These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Replaceable blade turbine and stationary specimen corrosion testing facility  

NASA Technical Reports Server (NTRS)

A facility was constructed to provide relatively low cost testing of hot section turbine blade and vane materials under hot corrosion conditions more akin to service environments. The facility consists of a small combustor whose pressurized gas flow can be directed to either a test section consisting of three small cascaded specimens or to a partial admittance single-stage axial flow turbine. The turbine rotor contains 28 replaceable turbine blades. The combustion gases resulting from the burning of Jet A-l fuel can be seeded with measured amounts of alkali salts. This facility is described here along with preliminary corrosion test results obtained during the final checkout of the facility.

Santoro, G. J.; Calfo, F. D.

1985-01-01

2

Replaceable blade turbine and stationary specimen corrosion testing facility  

Microsoft Academic Search

A facility was constructed to provide relatively low-cost testing of hot-section turbine blade and vane materials under hot-corrosion conditions more akin to service environments. The facility consists of a small combustor whose pressurized gas flow can be directed to either a test section consisting of three small cascaded specimens or to a partial admittance single-stage axial-flow turbine. The turbine rotor

G. J. Santoro; F. D. Calfo

1985-01-01

3

Multisystem corrosion monitoring in a cyclic reheat test facility: Phase 1  

SciTech Connect

The work described in this report was the first stage of an EPRI-sponsored corrosion investigation utilizing the CAPCIS electrochemical monitoring system installed in a cyclic reheat test facility on a flue gas slipstream at the Scholz Steam Plant of Gulf Power Company. The primary reasons for incorporating the continuous corrosion monitoring system in the cyclic reheat investigation were that unexpectedly high corrosion rates had been observed in earlier tests at certain locations within the test exchanger and the precise reasons for these high rates of attack were not well understood. The corrosion behavior was not typical of the limited service experience on full scale units and the reasons for this required clarification. Controlled temperature weight loss and electrochemical probes were installed in the unit in place of three of the 1-inch diameter heat exchanger tubes. The corrosion behavior of Inconel Alloy 625 over the temperature range 260/degree/ to 120/degree/F (127/degree/ to 49/degree/C) was evaluated at mid-stream and sidewall locations. The efects on corrosion of operational variables and cleaning procedures were also evaluated. The severe corrosion attack sustained on the Inconel Alloy 625 was proved to result from a combination of effects which included the flue gas flow pattern, local cool-spots within the unit and preferential locations at which ash deposits could accumulate. 5 refs., 50 figs., 17 tabs.

Farrell, D.M.; Cox, W.M.; Gearey, D.

1988-04-01

4

Integrated Corrosion Facility for long-term testing of candidate materials for high-level radioactive waste containment  

SciTech Connect

A long-term-testing facility, the Integrated Corrosion Facility (I.C.F.), is being developed to investigate the corrosion behavior of candidate construction materials for high-level-radioactive waste packages for the potential repository at Yucca Mountain, Nevada. Corrosion phenomena will be characterized in environments considered possible under various scenarios of water contact with the waste packages. The testing of the materials will be conducted both in the liquid and high humidity vapor phases at 60 and 90{degrees}C. Three classes of materials with different degrees of corrosion resistance will be investigated in order to encompass the various design configurations of waste packages. The facility is expected to be in operation for a minimum of five years, and operation could be extended to longer times if warranted. A sufficient number of specimens will be emplaced in the test environments so that some can be removed and characterized periodically. The corrosion phenomena to be characterized are general, localized, galvanic, and stress corrosion cracking. The long-term data obtained from this study will be used in corrosion mechanism modeling, performance assessment, and waste package design. Three classes of materials are under consideration. The corrosion resistant materials are high-nickel alloys and titanium alloys; the corrosion allowance materials are low-alloy and carbon steels; and the intermediate corrosion resistant materials are copper-nickel alloys.

Estill, J.C.; Dalder, E.N.C.; Gdowski, G.E.; McCright, R.D.

1994-10-01

5

Hot Corrosion Test Facility at the NASA Lewis Special Projects Laboratory  

NASA Technical Reports Server (NTRS)

The Hot Corrosion Test Facility (HCTF) at the NASA Lewis Special Projects Laboratory (SPL) is a high-velocity, pressurized burner rig currently used to evaluate the environmental durability of advanced ceramic materials such as SiC and Si3N4. The HCTF uses laboratory service air which is preheated, mixed with jet fuel, and ignited to simulate the conditions of a gas turbine engine. Air, fuel, and water systems are computer-controlled to maintain test conditions which include maximum air flows of 250 kg/hr (550 lbm/hr), pressures of 100-600 kPa (1-6 atm), and gas temperatures exceeding 1500 C (2732 F). The HCTF provides a relatively inexpensive, yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials, and the injection of a salt solution provides the added capability of conducting hot corrosion studies.

Robinson, Raymond C.; Cuy, Michael D.

1994-01-01

6

Superheater/intermediate temperature air heater tube corrosion tests in the MHD coal fired flow facility (Montana Rosebud POC tests)  

SciTech Connect

Nineteen alloys have been exposed for approximately 1000 test hours as candidate superheater and intermediate temperature air heater tubes in a U.S. DOE facility dedicated to demonstrating Proof of Concept for the bottoming or heat and seed recovery portion of coal fired magnetohydrodynamic (MHD) electrical power generating plants. Corrosion data have been obtained from a test series utilizing a western United States sub-bituminous coal, Montana Rosebud. The test alloys included a broad range of compositions ranging from carbon steel to austenitic stainless steels to high chromium nickel-base alloys. The tubes, coated with K{sub 2}SO-containing deposits, developed principally, oxide scales by an oxidation/sulfidation mechanism. In addition to being generally porous, these scales were frequently spalled and/or non-compact due to a dispersed form of outward growth by oxide precipitation in the adjacent deposit. Austenitic alloys generally had internal penetration as trans Tranular and/or intergranular oxides and sulfides. While only two of the alloys had damage visible without magnification as a result of the relatively short exposure, there was some concern about Iona-term corrosion performance owing to the relatively poor quality scales formed. Comparison of data from these tests to those from a prior series of tests with Illinois No. 6, a high sulfur bituminous coal, showed less corrosion in the present test series with the lower sulfur coal. Although K{sub 2}SO{sub 4}was the principal corrosive agent as the supplier of sulfur, which acted to degrade alloy surface scales, tying up sulfur as K{sub 2}SO{sub 4} prevented the occurrence of complex alkali iron trisulfates responsible for severe or catastrophic corrosion in conventional power plants with certain coals and metal temperatures.

White, M.

1996-01-01

7

Superheater/intermediate temperature airheater tube corrosion tests in the MHD Coal Fired Flow Facility (Eastern Coal Phase)  

SciTech Connect

Corrosion data have been obtained for tub is exposed for 1500--2000 hours in a proof-of-concept magnetohydrodynamics (MHD) power generation test facility to conditions representative of superheater and intermediate temperature air heater (ITAH) components. The tubes, coated with K{sub 2}SO{sub 4}-rich deposits, were corroded more than in most pulverized coal fired superheater service, but much less than the highly aggressive liquid phase attack encountered in conventional plants with certain coals and temperatures. Results indicated that, with parabolic corrosion kinetics, type 310 and 253MA stainless steels should be usable to 1400F at hot end of ITAH. At final superheater temperatures, 2.25 and 5 Cr steels were indicated to have parabolic corrosion rates generally below a 0.5 mm/yr criterion, based on corrosion scale thickness. However, unknown amounts of scale loss from spallation made this determination uncertain. Stainless steels 304H, 316H, and 321H had parabolic rates variably above the criterion, but may be servicable under less cyclic conditions. Corrosion rates derived from scale thickness and intergranular corrosion depth measurements are reported, along with scale morphologies and compositions. Implications of results on commercial MHD utilization of the alloys are discussed, as well as the indicated need for more corrosion resistant alloys or coatings under the most severe exposure conditions.

White, M.K.

1993-11-01

8

Biofouling and corrosion studies at the Seacoast Test Facility in Hawaii  

SciTech Connect

Results from the first three years of operation are presented. No detectable biofouling from cold water in smooth tubes has been observed. Intermittent, low-level chlorination appears to control biofouling from warm water in smooth tubes. Uniform corrosion of 5052 aluminum alloy is low, with less pitting found with warm water than with cold water over the same period. Although the testing of waterside enhancements has just begun, results to date indicate that low-level chlorination may be effective in preventing biofouling buildup on such enhancements. Corrosion data indicate that aluminum-based materials may achieve long service lives in marine environments.

Panchal, C.B.; Stevens, H.S.; Genens, L.E.; Hillis, D.L.; Larsen-Basse, J.; Zaidi, S.; Daniel, T.

1984-01-01

9

Corrosion testing using isotopes  

DOEpatents

A method is described for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested is described composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested is described composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness. 3 figs.

Hohorst, F.A.

1995-12-05

10

Corrosion testing using isotopes  

DOEpatents

A method for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness.

Hohorst, Frederick A. (Idaho Falls, ID)

1995-12-05

11

Corrosion test for dental amalgam.  

PubMed

A corrosion test for dental amalgam, based on controlled potential coulometry, provides an index of corrosion susceptibility. A special cell was designed, and optimum test conditions were determined. The test can be used for the rating of amalgams, and in studies of the effect of variables on the corrosion resistance. PMID:6927987

Marek, M

1980-01-01

12

Accelerated Stress-Corrosion Testing  

NASA Technical Reports Server (NTRS)

Test procedures for accelerated stress-corrosion testing of high-strength aluminum alloys faster and provide more quantitative information than traditional pass/fail tests. Method uses data from tests on specimen sets exposed to corrosive environment at several levels of applied static tensile stress for selected exposure times then subsequently tensile tested to failure. Method potentially applicable to other degrading phenomena (such as fatigue, corrosion fatigue, fretting, wear, and creep) that promote development and growth of cracklike flaws within material.

1986-01-01

13

Validation of salt spray corrosion test  

Microsoft Academic Search

Quality control of corrosion test results implies the validation of the corrosion test method and estimation of the uncertainty of corrosion rate measurement. The corrosion test in an artificial atmosphere of the salt spray mist needs evaluation of corrosivity of the test cabinet by reference specimens. Such calibration of corrosion environment raises very strict requirements for the method description and

Eugenija Ramoškien?; Mykolas Gladkovas; Mudis Šalkauskas

2003-01-01

14

Mobile evaporator corrosion test results  

SciTech Connect

Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80{degrees}C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either {open_quotes}satisfactory{close_quotes} (2-20 mpy) or {open_quotes}excellent{close_quotes} (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion cracking (SCC) in this environment.

Rozeveld, A.; Chamberlain, D.B.

1997-05-01

15

Long-term corrosion testing pan.  

SciTech Connect

This document describes the testing and facility requirements to support the Yucca Mountain Project long-term corrosion testing needs. The purpose of this document is to describe a corrosion testing program that will (a) reduce model uncertainty and variability, (b) reduce the reliance upon overly conservative assumptions, and (c) improve model defensibility. Test matrices were developed for 17 topical areas (tasks): each matrix corresponds to a specific test activity that is a subset of the total work performed in a task. A future document will identify which of these activities are considered to be performance confirmation activities. Detailed matrices are provided for FY08, FY09 and FY10 and rough order estimates are provided for FY11-17. Criteria for the selection of appropriate test facilities were developed through a meeting of Lead Lab and DOE personnel on October 16-17, 2007. These criteria were applied to the testing activities and recommendations were made for the facility types appropriate to carry out each activity. The facility requirements for each activity were assessed and activities were identified that can not be performed with currently available facilities. Based on this assessment, a total of approximately 10,000 square feet of facility space is recommended to meet all future testing needs, given that all testing is consolidated to a single location. This report is a revision to SAND2007-7027 to address DOE comments and add a series of tests to address NWTRB recommendations.

Wall, Frederick Douglas; Brown, Neil R. (Los Alamos National Laboratory, Los Alamos, NM)

2008-08-01

16

Long-term corrosion testing plan.  

SciTech Connect

This document describes the testing and facility requirements to support the Yucca Mountain Project long-term corrosion testing program. The purpose of this document is to describe a corrosion testing program that will (a) reduce model uncertainty and variability, (b) reduce the reliance upon overly conservative assumptions, and (c) improve model defensibility. Test matrices were developed for 17 topical areas (tasks): each matrix corresponds to a specific test activity that is a subset of the total work performed in a task. A future document will identify which of these activities are considered to be performance confirmation activities. Detailed matrices are provided for FY08, FY09 and FY10 and rough order estimates are provided for FY11-17. Criteria for the selection of appropriate test facilities were developed through a meeting of Lead Lab and DOE personnel on October 16-17, 2007. These criteria were applied to the testing activities and recommendations were made for the facility types appropriate to carry out each activity. The facility requirements for each activity were assessed and activities were identified that can not be performed with currently available facilities. Based on this assessment, a total of approximately 10,000 square feet of facility space is recommended to accommodate all future testing, given that all testing is consolidated to a single location. This report is a revision to SAND2008-4922 to address DOE comments.

Wall, Frederick Douglas; Brown, Neil R. (Los Alamos National Laboratory, Los Alamos, NM)

2009-02-01

17

Atlas 5013 tank corrosion test  

NASA Technical Reports Server (NTRS)

The type and cause of corrosion in spot welded joints were determined by X-ray and chemical analysis. Fatigue and static tests showed the degree of degradation of mechanical properties. The corrosion inhibiting effectiveness of WD-40 compound and required renewal period by exposing typical joint specimens were examined.

Sutherland, W. M.; Girton, L. D.; Treadway, D. G.

1978-01-01

18

NETL- Severe Environment Corrosion Erosion Facility  

ScienceCinema

NETL's Severe Environment Corrosion Erosion Facility in Albany studies how new and old materials will stand up to new operating conditions. Work done in the lab supports NETL's oxy-fuel combustion oxidation work, refractory materials stability work, and the fuels program, in particular the hydrogen membrane materials stability work, to determine how best to upgrade existing power plants.

None

2014-06-16

19

NETL- Severe Environment Corrosion Erosion Facility  

SciTech Connect

NETL's Severe Environment Corrosion Erosion Facility in Albany studies how new and old materials will stand up to new operating conditions. Work done in the lab supports NETL's oxy-fuel combustion oxidation work, refractory materials stability work, and the fuels program, in particular the hydrogen membrane materials stability work, to determine how best to upgrade existing power plants.

None

2013-09-12

20

Corrosion inhibitor screening tests and selection for field applications  

SciTech Connect

Organic corrosion inhibitors have been widely used in oil and gas wells, pipelines, gathering lines and process facilities to inhibit corrosion for quite some time. This paper describes and discusses laboratory screening test parameters and methods for evaluating and selecting corrosion inhibitors for use in downhole and pipeline corrosion inhibitions or mitigations. Field application results of the laboratory selected inhibitors are presented to illustrate the consistency of the selected inhibitor in field applications. The inhibitor adverse effect in various conditions and environments are also discussed.

Wu, Y. [Phillips Petroleum Co., Bartlesville, OK (United States)

1994-12-31

21

Corrosion Preventive Compounds Lifetime Testing  

NASA Technical Reports Server (NTRS)

Lifetime Testing of Corrosion Preventive Compounds (CPCs) was performed to quantify performance in the various environments to which the Space Shuttle Orbiter is exposed during a flight cycle. Three CPCs are approved for use on the Orbiter: RD Calcium Grease, Dinitrol AV-30, and Braycote 601 EF. These CPCs have been rigorously tested to prove that they mitigate corrosion in typical environments, but little information is available on how they perform in the unique combination of the coastal environment at the launch pad, the vacuum of low-earth orbit, and the extreme heat of reentry. Currently, there is no lifetime or reapplication schedule established for these compounds that is based on this combination of environmental conditions. Aluminum 2024 coupons were coated with the three CPCs and exposed to conditions that simulate the environments to which the Orbiter is exposed. Uncoated Aluminum 2024 coupons were exposed to the environmental conditions as a control. Visual inspection and Electro- Impedance Spectroscopy (EIS) were performed on the samples in order to determine the effectiveness of the CPCs. The samples were processed through five mission life cycles or until the visual inspection revealed the initiation of corrosion and EIS indicated severe degradation of the coating.

Hale, Stephanie M.; Kammerer, Catherine C.; Copp, Tracy L.

2007-01-01

22

Corrosion Preventive Compounds Lifetime Testing  

NASA Technical Reports Server (NTRS)

Lifetime Testing of Corrosion Preventive Compounds (CPCs) was performed to quantify performance in the various environments to which the Space Shuttle Orbiter is exposed during a flight cycle. Three CPCs are approved for use on the Orbiter: HD Calcium Grease, Dinitrol AV-30, and Braycote 601 EF. These CPCs have been rigorously tested to prove that they mitigate corrosion in typical environments, but little information is available on how they perform in the unique combination of the coastal environment at the launch pad, the vacuum of low-earth orbit, and the extreme heat of reentry. Currently, there is no lifetime or reapplication schedule established for these compounds that is based on this combination of environmental conditions. Aluminum 2024 coupons were coated with the three CPCs and exposed to conditions that simulate the environments to which the Orbiter is exposed. Uncoated Aluminum 2024 coupons were exposed to the environmental conditions as a control. Visual inspection and Electro- Impedance Spectroscopy (EIS) were performed on the samples in order to determine the effectiveness of the CPCs. The samples were processed through five mission life cycles or until the visual inspection revealed the initiation of corrosion and EIS indicated severe degradation of the coating.

Hale, Stephanie M.; Kammerer, Catherine C.

2007-01-01

23

Cathode Life Test Facility  

Microsoft Academic Search

The Cathode Life Test Facility (CLTF) has been in operation for ten years and has tested ten different cathode types for a total of approximately 2.0 million hours of life test data. As part of the defense management review (DMR) process, Rome Laboratory (RL) has eliminated internal research efforts pertaining to cathode life testing. Based on this directive, the CLTF

Ronald J. Jardieu

1994-01-01

24

Corrosion tests of DWPF recycle solution  

SciTech Connect

Coupon immersion tests were performed on ASTM A537, Class 1 carbon steel in simulated Defense Waste Processing Facility recycle solutions at 93 {plus_minus} 2{degree}C, in an effort to reproduce the results of earlier tests in which hard, shock-sensitive deposits were found. There was no evidence of pitting corrosion on the coupons exposed to solutions containing 0.5 M hydroxide and 2000 ppm (0.043 M) nitrite. Liquid mercury and small solid deposits were found on the specimens` immersed surfaces. However, the deposits were soft and not shock-sensitive. The absence of shock-sensitive deposits may have been due to a lower mercuric ion concentration in the test solutions or to different post-immersion handling. Coupons of 304L stainless steel and alloy C276 were also immersed in the simulated recycle solution. These coupons were not subject to localized corrosion, nor were shock-sensitive deposits found. Additional immersion tests on A537 coupons will be started in July 1992.

Zapp, P.E.

1992-07-28

25

Corrosion tests of DWPF recycle solution  

SciTech Connect

Coupon immersion tests were performed on ASTM A537, Class 1 carbon steel in simulated Defense Waste Processing Facility recycle solutions at 93 [plus minus] 2[degree]C, in an effort to reproduce the results of earlier tests in which hard, shock-sensitive deposits were found. There was no evidence of pitting corrosion on the coupons exposed to solutions containing 0.5 M hydroxide and 2000 ppm (0.043 M) nitrite. Liquid mercury and small solid deposits were found on the specimens' immersed surfaces. However, the deposits were soft and not shock-sensitive. The absence of shock-sensitive deposits may have been due to a lower mercuric ion concentration in the test solutions or to different post-immersion handling. Coupons of 304L stainless steel and alloy C276 were also immersed in the simulated recycle solution. These coupons were not subject to localized corrosion, nor were shock-sensitive deposits found. Additional immersion tests on A537 coupons will be started in July 1992.

Zapp, P.E.

1992-07-28

26

Failure Prevention by Short Time Corrosion Tests  

SciTech Connect

Short time corrosion testing of perforated sheets and wire meshes fabricated from Type 304L stainless steel, Alloy 600 and C276 showed that 304L stainless steel perforated sheet should perform well as the material of construction for dissolver baskets. The baskets will be exposed to hot nitric acid solutions and are limited life components. The corrosion rates of the other alloys and of wire meshes were too high for useful extended service. Test results also indicated that corrosion of the dissolver should drop quickly during the dissolutions due to the inhibiting effects of the corrosion products produced by the dissolution processes.

MICKALONIS, JOHN

2005-05-01

27

Electromagnetic propulsion test facility  

NASA Technical Reports Server (NTRS)

A test facility for the exploration of electromagnetic propulsion concept is described. The facility is designed to accommodate electromagnetic rail accelerators of various lengths (1 to 10 meters) and to provide accelerating energies of up to 240 kiloJoules. This accelerating energy is supplied as a current pulse of hundreds of kiloAmps lasting as long as 1 millisecond. The design, installation, and operating characteristics of the pulsed energy system are discussed. The test chamber and its operation at pressures down to 1300 Pascals (10 mm of mercury) are described. Some aspects of safety (interlocking, personnel protection, and operating procedures) are included.

Gooder, S. T.

1984-01-01

28

49 CFR 192.471 - External corrosion control: Test leads.  

Code of Federal Regulations, 2012 CFR

...2012-10-01 2012-10-01 false External corrosion control: Test leads. 192.471 Section...FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.471 External corrosion control: Test leads. (a) Each...

2012-10-01

29

49 CFR 192.471 - External corrosion control: Test leads.  

Code of Federal Regulations, 2013 CFR

...2013-10-01 2013-10-01 false External corrosion control: Test leads. 192.471 Section...FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.471 External corrosion control: Test leads. (a) Each...

2013-10-01

30

49 CFR 192.469 - External corrosion control: Test stations.  

Code of Federal Regulations, 2011 CFR

...2011-10-01 2011-10-01 false External corrosion control: Test stations. 192.469 Section...FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each...

2011-10-01

31

49 CFR 192.469 - External corrosion control: Test stations.  

Code of Federal Regulations, 2010 CFR

...2010-10-01 2010-10-01 false External corrosion control: Test stations. 192.469 Section...FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each...

2010-10-01

32

49 CFR 192.469 - External corrosion control: Test stations.  

Code of Federal Regulations, 2013 CFR

...2013-10-01 2013-10-01 false External corrosion control: Test stations. 192.469 Section...FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each...

2013-10-01

33

49 CFR 192.471 - External corrosion control: Test leads.  

...2014-10-01 2014-10-01 false External corrosion control: Test leads. 192.471 Section...FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.471 External corrosion control: Test leads. (a) Each...

2014-10-01

34

49 CFR 192.469 - External corrosion control: Test stations.  

...2014-10-01 2014-10-01 false External corrosion control: Test stations. 192.469 Section...FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each...

2014-10-01

35

49 CFR 192.471 - External corrosion control: Test leads.  

Code of Federal Regulations, 2010 CFR

...2010-10-01 2010-10-01 false External corrosion control: Test leads. 192.471 Section...FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.471 External corrosion control: Test leads. (a) Each...

2010-10-01

36

49 CFR 192.469 - External corrosion control: Test stations.  

Code of Federal Regulations, 2012 CFR

...2012-10-01 2012-10-01 false External corrosion control: Test stations. 192.469 Section...FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each...

2012-10-01

37

49 CFR 192.471 - External corrosion control: Test leads.  

Code of Federal Regulations, 2011 CFR

...2011-10-01 2011-10-01 false External corrosion control: Test leads. 192.471 Section...FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.471 External corrosion control: Test leads. (a) Each...

2011-10-01

38

Corrosion prevention with an organic metal (polyaniline): corrosion test results  

Microsoft Academic Search

The organic metal polyaniline (PAni) was found by us some years ago to be a powerful corrosion protection agent. The properties of the new PAni containing primer CORRPASSIVTM sealed with different top coats are characterized and compared with top coated probes using no or a conventional zinc primer. The combination of measurements of salt spray test, electrochemical impedance spectroscopy (EIS)

Bernhard Wessling; Joerg Posdorfer

1999-01-01

39

Cathode Life Test Facility  

NASA Astrophysics Data System (ADS)

The Cathode Life Test Facility (CLTF) has been in operation for ten years and has tested ten different cathode types for a total of approximately 2.0 million hours of life test data. As part of the defense management review (DMR) process, Rome Laboratory (RL) has eliminated internal research efforts pertaining to cathode life testing. Based on this directive, the CLTF was moved to the Naval Surface Warfare Center (NSWC) at Crane, Indiana. This report summarizes the process of moving the CLTF from RL to the NSWC.

Jardieu, Ronald J.

1994-10-01

40

Corrosion testing in flash tanks  

SciTech Connect

As kraft pulp mills adopt modified cooking processes, an increasing amount of corrosion of carbon steel digester systems is being encountered. Many mills have had severe corrosion in the flash tanks, in particular, the first ({number{underscore}sign}1) flash tank. The work described in this report was aimed at characterizing the corrosion. Coupons of carbon steel, several stainless steels and titanium were exposed at two mills. At mill A, identical sets of coupons were exposed in the {number{underscore}sign}1 and {number{underscore}sign}2 flash tank. At mill B, three identical sets of coupons were placed in flash tank {number{underscore}sign}1. The results of the exposures showed that both carbon steel and titanium suffered high rates of general corrosion, while the stainless steels suffered varying degrees of localized attack. The ranking of the resistance of corrosion in the flash tank was the same ranking as would be expected in a reducing acid environment. In the light of the coupon results, organic acids is concluded to be the most likely cause of corrosion of the flash tanks.

Clarke, S.J.; Stead, N.J.

1999-07-01

41

A facility for studying irradiation accelerated corrosion in high temperature water  

NASA Astrophysics Data System (ADS)

A facility for the study of irradiation accelerated corrosion in high temperature water using in situ proton irradiation has been developed and validated. A specially designed beamline and flowing-water corrosion cell added to the 1.7 MV tandem accelerator at the Michigan Ion Beam Laboratory provide the capability to study the simultaneous effects of displacement damage and radiolysis on corrosion. A thin sample serves as both a “window” into the corrosion cell through which the proton beam passes completely, and the sample for assessing irradiation accelerated corrosion. The facility was tested by irradiating stainless steel samples at beam current densities between 0.5 and 10 ?A/cm2 in 130 °C and 320 °C deaerated water, and 320 °C water with 3 wppm H2. Increases in the conductivity and dissolved oxygen content of the water varied with the proton beam current, suggesting that proton irradiation was accelerating the corrosion of the sample. Conductivity increases were greatest at 320 °C, while DO increases were highest at 130 °C. The addition of 3 wppm H2 suppressed DO below detectable levels. The facility will enable future studies into the effect of irradiation on corrosion in high temperature water with in situ proton irradiation.

Raiman, Stephen S.; Flick, Alexander; Toader, Ovidiu; Wang, Peng; Samad, Nassim A.; Jiao, Zhijie; Was, Gary S.

2014-08-01

42

Effect of deposits on corrosion of materials exposed in the Coal-Fired Flow Facility  

SciTech Connect

Candidate heat exchanger materials tested in the Low Mass Flow train at the Coal-Fired Flow Facility (CFFF) at Tullahoma, TN. were analyzed to evaluate their corrosion performance. Tube specimens obtained at each foot of the 14-ft-long Unbend tubes were analyzed for corrosion-scale morphologies, scale thicknesses, and internal penetration depths. Results developed on 1500- and 2000- h exposed specimens were correlated with exposure temperature. In addition, deposit materials collected at several locations in the CFFF were analyzed in detail to characterize the chemical and physical properties of the deposits and their influence on corrosion performance of tube materials.

Natesan, K.

1993-05-01

43

Hot Hydrogen Test Facility  

SciTech Connect

The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISP. This quantity is proportional to the square root of the propellant's absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500 deg. C hydrogen flowing at 1500 liters per minute. The facility is intended to test low activity uranium containing materials but is also suited for testing cladding and coating materials. In this first installment the facility is described. Automated data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

Swank, W. David; Carmack, Jon; Werner, James E.; Pink, Robert J.; Haggard, DeLon C.; Johnson, Ryan [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415 (United States)

2007-01-30

44

Summary of the WIPP materials interface interactions test: Metal corrosion  

SciTech Connect

Several series of in situ, high-level and transuranic waste form-leaching and waste form-engineered barrier materials interactions tests were conducted at the Waste Isolation Pilot Plant (WIPP) facility, near Carlsbad, New Mexico, in the USA. This multi-national effort, the WIPP Materials Interface Interactions Tests (MIIT), involves the underground testing of about 2000 (nonradioactive) waste form, metal, and geologic samples in the bedded salt at the WIPP. This test program started on July 22, 1986 and has achieved its projected five-year lifetime. All in situ samples have been retrieved and sent to multiple laboratories for posttest analyses. Most of the analyses on metal samples have been completed and the results are summarized in this paper. The tested metal alloys proposed for waste canister or overpack use included titanium alloys (grade-2 and grade-12), Hastelloy C4, Inconel 625, austenitic stainless steels (304L, 316, and NS 24/AISI 309), carbon steels (Belgian C and ASTM A216/WCA), copper, and lead. After five-years of test exposure immersed in WIPP brine A and/or salt at about 90[degree]C, the corrosion-resistant materials (Ti; Inconel, Hastelloy) exhibited very little corrosion. The austenitic stainless steels suffered pitting, crevice corrosion, and some evidence of stress corrosion cracking. The carbon steels, copper, and lead exhibited both extensive general and localized attack. Details of the test, analyses, and results obtained will be discussed.

Sorensen, N.R.; Molecke, M.A.

1992-01-01

45

Summary of the WIPP materials interface interactions test: Metal corrosion  

SciTech Connect

Several series of in situ, high-level and transuranic waste form-leaching and waste form-engineered barrier materials interactions tests were conducted at the Waste Isolation Pilot Plant (WIPP) facility, near Carlsbad, New Mexico, in the USA. This multi-national effort, the WIPP Materials Interface Interactions Tests (MIIT), involves the underground testing of about 2000 (nonradioactive) waste form, metal, and geologic samples in the bedded salt at the WIPP. This test program started on July 22, 1986 and has achieved its projected five-year lifetime. All in situ samples have been retrieved and sent to multiple laboratories for posttest analyses. Most of the analyses on metal samples have been completed and the results are summarized in this paper. The tested metal alloys proposed for waste canister or overpack use included titanium alloys (grade-2 and grade-12), Hastelloy C4, Inconel 625, austenitic stainless steels (304L, 316, and NS 24/AISI 309), carbon steels (Belgian C and ASTM A216/WCA), copper, and lead. After five-years of test exposure immersed in WIPP brine A and/or salt at about 90{degree}C, the corrosion-resistant materials (Ti; Inconel, Hastelloy) exhibited very little corrosion. The austenitic stainless steels suffered pitting, crevice corrosion, and some evidence of stress corrosion cracking. The carbon steels, copper, and lead exhibited both extensive general and localized attack. Details of the test, analyses, and results obtained will be discussed.

Sorensen, N.R.; Molecke, M.A.

1992-12-31

46

Universal Test Facility  

NASA Technical Reports Server (NTRS)

A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.

Laughery, Mike

1994-01-01

47

Corrosion testing and control in electric power transmission  

SciTech Connect

Corrosion of electric power transmission lines is a primary cause of in service equipment degradation. An integral part of the effort to mitigate corrosion is the use of standard and non-standard testing methods for its prevention, corrosion recognition and damage extent determination. Corrosion testing and control methods that are most frequently used in the current practice are discussed.

Mayer, P. [Ontario Hydro Technologies, Toronto, Ontario (Canada)

1995-10-01

48

A3 Altitude Test Facility  

NASA Technical Reports Server (NTRS)

This slide presentation shows drawings, diagrams and photographs of the A3 Altitude Test Facility. It includes a review of the A3 Facility requirements, and drawings of the various sections of the facility including Engine Deck and Superstructure, Test Cell and Thrust Takeout, Structure and Altitude Support Systems, Chemical Steam generators, and the subscale diffuser. There are also pictures of the construction site, and the facility under construction. A Diagram of the A3 Steam system schematic is also shown

Dulreix, Lionel J.

2009-01-01

49

Coal Ash Corrosion Resistant Materials Testing  

SciTech Connect

In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a reasonably high alkali content, thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was well within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that the aggressive alkali-iron-trisulfate constituent was present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. This report provides the results of the evaluation of Test Section C, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. The analysis of Test Section C followed much the same protocol that was employed in the assessment of Test Section A. Again, the focus was on determining and documenting the relative corrosion rates of the candidate materials. The detailed results of the investigation are included in this report as a series of twelve appendices. Each appendix is devoted to the performance of one of the candidate alloys. The table below summarizes metal loss rate for the worst case sample of each of the candidate materials for both Test Sections A and C. The body of this report compares these for all of the samples in the test section. The 'Coal Ash Corrosion Resistant Materials Testing Program' is being conducted by The Babcock & Wilcox Company (B&W), the U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) at Reliant Energy's Niles plant in Niles, Ohio to provide full-scale, in-situ testing of recently developed boiler superheater materials. Fireside corrosion is a key issue for improving efficiency of new coal fired power plants and improving service life in existing plants. In November 1998, B&W began development of a system to permit testing of advanced tube materials at metal temperatures typical of advanced supercritical steam temperatures (1100 F and higher) in a boiler exhibiting coal ash corrosive conditions. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. In the spring of 1999 a system consisting of three identical sections, each containing multiple segments of twelve different materials, was installed. The sections are cooled by reheat steam, and are located just above the furnace entrance in Niles Unit No.1, a 110 MWe unit firing high sulfur Ohio coal. In November 2001 the first section was removed for thorough metallurgical evaluation after 29 months of operation. The second section was removed in August of 2003. Its evaluation has been completed and is the subject of this report. The final section remains in service and is expected to be removed in the spring of 2005. This paper describes the program; its importance, the design, fabrication, installation and operation of the test system, materials utilized, and experience to date. This report briefly reviews the results of the evaluation of the first section and then presents the results of the evaluation of the second section.

D. K. McDonald; P. L. Daniel; D. J. DeVault

2003-08-31

50

Corrosion tests in the Marchwood geothermal borehole  

NASA Astrophysics Data System (ADS)

Corrosion tests in the high salinity brine produced during a production test at the Marchwood borehole. These tests were intended to obtain preliminary information on the corrosion of a range of metals and alloys most likely to be used for downhole service, heat exchangers and associated equipment, if hot water from this aquifer is used to provide a long-term energy source. Specimens of appropriate candidate materials were exposed to flowing brine in the surface pipework and also downhole at a depth of 663 m. The brine was pumped to the surface by a multi-stage electric submersible pump. The downhole specimens, which were installed with the pump, were exposed for a period of 83 days. The surface specimens were exposed during the well production test for 33.3 days. The product brine was around three times sea water concentration, at a temperature of 72 C and pH 6.2.

Lawrence, P. F.

1982-03-01

51

College of Engineering Testing Facilities  

E-print Network

FACILITY Test instruments for measurement of physical, chemical, and mechanical properties of composite ...........................................................................12 Electronic and Surface Properties of Materials ......................14 Emissions Measurements..........................................................16 Environmental Engineering........................................................16 Mechanical

52

DWPF recycle stream corrosion tests  

Microsoft Academic Search

Coupon immersion tests were performed on ASTM A537 Class 1 carbon steel in simulated DWPF recycle solutions at 90 [+-] 2[degrees]C, as part of the continuing effort to investigate the formation of shock-sensitive deposits. Coupons were partially immersed for four months in solutions of the same composition used previously at SRTC and at the DuPont Engineering Test Center (a salt

Zapp

1993-01-01

53

DWPF recycle stream corrosion tests  

Microsoft Academic Search

Coupon immersion tests were performed on ASTM A537 Class 1 carbon steel in simulated DWPF recycle solutions at 90 {+-} 2°C, as part of the continuing effort to investigate the formation of shock-sensitive deposits. Coupons were partially immersed for four months in solutions of the same composition used previously at SRTC and at the DuPont Engineering Test Center (a salt

Zapp

1993-01-01

54

Active Waste Materials Corrosion and Decontamination Tests  

SciTech Connect

Stainless steel alloys, 304L and 316L, were corrosion tested in representative radioactive samples of three actual Hanford tank waste solutions (Tanks AW-101, C-104, AN-107). Both the 304L and 316L exhibited good corrosion performance when immersed in boiling waste solutions. The maximum general corrosion rate was 0.015 mm/y (0.60 mils per year). Generally, the 304L had a slightly higher rate than the 316L. No localized attack was observed after 122 days of testing in the liquid phase, liquid/vapor phase, or vapor phase. Radioactive plate-out decontamination tests indicated that a 24-hour exposure to 1 {und M} HNO{sub 3} could remove about 99% of the radioactive components in the metal film when exposed to the C-104 and AN-107 solutions. The decontamination results are less certain for the AW-101 solution, since the initial contamination readings exceeded the capacity of the meter used for this test.

MJ Danielson; MR Elmore; SG Pitman

2000-08-15

55

A facile approach to fabricate superhydrophobic and corrosion resistant surface  

NASA Astrophysics Data System (ADS)

In the present study, we have fabricated superhydrophobic CuO nanostructured surfaces by a simple solution-immersion process and a subsequent chemical modification with various thiol groups. The morphology of the CuO nanostructures on the copper foil could be easily controlled by simply changing the reaction time. The influences of reaction time and the thiol groups on hydrophobic properties have been discussed in detail. It is shown that the chemically modified CuO nanostructured surfaces present remarkable superhydrophobic performance and non-sticking behaviour. Furthermore, a lower corrosion current density (icorr) and a higher corrosion potential (Ecorr) of the prepared superhydrophobic surface was observed in comparison with the bare Cu foil by immersing in a 3.5 wt% NaCl solution, indicating a good corrosion resistance capability. Our work provides a general, facile and low-cost route towards the preparation of superhydrophobic surface, which has potential applications in the fields of self-cleaning, anti-corrosion, and oil–water separation.

Wei, Guijuan; Wang, Zhaojie; Zhao, Xixia; Feng, Juan; Wang, Shutao; Zhang, Jun; An, Changhua

2015-01-01

56

CORROSION TESTING IN SIMULATED TANK SOLUTIONS  

SciTech Connect

Three simulated waste solutions representing wastes from tanks SY-102 (high nitrate, modified to exceed guidance limits), AN-107, and AY-102 were supplied by PNNL. Out of the three solutions tested, both optical and electrochemical results show that carbon steel samples corroded much faster in SY-102 (high nitrate) than in the other two solutions with lower ratios of nitrate to nitrite. The effect of the surface preparation was not as strong as the effect of solution chemistry. In areas with pristine mill-scale surface, no corrosion occurred even in the SY-102 (high nitrate) solution, however, corrosion occurred in the areas where the mill-scale was damaged or flaked off due to machining. Localized corrosion in the form of pitting in the vapor space of tank walls is an ongoing challenge to overcome in maintaining the structural integrity of the liquid waste tanks at the Savannah River and Hanford Sites. It has been shown that the liquid waste condensate chemistry influences the amount of corrosion that occurs along the walls of the storage tanks. To minimize pitting corrosion, an effort is underway to gain an understanding of the pitting response in various simulated waste solutions. Electrochemical testing has been used as an accelerated tool in the investigation of pitting corrosion. While significant effort has been undertaken to evaluate the pitting susceptibility of carbon steel in various simulated waste solutions, additional effort is needed to evaluate the effect of liquid waste supernates from six Hanford Site tanks (AY-101, AY-102, AN-102, AN-107, SY-102 (high Cl{sup -}), and SY-102 (high nitrate)) on carbon steel. Solutions were formulated at PNNL to replicate tank conditions, and in the case of SY-102, exceed Cl{sup -} and NO{sub 3}{sup -} conditions, respectively, to provide a contrast between in and out of specification limits. The majority of previous testing has been performed on pristine polished samples. To evaluate the actual tank carbon steel surface, efforts are needed to compare the polished surfaces to corroded and mill-scale surfaces, which are more likely to occur in application. Additionally, due to the change in liquid waste levels within the tanks, salt deposits are highly likely to be present along the tank wall. When the level of the tank decreases, a salt deposit will form as the solution evaporates. The effects of this pre-existing salt, or supernate deposit, are unknown at this time on the corrosion effect and thus require investigation. Additionally, in the presence of radiation, moist air undergoes radiolysis, forming a corrosive nitric acid condensate. This condensate could accelerate the corrosion process in the vapor space. To investigate this process, an experimental apparatus simulating the effects of radiation was designed and constructed to provide gamma irradiation while coupons are exposed to a simulate tank solution. Additionally, ammonia vapors will also be introduced to further represent the tank environment.

Hoffman, E.

2010-12-09

57

Corrosion behavior of environmental assessment glass in product consistency tests of extended duration  

Microsoft Academic Search

We have conducted static dissolution tests to study the corrosion behavior of the Environmental Assessment (EA) glass, which is the benchmark glass for high-level waste glasses being produced at US Department of Energy facilities. These tests were conducted to evaluate the behavior of the EA glass under the same long-term and accelerated test conditions that are being used to evaluate

J. K. Bates; E. C. Buck; W. L. Ebert; J. S. Luo; S. W. Tam

1998-01-01

58

New methods for corrosion testing of aluminum alloys  

Microsoft Academic Search

This symposium presents papers on a modification of the EXCO test method for exfoliation corrosion susceptibility in 7XXX, 2XXX, and aluminum-lithium alloys; materials evaluation using wet-dry mixed salt-spray tests; a comparison of potentiodynamic polarization tests with wet-dry mixed salt-spray testing of Al-Mg-Si alloy; an accelerated test for determining microbiological-influenced corrosion resistance of aluminum alloys; and corrosion of aluminum in Al

V. S. Agarwala; G. M. Ugiansky

1992-01-01

59

AC corrosion -- Case histories, test procedures, and mitigation  

SciTech Connect

Literature dating back to the early 1960`s has shown that AC current can cause corrosion of cathodically protected steel under laboratory conditions. Until recently however, there has been little evidence to suggest that AC corrosion of cathodically protected structures may be of practical concern. In Ontario over the past six years, the authors have investigated several corrosion anomalies occurring on pipelines exposed to induced AC interference. This paper discusses a number of such cases where AC corrosion was suspected. The test procedures used to identify AC corrosion are discussed, as are some of the methods for minimizing the risk of AC corrosion.

Wakelin, R.G.; Gummow, R.A.; Segall, S.M. [Correng Consulting Service Inc., Downsview, Ontario (Canada)

1998-12-31

60

Electrochemical Corrosion Testing of Neutron Absorber Materials  

SciTech Connect

This report summarizes the results of crevice-corrosion tests for six alloys in solutions representative of ionic compositions inside the Yucca Mountain waste package should a breech occur. The alloys in these tests are Neutronit A978a (ingot metallurgy, hot rolled), Neutrosorb Plus 304B4 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B5 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B6 Grade Ab (powder metallurgy, hot rolled), Ni-Cr-Mo-Gd alloy2 (ingot metallurgy, hot rolled), and Alloy 22 (ingot metallurgy, hot rolled).

Tedd Lister; Ron Mizia; Arnold Erickson; Tammy Trowbridge

2007-05-01

61

Nevada Test Site Sensor Test Facility  

SciTech Connect

A Sensor Test Facility (STF) was recently established at the Department of Energy`s Nevada Test Site (NTS). It has been used for a series of sensor tests that have demonstrated the usefulness of the testbed. The facility consists of a cut-and-cover bunker complex and the two square mile surrounding area. The STF was developed as a scientific testbed optimized for the development and evaluation of advanced sensor systems, including ground sensor systems designed to identify and detect hardened underground facilities. This was accomplished by identifying a facility in a remote location where seismic, acoustic, and electromagnetic interference would be minimal, establishing a testbed that would be accommodating to field testing, and conducting a thorough geophysical characterization of the area surrounding the facility in order to understand the local geology and its effects on geophysical signals emanating from the facility. The STF is representative of a number of cut-and-cover bunkers around the world that are used for the manufacture and/or storage of weapons of mass destruction. This paper provides a general description of the Nevada Test Site, the Sensor Test Facility, and the Geophysical Site Characterization.

Gomez, B.J.; Boyer, W.B.

1996-12-01

62

CORROSION PERFORMANCE OF EPOXY-COATED REINFORCEMENTBEAM TESTS  

E-print Network

CORROSION PERFORMANCE OF EPOXY-COATED REINFORCEMENT­BEAM TESTS by Khaled Z. Kahhaleh, Enrique Vaca which simulate a highly corrosive environment and under loading conditions producing concrete cracking was intended to produce a very aggressive environment and to accelerate corrosion of the specimens. The state

Texas at Austin, University of

63

Coal Ash Corrosion Resistant Materials Testing Program  

SciTech Connect

The "Coal Ash Corrosion Resistant Materials Testing Program" is being conducted by The Babcock & Wilcox Company (B&W), the U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) at Reliant Energy?s Niles plant in Niles, Ohio to provide full-scale, in-situ testing of recently developed boiler superheater materials. Fireside corrosion is a key issue for improving efficiency of new coal fired power plants and improving service life in existing plants. In November 1998, B&W began development of a system to permit testing of advanced tube materials at metal temperatures typical of advanced supercritical steam temperatures (1100°F and higher) in a boiler exhibiting coal ash corrosive conditions. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. In the spring of 1999 a system consisting of three identical sections, each containing multiple segments of twelve different materials, was installed. The sections are cooled by reheat steam, and are located just above the furnace entrance in Niles? Unit #1, a 110 MWe unit firing high sulfur Ohio coal. In November 2001 the first section was removed for thorough metallurgical evaluation after 33 months of operation. The second and third sections remain in service and the second is expected to be removed in the fall of 2003; the last is tentatively planned for the fall of 2004. This paper describes the program; its importance; the design, fabrication, installation and operation of the test system; materials utilized; experience to date; and results of the evaluation of the first section.

McDonald, D.K.

2003-04-22

64

Long Term Corrosion/Degradation Test Six Year Results  

SciTech Connect

The Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) contains neutron-activated metals from non-fuel, nuclear reactor core components. The Long-Term Corrosion/Degradation (LTCD) Test is designed to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements to the environment. The test is using two proven, industry-standard methods—direct corrosion testing using metal coupons, and monitored corrosion testing using electrical/resistance probes—to determine corrosion rates for various metal alloys generally representing the metals of interest buried at the SDA, including Type 304L stainless steel, Type 316L stainless steel, Inconel 718, Beryllium S200F, Aluminum 6061, Zircaloy-4, low-carbon steel, and Ferralium 255. In the direct testing, metal coupons are retrieved for corrosion evaluation after having been buried in SDA backfill soil and exposed to natural SDA environmental conditions for times ranging from one year to as many as 32 years, depending on research needs and funding availability. In the monitored testing, electrical/resistance probes buried in SDA backfill soil will provide corrosion data for the duration of the test or until the probes fail. This report provides an update describing the current status of the test and documents results to date. Data from the one-year and three-year results are also included, for comparison and evaluation of trends. In the six-year results, most metals being tested showed extremely low measurable rates of general corrosion. For Type 304L stainless steel, Type 316L stainless steel, Inconel 718, and Ferralium 255, corrosion rates fell in the range of “no reportable” to 0.0002 mils per year (MPY). Corrosion rates for Zircaloy-4 ranged from no measurable corrosion to 0.0001 MPY. These rates are two orders of magnitude lower than those specified in the performance assessment for the SDA. The corrosion on the carbon steel, beryllium, and aluminum were more evident with a clear difference in corrosion performance between the 4-ft and 10-ft levels. Notable surface corrosion products were evident as well as numerous pit initiation sites. Since the corrosion of the beryllium and aluminum is characterized by pitting, the geometrical character of the corrosion becomes more significant than the general corrosion rate. Both pitting factor and weight loss data should be used together. For six-year exposure, the maximum carbon steel corrosion rate was 0.3643 MPY while the maximum beryllium corrosion rate was 0.3282 MPY and the maximum aluminum corrosion rate was 0.0030 MPY.

M. K. Adler Flitton; C. W. Bishop; M. E. Delwiche; T. S. Yoder

2004-09-01

65

Materials Corrosion and Mitigation Strategies for APT, Weapons Neutron Research Facility Experiments  

E-print Network

Materials Corrosion and Mitigation Strategies for APT, Weapons Neutron Research Facility Experiments: The Effects of 800 MeV Proton Irradiation on the Corrosion of Tungsten, Tantalum, Stainless Steel, and Gold R. Scott Lillard, Darryl P. Butt Materials Corrosion & Environmental Effects Laboratory MST-6

66

Coal Ash Corrosion Resistant Materials Testing  

SciTech Connect

In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that, due to excessive wastage, certain tube samples needed to be removed and replaced in order to ensure that Test Sections B and C would have a chance of remaining in the boiler for their intended exposure period. These suspect tube samples were replaced and the two remaining test sections were put back into service. The tube samples that were removed from Test Sections B and C were set aside for later analysis at the end of the planned exposure period. Test Sections B and C were again examined approximately six months later. At that time, measured wall thickness losses raised concerns about additional tube samples. These suspect samples were also removed, set aside for later analysis, and replaced. The test sections then went back into service until the end of the second exposure period, which was concluded in May 2003 when, due to evidence of excessive wastage, the valves were opened increasing cooling steam flow and thereby effectively stopping corrosion. In August 2003, Test Sections B and C were removed for closer examination. Section C had experienced about 42 months of service at the desired team temperature set point with 28.5 months at temperature at full temperature. Additional suspect samples were removed from Test Section B, then, it was re-installed into the boiler (at the location originally occupied by Section C), where it remained in service until the end of the program. Due to this removal history, the samples from Test Section B had a total service duration that varied from a minimum of 15.5 months (for samples that performed poorly) to 37 months for samples the survived for the full intended service exposure for Section B. The figure below shows a schematic of Test Section B and indicates the length of service exposure for different locations. This report provides the results of the evaluation of Test Section B, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. This report also is intended to compare and summarize the results for all three test sections. The analysis of T

D. K. McDonald; P. L. Daniel; D. J. DeVault

2007-12-31

67

NONDESTRUCTIVE TESTING OF CORROSION UNDER COATINGS  

EPA Science Inventory

Surface corrosion on aluminum aircraft skins, nears joints and around fasteners is often an indicator of buried structural corrosion and cracking. Aircraft paints are routinely removed to reveal the presence of corrosion on the surface of metal structures, and the aircraft is su...

68

Corrosion Test of US Steels in Lead-Bismuth Eutectic (LBE) and Kinetic Modeling of Corrosion in LBE Systems  

E-print Network

1 Corrosion Test of US Steels in Lead-Bismuth Eutectic (LBE) and Kinetic Modeling of Corrosion Federation Abstract We present the LBE corrosion test results of several US steels, and a preliminary analysis using a kinetic model for corrosion in LBE systems. Tube and rod specimens of austenitic steels

McDonald, Kirk

69

An improved stress corrosion test medium for aluminum alloys  

NASA Technical Reports Server (NTRS)

A laboratory test method that is only mildly corrosive to aluminum and discriminating for use in classifying the stress corrosion cracking resistance of aluminum alloys is presented along with the method used in evaluating the media selected for testing. The proposed medium is easier to prepare and less expensive than substitute ocean water.

Humphries, T. S.; Coston, J. E.

1981-01-01

70

Selectable-Tip Corrosion-Testing Electrochemical Cell  

NASA Technical Reports Server (NTRS)

The figure depicts aspects of an electrochemical cell for pitting- corrosion tests of material specimens. The cell is designed to generate a region of corrosion having a pit diameter determined by the diameter of a selectable tip. The average depth of corrosion is controlled by controlling the total electric charge passing through the cell in a test. The cell is also designed to produce minimal artifacts associated with crevice corrosion. There are three selectable tips, having diameters of 0.1 in. (0.254 cm), 0.3 in. (0.762 cm), and 0.6 in. (1.524 cm), respectively.

Lomness, Janice; Hintze, Paul

2008-01-01

71

In vitro corrosion testing of modular hip tapers.  

PubMed

The in vivo fretting behavior of modular hip prostheses was simulated to determine the effects of material combination and a unique TiN/AlN coating on fretting and corrosion at the taper interface. Fretting current, open-circuit potential (OCP), and quantities of soluble debris were measured to determine the role of mechanically assisted crevice corrosion on fretting and corrosion of modular hip tapers. Test groups consisting of similar-alloy (Co-Cr-Mo head/Co-Cr-Mo neck), mixed-alloy (Co-Cr-Mo head/Ti-6Al-4V neck), and TiN/AlN-coated mixed-alloy modular hip taper couples were used. Loads required to initiate fretting were similar for all test groups and were well below loads produced by walking and other physical activities. Decreases in OCP and increases in fretting current observed during long-term cyclic loading were indicative of fretting and corrosion. Current measured after cessation of cyclic loading suggests that once the conditions for crevice corrosion are established, corrosion can continue in the absence of loading. The chemical, mechanical, and electrochemical measurements, along with microscopic inspections of the taper surfaces indicate that the fretting and corrosion behavior of similar- and mixed-alloy taper couples are similar and that the coated samples are more resistant to fretting and corrosion. The results of this study clearly indicate the role of mechanical loading in the corrosion process, and support the hypothesis of mechanically assisted crevice corrosion. PMID:12516082

Goldberg, Jay R; Gilbert, Jeremy L

2003-02-15

72

Fabrication of Test Tubes for Coal Ash Corrosion Testing  

SciTech Connect

This paper deals with the fabrication of tube sections of four alloys for incorporating into test sections to be assembled by Babcock & Wilcox (B&W) for installation at Ohio Edison Power, Niles Plant. The primary purpose of the installation was to determine the corrosion behavior of ten different alloys for flue gas corrosion. Ohio Edison Power, Niles Plant is burning an Ohio coal containing approximately 3.4% S (dry basis) and approximately 0.4% alkali which causes chronic coal ash corrosion of the unit?s superheater tubing. The 2.5-in.-OD x 0.4in.-wall x 6-in-long sections of four alloys {type 304H coated with Fe3Al alloy FAS [developed at the Oak Ridge National Laboratory (ORNL)], 310 + Ta, modified 800H, and Thermie alloy} were fabricated at ORNL. Each alloy tubing was characterized in terms of chemical analysis and microstructure. The machined tubes of each of the alloys were inspected and shipped on time for incorporation into the test loop fabricated at B&W. Among the alloys fabricated, Thermie was the hardest to extrude and machine.

Johnson, R.; Judkins, R.R.; Sikka, V.K.; Swindeman, R.W.; Wright, I.G.

1999-05-11

73

NASA's Beachside Corrosion Test Site and Current Environmentally Friendly Corrosion Control Initiatives  

NASA Technical Reports Server (NTRS)

NASA began corrosion studies at the Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term corrosion protective coatings for carbon steel. KSC's Beachside Corrosion Test Site (BCTS), which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring, environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acid ic exhaust from the solid rocket boosters. In the years that followed, numerous studies have identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosive environment at the launch pad. This paper presents a historical overview of over 45 years of corrosion and coating evaluation studies and a description of the BCTS's current capabilities. Additionally, current research and testing programs involving chromium free coatings, environmentally friendly corrosion preventative compounds, and alternates to nitric acid passivation will be discussed.

Russell, Richard W.; Calle, Luz Marina; Johnston, Frederick; Montgomery, Eliza L.; Curran, Jerome P.; Kolody, Mark R.

2013-01-01

74

CHANGES IN MELTING POINT OF FLUORIDES DURING CORROSION TESTS  

Microsoft Academic Search

Tests were made with selected specimens which had been exposed in static ; corrosion capsules for 100 hr at 800 deg C and with spccimens from dynamic ; corrosion loops which had operated until plugging occurred. Results indicate ; that the plug is composed of high melting material containing the structural ; metals, either free or in chemical combination, but

G. J. Nessle; C. J. Barton

1952-01-01

75

An improved technique for high-temperature salt corrosion tests  

Microsoft Academic Search

A method for long-term corrosion tests in sodium sulfate and chloride melts is described. The method takes account of the salt amount in the bath an admissible variation of sodium chloride concentration, which is of a negligible effect on the corrosion rate. The specimen immersion depth in the bath is regularly reestablished to compensate the evaporation of the salt melt

I. V. Oryshich; A. N. Rakitskii; N. E. Poryadchenko; V. V. Bogaevskii

1994-01-01

76

Test methods to predict long-term corrosion of container materials in repositories  

Microsoft Academic Search

MCC test methods in support of basalt, salt and tuff repositories are described. The methods consist of three general corrosion tests for basalt, two general corrosion tests and three corrosion tests for salt, and two general corrosion tests for tuff. The tests encompass the various conditions that are expected in the different repositories. A summary is provided of experimental activities

M. D. Merz; R. Wang

1984-01-01

77

Test methods to predict long-term corrosion of container materials in repositories  

Microsoft Academic Search

MCC test methods in support of basalt, salt and tuff repositories are described. The methods consist of three general corrosion tests for basalt, two general corrosion test and three stress corrosion tests for salt, and two general corrosion tests for tuff. The tests encompass the various conditions that are expected in the different repositories. A summary is provided of experimental

M. D. Merz; R. Wang

1985-01-01

78

Erosion/corrosion concerns in feed preparation systems at the Defense Waste Processing Facility  

SciTech Connect

The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950`s to produce nuclear materials in support of the national defense effort. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the high level radioactive waste resulting from these processes as a durable borosilicate glass. The DWPF, after having undergone extensive testing, has been approved for operations and is currently immobilizing radioactive waste. To ensure reliability of the DWPF remote canyon processing equipment, a materials evaluation program was performed prior to radioactive operations to determine to what extent erosion/corrosion would impact design life of equipment. The program consisted of performing pre-service baseline inspections on critical equipment and follow-up inspections after completion of DWPF cold chemical demonstration runs. Non-destructive examination (NDE) techniques were used to assess erosion/corrosion as well as evaluation of corrosion coupon racks. These results were used to arrive at predicted equipment life for selected feed preparation equipment. It was concluded with the exception of the coil and agitator for the slurry mix evaporator (SME), which are exposed to erosive glass frit particles, all of the equipment should meet its design life.

Gee, J.T.; Chandler, C.T.; Daugherty, W.L.; Imrich, K.J.; Jenkins, C.F.

1997-12-31

79

A Milder Solution for Stress-Corrosion Tests  

NASA Technical Reports Server (NTRS)

In search for mild corrosive, 14 different salt solutions screened in alternate-immersion tests on 3 aluminum alloys. Best results were obtained with NaCl/MgCl2 solution and with synthetic seawater (contains nearly same proportions of NaCl and MgCl2 along with precise, minute amounts of eight other salts). Because solution is less expensive than artificial seawater, it is probably preferred for future stress-corrosion-cracking (SCC) testing.

Humphries, T. S.; Coston, J. E.

1983-01-01

80

Undervehicle corrosion testing of zinc and zinc alloy coated steels  

Microsoft Academic Search

Undervehicle and on-vehicle coupon corrosion test programs were initiated by Dofasco Inc. in 1981, using two commercial trucks\\u000a operated in the deicing salt\\/snow belt area of Southern Ontario, Canada. The purpose was to investigate the relative corrosion\\u000a performance of numerous zinc and zinc alloy coated steels. Seventeen coated steels were tested. Results to date indicate that\\u000a the hot dip coated

R. J. Neville; K. M. de Souza

1986-01-01

81

[Stress-corrosion test of TIG welded CP-Ti].  

PubMed

In this study TIG (Tungsten Inert Gas) welded CP-Ti were subjected to stress-corrosion test under 261 MPa in artificial saliva of 37 degrees C for 3 months. No significant difference was noted on mechanical test (P > 0.05). No color-changed and no micro-crack on the sample's surface yet. These results indicate that TIG welded CP-Ti offers excellent resistance to stress corrosion. PMID:11211846

Li, H; Wang, Y; Zhou, Z; Meng, X; Liang, Q; Zhang, X; Zhao, Y

2000-12-01

82

Survey of Facilities for Testing Photovoltaics  

NASA Technical Reports Server (NTRS)

42-page report describes facilities capable of testing complete photovoltaic systems, subsystems, or components. Compilation includes facilities and capabilities of five field centers of national photovoltaics program, two state-operated agencies, and five private testing laboratories.

Weaver, R. W.

1982-01-01

83

Corrosion Testing of Brazed Space Station IATCS Materials  

NASA Technical Reports Server (NTRS)

Increased nickel concentrations in the IATCS coolant prompted a study of the corrosion rates of nickel-brazed heat exchangers in the system. The testing has shown that corrosion is occurring in a silicon-rich intermetallic phase in the braze filler of coldplates and heat exchangers as the result of a decrease in the coolant pH brought about by cabin carbon dioxide permeation through polymeric flexhoses. Similar corrosion is occurring in the EMU de-ionized water loop. Certain heat exchangers and coldplates have more silicon-rich phase because of their manufacturing method, and those units produce more nickel corrosion product. Silver biocide additions did not induce pitting corrosion at silver precipitate sites.

Pohlman, Matthew J.; Varisik, Jerry; Steele, John W.; Golden, Johnny L.; Boyce, William E.; Pedley, Michael D.

2004-01-01

84

Evaluation of annual corrosion tests for aggressive water  

NASA Astrophysics Data System (ADS)

Internal corrosion has a significant effect on the useful life of pipes, the hydraulic conditions of a distribution system and the quality of the water transported. All water is corrosive under some conditions, and the level of this corrosion depends on the physical and chemical properties of the water and properties of the pipe material. Galvanic treatment is an innovation for protecting against corrosion, and this method is also suitable for removal of water stone too. This method consists of the electrogalvanic principle, which is generated by the flowing of water between a zinc anode and the cupro-alloy cover of a column. This article presents experimental corrosion tests at water resource Pernek (This water resource-well marked as HL-1 is close to the Pernek of village), where the device is operating based on this principle.

Dubová, V.; Ilavský, J.; Barloková, D.

2011-12-01

85

Cold Flow Verification Test Facility  

SciTech Connect

The cold flow verification test facility consists of a 15-foot high, 3-foot diameter, domed vessel made of clear acrylic in two flanged sections. The unit can operate up to pressures of 14 psig. The internals include a 10-foot high jetting fluidized bed, a cylindrical baffle that hangs from the dome, and a rotating grate for control of continuous solids removal. The fluid bed is continuously fed solids (20 to 150 lb/hr) through a central nozzle made up of concentric pipes. It can either be configured as a half or full cylinder of various dimensions. The fluid bed has flow loops for separate air flow control for conveying solids (inner jet, 500 to 100000 scfh) , make-up into the jet (outer jet, 500 to 8000 scfh), spargers in the solids removal annulus (100 to 2000 scfh), and 6 air jets (20 to 200 scfh) on the sloping conical grid. Additional air (500 to 10000 scfh) can be added to the top of the dome and under the rotating grate. The outer vessel, the hanging cylindrical baffles or skirt, and the rotating grate can be used to study issues concerning moving bed reactors. There is ample allowance for access and instrumentation in the outer shell. Furthermore, this facility is available for future Cooperative Research and Development Program Manager Agreements (CRADA) to study issues and problems associated with fluid- and fixed-bed reactors. The design allows testing of different dimensions and geometries.

Shamsi, A.; Shadle, L.J.

1996-12-31

86

Liquid-Air Interface Corrosion Testing Simulating The Environment Of Hanford Double Shell Tanks  

SciTech Connect

Coupon tests on A537 carbon steel materials were conducted to evaluate the Liquid-Air Interface (LAI) corrosion susceptibility in a series of solutions designed to simulate conditions in the radioactive waste tanks located at the Hanford Nuclear Facility. The new stress corrosion cracking requirements and the impact of ammonia on LAI corrosion were the primary focus. The minimum R value (i.e., molar ratio of nitrite to nitrate) of 0.15 specified by the new stress corrosion cracking requirements was found to be insufficient to prevent pitting corrosion at the LAI. The pH of the test solutions was 10, which was actually less than the required pH 11 defined by the new requirements. These tests examined the effect of the variation of the pH due to hydroxide depletion at the liquid air interface. The pits from the current testing ranged from 0.001 to 0.008 inch in solutions with nitrate concentrations of 0.4 M and 2.0 M. The pitting and general attack that occurred progressed over the four-months. No significant pitting was observed, however, for a solution with a nitrate concentration of 4.5 M. The pitting depths observed in these partial immersion tests in unevaporated condensates ranged from 0.001 to 0.005 inch after 4 months. The deeper pits were in simulants with low R values. Simulants with R values of approximately 0.6 to 0.8 appeared to significantly reduce the degree of attack. Although, the ammonia did not completely eliminate attack at the LAI, the amount of corrosion in an extremely corrosive solution was significantly reduced. Only light general attack (< 1 mil) occurred on the coupon in the vicinity of the LAI. The concentration of ammonia (i.e., 50 ppm or 500 ppm) did not have a strong effect.

Wiersma, B.; Gray, J. R.; Garcia-Diaz, B. L.; Murphy, T. H.; Hicks, K. R.

2014-01-30

87

Amine corrosion inhibitor successful in tests at Mobil's Paulsboro refinery  

SciTech Connect

Mobil Oil Corp. has successfully completed a test of an amine unit corrosion inhibition system at its 100,000-b/d refinery in Paulsboro, NJ. The system, the Amine Guard ST system is used to inhibit corrosion of diethanolamine (DEA) sweetening units that treat process streams from the fluid catalytic cracker (FCC), a hydrodesulfurization unit (HDU), and lube oil dewaxing (LDW) units at the refinery. Use of the corrosion-inhibition system has allowed an increase in the DEA concentration to 55 wt %, a reduction of the DEA circulation rate by 40%, and a reduction in regeneration steam of 35%.

Not Available

1986-11-03

88

Electrochemical Corrosion Testing of Borated Stainless Steel Alloys  

SciTech Connect

The Department of Energy Office of Civilian Radioactive Waste Management has specified borated stainless steel manufactured to the requirements of ASTM A 887-89, Grade A, UNS S30464, to be the material used for the fabrication of the fuel basket internals of the preliminary transportation, aging, and disposal canister system preliminary design. The long-term corrosion resistance performance of this class of borated materials must be verified when exposed to expected YMP repository conditions after a waste package breach. Electrochemical corrosion tests were performed on crevice corrosion coupons of Type 304 B4 and Type 304 B5 borated stainless steels exposed to single postulated in-package chemistry at 60°C. The results show low corrosion rates for the test period

lister, tedd e; Mizia, Ronald E

2007-05-01

89

Design of accelerated corrosion tests for electronic components in automotive applications  

Microsoft Academic Search

Two new accelerated laboratory corrosion tests for electronic components in automotive applications have been developed, based on the use of metallic copper as a meter for corrosivity. The accelerated tests are designed so that they reproduce the same kind of corrosion effects as observed with exposure of copper in real vehicle environments. The test cycle that best simulates the corrosion

Peter Eriksson; Bo Carlsson; I. O. Wallinder

2001-01-01

90

The New LOTIS Test Facility  

NASA Technical Reports Server (NTRS)

The Large Optical Test and Integration Site (LOTIS) at the Lockheed Martin Space Systems Company in Sunnyvale, CA is designed for the verification and testing of optical systems. The facility consists of an 88 foot temperature stabilized vacuum chamber that also functions as a class 10k vertical flow cleanroom. Many problems were encountered in the design and construction phases. The industry capability to build large chambers is very weak. Through many delays and extra engineering efforts, the final product is very good. With 11 Thermal Conditioning Units and precision RTD s, temperature is uniform and stable within 1oF, providing an ideal environment for precision optical testing. Within this chamber and atop an advanced micro-g vibration-isolation bench is the 6.5 meter diameter LOTIS Collimator and Scene Generator, LOTIS alignment and support equipment. The optical payloads are also placed on the vibration bench in the chamber for testing. This optical system is designed to operate in both air and vacuum, providing test imagery in an adaptable suite of visible/near infrared (VNIR) and midwave infrared (MWIR) point sources, and combined bandwidth visible-through-MWIR point sources, for testing of large aperture optical payloads. The heart of the system is the LOTIS Collimator, a 6.5m f/15 telescope, which projects scenes with wavefront errors <85 nm rms out to a 0.75 mrad field of view (FOV). Using field lenses, performance can be extended to a maximum field of view of 3.2 mrad. The LOTIS Collimator incorporates an extensive integrated wavefront sensing and control system to verify the performance of the system.

Bell, R. M.; Cuzner, G.; Eugeni, C.; Hutchison, S. B.; Merrick, A. J.; Robins, G. C.; Bailey, S. H.; Ceurden, B.; Hagen, J.; Kenagy, K.; Martin, H. M.; Tuell, M.; Ward, M.; West, S. C.

2008-01-01

91

Engineering test facility design definition  

NASA Technical Reports Server (NTRS)

The Engineering Test Facility (ETF) is the major focus of the Department of Energy (DOE) Magnetohydrodynamics (MHD) Program to facilitate commercialization and to demonstrate the commercial operability of MHD/steam electric power. The ETF will be a fully integrated commercial prototype MHD power plant with a nominal output of 200 MW sub e. Performance of this plant is expected to meet or surpass existing utility standards for fuel, maintenance, and operating costs; plant availability; load following; safety; and durability. It is expected to meet all applicable environmental regulations. The current design concept conforming to the general definition, the basis for its selection, and the process which will be followed in further defining and updating the conceptual design.

Bercaw, R. W.; Seikel, G. R.

1980-01-01

92

Solar Thermal Propulsion Test Facility  

NASA Technical Reports Server (NTRS)

Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph shows a fully assembled solar thermal engine placed inside the vacuum chamber at the test facility prior to testing. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move theNation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

1999-01-01

93

High temperature corrosion testing standards development: A European perspective  

SciTech Connect

Materials selection and component design are processes that are highly dependent upon the availability of accurate, good quality materials property data. Without such quality data these processes cannot achieve the levels of efficiency and safety expected. Many standards for obtaining physical and mechanical property data are in daily use. For corrosion, however, in the past standards have generally been shunned. This has led to a broad range of test methods being used and poor reproducibility of results from laboratory to laboratory. Reporting of results in the literature often lacks essential detail (meaning data cannot be readily interpreted) and corrosion data bases have largely been ignored. This paper presents mainly the European efforts being made to unify corrosion testing of materials at high temperatures. The organizational approach is highlighted and details of the modular assembly of test methods are given. Currently, most effort is being focused on refining methods by which the severity of corrosive attack can be accurately quantified, regardless of the environmental conditions of exposure. Guidelines for carrying out corrosion tests are steadily evolving, but few attempts have yet been made to write specific standards covering testing in defined environments.

Baxter, D.J.; Norton, J.F. [J.R.C. Petten Establishment (Netherlands)

1995-12-31

94

Corrosion testing of stainless steel-zirconium metal waste forms  

SciTech Connect

Stainless steel-zirconium (SS-Zr) alloys have been developed as waste forms for the disposal of metallic waste generated during the electrometallurgical treatment of spent nuclear fuel. The waste forms incorporate irradiated cladding hulls, components of the alloy fuel, noble metal fission products, and actinide elements. The baseline waste form is a stainless steel-15 wt% zirconium (SS-15Zr) alloy. This article presents microstructures and some of the corrosion studies being conducted on the waste form alloys. Electrochemical corrosion, immersion corrosion, and vapor hydration tests have been performed on various alloy compositions to evaluate corrosion behavior and resistance to selective leaching of simulated fission products. The SS-Zr waste forms immobilize and retain fission products very effectively and show potential for acceptance as high-level nuclear waste forms.

Abraham, D.P.; Simpson, L.J.; Devries, M.J.; McDeavitt, S.M.

1999-07-01

95

Solar Thermal Propulsion Test Facility  

NASA Technical Reports Server (NTRS)

Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph, taken at MSFC's Solar Thermal Propulsion Test Facility, shows a concentrator mirror, a combination of 144 mirrors forming this 18-ft diameter concentrator, and a vacuum chamber that houses the focal point. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-foot diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

1999-01-01

96

Qualification of Coatings for Launch Facilities and Ground Support Equipment Through the NASA Corrosion Technology Laboratory  

NASA Technical Reports Server (NTRS)

Corrosion protection at NASA's Kennedy Space Center is a high priority item. The launch facilities at the Kennedy Space Center are located approximately 1000 feet from the Atlantic Ocean where they are exposed to salt deposits, high humidity, high UV degradation, and acidic exhaust from solid rocket boosters. These assets are constructed from carbon steel, which requires a suitable coating to provide long-term protection to reduce corrosion and its associated costs.

Kolody, Mark R.; Curran, Jerome P.; Calle, Luz Marina

2014-01-01

97

The Revamping of an Ignition Test Facility  

NASA Technical Reports Server (NTRS)

The revamping of an Ignition Test Facility, located in the Research Combustion Laboratory at the NASA Glenn Research Center, is presented. The history of how the test cell has adapted efficiently to a variety of test programs is discussed. The addition of a second test stand for ignition and small-scale rocket testing is detailed. An overview of the facility and the current test programs is offered. Planned upgrades for the future are outlined.

Kearns, Kimberly A.

2002-01-01

98

Corrosion  

ERIC Educational Resources Information Center

Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

Slabaugh, W. H.

1974-01-01

99

Antenna Test Facility (ATF): User Test Planning Guide  

NASA Technical Reports Server (NTRS)

Test process, milestones and inputs are unknowns to first-time users of the ATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

Lin, Greg

2011-01-01

100

Radiant Heat Test Facility (RHTF): User Test Planning Guide  

NASA Technical Reports Server (NTRS)

Test process, milestones and inputs are unknowns to first-time users of the RHTF. The User Test Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

DelPapa, Steven

2011-01-01

101

Vibration and Acoustic Test Facility (VATF): User Test Planning Guide  

NASA Technical Reports Server (NTRS)

Test process, milestones and inputs are unknowns to first-time users of the VATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

Fantasia, Peter M.

2011-01-01

102

Power Electronics Field Test Facility (TPET) The Power Electronics Field Test Facility (TPET) is a unique test facility for field testing of  

E-print Network

Power Electronics Field Test Facility (TPET) Overview: The Power Electronics Field Test Facility (TPET) is a unique test facility for field testing of power electronics that will be located at the TVA the testing of power electronics and energy storage technology from laboratory development and testing through

103

License plate cosmetic corrosion test of automotive coated steel sheet  

SciTech Connect

A new standard laboratory test (SAE J2334) for evaluation of the cosmetic corrosion resistance of autobody steel sheet has been developed through the joint efforts of the Society of Automotive Engineers Automotive Corrosion Prevention Committee (SAE/ACAP) and the Auto/Steel Partnership (A/SP) Corrosion Task Force. Results from this test gave an excellent correlation with those of on-vehicle tests conducted for 5 years in Canada at St. John`s, Newfoundland, and Montreal, Quebec. To determine how results of the Canadian tests related to environments in the United States, racks of identical materials were mounted on the front license plate brackets of cars driven in various locations in the US snowbelt, including Bethlehem, Pennsylvania; Detroit, Michigan, and Chardon, Ohio. After 4 years to 5 years, these tests showed the US environments produced less scribe creep and more red rust than those conducted in Canada. Similar rankings were obtained for the scribe creep resistance of the various coated steel sheet products when compared at equivalent amounts of corrosion. However, the ranking of materials changed at longer exposure times in Canada, and for that reason, it was concluded that the 5-year Canadian results used in the development of the SAE J2334 test provided a better real-world performance standard.

Townsend, H.E. [Bethlehem Steel Corp., Bethlehem, PA (United States)., Homer Research Labs.; Simpson, M.W. [PPG/Chemfil Corp., Troy, MI (United States). Coatings and Resins Group; Linde, W.B. van der [E.I. DuPont de Nemours and Co., Inc., Philadelphia, PA (United States). Automotive Products Development; McCune, D.C. [Quality/Statistics, Beaver, PA (United States)

1999-04-01

104

Transonic turbine blade cascade testing facility  

NASA Technical Reports Server (NTRS)

NASA LeRC has designed and constructed a new state-of-the-art test facility. This facility, the Transonic Turbine Blade Cascade, is used to evaluate the aerodynamics and heat transfer characteristics of blade geometries for future turbine applications. The facility's capabilities make it unique: no other facility of its kind can combine the high degree of airflow turning, infinitely adjustable incidence angle, and high transonic flow rates. The facility air supply and exhaust pressures are controllable to 16.5 psia and 2 psia, respectively. The inlet air temperatures are at ambient conditions. The facility is equipped with a programmable logic controller with a capacity of 128 input/output channels. The data acquisition system is capable of scanning up to 1750 channels per sec. This paper discusses in detail the capabilities of the facility, overall facility design, instrumentation used in the facility, and the data acquisition system. Actual research data is not discussed.

Verhoff, Vincent G.; Camperchioli, William P.; Lopez, Isaac

1992-01-01

105

Corrosion Testing in Support of the Accelerator Production of Tritium Program  

SciTech Connect

The Accelerator Production of Tritium Project is part of the United States Department of Energy strategy to meet the nation's tritium needs. The project involves the design of a proton beam accelerator, which will produce tritium through neutron/proton interaction with helium-3. Design, construction and operation of this one-of-a-kind facility will involve the utilization of a wide variety of materials exposed to unique conditions, including elevated temperature and high-energy mixed-proton and -neutron spectra. A comprehensive materials test program was established by the APT project which includes the irradiation of structural materials by exposure to high-energy protons and neutrons at the Los Alamos Neutron Science Center at the Los Alamos National Laboratory. Real-time corrosion measurements were performed on specially designed corrosion probes in water irradiated by an 800 MeV proton beam. The water test system provided a means for measuring water chemistry, dissolved hydroge n concentration, and the effects of water radiolysis and water quality on corrosion rate. The corrosion probes were constructed of candidate APT materials alloy 718, 316L stainless steel, 304L stainless steel, and 6061 Aluminum (T6 heat treatment), and alternate materials 5052 aluminum alloy, alloy 625, and C276. Real-time corrosion rates during proton irradiation increased with proton beam current. Efforts are continuing to determine the effect of proton beam characteristics and mixed-particle flux on the corrosion rate of materials located directly in the proton beam. This paper focuses on the real-time corrosion measurements of materials located in the supply stream and return stream of the water flow line to evaluate effects of long-lived radiolysis products and water chemistry on the corrosion rates of materials. In general, the corrosion rates for the out-of-beam probes were low and were affected mainly by water conductivity. The data indicate a water conductivity threshold e xists to minimize corrosion in the out-of-beam areas, especially for aluminum. The in-beam probes also revealed a water conductivity threshold but at a lower value compared to the out-of-beam probes.

Chandler, G.

2000-11-07

106

Energy Systems Test Area (ESTA). Power Systems Test Facilities  

NASA Technical Reports Server (NTRS)

This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.

Situ, Cindy H.

2010-01-01

107

Accelerated corrosion tests for aerospace materials: current limitations and future trends  

Microsoft Academic Search

Examines accelerated methods for the corrosion testing of materials, coatings and surface treatments used in the aerospace and defence industries. The drawbacks with some current accelerated corrosion tests are examined, particularly the problems experienced with neutral salt spray tests. Specific examples are given which identify the acute discrepancy between salt spray and marine exposure in the corrosion testing of metallic

K. R. Baldwin; C. J. E. Smith

1999-01-01

108

The LSP/SNI Test Facility.  

ERIC Educational Resources Information Center

Vendors implementing Standard Network Interconnection (SNI) protocols for computer to computer communications can now test their implementation against the Linked Systems Project/SNI Test Facility developed by Library of Congress. The facility is intended to verify correct functioning of SNI protocols for Open System Interconnection (OSI) layers.…

Denenberg, Ray

1986-01-01

109

Testing facilities for developing UHV equipments  

SciTech Connect

The testing facilities of UHV (Ultra High Voltage) laboratory are described in this paper. The voltage rating of testing facilities and dimensions of the laboratory for developing UHV substation equipments, especially transformers and gas insulated equipments, are discussed on the basis of research and development experiencies of UHV equipment manufacture.

Yamamoto, M.; Honda, M.

1982-07-01

110

New and powerful method for the evaluation of multiparameter corrosion tests  

Microsoft Academic Search

A new method for the evaluation of corrosion and stress corrosion tests performed with cementitious materials has been developed. The method is based essentially on a transformation of the strength-time data obtained usually from corrosion experiments. Results of the application of the method to the evaluation of stress corrosion data from cement mortars in aqueous ammonium salt solutions are discussed.

E. Nägele

1995-01-01

111

Ampule tests to simulate glass corrosion in ambient temperature lithium batteries, volume 2  

Microsoft Academic Search

Glass corrosion in battery headers were found to limit the shelf life of ambient temperature lithium batteries. Glass corrosion can lead to loss of battery electrolytes or to shorts across the conductive corrosion product. Tests were conducted which simulate the corrosive environment in a battery by sealing headers attached to lithium metal into Pyrex ampules containing battery electrolyte. Using the

S. C. Douglas; B. C. Bunker; C. C. Crafts; R. K. Quinn

1984-01-01

112

In vivo and in vitro considerations of corrosion testing.  

PubMed

In vitro experiments were conducted in which the fretting corrosion rate of stainless steel plates and screws in 0.9% saline was compared with the rate in solutions of 10% calf serum in saline. The results demonstrated a ten-fold decrease in the fretting corrosion rate with the addition of serum to saline. However, it also demonstrated that the lower concentration of nickel in the serum solutions was more biologically active than the higher concentration in saline when the solutions were used to skin test rabbits made allergic to nickel by injection. PMID:7260227

Brown, S A; Merritt, K

1981-01-01

113

10 CFR 26.123 - Testing facility capabilities.  

Code of Federal Regulations, 2011 CFR

...2011-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy...Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same premises, to perform...

2011-01-01

114

10 CFR 26.123 - Testing facility capabilities.  

Code of Federal Regulations, 2010 CFR

...2010-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy...Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same premises, to perform...

2010-01-01

115

Sun{diamond}Lab test facilities  

SciTech Connect

This country`s efforts to successfully develop and commercialize concentrating solar power (CSP) technologies depend on specialized research and testing capabilities. To Support this effort, the US Department of Energy`s Concentrating Solar Power Program maintains two major test facilities: the National Solar Thermal Test Facility at Sandia National Laboratories in Albuquerque, New Mexico, and the High Flux Solar Furnace at the National Renewable Energy Laboratory in Golden, Colorado. These test facilities combine to be instrumental in the development of parabolic dishes, troughs, and solar power towers.

Not Available

1998-04-01

116

Durability tests of a fiber optic corrosion sensor.  

PubMed

Steel corrosion is a major cause of degradation in reinforced concrete structures, and there is a need to develop cost-effective methods to detect the initiation of corrosion in such structures. This paper presents a low cost, easy to use fiber optic corrosion sensor for practical application. Thin iron film is deposited on the end surface of a cleaved optical fiber by sputtering. When light is sent into the fiber, most of it is reflected by the coating. If the surrounding environment is corrosive, the film is corroded and the intensity of the reflected signal drops significantly. In previous work, the sensing principle was verified by various experiments in laboratory and a packaging method was introduced. In this paper, the method of multiplexing several sensors by optical time domain reflectometer (OTDR) and optical splitter is introduced, together with the interpretation of OTDR results. The practical applicability of the proposed sensors is demonstrated in a three-year field trial with the sensors installed in an aggressive marine environment. The durability of the sensor against chemical degradation and physical degradation is also verified by accelerated life test and freeze-thaw cycling test, respectively. PMID:22737030

Wan, Kai Tai; Leung, Christopher K Y

2012-01-01

117

Small engine components test facility turbine testing cell  

NASA Technical Reports Server (NTRS)

NASA Lewis Research Center has designed and constructed a new state-of-the-art test facility. This facility, called the Small Engine Components Test Facility (SECTF), is used to test gas turbines and compressors at conditions similar to actual engine conditions. The SECTF is comprised of two separate facilities - a turbine test cell and a compressor test cell. The paper will describe the turbine test cell. The capabilities of the facility make it unique - no other facility of its kind is capable of combining its pressure, speed, and temperature ranges. Turbine inlet air ranges up to 9 atm (125 psig). The turbine exhaust pressure ranges from 0.15 atm (2 psia) to atmospheric pressure. Turbine inlet air temperatures range from ambient to 700 K (1260 deg R). The controllable speed of the turbine rotor ranges from 4000 to 60,000 rpm and the maximum power absorbed by the facility dynamometer is 1250 hp. The data acquisition system scans up to 2000 channels/sec. This paper will discuss in detail the capabilities of the facility, overall facility design, instrumentation used in the facility, and the data acquisition system. Actual research data is not discussed.

Nowlin, Brent C.; Verhoff, Vincent G.

1988-01-01

118

The sky is falling: chemical characterization and corrosion evaluation of deposition produced during the static testing of solid rocket motors.  

PubMed

Static tests of horizontally restrained rocket motors at the ATK facility in Promontory UT, USA result in the deposition of entrained soil and fuel combustion products, referred to as Test Fire Soil (TFS), over areas as large as 30-50 mile (80-130 km) and at distances up to 10-12 miles (16-20 km) from the test site. Chloride is the main combustion product generated from the ammonium perchlorate-aluminum based composite propellant. Deposition sampling/characterization and a 6-month field corrosivity study using mild steel coupons were conducted in conjunction with the February 25th 2010 FSM-17 static test. The TFS deposition rates at the three study sites ranged from 1 to 5 g/min/m. TFS contained significantly more chloride than the surface soil collected from the test site. The TFS collected during two subsequent tests had similarly elevated chloride, suggesting that the results obtained in this study are applicable to other tests assuming that the rocket fuel composition remains similar. The field-deployed coupons exposed to the TFS had higher corrosion rates (3.6-5.0 mpy) than paired non-exposed coupons (1.6-1.8 mpy). Corrosion rates for all coupons decreased over time, but coupons exposed to the TFS always had a higher rate than the non-exposed. Differences in corrosion rates between the three study sites were also observed, with sites receiving more TFS deposition having higher corrosion rates. PMID:23410860

Doucette, William J; McNeill, Laurie S; Mendenhall, Scout; Hancock, Paul V; Wells, Jason E; Thackeray, Kevin J; Gosen, David P

2013-03-01

119

Buffet test in the National Transonic Facility  

NASA Technical Reports Server (NTRS)

A buffet test of a commercial transport model was accomplished in the National Transonic Facility at the NASA Langley Research Center. This aeroelastic test was unprecedented for this wind tunnel and posed a high risk for the facility. Presented here are the test results from a structural dynamics and aeroelastic response point of view. The activities required for the safety analysis and risk assessment are described. The test was conducted in the same manner as a flutter test and employed on-board dynamic instrumentation, real time dynamic data monitoring, and automatic and manual tunnel interlock systems for protecting the model.

Young, Clarence P., Jr.; Hergert, Dennis W.; Butler, Thomas W.; Herring, Fred M.

1992-01-01

120

Process test plan for the 241-AN-105 multi-function corrosion monitoring system  

SciTech Connect

Process Test Plan (PTP) for 241-AN-105 corrosion monitoring system. A corrosion monitoring probe will be installed into 241-AN-105 in late FY 1999. There are five principle objectives of this task: (1) Acquire data on the corrosive characteristics of the existing waste in 241-AN-105. (2) Provide supporting data to the Integrity Assessment program. (3) Acquire data to support a proposed eventual change in the operation of double shell tanks to monitor and control tank corrosion through the use of corrosion probes rather than waste sampling and analysis. (4) Demonstrate that corrosion monitoring by evaluation of electrochemical noise data is possible in waste tank systems, particularly with regard to the detection of general corrosion and (if present) pitting and stress corrosion cracking. (5) Demonstrate the durability of the design of the corrosion monitoring equipment. The long term advantage of corrosion monitoring in double shell tanks is expected to be extended tank life and reduced annual operations cost.

EDGEMON, G.L.

1999-07-13

121

Reproduction of natural corrosion by accelerated laboratory testing methods  

SciTech Connect

Various laboratory corrosion tests have been developed to study the behavior of glass waste forms under conditions similar to those expected in an engineered repository. The data generated by laboratory experiments are useful for understanding corrosion mechanisms and for developing chemical models to predict the long-term behavior of glass. However, it is challenging to demonstrate that these test methods produce results that can be directly related to projecting the behavior of glass waste forms over time periods of thousands of years. One method to build confidence in the applicability of the test methods is to study the natural processes that have been taking place over very long periods in environments similar to those of the repository. In this paper, we discuss whether accelerated testing methods alter the fundamental mechanisms of glass corrosion by comparing the alteration patterns that occur in naturally altered glasses with those that occur in accelerated laboratory environments. This comparison is done by (1) describing the alteration of glasses reacted in nature over long periods of time and in accelerated laboratory environments and (2) establishing the reaction kinetics of naturally altered glass and laboratory reacted glass waste forms.

Luo, J.S.; Wronkiewicz, D.J.; Mazer, J.J.; Bates, J.K.

1996-05-01

122

Corrosion testing of candidates for the alkaline fuel cell cathode  

NASA Technical Reports Server (NTRS)

Current/voltage data was obtained for specially made corrosion electrodes of some oxides and of gold materials for the purpose of developing a screening test of catalysts and supports for use at the cathode of the alkaline fuel cell. The data consists of measurements of current at fixed potentials and cyclic voltammograms. These data will have to be correlated with longtime performance data in order to fully evaluate this approach to corrosion screening. Corrosion test screening of candidates for the oxygen reduction electrode of the alkaline fuel cell was applied to two substances, the pyrochlore Pb2Ru2O6.5 and the spinel NiCo2O4. The substrate gold screen and a sample of the IFC Orbiter Pt-Au performance electrode were included as blanks. The pyrochlore data indicate relative stability, although nothing yet can be said about long term stability. The spinel was plainly unstable. For this type of testing to be validated, comparisons will have to be made with long term performance tests.

Singer, Joseph; Fielder, William L.

1989-01-01

123

Corrosion testing of candidates for the alkaline fuel cell cathode  

NASA Astrophysics Data System (ADS)

Current/voltage data was obtained for specially made corrosion electrodes of some oxides and of gold materials for the purpose of developing a screening test of catalysts and supports for use at the cathode of the alkaline fuel cell. The data consists of measurements of current at fixed potentials and cyclic voltammograms. These data will have to be correlated with longtime performance data in order to fully evaluate this approach to corrosion screening. Corrosion test screening of candidates for the oxygen reduction electrode of the alkaline fuel cell was applied to two substances, the pyrochlore Pb2Ru2O6.5 and the spinel NiCo2O4. The substrate gold screen and a sample of the IFC Orbiter Pt-Au performance electrode were included as blanks. The pyrochlore data indicate relative stability, although nothing yet can be said about long term stability. The spinel was plainly unstable. For this type of testing to be validated, comparisons will have to be made with long term performance tests.

Singer, Joseph; Fielder, William L.

1989-12-01

124

Integrated Disposal Facility FY 2012 Glass Testing Summary Report  

SciTech Connect

PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Key activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.

Pierce, Eric M.; Kerisit, Sebastien N.; Krogstad, Eirik J.; Burton, Sarah D.; Bjornstad, Bruce N.; Freedman, Vicky L.; Cantrell, Kirk J.; Snyder, Michelle MV; Crum, Jarrod V.; Westsik, Joseph H.

2013-03-29

125

The Mars Science Laboratory Touchdown Test Facility  

NASA Technical Reports Server (NTRS)

In the Touchdown Test Program for the Mars Science Laboratory (MSL) mission, a facility was developed to use a full-scale rover vehicle and an overhead winch system to replicate the Skycrane landing event.

White, Christopher; Frankovich, John; Yates, Phillip; Wells Jr, George H.; Losey, Robert

2009-01-01

126

CORROSION TESTING IN SIMULATED TANK SOLUTIONS  

Microsoft Academic Search

Three simulated waste solutions representing wastes from tanks SY-102 (high nitrate, modified to exceed guidance limits), AN-107, and AY-102 were supplied by PNNL. Out of the three solutions tested, both optical and electrochemical results show that carbon steel samples corroded much faster in SY-102 (high nitrate) than in the other two solutions with lower ratios of nitrate to nitrite. The

Hoffman

2010-01-01

127

Mechanical Components Branch Test Facilities and Capabilities  

NASA Technical Reports Server (NTRS)

The Mechanical Components Branch at NASA Glenn Research Center formulates, conducts, and manages research focused on propulsion systems for both present and advanced aeronautical and space vehicles. The branch is comprised of research teams that perform basic research in three areas: mechanical drives, aerospace seals, and space mechanisms. Each team has unique facilities for testing aerospace hardware and concepts. This report presents an overview of the Mechanical Components Branch test facilities.

Oswald, Fred B.

2004-01-01

128

Exploratory corrosion tests on alloys in molten salts at 900°C  

Microsoft Academic Search

Exploratory corrosion tests were conducted on 16 commercial alloys in carbonate, chloride, and hydroxide molten salts at 900°C for up to three weeks. Corrosion information, including weight change, observations of the coupons, metallographic examination, and evaluation of the corrosion product by SEM, was obtained on the coupons exposed to these salts. These tests indicated that a number of the alloys

R. T. Coyle; T. M. Thomas; G. Y. Lai

1984-01-01

129

Corrosion Tests of LWR Fuels - Nuclide Release  

SciTech Connect

Two BWR fuels [64 and 71 (MWd)/kgU], one of which contained 2% Gd, and two PWR fuels [30 and 45 (MWd)/kgU], are tested by dripping groundwater on the fuels under oxidizing and hydrologically unsaturated conditions for times ranging from 2.4 to 8.2 yr at 90 C. The {sup 99}Tc, {sup 129}I, {sup 137}Cs, {sup 97}Mo, and {sup 90}Sr releases are presented to show the effects of long reaction times and of gadolinium on nuclide release. This investigation showed that the five nuclides at long reaction times have similar fractional release rates and that the presence of 2% Gd reduced the {sup 99}Tc cumulative release fraction by about an order of magnitude over that of a fuel with a similar burnup.

P.A. Finn; Y. Tsai; J.C. Cunnane

2001-12-14

130

Integrated Disposal Facility FY2011 Glass Testing Summary Report  

SciTech Connect

Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

2011-09-29

131

Real-Gas Aerothermodynamics Test Facilities  

NASA Technical Reports Server (NTRS)

This chapter provides an overview of the current ground-based aerothermodynamic testing capabilities in Western Europe and the United States. The focus is on facilities capable of producing real-gas effects (dissociation, ionization, and thermochemical nonequilibrium) pertinent to the study of atmospheric flight in the Mach number range of 5 < M < 50. Perceived mission needs of interest to the Americans and Western Europeans are described where such real-gas flows are important. The role of Computational Fluid Dynamics (CFD) in modern ground testing is discussed, and the capabilities of selected American and European real-gas facilities are described. An update on the current instrumentation in aerothermodynamic testing is also outlined. Comments are made regarding the use of new facilities which have been brought on line during the past 3-5 years. Finally, future needs for aerothermodynamic testing, including instrumentation, are discussed and recommendations for implementation are reported.

Arnold, James O.; Seibert, George L.; Wendt, John F.

1998-01-01

132

305 Building cold test facility management plan  

SciTech Connect

This document provides direction for the conduct of business in Building 305 for cold testing K-Basin tools and equipment. The Cold Test Facility represents a small portion of the overall building, and as such, the work instructions already implemented in the 305 Building will be utilized.

Feigenbutz, L.V.

1994-12-09

133

Underground transmission test facility to be built  

Microsoft Academic Search

As part of an overall research and development program in underground transmission being sponsored by the Electric Research Council, Westinghouse Electric Corp. will build and operate an underground transmission test facility. It will be located near the western Pennsylvania community of Waltz Mill. An 1100-kV substation will be built to conduct accelerated life tests on underground transmission systems. Flexibility, combined

T. D. Reimers; F. S. Young

1967-01-01

134

Corrosion of iron by iodide-oxidizing bacteria isolated from brine in an iodine production facility.  

PubMed

Elemental iodine is produced in Japan from underground brine (fossil salt water). Carbon steel pipes in an iodine production facility at Chiba, Japan, for brine conveyance were found to corrode more rapidly than those in other facilities. The corroding activity of iodide-containing brine from the facility was examined by immersing carbon steel coupons in "native" and "filter-sterilized" brine samples. The dissolution of iron from the coupons immersed in native brine was threefold to fourfold higher than that in the filter-sterilized brine. Denaturing gradient gel electrophoresis analyses revealed that iodide-oxidizing bacteria (IOBs) were predominant in the coupon-containing native brine samples. IOBs were also detected in a corrosion deposit on the inner surface of a corroded pipe. These results strongly suggested the involvement of IOBs in the corrosion of the carbon steel pipes. Of the six bacterial strains isolated from a brine sample, four were capable of oxidizing iodide ion (I(-)) into molecular iodine (I(2)), and these strains were further phylogenetically classified into two groups. The iron-corroding activity of each of the isolates from the two groups was examined. Both strains corroded iron in the presence of potassium iodide in a concentration-dependent manner. This is the first report providing direct evidence that IOBs are involved in iron corrosion. Further, possible mechanisms by which IOBs corrode iron are discussed. PMID:24863130

Wakai, Satoshi; Ito, Kimio; Iino, Takao; Tomoe, Yasuyoshi; Mori, Koji; Harayama, Shigeaki

2014-10-01

135

CLIC test beam facilities status and results  

E-print Network

CERN is studying the feasibility of building a 1 TeV c.m. e+e- linear collider (CLIC) based on 30 GHz accelerating structures and RF power production from a low energy, high intensity drive linac. Two major challenges of the CLIC two-beam scheme are the generation of the high intensity drive beam and the extraction of 30 GHz RF power using transfer structures. Two test facilities are currently being used to study these specific problems. The CLIC Test Facility (CTF) is a purpose-built CERN facility to study the generation of the drive beam by photo-injectors, the generation of 30 GHz RF power, and the testing of components. This facility has produced single bunch charges of 35 nC with a bunch length of 14 ps (FWHH) and up to 76 MW of 30 GHz RF power. It is at present being updated to a 10 m long two-beam test accelerator producing 480 MW of 30 GHz RF peak power and accelerating electron bunches with gradients of 80 MV/m. The FEL Test Facility at CESTA (Bordeaux) is being used to study the generation of the CL...

Wilson, Ian H

1996-01-01

136

Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing - Part 2  

NASA Technical Reports Server (NTRS)

Evaluation of metals to predict service life of metal-based structures in corrosive environments has long relied on atmospheric exposure test sites. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions similar to those of the corrosive environment. Their reliability to correlate to atmospheric exposure test results is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated corrosion testing has yet to be universally accepted as a useful tool in predicting the long-term service life of a metal, despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard, and their use is crucial, a method that correlates timescales from accelerated testing to atmospheric exposure would be very valuable. This paper presents work that began with the characterization of the atmospheric environment at the Kennedy Space Center (KSC) Beachside Corrosion Test Site. The chemical changes that occur on low carbon steel, during atmospheric and accelerated corrosion conditions, were investigated using surface chemistry analytical methods. The corrosion rates and behaviors of panels subjected to long-term and accelerated corrosion conditions, involving neutral salt fog and alternating seawater spray, were compared to identify possible timescale correlations between accelerated and long-term corrosion performance. The results, as well as preliminary findings on the correlation investigation, are presented.

Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerome C.; Kolody, Mark R.

2012-01-01

137

a Low Temperature Regenerator Test Facility  

NASA Astrophysics Data System (ADS)

Testing regenerators presents an interesting challenge. When incorporated into a cryocooler, a regenerator is intimately coupled to the other components: expander, heat exchangers, and compressor. It is difficult to isolate the performance of any single component. We have developed a low temperature test facility that will allow us to separate the performance of the regenerator from the rest of the cryocooler. The purpose of the facility is the characterization of test regenerators using novel materials and/or geometries in temperature ranges down to 15 K. It consists of the following elements: The test column has two regenerators stacked in series. The coldest stage regenerator is the device under test. The warmer stage regenerator contains a stack of stainless steel screen, a well-characterized material. A commercial cryocooler is used to fix the temperatures at both ends of the test regenerator, cooling both heat exchangers flanging the regenerator stack. Heaters allow varying the temperatures and allow measurement of the remaining cooling power, and thus, regenerator effectiveness. A linear compressor delivers an oscillating pressure to the regenerator assembly. An inertance tube and reservoir provide the proper phase difference between mass flow and pressure. This phase shift, along with the imposed temperature differential, simulates the conditions of the test regenerator when used in an actual pulse tube cryocooler. This paper presents development details of the regenerator test facility, and test results on a second stage, stainless steel screen test regenerator.

Kashani, A.; Helvensteijn, B. P. M.; Feller, J. R.; Salerno, L. J.; Kittel, P.

2008-03-01

138

Cryogenic testing of Planck sorption cooler test facility  

NASA Technical Reports Server (NTRS)

A test facility has been upgraded in preparation for testing of two hydrogen sorption cryocoolers operating at 18/20 K. these sorption coolers are currently under development at the Jet Propulsion Laboratory. This work summarizes the scope of the test facility upgrade, including design for cryogenic cooling power delivery, system thermal management, insulation schemes, and data acquisition techniques. Ground support equipment for the sorption coolers, structural features of the test chamber, and the vacuum system involved for system testing will also be described in detail.

Zhang, B.; Pearson, D.; Borders, J.; Franklin, B.; Prina, M.; Hardy, J.; Crumb, D.

2004-01-01

139

A Technique for Dynamic Corrosion Testing in Liquid Lead Alloys  

SciTech Connect

An experimental apparatus for the investigation of the flow-assisted dissolution and precipitation (corrosion) of potential fuel cladding and structural materials to be used in liquid lead alloy cooled reactors has been designed. This experimental project is part of a larger research effort between Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology to investigate the suitability of lead, lead-bismuth, and other lead alloys for cooling fast reactors designed to produce low-cost electricity as well as for actinide burning. The INEEL forced convection corrosion cell consists of a small heated vessel with a shroud and gas flow system. The gas flow rates, heat input, and shroud and vessel dimensions have been adjusted so that a controlled coolant flow rate, temperature, and oxygen potential are created within the downcomer located between the shroud and vessel wall. The ATHENA computer code was used to design the experimental apparatus and estimate the fluid conditions. The corrosion cell will test steel that is commercially available in the U. S. to temperatures above 650oC.

Loewen, Eric Paul; Davis, Cliff Bybee; Mac Donald, Philip Elsworth

2001-04-01

140

Standard test method for measuring pH of soil for use in corrosion testing  

E-print Network

1.1 This test method covers a procedure for determining the pH of a soil in corrosion testing. The principle use of the test is to supplement soil resistivity measurements and thereby identify conditions under which the corrosion of metals in soil may be accentuated (see G 57 - 78 (1984)). 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

1995-01-01

141

Results from the DESY TESLA Test Facility  

NASA Astrophysics Data System (ADS)

The TESLA Test Facility (TTF), under construction at DESY by an international collaboration, is an R&D test bed for the superconducting option for linear e+/e- colliders. It consists of an infrastructure to process and test the cavities and of a 390 MeV linac. The linac is composed of three cryomodules, each containing eight nine-cell cavities operated at 1.3 GHz. The designed accelerating gradient is 15 MV/m, with a Q of 3.10^9. The injector delivers a 10-15 MeV beam, it is composed of a 250 kV gun followed by a superconducting cavity. It has been installed and commissioned. More than 20 cavities have been tested in vertical and horizontal cryostats. A 140 MeV beam is expected in June 97 with the first cryomodule. An overview of the facility and results of the tests are given in this paper.

Aune, B.

1997-05-01

142

Cryogenic Magnetic Bearing Test Facility (CMBTF)  

NASA Technical Reports Server (NTRS)

The Cryogenic Magnetic Bearing Test Facility (CMBTF) was designed and built to evaluate compact, lightweight magnetic bearings for use in the SSME's (space shuttle main engine) liquid oxygen and liquid hydrogen turbopumps. State of the art and tradeoff studies were conducted which indicated that a hybrid permanent magnet bias homopolar magnetic bearing design would be smaller, lighter, and much more efficient than conventional industrial bearings. A test bearing of this type was designed for the test rig for use at both room temperature and cryogenic temperature (-320 F). The bearing was fabricated from state-of-the-art materials and incorporated into the CMBTF. Testing at room temperature was accomplished at Avcon's facility. These preliminary tests indicated that this magnetic bearing is a feasible alternative to older bearing technologies. Analyses showed that the hybrid magnetic bearing is one-third the weight, considerably smaller, and uses less power than previous generations of magnetic bearings.

1992-01-01

143

Electrode holder useful in a corrosion testing device  

DOEpatents

The present invention is directed to an apparatus and method for holding one or more test electrodes of precisely known exposed surface area. The present invention is particularly useful in a device for determining the corrosion properties of the materials from which the test electrodes have been formed. The present invention relates to a device and method for holding the described electrodes wherein the exposed surface area of the electrodes is only infinitesimally decreased. Further, in the present invention the exposed, electrically conductive surface area of the contact devices is small relative to the test electrode surface area. The holder of the present invention conveniently comprises a device for contacting and engaging each test electrode at two point contacts infinitesimally small in relation to the exposed surface area of the electrodes.

Murphy, Jr., Robert J. (Bellaire, TX); Jamison, Dale E. (Humble, TX)

1986-01-01

144

Electrode holder useful in a corrosion testing device  

DOEpatents

The present invention is directed to an apparatus and method for holding one or more test electrodes of precisely known exposed surface area. The present invention is particularly useful in a device for determining the corrosion properties of the materials from which the test electrodes have been formed. The present invention relates to a device and method for holding the described electrodes wherein the exposed surface area of the electrodes is only infinitesimally decreased. Further, in the present invention the exposed, electrically conductive surface area of the contact devices is small relative to the test electrode surface area. The holder of the present invention conveniently comprises a device for contacting and engaging each test electrode at two point contacts infinitesimally small in relation to the exposed surface area of the electrodes. 4 figs.

Murphy, R.J. Jr.; Jamison, D.E.

1986-08-19

145

A novel accelerated corrosion test for exhaust systems by means of power ultrasound  

Microsoft Academic Search

Cycling corrosion tests have been performed to simulate corrosion conditions in the cold end of an automotive exhaust system. A middle range 1.4512 (AISI 409) stainless steel is submitted to a conventional dip dry test (DDT) parallel to a similar test but including an additional external stress thanks to an ultrasonic transducer. This new ultrasonic test (so called UST) is

M. L. Doche; J. Y. Hihn; A. Mandroyan; C. Maurice; O. Hervieux; X. Roizard

2006-01-01

146

Low power arcjet test facility impacts  

NASA Technical Reports Server (NTRS)

Performance characterization of a flight-type 1.4 kW arcjet system were conducted at the Rocket Research Company (RRC) in Redmond, WA, and at the NASA LeRC in Cleveland, OH. The objectives of these tests were as follows: to compare low-power arcjet performance at two different test facilities; to compare arcjet performance obtained with a 2:1 mixture of gaseous hydrogen and nitrogen and hydrazine; and to quantify the effects of test cell pressure on thruster operating characteristics. Performance and thruster temperature distributions were measured at thruster input power levels and propellant mass flow rates ranging from 1274 to 1370 W and from 3.2 x 10(exp -5) to 5.1 x 10(exp -5) kg/s, respectively. Specific impulses measured at the two facilities, at comparable test cell pressures, using gaseous hydrogen-nitrogen propellant mixtures agreed to within 1 percent over the range of operating conditions tested. The specific impulses measured using hydrazine propellant were higher than that for the cold hydrogen-nitrogen mixtures. Agreement between by hydrazine and gas mixture data was good, however, when the differences in propellant enthalpies at the thruster inlet were considered. Specific impulse showed a strong dependence on test facility pressure, and was 3 to 4 percent higher below 0.1 Pa than for test cell pressures above 5 Pa.

Morren, W. Earl; Lichon, Paul J.

1992-01-01

147

Low power arcjet test facility impacts  

NASA Astrophysics Data System (ADS)

Performance characterization of a flight-type 1.4 kW arcjet system were conducted at the Rocket Research Company (RRC) in Redmond, WA, and at the NASA LeRC in Cleveland, OH. The objectives of these tests were as follows: to compare low-power arcjet performance at two different test facilities; to compare arcjet performance obtained with a 2:1 mixture of gaseous hydrogen and nitrogen and hydrazine; and to quantify the effects of test cell pressure on thruster operating characteristics. Performance and thruster temperature distributions were measured at thruster input power levels and propellant mass flow rates ranging from 1274 to 1370 W and from 3.2 x 10(exp -5) to 5.1 x 10(exp -5) kg/s, respectively. Specific impulses measured at the two facilities, at comparable test cell pressures, using gaseous hydrogen-nitrogen propellant mixtures agreed to within 1 percent over the range of operating conditions tested. The specific impulses measured using hydrazine propellant were higher than that for the cold hydrogen-nitrogen mixtures. Agreement between by hydrazine and gas mixture data was good, however, when the differences in propellant enthalpies at the thruster inlet were considered. Specific impulse showed a strong dependence on test facility pressure, and was 3 to 4 percent higher below 0.1 Pa than for test cell pressures above 5 Pa.

Morren, W. Earl; Lichon, Paul J.

1992-09-01

148

Assessment of a hot hydrogen nuclear propulsion fuel test facility  

SciTech Connect

Subsequent to the announcement of the Space Exploration Initiative (SEI), several studies and review groups have identified nuclear thermal propulsion as a high priority technology for development. To achieve the goals of SEI to place man on Mars, a nuclear rocket will operate at near 2700K and in a hydrogen environment at near 60 atmospheres. Under these conditions, the operational lifetime of the rocket will be limited by the corrosion rate at the hydrogen/fuel interface. Consequently, the Los Alamos National Laboratory has been evaluating requirements and design issues for a test facility. The facility will be able to directly heat fuel samples by electrical resistance, microwave deposition, or radio frequency induction heating to temperatures near 3000K. Hydrogen gas at variable pressure and temperatures will flow through the samples. The thermal gradients, power density, and operating times envisioned for nuclear rockets will be duplicated as close as reasonable. The post-sample flow stream will then be scrubbed and cooled before reprocessing. The baseline design and timetable for the facility will be discussed. 7 refs.

Watanabe, H.H.; Howe, S.D.; Wantuck, P.J.

1991-01-01

149

Fighting Corrosion  

NASA Technical Reports Server (NTRS)

Reinforced concrete structures such as bridges, parking decks, and balconies are designed to have a service life of over 50 years. All too often, however, many structures fall short of this goal, requiring expensive repairs and protection work earlier than anticipated. The corrosion of reinforced steel within the concrete infrastructure is a major cause for this premature deterioration. Such corrosion is a particularly dangerous problem for the facilities at NASA s Kennedy Space Center. Located near the Atlantic Ocean in Florida, Kennedy is based in one of the most corrosive-prone areas in the world. In order to protect its launch support structures, highways, pipelines, and other steel-reinforced concrete structures, Kennedy engineers developed the Galvanic Liquid Applied Coating System. The system utilizes an inorganic coating material that slows or stops the corrosion of reinforced steel members inside concrete structures. Early tests determined that the coating meets the criteria of the National Association of Corrosion Engineers for complete protection of steel rebar embedded in concrete. Testing is being continued at the Kennedy's Materials Science Beach Corrosion Test Site.

2004-01-01

150

A test facility for hypervelocity rarefied flows  

Microsoft Academic Search

This paper describes a rarefied hypervelocity test facility producing gas speeds greater than 7 km\\/s. The X1 expansion tube at The University of Queensland has been used to produce nitrogen flows at 8.9 and 9.5 km\\/s with test flow durations of 50 and 40 mus respectively. Rarefied flow is indicated by values of the freestream breakdown parameter >0.1 (Cheng's rarefaction

M. N. Macrossan; H.-H. Chiu; D. J. Mee

2001-01-01

151

A test facility for hypervelocity rarefied flows  

Microsoft Academic Search

This paper describes a rarefied hypervelocity test facility producing gas speeds greater than 7 km\\/s. The X1 expansion tube at The University of Queensland has been used to produce nitrogen flows at 8.9 and 9.5 km\\/s with test flow durations of 50 and 40 ?s respectively. Rarefied flow is indicated by values of the freestream breakdown parameter >0.1 (Cheng’s rarefaction

M. N. Macrossan; H. H. Chiu; D. J. Mee

2001-01-01

152

Modular test facility for HTS insert coils  

SciTech Connect

The final beam cooling stages of a Muon Collider may require DC solenoid magnets with magnetic fields in the range of 40-50 T. In this paper we will present a modular test facility developed for the purpose of investigating very high field levels with available 2G HTS superconducting materials. Performance of available conductors is presented, together with magnetic calculations and evaluation of Lorentz forces distribution on the HTS coils. Finally a test of a double pancake coil is presented.

Lombardo, V; Bartalesi, A.; Barzi, E.; Lamm, M.; Turrioni, D.; Zlobin, A.V.; /Fermilab

2009-10-01

153

Irradiation Facilities at the Advanced Test Reactor  

SciTech Connect

The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC – formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950s with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world’s data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities1. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens.

S. Blaine Grover

2005-12-01

154

A test matrix sequencer for research test facility automation  

NASA Technical Reports Server (NTRS)

The hardware and software configuration of a Test Matrix Sequencer, a general purpose test matrix profiler that was developed for research test facility automation at the NASA Lewis Research Center, is described. The system provides set points to controllers and contact closures to data systems during the course of a test. The Test Matrix Sequencer consists of a microprocessor controlled system which is operated from a personal computer. The software program, which is the main element of the overall system is interactive and menu driven with pop-up windows and help screens. Analog and digital input/output channels can be controlled from a personal computer using the software program. The Test Matrix Sequencer provides more efficient use of aeronautics test facilities by automating repetitive tasks that were once done manually.

Mccartney, Timothy P.; Emery, Edward F.

1990-01-01

155

Monitoring corrosion in boiler systems with colorimetric tests for ferrous and total iron  

SciTech Connect

Because of the low oxygen conditions that prevail in industrial boiler systems, active corrosion releases soluble corrosion products that contain iron in the ferrous, Fe(II), oxidation state. Active corrosion can be detected throughout boiler systems by colorimetric determination of ferrous iron. Ferrous iron measurements are particularly useful for detecting corrosion in once-through components such as feedwater (FW) systems. The same approach is equally valuable for detecting internal boiler corrosion when accurate information on cycles of concentration is available. Ferrous iron testing also can differentiate the dispersion of iron oxide particulates in the FW from corrosion of the boiler internals. Corrosion mechanisms that generate ferrous iron species are discussed as well as the interpretation of data obtained by total iron testing.

Godfrey, M.R.; Chen, T.Y. [Nalco Chemical Co., Naperville, IL (United States)

1995-10-01

156

Development of an Accelerated Test Method for the Determination of Susceptibility to Atmospheric Corrosion  

NASA Technical Reports Server (NTRS)

The theoretical rationale is presented for use of a repetitive cyclic current reversal voltammetric technique for characterization of localized corrosion processes, including atmospheric corrosion. Applicability of this proposed experimental protocol is applied to characterization of susceptibility to crevice and pitting corrosion, atmospheric corrosion and stress corrosion cracking. Criteria upon which relative susceptibility is based were determined and tested using two iron based alloys commonly in use at NASA-Kennedy; A36 (a low carbon steel) and 4130 (a low alloy steel). Practicality of the procedure was demonstrated by measuring changes in anodic polarization behavior during high frequency current reversal cycles of 25 cycles per second with 1 mA/sq cm current density amplitude in solutions containing Cl anions. The results demonstrated that, due to excessive polarization which affects conductivity of barrier corrosion product layers, A36 was less resistant to atmospheric corrosion than its 4130 counterpart; behavior which was also demonstrated during exposure tests.

Ambrose, John R.

1991-01-01

157

Jet-in-slit test for reproducing flow-induced localized corrosion on copper alloys  

SciTech Connect

Valve seat rings of water taps made of copper alloys occasionally suffer corrosion damage as a result of water quality and fluid flow. Examination of the damage mechanisms and development of a testing method for selecting durable materials were requested. To solve these problems, 10 copper alloys were examined using three test methods under accelerated, but well-known experimental conditions: the ISO 6509 dezincification test for pure corrosion, the vibratory cavitation test with eccentric stationary specimen for cavitation erosion-corrosion, and the jet-in-slit test agreed with rankings determined by experiences of field engineers who have dealt with these problems under practical conditions. It was concluded that damage on the valve seats was caused by flow-induced localized corrosion. The jet-in-slit test was recommended as a reliable method in selecting durable valve seat materials. To explain the excellent coincidence with field performance in the jet-in-slit test, the mechanism of corrosion rate acceleration, characteristics of flow-induced localized corrosion, and composition of the protective corrosion products layer were investigated. Under the test conditions, the corrosion reaction mechanism was found to be the same as in the field, but the corrosion rate was accelerated.

Matsumura, M.; Noishiki, K. [Hiroshima Univ., Higashi-Hiroshima (Japan). Dept. of Chemical Engineering; Sakamoto, A. [Mitsui Petrochemical Industries, Ltd., Yamaguchi (Japan)

1998-01-01

158

Advanced nozzle and engine components test facility  

NASA Technical Reports Server (NTRS)

A test facility for conducting scaled advanced nozzle and engine component research is described. The CE-22 test facility, located in the Engine Research Building of the NASA Lewis Research Center, contains many systems for the economical testing of advanced scale-model nozzles and engine components. The combustion air and altitude exhaust systems are described. Combustion air can be supplied to a model up to 40 psig for primary air flow, and 40, 125, and 450 psig for secondary air flow. Altitude exhaust can be simulated up to 48,000 ft, or the exhaust can be atmospheric. Descriptions of the multiaxis thrust stand, a color schlieren flow visualization system used for qualitative flow analysis, a labyrinth flow measurement system, a data acquisition system, and auxiliary systems are discussed. Model recommeded design information and temperature and pressure instrumentation recommendations are included.

Beltran, Luis R.; Del Roso, Richard L.; Del Rosario, Ruben

1992-01-01

159

Advanced nozzle and engine components test facility  

NASA Technical Reports Server (NTRS)

A test facility for conducting scaled advanced nozzle and engine component research is described. The CE-22 test facility, located in the Engine Research Building of the NASA Lewis Research Center, contains many systems for the economical testing of advanced scale-model nozzles and engine components. The combustion air and altitude exhaust systems are described. Combustion air can be supplied to a model up to 40 psig for primary air flow, and 40, 125, and 450 psig for secondary air flow. Altitude exhaust can be simulated up to 48,000 ft, or the exhaust can be atmospheric. Descriptions of the multiaxis thrust stand, a color schlieren flow visualization system used for qualitative flow analysis, a labyrinth flow measurement system, a data acquisition system, and auxiliary systems are discussed. Model recommended design information and temperature and pressure instrumentation recommendations are included.

Beltran, Luis R.; Delroso, Richard L.; Delrosario, Ruben

1992-01-01

160

A rapid stress-corrosion test for aluminum alloys  

NASA Technical Reports Server (NTRS)

Stressed alloy specimens are immersed in a salt-dichromate solution at 60 degrees C. Because of the minimal general corrosion of these alloys in this solution, stress corrosion failures are detected by low-power microscopic examination.

Helfrich, W. J.

1968-01-01

161

Testing and prediction of erosion-corrosion for corrosion resistant alloys used in the oil and gas production industry  

NASA Astrophysics Data System (ADS)

The corrosion behavior of CRAs has been thoroughly investigated and documented in the public literature by many researchers; however, little work has been done to investigate erosion-corrosion of such alloys. When sand particles are entrained in the flow, the degradation mechanism is different from that observed for sand-free corrosive environment. There is a need in the oil and gas industry to define safe service limits for utilization of such materials. The effects of flow conditions, sand rate, pH and temperature on the erosion-corrosion of CRAs were widely studied. An extensive experimental work was conducted using scratch tests and flow loop tests using several experimental techniques. At high erosivity conditions, a synergistic effect between erosion and corrosion was observed. Under the high sand rate conditions tested, erosivity is severe enough to damage the passive layer protecting the CRA thereby enhancing the corrosion rate. In most cases there is likely a competition between the rates of protective film removal due to mechanical erosion and protective film healing. Synergism occurs for each of the three alloys examined (13Cr and Super13Cr and 22Cr); however, the degree of synergism is quite different for the three alloys and may not be significant for 22Cr for field conditions where erosivities are typically much lower that those occurring in the small bore loop used in this research. Predictions of the corrosion component of erosion-corrosion based on scratch test data compared reasonably well to test results from flow loops for the three CRAs at high erosivity conditions. Second order behavior appears to be an appropriate and useful model for representing the repassivation process of CRAs. A framework for a procedure to predict penetration rates for erosion-corrosion conditions was developed based on the second order model behavior observed for the re-healing process of the passive film of CRAs and on computational fluid dynamics (CFD) simulations for erosion conducted for a direct impingement flow geometry. Reasonably good agreement between the experimental and predicted erosion-corrosion penetration rates was found.

Rincon, Hernan E.

162

Capabilities of the High Voltage Stress Test System at the Outdoor Test Facility  

SciTech Connect

We illustrate the capabilities of the High Voltage Stress Test (HVST) which operates continuously in the array field east of the Outdoor Test Facility at the National Renewable Energy Laboratory. Because we know that photovoltaic (PV) modules generating electrical power in both residential and utility-scale array installations will develop high-voltage biases approaching 600 VDC and 1,000 VDC, respectively, we expect such high voltages will result in current leakage between cells and ground, typically through the frames or mounts. We know that inevitably such leakage currents are capable of producing electrochemical corrosion that adversely impacts long-term module performance. With the HVST, we stress or operate PV modules under high-voltage bias, to characterize their leakage currents under all prevailing ambient conditions and assess performance changes emanating from high-voltage stress. We perform this test both on single modules and an active array.

del Cueto, J. A.; Trudell, D.; Sekulic, W.

2005-11-01

163

A study on corrosion test methods for automotive steel sheet  

Microsoft Academic Search

The corrosion behavior of an automobile body caused by de-icing salt was classified into various corrosion phenomena, of which paint exfoliation and perforation were studied fundamentally. There are 2 types of paint exfoliation. One is paint adhesion, where underfilm corrosion plays a decisive role. Another is wet adhesion, where water immersion through the paint film into the paint\\/substrate interface is

Y. Miyoshi; M. Kitayama; Y. Ito; H. Koyahara

1984-01-01

164

Exploratory corrosion tests on alloys in molten salts at 900 °C  

Microsoft Academic Search

Exploratory corrosion tests were conducted on 16 commencai alloys in carbonate, chloride, and hydroxide molten salts at 900\\u000a °C for up to three weeks. Corrosion information, including weight change, observations of the coupons, metallographic examination,\\u000a and evaluation of the corrosion product by SEM, was obtained on the coupons exposed to these salts. These tests indicated\\u000a that a number of the

R. T. Coyle; T. M. Thomas; G. Y. Lai

1986-01-01

165

Corrosion resistance and electrochemical potentiokinetic reactivation testing of some iron-base hardfacing alloys  

Microsoft Academic Search

Hardfacing alloys are weld deposited on a base material to provide a wear resistant surface. Commercially available iron-base hardfacing alloys are being evaluated for replacement of cobalt-base alloys to reduce nuclear plant activation levels. Corrosion testing was used to evaluate the corrosion resistance of several iron-base hardfacing alloys in highly oxygenated environments. The corrosion test results indicate that iron-base hardfacing

Cockeram

1999-01-01

166

Behavior of painted steel and aluminum sheet in laboratory corrosion tests  

SciTech Connect

Cold rolled steel, electrogalvanized steel (60 g/m{sup 2} coating), and three aluminum-alloy (2036, 5182, and 6111) sheet products were painted with a full automotive paint system. These materials were tested in two laboratory cyclic corrosion test environments, namely, GM9540Ps(B) and CCT-4. Resistance to cosmetic corrosion was measured in terms of underfilm paint delamination on scribed, flat panels. Crevice corrosion resistance was determined in terms of pitting on lapped panels of like materials, and galvanic corrosion resistance in terms of pitting on lapped panels of unlike materials. Cosmetic corrosion of the aluminum alloys was found to be much better than that of cold rolled, and slightly better than that of electrogalvanized steel. The CCT-IV test was found to be more severe than GM9540P(B) for cosmetic corrosion, but GM9540P(B) was more severe for galvanic corrosion. Galvanic current measurements indicate that the difference is related to the salt solutions used in each test. Aluminum alloys were found to be prone to crevice corrosion and to galvanic corrosion when coupled to steel. These results indicate that comparative evaluations of the corrosion resistance of these materials must take into account the possibility of crevice and galvanic effects.

Townsend, H.E. [Bethlehem Steel Corp., PA (United States). Homer Research Labs.

1995-11-01

167

Sensor test facilities and capabilities at the Nevada test site  

NASA Astrophysics Data System (ADS)

Sandia National Laboratories has recently developed two major field test capabilities for unattended ground sensor systems at the Department of Energy's Nevada Test Site (NTS). The first capability utilizes the NTS large area, varied terrain, and intrasite communications systems for testing sensors for detecting and tracking vehicular traffic. Sensor and ground truth data can be collected at either of two secure control centers. This system also includes an automated ground truth capability that consists of differential Global Positioning Satellite receivers on test vehicles and live TV coverage of critical road sections. Finally there is a high-speed, secure computer network link between the control centers and the Air Force's Theater Air Command and Control Simulation Facility in Albuquerque NM. The second capability is Bunker 2-300. It is a facility for evaluating advanced sensor systems for monitoring activities in underground cut-and-cover facilities. The main part of the facility consists of an underground bunker with three large rooms for operating various types of equipment. This equipment includes simulated chemical production machinery and controlled seismic and acoustic signal sources. There has been a thorough geologic and electromagnetic characterization of the region around the bunker. Since the facility is in a remote location, it is well-isolated from seismic, acoustic, and electromagnetic interference.

Boyer, William B.; Burke, Larry J.; Gomez, Bernard J.; Livingston, Leonard; Nelson, Daniel S.; Smathers, Douglas C.

1997-07-01

168

Atmospheric corrosion tests in Brazilian Legal Amazon - field and laboratory tests  

Microsoft Academic Search

This paper presents the first results concerning tests carried out to evaluate the atmospheric corrosion in Brazilian Legal Amazon, as part of the SIVAM - Amazon Surveillance System. The aim of the present work is to determine and select materials as well as anti-rust paints, which will be employed to protect metallic structures of radar towers, equipment and buildings. Five

L. R. M. Miranda; L. Sathler; R. Nogueira; S. L. D. C. Brasil

2000-01-01

169

305 Building Cold Test Facility Management Plan  

SciTech Connect

This document provides direction for the conduct of business in Building 305 for cold testing tools and equipment. The Cold Test Facility represents a small portion of the overall building, and as such, the work instructions already implemented in the 305 Building will be utilized. Specific to the Cold Test there are three phases for the tools and equipment as follows: 1. Development and feature tests of sludge/fuel characterization equipment, fuel containerization equipment, and sludge containerization equipment to be used in K-Basin. 2. Functional and acceptance tests of all like equipment to be installed and operated in K-Basin. 3. Training and qualification of K-Basin Operators on equipment to be installed and operated in the Basin.

Whitehurst, R.

1994-10-03

170

BNL ACCELERATOR TEST FACILITY CONTROL SYSTEM UPGRADE.  

SciTech Connect

Brookhaven National Laboratory's Accelerator Test Facility (ATF) has embarked on a complete upgrade of its decade old computer system. The planned improvements affect every major component: processors (Intel Pentium replaces VAXes), operating system (Linux/Real-Time Linux supplants OpenVMS), and data acquisition equipment (fast Ethernet equipment replaces CAMAC serial highway.) This paper summarizes the strategies and progress of the upgrade along with plans for future expansion.

MALONE,R.; BEN-ZVI,I.; WANG,X.; YAKIMENKO,V.

2001-06-18

171

A Test Facility for Electric Microthrusters  

Microsoft Academic Search

The test facility for electric microthrusters at the European Space Research and Technology Centre is described. The microbalance which is used to directly measure thrust and propellant mass flow rate is able to resolve thrusts of 10?7 N. Within a working range of 5×10?5?5×10?4 N it is estimated that thrust measurements may be made to an accuracy of ±2%.

A. G. Bailey; J. E. Bracher; H. G. Helmke; H. J. von Rohden

1972-01-01

172

Aeronautics Test Program (ATP) Corporate Management of Aeronautical Facilities  

E-print Network

Aeronautics Test Program (ATP) Corporate Management of Aeronautical Facilities 44th AIAA Aerospace Activity (NATA) · Summary #12;Goals Corporate Management of Aeronautical Facilities · Increase vision and plan · NASA Aeronautics Research Mission Directorate (ARMD) commitment to sustain facilities

173

Improved and simplified corrosion screening test for adhesive bonded light metals  

Microsoft Academic Search

There are several accelerated laboratory testes in use for screening the durability of adhesive bonded light metals. Corrosion is often the main degradation mechanism for adhesive bonds, and the present test methods do not accelerate the relevant corrosion mechanism in a proper way. Therefore, most of the methods are not realistic for the actual service. It has been developed a

Håkon Leth-Olsen

174

Modular High Current Test Facility at LLNL  

SciTech Connect

This paper describes the 1 MA, 225 kJ test facility in operation at Lawrence Livermore National Laboratory (LLNL). The capacitor bank is constructed from three parallel 1.5 mF modules. The modules are capable of switching simultaneously or sequentially via solid dielectric puncture switches. The bank nominally operates up to 10 kV and reaches peak current with all three cabled modules in approximately 30 {micro}s. Parallel output plates from the bank allow for cable or busbar interfacing to the load. This versatile bank is currently in use for code validation experiments, railgun related activities, switch testing, and diagnostic development.

Tully, L K; Goerz, D A; Speer, R D; Ferriera, T J

2008-05-20

175

Corrosion of exposed rebars, associated mechanical degradation and correlation with accelerated corrosion tests  

Microsoft Academic Search

In a large number of steel reinforced concrete buildings in Greece, spalling of the cement has left the steel reinforcement (rebars) exposed to the atmosphere. This has led to corrosion of the exposed rebars, especially in coastal areas, with questions regarding their remaining load-carrying capacity. This work addresses the problem of corrosion and strength degradation of such exposed rebars. A

M. P. Papadopoulos; C. A. Apostolopoulos; A. D. Zervaki; G. N. Haidemenopoulos

2011-01-01

176

The ESO Adaptive Optics Facility under Test  

NASA Astrophysics Data System (ADS)

The Adaptive Optics Facility project has received most of its subsystems in Garching and the ESO Integration Hall has become the central operation location for the next phase of the project. The main test bench ASSIST and the 2nd Generation M2-Unit (hosting the Deformable Secondary Mirror) have been granted acceptance late 2012. The DSM will now undergo a series of tests on ASSIST to qualify its optical performance which launches the System Test Phase of the AOF. The tests will validate the AO modules operation with the DSM: first the GRAAL adaptive optics module for Hawk-I in natural guide star AO mode on-axis and then its Ground Layer AO mode. This will be followed by the GALACSI (for MUSE) Wide-Field-Mode (GLAO) and then the more challenging Narrow-Field-Mode (LTAO). We will report on the status of the subsystems at the time of the conference but also on the performance of the delivered ASSIST test bench, the DSM and the 20 Watt Sodium fiber Laser pre-production unit which has validated all specifications before final manufacturing of the serial units. We will also present some considerations and tools to ensure an efficient operation of the Facility in Paranal.

Arsenault, Robin; Madec, Pierre-Yves; Paufique, Jerome; La Penna, Paolo; Stroebele, Stefan; Vernet, Elise; Pirard, Jean-François; Hackenberg, Wolfgang; Kuntschner, Harald; Kolb, Johann; Muller, Nicolas; Le Louarn, Miska; Amico, Paola; Hubin, Norbert; Lizon, Jean-Louis; Ridings, Rob; Abad, Jose; Fischer, Gert; Heinz, Volker; Kiekebusch, Mario; Argomedo, Javier; Conzelmann, Ralf; Tordo, Sebastien; Donaldson, Rob; Soenke, Christian; Duhoux, Philippe; Fedrigo, Enrico; Delabre, Bernard; Jost, Andrea; Duchateau, Michel; Downing, Mark; Moreno, Javier; Manescau, Antonio; Bonaccini Calia, Domenico; Quattri, Marco; Dupuy, Christophe; Guidolin, Ivan; Comin, Mauro; Guzman, Ronald; Buzzoni, Bernard; Quentin, Jutta; Lewis, Steffan; Jolley, Paul; Kraus, Max; Pfrommer, Thomas; Garcia-Rissmann, Aurea; Biasi, Roberto; Gallieni, Daniele; Stuik, Remko

2013-12-01

177

Advanced Test Reactor National Scientific User Facility  

SciTech Connect

The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

2011-08-01

178

Accelerated cyclic corrosion testing of structural steels and its application to assess steel bridge coatings  

Microsoft Academic Search

Purpose – The purpose of this study was to determine correlation between an accelerated cyclic corrosion test (S6-cycle test) specified in Japanese Industrial Standards K5621 and field exposure tests, and to open up applications of the accelerated tests in various regional environments. Design\\/methodology\\/approach – The S6-cycle corrosion test was carried out on structural steels for 30, 60, 90, 120 and

Yoshito Itoh; In-Tae Kim

2006-01-01

179

Corrosion tests in brine and steam from the Salton Sea KGRA  

SciTech Connect

The Bureau of Mines tested 13 alloys for resistance to general corrosion, pitting corrosion, and stress corrosion cracking in the brine and steam environments produced from geothermal well Magmamax 1 in the Salton Sea Known Geothermal Resources Area in California. The tests provided seven process environments. The alloys most resistant to corrosion in all environments were Inconel 625, Hastelloy C-276, and stainless steel alloy 29-4. Hastelloys G and S were highly resistant to all types of corrosion decreases with time. The stainless steel alloys 430, E-Brite 26-1, and 6X had good resistance to general corrosion but were susceptible to pitting. Unstressed type 316 L stainless steel exhibited severe cracking. The 1020 carbon and 4130 alloy steels were the least resistant.

Carter, J.P.; McCawley, F.X.

1982-03-01

180

Corrosion behavior of environmental assessment glass in product consistency tests of extended duration.  

SciTech Connect

We have conducted static dissolution tests to study the corrosion behavior of the Environmental Assessment (EA) glass, which is the benchmark glass for high-level waste glasses being produced at US Department of Energy facilities. These tests were conducted to evaluate the behavior of the EA glass under the same long-term and accelerated test conditions that are being used to evaluate the corrosion of waste glasses. Tests were conducted at 90 C in a tuff groundwater solution at glass surface area/solution volume (WV) ratios of about 2000 and 20,000 m{sup {minus}1}. The glass dissolved at three distinct dissolution rates in tests conducted at 2000 m{sup {minus}1}. Based on the release of boron, dissolution within the first seven days occurred at a rate of about 0.65 g/(m{sup 2} {center_dot} d). The rate between seven and 70 days decreased to 0.009 g/(m{sup 2} {center_dot} d). An increase in the dissolution rate occurred at longer times after the precipitation of zeolite phases analcime, gmelinite, and an aluminum silicate base. The dissolution rate after phase formation was about 0.18 g/(m{sup 2} {center_dot} d). The formation of the same zeolite alteration phases occurred after about 20 days in tests at 20,000 m{sup {minus}}. The average dissolution rate over the first 20 days was 0.5 g/(m{sup 2} {center_dot} d) and the rate after phase formation was about 0.20 g/(m{sup 2} {center_dot} d). An intermediate stage with a lower rate was not observed in tests at 20,000 m{sup {minus}1}. The corrosion behavior of EA glass is similar to that observed for other high-level waste glasses reacted under the same test conditions. The dissolution rate of EA glass is higher than that of other high-level waste glasses both in 7-day tests and after alteration phases form.

Bates, J.K.; Buck, E.C.; Ebert, W.L.; Luo, J.S.; Tam, S.W.

1998-11-18

181

The Great Plains Wind Power Test Facility  

SciTech Connect

This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texas Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.

Schroeder, John

2014-01-31

182

GaAs solar cell test facility  

NASA Astrophysics Data System (ADS)

A hybrid type (electricity and heat) GaAs solar cell test facility has been made to evaluate total characteristics of GaAs cell and to study the energy conversion system. The size of a solar collector is 3.4 m x 2.1 m and 60 GaAs cells with Fresnel lenses are attached on it. The solar collector is controlled by a microcomputer to track the sun. Electric energy produced by the cells is stored in a lead-acid battery and then supplied to the load through a DC-AC inverter. The microcomputer also controls the data acquisition in parallel with tracking. This paper presents an overview of the facility and the experimental results of power generation obtained to date.

Kawashima, M.; Hosoda, Y.; Suzawa, C.; Shimada, T.; Motoyoshi, K.; Sasatani, Y.

1982-01-01

183

Microstructural stability of zirconia–alumina composite coatings during hot corrosion test at 1050 °C  

Microsoft Academic Search

In the present work hot corrosion behavior of plasma sprayed zirconia–alumina coatings on Ni-base, IN-738, super alloy substrate was studied compared with normal zirconia. Hot corrosion resistance of the coatings was measured at 1050°C using an atmospheric electrical furnace and a fused mixture of vanadium pentoxide and sodium sulfate salt.The hot corrosion test duration was 4h in each cycle, while

A. Keyvani; M. Saremi; M. Heydarzadeh Sohi

2010-01-01

184

Corrosion testing of the General Electric Mantech GAU 8\\/A penetrator  

Microsoft Academic Search

The corrosion resistance of the U-3\\/4 Ti alloy selected as the ammunition ''kinetic energy penetrators'' to be used in the U. S. Air Force rapid-fire gun (GAU-8\\/A) has been studied. Corrosion testing showed that neither the chemistry nor the metal processing variables examined caused a change of practical significance in the material's corrosion response in either salt fog or moist

Weirick

1977-01-01

185

Process Test Plan for 4TH Generation Hanford Corrosion Monitoring System  

SciTech Connect

Instrumentation and cabinets for the 241-AN-107 and 241-AN-102 corrosion monitoring systems will be upgraded in FY 2000. The bulk of the field work involved in this task will involve placement of the corrosion monitoring data collection hardware closer to the risers that house the existing corrosion probes. This will be accomplished by placing a new climate controlled cabinet by the risers containing corrosion probes on these two tanks (one cabinet per tank). Once installed the systems will feed data back to a centralized corrosion monitoring station in the 241-AN-271 instrument building. The upgraded systems will be operated under the bounds of this Process Test Plan (PTP) for six principle reasons. These reasons were established prior to installing the original systems in 1997 (241-AN-107) and 1998 (241-AN-102). They are as follows: (1) Acquire corrosion data on the waste in 241-AN-107 and 241-AN-102. (2) Provide supporting data to the site's Integrity Assessment program. (3) Demonstrate that corrosion monitoring by evaluation of electrochemical noise data is possible in waste tank systems, particularly with regard to the detection of general corrosion and (if present) pitting and stress corrosion cracking. (4) Demonstrate the durability of the design of the corrosion monitoring equipment. (5) Extend tank life and reduce annual operations cost. (6) Provide basis to control corrosion in double shell tanks though the use of direct corrosion monitoring rather than waste sampling and analysis. The designs of the existing corrosion probes in 241-AN-107 and 241-AN-102 were reviewed and documented prior to the original installation activities in 1997 and 1998. Initial programmatic documentation for Hanford's corrosion monitoring program was also established prior to the original installation activities.

NORMAN, E.C.

2000-06-20

186

Quantitative validation testing of magnetoelastic corrosion sensing for bridge cables  

NASA Astrophysics Data System (ADS)

Magnetic measurements were performed on steel cables subjected to a magnetic field and the response measured without contact using Faraday's law, to estimate the effect of temperature and corrosion on magnetic properties of structural steel. Magnetic measurements were compared with electrochemical measurements to correlate corrosion quantitatively in terms of mass loss. The results obtained from the present work are helpful in bounding the achievable sensitivity for conventional magnetoelastic corrosion sensing and for suggesting the need for alternate techniques.

Singh, Varsha; Lloyd, George M.; Wang, Ming L.

2003-08-01

187

Usability Testing and Analysis Facility (UTAF)  

NASA Technical Reports Server (NTRS)

This slide presentation reviews the work of the Usability Testing and Analysis Facility (UTAF) at NASA Johnson Space Center. It is one of the Space Human Factors Laboratories in the Habitability and Human Factors Branch (SF3) at NASA Johnson Space Center The primary focus pf the UTAF is to perform Human factors evaluation and usability testing of crew / vehicle interfaces. The presentation reviews the UTAF expertise and capabilities, the processes and methodologies, and the equipment available. It also reviews the programs that it has supported detailing the human engineering activities in support of the design of the Orion space craft, testing of the EVA integrated spacesuit, and work done for the design of the lunar projects of the Constellation Program: Altair, Lunar Electric Rover, and Outposts

Wong, Douglas T.

2010-01-01

188

NASA Plum Brook's B-2 Test Facility: Thermal Vacuum and Propellant Test Facility  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of upper stage chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility. The heat sink provided a uniform temperature environment of approximately 77 K. The modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface.

Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.

2012-01-01

189

7. Historic aerial photo of rocket engine test facility complex, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

7. Historic aerial photo of rocket engine test facility complex, June 1962. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-60674. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

190

PFBC test facility is ready in Sweden  

SciTech Connect

Pressurized fluidized-bed combustion (PFBC) technology has the potential of producing large-scale coal-based power at a lower cost than burning pulverized coal and without complex back-end flue-gas desulfurization. Outlined here is a PFBC combined-cycle development program and a component-test facility (CTF) in Malmoe, Sweden. The CTF, representing a full-sized scale-up of components, is the final developmental step before building a commercial-sized powerplant in that country. 5 figures, 3 tables.

Friedlander, G.D.

1982-05-01

191

Small engine components test facility compressor testing cell at NASA Lewis Research Center  

NASA Technical Reports Server (NTRS)

LeRC has designed and constructed a new test facility. This facility, called the Small Engine Components Facility (SECTF) is used to test gas turbines and compressors at conditions similar to actual engine conditions. The SECTF is comprised of a compressor testing cell and a turbine testing cell. Only the compressor testing cell is described. The capability of the facility, the overall facility design, the instrumentation used in the facility, and the data acquisition system are discussed in detail.

Brokopp, Richard A.; Gronski, Robert S.

1992-01-01

192

Field tests of corrosion and chemical sensors for geothermal power plants  

SciTech Connect

This report summarizes approximately two years of continuous monitoring of corrosion (and other variables that affect corrosion) in a 10-megawatt binary cycle geothermal power plant. The project goal was to develop methods for detecting adverse plant conditions soon enough to prevent equipment failures. The instruments tested were: (1) resistance-type corrosion probes; (2) linear polarization corrosion probes; (3) oxidation/reduction potential (ORP) probes for oxygen detection; (4) high-temperature pH electrodes; and (5) electrodeless conductivity cells for gas bubble detection.

Robertus, R.J.; Shannon, D.W.; Sullivan, R.G.; Mackey, D.B.; Koski, O.H.; McBarron, F.O.; Duce, J.L.; Pierce, D.D.

1986-03-01

193

DEPOSITION TANK CORROSION TESTING FOR ENHANCED CHEMICAL CLEANING POST OXALIC ACID DESTRUCTION  

SciTech Connect

An Enhanced Chemical Cleaning (ECC) process is being developed to aid in the high level waste tank closure at the Savannah River Site. The ECC process uses an advanced oxidation process (AOP) to destroy the oxalic acid that is used to remove residual sludge from a waste tank prior to closure. The AOP process treats the dissolved sludge with ozone to decompose the oxalic acid through reactions with hydroxyl radicals. The effluent from this oxalic acid decomposition is to be sent to a Type III waste tank and may be corrosive to these tanks. As part of the hazardous simulant testing that was conducted at the ECC vendor location, corrosion testing was conducted to determine the general corrosion rate for the deposition tank and to assess the susceptibility to localized corrosion, especially pitting. Both of these factors impact the calculation of hydrogen gas generation and the structural integrity of the tanks, which are considered safety class functions. The testing consisted of immersion and electrochemical testing of A537 carbon steel, the material of construction of Type III tanks, and 304L stainless steel, the material of construction for transfer piping. Tests were conducted in solutions removed from the destruction loop of the prototype ECC set up. Hazardous simulants, which were manufactured at SRNL, were used as representative sludges for F-area and H-area waste tanks. Oxalic acid concentrations of 1 and 2.5% were used to dissolve the sludge as a feed to the ECC process. Test solutions included the uninhibited effluent, as well as the effluent treated for corrosion control. The corrosion control options included mixing with an inhibited supernate and the addition of hydroxide. Evaporation of the uninhibited effluent was also tested since it may have a positive impact on reducing corrosion. All corrosion testing was conducted at 50 C. The uninhibited effluent was found to increase the corrosion rate by an order of magnitude from less than 1 mil per year (mpy) for an inhibited waste to a range of 5 to 23.4 mpy, depending on sludge chemistry. F-area-based effluents were, in general, more corrosive. Effective corrosion control measures included evaporation, hydroxide additions and mixing with supernates containing a representative supernate chemistry (5 M hydroxide and 1.5 M nitrite). Corrosion rates with these measures were generally 0.2 mpy. The A537 carbon steel was found to be susceptible to pitting when the corrosion control measure involved mixing the ECC effluent with a supernate chemistry having minimal inhibitor concentrations (0.5 M hydroxide and 0.3 M nitrite). Corrosion rates in this case were near 1 mpy.

Mickalonis, J.

2011-08-29

194

Temperature range extension in sulfurizing corrosion tests of heat-resistant and high-temperature materials  

Microsoft Academic Search

The materials used in the blading of gas turbine engines undergo high-temperature sulfurizing corrosion, the (SC), the dominant corrosive agent being potassium sulfate melt also containing some other salts of alkaline and alkaline-earth metals originated from fuel, sea water dust, etc.. The aim of this work was to broaden the temperature range of SC testing by choosing a more fusible

I. V. Oryshich; N. E. Poryadchenko; A. N. Rakitskii

1994-01-01

195

Corrosion Testing of Highly Alloyed Materials For Deep, Sour Gas Well Environments  

Microsoft Academic Search

A more practical system for completing sour gas wells may be to use materials that possess innate corrosion resistance rather than to attempt chemical corrosion inhibition of steel alloys. This paper presents results of screening tests designed to select candidates among highly alloyed materials for use in produced environments containing water, salt, hydrogen sulfide, and carbon dioxide at 450°F and

M. Watkins; J. B. Greer

1976-01-01

196

Performance of zinc phosphate coatings obtained by cathodic electrochemical treatment in accelerated corrosion tests  

Microsoft Academic Search

The formation of zinc phosphate coating by cathodic electrochemical treatment and evaluation of its corrosion resistance is addressed. The corrosion behaviour of cathodically phosphated mild steel substrate in 3.5% sodium chloride solution exhibits the stability of these coatings, which lasts for a week's time with no red rust formation. Salt spray test convincingly proves the white rust formation in the

S. Jegannathan; T. S. N. Sankara Narayanan; K. Ravichandran; S. Rajeswari

2005-01-01

197

SLAC rf photocathode gun test facility  

NASA Astrophysics Data System (ADS)

A high brightness electron injector is a necessary component for x-ray FELs. A dedicated rf gun test facility is being developed at SLAC to measure the phase space distribution from a photocathode rf gun generated electron beam. This Gun Test Facility will allow optimization of the beam brightness by independently adjusting parameters such as accelerating field, laser pulse shape and total charge. The test facility is comprised of a single S-band klystron, 3 m SLAC linac section, analyzing magnet, diagnostic section, a cathode drive laser and the gun under test. The laser is comprised of a Nd:YLF oscillator and a Nd:glass regenerative amplifier. The light incident on the cathode is capable of both normal and near grazing incidence and is currently frequency quadrupled into the UV. In the near future a Nd:glass oscillator will be installed which will be capable of generating pulses as short as 200 fs. This oscillator will be used to make emittance measurements as a function of the laser pulse width and shape. Both oscillators will be phase-locked to the 24th sub-harmonic of the linac frequency. Emittance measurements will be made downstream of the linac at an electron beam energy of approximately 30 - 50 MeV using a quad scan with a beam profile screen and/or a wire scanner to measure the spot size. A current transformer and a Faraday cup will be used to measure the charge while a streak camera or a transition radiator can be used to measure the micropulse width. The first gun to undergo testing will be the BNL/SLAC/UCLA 1.6 cell symmetrized cavity gun with a copper cathode. With field gradients in the gun as high as 150 MV/m, using solenoidal emittance compensation and spatial and temporal flat top laser pulses, PARMELA simulations predict normalized emittances of less than 1.5 pi mm-mrad with 10 ps long pulses and 1 nC of charge after acceleration in a 3 meter linac section to about 30 MeV. Appropriate additional acceleration can further reduce the emittance below 1 pi mm-mrad.

Schmerge, John F.; Reis, David A.; Hernandez, Mike; Meyerhofer, David D.; Miller, Roger H.; Palmer, Dennis T.; Weaver, Jim N.; Winick, Herman; Yeremian, A. D.

1997-05-01

198

Integrated Disposal Facility FY2010 Glass Testing Summary Report  

SciTech Connect

Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 × 105 m3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 × 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 × 105), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by 1) determining the structure of unreacted and reacted glasses for use as input information into Monte Carlo calculations, 2) compiling the solution data and alteration phases identified from accelerated weathering tests conducted with ILAW glass by PNNL and Viteous State Laboratory/Catholic University of America as well as other literature sources for use in geochemical modeling calculations, and 3) conducting several initial calculations on glasses that contain the four major components of ILAW-Al2O3, B2O3, Na2O, and SiO2.

Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Serne, R Jeffrey; Mattigod, Shas V.

2010-09-30

199

Corrosion  

E-print Network

+ 2e Reduction (ca:. hode reaction) 2H + 2e ? . -I 2 Pi'pc C g~g 1 Q" Dh+ ! I!'lectrochemical r . actions occurin;, . durin:, " corrosion of zinc in air free hydrochlo. ic acid. Durin. ; metal t ic corr os ion, the rate of oxidation equals...-RNi in HNO 3 1-2: Nonel in HC1 Pb in HZSOI Curve B: ? 1RCr-SNi HZS04 Fe in HZSOI& &cp icsfoxi cence. )%~-hc'n 12 Effect of galvanic counling:- "onsger a piece of zinc immersed in a hydrochloric acid solution and contacted to a noble metal...

Patel, R.N

2012-06-07

200

Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method.  

PubMed

A novel method for controllable fabrication of a superhydrophobic surface with a water contact angle of 162 ± 1° and a sliding angle of 3 ± 0.5° on copper substrate is reported in this Research Article. The facile and low-cost fabrication process is composed from the electrodeposition in traditional Watts bath and the heat-treatment in the presence of (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane (AC-FAS). The superhydrophobicity of the fabricated surface results from its pine-cone-like hierarchical micro-nanostructure and the assembly of low-surface-energy fluorinated components on it. The superhydrophobic surface exhibits high microhardness and excellent mechanical abrasion resistance because it maintains superhydrophobicity after mechanical abrasion against 800 grit SiC sandpaper for 1.0 m at the applied pressure of 4.80 kPa. Moreover, the superhydrophobic surface has good chemical stability in both acidic and alkaline environments. The potentiodynamic polarization and electrochemical impedance spectroscopy test shows that the as-prepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Cu substrate. In addition, the as-prepared superhydrophobic surface has self-cleaning ability. It is believed that the facile and low-cost method offer an effective strategy and promising industrial applications for fabricating superhydrophobic surfaces on various metallic materials. PMID:24796223

Su, Fenghua; Yao, Kai

2014-06-11

201

Exploratory corrosion tests on alloys in molten salts at 900/sup 0/C  

SciTech Connect

Exploratory corrosion tests were conducted on 16 commercial alloys in carbonate, chloride, and hydroxide molten salts at 900/sup 0/C for up to three weeks. Corrosion information, including weight change, observations of the coupons, metallographic examination, and evaluation of the corrosion product by SEM, was obtained on the coupons exposed to these salts. These tests indicated that a number of the alloys showed significant resistance to metal loss in the carbonate molten salt with corrosion rates on the order of several millimeters per year. The corrosion product is an interpenetrating structure of metal from the more noble alloy ingredients and of an oxide made up of the reaction between melt components and oxidizable metals from the alloy.

Coyle, R.T.; Thomas, T.M.; Lai, G.Y.

1984-10-01

202

SNS Target Test Facility for remote handling design and verification  

SciTech Connect

The Target Test Facility will be a full-scale prototype of the Spallation Neutron Source Target Station. It will be used to demonstrate remote handling operations on various components of the mercury flow loop and for thermal/hydraulic testing. This paper describes the remote handling aspects of the Target Test Facility. Since the facility will contain approximately 1 cubic meter of mercury for the thermal/hydraulic tests, an enclosure will also be constructed that matches the actual Target Test Cell.

Spampinato, P.T.; Graves, V.B.; Schrock, S.L.

1998-11-01

203

Survey of aircraft icing simulation test facilities in North America  

NASA Technical Reports Server (NTRS)

A survey was made of the aircraft icing simulation facilities in North America: there are 12 wind tunnels, 28 engine test facilities, 6 aircraft tankers and 14 low velocity facilities, that perform aircraft icing tests full or part time. The location and size of the facility, its speed and temperature range, icing cloud parameters, and the technical person to contact are surveyed. Results are presented in tabular form. The capabilities of each facility were estimated by its technical contact person. The adequacy of these facilities for various types of icing tests is discussed.

Olsen, W.

1981-01-01

204

Field testing results for the strategic petroleum reserve pipeline corrosion control program  

SciTech Connect

Results of two studies conducted as part of the Strategic Petroleum Reserve (SPR) Pipeline Corrosion Control Program are reported. These studies focused on evaluation of rotary-applied concrete materials for internal pipeline protection against the erosive and corrosive effects of flowing brine. The study also included evaluation of liners applied by hand on pipe pieces that cannot be lined by rotary methods. Such pipe pieces include tees, elbows and flanged pipe sections. Results are reported from a corrosion survey of 17 different liner formulations tested at the-Big-Rill SPR Site. Testing consisted of electrochemical corrosion rate measurements made on lined pipe sections exposed, in a test manifold, to flowing SPR generated fluids. Testing also involved cumulative immersion exposure where samples were exposed to static site-generated brine for increasing periods of time. Samples were returned to the laboratory for various diagnostic analyses. Results of this study showed that standard calcium silicate concrete (API RP10E) and a rotary calcium aluminate concrete formulation were excellent performers. Hand-lined pipe pieces did not provide as much corrosion protection. The focus of the second part of the study was on further evaluation of the calcium silicate, calcium aluminate and hand-applied liners in actual SPR equipment and service. It was a further objective to assess the practicality of electrochemical impedance spectroscopy (EIS) for field corrosion monitoring of concrete lined pipe compared to the more well-known linear polarization technique. This study showed that concrete linings reduced the corrosion rate for bare steel from 10 to 15 mils per year to 1 mil per year or less. Again, the hand-applied liners did not provide as much corrosion protection as the rotary-applied liners. The EIS technique was found to be robust for field corrosion measurements. Mechanistic and kinetic corrosion rate data were reliably obtained.

Buchheit, R.G.; Maestas, L.M.; Hinkebein, T.E.

1998-02-01

205

Behavior of painted steel and aluminum sheet in laboratory automotive corrosion tests  

SciTech Connect

Because of environmental concern and government pressure, automakers are exploring ways to increase the fuel economy of vehicles. Mass reduction can be achieved by substituting plastics, aluminum, or high-strength steel for ordinary grades of steel in the autobody. Estimates of fuel economy increases range from 3% to 7% for each 10% reduction in mass. The use of aluminum for mass reduction currently is receiving considerable attention. Cold-rolled steel, electrogalvanized steel (60 g/m{sup 2} coating), and three aluminum alloy sheet products (Al 2036, Al 5182, and Al 6111) were painted with a full automotive paint system. These materials were tested in two laboratory cyclic corrosion test environments, GM9540P(B) and CCT-IV. Resistance to cosmetic corrosion was measured in terms of underfilm paint delamination on scribed, flat panels. Crevice corrosion resistance was determined in terms of pitting on lapped panels of like materials, and galvanic corrosion resistance was determined in terms of pitting on lapped panels of unlike materials. Cosmetic corrosion of the aluminum alloys was found to be much better than that of cold-rolled steel and slightly better than that of electrogalvanized steel. The CCT-IV test was found to be more severe than GM9540P(B) for cosmetic corrosion, but GM9540P(B) was more severe for galvanic corrosion. Galvanic current measurements indicated the difference was related to the salt solutions used in each test. The aluminum alloys were prone to crevice corrosion and to galvanic corrosion when coupled to steel. Results indicated that comparative evaluations of the corrosion resistance of these materials must take into account the possibility of crevice and galvanic effects.

Townsend, H.E. [Bethlehem Steel Corp., PA (United States). Homer Research Labs.

1996-01-01

206

Design and development of a high-temperature sodium compatibility testing facility  

SciTech Connect

The use of advanced alloys within sodium-cooled fast reactors (SFRs) has been identified as a means of increasing plant efficiency and reducing construction costs. In particular, alloys such as NF-616, NF-709 and HT-UPS are promising because they exhibit greater strength than traditional structural materials such as 316-SS. However, almost nothing is known about the sodium compatibility of these new alloys. Therefore, research taking place at the Univ. of Wisconsin-Madison is focused on studying the effects of sodium corrosion on these materials under prototypic SFR operating conditions (600 [ deg. C], V Na=10 [m/s], C 0{approx} 1 [wppm]). This paper focuses on the design and construction of the testing facility with an emphasis on moving magnet pumps (MMPs). Corrosion data from a preliminary 500 [hr] natural convection test will also be presented. (authors)

Hvasta, M. G.; Nolet, B. K.; Anderson, M. H. [Univ. of Wisconsin-Madison, 1500 Engineering Dr., Madison - ERB 841, WI 53705 (United States)

2012-07-01

207

The Design of a Buoyancy Module Testing Facility  

Microsoft Academic Search

The work reported in this paper details the design of a facility for the water permeability testing of subsea drill-string riser buoyancy modules. The facility has been built and commissioned and is unique in the UK The only other test facility of this sort exists at the South Western Research Institute at San Antonio in Texas, USA. Buoyancy modules are

M. P. CARTMELL

1993-01-01

208

Fast Flux Test Facility core system  

SciTech Connect

A review of Liquid Metal Reactor (LMR) core system accomplishments provides an excellent road map through the maze of issues that faced reactor designers 10 years ago. At that time relatively large uncertainties were associated with fuel pin and fuel assembly performance, irradiation of structural materials, and performance of absorber assemblies. The extensive core systems irradiation program at the US Department of Energy's Fast Flux Test Facility (FFTF) has addressed each of these principal issues. As a result of the progress made, the attention of long-range LMR planners and designers can shift away from improving core systems and focus on reducing capital costs to ensure the LMR can compete economically in the 21st century with other nuclear reactor concepts. 3 refs., 6 figs., 1 tab.

Ethridge, J.L. (Pacific Northwest Lab., Richland, WA (USA)); Baker, R.B.; Leggett, R.D.; Pitner, A.L.; Waltar, A.E. (Westinghouse Hanford Co., Richland, WA (USA))

1990-11-01

209

Construction and testing of the Mirror Fusion Test Facility magnets  

SciTech Connect

This paper describes the construction and testing of the Mirror Fusion Test Facility superconducting magnet set. Construction of the first Yin Yang magnet was started in 1978. And although this particular magnet was later modified, the final construction of these magnets was not completed until 1985. When completed these 42 magnets weighed over 1200 tonnes and had a maximum stored energy of approximately 1200 MJ at full field. Together with power supplies, controls and liquid nitrogen radiation shields the cost of the fabrication of this system was over $100M. General Dynamics/Convair Division was responsible for the system design and the fabrication of 20 of the magnets. This contract was the largest single procurement action at the Lawrence Livermore National Laboratory. During the PACE acceptance tests, the 26 major magnets were operated at full field for more than 24 hours while other MFTF subsystems were tested. From all of the data, the magnets operated to the performance specifications. For physics operation in the future, additional helium and nitrogen leak checking and repair will be necessary. In this report we will discuss the operation and testing of the MFTF Magnet System, the world's largest superconducting magnet set built to date. The topics covered include a schedule of the major events, summary of the fabrication work, summary of the installation work, summary of testing and test results, and lessons learned.

Kozman, T.; Shimer, D.; VanSant, J.; Zbasnik, J.

1986-08-01

210

Facile formation of biomimetic color-tuned superhydrophobic magnesium alloy with corrosion resistance.  

PubMed

The design of color-tuned magnesium alloy with anticorrosive properties and damping capacity was created by means of a simple and inexpensive method. The vertically self-aligned nano- and microsheets were formed on magnesium alloy AZ31 by a chemical-free immersion process in ultrapure water at a temperature of 120 °C, resulting in the color expression. The color changed from silver with metallic luster to some specific colors such as orange, green, and orchid, depending on the immersion time. The color-tuned magnesium alloy showed anticorrosive performance and damping capacity. In addition, the colored surface with minute surface textures was modified with n-octadecyltrimethoxysilane (ODS), leading to the formation of color-tuned superhydrophobic surfaces. The corrosion resistance of the color-tuned superhydrophobic magnesium alloy was also investigated using electrochemical potentiodynamic measurements. Moreover, the color-tuned superhydrophobic magnesium alloy showed high hydrophobicity not just for pure water but also for corrosive liquids, such as acidic, basic, and some aqueous salt solutions. In addition, the American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test was performed to investigate the adhesion of the color-tuned superhydrophobic film to the magnesium alloy surface. PMID:21319782

Ishizaki, Takahiro; Sakamoto, Michiru

2011-03-15

211

Using the NPSS Environment to Model an Altitude Test Facility  

NASA Technical Reports Server (NTRS)

An altitude test facility was modeled using Numerical Propulsion System Simulation (NPSS). This altitude test facility model represents the most detailed facility model developed in the NPSS architecture. The current paper demonstrates the use of the NPSS system to define the required operating range of a component for the facility. A significant number of additional component models were easily developed to complete the model. Discussed in this paper are the additional components developed and what was done in the development of these components.

Lavelle, Thomas M.; Owen, Albert K.; Huffman, Brian C.

2013-01-01

212

Solar Thermal Propulsion Test Facility at MSFC  

NASA Technical Reports Server (NTRS)

This photograph shows an overall view of the Solar Thermal Propulsion Test Facility at the Marshall Space Flight Center (MSFC). The 20-by 24-ft heliostat mirror, shown at the left, has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror (right). The concentrator mirror then focuses the sunlight to a 4-in focal point inside the vacuum chamber, shown at the front of concentrator mirror. Researchers at MSFC have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than chemical a combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propell nt. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

1999-01-01

213

Dynamic Response Testing in an Electrically Heated Reactor Test Facility  

NASA Astrophysics Data System (ADS)

Non-nuclear testing can be a valuable tool in the development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe (HP) cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system. Reactivity feedback calculations were then based on a bulk reactivity feedback coefficient and measured average core temperature. This paper presents preliminary results from similar dynamic testing of a direct drive gas cooled reactor system (DDG), demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. Although the HP and DDG designs both utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility. Planned system upgrades to allow implementation of higher fidelity dynamic testing are also discussed. Proposed DDG testing will utilize a higher fidelity point kinetics model to control core power transients, and reactivity feedback will be based on localized feedback coefficients and several independent temperature measurements taken within the core block. This paper presents preliminary test results and discusses the methodology that will be implemented in follow-on DDG testing and the additional instrumentation required to implement high fidelity dynamic testing.

Bragg-Sitton, Shannon M.; Morton, T. J.

2006-01-01

214

Synthetic sea water - An improved stress corrosion test medium for aluminum alloys  

NASA Technical Reports Server (NTRS)

A major problem in evaluating the stress corrosion cracking resistance of aluminum alloys by alternate immersion in 3.5 percent salt (NaCl) water is excessive pitting corrosion. Several methods were examined to eliminate this problem and to find an improved accelerated test medium. These included the addition of chromate inhibitors, surface treatment of specimens, and immersion in synthetic sea water. The results indicate that alternate immersion in synthetic sea water is a very promising stress corrosion test medium. Neither chromate inhibitors nor surface treatment (anodize and alodine) of the aluminum specimens improved the performance of alternate immersion in 3.5 percent salt water sufficiently to be classified as an effective stress corrosion test method.

Humphries, T. S.; Nelson, E. E.

1973-01-01

215

ELECTROCHEMICAL CORROSION TEST RESULTS FOR TANK 241-SY-102 SUPERNATE GRAB SAMPLES  

SciTech Connect

This report describes the electrochemical corrosion scans and conditions for testing of SY-102 supernatant samples taken December 2004. The testing was performed because the tank was under a Justification for Continued Operation allowing the supernatant composition to be outside the chemistry limits of Administrative Control 5.16, 'Corrosion Mitigation program'. A new electrochemical working electrode of A516 Grade 60 carbon steel was used for each scan; all scans were measured against a saturated calomel electrode, with carbon counter electrodes, and all scans were carried out at 50 C. The samples were scanned twice, once as received and once sparged with argon to deoxygenate the sample. For those scans conducted after argon purging, the corrosion rates ranged from 0.012 to 0.019 mpy. A test for stress corrosion cracking was carried out on one sample (2SY-04-07) with negative results.

DUNCAN JB

2007-04-09

216

SUMMARY AND RECOMMENDATIONS OF THE EXPERT PANEL OVERSIGHT COMMITTEE MEETING ON DOUBLE-SHELL TANK CORROSION MONITORING AND TESTING HELD AUGUST 4-5 2008  

SciTech Connect

The Expert Panel Oversight Committee (EPOC) on Double-Shell Tank Corrosion Monitoring and Testing has been overseeing the Fiscal Year FY 2008 experimental program being performed at CC Technologies (CCT) to optimize the chemistry control for corrosion limits in Double-Shell Tanks (DSTs). The EPOC met at the M & D Professional Services Conference Facility on August 4 and 5, 2008 to discuss various aspects of that responsibility including FY 2009 planning. Formal presentations were made to update the EPOC on the these subjects.

BOOMER KD

2009-01-08

217

KSC lubricant testing program. [lubrication characteristics and corrosion resistance  

NASA Technical Reports Server (NTRS)

A program was conducted to evaluate the performance of various lubricants in use and considered for use at Kennedy Space Center (KSC). The overall objectives of the program were to: (1) determine the lubrication characteristics and relative corrosion resistance of lubricants in use and proposed for use at KSC; (2) identify materials which may be equivalent to or better than KELF-90 and Krytox 240 AC greases; and (3) identify or develop an improved lubricating oil suitable for use in liquid oxygen (LOX) pumps at KSC. It was concluded that: (1) earth gel thickened greases are very poor corrosion preventive materials in the KSC environment; (2) Halocarbon 25-5S and Braycote 656 were suitable substiutes for KELF-90 and Krytox 240 AC respectively; and (3) none of the oils evaluated possessed the necessary inertness, lubricity, and corrosion prevention characteristics for the KSC LOX pumping systems in their present configuration.

Lockhart, B. J.; Bryan, C. J.

1973-01-01

218

Upgrade of the cryogenic CERN RF test facility  

SciTech Connect

With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.

Pirotte, O.; Benda, V.; Brunner, O.; Inglese, V.; Maesen, P.; Vullierme, B. [CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Koettig, T. [ESS - European Spallation Source, Box 176, 221 00 Lund (Sweden)

2014-01-29

219

ELECTROCHEMICAL CORROSION TESTING OF TANKS 241-AN-102 & 241-AP-107 & 241-AP-108 IN SUPPORT OF ULTRASONIC TESTING  

SciTech Connect

This report presents the results of the corrosion rates that were measured using electrochemical methods for tanks 241-AN-102 (AN-102), 241-AP-107 (AP 107), and 241-AP-108 (AP-108) performed under test plant RPP-PLAN-38215. The steel used as materials of construction for AN and AP tank farms was A537 Class 1. Test coupons of A537 Class 1 carbon steel were used for corrosion testing in the AN-107, AP-107, and AP-108 tank waste. Supernate will be tested from AN-102, AP-107, and Ap-108. Saltcake testing was performed on AP-108 only.

WYRWAS RB; DUNCAN JB

2008-11-20

220

Health maintenance facility system effectiveness testing  

NASA Technical Reports Server (NTRS)

The Medical Simulations Working Group conducted a series of medical simulations to evaluate the proposed Health Maintenance Facility (HMF) Preliminary Design Review (PDR) configuration. The goal of these simulations was to test the system effectiveness of the HMF PDR configurations. The objectives of the medical simulations are to (1) ensure fulfillment of requirements with this HMF design, (2) demonstrate the conformance of the system to human engineering design criteria, and (3) determine whether undesirable design or procedural features were introduced into the design. The simulations consisted of performing 6 different medical scenarios with the HMF mockup in the KRUG laboratory. The scenarios included representative medical procedures and used a broad spectrum of HMF equipment and supplies. Scripts were written and simulations performed by medical simulations working group members under observation from others. Data were collected by means of questionnaires, debriefings, and videotapes. Results were extracted and listed in the individual reports. Specific issues and recommendations from each simulation were compiled into the individual reports. General issues regarding the PDR design of the HMF are outlined in the summary report.

Lloyd, Charles W.; Gosbee, John; Bueker, Richard; Kupra, Debra; Ruta, Mary

1993-01-01

221

Counting test facility for the Borexino experiment  

NASA Astrophysics Data System (ADS)

A fundamental breakthrough which opened the way to the realization of the Borexino detector was the demonstration of exceptionally low, unprecedented radioactive contaminations in the liquid scintillator, obtained with its pilot prototype Counting Test Facility. Though of limited dimension, with its 4.8 m3 of active liquid core, CTF has however been a key milestone not only for Borexino, but also for the entire field of the ultra-low background searches. Here, we succinctly remind the motivations, which concurred to lay down the project, as well as the specific radiopurity challenge, which guided the design. After the description of the technical elements of the detector, the main outcomes are summarized, both regarding optical and purity scintillator properties, with special emphasis on the exceptional achievements in term of ultra-low traces of radioactive contaminants. The discussion is completed with the description of how CTF was employed for the pre-qualification of the entire inventory of the Borexino scintillator, confirming also in the final phase of its life its essential role for the success of the overall Borexino solar neutrino program.

Ranucci, G.; Meroni, E.

2014-05-01

222

Space Simulation, 7th. [facilities and testing techniques  

NASA Technical Reports Server (NTRS)

Space simulation facilities and techniques are outlined that encompass thermal scale modeling, computerized simulations, reentry materials, spacecraft contamination, solar simulation, vacuum tests, and heat transfer studies.

1973-01-01

223

A Summary of Corrosion Tests in Flue Gas Desulfurization Processes  

Microsoft Academic Search

Corrosion of flue gas desulfurization (FGD) scrubbing equipment is one of several critical problems facing both the power industry operating these units and the engineering firms that have to select materials of construction for the specific processes. The various processes and the status of flue-gas desulfurization technology were discussed at the 68th annual meeting of the Air Pollution Control Association.

E. C. Hoxie; G. W. Tuffnell

1976-01-01

224

Rapid corrosion test for zirconium and zirconium alloy weldments  

Microsoft Academic Search

This patent describes a method of determining corrosion resistance of a zircaloy weld and heat affected zones. It comprises: immersing the zircaloy weld and heat affected zones into a fused salt bath having a temperature above about 400° C; controlling the temperature of the fused salt bath and duration of the immersion to produce an essentially black oxide film in

D. W. Parker; M. A. Parker; G. P. Sabol; I. K. Lloyd

1990-01-01

225

CORROSION TESTING OF ADVANCED COATINGS FOR MILITARY HYDRAULIC ACTUATORS  

Microsoft Academic Search

Military organizations employ a large fleet of hydraulic-based vehicles and systems in routine operations. Hydraulic systems are critical to the operability of tactical forklifts, air defense artillery systems, cranes, armored vehicles, and aircraft. Hydraulic actuators are often coated with electrolytic hard chrome, which is effective for wear resistance but provides minimal corrosion resistance. Commercial and emerging coating technologies are available

Robert B. Mason; Martin Konrad; Paulo Legaspi; Mark F. Singleton; Bruce Sartwell; Don Skelton

226

Skin corrosion and irritation test of sunscreen nanoparticles using reconstructed 3D human skin model  

PubMed Central

Objectives Effects of nanoparticles including zinc oxide nanoparticles, titanium oxide nanoparticles, and their mixtures on skin corrosion and irritation were investigated by using in vitro 3D human skin models (KeraSkinTM) and the results were compared to those of an in vivo animal test. Methods Skin models were incubated with nanoparticles for a definite time period and cell viability was measured by the 3-(4, 5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide method. Skin corrosion and irritation were identified by the decreased viability based on the pre-determined threshold. Results Cell viability after exposure to nanomaterial was not decreased to the pre-determined threshold level, which was 15% after 60 minutes exposure in corrosion test and 50% after 45 minutes exposure in the irritation test. IL-1? release and histopathological findings support the results of cell viability test. In vivo test using rabbits also showed non-corrosive and non-irritant results. Conclusions The findings provide the evidence that zinc oxide nanoparticles, titanium oxide nanoparticles and their mixture are ‘non corrosive’ and ‘non-irritant’ to the human skin by a globally harmonized classification system. In vivo test using animals can be replaced by an alternative in vitro test. PMID:25116366

Choi, Jonghye; Kim, Hyejin; Choi, Jinhee; Oh, Seung Min; Park, Jeonggue; Park, Kwangsik

2014-01-01

227

Corrosion testing of highly alloyed materials for deep sour gas well environments  

Microsoft Academic Search

A more practical system of completing sour-gas wells may be to use materials that possess innate corrosion resistance rather than to attempt chemical corrosion inhibition of steel alloys. Exxon Production Research Co. conducted screening tests on highly alloyed materials designed to select candidates for use in produced environments containing water, salt, HâS, and COâ at 450°F and 20,000 psi. Alloy

M. Watkins; J. B. Greer

1975-01-01

228

Operating characteristics of the Langley Mach 7 Scramjet Test Facility  

NASA Technical Reports Server (NTRS)

Operating characteristics of the Langley Mach 7 Scramjet Test Facility are described. The facility is designed for testing airframe integrated scramjet (supersonic combustion ramjet) engine models. Features include duplication of the flight Mach number total enthalpy, flight altitude simulation, and simulation of engine airframe integration effects such a bow shock wave precompression and boundary layer ingestion by the engine. Data obtained from facility calibration and from tests of a hydrogen burning, airframe integrated scramjet are discussed. An adverse interaction between the facility flow and the scramjet engine flow during combustion of the fuel is described.

Guy, R. W.; Torrence, M. G.; Sabol, A. P.; Mueller, J. N.

1981-01-01

229

Laboratory corrosion tests for simulating fireside wastage of superheater materials in waste incinerators  

SciTech Connect

Laboratory corrosion tests were performed to clarify the effects of relative amounts of fused salts in tube deposits on corrosion rates of superheater materials in WTE plants. All test exposures were at 550 C and of 100 hour duration. The nine synthetic ashes used as corrodents consisted of mixtures of chlorides, sulfates and oxides. The test materials were alloy steel T22, stainless steels TP347H, TP310HCbN, and alloys HR11N and 625. The gas atmosphere consisted of 500 to 3000 ppm HCl-30ppm SO{sub 2}-10%O{sub 2}-10%CO{sub 2}-20%H{sub 2}O-bal.N{sub 2}. Generally, the relative amount of fused salts in non-fused ash constituents at 550 C increased with increasing the chlorine content of the ashes. The corrosion rate of T22 steel did not depend directly on ash chlorine content, but for ashes of 7.7 wt.%Cl, the corrosion rate depended on the calculated amount of fused salt at 500 C. The corrosion rates of TP347H steel and alloy 625 were maximum for ashes of 6--8 wt%Cl. For ashes of 7.7 wt.%Cl, the corrosion rates of T22 steel, stainless steels, and alloys increased with ashes having higher amounts of fused salts. Increased HCl content of the gas caused higher corrosion of the stainless steels and high-nickel alloys, but there was no clear corrosion-exacerbating effect with T22 steel.

Otsuka, N. [Sumitomo Metal Industries, Ltd., Amagasaki (Japan); Kawahara, Y. [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Fukuda, Y. [Babcock-Hitachi K.K., Kure (Japan); Hosoda, T. [Japan Research and Development Center for Metals, Tokyo (Japan)

1999-11-01

230

49 CFR 195.575 - Which facilities must I electrically isolate and what inspections, tests, and safeguards are...  

...SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.575 Which facilities must I electrically...of a pipeline is necessary to facilitate the application of corrosion control. (c) You must inspect and electrically...

2014-10-01

231

49 CFR 195.575 - Which facilities must I electrically isolate and what inspections, tests, and safeguards are...  

Code of Federal Regulations, 2012 CFR

...SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.575 Which facilities must I electrically...of a pipeline is necessary to facilitate the application of corrosion control. (c) You must inspect and electrically...

2012-10-01

232

49 CFR 195.575 - Which facilities must I electrically isolate and what inspections, tests, and safeguards are...  

Code of Federal Regulations, 2013 CFR

...SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.575 Which facilities must I electrically...of a pipeline is necessary to facilitate the application of corrosion control. (c) You must inspect and electrically...

2013-10-01

233

49 CFR 195.575 - Which facilities must I electrically isolate and what inspections, tests, and safeguards are...  

Code of Federal Regulations, 2010 CFR

...SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.575 Which facilities must I electrically...of a pipeline is necessary to facilitate the application of corrosion control. (c) You must inspect and electrically...

2010-10-01

234

49 CFR 195.575 - Which facilities must I electrically isolate and what inspections, tests, and safeguards are...  

Code of Federal Regulations, 2011 CFR

...SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.575 Which facilities must I electrically...of a pipeline is necessary to facilitate the application of corrosion control. (c) You must inspect and electrically...

2011-10-01

235

10 CFR 61.81 - Tests at land disposal facilities.  

Code of Federal Regulations, 2013 CFR

...REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Records, Reports, Tests...including tests of: (1) Radioactive wastes and facilities used for the...handling and disposal of radioactive wastes. (2) Radiation...

2013-01-01

236

10 CFR 61.81 - Tests at land disposal facilities.  

Code of Federal Regulations, 2012 CFR

...REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Records, Reports, Tests...including tests of: (1) Radioactive wastes and facilities used for the...handling and disposal of radioactive wastes. (2) Radiation...

2012-01-01

237

10 CFR 61.81 - Tests at land disposal facilities.  

...REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Records, Reports, Tests...including tests of: (1) Radioactive wastes and facilities used for the...handling and disposal of radioactive wastes. (2) Radiation...

2014-01-01

238

10 CFR 61.81 - Tests at land disposal facilities.  

Code of Federal Regulations, 2011 CFR

...REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Records, Reports, Tests...including tests of: (1) Radioactive wastes and facilities used for the...handling and disposal of radioactive wastes. (2) Radiation...

2011-01-01

239

10 CFR 61.81 - Tests at land disposal facilities.  

Code of Federal Regulations, 2010 CFR

...REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Records, Reports, Tests...including tests of: (1) Radioactive wastes and facilities used for the...handling and disposal of radioactive wastes. (2) Radiation...

2010-01-01

240

EXPERIMENTAL TEST FACILITY FOR EVALUATION OF CONTROLS AND CONTROL STRATEGIES  

E-print Network

Preliminary energy balance tests, reported previously •test facility to determine the accuracy of energy balancetests of alternative control strategies are now begin- Time Period 18 hrs Storage Tank Energy Balance -

Warren, Mashuri L.

2013-01-01

241

40 CFR 792.43 - Test system care facilities.  

Code of Federal Regulations, 2010 CFR

...to the extent necessary to prevent cross-contamination of different chemicals used in different tests. (b) A testing...odors, disease hazards, and environmental contamination. (e) Facilities shall have...

2010-07-01

242

40 CFR 792.43 - Test system care facilities.  

Code of Federal Regulations, 2013 CFR

...to the extent necessary to prevent cross-contamination of different chemicals used in different tests. (b) A testing...odors, disease hazards, and environmental contamination. (e) Facilities shall have...

2013-07-01

243

40 CFR 160.43 - Test system care facilities.  

Code of Federal Regulations, 2011 CFR

...to the extent necessary to prevent cross-contamination of different chemicals used in different tests. (b) A testing...odors, disease hazards, and environmental contamination. (e) Facilities shall have...

2011-07-01

244

40 CFR 160.43 - Test system care facilities.  

Code of Federal Regulations, 2010 CFR

...to the extent necessary to prevent cross-contamination of different chemicals used in different tests. (b) A testing...odors, disease hazards, and environmental contamination. (e) Facilities shall have...

2010-07-01

245

40 CFR 792.43 - Test system care facilities.  

...to the extent necessary to prevent cross-contamination of different chemicals used in different tests. (b) A testing...odors, disease hazards, and environmental contamination. (e) Facilities shall have...

2014-07-01

246

40 CFR 160.43 - Test system care facilities.  

Code of Federal Regulations, 2013 CFR

...to the extent necessary to prevent cross-contamination of different chemicals used in different tests. (b) A testing...odors, disease hazards, and environmental contamination. (e) Facilities shall have...

2013-07-01

247

40 CFR 160.43 - Test system care facilities.  

Code of Federal Regulations, 2012 CFR

...to the extent necessary to prevent cross-contamination of different chemicals used in different tests. (b) A testing...odors, disease hazards, and environmental contamination. (e) Facilities shall have...

2012-07-01

248

40 CFR 792.43 - Test system care facilities.  

Code of Federal Regulations, 2012 CFR

...to the extent necessary to prevent cross-contamination of different chemicals used in different tests. (b) A testing...odors, disease hazards, and environmental contamination. (e) Facilities shall have...

2012-07-01

249

40 CFR 792.43 - Test system care facilities.  

Code of Federal Regulations, 2011 CFR

...to the extent necessary to prevent cross-contamination of different chemicals used in different tests. (b) A testing...odors, disease hazards, and environmental contamination. (e) Facilities shall have...

2011-07-01

250

40 CFR 160.43 - Test system care facilities.  

...to the extent necessary to prevent cross-contamination of different chemicals used in different tests. (b) A testing...odors, disease hazards, and environmental contamination. (e) Facilities shall have...

2014-07-01

251

Preliminary Design of the AEGIS Test Facility  

E-print Network

The AEGIS experiment is expected to be installed at the CERN Antiproton Decelerator in a very close future, since the main goal of the AEGIS experiment is the measurement of gravity impact on antihydrogen, which will be produced on the purpose. Antihydrogen production implies very challenging environmental conditions: at the heart of the AEGIS facility 50 mK temperature, 1e-12 mbar pressure and a 1 T magnetic field are required. Interfacing extreme cryogenics with ultra high vacuum will affect very strongly the design of the whole facility, requiring a very careful mechanical design. This paper presents an overview of the actual design of the AEGIS experimental facility, paying special care to mechanical aspects. Each subsystem of the facility – ranging from the positron source to the recombination region and the measurement region – will be shortly described. The ultra cold region, which is the most critical with respect to the antihydrogen formation, will be dealt in detail. The assembly procedures will...

Dassa, Luca; Cambiaghi, Danilo

2010-01-01

252

ENTERING THE FACILITY PROGRAM – TEST MODE  

Cancer.gov

VERSION 7 October 2007 GENERAL OVERVIEW This program is used in animal facilities at both the NCI-Frederick and NCI-Bethesda [LASP] campuses to manage animal inventories, individual animal and experimental records, animal study proposals and other

253

9. Historic aerial photo of rocket engine test facility complex, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

9. Historic aerial photo of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-65-1270. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

254

8. Historic aerial photo of rocket engine test facility complex, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

8. Historic aerial photo of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-65-1271. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

255

13. Historic drawing of rocket engine test facility layout, including ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

13. Historic drawing of rocket engine test facility layout, including Buildings 202, 205, 206, and 206A, February 3, 1984. NASA GRC drawing number CF-101539. On file at NASA Glenn Research Center. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

256

6. Historic photo of rocket engine test facility Building 202 ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

6. Historic photo of rocket engine test facility Building 202 complex in operation at night, September 12, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45924. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

257

10. Historic photo of rendering of rocket engine test facility ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

10. Historic photo of rendering of rocket engine test facility complex, April 28, 1964. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-69472. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

258

Rayleigh Scattering for Measuring Flow in a Nozzle Testing Facility  

NASA Technical Reports Server (NTRS)

A molecular Rayleigh-scattering-based air-density measurement system was built in a large nozzle-and-engine-component test facility for surveying supersonic plumes from jet-engine exhaust. A molecular Rayleigh-scattering-based air-density measurement system was built in a large nozzle-and-enginecomponent test facility for surveying supersonic plumes from jet-engine exhaust

Gomez, Carlos R.; Panda, Jayanta

2006-01-01

259

GE underwater test facility studies in zero G simulation  

NASA Technical Reports Server (NTRS)

The underwater test facility (UTF) is described as an indoor controlled environment test facility designed specifically for zero G simulation, hydrospace manned and unmanned equipment development, and personnel training for both space and underwater exploration. Programs conducted in the UTF include: human engineering criteria for maintenance and repairs of space stations, astronaut performance, helmet distortion, underwater telemetry, and blood transfusion.

Fry, R. H.

1972-01-01

260

The Explosive Pulsed Power Test Facility at AFRL  

Microsoft Academic Search

The Air Force Research Laboratory has developed and tested a variety of explosive driven pulsed power devices over the past twenty-two years. Testing is performed primarily at a dedicated facility located at Chestnut Site on Kirtland Air Force Base. The facility is described in this paper, including details of recent upgrades.

J. V. Parker; T. C. Cavazos; C. E. Roth; D. R. Sandoval; W. Sommars; F. M. Lehr; G. F. Kiuttu; D. Chama; J. H. Degnan; S. Coffey; A. Brown; B. Guffey

2005-01-01

261

The Phillips Laboratory capillary pumped loop test facility  

Microsoft Academic Search

An ammonia capillary pumped loop (CPL) test facility has been designed, fabricated, subject to acceptance tests, and assembled at Phillips Laboratory. Its intent is to support a wide range of Air Force programs, bringing CPL technology to flight readiness for operational systems. The facility provides a high degree of modularity and flexibility with several heating and cooling options, and capability

Donald F. Gluck; Marc C. Kaylor

1996-01-01

262

The Hermes Robot Arm zero-g ground test facility  

Microsoft Academic Search

The objectives and general design of the Hermes Robot Arm (HERA) zero-g ground test facility are described. The current facility concept, the servo support system, is the result of system level trade studies which have demonstrated the advantages of this approach over the standard flat floor concept. The principal advantage is that test results can be used to verify computer

Aad P. Eggers; Aad Pouw

1992-01-01

263

Arc jet testing in NASA Ames Research Center thermophysics facilities  

NASA Technical Reports Server (NTRS)

The Arc Jet Complex facilities at NASA Ames and their performance capabilities and support systems are presented. An overview of the typical testing procedures is provided. Attention is focused on a basic understanding of the types of facilities available at Ames for aerothermodynamic testing.

Balter-Peterson, Aliza; Nichols, Frank; Mifsud, Brian; Love, Wendell

1992-01-01

264

Mössbauer Characterization of Rust Obtained in an Accelerated Corrosion Test  

NASA Astrophysics Data System (ADS)

We have performed drying-humectation cyclical processes (CEBELCOR) on eight A36 low carbon steel coupons in NaCl solutions containing 1×10-2 M and 1×10-1 M concentrations. The main purpose of these experiments is to contribute to the understanding of the conditions for akaganeite formation. Additionally, and with the idea to perform a complete characterization of the rust, this work also considers the formation of other iron oxide phases. The corrosion products were characterized by Mössbauer spectroscopy and X-ray diffraction techniques. Gravimetric analysis demonstrates that the coupons presented high corrosion rates. Magnetite/maghemite was common in the rust stuck to the steel surface, whereas akaganeite was present only in traces. In the rust collected from the solutions, i.e., the rust that goes away from the metal surface easily, a magnetite/maghemite was not present and akaganeite showed up in larger quantities. These results support the idea that high concentrations of Cl- ions are required for the akaganeite formation. We concluded that akaganeite is not easily bonded to the rust layer; this may lead to the formation of a less protective rust layer and to higher corrosion rates.

García, K. E.; Morales, A. L.; Arroyave, C. E.; Barrero, C. A.; Cook, D. C.

2003-06-01

265

Corrosion Testing of Carbon Steel in Oxalic Acid that Contains Dissolved Iron  

SciTech Connect

Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 60 years at the Savannah River Site. The site is currently in the process of removing the waste from these tanks in order to place it into vitrified, stable state for longer term storage. The last stage in the removal sequence is a chemical cleaning step that breaks up and dissolves metal oxide solids that cannot be easily pumped out of the tank. Oxalic acid (OA) will be used to chemically clean the tanks after waste retrieval is completed. The waste tanks at SRS were constructed from carbon steel materials and thus are vulnerable to corrosion in acidic media. In addition to structural impacts, the impact of corrosion on the hydrogen generated during the process must be assessed. Electrochemical and coupon immersion tests were used to investigate the corrosion mechanism at anticipated process conditions. The testing showed that the corrosion rates were dependent upon the reduction of the iron species that had dissolved in solution. Initial corrosion rates were elevated due to the reduction of the ferric species to ferrous species. At later times, as the ferric species depleted, the corrosion rate decreased. On the other hand, the hydrogen evolution reaction became more dominant.

Wiersma, Bruce J.; Mickalonis, John I.; Subramanian, Karthik H.

2012-10-11

266

ITER cryogenic system validation tests at helios test facility  

NASA Astrophysics Data System (ADS)

The ITER cryogenic system will have to cope with substantial dynamic heat loads due to the magnetic field variation and the production of neutrons generated by the fusion reactions. This will induce large pressure variations in the primary cooling loop of the superconducting coils, which results in the large power variation to the helium refrigerator. The HELIOS test facility, developed at CEA-Grenoble, and initially designed to study the pulse mitigation of the JT-60SA central solenoid cooling circuit (in order to smooth the pulsed load and test components), was adapted to the ITER cooling loop requirements. This paper presents the experimental results concerning the specific ITER analysis. We reproduce experimentally the pressure variation of the Central Solenoid (CS) loop predicted by a numerical model, and observe the behaviour of the circulating pump in these conditions. The investigations of the heat load smoothing methods, using the circuit of Toroidal Field Structures, such as the pulse mitigation by temporary by-pass of the flow of the Structure cooling loop, and variation of the speed of the cold circulating pump, are also presented.

Vallcorba-Carbonell, Roser; Rousset, Bernard; Poncet, Jean-Marc; Chang, Hyun-Sik; Forgeas, Adrien; Maekawa, Ryugi; Serio, Luigi; Bonnay, Patrick; Bon-Mardion, Michel; Girard, Alain; Hoa, Christine; Lagier, Benjamin; Michel, Frederic; Roussel, Pascal

2012-06-01

267

High Temperature Steam Electrolysis Materials Degradation: Preliminary Results of Corrosion Tests on Ceramatec Electrolysis Cell Components  

SciTech Connect

Corrosion tests were performed on stainless steel and nickel alloy coupons in H2O/H2 mixtures and dry air to simulate conditions experienced in high temperature steam electrolysis systems. The stainless steel coupons were tested bare and with one of three different proprietary coatings applied. Specimens were corroded at 850°C for 500 h with weight gain data recorded at periodic intervals. Post-test characterization of the samples included surface and cross-section scanning electron microscopy, grazing incidence x-ray diffraction, and area-specific resistance measurements. The uncoated nickel alloy outperformed the ferritic stainless steel under all test conditions based on weight gain data. Parabolic rate constants for corrosion of these two uncoated alloys were consistent with values presented in the literature under similar conditions. The steel coatings reduced corrosion rates in H2O/H2 mixtures by as much as 50% compared to the untreated steel, but in most cases showed negligible corrosion improvement in air. The use of a rare-earth-based coating on stainless steel did not result in a significantly different area specific resistance values after corrosion compared to the untreated alloy. Characterization of the samples is still in progress and the findings will be revised when the complete data set is available.

Paul Demkowicz; Prateek Sachdev; Kevin DeWall; Pavel Medvedev

2007-06-01

268

Accelerated laboratory corrosion test for materials and finishes used in naval aircraft. Progress report  

Microsoft Academic Search

An accelerated laboratory corrosion test has been developed to screen materials and finishes for use on naval aircraft. Sulfur dioxide is introduced at periodic intervals into a conventional salt fog chamber to simulate conditions produced by the carrier stack gas\\/marine environment. Procedures for conducting the test are described.

Ketcham

1977-01-01

269

ELF exposure facility for human testing  

SciTech Connect

A laboratory facility specifically designed for controlled human exposure to 60-Hz electric (0 to 16 kV/m) and magnetic (0 to 32 A/m, B = 0 to 40 microT) fields has been constructed. The facility presents uniform fields under controlled temperature and humidity. Special control systems allow collection of physiological data during, as well as before and after, exposure to electric fields at strengths to 16 kV/m under verified double-blind control. Exposure to continuous or intermittent fields is possible in the facility. The capability of obtaining physiological data during actual exposure to constant or intermittent, 60-Hz fields, and of doing so without either the subject or the experimenter being aware of actual field conditions, is a critical factor in valid experimentation.

Cohen, H.D.; Graham, C.; Cook, M.R.; Phelps, J.W. (Midwest Research Institute, Kansas City, MO (United States))

1992-01-01

270

FY11 Facility Assessment Study for Aeronautics Test Program  

NASA Technical Reports Server (NTRS)

This paper presents the approach and results for the Aeronautics Test Program (ATP) FY11 Facility Assessment Project. ATP commissioned assessments in FY07 and FY11 to aid in the understanding of the current condition and reliability of its facilities and their ability to meet current and future (five year horizon) test requirements. The principle output of the assessment was a database of facility unique, prioritized investments projects with budgetary cost estimates. This database was also used to identify trends for the condition of facility systems.

Loboda, John A.; Sydnor, George H.

2013-01-01

271

Standard test method for initial screening of corrosion inhibiting admixtures for steel in concrete  

E-print Network

1.1 This test method covers a procedure for determining the effects of chemical admixtures on the corrosion of metals in concrete. This test method can be used to evaluate materials intended to inhibit chloride-induced corrosion of steel in concrete. It can also be used to evaluate the corrosivity of admixtures by themselves or in a chloride environment. This test is not applicable for emulsions. 1.2 &solely-SI-units; 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2007-01-01

272

Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project  

NASA Technical Reports Server (NTRS)

The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote earth field sensing magnetometer and servo control building; and a remote power control and instrumentation building. The inner coils are 42-foot in diameter and a 10-foot by 10-foot opening through the outer coils accommodates spacecraft access to the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions ground testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

Vernier, Robert; Bonalksy, Todd; Slavin, James

2004-01-01

273

Aluminum alloy welding and stress-corrosion testing. Final report  

SciTech Connect

The weldability, strength, and corrosion resistance of four 5XXX aluminum alloys electron beam welded to 6061-T6 aluminum alloy without a filler metal were evaluated. Adding filler metal raises weld energy requirements and makes the process more difficult to control. In this study, instead of using a filler metal, a high-magnesium 5XXX alloy was welded to the 6061 alloy. The four 5XXX alloys used (5456-H321, 5052-H34, 5086-H323, and 5083-H32) were selected for their high magnesium content which reduces weld crack sensitivity.

Gates, W.G.; Jimenez, E.

1981-04-01

274

Space Power Facility-Capabilities for Space Environmental Testing Within a Single Facility  

NASA Technical Reports Server (NTRS)

The purpose of this paper is to describe the current and near-term environmental test capabilities of the NASA Glenn Research Center's Space Power Facility (SPF) located at Sandusky, Ohio. The paper will present current and near-term capabilities for conducting electromagnetic interference and compatibility testing, base-shake sinusoidal vibration testing, reverberant acoustic testing, and thermal-vacuum testing. The paper will also present modes of transportation, handling, ambient environments, and operations within the facility to conduct those tests. The SPF is in the midst of completing and activating new or refurbished capabilities which, when completed, will provide the ability to conduct most or all required full-scale end-assembly space simulation tests at a single test location. It is envisioned that the capabilities will allow a customer to perform a wide range of space simulation tests in one facility at reasonable cost.

Sorge, Richard N.

2013-01-01

275

An Injector Test Facility for the LCLS  

SciTech Connect

SLAC is in the privileged position of being the site for the world's first 4th generation light source as well as having a premier accelerator research staff and facilities. Operation of the world's first x-ray free electron laser (FEL) facility will require innovations in electron injectors to provide electron beams of unprecedented quality. Upgrades to provide ever shorter wavelength x-ray beams of increasing intensity will require significant advances in the state-of-the-art. The BESAC 20-Year Facilities Roadmap identifies the electron gun as ''the critical enabling technology to advance linac-based light sources'' and recognizes that the sources for next-generation light sources are ''the highest-leveraged technology'', and that ''BES should strongly support and coordinate research and development in this unique and critical technology''.[1] This white paper presents an R&D plan and a description of a facility for developing the knowledge and technology required to successfully achieve these upgrades, and to coordinate efforts on short-pulse source development for linac-based light sources.

Colby, E., (ed.); /SLAC

2007-03-14

276

Materials evaluations with the pulsed black liquor burner test facility  

SciTech Connect

A pulsed burner was designed to provide sufficient heat to convert a fluidized bed of black Kraft liquor into combustible gas which would be used to produce process steam. The pulsed burner design provides a significant increase in the heat transfer capability and consequently significantly increases the efficiency of the conversion process. High temperature corrosion tests were performed in a fluidized bed of black Kraft liquor using a pulsed burner process to determine the optimum materials for use in a commercial application. The materials tested included three different austenitic stainless steels, Type 446 martensitic stainless steel, a high temperature carbon steel, 153MA, and four nickel base alloys. All materials performed well with no corrosion attributed to the environment created by the decomposition of a black Kraft liquor. This behavior was contrary to what was expected due to the high concentration of H{sub 2}S present in the high temperature, 562 C, atmosphere.

Stein, A. [Stone and Webster Engineering Co., Boston, MA (United States)

1997-08-01

277

Vapor Space Corrosion Testing Simulating The Environment Of Hanford Double Shell Tanks  

SciTech Connect

As part of an integrated program to better understand corrosion in the high level waste tanks, Hanford has been investigating corrosion at the liquid/air interface (LAI) and at higher areas in the tank vapor space. This current research evaluated localized corrosion in the vapor space over Hanford double shell tank simulants to assess the impact of ammonia and new minimum nitrite concentration limits, which are part of the broader corrosion chemistry limits. The findings from this study showed that the presence of ammonia gas (550 ppm) in the vapor space is sufficient to reduce corrosion over the short-term (i.e. four months) for a Hanford waste chemistry (SY102 High Nitrate). These findings are in agreement with previous studies at both Hanford and SRS which showed ammonia gas in the vapor space to be inhibitive. The presence of ammonia in electrochemical test solution, however, was insufficient to inhibit against pitting corrosion. The effect of the ammonia appears to be a function of the waste chemistry and may have more significant effects in waste with low nitrite concentrations. Since high levels of ammonia were found beneficial in previous studies, additional testing is recommended to assess the necessary minimum concentration for protection of carbon steel. The new minimum R value of 0.15 was found to be insufficient to prevent pitting corrosion in the vapor space. The pitting that occurred, however, did not progress over the four-month test. Pits appeared to stop growing, which would indicate that pitting might not progress through wall.

Wiersma, B.; Gray, J. R.; Garcia-Diaz, B. L.; Murphy, T. H.; Hicks, K. R.

2014-01-30

278

Magnesium alloys: predicting in vivo corrosion with in vitro immersion testing.  

PubMed

Magnesium (Mg) and its alloys have been proposed as degradable replacements to commonly used orthopedic biomaterials such as titanium alloys and stainless steel. However, the corrosion of Mg in a physiological environment remains a difficult characteristic to accurately assess with in vitro methods. The aim of this study was to identify a simple in vitro immersion test that could provide corrosion rates similar to those observed in vivo. Pure Mg and five alloys (AZ31, Mg-0.8Ca, Mg-1Zn, Mg-1Mn, Mg-1.34Ca-3Zn) were immersed in either Earle's balanced salt solution (EBSS), minimum essential medium (MEM), or MEM-containing 40 g/L bovine serum albumin (MEMp) for 7, 14, or 21 days before removal and assessment of corrosion by weight loss. This in vitro data was compared to in vivo corrosion rates of the same materials implanted in a subcutaneous environment in Lewis rats for equivalent time points. The results suggested that, for the alloys investigated, the EBSS buffered with sodium bicarbonate provides a rate of degradation comparable to those observed in vivo. In contrast, the addition of components such as (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES), vitamins, amino acids, and albumin significantly increased corrosion rates. Based on these findings, it is proposed that with this in vitro protocol, immersion of Mg alloys in EBSS can be used as a predictor of in vivo corrosion. PMID:22331609

Walker, Jemimah; Shadanbaz, Shaylin; Kirkland, Nicholas T; Stace, Edward; Woodfield, Tim; Staiger, Mark P; Dias, George J

2012-05-01

279

Characterizing Corrosion Effects of Weak Organic Acids Using a Modified Bono Test  

NASA Astrophysics Data System (ADS)

To meet environmental requirements and achieve benefits of cost-effective manufacturing, no-clean fluxes (NCFs) or low-solids fluxes have become popular in present electronic manufacturing processes. Weak organic acids (WOAs) as the activation ingredients in NCFs play an important role, especially in the current lead-free and halogen-free soldering technology era. However, no standard or uniform method exists to characterize the corrosion effects of WOAs on actual metallic circuits of printed wiring boards (PWBs). Hence, the development of an effective quantitative test method for evaluating the corrosion effects of WOAs on the PWB's metallic circuits is imperative. In this paper, the modified Bono test, which was developed to quantitatively examine the corrosion properties of flux residues, is used to characterize the corrosion effects of five WOAs (i.e., abietic acid, succinic acid, glutaric acid, adipic acid, and malic acid) on PWB metallic circuits. Experiments were performed under three temperature/humidity conditions (85°C/85% RH, 60°C/93% RH, and 40°C/93% RH) using two WOA solution concentrations. The different corrosion effects among the various WOAs were best reflected in the testing results at 40°C and 60°C. Optical microscopy was used to observe the morphology of the corroded copper tracks, and scanning electron microscopy (SEM) energy-dispersive x-ray (EDX) characterization was performed to determine the dendrite composition.

Zhou, Yuqin; Turbini, Laura J.; Ramjattan, Deepchand; Christian, Bev; Pritzker, Mark

2013-12-01

280

Realistic Development and Testing of Fission System at a Non-Nuclear Testing Facility  

NASA Technical Reports Server (NTRS)

The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on a module has been performed at the Marshall Space Flight Center in the Propellant Energy Source Testbed (PEST). This paper discusses the experimental facilities and equipment used for performing resistance heated tests. Recommendations are made for improving non-nuclear test facilities and equipment for simulated testing of nuclear systems.

Godfroy, Tom; VanDyke, Melissa; Dickens, Ricky; Pedersen, Kevin; Lenard, Roger; Houts, Mike

2000-01-01

281

Realistic development and testing of fission systems at a non-nuclear testing facility  

NASA Astrophysics Data System (ADS)

The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on a module has been performed at the Marshall Space Flight Center in the Propellant Energy Source Testbed (PEST). This paper discusses the experimental facilities and equipment used for performing resistance heated tests. Recommendations are made for improving non-nuclear test facilities and equipment for simulated testing of nuclear systems. .

Godfroy, Tom; van Dyke, Melissa; Dickens, Ricky; Pedersen, Kevin; Lenard, Roger; Houts, Mike

2000-01-01

282

Alleviation of Facility/Engine Interactions in an Open-Jet Scramjet Test Facility  

NASA Technical Reports Server (NTRS)

Results of a series of shakedown tests to eliminate facility/engine interactions in an open-jet scramjet test facility are presented. The tests were conducted with the NASA DFX (Dual-Fuel eXperimental scramjet) engine in the NASA Langley Combustion Heated Scramjet Test Facility (CHSTF) in support of the Hyper-X program, The majority of the tests were conducted at a total enthalpy and pressure corresponding to Mach 5 flight at a dynamic pressure of 734 psf. The DFX is the largest engine ever tested in the CHSTF. Blockage, in terms of the projected engine area relative to the nozzle exit area, is 81% with the engine forebody leading edge aligned with the upper edge of the facility nozzle such that it ingests the nozzle boundary layer. The blockage increases to 95% with the engine forebody leading edge positioned 2 in. down in the core flow. Previous engines successfully tested in the CHSTF have had blockages of no more than 51%. Oil flow studies along with facility and engine pressure measurements were used to define flow behavior. These results guided modifications to existing aeroappliances and the design of new aeroappliances. These changes allowed fueled tests to be conducted without facility interaction effects in the data with the engine forebody leading edge positioned to ingest the facility nozzle boundary layer. Interaction effects were also reduced for tests with the engine forebody leading edge positioned 2 in. into the core flow, however some interaction effects were still evident in the engine data. A new shroud and diffuser have been designed with the goal of allowing fueled tests to be conducted with the engine forebody leading edge positioned in the core without facility interaction effects in the data. Evaluation tests of the new shroud and diffuser will be conducted once ongoing fueled engine tests have been completed.

Albertson, Cindy W.; Emami, Saied

2001-01-01

283

Corrosion tests of 316L and Hastelloy C-22 in simulated tank waste solutions  

SciTech Connect

Both the 316L stainless steel and Hastelloy{reg_sign} C-22 gave satisfactory corrosion performance in the simulated test environments. They were subjected to 100 day weight loss corrosion tests and electrochemical potentiodynamic evaluation. This activity supports confirmation of the design basis for the materials of construction of process vessels and equipment used to handle the feed to the LAW-melter evaporator. BNFL process and mechanical engineering will use the information derived from this task to select material of construction for process vessels and equipment.

MJ Danielson; SG Pitman

2000-02-23

284

Fragment hazard zone analyses for explosive test facilities  

NASA Astrophysics Data System (ADS)

The analytical procedures for establishing the fragment hazard zone for explosive test facilities are presented. Environment, safety, and health regulations require that a hazard zone analysis be conducted for every explosive test facility. Analyses are presented for explosively driven missile fragment trajectories resultant from cased explosive configurations. Fragment trajectory parameter data are presented in graphical form for three different fragment materials (aluminum, steel, and tantalum), initial velocities between 0.6 to 4.3 mm/micron, and for various geometries. This trajectory information is used, as an example, to determine the safe distance or hazard zone for the Area 2 explosive test facility at Sandia National Laboratories.

Vigil, M. G.

1992-05-01

285

Terminal configured vehicle program: Test facilities guide  

NASA Technical Reports Server (NTRS)

The terminal configured vehicle (TCV) program was established to conduct research and to develop and evaluate aircraft and flight management system technology concepts that will benefit conventional take off and landing operations in the terminal area. Emphasis is placed on the development of operating methods for the highly automated environment anticipated in the future. The program involves analyses, simulation, and flight experiments. Flight experiments are conducted using a modified Boeing 737 airplane equipped with highly flexible display and control equipment and an aft flight deck for research purposes. The experimental systems of the Boeing 737 are described including the flight control computer systems, the navigation/guidance system, the control and command panel, and the electronic display system. The ground based facilities used in the program are described including the visual motion simulator, the fixed base simulator, the verification and validation laboratory, and the radio frequency anechoic facility.

1980-01-01

286

Field stress corrosion tests in brine environments of the Salton Sea known geothermal resource area  

SciTech Connect

Corrosion research is being conducted to determine suitable construction materials for geothermal resource recovery plants. As part of this research, a 30-day stress corrosion test was conducted at the Salton Sea Known Geothermal Resource Area on seven iron- and nickel-base alloys in four brine and steam process streams using wellhead brine from geothermal well Magmamax 1. The tests showed transgranular cracking of AISI 316L stainless steel and intergranular and transgranular cracking of AISI 430 stainless steel in all four process streams. E-Brite 26-1 exhibited intergranular and transgranular cracking in three of the four process streams. Carbon steel, Inconel 625 and Hastelloys G and C-276 show no evidence of stress corrosion cracking.

Carter, J.P.; Cramer, S.D.

1980-01-01

287

GUIDELINES FOR STACK TESTING AT MUNICIPAL WASTE COMBUSTION FACILITIES  

EPA Science Inventory

The report gives guidance for stack testing at municipal waste combustion (MWC) facilities. State and local environmental agencies have been required to develop regulations for MWCs in response to a significant expansion in the number of MWC facilities currently in operation or i...

288

The materials test station: a fast spectrum irradiation facility  

Microsoft Academic Search

The Materials Test Station is a fast-neutron spectrum irradiation facility under design at the Los Alamos National Laboratory in support of the United States Department of Energy's Global Nuclear Energy Partnership. The facility will be capable of rodlets-scale irradiations of candidate fuel forms being developed to power the next generation of fast reactors. Driven by a powerful proton beam, the

Pitcher; Eric J

2007-01-01

289

702AZ aging waste ventilation facility year 2000 test procedure  

SciTech Connect

This test procedure was developed to determine if the 702AZ Tank Ventilation Facility system is Year 2000 Compliant. The procedure provides detailed instructions for performing the operations necessary and documenting the results. This verification procedure will document that the 702AZ Facility Systems are year 2000 compliant and will correctly meet the criteria established in this procedure.

Winkelman, W.D.

1998-07-22

290

An assessment of testing requirement impacts on nuclear thermal propulsion ground test facility design  

SciTech Connect

Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed.

Shipers, L.R.; Ottinger, C.A.; Sanchez, L.C.

1993-10-25

291

Accelerated corrosion testing, evaluation and durability design of bonded post-tensioned concrete tendons  

NASA Astrophysics Data System (ADS)

In the last few years, the effectiveness of cement grout in galvanized or polyethylene ducts, the most widely used corrosion protection system for multistrand bonded post-tensioned concrete tendons, has been under debate, due to significant tendon corrosion damage, several reported failures of individual tendons as well as a few collapses of non-typical structures. While experience in the USA has been generally good, some foreign experience has been less than satisfactory. This dissertation is part of a comprehensive research program started in 1993, which has the objectives to examine the use of post-tensioning in bridge substructures, identify durability concerns and existing technology, develop and carry out an experimental testing program, and conclude with durability design guidelines. Three experimental programs were developed: A long term macrocell corrosion test series, to investigate corrosion protection for internal tendons in precast segmental construction; a long term beam corrosion test series, to examine the effects of post-tensioning on corrosion protection as affected by crack width; and, a long term column corrosion test series, to examine corrosion protection in vertical elements. Preliminary design guidelines were developed previously in the overall study by the initial researchers, after an extensive literature review. This dissertation scope includes continuation of exposure testing of the macrocell, beam and column specimens, performing comprehensive autopsies of selected specimens and updating the durability design guidelines based on the exposure testing and autopsy results. After autopsies were performed, overall findings indicate negative durability effects due to the use of mixed reinforcement, small concrete covers, galvanized steel ducts, and industry standard or heat-shrink galvanized duct splices. The width of cracks was shown to have a direct negative effect on specimen performance. Grout voids were found to be detrimental to the durability of both galvanized ducts and strand. Relying on epoxy and galvanized bar coatings was also found inappropriate because of local attack. On the other hand, very positive effects were found with the use of high performance concrete, high post-tensioning levels, plastic ducts, and sound epoxy filling at the joints.

Salas Pereira, Ruben Mario

2003-06-01

292

21 CFR 58.219 - Reinstatement of a disqualified testing facility.  

Code of Federal Regulations, 2010 CFR

...false Reinstatement of a disqualified testing facility. 58.219 Section 58.219...LABORATORY STUDIES Disqualification of Testing Facilities § 58.219 Reinstatement of a disqualified testing facility. A testing...

2010-04-01

293

Preconceptual design of the new production reactor circulator test facility  

SciTech Connect

This report presents the results of a study of a new circulator test facility for the New Production Reactor Modular High-Temperature Gas-Cooled Reactor. The report addresses the preconceptual design of a stand-alone test facility with all the required equipment to test the Main Circulator/shutoff valve and Shutdown Cooling Circulator/shutoff valve. Each type of circulator will be tested in its own full flow, full power helium test loop. Testing will cover the entire operating range of each unit. The loop will include a test vessel, in which the circulator/valve will be mounted, and external piping. The external flow piping will include a throttle valve, flowmeter, and heat exchanger. Subsystems will include helium handling, helium purification, and cooling water. A computer-based data acquisition and control system will be provided. The estimated costs for the design and construction of this facility are included. 2 refs., 15 figs.

Thurston, G.

1990-06-01

294

CORROSION STUDY FOR THE EFFLUENT TREATMENT FACILITY CHROME (VI) REDUCTANT SOLUTION USING 304 AND 316L STAINLESS STEEL  

SciTech Connect

This report documents the laboratory testing and analyses as directed under the test plan, RPP PLAN-34065, and documented in laboratory notebooks HNF 2742 and HNF-N-473-1. The purpose of this study was to evaluate and compare the electrochemical corrosion and pitting susceptibility of the 304 and 316L stainless steel in the acidified reducing solution that will be contained in either the secondary waste receiving tank or concentrate tank.

DUNCAN JB; WYRAS RB

2007-10-08

295

Localized corrosion testing of CRA materials in elevated temperature sour gas environments  

SciTech Connect

An exposure test program has been undertaken to investigate the localized corrosion resistance of Alloys 28, 825, G3 and 625 in two simulated sour gas environments at 150 C. The chloride levels in these test environments, containing 30 psi (0.21 MPa) H{sub 2}S and 101 psi (0.70 MPa) CO{sub 2}, were 150 ppm and 30,000 ppm. The general corrosion rate of each material was found to be negligible in each test. Alloy 825 alone was susceptible to minor pitting and crevice initiation in the 150 ppm chloride environment. Increasing the chloride level to 30,000 ppm resulted in more severe crevice attack of Alloy 825 and crevice corrosion of Alloy 28. Alloys G3 and 625 were not susceptible to localized corrosion in either test environment. The exposure tests were supported by complementary electrochemical polarization curves in the low chloride environment. The curves did not exhibit clearly defined passive regions, which were masked by additional anodic current from the oxidation of H{sub 2}S.

Felton, P.; Oldfield, J.W. [Cortest Labs. Ltd., Sheffield (United Kingdom); Al-Maslamani, M. [Qatar General Petroleum Corp., Doha (Qatar)

1999-11-01

296

NASA Lewis Research Center's combustor test facilities and capabilities  

NASA Technical Reports Server (NTRS)

NASA Lewis Research Center (LeRC) presently accommodates a total of six combustor test facilities with unique capabilities. The facilities are used to evaluate combustor and afterburner concepts for future engine applications, and also to test the survivability and performance of innovative high temperature materials, new instrumentation, and engine components in a realistic jet engine environment. The facilities provide a variety of test section interfaces and lengths to allow for flametube, sector and component testing. The facilities can accommodate a wide range of operating conditions due to differing capabilities in the following areas: inlet air pressure, temperature, and flow; fuel flow rate, pressure, and fuel storage capacity; maximum combustion zone temperature; cooling water flow rate and pressure; types of exhaust - atmospheric or altitude; air heater supply pressure; and types of air heaters - vitiated or nonvitiated. All of the facilities have provisions for standard gas (emissions) analysis, and a few of the facilities are equipped with specialized gas analysis equipment, smoke and particle size measurement devices, and a variety of laser systems. This report will present some of the unique features of each of the high temperature/high pressure combustor test facilities at NASA LeRC.

Bianco, Jean

1995-01-01

297

Exploratory corrosion tests on alloys in molten salts at 900 C  

Microsoft Academic Search

The results of exploratory corrosion tests on sixteen different alloys at 900 C in molten eutectic sodium-potassium carbonate, in molten eutectic sodium-potassium-magnesium chloride and in molten sodium hydroxide are presented. The salts and many of the alloys were chosen for this study based on results reported in the literature; other alloys that were tested had no previously reported testing in

R. T. Coyle; R. W. Burrows; T. M. Thomas; G. Y. Lai

2008-01-01

298

Accelerated tests for the prediction of cut-edge corrosion of coil-coated architectural cladding  

Microsoft Academic Search

Various accelerated cabinet tests have been used for the evaluation of the cut-edge corrosion of coil-coated architectural cladding. These include the conventional ASTM B-117 method (5% continuous NaCl spray), the standard Prohesion test (0.35% (NH4)2SO4+0.05% NaCl wet\\/dry spray) as well as modified wet\\/dry spray tests using a relatively dilute artificial acid rain solution, shallow specimen incline angles with variations in

R. L. Howard; S. B. Lyon; J. D. Scantlebury

1999-01-01

299

10 CFR 26.125 - Licensee testing facility personnel.  

Code of Federal Regulations, 2012 CFR

...chemical or biological sciences, medical technology, or equivalent. He or she shall also have training and experience in the theory and practice of the procedures used in the licensee testing facility, and a thorough understanding of quality control...

2012-01-01

300

10 CFR 26.125 - Licensee testing facility personnel.  

Code of Federal Regulations, 2013 CFR

...chemical or biological sciences, medical technology, or equivalent. He or she shall also have training and experience in the theory and practice of the procedures used in the licensee testing facility, and a thorough understanding of quality control...

2013-01-01

301

Test facilities for evaluating nuclear thermal propulsion systems  

Microsoft Academic Search

Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and

David F. Beck; George C. Allen; Larry R. Shipers; Dean Dobranich; Cathy A. Ottinger; Charles D. Harmon; Wesley C. Fan; Michael Todosow

1993-01-01

302

Test facilities for evaluating nuclear thermal propulsion systems  

Microsoft Academic Search

Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and

D. F. Beck; G. C. Allen; L. R. Shipers; D. Dobranich; C. A. Ottinger; C. D. Harmon; W. C. Fan; M. Todosow

1992-01-01

303

Indoor Powerline Conductor Accelerated Testing Facility (Indoor-PCAT)  

E-print Network

conducting conductor tests and analyzing test data. Wind (both speed and direction) is no longer a variable variables. For example, there is no wind or rain inside the facility to slow or delays installations conductors in parallel tests. The tension limitations (i.e., the number of conductors) inherent in towers

304

FFTF (Fast Flux Test Facility) Fission Gas Monitor Computer System  

Microsoft Academic Search

The Fast Flux Test Facility (FFTF) is a liquid-metal-cooled, fast neutron test reactor located on the Hanford Site. A dual computer system has been developed to monitor the reactor cover gas to detect and characterize any fuel or test pin fission gas releases. The system acquires gamma spectra data, identifies isotopes, calculates specific isotope and overall cover gas activity, presents

J. A. Hubbard; G. T. Taylor

1987-01-01

305

Sub-categorisation of skin corrosive chemicals by the EpiSkin™ reconstructed human epidermis skin corrosion test method according to UN GHS: revision of OECD Test Guideline 431.  

PubMed

The EpiSkin™ skin corrosion test method was formally validated and adopted within the context of OECD TG 431 for identifying corrosive and non-corrosive chemicals. The EU Classification, Labelling and Packaging Regulation (EU CLP) system requires the sub-categorisation of corrosive chemicals into the three UN GHS optional subcategories 1A, 1B and 1C. The present study was undertaken to investigate the usefulness of the validated EpiSkin™ test method to identify skin corrosive UN GHS Categories 1A, 1B and 1C using the original and validated prediction model and adapted controls for direct MTT reduction. In total, 85 chemicals selected by the OECD expert group on skin corrosion were tested in three independent runs. The results obtained were highly reproducible both within (>80%) and between (>78%) laboratories when compared with historical data. Moreover the results obtained showed that the EpiSkin™ test method is highly sensitive (99%) and specific (80%) in discriminating corrosive from non-corrosive chemicals and allows reliable and relevant identification of the different skin corrosive UN GHS subcategories, with high accuracies being obtained for both UN GHS Categories 1A (83%) and 1B/1C (76%) chemicals. The overall accuracy of the test method to subcategorise corrosive chemicals into three or two UN GHS subcategories ranged from 75% to 79%. Considering those results, the revised OECD Test Guideline 431 permit the use of EpiSkin™ for subcategorising corrosive chemicals into at least two classes (Category 1A and Category 1B/1C). PMID:24211528

Alépée, N; Grandidier, M H; Cotovio, J

2014-03-01

306

EPA ALKALI SCRUBBING TEST FACILITY: ADVANCED PROGRAM  

EPA Science Inventory

The report gives results of advanced testing (from June 1975 to February 1976) of 30,000 acfm (10 MW equivalent) lime/limestone wet scrubbers for SO2 and particulate removal at TVA's Shawnee Power Station. No reliability problems were experienced in 1143 hours of lime testing wit...

307

National Transonic Facility Fan Blade prepreg material characterization tests  

NASA Technical Reports Server (NTRS)

The test program for the basic prepreg materials used in process development work and planned fabrication of the national transonic facility fan blade is presented. The basic prepreg materials and the design laminate are characterized at 89 K, room temperature, and 366 K. Characterization tests, test equipment, and test data are discussed. Material tests results in the warp direction are given for tensile, compressive, fatigue (tension-tension), interlaminar shear and thermal expansion.

Klich, P. J.; Richards, W. H.; Ahl, E. L., Jr.

1981-01-01

308

Controls, astrophysics, and structures experiment in space ground test facility  

NASA Technical Reports Server (NTRS)

This paper describes the initial configuration of the NASA Marshall Space Flight Center (MSFC) Controls/Structures Interaction Advanced Development Facility (CSI ADF), which is a ground test facility (GTF) for the proposed Controls, Astrophysics, and Structures Experiment in Space (CASES). The laboratory has been developed for the purpose of implementing, testing, and evaluating CSI modeling, control system design, failure analysis, and system identification techniques on a representative large space structure. The facility has been configured to represent as closely as possible an actual flight article.

Bukley, Angelia P.; Jones, Victoria L.

1992-01-01

309

Cryocooled Facilities for Superconducting Coils Testing in Gaseous Helium  

NASA Astrophysics Data System (ADS)

Two superconducting coil test facilities equipped by Sumitomo SRDK-415D cryocoolers were developed, manufactured and tested. The motivation for their constructing was to make cheaper the testing (and especially training of LTS magnets) by liquid helium (LHe) saving. It is well known that the helium price increases rapidly and this tendency most probably will continue for a long time, as the demand of helium grows faster than its production. The utilization of heat-exchange gas considerably reduces many problems, that arise in the design of completely dry LTS magnets. The goal was to decrease or even completely avoid the consumption of rather expensive liquid helium for testing the laboratory size Nb-Ti and Nb3Sn coils including their training process. Several superconducting magnets were tested by using these facilities. For example, the first facility was successfully used for testing of 13 T, 60 kg coil cooled by cryocooler in helium gas (several torr pressure) heat exchange atmosphere. The precooling time was about 45 hours. The quench current (240 A at 4.2 K) was equal to that reached in the pool boiling LHe cryostat. The second facility with 420 mm wide access bore can be used for testing of corresponding size superconducting coils with very modest consumption of liquid helium with its level well below the lower flange of the coil. Each test facility is equipped by 2 pairs of HTS current leads. Design and operational experience of one of them is described.

Naumov, A. V.; Keilin, V. E.; Kovalev, I. A.; Surin, M. I.; Shcherbakov, V. I.; Shevchenko, S. A.; Ilin, A. A.

310

Wind Tunnel Based Anemometer Testing Facility  

NASA Astrophysics Data System (ADS)

Measured estimates of the wind resource available at a site are performed with the use of an anemometer. The accuracy of the wind measurements is vital to determining the wind resource of wind farms, which is why great care must be taken in calibrating anemometers. The purpose of this project was to prepare the University of California, Davis (UCD) Aeronautical Wind Tunnel (AWT) for automatically calibrating anemometers with the use of a virtual instrument (VI) created in LabVIEW that measures the wind tunnel and anemometer quantities and controls the wind tunnel speed. The initial calibration was conducted using an RM Young propeller type anemometer that has been benchmarked by National Institute of Standards and Technology (NIST) and is used by the industry to compare anemometer calibration facilities. A second verification of the wind tunnel's readiness to calibrate anemometers was performed using a pitot-static probe manufactured by United Senor Corporation.

Gilbert, Benson Luther

311

Testing the permeability and corrosion resistance of micro-mechanically interlocked joints  

NASA Astrophysics Data System (ADS)

Micro-mechanical interlocking (MMI) can be applied to create new and interesting composite materials. We have employed laser structuring to achieve MMI between stainless steel and plastic with extremely high joint strength. However, the water permeability and corrosion resistance of the joint must be examined. For many industrially relevant applications it is important to keep water away from certain parts and to prevent the sample from corroding. A thorough study of the permeability of the interconnected samples at different temperatures and after employing different laser-structuring techniques is conducted. The permeability seems to be consistent with the Hagen-Poiseuille equation independent of the laser structuring technique and is orders of magnitudes larger than the diffusion rate through the plastic. Two different types of corrosion tests have been undertaken, and we show that care must be taken in order not to degrade the corrosion resistance of the sample to an unacceptable level.

Byskov-Nielsen, Jeppe; Holm, Allan H.; Højsholt, Rune; Sá, Pedro; Balling, Peter

2011-09-01

312

NASA Lewis Research Center's Preheated Combustor and Materials Test Facility  

NASA Technical Reports Server (NTRS)

The Preheated Combustor and Materials Test Facility (PCMTF) in the Engine Research Building (ERB) at the NASA Lewis Research Center is one of two unique combustor facilities that provide a nonvitiated air supply to two test stands, where the air can be used for research combustor testing and high-temperature materials testing. Stand A is used as a research combustor stand, whereas stand B is used for cyclic and survivability tests of aerospace materials at high temperatures. Both stands can accommodate in-house and private industry research programs. The PCMTF is capable of providing up to 30 lb/s (pps) of nonvitiated, 450 psig combustion air at temperatures ranging from 850 to 1150 g F. A 5000 gal tank located outdoors adjacent to the test facility can provide jet fuel at a pressure of 900 psig and a flow rate of 11 gal/min (gpm). Gaseous hydrogen from a 70,000 cu ft (CF) tuber is also available as a fuel. Approximately 500 gpm of cooling water cools the research hardware and exhaust gases. Such cooling is necessary because the air stream reaches temperatures as high as 3000 deg F. The PCMTF provides industry and Government with a facility for studying the combustion process and for obtaining valuable test information on advanced materials. This report describes the facility's support systems and unique capabilities.

Nemets, Steve A.; Ehlers, Robert C.; Parrott, Edith

1995-01-01

313

Development of a biaxial test facility for structural evaluation of aircraft fuselage panels  

SciTech Connect

The number of commercial airframes exceeding twenty years of service continues to grow. An unavoidable by-product of aircraft use is that crack and corrosion flaws develop throughout the aircraft`s skin and substructure elements. Economic barriers to the purchase of new aircraft have created an aging aircraft fleet and placed even greater demands on efficient and safe repair methods. Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is now possible to bond a single Boron-Epoxy composite doubler to the damaged structure. The composite doubler repair process produces both engineering and economic benefits. The FAA`s Airworthiness Assurance Center at Sandia National Labs completed a project to introduce composite doubler repair technology to the commercial aircraft industry. This paper focuses on a specialized structural test facility which was developed to evaluate the performance of composite doublers on actual aircraft structure. The facility can subject an aircraft fuselage section to a combined load environment of pressure (hoop stress) and axial, or longitudinal, stress. The tests simulate maximum cabin pressure loads and use a computerized feedback system to maintain the proper ratio between hoop and axial loads. Through the use of this full-scale test facility it was possible to: (1) assess general composite doubler response in representative flight load scenarios, and (2) verify the design and analysis approaches as applied to an L-1011 door corner repair.

Roach, D.; Walkington, P. [Sandia National Labs., Albuquerque, NM (United States); Rice, T. [Sunwest CAD, Tijeras, NM (United States)

1998-03-01

314

Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research  

SciTech Connect

The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called User’s Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. User’s week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

John Jackson; Todd Allen; Frances Marshall; Jim Cole

2013-03-01

315

Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project  

NASA Technical Reports Server (NTRS)

The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground-testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

Vernier, Robert; Bonalksy, Todd; Slavin, James

2004-01-01

316

Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project  

NASA Technical Reports Server (NTRS)

The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

Vernier, Robert; Bonalosky, Todd; Slavin, James

2004-01-01

317

Electromagnetic Interference/Compatibility (EMI/EMC) Control Test and Measurement Facility: User Test Planning Guide  

NASA Technical Reports Server (NTRS)

Test process, milestones and inputs are unknowns to first-time users of the EMI/EMC Test Facility. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

Scully, Robert C.

2011-01-01

318

Corrosion in a temperature gradient  

SciTech Connect

High temperature corrosion limits the operation of equipment used in the Power Generation Industry. Some of the more destructive corrosive attack occurs on the surfaces of heat exchangers, boilers, and turbines where the alloys are subjected to large temperature gradients that cause a high heat flux through the accumulated ash, the corrosion product, and the alloy. Most current and past corrosion research has, however, been conducted under isothermal conditions. Research on the thermal-gradient-affected corrosion of various metals and alloys is currently being studied at the Albany Research Center’s SECERF (Severe Environment Corrosion and Erosion Research Facility) laboratory. The purpose of this research is to verify theoretical models of heat flux effects on corrosion and to quantify the differences between isothermal and thermal gradient corrosion effects. The effect of a temperature gradient and the resulting heat flux on corrosion of alloys with protective oxide scales is being examined by studying point defect diffusion and corrosion rates. Fick’s first law of diffusion was expanded, using irreversible thermodynamics, to include a heat flux term – a Soret effect. Oxide growth rates are being measured for the high temperature corrosion of cobalt at a metal surface temperature of 900ºC. Corrosion rates are also being determined for the high temperature corrosion of carbon steel boiler tubes in a simulated waste combustion environment consisting of O2, CO2, N2, and water vapor. Tests are being conducted both isothermally and in the presence of a temperature gradient to verify the effects of a heat flux and to compare to isothermal oxidation.

Covino, Bernard S., Jr.; Holcomb, Gordon R.; Cramer, Stephen D.; Bullard, Sophie J.; Ziomek-Moroz, Margaret; White, M.L. (Convanta)

2003-01-01

319

Performance of laser glazed Zr02 TBCs in cyclic oxidation and corrosion burner test rigs  

NASA Technical Reports Server (NTRS)

The performance of laser glazed zirconia thermal barrier coatings (TBCs) was evaluated in cyclic oxidation and cyclic corrosion tests. Plasma sprayed zirconia coatings of two thicknesses were partially melted with a CO2 laser. The power density of the focused laser beam was varied from 35 to 75 W/sq mm, while the scanning speed was about 80 cm per minute. In cyclic oxidation tests, the specimens were heated in a burner rig for 6 minutes and cooled for 3 minutes. It is indicated that the laser treated samples have the same life as the untreated ones. However, in corrosion tests, in which the burner rig flame contained 100 PPM sodium fuel equivalent, the laser treated samples exhibit nearly a fourfold life improvement over that of the reference samples vary. In both tests, the lives of the samples inversely with the thickness of the laser melted layer of zirconia.

Zaplatynsky, I.

1982-01-01

320

High vacuum facility for hydrazine thruster testing  

NASA Technical Reports Server (NTRS)

An ongoing modification is described of a large vacuum chamber to accommodate the ignition of an arcjet hydrazine thruster while maintaining a vacuum level of 1 x 10(exp -5) torr or less. The vacuum facility consists of a 20 ft stainless steel vacuum tank with an internal LN2 shroud, four 35 in. cryopumps and an 8 in. turbopump. To maintain a vacuum level of 1 x 10(exp -5) torr or less, 900 sq ft of liquid helium (LHe) shroud surface was installed to maintain the vacuum level and pumping requirements. A vacuum level of 1 x 10(exp -5) torr or less will allow the hydrazine thrust to exit the thruster nozzle and radiate into a space type environment so that the plume flow field can be analyzed and compared to the analytical model density distribution profile. Some other arcjet thruster characteristics measured are the electromagnetic interference (EMI) and exhaust contamination. This data is used to evaluate if the arcjet thruster with its high specific impulse in comparison to current chemical propulsion thruster can be used for the next generation of communication satellites.

Neary, Patrick F.

1990-01-01

321

Salt spray corrosion test of micro-plasma oxidation ceramic coatings on Ti alloy  

Microsoft Academic Search

Ceramic coatings were prepared on Ti-6A1–4V alloy in NaAlO2 solution by micro-plasma oxidation (MPO). The salt spray tests of the coated samples and the substrates were carried out in a salt spray test machine. The phase composition and surface morphology of the coatings were investigated by XRD and SEM. Severe corrosion occurred on the substrate surface, while there were no

Guodong HAO; Zhongping YAO; Zhaohua JIANG

2007-01-01

322

Development of a Large Scale, High Speed Wheel Test Facility  

NASA Technical Reports Server (NTRS)

Draper Laboratory, with its internal research and development budget, has for the past two years been funding a joint effort with the Massachusetts Institute of Technology (MIT) for the development of a large scale, high speed wheel test facility. This facility was developed to perform experiments and carry out evaluations on levitation and propulsion designs for MagLev systems currently under consideration. The facility was developed to rotate a large (2 meter) wheel which could operate with peripheral speeds of greater than 100 meters/second. The rim of the wheel was constructed of a non-magnetic, non-conductive composite material to avoid the generation of errors from spurious forces. A sensor package containing a multi-axis force and torque sensor mounted to the base of the station, provides a signal of the lift and drag forces on the package being tested. Position tables mounted on the station allow for the introduction of errors in real time. A computer controlled data acquisition system was developed around a Macintosh IIfx to record the test data and control the speed of the wheel. This paper describes the development of this test facility. A detailed description of the major components is presented. Recently completed tests carried out on a novel Electrodynamic (EDS) suspension system, developed by MIT as part of this joint effort are described and presented. Adaptation of this facility for linear motor and other propulsion and levitation testing is described.

Kondoleon, Anthony; Seltzer, Donald; Thornton, Richard; Thompson, Marc

1996-01-01

323

The installation, testing, and lessons learned of the TF40B Gas Turbine Test Facility  

SciTech Connect

The TF40B Gas Turbine Test Facility is the only dedicated Landing Craft, Air Cushion main propulsion engine test complex available to the US Navy. This facility, located at the Naval Surface Warfare Center, Carderock Division (NSWCCD) in Philadelphia, PA, began operation in August, 1992. Since then, the test engine has logged approximately 230 starts and 350 operating hours. This paper will present the installation, testing, and lessons learned of the TF40B test facility. The installation section will discuss the modifications made to the existing test facility to accept the TF40B engine. The test section will include the Foreign Object Damage (FOD) screen evaluation, both on-line and crank wash detergent fluid evaluations, cold weather fuel testing, engine vent line testing and Aerojet 5 oil evaluation. The lessons learned section will include problems related to the electric starter, waterbrake, inlet and exhaust systems, data acquisition system, instrumentation control panel, and the test cell equipment arrangement.

Patterson, J.S.; Harris, H. [Naval Surface Warfare Center, Philadelphia, PA (United States). Carderock Div.

1996-04-01

324

Space simulation in the Neutral Buoyancy Test Facility  

NASA Technical Reports Server (NTRS)

Various methods have been to simulate reduced gravity environments for space systems research and development. Neutral buoyancy has been the most universally used simulation of zero-g. This paper describes the facilities, personnel and experimental work that are associated with the Neutral Buoyancy Test Facility (NBTF) at NASA Ames Research Center (ARC). This facility provides a unique underwater environment for the researcher to simulate reduced gravity activities and evaluate the performances of space-related equipment. The NBTF's small size gives it several advantages over larger water facilities. Second, the facility is used for research purposes only, eliminating any scheduling conflicts with astronaut training. Lastly, the small volume of water allows the researcher to more easily vary the water temperature. This feature is ideal for investigations of astronaut thermal comfort and regulation. Recent investigations have used the NBTF for reduced gravity simulation of locomotion and load-carrying, among other interesting research endeavors.

Luna, Bernadette; Lomax, W. Curtis; Smith, Douglas D.

1993-01-01

325

An oxidation and erosion test facility for cooled panels  

NASA Astrophysics Data System (ADS)

The Panel Oxidation and Erosion Testbed (POET) facility under construction at GASL to provide the required test environment is described. The POET facility comprises three major element including a vitiated air heater, a supersonic nozzle, and a test section. A hydrogen-fueld vitiated air heater will provide the oxidizing and erosive environment. The flow through the test section characterized by low supersonic speed and Mach number of 1.4 will maximize the local heat transfer rate and the local surface shear stress.

Swartwout, W. H.; Erdos, J. I.; Engers, R. J.; Prescott, C.

1992-12-01

326

Large-Scale Cryogen Systems and Test Facilities  

NASA Technical Reports Server (NTRS)

NASA has completed initial construction and verification testing of the Integrated Systems Test Facility (ISTF) Cryogenic Testbed. The ISTF is located at Complex 20 at Cape Canaveral Air Force Station, Florida. The remote and secure location is ideally suited for the following functions: (1) development testing of advanced cryogenic component technologies, (2) development testing of concepts and processes for entire ground support systems designed for servicing large launch vehicles, and (3) commercial sector testing of cryogenic- and energy-related products and systems. The ISTF Cryogenic Testbed consists of modular fluid distribution piping and storage tanks for liquid oxygen/nitrogen (56,000 gal) and liquid hydrogen (66,000 gal). Storage tanks for liquid methane (41,000 gal) and Rocket Propellant 1 (37,000 gal) are also specified for the facility. A state-of-the-art blast proof test command and control center provides capability for remote operation, video surveillance, and data recording for all test areas.

Johnson, R. G.; Sass, J. P.; Hatfield, W. H.

2007-01-01

327

200 area effluent treatment facility opertaional test report  

SciTech Connect

This document reports the results of the 200 Area Effluent Treatment Facility (200 Area ETF) operational testing activities. These Operational testing activities demonstrated that the functional, operational and design requirements of the 200 Area ETF have been met and identified open items which require retesting.

Crane, A.F.

1995-10-26

328

20. VIEW OF TEST FACILITY IN 1967 WHEN EQUIPPED FOR ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

20. VIEW OF TEST FACILITY IN 1967 WHEN EQUIPPED FOR DOSIMETER TEST BY HEALTH PHYSICISTS. CAMERA FACING EAST. INEL PHOTO NUMBER 76-2853, TAKEN MAY 16, 1967. PHOTOGRAPHER: CAPEK. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

329

Transonic cryogenic test section for the Goettingen tube facility  

NASA Technical Reports Server (NTRS)

The design of modern aircraft requires the solution of problems related to transonic flow at high Reynolds numbers. To investigate these problems experimentally, it is proposed to extend the Ludwieg tube facility by adding a transonic cryogenic test section. After stating the requirements for such a test section, the technical concept is briefly explained and a preliminary estimate of the costs is given.

Hornung, H.; Hefer, G.; Krogmann, P.; Stanewsky, E.

1983-01-01

330

Corrosion behavior of tantalum-coated cobalt-chromium modular necks compared to titanium modular necks in a simulator test.  

PubMed

This study compared the corrosion behavior of tantalum-coated cobalt-chromium modular necks with that of titanium alloy modular necks at their junction to titanium-alloy femoral stem. Tests were performed in a dry assembly and two wet assemblies, one contaminated with calf serum and the other contaminated with calf serum and bone particles. Whereas the titanium modular neck tested in the dry assembly showed no signs of corrosion, the titanium modular necks tested in both wet assemblies showed marked depositions and corrosive attacks. By contrast, the tantalum-coated cobalt-chromium modular necks showed no traces of corrosion or chemical attack in any of the three assemblies. This study confirms the protective effect of tantalum coating the taper region of cobalt-chromium modular neck components, suggesting that the use of tantalum may reduce the risk of implant failure due to corrosion. PMID:24099841

Dorn, Ulrich; Neumann, Daniel; Frank, Mario

2014-04-01

331

National RF Test Facility as a multipurpose development tool  

SciTech Connect

Additions and modifications to the National RF Test Facility design have been made that (1) focus its use for technology development for future large systems in the ion cyclotron range of frequencies (ICRF), (2) expand its applicability to technology development in the electron cyclotron range of frequencies (ECRF) at 60 GHz, (3) provide a facility for ELMO Bumpy Torus (EBT) 60-GHz ring physics studies, and (4) permit engineering studies of steady-state plasma systems, including superconducting magnet performance, vacuum vessel heat flux removal, and microwave protection. The facility will continue to function as a test bed for generic technology developments for ICRF and the lower hybrid range of frequencies (LHRF). The upgraded facility is also suitable for mirror halo physics experiments.

McManamy, T.J.; Becraft, W.R.; Berry, L.A.; Blue, C.W.; Gardner, W.L.; Haselton, H.H.; Hoffman, D.J.; Loring, C.M. Jr.; Moeller, F.A.; Ponte, N.S.

1983-01-01

332

Single-Crystal NiAl-X Alloys Tested for Hot Corrosion  

NASA Technical Reports Server (NTRS)

Single-crystal nickel aluminide (NiAl) has been investigated extensively throughout the last several years as a potential structural material in aero-gas turbine engines. The attractive features of NiAl in comparison to Ni-base superalloys include a higher melting point, lower density, higher thermal conductivity, and excellent oxidation resistance. However, NiAl suffers from a lack of ductility and fracture toughness at low temperatures and a low creep strength at high temperatures. Alloying additions of hafnium (Hf), gallium (Ga), titanium (Ti), and chromium (Cr) have each shown some benefit to the mechanical properties over that of the binary alloy. However, the collective effect of these alloying additions on the environmental resistance of NiAl-X was unclear. Hence, the present study was undertaken to examine the hot corrosion behavior of these alloys. A companion study examined the cyclic oxidation resistance of these alloys. Several single-crystal NiAl-X alloys (where X is Hf, Ti, Cr, or Ga) underwent hot corrosion testing in a Mach 0.3 burner rig at the NASA Lewis Research Center. Samples were tested for up to 300 1-hr cycles at a temperature of 900 C. It was found that increasing the Ti content from 1 to 5 at.% degraded the hot corrosion behavior. This decline in the behavior was reflected in high weight gains and large corrosion mound formation during testing (see the figures). However, the addition of 1 to 2 at.% Cr to alloys containing 4 to 5 at.% Ti appeared to greatly reduce the susceptibility of these alloys to hot corrosion attack and negated the deleterious effect of the increased Ti addition.

Nesbitt, James A.

1999-01-01

333

Stress corrosion cracking tests on high-level-waste container materials in simulated tuff repository environments  

SciTech Connect

Types 304L, 316L, and 321 austenitic stainless steel and Incoloy 825 are being considered as candidate container materials for emplacing high-level waste in a tuff repository. The stress corrosion cracking susceptibility of these materials under simulated tuff repository conditions was evaluated by using the notched C-ring method. The tests were conducted in boiling synthetic groundwater as well as in the steam/air phase above the boiling solutions. All specimens were in contact with crushed Topopah Spring tuff. The investigation showed that microcracks are frequently observed after testing as a result of stress corrosion cracking or intergranular attack. Results showing changes in water chemistry during test are also presented.

Abraham, T.; Jain, H.; Soo, P.

1986-06-01

334

Conceptual design of the MHD Engineering Test Facility  

NASA Technical Reports Server (NTRS)

The reference conceptual design of the MHD engineering test facility, a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commerical feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are included and the engineering issues that should be reexamined are identified.

Bents, D. J.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Rigo, H. S.; Pearson, C. V.; Warinner, D. K.; Hatch, A. M.; Borden, M.; Giza, D. A.

1981-01-01

335

Commissioning of the ATLAS thermal-hydraulic integral test facility  

Microsoft Academic Search

KAERI recently constructed a new thermal-hydraulic integral test facility for advanced pressurized water reactors (PWRs) – ATLAS. The ATLAS facility has the following characteristics: (a) 1\\/2-height&length, 1\\/288-volume, and full pressure simulation of APR1400, (b) maintaining a geometrical similarity with APR1400 including 2(hot legs)×4(cold legs) reactor coolant loops, direct vessel injection (DVI) of emergency core cooling water, integrated annular downcomer, etc.,

Yeon-Sik Kim; Ki-Yong Choi; Hyeon-Sik Park; Seok Cho; Bok-Deug Kim; Nam-Hyeon Choi; Won-Pil Baek

2008-01-01

336

A 400 kW high temperature solar test facility  

Microsoft Academic Search

The paper discusses a 400-kW(th), high-temperature, receiver-type solar test facility located in Georgia. The facility employs 550 circular, back-silvered mirrors that are 111-cm in diameter and 3-mm thick. The mirrors, which may be operated in flat or focused configurations, are arranged in an octagonal pattern. The receiver is located 20 meters above the center of the field. Actual total thermal

J. D. Walton; S.-H. Bomar; C.-T. Brown; N.-E. Poulos

1978-01-01

337

Status of the Dual Axis Radiographic Hydrodynamics Test (DARHT) Facility  

Microsoft Academic Search

The Dual-Axis Radiographic Hydrodynamics Test (DARHT) facility will employ two perpendicular electron Linear Induction Accelerators to produce intense, bremsstrahlung x-ray pulses for flash radiography. We intend to produce measurements containing three-dimensional information with sub-millimeter spatial resolution of the interior features of very dense, explosively-driven objects. The facility will be completed in two phases with the first phase having become operational

Michael J. Burns; George J. Caporaso; Bruce E. Carlsten; Yu-Jiuan Chen; Ken P. Chow; Edward G. Cook; Harold A. Davis; Carl A. Ekdahl; William M. Fawley; Clifford M. Fortgang; Thomas P. Hughes; B. R. Trent McCuistian; Kurt E. Nielsen; Henry L. Rutkowski; Steve Sampayan; Will L. Waldron; James A. Watson; Glenn A. Westenskow; Simon S. Yu

2002-01-01

338

Corrosion tests of carbon steel exposed to a simulated DWPF recycle stream  

SciTech Connect

Coupon immersion tests of ASTM A537 Class 1 carbon steel in simulated DWPF recycle solutions did not generate shock-sensitive deposits, consistent with two previous tests at SRTC. Results of three sets of tests indicate that the formation of detectable amounts of shock-sensitive deposits is not possible under test conditions. Solutions used included the increased nitrate concentration (0.05 M vs.the 0.01 M used previously) that reflects the introduction of ammonia scrubbing in the DWPF. The nitrite and hydroxide concentrations were 0.042 M and 0.5 M, respectively, which are the current Process Requirement concentrations for the DWPF Recycle Collection Tank. As a result of the increased nitrate level, the coupon showed superficial uniform corrosion at a rate {le} 0.4 mils per year (0.0004 in. per year) and pitting corrosion with a maximum depth of 0.7 mils (0.0007 in.). Electrochemical corrosion tests to revise the nitrite concentration limit to accommodate the higher nitrate concentration will be completed in October, 1993.

Zapp, P.E.

1993-09-30

339

Langley Ground Facilities and Testing in the 21st Century  

NASA Technical Reports Server (NTRS)

A strategic approach for retaining and more efficiently operating the essential Langley Ground Testing Facilities in the 21st Century is presented. This effort takes advantage of the previously completed and ongoing studies at the Agency and National levels. This integrated approach takes into consideration the overall decline in test business base within the nation and reduced utilization in each of the Langley facilities with capabilities to test in the subsonic, transonic, supersonic, and hypersonic speed regimes. The strategy accounts for capability needs to meet the Agency programmatic requirements and strategic goals and to execute test activities in the most efficient and flexible facility operating structure. The structure currently being implemented at Langley offers agility to right-size our capability and capacity from a national perspective, to accommodate the dynamic nature of the testing needs, and will address the influence of existing and emerging analytical tools for design. The paradigm for testing in the retained facilities is to efficiently and reliably provide more accurate and high-quality test results at an affordable cost to support design information needs for flight regimes where the computational capability is not adequate and to verify and validate the existing and emerging computational tools. Each of the above goals are planned to be achieved, keeping in mind the increasing small industry customer base engaged in developing unpiloted aerial vehicles and commercial space transportation systems.

Ambur, Damodar R.; Kegelman, Jerome T.; Kilgore, William A.

2010-01-01

340

Ground test facility for SEI nuclear rocket engines  

SciTech Connect

Nuclear Thermal Propulsion (NTP) has been identified as a critical technology in support of the NASA Space Exploration Initiative (SEI). In order to safely develop a reliable, reusable, long-lived flight engine, facilities are required that will support ground tests to qualify the nuclear rocket engine design. Initial nuclear fuel element testing will need to be performed in a facility that supports a realistic thermal and neutronic environment in which the fuel elements will operate at a fraction of the power of a flight weight reactor/engine. Ground testing of nuclear rocket engines is not new. New restrictions mandated by the National Environmental Protection Act of 1970, however, now require major changes to be made in the manner in which reactor engines are now tested. These new restrictions now preclude the types of nuclear rocket engine tests that were performed in the past from being done today. A major attribute of a safely operating ground test facility is its ability to prevent fission products from being released in appreciable amounts to the environment. Details of the intricacies and complications involved with the design of a fuel element ground test facility are presented in this report with a strong emphasis on safety and economy.

Harmon, C.D.; Ottinger, C.A.; Sanchez, L.C.; Shipers, L.R.

1992-08-01

341

T-111 Rankine system corrosion test loop, volume 1  

NASA Technical Reports Server (NTRS)

Results are given of a program whose objective was to determine the performance of refractory metal alloys in a two loop Rankine test system. The test system consisted of a circulating lithium circuit heated to 1230 C maximum transferring heat to a boiling potassium circuit with a 1170 C superheated vapor temperature. The results demonstrate the suitability of the selected refractory alloys to perform from a chemical compatibility standpoint.

Harrison, R. W.; Hoffman, E. E.; Smith, J. P.

1975-01-01

342

T-111 rankine system corrosion test loop. Volume II  

Microsoft Academic Search

This report covers the results of a program whose objective was to determine the performance of refractory metal alloys in a two loop Rankine test system. The test system consisted of a circulating lithium circuit heated to 1230°C maximum transferring heat to a boiling potassium circuit with a 1170°C superheated vapor temperature. The results demonstrate the suitability of the selected

R. W. Harrison; E. E. Hoffman; J. P. Smith

1975-01-01

343

T-111 Rankine system corrosion test loop. Volume I  

Microsoft Academic Search

This report covers the results of a program whose objective was to determine the performance of refractory metal alloys in a two loop Rankine test system. The test system consisted of a circulating lithium circuit heated to 1230°C maximum transferring heat to a boiling potassium circuit with a 1170°C superheated vapor temperature. The results demonstrate the suitability of the selected

R. W. Harrison; E. E. Hoffman; J. P. Smith

1975-01-01

344

Hot Gas Cleanup Test Facility for gasification and pressurized combustion  

SciTech Connect

The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The major emphasis during this reporting period was finishing the conceptual design for the test facility and discussions on the potential expansion of the test facility. Results are discussed for the following subtasks of conceptual design: design bases; quasifier/combustor and hot stream design; balance of plant designs; and particulate collection.

Not Available

1991-01-01

345

High Power RF Test Facility at the SNS  

SciTech Connect

RF Test Facility has been completed in the SNS project at ORNL to support test and conditioning operation of RF subsystems and components. The system consists of two transmitters for two klystrons powered by a common high voltage pulsed converter modulator that can provide power to two independent RF systems. The waveguides are configured with WR2100 and WR1150 sizes for presently used frequencies: 402.5 MHz and 805 MHz. Both 402.5 MHz and 805 MHz systems have circulator protected klystrons that can be powered by the modulator capable of delivering 11 MW peak and 1 MW average power. The facility has been equipped with computer control for various RF processing and complete dual frequency operation. More than forty 805 MHz fundamental power couplers for the SNS superconducting linac (SCL) cavities have been RF conditioned in this facility. The facility provides more than 1000 ft2 floor area for various test setups. The facility also has a shielded cave area that can support high power tests of normal conducting and superconducting accelerating cavities and components.

Y.W. Kang; D.E. Anderson; I.E. Campisi; M. Champion; M.T. Crofford; R.E. Fuja; P.A. Gurd; S. Hasan; K.-U. Kasemir; M.P. McCarthy; D. Stout; J.Y. Tang; A.V. Vassioutchenko; M. Wezensky; G.K. Davis; M. A. Drury; T. Powers; M. Stirbet

2005-05-16

346

Upgrade to Cryomodule Test Facility at Jefferson Lab  

SciTech Connect

The cryomodule test facility (CMTF) was originally implemented in the late eighties for testing of a small fraction of the cryomodules during the production run for the Continuous Electron Beam Accelerator Facility [1]. The original system was built using a dedicated wiring scheme and a pair of 2 kW, 1497 MHz RF sources. This dedicated system made it difficult to test cryomodules and other RF structures of non-standard configuration. Additionally, due to a previously installed cyclotron, there were static magnetic fields in excess of 6 Gauss within the test cave, which limited the capability of the facility when measuring the quality factor of superconducting cavities. Testing of the Spallation Neutron Source cryomodules as well as future upgrades to the CEBAF accelerator necessitated that the facility be reconfigured to be flexible both with respect to RF source power and cryomodule wiring configuration. This paper will describe the implementation of a generalized wiring scheme t hat is easily adapted to different cryomodule configurations. It will also describe the capabilities of the LabView based low level RF controls and the related data acquisition systems currently being used to test cryomodules and related hardware. The high power RF source capabilities will be described. The magnetic shielding put in place in order to reduce the ambient magnetic file to levels below 50 mGauss will also be described.

Thomas Powers; Trent Allison; G. Davis; Michael Drury; Christiana Grenoble; Lawrence King; Tomasz Plawski; Joseph Preble

2003-09-01

347

Switch evaluation test system for the National Ignition Facility  

SciTech Connect

Flashlamp pumped lasers use pulsed power switches to commute energy stored in capacitor banks to the flashlamps. The particular application in which the authors are interested is the National Ignition Facility (NIF), being designed by Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories (SNL). To lower the total cost of these switches, SNL has a research program to evaluate large closing switches. The target value of the energy switched by a single device is 1.6 MJ, from a 6 mF, 24kV capacitor bank. The peak current is 500 kA. The lifetime of the NIF facility is 24,000 shots. There is no switch today proven at these parameters. Several short-lived switches (100`s of shots) exist that can handle the voltage and current, but would require maintenance during the facility life. Other type devices, notably ignitrons, have published lifetimes in excess of 20,000 shots, but at lower currents and shorter pulse widths. The goal of the experiments at SNL is to test switches with the full NIF wave shape, and at the correct voltage. The SNL facility can provide over 500 kA at 24 kV charge voltage. the facility has 6.4 mF total capacitance, arranged in 25 sub-modules. the modular design makes the facility more flexible (for possible testing at lower current) and safer. For pulse shaping (the NIF wave shape is critically damped) there is an inductor and resistor for each of the 25 modules. Rather than one large inductor and resistor, this lowers the current in the pulse shaping components, and raises their value to those more easily attained with lumped inductors and resistors. The authors show the design of the facility, and show results from testing conducted thus far. They also show details of the testing plan for high current switches.

Savage, M.E.; Simpson, W.W. [Sandia National Labs., Albuquerque, NM (United States). High Energy Plasma Physics Dept.; Sharpe, R.A. [Sandia National Labs., Albuquerque, NM (United States). High Energy Plasma Physics Dept.]|[Ktech Corp., Albuquerque, NM (United States); Reynolds, F.D. [Sandia National Labs., Albuquerque, NM (United States). High Energy Plasma Physics Dept.]|[Tektronix, Inc., Albuquerque, NM (United States)

1997-07-01

348

R and D needs assessment for the Engineering Test Facility  

SciTech Connect

The Engineering Test Facility (ETF), planned to be the next major US magnetic fusion device, has its mission (1) to provide the capability for moving into the engineering phase of fusion development and (2) to provide a test-bed for reactor components in a fusion environment. The design, construction, and operation of the ETF requires an increasing emphasis on certain key research and development (R and D) programs in magnetic fusion in order to provide the necessary facility design base. This report identifies these needs and discusses the apparent inadequacies of the presently planned US program to meet them, commensurate with the ETF schedule.

Not Available

1980-10-01

349

Combustion and deposition, erosion, and corrosion tests of coal turbine fuels  

SciTech Connect

This paper discusses the results obtained from the rich-quench-lean (RQL) combustion system running on distillate fuel and coal water slurry (CWS). Estimates of fuel bound nitrogen (FBN) yield indicate that rich lean combustion is successful in reducing the yield from coal water slurry fuel to between 8% and 12%. Some improvements in combustion efficiency are required when burning coal water slurry to reduce carbon monoxide and unburned hydrocarbons to acceptable levels. These improvements are achievable by increasing the lean zone residence time. Further testing is planned to investigate the effects of residence time in more detail. The planned deposition, erosion, and corrosion (DEC) testing will evaluate alternative approaches for protection from deposition, erosion, and corrosion of turbines operating with coal derived fuels.

Wilkes, C.; Wenglarz, R.; Clark, D.W.

1985-01-01

350

High-temperature acoustic test facilities and methods  

NASA Astrophysics Data System (ADS)

The Wright Laboratory is the Air Force center for air vehicles, responsible for developing advanced technology and incorporating it into new flight vehicles and for continuous technological improvement of operational air vehicles. Part of that responsibility is the problem of acoustic fatigue. With the advent of jet aircraft in the 1950's, acoustic fatigue of aircraft structure became a significant problem. In the 1960's the Wright Laboratory constructed the first large acoustic fatigue test facilities in the United States, and the laboratory has been a dominant factor in high-intensity acoustic testing since that time. This paper discusses some of the intense environments encountered by new and planned Air Force flight vehicles, and describes three new acoustic test facilities of the Wright Laboratory designed for testing structures in these dynamic environments. These new test facilities represent the state of the art in high-temperature, high-intensity acoustic testing and random fatigue testing. They will allow the laboratory scientists and engineers to test the new structures and materials required to withstand the severe environments of captive-carry missiles, augmented lift wings and flaps, exhaust structures of stealth aircraft, and hypersonic vehicle structures well into the twenty-first century.

Pearson, Jerome

1994-09-01

351

Marine Corrosion Tests of Galvanic Coatings for Ship Instruments. XI. Gold and Palladium Coatings on Brass  

Microsoft Academic Search

The corrosion peculiarities and the protective and decorative characteristics of gold and palladium coatings were investigated in containers simulating the casings for ship's equipment of watertight and splashproof types. The coatings (3 and 6 µm thick) were applied to 62 brass specimens either directly or with a 12 µm-thick silver sublayer (Ag12\\/Au3, Ag12\\/Pd 2, µm). The specimens plated were tested

Yu. M. Panchenko; P. V. Strekalov

2000-01-01

352

Method of long-term corrosion-mechanical tests of metal of gas industry pipes  

Microsoft Academic Search

The resistance of the metal of gas industry pipes to hydrogen-sulfide (sulfide) cracking is usually evaluated on the basis of the results of long-term corrosion-mechanical tests on cylindrical specimens (diameter 6 mm) in the conditions of uniaxial tensile loading generated by the force constant with time. Because of the comparatively large dimensions of devices for producing the stress state in

E. M. Gutman; R. S. Zainullin

1987-01-01

353

Uninstrumented assembly airflow testing in the Annular Flow Distribution facility  

SciTech Connect

During the Emergency Cooling System phase of a postulated large-break loss of coolant accident (ECS-LOCA), air enters the primary loop and is pumped down the reactor assemblies. One of the experiments performed to support the analysis of this accident was the Annular Flow Distribution (AFD) experiment, conducted in a facility built for this purpose at Babcock and Wilcox Alliance Research Center in Alliance, Ohio. As part of this experiment, a large body of airflow data were acquired in a prototypical mockup of the Mark 22 reactor assembly. This assembly was known as the AFD (or the I-AFD here) reference assembly. The I-AFD assembly was fully prototypical, having been manufactured in SRS`s production fabrication facility. Similar Mark 22 mockup assemblies were tested in several test facilities in the SRS Heat Transfer Laboratory (HTL). Discrepancies were found. The present report documents further work done to address the discrepancy in airflow measurements between the AFD facility and HTL facilities. The primary purpose of this report is to disseminate the data from the U-AFD test, and to compare these test results to the I-AFD data and the U-AT data. A summary table of the test data and the B&W data transmittal letter are included as an attachment to this report. The full data transmittal volume from B&W (including time plots of the various instruments) is included as an appendix to this report. These data are further analyzed by comparing them to two other HTL tests, namely, SPRIHTE 1 and the Single Assembly Test Stand (SATS).

Kielpinski, A.L.

1992-02-01

354

Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility  

SciTech Connect

A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

2008-04-01

355

Comparison of influences of NaCl and CaCl 2 on the corrosion of 11% and 17% Cr ferritic stainless steels during cyclic corrosion test  

Microsoft Academic Search

During the drying stage of the cyclic corrosion test on ferritic stainless steels in the NaCl environment, the current abruptly increased and then decreased to nearly zero, indicating that pits are initiated as the salt concentration is increased, which are then repassivated when the surface is completely dry. During the wet stage, the current remained high, suggesting that pits mainly

Won-Jin Beom; Kwi-Sub Yun; Chan-Jin Park; Han-Jin Ryu; Young-Ho Kim

2010-01-01

356

Cryogenic vertical test facility for the SRF cavities at BNL  

SciTech Connect

A vertical test facility has been constructed to test SRF cavities and can be utilized for other applications. The liquid helium volume for the large vertical dewar is approximate 2.1m tall by 1m diameter with a clearance inner diameter of 0.95m after the inner cold magnetic shield installed. For radiation enclosure, the test dewar is located inside a concrete block structure. The structure is above ground, accessible from the top, and equipped with a retractable concrete roof. A second radiation concrete facility, with ground level access via a labyrinth, is also available for testing smaller cavities in 2 smaller dewars. The cryogenic transfer lines installation between the large vertical test dewar and the cryo plant's sub components is currently near completion. Controls and instrumentations wiring are also nearing completion. The Vertical Test Facility will allow onsite testing of SRF cavities with a maximum overall envelope of 0.9 m diameter and 2.1 m height in the large dewar and smaller SRF cavities and assemblies with a maximum overall envelope of 0.66 m diameter and 1.6 m height.

Than, R.; Liaw, CJ; Porqueddu, R.; Grau, M.; Tuozzolo, J.; Tallerico, T.; McIntyre, G.; Lederle, D.; Ben-Zvi, I.; Burrill, A.; Pate, D.

2011-03-28

357

Activated carbon testing for the 200 area effluent treatment facility  

SciTech Connect

This report documents pilot and laboratory scale testing of activated carbon for use in the 200 Area Effluent Treatment Facility peroxide decomposer columns. Recommendations are made concerning column operating conditions and hardware design, the optimum type of carbon for use in the plant, and possible further studies.

Wagner, R.N.

1997-01-17

358

Design and Development of a Vacuum Dehumidification Test Facility  

E-print Network

and cooling system performance measurements. The completed test facility consisted of two systems: 1) the feed-air system, which simulated the inlet-air conditions and performed the feed-air dehumidification and sensible cooling and 2) the vacuum system, which...

Schaff, Francesco Nima

2014-08-13

359

Cryogenic controls for Fermilab's SRF cavities and test facility  

SciTech Connect

A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The facility is supplied cryogens from the Cryogenic Test Facility (CTF) located in a separate building 500-m away. The design incorporates ambient temperature pumping for super-fluid helium production, as well as three 0.6-kW at 4.5-K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+{trademark}, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+{trademark} allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+{trademark} nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLC's by KOYO{reg_sign} are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.

Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.; /Fermilab

2007-07-01

360

Cryogenic Controls for Fermilab's Srf Cavities and Test Facility  

NASA Astrophysics Data System (ADS)

A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The Cryogenic Test Facility (CTF), located in a separate building 500 m away, supplies the facility with cryogens. The design incorporates ambient temperature pumping for superfluid helium production, as well as three 0.6 kW at 4.5 K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+™, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+™ allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+™ nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLCs by KOYO® are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.

Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.

2008-03-01

361

Local electrochemical impedance at the cut-edge of coil-coated galvanized steel after corrosion testing  

Microsoft Academic Search

The cut edge corrosion of polyester-coated galvanized steel was investigated using electrochemical impedance spectroscopy. Measurements were performed on specimens which had been tested in an accelerated atmospheric corrosion test. The samples were subjected to 208 wet and dry cycles in an exposure cabinet (26 days) with an artificial acid rain solution. Subsequently, the local impedance response of 50.3 mm2 areas

I Dehri; R. L Howard; S. B Lyon

1999-01-01

362

INTESPACE's new thermal-vacuum test facility: SIMMER  

NASA Technical Reports Server (NTRS)

The development of an European satellite market over the last 10 years, the industrialization of space applications, and the new requirements from satellite prime contractors have led INTESPACE to increase the test center's environmental testing capacities through the addition of a new thermal-vacuum test facility of impressive dimensions referred to as the SIMMER. The SIMMER is a simulator specifically created for the purpose of conducting acceptance tests of satellites and of large structures of the double launching ARIANE IV or half ARIANE V classes. The chamber is 8.3 meters long with a diameter of 10 meters. The conceptual design of a chamber in the horizontal plane and at floor level is in a view to simplify test preparation and to permit final electrical checks of the spacecraft in its actual test configuration prior to the closing of the chamber. The characteristics of the SIMMER complies with the requirements being currently defined in terms of thermal-vacuum tests: (1) thermal regulation (temperatures cycling between 100 K and 360 K); (2) clean vacuum (10(exp -6) mbar); (3) 600 measurement channels; and (4) 100 000 cleanliness class. The SIMMER is located in INTESPACE's space vehicle test complex in which a large variety of environmental test facilities are made available for having a whole test program completed under one and a same roof.

Duprat, Raymond; Mouton, Andre

1992-01-01

363

INTESPACE's new thermal-vacuum test facility: SIMMER  

NASA Astrophysics Data System (ADS)

The development of an European satellite market over the last 10 years, the industrialization of space applications, and the new requirements from satellite prime contractors have led INTESPACE to increase the test center's environmental testing capacities through the addition of a new thermal-vacuum test facility of impressive dimensions referred to as the SIMMER. The SIMMER is a simulator specifically created for the purpose of conducting acceptance tests of satellites and of large structures of the double launching ARIANE IV or half ARIANE V classes. The chamber is 8.3 meters long with a diameter of 10 meters. The conceptual design of a chamber in the horizontal plane and at floor level is in a view to simplify test preparation and to permit final electrical checks of the spacecraft in its actual test configuration prior to the closing of the chamber. The characteristics of the SIMMER complies with the requirements being currently defined in terms of thermal-vacuum tests: (1) thermal regulation (temperatures cycling between 100 K and 360 K); (2) clean vacuum (10(exp -6) mbar); (3) 600 measurement channels; and (4) 100 000 cleanliness class. The SIMMER is located in INTESPACE's space vehicle test complex in which a large variety of environmental test facilities are made available for having a whole test program completed under one and a same roof.

Duprat, Raymond; Mouton, Andre

1992-11-01

364

Software Manages Documentation in a Large Test Facility  

NASA Technical Reports Server (NTRS)

The 3MCS computer program assists and instrumentation engineer in performing the 3 essential functions of design, documentation, and configuration management of measurement and control systems in a large test facility. Services provided by 3MCS are acceptance of input from multiple engineers and technicians working at multiple locations;standardization of drawings;automated cross-referencing; identification of errors;listing of components and resources; downloading of test settings; and provision of information to customers.

Gurneck, Joseph M.

2001-01-01

365

The Sandia Plasma Materials Test Facility in 2007  

Microsoft Academic Search

The Plasma Materials Test Facility, in its third decade of operation at Sandia National Laboratories, upgraded the 30-kW system to 60kW (EB60) with a new gun, grid control and power supply. In 2007 we are testing mockups in EB60 to assess processes for joining Be to CuCrZr and CuCrZr to 316LN-IG for the fabrication of US first wall (FW) panels

J. M. McDonald; T. J. Lutz; D. L. Youchison; F. J. Bauer; K. P. Troncosa; R. E. Nygren

2008-01-01

366

RADIATION EFFECTS RESEARCH AND TEST FACILITIES AT THE INDIANA UNIVERSITY CYCLOTRON FACILITY  

Microsoft Academic Search

Two nearly identical beam line end stations and a dedicated counting room have been installed and fully instrumented at the Indiana University Cyclotron Facility (IUCF) for the performance of radiation effects tests and studies with high energy protons (up to 200 MeV) on semiconductor and other micro- and opto-electronic devices to be used in space and other radiation environments. These

K. M. Murray

367

Power Burst Facility (PBF) severe fuel damage test 1-4 test results report  

Microsoft Academic Search

A comprehensive evaluation of the Severe Fuel Damage (SFD) Test 1-4 performed in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory is presented. Test SFD 1-4 was the fourth and final test in an internationally sponsored light water reactor severe accident research program, initiated by the US Nuclear Regulatory Commission. The overall technical objective of the test

D. A. Petti; Z. R. Martinson; R. R. Hobbins; C. M. Allison; E. R. Carlson; D. L. Hagrman; T. C. Cheng; J. K. Hartwell; K. Vinjamuri; L. J. Seifken

1989-01-01

368

PBF (Power Burst Facility) severe fuel damage test 1--3 test results report  

Microsoft Academic Search

A comprehensive evaluation of the Severe Fuel Damage (SFD) Test 1--3 performed in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory is presented. Test SFD 1--3 was the third test in an internationally sponsored light water reactor severe accident research program, initiated by the US Nuclear Regulatory Commission. The overall technical objective of the test was to

Z. R. Martinson; M. Gasparini; R. R. Hobbins; D. A. Petti; C. M. Allison; J. K. Hohorst; D. L. Hagrman; K. Vinjamuri

1989-01-01

369

CLOSEOUT REPORT FOR HYBRID SULFUR PRESSURIZED BUTTON CELL TEST FACILITY  

SciTech Connect

This document is the Close-Out Report for design and partial fabrication of the Pressurized Button Cell Test Facility at Savannah River National Laboratory (SRNL). This facility was planned to help develop the sulfur dioxide depolarized electrolyzer (SDE) that is a key component of the Hybrid Sulfur Cycle for generating hydrogen. The purpose of this report is to provide as much information as possible in case the decision is made to resume research. This report satisfies DOE Milestone M3GSR10VH030107.0. The HyS Cycle is a hybrid thermochemical cycle that may be used in conjunction with advanced nuclear reactors or centralized solar receivers to produce hydrogen by watersplitting. The HyS Cycle utilizes the high temperature (>800 C) thermal decomposition of sulfuric acid to produce oxygen and regenerate sulfur dioxide. The unique aspect of HyS is the generation of hydrogen in a water electrolyzer that is operated under conditions where dissolved sulfur dioxide depolarizes the anodic reaction, resulting in substantial voltage reduction. Low cell voltage is essential for both high thermodynamic efficiency and low hydrogen cost. Sulfur dioxide is oxidized at the anode, producing sulfuric acid that is sent to the high temperature acid decomposition portion of the cycle. Sulfur dioxide from the decomposer is cycled back to electrolyzers. The electrolyzer cell uses the membrane electrode assembly (MEA) concept. Anode and cathode are formed by spraying a catalyst, typically platinized carbon, on both sides of a Proton Exchange Membrane (PEM). SRNL has been testing SDEs for several years including an atmospheric pressure Button Cell electrolyzer (2 cm{sup 2} active area) and an elevated temperature/pressure Single Cell electrolyzer (54.8 cm{sup 2} active area). SRNL tested 37 MEAs in the Single Cell electrolyzer facility from June 2005 until June 2009, when funding was discontinued. An important result of the final months of testing was the development of a method that prevents the formation of a sulfur layer previously observed in MEAs used in the Hybrid Sulfur Cycle electrolyzer. This result is very important because the sulfur layer increased cell voltage and eventually destroyed the MEA that is the heart of the cell. Steimke and Steeper [2005, 2006, 2007, 2008] reported on testing in the Single Cell Electrolyzer test facility in several periodic reports. Steimke et. al [2010] issued a final facility close-out report summarizing all the testing in the Single Cell Electrolyzer test facility. During early tests, significant deterioration of the membrane occurred in 10 hours or less; the latest tests ran for at least 200 hours with no sign of deterioration. Ironically, the success with the Single Cell electrolyzer meant that it became dedicated to long runs and not available for quick membrane evaluations. Early in this research period, the ambient pressure Button Cell Electrolyzer test facility was constructed to quickly evaluate membrane materials. Its small size allowed testing of newly developed membranes that typically were not available in sizes large enough to test in the Single Cell electrolyzer. The most promising membranes were tested in the Single Cell Electrolyzer as soon as sufficient large membranes could be obtained. However, since the concentration of SO{sub 2} gas in sulfuric acid decreases rapidly with increasing temperature, the ambient pressure Button Cell was no longer able to achieve the operating conditions needed to evaluate the newer improved high temperature membranes. Significantly higher pressure operation was required to force SO{sub 2} into the sulfuric acid to obtain meaningful concentrations at increased temperatures. A high pressure (200 psig), high temperature (120 C) Button Cell was designed and partially fabricated just before funding was discontinued in June 2009. SRNL completed the majority of the design of the test facility, including preparation of a process and instrument drawing (P&ID) and preliminary designs for the major components. SRNL intended to complete the designs and procu

Steeper, T.

2010-09-15

370

Advanced Test Reactor National Scientific User Facility Partnerships  

SciTech Connect

In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin-Madison; (8) Illinois Institute of Technology (IIT) Materials Research Collaborative Access Team (MRCAT) beamline at Argonne National Laboratory's Advanced Photon Source; and (9) Nanoindenter in the University of California at Berkeley (UCB) Nuclear Engineering laboratory Materials have been analyzed for ATR NSUF users at the Advanced Photon Source at the MRCAT beam, the NIST Center for Neutron Research in Gaithersburg, MD, the Los Alamos Neutron Science Center, and the SHaRE user facility at Oak Ridge National Laboratory (ORNL). Additionally, ORNL has been accepted as a partner facility to enable ATR NSUF users to access the facilities at the High Flux Isotope Reactor and related facilities.

Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

2012-03-01

371

The ECVAM International Validation Study on In Vitro Tests for Skin Corrosivity. 2. Results and Evaluation by the Management Team.  

PubMed

As a follow-up to a prevalidation study on in vitro tests for replacing the in vivo rabbit test for skin corrosivity, an international validation study was conducted during 1996 and 1997 under the auspices of ECVAM. The main objectives of the study were to: (a) identify tests capable of discriminating corrosives from non-corrosives for selected types of chemicals and/or all chemicals; and (b) determine whether these tests could identify correctly known R35 (UN packing group I) and R34 (UN packing groups II & III) chemicals. The tests evaluated were the rat skin transcutaneous electrical resistance (TER) assay, CORROSITEX(TM), the Skin(2TM) ZK1350 corrosivity test and EPISKIN(TM). Each test was conducted in three independent laboratories. 60 coded chemicals were tested. All of the tests evaluated showed acceptable intralaboratory and interlaboratory reproducibilities, and the TER, Skin(2) and EPISKIN tests proved applicable to testing a diverse group of chemicals of different physical forms, including organic acids, organic bases, neutral organics, inorganic acids, inorganic bases, inorganic salts, electrophiles, phenols and soaps/surfactants. Two of the four tests evaluated, the TER assay and EPISKIN, met the criteria agreed by the Management Team concerning acceptable underprediction and overprediction rates for them to be considered scientifically validated for use as replacements for the animal test for distinguishing between corrosive and non-corrosive chemicals for all of the chemical types studied [objective (a)]. EPISKIN was the only test able to distinguish between known R35 (UN packing group I) and R34 (UN packing groups II & III) chemicals, for all of the chemical types included, on an acceptable number of occasions [objective (b)]. The corrosive potentials of about 40% of the test chemicals could not be assessed with CORROSITEX, and the assay did not meet all of the criteria for it to be considered acceptable as a replacement test. However, CORROSITEX may be valid for testing specific classes of chemicals, such as organic bases and inorganic acids. The Skin(2) assay did not meet the criteria for it to be considered scientifically validated. Thus, the validities of (i) the TER and EPISKIN assays for discriminating corrosives from non-corrosives, and (ii) the EPISKIN assay for identifying correctly known R35/I and R34/II & III chemicals, have been demonstrated in this study. CORROSITEX appears to be valid when used only with certain types of chemicals. PMID:20654431

Fentem, J H; Archer, G E; Balls, M; Botham, P A; Curren, R D; Earl, L K; Esdaile, D J; Holzhütter, H G; Liebsch, M

1998-08-01

372

Runway Incursion Prevention System Testing at the Wallops Flight Facility  

NASA Technical Reports Server (NTRS)

A Runway Incursion Prevention System (RIPS) integrated with a Synthetic Vision System concept (SVS) was tested at the Reno/Tahoe International Airport (RNO) and Wallops Flight Facility (WAL) in the summer of 2004. RIPS provides enhanced surface situational awareness and alerts of runway conflicts in order to prevent runway incidents while also improving operational capability. A series of test runs was conducted using a Gulfstream-V (G-V) aircraft as the test platform and a NASA test aircraft and a NASA test van as incurring traffic. The purpose of the study, from the RIPS perspective, was to evaluate the RIPS airborne incursion detection algorithms and associated alerting and airport surface display concepts, focusing on crossing runway incursion scenarios. This paper gives an overview of the RIPS, WAL flight test activities, and WAL test results.

Jones, Denise R.

2005-01-01

373

The Accelerator Test Facility at Brookhaven: Main capabilities  

NASA Astrophysics Data System (ADS)

Brookhaven National Laboratory's (BNL's) Accelerator Test Facility (ATF) is a user facility for accelerator- and beam- physics. Researchers from national and foreign universities, the DOE's national laboratories, and small businesses can carry out their experiments here, thereby relieving their institutions and companies from the large investment in accelerators, lasers, control and diagnostic equipment, and trained accelerator operators, all of which BNL's ATF offers. The main emphasis of this paper is on the capabilities of the ATF that I illustrate by discussing a few experiments. More detailed information can be obtained from the ATF web site: http://www.bnl.gov/atf.

Yakimenko, Vitaly

2004-12-01

374

TESTING VAPOR SPACE AND LIQUID-AIR INTERFACE CORROSION IN SIMULATED ENVIRONMENTS OF HANFORD DOUBLE-SHELLED TANKS  

SciTech Connect

Electrochemical coupon testing were performed on 6 Hanford tank solution simulants and corresponding condensate simulants to evaluate the susceptibility of vapor space and liquid/air interface corrosion. Additionally, partial-immersion coupon testing were performed on the 6 tank solution simulants to compliment the accelerated electrochemical testing. Overall, the testing suggests that the SY-102 high nitrate solution is the most aggressive of the six solution simulants evaluated. Alternatively, the most passive solution, based on both electrochemical testing and coupon testing, was AY-102 solution. The presence of ammonium nitrate in the simulants at the lowest concentration tested (0.001 M) had no significant effect. At higher concentrations (0.5 M), ammonium nitrate appears to deter localized corrosion, suggesting a beneficial effect of the presence of the ammonium ion. The results of this research suggest that there is a threshold concentration of ammonium ions leading to inhibition of corrosion, thereby suggesting the need for further experimentation to identify the threshold.

Hoffman, E.

2013-05-30

375

East Mesa geothermal pump test facility (EMPTF). Final report  

SciTech Connect

Barber-Nichols has completed the design, fabrication and installation of a geothermal pump test facility at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment. The facility consists of a skid-mounted brine control module, a 160 foot below ground test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility to attract the largest number of potential users. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

Olander, R.G.; Roberts, G.K.

1984-11-28

376

East Mesa geothermal pump test facility (EMPTF). Final report  

SciTech Connect

The design, fabrication and installation of a geothermal pump test facility (EMPFT) at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment were completed. The facility consists of a skid-mounted brine control module, a 160 foot below test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

Olander, R.G.; Roberts, G.K.

1984-11-28

377

Marshall Space Flight Center's Impact Testing Facility Capabilities  

NASA Technical Reports Server (NTRS)

Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

Finchum, Andy; Hubbs, Whitney; Evans, Steve

2008-01-01

378

Vibrational Stability of SRF Accelerator Test Facility at Fermilab  

SciTech Connect

Recently developed, the Superconducting Radio Frequency (SRF) Accelerator Test Facilities at Fermilab support the International Linear Collider (ILC), High Intensity Neutrino Source (HINS), a new high intensity injector (Project X) and other future machines. These facilities; Meson Detector Building (MDB) and New Muon Lab (NML) have very different foundations, structures, relative elevations with respect to grade level and surrounding soil composition. Also, there are differences in the operating equipment and their proximity to the primary machine. All the future machines have stringent operational stability requirements. The present study examines both near-field and ambient vibration in order to develop an understanding of the potential contribution of near-field sources (e.g. compressors, ultra-high and standard vacuum equipment, klystrons, modulators, utility fans and pumps) and distant noise sources to the overall system displacements. Facility vibration measurement results and methods of possible isolation from noise sources are presented and discussed.

McGee, M.W.; Volk, J.T.; /Fermilab

2009-05-01

379

Fast Flux Test Facility Asbestos Location Tracking Program  

SciTech Connect

Procedure Number HNF-PRO-408, revision 0, paragraph 1.0, ''Purpose,'' and paragraph 2.0, ''Requirements for Facility Management of Asbestos,'' relate building inspection and requirements for documentation of existing asbestos-containing building material (ACBM) per each building assessment. This documentation shall be available to all personnel (including contractor personnel) entering the facility at their request. Corrective action was required by 400 Area Integrated Annual Appraisal/Audit for Fiscal Year 1992 (IAA-92-0007) to provide this notification documentation. No formal method had been developed to communicate the location and nature of ACBM to maintenance personnel in the Fast Flux Test Facility (FFTF) 400 Area. The scope of this Data Package Document is to locate and evaluate any ACBM found at FFTF which constitutes a baseline. This includes all buildings within the protected area. These findings are compiled from earlier reports, numerous work packages and engineering evaluations of employee findings.

REYNOLDS, J.A.

1999-04-13

380

Development of an outdoor test facility for wind convectors  

SciTech Connect

This paper deals with measurement of heat transfer performance of wind convectors, an alternative air source evaporator system for heat pumps. An automatically controlled and monitored outdoor wind convector test facility that is capable of measuring heat transfer rates and overall heat-transfer coefficients to with {plus minus}5 percent measurement uncertainty for up to three wind convectors has been designed, built, and tested. Data on air temperature and humidity, solar radiation, and wind speed and direction are simultaneously collected. The choice of measurement technique for each variable and an error analysis for each sensor is discussed. Typical graphical test results are presented.

Monaghan, P.F.; Finn, D.P. (Dept. of Mechanical Engineering, Univ. College, Galway (GB)); Oosthuizen, P.H. (Queen's Univ., Kingston, ON (Canada). Dept. of Mechanical Engineering)

1990-11-01

381

Overview of NASA White Sands Test Facility Composite Overwrapped Pressure Vessel Testing  

NASA Technical Reports Server (NTRS)

This viewgraph presentation examines the White Sands Test Facility testing of Composite overwrapped pressure vessel (COPV). A COPV is typically a metallic liner overwrapped with a fiber epoxy matrix. There is a weight advantage over the traditional all metal design. The presentation shows pictures of the facilities at White Sands, and then examines some of the testing performed. The tests include fluids compatibility, and Kevlar COPV. Data for the Kevlar tests are given, and an analysis is reviewed. There is also a comparison between Carbon COPVs and the Kevlar COPVs.

Greene, Nathanael; Saulsberry, Regor; Thesken, John; Phoenix, Leigh

2006-01-01

382

Groundwater Remediation and Alternate Energy at White Sands Test Facility  

NASA Technical Reports Server (NTRS)

White Sands Test Facility Core Capabilities: a) Remote Hazardous Testing of Reactive, Explosive, and Toxic Materials and Fluids; b) Hypergolic Fluids Materials and Systems Testing; c) Oxygen Materials and System Testing; d) Hypervelocity Impact Testing; e)Flight Hardware Processing; and e) Propulsion Testing. There is no impact to any drinking water well. Includes public wells and the NASA supply well. There is no public exposure. Groundwater is several hundred feet below ground. No air or surface water exposure. Plume is moving very slowly to the west. Plume Front Treatment system will stop this westward movement. NASA performs on-going monitoring. More than 200 wells and zones are routinely sampled. Approx. 850 samples are obtained monthly and analyzed for over 300 different hazardous chemicals.

Fischer, Holger

2008-01-01

383

Environmental Control and Life Support Systems Test Facility at MSFC  

NASA Technical Reports Server (NTRS)

The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. In this photograph, the life test area on the left of the MSFC ECLSS test facility is where various subsystems and components are tested to determine how long they can operate without failing and to identify components needing improvement. Equipment tested here includes the Carbon Dioxide Removal Assembly (CDRA), the Urine Processing Assembly (UPA), the mass spectrometer filament assemblies and sample pumps for the Major Constituent Analyzer (MCA). The Internal Thermal Control System (ITCS) simulator facility (in the module in the right) duplicates the function and operation of the ITCS in the ISS U.S. Laboratory Module, Destiny. This facility provides support for Destiny, including troubleshooting problems related to the ITCS.

2001-01-01

384

Cryosorption Pumps for a Neutral Beam Injector Test Facility  

SciTech Connect

We present the experiences of the manufacturing and the operating of a system of two identical cryosorption pumps used in a neutral beam injector test facility for fusion reactors. Calculated and measured heat loads of the cryogenic liquid helium and liquid nitrogen circuits of the cryosorption pumps are discussed. The design calculations concerning the thermo-hydraulics of the helium circuit are compared with experiences from the operation of the cryosorption pumps. Both cryopumps are integrated in a test facility of a neutral beam injector that will be used to heat the plasma of a nuclear fusion reactor with a beam of deuterium or hydrogen molecules. The huge gas throughput into the vessel of the test facility results in challenging needs on the cryopumping system.The developed cryosorption pumps are foreseen to pump a hydrogen throughput of 20 - 30 mbar{center_dot}l/s. To establish a mean pressure of several 10-5 mbar in the test vessel a pumping speed of about 350 m3/s per pump is needed. The pressure conditions must be maintained over several hours pumping without regeneration of the cryopanels, which necessitates a very high pumping capacity. A possibility to fulfill these requirements is the use of charcoal coated cryopanels to pump the gasloads by adsorption. For the cooling of the cryopanels, liquid helium at saturation pressure is used and therefore a two-phase forced flow in the cryopump system must be controlled.

Dremel, M.; Mack, A.; Day, C.; Jensen, H. [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, 76021 Karlsruhe (Germany)

2006-04-27

385

OPSys: optical payload systems facility for testing space coronagraphs  

NASA Astrophysics Data System (ADS)

The Turin Astronomical Observatory, Italy, has implemented in ALTEC, Turin, a new Optical Payload Systems (OPSys) facility for testing of contamination sensitive optical space flight instrumentation. The facility is specially tailored for tests on solar instruments like coronagraphs. OPSys comprises an ISO 7 clean room for instrument assembly and a relatively large (4.4 m3) optical test and calibration vacuum chamber: the Space Optics Calibration Chamber (SPOCC). SPOCC consists of a test section with a vacuum-compatible motorized optical bench, and of a pipeline section with a sun simulator at the opposite end of the optical bench hosting the instrumentation under tests. The solar simulator is an off-axis parabolic mirror collimating the light from the source with the solar angular divergence. After vacuum conditioning, the chamber will operate at an ultimate pressure of 10-6 mbar. This work describes the SPOCC's vacuum system and optical design, and the post-flight stray-light tests to be carried out on the Sounding-rocket Experiment (SCORE). This sub-orbital solar coronagraph is the prototype of the METIS coronagraph for the ESA Solar Orbital mission whose closest perihelion is one-third of the Sun-Earth distance. The plans are outlined for testing METIS in the SPOCC simulating the observing conditions from the Solar Orbiter perihelion.

Fineschi, S.; Crescenzio, G.; Massone, G.; Capobianco, G.; Zangrilli, L.; Antonucci, E.; Anselmi, F.

2011-10-01

386

Gas Test Loop Facilities Alternatives Assessment Report Rev 1  

SciTech Connect

An important task in the Gas Test Loop (GTL) conceptual design was to determine the best facility to serve as host for this apparatus, which will allow fast-flux neutron testing in an existing nuclear facility. A survey was undertaken of domestic and foreign nuclear reactors and accelerator facilities to arrive at that determination. Two major research reactors in the U.S. were considered in detail, the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR), each with sufficient power to attain the required neutron fluxes. HFIR routinely operates near its design power limit of 100 MW. ATR has traditionally operated at less than half its design power limit of 250 MW. Both of these reactors should be available for at least the next 30 years. The other major U.S. research reactor, the Missouri University Research Reactor, does not have sufficient power to reach the required neutron flux nor do the smaller research reactors. Of the foreign reactors investigated, BOR-60 is perhaps the most attractive. Monju and BN 600 are power reactors for their respective electrical grids. Although the Joyo reactor is vigorously campaigning for customers, local laws regarding transport of radioactive material mean it would be very difficult to retrieve test articles from either Japanese reactor for post irradiation examination. PHENIX is scheduled to close in 2008 and is fully booked until then. FBTR is limited to domestic (Indian) users only. Data quality is often suspect in Russia. The only accelerator seriously considered was the Fuel and Material Test Station (FMTS) currently proposed for operation at Los Alamos National Laboratory. The neutron spectrum in FMTS is similar to that found in a fast reactor, but it has a pronounced high-energy tail that is atypical of fast fission reactor spectra. First irradiation in the FMTS is being contemplated for 2008. Detailed review of these facilities resulted in the recommendation that the ATR would be the best host for the GTL.

William J. Skerjanc; William F. Skerjanc

2005-07-01

387

LPT. Shield test facility test building interior (TAN646). Camera points ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

LPT. Shield test facility test building interior (TAN-646). Camera points down into interior of north pool. Equipment on wall is electronical bus used for post-1970 experiment. Personnel ladder at right. INEEL negative no. HD-40-9-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

388

Midtemperature Solar Systems Test Facility (MSSTF) project test results: Phase 4A MSSTF system operation  

Microsoft Academic Search

The results of testing the Department of Energy's Midtemperature Solar Systems Test Facility (MSSTF) at Sandia Laboratories, Albuquerque, New Mexico are summarized. The system is a dispersed power system that collects solar energy and supplies both the electrical and thermal energy demands of a representative load. Testing was done between July 1976 and March 1978. The Phase IVA MSSTF studied

T. D. Harrison; W. H. McCulloch

1978-01-01

389

Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey  

SciTech Connect

This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available.

Ware, A.G.; Longhurst, G.R.

1981-12-01

390

Full-scale thrust reverser testing in an altitude facility  

NASA Technical Reports Server (NTRS)

A two-dimensional convergent-divergent exhaust nozzle designed and fabricated by Pratt and Whitney Aircraft was installed on a PW1128 turbofan engine and tested during thrust reverser operation in an altitude facility at NASA Lewis Research Center. A unique collection system was used to capture the thrust reverser exhaust gas and transport it to the primary exhaust collector. Tests were conducted at three flight conditions with varying amounts of thrust reverse at each condition. Some reverser exhaust gas spillage by the collection system was encountered but engine performance was unaffected at all flight conditions tested. Based on the results of this test program, the feasibility of altitude testing of advanced multi-function exhaust nozzle systems has been demonstrated.

Mehalic, Charles M.; Lottig, Roy A.

1987-01-01

391

Long Duration Exposure Facility (LDEF) structural verification test report  

NASA Technical Reports Server (NTRS)

Structural load tests on the Long Duration Exposure Facility's (LDEF) primary structure were conducted. These tests had three purposes: (1) demonstrate structural adequacy of the assembled LDEF primary structure when subjected to anticipated flight loads; (2) verify analytical models and methods used in loads and stress analysis; and (3) perform tests to comply with the Space Transportation System (STS) requirements. Test loads were based on predicted limit loads which consider all flight events. Good agreement is shown between predicted and observed load, strain, and deflection data. Test data show that the LDEF structure was subjected to 1.2 times limit load to meet the STS requirements. The structural adequacy of the LDEF is demonstrated.

Jones, T. C.; Lucy, M. H.; Shearer, R. L.

1983-01-01

392

X-29 High Alpha Test in the National Transonic Facility  

NASA Technical Reports Server (NTRS)

This paper describes the X-29A research program at the National Transonic Facility. This wind tunnel test leveraged the X-29A high alpha flight test program by enabling ground-to-flight correlation studies with an emphasis on Reynolds number effects. The background and objectives of this test program, as well as the comparison of high Reynolds number wind tunnel data to X-29A flight test data are presented. The effects of Reynolds number on the forebody pressures at high angles of attack are also presented. The purpose of this paper is to document this test and serve as a reference for future ground-to-flight correlation studies, and high angle-of-attack investigations. Good ground-to-flight correlations were observed for angles of attack up to 50 deg, and Reynolds number effects were also observed.

Underwood, Pamela J.; Owens, Lewis R.; Wahls, Richard A.; Williams, Susan

2003-01-01

393

Status of Centralized Environmental Creep Testing Facility Preparation and Upgrade  

SciTech Connect

Because the ASME Codes do not cover environmental issues that are crucial in the design and construction of VHTR system, investigation of long-term impure helium effects on metallurgical stability and properties becomes very important. The present report describes the development of centralized environmental creep testing facility, its close collaborations with the experiments in low velocity helium recirculation loop, important lessons learned, upgrades in system design in FY06, and current status of the development.

Ren, Weiju [ORNL; Battiste, Rick [ORNL

2006-10-01

394

Service & Reliability Equipment & Facilities  

E-print Network

stake test (Formosan termites & decay), E9 L- joint, E16 (horizontal lap-joint), E18 ground proximity (decay), E21 inte- rior applications, E26 ground prox- imity (termites) E29 anti-sapstain. Laboratory facilities for AWPA test: A9 X-ray, E1 (termites), E10 (soil block), E11 (leaching), E12 metal corrosion

395

Hospital waste shredder test series at the DONLEE Pilot Test Facility. Final report  

SciTech Connect

This report describes the coal firing and coal and noninfectious hospital waste co-firing testing and emissions rates for the tests conducted at the DONLEE pilot plant facility during mid-December 1991 through early March 1992. The emissions obtained during these tests are in turn used to predict the emission rates for the proof-of-concept facility that is to be built at the Lebanon Veterans Affairs Medical Center. In addition, the reliability and performance of the waste shredding/feeding system were evaluated from this testing.

Not Available

1992-09-01

396

Hospital waste shredder test series at the DONLEE Pilot Test Facility  

SciTech Connect

This report describes the coal firing and coal and noninfectious hospital waste co-firing testing and emissions rates for the tests conducted at the DONLEE pilot plant facility during mid-December 1991 through early March 1992. The emissions obtained during these tests are in turn used to predict the emission rates for the proof-of-concept facility that is to be built at the Lebanon Veterans Affairs Medical Center. In addition, the reliability and performance of the waste shredding/feeding system were evaluated from this testing.

Not Available

1992-09-01

397

A Framework for Intelligent Rocket Test Facilities with Smart Sensors  

NASA Technical Reports Server (NTRS)

A long-term center goal at the John C. Stennis Space Center (SSC) is the formulation and implementation of a framework for an Intelligent Rocket Test Facility (IRTF), which incorporates distributed smart sensor elements. The IRTF is to provide reliable, high-confident measurements. Specific objectives include: 1. Definition of a framework and architecture that supports implementation of highly autonomous methodologies founded on basic physical principles and embedded knowledge. 2. Modeling of autonomous sensors and processes as self-sufficient, evolutionary elements. 3. Development of appropriate communications protocols to enable the complex interactions that must take place to allow timely and high-quality flow of of information among all the autonomous elements of the system. 4. Development of lab-scale prototypes of key system elements. Though our application is next-generation rocket test facilities, applications for the approach are much wider and include monitoring of shuttle launch operations, air and spacecraft operations and health monitoring, and other large-scale industrial system operations such as found in processing and manufacturing plans. Elements of prototype IRTF have been implemented in preparation for advanced development and validation using rocket test stand facilities as SSC. This work has identified issues that are important to further development of complex network and should be of interest to other working with sensor networks.

Figueroa, Fernando; Solano, Wanda; Morris, Jon; Mandayam, Shreekanth; Polikar, Robi

2003-01-01

398

Design for the National RF Test Facility at ORNL  

SciTech Connect

Conceptual and preliminary engineering design for the National RF Test Facility at Oak Ridge National Laboratory (ORNL) has been completed. The facility will comprise a single mirror configuration embodying two superconducting development coils from the ELMO Bumpy Torus Proof-of-Principle (EBT-P) program on either side of a cavity designed for full-scale antenna testing. The coils are capable of generating a 1.2-T field at the axial midpoint between the coils separated by 1.0 m. The vacuum vessel will be a stainless steel, water-cooled structure having an 85-cm-radius central cavity. The facility will have the use of a number of continuous wave (cw), radio-frequency (rf) sources at levels including 600 kW at 80 MHz and 100 kW at 28 GHz. Several plasma sources will provide a wide range of plasma environments, including densities as high as approx. 5 x 10/sup 13/ cm/sup -3/ and temperatures on the order of approx. 10 eV. Furthermore, a wide range of diagnostics will be available to the experimenter for accurate appraisal of rf testing.

Gardner, W.L.; Hoffman, D.J.; Becraft, W.R.; Blue, C.W.; Combs, S.K.; Dagenhart, W.K.; Haselton, H.H.; Hayes, P.H.; Moeller, J.A.; Owen, L.W.

1983-01-01

399

The Advanced Test Reactor Irradiation Facilities and Capabilities  

SciTech Connect

The Advanced Test Reactor (ATR) is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These different capabilities include passive sealed capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. The ATR has enhanced capabilities in experiment monitoring and control systems for instrumented and/or temperature controlled experiments. The control systems utilize feedback from thermocouples in the experiment to provide a custom blended flowing inert gas mixture to control the temperature in the experiments. Monitoring systems have also been utilized on the exhaust gas lines from the experiment to monitor different parameters, such as fission gases for fuel experiments, during irradiation. ATR’s unique control system provides axial flux profiles in the experiments, unperturbed by axially positioned control components, throughout each reactor operating cycle and over the duration of test programs requiring many years of irradiation. The ATR irradiation positions vary in diameter from 1.6 cm (0.625 inches) to 12.7 cm (5.0 inches) over an active core length of 122 cm (48.0 inches). Thermal and fast neutron fluxes can be adjusted radially across the core depending on the needs of individual test programs. This paper will discuss the different irradiation capabilities available and the cost/benefit issues related to each capability. Examples of different experiments will also be discussed to demonstrate the use of the capabilities and facilities at ATR for performing irradiation experiments.

S. Blaine Grover; Raymond V. Furstenau

2007-03-01

400

DESIGN AND OPERATION OF FORCED-CIRCULATION CORROSION TESTING LOOPS WITH MOLTEN SALT  

Microsoft Academic Search

Standardized test facilities were developed and operate for ; investigating the compatibility of structural materials and flowing molten ; fluoride salts. The standard loop accommodates various combinations of ; materials, fluid, flow, rates, and temperature differentials and permits ; fabrication of components in sufficient quantity for cost reduction. The test ; loop consists of a pump, two heated sections, a

J. L. Crowley; W. B. McDonald; D. L. Clark

1963-01-01

401

GENIUS-TF: a test facility for the GENIUS project  

NASA Astrophysics Data System (ADS)

GENIUS is a proposal for a large scale detector of rare events. As a first step of the experiment, a small test version, the Genius Test-Facility will be built at the Laboratori Nazionali del Gran Sasso. With about 40kg of natural Ge detectors operated in liquid nitrogen, GENIUS-TF could exclude (or directly confirm) the DAMA annual modulation seasonal modulation signature within about 2yr of measurement using both, signal and signature of the claimed WIMP Dark Matter. The construction of the experiment has already been started, and four 2.5kg germanium detectors with an extreme low threshold of 500eV have been produced.

Klapdor-Kleingrothaus, H. V.; Baudis, L.; Dietz, A.; Heusser, G.; Krivosheina, I.; Majorovits, B.; Strecker, H.

2002-04-01

402

Characterization of Neutron Test Facilities at Sandia National Laboratories  

NASA Astrophysics Data System (ADS)

The Sandia Pulsed Reactor (SPR-III) and Annular Core Research Reactor (ACRR), with a variety of test environments, have been used for many years at Sandia National Laboratories (SNL) for radiation effects testing. Dosimetry has played a crucial role in their operation and characterization, and neutron energy spectral determinations have advanced as progress was made in the available nuclear data and spectrum adjustment techniques. This paper presents a historical perspective of the neutron energy spectra for several environments and their impact on several integral parameters of particular interest to facility users.

Vehar, D. W.; Griffin, P. J.; King, D. B.; Depriest, K. R.; Williams, J. G.

2009-08-01

403

Design and operation of an outdoor microalgae test facility  

SciTech Connect

The objective of the project covered in this report is to establish and operate a facility in the American Southwest to test the concept of producing microalgae on a large scale. This microalgae would then be used as a feedstock for producing liquid fuels. The site chosen for this project was an existing water research station in Roswell, New Mexico; the climate and water resources are representative of those in the Southwest. For this project, researchers tested specific designs, modes of operation, and strains of microalgae; proposed and evaluated modifications to technological concepts; and assessed the progress toward meeting cost objectives.

Weissman, J.C.; Tillett, D.M.; Goebel, R.P. (Microbial Products, Inc., Vacaville, CA (USA))

1989-10-01

404

DOE standard: Filter test facility quality program plan  

SciTech Connect

This standard was developed primarily for application in US Department of Energy programs. It contains specific direction for HEPA filter testing performed at a DOE-accepted HEPA Filter Test Facility (FTF). Beneficial comments (recommendations, additions, deletions) and any pertinent data that may improve this document should be sent to the Office of Nuclear Safety Policy and Standards (EH-31), US Department of Energy, Washington, DC 20585, by letter or by using the self-addressed Document Improvement Proposal form (DOE F 1300.3) appearing at the end of this document.

NONE

1999-02-01

405

Accelerated corrosion tests for protective properties of aluminum and zinc coatings  

Microsoft Academic Search

We perform accelerated corrosion tests of aluminum-zinc coatings according to the B-117 ASTM standard in the following three\\u000a modes: (1) CCT mode, which includes drying at 60C for 4h, holding at a relative humidity of 100% for 2h, and salt spraying\\u000a (pH=6.8–7.2) at 35C for 2h; (2) AAR mode, which includes drying at 60C and a relative humidity of 20–30%

L. Kwiatkowski; J. Kwiecie?; T. Szustkiewicz

1996-01-01

406

Radiation shielding for the Fermilab Vertical Cavity Test Facility  

SciTech Connect

The results of radiation shielding studies for the vertical test cryostat VTS1 at Fermilab performed with the codes FISHPACT and MARS15 are presented and discussed. The analysis is focused on operations with two RF cavities in the cryostat. The vertical cavity test facility (VCTF) for superconducting RF cavities in Industrial Building 1 at Fermilab has been in operation since 2007. The facility currently consists of a single vertical test cryostat VTS1. Radiation shielding for VTS1 was designed for operations with single 9-cell 1.3 GHz cavities, and the shielding calculations were performed using a simplified model of field emission as the radiation source. The operations are proposed to be extended in such a way that two RF cavities will be in VTS1 at a time, one above the other, with tests for each cavity performed sequentially. In such a case the radiation emitted during the tests from the lower cavity can, in part, bypass the initially designed shielding which can lead to a higher dose in the building. Space for additional shielding, either internal or external to VTS1, is limited. Therefore, a re-evaluation of the radiation shielding was performed. An essential part of the present analysis is in using realistic models for cavity geometry and spatial, angular and energy distributions of field-emitted electrons inside the cavities. The calculations were performed with the computer codes FISHPACT and MARS15.

Ginsburg, Camille; Rakhno, Igor; /Fermilab

2010-03-01

407

Laboratory testing on welded duplex stainless steel line pipe internal corrosion resistance  

SciTech Connect

Duplex 22% Cr stainless steel (ss) was recommended, at the basic design stage, as the most cost-performing material for intrafield flowlines conveying multiphase sour production from subsea well-heads to production platform. Due to aggressiveness of the production environment [H{sub 2}S partial pressure (pH{sub 2}S) = 14 mbar, CO{sub 2} partial pressure (pCO{sub 2}) = 40 bar, NaCl = 100 g/l, T = 135 C], and partially to the lack of definitive information on the corrosion resistance of welded duplex, some laboratory testing was deemed necessary and performed. The paper presents testing results dealing with localized corrosion and sulfide stress cracking (SSC) resistance of base material and girth-welded seamless tubes 22% Cr duplex, both wrought and centrifugally cast. The last one was considered because of possible procurement difficulties of the first one when required in small quantities and large diameters as in the case of production manifolds. It is concluded that the material can be used in the test environment as girth weld line pipe provided suitable welding technique is adopted.

Condanni, D. [AGIP SpA, Milan (Italy); Barteri, M. [C.S.M., Rome (Italy)

1996-12-01

408

Embracing Safe Ground Test Facility Operations and Maintenance  

NASA Technical Reports Server (NTRS)

Conducting integrated operations and maintenance in wind tunnel ground test facilities requires a balance of meeting due dates, efficient operation, responsiveness to the test customer, data quality, effective maintenance (relating to readiness and reliability), and personnel and facility safety. Safety is non-negotiable, so the balance must be an "and" with other requirements and needs. Pressure to deliver services faster at increasing levels of quality in under-maintained facilities is typical. A challenge for management is to balance the "need for speed" with safety and quality. It s especially important to communicate this balance across the organization - workers, with a desire to perform, can be tempted to cut corners on defined processes to increase speed. Having a lean staff can extend the time required for pre-test preparations, so providing a safe work environment for facility personnel and providing good stewardship for expensive National capabilities can be put at risk by one well-intending person using at-risk behavior. This paper documents a specific, though typical, operational environment and cites management and worker safety initiatives and tools used to provide a safe work environment. Results are presented and clearly show that the work environment is a relatively safe one, though still not good enough to keep from preventing injury. So, the journey to a zero injury work environment - both in measured reality and in the minds of each employee - continues. The intent of this paper is to provide a benchmark for others with operational environments and stimulate additional sharing and discussion on having and keeping a safe work environment.

Dunn, Steven C.; Green, Donald R.

2010-01-01

409

Experimental Validation: Subscale Aircraft Ground Facilities and Integrated Test Capability  

NASA Technical Reports Server (NTRS)

Experimental testing is an important aspect of validating complex integrated safety critical aircraft technologies. The Airborne Subscale Transport Aircraft Research (AirSTAR) Testbed is being developed at NASA Langley to validate technologies under conditions that cannot be flight validated with full-scale vehicles. The AirSTAR capability comprises a series of flying sub-scale models, associated ground-support equipment, and a base research station at NASA Langley. The subscale model capability utilizes a generic 5.5% scaled transport class vehicle known as the Generic Transport Model (GTM). The AirSTAR Ground Facilities encompass the hardware and software infrastructure necessary to provide comprehensive support services for the GTM testbed. The ground facilities support remote piloting of the GTM aircraft, and include all subsystems required for data/video telemetry, experimental flight control algorithm implementation and evaluation, GTM simulation, data recording/archiving, and audio communications. The ground facilities include a self-contained, motorized vehicle serving as a mobile research command/operations center, capable of deployment to remote sites when conducting GTM flight experiments. The ground facilities also include a laboratory based at NASA LaRC providing near identical capabilities as the mobile command/operations center, as well as the capability to receive data/video/audio from, and send data/audio to the mobile command/operations center during GTM flight experiments.

Bailey, Roger M.; Hostetler, Robert W., Jr.; Barnes, Kevin N.; Belcastro, Celeste M.; Belcastro, Christine M.

2005-01-01

410

Marshall Space Flight Center's Impact Testing Facility Capabilities  

NASA Technical Reports Server (NTRS)

Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California, The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a 'National Asset' by the DoD, The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

Evans, Steve; Finchum, Andy; Hubbs, Whitney; Gray, Perry

2008-01-01

411

Marshall Space Flight Center's Impact Testing Facility Capabilities  

NASA Technical Reports Server (NTRS)

Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960% then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas grins, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

Evans, Steve; Finchum, Andy; Hubbs, Whitney

2008-01-01

412

Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms  

SciTech Connect

Irradiation-assisted stress corrosion cracking is a key materials degradation issue in today s nuclear power reactor fleet and affects critical structural components within the reactor core. The effects of increased exposure to irradiation, stress, and/or coolant can substantially increase susceptibility to stress-corrosion cracking of austenitic steels in high-temperature water environments. . Despite 30 years of experience, the underlying mechanisms of IASCC are unknown. Extended service conditions will increase the exposure to irradiation, stress, and corrosive environment for all core internal components. The objective of this effort within the Light Water Reactor Sustainability program is to evaluate the response and mechanisms of IASCC in austenitic stainless steels with single variable experiments. A series of high-value irradiated specimens has been acquired from the past international research programs, providing a valuable opportunity to examine the mechanisms of IASCC. This batch of irradiated specimens has been received and inventoried. In addition, visual examination and sample cleaning has been completed. Microhardness testing has been performed on these specimens. All samples show evidence of hardening, as expected, although the degree of hardening has saturated and no trend with dose is observed. Further, the change in hardening can be converted to changes in mechanical properties. The calculated yield stress is consistent with previous data from light water reactor conditions. In addition, some evidence of changes in deformation mode was identified via examination of the microhardness indents. This analysis may provide further insights into the deformation mode under larger scale tests. Finally, swelling analysis was performed using immersion density methods. Most alloys showed some evidence of swelling, consistent with the expected trends for this class of alloy. The Hf-doped alloy showed densification rather than swelling. This observation may be related to the formation of second-phases under irradiation, although further examination is required

Busby, Jeremy T [ORNL; Gussev, Maxim N [ORNL

2011-04-01

413

Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site  

SciTech Connect

The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated.

Patton, S.E.; Novo, M.G.; Shinn, J.H.

1986-04-01

414

Corrosion behaviour of steel rebars embedded in a concrete designed for the construction of an intermediate-level radioactive waste disposal facility  

NASA Astrophysics Data System (ADS)

The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on an instrumented reinforced concrete prototype specifically designed for this purpose, to study the behaviour of an intermediate level radioactive waste disposal facility from the rebar corrosion point of view. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.

Duffó, G. S.; Arva, E. A.; Schulz, F. M.; Vazquez, D. R.

2013-07-01

415

Report on Electrochemcial Corrosion Testing of 241-SY-102 Grab Samples from the 2012 Grab Sampling Campaign  

SciTech Connect

This report describes the results of the electrochemical testing performed on tank 241-SY-102 (SY-102) grab samples that were collected in support of corrosion mitigation. The objective of the work presented here was to determine corrosion resistance of tank SY-102 to the grab samples collected using electrochemical methods up to 50°C as well as to satisfy data quality objectives. Grab samples were collected at multiple elevations from Riser 003. The electrochemical corrosion testing was planned to consist of linear polarization resistance testing (LPR) and cyclic potentiodynamic polarization (CPP) testing at 50°C. The temperature would be lowered to 40 °C and the test repeated if the CPP curve indicated pitting corrosion at 50°C. Ifno pitting was indicated by the CPP curve, then a duplicate scan would be repeated at 50°C to confirm the first result. The testing would be complete if the duplicate CPP scan was consistent with the first. This report contains the CPP results of the testing of grab sample 2SY-12-03 and 2SY-12-03DUP composite sample tested under these conditions. There was no indication of pitting at 50°C, and the duplicate scan was in agreement with the first scan. Since no further testing was required, a third scan with a shorter rest time was performed and is present in this report.

Wyrwas, Richard B.; Lamothe, Margaret E.

2013-05-30

416

Standard Test Methods for Detecting Susceptibility to Intergranular Corrosion in Wrought, Nickel-Rich, Chromium-Bearing Alloys  

E-print Network

1.1 These test methods cover two tests as follows: 1.1.1 Method A, Ferric Sulfate-Sulfuric Acid Test (Sections 3-10, inclusive)—This test method describes the procedure for conducting the boiling ferric sulfate—50 % sulfuric acid test which measures the susceptibility of certain nickel-rich, chromium-bearing alloys to intergranular corrosion (see Terminology G 15), which may be encountered in certain service environments. The uniform corrosion rate obtained by this test method, which is a function of minor variations in alloy composition, may easily mask the intergranular corrosion components of the overall corrosion rate on alloys N10276, N06022, N06059, and N06455. 1.1.2 Method B, Mixed Acid-Oxidizing Salt Test (Sections 11-18, inclusive)—This test method describes the procedure for conducting a boiling 23 % sulfuric + 1.2 % hydrochloric + 1 % ferric chloride + 1 % cupric chloride test which measures the susceptibility of certain nickel-rich, chromium-bearing alloys to display a step function increa...

American Society for Testing and Materials. Philadelphia

2008-01-01

417

Background field coils for the High Field Test Facility  

SciTech Connect

The High Field Test Facility (HFTF), presently under construction at LLNL, is a set of superconducting coils that will be used to test 1-m-o.d. coils of prototype conductors for fusion magnets in fields up to 12 T. The facility consists of two concentric sets of coils; the outer set is a stack of Nb-Ti solenoids, and the inner set is a pair of solenoids made of cryogenically-stabilized, multifilamentary Nb/sub 3/Sn superconductor, developed for use in mirror-fusion magnets. The HFTF system is designed to be parted along the midplane to allow high-field conductors, under development for Tokamak fusion machines, to be inserted and tested. The background field coils were wound pancake-fashion, with cold-welded joints at both the inner and outer diameters. Turn-to-turn insulation was fabricated at LLNL from epoxy-fiberglass strip. The coils were assembled and tested in our 2-m-diam cryostat to verify their operation.

Zbasnik, J.P.; Cornish, D.N.; Scanlan, R.M.; Jewell, A.M.; Leber, R.L.; Rosdahl, A.R.; Chaplin, M.R.

1980-09-22

418

Consolidated Incineration Facility waste burn test. Final report  

SciTech Connect

The Savannah River Technology Center (SRTC) is Providing technical support for start-up and operation of the Consolidated Incineration Facility. This support program includes a series of pilot incineration tests performed at the Environmental Protection Agency`s (EPA`s) Incineration Research Facility (MF) using surrogate CIF mixed wastes. The objectives for this test program included measuring incinerator offgas particulate loading and size distributions as a function of several operating variables, characterizing kiln bottom ash and offgas particulates, determining heavy metal partition between the kiln bottom ash and incinerator stack gas, and measuring kiln organics emissions (particularly polychlorinated dioxins and furans). These tests were designed to investigate the effect of the following operating parameters: Incineration Temperature; Waste Feed Rate; Waste Density; Kiln Solids Residence Time; and Waste Composition. Tests were conducted at three kiln operating temperatures. Three solid waste simulants were burned, two waste mixtures (paper, plastic, latex, and PVC) with one containing spiked toxic organic and metal compounds, and one waste type containing only paper. Secondary Combustion Chamber (SCC) offgases were sampled for particulate loading and size distribution, organic compounds, polychlorinated dibenzo[p]dioxins and polychlorinated dibenzofurans (PCDD/PCDF), metals, and combustion products. Kiln bottom ash and offgas particulates were characterized to determine the principal elements and compounds comprising these secondary wastes.

Burns, D.B.

1995-01-11

419

CEOS database of worldwide calibration facilities and validation test sites  

NASA Astrophysics Data System (ADS)

12 Since 1995, the CEOS Calibration/Validation (Cal/Val) Database has provided the international Earth remote sensing science community with a) a central repository for information on current and planned Calibration/Validation activities and b) a means to foster collaboration on common Cal/Val issues. The Cal/Val Database uses an ORACLE relation database management system to store the data and is accessed via the World Wide Web (WWW) using PERL scripts to search and query the database. The search queries are structured such that users can define any combination of fields, either through selection of valids, or by directly typing the information. All query results are displayed in the text form. The text displays are interactive allowing the user to point and click to access more detailed information. System functionality provides an on-line form of all of the three questionnaires for submitting new information and allows a user with the assigned password to edit archived information for their facility. This functionality allows users to update information, as it becomes available. In 2000, the Cal/Val database was updated through a process of additional surveying of existing and planned Cal/Val capabilities to support the NASA's Earth Science Enterprise (ESE) and other international Earth observing missions. A set of three updated questionnaires was prepared: one for calibration laboratories, one for test sites, and one for field instruments. The information requested included: a description of the facility, instruments available, instrument characteristics, types of measurements performed, programs/projects that have used the facility, etc. These questionnaires with cover letter were mailed to over 250 research groups that included CEOS members and facilities within the USA. The information collected from worldwide facilities was used to construct and update this on-line database for use not only by the CEOS members, but also the broader international Earth science community.

Butler, James J.; Wanchoo, Lalit; Le, Truong

2001-02-01

420

Vibrational measurement for commissioning SRF Accelerator Test Facility at Fermilab  

SciTech Connect

The commissioning of two cryomodule components is underway at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule No.1 (CM1) and Capture Cavity II (CC2), which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

McGee, M.W.; Leibfritz, J.; Martinez, A.; Pischalnikov, Y.; Schappert, W.; /Fermilab

2011-03-01

421

Pyroprocessing of fast flux test facility nuclear fuel  

SciTech Connect

Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electro-refined uranium products exceeded 99%. (authors)

Westphal, B.R.; Wurth, L.A.; Fredrickson, G.L.; Galbreth, G.G.; Vaden, D.; Elliott, M.D.; Price, J.C.; Honeyfield, E.M.; Patterson, M.N. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID, 83415 (United States)

2013-07-01

422

Pyroprocessing of Fast Flux Test Facility Nuclear Fuel  

SciTech Connect

Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.

B.R. Westphal; G.L. Fredrickson; G.G. Galbreth; D. Vaden; M.D. Elliott; J.C. Price; E.M. Honeyfield; M.N. Patterson; L. A. Wurth

2013-10-01

423

Effect of mechanical cleaning on seawater corrosion of candidate OTEC heat exchanger materials. Part 1. Tests with M. A. N. brushes  

SciTech Connect

Corrosion evaluations were conducted on 3003 Alclad, 5052 aluminum, C7 0600 copper-nickel, AL-6X stainless steel, and commercially-pure titanium in natural seawater under simulated OTEC heat exchanger conditions to investigate the erosion-corrosion effects of mechanical tube cleaning. Test conditions of M.A.N. brush cleaning and M.A.N. brush cleaning + chlorination were compared with no mechanical cleaning over a seven month period. M.A.N. brushing significantly accelerated corrosion of 5052 aluminum and C7 0600 copper-nickel. Chlorination significantly accelerated erosion-corrosion of 3003 Alclad and 5052 aluminium. Chlorination somewhat decreased erosion-corrosion of C7 0600 copper-nickel. There was no detectable effect of M.A.N. brushing or chlorination on AL-6X stainless steel or titanium, although AL-6X exhibited crevice corrosion at tubing connections. 3003 Alclad and 5052 aluminum exhibited piting corrosion in all 3 test environments.

Tipton, D G

1980-09-01

424

Corrosion Test Results for Inconel 600 vs Inconel-Stainless UG Bellows  

SciTech Connect

The Conversion Project (CP) of the Molten Salt Reactor Experiment at Oak Ridge National Laboratory (ORNL) involves converting slightly less than 40 kg of {sup 233}U to a stable form for safe storage. The operation is performed within a few vessels interconnected by valves and 1/2-in. metal tubing. During this conversion, a particularly toxic and corrosive by-product is formed, namely aqueous hydrofluoric acid (HF). The production of HF is a result of the hydrolysis of UF{sub 6} and subsequent steam treatments of UO{sub 2}F{sub 2}. For each mole of UF{sub 6} converted, 6 mol of HF are produced. The HF that forms during conversion combines with water to produce approximately 1.5 L of 33 wt % HF. As this mixture is transferred within the process system, the tubing and valves are exposed to high concentrations of HF in liquid and vapor form. Of particular concern in the system are the almost 30 valves that have the potential for exposure to HF. For these valves, a vendor-supplied UG valve was installed. UG valves consist of an Alloy 400 (Monel) body and stem tip and Alloy 600 (Inconel) bellows. These valves have been used under experimental conditions that simulate the CP. It has been established that they have a finite life when exposed to a HF and air environment. Most failures were seen around the flange at the bottom of the bellows, and it was suspected that this flange and the weld material were not Inconel. In December 2001, the vendor confirmed that this flange was not Inconel but instead was stainless steel 316. After discussions between the vendor and ORNL staff involved with the CP effort, it was decided that the entire wetted area of the bellows would be fabricated from Alloy 600. In March 2002, four newly fabricated bellows assemblies were received from the vendor for the purposes of corrosion testing in HF. This report presents results from the corrosion tests conducted to determine if the new design of the bellows would enhance their corrosion resistance.

Osborne, P.E.

2002-09-11

425

Launch Pad Coatings for Smart Corrosion Control  

NASA Technical Reports Server (NTRS)

Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability. Researchers at NASA's Corrosion Technology Laboratory at KSC are developing a smart, environmentally friendly coating system for early corrosion detection, inhibition, and self healing of mechanical damage without external intervention. This smart coating will detect and respond actively to corrosion and mechanical damage such as abrasion and scratches, in a functional and predictable manner, and will be capable of adapting its properties dynamically. This coating is being developed using corrosion sensitive microcapsules that deliver the contents of their core (corrosion inhibiting compounds, corrosion indicators, and self healing agents) on demand when corrosion or mechanical damage to the coating occurs.

Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

2010-01-01

426

Three-axis electron-beam test facility  

NASA Technical Reports Server (NTRS)

An electron beam test facility, which consists of a precision multidimensional manipulator built into an ultra-high-vacuum bell jar, was designed, fabricated, and operated at Lewis Research Center. The position within the bell jar of a Faraday cup which samples current in the electron beam under test, is controlled by the manipulator. Three orthogonal axes of motion are controlled by stepping motors driven by digital indexers, and the positions are displayed on electronic totalizers. In the transverse directions, the limits of travel are approximately + or - 2.5 cm from the center with a precision of 2.54 micron (0.0001 in.); in the axial direction, approximately 15.0 cm of travel are permitted with an accuracy of 12.7 micron (0.0005 in.). In addition, two manually operated motions are provided, the pitch and yaw of the Faraday cup with respect to the electron beam can be adjusted to within a few degrees. The current is sensed by pulse transformers and the data are processed by a dual channel box car averager with a digital output. The beam tester can be operated manually or it can be programmed for automated operation. In the automated mode, the beam tester is controlled by a microcomputer (installed at the test site) which communicates with a minicomputer at the central computing facility. The data are recorded and later processed by computer to obtain the desired graphical presentations.

Dayton, J. A., Jr.; Ebihara, B. T.

1981-01-01

427

Field Lysimeter Test Facility status report IV: FY 1993  

SciTech Connect

At the U.S. Department of Energy`s Hanford Site near Richland, Washington, a unique facility, the Field Lysimeter Test Facility (FLTF) is used to measure drainage from and water storage in soil covers. Drainage has ranged from near zero amounts to more than 50% of the applied water, with the amount depending on vegetative cover and soil type. Drainage occurred from lysimeters with coarse soils and gravel covers, but did not occur from capillary barrier-type lysimeters (1.5 m silt loam soil over coarse sands and gravels) except under the most extreme condition tested. For capillary barriers that were irrigated and kept vegetation-free (bare surface), no drainage occurred in 5 of the past 6 years. However, this past year (1992--1993) a record snowfall of 1,425 mm occurred and water storage in the irrigated, bare-surfaced capillary barriers exceeded 500 mm resulting in drainage of more than 30 mm from these barriers. In contrast, capillary barriers, covered with native vegetation (i.e., shrubs and grasses) did not drain under any climatic condition (with or without irrigation). In FY 1994, the FLTF treatments will be increased from 11 to 17 with the addition of materials that will simulate portions of a prototype barrier planned for construction in 1994 at the Hanford Site. The 17 FLTF treatments are designed to test the expected range of surface soil, vegetation, and climatic conditions encountered at the Hanford Site and will assist in evaluating final surface barrier designs for a waste disposal facility.

Gee, G.W.; Felmy, D.G.; Ritter, J.C.; Campbell, M.D.; Downs, J.L.; Fayer, M.J.; Kirkham, R.R.; Link, S.O.

1993-10-01

428

Cycle 7 outage experience. [Fast Flux Test Facility (FFTF)  

SciTech Connect

The scheduled 58-day refueling outage in preparation for the seventh operating cycle of the Fast Flux Test Facility (FFTF) was successfully completed three days ahead of schedule. The planning and execution of the outage was greatly aided by Project/2 automated scheduling capabilities. For example, the use of ''maintenance windows'' and resource loading capabilities was particularly effective. The value of the planning process was demonstrated by the smooth transition into the outage phase after an early shutdown and set the stage for our best outage to date.

Gadeken, A.D.

1986-03-01

429

Analyses of Control Surface Seal Tested in the Ames Arc Jet Tunnel (Panel Test Facility)  

NASA Technical Reports Server (NTRS)

The contents include: 1) Rope Seal; 2) Improvements to porous medial simulation in CFD-ACE+; 3) Porous media heat transfer validation case-stead-state and transient flat plate; 4) Simulation of GRC cold flow seal test fixture; 5) Simulation of calibration plate in the Panel Test Facility (PTF); and 6) Simulation of rope seal test in the PTF. This paper is in viewgraph form.

Reich, Alton J.; Athavale, Mahesh; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Breen, Daniel P.; Robbie, Malcolm G.

2002-01-01

430

LPT. Shield test facility assembly and test building (TAN646). East ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

LPT. Shield test facility assembly and test building (TAN-646). East facade of ebor helium wing addition. Camera facing west. Note asbestos-cement siding on stair enclosure and upper-level. Concrete siding at lower level. Metal stack. Monorail protrudes from upper level of south wall at left of view. INEEL negative no. HD-40-7-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

431

CO{sub 2} corrosion in wet gas systems  

SciTech Connect

The failure of a pipeline used to transport wet CO{sub 2}-containing gas has highlighted the limitations that both intelligent surveys and ultrasonic testing (UT) inspection can have for the detection of internal grooving type corrosion. These limitations are presented, together with the inspection, testing and assessment program that was subsequently introduced to evaluate the condition of other associated production facilities operating under similar conditions. Measures adopted to prevent the reoccurrence of such CO{sub 2} induced corrosion damage are discussed. In addition, the use of a corrosion rate prediction tool enabled the risk ranking of the facilities under threat of CO{sub 2} induced corrosion to be rapidly undertaken and therefore enable an inspection and assessment priority ranking to be made. A comparison is therefore made of the predicted levels of corrosion with those actually observed in practice.

Attwood, P.A.; Gelder, K. van; Charnley, C.D. [Petroleum Development Oman, Muscat (Oman)

1996-08-01

432

Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete  

Microsoft Academic Search

In certain industrial activities sulfuric acid is used during the production process, which may cause degradation of concrete structures. Another important phenomenon where sulfuric acid is responsible for concrete corrosion is biogenic sulfuric acid corrosion, which occurs often in sewer systems. Because previous investigations have already pointed out the difference between purely chemical sulfuric acid corrosion and biogenic sulfuric acid

J Monteny; N De Belie; E Vincke; W Verstraete; L Taerwe

2001-01-01

433

Consolidated Incineration Facility metals partitioning test. Final report  

SciTech Connect

Test burns were conducted at Energy and Environmental Research Corporation`s rotary kiln simulator, the Solid Waste Incineration Test Facility, using surrogate CIF wastes spiked with hazardous metals and organics. The primary objective for this test program was measuring heavy metals partition between the kiln bottom ash, scrubber blowdown solution, and incinerator stack gas. Also, these secondary waste streams were characterized to determine waste treatment requirements prior to final disposal. These tests were designed to investigate the effect of several parameters on metals partitioning: incineration temperature; waste chloride concentration; waste form (solid or liquid); and chloride concentration in the scrubber water. Tests were conducted at three kiln operating temperatures. Three waste simulants were burned, two solid waste mixtures (paper, plastic, latex, and one with and one without PVC), and a liquid waste mixture (containing benzene and chlorobenzene). Toxic organic and metal compounds were spiked into the simulated wastes to evaluate their fate under various combustion conditions. Kiln offgases were sampled for volatile organic compounds (VOC), semi-volatile organic compounds (SVOC), polychlorinated dibenz[p]dioxins and polychlorinated dibenzofurans (PCDD/PCDF), metals, particulate loading and size distribution, HCl, and combustion products. Stack gas sampling was performed to determine additional treatment requirements prior to final waste disposal. Significant test results are summarized below.

Burns, D.B.

1993-08-31

434

Space simulation techniques and facilities for SAX STM test campaign  

NASA Technical Reports Server (NTRS)

SAX is a satellite for X-Ray astronomy. It is a major element of the overall basic Science Program of the Italian Space Agency (ASI) and is being developed with the contribution of the Netherlands Agency for Aerospace Programs (NIVR). The scientific objectives of SAX are to carry out systematic and comprehensive observations of celestial X-Ray sources over the 0.1 - 300 KeV energy range with special emphasis on spectral and timing measurements. The satellite will also monitor the X-Ray sky to investigate long-term source variability and to permit localization and study of X-Ray transients. Alenia Spazio is developing the satellite that is intended for launch in the second half of 1995 in a low, near-equatorial Earth orbit. At system level a Structural Thermal Model (STM) has been conceived to verify the environmental requirements by validating the mechanical and thermal analytical models and qualifying satellite structure and thermal control. In particular, the following tests have been carried out in Alenia Spazio, CEA/CESTA and ESTEC facilities: Modal Survey, Centrifuge, Acoustic, Sinusoidal/Random Vibration and Thermal Balance. The paper, after a short introduction of the SAX satellite, summarizes the environmental qualification program performed on the SAX STM. It presents test objectives, methodologies and relevant test configurations. Peculiar aspects of the test campaign are highlighted. Problems encountered and solutions adopted in performing the tests are described as well. Furthermore, test results are presented and assessed.

Giordano, Pietro; Raimondo, Giacomo; Messidoro, Piero

1994-01-01

435

Suppression Pool Mixing and Condensation Tests in PUMA Facility  

SciTech Connect

Condensation of steam with non-condensable in the form of jet flow or bubbly flow inside the suppression pool is an important phenomenon on determining the containment pressure of a passively safe boiling water reactor. 32 cases of pool mixing and condensation test have been performed in Purdue University Multi-Dimensional Integral Test Assembly (PUMA) facility under the sponsor of the U.S. Nuclear Regulatory Commission to investigate thermal stratification and pool mixing inside the suppression pool during the reactor blowdown period. The test boundary conditions, such as the steam flow rate, the noncondensable gas flow rate, the initial water temperature, the pool initial pressure and the vent opening submergence depth, which covers a wide range of prototype (SBWR-600) conditions during Loss of Coolant Accident (LOCA) were obtained from the RELAP5 calculation. The test results show that steam is quickly condensed at the exit of the vent opening. For pure steam injection or low noncondensable injection cases, only the portion above the vent opening in the suppression pool is heated up by buoyant plumes. The water below the vent opening can be heated up slowly through conduction. The test results also show that the degree of thermal stratification in suppression pool is affected by the vent opening submergence depth, the pool initial pressure and the steam injection rate. And it is slightly affected by the initial water temperature. From these tests it is concluded that the pool mixing is strongly affected by the noncondensable gas flow rate. (authors)

Ling Cheng; Kyoung Suk Woo; Mamoru Ishii; Jaehyok Lim [Purdue Unviersity, West Lafayette, IN 47907 (United States); Han, James [U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001 (United States)

2006-07-01

436

Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities  

NASA Technical Reports Server (NTRS)

The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition systems (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis development and deployment.

Hebert, Phillip W., Sr.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Hughes, Mark S.

2012-01-01

437

Design philosophy of the Jet Propulsion Laboratory infrared detector test facility  

NASA Technical Reports Server (NTRS)

To support the development of advanced infrared remote sensing instrumentation using line and area arrays, a test facility has been developed to characterize the detectors. The necessary performance characteristics of the facility were defined by considering current and projected requirements for detector testing. The completed facility provides the desired level of detector testing capability as well as providing ease of human interaction.

Burns, R.; Blessinger, M. A.

1983-01-01

438

Design and analysis of a thermal hydraulic integral test facility for Bushehr nuclear power plant  

Microsoft Academic Search

In this paper, design and analysis of a thermal hydraulic integral test facility for Bushehr Nuclear Power Plant (NPP) is presented. The Bushehr Integral Test Facility (BITF) is a test facility designed to model the thermal-hydraulic behaviours of the Bushehr NPP (VVER-1000) pressurized water reactors currently in use in IRAN. These reactors have unique features that differ from other PWR

Toraj Khoshnevis; Jalil Jafari; Mostafa Sohrabpour

2009-01-01

439

Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall  

Microsoft Academic Search

Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order

Michael Kruzic

2007-01-01

440

Langley Aerothermodynamic Facilities Complex: Enhancements and Testing Capabilities  

NASA Technical Reports Server (NTRS)

Description, capabilities, recent upgrades, and utilization of the NASA Langley Research Center (LaRC) Aerothermodynamic Facilities Complex (AFC) are presented. The AFC consists of five hypersonic, blow-down-to-vacuum wind tunnels that collectively provide a range of Mach number from 6 to 20, unit Reynolds number from 0.04 to 22 million per foot and, most importantly for blunt configurations, normal shock density ratio from 4 to 12. These wide ranges of hypersonic simulation parameters are due, in part, to the use of three different test gases (air, helium, and tetrafluoromethane), thereby making several of the facilities unique. The Complex represents nearly three-fourths of the conventional (as opposed to impulse)-type hypersonic wind tunnels operational in this country. AFC facilities are used to assess and optimize the hypersonic aerodynamic performance and aeroheating characteristics of aerospace vehicle concepts and to provide benchmark aerodynamic/aeroheating data fr generating the flight aerodynamic databook and final design of the thermal protection system (TPS) (e.g., establishment of flight limitations not to exceed TPS design limits). Modifications and enhancements of AFC hardware components and instrumentation have been pursued to increase capability, reliability, and productivity in support of programmatic goals. Examples illustrating facility utilization in recent years to generate essentially all of the experimental hypersonic aerodynamic and aeroheating information for high-priority, fast-paced Agency programs are presented. These programs include Phase I of the Reusable Launch Vehicle (RLV) Advanced Technology Demonstrator, X-33 program, PHase II of the X-33 program, X-34 program, the Hyper-X program ( a Mach 5,7, and 10 airbreathing propulsion flight experiment), and the X-38 program (Experimental Crew Return Vehicle, X-CRV). Current upgrades/enchancements and future plans for the AFC are discussed.

Micol, J. R.

1998-01-01

441

Field Testing of High Current Electrokinetic Nanoparticle Treatment for Corrosion Mitigation in Reinforced Concrete  

NASA Technical Reports Server (NTRS)

This work examines field performance of nanoscale pozzolan treatments delivered el ctrokinetically to suppress chloride induced corrosion of concrete reinforcement. The particles are 20 nm silica spheres coated with 2 nm alumina particles that carry a net positive charge. Earlier work demonstrated that the alumina particles were stripped from the silica carriers and formed a dense phase with an interparticle spacing that is small enough to inhibit the transport of solvated chlorides. A D.C. field was used to inject the particles into the pores of concrete specimens, directly toward the mild steel bars that were embedded within each 3 inch diameter by 6 inch length concrete specimen. The voltage was held constant at 25 v per inch of concrete cover for a period of 7 days. These voltages permitted current densities as high as 3 A/sq m. During the final 3 days, a 1 molar solution of calcium nitrate tetrahydrate was used to provide a source of calcium to facilitate stronger and more densified phase formation within the pores. In a departure from prior work the particle treatments were started concurrent with chloride extraction in order to determine if particle delivery would inhibit chloride transport. Following treatment the specimens were immersed in seawater for 4 weeks. After this posttreatment exposure, the specimens were tested for tensile strength and the steel reinforcement was examined for evidence of corrosion. Scanning electron microscopy was conducted to assess impact on microstructure.

Calle, Luz Marina; Alexander, Joshua B.; Cardenas, Henry E.; Kupwade-Patil, Kunal

2008-01-01

442

Cosmetic corrosion of painted aluminum and steel automotive body sheet: Results from outdoor and accelerated laboratory test methods  

SciTech Connect

In recent years, increasing attention has been given to the need to develop an accelerated laboratory test method(s) for cosmetic corrosion of painted panels that realistically simulate in-service exposure. Much of that work has focused on steel substrates. The purpose of this research is to compare the corrosion performance of painted aluminum and steel sheet as determined om various laboratory methods and in-service exposure, and to develop a realistic accelerated test method for evaluation of the cosmetic corrosion of painted aluminum. Several aluminum sheet products from the 2xxx, 5xxx, and 6xxx alloy series have been tested. The steel substrates are similar to those used in other programs. The test methods chosen represent a cross-section of methods common to the automotive and aluminum industries for evaluation of painted sheet metal products. The results indicate that there is considerable difference in the relative correlation of various test methods to in-service exposure. In addition, there is considerable difference in the relative magnitudes and morphologies of corrosion, and occasionally in the relative rankings, as a function of test method. The influence of alloy composition and zinc phosphate coating weight are also discussed.

Moran, J.P.; Ziman, P.R.; Egbert, M.W. [Alcoa Technical Center, Alcoa Center, PA (United States). Alloy Technology Division

1995-11-01

443

The stress-corrosion behavior of Al-Li-Cu alloys: A comparison of test methods  

NASA Technical Reports Server (NTRS)

Two powder metallurgy processed (Al-Li-Cu) alloys with and without Mg addition were studied in aqueous 3.5% NaCl solution during the alternate immersion testing of tuning fork specimens, slow crack growth tests using fracture mechanics specimens, and the slow strain rate testing of straining electrode specimens. Scanning electron microscopy and optical metallography were used to demonstrate the character of the interaction between the Al-Li-Cu alloys and the selected environment. Both alloys are susceptible to SC in an aqueous 3.5% NaCl solution under the right electrochemical and microstructural conditions. Each test