Monitoring quantum transport: Backaction and measurement correlations
NASA Astrophysics Data System (ADS)
Hussein, Robert; Gómez-García, Jorge; Kohler, Sigmund
2014-10-01
We investigate a tunnel contact coupled to a double quantum dot (DQD) and employed as a charge monitor for the latter. We consider both the classical limit and the quantum regime. In the classical case, we derive measurement correlations from conditional probabilities, yielding quantitative statements about the parameter regime in which the detection scheme works well. Moreover, we demonstrate that not only the DQD occupation but also the corresponding current may strongly correlate with the detector current. The quantum-mechanical solution, obtained with a Bloch-Redfield master equation, shows that the backaction of the measurement tends to localize the DQD electrons, and thus significantly reduces the DQD current. Moreover, it provides the effective parameters of the classical treatment. It turns out that already the classical description is adequate for most operating regimes.
Durisic, Nela; Bachir, Alexia I; Kolin, David L; Hebert, Benedict; Lagerholm, B Christoffer; Grutter, Peter; Wiseman, Paul W
2007-08-15
Semiconductor nanocrystals or quantum dots (QDs) are becoming widely used as fluorescent labels for biological applications. Here we demonstrate that fluorescence fluctuation analysis of their diffusional mobility using temporal image correlation spectroscopy is highly susceptible to systematic errors caused by fluorescence blinking of the nanoparticles. Temporal correlation analysis of fluorescence microscopy image time series of streptavidin-functionalized (CdSe)ZnS QDs freely diffusing in two dimensions shows that the correlation functions are fit well to a commonly used diffusion decay model, but the transport coefficients can have significant systematic errors in the measurements due to blinking. Image correlation measurements of the diffusing QD samples measured at different laser excitation powers and analysis of computer simulated image time series verified that the effect we observe is caused by fluorescence intermittency. We show that reciprocal space image correlation analysis can be used for mobility measurements in the presence of blinking emission because it separates the contributions of fluctuations due to photophysics from those due to transport. We also demonstrate application of the image correlation methods for measurement of the diffusion coefficient of glycosyl phosphatidylinositol-anchored proteins tagged with QDs as imaged on living fibroblasts. PMID:17526586
Kolin, David L.; Ronis, David; Wiseman, Paul W.
2006-01-01
We present the theory and application of reciprocal space image correlation spectroscopy (kICS). This technique measures the number density, diffusion coefficient, and velocity of fluorescently labeled macromolecules in a cell membrane imaged on a confocal, two-photon, or total internal reflection fluorescence microscope. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or “blinking”. Furthermore, these quantities can be calculated without nonlinear curve fitting, or any knowledge of the beam radius of the exciting laser. The number densities calculated by kICS are less sensitive to spatial inhomogeneity of the fluorophore distribution than densities measured using image correlation spectroscopy. We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. We also show the application of kICS to measurements of the transport dynamics of α5-integrin/enhanced green fluorescent protein constructs in a transfected CHO cell imaged on a total internal reflection fluorescence microscope using charge-coupled device area detection. PMID:16861272
Berger, Andrew J. Page, Michael R.; Bhallamudi, Vidya P.; Chris Hammel, P.; Wen, Hua; Kawakami, Roland K.; McCreary, Kathleen M.
2015-10-05
Using simultaneous magnetic force microscopy and transport measurements of a graphene spin valve, we correlate the non-local spin signal with the magnetization of the device electrodes. The imaged magnetization states corroborate the influence of each electrode within a one-dimensional spin transport model and provide evidence linking domain wall pinning to additional features in the transport signal.
McLean, Jeffrey S; Ona, Ositadinma N; Majors, Paul D
2008-02-01
Bacterial biofilms are complex, three-dimensional communities found nearly everywhere in nature and are also associated with many human diseases. Detailed metabolic information is critical to understand and exploit beneficial biofilms as well as combat antibiotic-resistant, disease-associated forms. However, most current techniques used to measure temporal and spatial metabolite profiles in these delicate structures are invasive or destructive. Here, we describe imaging, transport and metabolite measurement methods and their correlation for live, non-invasive monitoring of biofilm processes. This novel combination of measurements is enabled by the use of an integrated nuclear magnetic resonance (NMR) and confocal laser scanning microscope (CLSM). NMR methods provide macroscopic structure, metabolic pathway and rate data, spatially resolved metabolite concentrations and water diffusion profiles within the biofilm. In particular, current depth-resolved spectroscopy methods are applied to detect metabolites in 140-190 nl volumes within biofilms of the dissimilatory metal-reducing bacterium Shewanella oneidensis strain MR-1 and the oral bacterium implicated in caries disease, Streptococcus mutans strain UA159. The perfused sample chamber also contains a transparent optical window allowing for the collection of complementary fluorescence information using a unique, in-magnet CLSM. In this example, the entire three-dimensional biofilm structure was imaged using magnetic resonance imaging. This was then correlated to a fluorescent CLSM image by employing a green fluorescent protein reporter construct of S. oneidensis. Non-invasive techniques such as described here, which enable measurements of dynamic metabolic processes, especially in a depth-resolved fashion, are expected to advance our understanding of processes occurring within biofilm communities. PMID:18253132
McLean, Jeffrey S; Ona, Ositadinma N; Majors, Paul D
2015-01-01
Bacterial biofilms are complex, three-dimensional communities found nearly everywhere in nature and are also associated with many human diseases. Detailed metabolic information is critical to understand and exploit beneficial biofilms as well as combat antibiotic-resistant, disease-associated forms. However, most current techniques used to measure temporal and spatial metabolite profiles in these delicate structures are invasive or destructive. Here, we describe imaging, transport and metabolite measurement methods and their correlation for live, non-invasive monitoring of biofilm processes. This novel combination of measurements is enabled by the use of an integrated nuclear magnetic resonance (NMR) and confocal laser scanning microscope (CLSM). NMR methods provide macroscopic structure, metabolic pathway and rate data, spatially resolved metabolite concentrations and water diffusion profiles within the biofilm. In particular, current depth-resolved spectroscopy methods are applied to detect metabolites in 140–190 nl volumes within biofilms of the dissimilatory metal-reducing bacterium Shewanella oneidensis strain MR-1 and the oral bacterium implicated in caries disease, Streptococcus mutans strain UA159. The perfused sample chamber also contains a transparent optical window allowing for the collection of complementary fluorescence information using a unique, in-magnet CLSM. In this example, the entire three-dimensional biofilm structure was imaged using magnetic resonance imaging. This was then correlated to a fluorescent CLSM image by employing a green fluorescent protein reporter construct of S. oneidensis. Non-invasive techniques such as described here, which enable measurements of dynamic metabolic processes, especially in a depth-resolved fashion, are expected to advance our understanding of processes occurring within biofilm communities. PMID:18253132
Mclean, Jeffrey S.; Ona, Ositadinma; Majors, Paul D.
2008-02-18
Bacterial biofilms are complex, three-dimensional, communities that are found nearly everywhere in nature1 and are being recognized as the cause of treatment-resistant infections1 2. Advanced methods are required to characterize their collective and spatial patterns of metabolism however most techniques are invasive or destructive. Here we describe the use of a combined confocal laser scanning microscopy (CLSM) and nuclear magnetic resonance (NMR) microscopy system to monitor structure, mass transport, and metabolism in active biofilms. Non-invasive NMR methods provide macroscopic structure along with spatially-resolved metabolite profiles and diffusion measurements. CLSM enables monitoring of cells by fluorescent protein reporters to investigate biofilm structure and gene expression concurrently. A planar sample chamber design facilitates depth-resolved measurements on 140 nL sample volumes under laminar flow conditions. The techniques and approaches described here are applicable to environmental and medically relevant microbial communities, thus providing key metabolic information for promoting beneficial biofilms and treating associated diseases.
Thomas, Edward V.; Stork, Christopher L.; Mattingly, John K.
2015-07-01
Inverse radiation transport focuses on identifying the configuration of an unknown radiation source given its observed radiation signatures. The inverse problem is traditionally solved by finding the set of transport model parameter values that minimizes a weighted sum of the squared differences by channel between the observed signature and the signature pre dicted by the hypothesized model parameters. The weights are inversely proportional to the sum of the variances of the measurement and model errors at a given channel. The traditional implicit (often inaccurate) assumption is that the errors (differences between the modeled and observed radiation signatures) are independent across channels. Here, an alternative method that accounts for correlated errors between channels is described and illustrated using an inverse problem based on the combination of gam ma and neutron multiplicity counting measurements.
Correlative Measurements Program
NASA Technical Reports Server (NTRS)
Parsons, C. L.
1988-01-01
The GSFC Correlative Measurements Program at the Wallops Flight Facility was represented on the Satellite/Satellite Intercomparisons Working Group. The Correlative Measurements Program uses the Rocket Ozonesonde (ROCOZ-A) and the Electrochemical Concentration Cell (ECC) balloon borne ozonesonde to measure the vertical profile of ozone amount in the atmosphere. The balloon work is described in a separate report. The ROCOZ-A instrument was used for many years to provide in situ truth data for various satellite ozone measuring systems, such as SBUV on Nimbus-7, SAGE-II, SBUV-II on the NOAA series of polar orbiting satellites, SME, LIMS, etc. The particular data sets of interest to the Ozone Trends Panel Working Group were collected at Natal, Brazil. The major results produced for and used by the Ozone Trends Panel are shown. The ROCOZ-A average ozone density profile is plotted versus altitude on the left. ECC ozonesondes were used for the portion of the profile below 20 km, the lower limit for ROCOZ-A. The difference between SAGE-II and ROCOZ-A average density profiles is shown.
Direct measure of quantum correlation
Yu, Chang-shui; Zhao, Haiqing
2011-12-15
The quantumness of the correlation known as quantum correlation is usually measured by quantum discord. So far various quantum discords can be roughly understood as indirect measure by some special discrepancy of two quantities. We present a direct measure of quantum correlation by revealing the difference between the structures of classically and quantum correlated states. Our measure explicitly includes the contributions of the inseparability and local nonorthogonality of the eigenvectors of a density matrix. Besides its relatively easy computability, our measure can provide a unified understanding of quantum correlation of all the present versions.
PHENIX Measurements of Correlations at RHIC
NASA Astrophysics Data System (ADS)
Taranenko, Arkadiy
2016-01-01
Relativistic heavy-ion collisions provide a unique opportunity to study the expansion dynamics and the transport properties of the produced strongly interacting quark gluon plasma (QGP). This article reviews the recent soft physics results obtained via correlation measurements from the PHENIX experiment at RHIC: space-time extent of the pion emission source and azimuthal anisotropy of the particle production.
Correlated signals and causal transport in ocean circulation
NASA Astrophysics Data System (ADS)
Jeffress, Stephen
2014-05-01
This paper presents a framework for interpreting the time-lagged correlation of oceanographic data in terms of physical transport mechanisms. Previous studies have inferred aspects of ocean circulation by correlating fluctuations in temperature and salinity measurements at distant stations. Typically, the time-lag of greatest correlation is interpreted as an advective transit time and hence the advective speed of the current. In this paper we relate correlation functions directly to the underlying equations of fluid transport. This is accomplished by expressing the correlation functions in terms of the Green's function of the transport equation. Two types of correlation functions are distinguished: field-forcing correlation and field-field correlation. Their unique relationships to the Green's function are illustrated in two idealized models of geophysical transport: a leaky pipe model and an advective-diffusive model. Both models show that the field-forcing correlation function converges to the Green's function as the characteristic (time or length) scale of forcing autocorrelation decreases. The leaky pipe model provides an explanation for why advective speeds inferred from time-lagged correlations are often less than the speed of the main current. The advective-diffusive model reveals a structural bias in the field-field correlation function when used to estimate transit times.
Blache, Ulrich; Jakob, Torsten; Su, Wanwen; Wilhelm, Christian
2011-08-01
Photosynthesis-irradiance (P-E)-curves describe the photosynthetic performance of autotrophic organisms. From these P-E-curves the photosynthetic parameters α-slope, P(max), and E(k) can be deduced which are often used to characterize and to compare different organisms or organisms in acclimation to different environmental conditions. Particularly, for in situ-measurements of P-E curves of phytoplankton the analysis of variable chlorophyll fluorescence proved its potential as a sensitive and rapid method. By using Chlorella vulgaris (Trebouxiophyceae), Nannochloropsis salina (Eustigmatophyceae), Skeletonema costatum and Cyclotella meneghiniana (Bacillariophyceae), the present study investigated the influence of cellular bio-optical properties on the correlation of the photosynthetic parameters derived from fluorescence-based P-E-curves with photosynthetic parameters obtained from the measurement of oxygen evolution. It is demonstrated that small planktonic algae show a wide range of cellular absorptivity which was subject to species-specifity, growth stage and environmental conditions, e.g. nutrient limitation. This variability in bio-optical properties resulted in a great deviation of relative electron transport rates (rETRs) from oxygen-based photosynthesis rates. Thus, the photosynthetic parameters α-slope and P(max) derived from rETRs strongly depend on the specific cellular absorptivity and cannot be used to compare the photosynthetic performance of cells with different optical properties. However, it was shown that E(k) is independent of cellular absorptivity and could be used to compare samples with unknown optical properties. PMID:21571541
Time correlators from deferred measurements
NASA Astrophysics Data System (ADS)
Oehri, D.; Lebedev, A. V.; Lesovik, G. B.; Blatter, G.
2016-01-01
Repeated measurements that typically occur in two-time or multitime correlators rely on von Neumann's projection postulate, telling how to restart the system after an intermediate measurement. We invoke the principle of deferred measurement to describe an alternative procedure in which coevolving quantum memories extract system information through entanglement, combined with a final readout of the memories described by Born's rule. Our approach to repeated quantum measurements respects the unitary evolution of quantum mechanics during intermediate times, unifies the treatment of strong and weak measurements, and reproduces the projected and (anti)symmetrized correlators in the two limits. As an illustration, we apply our formalism to the calculation of the electron charge correlator in a mesoscopic physics setting, where single electron pulses assume the role of flying memory qubits. We propose an experimental setup that reduces the measurement of the time correlator to the measurement of currents and noise, exploiting the (pulsed) injection of electrons to cope with the challenge of performing short-time measurements.
Transport of correlations in a harmonic chain
NASA Astrophysics Data System (ADS)
Nicacio, F.; Semião, F. L.
2016-07-01
We study the propagation of different types of correlations through a quantum bus formed by a chain of coupled harmonic oscillators. This includes steering, entanglement, mutual information, quantum discord, and Bell-like nonlocality. The whole system consists of the quantum bus (propagation medium) and other quantum harmonic oscillators (sources and receivers of quantum correlations) weakly coupled to the chain. We are particularly interested in using the point of view of transport to spot distinctive features displayed by different kinds of correlations. We found, for instance, that there are fundamental differences in the way steering and discord propagate, depending on the way they are defined with respect to the parties involved in the initial correlated state. We analyzed both the closed- and open-system dynamics as well as the role played by thermal excitations in the propagation of the correlations.
Electronic transport and dynamics in correlated heterostructures
NASA Astrophysics Data System (ADS)
Mazza, G.; Amaricci, A.; Capone, M.; Fabrizio, M.
2015-05-01
We investigate by means of the time-dependent Gutzwiller approximation the transport properties of a strongly correlated slab subject to Hubbard repulsion and connected with to two metallic leads kept at a different electrochemical potential. We focus on the real-time evolution of the electronic properties after the slab is connected to the leads and consider both metallic and Mott insulating slabs. When the correlated slab is metallic, the system relaxes to a steady state that sustains a finite current. The zero-bias conductance is finite and independent of the degree of correlations within the slab as long as the system remains metallic. On the other hand, when the slab is in a Mott insulating state, the external bias leads to currents that are exponentially activated by charge tunneling across the Mott-Hubbard gap, consistent with the Landau-Zener dielectric breakdown scenario.
Correlated quantum transport of density wave electrons.
Miller, J H; Wijesinghe, A I; Tang, Z; Guloy, A M
2012-01-20
Recently observed Aharonov-Bohm quantum interference of the period h/2e in charge density wave rings strongly suggests that correlated density wave electron transport is a cooperative quantum phenomenon. The picture discussed here posits that quantum solitons nucleate and transport current above a Coulomb blockade threshold field. We propose a field-dependent tunneling matrix element and use the Schrödinger equation, viewed as an emergent classical equation as in Feynman's treatment of Josephson tunneling, to compute the evolving macrostate amplitudes, finding excellent quantitative agreement with voltage oscillations and current-voltage characteristics in NbSe(3). A proposed phase diagram shows the conditions favoring soliton nucleation versus classical depinning. PMID:22400766
Local transport measurements on epitaxial graphene
NASA Astrophysics Data System (ADS)
Baringhaus, J.; Edler, F.; Neumann, C.; Stampfer, C.; Forti, S.; Starke, U.; Tegenkamp, C.
2013-09-01
Growth of large-scale graphene is still accompanied by imperfections. By means of a four-tip scanning tunneling and electron microscope (4-tip STM/SEM), the local structure of graphene grown on SiC(0001) was correlated with scanning electron microscope images and spatially resolved transport measurements. The systematic variation of probe spacings and substrate temperature has clearly revealed two-dimensional transport regimes of Anderson localization as well as of diffusive transport. The detailed analysis of the temperature dependent data demonstrates that the local on-top nano-sized contacts do not induce significant strain to the epitaxial graphene films.
Nonsymmetrized correlations in quantum noninvasive measurements.
Bednorz, Adam; Bruder, Christoph; Reulet, Bertrand; Belzig, Wolfgang
2013-06-21
A long-standing problem in quantum mesoscopic physics is which operator order corresponds to noise expressions like , where I(ω) is the measured current at frequency ω. Symmetrized order describes a classical measurement while nonsymmetrized order corresponds to a quantum detector, e.g., one sensitive to either emission or absorption of photons. We show that both order schemes can be embedded in quantum weak-measurement theory taking into account measurements with memory, characterized by a memory function which is independent of a particular experimental detection scheme. We discuss the resulting quasiprobabilities for different detector temperatures and how their negativity can be tested on the level of second-order correlation functions already. Experimentally, this negativity can be related to the squeezing of the many-body state of the transported electrons in an ac-driven tunnel junction. PMID:23829718
Nonsymmetrized Correlations in Mesoscopic Current Measurements
NASA Astrophysics Data System (ADS)
Belzig, Wolfgang; Bednorz, Adam; Bruder, Christoph; Reulet, Bertrand
2014-03-01
A long-standing problem in quantum mesoscopic physics is which operator order corresponds to noise expressions like < I(ω) I(- ω) > , where I(ω) is the measured current at frequency ω. Symmetrized order describes a classical measurement while nonsymmetrized order corresponds to a quantum detector, e.g., one sensitive to either emission or absorption of photons. We show that both order schemes can be embedded in quantum weak-measurement theory taking into account measurements with memory, characterized by a memory function which is independent of a particular experimental detection scheme [A. Bednorz, C. Bruder, B. Reulet, and W. Belzig, Phys. Rev. Lett. 110, 250404 (2013)]. We discuss the resulting quasiprobabilities for different detector temperatures and how their negativity can be tested on the level of second-order correlation functions already. Experimentally, this negativity can be related to the squeezing of the many-body state of the transported electrons in an ac-driven tunnel junction.
NASA Astrophysics Data System (ADS)
Hegglin, M.; Fischer, H.; Hoor, P.; Beuermann, J.; Brunner, D.; Peter, T.
In the framework of SPURT we perform airborne in situ measurements of a variety of long-lived trace gases in order to investigate the role of dynamical and chemi- cal processes shaping the structure of the tropopause region. NOy is measured by chemiluminescence reaction of NO and O3, after reducing NOy species to NO by an externally mounted catalytic converter. N2O is measured by a Tunable Diode Laser Absorption Spectroscopy (TDLAS), O3 with help of an UV absorption photometer. Two short measurement campaigns were carried out with a Learjet in autumn 2001 and winter 2002. Individual flights were conducted in wide North-South cuts between 78 deg N (Spitzbergen) and 28 deg S (Tenerife). In this contribution, first results will be presented including observations obtained from a flight through a spectacularly deep stratospheric intrusion with potentially significant troposphere/stratosphere ex- change. The effect of the STE on tracer-tracer correlations such as NOy-O3, O3-N2O, and NOy-N2O will be evaluated. The results will be compared with known correla- tions and also with analyses of backward-trajectories, showing the strong influence of air mass origin on the correlations obtained.
Colloquium: Transport in strongly correlated two dimensional electron fluids
NASA Astrophysics Data System (ADS)
Spivak, B.; Kravchenko, S. V.; Kivelson, S. A.; Gao, X. P. A.
2010-04-01
An overview of the measured transport properties of the two dimensional electron fluids in high mobility semiconductor devices with low electron densities is presented as well as some of the theories that have been proposed to account for them. Many features of the observations are not easily reconciled with a description based on the well understood physics of weakly interacting quasiparticles in a disordered medium. Rather, they reflect new physics associated with strong correlation effects, which warrant further study.
SAGE II aerosol correlative observations - Profile measurements
NASA Technical Reports Server (NTRS)
Osborn, M. T.; Rosen, J. M.; Mccormick, M. P.; Wang, Pi-Huan; Livinfston, J. M.
1989-01-01
Profiles of the aerosol extinction measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II are compared with profiles from five correlative experiments between November 1984 and July 1986. The correlative profiles were derived from six-channel dustsonde measurements and two-wavelength lidar backscatter data. The correlation between the dustsonde- and lidar-derived measurements and the SAGE II data is good, validating the SAGE II lower stratospheric aerosol extinction measurements.
Postulates for measures of genuine multipartite correlations
Bennett, Charles H.; Grudka, Andrzej; Horodecki, Michal; Horodecki, Ryszard; Horodecki, Pawel
2011-01-15
A lot of research has been done on multipartite correlations, but the problem of satisfactorily defining genuine multipartite correlations--those not trivially reducible to lower partite correlations--remains unsolved. In this paper we propose three reasonable postulates which each measure or indicator of genuine multipartite correlations (or genuine multipartite entanglement) should satisfy. We also introduce the concept of degree of correlations, which gives partial characterization of multipartite correlations. Then, we show that covariance does not satisfy two postulates and hence it cannot be used as an indicator of genuine multipartite correlations. Finally, we propose a candidate for a measure of genuine multipartite correlations based on the work that can be drawn from a local heat bath by means of a multipartite state.
Weak Measurements Destroy Too Much Quantum Correlation
NASA Astrophysics Data System (ADS)
Wu, Shao-xiong; Zhang, Jun; Yu, Chang-shui; Song, He-shan
2016-01-01
The quantum correlation under weak measurements is studied via skew information. For 2 × d-dimensional states, it can be given by a closed form which linearly depends on the quantum correlation [EPL. 107 (2014) 10007] determined by the strength of the weak measurement. It is found that the quantum correlation under weak measurements only captures partial quantumness of the state. In particular, the extraction of the residual quantumness by the latter measurements will inevitably destroy too much quantumness. To demonstration, the Werner state is given as an example.
Sediment transport measurements: Chapter 5
Diplas, P.; Kuhnle, R.; Gray, J.; Glysson, D.; Edwards, T.
2008-01-01
Sediment erosion, transport, and deposition in fluvial systems are complex processes that are treated in detail in other sections of this book. Development of methods suitable for the collection of data that contribute to understanding these processes is a still-evolving science. Sediment and ancillary data are fundamental requirements for the proper management of river systems, including the design of structures, the determination of aspects of stream behavior, ascertaining the probable effect of removing an existing structure, estimation of bulk erosion, transport, and sediment delivery to the oceans, ascertaining the long-term usefulness of reservoirs and other public works, tracking movement of solid-phase contaminants, restoration of degraded or otherwise modified streams, and assistance in the calibration and validation of numerical models. This chapter presents techniques for measuring bed-material properties and suspended and bed-load discharges. Well-established and relatively recent, yet adequately tested, sampling equipment and methodologies, with designs that are guided by sound physical and statistical principles, are described. Where appropriate, the theory behind the development of the equipment and guidelines for its use are presented.
Norm-based measurement of quantum correlation
Wu Yuchun; Guo Guangcan
2011-06-15
In this paper we derived a necessary and sufficient condition for classical correlated states and proposed a norm-based measurement Q of quantum correlation. Using the max norm of operators, we gave the expression of the quantum correlation measurement Q and investigated the dynamics of Q in Markovian and non-Markovian cases, respectively. Q decays exponentially and vanishes only asymptotically in the Markovian case and causes periodical death and rebirth in the non-Markovian case. In the pure state, the quantum correlation Q is always larger than the entanglement, which was different from other known measurements. In addition, we showed that locally broadcastable and broadcastable are equivalent and reproved the density of quantum correlated states.
Complexity measures, emergence, and multiparticle correlations.
Galla, Tobias; Gühne, Otfried
2012-04-01
We study correlation measures for complex systems. First, we investigate some recently proposed measures based on information geometry. We show that these measures can increase under local transformations as well as under discarding particles, thereby questioning their interpretation as a quantifier for complexity or correlations. We then propose a refined definition of these measures, investigate its properties, and discuss its numerical evaluation. As an example, we study coupled logistic maps and study the behavior of the different measures for that case. Finally, we investigate other local effects during the coarse graining of the complex system. PMID:22680558
Complexity measures, emergence, and multiparticle correlations
NASA Astrophysics Data System (ADS)
Galla, Tobias; Gühne, Otfried
2012-04-01
We study correlation measures for complex systems. First, we investigate some recently proposed measures based on information geometry. We show that these measures can increase under local transformations as well as under discarding particles, thereby questioning their interpretation as a quantifier for complexity or correlations. We then propose a refined definition of these measures, investigate its properties, and discuss its numerical evaluation. As an example, we study coupled logistic maps and study the behavior of the different measures for that case. Finally, we investigate other local effects during the coarse graining of the complex system.
Drift wave transport scalings introduced by varying correlation length
Weiland, J.; Holod, I.
2005-01-01
Scalings of the correlation length of drift wave turbulence with magnetic current q, shear, elongation, and temperature ratio have been introduced into a drift wave transport model. The correlation length is calculated from linear scaling of the fastest growing mode. Such a procedure is supported by previous turbulence simulations with absorbing boundaries for short and long wavelengths. The resulting q and s scalings are now in better agreement with experimental scalings. In particular, the simulation results for transport barrier shots improve.
Transport on weighted networks: When the correlations are independent of the degree
NASA Astrophysics Data System (ADS)
Ramasco, José J.; Gonçalves, Bruno
2007-12-01
Most real-world networks are weighted graphs with the weight of the edges reflecting the relative importance of the connections. In this work, we study nondegree dependent correlations between edge weights, generalizing thus the correlations beyond the degree dependent case. We propose a simple method to introduce weight-weight correlations in topologically uncorrelated graphs. This allows us to test different measures to discriminate between the different correlation types and to quantify their intensity. We also discuss here the effect of weight correlations on the transport properties of the networks, showing that positive correlations dramatically improve transport. Finally, we give two examples of real-world networks (social and transport graphs) in which weight-weight correlations are present.
On the measurability of quantum correlation functions
Lima Bernardo, Bertúlio de Azevedo, Sérgio; Rosas, Alexandre
2015-05-15
The concept of correlation function is widely used in classical statistical mechanics to characterize how two or more variables depend on each other. In quantum mechanics, on the other hand, there are observables that cannot be measured at the same time; the so-called incompatible observables. This prospect imposes a limitation on the definition of a quantum analog for the correlation function in terms of a sequence of measurements. Here, based on the notion of sequential weak measurements, we circumvent this limitation by introducing a framework to measure general quantum correlation functions, in principle, independently of the state of the system and the operators involved. To illustrate, we propose an experimental configuration to obtain explicitly the quantum correlation function between two Pauli operators, in which the input state is an arbitrary mixed qubit state encoded on the polarization of photons.
Measuring and modeling correlations in multiplex networks.
Nicosia, Vincenzo; Latora, Vito
2015-09-01
The interactions among the elementary components of many complex systems can be qualitatively different. Such systems are therefore naturally described in terms of multiplex or multilayer networks, i.e., networks where each layer stands for a different type of interaction between the same set of nodes. There is today a growing interest in understanding when and why a description in terms of a multiplex network is necessary and more informative than a single-layer projection. Here we contribute to this debate by presenting a comprehensive study of correlations in multiplex networks. Correlations in node properties, especially degree-degree correlations, have been thoroughly studied in single-layer networks. Here we extend this idea to investigate and characterize correlations between the different layers of a multiplex network. Such correlations are intrinsically multiplex, and we first study them empirically by constructing and analyzing several multiplex networks from the real world. In particular, we introduce various measures to characterize correlations in the activity of the nodes and in their degree at the different layers and between activities and degrees. We show that real-world networks exhibit indeed nontrivial multiplex correlations. For instance, we find cases where two layers of the same multiplex network are positively correlated in terms of node degrees, while other two layers are negatively correlated. We then focus on constructing synthetic multiplex networks, proposing a series of models to reproduce the correlations observed empirically and/or to assess their relevance. PMID:26465526
Measuring and modeling correlations in multiplex networks
NASA Astrophysics Data System (ADS)
Nicosia, Vincenzo; Latora, Vito
2015-09-01
The interactions among the elementary components of many complex systems can be qualitatively different. Such systems are therefore naturally described in terms of multiplex or multilayer networks, i.e., networks where each layer stands for a different type of interaction between the same set of nodes. There is today a growing interest in understanding when and why a description in terms of a multiplex network is necessary and more informative than a single-layer projection. Here we contribute to this debate by presenting a comprehensive study of correlations in multiplex networks. Correlations in node properties, especially degree-degree correlations, have been thoroughly studied in single-layer networks. Here we extend this idea to investigate and characterize correlations between the different layers of a multiplex network. Such correlations are intrinsically multiplex, and we first study them empirically by constructing and analyzing several multiplex networks from the real world. In particular, we introduce various measures to characterize correlations in the activity of the nodes and in their degree at the different layers and between activities and degrees. We show that real-world networks exhibit indeed nontrivial multiplex correlations. For instance, we find cases where two layers of the same multiplex network are positively correlated in terms of node degrees, while other two layers are negatively correlated. We then focus on constructing synthetic multiplex networks, proposing a series of models to reproduce the correlations observed empirically and/or to assess their relevance.
Understanding the amplitudes of noise correlation measurements
Tsai, Victor C.
2011-01-01
Cross correlation of ambient seismic noise is known to result in time series from which station-station travel-time measurements can be made. Part of the reason that these cross-correlation travel-time measurements are reliable is that there exists a theoretical framework that quantifies how these travel times depend on the features of the ambient noise. However, corresponding theoretical results do not currently exist to describe how the amplitudes of the cross correlation depend on such features. For example, currently it is not possible to take a given distribution of noise sources and calculate the cross correlation amplitudes one would expect from such a distribution. Here, we provide a ray-theoretical framework for calculating cross correlations. This framework differs from previous work in that it explicitly accounts for attenuation as well as the spatial distribution of sources and therefore can address the issue of quantifying amplitudes in noise correlation measurements. After introducing the general framework, we apply it to two specific problems. First, we show that we can quantify the amplitudes of coherency measurements, and find that the decay of coherency with station-station spacing depends crucially on the distribution of noise sources. We suggest that researchers interested in performing attenuation measurements from noise coherency should first determine how the dominant sources of noise are distributed. Second, we show that we can quantify the signal-to-noise ratio of noise correlations more precisely than previous work, and that these signal-to-noise ratios can be estimated for given situations prior to the deployment of seismometers. It is expected that there are applications of the theoretical framework beyond the two specific cases considered, but these applications await future work.
Transport of electron beams with initial transverse-longitudinal correlation
NASA Astrophysics Data System (ADS)
Harris, J. R.; Lewellen, J. W.; Poole, B. R.
2013-08-01
When an electron beam whose current varies in time is extracted from a DC gun, the competition between the time-dependent space charge force and the time-independent focusing force will cause a correlation between radius, divergence, current, and position along the beam. This correlation will determine the beam's configuration in trace space, and together with the design of the downstream transport system, will determine the quality of the transport solutions that can be obtained, including the amplitude of the mismatch oscillations occurring in each slice of the beam. Recent simulations of a simplified diode with Pierce-type focusing operating at nonrelativistic voltages indicated that the radius and divergence of beams extracted from such guns can be approximated to high accuracy as linear functions of current. Here, we consider the impact of this dependence on the beam configuration in trace space and investigate the implications for matching and transport of such correlated beams in uniform linear focusing channels.
Eddy Correlation Flux Measurement System (ECOR) Handbook
Cook, DR
2011-01-31
The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.
Generating nonclassical correlations without fully aligning measurements
Wallman, Joel J.; Bartlett, Stephen D.; Liang, Yeong-Cherng
2011-02-15
We investigate the scenario where spatially separated parties perform measurements in randomly chosen bases on an N-partite Greenberger-Horne-Zeilinger state. We show that without any alignment of the measurements, the observers will obtain correlations that violate a Bell inequality with a probability that rapidly approaches 1 as N increases and that this probability is robust against noise. We also prove that restricting these randomly chosen measurements to a plane perpendicular to a common direction will always generate correlations that violate some Bell inequality. Specifically, if each observer chooses their two measurements to be locally orthogonal, then the N observers will violate one of two Bell inequalities by an amount that increases exponentially with N. These results are also robust against noise and perturbations of each observer's reference direction from the common direction.
Computer Anxiety: Definition, Measurement, and Correlates.
ERIC Educational Resources Information Center
Cambre, Marjorie A.; Cook, Desmond L.
This review examines the definition, measurement, and correlates of computer anxiety as provided in available research. The concept of computer anxiety reflects an anxiety state, rather than an anxiety trait, thus rendering it susceptible to change over time. Computer anxiety is similar in nature to math anxiety and test anxiety. Two approaches to…
Quantum Correlations and the Measurement Problem
NASA Astrophysics Data System (ADS)
Bub, Jeffrey
2014-10-01
The transition from classical to quantum mechanics rests on the recognition that the structure of information is not what we thought it was: there are operational, i.e., phenomenal, probabilistic correlations that lie outside the polytope of local correlations. Such correlations cannot be simulated with classical resources, which generate classical correlations represented by the points in a simplex, where the vertices of the simplex represent joint deterministic states that are the common causes of the correlations. The `no go' hidden variable theorems tell us that we can't shoe-horn phenomenal correlations outside the local polytope into a classical simplex by supposing that something has been left out of the story. The replacement of the classical simplex by the quantum convex set as the structure representing probabilistic correlations is the analogue for quantum mechanics of the replacement of Newton's Euclidean space and time by Minkowski spacetime in special relativity. The nonclassical features of quantum mechanics, including the irreducible information loss on measurement, are generic features of correlations that lie outside the classical simplex. This paper is an elaboration of these ideas, which have their source in work by Pitowsky (J. Math. Phys. 27:1556, 1986; Math. Program. 50:395, 1991; Phys. Rev. A 77:062109, 2008), Garg and Mermin (Found. Phys. 14:1-39, 1984), Barrett (Phys. Rev. A 75:032304, 2007; Phys. Rev. A 7:022101, 2005) and others, e.g., Brunner et al. (arXiv:1303.2849, 2013), but the literature goes back to Boole (An Investigation of the Laws of Thought, Dover, New York, 1951). The final section looks at the measurement problem of quantum mechanics in this context. A large part of the problem is removed by seeing that the inconsistency in reconciling the entangled state at the end of a quantum measurement process with the definiteness of the macroscopic pointer reading and the definiteness of the correlated value of the measured micro
Lu, Xin; Gong, Shimei; Monks, Anne; Zaharevitz, Daniel; Moscow, Jeffrey A
2002-01-01
Antimetabolite drugs that inhibit nucleic acid metabolism are widely used in cancer chemotherapy. Nucleoside and nucleobase transporters are important for the cellular uptake of nucleic acids and their corresponding anticancer analogue drugs. Thus, these transporters may play a role both in antimetabolite drug sensitivity, by mediating the uptake of nucleoside analogues, and in antimetabolite drug resistance, by mediating the uptake of endogenous nucleosides that may rescue cells from toxicity. Therefore, we examined the relation of the expression of nucleoside and nucleobase transporters to antimetabolite cytotoxicity. We measured the RNA levels of all eight known nucleoside and nucleobase transporters in 50 cell lines included in the National Cancer Institute's Anticancer Drug Screen panel. RNA levels of concentrative nucleoside transporters (CNTs), equilibrative nucleoside transporters (ENTs) and nucleobase transporters (NCBTs) were determined by quantitative RT-PCR using real-time fluorescence acquisition. This method was validated by measuring the expression of the MDR1 gene, and correlating our results with independently determined measurements of MDR1 RNA levels and protein function in these cell lines. We then correlated the pattern of RNA levels to the pattern of cytotoxicity of anticancer drugs in the NCI drug screen database using the COMPARE analysis. Several hypothesized relations between transporter gene expression and cytotoxicity, based upon known interactions between certain nucleoside analogues and transporter proteins, were not observed, suggesting that expression of individual transporters may not be a significant determinant of the cytotoxicity of these drugs. The most closely correlated drug cytotoxicity patterns to transporter gene expression patterns (where increased expression corresponds to increase sensitivity) included those between CNT1 and O6-methylguanine and between ENT2 and hydroxyurea. We also observed that p53 status influenced
Evolution equation for geometric quantum correlation measures
NASA Astrophysics Data System (ADS)
Hu, Ming-Liang; Fan, Heng
2015-05-01
A simple relation is established for the evolution equation of quantum-information-processing protocols such as quantum teleportation, remote state preparation, Bell-inequality violation, and particularly the dynamics of geometric quantum correlation measures. This relation shows that when the system traverses the local quantum channel, various figures of merit of the quantum correlations for different protocols demonstrate a factorization decay behavior for dynamics. We identified the family of quantum states for different kinds of quantum channels under the action of which the relation holds. This relation simplifies the assessment of many quantum tasks.
Strecker, Karl; Wegner, Florian; Hesse, Swen; Becker, Georg-Alexander; Patt, Marianne; Meyer, Philipp M; Lobsien, Donald; Schwarz, Johannes; Sabri, Osama
2011-01-01
Recent imaging and neuropathological studies indicate reduced serotonin transporter (SERT) in advanced Parkinson's disease (PD). However, data on SERT in early PD patients are sparse. Following the hypothesis that the serotonergic system is damaged early in PD, the aim of our study was to investigate SERT availability by means of PET imaging. Since the loss of dopaminergic neurons is the pathologic hallmark of PD and SERT might be associated with psychiatric co-morbidity, we further sought to correlate SERT availability with the availability of dopamine transporter (DAT) and depressive or motor symptoms in early PD. We prospectively recruited nine early PD patients (4 female, 5 male; 42-76 years) and nine age matched healthy volunteers (5 female, 4 male; 42-72 years). Diagnosis of PD was confirmed by the UK brain bank criteria and DAT imaging. SERT availability was measured by means of [11C]DASB PET. For neuropsychiatric assessment done on the day of PET we applied UPDRS parts I, II and III, Beck's Depression Inventory, Hamilton Rating Scale for Depression, Mini-Mental State Examination and Demtect. SERT was not reduced in any of 14 investigated regions of interest in the nine PD patients compared to healthy controls (p>0.13). SERT was negatively associated with DAT in the striatum (r=-0.69; p=0.04) but not within the midbrain. There was no correlation of SERT availability with depressive symptoms. No alteration of SERT binding in our patients suggests that the serotonergic system is remarkably preserved in early PD. Correlation with DAT might point to a compensatory regulation of the serotonergic system in early stages of PD. PMID:20644949
Shot noise measurement in a strongly correlated material
NASA Astrophysics Data System (ADS)
Zhou, Panpan; Hardy, Will; Cho, Ethan; Cybart, Shane; Dynes, Robert; Natelson, Douglas
In strongly correlated materials, the motion of an electron is strongly affected by interactions with other electrons, leading to many interesting phenomena including metal-insulator transitions, colossal magnetoresistance, and high temperature superconductivity. Shot noise is one experimental probe for electronic correlations beyond simple electronic transport. Shot noise, which originates from the discrete nature of the charge-carrying particles, can be strongly affected by electronic correlations. Here we report initial shot noise measurements in tunnel junctions prepared from a YBa2Cu3O7-x film sample, with nanoscale junctions written by focused helium ion beam. We will discuss a comparison of the shot noise between the YBCO film sample and standard tunnel junctions, as a function of temperature and bias, and the implications of these results.
Eddy Correlation Flux Measurement System Handbook
Cook, D. R.
2016-01-01
The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.
Cosmological measurements with general relativistic galaxy correlations
NASA Astrophysics Data System (ADS)
Raccanelli, Alvise; Montanari, Francesco; Bertacca, Daniele; Doré, Olivier; Durrer, Ruth
2016-05-01
We investigate the cosmological dependence and the constraining power of large-scale galaxy correlations, including all redshift-distortions, wide-angle, lensing and gravitational potential effects on linear scales. We analyze the cosmological information present in the lensing convergence and in the gravitational potential terms describing the so-called ``relativistic effects'', and we find that, while smaller than the information contained in intrinsic galaxy clustering, it is not negligible. We investigate how neglecting them does bias cosmological measurements performed by future spectroscopic and photometric large-scale surveys such as SKA and Euclid. We perform a Fisher analysis using the CLASS code, modified to include scale-dependent galaxy bias and redshift-dependent magnification and evolution bias. Our results show that neglecting relativistic terms, especially lensing convergence, introduces an error in the forecasted precision in measuring cosmological parameters of the order of a few tens of percent, in particular when measuring the matter content of the Universe and primordial non-Gaussianity parameters. The analysis suggests a possible substantial systematic error in cosmological parameter constraints. Therefore, we argue that radial correlations and integrated relativistic terms need to be taken into account when forecasting the constraining power of future large-scale number counts of galaxy surveys.
d + Au hadron correlation measurements from PHENIX
NASA Astrophysics Data System (ADS)
Sickles, Anne M.
2015-01-01
Recent observations of extended pseudorapidity correlations at the LHC in p+p and p+Pb collisions are of great interest. Here we present related results from d+Au collisions at PHENIX. We present the observed v2 and discuss the possible origin in the geometry of the collision region. We also present new measurements of the pseudorapidity dependence of the ridge in d+Au collision. Future plans to clarify the role of geometry in small collision systems using 3 He + Au collisions are discussed.
Reimus, Paul W
2011-01-03
Transport parameter cross correlations are rarely considered in models used to predict radionuclide transport in natural systems. In this paper, it is shown that parameter cross correlations could have a significant impact on radionuclide transport predictions in saturated media. In fractured rock, the positive correlation between fracture apertures and groundwater residence times is shown to result in significantly less retardation due to matrix diffusion than is predicted without the correlation. The suppression of matrix diffusion is further amplified by a tendency toward larger apertures, smaller matrix diffusion coefficients, and less sorption capacity in rocks of lower matrix porosity. In a hypothetical example, strong cross correlations between these parameters result in a decrease in predicted radionuclide travel times of an order of magnitude or more relative to travel times calculated with uncorrelated parameters. In porous media, expected correlations between permeability, porosity, and sorption capacity also result in shorter predicted travel times than when the parameters are assumed to be uncorrelated. Individual parameter standard deviations can also have a significant influence on predicted radionuclide travel times, particularly when cross correlations are considered.
Correlated charge transport in bilinear tunnel junction arrays
NASA Astrophysics Data System (ADS)
Walker, Kelly A.; Cole, Jared H.
2013-12-01
We study theoretically the nature of correlations in space and time of the current in a one-dimensional bilinear array of tunnel junctions in the normal conduction limit, using the kinetic Monte Carlo method. The bilinear array consists of two parallel rows of tunnel junctions, capacitively coupled in a ladder configuration. The electrostatic potential landscape and the charge-charge interaction length both depend on the circuit capacitances, which in turn influence transport and charge correlations in the array. We observe the formation of stationary charge states when only one rail is voltage biased. When a symmetric bias is applied to both rails, the site at which the positive and negative charge carriers recombine can drift throughout the array. We also calculate charge densities and auto- and cross-correlation functions.
Soldatov, S.; Kramer-Flecken, A.; Wassenhove, G. Van
2008-09-15
Measurements of plasma rotation and electric field are crucial for the study of plasma confinement and transport. The present paper is devoted to experimental observations of poloidal asymmetry in perpendicular plasma rotation with correlation reflectometry on TEXTOR.
Electronic correlation and transport properties of nuclear fuel materials
Yin Quan; Kutepov, Andrey; Haule, Kristjan; Kotliar, Gabriel; Savrasov, Sergey Y.; Pickett, Warren E.
2011-11-15
The electronic structures and transport properties of a series of actinide monocarbides, mononitrides, and dioxides are studied systematically using a combination of density-functional theory and dynamical mean-field theory. The studied materials present different electronic correlation strength and degree of localization of 5f electrons, where a metal-insulator boundary naturally lies within. In the spectral function of Mott-insulating uranium oxide, a resonance peak is observed in both theory and experiment and may be understood as a generalized Zhang-Rice state. We also investigate the interplay between electron-electron and electron-phonon interactions, both of which are responsible for the transport in the metallic compounds. Our findings allow us to gain insight in the roles played by different scattering mechanisms, and suggest how to improve their thermal conductivities.
Electronic correlation and transport properties of nuclear fuel materials
NASA Astrophysics Data System (ADS)
Yin, Quan; Kutepov, Andrey; Haule, Kristjan; Kotliar, Gabriel; Savrasov, Sergey Y.; Pickett, Warren E.
2011-11-01
The electronic structures and transport properties of a series of actinide monocarbides, mononitrides, and dioxides are studied systematically using a combination of density-functional theory and dynamical mean-field theory. The studied materials present different electronic correlation strength and degree of localization of 5f electrons, where a metal-insulator boundary naturally lies within. In the spectral function of Mott-insulating uranium oxide, a resonance peak is observed in both theory and experiment and may be understood as a generalized Zhang-Rice state. We also investigate the interplay between electron-electron and electron-phonon interactions, both of which are responsible for the transport in the metallic compounds. Our findings allow us to gain insight in the roles played by different scattering mechanisms, and suggest how to improve their thermal conductivities.
Transport Experiments on 2D Correlated Electron Physics in Semiconductors
Tsui, Daniel
2014-03-24
This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.
Microscopic theory on charge transports of a correlated multiorbital system
NASA Astrophysics Data System (ADS)
Arakawa, Naoya
2016-07-01
Current vertex correction (CVC), the backflowlike correction to the current, comes from conservation laws, and the CVC due to electron correlation contains information about many-body effects. However, it has been little understood how the CVC due to electron correlation affects the charge transports of a correlated multiorbital system. To improve this situation, I studied the in-plane resistivity ρa b and the Hall coefficient in the weak-field limit RH, in addition to the magnetic properties and the electronic structure, for a t2 g-orbital Hubbard model on a square lattice in a paramagnetic state away from or near an antiferromagnetic (AF) quantum-critical point (QCP) in the fluctuation-exchange (FLEX) approximation with the CVCs arising from the self-energy (Σ ), the Maki-Thompson (MT) irreducible four-point vertex function, and the main terms of the Aslamasov-Larkin (AL) one. Then, I found three main results about the CVCs. First, the main terms of the AL CVC do not qualitatively change the results obtained in the FLEX approximation with the Σ CVC and the MT CVC. Second, ρa b and RH near the AF QCP have a high-temperature region, governed mainly by the Σ CVC, and a low-temperature region, governed mainly by the Σ CVC and the MT CVC. Third, in case away from the AF QCP, the MT CVC leads to a considerable effect on only RH at low temperatures, although RH at high temperatures and ρa b at all temperatures considered are sufficiently described by including only the Σ CVC. Those findings reveal several aspects of many-body effects on the charge transports of a correlated multiorbital system. I also achieved the qualitative agreement with several experiments of Sr2RuO4 or Sr2Ru0.975Ti0.025O4 . Moreover, I showed several better points of this theory than other theories.
Are the correlates of active school transport context-specific?
Larouche, R; Sarmiento, O L; Broyles, S T; Denstel, K D; Church, T S; Barreira, T V; Chaput, J-P; Fogelholm, M; Hu, G; Kuriyan, R; Kurpad, A; Lambert, E V; Maher, C; Maia, J; Matsudo, V; Olds, T; Onywera, V; Standage, M; Tremblay, M S; Tudor-Locke, C; Zhao, P; Katzmarzyk, P T
2015-01-01
OBJECTIVES: Previous research consistently indicates that children who engage in active school transport (AST) are more active than their peers who use motorized modes (car or bus). However, studies of the correlates of AST have been conducted predominantly in high-income countries and have yielded mixed findings. Using data from a heterogeneous sample of 12 country sites across the world, we investigated the correlates of AST in 9–11-year olds. METHODS: The analytical sample comprised 6555 children (53.8% girls), who reported their main travel mode to school and the duration of their school trip. Potential individual and neighborhood correlates of AST were assessed with a parent questionnaire adapted from previously validated instruments. Multilevel generalized linear mixed models (GLMM) were used to examine the associations between individual and neighborhood variables and the odds of engaging in AST while controlling for the child's school. Site moderated the relationship of seven of these variables with AST; therefore we present analyses stratified by site. RESULTS: The prevalence of AST varied from 5.2 to 79.4% across sites and the school-level intra-class correlation ranged from 0.00 to 0.56. For each site, the final GLMM included a different set of correlates of AST. Longer trip duration (that is, ⩾16 min versus ⩽15 min) was associated with lower odds of AST in eight sites. Other individual and neighborhood factors were associated with AST in three sites or less. CONCLUSIONS: Our results indicate wide variability in the prevalence and correlates of AST in a large sample of children from twelve geographically, economically and culturally diverse country sites. This suggests that AST interventions should not adopt a ‘one size fits all' approach. Future research should also explore the association between psychosocial factors and AST in different countries. PMID:27152191
Spatial correlations in bed load transport: Evidence, importance, and modeling
NASA Astrophysics Data System (ADS)
Heyman, J.; Ma, H. B.; Mettra, F.; Ancey, C.
2014-08-01
This article examines the spatial dynamics of bed load particles in water. We focus particularly on the fluctuations of particle activity, which is defined as the number of moving particles per unit bed length. Based on a stochastic model recently proposed by Ancey and Heyman (2014), we derive the second moment of particle activity analytically, that is, the spatial correlation functions of particle activity. From these expressions, we show that large moving particle clusters can develop spatially. Also, we provide evidence that fluctuations of particle activity are scale dependent. Two characteristic lengths emerge from the model: a saturation length ℓsat describing the length needed for a perturbation in particle activity to relax to the homogeneous solution and a correlation length ℓc describing the typical size of moving particle clusters. A dimensionless Péclet number can also be defined according to the transport model. Three different experimental data sets are used to test the theoretical results. We show that the stochastic model describes spatial patterns of particle activity well at all scales. In particular, we show that ℓc and ℓsat may be relatively large compared to typical scales encountered in bed load experiments (grain diameter, water depth, bed form wavelength, flume length, etc.) suggesting that the spatial fluctuations of particle activity have a nonnegligible impact on the average transport process.
Effects of pore volume-transmissivity correlation on transport phenomena
NASA Astrophysics Data System (ADS)
Lunati, Ivan; Kinzelbach, Wolfgang; Sørensen, Ivan
2003-12-01
The relevant velocity that describes transport phenomena in a porous medium is the pore velocity. For this reason, one needs not only to describe the variability of transmissivity, which fully determines the Darcy velocity field for given source terms and boundary conditions, but also any variability of the pore volume. We demonstrate that hydraulically equivalent media with exactly the same transmissivity field can produce dramatic differences in the displacement of a solute if they have different pore volume distributions. In particular, we demonstrate that correlation between pore volume and transmissivity leads to a much smoother and more homogeneous solute distribution. This was observed in a laboratory experiment performed in artificial fractures made of two plexiglass plates into which a space-dependent aperture distribution was milled. Using visualization by a light transmission technique, we observe that the solute behaviour is much smoother and more regular after the fractures are filled with glass powder, which plays the role of a homogeneous fault gouge material. This is due to a perfect correlation between pore volume and transmissivity that causes pore velocity to be not directly dependent on the transmissivity, but only indirectly through the hydraulic gradient, which is a much smoother function due to the diffusive behaviour of the flow equation acting as a filter. This smoothing property of the pore volume-transmissivity correlation is also supported by numerical simulations of tracer tests in a dipole flow field. Three different conceptual models are used: an empty fracture, a rough-walled fracture filled with a homogeneous material and a parallel-plate fracture with a heterogeneous fault gouge. All three models are hydraulically equivalent, yet they have a different pore volume distribution. Even if piezometric heads and specific flow rates are exactly the same at any point of the domain, the transport process differs dramatically. These
Magnetocaloric-transport properties correlation in doped manganites
NASA Astrophysics Data System (ADS)
Mohamed, Abd El-Moez A.; Hernando, B.; Ahmed, A. M.
2016-05-01
This investigation is interested in studying the relation between magnetocaloric effect and transport properties in La0.7Ba0.3MnO3 manganite compound. The resistivity shows a metal-semiconductor transition at Tms temperature near to its reported Curie temperature (Tc). Magnetic field application decreases resistivity and increases Tms towards higher temperatures. The magnetoresistance shows a peak around Tc and increases in value with the applied magnetic field. A similar behavior has been observed between magnetic entropy change (ΔS), resistivity and magnetoresistance around Tc, this is attributed to the spin order/disorder feature that plays a main role in the magnetocaloric-transport correlation. In spite of this similarity, the correspondence among the experimental ΔS and ΔS based resistivity calculations is missing because of lattice polarons effect on resistivity as a result of the electron-phonon interaction. The magnetocaloric-magnetoresistance relation is also studied and results show the contribution of additional factors in the magnetoresistance mechanism other than spin disorder suppression as Jahn-Teller effect and electronic phase separation.
Controlling polymer translocation and ion transport via charge correlations.
Buyukdagli, Sahin; Ala-Nissila, T
2014-11-01
We develop a correlation-corrected transport theory in order to predict ionic and polymer transport properties of membrane nanopores under physical conditions where mean-field electrostatics breaks down. The experimentally observed low KCl conductivity of open α-hemolysin pores is quantitatively explained by the presence of surface polarization effects. Upon the penetration of a DNA molecule into the pore, these polarization forces combined with the electroneutrality of DNA sets a lower boundary for the ionic current, explaining the weak salt dependence of blocked pore conductivities at dilute ion concentrations. The addition of multivalent counterions to the solution results in the reversal of the polymer charge and the direction of the electroosmotic flow. With trivalent spermidine or quadrivalent spermine molecules, the charge inversion is strong enough to stop the translocation of the polymer and to reverse its motion. This mechanism can be used efficiently in translocation experiments in order to improve the accuracy of DNA sequencing by minimizing the translocation velocity of the polymer. PMID:25310861
Correlation and symmetry effects in transport through an artificial molecule
Ramirez, F.; Cota, E.; Ulloa, S.E.
1999-02-01
Spectral weights and current-voltage characteristics of an artificial diatomic molecule are calculated, considering cases where the dots connected in series are in general different. The spectral weights allow us to understand the effects of correlations, their connection with selection rules for transport, and the role of excited states in the experimental conductance spectra of these coupled double dot systems (DDS). An extended Hubbard Hamiltonian with varying interdot tunneling strength is used as a model, incorporating quantum confinement in the DDS, interdot tunneling as well as intra- and interdot Coulomb interactions. We find that interdot tunneling values determine to a great extent the resulting eigenstates and corresponding spectral weights. Details of the state correlations strongly suppress most of the possible conduction channels, giving rise to effective selection rules for conductance through the molecule. Most states are found to make insignificant contributions to the total current for finite biases. We find also that the symmetry of the structure is reflected in the I-V characteristics, and is in qualitative agreement with experiment. {copyright} {ital 1999} {ital The American Physical Society}
Outdoor radon concentration measurements: some correlation with major urban pollutants.
Garbero, V; Dellacasa, G; Bianchi, D; Magnoni, M; Erbetta, L
2009-12-01
Air pollutants concentration in the urban air strongly depends on the properties of the planetary boundary layer (the lower region of the atmosphere), roughly up to 1 km from Earth's surface. Radioactive radon gas has been recognised by various authors as a valuable natural tracer of transport and dispersion within this layer. To achieve a better comprehension of the urban pollution dynamic in the town of Alessandria, situated in the Po Valley in the north-west of Italy, a system for continuous measurement of radon concentration in outdoor air was experimented. This paper presents the first results obtained: the hourly trend of radon concentration in the diurnal course during different seasons and its correlation with the concentration of the major urban pollutants. PMID:19906661
Failure of the Cross Correlation Measurement Technique
NASA Astrophysics Data System (ADS)
McGill, Ken; Ham, Katie; Schock, Kris
2014-03-01
The experiment involves creating a sound wave that propagates down a pipe with 8 transducers attached at equally spaced intervals of 0.01016 meters. The numerical method used to solve for the phase component, the Cross Correlation Method, creates a high correlation value, but the speed of sound varies immensely. The method involves a Fast Fourier Transform of the collected data, which is used to find the phase of the sound wave, and the slope of the position versus time graph, which is used to calculate the speed of sound. This high correlation values shows that the data is correct, but the numerical method for analyzing the data is incorrect. We would like to thank Dr. Ken McGill for all of his time, help, and guidance with this research project. We would also like to thank Georgia College and State University for both the resources and space necessary for this experiment.
Quantum dynamics in continuum for proton transport--generalized correlation.
Chen, Duan; Wei, Guo-Wei
2012-04-01
As a key process of many biological reactions such as biological energy transduction or human sensory systems, proton transport has attracted much research attention in biological, biophysical, and mathematical fields. A quantum dynamics in continuum framework has been proposed to study proton permeation through membrane proteins in our earlier work and the present work focuses on the generalized correlation of protons with their environment. Being complementary to electrostatic potentials, generalized correlations consist of proton-proton, proton-ion, proton-protein, and proton-water interactions. In our approach, protons are treated as quantum particles while other components of generalized correlations are described classically and in different levels of approximations upon simulation feasibility and difficulty. Specifically, the membrane protein is modeled as a group of discrete atoms, while ion densities are approximated by Boltzmann distributions, and water molecules are represented as a dielectric continuum. These proton-environment interactions are formulated as convolutions between number densities of species and their corresponding interaction kernels, in which parameters are obtained from experimental data. In the present formulation, generalized correlations are important components in the total Hamiltonian of protons, and thus is seamlessly embedded in the multiscale/multiphysics total variational model of the system. It takes care of non-electrostatic interactions, including the finite size effect, the geometry confinement induced channel barriers, dehydration and hydrogen bond effects, etc. The variational principle or the Euler-Lagrange equation is utilized to minimize the total energy functional, which includes the total Hamiltonian of protons, and obtain a new version of generalized Laplace-Beltrami equation, generalized Poisson-Boltzmann equation and generalized Kohn-Sham equation. A set of numerical algorithms, such as the matched interface and
NASA Astrophysics Data System (ADS)
Alali, Sanaz; Ahmad, Manzoor; Kim, Anthony; Vurgun, Nasit; Wood, Michael F. G.; Vitkin, I. Alex
2012-04-01
We present a quantitative study of depolarization in biological tissues and correlate it with measured optical properties (reduced scattering and absorption coefficients). Polarized light imaging was used to examine optically thick samples of both isotropic (liver, kidney cortex, and brain) and anisotropic (cardiac muscle, loin muscle, and tendon) pig tissues in transmission and reflection geometries. Depolarization (total, linear, and circular), as derived from polar decomposition of the measured tissue Mueller matrix, was shown to be related to the measured optical properties. We observed that depolarization increases with the transport albedo for isotropic and anisotropic tissues, independent of measurement geometry. For anisotropic tissues, depolarization was higher compared to isotropic tissues of similar transport albedo, indicating birefringence-caused depolarization effects. For tissues with large transport albedos (greater than ~0.97), backscattering geometry was preferred over transmission due to its greater retention of light polarization; this was not the case for tissues with lower transport albedo. Preferential preservation of linearly polarized light over circularly polarized light was seen in all tissue types and all measurement geometries, implying the dominance of Rayleigh-like scattering. The tabulated polarization properties of different tissue types and their links to bulk optical properties should prove useful in future polarimetric tissue characterization and imaging studies.
Connection between measurement disturbance relation and multipartite quantum correlation
NASA Astrophysics Data System (ADS)
Li, Jun-Li; Du, Kun; Qiao, Cong-Feng
2015-01-01
It is found that the measurement disturbance relation (MDR) determines the strength of quantum correlation and hence is one of the essential facets of the nature of quantum nonlocality. In reverse, the exact form of MDR may be ascertained through measuring the correlation function. To this aim, an optical experimental scheme is proposed. Moreover, by virtue of the correlation function, we find that the quantum entanglement, the quantum nonlocality, and the uncertainty principle can be explicitly correlated.
Strongly correlated quantum transport out-of-equilibrium
NASA Astrophysics Data System (ADS)
Dutt, Prasenjit
The revolutionary advances in nanotechnology and nanofabrication have facilitated the precise control and manipulation of mesoscopic systems where quantum effects are pronounced. Quantum devices with tunable gates have made it possible to access regimes far beyond the purview of linear response theory. In particular, the influence of strong voltage and thermal biases has led to the observation of novel phenomena where the non-equilibrium characteristics of the system are of paramount importance. We study transport through quantum-impurity systems in the regime of strong correlations and determine the effects of large temperature and potential gradients on its many-body physics. In Part I of this thesis we focus on the steady-state dynamics of the system, a commonly encountered experimental scenario. For a system consisting of several leads composed of non-interacting electrons, each individually coupled to a quantum impurity with interactions and maintained at different chemical potentials, we reformulate the system in terms of an effective-equilibrium density matrix. This density matrix has a simple Boltzmann-like form in terms of the system's Lippmann-Schwinger (scattering) operators. We elaborate the conditions for this description to be valid based on the microscopic Hamiltonian of the system. We then prove the equivalence of physical observables computed using this formulation with corresponding expressions in the Schwinger-Keldysh approach and provide a dictionary between Green's functions in either scheme. An imaginary-time functional integral framework to compute finite temperature Green's functions is proposed and used to develop a novel perturbative expansion in the interaction strength which is exact in all other system parameters. We use these tools to study the fate of the Abrikosov-Suhl regime on the Kondo-correlated quantum dot due to the effects of bias and external magnetic fields. Next, we expand the domain of this formalism to additionally
Transportable setup for amplifier phase fidelity measurements
NASA Astrophysics Data System (ADS)
Tröbs, M.; Bogan, C.; Barke, S.; Kühn, G.; Reiche, J.; Heinzel, G.; Danzmann, K.
2015-05-01
One possible laser source for the Laser Interferometer Space Antenna (LISA) consists of an Ytterbium-doped fiber amplifier originally developed for inter-satellite communication, seeded by the laser used for the technology demonstrator mission LISA Pathfinder. LISA needs to transmit clock information between its three spacecraft to correct for phase noise between the clocks on the individual spacecraft. For this purpose phase modulation sidebands at GHz frequencies will be imprinted on the laser beams between spacecraft. Differential phase noise between the carrier and a sideband introduced within the optical chain must be very low. We report on a transportable setup to measure the phase fidelity of optical amplifiers.
d + Au hadron correlation measurements at PHENIX
Anne M. Sickles
2014-05-13
In these proceedings, we discuss recent results from d + Au collisions in PHENIX ridge related measurements and their possible hydrodynamic origin. We present the v_{2} at midrapidity and measurements of the pseudorapidity dependence of the ridge, distinguishing between the d-going and Au-going directions. We investigate the possible geometrical origin by comparing v_{2} in d + Au to that in p + Pb, Au + Au and Pb + Pb collisions. Future plans to clarify the role of geometry in small collision systems at RHIC are discussed.
Attribute-Based Time Series Cross-Correlation Measures
NASA Astrophysics Data System (ADS)
Cooper, G. R. J.
2016-05-01
Datasets are usually compared using cross-correlation, often using a moving window to calculate the correlation as a function of time or space. However, signals can be considered as being composed of sinusoids which possess amplitudes, frequencies and phases. All these three attributes can be computed at each point in time, and then used as the basis of a cross-correlation method. By using all the three measures of correlation together, their individual disadvantages can be minimised. By combining these measures with the continuous wavelet transform, information on the correlation as a function of wavelength can be obtained.
Measurement of magnetic fluctuation induced energy transport
Fiksel, G.; Prager, S.C.; Shen, W.; Stoneking, M.
1993-11-01
The local electron energy flux produced by magnetic fluctuations has been measured directly in the MST reversed field pinch (over the radial range r/a > 0.75). The flux, produced by electrons traveling parallel to a fluctuating magnetic field, is obtained from correlation between the fluctuations in the parallel heat flux and the radial magnetic field. The fluctuation induced flux is large (100 kW/cm{sup 2}) in the ``core`` (r/a < 0.85) and small (< 10--30 kW/cm{sup 2}) in the edge.
Measurement of magnetic fluctuation induced energy transport
Fiksel, G.; Prager, S.C.; Shen, W.; Stoneking, M.R. )
1994-02-14
The local electron energy flux produced by magnetic fluctuations has been measured directly in the MST reversed field pinch (over the radial range [ital r]/[ital a][gt]0.75).The flux, produced by electrons traveling parallel to a fluctuating magentic field, is obtained from correlation between the fluctuations in the parallel heat flux and the radial magnetic field. The fluctuation induced flux is large (100 kW/cm[sup 2]) in the core'' ([ital r]/[ital a][lt]0.85) and small ([lt]10--30 kW/cm[sup 2]) in the edge.
Measuring correlations between non-stationary series with DCCA coefficient
NASA Astrophysics Data System (ADS)
Kristoufek, Ladislav
2014-05-01
In this short report, we investigate the ability of the DCCA coefficient to measure correlation level between non-stationary series. Based on a wide Monte Carlo simulation study, we show that the DCCA coefficient can estimate the correlation coefficient accurately regardless the strength of non-stationarity (measured by the fractional differencing parameter d). For a comparison, we also report the results for the standard Pearson correlation coefficient. The DCCA coefficient dominates the Pearson coefficient for non-stationary series.
NANONIS TRAMEA - A Quantum Transport Measurement System
NASA Astrophysics Data System (ADS)
Kampen, Thorsten; Thissen, Andreas; Schaff, Oliver; Pioda, Alessandro
Nanonis Tramea is a quantum leap with respect to increased speed for transport measurements taking research onto a new level. Measurements which took several hours in the past can now be done in minutes without compromising signal quality. Tramea uses its fast, high-resolution, high-precision and ultra-low-noise outputs and inputs to generate and acquire up to 20000 data points per second on 24 channels in parallel. This is not only up to 1000 x faster than typical measurement systems but it is also time deterministic with highest precision. Here, the time separation between points is constant so that artefacts caused by unequal point spacings in non-deterministic measurement systems are avoided. The emphasis here is the real-time relation. Tramea comes with a built-in interface which allows for control of the instruments' basic functions from any programming environment. For users requiring more functionality and higher speeds a full-featured LabVIEW-based programming interface or scripting module are available as add-on modules. Due to the modularity and flexibility of the hardware and software architecture of Tramea upgrades with standardized add-on modules are possible. Non-standard requests can still be handled by the various programming options.
40 CFR 51.213 - Transportation control measures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Transportation control measures. 51.213... Transportation control measures. (a) The plan must contain procedures for obtaining and maintaining data on actual emissions reductions achieved as a result of implementing transportation control measures. (b)...
40 CFR 51.213 - Transportation control measures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Transportation control measures. 51.213... Transportation control measures. (a) The plan must contain procedures for obtaining and maintaining data on actual emissions reductions achieved as a result of implementing transportation control measures. (b)...
40 CFR 51.213 - Transportation control measures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Transportation control measures. 51.213... Transportation control measures. (a) The plan must contain procedures for obtaining and maintaining data on actual emissions reductions achieved as a result of implementing transportation control measures. (b)...
40 CFR 51.213 - Transportation control measures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Transportation control measures. 51.213... Transportation control measures. (a) The plan must contain procedures for obtaining and maintaining data on actual emissions reductions achieved as a result of implementing transportation control measures. (b)...
Correlation Ece Measurements of Turbulent Electron Temperature Fluctuations in Diii-D
NASA Astrophysics Data System (ADS)
White, A. E.; Peebles, W. A.; Rhodes, T. L.; Wang, G.; Schmitz, L.; Carter, T. A.; Hillesheim, J. C.; Doyle, E. J.; Zeng, L.; Holland, C. H.; McKee, G. R.; Staebler, G. M.; Waltz, R. E.; Candy, J.; Deboo, J. C.; Petty, C. C.; Burrell, K. H.
2011-02-01
This paper describes measurements of long wavelength, turbulent electron temperature fluctuations in the core plasma of the DIII-D tokamak made with a correlation electron cyclotron emission (CECE) radiometer-based diagnostic. Experimental and simulation results indicate that long wavelength electron temperature fluctuations (1) are similar in amplitude and spectrum to density fluctuations, (2) can be associated with both ITG and TEM turbulence, (3) exhibit changes in the relative fluctuation level that correlate with changes in electron thermal transport, and (4) are correlated, but out of phase, with density fluctuations measured simultaneously with reflectometry.
Transport measurement of Li doped monolayer graphene
NASA Astrophysics Data System (ADS)
Khademi, Ali; Sajadi, Ebrahim; Dosanjh, Pinder; Folk, Joshua; Stöhr, Alexander; Forti, Stiven; Starke, Ulrich
Lithium adatoms on monolayer graphene have been predicted to induce superconductivity with a critical temperature near 8 K, and recent experimental evidence by ARPES indicates a critical temperature nearly that high. Encouraged by these results, we investigated the effects of lithium deposited at cryogenic temperatures on the electronic transport properties of epitaxial and CVD monolayer graphene down to 3 K. The change of charge carrier density due to Li deposition was monitored both by the gate voltage shift of the Dirac point and by Hall measurements, in low and high doping regimes. In the high doping regime, a saturation density of 2×1013 cm-2 was observed independent of sample type, initial carrier density and deposition conditions. No signatures of superconductivity were observed down to 3 K.
Measurement and Correlation of Ice Accretion Roughness
NASA Technical Reports Server (NTRS)
Anderson, David N.; Hentschel, Daniel B.; Ruff, Gary A.
2003-01-01
Measurements were taken of the roughness characteristics of ice accreted on NACA 0012 airfoils in the NASA Glenn Icing Research Tunnel (IRT). Tests were conducted with size scaled, using models with chords of 26.7, 53.3, and 80.0 cm, and with liquid-water content scaled, both according to previously-tested scaling methods. The width of the smooth zone which forms on either side of the leading edge of the airfoil and the diameter of the roughness elements are presented in non-dimensional form as functions of the accumulation parameter. The smooth-zone width was found to decrease with increasing accumulation parameter. The roughness-element diameter increased with accumulation parameter until a plateau was reached. This maximum diameter was about 0.06 times twice the model leading-edge radius. Neither smooth-zone width nor element diameter were affected by a change in freezing fraction from 0.2 to 0.4. Both roughness characteristics appeared to scale with model size and with liquid-water content.
NASA Astrophysics Data System (ADS)
Wiseman, Paul W.; Squier, Jeffrey A.
2002-04-01
Advances in laser-scanning microscopy and the advent of confocal microscopy permitted the development of image correlation spectroscopy (ICS). ICS is an imaging analog of fluorescence correlation spectroscopy (FCS) optimized for measuring the aggregation state of fluorescently labeled macromolecules on the surface of biological cells. The ICS method entails spatial autocorrelation analysis of fluorescence fluctuations within an image sampled from an area of the sample as well as temporal autocorrelation analysis of fluorescence fluctuations through a time series of images. Together, the spatial/temporal autocorrelation analysis enables measurement of fluorophore concentration, aggregation state and transport properties. ICS was first implemented on a confocal laser-scanning microscope (CLSM) using single photon excitation. More recently we have extended the method for two-photon ICS as well as image cross-correlation spectroscopy (ICCS). ICCS allows measurement of co-localization of non-identical molecules labeled with fluorophores of different emission wavelengths. We present a variety of applications of the ICS and ICCS methods in cellular systems. We will discuss the measurement of the transport and clustering properties of membrane receptors by single photon ICS and two-photon ICCS. As well, we will describe how spatial ICS may be used to quantify the distribution of fluorescently labeled dendritic spines in neurons.
Method for high-accuracy multiplicity-correlation measurements
NASA Astrophysics Data System (ADS)
Gulbrandsen, K.; Søgaard, C.
2016-04-01
Multiplicity-correlation measurements provide insight into the dynamics of high-energy collisions. Models describing these collisions need these correlation measurements to tune the strengths of the underlying QCD processes which influence all observables. Detectors, however, often possess limited coverage or reduced efficiency that influence correlation measurements in obscure ways. In this paper, the effects of nonuniform detection acceptance and efficiency on the measurement of multiplicity correlations between two distinct detector regions (termed forward-backward correlations) are derived. An analysis method with such effects built in is developed and subsequently verified using different event generators. The resulting method accounts for acceptance and efficiency in a model-independent manner with high accuracy, thereby shedding light on the relative contributions of the underlying processes to particle production.
Monotonic correlation analysis of image quality measures for image fusion
NASA Astrophysics Data System (ADS)
Kaplan, Lance M.; Burks, Stephen D.; Moore, Richard K.; Nguyen, Quang
2008-04-01
The next generation of night vision goggles will fuse image intensified and long wave infra-red to create a hybrid image that will enable soldiers to better interpret their surroundings during nighttime missions. Paramount to the development of such goggles is the exploitation of image quality (IQ) measures to automatically determine the best image fusion algorithm for a particular task. This work introduces a novel monotonic correlation coefficient to investigate how well possible IQ features correlate to actual human performance, which is measured by a perception study. The paper will demonstrate how monotonic correlation can identify worthy features that could be overlooked by traditional correlation values.
Nielsen, R
1997-09-01
In the present work the coupling under short-circuited conditions between the net Na(+)-influx across isolated frog skin and the transepithelial transport of water was examined i.e., the short-circuit current (Isc) and the transepithelial water movement (TEWM) were measured simultaneously. It has been shown repeatedly that the Isc across isolated frog skin is equal to the net transepithelial Na+ transport. Furthermore the coupling between transepithelial uptake of NaCl under open-circuit conditions and TEWM was also measured. The addition of antidiuretic hormone (AVT) to skins incubated under short-circuited conditions resulted in an increase in the Isc and TEWM. Under control conditions Isc was 9.14 +/- 2.43 and in the presence of AVT 45.9 +/- 7.3 neq cm-2 min-1 (n = 9) and TEWM changed from 12.45 +/- 4.46 to 132.8 +/- 15.8 nL cm-2 min-1. The addition of the Na+ channel blocking agent amiloride resulted in a reduction both in Isc and TEWM, and a linear correlation between Isc and TEWM was found. The correlation corresponds to that 160 +/- 15 (n = 7) molecules of water follow each Na+ across the skin. In another series of experiments it was found that there was a linear correlation between Isc and the increase in apical osmolarity needed to stop the TEWM. The data presented indicate that the observed coupling between the net transepithelial Na+ transport and TEWM is caused by local osmosis. PMID:9309211
A transport phase diagram for pore-level correlated porous media
NASA Astrophysics Data System (ADS)
Babaei, M.; Joekar-Niasar, V.
2016-06-01
Transport in porous media is often characterized by the advection-dispersion equation, with the dispersion coefficient as the most important parameter that links the hydrodynamics to the transport processes. Morphological properties of any porous medium, such as pore size distribution, network topology, and correlation length control transport. In this study we explore the impact of correlation length on transport regime using pore-network modelling. Earlier direct simulation studies of dispersion in carbonate and sandstone rocks showed larger dispersion compared to granular homogenous sandpacks. However, in these studies, isolation of the impact of correlation length on transport regime was not possible due to the fundamentally different pore morphologies and pore-size distributions. Against this limitation, we simulate advection-dispersion transport for a wide range of Péclet numbers in unstructured irregular networks with "different" correlation lengths but "identical" pore size distributions and pore morphologies. Our simulation results show an increase in the magnitudes of the estimated dispersion coefficients in correlated networks compared to uncorrelated ones in the advection-controlled regime. The range of the Péclet numbers which dictate mixed advection-diffusion regime considerably reduces in the correlated networks. The findings emphasize the critical role of correlation length which is depicted in a conceptual transport phase diagram and the importance of accounting for the micro-scale correlation lengths into predictive stochastic pore-scale modelling.
Multifunctional optical correlator for picosecond ultraviolet laser pulse measurement
Rakhman, Abdurahim; Wang, Yang; Garcia, Frances; Long, Cary D.; Huang, Chunning; Takeda, Yasuhiro; Liu, Yun
2014-01-01
A compact optical correlator system that measures both the autocorrelation between two infrared (IR) lights and the cross-correlation between an IR and an ultraviolet (UV) light using a single nonlinear optical crystal has been designed and experimentally demonstrated. The rapid scanning of optical delay line, switching between auto and cross-correlations, crystal angle tuning, and data acquisition and processing are all computer controlled. Pulse widths of an IR light from a mode-locked laser are measured by the correlator and the results are compared with a direct measurement using a high-speed photodetector system. The correlator has been used to study the parametermore » dependence of the pulse width of a macropulse UV laser designed for laser-assisted hydrogen ion (H-) beam stripping for the Spallation Neutron Source at Oak Ridge National Laboratory.« less
Multifunctional optical correlator for picosecond ultraviolet laser pulse measurement
Rakhman, Abdurahim; Wang, Yang; Garcia, Frances; Long, Cary D.; Huang, Chunning; Takeda, Yasuhiro; Liu, Yun
2014-01-01
A compact optical correlator system that measures both the autocorrelation between two infrared (IR) lights and the cross-correlation between an IR and an ultraviolet (UV) light using a single nonlinear optical crystal has been designed and experimentally demonstrated. The rapid scanning of optical delay line, switching between auto and cross-correlations, crystal angle tuning, and data acquisition and processing are all computer controlled. Pulse widths of an IR light from a mode-locked laser are measured by the correlator and the results are compared with a direct measurement using a high-speed photodetector system. The correlator has been used to study the parameter dependence of the pulse width of a macropulse UV laser designed for laser-assisted hydrogen ion (H-) beam stripping for the Spallation Neutron Source at Oak Ridge National Laboratory.
Graphene thermal transport studies via radio-frequency, cross-correlated Johnson noise thermometry
NASA Astrophysics Data System (ADS)
Crossno, Jesse; Liu, Xiaomeng; Wang, Ke; Harzheim, Achim; Watanabe, Kenji; Taniguchi, Takashi; Ohki, Thomas; Fong, Kin Chung; Kim, Philip
2015-03-01
The electronic temperature of a dissipative, mesoscale device can be determined by monitoring the Johnson noise power emitted over a wide frequency range. Using radiometry techniques, we have developed a high-frequency, wide bandwidth, cross-correlation Johnson noise thermometer operating from room temperature to cryogenic levels that is compatible with strong magnetic fields. Precisions ranging from 2 to 25 mK are demonstrated over the temperature range of 3 to 300 K with 1 second of integration time. This non-invasive thermometer has enabled us to perform sensitive electronic thermal transport studies in boron nitride encapsulated monolayer graphene over two orders of magnitude in temperature. This versatile technique also enables precision Fano factor measurements as well as studies of correlated noise phenomena, such as those found in layered Van der Waals heterostructures.
Visual Decisions in the Presence of Measurement and Stimulus Correlations
Bhardwaj, Manisha; Carroll, Samuel; Ma, Wei Ji; Josić, Krešimir
2015-01-01
Humans and other animals base their decisions on noisy sensory input. Much work has been devoted to understanding the computations that underlie such decisions. The problem has been studied in a variety of tasks and with stimuli of differing complexity. However, how the statistical structure of stimuli, along with perceptual measurement noise, affects perceptual judgments is not well understood. Here we examine how correlations between the components of a stimulus—stimulus correlations—together with correlations in sensory noise, affect decision making. As an example, we consider the task of detecting the presence of a single or multiple targets among distractors. We assume that both the distractors and the observer’s measurements of the stimuli are correlated. The computations of an optimal observer in this task are nontrivial yet can be analyzed and understood intuitively. We find that when distractors are strongly correlated, measurement correlations can have a strong impact on performance. When distractor correlations are weak, measurement correlations have little impact unless the number of stimuli is large. Correlations in neural responses to structured stimuli can therefore have a strong impact on perceptual judgments. PMID:26378875
Enhancing robustness of multiparty quantum correlations using weak measurement
Singh, Uttam; Mishra, Utkarsh; Dhar, Himadri Shekhar
2014-11-15
Multipartite quantum correlations are important resources for the development of quantum information and computation protocols. However, the resourcefulness of multipartite quantum correlations in practical settings is limited by its fragility under decoherence due to environmental interactions. Though there exist protocols to protect bipartite entanglement under decoherence, the implementation of such protocols for multipartite quantum correlations has not been sufficiently explored. Here, we study the effect of local amplitude damping channel on the generalized Greenberger–Horne–Zeilinger state, and use a protocol of optimal reversal quantum weak measurement to protect the multipartite quantum correlations. We observe that the weak measurement reversal protocol enhances the robustness of multipartite quantum correlations. Further it increases the critical damping value that corresponds to entanglement sudden death. To emphasize the efficacy of the technique in protection of multipartite quantum correlation, we investigate two proximately related quantum communication tasks, namely, quantum teleportation in a one sender, many receivers setting and multiparty quantum information splitting, through a local amplitude damping channel. We observe an increase in the average fidelity of both the quantum communication tasks under the weak measurement reversal protocol. The method may prove beneficial, for combating external interactions, in other quantum information tasks using multipartite resources. - Highlights: • Extension of weak measurement reversal scheme to protect multiparty quantum correlations. • Protection of multiparty quantum correlation under local amplitude damping noise. • Enhanced fidelity of quantum teleportation in one sender and many receivers setting. • Enhanced fidelity of quantum information splitting protocol.
Measuring spin correlations in optical lattices using superlattice potentials
Pedersen, K. G. L.; Andersen, B. M.; Soerensen, A. S.; Bruun, G. M.; Syljuaasen, O. F.
2011-10-15
We suggest two experimental methods for probing both short- and long-range spin correlations of atoms in optical lattices using superlattice potentials. The first method involves an adiabatic doubling of the periodicity of the underlying lattice to probe neighboring singlet (triplet) correlations for fermions (bosons) by the occupation of the resulting vibrational ground state. The second method utilizes a time-dependent superlattice potential to generate spin-dependent transport by any number of prescribed lattice sites, and probes correlations by the resulting number of doubly occupied sites. For experimentally relevant parameters, we demonstrate how both methods yield large signatures of antiferromagnetic correlations of strongly repulsive fermionic atoms in a single shot of the experiment. Lastly, we show how this method may also be applied to probe d-wave pairing, a possible ground-state candidate for the doped repulsive Hubbard model.
Estimators for Two Measures of Association for Set Correlation.
ERIC Educational Resources Information Center
Cohen, Jacob; Nee, John C. M.
1984-01-01
Two measures of association between sets of variables have been proposed for set correlation: the proportion of generalized variance, and the proportion of additionive variance. Because these measures are strongly positively biased, approximate expected values and estimators of these measures are derived and checked. (Author/BW)
Sankaran, Jagadish; Manna, Manoj; Guo, Lin; Kraut, Rachel; Wohland, Thorsten
2009-11-01
Cell membrane organization is dynamic and is assumed to have different characteristic length scales. These length scales, which are influenced by lipid and protein composition as well as by the cytoskeleton, can range from below the optical resolution limit (as with rafts or microdomains) to far above the resolution limit (as with capping phenomena or the formation of lipid "platforms"). The measurement of these membrane features poses a significant problem because membrane dynamics are on the millisecond timescale and are thus beyond the time resolution of conventional imaging approaches. Fluorescence correlation spectroscopy (FCS), a widely used spectroscopic technique to measure membrane dynamics, has the required time resolution but lacks imaging capabilities. A promising solution is the recently introduced method known as imaging total internal reflection (ITIR)-FCS, which can probe diffusion phenomena in lipid membranes with good temporal and spatial resolution. In this work, we extend ITIR-FCS to perform ITIR fluorescence cross-correlation spectroscopy (ITIR-FCCS) between pixel areas of arbitrary shape and derive a generalized expression that is applicable to active transport and diffusion. ITIR-FCCS is applied to model systems exhibiting diffusion, active transport, or a combination of the two. To demonstrate its applicability to live cells, we observe the diffusion of a marker, the sphingolipid-binding domain (SBD) derived from the amyloid peptide Abeta, on live neuroblastoma cells. We investigate the organization and dynamics of SBD-bound lipid microdomains under the conditions of cholesterol removal and cytoskeleton disruption. PMID:19883607
Electron Temperature Measurements and Energy Transport in SSPX
NASA Astrophysics Data System (ADS)
Hudson, B. F.; Casper, T. A.; Hooper, E. B.; Jayakumar, R. J.; Lodestro, L. L.; McLean, H. S.; Moller, J. M.; Romero-Talamas, C. A.; Wood, R. D.
2007-11-01
Time-resolved measurements (<100 μs) have been made with a multi-pulse Thomson scattering diagnostic in the SSPX spheromak experiment, to obtain radial electron density and temperature profile during plasma formation and sustainment. In most discharges three regimes are observed with respect to Te and ne evolution. Initially there is a cold (<100 eV) formation phase, followed by a hollow Te profile with maximum temperatures 100-200 eV, and a final heat-up and cool-down phase where we obtain the highest plasma temperatures (350+ eV). The transition from hollow to peaked Te is quite sharp (˜50 μs) and the recent upgrade to double-pulse Thomson scattering (˜40 μs between pulses) facilitates capturing this transition. We also present simulations using the CORSICA code where the equilibrium is kept fixed and the discharge is evolved to observe the change in temperature profiles for different transport coefficients. In addition, electron transport and heating will be correlated with measured MHD mode activity. Temperature and density measurements during multi-pulse coaxial gun-current operation will also be presented. * Work performed under the auspices of the US DOE by University of California Lawrence Livermore National Laboratory under contract W--7405--ENG--48.
Nanoscale Electron Transport Measurements of Immobilized Cytochrome P450 Proteins
Bostick, Christopher D.; Flora, Darcy R.; Gannett, Peter M.; Tracy, Timothy S.; Lederman, David
2015-01-01
Gold nanopillars, functionalized with an organic self-assembled monolayer, can be used to measure the electrical conductance properties of immobilized proteins without aggregation. Measurements of the conductance of nanopillars with cytochrome P450 2C9 (CYP2C9) proteins using conducting probe atomic force microscopy demonstrate that a correlation exists between the energy barrier height between hopping sites and CYP2C9 metabolic activity. Measurements performed as a function of tip force indicate that, when subjected to a large force, the protein is more stable in the presence of a substrate. This agrees with the hypothesis that substrate entry into the active site helps to stabilize the enzyme. The relative distance between hopping sites also increases with increasing force, possibly because protein functional groups responsible for electron transport depend on the structure of the protein. The inhibitor sulfaphenazole, in addition to the previously studied aniline, increased the barrier height for electron transfer and thereby makes CYP2C9 reduction more difficult and inhibits metabolism. This suggests that P450 Type II binders may decrease the ease of electron transport processes in the enzyme, in addition to occupying the active site. PMID:25804257
Measuring aeolian sand transport using acoustic sensors
NASA Astrophysics Data System (ADS)
Poortinga, Ate; van Rheenen, Hans; Ellis, Jean T.; Sherman, Douglas J.
2015-03-01
Acoustic sensors are frequently used to measure aeolian saltation. Different approaches are used to process the signals from these instruments. The goal of this paper is to describe and discuss a method to measure aeolian saltation with acoustic sensors. In a laboratory experiment, we measured the output from an advanced signal processing scheme on the circuit board of the saltiphone. We use a software implementation of this processing scheme to re-analyse data from four miniphones obtained during a field experiment. It is shown that a set of filters remove background noise outside the frequency spectrum of aeolian saltation (at 8 kHz), whereas signals within this frequency spectrum are amplified. The resulting analogue signal is a proxy of the energy. Using an AC pulse convertor, this signal can be converted into a digital and analogue count signal or an analogue energy signal, using a rectifier and integrator. Spatio-temporal correlation between field deployed miniphones increases by using longer integration times for signal processing. To quantify aeolian grain impact, it is suggested to use the analogue energy output, as this mode is able to detect changes in frequency and amplitude. The analogue and digital count signals are able to detect an increase in frequency, but are not able to detect an increase in signal amplitude. We propose a two-stage calibration scheme consisting of (1) a factory calibration, to set the frequency spectrum of the sensor and (2) a standardized drop-test conducted before and after the experiment to evaluate the response of the sensor.
Electrical cross-correlation spectroscopy: measuring picoliter-per-minute flows in nanochannels.
Mathwig, Klaus; Mampallil, Dileep; Kang, Shuo; Lemay, Serge G
2012-09-14
We introduce all-electrical cross-correlation spectroscopy of molecular number fluctuations in nanofluidic channels. Our approach is based on a pair of nanogap electrochemical transducers located downstream from each other in the channel. When liquid is driven through this device, mesoscopic fluctuations in the local density of molecules are transported along the channel. We perform a time-of-flight measurement of these fluctuations by cross-correlating current-time traces obtained at the two detectors. Thereby we are able to detect ultralow liquid flow rates below 10 pL/min. This method constitutes the electrical equivalent of fluorescence cross-correlation spectroscopy. PMID:23005685
TRANSPORT PROPERTY MEASUREMENTS OF HFC-236EA
The report gives results of an evaluation of transport properties of 1, 1, 1, 2, 3, 3-hexafluoropropane (HFC-236ea), with liquid viscosity and thermal conductivity being the two main transport properties of interest. In addition, the specific heat and density of refrigerant/lubri...
Measurement of hydrocarbon transport in bacteria
Technology Transfer Automated Retrieval System (TEKTRAN)
Due to the hydrophobic, volatility, and relatively low aqueous solubility of aliphatic and aromatic hydrocarbons, transport of these chemicals by bacteria has not been extensively studied. These issues make transport assays difficult to carry out, and as a result, strong evidence for the active tran...
TRANSPORT PROPERTY MEASUREMENTS OF HFC-236EA
The report gives results of an evaluation of transport properties of 1,1,1,2,3,3,-hexafluoropropane (HFC-236ea), with liquid viscosity and thermal conductivity being the two main transport properties of interest. In addition, the specific heat and density of refrigerant/lubrican...
Measurement of Hydrocarbon Transport in Bacteria
Technology Transfer Automated Retrieval System (TEKTRAN)
Hydrocarbon uptake by bacteria has not been extensively studied, and strong evidence for active transport of hydrocarbons is lacking. The volatile nature of hydrocarbons, their hydrophobicity, and their relatively low aqueous solubilities can complicate transport assays. Here we present a detailed...
Computable measure of total quantum correlations of multipartite systems
NASA Astrophysics Data System (ADS)
Behdani, Javad; Akhtarshenas, Seyed Javad; Sarbishaei, Mohsen
2016-04-01
Quantum discord as a measure of the quantum correlations cannot be easily computed for most of density operators. In this paper, we present a measure of the total quantum correlations that is operationally simple and can be computed effectively for an arbitrary mixed state of a multipartite system. The measure is based on the coherence vector of the party whose quantumness is investigated as well as the correlation matrix of this part with the remainder of the system. Being able to detect the quantumness of multipartite systems, such as detecting the quantum critical points in spin chains, alongside with the computability characteristic of the measure, makes it a useful indicator to be exploited in the cases which are out of the scope of the other known measures.
Probing quantum transport by engineering correlations in a speckle potential
NASA Astrophysics Data System (ADS)
Alamir, Ardavan; Capuzzi, Pablo; Kashanian, Samir Vartabi; Vignolo, Patrizia
2014-02-01
We develop a procedure to modify the correlations of a speckle potential. This procedure, that is suitable for spatial light modulator devices, allows one to increase the localization efficiency of the speckle in a narrow energy region whose position can be easily tuned. This peculiar energy-dependent localization behavior is explored by pulling the potential through a cigar-shaped Bose-Einstein condensate. We show that the percentage of dragged atoms as a function of the pulling velocity depends on the potential correlations below a threshold of the disorder strength. Above this threshold, interference effects are no longer clearly observable during the condensate drag.
Packwood, Daniel M.; Oniwa, Kazuaki; Jin, Tienan; Asao, Naoki
2015-04-14
Organic crystals have unique charge transport properties that lie somewhere between delocalised band-type transport and localised hopping transport. In this paper, we use a stochastic tight-binding model to explore how dynamical disorder in organic crystals affects charge transport. By analysing the model in terms of Feynman diagrams (virtual processes), we expose the crucial role of correlated dynamical disorder to the charge transport dynamics in the model at short times in the order of a few hundred femtoseconds. Under correlated dynamical disorder, the random motions of molecules in the crystal allow for low-energy “bonding”-type interactions between neighboring molecular orbitals can persist over long periods of time. On the other hand, the dependence of charge transport on correlated dynamical disorder also tends to localize the charge, as correlated disorder cannot persist far in space. This concept of correlation may be the “missing link” for describing the intermediate regime between band transport and hopping transport that occurs in organic crystals.
Measurement of surface roughness and correlation length using dichromatic speckle
NASA Astrophysics Data System (ADS)
Deka, M.
1980-03-01
A computer simulation study of the dichromatic speckle was conducted and the surface roughness and correlation length of sample surfaces were measured using a stylus instrument and similar measurements with dichromatic speckle. The rms difference of the two speckle intensities was analyzed for spot sizes smaller than, comparable and larger than the correlation length of the surface. The rms roughness of the sample ground glasses was calculated from the data obtained from the stylus instrument. The correlation length was obtained from an online multichannel FFT processor connected to the stylus instrument. The correlation length was estimated from the correlation function. The rms difference between the speckle intensities of two different wavelengths were measured for various spot sizes. For each intensity 64 K data samples was collected and processed in a PDP 11/40 computer. These data were used to calculate the second moment of the monochromatic speckle, the cross correlation of these and the rms difference. The roughness and the correlation length of the surface were estimated from these results. The results obtained from the dichromatic speckle are in good agreement with the values obtained from the stylus instrument.
NASA Astrophysics Data System (ADS)
Kang, P. K.; Le Borgne, T.; Dentz, M.; Bour, O.; Juanes, R.
2014-12-01
Quantitative modeling of flow and transport through fractured geological media is challenging due to the inaccessibility of the underlying medium properties and the complex interplay between heterogeneity and small scale transport processes such as heterogeneous advection, matrix diffusion, hydrodynamic dispersion and adsorption. This complex interplay leads to anomalous (non-Fickian) transport behavior, the origin of which remains a matter of debate: whether it arises from variability in fracture permeability (velocity heterogeneity), connectedness in the fracture network (velocity correlation), or interaction between fractures and matrix. Here we show that this uncertainty of heterogeneity- vs. correlation-controlled transport can be resolved by combining convergent and push-pull tracer tests because flow reversibility is strongly dependent on correlation, whereas late-time scaling of breakthrough curves is mainly controlled by heterogeneity. We build on this insight, and propose a Lagrangian statistical model that takes the form of a continuous time random walk (CTRW) with correlated particle velocities. In this framework, flow heterogeneity and flow correlation are quantified by a Markov process of particle transition times that is characterized by a distribution function and a transition probability. Our transport model captures the anomalous behavior in the breakthrough curves for both push-pull and convergent flow geometries, with the same set of parameters. We validate our model in the Ploemeur observatory in France. Thus, the proposed correlated CTRW modeling approach provides a simple yet powerful framework for characterizing the impact of flow correlation and heterogeneity on transport in fractured media.
Tomasi, D.; Fowler, J.; Tomasi, D.; Volkow, N.D.; Wang, R.L.; Telang, F.; Wang, Chang, L.; Ernst, T.; /Fowler, J.S.
2009-06-01
Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [{sup 11}C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.
Internalized Heterosexism: Measurement, Psychosocial Correlates, and Research Directions
ERIC Educational Resources Information Center
Szymanski, Dawn M.; Kashubeck-West, Susan; Meyer, Jill
2008-01-01
This article provides an integrated critical review of the literature on internalized heterosexism/internalized homophobia (IH), its measurement, and its psychosocial correlates. It describes the psychometric properties of six published measures used to operationalize the construct of IH. It also critically reviews empirical studies on correlates…
The Measurement and Correlates of Career Decision Making.
ERIC Educational Resources Information Center
Harren, Vincent A.; Kass, Richard A.
This paper presents a theoretical framework for understanding career decision making (CDM); introduces an instrument, Assessment of Career Decision Making (ACDM) to measure CDM with college students; and presents correlational data on sex role and cognitive style factors hypothesized to influence CDM. The ACDM, designed to measure the Tiedeman and…
Statistical measures of Planck scale signal correlations in interferometers
Hogan, Craig J.; Kwon, Ohkyung
2015-06-22
A model-independent statistical framework is presented to interpret data from systems where the mean time derivative of positional cross correlation between world lines, a measure of spreading in a quantum geometrical wave function, is measured with a precision smaller than the Planck time. The framework provides a general way to constrain possible departures from perfect independence of classical world lines, associated with Planck scale bounds on positional information. A parametrized candidate set of possible correlation functions is shown to be consistent with the known causal structure of the classical geometry measured by an apparatus, and the holographic scaling of information suggested by gravity. Frequency-domain power spectra are derived that can be compared with interferometer data. As a result, simple projections of sensitivity for specific experimental set-ups suggests that measurements will directly yield constraints on a universal time derivative of the correlation function, and thereby confirm or rule out a class of Planck scale departures from classical geometry.
Transport through a correlated interface: Auxiliary master equation approach
NASA Astrophysics Data System (ADS)
Titvinidze, Irakli; Dorda, Antonius; von der Linden, Wolfgang; Arrigoni, Enrico
2015-12-01
We present improvements of a recently introduced numerical method [E. Arrigoni et al., Phys. Rev. Lett. 110, 086403 (2013), 10.1103/PhysRevLett.110.086403] to compute steady-state properties of strongly correlated electronic systems out of equilibrium. The method can be considered as a nonequilibrium generalization of exact diagonalization based dynamical mean-field theory (DMFT). The key modification for the nonequilibrium situation consists in addressing the DMFT impurity problem within an auxiliary system consisting of the correlated impurity, Nb uncorrelated bath sites, and two Markovian environments (sink and reservoir). Algorithmic improvements in the impurity solver allow to treat efficiently larger values of Nb than previously in DMFT. This increases the accuracy of the results and is crucial for a correct description of the physical behavior of the system in the relevant parameter range including a semiquantitative description of the Kondo regime. To illustrate the approach, we consider a monoatomic layer of correlated orbitals, described by the single-band Hubbard model, attached to two metallic leads. The nonequilibrium situation is driven by a bias voltage applied to the leads. For this system, we investigate the spectral function and the steady-state current-voltage characteristics in the weakly as well as in the strongly interacting limit. In particular, we investigate the nonequilibrium behavior of quasiparticle excitations within the Mott gap of the correlated layer. We find for low-bias voltage Kondo-type behavior in the vicinity of the insulating phase. In particular, we observe a splitting of the Kondo resonance as a function of the bias voltage.
Correlation and Prediction of the Transport Properties of Ionic Liquids
NASA Astrophysics Data System (ADS)
Hossain, Mohammad Z.; Teja, Amyn S.
2016-01-01
A modified version of the rough hard sphere (RHS) scheme of Gaciño et al. has been used to correlate the viscosity and thermal conductivity of ILs. A total of 661 viscosity data at 0.1 MPa for 48 ILs, and 159 thermal conductivity data at 0.1 MPa for 26 ILs were correlated, with average absolute deviations between calculated and experimental values (AAD) of 1.15 % in the case of the viscosity and 2.32 % in the case of the thermal conductivity. In addition, a total of 453 viscosity data for 10 ILs and 95 thermal conductivity data for 9 ILs over a pressure range of 0.1 MPa to 35.6 MPa were correlated with AADs of 3.46 % in the case of the viscosity and 2.89 % in the case of the thermal conductivity. More importantly, the three parameters of the modified RHS scheme were found to exhibit regular trends with the molecular weight of ILs with a common anion. Finally, IL mixture viscosities were predicted within their experimental uncertainties using a simple mixing rule. Mixtures of water and ILs could also be accommodated within the RHS scheme, although errors were higher in this case.
Cross-correlation-aided transport in stochastically driven accretion flows
NASA Astrophysics Data System (ADS)
Nath, Sujit Kumar; Chattopadhyay, Amit K.
2014-12-01
The origin of linear instability resulting in rotating sheared accretion flows has remained a controversial subject for a long time. While some explanations of such non-normal transient growth of disturbances in the Rayleigh stable limit were available for magnetized accretion flows, similar instabilities in the absence of magnetic perturbations remained unexplained. This dichotomy was resolved in two recent publications by Chattopadhyay and co-workers [Mukhopadhyay and Chattopadhyay, J. Phys. A 46, 035501 (2013), 10.1088/1751-8113/46/3/035501; Nath et al., Phys. Rev. E 88, 013010 (2013), 10.1103/PhysRevE.88.013010] where it was shown that such instabilities, especially for nonmagnetized accretion flows, were introduced through interaction of the inherent stochastic noise in the system (even a "cold" accretion flow at 3000 K is too "hot" in the statistical parlance and is capable of inducing strong thermal modes) with the underlying Taylor-Couette flow profiles. Both studies, however, excluded the additional energy influx (or efflux) that could result from nonzero cross correlation of a noise perturbing the velocity flow, say, with the noise that is driving the vorticity flow (or equivalently the magnetic field and magnetic vorticity flow dynamics). Through the introduction of such a time symmetry violating effect, in this article we show that nonzero noise cross correlations essentially renormalize the strength of temporal correlations. Apart from an overall boost in the energy rate (both for spatial and temporal correlations, and hence in the ensemble averaged energy spectra), this results in mutual competition in growth rates of affected variables often resulting in suppression of oscillating Alfven waves at small times while leading to faster saturations at relatively longer time scales. The effects are seen to be more pronounced with magnetic field fluxes where the noise cross correlation magnifies the strength of the field concerned. Another remarkable
Application of Laser Correlation Spectroscopy for Measuring Virus Size.
Nikiforov, V N; Vinogradov, S E; Ivanov, A V; Efremova, E V; Kalnina, L B; Bychenko, A B; Tentsov, Yu Yu; Manykin, A A
2016-05-01
Dynamic light scattering method or laser correlation spectroscopy was applied to evaluation of the size of viruses. We measured correlation functions of the light scattered by human immunodeficiency viruses (HIV) and hepatitis A viruses (HAV) and found that size of HIV-1 (subtype A and B) and HAV virions were 104 nm and 28 nm, respectively. Comparison of these findings with electron microscopy data for fixed samples of the same viruses showed good agreement of the results. PMID:27270934
First Measurements of Pion Correlations by the PHENIX Experiment
Johnson, S C
2001-04-11
First identical-pion correlations measured at RHIC energies by PHENIX are presented. Two analyses with separate detectors, systematics, and statistics provide consistent results. The resulting HBT radii are moderately larger than those measured at lower energies. The k{sub t} dependence of the Bertsch-Pratt HBT radii is also similar to previous measures and is consistent with the conjecture of an expanding source.
Analyzing complex networks through correlations in centrality measurements
NASA Astrophysics Data System (ADS)
Furlan Ronqui, José Ricardo; Travieso, Gonzalo
2015-05-01
Many real world systems can be expressed as complex networks of interconnected nodes. It is frequently important to be able to quantify the relative importance of the various nodes in the network, a task accomplished by defining some centrality measures, with different centrality definitions stressing different aspects of the network. It is interesting to know to what extent these different centrality definitions are related for different networks. In this work, we study the correlation between pairs of a set of centrality measures for different real world networks and two network models. We show that the centralities are in general correlated, but with stronger correlations for network models than for real networks. We also show that the strength of the correlation of each pair of centralities varies from network to network. Taking this fact into account, we propose the use of a centrality correlation profile, consisting of the values of the correlation coefficients between all pairs of centralities of interest, as a way to characterize networks. Using the yeast protein interaction network as an example we show also that the centrality correlation profile can be used to assess the adequacy of a network model as a representation of a given real network.
Measuring bipartite quantum correlations of an unknown state.
Silva, I A; Girolami, D; Auccaise, R; Sarthour, R S; Oliveira, I S; Bonagamba, T J; deAzevedo, E R; Soares-Pinto, D O; Adesso, G
2013-04-01
We report the experimental measurement of bipartite quantum correlations of an unknown two-qubit state. Using a liquid state Nuclear Magnetic Resonance setup and employing geometric discord, we evaluate the quantum correlations of a state without resorting to prior knowledge of its density matrix. The method is applicable to any 2 ⊗ d system and provides, in terms of number of measurements required, an advantage over full state tomography scaling with the dimension d of the unmeasured subsystem. The negativity of quantumness is measured as well for reference. We also observe the phenomenon of sudden transition of quantum correlations when local phase and amplitude damping channels are applied to the state. PMID:25166969
NASA Astrophysics Data System (ADS)
Kang, Peter K.; Le Borgne, Tanguy; Dentz, Marco; Bour, Olivier; Juanes, Ruben
2015-02-01
Flow and transport through fractured geologic media often leads to anomalous (non-Fickian) transport behavior, the origin of which remains a matter of debate: whether it arises from variability in fracture permeability (velocity distribution), connectedness in the flow paths through fractures (velocity correlation), or interaction between fractures and matrix. Here we show that this uncertainty of distribution- versus correlation-controlled transport can be resolved by combining convergent and push-pull tracer tests because flow reversibility is strongly dependent on velocity correlation, whereas late-time scaling of breakthrough curves is mainly controlled by velocity distribution. We build on this insight, and propose a Lagrangian statistical model that takes the form of a continuous time random walk (CTRW) with correlated particle velocities. In this framework, velocity distribution and velocity correlation are quantified by a Markov process of particle transition times that is characterized by a distribution function and a transition probability. Our transport model accurately captures the anomalous behavior in the breakthrough curves for both push-pull and convergent flow geometries, with the same set of parameters. Thus, the proposed correlated CTRW modeling approach provides a simple yet powerful framework for characterizing the impact of velocity distribution and correlation on transport in fractured media.
Entanglement Measures for Single- and Multireference Correlation Effects.
Boguslawski, Katharina; Tecmer, Pawel̷; Legeza, Örs; Reiher, Markus
2012-11-01
Electron correlation effects are essential for an accurate ab initio description of molecules. A quantitative a priori knowledge of the single- or multireference nature of electronic structures as well as of the dominant contributions to the correlation energy can facilitate the decision regarding the optimum quantum chemical method of choice. We propose concepts from quantum information theory as orbital entanglement measures that allow us to evaluate the single- and multireference character of any molecular structure in a given orbital basis set. By studying these measures we can detect possible artifacts of small active spaces. PMID:26296018
NASA Astrophysics Data System (ADS)
Milbrath, Brian
2004-05-01
Accurate atmospheric aerosol transport measurements are important to international nuclear test monitoring, emergency response, health and ecosystem toxicology, and climate change. An International Monitoring System (IMS) is being established which will include a suite of aerosol radionuclide sensors. To explore the possibility of using the IMS sites to improve the understanding of global atmospheric aerosol transport, four state-of-the-art aerosol measurement systems were placed atop Rattlesnake Mountain at Pacific Northwest National Laboratory. The Radionuclide Aerosol Sampler/Analyzer measures radionuclide concentration via gamma-ray spectroscopy. The Cascade Impactor Beam Analyzer Technique measures 30 elements in three aerosol sizes using PNNLâ's Ion Beams Materials Analysis Laboratory. The Tapered Element Oscillating Microbalance provides time-averaged aerosol mass concentrations for a range of sizes. The Multi-Filter Rotating Shadowband Radiometer measures the solar irradiance to derive an aerosol optical depth. Results and correlations from the four different detectors will be presented.
Karniski, L P
2001-07-01
The diastrophic dysplasia sulfate transporter (DTDST) gene encodes a transmembrane protein that transports sulfate into chondrocytes to maintain adequate sulfation of proteoglycans. Mutations in this gene are responsible for four recessively inherited chondrodysplasias that include diastrophic dysplasia, multiple epiphyseal dysplasia, atelosteogenesis type 2 and achondrogenesis 1B (ACG-1B). To determine whether the DTDST mutations found in individuals with these chondrodysplasias differ functionally from each other, we compared the sulfate transport activity of 11 reported DTDST mutations. Five mutations, G255E, Delta a1751, L483P, R178X and N425D, had minimal sulfate transport function following expression in Xenopus laevis oocytes. Two mutations, Delta V340 and R279W, transported sulfate at rates of 17 and 32%, respectively, of wild-type DTDST. Four mutations, A715V, C653S, Q454P and G678V, had rates of sulfate transport nearly equal to that of wild-type DTDST. Transport kinetics were not different among the four mutations with near-normal sulfate transport function and wild-type DTDST. When the sulfate transport function of the different DTDST mutations are grouped according to the general phenotypes, individuals with the most severe form, ACG-1B, tend to be homozygous for null mutations, individuals with the moderately severe atelosteogenesis type 2 have at least one allele with a loss-of-function mutation, and individuals with the mildest forms are typically homozygous for mutations with residual sulfate transport function. However, in the X.laevis oocyte expression system, the correlation between residual transport function and the severity of phenotype was not absolute, suggesting that factors in addition to the intrinsic sulfate transport properties of the DTDST protein may influence the phenotype in individuals with DTDST mutations. PMID:11448940
Transport Measurements on Si Nanostructures with Counted Sb Donors
NASA Astrophysics Data System (ADS)
Singh, Meenakshi; Bielejec, Edward; Garratt, Elias; Ten Eyck, Gregory; Bishop, Nathaniel; Wendt, Joel; Luhman, Dwight; Carroll, Malcolm; Lilly, Michael
2014-03-01
Donor based spin qubits are a promising platform for quantum computing. Single qubits using timed implant of donors have been demonstrated.1 Extending this to multiple qubits requires precise control over the placement and number of donors. Such control can be achieved by using a combination of low-energy heavy-ion implants (to reduce depth straggle), electron-beam lithography (to define position), focused ion beam (to localize implants to one lithographic site) and counting the number of implants with a single ion detector.2 We report transport measurements on MOS quantum dots implanted with 5, 10 and 20 Sb donors using the approach described above. A donor charge transition is identified by a charge offset in the transport characteristics. Correlation between the number of donors and the charge offsets is studied. These results are necessary first steps towards fabricating donor nanostructures for two qubit interactions. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. 1J. J. Pla et al., Nature 496, 334 (2013) 2J. A. Seamons et al., APL 93, 043124 (2008).
Overview of mitigation policies and measures in transportation
Ernst, J.
1996-12-31
In this paper the author looks at the general question of what can be done in the transportation sector to address the problem of greenhouse gas emissions. Obviously, fewer vehicles is less emission. But on a global scale he reviews the population growth in major cities, the type of transport employed, the correlation of vehicle ownership and gross national product, as well as the costs, direct and indirect of letting more personal wealth drive one to personal vehicles as a way to transport oneself to work. The increased speed comes with many costs for the individual and for society. The development of mass transportation systems provides a number of benefits, in the form of urban development, less reliance on imported fuels, transport system health, general health and productivity of work force, and reduced costs to government to support transportation systems.
Transport phenomena in correlated quantum liquids: Ultracold Fermi gases and F/N junctions
NASA Astrophysics Data System (ADS)
Li, Hua
Landau Fermi-liquid theory was first introduced by L. D. Landau in the effort of understanding the normal state of Fermi systems, where the application of the concept of elementary excitations to the Fermi systems has proved very fruitful in clarifying the physics of strongly correlated quantum systems at low temperatures. In this thesis, I use Landau Fermi-liquid theory to study the transport phenomena of two different correlated quantum liquids: the strongly interacting ultracold Fermi gases and the ferromagnet/normal-metal (F/N) junctions. The detailed work is presented in chapter II and chapter III of this thesis, respectively. Chapter I holds the introductory part and the background knowledge of this thesis. In chapter II, I study the transport properties of a Fermi gas with strong attractive interactions close to the unitary limit. In particular, I compute the transport lifetimes of the Fermi gas due to superfluid fluctuations above the BCS transition temperature Tc. To calculate the transport lifetimes I need the scattering amplitudes. The scattering amplitudes are dominated by the superfluid fluctuations at temperatures just above Tc. The normal scattering amplitudes are calculated from the Landau parameters. These Landau parameters are obtained from the local version of the induced interaction model for computing Landau parameters. I also calculate the leading order finite temperature corrections to the various transport lifetimes. A calculation of the spin diffusion coefficient is presented in comparison to the experimental findings. Upon choosing a proper value of F0a, I am able to present a good match between the theoretical result and the experimental measurement, which indicates the presence of the superfluid fluctuations near Tc. Calculations of the viscosity, the viscosity/entropy ratio and the thermal conductivity are also shown in support of the appearance of the superfluid fluctuations. In chapter III, I study the spin transport in the low
Chen, Chih-Chieh; Chang, Yia-chung; Kuo, David M T
2015-03-01
We study the charge transport properties of triangular quantum dot molecules (TQDMs) connected to metallic electrodes, taking into account all correlation functions and relevant charging states. The quantum interference (QI) effect of TQDMs resulting from electron coherent tunneling between quantum dots is revealed and well interpreted by the long distance coherent tunneling mechanism. The spectra of electrical conductance of TQDMs with charge filling from one to six electrons clearly depict the many-body and topological effects. The calculated charge stability diagram for conductance and total occupation numbers matches well with the recent experimental measurements. We also demonstrate that the destructive QI effect on the tunneling current of TQDMs is robust with respect to temperature variation, making the single electron QI transistor feasible at higher temperatures. PMID:25660124
Acoustic ship signature measurements by cross-correlation method.
Fillinger, Laurent; Sutin, Alexander; Sedunov, Alexander
2011-02-01
Cross-correlation methods were applied for the estimation of the power spectral density and modulation spectrum of underwater noise generated by moving vessels. The cross-correlation of the signal from two hydrophones allows the separation of vessel acoustic signatures in a busy estuary. Experimental data recorded in the Hudson River are used for demonstration that cross-correlation method measured the same ship noise and ship noise modulation spectra as conventional methods. The cross-correlation method was then applied for the separation of the acoustic signatures of two ships present simultaneously. Presented methods can be useful for ship traffic monitoring and small ship classification, even in noisy harbor environments. PMID:21361436
Non-Markovianity measure using two-time correlation functions
NASA Astrophysics Data System (ADS)
Ali, Md. Manirul; Lo, Ping-Yuan; Tu, Matisse Wei-Yuan; Zhang, Wei-Min
2015-12-01
We investigate non-Markovianity measure using two-time correlation functions for open quantum systems. We define non-Markovianity measure as the difference between the exact two-time correlation function and the one obtained from quantum regression theorem in the Born-Markov approximation. Such non-Markovianity can easily be measured in experiments. We found that the non-Markovianity dynamics in different time scale crucially depends on the system-environment coupling strength and other physical parameters such as the initial temperature of the environment and the initial state of the system. In particular, we obtain the short-time and long-time behaviors of non-Markovianity for different spectral densities. We find that the thermal fluctuation always reduce the non-Markovian memory effect. Also, the non-Markovianity measure shows nontrivial initial state dependence in different time scales.
The role of clustering effects in interpreting nondiffusive transport measurements in tokamaks
NASA Astrophysics Data System (ADS)
Graves, J. P.; Dendy, R. O.; Hopcraft, K. I.; Jakeman, E.
2002-05-01
Recent measurements in tokamak plasmas provide clear evidence for rapid nondiffusive transport and non-Gaussian fluctuations, and have been widely interpreted in terms of the sandpile and self-organized criticality (SOC) paradigms. Many of the statistical physics inferences that can be drawn from observations of, for example, avalanching transport remain to be explored. This paper will show that the statistical characterization of both experimentally observed and simulated avalanching transport phenomena reveals several points of contact with existing stochastic process models that have seldom been deployed in a plasma physics context. It will be shown that statistical physics techniques developed to model clustering of events can be used to characterize microscopic fluctuations in both local density and flux, as well as the global transport properties to which they give rise. This provides a fresh interpretation for some of the key aspects of observed critical gradient-driven transport phenomenology in tokamaks. In particular it provides new evidence for scale-free correlations in the fluctuations which drive the transport, and quantifies their distribution in terms of few-parameter non-Gaussian models. The correlation properties of density fluctuations can be interpreted in terms of random walk models, whereas flux fluctuations cannot: instead they can be described by the discrete negative binomial distribution, which again indicates clustering. Some of the spatio-temporal correlations considered emulate multichannel measurements in tokamaks, and it is shown how these can be used to characterize the transport of naturally arising coherent structures.
Nanoscale electron transport measurements of immobilized cytochrome P450 proteins
NASA Astrophysics Data System (ADS)
Bostick, Christopher D.; Flora, Darcy R.; Gannett, Peter M.; Tracy, Timothy S.; Lederman, David
2015-04-01
Gold nanopillars, functionalized with an organic self-assembled monolayer, can be used to measure the electrical conductance properties of immobilized proteins without aggregation. Measurements of the conductance of nanopillars with cytochrome P450 2C9 (CYP2C9) proteins using conducting probe atomic force microscopy demonstrate that a correlation exists between the energy barrier height between hopping sites and CYP2C9 metabolic activity. Measurements performed as a function of tip force indicate that, when subjected to a large force, the protein is more stable in the presence of a substrate. This agrees with the hypothesis that substrate entry into the active site helps to stabilize the enzyme. The relative distance between hopping sites also increases with increasing force, possibly because protein functional groups responsible for electron transport (ETp) depend on the structure of the protein. The inhibitor sulfaphenazole, in addition to the previously studied aniline, increased the barrier height for electron transfer and thereby makes CYP2C9 reduction more difficult and inhibits metabolism. This suggests that P450 Type II binders may decrease the ease of ETp processes in the enzyme, in addition to occupying the active site.
Correlation of Spatially Filtered Dynamic Speckles in Distance Measurement Application
Semenov, Dmitry V.; Nippolainen, Ervin; Kamshilin, Alexei A.; Miridonov, Serguei V.
2008-04-15
In this paper statistical properties of spatially filtered dynamic speckles are considered. This phenomenon was not sufficiently studied yet while spatial filtering is an important instrument for speckles velocity measurements. In case of spatial filtering speckle velocity information is derived from the modulation frequency of filtered light power which is measured by photodetector. Typical photodetector output is represented by a narrow-band random noise signal which includes non-informative intervals. Therefore more or less precious frequency measurement requires averaging. In its turn averaging implies uncorrelated samples. However, conducting research we found that correlation is typical property not only of dynamic speckle patterns but also of spatially filtered speckles. Using spatial filtering the correlation is observed as a response of measurements provided to the same part of the object surface or in case of simultaneously using several adjacent photodetectors. Found correlations can not be explained using just properties of unfiltered dynamic speckles. As we demonstrate the subject of this paper is important not only from pure theoretical point but also from the point of applied speckle metrology. E.g. using single spatial filter and an array of photodetector can greatly improve accuracy of speckle velocity measurements.
Rheology of fluids measured by correlation force spectroscopy
NASA Astrophysics Data System (ADS)
Radiom, Milad; Robbins, Brian; Honig, Christopher D. F.; Walz, John Y.; Paul, Mark R.; Ducker, William A.
2012-04-01
We describe a method, correlation force spectrometry (CFS), which characterizes fluids through measurement of the correlations between the thermally stimulated vibrations of two closely spaced micrometer-scale cantilevers in fluid. We discuss a major application: measurement of the rheological properties of fluids at high frequency and high spatial resolution. Use of CFS as a rheometer is validated by comparison between experimental data and finite element modeling of the deterministic ring-down of cantilevers using the known viscosity of fluids. The data can also be accurately fitted using a harmonic oscillator model, which can be used for rapid rheometric measurements after calibration. The method is non-invasive, uses a very small amount of fluid, and has no actively moving parts. It can also be used to analyze the rheology of complex fluids. We use CFS to show that (non-Newtonian) aqueous polyethylene oxide solution can be modeled approximately by incorporating an elastic spring between the cantilevers.
Measurement of electrostriction in bone using digital image correlation
NASA Astrophysics Data System (ADS)
Xu, Lianyun; Hou, Zhende; Fu, Donghui; Yang, Lei; Yi, Weitian; Kang, Huimin
2015-02-01
The electromechanical properties of bone may play roles in the growth of bone tissue. The electrostriction effect of bone, which is one of the electromechanical properties of bone, was investigated using the digital image correlation technique (DIC). The advantage of using DIC is that the light beam used for the displacement measurement does not interfere with the electric field exerted on the bone specimen. To measure the bending deflections of a bone cantilever in an electric field, the displacement of the free end surface of the cantilever was measured using the image correlation technique. The experimental results show that the bending direction of the bone cantilevers is independent of the electric field direction and that the bending deflections are proportional to the square of the applied voltages. The attractive force between the charges on the electrode and the unlike charges in the specimen can be equivalent to a uniform distribution load regardless of the thickness of the bone specimen.
Optimizing quantum correlation dynamics by weak measurement in dissipative environment
NASA Astrophysics Data System (ADS)
Du, Shao-Jiang; Xia, Yun-Jie; Duan, De-Yang; Zhang, Lu; Gao, Qiang
2015-04-01
We investigate the protection of quantum correlations of two qubits in independent vacuum reservoirs by means of weak measurements. It is found that the weak measurement can reduce the amount of quantum correlation for one type of initial state at the beginning in a non-Markovian environment and meanwhile it can reduce the occurrence time of entanglement sudden death (ESD) in the process of time evolution. In a Markovian environment, the quantum entanglements of the two kinds of initial states decay rapidly and the weak measurement can further weaken the quantum entanglement, therefore in this case the entanglement cannot be optimized in the evolution process. Project supported by the National Natural Science Foundation of China (Grant Nos. 61178012 and No.11147019).
Correlation techniques and measurements of wave-height statistics
NASA Technical Reports Server (NTRS)
Guthart, H.; Taylor, W. C.; Graf, K. A.; Douglas, D. G.
1972-01-01
Statistical measurements of wave height fluctuations have been made in a wind wave tank. The power spectral density function of temporal wave height fluctuations evidenced second-harmonic components and an f to the minus 5th power law decay beyond the second harmonic. The observations of second harmonic effects agreed very well with a theoretical prediction. From the wave statistics, surface drift currents were inferred and compared to experimental measurements with satisfactory agreement. Measurements were made of the two dimensional correlation coefficient at 15 deg increments in angle with respect to the wind vector. An estimate of the two-dimensional spatial power spectral density function was also made.
Correlative measurement opportunities between ATLAS-1 and UARS experiments
NASA Technical Reports Server (NTRS)
Harrison, Edwin F.; Denn, Fred M.; Gibson, Gary G.
1992-01-01
The first ATmospheric Laboratory for Applications and Science (ATLAS-1) mission was flown aboard the Space Shuttle from March 24 to April 2, 1992. The ATLAS-1 instruments provided a large number of measurements which were coincident with observations from experiments on the Upper Atmosphere Research Satellite (UARS). During the ATLAS-1 mission, simulations were performed to predict when and where coincident measurements between ATLAS and UARS instruments would occur. These predictions were used to develop instrument operation schedules to maximize the correlative opportunities between the two satellites. Results of the simulations provide valuable information for the ATLAS and UARS scientists to compare measurements between various instruments on the two satellites.
Measurement of tracheal mucous transport rate in the horse
Nelson, R.; Hampe, D.W.
1983-06-01
Tracheal mucous transport rates were measured in 12 nonanesthetized horses after an intratracheal injection of 99mtechnetium-sulfur colloid. The transport rate of the subsequent bolus of radioactivity was determined, using a portable scaler rate meter fitted with a high-energy gamma-scintillation probe. A gamma-scintillation camera was used to verify bolus form and movement in 1 horse. The mean tracheal mucous transport rate was 1.66 +/- 0.24 cm/min.
NASA Astrophysics Data System (ADS)
Clements, Ethan; Ross, Preston; Rapp, Anthony; Cai, Hong; Reigle, Alex; Schlonsky, Eli; Lee, Hoseong; Clemens, James; Bali, Samir
2016-05-01
We experimentally investigate optical lattices using three different methods: pump-probe spectroscopy of vibrational energy levels, photon correlation of light scattered by cold atoms, and fluorescence imaging. Photon correlations of the scattered light can be used to measure lattice dwell times and crossover times between lattice sites. From this information we can derive the diffusion constant which can then be compared to direct measurement via fluorescence imaging. Furthermore, by Fourier transforming the time delayed photon correlations we can obtain the intensity spectrum which can be compared directly to pump-probe spectroscopy of the vibrational energy levels. We plan to carefully study situations in which the atomic transport properties deviate from Boltzman Gibbs statistics.
Correlating Electronic Transport to Atomic Structures in Self-Assembled Quantum Wires
Li, An-Ping; Qin, Shengyong; Kim, Tae Hwan; Ouyang, Wenjie; Zhang, Yanning; Weitering, Harm H; Shih, Chih-Kang; Baddorf, Arthur P; Wu, Ruiqian
2012-01-01
Quantum wires, as a smallest electronic conductor, are expected to be a fundamental component in all quantum architectures. The electronic conductance in quantum wires, however, is often dictated by structural instabilities and electron localization at the atomic scale. Here we report on the evolutions of electronic transport as a function of temperature and interwire coupling as the quantum wires of GdSi{sub 2} are self-assembled on Si(100) wire-by-wire. The correlation between structure, electronic properties, and electronic transport are examined by combining nanotransport measurements, scanning tunneling microscopy, and density functional theory calculations. A metal-insulator transition is revealed in isolated nanowires, while a robust metallic state is obtained in wire bundles at low temperature. The atomic defects lead to electron localizations in isolated nanowire, and interwire coupling stabilizes the structure and promotes the metallic states in wire bundles. This illustrates how the conductance nature of a one-dimensional system can be dramatically modified by the environmental change on the atomic scale.
Reliability-guided digital image correlation for image deformation measurement
Pan Bing
2009-03-10
A universally applicable reliability-guided digital image correlation (DIC) method is proposed for reliable image deformation measurement. The zero-mean normalized cross correlation (ZNCC) coefficient is used to identify the reliability of the point computed. The correlation calculation begins with a seed point and is then guided by the ZNCC coefficient. That means the neighbors of the point with the highest ZNCC coefficient in a queue for computed points will be processed first. Thus the calculation path is always along the most reliable direction, and possible error propagation of the conventional DIC method can be avoided. The proposed novel DIC method is universally applicable to the images with shadows, discontinuous areas, and deformation discontinuity. Two image pairs were used to evaluate the performance of the proposed technique, and the successful results clearly demonstrate its robustness and effectiveness.
Correlation Between NDE Measurements and Elongation of Aluminum
Thompson, R. Bruce; Margetan, Frank J.; Nakagawa, Norio; Haldipur, Pranaam
2007-03-21
Complex aluminum forgings can have engineering properties which vary with position due to changes in the underlying local metal microstructure. Consequently, the material properties may be in compliance with production requirements in some regions of the forging, but out of compliance in others. One conical Al-7050 forging of interest was found to have elongation properties which failed required tests in certain regions. NDE measurements sensitive to microstructural changes were carried out to search for correlations with elongation properties. The results of a set of initial feasibility experiments will be reported. Both ultrasonic and eddy current NDE methods were used, with the goal being to determine which properties were sensitive to the elongation. Ultrasonic testing included the measurement of longitudinal and shear-wave velocity, longitudinal wave attenuation, and longitudinal and shear-wave backscattered grain noise. All tests were performed with the sonic beam entering through the coupon face that would be adjacent to the outer surface of the forging. Only modest differences in wave speed and attenuation values were seen among the suite of coupons, but significant differences were seen in backscattered noise levels. These appeared to indicate changes in grain structure but only exhibited partial correlation with elongation. The eddy current measurements were designed to be sensitive to the electrical resistivity. Included were a number of measurement configurations and frequencies. The signals exhibited a significant correlation with elongation.
Guimerà, Xavier; Dorado, Antonio David; Bonsfills, Anna; Gabriel, Gemma; Gabriel, David; Gamisans, Xavier
2016-10-01
Knowledge of mass transport mechanisms in biofilm-based technologies such as biofilters is essential to improve bioreactors performance by preventing mass transport limitation. External and internal mass transport in biofilms was characterized in heterotrophic biofilms grown on a flat plate bioreactor. Mass transport resistance through the liquid-biofilm interphase and diffusion within biofilms were quantified by in situ measurements using microsensors with a high spatial resolution (<50 μm). Experimental conditions were selected using a mathematical procedure based on the Fisher Information Matrix to increase the reliability of experimental data and minimize confidence intervals of estimated mass transport coefficients. The sensitivity of external and internal mass transport resistances to flow conditions within the range of typical fluid velocities over biofilms (Reynolds numbers between 0.5 and 7) was assessed. Estimated external mass transfer coefficients at different liquid phase flow velocities showed discrepancies with studies considering laminar conditions in the diffusive boundary layer near the liquid-biofilm interphase. The correlation of effective diffusivity with flow velocities showed that the heterogeneous structure of biofilms defines the transport mechanisms inside biofilms. Internal mass transport was driven by diffusion through cell clusters and aggregates at Re below 2.8. Conversely, mass transport was driven by advection within pores, voids and water channels at Re above 5.6. Between both flow velocities, mass transport occurred by a combination of advection and diffusion. Effective diffusivities estimated at different biofilm densities showed a linear increase of mass transport resistance due to a porosity decrease up to biofilm densities of 50 g VSS·L(-1). Mass transport was strongly limited at higher biofilm densities. Internal mass transport results were used to propose an empirical correlation to assess the effective diffusivity
Digital correlator for the portable channel prober measurement instrument
NASA Astrophysics Data System (ADS)
Peo, George E., Jr.
1987-12-01
This document describes a Digital Correlator for the Portable Channel Prober Measurement Instrument being developed by the Naval Research Laboratory for use in experiments designed to characterize high frequency (HF) radio channels. This Digital Correlator is a digital signal processor designed and constructed by Stow Computer, 111 old Bolton Road, Stow, MA 01775, (617/508) 897-6838. Two Digital Correlators are integrated into the existing Digital Pre-processor to make a Portable Wideband HF Channel Analyzer. The Portable Wideband HF Channel Analyzer will be located at the receiving site of the channel probing experiment and is situated between the coherent radio receiver and the microcomputer used for data recording and analysis. The Portable Wideband HF Channel Analyzer computes the delay power spectrum of the received waveform. The in-phase and quadrature outputs of the receiver are sampled and converted to digital values by the Analog to Digital Converter, integrated by the Integrator, and correlated with a stored replica of the transmitted waveform by two Digital Correlators. The resulting tap gains are then read by the system microcomputer using the microcomputer interface.
Correlating Function and Imaging Measures of the Medial Longitudinal Fasciculus
Sakaie, Ken; Takahashi, Masaya; Remington, Gina; Wang, Xiaofeng; Conger, Amy; Conger, Darrel; Dimitrov, Ivan; Jones, Stephen; Frohman, Ashley; Frohman, Teresa; Sagiyama, Koji; Togao, Osamu
2016-01-01
Objective To test the validity of diffusion tensor imaging (DTI) measures of tissue injury by examining such measures in a white matter structure with well-defined function, the medial longitudinal fasciculus (MLF). Injury to the MLF underlies internuclear ophthalmoparesis (INO). Methods 40 MS patients with chronic INO and 15 healthy controls were examined under an IRB-approved protocol. Tissue integrity of the MLF was characterized by DTI parameters: longitudinal diffusivity (LD), transverse diffusivity (TD), mean diffusivity (MD) and fractional anisotropy (FA). Severity of INO was quantified by infrared oculography to measure versional disconjugacy index (VDI). Results LD was significantly lower in patients than in controls in the medulla-pons region of the MLF (p < 0.03). FA was also lower in patients in the same region (p < 0.0004). LD of the medulla-pons region correlated with VDI (R = -0.28, p < 0.05) as did FA in the midbrain section (R = 0.31, p < 0.02). Conclusions This study demonstrates that DTI measures of brain tissue injury can detect injury to a functionally relevant white matter pathway, and that such measures correlate with clinically accepted evaluation indices for INO. The results validate DTI as a useful imaging measure of tissue integrity. PMID:26800522
Correlations between LDEX Measurements and the Lunar Plasma Environment
NASA Astrophysics Data System (ADS)
Szalay, Jamey; Horanyi, Mihaly; Poppe, Andrew; Halekas, Jasper
2014-05-01
The Lunar Dust Experiment (LDEX) aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) is an impact ionization dust detector capable of measuring the mass of sub-micron sized dust grains above the lunar surface. LDEX can also search for the putative population of grains with radii on the order of ~ 0.1 μm lofted over the terminator regions by measuring the collective current of dust grains that are below the detection threshold for single impacts. This current, intended to measure the collective impact plasma from multiple small grain impacts, has also shown considerable correlations with plasma measurements from the ARTEMIS (Acceleration, Reconnection, Turbulence, & Electrodynamics of Moon's Interaction with the Sun) mission. Through LADEE's many orbits, LDEX sees time periods with very low variability, having almost no activity as well as periods with very high variability. Since this type of high activity is also observed in anti-ram pointing measurements, much of this current cannot be explained by collections of small dust grain impacts. Given this, comparisons to ARTEMIS data provide a promising way to explain such measurements. This presentation will focus on the correlations between LDEX and ARTEMIS data.
Measurement and correlation of jet fuel viscosities at low temperatures
NASA Technical Reports Server (NTRS)
Schruben, D. L.
1985-01-01
Apparatus and procedures were developed to measure jet fuel viscosity for eight current and future jet fuels at temperatures from ambient to near -60 C by shear viscometry. Viscosity data showed good reproducibility even at temperatures a few degrees below the measured freezing point. The viscosity-temperature relationship could be correlated by two linear segments when plotted as a standard log-log type representation (ASTM D 341). At high temperatures, the viscosity-temperature slope is low. At low temperatures, where wax precipitation is significant, the slope is higher. The breakpoint between temperature regions is the filter flow temperature, a fuel characteristic approximated by the freezing point. A generalization of the representation for the eight experimental fuels provided a predictive correlation for low-temperature viscosity, considered sufficiently accurate for many design or performance calculations.
Sensitivity analysis of unsaturated flow and contaminant transport with correlated parameters
NASA Astrophysics Data System (ADS)
Pan, Feng; Zhu, Jianting; Ye, Ming; Pachepsky, Yakov A.; Wu, Yu-Shu
2011-02-01
SummaryThis study conducts sensitivity and uncertainty analysis for predicting unsaturated flow and contaminant transport in a layered heterogeneous system. The objectives of this work are to: (1) examine the effects of parameter correlations on the sensitivity of unsaturated flow and contaminant transport and (2) assess the relative contributions of parameter uncertainties to the uncertainties of flow and transport at each hydrogeologic layer. Using the unsaturated zone (UZ) of Yucca Mountain (YM) in Nevada, USA, as an example, the study considers cases of independent and correlated parameters. A sampling-based regression method is used, when the model input parameters are independent, and a decomposition method is used for the correlated case. When the parameters are independent, the uncertainty in permeability has the largest contribution to the uncertainties in simulated percolation flux and mass of the reactive tracer arriving at the water table. For the percolation flux, the second largest contribution is from the van Genuchten α; the sorption coefficient of the reactive tracer is the second most important parameter for the tracer mass arrival uncertainty. The sensitivity to the sorption coefficient is larger in the layers of devitrified and zeolitic tuffs than in the layers of vitric tuff. Contributions of the uncertainties in van Genuchten n and porosity to the percolation flux and tracer transport uncertainties are larger in the case of correlated parameters compared with the case of independent parameters due to the correlations of n and porosity with the van Genuchten α and permeability, respectively. These results illustrate the significant effects of parameter correlations on the sensitivity and uncertainty of unsaturated flow and transport. The findings are of significance in facilitating future characterizations to reduce the parameter uncertainties and associated predictive uncertainties of flow and contaminant transport in unsaturated fractured
Transported acid aerosols measured in southern Ontario
NASA Astrophysics Data System (ADS)
Keeler, Gerald J.; Spengler, John D.; Koutrakis, Petros; Allen, George A.; Raizenne, Mark; Stern, Bonnie
During the period 29 June 1986-9 August 1986, a field health study assessing the acute health effects of air pollutants on children was conducted at a summer girls' camp on the northern shore of Lake Erie in SW Ontario. Continuous air pollution measurements of SO 2, O 3, NO x, particulate sulfates, light scattering, and meteorological measurements including temperature, dew point, and wind speed and direction were made. Twelve-hour integrated samples of size fractioned particles were also obtained using dichotomous samplers and Harvard impactors equipped with an ammonia denuder for subsequent hydrogen ion determination. Particulate samples were analyzed for trace elements by X-ray fluorescence and Neutron Activation, and for organic and elemental carbon by a thermal/optical technique. The measured aerosol was periodically very acidic with observed 12-h averaged H + concentrations in the range < 10-560 nmoles m -3. The aerosol H + appeared to represent the net strong acidity after H 2SO 4 reaction with NH 3(g). Average daytime concentrations were higher than night-time for aerosol H +, sulfate, fine mass and ozone. Prolonged episodes of atmospheric acidity, sulfate, and ozone were associated with air masses arriving at the measurement site from the west and from the southwest over Lake Erie. Sulfate concentrations measured at the lakeshore camp were more than twice those measured at inland sites during extreme pollution episodes. The concentration gradient observed with onshore flow was potentially due to enhanced deposition near the lakeshore caused by discontinuities in the meteorological fields in this region.
Spatial correlations, additivity, and fluctuations in conserved-mass transport processes
NASA Astrophysics Data System (ADS)
Das, Arghya; Chatterjee, Sayani; Pradhan, Punyabrata
2016-06-01
We exactly calculate two-point spatial correlation functions in steady state in a broad class of conserved-mass transport processes, which are governed by chipping, diffusion, and coalescence of masses. We find that the spatial correlations are in general short-ranged and, consequently, on a large scale, these transport processes possess a remarkable thermodynamic structure in the steady state. That is, the processes have an equilibrium-like additivity property and, consequently, a fluctuation-response relation, which help us to obtain subsystem mass distributions in the limit of subsystem size large.
Bunch Length Measurements With Laser/SR Cross-Correlation
Miller, Timothy; Daranciang, Dan; Lindenberg, Aaron; Corbett, Jeff; Fisher, Alan; Goodfellow, John; Huang, Xiaobiao; Mok, Walter; Safranek, James; Wen, Haidan; /SLAC
2012-07-06
By operating SPEAR3 in low-{alpha} mode the storage ring can generate synchrotron radiation pulses of order 1ps. Applications include pump-probe x-ray science and the production of THz radiation in the CSR regime. Measurements of the bunch length are difficult, however, because the light intensity is low and streak cameras typically provide resolution of only a few ps. Tests are now underway to resolve the short bunch length using cross-correlation between a 60-fs Ti:Sapphire laser and the visible SR beam in a BBO crystal. In this paper we report on the experimental setup, preliminary measurements and prospects for further improvement.
Measuring the Hydrodynamic Size of Nanoparticles Using Fluctuation Correlation Spectroscopy
NASA Astrophysics Data System (ADS)
Dominguez-Medina, Sergio; Chen, Sishan; Blankenburg, Jan; Swanglap, Pattanawit; Landes, Christy F.; Link, Stephan
2016-05-01
Fluctuation correlation spectroscopy (FCS) is a well-established analytical technique traditionally used to monitor molecular diffusion in dilute solutions, the dynamics of chemical reactions, and molecular processes inside living cells. In this review, we present the recent use of FCS for measuring the size of colloidal nanoparticles in solution. We review the theoretical basis and experimental implementation of this technique and its advantages and limitations. In particular, we show examples of the use of FCS to measure the size of gold nanoparticles, monitor the rotational dynamics of gold nanorods, and investigate the formation of protein coronas on nanoparticles.
Measuring the Hydrodynamic Size of Nanoparticles Using Fluctuation Correlation Spectroscopy.
Dominguez-Medina, Sergio; Chen, Sishan; Blankenburg, Jan; Swanglap, Pattanawit; Landes, Christy F; Link, Stephan
2016-05-27
Fluctuation correlation spectroscopy (FCS) is a well-established analytical technique traditionally used to monitor molecular diffusion in dilute solutions, the dynamics of chemical reactions, and molecular processes inside living cells. In this review, we present the recent use of FCS for measuring the size of colloidal nanoparticles in solution. We review the theoretical basis and experimental implementation of this technique and its advantages and limitations. In particular, we show examples of the use of FCS to measure the size of gold nanoparticles, monitor the rotational dynamics of gold nanorods, and investigate the formation of protein coronas on nanoparticles. PMID:27215820
Optomechanical correlations and signal self-amplification in interferometric measurements
NASA Astrophysics Data System (ADS)
Cohadon, P.-F.; Verlot, P.; Tavernarakis, A.; Briant, T.; Heidmann, A.
2010-05-01
Radiation pressure exerted by light in interferometric measurements is responsible for displacements of mirrors which appear as an additional back-action noise and limit the sensitivity of the measurement. We experimentally study these effects by monitoring in a very high-finesse optical cavity the displacements of a mirror with a sensitivity at the 10-20 m/ level. This very high sensitivity is a step towards the observation of fundamental quantum effects of radiation pressure such as the standard quantum limit in interferometric measurements. We report the observation of optomechanical correlations between two optical beams sent into the same moving mirror cavity. We also observed a self-amplification of a signal, which is a consequence of dynamical back-action of radiation pressure in a detuned cavity, and may improve the interferometric measurement sensitivity beyond the standard quantum limit.
Moscovitz, Jamie E; Nahar, Muna S; Shalat, Stuart L; Slitt, Angela L; Dolinoy, Dana C; Aleksunes, Lauren M
2016-07-01
Because of its widespread use in the manufacturing of consumer products over several decades, human exposure to bisphenol A (BPA) has been pervasive. Fetuses are particularly sensitive to BPA exposure, with a number of negative developmental and reproductive outcomes observed in rodent perinatal models. Xenobiotic transporters are one mechanism to extrude conjugated and unconjugated BPA from the liver. In this study, the mRNA expression of xenobiotic transporters and relationships with total, conjugated, and free BPA levels were explored utilizing human fetal liver samples. The mRNA expression of breast cancer resistance protein (BCRP) and multidrug resistance-associated transporter (MRP)4, as well as BCRP and multidrug resistance transporter 1 exhibited the highest degree of correlation, with r(2) values of 0.941 and 0.816 (P < 0.001 for both), respectively. Increasing concentrations of conjugated BPA significantly correlated with high expression of MRP1 (P < 0.001), MRP2 (P < 0.05), and MRP3 (P < 0.05) transporters, in addition to the NF-E2-related factor 2 transcription factor (P < 0.001) and its prototypical target gene, NAD(P)H quinone oxidoreductase 1 (P < 0.001). These data demonstrate that xenobiotic transporters may be coordinately expressed in the human fetal liver. This is also the first report of a relationship between environmentally relevant fetal BPA levels and differences in the expression of transporters that can excrete the parent compound and its metabolites. PMID:26851240
Sensor Selection for Estimation with Correlated Measurement Noise
NASA Astrophysics Data System (ADS)
Liu, Sijia; Chepuri, Sundeep Prabhakar; Fardad, Makan; Masazade, Engin; Leus, Geert; Varshney, Pramod K.
2016-07-01
In this paper, we consider the problem of sensor selection for parameter estimation with correlated measurement noise. We seek optimal sensor activations by formulating an optimization problem, in which the estimation error, given by the trace of the inverse of the Bayesian Fisher information matrix, is minimized subject to energy constraints. Fisher information has been widely used as an effective sensor selection criterion. However, existing information-based sensor selection methods are limited to the case of uncorrelated noise or weakly correlated noise due to the use of approximate metrics. By contrast, here we derive the closed form of the Fisher information matrix with respect to sensor selection variables that is valid for any arbitrary noise correlation regime, and develop both a convex relaxation approach and a greedy algorithm to find near-optimal solutions. We further extend our framework of sensor selection to solve the problem of sensor scheduling, where a greedy algorithm is proposed to determine non-myopic (multi-time step ahead) sensor schedules. Lastly, numerical results are provided to illustrate the effectiveness of our approach, and to reveal the effect of noise correlation on estimation performance.
Measuring Fisher Information Accurately in Correlated Neural Populations
Kohn, Adam; Pouget, Alexandre
2015-01-01
Neural responses are known to be variable. In order to understand how this neural variability constrains behavioral performance, we need to be able to measure the reliability with which a sensory stimulus is encoded in a given population. However, such measures are challenging for two reasons: First, they must take into account noise correlations which can have a large influence on reliability. Second, they need to be as efficient as possible, since the number of trials available in a set of neural recording is usually limited by experimental constraints. Traditionally, cross-validated decoding has been used as a reliability measure, but it only provides a lower bound on reliability and underestimates reliability substantially in small datasets. We show that, if the number of trials per condition is larger than the number of neurons, there is an alternative, direct estimate of reliability which consistently leads to smaller errors and is much faster to compute. The superior performance of the direct estimator is evident both for simulated data and for neuronal population recordings from macaque primary visual cortex. Furthermore we propose generalizations of the direct estimator which measure changes in stimulus encoding across conditions and the impact of correlations on encoding and decoding, typically denoted by Ishuffle and Idiag respectively. PMID:26030735
Ternary Fission Studies by Correlation Measurements with Ternary Particles
NASA Astrophysics Data System (ADS)
Mutterer, Manfred
2011-10-01
The rare ternary fission process has been studied mainly by inclusive measurements of the energy distributions and fractional yields of the light charged particles (LCPs) from fission, or by experiments on the angular and energy correlation between LCPs and fission fragments (FFs). The present contribution presents a brief overview of more elaborate correlation measurements that comprise the emission of neutrons and γ rays with LCPs and FFs, or the coincident registration of two LCPs. These measurements have permitted identification of new modes of particle-accompanied fission, such as the population of excited states in LCPs, the formation of neutron-unstable nuclei as short-lived intermediate LCPs, as well as the sequential decay of particle-unstable LCPs and quaternary fission. Furthermore, the neutron multiplicity numbers bar ν (A) and distributions of fragment masses A, measured for the ternary fission modes with various LCP isotopes, give a valuable hint of the role played by nuclear shell structure in the fission process near scission. Finally, two different hitherto unknown asymmetries in ternary α-particle emission with respect to the fission axis, called the TRI and ROT effect, were studied in fission reactions induced by polarised cold neutrons.
Gasificaton Transport: A Multiphase CFD Approach & Measurements
Dimitri Gidaspow; Veeraya Jiradilok; Mayank Kashyap; Benjapon Chalermsinsuwan
2009-02-14
The objective of this project was to develop predictive theories for the dispersion and mass transfer coefficients and to measure them in the turbulent fluidization regime, using existing facilities. A second objective was to use our multiphase CFD tools to suggest optimized gasifier designs consistent with aims of Future Gen. We have shown that the kinetic theory based CFD codes correctly compute: (1) Dispersion coefficients; and (2) Mass transfer coefficients. Hence, the kinetic theory based CFD codes can be used for fluidized bed reactor design without any such inputs. We have also suggested a new energy efficient method of gasifying coal and producing electricity using a molten carbonate fuel cell. The principal product of this new scheme is carbon dioxide which can be converted into useful products such as marble, as is done very slowly in nature. We believe this scheme is a lot better than the canceled FutureGen, since the carbon dioxide is safely sequestered.
Detecting correlated errors in state-preparation-and-measurement tomography
NASA Astrophysics Data System (ADS)
Jackson, Christopher; van Enk, S. J.
2015-10-01
Whereas in standard quantum-state tomography one estimates an unknown state by performing various measurements with known devices, and whereas in detector tomography one estimates the positive-operator-valued-measurement elements of a measurement device by subjecting to it various known states, we consider here the case of SPAM (state preparation and measurement) tomography where neither the states nor the measurement device are assumed known. For d -dimensional systems measured by d -outcome detectors, we find there are at most d2(d2-1 ) "gauge" parameters that can never be determined by any such experiment, irrespective of the number of unknown states and unknown devices. For the case d =2 we find gauge-invariant quantities that can be accessed directly experimentally and that can be used to detect and describe SPAM errors. In particular, we identify conditions whose violations detect the presence of correlations between SPAM errors. From the perspective of SPAM tomography, standard quantum-state tomography and detector tomography are protocols that fix the gauge parameters through the assumption that some set of fiducial measurements is known or that some set of fiducial states is known, respectively.
Estimating correlation for a real-time measure of connectivity.
Arunkumar, Akhil; Panday, Ashish; Joshi, Bharat; Ravindran, Arun; Zaveri, Hitten P
2012-01-01
There has recently been considerable interest in connectivity analysis of fMRI and scalp and intracranial EEG time-series. The computational requirements of the pair-wise correlation (PWC), the core time-series measure used to estimate connectivity, presents a challenge to the real-time estimation of the PWC between all pairs of multiple time-series. We describe a parallel algorithm for computing PWC in real-time for streaming data from multiple channels. The algorithm was implemented on the Intel Xeon™ and IBM Cell Broadband Engine™ platforms. We evaluated time to estimate correlation for signals recorded with different acquisition parameters as a comparison to real-time constraints. We demonstrate that the execution time of these efficient implementations meet real-time constraints in most instances. PMID:23367098
Measuring capital market efficiency: Global and local correlations structure
NASA Astrophysics Data System (ADS)
Kristoufek, Ladislav; Vosvrda, Miloslav
2013-01-01
We introduce a new measure for capital market efficiency. The measure takes into consideration the correlation structure of the returns (long-term and short-term memory) and local herding behavior (fractal dimension). The efficiency measure is taken as a distance from an ideal efficient market situation. The proposed methodology is applied to a portfolio of 41 stock indices. We find that the Japanese NIKKEI is the most efficient market. From a geographical point of view, the more efficient markets are dominated by the European stock indices and the less efficient markets cover mainly Latin America, Asia and Oceania. The inefficiency is mainly driven by a local herding, i.e. a low fractal dimension.
ATLAS-3 correlative measurement opportunities with UARS and surface observations
NASA Technical Reports Server (NTRS)
Harrison, Edwin F.; Denn, Fred M.; Gibson, Gary G.
1995-01-01
The third ATmospheric Laboratory for Applications and Science (ATLAS-3) mission was flown aboard the Space Shuttle launched on November 3, 1994. The mission length was approximately 10 days and 22 hours. The ATLAS-3 Earth-viewing instruments provided a large number of measurements which were nearly coincident with observations from experiments on the Upper Atmosphere Research Satellite (UARS). Based on ATLAS-3 instrument operating schedules, simulations were performed to determine when and where correlative measurements occurred between ATLAS and UARS instruments, and between ATLAS and surface observations. Results of these orbital and instrument simulations provide valuable information for scientists to compare measurements between various instruments on the two satellites and at selected surface sites.
Euler and Potential Experiment/CFD Correlations for a Transport and Two Delta-Wing Configurations
NASA Technical Reports Server (NTRS)
Hicks, R. M.; Cliff, S. E.; Melton, J. E.; Langhi, R. G.; Goodsell, A. M.; Robertson, D. D.; Moyer, S. A.
1990-01-01
A selection of successes and failures of Computational Fluid Dynamics (CFD) is discussed. Experiment/CFD correlations involving full potential and Euler computations of the aerodynamic characteristics of four commercial transport wings and two low aspect ratio, delta wing configurations are shown. The examples consist of experiment/CFD comparisons for aerodynamic forces, moments, and pressures. Navier-Stokes equations are not considered.
NASA Astrophysics Data System (ADS)
Xiao, Xing; Yao, Yao; Xie, Ying-Mao; Wang, Xing-Hua; Li, Yan-Ling
2016-06-01
Based on the quantum technique of weak measurement, we propose a scheme to protect the entanglement from correlated amplitude damping decoherence. In contrast to the results of memoryless amplitude damping channel, we show that the memory effects play a significant role in the suppression of entanglement sudden death and protection of entanglement under severe decoherence. Moreover, we find that the initial entanglement could be drastically amplified by the combination of weak measurement and quantum measurement reversal even under the correlated amplitude damping channel. The underlying mechanism can be attributed to the probabilistic nature of weak measurements.
Automated measurement of fast mitochondrial transport in neurons
Miller, Kyle E.; Liu, Xin-An; Puthanveettil, Sathyanarayanan V.
2015-01-01
There is growing recognition that fast mitochondrial transport in neurons is disrupted in multiple neurological diseases and psychiatric disorders. However, a major constraint in identifying novel therapeutics based on mitochondrial transport is that the large-scale analysis of fast transport is time consuming. Here we describe methodologies for the automated analysis of fast mitochondrial transport from data acquired using a robotic microscope. We focused on addressing questions of measurement precision, speed, reliably, workflow ease, statistical processing, and presentation. We used optical flow and particle tracking algorithms, implemented in ImageJ, to measure mitochondrial movement in primary cultured cortical and hippocampal neurons. With it, we are able to generate complete descriptions of movement profiles in an automated fashion of hundreds of thousands of mitochondria with a processing time of approximately one hour. We describe the calibration of the parameters of the tracking algorithms and demonstrate that they are capable of measuring the fast transport of a single mitochondrion. We then show that the methods are capable of reliably measuring the inhibition of fast mitochondria transport induced by the disruption of microtubules with the drug nocodazole in both hippocampal and cortical neurons. This work lays the foundation for future large-scale screens designed to identify compounds that modulate mitochondrial motility. PMID:26578890
Automated measurement of fast mitochondrial transport in neurons.
Miller, Kyle E; Liu, Xin-An; Puthanveettil, Sathyanarayanan V
2015-01-01
There is growing recognition that fast mitochondrial transport in neurons is disrupted in multiple neurological diseases and psychiatric disorders. However, a major constraint in identifying novel therapeutics based on mitochondrial transport is that the large-scale analysis of fast transport is time consuming. Here we describe methodologies for the automated analysis of fast mitochondrial transport from data acquired using a robotic microscope. We focused on addressing questions of measurement precision, speed, reliably, workflow ease, statistical processing, and presentation. We used optical flow and particle tracking algorithms, implemented in ImageJ, to measure mitochondrial movement in primary cultured cortical and hippocampal neurons. With it, we are able to generate complete descriptions of movement profiles in an automated fashion of hundreds of thousands of mitochondria with a processing time of approximately one hour. We describe the calibration of the parameters of the tracking algorithms and demonstrate that they are capable of measuring the fast transport of a single mitochondrion. We then show that the methods are capable of reliably measuring the inhibition of fast mitochondria transport induced by the disruption of microtubules with the drug nocodazole in both hippocampal and cortical neurons. This work lays the foundation for future large-scale screens designed to identify compounds that modulate mitochondrial motility. PMID:26578890
Directional correlation measurements for gamma transitions in /sup 127/Te
de Souza, M.O.M.D.; Saxena, R.N.
1985-02-01
The directional correlation of coincident ..gamma.. transitions in /sup 127/Te has been measured following the ..beta../sup -/ decay of /sup 127/Sb (T/sub 1/2/ = 3.9 d) using Ge(Li)-Ge(Li) and Ge(Li)-NaI(T1) gamma spectrometers. Measurements have been carried out for 14 gamma cascades resulting in the determination of multipole mixing ratios delta(E2/M1) for 15 ..gamma.. transitions. The present results permitted a definite spin assignment of (7/2) for the 785 keV level and confirmation of several previous assignments to other levels in /sup 127/Te. The g factor of the 340 keV ((9/2)/sup -/) level has also been measured using the integral perturbed angular correlation method in the hyperfine magnetic field of a Te in Ni matrix. The results of the g factor as well as the mixing ratio for the 252 keV ((9/2)/sup -/..-->..(11/2)/sup -/) transition support the earlier interpretation of this state as an anomalous coupling state.
Holden, J.E.; Koeppe, R.A.; Gatley, S.J.
1984-01-01
Carrier mediated glucose transport rates across brain capillary and myocardial cell membranes are many times higher than those expected for simple diffusion, and transport regulation can be an important determinant of tissue metabolic status. The authors have investigated the use of glucose analogs and dynamic positron tomography for the non-invasive measurement of unidirectional membrane transport rates. If analog extraction is sufficiently low, transport rates can be inferred directly from fitted kinetic rate constants. Fitting calculations were seen to be sensitive to the difficult to measure rapid components of the arterial input curves, to contributions from blood-borne label in the early data points, and to interference from other chemical forms in cases of significant phosphorylation. This last uncertainty was studied using serial scans of normal brain after venous injection of the well-transported but poorly phosphorylated analog 3-deoxy-3-fluoroglucose. Transport rate constants derived from 4-parameter fits of three hours of data were compared to those derived from 2-parameter fits of the first 12-20 minutes of data. Errors due to trapped label were absorbed primarily into the apparent distribution volume, allowing accurate estimation of transport rate constants from a brief data acquisition period. The study of the distinction of transport from phosphorylation also bears on the important question of the significance of the individual rate constants in the four-parameter fitting of brief dynamic scan sequences in studies of metabolic rate using 2-deoxy-2-fluoroglucose.
Correlation of striatal dopamine transporter imaging with post mortem substantia nigra cell counts.
Kraemmer, Julia; Kovacs, Gabor G; Perju-Dumbrava, Laura; Pirker, Susanne; Traub-Weidinger, Tatiana; Pirker, Walter
2014-12-01
Dopamine transporter imaging is widely used for the differential diagnosis of parkinsonism. Only limited data are available on the relationship between striatal dopamine transporter binding and dopaminergic cell loss in the substantia nigra (SN). We analyzed postmortem SN cell counts in patients who had previously undergone dopamine transporter single-photon emission computed tomography (SPECT). Pathological diagnoses included Parkinson's disease (n = 1), dementia with Lewy bodies (n = 2), multiple system atrophy (n = 1), corticobasal degeneration (n = 2), atypical parkinsonism with multiple pathological conditions (n = 1), Alzheimer's disease (n = 1), and Creutzfeldt-Jakob disease (n = 1). [(12) (3) I]β-CIT SPECT had been performed in all subjects using a standardized protocol on the same triple-head gamma camera. The density of neuromelanin-containing and tyrosine hydroxylase-positive substantia nigra neurons/mm(2) was evaluated in paraffin-embedded tissue sections by morphometric methods. Mean disease duration at the time of dopamine transporter imaging was 2.3 years, and the mean interval from imaging to death was 29.3 months (range, 4-68 months). Visual analysis of dopamine transporter images showed reduced striatal uptake in all seven patients with neurodegenerative parkinsonism, but not in Alzheimer's and Creutzfeldt-Jakob disease cases. Averaged [(right+left)/2] striatal uptake was highly correlated with averaged SN cell counts (rs = 0.98, P < 0.0005 for neuromelanin- and rs = 0.96, P < 0.0005 for tyrosine hydroxylase-positive cells). Similar strong correlations were found in separate analyses for the right and left sides. Striatal dopamine transporter binding highly correlated with postmortem SN cell counts, confirming the validity of dopamine transporter imaging as an excellent in vivo marker of nigrostriatal dopaminergic degeneration. PMID:25048738
NASA Astrophysics Data System (ADS)
van Milligen, B. Ph.; Estrada, T.; García, L.; López Bruna, D.; Carreras, B. A.; Xu, Y.; Ochando, M.; Hidalgo, C.; Reynolds-Barredo, J. M.; López Fraguas, A.; the TJ-II Team
2016-01-01
This work explores the relation between magnetic islands, long range temporal correlations and heat transport. A low order rational surface ({\\rlap- \\iota}=3/2 ) was purposely scanned outward through an electron cyclotron resonance heated (ECRH) plasma in the TJ-II stellarator. Density turbulence and the poloidal flow velocity were characterized using a two channel Doppler reflectometer. Simultaneously, the ECRH power was modulated to characterize heat transport, using measurements from a 12 channel electron cyclotron emission diagnostic. A systematic variation of the poloidal velocity was found to be associated with the {\\rlap- \\iota}=3/2 rational surface. Near the rational surface, the Hurst exponent, quantifying the nature of long-range correlations, was reduced below 0.5 (indicating subdiffusion), while at radii smaller than that of the rational surface, it was found to be significantly enhanced (superdiffusion). In the latter region, heat transport was enhanced as well, thus establishing a link between density fluctuations and anomalous heat transport. The observed variation of the Hurst exponent was consistent with a magnetohydrodynamic turbulence simulation.
Diagnosing ocean energy transports from earth radiation budget measurements
NASA Technical Reports Server (NTRS)
Sohn, Byung-Ju; Smith, Eric A.
1992-01-01
The maximum energy production (MEP) principle suggested by Paltridge (1975) is applied to separate the satellite-inferred required total transports into the atmospheric and the oceanic components within a two-dimensional (2D) framework. For this purpose, the required 2D energy transports (Sohn and Smith, 1991) are imposed on Paltridge's energy balance model which is then solved as a variational problem. The results provide separated atmospheric and oceanic transports on a 2D basis such that the total divergence is equal to the net radiation measured from a satellite.
The Effect of Error Correlation on Interfactor Correlation in Psychometric Measurement
ERIC Educational Resources Information Center
Westfall, Peter H.; Henning, Kevin S. S.; Howell, Roy D.
2012-01-01
This article shows how interfactor correlation is affected by error correlations. Theoretical and practical justifications for error correlations are given, and a new equivalence class of models is presented to explain the relationship between interfactor correlation and error correlations. The class allows simple, parsimonious modeling of error…
Measures of correlations in infinite-dimensional quantum systems
NASA Astrophysics Data System (ADS)
Shirokov, M. E.
2016-05-01
Several important measures of correlations of the state of a finite-dimensional composite quantum system are defined as linear combinations of marginal entropies of this state. This paper is devoted to infinite-dimensional generalizations of such quantities and to an analysis of their properties. We introduce the notion of faithful extension of a linear combination of marginal entropies and consider several concrete examples, the simplest of which are quantum mutual information and quantum conditional entropy. Then we show that quantum conditional mutual information can be defined uniquely as a lower semicontinuous function on the set of all states of a tripartite infinite-dimensional system possessing all the basic properties valid in finite dimensions. Infinite-dimensional generalizations of some other measures of correlations in multipartite quantum systems are also considered. Applications of the results to the theory of infinite-dimensional quantum channels and their capacities are considered. The existence of a Fawzi-Renner recovery channel reproducing marginal states for all tripartite states (including states with infinite marginal entropies) is shown. Bibliography: 47 titles.
Correlation spectrum analyzer for direct measurement of device current noise
NASA Astrophysics Data System (ADS)
Ferrari, Giorgio; Sampietro, Marco
2002-07-01
This article analyzes the realization and the performance of a correlation spectrum analyzer specifically conceived to directly measure the current noise produced by electronic devices with maximum sensitivity. The text describes in detail and gives the design rules of the instrument input amplifiers taking into consideration noise, dynamic range, stability, and bandwidth, together with the effects that a device under test (DUT) having complex impedance introduce. This article shows that the proposed scheme may allow current noise measurements with a sensitivity improved by few orders of magnitude with respect to a standard spectrum analyzer and to a correlation analyzer in voltage scheme whenever the DUT has an impedance larger than few 10 kOmega. Such a sensitivity makes the proposed instrument ideal for the characterization of advanced devices, such as ultrashort channel metal-oxide-semiconductor field effect transistors, mesoscopic junctions, or spin dependent electron transfer devices where it may be necessary to detect noise levels as low as fA/RADICAL:[[RADICAND:[Hz
Correlation of atmospheric optical turbulence and meteorological measurements
NASA Astrophysics Data System (ADS)
Vaucher, Gail M. Tirrell
1989-06-01
The correlation of meteorological events such as the jet stream, gravity waves and boundary layer circulation with the optical turbulence parameters, the transverse coherence length r sub o and the isoplanatic angle is essential for interpreting and forecasting imaging and laser systems performance. In support of the United States Air Force Relay Mirror Experiment, the Naval Postgraduate School performed a series of six site characterization measurements near Kihei, Maui, during August 1987 to July 1988. Spatial and temporal summaries of atmospheric events corresponding to the optical remote sensor data are presented using meteorological data from the National Weather Service Radiosonde Observation stations, synoptic charts, GOES-WEST infrared satellite images, and four Kihei, Maui rawinsonde datasets. To quantify the correlation between optical turbulence measurements and meteorological phenomena, four methods of calculating C square (T) from rawinsonde data were investigated. Results show that existing rawinsonde systems are inadequate for direct C square (T) calculation. However, moderate improvements in the vertical resolution, the temperature resolution and probe response time, will allow direct calculations of optical turbulence parameters from rawinsonde data.
A Pipeline Transport Correlation for Slurries with Small but Dense Particles
Poloski, Adam P; Etchells, Arthur W; Chun, Jaehun; Adkins, Harold E; Casella, Andrew M; Minette, Michael J; Yokuda, Satoru T
2010-04-01
Most correlations/models for minimum transport or critical velocity of slurry were developed for slurries composed of particles greater than ~100-200 µm diameter with narrow particle-size distributions which is typical of the minerals industry. Many other process industries handle smaller particles. In particular waste slurries at the U.S. Department of Energy's Hanford Site have broad size distributions and significant fractions of smaller particles. Despite the size of these wastes, recent PNNL studies indicate that the small particles might be of sufficient density to pose a significant risk for pipeline deposition and plugging. To allow predictive assessment of deposition of fine dense particles for waste slurry transport at the U.S. DOE Hanford site, a pipeline-transport correlation for critical velocity was developed using a simple power-law between two dimensionless numbers important for slurry transport, the deposition Froude and Archimedes numbers. The correlation accords well with experimental data for slurries with Archimedes numbers <80 and is an adequate pipeline design guide for processing Hanford waste slurry.
Recent results and prospects for correlation ECE measurements on TCV
NASA Astrophysics Data System (ADS)
Porte, L.; Coda, S.; Goodman, T. P.; Pochelon, A.; Udintsev, V. S.; Vuille, V.
2012-09-01
The Tokamak a Configuration Variable (TCV) has a two channel correlation electron cyclotron emission (CECE) radiometer with a line of sight perpendicular to the magnetic field. The antenna pattern of this radiometer limits resolution to kθ < 112 m-1 or kθρs < 0.3 at 500 kHz. It can access the region with minor radius ρvol < 0.7. A series of measurements has been made of the turbulence spectra at positive and negative triangularity and as a function of collisionality. Also, a series of measurements has been made as a function of poloidal angle, by varying the plasma vertical position with respect to the antenna, the measurements being made on the same flux surface. It is planned to extensively upgrade the diagnostic by integrating four more channels and acquiring a new front-end for the radiometer. This upgrade should reduce the required number of shots for a radial scan by a factor four and improve the signal-to-noise ratio. It is also planned to use a high gain antenna that will extend access to kρ < 174m-1 or kθρs < 0.5 at 500 kHz. The present system, measurements and the upgrade are described in this paper.
NASA Astrophysics Data System (ADS)
Lü, Yan; Bao, Jing-Dong
2016-07-01
Transport of overdamped particle driven by a colored Lévy noise in a static ratchet potential is investigated. We analyze the influence of the noise in the determination of the current and find that the direction of the current depends on the parameters characterizing the colored Lévy noise. In the present model, the long jumps and the noise correlation are two different factors that can break thermodynamical equilibrium and induce directional transport, the competition between the both leads to current inversion. This implies that an interesting non-equilibrium effect arises from long tail distribution of noise.
NASA Astrophysics Data System (ADS)
Iinuma, Masataka; Suzuki, Yutaro; Nii, Taiki; Kinoshita, Ryuji; Hofmann, Holger F.
2016-03-01
In general, it is difficult to evaluate measurement errors when the initial and final conditions of the measurement make it impossible to identify the correct value of the target observable. Ozawa proposed a solution based on the operator algebra of observables which has recently been used in experiments investigating the error-disturbance trade-off of quantum measurements. Importantly, this solution makes surprisingly detailed statements about the relations between measurement outcomes and the unknown target observable. In the present paper, we investigate this relation by performing a sequence of two measurements on the polarization of a photon, so that the first measurement commutes with the target observable and the second measurement is sensitive to a complementary observable. While the initial measurement can be evaluated using classical statistics, the second measurement introduces the effects of quantum correlations between the noncommuting physical properties. By varying the resolution of the initial measurement, we can change the relative contribution of the nonclassical correlations and identify their role in the evaluation of the quantum measurement. It is shown that the most striking deviation from classical expectations is obtained at the transition between weak and strong measurements, where the competition between different statistical effects results in measurement values well outside the range of possible eigenvalues.
A four-probe thermal transport measurement method for nanostructures
Kim, Jaehyun; Ou, Eric; Sellan, Daniel P.; Shi, Li
2015-04-15
Several experimental techniques reported in recent years have enabled the measurement of thermal transport properties of nanostructures. However, eliminating the contact thermal resistance error from the measurement results has remained a critical challenge. Here, we report a different four-probe measurement method that can separately obtain both the intrinsic thermal conductance and the contact thermal resistance of individual nanostructures. The measurement device consists of four microfabricated, suspended metal lines that act as resistive heaters and thermometers, across which the nanostructure sample is assembled. The method takes advantage of the variation in the heat flow along the suspended nanostructure and across its contacts to the four suspended heater and thermometer lines, and uses sixteen sets of temperature and heat flow measurements to obtain nine of the thermal resistances in the measurement device and the nanostructure sample, including the intrinsic thermal resistance and the two contact thermal resistances to the middle suspended segment of the nanostructure. Two single crystalline Si nanowires with different cross sections are measured in this work to demonstrate the effectiveness of the method. This four-probe thermal transport measurement method can lead to future discoveries of unique size-dependent thermal transport phenomena in nanostructures and low-dimensional materials, in addition to providing reliable experimental data for calibrating theoretical models.
Measurement of particle transport coefficients on Alcator C-Mod
Luke, T.C.T.
1994-10-01
The goal of this thesis was to study the behavior of the plasma transport during the divertor detachment in order to explain the central electron density rise. The measurement of particle transport coefficients requires sophisticated diagnostic tools. A two color interferometer system was developed and installed on Alcator C-Mod to measure the electron density with high spatial ({approx} 2 cm) and high temporal ({le} 1.0 ms) resolution. The system consists of 10 CO{sub 2} (10.6 {mu}m) and 4 HeNe (.6328 {mu}m) chords that are used to measure the line integrated density to within 0.08 CO{sub 2} degrees or 2.3 {times} 10{sup 16}m{sup {minus}2} theoretically. Using the two color interferometer, a series of gas puffing experiments were conducted. The density was varied above and below the threshold density for detachment at a constant magnetic field and plasma current. Using a gas modulation technique, the particle diffusion, D, and the convective velocity, V, were determined. Profiles were inverted using a SVD inversion and the transport coefficients were extracted with a time regression analysis and a transport simulation analysis. Results from each analysis were in good agreement. Measured profiles of the coefficients increased with the radius and the values were consistent with measurements from other experiments. The values exceeded neoclassical predictions by a factor of 10. The profiles also exhibited an inverse dependence with plasma density. The scaling of both attached and detached plasmas agreed well with this inverse scaling. This result and the lack of change in the energy and impurity transport indicate that there was no change in the underlying transport processes after detachment.
Transport of a lattice gas under continuous measurement
NASA Astrophysics Data System (ADS)
Cheung, Hil F. H.; Patil, Yogesh Sharad; Madjarov, Ivaylo S.; Chen, Huiyao Y.; Vengalattore, Mukund
2016-05-01
The act of measurement has a profound consequence on a quantum system. While this backaction has hitherto been discussed as a limitation to the precision of measurements, it is increasingly being appreciated that measurement backaction is a powerful means of quantum control. We have previously demonstrated that backaction from position measurement can modify the coherent tunneling rate of a lattice gas through the Quantum Zeno effect. By suitably designing measurement landscapes we can control the transport properties of the lattice gas. We describe a quantitative study of lattice gas dynamics under continuous quantum measurement in the context of a quantum to classical transition where the atom dynamics goes from a quantum walk at low measurement strengths to classical diffusion at high measurement strengths. We further discuss the prospect of using disorder measurement landscapes to realize a new form of Anderson localization. This work is supported by the ARO MURI on non-equilibrium dynamics.
Dynamic defect correlated dominate activated electronic transport in SrTiO3
Snijders, Paul C; Sen, Cengiz; McConnell, Michael; Ma, Yingzhong; May, Andrew F; Herklotz, Andreas; Wong, Anthony T; Ward, Thomas Zac
2016-01-01
Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. We present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. These results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides.
Dynamic defect correlations dominate activated electronic transport in SrTiO3.
Snijders, Paul C; Şen, Cengiz; McConnell, Michael P; Ma, Ying-Zhong; May, Andrew F; Herklotz, Andreas; Wong, Anthony T; Ward, T Zac
2016-01-01
Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. We present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. These results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides. PMID:27443503
Dynamic defect correlations dominate activated electronic transport in SrTiO3
Snijders, Paul C.; Şen, Cengiz; McConnell, Michael P.; Ma, Ying-Zhong; May, Andrew F.; Herklotz, Andreas; Wong, Anthony T.; Ward, T. Zac
2016-01-01
Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. We present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. These results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides. PMID:27443503
Pseudorapidity dependence of short-range correlations from a multi-phase transport model
NASA Astrophysics Data System (ADS)
Mei-Juan, Wang; Gang, Chen; Guo-Liang, Ma; Yuan-Fang, Wu
2016-03-01
Using a multi-phase transport model (AMPT) that includes both initial partonic and hadronic interactions, we study neighboring bin multiplicity correlations as a function of pseudorapidity in Au+Au collisions at . It is observed that for Au+Au collisions, the short-range correlations of final particles have a trough at central pseudorapidity, while for AuAu collisions, the short-range correlations of final particles have a peak at central pseudorapidity. Our findings indicate that the pseudorapidity dependence of short-range correlations should contain some new physical information, and are not a simple result of the pseudorapidity distribution of final particles. The AMPT results with and without hadronic scattering are compared. It is found that hadron scattering can only increase the short-range correlations to some level, but is not responsible for the different correlation shapes for different energies. Further study shows that the different pseudorapidity dependence of short-range correlations are mainly due to partonic evolution and the following hadronization scheme. Supported by GBL31512, Major State Basic Research Devolopment Program of China (2014CB845402), NSFC (11475149, 11175232, 11375251, 11421505, 11221504)
Measurements of the transport efficiency of the fragment mass analyzer
Back, B.B.; Blumenthal, D.J.; Davids, C.N.
1995-08-01
Extensive calculations of the transport of reaction products were carried out during the design phase of the instrument using the computer code GIOS. These show that the energy acceptance depends strongly on the angular deviation from the optical axis of the instrument. In order to reliably measure cross sections using this instrument it is therefore necessary to verify these calculations empirically.
openBEB: open biological experiment browser for correlative measurements
2014-01-01
Background New experimental methods must be developed to study interaction networks in systems biology. To reduce biological noise, individual subjects, such as single cells, should be analyzed using high throughput approaches. The measurement of several correlative physical properties would further improve data consistency. Accordingly, a considerable quantity of data must be acquired, correlated, catalogued and stored in a database for subsequent analysis. Results We have developed openBEB (open Biological Experiment Browser), a software framework for data acquisition, coordination, annotation and synchronization with database solutions such as openBIS. OpenBEB consists of two main parts: A core program and a plug-in manager. Whereas the data-type independent core of openBEB maintains a local container of raw-data and metadata and provides annotation and data management tools, all data-specific tasks are performed by plug-ins. The open architecture of openBEB enables the fast integration of plug-ins, e.g., for data acquisition or visualization. A macro-interpreter allows the automation and coordination of the different modules. An update and deployment mechanism keeps the core program, the plug-ins and the metadata definition files in sync with a central repository. Conclusions The versatility, the simple deployment and update mechanism, and the scalability in terms of module integration offered by openBEB make this software interesting for a large scientific community. OpenBEB targets three types of researcher, ideally working closely together: (i) Engineers and scientists developing new methods and instruments, e.g., for systems-biology, (ii) scientists performing biological experiments, (iii) theoreticians and mathematicians analyzing data. The design of openBEB enables the rapid development of plug-ins, which will inherently benefit from the “house keeping” abilities of the core program. We report the use of openBEB to combine live cell microscopy
NASA Astrophysics Data System (ADS)
Coppola, S.; Caracciolo, G.; Schmidt, T.
2014-11-01
Intermittent transport is frequently observed in nature and has been proven to accelerate search processes at both the macroscopic (e.g., animals looking for food) and microscopic scale (e.g., protein-DNA interactions). In living cells, active transport of membrane proteins (e.g., membrane receptors) or intracellular vesicles (organelles) has been extensively studied as an example of intermittent behavior. The intermittent stochastic process is commonly analyzed in terms of first-passage probabilities. Here we derive exact occupation probabilities of intermittent active transport, making such analysis available for image correlation spectroscopy techniques. The power of this new theoretical framework is demonstrated on intracellular trafficking of lipid/DNA nanoparticles in living cells for which we were allowed to quantify switching time scales.
Hot electron transport in a strongly correlated transition-metal oxide
Rana, Kumari Gaurav; Yajima, Takeaki; Parui, Subir; Kemper, Alexander F.; Devereaux, Thomas P.; Hikita, Yasuyuki; Hwang, Harold Y.; Banerjee, Tamalika
2013-01-01
Oxide heterointerfaces are ideal for investigating strong correlation effects to electron transport, relevant for oxide-electronics. Using hot-electrons, we probe electron transport perpendicular to the La0.7Sr0.3MnO3 (LSMO)- Nb-doped SrTiO3 (Nb:STO) interface and find the characteristic hot-electron attenuation length in LSMO to be 1.48 ± 0.10 unit cells (u.c.) at −1.9 V, increasing to 2.02 ± 0.16 u.c. at −1.3 V at room temperature. Theoretical analysis of this energy dispersion reveals the dominance of electron-electron and polaron scattering. Direct visualization of the local electron transport shows different transmission at the terraces and at the step-edges. PMID:23429420
NASA Astrophysics Data System (ADS)
Isik, Dilek
This Ph.D. thesis is a result of multidisciplinary research bringing together fundamental concepts in thin film engineering, materials science, materials processing and characterization, electrochemistry, microfabrication, and device physics. Experiments were conducted by tackling scientific problems in the field of thin films and interfaces, with the aim to correlate the morphology, crystalline structure, electronic structure of thin films with the functional properties of the films and the performances of electronic devices based thereon. Furthermore, novel strategies based on interfacial phenomena at electrolyte/thin film interfaces were explored and exploited to control the electrical conductivity of the thin films. Three main chemical systems were the object of the studies performed during this Ph.D., two types of organic semiconductors (azomethine-based oligomers and polymers and soluble pentacene derivatives) and one metal oxide semiconductor (tungsten trioxide, WO3). To explore the morphological properties of the thin films, atomic force microscopy was employed. The morphological properties were further investigated by hyperspectral fluorescence microscopy and tentatively correlated to the charge transport properties of the films. X-ray diffraction (Grazing incidence XRD, GIXRD) was used to investigate the crystallinity of the film and the effect of the heat treatment on such crystallinity, as well as to understand the molecular arrangement of the organic molecules in the thin film. The charge transport properties of the films were evaluated in thin film transistor configuration. For electrolyte gated thin film transistors, time dependent transient measurements were conducted, in parallel to more conventional transistor characterizations, to explore the specific effects played on the gating by the anion and cation constituting the electrolyte. The capacitances of the electrical double layers at the electrolyte/WO3 interface were obtained from
Heat transport measurements in turbulent rotating Rayleigh-Benard convection
Ecke, Robert E; Liu, Yuanming
2008-01-01
We present experimental heat transport measurements of turbulent Rayleigh-Benard convection with rotation about a vertical axis. The fluid, water with Prandtl number ({sigma}) about 6, was confined in a cell which had a square cross section of 7.3 cm x 7.3 cm and a height of 9.4 cm. Heat transport was measured for Rayleigh numbers 2 x 10{sup 5} < Ra < 5 x 10{sup 8} and Taylor numbers 0 < Ta < 5 x 10{sup 9}. We show the variation of normalized heat transport, the Nusselt number, at fixed dimensional rotation rate {Omega}{sub D}, at fixed Ra varying Ta, at fixed Ta varying Ra, and at fixed Rossby number Ro. The scaling of heat transport in the range 10{sup 7} to about 10{sup 9} is roughly 0.29 with a Ro dependent coefficient or equivalently is also well fit by a combination of power laws of the form a Ra{sup 1/5} + b Ra{sup 1/3} . The range of Ra is not sufficient to differentiate single power law or combined power law scaling. The overall impact of rotation on heat transport in turbulent convection is assessed.
Electronic measurement and control of spin transport in silicon
NASA Astrophysics Data System (ADS)
Appelbaum, Ian; Huang, Biqin; Monsma, Douwe J.
2007-05-01
The spin lifetime and diffusion length of electrons are transport parameters that define the scale of coherence in spintronic devices and circuits. As these parameters are many orders of magnitude larger in semiconductors than in metals, semiconductors could be the most suitable for spintronics. So far, spin transport has only been measured in direct-bandgap semiconductors or in combination with magnetic semiconductors, excluding a wide range of non-magnetic semiconductors with indirect bandgaps. Most notable in this group is silicon, Si, which (in addition to its market entrenchment in electronics) has long been predicted a superior semiconductor for spintronics with enhanced lifetime and transport length due to low spin-orbit scattering and lattice inversion symmetry. Despite this promise, a demonstration of coherent spin transport in Si has remained elusive, because most experiments focused on magnetoresistive devices; these methods fail because of a fundamental impedance mismatch between ferromagnetic metal and semiconductor, and measurements are obscured by other magnetoelectronic effects. Here we demonstrate conduction-band spin transport across 10μm undoped Si in a device that operates by spin-dependent ballistic hot-electron filtering through ferromagnetic thin films for both spin injection and spin detection. As it is not based on magnetoresistance, the hot-electron spin injection and spin detection avoids impedance mismatch issues and prevents interference from parasitic effects. The clean collector current shows independent magnetic and electrical control of spin precession, and thus confirms spin coherent drift in the conduction band of silicon.
NASA Astrophysics Data System (ADS)
McCarthy, James; Woolley, Mark; Roth, Luz
2010-04-01
In recent years there has been an increased interest in using polarimetric imaging sensors for terrestrial remote sensing applications because of their ability to discriminate manmade objects in a natural clutter background. However, adverse weather limits the performance of these sensors. Long Wave Infrared (LWIR) polarimetric sensor data of a scene containing manmade objects in a natural clutter background is compared with simultaneously collected environmental data. In this paper, a metric is constructed from the Stokes parameter S1 and is correlated with some environmental channels. There are differences in the correlation outputs, with the sensor data metric positively correlated with some environmental channels, negatively correlated with some channels and uncorrelated with other channels. Results from real data measurements are presented and interpreted. An uncooled LWIR sensor using an achromatic retarder to capture the polarimetric states performed the data collection. The environmental channels include various meteorological channels, radiation loading and soil properties.
Che, W W; Frey, H Christopher; Lau, Alexis K H
2016-08-16
A sequential measurement method is demonstrated for quantifying the variability in exposure concentration during public transportation. This method was applied in Hong Kong by measuring PM2.5 and CO concentrations along a route connecting 13 transportation-related microenvironments within 3-4 h. The study design takes into account ventilation, proximity to local sources, area-wide air quality, and meteorological conditions. Portable instruments were compacted into a backpack to facilitate measurement under crowded transportation conditions and to quantify personal exposure by sampling at nose level. The route included stops next to three roadside monitors to enable comparison of fixed site and exposure concentrations. PM2.5 exposure concentrations were correlated with the roadside monitors, despite differences in averaging time, detection method, and sampling location. Although highly correlated in temporal trend, PM2.5 concentrations varied significantly among microenvironments, with mean concentration ratios versus roadside monitor ranging from 0.5 for MTR train to 1.3 for bus terminal. Measured inter-run variability provides insight regarding the sample size needed to discriminate between microenvironments with increased statistical significance. The study results illustrate the utility of sequential measurement of microenvironments and policy-relevant insights for exposure mitigation and management. PMID:27182735
Correlated Protein Motion Measurements of Dihydrofolate Reductase Crystals
NASA Astrophysics Data System (ADS)
Xu, Mengyang; Niessen, Katherine; Pace, James; Cody, Vivian; Markelz, Andrea
2014-03-01
We report the first direct measurements of the long range structural vibrational modes in dihydrofolate reductase (DHFR). DHFR is a universal housekeeping enzyme that catalyzes the reduction of 7,8-dihydrofolate to 5,6,7,8-tetra-hydrofolate, with the aid of coenzyme nicotinamide adenine dinucleotide phosphate (NADPH). This crucial enzymatic role as the target for anti-cancer [methotrexate (MTX)], and other clinically useful drugs, has made DHFR a long-standing target of enzymological studies. The terahertz (THz) frequency range (5-100 cm-1), corresponds to global correlated protein motions. In our lab we have developed Crystal Anisotropy Terahertz Microscopy (CATM), which directly measures these large scale intra-molecular protein vibrations, by removing the relaxational background of the solvent and residue side chain librational motions. We demonstrate narrowband features in the anisotropic absorbance for mouse DHFR with the ligand binding of NADPH and MTX single crystals as well as Escherichia coli DHFR with the ligand binding of NADPH and MTX single crystals. This work is supported by NSF grant MRI2 grant DBI2959989.
Flap noise characteristics measured by pressure cross correlation techniques
NASA Astrophysics Data System (ADS)
Miller, W. R.
1980-03-01
The aerodynamic sound generated by a realistic aircraft flap system was investigated through the use of cross correlations between surface pressure fluctuations and far field sound. Measurements were conducted in two subsonic wind tunnel studies to determine the strength, distribution, and directivity of the major sources of flap noise at speeds up to 79.0 m/sec. A pilot study was performed on a single flap model to test the measurement technique and provide initial data on the characteristics of flap noise. The major portion of this investigation studied the sound radiated by a realistic large scale model of a triple slotted flap system mounted on a sweptback 6.7 meter semispan model wing. The results of this investigation have identified the major sources of flap generated noise and their dependence of flow defining parameters. In addition, a possible avenue toward the reduction of flap generated noise has been identified via the placement of the flap actuator fairings on the flap system.
Electronic transport in DNA sequences: The role of correlations and inter-strand coupling
NASA Astrophysics Data System (ADS)
Albuquerque, E. L.; Lyra, M. L.; de Moura, F. A. B. F.
2006-10-01
We investigate the electronic properties in sequences of single and double-strand DNA molecules made up from the nucleotides guanine G, adenine A, cytosine C and thymine T. Using a tight-binding formulation we solve the time-dependent Schrödinger equation to compute the spread of initially localized wave packets. We also compute the localization length in finite segments by employing a Green's function recursion method. We compare the results for the genomic DNA sequence with those of two artificial sequences, namely the quasiperiodic Rudin-Shapiro one, which has long-range correlations, and a intra-strand pair correlated DNA sequence. We found that the short-range character of the intra-strand correlations suffices for a quantitative description of the one-electron wave-packet dynamics in the double-strand real DNA sequences. Further, the inter-strand coupling promotes electronic transport over a longer segment.
Long range correlations in stochastic transport with energy and momentum conservation
NASA Astrophysics Data System (ADS)
Kundu, Anupam; Hirschberg, Ori; Mukamel, David
2016-03-01
We consider a simple one-dimensional stochastic model of heat transport which locally conserves both energy and momentum and which is coupled to heat reservoirs with different temperatures at its two ends. The steady state is analyzed and the model is found to obey the Fourier law with finite heat conductivity. In the infinite length limit, the steady state is described locally by an equilibrium Gibbs state. However finite size corrections to this local equilibrium state are present. We analyze these finite size corrections by calculating the on-site fluctuations of the momentum and the two point correlation of the momentum and energy. These correlations are long ranged and have scaling forms which are computed explicitly. We also introduce a multi-lane variant of the model in which correlations vanish in the steady state. The deviation from local equilibrium in this model as expressed in terms of the on-site momentum fluctuations is calculated in the large length limit.
Brown, Dean P; Brown, Thomas G
2008-12-01
Correlations in the illumination field have a profound impact on the image contrast for features near the resolution limit. The pupil polarization affects these correlations. We show that a polarization vortex has a particularly dramatic effect. A theoretical model is given for the correlation matrix of a partially correlated source created by placing an azimuthal polarization vortex mode converter in the pupil plane of a critical illumination system. We then validate this model experimentally using a reversed-wavefront Young interferometer, directly show the impact that the phase of the correlation function has on image contrast. PMID:19065180
Süllow, S; Maksimov, I; Otop, A; Litterst, F J; Perucchi, A; Degiorgi, L; Mydosh, J A
2004-12-31
We present a detailed study of the electronic transport properties on a single crystalline specimen of the moderately disordered heavy-fermion system URh2Ge2. For this material, we find glassy electronic transport in a single crystalline compound. We derive the temperature dependence of the electrical conductivity and establish metallicity by means of optical conductivity and Hall effect measurements. The overall behavior of the electronic transport properties closely resembles that of metallic glasses, with at low temperatures an additional minor spin disorder contribution. We argue that this glassy electronic behavior in a crystalline compound reflects the enhancement of disorder effects as a consequence of strong electronic correlations. PMID:15698001
Longterm Measurements of Bedload-Transport in alpine Catchments
NASA Astrophysics Data System (ADS)
Achleitner, Stefan; Kammerlander, Johannes; Eichner, Bernhard; Schöber, Johannes; Chiari, Michael
2016-04-01
In recent years the necessity of predicting the long-term behavior of sediment transport has increased. On the one hand, the effects of technical measures (e.g. retaining measures, hydropower, etc.) in the natural system are to be evaluated. On the other hand long term ecological studies that are strongly linked to the sediment budgets and its variation are more and more evolving. The ACRP Project DevoBeta-CC addresses the dynamics of long term sediment transport dynamics and its temporal altering. The focus is put on smaller tributary catchments enabling the model development. In total the data from ten catchments connected to the hydropower station Kaunertal (Tyrol/Austria) and eleven catchments linked to the power plant group Sellrain-Silz (Tyrol/Austria) are available. The considered catchments vary regarding their characteristics such as size (3 km³ to 27 km²), glaciation (0 % to 53 %), mean catchment slope (53 % to 92 %) and mean channel gradient (4 % to 49 %). The main data basis are records from the water intake structures operated (partly since 1965) by the TIWAG (Tiroler Wasserkraft AG). The sedimentation dynamics and operational flushings of the connected settling basins are used to measure the transported sediments. Since 1985 even high resolution data (15min intervals) are available. At selected catchments, the operationally recorded data (flushings, load membrane measurements,...) are verified within measuring campaigns using bed load traps upstream. Further, the sedimentation dynamics and grain size distributions in the settling basins are evaluated. Therefor two water intakes were put temporally out of operation, allowing an improved measurement of settled volumes by means of terrestrial surveying. Uncertainty assessments reveal an overall accuracy of estimated annual bed load volumes lower than a factor of two. Additionally, the data set enables to address sediment transport at a sub-annual basis, hence, the presented data set is unique regarding
A rain splash transport equation assimilating field and laboratory measurements
Dunne, T.; Malmon, D.V.; Mudd, S.M.
2010-01-01
Process-based models of hillslope evolution require transport equations relating sediment flux to its major controls. An equation for rain splash transport in the absence of overland flow was constructed by modifying an approach developed by Reeve (1982) and parameterizing it with measurements from single-drop laboratory experiments and simulated rainfall on a grassland in East Africa. The equation relates rain splash to hillslope gradient, the median raindrop diameter of a storm, and ground cover density; the effect of soil texture on detachability can be incorporated from other published results. The spatial and temporal applicability of such an equation for rain splash transport in the absence of overland flow on uncultivated hillslopes can be estimated from hydrological calculations. The predicted transport is lower than landscape-averaged geologic erosion rates from Kenya but is large enough to modify short, slowly eroding natural hillslopes as well as microtopographic interrill surfaces between which overland flow transports the mobilized sediment. Copyright 2010 by the American Geophysical Union. Copyright 2010 by the American Geophysical Union.
Someswara Rao, Chinta; Viswanadha Raju, S
2016-03-01
In this paper, we consider correlation coefficient, rank correlation coefficient and cosine similarity measures for evaluating similarity between Homo sapiens and monkeys. We used DNA chromosomes of genome wide genes to determine the correlation between the chromosomal content and evolutionary relationship. The similarity among the H. sapiens and monkeys is measured for a total of 210 chromosomes related to 10 species. The similarity measures of these different species show the relationship between the H. sapiens and monkey. This similarity will be helpful at theft identification, maternity identification, disease identification, etc. PMID:26981409
Measurement and correlates of empathy among female Japanese physicians
2012-01-01
Background The measurement of empathy is important in the assessment of physician competence and patient outcomes. The prevailing view is that female physicians have higher empathy scores compared with male physicians. In Japan, the number of female physicians has increased rapidly in the past ten years. In this study, we focused on female Japanese physicians and addressed factors that were associated with their empathic engagement in patient care. Methods The Jefferson Scale of Empathy (JSE) was translated into Japanese by using the back-translation procedure, and was administered to 285 female Japanese physicians. We designed this study to examine the psychometrics of the JSE and group differences among female Japanese physicians. Results The item-total score correlations of the JSE were all positive and statistically significant, ranging from .20 to .54, with a median of .41. The Cronbach’s coefficient alpha was .81. Female physicians who were practicing in “people-oriented” specialties obtained a significantly higher mean empathy score than their counterparts in “procedure-” or “technology-oriented” specialties. In addition, physicians who reported living with their parents in an extended family or living close to their parents, scored higher on the JSE than those who were living alone or in a nuclear family. Conclusions Our results provide support for the measurement property and reliability of the JSE in a sample of female Japanese physicians. The observed group differences associated with specialties and living arrangement may have implications for sustaining empathy. In addition, recognizing these factors that reinforce physicians’ empathy may help physicians to avoid career burnout. PMID:22726449
Review on measurement techniques of transport properties of nanowires.
Rojo, Miguel Muñoz; Calero, Olga Caballero; Lopeandia, A F; Rodriguez-Viejo, J; Martín-Gonzalez, Marisol
2013-12-01
Physical properties at the nanoscale are novel and different from those in bulk materials. Over the last few decades, there has been an ever growing interest in the fabrication of nanowire structures for a wide variety of applications including energy generation purposes. Nevertheless, the study of their transport properties, such as thermal conductivity, electrical conductivity or Seebeck coefficient, remains an experimental challenge. For instance, in the particular case of nanostructured thermoelectrics, theoretical calculations have shown that nanowires offer a promising way of enhancing the hitherto low efficiency of these materials in the conversion of temperature differences into electricity. Therefore, within the thermoelectrical community there has been a great experimental effort in the measurement of these quantities in actual nanowires. The measurements of these properties at the nanoscale are also of interest in fields other than energy, such as electrical components for microchips, field effect transistors, sensors, and other low scale devices. For all these applications, knowing the transport properties is mandatory. This review deals with the latest techniques developed to perform the measurement of these transport properties in nanowires. A thorough overview of the most important and modern techniques used for the characterization of different kinds of nanowires will be shown. PMID:24113712
He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.; Clark, Kyle; Weber, Adam Z.; Kostecki, Robert
2011-08-01
The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.
Andreev transport in a correlated ferromagnet-quantum-dot-superconductor device
NASA Astrophysics Data System (ADS)
Weymann, I.; Wójcik, K. P.
2015-12-01
The spin-resolved Andreev reflection processes in a hybrid ferromagnet-quantum-dot-superconductor device are theoretically studied. In particular, the transport coefficients, such as the Andreev transmission as well as the linear-response Andreev conductance, are calculated by means of the numerical renormalization group method. It is shown that, generally, transport properties are conditioned by the interplay of correlations leading to the Kondo effect, superconducting proximity effect, and ferromagnetic-contact-induced exchange field. The exchange field is shown to greatly affect the low-energy behavior of the Andreev transmission by splitting the Kondo resonance. Moreover, it leads to a nonmonotonic dependence of the Andreev conductance on the dot level position. At low temperatures, the conductance has a peak at the particle-hole symmetry point, which however becomes quickly suppressed with increasing the temperature. The mechanisms responsible for those effects are thoroughly discussed.
PRIOR GENETIC CORRELATIONS AND NON-MEASURED TRAITS
Technology Transfer Automated Retrieval System (TEKTRAN)
Current international genetic evaluations are based on how related country populations are genetically (across-country genetic correlations). Those correlations may be influenced strongly by prior expectations that were not based on sound scientific principles. Objective methods to predict prior cor...
Correlated few-photon transport in one-dimensional waveguides: Linear and nonlinear dispersions
Roy, Dibyendu
2011-04-15
We address correlated few-photon transport in one-dimensional waveguides coupled to a two-level system (TLS), such as an atom or a quantum dot. We derive exactly the single-photon and two-photon current (transmission) for linear and nonlinear (tight-binding sinusoidal) energy-momentum dispersion relations of photons in the waveguides and compare the results for the different dispersions. A large enhancement of the two-photon current for the sinusoidal dispersion has been seen at a certain transition energy of the TLS away from the single-photon resonances.
Effect of disorder with long-range correlation on transport in graphene nanoribbon
Zhang, GP; Gao, M.; Zhang, Y.Y.; Liu, N.; Qin, Z.J.; Shanqqan, M.H.
2012-06-13
Transport in disordered armchair graphene nanoribbons (AGR) with long-range correlation between quantum wire contacts is investigated by a transfer matrix combined with Landauer's formula. The metal-insulator transition is induced by disorder in neutral AGR. Therein, the conductance is one conductance quantum for the metallic phase and exponentially decays otherwise, when the length of AGR approaches infinity and far longer than its width. Similar to the case of long-range disorder, the conductance of neutral AGR first increases and then decreases while the conductance of doped AGR monotonically decreases, as the disorder strength increases. In the presence of strong disorder, the conductivity depends monotonically and non-monotonically on the aspect ratio for heavily doped and slightly doped AGR, respectively. For edge disordered graphene nanoribbon, the conductance increases with the disorder strength of long-range correlated disordered while no delocalization exists, since the edge disorder induces localization.
Measuring Black Smoker Fluid Flow Rates Using Image Correlation Velocimetry
NASA Astrophysics Data System (ADS)
Crone, T. J.; Wilcock, W. S.; McDuff, R. E.
2006-12-01
Motivated by a desire to find non-invasive methods for obtaining time-series measurements of fluid flow rates through mid-ocean ridge black smokers, we are developing an image-based velocimetry technique that will provide this information through the analysis of video sequences showing the turbulent structures of black smoker effluent jets. Our ultimate goal is to develop an autonomous seafloor instrument suitable for use with a cabled seafloor observatory that can provide extended time-series measurements of black smoker discharge rates with little user intervention. The method we are developing is based on the two-dimensional cross-correlation of an array of overlapping subimages from two sequential image frames within a sequence. For each pair of images this yields a two- dimensional representation of the instantaneous velocity field in the imaged flow. For each video sequence, the set of these "image velocity fields" from all image pairs is temporally averaged to yield a smoothed representation of the time-averaged image flow field. A transformation is then applied to convert the image flow fields into a relative discharge rate. We have developed a computational algorithm to implement this technique and have successfully applied it to video sequences collected in the late 1980s and early 1990s showing the discharge of black smokers in the Main Endeavour field of the Juan de Fuca Ridge over the course of weeks and months. We are able to resolve velocity fields that are qualitatively consistent with those predicted by plume theory from 5 seconds of video (150 image pairs), but it is difficult to calibrate or assess the precision of the technique with field data alone. In order to address these issues, as well as refine the computational algorithm, we have conducted laboratory simulations of black smoker jets with known discharge rates over a range of Reynolds numbers. We have recorded these simulations to obtain video image sequences that are similar to those
Millisecond measurement of transport during and after an electroporation pulse.
Prausnitz, M R; Corbett, J D; Gimm, J A; Golan, D E; Langer, R; Weaver, J C
1995-01-01
Electroporation involves the application of an electric field pulse that creates transient aqueous pathways in lipid bilayer membranes. Transport through these pathways can occur by different mechanisms during and after a pulse. To determine the time scale of transport and the mechanism(s) by which it occurs, efflux of a fluorescent molecule, calcein, across erythrocyte ghost membranes was measured with a fluorescence microscope photometer with millisecond time resolution during and after electroporation pulses several milliseconds in duration. One of four outcomes was typically observed. Ghosts were: (1) partially emptied of calcein, involving efflux primarily after the pulse; (2) completely emptied of calcein, involving efflux primarily after the pulse; (3) completely emptied of calcein, involving efflux both during and after the pulse; or (4) completely emptied of calcein, involving efflux primarily during the pulse. Partial emptying, involving significant efflux during the pulse, was generally not observed. We conclude that under some conditions transport caused by electroporation occurs predominantly by electrophoresis and/or electroosmosis during a pulse, although under other conditions transport occurs in part or almost completely by diffusion within milliseconds to seconds after a pulse. PMID:7612828
Effectively classically correlated state of a measured system and a bosonic measurement apparatus
Camalet, S.
2011-04-15
We consider a multilevel system coupled to a bosonic measurement apparatus. We derive exact expressions for the time-dependent expectation values of a large class of physically relevant observables that depend on degrees of freedom of both systems. We find that, for this class, though the two systems become entangled as a result of their interaction, they appear classically correlated for long enough times. The unique corresponding time-dependent separable state is determined explicitly. To better understand the physical parameters that control the time scale of this effective disentanglement process, we study a one-dimensional measurement apparatus.
Transportable IOT measurement station for direct-broadcast satellites
NASA Astrophysics Data System (ADS)
Ulbricht, Michael
A transportable 11.7-12.5-GHz flux-density measurement facility for use in the in-orbit testing (IOT) of the FRG TV-Sat direct-broadcast satellites is described. Major components include a 1.2-m-diameter antenna, the fluxmeter, a radiometer to determine atmospheric attenuation, a weather station, and a control and data-processing computer; all of the components are mounted on a 5.10 x 2.35 x 2.70-m trailer. IOT performance parameters include gain/temperature ratio 15.9 dB/K, measurement range -97 to -117 dBW/sq m, measurement accuracy less than 0.5 dB rms, and measurement rate 250-650 msec. Photographs and a block diagram are provided.
Rapidity bin multiplicity correlations from a multi-phase transport model
NASA Astrophysics Data System (ADS)
Wang, Mei-Juan; Chen, Gang; Wu, Yuan-Fang; Ma, Guo-Liang
2016-03-01
The central-arbitrary bin and forward-backward bin multiplicity correlation patterns for Au+Au collisions at sqrt{s_{NN}} = 7.7-62.4 GeV are investigated within a multi-phase transport (AMPT) model. An interesting observation is that for sqrt{s_{NN}} < 19.6 GeV Au+Au collisions, these two correlation patterns both have an increase with the pseudorapidity gap, while for sqrt{s_{NN}} > 19.6 GeV Au+Au collisions, they decrease. We mainly discuss the influence of different evolution stages of collision system on the central-arbitrary bin correlations, such as the initial conditions, partonic scatterings, hadronization scheme and hadronic scatterings. Our results show that the central-arbitrary bin multiplicity correlations have different responses to partonic phase and hadronic phase, which can be suggested as a good probe to explore the dynamical evolution mechanism of the hot dense matter in high-energy heavy-ion collisions.
NASA Astrophysics Data System (ADS)
Niciejewski, R.; Meier, R. R.; Stevens, M. H.; Skinner, W. R.; Cooper, M.; Marshall, A.; Ortland, D. A.; Wu, Q.
2010-12-01
The Upper Atmosphere Research Satellite (UARS) was launched by Space Shuttle STS-48 on 12 September 1991 and included a direct Doppler experiment, the High Resolution Doppler Imager, HRDI. Ten years later, the TIMED Doppler Interferometer, TIDI, joined HRDI in direct neutral wind observations of the mesosphere and lower thermosphere (MLT). The removal of instrumental artifacts from the raw spectra, complicated by the loss of good attitude knowledge for HRDI and unexpected signal contamination for TIDI has matured to a level where excellent agreement exists for common volume measurements between them. The two experiments were able to perform overlapping measurements of tidal and planetary wave fields for three years permitting unprecedented clarity in the description of the cyclical behaviour of the MLT. The exhaust plume left in the wake of the launch of STS-107 (16 January 2003) provided a stringent test between TIDI, HRDI, and independent imagery, the latter of which showed rapid transport across the equator to the Antarctic. Though TIDI and HRDI observed the atmosphere at the plume’s location at different local solar times, all correlative observations supported the hypothesis indicated by once-a-day images of the plume - rapid southern transport over thousands of kilometers. A simple spectral analysis of simultaneous observations of the neutral winds by HRDI and TIDI indicates that a classical two-day wave (longitudinal wavenumber = 3) exists in the southern hemisphere during the ~80-hour transit time coinciding with the transport of the plume exhaust from launch to the Antarctic. A least-squares fit of the wave in the meridional wind indicates maximum amplitude in the MLT of ~80 m/s southwards. Other shuttle launches have also been accompanied by evidence that implies rapid transport of exhaust plumes to Arctic latitudes. This paper will summarize correlative HRDI and/or TIDI wind observations of these events and associated spectral analysis of the
Moisture dependence of radon transport in concrete: measurements and modeling.
Cozmuta, I; van der Graaf, E R; de Meijer, R J
2003-10-01
The moisture dependence of the radon-release rate of concrete was measured under well controlled conditions. It was found that the radon-release rate almost linearly increases up to moisture contents of 50 to 60%. At 70 to 80% a maximum was found and for higher moisture contents the radon-release rate decreases very steeply. It is demonstrated that this dependence can be successfully modeled on basis of the multi-phase radon-transport equation in which values for various input parameters (porosity, diffusion coefficient, emanation factor, etc.) were obtained from independent measurements. Furthermore, a concrete structure development model was used to predict at any moment in time the values of input parameters that depend on the evolution of the concrete microstructure. Information on the concrete manufacturing recipe and curing conditions (temperature, relative humidity) was used as input for the concrete structure model. The combined radon transport and concrete structure model supplied sufficient information to assess the influence of relative humidity on the radon source and barrier aspects of concrete. More specifically, the model has been applied to estimate the relative contributions to the radon exhalation rate of a 20-cm-thick concrete slab of radon produced in the concrete slab itself and due to diffusive transport through the slab of radon from soil gas. PMID:13678285
Generalized emittance measurements in a beam transport line
Skelly, J.; Gardner, C.; Luccio, A.; Kponou, A.; Reece, K.
1991-01-01
Motivated by the need to commission 3 beam transport lines for the new AGS Booster project, we have developed a generalized emittance-measurement program; beam line specifics are entirely resident in data tables, not in program code. For instrumentation, the program requires one or more multi-wire profile monitors; one or multiple profiles are acquired from each monitor, corresponding to one or multiple tunes of the transport line. Emittances and Twiss parameters are calculated using generalized algorithms. The required matix descriptions of the beam optics are constructed by an on-line general beam modeling program. Design of the program, its algorithms, and initial experience with it will be described. 4 refs., 2 figs., 1 tab.
Measurement of critical current for bulk superconductors by transport method
NASA Astrophysics Data System (ADS)
Kikegawa, T. S.; Sasaki, H.; Tada, H.; Kudo, T.; Kikuchi, H.; Konno, K.; Muralidhar, M.; Murakami, M.; Noto, K.; Awaji, S.; Watanabe, K.
2005-10-01
The method of critical current measurement in a magnetic field using a DC transport current has been developed for bulk superconductors. The measurement of the critical current, Ic, up to 50 A at a temperature of 77 K became possible by reducing thermal and mechanical stresses caused in the sample due to rapid cooling from the room temperature to 77 K and a electromagnetic force (Lorentz force), etc. The critical current of 50 A is reduced into 14,000 A/cm 2 of critical current density, Jc, with a cross section of 0.0035 cm 2. The magnetic field dependence of Jc was investigated from 1 T to 10 T for (Nd 0.33Eu 0.38Gd 0.28)Ba 2Cu 3O y bulk superconductors. The magnetization measurement was performed for the sample cut out from the same part of the same crystal as that used for the transport measurement of Ic, from which the critical current density was also estimated. In low magnetic fields, the magnitude of critical current density obtained by the transport method, JcT, was larger than that estimated from the magnetization, JcM. This result reflects the difference of criterion to determine the value of JcT and JcM. In higher magnetic fields, however, it was observed that JcT was smaller than JcM and the irreversibility field estimated from JcT- B curve is slightly lower than that given by the magnetic hysteresis. When the external magnetic field was applied, anomalous voltage peaks in the I- V curve were observed below IcT, which may be caused by the sample slightly moving by the Lorentz force.
Developing a Measure of Traffic Calming Associated with Elementary School Students’ Active Transport
Nicholson, Lisa M.; Turner, Lindsey; Slater, Sandy J.; Abuzayd, Haytham; Chriqui, Jamie F.; Chaloupka, Frank
2014-01-01
The objective of this study is to develop a measure of traffic calming with nationally available GIS data from NAVTEQ and to validate the traffic calming index with the percentage of children reported by school administrators as walking or biking to school, using data from a nationally representative sample of elementary schools in 2006-2010. Specific models, with and without correlated errors, examined associations of objective GIS measures of the built environment, nationally available from NAVTEQ, with the latent construct of traffic calming. The best fit model for the latent traffic calming construct was determined to be a five factor model including objective measures of intersection density, count of medians/dividers, count of low mobility streets, count of roundabouts, and count of on-street parking availability, with no correlated errors among items. This construct also proved to be a good fit for the full measurement model when the outcome measure of percentage of students walking or biking to school was added to the model. The traffic calming measure was strongly, significantly, and positively correlated with the percentage of students reported as walking or biking to school. Applicability of results to public health and transportation policies and practices are discussed. PMID:25506255
Dynamic defect correlated dominate activated electronic transport in SrTiO3
Snijders, Paul C; Sen, Cengiz; McConnell, Michael; Ma, Yingzhong; May, Andrew F; Herklotz, Andreas; Wong, Anthony T; Ward, Thomas Zac
2016-01-01
Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. We present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activatedmore » electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. These results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides.« less
Dynamic defect correlations dominate activated electronic transport in SrTiO3
Snijders, Paul C.; Sen, Cengiz; McConnell, Michael P.; Ma, Ying-Zhong; May, Andrew F.; Herklotz, Andreas; Wong, Anthony T.; Ward, Thomas Zac
2016-07-22
Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. In this paper, we present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The resultsmore » show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. In conclusion, these results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides.« less
Memory, bias, and correlations in bidirectional transport of molecular-motor-driven cargoes
NASA Astrophysics Data System (ADS)
Bhat, Deepak; Gopalakrishnan, Manoj
2013-10-01
Molecular motors are specialized proteins that perform active, directed transport of cellular cargoes on cytoskeletal filaments. In many cases, cargo motion powered by motor proteins is found to be bidirectional, and may be viewed as a biased random walk with fast unidirectional runs interspersed with slow tug-of-war states. The statistical properties of this walk are not known in detail, and here, we study memory and bias, as well as directional correlations between successive runs in bidirectional transport. We show, based on a study of the direction-reversal probabilities of the cargo using a purely stochastic (tug-of-war) model, that bidirectional motion of cellular cargoes is, in general, a correlated random walk. In particular, while the motion of a cargo driven by two oppositely pulling motors is a Markovian random walk, memory of direction appears when multiple motors haul the cargo in one or both directions. In the latter case, the Markovian nature of the underlying single-motor processes is hidden by internal transitions between degenerate run and pause states of the cargo. Interestingly, memory is found to be a nonmonotonic function of the number of motors. Stochastic numerical simulations of the tug-of-war model support our mathematical results and extend them to biologically relevant situations.
Theory and Measurement of Partially Correlated Persistent Scatterers
NASA Astrophysics Data System (ADS)
Lien, J.; Zebker, H. A.
2011-12-01
Interferometric synthetic aperture radar (InSAR) time-series methods can effectively estimate temporal surface changes induced by geophysical phenomena. However, such methods are susceptible to decorrelation due to spatial and temporal baselines (radar pass separation), changes in orbital geometries, atmosphere, and noise. These effects limit the number of interferograms that can be used for differential analysis and obscure the deformation signal. InSAR decorrelation effects may be ameliorated by exploiting pixels that exhibit phase stability across the stack of interferograms. These so-called persistent scatterer (PS) pixels are dominated by a single point-like scatterer that remains phase-stable over the spatial and temporal baseline. By identifying a network of PS pixels for use in phase unwrapping, reliable deformation measurements may be obtained even in areas of low correlation, where traditional InSAR techniques fail to produce useful observations. PS identification is challenging in natural terrain, due to low reflectivity and few corner reflectors. Shanker and Zebker [1] proposed a PS pixel selection technique based on maximum-likelihood estimation of the associated signal-to-clutter ratio (SCR). In this study, we further develop the underlying theory for their technique, starting from statistical backscatter characteristics of PS pixels. We derive closed-form expressions for the spatial, rotational, and temporal decorrelation of PS pixels as a function of baseline and signal-to-clutter ratio. We show that previous decorrelation and critical baseline expressions [2] are limiting cases of our result. We then describe a series of radar scattering simulations and show that the simulated decorrelation matches well with our analytic results. Finally, we use our decorrelation expressions with maximum-likelihood SCR estimation to analyze an area of the Hayward Fault Zone in the San Francisco Bay Area. A series of 38 images of the area were obtained from C
NASA Astrophysics Data System (ADS)
Massei, N.; Dupont, J. P.; Mahler, B. J.; Laignel, B.; Fournier, M.; Valdes, D.; Ogier, S.
2006-09-01
SummaryIn many places throughout the world, drinking water is frequently contaminated by turbidity. Such turbidity, however, as representative of particle transport, can be used as to trace certain features of particle transport properties. In order to investigate the relation between particle and dissolved species transport and hydrodynamics in karst systems, correlation and spectral analyses were performed on time series of rainfall (input signal), and water level, specific conductance, and turbidity (output signals) at a karst spring system in the chalk aquifer of the lower Seine valley, France. This system is composed of a spring connected to a sinkhole on the chalk plateau where a small creek enters the subsurface. The autocorrelation functions for water level and turbidity showed a short memory effect, demonstrating the short duration of the influence of flood events on these two parameters, whereas specific conductance (representing less-mineralized storm-derived water) had a much longer memory effect. These results were interpreted as reflecting the rapid reactivity of the spring to rain events, with storage of water in the fissured chalk explaining the longer memory effect for specific conductance than for particles. Energy spectra computed by fast Fourier transform of autocorrelation functions showed a strong structure in the output signals, whereas the input signal (rainfall) was random, thus allowing assessment and comparison of system behaviour regarding dissolved and solid transport, as well as hydraulics. Cross-correlation functions (which allow an assessment of impulse response functions) confirmed the low inertia of the system for water level and turbidity and the much higher inertia for specific conductance. In addition to the main peak, two secondary peaks in the cross-correlation functions suggest the existence of additional flowpaths that might involve the contribution of other point-source recharge and/or delayed infiltration through the
Methods for measuring and transporting angular momentum in general relativity
NASA Astrophysics Data System (ADS)
Nichols, David; Flanagan, Eanna; Stein, Leo; Vines, Justin
2016-03-01
For an observer in a curved spacetime, elements of the dual space of the set of linearized Poincare transformations from the observer's tangent space to itself can naturally be interpreted as local linear and angular momenta. We give an operational procedure by which the observer can measure such local linear and angular momenta from the local spacetime geometry. These momenta can be interpreted as approximate versions of the linear and angular momenta of the spacetime about the observer's location. The measurement algorithm allows for a more accurate determination of the linear and angular momentum of stationary, asymptotically flat systems than previous proposals do. We also describe a prescription by which observers at different locations can compare values of their measured linear and angular momentum by using a specific transport equation, which refines previous proposals. These operational definitions may also prove useful for clarifying the physical interpretation of Bondi-Metzner-Sachs asymptotic charges in asymptotically flat spacetimes.
NASA Astrophysics Data System (ADS)
Isik, Dilek
This Ph.D. thesis is a result of multidisciplinary research bringing together fundamental concepts in thin film engineering, materials science, materials processing and characterization, electrochemistry, microfabrication, and device physics. Experiments were conducted by tackling scientific problems in the field of thin films and interfaces, with the aim to correlate the morphology, crystalline structure, electronic structure of thin films with the functional properties of the films and the performances of electronic devices based thereon. Furthermore, novel strategies based on interfacial phenomena at electrolyte/thin film interfaces were explored and exploited to control the electrical conductivity of the thin films. Three main chemical systems were the object of the studies performed during this Ph.D., two types of organic semiconductors (azomethine-based oligomers and polymers and soluble pentacene derivatives) and one metal oxide semiconductor (tungsten trioxide, WO3). To explore the morphological properties of the thin films, atomic force microscopy was employed. The morphological properties were further investigated by hyperspectral fluorescence microscopy and tentatively correlated to the charge transport properties of the films. X-ray diffraction (Grazing incidence XRD, GIXRD) was used to investigate the crystallinity of the film and the effect of the heat treatment on such crystallinity, as well as to understand the molecular arrangement of the organic molecules in the thin film. The charge transport properties of the films were evaluated in thin film transistor configuration. For electrolyte gated thin film transistors, time dependent transient measurements were conducted, in parallel to more conventional transistor characterizations, to explore the specific effects played on the gating by the anion and cation constituting the electrolyte. The capacitances of the electrical double layers at the electrolyte/WO3 interface were obtained from
Hysteresis in Transport Critical-Current Measurements of Oxide Superconductors
Goodrich, L. F.; Stauffer, T. C.
2001-01-01
We have investigated magnetic hysteresis in transport critical-current (Ic) measurements of Ag-matrix (Bi,Pb)2Sr2Ca2Cu3O10–x (Bi-2223) and AgMg-matrix Bi2Sr2CaCu2O8+x (Bi-2212) tapes. The effect of magnetic hysteresis on the measured critical current of high temperature superconductors is a very important consideration for every measurement procedure that involves more than one sweep of magnetic field, changes in field angle, or changes in temperature at a given field. The existence of this hysteresis is well known; however, the implications for a measurement standard or interlaboratory comparisons are often ignored and the measurements are often made in the most expedient way. A key finding is that Ic at a given angle, determined by sweeping the angles in a given magnetic field, can be 17 % different from the Ic determined after the angle was fixed in zero field and the magnet then ramped to the given field. Which value is correct is addressed in the context that the proper sequence of measurement conditions reflects the application conditions. The hysteresis in angle-sweep and temperature-sweep data is related to the hysteresis observed when the field is swept up and down at constant angle and temperature. The necessity of heating a specimen to near its transition temperature to reset it to an initial state between measurements at different angles and temperatures is discussed. PMID:27500042
Measurement of the Critical Deposition Velocity in Slurry Transport through a Horizontal Pipe
Erian, Fadel F.; Furfari, Daniel J.; Kellogg, Michael I.; Park, Walter R.
2001-03-01
Critical Deposition Velocity (CDV) is an important design and operational parameter in slurry transport. Almost all existing correlations that are used to predict this parameter have been obtained experimentally from slurry transport tests featuring single solid species in the slurry mixture. No correlations have been obtained to describe this parameter when the slurry mixture contains more than one solid species having a wide range of specific gravities, particle size distributions, and volume concentrations within the overall slurry mixture. There are no physical or empirical bases that can justify the extrapolation or modification of the existing single species correlations to include all these effects. New experiments must be carried out to obtain new correlations that would be suited for these types of slurries, and that would clarify the mechanics of solids deposition as a function of the properties of the various solid species. Our goal in this paper is to describe a robust experimental technique for the accurate determination of the critical deposition velocity associated with the transport of slurries in horizontal or slightly inclined pipes. Because of the relative difficulty encountered during the precise determination of this useful operational parameter, it has been the practice to connect it with some transitional behavior of more easily measurable flow parameters such as the pressure drop along the slurry pipeline. In doing so, the critical deposition velocity loses its unique and precise definition due to the multitude of factors that influence such transitional behaviors. Here, data has been obtained for single species slurries made up of washed garnet and water and flowing through a 1- inch clear pipe. The selected garnet had a narrow particle size distribution with a mean diameter of 100 mm, approximately. The critical deposition velocity was measured for garnet/water slurries of 10, 20, and 30 percent solids concentration by volume.
Electrical transport measurements of individual bismuth nanowires and carbon nanotubes
NASA Astrophysics Data System (ADS)
Jang, Wan Young
Nanostructures are defined by reducing dimensions. When the reduced size of materials is comparable to the Fermi wavelength, quantum size effect occurs. Dimensionality plays a critical role in determining the electronic properties of materials, because the density of states of materials is quite different. Nanowires have attracted much attention recently due to their fundamental interest and potential applications. A number of materials have been tried. Among them, bismuth has unique properties. Bismuth has the smallest effective mass as small as 0.001me. This small effective mass of Bi nanowires allows one to observe the quantum confinement effect easily. Also Bi nanowires are good candidates for a low-dimensional transport study due to long mean free path. Because of these remarkable properties of Bi nanowires, many efforts have been made to study Bi nanowires. However, because bismuth is extremely sensitive to the oxide, it is very difficult to make a reliable device. So far, array measurements of Bi nanowires have been reported. The study is focused on the synthesis and electric transport measurements of individual Bi nanowires. Bi nanowires are synthesized by electrodeposition using either anodic aluminum oxide (AAO) templates or commercially available track etched polycarbonate membranes (PCTE). The desired nanowire has a heterostructure of Au - Bi - Au. Au wires on both sides serve as contact electrodes with Bi. To extract nanowires from PCTE or AAO, several attempts have been made. Devices consisting of single Bi nanowires grown by hydrothermal method are fabricated and electrical measurements have been carried out after in-situ deposition of Pt electrodes. The temperature dependence of resistance of majority of nanowires increases with decreasing temperature, showing polycrystalline nature of nanowires. However, some nanowires show resistance peaks at low temperature, suggesting quantum size effect (QSE). Magnetoresistance (MR) has also been measured. We
NASA Astrophysics Data System (ADS)
Batle, J.; Ooi, C. H. Raymond; Abdalla, S.
2015-12-01
The purity entanglement measure introduced by Los Alamos group a decade ago is reexamined in the light of interesting features. The role played by purity, reaching a real thermodynamic limit, in detecting quantum phase transitions is studied with a different system, the bond-alternating X Y model in an external magnetic field. The properties of this system are described as well. By considering the dynamics of the original X Y model, we observe that nonergodicity is also grasped by the purity measure, in accordance with other quantum correlation measures that have no common physical or mathematical relation. Adiabaticity is not recovered from the dynamic to the static case, in accordance with one of the consequences of the celebrated Kibble-Zurek mechanism.
Accurate measurement of liquid transport through nanoscale conduits
NASA Astrophysics Data System (ADS)
Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua
2016-04-01
Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems.
Accurate measurement of liquid transport through nanoscale conduits.
Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua
2016-01-01
Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems. PMID:27112404
Accurate measurement of liquid transport through nanoscale conduits
Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua
2016-01-01
Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems. PMID:27112404
Non-Markovianity: initial correlations and nonlinear optical measurements
Dijkstra, Arend G.; Tanimura, Yoshitaka
2012-01-01
By extending the response function approach developed in nonlinear optics, we analytically derive an expression for the non-Markovianity in the time evolution of a system in contact with a quantum mechanical bath, and find a close connection with the directly observable nonlinear optical response. The result indicates that memory in the bath-induced fluctuations rather than in the dissipation causes non-Markovianity. Initial correlations between states of the system and the bath are shown to be essential for a correct understanding of the non-Markovianity. These correlations are included in our treatment through a preparation function. PMID:22753819
Hipp, James A.; Corseuil, Marui W.; Dodson, Elizabeth A.
2014-01-01
Introduction Attributes of the built environment can influence active transportation, including use of public transportation. However, the relationship between perceptions of the built environment and use of public transportation deserves further attention. The objectives of this study were 1) to assess the relationship between personal characteristics and public transportation use with meeting national recommendations for moderate physical activity through walking for transportation and 2) to examine associations between personal and perceived environmental factors and frequency of public transportation use. Methods In 2012, we administered a mail-based survey to 772 adults in St Louis, Missouri, to assess perceptions of the built environment, physical activity, and transportation behaviors. The abbreviated International Physical Activity Questionnaire was used to assess walking for transportation and use of public transportation. The Neighborhood Environment Walkability Scale was used to examine perceptions of the built environment. Associations were assessed by using multinomial logistic regression. Results People who used public transportation at least once in the previous week were more likely to meet moderate physical activity recommendations by walking for transportation. Age and employment were significantly associated with public transportation use. Perceptions of high traffic speed and high crime were negatively associated with public transportation use. Conclusion Our results were consistent with previous research suggesting that public transportation use is related to walking for transportation. More importantly, our study suggests that perceptions of traffic speed and crime are related to frequency of public transportation use. Future interventions to encourage public transportation use should consider policy and planning decisions that reduce traffic speed and improve safety. PMID:24995654
Benefits of Time Correlation Measurements for Passive Screening
NASA Astrophysics Data System (ADS)
Murer, David; Blackie, Douglas; Peerani, Paolo
2014-02-01
The “FLASH Portals Project” is a collaboration between Arktis Radiation Detectors Ltd (CH), the Atomic Weapons Establishment (UK), and the Joint Research Centre (European Commission), supported by the Technical Support Working Group (TSWG). The program's goal was to develop and demonstrate a technology to detect shielded special nuclear materials (SNM) more efficiently and less ambiguously by exploiting time correlation. This study presents experimental results of a two-sided portal monitor equipped with in total 16 4He fast neutron detectors as well as four polyvinyltoluene (PVT) plastic scintillators. All detectors have been synchronized to nanosecond precision, thereby allowing the resolution of time correlations from timescales of tens of microseconds (such as (n, γ) reactions) down to prompt fission correlations directly. Our results demonstrate that such correlations can be detected in a typical radiation portal monitor (RPM) geometry and within operationally acceptable time scales, and that exploiting these signatures significantly improves the performance of the RPM compared to neutron counting. Furthermore, the results show that some time structure remains even in the presence of heavy shielding, thus significantly improving the sensitivity of the detection system to shielded SNM.
Atmospheric pollution measurement by optical cross correlation methods - A concept
NASA Technical Reports Server (NTRS)
Fisher, M. J.; Krause, F. R.
1971-01-01
Method combines standard spectroscopy with statistical cross correlation analysis of two narrow light beams for remote sensing to detect foreign matter of given particulate size and consistency. Method is applicable in studies of generation and motion of clouds, nuclear debris, ozone, and radiation belts.
Tomato root growth, gravitropism, and lateral development: correlation with auxin transport
NASA Technical Reports Server (NTRS)
Muday, G. K.; Haworth, P.
1994-01-01
Tomato (Lycopersicon esculentum, Mill.) roots were analyzed during growth on agar plates. Growth of these roots was inhibited by the auxin transport inhibitors naphthylphthalamic acid (NPA) and semicarbazone derivative I (SCB-1). The effect of auxin transport inhibitors on root gravitropism was analyzed by measurement of the angle of gravitropic curvature after the roots were reoriented 90 degrees from the vertical. NPA and SCB-1 abolished both the response of these roots to gravity and the formation of lateral roots, with SCB-1 being the more effective at inhibition. Auxins also inhibited root growth. Both auxins tested has a slight effect on the gravity response, but this effect is probably indirect, since auxins reduced the growth rate. Auxins also stimulated lateral root growth at concentration where primary root growth was inhibited. When roots were treated with both IAA and NPA simultaneously, a cumulative inhibition of root growth was found. When both compounds were applied together, analysis of gravitropism and lateral root formation indicated that the dominant effect was exerted by auxin transport inhibitors. Together, these data suggest a model for the role of auxin transport in controlling both primary and lateral root growth.
Tomato root growth, gravitropism, and lateral development: correlation with auxin transport.
Muday, G K; Haworth, P
1994-01-01
Tomato (Lycopersicon esculentum, Mill.) roots were analyzed during growth on agar plates. Growth of these roots was inhibited by the auxin transport inhibitors naphthylphthalamic acid (NPA) and semicarbazone derivative I (SCB-1). The effect of auxin transport inhibitors on root gravitropism was analyzed by measurement of the angle of gravitropic curvature after the roots were reoriented 90 degrees from the vertical. NPA and SCB-1 abolished both the response of these roots to gravity and the formation of lateral roots, with SCB-1 being the more effective at inhibition. Auxins also inhibited root growth. Both auxins tested has a slight effect on the gravity response, but this effect is probably indirect, since auxins reduced the growth rate. Auxins also stimulated lateral root growth at concentration where primary root growth was inhibited. When roots were treated with both IAA and NPA simultaneously, a cumulative inhibition of root growth was found. When both compounds were applied together, analysis of gravitropism and lateral root formation indicated that the dominant effect was exerted by auxin transport inhibitors. Together, these data suggest a model for the role of auxin transport in controlling both primary and lateral root growth. PMID:11540612
Field measurements of tracer gas transport by barometric pumping
Lagus, P.L.; McKinnis, W.B.; Hearst, J.R.; Burkhard, N.R.; Smith, C.F.
1994-07-28
Vertical gas motions induced by barometric pressure variations can carry radioactive gases out of the rubblized region produced by an underground nuclear explosion, through overburden rock, into the atmosphere. To better quantify transit time and amount of transport, field experiments were conducted at two sites on Pahute Mesa, Kapelli and Tierra, where radioactive gases had been earlier detected in surface cracks. At each site, two tracer gases were injected into the rubblized chimney 300-400 m beneath the surface and their arrival was monitored by concentration measurements in gas samples extracted from shallow collection holes. The first ``active`` tracer was driven by a large quantity of injected air; the second ``passive`` tracer was introduced with minimal gas drive to observe the natural transport by barometric pumping. Kapelli was injected in the fall of 1990, followed by Tierra in the fall of 1991. Data was collected at both sites through the summer of 1993. At both sites, no surface arrival of tracer was observed during the active phase of the experiment despite the injection of several million cubic feet of air, suggesting that cavity pressurization is likely to induce horizontal transport along high permeability layers rather than vertical transport to the surface. In contrast, the vertical pressure gradients associated with barometric pumping brought both tracers to the surface in comparable concentrations within three months at Kapelli, whereas 15 months elapsed before surface arrival at Tierra. At Kapelli, a quasisteady pumping regime was established, with tracer concentrations in effluent gases 1000 times smaller than concentrations thought to exist in the chimney. Tracer concentrations observed at Tierra were typically an order of magnitude smaller. Comparisons with theoretical calculations suggest that the gases are traveling through {approximately}1 millimeter vertical fractures spaced 2 to 4 meters apart. 6 refs., 18 figs., 3 tabs.
Donarini, Andrea; Grifoni, Milena
2015-01-01
Summary The interplay of exchange correlations and spin–orbit interaction (SOI) on the many-body spectrum of a copper phtalocyanine (CuPc) molecule and their signatures in transport are investigated. We first derive a minimal model Hamiltonian in a basis of frontier orbitals that is able to reproduce experimentally observed singlet–triplet splittings. In a second step SOI effects are included perturbatively. Major consequences of the SOI are the splitting of former degenerate levels and a magnetic anisotropy, which can be captured by an effective low-energy spin Hamiltonian. We show that scanning tunneling microscopy-based magnetoconductance measurements can yield clear signatures of both these SOI-induced effects. PMID:26885457
Siegert, Benjamin; Donarini, Andrea; Grifoni, Milena
2015-01-01
The interplay of exchange correlations and spin-orbit interaction (SOI) on the many-body spectrum of a copper phtalocyanine (CuPc) molecule and their signatures in transport are investigated. We first derive a minimal model Hamiltonian in a basis of frontier orbitals that is able to reproduce experimentally observed singlet-triplet splittings. In a second step SOI effects are included perturbatively. Major consequences of the SOI are the splitting of former degenerate levels and a magnetic anisotropy, which can be captured by an effective low-energy spin Hamiltonian. We show that scanning tunneling microscopy-based magnetoconductance measurements can yield clear signatures of both these SOI-induced effects. PMID:26885457
The Internal Structure and Correlates of Some School Climate Measures.
ERIC Educational Resources Information Center
Gottfredson, Gary D.
J. M. Richards (1989) has demonstrated that when individuals' reports about environments are aggregated to create environmental measures, the use of coefficient alpha to estimate single occasion reliability can be misleadingly elevated and that alpha cannot distinguish an environmental measure from a "disguised measure of individual differences."…
Masutomi, Ryuichi Okamoto, Tohru
2015-06-22
An adsorbate-induced quantum Hall system at the cleaved InSb surfaces is investigated in magnetic fields up to 14 T using low-temperature scanning tunneling microscopy and spectroscopy combined with transport measurements. We show that an enhanced Zeeman splitting in the Shubnikov-de Haas oscillations is explained by an exchange enhancement of spin splitting and potential disorder, both of which are obtained from the spatially averaged density of states (DOS). Moreover, the Altshuler–Aronov correlation gap is observed in the spatially averaged DOS at 0 T.
Hessler, J.P.; Ogren, P.J.
1992-08-31
A technique was developed for determining relative importance and correlation between reactions making up a complex kinetic system. This technique was used to investigate measurements of optical absorption cross sections and the correlation between cross sections and measured rate coefficients. It is concluded that (1) species, initial conditions, and temporal regions may be identified where cross sections may be measured without interference from the kinetic behavior of the observed species and (2) experiments designed to measure rate coefficients will always be correlated with the absorption cross section of the observed species. This correlation may reduce the accuracy of rate coefficient measurements.
Direct measurements of transport properties are essential for site characterization
Wright, J.; Conca, J.L.
1994-08-01
Direct measurements of transport parameters on subsurface sediments using, the UFA method provided detailed hydrostratigraphic mapping, and subsurface flux distributions at a mixed-waste disposal site at Hanford. Seven hundred unsaturated conductivity measurements on fifty samples were obtained in only six months total of UFA run time. These data are used to provide realistic information to conceptual models, predictive models and restoration strategies. The UFA instrument consists of an ultracentrifuge with a constant, ultralow flow pump that provides fluid to the sample surface through a rotating seal assembly and microdispersal system. Effluent from the sample is collected in a transparent, volumetrically-calibrated chamber at the bottom of the sample assembly. Using a strobe light, an observer can check the chamber while the sample is being centrifuged. Materials can be run in the UFA as recomposited samples or in situ samples can be subcored directly into the sample UFA chamber.
Skin Friction and Transition Location Measurement on Supersonic Transport Models
NASA Technical Reports Server (NTRS)
Kennelly, Robert A., Jr.; Goodsell, Aga M.; Olsen, Lawrence E. (Technical Monitor)
2000-01-01
Flow visualization techniques were used to obtain both qualitative and quantitative skin friction and transition location data in wind tunnel tests performed on two supersonic transport models at Mach 2.40. Oil-film interferometry was useful for verifying boundary layer transition, but careful monitoring of model surface temperatures and systematic examination of the effects of tunnel start-up and shutdown transients will be required to achieve high levels of accuracy for skin friction measurements. A more common technique, use of a subliming solid to reveal transition location, was employed to correct drag measurements to a standard condition of all-turbulent flow on the wing. These corrected data were then analyzed to determine the additional correction required to account for the effect of the boundary layer trip devices.
Wetherill, Reagan R.; Jagannathan, Kanchana; Lohoff, Falk W.; Ehrman, Ronald; O’Brien, Charles P.; Childress, Anna Rose; Franklin, Teresa R.
2014-01-01
Cigarette-dependent smokers automatically and involuntarily orient attention towards smoking cues (SCs). This attentional bias is clinically significant, as it may contribute to relapse. Thus, identifying neural and genetic correlates of attentional bias is critical for improving interventions. Our previous studies show that the dopamine transporter (DAT) SLC6A3 genotype exerts profound effects on limbic responses to SCs. One potential mechanism underlying these effects is greater attentional bias for SCs. Here, we explored associations between attentional bias for SCs and neural responses to SCs among ‘sated’ smokers genotyped for the SLC6A3 polymorphism. Pseudo-Continuous arterial spin-labeled (pCASL) perfusion fMR images were acquired during SC exposure in 35 smokers genotyped for the SLC6A3 variable number of tandem repeats (VNTR) polymorphism (n=16, 9-repeats; n=19,10/10-repeats). Participants completed a visual dot-probe attentional bias task, which contained pictures of smoking and non-smoking pictures, to examine whether genetic variation in DAT influences attentional bias and to investigate relationships between attentional bias and neural responses to SCs. Although attentional bias to smoking pictures was not significantly different between 9-repeats and 10/10-repeats, 9-repeats showed a positive correlation between attentional bias and increased SC-induced brain activity in the amygdala; whereas, 10/10-repeats showed an inverse correlation in the medial orbitofrontal cortex (mOFC). In group comparisons, 9-repeats exhibited positive correlations between attentional bias and SCs in the mOFC and amygdala, relative to 10/10-repeats. Findings suggest that genetic variation in the DAT gene influences brain responses associated with attentional bias; thus, providing additional support for a SC-vulnerable endophenotype. PMID:23061530
Characterization of S -T+ transition dynamics via correlation measurements
NASA Astrophysics Data System (ADS)
Dickel, Christian; Foletti, Sandra; Umansky, Vladimir; Bluhm, Hendrik
2015-09-01
Nuclear spins are an important source of dephasing for electron spin qubits in GaAs quantum dots. Most studies of their dynamics have focused on the relatively slow longitudinal polarization. We present a semiclassical model and experimental data showing that the dynamics of the transverse hyperfine field can be probed by correlating individual Landau-Zener sweeps across the S -T+ transition of a two-electron spin qubit. The relative Larmor precession of different nuclear spin species leads to oscillations in these correlations, which decay due to dephasing of the nuclei. In the presence of spin-orbit coupling, oscillations with the absolute Larmor frequencies whose amplitude depends on the spin-orbit coupling strength are expected. These oscillations reflect rapid dynamics of the transverse hyperfine field, which are relevant for several qubit control schemes.