrinsically disordered proteins, assisted folding and biomechanical unfolding. Emerging and future work is expected to include advances in single-molecule techniques aimed at such investigations, and increasing work on more complex systems from both the physics and biology standpoints, including folding and dynamics of systems of interacting proteins and of proteins in cells and organisms. PMID:21303706

  9. Fan-fold shielded electrical leads

    DOEpatents

    Rohatgi, Rajeev R.; Cowan, Thomas E.

    1996-01-01

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

  10. Visualizing chaperone-assisted protein folding.

    PubMed

    Horowitz, Scott; Salmon, Loïc; Koldewey, Philipp; Ahlstrom, Logan S; Martin, Raoul; Quan, Shu; Afonine, Pavel V; van den Bedem, Henry; Wang, Lili; Xu, Qingping; Trievel, Raymond C; Brooks, Charles L; Bardwell, James C A

    2016-07-01

    Challenges in determining the structures of heterogeneous and dynamic protein complexes have greatly hampered past efforts to obtain a mechanistic understanding of many important biological processes. One such process is chaperone-assisted protein folding. Obtaining structural ensembles of chaperone-substrate complexes would ultimately reveal how chaperones help proteins fold into their native state. To address this problem, we devised a new structural biology approach based on X-ray crystallography, termed residual electron and anomalous density (READ). READ enabled us to visualize even sparsely populated conformations of the substrate protein immunity protein 7 (Im7) in complex with the Escherichia coli chaperone Spy, and to capture a series of snapshots depicting the various folding states of Im7 bound to Spy. The ensemble shows that Spy-associated Im7 samples conformations ranging from unfolded to partially folded to native-like states and reveals how a substrate can explore its folding landscape while being bound to a chaperone. PMID:27239796

  11. Similarities between protein folding and granular jamming

    PubMed Central

    Jose, Prasanth P; Andricioaei, Ioan

    2012-01-01

    Grains and glasses, widely different materials, arrest their motions upon decreasing temperature and external load, respectively, in common ways, leading to a universal jamming phase diagram conjecture. However, unified theories are lacking, mainly because of the disparate nature of the particle interactions. Here we demonstrate that folded proteins exhibit signatures common to both glassiness and jamming by using temperature- and force-unfolding molecular dynamics simulations. Upon folding, proteins develop a peak in the interatomic force distributions that falls on a universal curve with experimentally measured forces on jammed grains and droplets. Dynamical signatures are found as a dramatic slowdown of stress relaxation upon folding. Together with granular similarities, folding is tied not just to the jamming transition, but a more nuanced picture of anisotropy, preparation protocol and internal interactions emerges. Results have implications for designing stable polymers and can open avenues to link protein folding to jamming theory. PMID:23093180

  12. Single-molecule Studies of Riboswitch Folding

    PubMed Central

    Savinov, Andrew; Perez, Christian F.; Block, Steven M.

    2014-01-01

    The folding dynamics of riboswitches are central to their ability to modulate gene expression in response to environmental cues. In most cases, a structural competition between the formation of a ligand-binding aptamer and an expression platform (or some other competing off-state) determines the regulatory outcome. Here, we review single-molecule studies of riboswitch folding and function, predominantly carried out using single-molecule FRET or optical trapping approaches. Recent results have supplied new insights into riboswitch folding energy landscapes, the mechanisms of ligand binding, the roles played by divalent ions, the applicability of hierarchical folding models, and kinetic vs. thermodynamic control schemes. We anticipate that future work, based on improved data sets and potentially combining multiple experimental techniques, will enable the development of more complete models for complex RNA folding processes. PMID:24727093

  13. Radiative transfer effects in primordial hydrogen recombination

    SciTech Connect

    Ali-Haiemoud, Yacine; Hirata, Christopher M.; Grin, Daniel

    2010-12-15

    The calculation of a highly accurate cosmological recombination history has been the object of particular attention recently, as it constitutes the major theoretical uncertainty when predicting the angular power spectrum of cosmic microwave background anisotropies. Lyman transitions, in particular the Lyman-{alpha} line, have long been recognized as one of the bottlenecks of recombination, due to their very low escape probabilities. The Sobolev approximation does not describe radiative transfer in the vicinity of Lyman lines to a sufficient degree of accuracy, and several corrections have already been computed in other works. In this paper, we compute the impact of some radiative transfer effects that were previously ignored, or for which previous treatments were incomplete. First, the effect of Thomson scattering in the vicinity of the Lyman-{alpha} line is evaluated, using a full redistribution kernel incorporated into a radiative transfer code. The effect of feedback of distortions generated by the optically thick deuterium Lyman-{alpha} line blueward of the hydrogen line is investigated with an analytic approximation. It is shown that both effects are negligible during cosmological hydrogen recombination. Second, the importance of high-lying, nonoverlapping Lyman transitions is assessed. It is shown that escape from lines above Ly{gamma} and frequency diffusion in Ly{beta} and higher lines can be neglected without loss of accuracy. Third, a formalism generalizing the Sobolev approximation is developed to account for the overlap of the high-lying Lyman lines, which is shown to lead to negligible changes to the recombination history. Finally, the possibility of a cosmological hydrogen recombination maser is investigated. It is shown that there is no such maser in the purely radiative treatment presented here.

  14. Recombinant medaka (Oryzias melastigmus) pro-hepcidin: Multifunctional characterization.

    PubMed

    Cai, Ling; Cai, Jing-Jing; Liu, Hai-Peng; Fan, Dan-Qing; Peng, Hui; Wang, Ke-Jian

    2012-02-01

    Recently, two hepcidin variant genes (Om-hep1 and Om-hep2) were identified in a model fish marine medaka and both were highly induced in vivo with bacterial challenge, suggesting that the medaka hepcidin may have a similar function to other reported teleostean hepcidins. In the present study, the antibacterial, antiviral and antitumor activities of Om-hep1 were determined using its synthetic and recombinant pro-peptides. The recombinant pro-hepcidin1 was expressed in Escherichia coli and an effective method to produce recombinant Pro-Omhep1 was developed in order to obtain a right folded structure. The results showed that both the synthetic mature peptide and recombinant pro-peptide had similar antibacterial activity against Gram-positive and negative bacteria. In particular, both the synthetic mature Om-hep1 and recombinant Pro-Omhep1 inhibited the viral replication of white spot syndrome virus in the hematopoietic tissue cells of the crayfish Cherax quadricarinatus. Om-hep1 also presented antitumor activity on the cultured human hepatocellular carcinoma cells. In addition, the antimicrobial mechanism of Om-hep1 was measured and it was found that Om-hep1 was likely to be non-membranolytic. The recombinant Pro-Omhep1 performed better biological activity compared to the synthetic mature Om-hep1. This study suggested that Om-hep1 was likely to be an important multifunction protein involved in various resistance actions in the marine medaka immune system. PMID:22051539

  15. Immunoglobulin/Myc recombinations in murine Peyer's patch follicles.

    PubMed

    Müller, J R; Mushinski, E B; Williams, J A; Hausner, P F

    1997-09-01

    Immunoglobulin heavy chain (Igh)/Myc recombinations are a hallmark of pristane-induced mouse plasmacytomas but are also frequently found in non-tumorous tissues. Here we describe for the first time a PCR-based technique for detecting fusions between Igh mu or Igh alpha and Myc in situ. Igh/Myc recombinations were found in transplanted and primary plasmacytomas. In addition, the gut-associated lymphoid tissues of plasmacytoma-free BALB/c mice were investigated for the presence of Igh/Myc fusions. Igh/Myc rearrangements were detected in Peyer's patch follicles and in the intestinal lamina propria both in normal mice and in mice shortly after pristane treatment. The sequence analysis showed that i) three to five different Igh/Myc hybrid sequences were present in individual follicles, ii) Igh/Myc recombinations can be subjected to additional switch recombinations as shown by related sequences in neighboring cells, and iii) cells harboring these rearrangements migrate into the adjacent lamina propria. The results indicate that Peyer's patches are a hyper-recombinogenic tissue. Myc recombination-positive cells are present in at least 100-fold more frequently than expected if recombinations were random, which suggests that this kind of trans-chromosomal rearrangement may be targeted. PMID:9290947

  16. Experimental and In Silico Modelling Analyses of the Gene Expression Pathway for Recombinant Antibody and By-Product Production in NS0 Cell Lines

    PubMed Central

    Mead, Emma J.; Chiverton, Lesley M.; Spurgeon, Sarah K.; Martin, Elaine B.; Montague, Gary A.; Smales, C. Mark; von der Haar, Tobias

    2012-01-01

    Monoclonal antibodies are commercially important, high value biotherapeutic drugs used in the treatment of a variety of diseases. These complex molecules consist of two heavy chain and two light chain polypeptides covalently linked by disulphide bonds. They are usually expressed as recombinant proteins from cultured mammalian cells, which are capable of correctly modifying, folding and assembling the polypeptide chains into the native quaternary structure. Such recombinant cell lines often vary in the amounts of product produced and in the heterogeneity of the secreted products. The biological mechanisms of this variation are not fully defined. Here we have utilised experimental and modelling strategies to characterise and define the biology underpinning product heterogeneity in cell lines exhibiting varying antibody expression levels, and then experimentally validated these models. In undertaking these studies we applied and validated biochemical (rate-constant based) and engineering (nonlinear) models of antibody expression to experimental data from four NS0 cell lines with different IgG4 secretion rates. The models predict that export of the full antibody and its fragments are intrinsically linked, and cannot therefore be manipulated individually at the level of the secretory machinery. Instead, the models highlight strategies for the manipulation at the precursor species level to increase recombinant protein yields in both high and low producing cell lines. The models also highlight cell line specific limitations in the antibody expression pathway. PMID:23071804

  17. Experimental and in silico modelling analyses of the gene expression pathway for recombinant antibody and by-product production in NS0 cell lines.

    PubMed

    Mead, Emma J; Chiverton, Lesley M; Spurgeon, Sarah K; Martin, Elaine B; Montague, Gary A; Smales, C Mark; von der Haar, Tobias

    2012-01-01

    Monoclonal antibodies are commercially important, high value biotherapeutic drugs used in the treatment of a variety of diseases. These complex molecules consist of two heavy chain and two light chain polypeptides covalently linked by disulphide bonds. They are usually expressed as recombinant proteins from cultured mammalian cells, which are capable of correctly modifying, folding and assembling the polypeptide chains into the native quaternary structure. Such recombinant cell lines often vary in the amounts of product produced and in the heterogeneity of the secreted products. The biological mechanisms of this variation are not fully defined. Here we have utilised experimental and modelling strategies to characterise and define the biology underpinning product heterogeneity in cell lines exhibiting varying antibody expression levels, and then experimentally validated these models. In undertaking these studies we applied and validated biochemical (rate-constant based) and engineering (nonlinear) models of antibody expression to experimental data from four NS0 cell lines with different IgG4 secretion rates. The models predict that export of the full antibody and its fragments are intrinsically linked, and cannot therefore be manipulated individually at the level of the secretory machinery. Instead, the models highlight strategies for the manipulation at the precursor species level to increase recombinant protein yields in both high and low producing cell lines. The models also highlight cell line specific limitations in the antibody expression pathway. PMID:23071804

  18. Fold interaction and wavelength selection in 3D models of multilayer detachment folding

    NASA Astrophysics Data System (ADS)

    Fernandez, Naiara; Kaus, Boris J. P.

    2014-09-01

    Many fold-and-thrust belts are dominated by folding and exhibit a fairly regular fold-spacing. Yet, in map-view, the aspect ratio of doubly-plunging anticlines varies considerably from very elongated, and sometimes slightly curved, cylindrical folds to nearly circular, dome-like structures. In addition, the fold spacing often varies significantly around an average value. So far, it remains unclear whether these features are consistent with a folding instability. Therefore, we here study the dynamics of multilayer detachment folding, process by which shortening can be accommodated in thin-skinned fold-and-thrust belts. We start by analysing the physics of this process by using both a semi-analytical thick plate theory and numerical simulations. Results show that several different folding modes occur, about half of which are affected by gravity and have a wavelength that depends on the background deformation rate. Non-dimensional expressions are derived that predict the dominant wavelength and growth rate of each of these folding modes and mechanical phase diagrams are presented that illustrate the applicability of each of the modes. Next, we perform 3D simulations and compare the results with those of 2D models and analytical theory. Both 2D and 3D numerical simulations have wavelengths that are in good agreement with the analytical predictions. In the high-resolution 3D simulations the lateral growth of folds is studied, in particular with respect to fold segment interactions and evolution of fold width-length aspect ratio. The numerical simulations show a number of similarities with the Fars region of the Zagros fold-and-thrust belt including a large range of fold aspect ratio and a normally distributed fold wavelength around a dominant one.

  19. Mechanisms of Oxidative Protein Folding in the Bacterial Cell Envelope

    PubMed Central

    2010-01-01

    Abstract Disulfide-bond formation is important for the correct folding of a great number of proteins that are exported to the cell envelope of bacteria. Bacterial cells have evolved elaborate systems to promote the joining of two cysteines to form a disulfide bond and to repair misoxidized proteins. In the past two decades, significant advances have occurred in our understanding of the enzyme systems (DsbA, DsbB, DsbC, DsbG, and DsbD) used by the gram-negative bacterium Escherichia coli to ensure that correct pairs of cysteines are joined during the process of protein folding. However, a number of fundamental questions about these processes remain, especially about how they occur inside the cell. In addition, recent recognition of the increasing diversity among bacteria in the disulfide bond–forming capacity and in the systems for introducing disulfide bonds into proteins is raising new questions. We review here the marked progress in this field and discuss important questions that remain for future studies. Antioxid. Redox Signal. 13, 1231–1246. PMID:20367276

  20. Folding kinematics expressed in fracture patterns: An example from the Anti-Atlas fold belt, Morocco

    NASA Astrophysics Data System (ADS)

    Ismat, Zeshan

    2008-11-01

    The Anti-Atlas fold belt, Morocco, formed during the same Variscan collisional event that produced the Valley-and-Ridge fold-thrust belt of the Appalachian mountains. Both are external belts of the Appalachian-Ouachita-Mauritanides chain and at the map scale have very similar topographic expressions. The Anti-Atlas, however, consists of map-scale folds that are buckle-related, detachment folds, whereas the Valley-and-Ridge folds developed in response to imbricate thrusting. For this reason, the Anti-Atlas is referred to as a fold belt rather than a fold-thrust belt. This paper examines Variscan folding processes in the Anti-Atlas Mountains. Folding in some layers occurred by sliding along a penetrative network of mesoscale fractures, i.e. cataclastic flow, during buckling. Layer-parallel shortening fractures were reactivated in the later stages of folding to accommodate limb rotation. Although 'boutonnieres', i.e. basement uplifts, punctuate the fold belt, the fracture patterns indicate that the uplifts failed to provide any 'bending' component. Folding is also interpreted to occur under low to moderate confining pressures because the fracture network includes conjugate shear fractures with very small (˜20°) dihedral angles.

  1. Recombinant vaccines against leptospirosis.

    PubMed

    Dellagostin, Odir A; Grassmann, André A; Hartwig, Daiane D; Félix, Samuel R; da Silva, Éverton F; McBride, Alan J A

    2011-11-01

    Leptospirosis is an important neglected infectious disease that occurs in urban environments, as well as in rural regions worldwide. Rodents, the principal reservoir hosts of pathogenic Leptospira spp., and other infected animals shed the bacteria in their urine. During occupational or even recreational activities, humans that come into direct contact with infected animals or with a contaminated environment, particularly water, are at risk of infection. Prevention of urban leptospirosis is largely dependent on sanitation measures that are often difficult to implement, especially in developing countries. Vaccination with inactivated whole-cell preparations (bacterins) has limited efficacy due to the wide antigenic variation of the pathogen. Intensive efforts towards developing improved recombinant vaccines are ongoing. During the last decade, many reports on the evaluation of recombinant vaccines have been published. Partial success has been obtained with some surface-exposed protein antigens. The combination of protective antigens and new adjuvants or delivery systems may result in the much-needed effective vaccine. PMID:22048111

  2. Recombinant influenza vaccines.

    PubMed

    Sedova, E S; Shcherbinin, D N; Migunov, A I; Smirnov, Iu A; Logunov, D Iu; Shmarov, M M; Tsybalova, L M; Naroditskiĭ, B S; Kiselev, O I; Gintsburg, A L

    2012-10-01

    This review covers the problems encountered in the construction and production of new recombinant influenza vaccines. New approaches to the development of influenza vaccines are investigated; they include reverse genetics methods, production of virus-like particles, and DNA- and viral vector-based vaccines. Such approaches as the delivery of foreign genes by DNA- and viral vector-based vaccines can preserve the native structure of antigens. Adenoviral vectors are a promising gene-delivery platform for a variety of genetic vaccines. Adenoviruses can efficiently penetrate the human organism through mucosal epithelium, thus providing long-term antigen persistence and induction of the innate immune response. This review provides an overview of the practicability of the production of new recombinant influenza cross-protective vaccines on the basis of adenoviral vectors expressing hemagglutinin genes of different influenza strains. PMID:23346377

  3. Site directed recombination

    DOEpatents

    Jurka, Jerzy W.

    1997-01-01

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  4. NADP(+) binding effects tryptophan accessibility, folding and stability of recombinant B. malayi G6PD.

    PubMed

    Verma, Anita; Chandra, Sharat; Suthar, Manish Kumar; Doharey, Pawan Kumar; Siddiqi, Mohammad Imran; Saxena, Jitendra Kumar

    2016-04-01

    Brugia malayi Glucose 6-phosphate dehydrogenase apoenzyme (BmG6PD) was expressed and purified by affinity chromatography to study the differences in kinetic properties of enzyme and the effect of the cofactor NADP(+) binding on enzyme stability. The presence of cofactor NADP(+) influenced the tertiary structure of enzyme due to significant differences in the tryptophan microenvironment. However, NADP(+) binding have no effect on secondary structure of the enzyme. Quenching with acrylamide indicated that two or more tryptophan residues became accessible upon cofactor binding. Unfolding and cross linking study of BmG6PD showed that NADP(+) stabilized the protein in presence of high concentration of urea/GdmCl. A homology model of BmG6PD constructed using human G6PD (PDB id: 2BH9) as a template indicated 34% α-helix, 19% β-sheet and 47% random coil conformations in the predicted model of the enzyme. In the predicted model binding of NADP(+) to BmG6PD was less tight with the structural sites (-10.96kJ/mol binding score) as compared with the coenzyme site (-15.47kJ/mol binding score). PMID:26763177

  5. Quantification of a Helical Origami Fold

    NASA Astrophysics Data System (ADS)

    Dai, Eric; Han, Xiaomin; Chen, Zi

    2015-03-01

    Origami, the Japanese art of paper folding, is traditionally viewed as an amusing pastime and medium of artistic expression. However, in recent years, origami has served as a source of inspiration for innovations in science and engineering. Here, we present the geometric and mechanical properties of a twisting origami fold. The origami structure created by the fold exhibits several interesting properties, including rigid foldibility, local bistability and finely tunable helical coiling, with control over pitch, radius and handedness of the helix. In addition, the pattern generated by the fold closely mimics the twist buckling patterns shown by thin materials, for example, a mobius strip. We use six parameters of the twisting origami pattern to generate a fully tunable graphical model of the fold. Finally, we present a mathematical model of the local bistability of the twisting origami fold. Our study elucidates the mechanisms behind the helical coiling and local bistability of the twisting origami fold, with potential applications in robotics and deployable structures. Acknowledgment to Branco Weiss Fellowship for funding.

  6. The nature of protein folding pathways.

    PubMed

    Englander, S Walter; Mayne, Leland

    2014-11-11

    How do proteins fold, and why do they fold in that way? This Perspective integrates earlier and more recent advances over the 50-y history of the protein folding problem, emphasizing unambiguously clear structural information. Experimental results show that, contrary to prior belief, proteins are multistate rather than two-state objects. They are composed of separately cooperative foldon building blocks that can be seen to repeatedly unfold and refold as units even under native conditions. Similarly, foldons are lost as units when proteins are destabilized to produce partially unfolded equilibrium molten globules. In kinetic folding, the inherently cooperative nature of foldons predisposes the thermally driven amino acid-level search to form an initial foldon and subsequent foldons in later assisted searches. The small size of foldon units, ∼ 20 residues, resolves the Levinthal time-scale search problem. These microscopic-level search processes can be identified with the disordered multitrack search envisioned in the "new view" model for protein folding. Emergent macroscopic foldon-foldon interactions then collectively provide the structural guidance and free energy bias for the ordered addition of foldons in a stepwise pathway that sequentially builds the native protein. These conclusions reconcile the seemingly opposed new view and defined pathway models; the two models account for different stages of the protein folding process. Additionally, these observations answer the "how" and the "why" questions. The protein folding pathway depends on the same foldon units and foldon-foldon interactions that construct the native structure. PMID:25326421

  7. The recombination epoch revisited

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    1989-01-01

    Previous studies of cosmological recombination have shown that this process produces as a by-product a highly superthermal population of Ly-alpha photons which retard completion of recombination. Cosmological redshifting was thought to determine the frequency distribution of the photons, while two-photon decay of hydrogen's 2s state was thought to control their numbers. It is shown here that frequency diffusion due to photon scattering dominate the cosmological redshift in the frequency range near line center which fixes the ratio of ground state to excited state population, while incoherent scattering into the far-red damping wing effectively destroys Ly-alpha photons as a rate which is competitive with two-photon decay. The former effect tends to hold back recombination, while the latter tends to accelerate it; the net results depends on cosmological parameters, particularly the combination Omega(b) h/sq rt (2q0), where Omega(b) is the fraction of the critical density provided by baryons.

  8. Meiotic recombination at the Lmp2 hotspot tolerates minor sequence divergence between homologous chromosomes

    SciTech Connect

    Yoshino, Masayasu; Sagai, Tomoko; Shiroishi, Toshihiko

    1996-06-01

    Recombination is widely considered to linearly depend on the length of the homologous sequences. An 11% mismatch decreases the rate of phage-plasmid recombination 240-fold. Two single nucleotide mismatches, which reduce the longest uninterrupted stretch of similarity from 232 base pairs (bp) to 134 bp, reduce gene conversion in mouse L cells 20-fold. The efficiency of gene targeting through homologous recombination in mouse embryonic stem cells can be increased by using an isogenic, rather than a non-isogenic, DNA construct. In this study we asked whether a high degree of sequence identity between homologous mouse chromosomes enhances meiotic recombination at a hotspot. Sites of meiotic recombination in the mouse major histocompatibility complex (MHC) class II region are not randomly distributed but are almost all clustered within short segments known as recombinational hotspots. The wm7 MHC haplotype, derived from Japanese wild mice Mus musculus molossinus, enhances meiotic recombination at a hotspot near the Lmp2 gene. Heterozygotes between the wm7 haplotype and the b or k haplotypes have yielded a high frequency of recombination (2.1%) in 1.3 kilobase kb segment of this hotspot. 20 refs., 2 figs.

  9. Osteochondrodysplasia in three Scottish Fold cats.

    PubMed

    Chang, Jinhwa; Jung, Joohyun; Oh, Sunkyoung; Lee, Sungok; Kim, Gyeongmin; Kim, Haksang; Kweon, Ohkyeong; Yoon, Junghee; Choi, Mincheol

    2007-09-01

    This report explains typical radiographic features of Scottish Fold osteochondrodysplasia. Three Scottish Fold cats suffering from lameness were referred to the Veterinary Medical Teaching Hospital, Seoul National University, Korea. Based on the breed predisposition, history, clinical signs, physical examination, and radiographic findings, Scottish Fold osteochondrodysplasia was confirmed in three cases. Radiographic changes mainly included exostosis and secondary arthritis around affected joint lesions, and defective conformation in the phalanges and caudal vertebrae. The oral chondroprotective agents such as glucosamine and chondroitin sulfate make the patients alleviate their pain without adverse effects. PMID:17679781

  10. Mechanical Models of Fault-Related Folding

    SciTech Connect

    Johnson, A. M.

    2003-01-09

    The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).

  11. Network measures for protein folding state discrimination

    PubMed Central

    Menichetti, Giulia; Fariselli, Piero; Remondini, Daniel

    2016-01-01

    Proteins fold using a two-state or multi-state kinetic mechanisms, but up to now there is not a first-principle model to explain this different behavior. We exploit the network properties of protein structures by introducing novel observables to address the problem of classifying the different types of folding kinetics. These observables display a plain physical meaning, in terms of vibrational modes, possible configurations compatible with the native protein structure, and folding cooperativity. The relevance of these observables is supported by a classification performance up to 90%, even with simple classifiers such as discriminant analysis. PMID:27464796

  12. Protein Folding and Unfolding Under Force

    PubMed Central

    Jagannathan, Bharat; Marqusee, Susan

    2014-01-01

    The recent revolution in optics and instrumentation has enabled the study of protein folding using extremely low mechanical forces as the denaturant. This exciting development has led to the observation of the protein folding process at single molecule resolution and its response to mechanical force. Here, we describe the principles and experimental details of force spectroscopy on proteins, with a focus on the optical tweezers instrument. Several recent results will be discussed to highlight the importance of this technique in addressing a variety of questions in the protein folding field. PMID:23784721

  13. Recombinant expression, purification and preliminary biophysical and structural studies of C-terminal carbohydrate recognition domain from human galectin-4.

    PubMed

    Rustiguel, Joane K; Kumagai, Patricia S; Dias-Baruffi, Marcelo; Costa-Filho, Antonio J; Nonato, Maria Cristina

    2016-02-01

    Galectin-4 (Gal4), a tandem-repeat type galectin, is expressed in healthy epithelium of the gastrointestinal tract. Altered levels of Gal4 expression are associated with different types of cancer, suggesting its usage as a diagnostic marker as well as target for drug development. The functional data available for this class of proteins suggest that the wide spectrum of cellular activities reported for Gal4 relies on distinct glycan specificity and structural characteristics of its two carbohydrate recognition domains. In the present work, two independent constructs for recombinant expression of the C-terminal domain of human galectin-4 (hGal4-CRD2) were developed. His6-tagged and untagged recombinant proteins were overexpressed in Escherichia coli, and purified by affinity chromatography followed by gel filtration. Correct folding and activity of hGal4-CRD2 were assessed by circular dichroism and fluorescence spectroscopies, respectively. Diffraction quality crystals were obtained by vapor-diffusion sitting drop setup and the crystal structure of CRD2 was solved by molecular replacement techniques at 1.78 Å resolution. Our work describes the development of important experimental tools that will allow further studies in order to correlate structure and binding properties of hGal4-CRD2 and human galectin-4 functional activities. PMID:26432949

  14. Multiple folding pathways of proteins with shallow knots and co-translational folding

    NASA Astrophysics Data System (ADS)

    Chwastyk, Mateusz; Cieplak, Marek

    2015-07-01

    We study the folding process in the shallowly knotted protein MJ0366 within two variants of a structure-based model. We observe that the resulting topological pathways are much richer than identified in previous studies. In addition to the single knot-loop events, we find novel, and dominant, two-loop mechanisms. We demonstrate that folding takes place in a range of temperatures and the conditions of most successful folding are at temperatures which are higher than those required for the fastest folding. We also demonstrate that nascent conditions are more favorable to knotting than off-ribosome folding.

  15. Multiple folding pathways of proteins with shallow knots and co-translational folding.

    PubMed

    Chwastyk, Mateusz; Cieplak, Marek

    2015-07-28

    We study the folding process in the shallowly knotted protein MJ0366 within two variants of a structure-based model. We observe that the resulting topological pathways are much richer than identified in previous studies. In addition to the single knot-loop events, we find novel, and dominant, two-loop mechanisms. We demonstrate that folding takes place in a range of temperatures and the conditions of most successful folding are at temperatures which are higher than those required for the fastest folding. We also demonstrate that nascent conditions are more favorable to knotting than off-ribosome folding. PMID:26233164

  16. Ten-Microsecond Molecular Dynamics Simulation of a Fast-Folding WW Domain

    PubMed Central

    Freddolino, Peter L.; Liu, Feng; Gruebele, Martin; Schulten, Klaus

    2008-01-01

    All-atom molecular dynamics (MD) simulations of protein folding allow analysis of the folding process at an unprecedented level of detail. Unfortunately, such simulations have not yet reached their full potential both due to difficulties in sufficiently sampling the microsecond timescales needed for folding, and because the force field used may yield neither the correct dynamical sequence of events nor the folded structure. The ongoing study of protein folding through computational methods thus requires both improvements in the performance of molecular dynamics programs to make longer timescales accessible, and testing of force fields in the context of folding simulations. We report a ten-microsecond simulation of an incipient downhill-folding WW domain mutant along with measurement of a molecular time and activated folding time of 1.5 microseconds and 13.3 microseconds, respectively. The protein simulated in explicit solvent exhibits several metastable states with incorrect topology and does not assume the native state during the present simulations. PMID:18339748

  17. Folded waveguide coupler for ion cyclotron heating

    SciTech Connect

    Owens, T.L.; Chen, G.L.

    1986-01-01

    A new type of waveguide coupler for plasma heating in the ion cyclotron range of frequencies is described. The coupler consists of a series of interleaved metallic vanes within a rectangular enclosure analogous to a wide rectangular waveguide that has been ''folded'' several times. At the mouth of the coupler, a plate is attached which contains coupling apertures in each fold or every other fold of the waveguide, depending upon the wavenumber spectrum desired. This plate serves primarily as a wave field polarizer that converts coupler fields to the polarization of the fast magnetosonic wave within the plasma. Theoretical estimates indicate that the folded waveguide is capable of high-efficiency, multimegawatt operation into a plasma. Bench tests have verified the predicted field structure within the waveguide in preparation for high-power tests on the Radio Frequency Test Facility at the Oak Ridge National Laboratory.

  18. Topology Explains Why Automobile Sunshades Fold Oddly

    ERIC Educational Resources Information Center

    Feist, Curtis; Naimi, Ramin

    2009-01-01

    Automobile sunshades always fold into an "odd" number of loops. The explanation why involves elementary topology (braid theory and linking number, both explained in detail here with definitions and examples), and an elementary fact from algebra about symmetric group.

  19. Unexplained Profound Hypoglycemia After Vocal Fold Lipoinjection.

    PubMed

    Modanlou, Shohreh; Marie Giglio, Nicole; Carroll, Thomas; Pancaro, Carlo

    2016-02-01

    Vocal fold injection is used for the management of glottal incompetence from various causes. The procedure is well tolerated and has few reported complications. We present a case of a 66-year-old man with long-lasting hoarseness secondary to vocal fold atrophy, who underwent an uneventful bilateral vocal fold injection with autologous fat. While in the recovery area, he experienced profuse sweating approximately 30 minutes after the surgical procedure. His blood glucose value was measured at 24 mg/dL, and plasmatic insulin level was 246 mU/L. To our knowledge, this is the first reported case of a systemic side effect after vocal fold lipoinjection. PMID:26491839

  20. Frustration in Condensed Matter and Protein Folding

    NASA Astrophysics Data System (ADS)

    Li, Z.; Tanner, S.; Conroy, B.; Owens, F.; Tran, M. M.; Boekema, C.

    2014-03-01

    By means of computer modeling, we are studying frustration in condensed matter and protein folding, including the influence of temperature and Thomson-figure formation. Frustration is due to competing interactions in a disordered state. The key issue is how the particles interact to reach the lowest frustration. The relaxation for frustration is mostly a power function (randomly assigned pattern) or an exponential function (regular patterns like Thomson figures). For the atomic Thomson model, frustration is predicted to decrease with the formation of Thomson figures at zero kelvin. We attempt to apply our frustration modeling to protein folding and dynamics. We investigate the homogeneous protein frustration that would cause the speed of the protein folding to increase. Increase of protein frustration (where frustration and hydrophobicity interplay with protein folding) may lead to a protein mutation. Research is supported by WiSE@SJSU and AFC San Jose.

  1. Monster Mash: Protein Folding Gone Wrong

    MedlinePlus

    ... Articles | Inside Life Science Home Page Monster Mash: Protein Folding Gone Wrong By Joseph Piergrossi Posted October 31, 2013 In this image, globs of misfolded proteins called amyloid plaques (blobs) are found outside neurons ( ...

  2. Self-folding miniature elastic electric devices

    NASA Astrophysics Data System (ADS)

    Miyashita, Shuhei; Meeker, Laura; Tolley, Michael T.; Wood, Robert J.; Rus, Daniela

    2014-09-01

    Printing functional materials represents a considerable impact on the access to manufacturing technology. In this paper we present a methodology and validation of print-and-self-fold miniature electric devices. Polyvinyl chloride laminated sheets based on metalized polyester film show reliable self-folding processes under a heat application, and it configures 3D electric devices. We exemplify this technique by fabricating fundamental electric devices, namely a resistor, capacitor, and inductor. Namely, we show the development of a self-folded stretchable resistor, variable resistor, capacitive strain sensor, and an actuation mechanism consisting of a folded contractible solenoid coil. Because of their pre-defined kinematic design, these devices feature elasticity, making them suitable as sensors and actuators in flexible circuits. Finally, an RLC circuit obtained from the integration of developed devices is demonstrated, in which the coil based actuator is controlled by reading a capacitive strain sensor.

  3. Statistical properties of a folded elastic rod

    NASA Astrophysics Data System (ADS)

    Bayart, Elsa; Deboeuf, Stéphanie; Boué, Laurent; Corson, Francis; Boudaoud, Arezki; Adda-Bedia, Mokhtar

    2010-03-01

    A large variety of elastic structures naturally seem to be confined into environments too small to accommodate them; the geometry of folded structures span a wide range of length-scales. The elastic properties of these confined systems are further constrained by self-avoidance as well as by the dimensionality of both structures and container. To mimic crumpled paper, we devised an experimental setup to study the packing of a dimensional elastic object in 2D geometries: an elastic rod is folded at the center of a circular Hele-Shaw cell by a centripetal force. The initial configuration of the rod and the acceleration of the rotating disk allow to span different final folded configurations while the final rotation speed controls the packing intensity. Using image analysis we measure geometrical and mechanical properties of the folded configurations, focusing on length, curvature and energy distributions.

  4. Cotranslational folding of deeply knotted proteins

    NASA Astrophysics Data System (ADS)

    Chwastyk, Mateusz; Cieplak, Marek

    2015-09-01

    Proper folding of deeply knotted proteins has a very low success rate even in structure-based models which favor formation of the native contacts but have no topological bias. By employing a structure-based model, we demonstrate that cotranslational folding on a model ribosome may enhance the odds to form trefoil knots for protein YibK without any need to introduce any non-native contacts. The ribosome is represented by a repulsive wall that keeps elongating the protein. On-ribosome folding proceeds through a a slipknot conformation. We elucidate the mechanics and energetics of its formation. We show that the knotting probability in on-ribosome folding is a function of temperature and that there is an optimal temperature for the process. Our model often leads to the establishment of the native contacts without formation of the knot.

  5. Cotranslational folding of deeply knotted proteins.

    PubMed

    Chwastyk, Mateusz; Cieplak, Marek

    2015-09-01

    Proper folding of deeply knotted proteins has a very low success rate even in structure-based models which favor formation of the native contacts but have no topological bias. By employing a structure-based model, we demonstrate that cotranslational folding on a model ribosome may enhance the odds to form trefoil knots for protein YibK without any need to introduce any non-native contacts. The ribosome is represented by a repulsive wall that keeps elongating the protein. On-ribosome folding proceeds through a a slipknot conformation. We elucidate the mechanics and energetics of its formation. We show that the knotting probability in on-ribosome folding is a function of temperature and that there is an optimal temperature for the process. Our model often leads to the establishment of the native contacts without formation of the knot. PMID:26292194

  6. Reinke Edema: Watch For Vocal Fold Cysts.

    PubMed

    Tüzüner, Arzu; Demirci, Sule; Yavanoglu, Ahmet; Kurkcuoglu, Melih; Arslan, Necmi

    2015-06-01

    Reinke edema is one of the common cause of dysphonia middle-aged population, and severe thickening of vocal folds require surgical treatment. Smoking plays a major role on etiology. Vocal fold cysts are also benign lesions and vocal trauma blamed for acquired cysts. We would like to present 3 cases with vocal fold cyst related with Reinke edema. First case had a subepidermal epidermoid cyst with Reinke edema, which could be easily observed before surgery during laryngostroboscopy. Second case had a mucous retention cyst into the edematous Reinke tissue, which was detected during surgical intervention, and third case had a epidermoid cyst that occurred 2 months after before microlaryngeal operation regarding Reinke edema reduction. These 3 cases revealed that surgical management of Reinke edema needs a careful dissection and close follow-up after surgery for presence of vocal fold cysts. PMID:26080256

  7. Folded Resonant Horns for Power Ultrasonic Applications

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Askins, Stephen; Gradziel, Michael; Bao, Xiaoqi; Chang, Zensheu; Dolgin, Benjamin; Bar-Cohen, Yoseph; Peterson, Tom

    2003-01-01

    Folded horns have been conceived as alternatives to straight horns used as resonators and strain amplifiers in power ultrasonic systems. Such systems are used for cleaning, welding, soldering, cutting, and drilling in a variety of industries. In addition, several previous NASA Tech Briefs articles have described instrumented drilling, coring, and burrowing machines that utilize combinations of sonic and ultrasonic vibrational actuation. The main advantage of a folded horn, relative to a straight horn of the same resonance frequency, is that the folded horn can be made shorter (that is, its greatest linear dimension measured from the outside can be made smaller). Alternatively, for a given length, the resonance frequency can be reduced. Hence, the folded-horn concept affords an additional degree of design freedom for reducing the length of an ultrasonic power system that includes a horn.

  8. Kinetic Analysis of Protein Folding Lattice Models

    NASA Astrophysics Data System (ADS)

    Chen, Hu; Zhou, Xin; Liaw, Chih Young; Koh, Chan Ghee

    Based on two-dimensional square lattice models of proteins, the relation between folding time and temperature is studied by Monte Carlo simulation. The results can be represented by a kinetic model with three states — random coil, molten globule, and native state. The folding process is composed of nonspecific collapse and final searching for the native state. At high temperature, it is easy to escape from local traps in the folding process. With decreasing temperature, because of the trapping in local traps, the final searching speed decreases. Then the folding shows chevron rollover. Through the analysis of the fitted parameters of the kinetic model, it is found that the main difference between the energy landscapes of the HP model and the Go model is that the number of local minima of the Go model is less than that of the HP model.

  9. Dew-driven folding of insect wings

    NASA Astrophysics Data System (ADS)

    Dickerson, Andrew; Beadles, Sam; Clement, Courtney; Hu, David

    2013-11-01

    Small insect wings fold into tacos when exposed to dewfall or fog for extended times. Such shapes are tightly held together and require great force or long evaporation times for the wings to unfold. In this experimental investigation, we use time-lapse and high-speed videography on a mosquito wing exposed to fog to characterize the folding process from a flat wing to a taco. We observe a taco is formed through a series of processes involving wing bending, unbending, and subsequent tight folding of the wing following the sliding of the drop off the wing. We use a simplified 2D model to determine the forces coalescing drops exert on the wing, and present folding-resistant design suggestions for micro-aerial vehicle wings.

  10. Folding funnels, binding funnels, and protein function.

    PubMed Central

    Tsai, C. J.; Kumar, S.; Ma, B.; Nussinov, R.

    1999-01-01

    Folding funnels have been the focus of considerable attention during the last few years. These have mostly been discussed in the general context of the theory of protein folding. Here we extend the utility of the concept of folding funnels, relating them to biological mechanisms and function. In particular, here we describe the shape of the funnels in light of protein synthesis and folding; flexibility, conformational diversity, and binding mechanisms; and the associated binding funnels, illustrating the multiple routes and the range of complexed conformers. Specifically, the walls of the folding funnels, their crevices, and bumps are related to the complexity of protein folding, and hence to sequential vs. nonsequential folding. Whereas the former is more frequently observed in eukaryotic proteins, where the rate of protein synthesis is slower, the latter is more frequent in prokaryotes, with faster translation rates. The bottoms of the funnels reflect the extent of the flexibility of the proteins. Rugged floors imply a range of conformational isomers, which may be close on the energy landscape. Rather than undergoing an induced fit binding mechanism, the conformational ensembles around the rugged bottoms argue that the conformers, which are most complementary to the ligand, will bind to it with the equilibrium shifting in their favor. Furthermore, depending on the extent of the ruggedness, or of the smoothness with only a few minima, we may infer nonspecific, broad range vs. specific binding. In particular, folding and binding are similar processes, with similar underlying principles. Hence, the shape of the folding funnel of the monomer enables making reasonable guesses regarding the shape of the corresponding binding funnel. Proteins having a broad range of binding, such as proteolytic enzymes or relatively nonspecific endonucleases, may be expected to have not only rugged floors in their folding funnels, but their binding funnels will also behave similarly

  11. [Surgery of benign vocal fold lesions].

    PubMed

    Olthoff, A

    2016-09-01

    Surgical treatment of benign vocal fold lesions can be indicated for clinical or functional reasons. The principles of phonosurgery have to be maintained in either case. The appropriate phonosurgical technique depends on the type of vocal fold lesion. Depending on the findings, phonosurgery aims to maintain or improve voice quality. The evaluation of clinical and functional results includes indirect laryngoscopy, videostroboscopy, and voice analysis. PMID:27552826

  12. Protein folding and misfolding: mechanism and principles.

    PubMed

    Englander, S Walter; Mayne, Leland; Krishna, Mallela M G

    2007-11-01

    Two fundamentally different views of how proteins fold are now being debated. Do proteins fold through multiple unpredictable routes directed only by the energetically downhill nature of the folding landscape or do they fold through specific intermediates in a defined pathway that systematically puts predetermined pieces of the target native protein into place? It has now become possible to determine the structure of protein folding intermediates, evaluate their equilibrium and kinetic parameters, and establish their pathway relationships. Results obtained for many proteins have serendipitously revealed a new dimension of protein structure. Cooperative structural units of the native protein, called foldons, unfold and refold repeatedly even under native conditions. Much evidence obtained by hydrogen exchange and other methods now indicates that cooperative foldon units and not individual amino acids account for the unit steps in protein folding pathways. The formation of foldons and their ordered pathway assembly systematically puts native-like foldon building blocks into place, guided by a sequential stabilization mechanism in which prior native-like structure templates the formation of incoming foldons with complementary structure. Thus the same propensities and interactions that specify the final native state, encoded in the amino-acid sequence of every protein, determine the pathway for getting there. Experimental observations that have been interpreted differently, in terms of multiple independent pathways, appear to be due to chance misfolding errors that cause different population fractions to block at different pathway points, populate different pathway intermediates, and fold at different rates. This paper summarizes the experimental basis for these three determining principles and their consequences. Cooperative native-like foldon units and the sequential stabilization process together generate predetermined stepwise pathways. Optional misfolding errors

  13. Protein folding, protein homeostasis, and cancer

    PubMed Central

    Van Drie, John H.

    2011-01-01

    Proteins fold into their functional 3-dimensional structures from a linear amino acid sequence. In vitro this process is spontaneous; while in vivo it is orchestrated by a specialized set of proteins, called chaperones. Protein folding is an ongoing cellular process, as cellular proteins constantly undergo synthesis and degradation. Here emerging links between this process and cancer are reviewed. This perspective both yields insights into the current struggle to develop novel cancer chemotherapeutics and has implications for future chemotherapy discovery. PMID:21272445

  14. [The expression of BmK AngM1 in Mut(s) and Mut(+) recombinants of Pichia pastoris].

    PubMed

    Wang, Qing-hua; Liang, Lan; Chen, Jing-jing; Gong, Ting; Hou, Qi; Yang, Jin-ling; Zhu, Ping

    2015-07-01

    BmK AngM1 is a long-chain scorpion toxin purified from the venom of Buthus martensii Karsch. It has been reported to exhibit evident analgesic effect and low toxicity, and has the potential to be a novel analgesic drug. The BmKAngM1 gene was transformed into Pichiapastoris GS115. Mut+ and Mut(s) recombinant strains were screened by phenotype and Mut+ recombinant strains were used to detect BmK AngMl gene copy number in the real-time PCR. Expression of BmK AngM1 in the Mut+ recombinant strain was compared with that of the Mut(s) recombinant strain with the same single copy of BmK AngM1 gene under the same condition. The results indicated that the transcription level of BmK AngM1 gene in the Mut(s) recombinant strain was 2.7 fold of that in the Mut recombinant strain in the real-time PCR, and the expression of BmK AngM 1 in the Mut(s) recombinant strain was 1.5 fold of that in the Mut+ recombinant strain. Therefore, Mut(s) recombinant strain showed better ability to express BmK AngM1 than Mut+ recombinant strain. PMID:26552156

  15. Folding thermodynamics of pseudoknotted chain conformations

    NASA Astrophysics Data System (ADS)

    Kopeikin, Zoia; Chen, Shi-Jie

    2006-04-01

    We develop a statistical mechanical framework for the folding thermodynamics of pseudoknotted structures. As applications of the theory, we investigate the folding stability and the free energy landscapes for both the thermal and the mechanical unfolding of pseudoknotted chains. For the mechanical unfolding process, we predict the force-extension curves, from which we can obtain the information about structural transitions in the unfolding process. In general, a pseudoknotted structure unfolds through multiple structural transitions. The interplay between the helix stems and the loops plays an important role in the folding stability of pseudoknots. For instance, variations in loop sizes can lead to the destabilization of some intermediate states and change the (equilibrium) folding pathways (e.g., two helix stems unfold either cooperatively or sequentially). In both thermal and mechanical unfolding, depending on the nucleotide sequence, misfolded intermediate states can emerge in the folding process. In addition, thermal and mechanical unfoldings often have different (equilibrium) pathways. For example, for certain sequences, the misfolded intermediates, which generally have longer tails, can fold, unfold, and refold again in the pulling process, which means that these intermediates can switch between two different average end-end extensions.

  16. "Wet" Versus "Dry" Folding of Polyproline

    NASA Astrophysics Data System (ADS)

    Shi, Liuqing; Holliday, Alison E.; Bohrer, Brian C.; Kim, Doyong; Servage, Kelly A.; Russell, David H.; Clemmer, David E.

    2016-06-01

    When the all- cis polyproline-I helix (PPI, favored in 1-propanol) of polyproline-13 is introduced into water, it folds into the all- trans polyproline-II (PPII) helix through at least six intermediates [Shi, L., Holliday, A.E., Shi, H., Zhu, F., Ewing, M.A., Russell, D.H., Clemmer, D.E.: Characterizing intermediates along the transition from PPI to PPII using ion mobility-mass spectrometry. J. Am. Chem. Soc. 136, 12702-12711 (2014)]. Here, we show that the solvent-free intermediates refold into the all- cis PPI helix with high (>90%) efficiency. Moreover, in the absence of solvent, each intermediate appears to utilize the same small set of pathways observed for the solution-phase PPII → PPI transition upon immersion of PPIIaq in 1-propanol. That folding in solution (under conditions where water is displaced by propanol) and folding in vacuo (where energy required for folding is provided by collisional activation) occur along the same pathway is remarkable. Implicit in this statement is that 1-propanol mimics a "dry" environment, similar to the gas phase. We note that intermediates with structures that are similar to PPIIaq can form PPII under the most gentle activation conditions—indicating that some transitions observed in water (i.e. , "we t" folding, are accessible (albeit inefficient) in vacuo. Lastly, these "dry" folding experiments show that PPI (all cis) is favored under "dry" conditions, which underscores the role of water as the major factor promoting preference for trans proline.

  17. Structural Characteristics of Novel Protein Folds

    PubMed Central

    Fernandez-Fuentes, Narcis; Dybas, Joseph M.; Fiser, Andras

    2010-01-01

    Folds are the basic building blocks of protein structures. Understanding the emergence of novel protein folds is an important step towards understanding the rules governing the evolution of protein structure and function and for developing tools for protein structure modeling and design. We explored the frequency of occurrences of an exhaustively classified library of supersecondary structural elements (Smotifs), in protein structures, in order to identify features that would define a fold as novel compared to previously known structures. We found that a surprisingly small set of Smotifs is sufficient to describe all known folds. Furthermore, novel folds do not require novel Smotifs, but rather are a new combination of existing ones. Novel folds can be typified by the inclusion of a relatively higher number of rarely occurring Smotifs in their structures and, to a lesser extent, by a novel topological combination of commonly occurring Smotifs. When investigating the structural features of Smotifs, we found that the top 10% of most frequent ones have a higher fraction of internal contacts, while some of the most rare motifs are larger, and contain a longer loop region. PMID:20421995

  18. Protein Folding and Misfolding on Surfaces

    PubMed Central

    Stefani, Massimo

    2008-01-01

    Protein folding, misfolding and aggregation, as well as the way misfolded and aggregated proteins affects cell viability are emerging as key themes in molecular and structural biology and in molecular medicine. Recent advances in the knowledge of the biophysical basis of protein folding have led to propose the energy landscape theory which provides a consistent framework to better understand how a protein folds rapidly and efficiently to the compact, biologically active structure. The increased knowledge on protein folding has highlighted its strict relation to protein misfolding and aggregation, either process being in close competition with the other, both relying on the same physicochemical basis. The theory has also provided information to better understand the structural and environmental factors affecting protein folding resulting in protein misfolding and aggregation into ordered or disordered polymeric assemblies. Among these, particular importance is given to the effects of surfaces. The latter, in some cases make possible rapid and efficient protein folding but most often recruit proteins/peptides increasing their local concentration thus favouring misfolding and accelerating the rate of nucleation. It is also emerging that surfaces can modify the path of protein misfolding and aggregation generating oligomers and polymers structurally different from those arising in the bulk solution and endowed with different physical properties and cytotoxicities. PMID:19330090

  19. Folding of non-Euclidean curved shells

    NASA Astrophysics Data System (ADS)

    Bende, Nakul; Evans, Arthur; Innes-Gold, Sarah; Marin, Luis; Cohen, Itai; Santangelo, Christian; Hayward, Ryan

    2015-03-01

    Origami-based folding of 2D sheets has been of recent interest for a variety of applications ranging from deployable structures to self-folding robots. Though folding of planar sheets follows well-established principles, folding of curved shells involves an added level of complexity due to the inherent influence of curvature on mechanics. In this study, we use principles from differential geometry and thin shell mechanics to establish fundamental rules that govern folding of prototypical creased shells. In particular, we show how the normal curvature of a crease line controls whether the deformation is smooth or discontinuous, and investigate the influence of shell thickness and boundary conditions. We show that snap-folding of shells provides a route to rapid actuation on time-scales dictated by the speed of sound. The simple geometric design principles developed can be applied at any length-scale, offering potential for bio-inspired soft actuators for tunable optics, microfluidics, and robotics. This work was funded by the National Science Foundation through EFRI ODISSEI-1240441 with additional support to S.I.-G. through the UMass MRSEC DMR-0820506 REU program.

  20. Bacterial Recombineering: Genome Engineering via Phage-Based Homologous Recombination.

    PubMed

    Pines, Gur; Freed, Emily F; Winkler, James D; Gill, Ryan T

    2015-11-20

    The ability to specifically modify bacterial genomes in a precise and efficient manner is highly desired in various fields, ranging from molecular genetics to metabolic engineering and synthetic biology. Much has changed from the initial realization that phage-derived genes may be employed for such tasks to today, where recombineering enables complex genetic edits within a genome or a population. Here, we review the major developments leading to recombineering becoming the method of choice for in situ bacterial genome editing while highlighting the various applications of recombineering in pushing the boundaries of synthetic biology. We also present the current understanding of the mechanism of recombineering. Finally, we discuss in detail issues surrounding recombineering efficiency and future directions for recombineering-based genome editing. PMID:25856528

  1. Potential of fragment recombination for rational design of proteins.

    PubMed

    Eisenbeis, Simone; Proffitt, William; Coles, Murray; Truffault, Vincent; Shanmugaratnam, Sooruban; Meiler, Jens; Höcker, Birte

    2012-03-01

    It is hypothesized that protein domains evolved from smaller intrinsically stable subunits via combinatorial assembly. Illegitimate recombination of fragments that encode protein subunits could have quickly led to diversification of protein folds and their functionality. This evolutionary concept presents an attractive strategy to protein engineering, e.g., to create new scaffolds for enzyme design. We previously combined structurally similar parts from two ancient protein folds, the (βα)(8)-barrel and the flavodoxin-like fold. The resulting "hopeful monster" differed significantly from the intended (βα)(8)-barrel fold by an extra β-strand in the core. In this study, we ask what modifications are necessary to form the intended structure and what potential this approach has for the rational design of functional proteins. Guided by computational design, we optimized the interface between the fragments with five targeted mutations yielding a stable, monomeric protein whose predicted structure was verified experimentally. We further tested binding of a phosphorylated compound and detected that some affinity was already present due to an intact phosphate-binding site provided by one fragment. The affinity could be improved quickly to the level of natural proteins by introducing two additional mutations. The study illustrates the potential of recombining protein fragments with unique properties to design new and functional proteins, offering both a possible pathway of protein evolution and a protocol to rapidly engineer proteins for new applications. PMID:22329686

  2. Dielectronic recombination theory

    SciTech Connect

    LaGattuta, K.J.

    1991-12-31

    A theory now in wide use for the calculation of dielectronic recombination cross sections ({sigma}{sup DR}) and rate coefficients ({alpha}{sup DR}) was one introduced originally by Feshbach for nuclear physics applications, and then later adapted for atomic scattering problems by Hahn. In the following, we briefly review this theory in a very general form, which allows one to account for the effects of overlapping and interacting resonances, as well as continuum-continuum coupling. An extension of our notation will then also allow for the inclusion of the effects of direct radiative recombination, along with a treatment of the interference between radiative and dielectronic recombination. Other approaches to the calculation of {sigma}{sup DR} have been described by Fano and by Seaton. We will not consider those theories here. Calculations of {alpha}{sup DR} have progressed considerably over the last 25 years, since the early work of Burgess. Advances in the reliability of theoretical predictions have also been promoted recently b a variety of direct laboratory measurements of {sigma}{sup DR}. While the measurements of {sigma}{sup DR} for {delta}n {ne} 0 excitations have tended to agree very well with calculations, the case of {delta}n = 0 has been much problematic. However, by invoking a mechanism originally proposed by Jacobs, which takes into account the effect of stray electric fields on high Rydberg states (HRS) participating in the DR process, new calculations have improved the agreement between theory and experiment for these cases. Nevertheless, certain discrepancies still remain.

  3. Recombinant Collagenlike Proteins

    NASA Technical Reports Server (NTRS)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  4. Characteristics of tropopause folds over Arctic latitudes

    NASA Astrophysics Data System (ADS)

    Rao, T. Narayana; Kirkwood, S.

    2005-09-01

    Characteristics of tropopause folds over Arctic latitudes have been studied using VHF radar measurements supplemented by balloon measurements. The variation of the radar parameters during the passage of tropopause folds is discussed in detail. To our knowledge, these observations constitute the first spaced antenna (SA) radar measurements during the passage of tropopause folds. This allows us to compare the parameters detectable using this mode with those observed using other configurations, such as the Doppler beam swinging (DBS) technique. In general, the structural characteristics, such as the slope of folds, seem to be similar at Arctic latitudes to that at midlatitudes; however, the height of the tropopause and the axis of the jet stream (and hence the folding) are found to be lower by 1-2 km than their counterparts in midlatitudes. In the case studies the radar-derived parameters, such as the signal-to-noise ratio (SNR) and vertical shear of horizontal wind, clearly show the upper-air frontal zone. The frontal circulation, conceived from vertical velocity, including the warm conveyer belt flow and the dry intrusion, is clearly visible in the first case, whereas it is masked by high-amplitude mountain lee waves in the second case. Further, the frontal zone seems to be acting as a critical layer to mountain lee wave activity by absorbing/filtering the wave activity. The aspect angles derived from the present analysis agree well with those estimated by vertical beam spectral width but are small in comparison with those estimated by the power ratio method. The mean full correlation analysis (FCA) turbulent velocity is estimated using the ESRAD data obtained during the passage of 15 tropopause folds. The mean eddy diffusion coefficients, Kz, near the tropopause and in the upper portion of the fold, where strong turbulence is seen in case studies, are found to be 3.54 and 6.4 m2 s-1, respectively. Utilizing the mean Kz and the mean ozone gradient (obtained from

  5. Folding patterns and shape optimization using SMA-based self-folding laminates

    NASA Astrophysics Data System (ADS)

    Peraza-Hernandez, Edwin A.; Frei, Katherine R.; Hartl, Darren J.; Lagoudas, Dimitris C.

    2014-03-01

    Origami engineering, a discipline encompassing the creation of practical three-dimensional structures from two- dimensional entities via folding operations, has the potential to impact multiple fields of manufacturing and design. In some circumstances, it may be practical to have self-folding capabilities instead of creating folds by external manipulations (as in morphing structures in outer space or on the ocean floor). This paper considers the use of a self-folding laminate composite consisting of two outer layers of thermally actuated shape memory alloy (SMA) wire meshes separated by an inner compliant insulating layer. Methods for designing folding patterns and determining temperature fields to obtain desired shapes and behaviors are proposed. Sheets composed of the self-folding laminate are modeled via finite element analysis (FEA) and the proposed methods are implemented to test their capabilities. One method uses a previously developed and freely available software called Freeform Origami for folding pattern design. The second method entails the use of optimization to determine the localized activation temperatures required to obtain desired shapes or to perform specific functions. The proposed methods are demonstrated to be applicable for the design of folding patterns and determination of activation temperatures for the self-folding laminate by showing successful examples of their implementation. This exploratory study provides new tools that can be integrated into the design framework of self-folding origami structures.

  6. Did the universe recombine?

    NASA Technical Reports Server (NTRS)

    Bartlett, James G.; Stebbins, Albert

    1991-01-01

    The Zel'dovich-Sunyaev model-independent arguments for the existence of a neutral hydrogen phase is reviewed in light of new limits on the Compton y parameter from COBE. It is concluded that with baryon densities compatible with standard cosmological nucleosynthesis, the universe could have remained fully ionized throughout its history without producing a detectable spectral distortion. It is argued that it is unlikely that spectral observations of the cosmic microwave background will ever require the universe to have recombined for flat cosmologies.

  7. The nature of protein folding pathways

    PubMed Central

    Englander, S. Walter; Mayne, Leland

    2014-01-01

    How do proteins fold, and why do they fold in that way? This Perspective integrates earlier and more recent advances over the 50-y history of the protein folding problem, emphasizing unambiguously clear structural information. Experimental results show that, contrary to prior belief, proteins are multistate rather than two-state objects. They are composed of separately cooperative foldon building blocks that can be seen to repeatedly unfold and refold as units even under native conditions. Similarly, foldons are lost as units when proteins are destabilized to produce partially unfolded equilibrium molten globules. In kinetic folding, the inherently cooperative nature of foldons predisposes the thermally driven amino acid-level search to form an initial foldon and subsequent foldons in later assisted searches. The small size of foldon units, ∼20 residues, resolves the Levinthal time-scale search problem. These microscopic-level search processes can be identified with the disordered multitrack search envisioned in the “new view” model for protein folding. Emergent macroscopic foldon–foldon interactions then collectively provide the structural guidance and free energy bias for the ordered addition of foldons in a stepwise pathway that sequentially builds the native protein. These conclusions reconcile the seemingly opposed new view and defined pathway models; the two models account for different stages of the protein folding process. Additionally, these observations answer the “how” and the “why” questions. The protein folding pathway depends on the same foldon units and foldon–foldon interactions that construct the native structure. PMID:25326421

  8. Cross folding in southern Bighorn basin

    SciTech Connect

    Gubbels, T.L.

    1986-08-01

    Analysis of Landsat Thematic Mapper imagery coupled with surface structural investigations of well-exposed folds in the southern Bighorn basin have revealed two northwest-trending folds that have been refolded. The eastern boundary of the Owl Creek Mountains is characterized by a well-defined alignment of folds that extend north-northwest from the Owl Creek thrust front. Bridger monocline, Wildhorse Butte anticline, and Red Hole anticline lie along this trend. Initial Laramide folding, probably during latest Cretaceous time, resulted in a single, continuous, north-northwest-trending anticline with a southwestward vergence. This anticline was progressively unfolded from south to north as the Owl Creek Range was thrust southward over the Wind River basin in earliest Eocene time; scissors-like vertical motion along this flexure rotated the axial surface of the early formed Bridger anticline, resulting in a monocline with a reversed vergence (northeastward). Formation of the Thermopolis/East Warm Springs anticline parallel to the north flank of the range accompanied thrusting and effectively refolded the northern end of the Wildhorse Butte anticline along an east-west axis. Faulting of the oversteepened south limb of the Red Hole cross fold was contemporaneous with folding. Cross-cutting fold axes in this area and the Mud Creek area to the west are best explained by a counterclockwise change in stress direction during the latest phase of the Laramide orogeny. Vertical movement along the eastern side of the Owl Creek Range results from differential motion in the hanging wall of the crystalline thrust sheet.

  9. Cellular folding pathway of a metastable serpin.

    PubMed

    Chandrasekhar, Kshama; Ke, Haiping; Wang, Ning; Goodwin, Theresa; Gierasch, Lila M; Gershenson, Anne; Hebert, Daniel N

    2016-06-01

    Although proteins generally fold to their thermodynamically most stable state, some metastable proteins populate higher free energy states. Conformational changes from metastable higher free energy states to lower free energy states with greater stability can then generate the work required to perform physiologically important functions. However, how metastable proteins fold to these higher free energy states in the cell and avoid more stable but inactive conformations is poorly understood. The serpin family of metastable protease inhibitors uses large conformational changes that are downhill in free energy to inhibit target proteases by pulling apart the protease active site. The serpin antithrombin III (ATIII) targets thrombin and other proteases involved in blood coagulation, and ATIII misfolding can thus lead to thrombosis and other diseases. ATIII has three disulfide bonds, two near the N terminus and one near the C terminus. Our studies of ATIII in-cell folding reveal a surprising, biased order of disulfide bond formation, with early formation of the C-terminal disulfide, before formation of the N-terminal disulfides, critical for folding to the active, metastable state. Early folding of the predominantly β-sheet ATIII domain in this two-domain protein constrains the reactive center loop (RCL), which contains the protease-binding site, ensuring that the RCL remains accessible. N-linked glycans and carbohydrate-binding molecular chaperones contribute to the efficient folding and secretion of functional ATIII. The inability of a number of disease-associated ATIII variants to navigate the folding reaction helps to explain their disease phenotypes. PMID:27222580

  10. Estimation of vocal fold plane in 3D CT images for diagnosis of vocal fold abnormalities.

    PubMed

    Hewavitharanage, Sajini; Gubbi, Jayavardhana; Thyagarajan, Dominic; Lau, Ken; Palaniswami, Marimuthu

    2015-01-01

    Vocal folds are the key body structures that are responsible for phonation and regulating air movement into and out of lungs. Various vocal fold disorders may seriously impact the quality of life. When diagnosing vocal fold disorders, CT of the neck is the commonly used imaging method. However, vocal folds do not align with the normal axial plane of a neck and the plane containing vocal cords and arytenoids does vary during phonation. It is therefore important to generate an algorithm for detecting the actual plane containing vocal folds. In this paper, we propose a method to automatically estimate the vocal fold plane using vertebral column and anterior commissure localization. Gray-level thresholding, connected component analysis, rule based segmentation and unsupervised k-means clustering were used in the proposed algorithm. The anterior commissure segmentation method achieved an accuracy of 85%, a good estimate of the expert assessment. PMID:26736949

  11. High-Level Expression, Purification and Characterization of A Recombinant Plasmodium vivax Apical Membrane Antigen 1: Implication for vivax Malaria Vaccine Development

    PubMed Central

    Salavatifar, Maryam; Zakeri, Sedigheh; Hayati Roodbari, Nasim; Djadid, Navid Dinparast

    2015-01-01

    Objective The apical membrane antigen-1 (AMA-1) is considered as a promising candidate for development of a malaria vaccine against Plasmodium parasites. The correct conformation of this protein appears to be necessary for the stimulation of parasite-inhibitory responses, and these responses, in turn, seem to be antibody-mediated. Therefore, in the present investigation, we expressed the Plasmodium vivax AMA-1 (PvAMA-1) ectodomain in Escherichia coli (E. coli), purified it using standard procedures and characterized it to determine its biological activities for it to be used as a potential target for developing a protective and safe vivax malaria vaccine. Materials and Methods In this experimental investigation, the ectodomain of PvAMA-1 antigen (GenBank accession no. JX624741) was expressed in the E. coli M15pQE30 expression system and purified with immobilized-metal affinity chromatography. The correct conformation of the recombinant protein was evaluated by Western blotting and indirect immunofluorescence antibody (IFA) test. In addition, the immunogenic properties of PvAMA-1 were evaluated in BALB/c mice with the purified protein emulsified in Freund’s adjuvant. Results In the present study, the PvAMA-1 ectodomain was expressed at a high-level (65 mg/L) using a bacterial system. Reduced and non-reduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) as well as Western blot analysis confirmed the appropriate conformation and folding of PvAMA-1. The evaluation of immunogenic properties of PvAMA-1 showed that both T helper-1 and 2 cells (Th1 and Th2) responses were present in mice after three immunizations and persisted up to one year after the first immunization. Moreover, the antibodies raised against the recombinant PvAMA-1 in injected mice could recognize the native protein localized on P. vivax parasites. Conclusion We demonstrate that our recombinant protein had proper conformation and folding. Also, there were common epitopes in the

  12. Expression of Recombinant Antibodies

    PubMed Central

    Frenzel, André; Hust, Michael; Schirrmann, Thomas

    2013-01-01

    Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with “human-like” post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications. PMID:23908655

  13. Recombinant factor VIIa.

    PubMed

    Aitken, Michael G

    2004-01-01

    Human coagulation factor (F) VII is a single chain protease that circulates in the blood as a weakly active zymogen at concentrations of approximately 10 nmol/L. When converted to the active 2 chain form (FVIIa), it is a powerful initiator of haemostasis. Recombinant factor VIIa (rFVIIa, eptacog alfa, NovoSeven) is a genetically engineered product that was first introduced in 1988 for the treatment of patients with haemophilia A and B with high inhibitory antibody titres to factors VIII and IX. Recent reports in the form of case studies and series, and early trial data, have suggested a role for rFVIIa across a diverse range of indications including bleeding associated with trauma, surgery, thrombocytopaenia, liver disease and oral anticoagulant toxicity. This review describes the physiology of the coagulation pathway and in particular the role of recombinant factor VIIa. It will also focus on the emerging role of rFVIIa in both trauma and non-trauma bleeding and its potential use in the ED. PMID:15537408

  14. Viral infections of the folds (intertriginous areas).

    PubMed

    Adışen, Esra; Önder, Meltem

    2015-01-01

    Viruses are considered intracellular obligates with a nucleic acid, either RNA or DNA. They have the ability to encode proteins involved in viral replication and production of the protective coat within the host cells but require host cell ribosomes and mitochondria for translation. The members of the families Herpesviridae, Poxviridae, Papovaviridae, and Picornaviridae are the most commonly known agents for the cutaneous viral diseases, but other virus families, such as Adenoviridae, Togaviridae, Parvoviridae, Paramyxoviridae, Flaviviridae, and Hepadnaviridae, can also infect the skin. Though the cutaneous manifestations of viral infections are closely related to the type and the transmission route of the virus, viral skin diseases may occur in almost any part of the body. In addition to friction caused by skin-to-skin touch, skin folds are warm and moist areas of the skin that have limited air circulation. These features provide a fertile breeding ground for many kinds of microorganisms, including bacteria and fungi. In contrast to specific bacterial and fungal agents that have an affinity for the skin folds, except for viral diseases of the anogenital area, which have well-known presentations, viral skin infections that have a special affinity to the skin folds are not known. Many viral exanthems may affect the skin folds during the course of the infection, but here we focus only on the ones that usually affect the fold areas and also on the less well-known conditions or recently described associations. PMID:26051057

  15. Protein Folding and Mechanisms of Proteostasis

    PubMed Central

    Díaz-Villanueva, José Fernando; Díaz-Molina, Raúl; García-González, Victor

    2015-01-01

    Highly sophisticated mechanisms that modulate protein structure and function, which involve synthesis and degradation, have evolved to maintain cellular homeostasis. Perturbations in these mechanisms can lead to protein dysfunction as well as deleterious cell processes. Therefore in recent years the etiology of a great number of diseases has been attributed to failures in mechanisms that modulate protein structure. Interconnections among metabolic and cell signaling pathways are critical for homeostasis to converge on mechanisms associated with protein folding as well as for the preservation of the native structure of proteins. For instance, imbalances in secretory protein synthesis pathways lead to a condition known as endoplasmic reticulum (ER) stress which elicits the adaptive unfolded protein response (UPR). Therefore, taking this into consideration, a key part of this paper is developed around the protein folding phenomenon, and cellular mechanisms which support this pivotal condition. We provide an overview of chaperone protein function, UPR via, spatial compartmentalization of protein folding, proteasome role, autophagy, as well as the intertwining between these processes. Several diseases are known to have a molecular etiology in the malfunction of mechanisms responsible for protein folding and in the shielding of native structure, phenomena which ultimately lead to misfolded protein accumulation. This review centers on our current knowledge about pathways that modulate protein folding, and cell responses involved in protein homeostasis. PMID:26225966

  16. Petrofabric test of viscous folding theory

    NASA Astrophysics Data System (ADS)

    Onasch, Charles M.

    1984-06-01

    Compression and extension axes are deduced from quartz deformation lamellae in a quartzite and a graywacke folded into an asymetrical syncline. Deformation lamellae fabrics in the two sandstones are distinctly different. In the graywacke, regardless of bedding orientation or position on the fold, compression axes are normal or nearly normal to the axial planar rough cleavage. Extension axes generally lie in the cleavage plane, parallel to dip. In most quartzite samples, compression axes are parallel or subparallel to bedding, at high angles to the fold axis and extension axes are normal to bedding. Two samples from the very base of the formation indicate compression parallel to the fold axis with extension parallel to bedding, at high angles to the fold axis. One of these two shows both patterns. The lamellae fabric geometry in these two samples suggests the presence of a neutral surface in the quartzite. The lamellae-derived compression and extension axes are in good agreement with the buckling behavior of a viscous layer (quartzite) embedded in a less viscous medium (graywacke and shale below and shale and carbonate above).

  17. Protein Folding and Mechanisms of Proteostasis.

    PubMed

    Díaz-Villanueva, José Fernando; Díaz-Molina, Raúl; García-González, Victor

    2015-01-01

    Highly sophisticated mechanisms that modulate protein structure and function, which involve synthesis and degradation, have evolved to maintain cellular homeostasis. Perturbations in these mechanisms can lead to protein dysfunction as well as deleterious cell processes. Therefore in recent years the etiology of a great number of diseases has been attributed to failures in mechanisms that modulate protein structure. Interconnections among metabolic and cell signaling pathways are critical for homeostasis to converge on mechanisms associated with protein folding as well as for the preservation of the native structure of proteins. For instance, imbalances in secretory protein synthesis pathways lead to a condition known as endoplasmic reticulum (ER) stress which elicits the adaptive unfolded protein response (UPR). Therefore, taking this into consideration, a key part of this paper is developed around the protein folding phenomenon, and cellular mechanisms which support this pivotal condition. We provide an overview of chaperone protein function, UPR via, spatial compartmentalization of protein folding, proteasome role, autophagy, as well as the intertwining between these processes. Several diseases are known to have a molecular etiology in the malfunction of mechanisms responsible for protein folding and in the shielding of native structure, phenomena which ultimately lead to misfolded protein accumulation. This review centers on our current knowledge about pathways that modulate protein folding, and cell responses involved in protein homeostasis. PMID:26225966

  18. Towards a systematic classification of protein folds

    NASA Astrophysics Data System (ADS)

    Lindgård, Per-Anker; Bohr, Henrik

    1997-10-01

    A lattice model Hamiltonian is suggested for protein structures that can explain the division into structural fold classes during the folding process. Proteins are described by chains of secondary structure elements, with the hinges in between being the important degrees of freedom. The protein structures are given a unique name, which simultaneously represent a linear string of physical coupling constants describing hinge spin interactions. We have defined a metric and a precise distance measure between the fold classes. An automated procedure is constructed in which any protein structure in the usual protein data base coordinate format can be transformed into the proposed chain representation. Taking into account hydrophobic forces we have found a mechanism for the formation of domains with a unique fold containing predicted magic numbers \\{4,6,9,12,16,18,...\\} of secondary structures and multiples of these domains. It is shown that the same magic numbers are robust and occur as well for packing on other nonclosed packed lattices. We have performed a statistical analysis of available protein structures and found agreement with the predicted preferred abundances of proteins with a predicted magic number of secondary structures. Thermodynamic arguments for the increased abundance and a phase diagram for the folding scenario are given. This includes an intermediate high symmetry phase, the parent structures, between the molten globule and the native states. We have made an exhaustive enumeration of dense lattice animals on a cubic lattice for acceptance number Z=4 and Z=5 up to 36 vertices.

  19. Proteopedia: Rossmann Fold: A Beta-Alpha-Beta Fold at Dinucleotide Binding Sites

    ERIC Educational Resources Information Center

    Hanukoglu, Israel

    2015-01-01

    The Rossmann fold is one of the most common and widely distributed super-secondary structures. It is composed of a series of alternating beta strand (ß) and alpha helical (a) segments wherein the ß-strands are hydrogen bonded forming a ß-sheet. The initial beta-alpha-beta (ßaß) fold is the most conserved segment of Rossmann folds. As this segment…

  20. Regeneration of Vocal Fold Mucosa Using Tissue-Engineered Structures with Oral Mucosal Cells

    PubMed Central

    Fukahori, Mioko; Chitose, Shun-ichi; Sato, Kiminori; Sueyoshi, Shintaro; Kurita, Takashi; Umeno, Hirohito; Monden, Yu; Yamakawa, Ryoji

    2016-01-01

    Objectives Scarred vocal folds result in irregular vibrations during phonation due to stiffness of the vocal fold mucosa. To date, a completely satisfactory corrective procedure has yet to be achieved. We hypothesize that a potential treatment option for this disease is to replace scarred vocal folds with organotypic mucosa. The purpose of this study is to regenerate vocal fold mucosa using a tissue-engineered structure with autologous oral mucosal cells. Study Design Animal experiment using eight beagles (including three controls). Methods A 3 mm by 3 mm specimen of canine oral mucosa was surgically excised and divided into epithelial and subepithelial tissues. Epithelial cells and fibroblasts were isolated and cultured separately. The proliferated epithelial cells were co-cultured on oriented collagen gels containing the proliferated fibroblasts for an additional two weeks. The organotypic cultured tissues were transplanted to the mucosa-deficient vocal folds. Two months after transplantation, vocal fold vibrations and morphological characteristics were observed. Results A tissue-engineered vocal fold mucosa, consisting of stratified epithelium and lamina propria, was successfully fabricated to closely resemble the normal layered vocal fold mucosa. Laryngeal stroboscopy revealed regular but slightly small mucosal waves at the transplanted site. Immunohistochemically, stratified epithelium expressed cytokeratin, and the distributed cells in the lamina propria expressed vimentin. Elastic Van Gieson staining revealed a decreased number of elastic fibers in the lamina propria of the transplanted site. Conclusion The fabricated mucosa with autologous oral mucosal cells successfully restored the vocal fold mucosa. This reconstruction technique could offer substantial clinical advantages for treating intractable diseases such as scarring of the vocal folds. PMID:26730600

  1. Influence of the ventricular folds on a voice source with specified vocal fold motion1

    PubMed Central

    McGowan, Richard S.; Howe, Michael S.

    2010-01-01

    The unsteady drag on the vocal folds is the major source of sound during voiced speech. The drag force is caused by vortex shedding from the vocal folds. The influence of the ventricular folds (i.e., the “false” vocal folds that protrude into the vocal tract a short distance downstream of the glottis) on the drag and the voice source are examined in this paper by means of a theoretical model involving vortex sheets in a two-dimensional geometry. The effect of the ventricular folds on the output acoustic pressure is found to be small when the movement of the vocal folds is prescribed. It is argued that the effect remains small when fluid-structure interactions account for vocal fold movement. These conclusions can be justified mathematically when the characteristic time scale for change in the velocity of the glottal jet is large compared to the time it takes for a vortex disturbance to be convected through the vocal fold and ventricular fold region. PMID:20329852

  2. Non-cylindrical fold growth in the Zagros fold and thrust belt (Kurdistan, NE-Iraq)

    NASA Astrophysics Data System (ADS)

    Bartl, Nikolaus; Bretis, Bernhard; Grasemann, Bernhard; Lockhart, Duncan

    2010-05-01

    The Zagros mountains extends over 1800 km from Kurdistan in N-Iraq to the Strait of Hormuz in Iran and is one of the world most promising regions for the future hydrocarbon exploration. The Zagros Mountains started to form as a result of the collision between the Eurasian and Arabian Plates, whose convergence began in the Late Cretaceous as part of the Alpine-Himalayan orogenic system. Geodetic and seismological data document that both plates are still converging and that the fold and thrust belt of the Zagros is actively growing. Extensive hydrocarbon exploration mainly focuses on the antiforms of this fold and thrust belt and therefore the growth history of the folds is of great importance. This work investigates by means of structural field work and quantitative geomorphological techniques the progressive fold growth of the Permam, Bana Bawi- and Safeen- Anticlines located in the NE of the city of Erbil in the Kurdistan region of Northern Iraq. This part of the Zagros fold and thrust belt belongs to the so-called Simply Folded Belt, which is dominated by gentle to open folding. Faults or fault related folds have only minor importance. The mechanical anisotropy of the formations consisting of a succession of relatively competent (massive dolomite and limestone) and incompetent (claystone and siltstone) sediments essentially controls the deformation pattern with open to gentle parallel folding of the competent layers and flexural flow folding of the incompetent layers. The characteristic wavelength of the fold trains is around 10 km. Due to faster erosion of the softer rock layers in the folded sequence, the more competent lithologies form sharp ridges with steeply sloping sides along the eroded flanks of the anticlines. Using an ASTER digital elevation model in combination with geological field data we quantified 250 drainage basins along the different limbs of the subcylindrical Permam, Bana Bawi- and Safeen- Anticlines. Geomorphological indices of the drainage

  3. Proteins with Highly Similar Native Folds Can Show Vastly Dissimilar Folding Behavior When Desolvated**

    PubMed Central

    Schennach, Moritz; Breuker, Kathrin

    2014-01-01

    Proteins can be exposed to vastly different environments such as the cytosol or membranes, but the delicate balance between external factors and intrinsic determinants of protein structure, stability, and folding is only poorly understood. Here we used electron capture dissociation to study horse and tuna heart Cytochromes c in the complete absence of solvent. The significantly different stability of their highly similar native folds after transfer into the gas phase, and their strikingly different folding behavior in the gas phase, can be rationalized on the basis of electrostatic interactions such as salt bridges. In the absence of hydrophobic bonding, protein folding is far slower and more complex than in solution. PMID:24259450

  4. Understanding the Mechanism of Prosegment-catalyzed Folding by Solution NMR Spectroscopy*

    PubMed Central

    Wang, Shenlin; Horimoto, Yasumi; Dee, Derek R.; Yada, Rickey Y.

    2014-01-01

    Multidomain protein folding is often more complex than a two-state process, which leads to the spontaneous folding of the native state. Pepsin, a zymogen-derived enzyme, without its prosegment (PS), is irreversibly denatured and folds to a thermodynamically stable, non-native conformation, termed refolded pepsin, which is separated from native pepsin by a large activation barrier. While it is known that PS binds refolded pepsin and catalyzes its conversion to the native form, little structural details are known regarding this conversion. In this study, solution NMR was used to elucidate the PS-catalyzed folding mechanism by examining the key equilibrium states, e.g. native and refolded pepsin, both in the free and PS-bound states, and pepsinogen, the zymogen form of pepsin. Refolded pepsin was found to be partially structured and lacked the correct domain-domain structure and active-site cleft formed in the native state. Analysis of chemical shift data revealed that upon PS binding refolded pepsin folds into a state more similar to that of pepsinogen than to native pepsin. Comparison of pepsin folding by wild-type and mutant PSs, including a double mutant PS, indicated that hydrophobic interactions between residues of prosegment and refolded pepsin lower the folding activation barrier. A mechanism is proposed for the binding of PS to refolded pepsin and how the formation of the native structure is mediated. PMID:24265313

  5. The lambda red proteins promote efficient recombination between diverged sequences: implications for bacteriophage genome mosaicism.

    PubMed

    Martinsohn, Jann T; Radman, Miroslav; Petit, Marie-Agnès

    2008-05-01

    Genome mosaicism in temperate bacterial viruses (bacteriophages) is so great that it obscures their phylogeny at the genome level. However, the precise molecular processes underlying this mosaicism are unknown. Illegitimate recombination has been proposed, but homeologous recombination could also be at play. To test this, we have measured the efficiency of homeologous recombination between diverged oxa gene pairs inserted into lambda. High yields of recombinants between 22% diverged genes have been obtained when the virus Red Gam pathway was active, and 100 fold less when the host Escherichia coli RecABCD pathway was active. The recombination editing proteins, MutS and UvrD, showed only marginal effects on lambda recombination. Thus, escape from host editing contributes to the high proficiency of virus recombination. Moreover, our bioinformatics study suggests that homeologous recombination between similar lambdoid viruses has created part of their mosaicism. We therefore propose that the remarkable propensity of the lambda-encoded Red and Gam proteins to recombine diverged DNA is effectively contributing to mosaicism, and more generally, that a correlation may exist between virus genome mosaicism and the presence of Red/Gam-like systems. PMID:18451987

  6. Two Mutually Exclusive Local Chromatin States Drive Efficient V(D)J Recombination.

    PubMed

    Bolland, Daniel J; Koohy, Hashem; Wood, Andrew L; Matheson, Louise S; Krueger, Felix; Stubbington, Michael J T; Baizan-Edge, Amanda; Chovanec, Peter; Stubbs, Bryony A; Tabbada, Kristina; Andrews, Simon R; Spivakov, Mikhail; Corcoran, Anne E

    2016-06-14

    Variable (V), diversity (D), and joining (J) (V(D)J) recombination is the first determinant of antigen receptor diversity. Understanding how recombination is regulated requires a comprehensive, unbiased readout of V gene usage. We have developed VDJ sequencing (VDJ-seq), a DNA-based next-generation-sequencing technique that quantitatively profiles recombination products. We reveal a 200-fold range of recombination efficiency among recombining V genes in the primary mouse Igh repertoire. We used machine learning to integrate these data with local chromatin profiles to identify combinatorial patterns of epigenetic features that associate with active VH gene recombination. These features localize downstream of VH genes and are excised by recombination, revealing a class of cis-regulatory element that governs recombination, distinct from expression. We detect two mutually exclusive chromatin signatures at these elements, characterized by CTCF/RAD21 and PAX5/IRF4, which segregate with the evolutionary history of associated VH genes. Thus, local chromatin signatures downstream of VH genes provide an essential layer of regulation that determines recombination efficiency. PMID:27264181

  7. Stretching and folding in finite time.

    PubMed

    Ma, Tian; Ouellette, Nicholas T; Bollt, Erik M

    2016-02-01

    Complex flows mix efficiently, and this process can be understood by considering the stretching and folding of material volumes. Although many metrics have been devised to characterize stretching, fewer are able to capture folding in a quantitative way in spatiotemporally variable flows. Here, we extend our previous methods based on the finite-time curving of fluid-element trajectories to nonzero scales and show that this finite-scale finite-time curvature contains information about both stretching and folding. We compare this metric to the more commonly used finite-time Lyapunov exponent and illustrate our methods using experimental flow-field data from a quasi-two-dimensional laboratory flow. Our new analysis tools add to the growing set of Lagrangian methods for characterizing mixing in complex, aperiodic fluid flows. PMID:26931593

  8. Stretching and folding in finite time

    NASA Astrophysics Data System (ADS)

    Ma, Tian; Ouellette, Nicholas T.; Bollt, Erik M.

    2016-02-01

    Complex flows mix efficiently, and this process can be understood by considering the stretching and folding of material volumes. Although many metrics have been devised to characterize stretching, fewer are able to capture folding in a quantitative way in spatiotemporally variable flows. Here, we extend our previous methods based on the finite-time curving of fluid-element trajectories to nonzero scales and show that this finite-scale finite-time curvature contains information about both stretching and folding. We compare this metric to the more commonly used finite-time Lyapunov exponent and illustrate our methods using experimental flow-field data from a quasi-two-dimensional laboratory flow. Our new analysis tools add to the growing set of Lagrangian methods for characterizing mixing in complex, aperiodic fluid flows.

  9. Thermal stability of idealized folded carbyne loops.

    PubMed

    Cranford, Steven W

    2013-01-01

    Self-unfolding items provide a practical convenience, wherein ring-like frames are contorted into a state of equilibrium and subsequently  pop up' or deploy when perturbed from a folded structure. Can the same process be exploited at the molecular scale? At the limiting scale is a closed chain of single atoms, used here to investigate the limits of stability of such folded ring structures via full atomistic molecular dynamics. Carbyne is a one-dimensional carbon allotrope composed of sp-hybridized carbon atoms. Here, we explore the stability of idealized carbyne loops as a function of chain length, curvature, and temperature, and delineate an effective phase diagram between folded and unfolded states. We find that while overall curvature is reduced, in addition to torsional and self-adhesive energy barriers, a local increase in curvature results in the largest impedance to unfolding. PMID:24252156

  10. Analysis of High-Fold Gamma Data

    SciTech Connect

    Beyer, C.J.; Cromaz, M.; Radford, D.C.

    1998-08-10

    Historically, {gamma}-{gamma} and {gamma}-{gamma}-{gamma} coincidence spectra were utilized to build nuclear level schemes. With the development of large detector arrays, it has became possible to analyze higher fold coincidence data sets. This paper briefly reports on software to analyze 4-fold coincidence data sets that allows creation of 4-fold histograms (hypercubes) of at least 1024 channels per side (corresponding to a 43 gigachannel data space) that will fit onto a few gigabytes of disk space, and extraction of triple-gated spectra in a few seconds. Future detector arrays may have even higher efficiencies, and detect an many as 15 or 20 {gamma} rays simultaneously; such data will require very different algorithms for storage and analysis. Difficulties inherent in the analysis of such data are discussed, and two possible new solutions are presented, namely adaptive list-mode systems and list-list-mode storage.

  11. Exact folded-band chaotic oscillator.

    PubMed

    Corron, Ned J; Blakely, Jonathan N

    2012-06-01

    An exactly solvable chaotic oscillator with folded-band dynamics is shown. The oscillator is a hybrid dynamical system containing a linear ordinary differential equation and a nonlinear switching condition. Bounded oscillations are provably chaotic, and successive waveform maxima yield a one-dimensional piecewise-linear return map with segments of both positive and negative slopes. Continuous-time dynamics exhibit a folded-band topology similar to Rössler's oscillator. An exact solution is written as a linear convolution of a fixed basis pulse and a discrete binary sequence, from which an equivalent symbolic dynamics is obtained. The folded-band topology is shown to be dependent on the symbol grammar. PMID:22757520

  12. Computing folding pathways between RNA secondary structures.

    PubMed

    Dotu, Ivan; Lorenz, William A; Van Hentenryck, Pascal; Clote, Peter

    2010-03-01

    Given an RNA sequence and two designated secondary structures A, B, we describe a new algorithm that computes a nearly optimal folding pathway from A to B. The algorithm, RNAtabupath, employs a tabu semi-greedy heuristic, known to be an effective search strategy in combinatorial optimization. Folding pathways, sometimes called routes or trajectories, are computed by RNAtabupath in a fraction of the time required by the barriers program of Vienna RNA Package. We benchmark RNAtabupath with other algorithms to compute low energy folding pathways between experimentally known structures of several conformational switches. The RNApathfinder web server, source code for algorithms to compute and analyze pathways and supplementary data are available at http://bioinformatics.bc.edu/clotelab/RNApathfinder. PMID:20044352

  13. Microbial Manipulation of the Amyloid Fold

    PubMed Central

    DePas, William H.

    2012-01-01

    Microbial biofilms are encased in a protein, DNA and polysaccharide matrix that protects the community, promotes interactions with the environment, and helps cells to adhere together. The protein component of these matrices is often a remarkably stable, β-sheet-rich polymer called amyloid. Amyloids form ordered, self-templating fibers that are highly aggregative, making them a valuable biofilm component. Some eukaryotic proteins inappropriately adopt the amyloid fold and these misfolded protein aggregates disrupt normal cellular proteostasis, which can cause significant cytotoxicity. Indeed, until recently amyloids were considered solely the result of protein misfolding. However, research over the past decade has revealed how various organisms have capitalized on the amyloid fold by developing sophisticated biogenesis pathways that coordinate gene expression, protein folding, and secretion so that amyloid-related toxicities are minimized. How microbes manipulate amyloids, by augmenting their advantageous properties and by reducing their undesirable properties, will be the subject of this review. PMID:23108148

  14. "Wet" Versus "Dry" Folding of Polyproline

    NASA Astrophysics Data System (ADS)

    Shi, Liuqing; Holliday, Alison E.; Bohrer, Brian C.; Kim, Doyong; Servage, Kelly A.; Russell, David H.; Clemmer, David E.

    2016-04-01

    When the all-cis polyproline-I helix (PPI, favored in 1-propanol) of polyproline-13 is introduced into water, it folds into the all-trans polyproline-II (PPII) helix through at least six intermediates [Shi, L., Holliday, A.E., Shi, H., Zhu, F., Ewing, M.A., Russell, D.H., Clemmer, D.E.: Characterizing intermediates along the transition from PPI to PPII using ion mobility-mass spectrometry. J. Am. Chem. Soc. 136, 12702-12711 (2014)]. Here, we show that the solvent-free intermediates refold into the all-cis PPI helix with high (>90%) efficiency. Moreover, in the absence of solvent, each intermediate appears to utilize the same small set of pathways observed for the solution-phase PPII → PPI transition upon immersion of PPIIaq in 1-propanol. That folding in solution (under conditions where water is displaced by propanol) and folding in vacuo (where energy required for folding is provided by collisional activation) occur along the same pathway is remarkable. Implicit in this statement is that 1-propanol mimics a "dry" environment, similar to the gas phase. We note that intermediates with structures that are similar to PPIIaq can form PPII under the most gentle activation conditions—indicating that some transitions observed in water (i.e., "wet" folding, are accessible (albeit inefficient) in vacuo. Lastly, these "dry" folding experiments show that PPI (all cis) is favored under "dry" conditions, which underscores the role of water as the major factor promoting preference for trans proline.

  15. Effects of Knots on Protein Folding Properties

    PubMed Central

    Soler, Miguel A.; Faísca, Patrícia F. N.

    2013-01-01

    This work explores the impact of knots, knot depth and motif of the threading terminus in protein folding properties (kinetics, thermodynamics and mechanism) via extensive Monte Carlo simulations of lattice models. A knotted backbone has no effect on protein thermodynamic stability but it may affect key aspects of folding kinetics. In this regard, we found clear evidence for a functional advantage of knots: knots enhance kinetic stability because a knotted protein unfolds at a distinctively slower rate than its unknotted counterpart. However, an increase in knot deepness does not necessarily lead to more effective changes in folding properties. In this regard, a terminus with a non-trivial conformation (e.g. hairpin) can have a more dramatic effect in enhancing kinetic stability than knot depth. Nevertheless, our results suggest that the probability of the denatured ensemble to keep knotted is higher for proteins with deeper knots, indicating that knot depth plays a role in determining the topology of the denatured state. Refolding simulations starting from denatured knotted conformations show that not every knot is able to nucleate folding and further indicate that the formation of the knotting loop is a key event in the folding of knotted trefoils. They also show that there are specific native contacts within the knotted core that are crucial to keep a native knotting loop in denatured conformations which otherwise have no detectable structure. The study of the knotting mechanism reveals that the threading of the knotting loop generally occurs towards late folding in conformations that exhibit a significant degree of structural consolidation. PMID:24023962

  16. Fast gravitational wave radiometry using data folding

    NASA Astrophysics Data System (ADS)

    Ain, Anirban; Dalvi, Prathamesh; Mitra, Sanjit

    2015-07-01

    Gravitational waves (GWs) from the early universe and unresolved astrophysical sources are expected to create a stochastic GW background (SGWB). The GW radiometer algorithm is well suited to probe such a background using data from ground-based laser interferometric detectors. Radiometer analysis can be performed in different bases, e.g., isotropic, pixel or spherical harmonic. Each of these analyses possesses a common temporal symmetry which we exploit here to fold the whole data set for every detector pair, typically a few hundred to a thousand days of data, to only one sidereal day, without any compromise in precision. We develop the algebra and a software pipeline needed to fold data, accounting for the effect of overlapping windows and nonstationary noise. We implement this on LIGO's fifth science run data and validate it by performing a standard anisotropic SGWB search on both folded and unfolded data. Folded data not only leads to orders of magnitude reduction in computation cost, but it results in a conveniently small data volume of few gigabytes, making it possible to perform an actual analysis on a personal computer, as well as easy movement of data. A few important analyses, yet unaccomplished due to computational limitations, will now become feasible. Folded data, being independent of the radiometer basis, will also be useful in reducing processing redundancies in multiple searches and provide a common ground for mutual consistency checks. Most importantly, folded data will allow vast amount of experimentation with existing searches and provide substantial help in developing new strategies to find unknown sources.

  17. Unraveling recombination rate evolution using ancestral recombination maps

    PubMed Central

    Munch, Kasper; Schierup, Mikkel H; Mailund, Thomas

    2014-01-01

    Recombination maps of ancestral species can be constructed from comparative analyses of genomes from closely related species, exemplified by a recently published map of the human-chimpanzee ancestor. Such maps resolve differences in recombination rate between species into changes along individual branches in the speciation tree, and allow identification of associated changes in the genomic sequences. We describe how coalescent hidden Markov models are able to call individual recombination events in ancestral species through inference of incomplete lineage sorting along a genomic alignment. In the great apes, speciation events are sufficiently close in time that a map can be inferred for the ancestral species at each internal branch - allowing evolution of recombination rate to be tracked over evolutionary time scales from speciation event to speciation event. We see this approach as a way of characterizing the evolution of recombination rate and the genomic properties that influence it. PMID:25043668

  18. 77 FR 72199 - Technical Corrections; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ...) is correcting a final rule that was published in the Federal Register on July 6, 2012 (77 FR 39899... . SUPPLEMENTARY INFORMATION: On July 6, 2012 (77 FR 39899), the NRC published a final rule in the Federal Register... typographical and spelling errors, and making other edits and conforming changes. This correcting amendment...

  19. Rx for Pedagogical Correctness: Professional Correctness.

    ERIC Educational Resources Information Center

    Lasley, Thomas J.

    1993-01-01

    Describes the difficulties caused by educators holding to a view of teaching that assumes that there is one "pedagogically correct" way of running a classroom. Provides three examples of harmful pedagogical correctness ("untracked" classes, cooperative learning, and testing and test-wiseness). Argues that such dogmatic views of education limit…

  20. Algebraic theory of recombination spaces.

    PubMed

    Stadler, P F; Wagner, G P

    1997-01-01

    A new mathematical representation is proposed for the configuration space structure induced by recombination, which we call "P-structure." It consists of a mapping of pairs of objects to the power set of all objects in the search space. The mapping assigns to each pair of parental "genotypes" the set of all recombinant genotypes obtainable from the parental ones. It is shown that this construction allows a Fourier decomposition of fitness landscapes into a superposition of "elementary landscapes." This decomposition is analogous to the Fourier decomposition of fitness landscapes on mutation spaces. The elementary landscapes are obtained as eigenfunctions of a Laplacian operator defined for P-structures. For binary string recombination, the elementary landscapes are exactly the p-spin functions (Walsh functions), that is, the same as the elementary landscapes of the string point mutation spaces (i.e., the hypercube). This supports the notion of a strong homomorphism between string mutation and recombination spaces. However, the effective nearest neighbor correlations on these elementary landscapes differ between mutation and recombination and among different recombination operators. On average, the nearest neighbor correlation is higher for one-point recombination than for uniform recombination. For one-point recombination, the correlations are higher for elementary landscapes with fewer interacting sites as well as for sites that have closer linkage, confirming the qualitative predictions of the Schema Theorem. We conclude that the algebraic approach to fitness landscape analysis can be extended to recombination spaces and provides an effective way to analyze the relative hardness of a landscape for a given recombination operator. PMID:10021760

  1. Understanding protein folding: small proteins in silico.

    PubMed

    Zimmermann, Olav; Hansmann, Ulrich H E

    2008-01-01

    Recent improvements in methodology and increased computer power now allow atomistic computer simulations of protein folding. We briefly review several advanced Monte Carlo algorithms that have contributed to this development. Details of folding simulations of three designed mini proteins are shown. Adding global translations and rotations has allowed us to handle multiple chains and to simulate the aggregation of six beta-amyloid fragments. In a different line of research we have developed several algorithms to predict local features from sequence. In an outlook we sketch how such biasing could extend the application spectrum of Monte Carlo simulations to structure prediction of larger proteins. PMID:18036571

  2. Computational analysis of hydrogenated graphyne folding

    NASA Astrophysics Data System (ADS)

    Lenear, Christopher; Becton, Matthew; Wang, Xianqiao

    2016-02-01

    This letter employs molecular mechanics simulations to analyze the geometric changes of foreign-atom-doped graphyne. Simulation results show that higher the density of dopant and the greater area covered by the dopant correlates to a greater folding angle of the graphyne sheet. Compared to graphene, graphyne folding could prove to be more effective for various nanodevices based on its unique band gap, especially when doped, and its tunable interactions with and absorption of foreign molecules. Therefore, our findings may offer unique perspectives into the development of novel graphyne-based nanodevices and stimulate the community's research interest in graphene-related origami.

  3. Extramedullary plasmacytoma of the true vocal fold.

    PubMed

    De Zoysa, Nilantha; Sandler, Belinda; Amonoo-Kuofi, Kwame; Swamy, Rajiv; Kothari, Prasad; Mochloulis, George

    2012-08-01

    We report a rare case of extramedullary plasmacytoma (EMP) of the true vocal fold. Our patient, a 62-year-old woman, presented with dysphonia. On workup, fiberoptic laryngoscopy detected a lesion arising from the anterior half of her left true vocal fold. No evidence of other pathology was noted. The patient underwent radical radiotherapy, and the lesion resolved. Follow-up revealed no sign of recurrence. A type of myeloma, EMP is rare, especially in the larynx. To the best of our knowledge, our patient represents the sixth case of glottic EMP to be reported in the literature. PMID:22930090

  4. Control of folding by gravity and matrix thickness: Implications for large-scale folding

    NASA Astrophysics Data System (ADS)

    Schmalholz, S. M.; Podladchikov, Y. Y.; Burg, J.-P.

    2002-01-01

    We show that folding of a non-Newtonian layer resting on a homogeneous Newtonian matrix with finite thickness under influence of gravity can occur by three modes: (1) matrix-controlled folding, dependent on the effective viscosity contrast between layer and matrix, (2) gravity-controlled folding, dependent on the Argand number (the ratio of the stress caused by gravity to the stress caused by shortening), and (3) detachment folding, dependent on the ratio of matrix thickness to layer thickness. We construct a phase diagram that defines the transitions between each of the three folding modes. Our priority is transparency of the analytical derivations (e.g., thin-plate versus thick-plate approximations), which permits complete classification of the folding modes involving a minimum number of dimensionless parameters. Accuracy and sensitivity of the analytical results to model assumptions are investigated. In particular, depth dependence of matrix rheology is only important for folding over a narrow range of material parameters. In contrast, strong depth dependence of the viscosity of the folding layer limits applicability of ductile rheology and leads to a viscoelastic transition. Our theory is applied to estimate the effective thickness of the folded central Asian upper crust using the ratio of topographic wavelength to Moho depth. Phase diagrams based on geometrical parameters show that gravity does not significantly control folding in the Jura and the Zagros Mountains but does control folding in central Asia. Applicability conditions of viscous and thin sheet models for large-scale lithospheric deformation, derived in terms of the Argand number, have implications for the plate-like style of planetary tectonics.

  5. Selective inhibition of the kinase DYRK1A by targeting its folding process.

    PubMed

    Kii, Isao; Sumida, Yuto; Goto, Toshiyasu; Sonamoto, Rie; Okuno, Yukiko; Yoshida, Suguru; Kato-Sumida, Tomoe; Koike, Yuka; Abe, Minako; Nonaka, Yosuke; Ikura, Teikichi; Ito, Nobutoshi; Shibuya, Hiroshi; Hosoya, Takamitsu; Hagiwara, Masatoshi

    2016-01-01

    Autophosphorylation of amino-acid residues is part of the folding process of various protein kinases. Conventional chemical screening of mature kinases has missed inhibitors that selectively interfere with the folding process. Here we report a cell-based assay that evaluates inhibition of a kinase at a transitional state during the folding process and identify a folding intermediate-selective inhibitor of dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), which we refer to as FINDY. FINDY suppresses intramolecular autophosphorylation of Ser97 in DYRK1A in cultured cells, leading to its degradation, but does not inhibit substrate phosphorylation catalysed by the mature kinase. FINDY also suppresses Ser97 autophosphorylation of recombinant DYRK1A, suggesting direct inhibition, and shows high selectivity for DYRK1A over other DYRK family members. In addition, FINDY rescues DYRK1A-induced developmental malformations in Xenopus laevis embryos. Our study demonstrates that transitional folding intermediates of protein kinases can be targeted by small molecules, and paves the way for developing novel types of kinase inhibitors. PMID:27102360

  6. A highly stable protein chimera built from fragments of different folds.

    PubMed

    Shanmugaratnam, Sooruban; Eisenbeis, Simone; Höcker, Birte

    2012-11-01

    Proteins increased in complexity during the course of evolution. Domains as well as subdomain-sized fragments were recruited and adapted to form new proteins and novel folds. This concept can be used in engineering to construct new proteins. We previously reported the combination of fragments from two ancient protein folds, a flavodoxin-like and a (βα)₈-barrel protein. Here we report two further attempts at engineering a chimeric protein from fragments of these folds. While one of the constructs showed a high tendency to aggregate, the other turned out to be a highly stable, well-structured protein. In terms of stability against heat and chemical denaturation this chimera, named NarLHisF, is superior to the earlier presented CheYHisF. This is the second instance of a chimera build from two different protein folds, which demonstrates how easily recombination can lead to the development and diversification of new proteins--a mechanism that most likely occurred frequently in the course of evolution. Based on the results of the failed and the successful chimera, we discuss important considerations for a general design strategy for fold chimeras. PMID:23081840

  7. Selective inhibition of the kinase DYRK1A by targeting its folding process

    PubMed Central

    Kii, Isao; Sumida, Yuto; Goto, Toshiyasu; Sonamoto, Rie; Okuno, Yukiko; Yoshida, Suguru; Kato-Sumida, Tomoe; Koike, Yuka; Abe, Minako; Nonaka, Yosuke; Ikura, Teikichi; Ito, Nobutoshi; Shibuya, Hiroshi; Hosoya, Takamitsu; Hagiwara, Masatoshi

    2016-01-01

    Autophosphorylation of amino-acid residues is part of the folding process of various protein kinases. Conventional chemical screening of mature kinases has missed inhibitors that selectively interfere with the folding process. Here we report a cell-based assay that evaluates inhibition of a kinase at a transitional state during the folding process and identify a folding intermediate-selective inhibitor of dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), which we refer to as FINDY. FINDY suppresses intramolecular autophosphorylation of Ser97 in DYRK1A in cultured cells, leading to its degradation, but does not inhibit substrate phosphorylation catalysed by the mature kinase. FINDY also suppresses Ser97 autophosphorylation of recombinant DYRK1A, suggesting direct inhibition, and shows high selectivity for DYRK1A over other DYRK family members. In addition, FINDY rescues DYRK1A-induced developmental malformations in Xenopus laevis embryos. Our study demonstrates that transitional folding intermediates of protein kinases can be targeted by small molecules, and paves the way for developing novel types of kinase inhibitors. PMID:27102360

  8. Transforming the treatment for hemophilia B patients: update on the clinical development of recombinant fusion protein linking recombinant coagulation factor IX with recombinant albumin (rIX-FP).

    PubMed

    Santagostino, Elena

    2016-05-01

    Recombinant fusion protein linking recombinant coagulation factor IX with recombinant albumin (rIX-FP; Idelvion®(†)) is an innovative new treatment designed to extend the half-life of factor IX (FIX) and ease the burden of care for hemophilia B patients. The rIX-FP clinical development program - PROLONG-9FP - is in its advanced phases, with pivotal studies in previously treated adults, adolescents, and pediatrics now completed. Across all age groups studied, rIX-FP has demonstrated a markedly improved pharmacokinetic profile compared with plasma-derived and recombinant FIX treatments, with a 30-40% higher incremental recovery, an approximately 5-fold longer half-life, a lower clearance, and a greater area under the curve. rIX-FP has been very well tolerated with an excellent safety profile. In the pivotal studies, there have been no reports of FIX inhibitors or antidrug antibodies, and few treatment-related adverse events have been observed. Prophylactic regimens of rIX-FP administered once weekly to once every 14 days have been highly effective. When used for surgical prophylaxis, a single infusion of rIX-FP has been sufficient to maintain hemostasis, even during major orthopedic surgery. An ongoing study is now enrolling previously untreated patients and evaluating the possibility of extending the dosing interval to every 21 days. There is little doubt that rIX-FP will transform the treatment of hemophilia B. PMID:27288064

  9. Recombinant Human Erythropoietin

    PubMed Central

    Bartels, Claudia; Späte, Kira; Krampe, Henning

    2008-01-01

    Treatment of multiple sclerosis (MS) is still unsatisfactory and essentially non-existing for the progressive course of the disease. Recombinant human erythropoietin (EPO) may be a promising neuroprotective/neuroregenerative treatment of MS. In the nervous system, EPO acts anti-apoptotic, antioxidative, anti-inflammatory, neurotrophic and plasticity-modulating. Beneficial effects have been shown in animal models of various neurological and psychiatric diseases, including different models of experimental autoimmune encephalomyelitis. EPO is also effective in human brain disease, as shown in double-blind placebo-controlled clinical studies on ischemic stroke and chronic schizophrenia. An exploratory study on chronic progressive MS yielded lasting improvement in motor and cognitive performance upon high-dose long-term EPO treatment. PMID:21180577

  10. Recombinant glucose uptake system

    DOEpatents

    Ingrahm, Lonnie O.; Snoep, Jacob L.; Arfman, Nico

    1997-01-01

    Recombinant organisms are disclosed that contain a pathway for glucose uptake other than the pathway normally utilized by the host cell. In particular, the host cell is one in which glucose transport into the cell normally is coupled to PEP production. This host cell is transformed so that it uses an alternative pathway for glucose transport that is not coupled to PEP production. In a preferred embodiment, the host cell is a bacterium other than Z. mobilis that has been transformed to contain the glf and glk genes of Z. mobilis. By uncoupling glucose transport into the cell from PEP utilization, more PEP is produced for synthesis of products of commercial importance from a given quantity of biomass supplied to the host cells.

  11. Intrachromosomal recombination between well-separated, homologous sequences in mammalian cells.

    PubMed Central

    Baker, M D; Read, L R; Ng, P; Beatty, B G

    1999-01-01

    In the present study, we investigated intrachromosomal homologous recombination in a murine hybridoma in which the recipient for recombination, the haploid, endogenous chromosomal immunoglobulin mu-gene bearing a mutation in the constant (Cmu) region, was separated from the integrated single copy wild-type donor Cmu region by approximately 1 Mb along the hybridoma chromosome. Homologous recombination between the donor and recipient Cmu region occurred with high frequency, correcting the mutant chromosomal mu-gene in the hybridoma. This enabled recombinant hybridomas to synthesize normal IgM and to be detected as plaque-forming cells (PFC). Characterization of the recombinants revealed that they could be placed into three distinct classes. The generation of the class I recombinants was consistent with a simple unequal sister chromatid exchange (USCE) between the donor and recipient Cmu region, as they contained the three Cmu-bearing fragments expected from this recombination, the original donor Cmu region along with both products of the single reciprocal crossover. However, a simple mechanism of homologous recombination was not sufficient in explaining the more complex Cmu region structures characterizing the class II and class III recombinants. To explain these recombinants, a model is proposed in which unequal pairing between the donor and recipient Cmu regions located on sister chromatids resulted in two crossover events. One crossover resulted in the deletion of sequences from one chromatid forming a DNA circle, which then integrated into the sister chromatid by a second reciprocal crossover. PMID:10353910

  12. Better and faster: improvements and optimization for mammalian recombinant protein production

    PubMed Central

    Almo, Steven C.; Love, James D.

    2014-01-01

    Thanks to numerous technological advances, the production of recombinant proteins in mammalian cell lines has become an increasingly routine task that is no longer viewed as a heroic enterprise. While production in prokaryotic or lower eukaryotic systems may be more rapid and economical, the advantages of producing large amounts of protein that closely resembles the native form is often advantageous and may be essential for the realization of functionally active material for biological studies or biopharmaceuticals. The correct folding, processing and post-translational modifications conferred by expression in a mammalian cell is relevant to all classes of proteins, including cytoplasmic, secreted or integral membrane proteins. Therefore considerable efforts have focused on the development of growth media, cell lines, transformation methods and selection techniques that enable the production of grams of functional protein in weeks, rather than months. This review will focus on a plethora of methods that are broadly applicable to the high yield production of any class of protein (cytoplasmic, secreted or integral membrane) from mammalian cells. PMID:24721463

  13. Better and faster: improvements and optimization for mammalian recombinant protein production.

    PubMed

    Almo, Steven C; Love, James D

    2014-06-01

    Thanks to numerous technological advances, the production of recombinant proteins in mammalian cell lines has become an increasingly routine task that is no longer viewed as a heroic enterprise. While production in prokaryotic or lower eukaryotic systems may be more rapid and economical, the advantages of producing large amounts of protein that closely resembles the native form is often advantageous and may be essential for the realization of functionally active material for biological studies or biopharmaceuticals. The correct folding, processing and post-translational modifications conferred by expression in a mammalian cell is relevant to all classes of proteins, including cytoplasmic, secreted or integral membrane proteins. Therefore considerable efforts have focused on the development of growth media, cell lines, transformation methods and selection techniques that enable the production of grams of functional protein in weeks, rather than months. This review will focus on a plethora of methods that are broadly applicable to the high yield production of any class of protein (cytoplasmic, secreted or integral membrane) from mammalian cells. PMID:24721463

  14. Conformational stability and warfarin-binding properties of human serum albumin studied by recombinant mutants.

    PubMed Central

    Watanabe, H; Kragh-Hansen, U; Tanase, S; Nakajou, K; Mitarai, M; Iwao, Y; Maruyama, T; Otagiri, M

    2001-01-01

    Correctly folded recombinant wild-type human serum albumin and the single-residue mutants K199A, W214A, R218H and H242Q were produced with the use of a yeast expression system. The changes in R218H resulted in a pronounced decrease in intrinsic fluorescence. Thermodynamic parameters for thermal denaturation of the present mutants and of five additional mutants have been determined, showing small increases in stability for two mutants (R218H and H242Q) and a larger decrease in stability for one (W214A). In the last of these, denaturation was a heterogeneous process starting at physiological temperature. The high-affinity binding constant for warfarin at pH 7.4 was determined by fluorescence spectroscopy: there was a significant increase in affinity for binding of warfarin to H242Q and K199A and a smaller decrease in affinity for W214A and R218H. The findings show that Trp-214 is not as essential for the high-affinity binding of warfarin as has previously been thought. PMID:11415459

  15. Protein folding in the cell envelope of Escherichia coli.

    PubMed

    De Geyter, Jozefien; Tsirigotaki, Alexandra; Orfanoudaki, Georgia; Zorzini, Valentina; Economou, Anastassios; Karamanou, Spyridoula

    2016-01-01

    While the entire proteome is synthesized on cytoplasmic ribosomes, almost half associates with, localizes in or crosses the bacterial cell envelope. In Escherichia coli a variety of mechanisms are important for taking these polypeptides into or across the plasma membrane, maintaining them in soluble form, trafficking them to their correct cell envelope locations and then folding them into the right structures. The fidelity of these processes must be maintained under various environmental conditions including during stress; if this fails, proteases are called in to degrade mislocalized or aggregated proteins. Various soluble, diffusible chaperones (acting as holdases, foldases or pilotins) and folding catalysts are also utilized to restore proteostasis. These responses can be general, dealing with multiple polypeptides, with functional overlaps and operating within redundant networks. Other chaperones are specialized factors, dealing only with a few exported proteins. Several complex machineries have evolved to deal with binding to, integration in and crossing of the outer membrane. This complex protein network is responsible for fundamental cellular processes such as cell wall biogenesis; cell division; the export, uptake and degradation of molecules; and resistance against exogenous toxic factors. The underlying processes, contributing to our fundamental understanding of proteostasis, are a treasure trove for the development of novel antibiotics, biopharmaceuticals and vaccines. PMID:27573113

  16. The recombination of genetic material

    SciTech Connect

    Low, K.B.

    1988-01-01

    Genetic recombination is the major mechanism by which new arrangements of genetic elements are produced in all living organisms, from the simplest bacterial viruses to humans. This volume presents an overview of the types of recombination found in prokaryotes and eukaryotes.

  17. Production of biologically active recombinant human lactoferrin in Aspergillus oryzae.

    PubMed

    Ward, P P; Lo, J Y; Duke, M; May, G S; Headon, D R; Conneely, O M

    1992-07-01

    We report the production of recombinant human lactoferrin in Aspergillus oryzae. Expression of human lactoferrin (hLF), a 78 kD glycoprotein, was achieved by placing the cDNA under the control of the A. oryzae alpha-amylase promoter and the 3' flanking region of the A. niger glucoamylase gene. Using this system, hLF is expressed and secreted into the growth medium at levels up to 25 mg/l. The recombinant lactoferrin is indistinguishable from human milk lactoferrin with respect to its size, immunoreactivity, and iron-binding capacity. The recombinant protein appears to be appropriately N-linked glycosylated and correctly processed at the N-terminus by the A. oryzae secretory apparatus. Lactoferrin is the largest heterologous protein and the first mammalian glycoprotein expressed in the Aspergillus system to date. Hence, this expression system appears suitable for the large-scale production and secretion of biologically active mammalian glycoproteins. PMID:1368268

  18. Nomenclature proposal to describe vocal fold motion impairment.

    PubMed

    Rosen, Clark A; Mau, Ted; Remacle, Marc; Hess, Markus; Eckel, Hans E; Young, VyVy N; Hantzakos, Anastasios; Yung, Katherine C; Dikkers, Frederik G

    2016-08-01

    The terms used to describe vocal fold motion impairment are confusing and not standardized. This results in a failure to communicate accurately and to major limitations of interpreting research studies involving vocal fold impairment. We propose standard nomenclature for reporting vocal fold impairment. Overarching terms of vocal fold immobility and hypomobility are rigorously defined. This includes assessment techniques and inclusion and exclusion criteria for determining vocal fold immobility and hypomobility. In addition, criteria for use of the following terms have been outlined in detail: vocal fold paralysis, vocal fold paresis, vocal fold immobility/hypomobility associated with mechanical impairment of the crico-arytenoid joint and vocal fold immobility/hypomobility related to laryngeal malignant disease. This represents the first rigorously defined vocal fold motion impairment nomenclature system. This provides detailed definitions to the terms vocal fold paralysis and vocal fold paresis. PMID:26036851

  19. Self-folding graphene-polymer bilayers

    NASA Astrophysics Data System (ADS)

    Deng, Tao; Yoon, ChangKyu; Jin, Qianru; Li, Mingen; Liu, Zewen; Gracias, David H.

    2015-05-01

    In order to incorporate the extraordinary intrinsic thermal, electrical, mechanical, and optical properties of graphene with three dimensional (3D) flexible substrates, we introduce a solvent-driven self-folding approach using graphene-polymer bilayers. A polymer (SU-8) film was spin coated atop chemically vapor deposited graphene films on wafer substrates and graphene-polymer bilayers were patterned with or without metal electrodes using photolithography, thin film deposition, and etching. After patterning, the bilayers were released from the substrates and they self-folded to form fully integrated, curved, and folded structures. In contrast to planar graphene sensors on rigid substrates, we assembled curved and folded sensors that are flexible and they feature smaller form factors due to their 3D geometry and large surface areas due to their multiple rolled architectures. We believe that this approach could be used to assemble a range of high performance 3D electronic and optical devices of relevance to sensing, diagnostics, wearables, and energy harvesting.

  20. Folded-path optical analysis gas cell

    DOEpatents

    Carangelo, R.M.; Wright, D.D.

    1995-08-08

    A folded-path gas cell employs an elliptical concave mirror in confronting relationship to two substantially spherical concave mirrors. At least one of the spherical mirrors, and usually both, are formed with an added cylindrical component to increase orthogonal foci coincidence and thereby to increase the radiation energy throughput characteristic of the cell. 10 figs.

  1. Folded cavity design for a ruby resonator

    NASA Technical Reports Server (NTRS)

    Arunkumar, K. A.; Trolinger, James D.

    1988-01-01

    A folded cavity laser resonator operating in the TEM(00) mode has been built and tested. The new oscillator configuration leads to an increase in efficiency and to better line narrowing due to the increased number of passes through the laser rod and tuning elements, respectively. The modification is shown to lead to cavity ruggedization.

  2. Folding and faulting of an elastic continuum

    PubMed Central

    Gourgiotis, Panos A.

    2016-01-01

    Folding is a process in which bending is localized at sharp edges separated by almost undeformed elements. This process is rarely encountered in Nature, although some exceptions can be found in unusual layered rock formations (called ‘chevrons’) and seashell patterns (for instance Lopha cristagalli). In mechanics, the bending of a three-dimensional elastic solid is common (for example, in bulk wave propagation), but folding is usually not achieved. In this article, the route leading to folding is shown for an elastic solid obeying the couple-stress theory with an extreme anisotropy. This result is obtained with a perturbation technique, which involves the derivation of new two-dimensional Green's functions for applied concentrated force and moment. While the former perturbation reveals folding, the latter shows that a material in an extreme anisotropic state is also prone to a faulting instability, in which a displacement step of finite size emerges. Another failure mechanism, namely the formation of dilation/compaction bands, is also highlighted. Finally, a geophysical application to the mechanics of chevron formation shows how the proposed approach may explain the formation of natural structures. PMID:27118925

  3. Sheath fold morphology in simple shear

    NASA Astrophysics Data System (ADS)

    Reber, Jacqueline E.; Dabrowski, Marcin; Galland, Olivier; Schmid, Daniel W.

    2013-08-01

    Sheath folds are highly non-cylindrical structures often associated with shear zones. We investigate the formation of sheath folds around a weak inclusion acting as a slip surface in simple shear by means of an analytical model. We present results for different slip surface orientations and shapes. Cross-sections perpendicular to the shear direction through the sheath fold display closed contours, so called eye-structures. The aspect ratio of the outermost closed contour is strongly dependent on the initial slip surface configuration. The center of the eye-structure is subject to change in height with respect to the upper edge of the outermost closed contour for different cross-sections perpendicular to the shear direction. This results in a large variability in layer thickness across the sheath fold length, questioning the usefulness of eye-structures as shear sense indicators. The location of the center of the eye structure is largely invariant to the initial configurations of the slip surface as well as to strain. The values of the aspect ratios of the closed contours within the eye-pattern are dependent on the strain and the cross-section location. The ratio (R') of the aspect ratios of the outermost closed contour (Ryz) and the innermost closed contour (Ry'z') shows values above and below 1. R' shows dependence on the slip surface shape and orientation but not on the number of involved contours. Using R' measurements to deduce the bulk strain type may be erroneous.

  4. Folded-path optical analysis gas cell

    DOEpatents

    Carangelo, Robert M.; Wright, David D.

    1995-01-01

    A folded-path gas cell employs an elliptical concave mirror in confronting relationship to two substantially spherical concave mirrors. At least one of the spherical mirrors, and usually both, are formed with an added cylindrical component to increase orthogonal focii coincidence and thereby to increase the radiation energy throughput characteristic of the cell.

  5. Force-extension behavior of folding polymers

    NASA Astrophysics Data System (ADS)

    Cocco, S.; Marko, J. F.; Monasson, R.; Sarkar, A.; Yan, J.

    2003-03-01

    The elastic response of flexible polymers made of elements which can be either folded or unfolded, having different lengths in these two states, is discussed. These situations are common for biopolymers as a result of folding interactions intrinsic to the monomers, or as a result of binding of other smaller molecules along the polymer length. Using simple flexible-chain models, we show that even when the energy ɛ associated with maintaining the folded state is comparable to k_B T, the elastic response of such a chain can mimic usual polymer linear elasticity, but with a force scale enhanced above that expected from the flexibility of the chain backbone. We discuss recent experiments on single-stranded DNA, chromatin fiber and double-stranded DNA with proteins weakly absorbed along its length which show this effect. Effects of polymer semiflexiblity and torsional stiffness relevant to experiments on proteins binding to dsDNA are analyzed. We finally discuss the competition between electrostatic self-repulsion and folding interactions responsible for the complex elastic response of single-stranded DNA.

  6. Coiling and Folding of Viscoelastic Jets

    NASA Astrophysics Data System (ADS)

    Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth

    2007-11-01

    The study of fluid jets impacting on a flat surface has industrial applications in many areas, including processing of foods and consumer goods, bottle filling, and polymer melt processing. Previous studies have focused primarily on purely viscous, Newtonian fluids, which exhibit a number of different dynamical regimes including dripping, steady jetting, folding, and steady coiling. Here we add another dimension to the problem by focusing on mobile (low viscosity) viscoelastic fluids, with the study of two wormlike-micellar fluids, a cetylpyridinum-salicylic acid salt (CPyCl/NaSal) solution, and an industrially relevant shampoo base. We investigate the effects of viscosity and elasticity on the dynamics of axi-symmetric jets. The viscoelasticity of the fluids is systematically controlled by varying the concentration of salt counterions. Experimental methods include shear and extensional rheology measurements to characterize the fluids, and high-speed digital video imaging. In addition to the regimes observed in purely viscous systems, we also find a novel regime in which the elastic jet buckles and folds on itself, and alternates between coiling and folding behavior. We suggest phase diagrams and scaling laws for the coiling and folding frequencies through a systematic exploration of the experimental parameter space (height of fall, imposed flow rate, elasticity of the solution).

  7. Fast phase randomization via two-folds

    PubMed Central

    Jeffrey, M. R.

    2016-01-01

    A two-fold is a singular point on the discontinuity surface of a piecewise-smooth vector field, at which the vector field is tangent to the discontinuity surface on both sides. If an orbit passes through an invisible two-fold (also known as a Teixeira singularity) before settling to regular periodic motion, then the phase of that motion cannot be determined from initial conditions, and, in the presence of small noise, the asymptotic phase of a large number of sample solutions is highly random. In this paper, we show how the probability distribution of the asymptotic phase depends on the global nonlinear dynamics. We also show how the phase of a smooth oscillator can be randomized by applying a simple discontinuous control law that generates an invisible two-fold. We propose that such a control law can be used to desynchronize a collection of oscillators, and that this manner of phase randomization is fast compared with existing methods (which use fixed points as phase singularities), because there is no slowing of the dynamics near a two-fold. PMID:27118901

  8. Self-folding graphene-polymer bilayers

    SciTech Connect

    Deng, Tao; Yoon, ChangKyu; Jin, Qianru; Li, Mingen; Liu, Zewen; Gracias, David H.

    2015-05-18

    In order to incorporate the extraordinary intrinsic thermal, electrical, mechanical, and optical properties of graphene with three dimensional (3D) flexible substrates, we introduce a solvent-driven self-folding approach using graphene-polymer bilayers. A polymer (SU-8) film was spin coated atop chemically vapor deposited graphene films on wafer substrates and graphene-polymer bilayers were patterned with or without metal electrodes using photolithography, thin film deposition, and etching. After patterning, the bilayers were released from the substrates and they self-folded to form fully integrated, curved, and folded structures. In contrast to planar graphene sensors on rigid substrates, we assembled curved and folded sensors that are flexible and they feature smaller form factors due to their 3D geometry and large surface areas due to their multiple rolled architectures. We believe that this approach could be used to assemble a range of high performance 3D electronic and optical devices of relevance to sensing, diagnostics, wearables, and energy harvesting.

  9. Fold in Origami and Unfold Math

    ERIC Educational Resources Information Center

    Georgeson, Joseph

    2011-01-01

    Students enjoy origami and like making everything from paper cranes to footballs out of small, colorful squares of paper. They can invent their own shapes and are intrigued by the polyhedrons that they can construct. Paper folding is fun, but where is the math? Unless teachers develop lessons that address mathematical objectives, origami could be…

  10. The Genetic Architecture of Natural Variation in Recombination Rate in Drosophila melanogaster

    PubMed Central

    Hunter, Chad M.; Huang, Wen; Mackay, Trudy F. C.; Singh, Nadia D.

    2016-01-01

    Meiotic recombination ensures proper chromosome segregation in many sexually reproducing organisms. Despite this crucial function, rates of recombination are highly variable within and between taxa, and the genetic basis of this variation remains poorly understood. Here, we exploit natural variation in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to map genetic variants affecting recombination rate. We used a two-step crossing scheme and visible markers to measure rates of recombination in a 33 cM interval on the X chromosome and in a 20.4 cM interval on chromosome 3R for 205 DGRP lines. Though we cannot exclude that some biases exist due to viability effects associated with the visible markers used in this study, we find ~2-fold variation in recombination rate among lines. Interestingly, we further find that recombination rates are uncorrelated between the two chromosomal intervals. We performed a genome-wide association study to identify genetic variants associated with recombination rate in each of the two intervals surveyed. We refined our list of candidate variants and genes associated with recombination rate variation and selected twenty genes for functional assessment. We present strong evidence that five genes are likely to contribute to natural variation in recombination rate in D. melanogaster; these genes lie outside the canonical meiotic recombination pathway. We also find a weak effect of Wolbachia infection on recombination rate and we confirm the interchromosomal effect. Our results highlight the magnitude of population variation in recombination rate present in D. melanogaster and implicate new genetic factors mediating natural variation in this quantitative trait. PMID:27035832

  11. Coalescent Simulation of Intracodon Recombination

    PubMed Central

    Arenas, Miguel; Posada, David

    2010-01-01

    The coalescent with recombination is a very useful tool in molecular population genetics. Under this framework, genealogies often represent the evolution of the substitution unit, and because of this, the few coalescent algorithms implemented for the simulation of coding sequences force recombination to occur only between codons. However, it is clear that recombination is expected to occur most often within codons. Here we have developed an algorithm that can evolve coding sequences under an ancestral recombination graph that represents the genealogies at each nucleotide site, thereby allowing for intracodon recombination. The algorithm is a modification of Hudson's coalescent in which, in addition to keeping track of events occurring in the ancestral material that reaches the sample, we need to keep track of events occurring in ancestral material that does not reach the sample but that is produced by intracodon recombination. We are able to show that at typical substitution rates the number of nonsynonymous changes induced by intracodon recombination is small and that intracodon recombination does not generally result in inflated estimates of the overall nonsynonymous/synonymous substitution ratio (ω). On the other hand, recombination can bias the estimation of ω at particular codons, resulting in apparent rate variation among sites and in the spurious identification of positively selected sites. Importantly, in this case, allowing for variable synonymous rates across sites greatly reduces the false-positive rate and recovers statistical power. Finally, coalescent simulations with intracodon recombination could be used to better represent the evolution of nuclear coding genes or fast-evolving pathogens such as HIV-1.We have implemented this algorithm in a computer program called NetRecodon, freely available at http://darwin.uvigo.es. PMID:19933876

  12. Restoring paleomagnetic data in complex superposed folding settings: The Boltaña anticline (Southern Pyrenees)

    NASA Astrophysics Data System (ADS)

    Mochales, T.; Pueyo, E. L.; Casas, A. M.; Barnolas, A.

    2016-03-01

    Complex kinematic scenarios in fold-and-thrust belts often produce superposed and non-coaxial folding. Interpretation of primary linear indicators must be based on a careful restoration to the undeformed stage following the reverse order of the deformation events. Therefore, sequential restoration to the ancient coordinate system is of key importance to obtain reliable kinematic interpretations using paleomagnetic data. In this paper, a new paleomagnetic study in the western flank of the Boltaña anticline (Southern Pyrenees) illustrates a case study of a complex tectonic setting having superposed, non-coaxial folds. The first stage of NW-SE folding linked to the oblique Boltaña anticline took place during Lutetian times. The second stage was linked to the vertical axis rotation and placed the Boltaña anticline in its present-day N-S configuration. Our data support a long-lasting Lutetian to Priabonian period with main rotational activity during the Bartonian-Priabonian; other authors support a VAR coeval with anticlinal growth. The third stage resulted in southwards tilting related to the emplacement of the N120E striking Guarga basement thrust (Oligocene-Early Miocene). Based on this deformational history, a sequential restoration was applied and compared with the classic bedding correction. At the site scale, single bedding correction gives errors ranging between 31° and - 31° in the estimation of vertical axis rotations. At the locality scale, in sites grouped in three folds (from W to E Arbella, Planillo and San Felizes), the bedding corrected data display rotation values in accordance with those found in the Ainsa Basin by other authors. Sequential restoration (based on the afore-mentioned evolution in three-steps) improves both some locality-means and the internal consistency of the data. Therefore, reasonably-constrained sequential restoration becomes essential to reconstruct the actual history of superposed folding areas.

  13. Recombination in maize is stable, predictable, and associated with genetic load: a joint study of the US and Chinese maize NAM populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among the fundamental evolutionary forces, recombination arguably has the largest impact on the practical work of plant breeders. Varying over 1,000-fold across the maize genome, the local meiotic recombination rate limits the resolving power of quantitative trait mapping and the precision of favora...

  14. Protein folding guides disulfide bond formation

    PubMed Central

    Qin, Meng; Wang, Wei; Thirumalai, D.

    2015-01-01

    The Anfinsen principle that the protein sequence uniquely determines its structure is based on experiments on oxidative refolding of a protein with disulfide bonds. The problem of how protein folding drives disulfide bond formation is poorly understood. Here, we have solved this long-standing problem by creating a general method for implementing the chemistry of disulfide bond formation and rupture in coarse-grained molecular simulations. As a case study, we investigate the oxidative folding of bovine pancreatic trypsin inhibitor (BPTI). After confirming the experimental findings that the multiple routes to the folded state contain a network of states dominated by native disulfides, we show that the entropically unfavorable native single disulfide [14–38] between Cys14 and Cys38 forms only after polypeptide chain collapse and complete structuring of the central core of the protein containing an antiparallel β-sheet. Subsequent assembly, resulting in native two-disulfide bonds and the folded state, involves substantial unfolding of the protein and transient population of nonnative structures. The rate of [14–38] formation increases as the β-sheet stability increases. The flux to the native state, through a network of kinetically connected native-like intermediates, changes dramatically by altering the redox conditions. Disulfide bond formation between Cys residues not present in the native state are relevant only on the time scale of collapse of BPTI. The finding that formation of specific collapsed native-like structures guides efficient folding is applicable to a broad class of single-domain proteins, including enzyme-catalyzed disulfide proteins. PMID:26297249

  15. Folding of Layers of Finite Length

    NASA Astrophysics Data System (ADS)

    Schmid, D. W.; Podladchikov, Yu. Yu.; Marques, F.

    All existing folding theories assume that the layers are infinitely long or, which is mathematically equivalent, that the compression is directly applied to the lateral boundaries. These assumptions are not always justified for natural geological sys- tems. In fact we can observe that on all scales, from veins to sub-ducting slabs, the layers are of finite length and that there are no distinct, rigid walls pushing the lay- ers from the side. Using the method of Muskhelishvili we have derived the complete two-dimensional solution of an elliptic object embedded in a matrix and subject to far field boundary conditions; pure shear, simple shear and arbitrary combinations thereof. The rheology of the matrix is viscous, the layer may behave either elastically or viscous. Using the values from this background state analysis, stress, pressure and strain rate, we performed the classical linear stability analysis to examine the mech- anism of folding in the described setup. The resulting expressions maximum growth rates and dominant wavelengths are applicable to general geological systems; in the limit of an infinite aspect ratio of the layer the classical expressions of Biot are ob- tained for all other cases new expressions result. Our main results are: 1. Folding of finite length layers is controlled by the ratio of aspect ratio to competence contrast. 2. The described setup explains why in nature only folds can be observed with a rela- tively small wavelength to thickness ratio, suggesting small viscosity contrast 3. The problem of the unknown compressive stress value for the elastic layer is solved. 4. For finite length elastic layers the dominant wavelength selection shows a cubic, instead of square, root dependence. 5. A complete table, describing the folding in all the possible limits is presented and the applicability to natural systems discussed. All the presented results were checked numerically and/or with analogue models.

  16. Generation of buckle folds in Naga fold thrust belt, north-east India

    NASA Astrophysics Data System (ADS)

    Saha, B.; Dietl, C.

    2009-04-01

    Naga fold thrust belt (NFTB), India, formed as a result of northward migration of the Indian plate initiated in Eocene and its subsequent collision with the Burmese plate during Oligocene. The NW-SE oriented compression generated a spectrum of structures; among them, we intend to focus on the folds- varying from gentle to tight asymmetric in geometry. Large recumbent folds are often associated with thrusting. Buckle folds forming under shallow crustal conditions are frequently reported from NFTB. Buckle folding occurs mainly within sandstones with intercalated shale layers which are in the study area typical for the Barail, Surma and Tipam Groups. We have tried to explain the controlling factors behind the variation of the buckle fold shapes and their varying wavelengths throughout the fold thrust belt with the aid of analogue (sand box) modelling. It is undoubted that competence contrast along with the layer parallel compressive stress are the major influencing factors in generation of buckle folds. Schmalholz and Podladchikov (1999) and Jeng et al. (2002) have shown that when low strain rate and low temperature are applicable, not only the viscosity contrast, but also the elasticity contrast govern the geometry of the developing buckle folds. Rocks deforming under high temperature and high pressure deform in pure viscous manner, whereas, rocks undergoing less confining stress and less temperature, are subjected to pure elastic deformation. However, they are the end members, and most of the deformations are a combination of these two end members, i.e. of viscoelastic nature. Our models are made up of sieved sand (0.5 mm grain size) and mica layers (1-5 mm) This interlayering imparts a mechanical anisotropy in the model. Mica is not a pure viscous material, rather it displays more elastic behaviour. The mica layers in the model produce bedding parallel slip during shortening through internal reorganization of the individual mica crystals leading to the thickening

  17. A recombineering pipeline for functional genomics applied to Caenorhabditis elegans.

    PubMed

    Sarov, Mihail; Schneider, Susan; Pozniakovski, Andrei; Roguev, Assen; Ernst, Susanne; Zhang, Youming; Hyman, A Anthony; Stewart, A Francis

    2006-10-01

    We present a new concept in DNA engineering based on a pipeline of serial recombineering steps in liquid culture. This approach is fast, straightforward and facilitates simultaneous processing of multiple samples in parallel. We validated the approach by generating green fluorescent protein (GFP)-tagged transgenes from Caenorhabditis briggsae genomic clones in a multistep pipeline that takes only 4 d. The transgenes were engineered with minimal disturbance to the natural genomic context so that the correct level and pattern of expression will be secured after transgenesis. An example transgene for the C. briggsae ortholog of lin-59 was used for ballistic transformation in Caenorhabditis elegans. We show that the cross-species transgene is correctly expressed and rescues RNA interference (RNAi)-mediated knockdown of the endogenous C. elegans gene. The strategy that we describe adapts the power of recombineering in Escherichia coli for fluent DNA engineering to a format that can be directly scaled up for genomic projects. PMID:16990816

  18. EXPRESSION AND CHARACTERIZATION OF THE RECOMBINANT JUVENILE HORMONE EPOXIDE HYDROLASE (JHEH) FROM MANDUCA SEXTA. (R825433)

    EPA Science Inventory

    The cDNA of the microsomal Juvenile Hormone Epoxide Hydrolase (JHEH) from Manduca sexta was expressed in vitro in the baculovirus system. In insect cell culture, the recombinant enzyme (Ms-JHEH) was produced at a high level (100 fold over background EH catalytic activit...

  19. Compensation of a distorted N-fold orbital angular momentum multicasting link using adaptive optics.

    PubMed

    Li, Shuhui; Wang, Jian

    2016-04-01

    By using an adaptive feedback correction technique, we experimentally demonstrate turbulence compensation for free-space four-fold and eight-fold 16-ary quadrature amplitude modulation (16-QAM) carrying orbital angular momentum (OAM) multicasting links. The performance of multicasted OAM beams through emulated atmospheric turbulence and adaptive optics assisted compensation loop is investigated. The experimental results show that the scheme can efficiently compensate for the atmospheric turbulence induced distortions, i.e., reducing power fluctuation of multicasted OAM channels, suppressing inter-channel crosstalk, and improving the bit-error rate (BER) performance. PMID:27192267

  20. Eyeglasses for Vision Correction

    MedlinePlus

    ... Stories Español Eye Health / Glasses & Contacts Eyeglasses for Vision Correction Dec. 12, 2015 Wearing eyeglasses is an easy way to correct refractive errors. Improving your vision with eyeglasses offers the opportunity to select from ...

  1. Start2Fold: a database of hydrogen/deuterium exchange data on protein folding and stability

    PubMed Central

    Pancsa, Rita; Varadi, Mihaly; Tompa, Peter; Vranken, Wim F.

    2016-01-01

    Proteins fulfil a wide range of tasks in cells; understanding how they fold into complex three-dimensional (3D) structures and how these structures remain stable while retaining sufficient dynamics for functionality is essential for the interpretation of overall protein behaviour. Since the 1950's, solvent exchange-based methods have been the most powerful experimental means to obtain information on the folding and stability of proteins. Considerable expertise and care were required to obtain the resulting datasets, which, despite their importance and intrinsic value, have never been collected, curated and classified. Start2Fold is an openly accessible database (http://start2fold.eu) of carefully curated hydrogen/deuterium exchange (HDX) data extracted from the literature that is open for new submissions from the community. The database entries contain (i) information on the proteins investigated and the underlying experimental procedures and (ii) the classification of the residues based on their exchange protection levels, also allowing for the instant visualization of the relevant residue groups on the 3D structures of the corresponding proteins. By providing a clear hierarchical framework for the easy sharing, comparison and (re-)interpretation of HDX data, Start2Fold intends to promote a better understanding of how the protein sequence encodes folding and structure as well as the development of new computational methods predicting protein folding and stability. PMID:26582925

  2. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.

    PubMed

    Bailly, Lucie; Henrich, Nathalie; Pelorson, Xavier

    2010-05-01

    Occurrences of period-doubling are found in human phonation, in particular for pathological and some singing phonations such as Sardinian A Tenore Bassu vocal performance. The combined vibration of the vocal folds and the ventricular folds has been observed during the production of such low pitch bass-type sound. The present study aims to characterize the physiological correlates of this acoustical production and to provide a better understanding of the physical interaction between ventricular fold vibration and vocal fold self-sustained oscillation. The vibratory properties of the vocal folds and the ventricular folds during phonation produced by a professional singer are analyzed by means of acoustical and electroglottographic signals and by synchronized glottal images obtained by high-speed cinematography. The periodic variation in glottal cycle duration and the effect of ventricular fold closing on glottal closing time are demonstrated. Using the detected glottal and ventricular areas, the aerodynamic behavior of the laryngeal system is simulated using a simplified physical modeling previously validated in vitro using a larynx replica. An estimate of the ventricular aperture extracted from the in vivo data allows a theoretical prediction of the glottal aperture. The in vivo measurements of the glottal aperture are then compared to the simulated estimations. PMID:21117769

  3. Microfluidic Mixers for Studying Protein Folding

    PubMed Central

    Waldauer, Steven A.; Wu, Ling; Yao, Shuhuai; Bakajin, Olgica; Lapidus, Lisa J.

    2012-01-01

    The process by which a protein folds into its native conformation is highly relevant to biology and human health yet still poorly understood. One reason for this is that folding takes place over a wide range of timescales, from nanoseconds to seconds or longer, depending on the protein1. Conventional stopped-flow mixers have allowed measurement of folding kinetics starting at about 1 ms. We have recently developed a microfluidic mixer that dilutes denaturant ~100-fold in ~8 μs2. Unlike a stopped-flow mixer, this mixer operates in the laminar flow regime in which turbulence does not occur. The absence of turbulence allows precise numeric simulation of all flows within the mixer with excellent agreement to experiment3-4. Laminar flow is achieved for Reynolds numbers Re ≤100. For aqueous solutions, this requires micron scale geometries. We use a hard substrate, such as silicon or fused silica, to make channels 5-10 μm wide and 10 μm deep (See Figure 1). The smallest dimensions, at the entrance to the mixing region, are on the order of 1 μm in size. The chip is sealed with a thin glass or fused silica coverslip for optical access. Typical total linear flow rates are ~1 m/s, yielding Re~10, but the protein consumption is only ~0.5 nL/s or 1.8 μL/hr. Protein concentration depends on the detection method: For tryptophan fluorescence the typical concentration is 100 μM (for 1 Trp/protein) and for FRET the typical concentration is ~100 nM. The folding process is initiated by rapid dilution of denaturant from 6 M to 0.06 M guanidine hydrochloride. The protein in high denaturant flows down a central channel and is met on either side at the mixing region by buffer without denaturant moving ~100 times faster (see Figure 2). This geometry causes rapid constriction of the protein flow into a narrow jet ~100 nm wide. Diffusion of the light denaturant molecules is very rapid, while diffusion of the heavy protein molecules is much slower, diffusing less than 1 μm in 1 ms

  4. Delayed recombination and standard rulers

    SciTech Connect

    De Bernardis, Francesco; Melchiorri, Alessandro; Bean, Rachel; Galli, Silvia; Silk, Joseph I.; Verde, Licia

    2009-02-15

    Measurements of baryonic acoustic oscillations (BAOs) in galaxy surveys have been recognized as a powerful tool for constraining dark energy. However, this method relies on the knowledge of the size of the acoustic horizon at recombination derived from cosmic microwave background (CMB) anisotropy measurements. This estimate is typically derived assuming a standard recombination scheme; additional radiation sources can delay recombination altering the cosmic ionization history and the cosmological inferences drawn from CMB and BAO data. In this paper we quantify the effect of delayed recombination on the determination of dark energy parameters from future BAO surveys such as the Baryon Oscillation Spectroscopic Survey and the Wide-Field Multi-Object Spectrograph. We find the impact to be small but still not negligible. In particular, if recombination is nonstandard (to a level still allowed by CMB data), but this is ignored, future surveys may incorrectly suggest the presence of a redshift-dependent dark energy component. On the other hand, in the case of delayed recombination, adding to the analysis one extra parameter describing deviations from standard recombination does not significantly degrade the error bars on dark energy parameters and yields unbiased estimates. This is due to the CMB-BAO complementarity.

  5. The effect of a scanning flat fold mirror on a cosmic microwave background B-mode experiment.

    PubMed

    Grainger, William F; North, Chris E; Ade, Peter A R

    2011-06-01

    We investigate the possibility of using a flat-fold beam steering mirror for a cosmic microwave background B-mode experiment. An aluminium flat-fold mirror is found to add ∼0.075% polarization, which varies in a scan synchronous way. Time-domain simulations of a realistic scanning pattern are performed, and the effect on the power-spectrum illustrated, and a possible method of correction applied. PMID:21721713

  6. Research in Correctional Rehabilitation.

    ERIC Educational Resources Information Center

    Rehabilitation Services Administration (DHEW), Washington, DC.

    Forty-three leaders in corrections and rehabilitation participated in the seminar planned to provide an indication of the status of research in correctional rehabilitation. Papers include: (1) "Program Trends in Correctional Rehabilitation" by John P. Conrad, (2) "Federal Offenders Rahabilitation Program" by Percy B. Bell and Merlyn Mathews, (3)…

  7. Adaptive evolution of a lactose-consuming Saccharomyces cerevisiae recombinant.

    PubMed

    Guimarães, Pedro M R; François, Jean; Parrou, Jean Luc; Teixeira, José A; Domingues, Lucília

    2008-03-01

    The construction of Saccharomyces cerevisiae strains that ferment lactose has biotechnological interest, particularly for cheese whey fermentation. A flocculent lactose-consuming S. cerevisiae recombinant expressing the LAC12 (lactose permease) and LAC4 (beta-galactosidase) genes of Kluyveromyces lactis was constructed previously but showed poor efficiency in lactose fermentation. This strain was therefore subjected to an evolutionary engineering process (serial transfer and dilution in lactose medium), which yielded an evolved recombinant strain that consumed lactose twofold faster, producing 30% more ethanol than the original recombinant. We identified two molecular events that targeted the LAC construct in the evolved strain: a 1,593-bp deletion in the intergenic region (promoter) between LAC4 and LAC12 and a decrease of the plasmid copy number by about 10-fold compared to that in the original recombinant. The results suggest that the intact promoter was unable to mediate the induction of the transcription of LAC4 and LAC12 by lactose in the original recombinant and that the deletion established the transcriptional induction of both genes in the evolved strain. We propose that the tuning of the expression of the heterologous LAC genes in the evolved recombinant was accomplished by the interplay between the decreased copy number of both genes and the different levels of transcriptional induction for LAC4 and LAC12 resulting from the changed promoter structure. Nevertheless, our results do not exclude other possible mutations that may have contributed to the improved lactose fermentation phenotype. This study illustrates the usefulness of simple evolutionary engineering approaches in strain improvement. The evolved strain efficiently fermented threefold-concentrated cheese whey, providing an attractive alternative for the fermentation of lactose-based media. PMID:18245248

  8. Expression of Recombinant Proteins in the Methylotrophic Yeast Pichia pastoris

    PubMed Central

    Weidner, Maria; Taupp, Marcus; Hallam, Steven J.

    2010-01-01

    Protein expression in the microbial eukaryotic host Pichia pastoris offers the possibility to generate high amounts of recombinant protein in a fast and easy to use expression system. As a single-celled microorganism P. pastoris is easy to manipulate and grows rapidly on inexpensive media at high cell densities. Being a eukaryote, P. pastoris is able to perform many of the post-translational modifications performed by higher eukaryotic cells and the obtained recombinant proteins undergo protein folding, proteolytic processing, disulfide bond formation and glycosylation [1]. As a methylotrophic yeast P. pastoris is capable of metabolizing methanol as its sole carbon source. The strong promoter for alcohol oxidase, AOX1, is tightly regulated and induced by methanol and it is used for the expression of the gene of interest. Accordingly, the expression of the foreign protein can be induced by adding methanol to the growth medium [2; 3]. Another important advantage is the secretion of the recombinant protein into the growth medium, using a signal sequence to target the foreign protein to the secretory pathway of P. pastoris. With only low levels of endogenous protein secreted to the media by the yeast itself and no added proteins to the media, a heterologous protein builds the majority of the total protein in the medium and facilitates following protein purification steps [3; 4]. The vector used here (pPICZαA) contains the AOX1 promoter for tightly regulated, methanol-induced expression of the gene of interest; the α-factor secretion signal for secretion of the recombinant protein, a Zeocin resistance gene for selection in both E. coli and Pichia and a C-terminal peptide containing the c-myc epitope and a polyhistidine (6xHis) tag for detection and purification of a recombinant protein. We also show western blot analysis of the recombinant protein using the specific Anti-myc-HRP antibody recognizing the c-myc epitope on the parent vector. PMID:20186119

  9. HIV-1 Mutation and Recombination Rates Are Different in Macrophages and T-cells

    PubMed Central

    Cromer, Deborah; Schlub, Timothy E.; Smyth, Redmond P.; Grimm, Andrew J.; Chopra, Abha; Mallal, Simon; Davenport, Miles P.; Mak, Johnson

    2016-01-01

    High rates of mutation and recombination help human immunodeficiency virus (HIV) to evade the immune system and develop resistance to antiretroviral therapy. Macrophages and T-cells are the natural target cells of HIV-1 infection. A consensus has not been reached as to whether HIV replication results in differential recombination between primary T-cells and macrophages. Here, we used HIV with silent mutation markers along with next generation sequencing to compare the mutation and the recombination rates of HIV directly in T lymphocytes and macrophages. We observed a more than four-fold higher recombination rate of HIV in macrophages compared to T-cells (p < 0.001) and demonstrated that this difference is not due to different reliance on C-X-C chemokine receptor type 4 (CXCR4) and C-C chemokine receptor type 5 (CCR5) co-receptors between T-cells and macrophages. We also found that the pattern of recombination across the HIV genome (hot and cold spots) remains constant between T-cells and macrophages despite a three-fold increase in the overall recombination rate. This indicates that the difference in rates is a general feature of HIV DNA synthesis during macrophage infection. In contrast to HIV recombination, we found that T-cells have a 30% higher mutation rate than macrophages (p < 0.001) and that the mutational profile is similar between these cell types. Unexpectedly, we found no association between mutation and recombination in macrophages, in contrast to T-cells. Our data highlights some of the fundamental difference of HIV recombination and mutation amongst these two major target cells of infection. Understanding these differences will provide invaluable insights toward HIV evolution and how the virus evades immune surveillance and anti-retroviral therapeutics. PMID:27110814

  10. HIV-1 Mutation and Recombination Rates Are Different in Macrophages and T-cells.

    PubMed

    Cromer, Deborah; Schlub, Timothy E; Smyth, Redmond P; Grimm, Andrew J; Chopra, Abha; Mallal, Simon; Davenport, Miles P; Mak, Johnson

    2016-01-01

    High rates of mutation and recombination help human immunodeficiency virus (HIV) to evade the immune system and develop resistance to antiretroviral therapy. Macrophages and T-cells are the natural target cells of HIV-1 infection. A consensus has not been reached as to whether HIV replication results in differential recombination between primary T-cells and macrophages. Here, we used HIV with silent mutation markers along with next generation sequencing to compare the mutation and the recombination rates of HIV directly in T lymphocytes and macrophages. We observed a more than four-fold higher recombination rate of HIV in macrophages compared to T-cells (p < 0.001) and demonstrated that this difference is not due to different reliance on C-X-C chemokine receptor type 4 (CXCR4) and C-C chemokine receptor type 5 (CCR5) co-receptors between T-cells and macrophages. We also found that the pattern of recombination across the HIV genome (hot and cold spots) remains constant between T-cells and macrophages despite a three-fold increase in the overall recombination rate. This indicates that the difference in rates is a general feature of HIV DNA synthesis during macrophage infection. In contrast to HIV recombination, we found that T-cells have a 30% higher mutation rate than macrophages (p < 0.001) and that the mutational profile is similar between these cell types. Unexpectedly, we found no association between mutation and recombination in macrophages, in contrast to T-cells. Our data highlights some of the fundamental difference of HIV recombination and mutation amongst these two major target cells of infection. Understanding these differences will provide invaluable insights toward HIV evolution and how the virus evades immune surveillance and anti-retroviral therapeutics. PMID:27110814

  11. PREFACE Protein folding: lessons learned and new frontiers Protein folding: lessons learned and new frontiers

    NASA Astrophysics Data System (ADS)

    Pappu, Rohit V.; Nussinov, Ruth

    2009-03-01

    In appropriate physiological milieux proteins spontaneously fold into their functional three-dimensional structures. The amino acid sequences of functional proteins contain all the information necessary to specify the folds. This remarkable observation has spawned research aimed at answering two major questions. (1) Of all the conceivable structures that a protein can adopt, why is the ensemble of native-like structures the most favorable? (2) What are the paths by which proteins manage to robustly and reproducibly fold into their native structures? Anfinsen's thermodynamic hypothesis has guided the pursuit of answers to the first question whereas Levinthal's paradox has influenced the development of models for protein folding dynamics. Decades of work have led to significant advances in the folding problem. Mean-field models have been developed to capture our current, coarse grain understanding of the driving forces for protein folding. These models are being used to predict three-dimensional protein structures from sequence and stability profiles as a function of thermodynamic and chemical perturbations. Impressive strides have also been made in the field of protein design, also known as the inverse folding problem, thereby testing our understanding of the determinants of the fold specificities of different sequences. Early work on protein folding pathways focused on the specific sequence of events that could lead to a simplification of the search process. However, unifying principles proved to be elusive. Proteins that show reversible two-state folding-unfolding transitions turned out to be a gift of natural selection. Focusing on these simple systems helped researchers to uncover general principles regarding the origins of cooperativity in protein folding thermodynamics and kinetics. On the theoretical front, concepts borrowed from polymer physics and the physics of spin glasses led to the development of a framework based on energy landscape theories. These

  12. Constructing a folding model for protein S6 guided by native fluctuations deduced from NMR structures

    SciTech Connect

    Lammert, Heiko; Noel, Jeffrey K.; Haglund, Ellinor; Onuchic, José N.; Schug, Alexander

    2015-12-28

    The diversity in a set of protein nuclear magnetic resonance (NMR) structures provides an estimate of native state fluctuations that can be used to refine and enrich structure-based protein models (SBMs). Dynamics are an essential part of a protein’s functional native state. The dynamics in the native state are controlled by the same funneled energy landscape that guides the entire folding process. SBMs apply the principle of minimal frustration, drawn from energy landscape theory, to construct a funneled folding landscape for a given protein using only information from the native structure. On an energy landscape smoothed by evolution towards minimal frustration, geometrical constraints, imposed by the native structure, control the folding mechanism and shape the native dynamics revealed by the model. Native-state fluctuations can alternatively be estimated directly from the diversity in the set of NMR structures for a protein. Based on this information, we identify a highly flexible loop in the ribosomal protein S6 and modify the contact map in a SBM to accommodate the inferred dynamics. By taking into account the probable native state dynamics, the experimental transition state is recovered in the model, and the correct order of folding events is restored. Our study highlights how the shared energy landscape connects folding and function by showing that a better description of the native basin improves the prediction of the folding mechanism.

  13. Constructing a folding model for protein S6 guided by native fluctuations deduced from NMR structures

    NASA Astrophysics Data System (ADS)

    Lammert, Heiko; Noel, Jeffrey K.; Haglund, Ellinor; Schug, Alexander; Onuchic, José N.

    2015-12-01

    The diversity in a set of protein nuclear magnetic resonance (NMR) structures provides an estimate of native state fluctuations that can be used to refine and enrich structure-based protein models (SBMs). Dynamics are an essential part of a protein's functional native state. The dynamics in the native state are controlled by the same funneled energy landscape that guides the entire folding process. SBMs apply the principle of minimal frustration, drawn from energy landscape theory, to construct a funneled folding landscape for a given protein using only information from the native structure. On an energy landscape smoothed by evolution towards minimal frustration, geometrical constraints, imposed by the native structure, control the folding mechanism and shape the native dynamics revealed by the model. Native-state fluctuations can alternatively be estimated directly from the diversity in the set of NMR structures for a protein. Based on this information, we identify a highly flexible loop in the ribosomal protein S6 and modify the contact map in a SBM to accommodate the inferred dynamics. By taking into account the probable native state dynamics, the experimental transition state is recovered in the model, and the correct order of folding events is restored. Our study highlights how the shared energy landscape connects folding and function by showing that a better description of the native basin improves the prediction of the folding mechanism.

  14. Constructing a folding model for protein S6 guided by native fluctuations deduced from NMR structures.

    PubMed

    Lammert, Heiko; Noel, Jeffrey K; Haglund, Ellinor; Schug, Alexander; Onuchic, José N

    2015-12-28

    The diversity in a set of protein nuclear magnetic resonance (NMR) structures provides an estimate of native state fluctuations that can be used to refine and enrich structure-based protein models (SBMs). Dynamics are an essential part of a protein's functional native state. The dynamics in the native state are controlled by the same funneled energy landscape that guides the entire folding process. SBMs apply the principle of minimal frustration, drawn from energy landscape theory, to construct a funneled folding landscape for a given protein using only information from the native structure. On an energy landscape smoothed by evolution towards minimal frustration, geometrical constraints, imposed by the native structure, control the folding mechanism and shape the native dynamics revealed by the model. Native-state fluctuations can alternatively be estimated directly from the diversity in the set of NMR structures for a protein. Based on this information, we identify a highly flexible loop in the ribosomal protein S6 and modify the contact map in a SBM to accommodate the inferred dynamics. By taking into account the probable native state dynamics, the experimental transition state is recovered in the model, and the correct order of folding events is restored. Our study highlights how the shared energy landscape connects folding and function by showing that a better description of the native basin improves the prediction of the folding mechanism. PMID:26723626

  15. Recombination in diverse maize is stable, predictable, and associated with genetic load

    PubMed Central

    Rodgers-Melnick, Eli; Bradbury, Peter J.; Elshire, Robert J.; Glaubitz, Jeffrey C.; Acharya, Charlotte B.; Mitchell, Sharon E.; Li, Chunhui; Li, Yongxiang; Buckler, Edward S.

    2015-01-01

    Among the fundamental evolutionary forces, recombination arguably has the largest impact on the practical work of plant breeders. Varying over 1,000-fold across the maize genome, the local meiotic recombination rate limits the resolving power of quantitative trait mapping and the precision of favorable allele introgression. The consequences of low recombination also theoretically extend to the species-wide scale by decreasing the power of selection relative to genetic drift, and thereby hindering the purging of deleterious mutations. In this study, we used genotyping-by-sequencing (GBS) to identify 136,000 recombination breakpoints at high resolution within US and Chinese maize nested association mapping populations. We find that the pattern of cross-overs is highly predictable on the broad scale, following the distribution of gene density and CpG methylation. Several large inversions also suppress recombination in distinct regions of several families. We also identify recombination hotspots ranging in size from 1 kb to 30 kb. We find these hotspots to be historically stable and, compared with similar regions with low recombination, to have strongly differentiated patterns of DNA methylation and GC content. We also provide evidence for the historical action of GC-biased gene conversion in recombination hotspots. Finally, using genomic evolutionary rate profiling (GERP) to identify putative deleterious polymorphisms, we find evidence for reduced genetic load in hotspot regions, a phenomenon that may have considerable practical importance for breeding programs worldwide. PMID:25775595

  16. Double-strand break-induced mitotic intrachromosomal recombination in the fission yeast Schizosaccharomyces pombe

    SciTech Connect

    Osman, F.; Fortunato, E.A.; Subramani, S.

    1996-02-01

    The Saccharomyces cerevisiae HO gene and MATa cutting site were used to introduce site-specific double-strand breaks (DSBs) within intrachromosomal recombination substrates in Schizosaccharomyces pombe. The recombination substrates consisted of nontandem direct repeats of ade6 heteroalleles. DSB induction stimulated the frequency of recombinants 2000-fold. The spectrum of DSB-induced recombinants depended on whether the DSB was introduced within one of the ade6 repeats or in intervening unique DNA. When the DSB was introduced within unique DNA, over 99.8% of the recombinants lacked the intervening DNA but retained one copy of ade6 that was wild type or either one of the heteroalleles. When the DSB was located in duplicated DNA, 77% of the recombinants were similar to the deletion types described above, but the single ade6 copy was either wild type or exclusively that of the uncut repeat. The remaining 23% of the induced recombinants were gene convertants with two copies of ade6 and the intervening sequences; the ade6 heteroallele in which the DSB was induced was the recipient of genetic information. Half-sectored colonies were isolated, analyzed and interpreted as evidence of heteroduplex DNA formation. The results are discussed in terms of current models for recombination. 81 refs., 9 figs., 3 tabs.

  17. Predictive Computational Modeling of Chromatin Folding

    NASA Astrophysics Data System (ADS)

    di Pierro, Miichele; Zhang, Bin; Wolynes, Peter J.; Onuchic, Jose N.

    In vivo, the human genome folds into well-determined and conserved three-dimensional structures. The mechanism driving the folding process remains unknown. We report a theoretical model (MiChroM) for chromatin derived by using the maximum entropy principle. The proposed model allows Molecular Dynamics simulations of the genome using as input the classification of loci into chromatin types and the presence of binding sites of loop forming protein CTCF. The model was trained to reproduce the Hi-C map of chromosome 10 of human lymphoblastoid cells. With no additional tuning the model was able to predict accurately the Hi-C maps of chromosomes 1-22 for the same cell line. Simulations show unknotted chromosomes, phase separation of chromatin types and a preference of chromatin of type A to sit at the periphery of the chromosomes.

  18. Folded membrane dialyzer with mechanically sealed edges

    DOEpatents

    Markley, Finley W.

    1976-01-01

    A semipermeable membrane is folded in accordion fashion to form a stack of pleats and the edges are sealed so as to isolate the opposite surfaces of the membrane. The stack is contained within a case that provides ports for flow of blood in contact with one surface of the membrane through channels formed by the pleats and also provides ports for flow of a dialysate through channels formed by the pleats in contact with the other surface of the membrane. The serpentine side edges of the membrane are sealed by a solidified plastic material, whereas effective mechanical means are provided to seal the end edges of the folded membrane. The mechanical means include a clamping strip which biases case sealing flanges into a sealed relationship with end portions of the membrane near the end edges, which portions extend from the stack and between the sealing flanges.

  19. Dynamic Coupling between Folding, Binding and Function

    NASA Astrophysics Data System (ADS)

    Wolynes, Peter G.

    2003-03-01

    Elementary presentations of biophysics suggest a clear separation between the events of protein folding and function. The situation is much more interesting and complex. Many proteins in the cell are unfolded until called upon to interact with targets. Why? Energy landscape theory suggest some interesting kinetic advantages and possible explanations concerning the promiscuity of protein-protein interactions. This will be discussed in the context of protein DNA recognition. The energy landscapes for binding surfaces show interesting systematic differences from those of protein interiors. Energy landscape ideas also raise the prospect that folded proteins partially unfold during their function. I will illustrate this with a specific example of large scale conformation change in a kinase.

  20. RNA Hairpin Folding in the Crowded Cell.

    PubMed

    Gao, Mimi; Gnutt, David; Orban, Axel; Appel, Bettina; Righetti, Francesco; Winter, Roland; Narberhaus, Franz; Müller, Sabine; Ebbinghaus, Simon

    2016-02-24

    Precise secondary and tertiary structure formation is critically important for the cellular functionality of ribonucleic acids (RNAs). RNA folding studies were mainly conducted in vitro, without the possibility of validating these experiments inside cells. Here, we directly resolve the folding stability of a hairpin-structured RNA inside live mammalian cells. We find that the stability inside the cell is comparable to that in dilute physiological buffer. On the contrary, the addition of in vitro artificial crowding agents, with the exception of high-molecular-weight PEG, leads to a destabilization of the hairpin structure through surface interactions and reduction in water activity. We further show that RNA stability is highly variable within cell populations as well as within subcellular regions of the cytosol and nucleus. We conclude that inside cells the RNA is subject to (localized) stabilizing and destabilizing effects that lead to an on average only marginal modulation compared to diluted buffer. PMID:26833452

  1. Elastic models of vocal fold tissues.

    PubMed

    Alipour-Haghighi, F; Titze, I R

    1991-09-01

    Elastic properties of canine vocal fold tissue (muscle and mucosa) were obtained through a series of experiments conducted in vitro and were modeled mathematically. The elastic properties play a significant role in quantitative analysis of vocal fold vibrations and theory of pitch control. Samples of vocalis muscle and mucosa were dissected and prepared from dog larynges a few minutes premortem and kept in a Krebs solution at a temperature of 37 +/- 1 degrees C and a pH of 7.4 +/- 0.05. Samples of muscle tissue and mucosa were stretched and released in a slow, sinusoidal fashion. Force and displacement of the samples were measured with a dual-servo system (ergometer). After digitization, stress-strain data for samples of muscle tissue and cover tissue were averaged. The stress-strain data were then fitted numerically by polynomial and exponential models. PMID:1939897

  2. Ca-Dependent Folding of Human Calumenin

    PubMed Central

    Mazzorana, Marco; Hussain, Rohanah; Sorensen, Thomas

    2016-01-01

    Human calumenin (hCALU) is a six EF-hand protein belonging to the CREC family. As other members of the family, it is localized in the secretory pathway and regulates the activity of SERCA2a and of the ryanodine receptor in the endoplasmic reticulum (ER). We have studied the effects of Ca2+ binding to the protein and found it to attain a more compact structure upon ion binding. Circular Dichroism (CD) measurements suggest a major rearrangement of the protein secondary structure, which reversibly switches from disordered at low Ca2+ concentrations to predominantly alpha-helical when Ca2+ is added. SAXS experiments confirm the transition from an unfolded to a compact structure, which matches the structural prediction of a trilobal fold. Overall our experiments suggest that calumenin is a Ca2+ sensor, which folds into a compact structure, capable of interacting with its molecular partners, when Ca2+ concentration within the ER reaches the millimolar range. PMID:26991433

  3. Chevron folding patterns and heteroclinic orbits

    NASA Astrophysics Data System (ADS)

    Budd, Christopher J.; Chakhchoukh, Amine N.; Dodwell, Timothy J.; Kuske, Rachel

    2016-09-01

    We present a model of multilayer folding in which layers with bending stiffness EI are separated by a very stiff elastic medium of elasticity k2 and subject to a horizontal load P. By using a dynamical system analysis of the resulting fourth order equation, we show that as the end shortening per unit length E is increased, then if k2 is large there is a smooth transition from small amplitude sinusoidal solutions at moderate values of P to larger amplitude chevron folds, with straight limbs separated by regions of high curvature when P is large. The chevron solutions take the form of near heteroclinic connections in the phase-plane. By means of this analysis, values for P and the slope of the limbs are calculated in terms of E and k2.

  4. RNA Hairpin Folding in the Crowded Cell

    PubMed Central

    Gao, Mimi; Gnutt, David; Orban, Axel; Appel, Bettina; Righetti, Francesco; Winter, Roland; Narberhaus, Franz; Müller, Sabine

    2016-01-01

    Abstract Precise secondary and tertiary structure formation is critically important for the cellular functionality of ribonucleic acids (RNAs). RNA folding studies were mainly conducted in vitro, without the possibility of validating these experiments inside cells. Here, we directly resolve the folding stability of a hairpin‐structured RNA inside live mammalian cells. We find that the stability inside the cell is comparable to that in dilute physiological buffer. On the contrary, the addition of in vitro artificial crowding agents, with the exception of high‐molecular‐weight PEG, leads to a destabilization of the hairpin structure through surface interactions and reduction in water activity. We further show that RNA stability is highly variable within cell populations as well as within subcellular regions of the cytosol and nucleus. We conclude that inside cells the RNA is subject to (localized) stabilizing and destabilizing effects that lead to an on average only marginal modulation compared to diluted buffer. PMID:26833452

  5. Chen’s Double Eyelid Fold Ratio

    PubMed Central

    Chen, Chen-Chia; Tai, Hao-Chih

    2016-01-01

    Background: Double eyelidplasty can construct palpebral folds and enhance beauty perception for Asians with single eyelids. A new palpebral parameter for the quantitative interpretation of surgical outcomes is proposed on the basis of a photometric study of the altered proportions of Asian eyes after double eyelid operation. Methods: A total of 100 Asian adults with single upper eyelids who were satisfied with the enlarged eyes by operation were included in the study. A retrospective measurement of palpebral parameters in the frontal profile both preoperatively and 6 months postoperatively was performed. The proportions of various parameters in the eyebrow–eye aesthetic unit were calculated and analyzed. Results: Double eyelidplasty can augment the vertical dimension of palpebral fissure by 27.9% increase on average. The vertical ratio of palpebral fissure to the eyebrow–eye unit is augmented by 34.4% increase. The vertical ratio of the subunit below double eyelid fold peak to the unit is augmented by 82.6% increase. Conclusions: Double eyelidplasty can substantially enlarge the vertical dimensions of the eyes of Asians with single eyelids. The eyes are perceived to be larger because of the visually assimilated illusion of the superimposed eyelid fold and the relative proportions of the eyebrow–eye unit. The authors propose using a vertical ratio of the subunit below double eyelid fold peak in the eyebrow–eye unit to measure the visually perceived proportion of the eye in the unit. This ratio can be applied clinically for a quantitative evaluation of the surgical outcome after double eyelidplasty. PMID:27200243

  6. Coherent topological phenomena in protein folding.

    PubMed

    Bohr, H; Brunak, S; Bohr, J

    1997-01-01

    A theory is presented for coherent topological phenomena in protein dynamics with implications for protein folding and stability. We discuss the relationship to the writhing number used in knot diagrams of DNA. The winding state defines a long-range order along the backbone of a protein with long-range excitations, 'wring' modes, that play an important role in protein denaturation and stability. Energy can be pumped into these excitations, either thermally or by an external force. PMID:9218961

  7. Folded fibre bus interconnects with distributed amplification

    NASA Astrophysics Data System (ADS)

    Lorenzo, Raul Hernandez; Urquhart, Paul; Lopez-Amo, Manuel

    1998-06-01

    An optical fibre network for application as an interconnect within major nodes is investigated theoretically. The network is configured as a folded bus in which the spine consists of erbium doped fibre to overcome the power division at the couplers. It is argued that high received powers with a narrow dynamic range can be obtained simultaneously with bit rates in the order of 10 Gbit/s and bit error rates of 10 -12 or less.

  8. Protein Folding Stages and Universal Exponents

    NASA Astrophysics Data System (ADS)

    Huang, Kerson

    We propose three stages in protein folding, based on physical arguements involving the interplay between the hydrophobic effect and hydrogen bonding, and computer simulations using the CSAW (conditioned self-avoiding walk) model. These stages are characterized by universal exponents ν = 3/5, 3/7, 2/5 in the power law R ~ Nν, where R is the radius of gyration and N is the number of residues. They correspond to the experimentally observed stages: unfolded, preglobule, molten globule.

  9. Protein Folding Stages and Universal Exponents

    NASA Astrophysics Data System (ADS)

    Huang, Kerson

    2011-11-01

    We propose three stages in protein folding, based on physical arguements involving the interplay between the hydrophobic effect and hydrogen bonding, and computer simulations using the CSAW (conditioned self-avoiding walk) model. These stages are characterized by universal exponents ν = 3/5, 3/7, 2/5 in the power law R ˜ Nν, where R is the radius of gyration and N is the number of residues. They correspond to the experimentally observed stages: unfolded, preglobule, molten globule.

  10. A Simple Model for Protein Folding

    NASA Astrophysics Data System (ADS)

    Henry, Eric R.; Eaton, William A.

    We describe a simple Ising-like statistical mechanical model for folding proteins based on the α-carbon contact map of the native structure. In this model residues can adopt two microscopic states corresponding to the native and non-native conformations. In order to exactly enumerate the large number of possible configurations, structure is considered to grow as continuous sequences of native residues, with no more than two sequences in each molecule. Inter-residue contacts can only form within each sequence and between residues of the two native sequences. As structure grows there is a tradeoff between the stabilizing effect of inter-residue contacts and the entropy losses from ordering residues in their native conformation and from forming a disordered loop to connect two continuous sequences. Folding kinetics are calculated from the dynamics on the free energy profile, as in Kramers' reaction rate theory. Although non-native interactions responsible for roughness in the energy landscape are not explicitly considered in the model, they are implicitly included by determining the absolute rates for motion on the free energy profile. With the exception of α-helical proteins, the kinetic progress curves exhibit single exponential time courses, consistent with two state behavior, as observed experimentally. The calculated folding rates are in remarkably good agreement with the measured values for the 25 two-state proteins investigated, with a correlation coefficient of 0.8. With its coarse-grained description of both the energy and entropy, and only three independently adjustable parameters, the model may be regarded as the simplest possible analytical model of protein folding capable of predicting experimental properties of specific proteins.

  11. Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri.

    PubMed

    Van Pijkeren, Jan-Peter; Neoh, Kar Mun; Sirias, Denise; Findley, Anthony S; Britton, Robert A

    2012-01-01

    Single-stranded DNA (ssDNA) recombineering is a technology which is used to make subtle changes in the chromosome of several bacterial genera. Cells which express a single-stranded DNA binding protein (RecT or Bet) are transformed with an oligonucleotide which is incorporated via an annealing and replication-dependent mechanism. By in silico analysis we identified ssDNA binding protein homologs in the genus Lactobacillus and Lactococcus lactis. To assess whether we could further improve the recombineering efficiency in Lactobacillus reuteri ATCC PTA 6475 we expressed several RecT homologs in this strain. RecT derived from Enterococcus faecalis CRMEN 19 yielded comparable efficiencies compared with a native RecT protein, but none of the other proteins further increased the recombineering efficiency. We successfully improved recombineering efficiency 10-fold in L. lactis by increasing oligonucleotide concentration combined with the use of oligonucleotides containing phosphorothioate-linkages (PTOs). Surprisingly, neither increased oligonucleotide concentration nor PTO linkages enhanced recombineering in L. reuteri 6475. To emphasize the utility of this technology in improving probiotic features we modified six bases in a transcriptional regulatory element region of the pdu-operon of L. reuteri 6475, yielding a 3-fold increase in the production of the antimicrobial compound reuterin. Directed genetic modification of lactic acid bacteria through ssDNA recombineering will simplify strain improvement in a way that, when mutating a single base, is genetically indistinguishable from strains obtained through directed evolution. PMID:22750793

  12. Corrective Action Glossary

    SciTech Connect

    Not Available

    1992-07-01

    The glossary of technical terms was prepared to facilitate the use of the Corrective Action Plan (CAP) issued by OSWER on November 14, 1986. The CAP presents model scopes of work for all phases of a corrective action program, including the RCRA Facility Investigation (RFI), Corrective Measures Study (CMS), Corrective Measures Implementation (CMI), and interim measures. The Corrective Action Glossary includes brief definitions of the technical terms used in the CAP and explains how they are used. In addition, expected ranges (where applicable) are provided. Parameters or terms not discussed in the CAP, but commonly associated with site investigations or remediations are also included.

  13. Evolution of the beta-propeller fold.

    PubMed

    Chaudhuri, Indronil; Söding, Johannes; Lupas, Andrei N

    2008-05-01

    beta-Propellers are toroidal folds, in which repeated, four-stranded beta-meanders are arranged in a circular and slightly tilted fashion, like the blades of a propeller. They are found in all domains of life, with a strong preponderance among eukaryotes. Propellers show considerable sequence diversity and are classified into six separate structural groups by the SCOP and CATH databases. Despite this diversity, they often show similarities across groups, not only in structure but also in sequence, raising the possibility of a common origin. In agreement with this hypothesis, most propellers group together in a cluster map of all-beta folds generated by sequence similarity, because of numerous pairwise matches, many of which are individually nonsignificant. In total, 45 of 60 propellers in the SCOP25 database, covering four SCOP folds, are clustered in this group and analysis with sensitive sequence comparison methods shows that they are similar at a level indicative of homology. Two mechanisms appear to contribute to the evolution of beta-propellers: amplification from single blades and subsequent functional differentiation. The observation of propellers with nearly identical blades in genomic sequences show that these mechanisms are still operating today. PMID:17979191

  14. Trp-Cage Folding on Organic Surfaces.

    PubMed

    Levine, Zachary A; Fischer, Sean A; Shea, Joan-Emma; Pfaendtner, Jim

    2015-08-20

    Trp-cage is an artificial miniprotein that is small, stable, and fast folding due to concerted hydrophobic shielding of a Trp residue by polyproline helices. Simulations have extensively characterized Trp-cage; however, the interactions of Trp-cage with organic surfaces (e.g., membranes) and their effect on protein conformation are largely unknown. To better understand these interactions we utilized a combination of replica-exchange molecular dynamics (REMD) and metadynamics (MetaD), to investigate Trp-cage folding on self-assembled monolayers (SAMs). We found that, with REMD and MetaD, Trp-cage strongly binds to neutral CH3 surfaces (-25kT) and moderately adsorbs to anionic COOH interfaces (-7.6kT), with hydrophobic interactions driving CH3 adhesion and electrostatic attractions driving COOH adhesion. Similar to solid-state surfaces, SAMs facilitate a number of intermediate Trp-cage conformations between folded and unfolded states. Regarding Trp-cage's aromatic groups in neutral CH3 systems, Tyr becomes oriented parallel to the surface in order to maximize hydrophobic interactions while Trp remains caged perpendicular to the surface; however, Trp can reorient itself parallel to the interface as the miniprotein more closely binds to the surface. In contrast, Tyr and Trp are both repelled from COOH surfaces, though the Trp-cage still adheres to the anionic interface via Lys and its N-terminated Asn residue. PMID:26207727

  15. Inframammary Fold Reconstruction: A Biomechanical Analysis

    PubMed Central

    Schell, Julia; Uener, Jens; Prescher, Andreas; Scaal, Martin; Puppe, Julian; Warm, Mathias

    2016-01-01

    Background: Inframammary fold reconstruction has scarcely been evaluated in literature. No biomechanical analyses have been performed comparing different reconstructive methods. This evaluation compares the gold-standard suture reconstruction with an intrarib anchor system (Micro BioComposite SutureTak, Arthrex). Methods: Three analysis groups were compared including 8 Sawbone blocks, 22 embalmed cadaver, and 27 regular cadaver specimens (N = 57). Transient mechanical analysis was performed at 5 N/s using an Instron 5565 test frame. Results: Ultimate load favored the anchor system (compared with the gold-standard suture) by a factor of 9.8 (P < 0.0001) for the regular cadaver group and a factor of 1.7 (P < 0.038) for the embalmed cadaver group. A similar statistically significant benefit was shown for stiffness and load at 2-mm displacement. Conclusions: This analysis showed an anchor system to be the biomechanically superior fixation method in terms of ultimate load, fixation stiffness, and displacement at failure when compared with the gold-standard suture method in inframammary fold reconstruction. Because of superior stability in every aspect, an anchor system may be considered for inframammary fold reconstruction. PMID:27257564

  16. Evolution of a protein folding nucleus.

    PubMed

    Xia, Xue; Longo, Liam M; Sutherland, Mason A; Blaber, Michael

    2016-07-01

    The folding nucleus (FN) is a cryptic element within protein primary structure that enables an efficient folding pathway and is the postulated heritable element in the evolution of protein architecture; however, almost nothing is known regarding how the FN structurally changes as complex protein architecture evolves from simpler peptide motifs. We report characterization of the FN of a designed purely symmetric β-trefoil protein by ϕ-value analysis. We compare the structure and folding properties of key foldable intermediates along the evolutionary trajectory of the β-trefoil. The results show structural acquisition of the FN during gene fusion events, incorporating novel turn structure created by gene fusion. Furthermore, the FN is adjusted by circular permutation in response to destabilizing functional mutation. FN plasticity by way of circular permutation is made possible by the intrinsic C3 cyclic symmetry of the β-trefoil architecture, identifying a possible selective advantage that helps explain the prevalence of cyclic structural symmetry in the proteome. PMID:26610273

  17. RNA folding pathways in stop motion.

    PubMed

    Bottaro, Sandro; Gil-Ley, Alejandro; Bussi, Giovanni

    2016-07-01

    We introduce a method for predicting RNA folding pathways, with an application to the most important RNA tetraloops. The method is based on the idea that ensembles of three-dimensional fragments extracted from high-resolution crystal structures are heterogeneous enough to describe metastable as well as intermediate states. These ensembles are first validated by performing a quantitative comparison against available solution nuclear magnetic resonance (NMR) data of a set of RNA tetranucleotides. Notably, the agreement is better with respect to the one obtained by comparing NMR with extensive all-atom molecular dynamics simulations. We then propose a procedure based on diffusion maps and Markov models that makes it possible to obtain reaction pathways and their relative probabilities from fragment ensembles. This approach is applied to study the helix-to-loop folding pathway of all the tetraloops from the GNRA and UNCG families. The results give detailed insights into the folding mechanism that are compatible with available experimental data and clarify the role of intermediate states observed in previous simulation studies. The method is computationally inexpensive and can be used to study arbitrary conformational transitions. PMID:27091499

  18. Computing the conformational entropy for RNA folds

    NASA Astrophysics Data System (ADS)

    Liu, Liang; Chen, Shi-Jie

    2010-06-01

    We develop a polymer physics-based method to compute the conformational entropy for RNA tertiary folds, namely, conformations consisting of multiple helices connected through (cross-linked) loops. The theory is based on a virtual bond conformational model for the nucleotide chain. A key issue in the calculation of the entropy is how to treat the excluded volume interactions. The weak excluded volume interference between the different loops leads to the decomposition of the whole structure into a number of three-body building blocks, each consisting of a loop and two helices connected to the two ends of the loop. The simple construct of the three-body system allows an accurate computation for the conformational entropy for each building block. The assembly of the building blocks gives the entropy of the whole structure. This approach enables treatment of molten globule-like folds (partially unfolded tertiary structures) for RNAs. Extensive tests against experiments and exact computer enumerations indicate that the method can give accurate results for the entropy. The method developed here provides a solid first step toward a systematic development of a theory for the entropy and free energy landscape for complex tertiary folds for RNAs and proteins.

  19. Fold assisted transport in graphene systems

    NASA Astrophysics Data System (ADS)

    Carrillo-Bastos, Ramon; Faria, Daiara; Jiang, Yuhang; Mao, Jinhai; Li, Guohong; Andrei, Eva Y.; Latge, Andrea; Sandler, Nancy

    Sasaki pointed out that a constant uniaxial strain applied along the zigzag direction in graphene causes localized states, akin to edge states in nanoribbons. These states are dispersionless and can carry ballistic transport. Recent experiments reported the presence of ballistic channels in graphene grown on SiC characterized with STM spectroscopy. In this work, we show that out-of plane deformations in the form of folds produce states as those predicted by Sasaki. Using tight-binding calculations and recursive Green's function methods, we obtain conductance, density of states (DOS), local density of states, and band structure (BS) for graphene nanoribbons with zigzag termination. Regions with enhanced DOS are identified in the deformed area corresponding to states in new flattened bands in the BS and new ballistic channels in the conductance. Adjusting the fold parameters, desired properties of these states can be tailored. Our results show that folds could serve as pathways for electronic transport and open the possibility of circuitry design within a simple graphene membrane. Support: DOE-FG02-99ER45742, NSF-DMR 1207108 and 1508325.

  20. Is Protein Folding Sub-Diffusive?

    PubMed Central

    Krivov, Sergei V.

    2010-01-01

    Protein folding dynamics is often described as diffusion on a free energy surface considered as a function of one or few reaction coordinates. However, a growing number of experiments and models show that, when projected onto a reaction coordinate, protein dynamics is sub-diffusive. This raises the question as to whether the conventionally used diffusive description of the dynamics is adequate. Here, we numerically construct the optimum reaction coordinate for a long equilibrium folding trajectory of a Go model of a -repressor protein. The trajectory projected onto this coordinate exhibits diffusive dynamics, while the dynamics of the same trajectory projected onto a sub-optimal reaction coordinate is sub-diffusive. We show that the higher the (cut-based) free energy profile for the putative reaction coordinate, the more diffusive the dynamics become when projected on this coordinate. The results suggest that whether the projected dynamics is diffusive or sub-diffusive depends on the chosen reaction coordinate. Protein folding can be described as diffusion on the free energy surface as function of the optimum reaction coordinate. And conversely, the conventional reaction coordinates, even though they might be based on physical intuition, are often sub-optimal and, hence, show sub-diffusive dynamics. PMID:20862361

  1. RNA folding pathways in stop motion

    PubMed Central

    Bottaro, Sandro; Gil-Ley, Alejandro; Bussi, Giovanni

    2016-01-01

    We introduce a method for predicting RNA folding pathways, with an application to the most important RNA tetraloops. The method is based on the idea that ensembles of three-dimensional fragments extracted from high-resolution crystal structures are heterogeneous enough to describe metastable as well as intermediate states. These ensembles are first validated by performing a quantitative comparison against available solution nuclear magnetic resonance (NMR) data of a set of RNA tetranucleotides. Notably, the agreement is better with respect to the one obtained by comparing NMR with extensive all-atom molecular dynamics simulations. We then propose a procedure based on diffusion maps and Markov models that makes it possible to obtain reaction pathways and their relative probabilities from fragment ensembles. This approach is applied to study the helix-to-loop folding pathway of all the tetraloops from the GNRA and UNCG families. The results give detailed insights into the folding mechanism that are compatible with available experimental data and clarify the role of intermediate states observed in previous simulation studies. The method is computationally inexpensive and can be used to study arbitrary conformational transitions. PMID:27091499

  2. Optimizing transient recombinant protein expression in mammalian cells.

    PubMed

    Hopkins, Ralph F; Wall, Vanessa E; Esposito, Dominic

    2012-01-01

    Transient gene expression (TGE) in mammalian cells has become a routine process for expressing recombinant proteins in cell lines such as human embryonic kidney 293 and Chinese hamster ovary cells. The rapidly increasing need for recombinant proteins requires further improvements in TGE technology. While a great deal of focus has been directed toward optimizing the secretion of antibodies and other naturally secreted targets, much less work has been done on ways to improve cytoplasmic expression in mammalian cells. The benefits to protein production in mammalian cells, particularly for eukaryotic proteins, should be very significant - glycosylation and other posttranslational modifications will likely be native or near-native, solubility and protein folding would likely improve overexpression in heterologous hosts, and expression of proteins in their proper intracellular compartments is much more likely to occur. Improvements in this area have been slow, however, due to limited development of the cell culture processes needed for low-cost, higher-throughput expression in mammalian cells, and the relatively low diversity of DNA vectors for protein production in these systems. Here, we describe how the use of recombinational cloning, coupled with improvements in transfection protocols which increase speed and lower cost, can be combined to make mammalian cells much more amenable for routine recombinant protein expression. PMID:21987258

  3. Shear properties of vocal fold mucosal tissues and their effect on vocal fold oscillation

    NASA Astrophysics Data System (ADS)

    Chan, Roger Wai Kai

    Viscoelastic shear properties of vocal fold mucosal tissues and phonosurgical biomaterials were measured with a parallel-plate rotational rheometer. Elastic, viscous and damping properties were quantified as a function of frequency (0.01 Hz to 15 Hz) for human vocal fold mucosal tissues (N = 15), implantable biomaterials commonly used in the treatment of vocal fold paralysis (Teflon, gelatin, and collagen) (the non-mucosal group), and biomaterials currently or potentially useful in the treatment of vocal fold mucosal defects (adipose tissue or fat, hyaluronic acid, and fibronectin) (the mucosal group). It was found that intersubject differences as large as an order of magnitude were often observed for the shear properties of vocal fold mucosal tissues, part of which may be age- and gender-related. Shear properties of the non-mucosal group biomaterials were often much higher than those of the mucosal group biomaterials, which were relatively close to the shear properties of mucosal tissues. Viscoelastic and rheological modeling showed that shear properties of human vocal fold mucosa may be described by a quasi-linear viscoelastic theory and a statistical network theory, based upon which extrapolations to audio frequencies were possible. A theory of small-amplitude vocal fold oscillation was revisited to describe the effects of tissue shear properties on vocal fold oscillation and phonation threshold pressure, a measure of the 'ease' of phonation and an objective indication of vocal function. It was found that phonation threshold pressure is directly related to the viscous shear modulus or the 'effective damping modulus', a concept proposed to quantify the effective amount of damping in vocal fold oscillation. The mucosal group biomaterials were incorporated into the artificial vocal fold mucosa of a physical model in order to empirically assess their effects on phonation threshold pressure. Results showed that higher threshold pressures were consistently observed

  4. A Rat Excised Larynx Model of Vocal Fold Scar

    ERIC Educational Resources Information Center

    Welham, Nathan V.; Montequin, Douglas W.; Tateya, Ichiro; Tateya, Tomoko; Choi, Seong Hee; Bless, Diane M.

    2009-01-01

    Purpose: To develop and evaluate a rat excised larynx model for the measurement of acoustic, aerodynamic, and vocal fold vibratory changes resulting from vocal fold scar. Method: Twenty-four 4-month-old male Sprague-Dawley rats were assigned to 1 of 4 experimental groups: chronic vocal fold scar, chronic vocal fold scar treated with 100-ng basic…

  5. Conjugate-shear folding: A model for the relationships between foliations, folds and shear zones

    NASA Astrophysics Data System (ADS)

    Aerden, Domingo G. A. M.; Sayab, Mohammad; Bouybaouene, Mohamed L.

    2010-08-01

    Microstructural mapping of whole thin sections cut from two samples of micaschist containing cm-scale folds plus garnet porphyroblasts has provided new insight in the relationships between folding, shearing and foliation development. The garnets exhibit coherent inclusion-trail patterns that place important constraints on the kinematic development of both samples, which are shown to be representative of coaxial versus non-coaxial deformation in rocks containing a pre-existing schistosity. A comparison of crenulations-cleavages geometries in both samples and a review of the geometry of natural and experimental multilayer folds leads to the conclusion that folding involves conjugate shearing at different scales. At microscopic scales, crenulation cleavages nucleate as conjugate-kink or shear instabilities and develop further as a function of the macroscopic partitioning of deformation. In fold-hinge domains, bulk-coaxial deformation results in equal development of conjugate crenulations that progressively coalescence into symmetrical crenulation patterns so that, macroscopically, parallelism is achieved between foliation, fold-axial planes and long axes of strain ellipses. Fold-limb domains represent a system of conjugate-shear zones where single sets of crenulation instabilities with synthetic shearing component preferentially develop producing oblique relationships between the aforementioned elements. Cleavage fanning is inferred as a direct consequence of this conjugate-shear origin of folds. The model implies that crenulation cleavages and S-C fabrics in shear zones form by analogous processes, in both cases involving a component of shearing along foliation planes. The development of conjugate sets of foliation planes surrounding porphyroblasts during early, relatively coaxial stages of deformation explains continued "gyrostatic" behaviour during more advanced non-coaxial stages, as indicated by consistently oriented inclusion trails in the studied samples.

  6. Folding of a single polygrain layer

    NASA Astrophysics Data System (ADS)

    Adamuszek, Marta; Dabrowski, Marcin

    2013-04-01

    Shortening of a mechanically layered rock in the direction parallel to the layering leads to the formation of buckle folds. Simultaneously, the rock microstructure undergoes modification due to changes in geometry and arrangement of the minerals leading to the development of the shape preferred orientation (SPO) and mechanical anisotropy. The progressive deformation influences the effective mechanical properties, which may affect the evolution of the folds. The mechanical anisotropy is considered to have a first-order effect on the fold growth, thus its evolution is potentially a crucial factor in folding process. In contrast to the previous studies, where the anisotropy is often considered as a prescribed (or inherited) property, we treat the anisotropy as a parameter that develops and evolves during deformation. In our numerical model, we study a polygrain, two-phase medium consisting of an effectively strong layer embedded in a weaker matrix. Both the layer and the matrix comprise the same material types but in different proportions. The layer and the matrix are initially mechanically isotropic. The viscosity of individual grains is isotropic, thus the role of the crystallographic orientation is not taken into account. The recrystallization and pressure solution processes are neglected. We investigate the influence of 1) the viscosity ratio between the mineral phases and 2) the effective viscosity ratio between the layer and the matrix on the development and evolution of anisotropy and folding. The complex, polygrain structure is represented using Voronoi polygons, which are then discretized with an unstructured mesh using Triangle software developed by Shewchuk (2007) and then used for the finite element approximations. We solve the incompressible Stokes equations under zero gravity using the finite element method (FEM) solver MILAMIN (Dabrowski et al., 2008). The normal components of the velocity vectors are prescribed at the boundaries according to a pure

  7. Three Decades of Recombinant DNA.

    ERIC Educational Resources Information Center

    Palmer, Jackie

    1985-01-01

    Discusses highlights in the development of genetic engineering, examining techniques with recombinant DNA, legal and ethical issues, GenBank (a national database of nucleic acid sequences), and other topics. (JN)

  8. Controlled Release from Recombinant Polymers

    PubMed Central

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-01-01

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486

  9. Recombinant DNA means and method

    SciTech Connect

    Alford, B.L.; Mao, J.I.; Moir, D.T.; Taunton-Rigby, A.; Vovis, G.F.

    1987-05-19

    This patent describes a transformed living cell selected from the group consisting of fungi, yeast and bacteria, and containing genetic material derived from recombinant DNA material and coding for bovine rennin.

  10. Stable recombination hotspots in birds.

    PubMed

    Singhal, Sonal; Leffler, Ellen M; Sannareddy, Keerthi; Turner, Isaac; Venn, Oliver; Hooper, Daniel M; Strand, Alva I; Li, Qiye; Raney, Brian; Balakrishnan, Christopher N; Griffith, Simon C; McVean, Gil; Przeworski, Molly

    2015-11-20

    The DNA-binding protein PRDM9 has a critical role in specifying meiotic recombination hotspots in mice and apes, but it appears to be absent from other vertebrate species, including birds. To study the evolution and determinants of recombination in species lacking the gene that encodes PRDM9, we inferred fine-scale genetic maps from population resequencing data for two bird species: the zebra finch, Taeniopygia guttata, and the long-tailed finch, Poephila acuticauda. We found that both species have recombination hotspots, which are enriched near functional genomic elements. Unlike in mice and apes, most hotspots are shared between the two species, and their conservation seems to extend over tens of millions of years. These observations suggest that in the absence of PRDM9, recombination targets functional features that both enable access to the genome and constrain its evolution. PMID:26586757

  11. Recombination device for storage batteries

    DOEpatents

    Kraft, H.; Ledjeff, K.

    1984-01-01

    A recombination device including a gas-tight enclosure connected to receive the discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  12. Recombination device for storage batteries

    DOEpatents

    Kraft, Helmut; Ledjeff, Konstantin

    1985-01-01

    A recombination device including a gas-tight enclosure connected to receive he discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  13. Recombinant soluble adenovirus receptor

    DOEpatents

    Freimuth, Paul I.

    2002-01-01

    Disclosed are isolated polypeptides from human CAR (coxsackievirus and adenovirus receptor) protein which bind adenovirus. Specifically disclosed are amino acid sequences which corresponds to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2. In other aspects, the disclosure relates to nucleic acid sequences encoding these domains as well as expression vectors which encode the domains and bacterial cells containing such vectors. Also disclosed is an isolated fusion protein comprised of the D1 polypeptide sequence fused to a polypeptide sequence which facilitates folding of D1 into a functional, soluble domain when expressed in bacteria. The functional D1 domain finds application for example in a therapeutic method for treating a patient infected with a virus which binds to D1, and also in a method for identifying an antiviral compound which interferes with viral attachment. Also included is a method for specifically targeting a cell for infection by a virus which binds to D1.

  14. Folding of β-barrel membrane proteins in lipid bilayers - Unassisted and assisted folding and insertion.

    PubMed

    Kleinschmidt, Jörg H

    2015-09-01

    In cells, β-barrel membrane proteins are transported in unfolded form to an outer membrane into which they fold and insert. Model systems have been established to investigate the mechanisms of insertion and folding of these versatile proteins into detergent micelles, lipid bilayers and even synthetic amphipathic polymers. In these experiments, insertion into lipid membranes is initiated from unfolded forms that do not display residual β-sheet secondary structure. These studies therefore have allowed the investigation of membrane protein folding and insertion in great detail. Folding of β-barrel membrane proteins into lipid bilayers has been monitored from unfolded forms by dilution of chaotropic denaturants that keep the protein unfolded as well as from unfolded forms present in complexes with molecular chaperones from cells. This review is aimed to provide an overview of the principles and mechanisms observed for the folding of β-barrel transmembrane proteins into lipid bilayers, the importance of lipid-protein interactions and the function of molecular chaperones and folding assistants. This article is part of a Special Issue entitled: Lipid-protein interactions. PMID:25983306

  15. Influence of surface processes and initial topography on lateral fold growth and fold linkage mode

    NASA Astrophysics Data System (ADS)

    Collignon, M.; Fernandez, N.; Kaus, B. J. P.

    2015-08-01

    Elongation of randomly distributed fold segments and their potential linkage are important for hydrocarbon exploration because it can greatly influence the morphology of the reservoir and both migration and accumulation of hydrocarbons in antiformal traps. Here we study the effects of surface processes and the presence of a topographic slope on the different linkage modes that can occur, and how these parameters affect the required horizontal offset for perturbations to link. The proposed numerical model represents a sedimentary cover detached over a much weaker basal décollement layer. The upper surface is modified by mass redistribution, which is achieved by a combination of fluvial and hillslope processes. Several series of simulations were performed: (1) without surface processes or regional slope, (2) with regional slope only, (3) with fluvial incision and hillslope processes, and (4) with hillslope processes only. Model results show that the presence of a regional slope reduces the critical distance required for the transition between linkage and no linkage modes, whereas erosion and redeposition of sediments, on the contrary, increase this distance. The location of the saddle point, where fold segments link, and its vertical distance to the crests of the anticlines are different compared to the case without erosion or initial topographic slope, which potentially can affect the morphology of hydrocarbon traps. Moreover, both erosion and redeposition of sediments enhance the fold elongation (growth along the fold axis), once the erosion velocity exceeds the folding velocity. Model results have been compared to the Zagros Fold Belt.

  16. Daedalus: a robust, turnkey platform for rapid production of decigram quantities of active recombinant proteins in human cell lines using novel lentiviral vectors

    PubMed Central

    Bandaranayake, Ashok D.; Correnti, Colin; Ryu, Byoung Y.; Brault, Michelle; Strong, Roland K.; Rawlings, David J.

    2011-01-01

    A key challenge for the academic and biopharmaceutical communities is the rapid and scalable production of recombinant proteins for supporting downstream applications ranging from therapeutic trials to structural genomics efforts. Here, we describe a novel system for the production of recombinant mammalian proteins, including immune receptors, cytokines and antibodies, in a human cell line culture system, often requiring <3 weeks to achieve stable, high-level expression: Daedalus. The inclusion of minimized ubiquitous chromatin opening elements in the transduction vectors is key for preventing genomic silencing and maintaining the stability of decigram levels of expression. This system can bypass the tedious and time-consuming steps of conventional protein production methods by employing the secretion pathway of serum-free adapted human suspension cell lines, such as 293 Freestyle. Using optimized lentiviral vectors, yields of 20–100 mg/l of correctly folded and post-translationally modified, endotoxin-free protein of up to ~70 kDa in size, can be achieved in conventional, small-scale (100 ml) culture. At these yields, most proteins can be purified using a single size-exclusion chromatography step, immediately appropriate for use in structural, biophysical or therapeutic applications. PMID:21911364

  17. Recombinant production of bioactive human TNF-alpha by SUMO-fusion system--high yields from shake-flask culture.

    PubMed

    Hoffmann, Andreas; Müller, Mathias Q; Gloser, Manja; Sinz, Andrea; Rudolph, Rainer; Pfeifer, Sven

    2010-08-01

    Tumor necrosis factor (TNF-alpha) inhibitors, used for the treatment of common inflammatory diseases, currently belong among the most important biotechnologically produced pharmaceuticals. So far four TNF-alpha antagonists have been approved by regulatory authorities for defined subsets of applications. Furthermore, numerous approaches are being taken to develop new protein-based pharmaceuticals and to broaden their application areas in the treatment of TNF-alpha -related diseases. Both the fundamental understanding of disease-related TNF-alpha activity and the subsequent development of corresponding drug candidates demand the availability of large amounts of TNF-alpha as a bioactive protein. We have therefore established a protocol for the rapid high-level synthesis of recombinant human TNF-alpha in Escherichia coli shake-flask cultures and the subsequent purification of the mature protein. Using the advantages of SUMO-fusion technology we were able to produce protein with an authentic N-terminus in high yield. Two immobilized metal ion-affinity chromatography steps with a protease cleavage step in between and subsequent size-exclusion chromatography were utilized to purify the protein. The protein was obtained from the last chromatography step as a trimer, while purity was at least 96% as estimated by SDS-PAGE. The identity of the protein was confirmed by MALDI-TOF mass spectrometry. Recombinant mature TNF-alpha was correctly folded as assessed by CD spectroscopy and its biological activity was confirmed by an L929 cell assay. PMID:20363332

  18. Intravenously Administered Recombinant Human Type VII Collagen Derived from Chinese Hamster Ovary Cells Reverses the Disease Phenotype in Recessive Dystrophic Epidermolysis Bullosa Mice.

    PubMed

    Hou, Yingping; Guey, Lin T; Wu, Timothy; Gao, Robert; Cogan, Jon; Wang, Xinyi; Hong, Elizabeth; Ning, Weihuang Vivian; Keene, Douglas; Liu, Nan; Huang, Yan; Kaftan, Craig; Tangarone, Bruce; Quinones-Garcia, Igor; Uitto, Jouni; Francone, Omar L; Woodley, David T; Chen, Mei

    2015-12-01

    Recessive dystrophic epidermolysis bullosa (RDEB) is an inherited disorder characterized by skin fragility, blistering, and multiple skin wounds with no currently approved or consistently effective treatment. It is due to mutations in the gene encoding type VII collagen (C7). Using recombinant human C7 (rhC7) purified from human dermal fibroblasts (FB-rhC7), we showed previously that intravenously injected rhC7 distributed to engrafted RDEB skin, incorporated into its dermal-epidermal junction (DEJ), and reversed the RDEB disease phenotype. Human dermal fibroblasts, however, are not used for commercial production of therapeutic proteins. Therefore, we generated rhC7 from Chinese hamster ovary (CHO) cells. The CHO-derived recombinant type VII collagen (CHO-rhC7), similar to FB-rhC7, was secreted as a correctly folded, disulfide-bonded, helical trimer resistant to protease degradation. CHO-rhC7 bound to fibronectin and promoted human keratinocyte migration in vitro. A single dose of CHO-rhC7, administered intravenously into new-born C7-null RDEB mice, incorporated into the DEJ of multiple skin sites, tongue and esophagus, restored anchoring fibrils, improved dermal-epidermal adherence, and increased the animals' life span. Furthermore, no circulating or tissue-bound anti-C7 antibodies were observed in the mice. These data demonstrate the efficacy of CHO-rhC7 in a preclinical murine model of RDEB. PMID:26203639

  19. [Antithrombotic recombinant antibodies].

    PubMed

    Muzard, Julien; Loyau, Stéphane; Ajzenberg, Nadine; Billiald, Philippe; Jandrot-Perrus, Martine

    2006-01-01

    Coronary syndromes, stroke and other ischaemic arterial diseases are the leading cause of death in the world and will probably remain it at least until 2020. Cardiovascular diseases kill 17 million people each year with an expected increase to 20 million in 2020 and 24 million in 2030. The global impact of recurrence and death during the 6 months following an acute coronary syndrome remains at 8-15% in the present state of medical practice. Acute ischaemic syndromes have a common aetiology that is the formation of a platelet-rich clot at the site of severe coronary stenosis and of eroded atherosclerotic plaques. Therapy consists of medical treatments associating thrombolysis, antiplatelet drugs, and the re-opening of the coronary artery by angioplasty. But these treatments do not prevent morbidity and mortality reaching 15% at 6 months. Finally the treatment of stroke is very limited. There is thus a real clinical need to improve existing treatments and to discover new molecules. Platelet activation is a critical step in ischaemic cardiovascular diseases. This is the reason why antiplatelet drugs are most often prescribed in these cases. Currently, only one recombinant antithrombotic antibody is used in therapy. This is a chimeric Fab, c7E3 or abciximab, which inhibits the final phase of platelet aggregation. Abciximab is prescribed in acute coronary syndromes treated by angioplasty. However, treatment by abciximab can induce severe complications, principally, hemorrages and thrombopenia. Other platelet receptors involved in the earlier steps of platelet activation, such as the phases of contact with and of activation by the subendothelium matrix, have been identified as potential targets for the development of antithrombotic antibodies and are described in this revue. PMID:17652972

  20. Genetic recombination in Streptomyces griseus.

    PubMed Central

    Parag, Y

    1978-01-01

    Low-frequency (10(-6)) genetic recombination was observed in a cephamycin-producing strain of Streptomyces griseus. The recombinants were predominantly heteroclones. Heteroclone analysis was performed involving four heteroclones of one cross. In 100 mutants correlation was found between the type of auxotrophy and the level of antibiotic activity. A cross of this strain with a streptomycin-producing strain of S. griesus is described. PMID:415037

  1. [Vaccine application of recombinant herpesviruses].

    PubMed

    Yokoyama, N; Xuan, X; Mikami, T

    2000-04-01

    Recently, genetic engineering using recombinant DNA techniques has been applied to design new viral vaccines in order to reduce some problems which the present viral vaccines have. Up to now, many viruses have been investigated for development of recombinant attenuated vaccines or live viral vectors for delivery of foreign genes coding immunogenic antigens. In this article, we introduced the new vaccine strategy using genetically engineered herpesviruses. PMID:10774221

  2. Combinatorics in Recombinational Population Genomics

    NASA Astrophysics Data System (ADS)

    Parida, Laxmi

    The work that I will discuss is motivated by the need for understanding, and processing, the manifestations of recombination events in chromosome sequences. In this talk, we focus on two related problems. First, we explore the very general problem of reconstructability of pedigree history. How plausible is it to unravel the history of a complete unit (chromosome) of inheritance? The second problem deals with reconstructing the recombinational history of a collection of chromosomes.

  3. Earthworm Lumbricus rubellus MT-2: Metal Binding and Protein Folding of a True Cadmium-MT

    PubMed Central

    Kowald, Gregory R.; Stürzenbaum, Stephen R.; Blindauer, Claudia A.

    2016-01-01

    Earthworms express, as most animals, metallothioneins (MTs)—small, cysteine-rich proteins that bind d10 metal ions (Zn(II), Cd(II), or Cu(I)) in clusters. Three MT homologues are known for Lumbricus rubellus, the common red earthworm, one of which, wMT-2, is strongly induced by exposure of worms to cadmium. This study concerns composition, metal binding affinity and metal-dependent protein folding of wMT-2 expressed recombinantly and purified in the presence of Cd(II) and Zn(II). Crucially, whilst a single Cd7wMT-2 species was isolated from wMT-2-expressing E. coli cultures supplemented with Cd(II), expressions in the presence of Zn(II) yielded mixtures. The average affinities of wMT-2 determined for either Cd(II) or Zn(II) are both within normal ranges for MTs; hence, differential behaviour cannot be explained on the basis of overall affinity. Therefore, the protein folding properties of Cd- and Zn-wMT-2 were compared by 1H NMR spectroscopy. This comparison revealed that the protein fold is better defined in the presence of cadmium than in the presence of zinc. These differences in folding and dynamics may be at the root of the differential behaviour of the cadmium- and zinc-bound protein in vitro, and may ultimately also help in distinguishing zinc and cadmium in the earthworm in vivo. PMID:26742040

  4. Delayed recombination and cosmic parameters

    NASA Astrophysics Data System (ADS)

    Galli, Silvia; Bean, Rachel; Melchiorri, Alessandro; Silk, Joseph

    2008-09-01

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, ns, and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z*=1078±11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1σ to R=1.734±0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: γα<0.39 and γi<0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  5. Ethanol production by recombinant hosts

    DOEpatents

    Ingram, Lonnie O.; Beall, David S.; Burchhardt, Gerhard F. H.; Guimaraes, Walter V.; Ohta, Kazuyoshi; Wood, Brent E.; Shanmugam, Keelnatham T.

    1995-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  6. Ethanol production by recombinant hosts

    DOEpatents

    Fowler, David E.; Horton, Philip G.; Ben-Bassat, Arie

    1996-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  7. Delayed recombination and cosmic parameters

    SciTech Connect

    Galli, Silvia; Melchiorri, Alessandro; Bean, Rachel; Silk, Joseph

    2008-09-15

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, n{sub s}, and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z{sub *}=1078{+-}11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1{sigma} to R=1.734{+-}0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: {epsilon}{sub {alpha}}<0.39 and {epsilon}{sub i}<0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  8. Accumulation of properly folded human type III procollagen molecules in specific intracellular membranous compartments in the yeast Pichia pastoris.

    PubMed

    Keizer-Gunnink, I; Vuorela, A; Myllyharju, J; Pihlajaniemi, T; Kivirikko, K I; Veenhuis, M

    2000-02-01

    It was recently reported that co-expression of the proalpha1(III) chain of human type III procollagen with the subunits of human prolyl 4-hydroxylase in Pichia pastoris produces fully hydroxylated and properly folded recombinant type III procollagen molecules (Vuorela, A., Myllyharju, J., Nissi, R., Pihlajaniemi, T., Kivirikko, K.I., 1997. Assembly of human prolyl 4-hydroxylase and type III collagen in the yeast Pichia pastoris: formation of a stable enzyme tetramer requires coexpression with collagen and assembly of a stable collagen requires coexpression with prolyl 4-hydroxylase. EMBO J. 16, 6702-6712). These properly folded molecules accumulated inside the yeast cell, however, only approximately 10% were found in the culture medium. We report here that replacement of the authentic signal sequence of the human proalpha1(III) with the Saccharomyces cerevisiae alpha mating factor prepro sequence led only to a minor increase in the amount secreted. Immunoelectron microscopy studies indicated that the procollagen molecules accumulate in specific membranous vesicular compartments that are closely associated with the nuclear membrane. Prolyl 4-hydroxylase, an endoplasmic reticulum (ER) lumenal enzyme, was found to be located in the same compartments. Non-helical proalpha1(III) chains produced by expression without recombinant prolyl 4-hydroxylase likewise accumulated within these compartments. The data indicate that properly folded recombinant procollagen molecules accumulate within the ER and do not proceed further in the secretory pathway. This may be related to the large size of the procollagen molecule. PMID:10686423

  9. [Comparison of expression and antibacterial activities of recombinant porcine lactoferrin expressed in four Lactobacillus species].

    PubMed

    Yu, Hui; Jiang, Yanping; Cui, Wen; Wu, Xiao; He, Jia; Qiao, Xinyuan; Li, Yijing; Tang, Lijie

    2014-09-01

    The coding sequence for the mature peptide of porcine lactoferrin (Plf) was synthesized according to the codon usage of lactobacillus, to establish optimized porcine lactoferrin Lactobacillus expression system. The gene was ligated into the Xho I/BamH I site of Lactobacillus expression vector pPG612.1 and the recombinant plasmid pPG612.1-plf was transformed individually into Lactobacillus casei ATCC393, Lactobacillus pentosus KLDS1.0413, Lactobacillus plantarum KLDS1.0344 or Lactobacillus paracasei KLDS1.0652 by electroporation. After induction with xylose, expression of the recombinant proteins was detected by Western blotting and confocal laser scanning microscopy. Secretion of recombinant Plf proteins from four recombinant species was determined quantitatively by ELISA. The antibacterial activities of recombinant proteins were measured by agar diffusion method. The result shows that Plf was correctly expressed in four species of recombinant lactobacillus, with molecular weight of about 73 kDa. The expression levels in recombinant Lactobacillus casei, Lactobacillus pentosus, Lactobacillus plantarum, Lactobacillus paracasei were 9.6 μg/mL, 10.8 μg/mL, 12.5 μg/mL and 9.9 μg/mL, respectively. Antimicrobial activity experiment shows that the recombinant proteins were active against E. coli, Staphylococcus aureus, Salmonella typhimurium, Listeria, Pasteurella. The recombinant Plf expressed by recombinant Lactobacillus plantarum showed the best antibacterial activity among all recombinant lactobacillus species. These data represent a basis for the development and application of porcine lactoferrin from recombinant lactobacillus. PMID:25720152

  10. Polyglutamine Disease Modeling: Epitope Based Screen for Homologous Recombination using CRISPR/Cas9 System

    PubMed Central

    An, Mahru C.; O'Brien, Robert N.; Zhang, Ningzhe; Patra, Biranchi N.; De La Cruz, Michael; Ray, Animesh; Ellerby, Lisa M.

    2014-01-01

    We have previously reported the genetic correction of Huntington’s disease (HD) patient-derived induced pluripotent stem cells using traditional homologous recombination (HR) approaches. To extend this work, we have adopted a CRISPR-based genome editing approach to improve the efficiency of recombination in order to generate allelic isogenic HD models in human cells. Incorporation of a rapid antibody-based screening approach to measure recombination provides a powerful method to determine relative efficiency of genome editing for modeling polyglutamine diseases or understanding factors that modulate CRISPR/Cas9 HR. PMID:24761311

  11. Fault-related fold styles and progressions in fold-thrust belts: Insights from sandbox modeling

    NASA Astrophysics Data System (ADS)

    Yan, Dan-Ping; Xu, Yan-Bo; Dong, Zhou-Bin; Qiu, Liang; Zhang, Sen; Wells, Michael

    2016-03-01

    Fault-related folds of variable structural styles and assemblages commonly coexist in orogenic belts with competent-incompetent interlayered sequences. Despite their commonality, the kinematic evolution of these structural styles and assemblages are often loosely constrained because multiple solutions exist in their structural progression during tectonic restoration. We use a sandbox modeling instrument with a particle image velocimetry monitor to test four designed sandbox models with multilayer competent-incompetent materials. Test results reveal that decollement folds initiate along selected incompetent layers with decreasing velocity difference and constant vorticity difference between the hanging wall and footwall of the initial fault tips. The decollement folds are progressively converted to fault-propagation folds and fault-bend folds through development of fault ramps breaking across competent layers and are followed by propagation into fault flats within an upper incompetent layer. Thick-skinned thrust is produced by initiating a decollement fault within the metamorphic basement. Progressive thrusting and uplifting of the thick-skinned thrust trigger initiation of the uppermost incompetent decollement with formation of a decollement fold and subsequent converting to fault-propagation and fault-bend folds, which combine together to form imbricate thrust. Breakouts at the base of the early formed fault ramps along the lowest incompetent layers, which may correspond to basement-cover contacts, domes the upmost decollement and imbricate thrusts to form passive roof duplexes and constitute the thin-skinned thrust belt. Structural styles and assemblages in each of tectonic stages are similar to that in the representative orogenic belts in the South China, Southern Appalachians, and Alpine orogenic belts.

  12. The role of ascorbate in protein folding.

    PubMed

    Szarka, András; Lőrincz, Tamás

    2014-05-01

    Ascorbate was linked to protein folding a long time ago. At the first level of this connection, it had been shown that ascorbate functions as an essential cofactor in the hydroxylation enzymes involved in collagen synthesis. Although the hydroxylation reactions catalyzed by the members of the prolyl 4-hydroxylase family are considered to be ascorbate dependent, the hydroxylation of proline alone does not need ascorbate. Prolyl 4-hydroxylases participate in two catalytic reactions: one in which proline residues are hydroxylated, while 2-oxoglutarate is decarboxylated and molecular oxygen is consumed. This reaction is ascorbate independent. However, in another reaction, prolyl 4-hydroxylases catalyze the decarboxylation of 2-oxoglutarate uncoupled from proline hydroxylation but still needing molecular oxygen. At this time, ferrous iron is oxidized and the protein is rendered catalytically inactive until reduced by ascorbate. At the second level of the connection, the oxidation and the oxidized form of ascorbate, dehydroascorbate, is involved in the formation of disulfide bonds of secretory proteins. The significance of the dehydroascorbate reductase activity of protein disulfide isomerase was debated because protein disulfide isomerase as a dehydroascorbate reductase was found to be too slow to be the major route for the reduction of dehydroascorbate (and formation of disulfides) in the endoplasmic reticulum lumen. However, very recently, low tissue ascorbate levels and a noncanonical scurvy were observed in endoplasmic reticulum thiol oxidase- and peroxiredoxin 4-compromised mice. This novel observation implies that ascorbate may be involved in oxidative protein folding and creates a link between the disulfide bond formation (oxidative protein folding) and hydroxylation. PMID:24150425

  13. Structure based prediction of protein folding intermediates.

    PubMed

    Xie, D; Freire, E

    1994-09-01

    The complete unfolding of a protein involves the disruption of non-covalent intramolecular interactions within the protein and the subsequent hydration of the backbone and amino acid side-chains. The magnitude of the thermodynamic parameters associated with this process is known accurately for a growing number of globular proteins for which high-resolution structures are also available. The existence of this database of structural and thermodynamic information has facilitated the development of statistical procedures aimed at quantifying the relationships existing between protein structure and the thermodynamic parameters of folding/unfolding. Under some conditions proteins do not unfold completely, giving rise to states (commonly known as molten globules) in which the molecule retains some secondary structure and remains in a compact configuration after denaturation. This phenomenon is reflected in the thermodynamics of the process. Depending on the nature of the residual structure that exists after denaturation, the observed enthalpy, entropy and heat capacity changes will deviate in a particular and predictable way from the values expected for complete unfolding. For several proteins, these deviations have been shown to exhibit similar characteristics, suggesting that their equilibrium folding intermediates exhibit some common structural features. Employing empirically derived structure-energetic relationships, it is possible to identify in the native structure of the protein those regions with the higher probability of being structured in equilibrium partly folded states. In this work, a thermodynamic search algorithm aimed at identifying the structural determinants of the molten globule state has been applied to six globular proteins; alpha-lactalbumin, barnase, IIIGlc, interleukin-1 beta, phage T4 lysozyme and phage 434 repressor. Remarkably, the structural features of the predicted equilibrium intermediates coincide to a large extent with the known

  14. Protein-facilitated ribozyme folding and catalysis.

    PubMed

    Zingler, Nora; Solem, Amanda; Pyle, Anna Marie

    2008-01-01

    In vivo, large RNAs rely on proteins to fold to their native conformation. In the case of the S. cerevisiae group II intron ai5 gamma, the DEAD-box protein Mss116 has been shown to promote the formation of the catalytically active structure. However, it is a matter of debate whether it does this by stabilizing on-pathway intermediates or by disrupting misfolded structures. Here we present the available experimental evidence to distinguish between those mechanisms and discuss the possible interpretations. PMID:18776256

  15. Foldons as independently folding units of proteins

    NASA Astrophysics Data System (ADS)

    Panchenko, Anna R.; Luthey-Schulten, Zaida; Wolynes, Peter G.

    1997-02-01

    Independently folding units of proteins, foldons, have been identified by maxima in a scan of the ratio of an energetic stability gap to the energy variance of that segment's molten globule states, reflecting the requirement of minimal frustration. Foldon boundaries, unlike structural domains, depend on the sequence of the protein. Therefore, domains defined by purely structural criteria and the foldons of a given protein may differ in size and structure. The predicted foldons have been compared to the exons and structural modules. Statistical analysis indicates a strong correlation between the energetically determined foldons and Go's geometrically defined structural modules. There is only a weak correlation of foldons to exons.

  16. Triplex-stimulated intermolecular recombination at a single-copy genomic target.

    PubMed

    Knauert, Melissa P; Kalish, Jennifer M; Hegan, Denise C; Glazer, Peter M

    2006-09-01

    Gene targeting via homologous recombination offers a potential strategy for therapeutic correction of mutations in disease-related human genes. However, there is a need to improve the efficiency of site-specific recombination by transfected donor DNAs. Oligonucleotide-mediated triple helix formation has been shown to constitute a DNA lesion sufficient to provoke DNA repair and thereby stimulate recombination. However, the ability of triplex-forming oligonucleotides (TFOs) to induce recombination between a target locus and a donor DNA has so far been demonstrated only with multicopy episomal targets in mammalian cells. Using cell lines containing the firefly luciferase reporter gene, we have now established the ability of TFOs to induce gene correction by exogenous donor DNAs at a single-copy chromosomal locus. We find that cotransfection of TFOs and short, single-stranded DNA donor molecules into mammalian cells yields gene correction in a dose-dependent manner at frequencies up to 0.1%, which is five- to ninefold above background. We demonstrate both oligonucleotide-specific and target site-specific effects. We also find that recombination can be induced by both parallel and antiparallel triple helix formation. These results provide further support for the development of TFOs as reagents to stimulate site-specific correction of defective human genes. PMID:16731047

  17. 78 FR 75449 - Miscellaneous Corrections; Corrections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... INFORMATION: The NRC published a final rule in the Federal Register on June 7, 2013 (78 FR 34245), to make.... The final rule contained minor errors in grammar, punctuation, and referencing. This document corrects... specifying metric units. The final rule inadvertently included additional errors in grammar and...

  18. Misplaced helix slows down ultrafast pressure-jump protein folding.

    PubMed

    Prigozhin, Maxim B; Liu, Yanxin; Wirth, Anna Jean; Kapoor, Shobhna; Winter, Roland; Schulten, Klaus; Gruebele, Martin

    2013-05-14

    Using a newly developed microsecond pressure-jump apparatus, we monitor the refolding kinetics of the helix-stabilized five-helix bundle protein λ*YA, the Y22W/Q33Y/G46,48A mutant of λ-repressor fragment 6-85, from 3 μs to 5 ms after a 1,200-bar P-drop. In addition to a microsecond phase, we observe a slower 1.4-ms phase during refolding to the native state. Unlike temperature denaturation, pressure denaturation produces a highly reversible helix-coil-rich state. This difference highlights the importance of the denatured initial condition in folding experiments and leads us to assign a compact nonnative helical trap as the reason for slower P-jump-induced refolding. To complement the experiments, we performed over 50 μs of all-atom molecular dynamics P-drop refolding simulations with four different force fields. Two of the force fields yield compact nonnative states with misplaced α-helix content within a few microseconds of the P-drop. Our overall conclusion from experiment and simulation is that the pressure-denatured state of λ*YA contains mainly residual helix and little β-sheet; following a fast P-drop, at least some λ*YA forms misplaced helical structure within microseconds. We hypothesize that nonnative helix at helix-turn interfaces traps the protein in compact nonnative conformations. These traps delay the folding of at least some of the population for 1.4 ms en route to the native state. Based on molecular dynamics, we predict specific mutations at the helix-turn interfaces that should speed up refolding from the pressure-denatured state, if this hypothesis is correct. PMID:23620522

  19. 75 FR 68407 - Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... 67013, the Presidential Determination number should read ``2010-12'' (Presidential Sig.) [FR Doc. C1... Migration Needs Resulting from Violence in Kyrgyzstan Correction In Presidential document...

  20. On prismatic corrections

    NASA Astrophysics Data System (ADS)

    Bartkowski, Zygmunt; Bartkowska, Janina

    2006-02-01

    In the prismatic corrections there are described the differences between the nominal and interior prisms, or tilts of the eye to fix straightforward (Augenausgleichbewegung). In the astigmatic corrections, if the prism doesn't lie in the principal sections of the cylinder, the directions of both events are different. In the corrections of the horizontal strabismus there appears the vertical component of the interior prism. The approximated formulae describing these phenomena are presented. The suitable setting can correct the quality of the vision in the important for the patient direction.

  1. Recombination Drives Vertebrate Genome Contraction

    PubMed Central

    Nam, Kiwoong; Ellegren, Hans

    2012-01-01

    Selective and/or neutral processes may govern variation in DNA content and, ultimately, genome size. The observation in several organisms of a negative correlation between recombination rate and intron size could be compatible with a neutral model in which recombination is mutagenic for length changes. We used whole-genome data on small insertions and deletions within transposable elements from chicken and zebra finch to demonstrate clear links between recombination rate and a number of attributes of reduced DNA content. Recombination rate was negatively correlated with the length of introns, transposable elements, and intergenic spacer and with the rate of short insertions. Importantly, it was positively correlated with gene density, the rate of short deletions, the deletion bias, and the net change in sequence length. All these observations point at a pattern of more condensed genome structure in regions of high recombination. Based on the observed rates of small insertions and deletions and assuming that these rates are representative for the whole genome, we estimate that the genome of the most recent common ancestor of birds and lizards has lost nearly 20% of its DNA content up until the present. Expansion of transposable elements can counteract the effect of deletions in an equilibrium mutation model; however, since the activity of transposable elements has been low in the avian lineage, the deletion bias is likely to have had a significant effect on genome size evolution in dinosaurs and birds, contributing to the maintenance of a small genome. We also demonstrate that most of the observed correlations between recombination rate and genome contraction parameters are seen in the human genome, including for segregating indel polymorphisms. Our data are compatible with a neutral model in which recombination drives vertebrate genome size evolution and gives no direct support for a role of natural selection in this process. PMID:22570634

  2. Recombination processes in ionised plasmas

    NASA Astrophysics Data System (ADS)

    Bastin, Robert

    The observational analysis of astrophysical plasmas relies on accurate calculations of the atomic processes involved. The recombination spectra of singly ionised oxygen (O il) and carbon (C il) present excellent tools for investigating regions such as planetary nebulae and H II regions. In this thesis, detailed treatments of the recombination processes of both O II and C II are presented. Using the R-matrix solution to the close coupling equations, I present the results of accurate photoionisation calculations. Bound state energy levels are determined and oscillator strengths calculated for both species. Recombination coefficients were evalu ated for low n and 1, for C II in LS-coupling, and 0 II in intermediate coupling, taking particular care to treat resonances effectively. Sample photoionisation cross-sections are presented for both species, and compared to previous work. A complete radiative-cascade model is treated for both species, in order to determine line emissivities under nebular conditions at a wide range of temperatures and densities. Collisional effects are treated for C II, along with, for the first time, the effects of high temperature dielectronic recombination, allowing the modelling of regions of much higher electron temperature than previous work. The O II calculations were performed under intermediate coupling for the first time, allowing the effects of non-statistical popula tions of the parent ion fine-structure levels and dielectronic recombination onto bound states within this fine-structure to be taken into account in line emissivities. Detailed comparison with previous theoretical work was made for both species. The application of the C II and 0 n recombination spectra to determining tempera ture and densities from the observed spectra of a number of ionised nebulae is considered. The potential for using the new recombination spectra as diagnostic tools to solve some of the key problems in the study of ionised nebulae is demonstrated.

  3. Recombination at the DNA level. Abstracts

    SciTech Connect

    Not Available

    1984-01-01

    Abstracts of papers in the following areas are presented: (1) chromosome mechanics; (2) yeast systems; (3) mammalian homologous recombination; (4) transposons; (5) Mu; (6) plant transposons/T4 recombination; (7) topoisomerase, resolvase, and gyrase; (8) Escherichia coli general recombination; (9) recA; (10) repair; (11) eucaryotic enzymes; (12) integration and excision of bacteriophage; (13) site-specific recombination; and (14) recombination in vitro. (ACR)

  4. Folding of the hammerhead ribozyme: Pyrrolo-cytosine fluorescence separates core folding from global folding and reveals a pH-dependent conformational change

    PubMed Central

    Buskiewicz, Iwona A.; Burke, John M.

    2012-01-01

    The catalytic activity of the hammerhead ribozyme is limited by its ability to fold into the native tertiary structure. Analysis of folding has been hampered by a lack of assays that can independently monitor the environment of nucleobases throughout the ribozyme–substrate complex in real time. Here, we report the development and application of a new folding assay in which we use pyrrolo-cytosine (pyC) fluorescence to (1) probe active-site formation, (2) examine the ability of peripheral ribozyme domains to support native folding, (3) identify a pH-dependent conformational change within the ribozyme, and (4) explore its influence on the equilibrium between the folded and unfolded core of the hammerhead ribozyme. We conclude that the natural ribozyme folds in two distinct noncooperative steps and the pH-dependent correlation between core folding and activity is linked to formation of the G8-C3 base pair. PMID:22274955

  5. Structure of a Folding Intermediate Reveals the Interplay Between Core and Peripheral Elements in RNA Folding

    SciTech Connect

    Baird, Nathan J.; Westhof, Eric; Qin, Hong; Pan, Tao; Sosnick, Tobin R.

    2010-07-13

    Though the molecular architecture of many native RNA structures has been characterized, the structures of folding intermediates are poorly defined. Here, we present a nucleotide-level model of a highly structured equilibrium folding intermediate of the specificity domain of the Bacillus subtilis RNase P RNA, obtained using chemical and nuclease mapping, circular dichroism spectroscopy, small-angle X-ray scattering and molecular modeling. The crystal structure indicates that the 154 nucleotide specificity domain is composed of several secondary and tertiary structural modules. The structure of the intermediate contains modules composed of secondary structures and short-range tertiary interactions, implying a sequential order of tertiary structure formation during folding. The intermediate lacks the native core and several long-range interactions among peripheral regions, such as a GAAA tetraloop and its receptor. Folding to the native structure requires the local rearrangement of a T-loop in the core in concert with the formation of the GAAA tetraloop-receptor interaction. The interplay of core and peripheral structure formation rationalizes the high degree of cooperativity observed in the folding transition leading to the native structure.

  6. Scaled-up in vitro experiments of vocal fold paralysis

    NASA Astrophysics Data System (ADS)

    Peterson, Keith; Wei, Timothy; Krane, Michael

    2006-11-01

    Vocal fold paralysis is the inability of either one, or both vocal folds to open and close properly. Digital Particle Image Velocimetry (DPIV) measurements were taken to further understand the consequences paralyzed vocal folds have on the fluid dynamics downstream of the vocal folds during human phonation. The experiments were taken in a free-stream water tunnel using a simplified scaled-up model of human vocal folds. The Reynolds and Strouhal numbers ranged from 4500 to 10000, and 0.01 to 0.04, respectively. Various configuration setups were tested to emulate several types of vocal fold paralyses. These configurations include unilateral vocal fold immobility (UVFI), bilateral vocal fold immobility (BVFI) and the vocal folds operating at different oscillating frequencies. Data from these different conditions will be compared with an eye toward understanding the critical dynamics associated with this class of disease.

  7. The folding of knotted proteins: insights from lattice simulations.

    PubMed

    Faísca, Patrícia F N; Travasso, Rui D M; Charters, Tiago; Nunes, Ana; Cieplak, Marek

    2010-01-01

    We carry out systematic Monte Carlo simulations of Gō lattice proteins to investigate and compare the folding processes of two model proteins whose native structures differ from each other due to the presence of a trefoil knot located near the terminus of one of the protein chains. We show that the folding time of the knotted fold is larger than that of the unknotted protein and that this difference in folding time is particularly striking in the temperature region below the optimal folding temperature. Both proteins display similar folding transition temperatures, which is indicative of similar thermal stabilities. By using the folding probability reaction coordinate as an estimator of folding progression we have found out that the formation of the knot is mainly a late folding event in our shallow knot system. PMID:20130340

  8. The folding of knotted proteins: insights from lattice simulations

    NASA Astrophysics Data System (ADS)

    Faísca, Patrícia F. N.; Travasso, Rui D. M.; Charters, Tiago; Nunes, Ana; Cieplak, Marek

    2010-03-01

    We carry out systematic Monte Carlo simulations of Gō lattice proteins to investigate and compare the folding processes of two model proteins whose native structures differ from each other due to the presence of a trefoil knot located near the terminus of one of the protein chains. We show that the folding time of the knotted fold is larger than that of the unknotted protein and that this difference in folding time is particularly striking in the temperature region below the optimal folding temperature. Both proteins display similar folding transition temperatures, which is indicative of similar thermal stabilities. By using the folding probability reaction coordinate as an estimator of folding progression we have found out that the formation of the knot is mainly a late folding event in our shallow knot system.

  9. Mesozoic folds, fossil fields, and future finds ( )

    SciTech Connect

    Newman, G.W.; Witter, G.G.

    1988-02-01

    Drilling and surface geologic mapping have shown that pre-Tertiary, post-Triassic folds and upthrusted anticlines in an eastern Nevada fold-belt have accumulated major oil columns. This Mesozoic foldbelt involves a Cambrian through Triassic section, which has hundreds of feet of porosity in Ordovician sandstones, Silurian and Devonian carbonates, and Mississippian sandstones. In addition to the Devonian Pilot and Mississippian Chainman shales, source rocks are found in Cambrian and Ordovician shales and in some Paleozoic carbonates. The occurrence of live and dead oil shows in hundreds of vertical feet of porosity in wells drilled on several of these Mesozoic structures is interpreted as evidence that these structures were giant oil fields prior to being breached by Tertiary Basin and Range extensional faulting, which allowed vertical hydrocarbon leakage. Noting that undrilled Mesozoic structures still exist in the foldbelt and noting that natural processes are seldom 100% efficient - including, probably, the disruptive effects of Basin and range extensional faulting - the authors suggest that there is a very good chance of finding one or more giant fields in the remaining structures of this foldbelt.

  10. Six-fold coordinated carbon dioxide VI

    SciTech Connect

    Iota, Valentin; Yoo, Choong-Shik; Klepeis, Jae-Hyun; Jenei, Zsolt; Evans, William; Cynn, Hyunchae

    2008-06-16

    Under standard conditions, carbon dioxide (CO{sub 2}) is a simple molecular gas and an important atmospheric constituent, whereas silicon dioxide (SiO{sub 2}) is a covalent solid, and one of the fundamental minerals of the planet. The remarkable dissimilarity between these two group IV oxides is diminished at higher pressures and temperatures as CO{sub 2} transforms to a series of solid phases, from simple molecular to a fully covalent extended-solid V, structurally analogous to SiO{sub 2} tridymite. Here, we present the discovery of an extended-solid phase of CO{sub 2}: a six-fold coordinated stishovite-like phase VI, obtained by isothermal compression of associated CO{sub 2}-II above 50 GPa at 530-650 K. Together with the previously reported CO{sub 2}-V and a-carbonia, this extended phase indicates a fundamental similarity between CO{sub 2} (a prototypical molecular solid) and SiO{sub 2} (one of Earth's fundamental building blocks). We present a phase diagram with a limited stability domain for molecular CO{sub 2}-I, and suggest that the conversion to extended-network solids above 40-50 GPa occurs via intermediate phases II, III and IV. The crystal structure of phase VI suggests strong disorder along the c axis in stishovite-like P4{sub 2}/mnm, with carbon atoms manifesting an average six-fold coordination within the framework of sp{sup 3} hybridization.

  11. The folding landscape of the epigenome

    NASA Astrophysics Data System (ADS)

    Olarte-Plata, Juan D.; Haddad, Noelle; Vaillant, Cédric; Jost, Daniel

    2016-04-01

    The role of the spatial organization of chromatin in gene regulation is a long-standing but still open question. Experimentally it has been shown that the genome is segmented into epigenomic chromatin domains that are organized into hierarchical sub-nuclear spatial compartments. However, whether this non-random spatial organization only reflects or indeed contributes—and how—to the regulation of genome function remains to be elucidated. To address this question, we recently proposed a quantitative description of the folding properties of the fly genome as a function of its epigenomic landscape using a polymer model with epigenomic-driven attractions. We propose in this article, to characterize more deeply the physical properties of the 3D epigenome folding. Using an efficient lattice version of the original block copolymer model, we study the structural and dynamical properties of chromatin and show that the size of epigenomic domains and asymmetries in sizes and in interaction strengths play a critical role in the chromatin organization. Finally, we discuss the biological implications of our findings. In particular, our predictions are quantitatively compatible with experimental data and suggest a different mean of self-interaction in euchromatin versus heterochromatin domains.

  12. Fungal infections of the folds (intertriginous areas).

    PubMed

    Metin, Ahmet; Dilek, Nursel; Demirseven, Duriye Deniz

    2015-01-01

    Superficial fungal infections are widespread, regardless of age and gender, in populations all around the world and may affect the skin and skin appendages. Although there are thousands of fungal infections from various genera and families in nature, those that are pathogenic for humans and nesting in skin folds are limited in number. The prevalence and distribution of these fungi vary according to the patients and certain environmental factors. Because the areas including the lids, external auditory canal, behind the ears, navel, inguinal region, and axillae, also called flexures, are underventilated and moist areas exposed to friction, they are especially sensitive to fungal infections. Fungi can both directly invade the skin, leading to infections, and indirectly stimulate immune mechanisms due to tissue interaction and their antigenic character and contribute to the development or exacerbation of secondary bacterial infections, seborrheic dermatitis, atopic dermatitis, and psoriasis. Superficial fungal infections can be classified and studied as dermatophyte infections, candidal infections, Malassezia infections, and other superficial infections independently from the involved skin fold areas. PMID:26051058

  13. High-Resolution Mapping of Homologous Recombination Events in rad3 Hyper-Recombination Mutants in Yeast

    PubMed Central

    Dominska, Margaret; Moriel-Carretero, María; Herrera-Moyano, Emilia; Aguilera, Andrés; Petes, Thomas D.

    2016-01-01

    The Saccharomyces cerevisae RAD3 gene is the homolog of human XPD, an essential gene encoding a DNA helicase of the TFIIH complex involved in both nucleotide excision repair (NER) and transcription. Some mutant alleles of RAD3 (rad3-101 and rad3-102) have partial defects in DNA repair and a strong hyper-recombination (hyper-Rec) phenotype. Previous studies showed that the hyper-Rec phenotype associated with rad3-101 and rad3-102 can be explained as a consequence of persistent single-stranded DNA gaps that are converted to recombinogenic double-strand breaks (DSBs) by replication. The systems previously used to characterize the hyper-Rec phenotype of rad3 strains do not detect the reciprocal products of mitotic recombination. We have further characterized these events using a system in which the reciprocal products of mitotic recombination are recovered. Both rad3-101 and rad3-102 elevate the frequency of reciprocal crossovers about 100-fold. Mapping of these events shows that three-quarters of these crossovers reflect DSBs formed at the same positions in both sister chromatids (double sister-chromatid breaks, DSCBs). The remainder reflects DSBs formed in single chromatids (single chromatid breaks, SCBs). The ratio of DSCBs to SCBs is similar to that observed for spontaneous recombination events in wild-type cells. We mapped 216 unselected genomic alterations throughout the genome including crossovers, gene conversions, deletions, and duplications. We found a significant association between the location of these recombination events and regions with elevated gamma-H2AX. In addition, there was a hotspot for deletions and duplications at the IMA2 and HXT11 genes near the left end of chromosome XV. A comparison of these data with our previous analysis of spontaneous mitotic recombination events suggests that a sub-set of spontaneous events in wild-type cells may be initiated by incomplete NER reactions, and that DSCBs, which cannot be repaired by sister

  14. Recombinational landscape of porcine X chromosome and individual variation in female meiotic recombination associated with haplotypes of Chinese pigs

    PubMed Central

    2010-01-01

    Background Variations in recombination fraction (θ) among chromosomal regions, individuals and families have been observed and have an important impact on quantitative trait loci (QTL) mapping studies. Such variations on porcine chromosome X (SSC-X) and on other mammalian chromosome X are rarely explored. The emerging assembly of pig sequence provides exact physical location of many markers, facilitating the study of a fine-scale recombination landscape of the pig genome by comparing a clone-based physical map to a genetic map. Using large offspring of F1 females from two large-scale resource populations (Large White ♂ × Chinese Meishan ♀, and White Duroc ♂ × Chinese Erhualian ♀), we were able to evaluate the heterogeneity in θ for a specific interval among individual F1 females. Results Alignments between the cytogenetic map, radiation hybrid (RH) map, genetic maps and clone map of SSC-X with the physical map of human chromosome X (HSA-X) are presented. The most likely order of 60 markers on SSC-X is inferred. The average recombination rate across SSC-X is of ~1.27 cM/Mb. However, almost no recombination occurred in a large region of ~31 Mb extending from the centromere to Xq21, whereas in the surrounding regions and in the Xq telomeric region a recombination rate of 2.8-3.3 cM/Mb was observed, more than twice the chromosome-wide average rate. Significant differences in θ among F1 females within each population were observed for several chromosomal intervals. The largest variation was observed in both populations in the interval UMNP71-SW1943, or more precisely in the subinterval UMNP891-UMNP93. The individual variation in θ over this subinterval was found associated with F1 females' maternal haplotypes (Chinese pig haplotypes) and independent of paternal haplotype (European pig haplotypes). The θ between UMNP891 and UMNP93 for haplotype 1122 and 4311 differed by more than fourteen-fold (10.3% vs. 0.7%). Conclusions This study reveals marked

  15. An assessment of the amount of untapped fold level novelty in under-sampled areas of the tree of life

    PubMed Central

    Barry Roche, Daniel; Brüls, Thomas

    2015-01-01

    Previous studies of protein fold space suggest that fold coverage is plateauing. However, sequence sampling has been -and remains to a large extent- heavily biased, focusing on culturable phyla. Sustained technological developments have fuelled the advent of metagenomics and single-cell sequencing, which might correct the current sequencing bias. The extent to which these efforts affect structural diversity remains unclear, although preliminary results suggest that uncultured organisms could constitute a source of new folds. We investigate to what extent genomes from uncultured and under-sampled phyla accessed through single cell sequencing, metagenomics and high-throughput culturing efforts have the potential to increase protein fold space, and conclude that i) genomes from under-sampled phyla appear enriched in sequences not covered by current protein family and fold profile libraries, ii) this enrichment is linked to an excess of short (and possibly partly spurious) sequences in some of the datasets, iii) the discovery rate of novel folds among sequences uncovered by current fold and family profile libraries may be as high as 36%, but would ultimately translate into a marginal increase in global discovery of novel folds. Thus, genomes from under-sampled phyla should have a rather limited impact on increasing coarse grained tertiary structure level novelty. PMID:26434770

  16. A Network Approach to Analyzing Highly Recombinant Malaria Parasite Genes

    PubMed Central

    Larremore, Daniel B.; Clauset, Aaron; Buckee, Caroline O.

    2013-01-01

    The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences. PMID:24130474

  17. Recombination in the Human Pseudoautosomal Region PAR1

    PubMed Central

    Hinch, Anjali G.; Altemose, Nicolas; Noor, Nudrat; Donnelly, Peter; Myers, Simon R.

    2014-01-01

    The pseudoautosomal region (PAR) is a short region of homology between the mammalian X and Y chromosomes, which has undergone rapid evolution. A crossover in the PAR is essential for the proper disjunction of X and Y chromosomes in male meiosis, and PAR deletion results in male sterility. This leads the human PAR with the obligatory crossover, PAR1, to having an exceptionally high male crossover rate, which is 17-fold higher than the genome-wide average. However, the mechanism by which this obligatory crossover occurs remains unknown, as does the fine-scale positioning of crossovers across this region. Recent research in mice has suggested that crossovers in PAR may be mediated independently of the protein PRDM9, which localises virtually all crossovers in the autosomes. To investigate recombination in this region, we construct the most fine-scale genetic map containing directly observed crossovers to date using African-American pedigrees. We leverage recombination rates inferred from the breakdown of linkage disequilibrium in human populations and investigate the signatures of DNA evolution due to recombination. Further, we identify direct PRDM9 binding sites using ChIP-seq in human cells. Using these independent lines of evidence, we show that, in contrast with mouse, PRDM9 does localise peaks of recombination in the human PAR1. We find that recombination is a far more rapid and intense driver of sequence evolution in PAR1 than it is on the autosomes. We also show that PAR1 hotspot activities differ significantly among human populations. Finally, we find evidence that PAR1 hotspot positions have changed between human and chimpanzee, with no evidence of sharing among the hottest hotspots. We anticipate that the genetic maps built and validated in this work will aid research on this vital and fascinating region of the genome. PMID:25033397

  18. Recombination in the human Pseudoautosomal region PAR1.

    PubMed

    Hinch, Anjali G; Altemose, Nicolas; Noor, Nudrat; Donnelly, Peter; Myers, Simon R

    2014-07-01

    The pseudoautosomal region (PAR) is a short region of homology between the mammalian X and Y chromosomes, which has undergone rapid evolution. A crossover in the PAR is essential for the proper disjunction of X and Y chromosomes in male meiosis, and PAR deletion results in male sterility. This leads the human PAR with the obligatory crossover, PAR1, to having an exceptionally high male crossover rate, which is 17-fold higher than the genome-wide average. However, the mechanism by which this obligatory crossover occurs remains unknown, as does the fine-scale positioning of crossovers across this region. Recent research in mice has suggested that crossovers in PAR may be mediated independently of the protein PRDM9, which localises virtually all crossovers in the autosomes. To investigate recombination in this region, we construct the most fine-scale genetic map containing directly observed crossovers to date using African-American pedigrees. We leverage recombination rates inferred from the breakdown of linkage disequilibrium in human populations and investigate the signatures of DNA evolution due to recombination. Further, we identify direct PRDM9 binding sites using ChIP-seq in human cells. Using these independent lines of evidence, we show that, in contrast with mouse, PRDM9 does localise peaks of recombination in the human PAR1. We find that recombination is a far more rapid and intense driver of sequence evolution in PAR1 than it is on the autosomes. We also show that PAR1 hotspot activities differ significantly among human populations. Finally, we find evidence that PAR1 hotspot positions have changed between human and chimpanzee, with no evidence of sharing among the hottest hotspots. We anticipate that the genetic maps built and validated in this work will aid research on this vital and fascinating region of the genome. PMID:25033397

  19. CoinFold: a web server for protein contact prediction and contact-assisted protein folding.

    PubMed

    Wang, Sheng; Li, Wei; Zhang, Renyu; Liu, Shiwang; Xu, Jinbo

    2016-07-01

    CoinFold (http://raptorx2.uchicago.edu/ContactMap/) is a web server for protein contact prediction and contact-assisted de novo structure prediction. CoinFold predicts contacts by integrating joint multi-family evolutionary coupling (EC) analysis and supervised machine learning. This joint EC analysis is unique in that it not only uses residue coevolution information in the target protein family, but also that in the related families which may have divergent sequences but similar folds. The supervised learning further improves contact prediction accuracy by making use of sequence profile, contact (distance) potential and other information. Finally, this server predicts tertiary structure of a sequence by feeding its predicted contacts and secondary structure to the CNS suite. Tested on the CASP and CAMEO targets, this server shows significant advantages over existing ones of similar category in both contact and tertiary structure prediction. PMID:27112569

  20. PROGENITORS OF RECOMBINING SUPERNOVA REMNANTS

    SciTech Connect

    Moriya, Takashi J.

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.