Science.gov

Sample records for corrugated plastic

  1. Singing Corrugated Pipes

    ERIC Educational Resources Information Center

    Crawford, Frank S.

    1974-01-01

    Presents theoretical and experimental observations made with a musical toy called Hummer consisting of a corrugated flexible plastic tube about three-feet long and one-inch diam open at both ends. Included are descriptions of three new instruments: the Water Pipe, the Gas-Pipe Corrugahorn Bugle, and the Gas-Pipe Blues Corrugahorn. (CC)

  2. Corrugation of roads

    NASA Astrophysics Data System (ADS)

    Both, Joseph A.; Hong, Daniel C.; Kurtze, Douglas A.

    2001-12-01

    We present a one dimensional model for the development of corrugations in roads subjected to compressive forces from a flux of cars. The cars are modeled as damped harmonic oscillators translating with constant horizontal velocity across the surface, and the road surface is subject to diffusive relaxation. We derive dimensionless coupled equations of motion for the positions of the cars and the road surface H( x, t), which contain two phenomenological variables: an effective diffusion constant Δ( H) that characterizes the relaxation of the road surface, and a function a( H) that characterizes the plasticity or erodibility of the road bed. Linear stability analysis shows that corrugations grow if the speed of the cars exceeds a critical value, which decreases if the flux of cars is increased. Modifying the model to enforce the simple fact that the normal force exerted by the road can never be negative seems to lead to restabilized, quasi-steady road shapes, in which the corrugation amplitude and phase velocity remain fixed.

  3. Birefringent corrugated waveguide

    DOEpatents

    Moeller, Charles P.

    1990-01-01

    A corrugated waveguide having a circular bore and noncircularly symmetric corrugations, and preferably elliptical corrugations, provides birefringence for rotation of polarization in the HE.sub.11 mode. The corrugated waveguide may be fabricated by cutting circular grooves on a lathe in a cylindrical tube or rod of aluminum of a diameter suitable for the bore of the waveguide, and then cutting an approximation to ellipses for the corrugations using a cutting radius R.sub.0 from the bore axis that is greater than the bore radius, and then making two circular cuts using a radius R.sub.1 less than R.sub.0 at centers +b and -b from the axis of the waveguide bore. Alternatively, stock for the mandrel may be formed with an elliptical transverse cross section, and then only the circular grooves need be cut on a lathe, leaving elliptical corrugations between the grooves. In either case, the mandrel is first electroplated and then dissolved leaving a corrugated waveguide with noncircularly symmetric corrugations. A transition waveguide is used that gradually varies from circular to elliptical corrugations to couple a circularly corrugated waveguide to an elliptically corrugated waveguide.

  4. Birefringent corrugated waveguide

    SciTech Connect

    Moeller, C.P.

    1990-03-06

    This patent describes a corrugated waveguide having a circular bore and noncircularly symmetric corrugations, and preferably elliptical corrugations which provides birefringence for rotation of polarization in the HE{sub 11} mode. The corrugated waveguide may be fabricated by cutting circular grooves on a lathe in a cylindrical tube or rod of aluminum of a diameter suitable for the bore of the waveguide, and then cutting an approximation to ellipses for the corrugations using a cutting radius R{sub 0} from the bore axis that is greater than the bore radius, and then making two circular cuts using a radius R{sub 1} less than R{sub 0} at centers + b and {minus} B from the axis of the waveguide bore. Alternatively, stock for the mandrel may be formed with an elliptical transverse cross section, and then only the circular grooves need be cut on a lathe, leaving elliptical corrugations between the grooves. In either case, the mandrel is first electroplated and then dissolved leaving a corrugated waveguide with noncircularly symmetric corrugations. A transition waveguide is used that gradually varies from circular to elliptical corrugations to couple a circularly corrugated waveguide to an elliptically corrugated waveguide.

  5. Birefringent corrugated waveguide

    SciTech Connect

    Moeller, C.P.

    1989-02-15

    A corrugated waveguide having a circular bore and noncircularly symmetric corrugations, and preferably elliptical corrugations, provides birefringence for rotation of polarization in the HE{sub 11} mode. The corrugated waveguide may be fabricated by cutting circular grooves on a lathe in a cylindrical tube or rod of aluminium of a diameter suitable for the bore of the waveguide, and then cutting an approximation to ellipses for the corrugations using a cutting radius R{sub 0} from the bore axis that is greater than the bore radius, and then making two circular cuts using a radius R{sub 1} less than R{sub 0} at centers +b and {minus}b from the axis of the waveguide bore. Alternatively, stock for the mandrel may be formed with an elliptical transverse cross section, and then only the circular grooves need be cut on a lathe, leaving elliptical corrugations between the grooves. In either case, the mandrel is first electroplated and then dissolved leaving a corrugated waveguide with noncircularly symmetric waveguides. A transition waveguide is used that gradually varies from circular to elliptical corrugations to couple a circularly corrugated waveguide to an elliptically corrugated waveguide.

  6. Industrial fabrication of an optical security device for document protection using plasmon resonant transmission through a thin corrugated metallic film embedded on a plastic foil

    NASA Astrophysics Data System (ADS)

    Sauvage-Vincent, Jean; Jourlin, Yves; Tonchev, Svetlen; Veillas, Colette; Claude, Pedri; Parriaux, Olivier

    2012-06-01

    Known since a long time in polymer banknotes and presented in the few years in paper banknotes, the principle of windowed documents has been currently extended to ID documents. We present an innovative solution which combines resonant transmission and Zero Order Device technologies and which is dedicated to improve windows in terms of the overt security level. With this R&D program, Hologram Industries targeted to obtain an overt visual security device that should be readily checked in transmission in the same manner as the established paper watermark. The proposed solution is based on the propagation of resonant modes in a thin continuous corrugated metallic layer embedded (encapsulated) between two dielectric layers of near equal refractive index. The mode of most interest is the Long Range Plasmon Mode. The coupling condition to the Long Range Mode is principally related to the corrugation, the metal layer thickness and the index of the two dielectric layers. If the condition of the mode excitation through the grating is fulfilled, a predetermined wavelength will be coupled to the Long Range Plasmon Mode. This mode will propagate at each metal/dielectric interface with a low loss and will concentrate the electric field inside the metal layer. This effect of coupling enables the transmission of a peak at this wavelength through the metallic layer. It defines the so called "extraordinary resonant transmission".

  7. Profiles in garbage: Corrugated boxes

    SciTech Connect

    Miller, C.

    1997-12-01

    Corrugated boxes (also known as old corrugated containers, or OCC) are used to ship products to factories, warehouses, retail stores, offices, and homes. The primary market for OCC is the paperboard industry, which uses OCC for corrugated medium, linerboard, recycled paperboard, and other paper products. In addition, 2.6 million tons of OCC were exported in 1996. OCC provided 37% of the scrap paper that was exported in 1996. Some corrugated boxes can be reused before recycling. Corrugated boxes are easily and highly recyclable. Large producers such as grocery store warehouses and factories have recycled their corrugated boxes for some time. If shredded properly, uncoated corrugated boxes are easily compostable.

  8. Properties of cutoff corrugated surfaces for corrugated horn design. [corrugation shape and density effects on scattering

    NASA Technical Reports Server (NTRS)

    Mentzer, C. A.; Peters, L., Jr.

    1974-01-01

    Corrugated horns involve a junction between the corrugated surface and a conducting ground plane. Proper horn design requires an understanding of the electromagnetic properties of the corrugated surface and this junction. An integral equation solution has been used to study the influence of corrugation density and tooth thickness on the power loss, surface current, and the scattering from a ground plane/corrugated surface junction.

  9. An Improved Method of Manufacturing Corrugated Boxes: Lateral Corrugator

    SciTech Connect

    Frank C. Murray Ph.D.; , Roman Popil Ph.D.; Michael Shaepe

    2008-12-18

    Paper physicists have known that a corrugated box constructed from outer liner sheets having a predominant fiber orientation aligned with the corrugating flute direction would have higher stiffness and crush resistance (per unit of fiber weight) than the conventional box construction. Such increased performance per unit of fiber weight could result in fiber reduction and energy savings for boxes having equivalent performance specifications. The goal of this project was to develop and demonstrate a commercially viable lateral corrugating process. This included designing and building a pilot lateral corrugator, testing and evaluating pilot machine made boxes, and developing a strategy for commercialization.

  10. Stacked Corrugated Horn Rings

    NASA Technical Reports Server (NTRS)

    Sosnowski, John B.

    2010-01-01

    This Brief describes a method of machining and assembly when the depth of corrugations far exceeds the width and conventional machining is not practical. The horn is divided into easily machined, individual rings with shoulders to control the depth. In this specific instance, each of the corrugations is identical in profile, and only differs in diameter and outer profile. The horn is segmented into rings that are cut with an interference fit (zero clearance with all machining errors biased toward contact). The interference faces can be cut with a reverse taper to increase the holding strength of the joint. The taper is a compromise between the interference fit and the clearance of the two faces during assembly. Each internal ring is dipped in liquid nitrogen, then nested in the previous, larger ring. The ring is rotated in the nest until the temperature of the two parts equalizes and the pieces lock together. The resulting assay is stable, strong, and has an internal finish that cannot be achieved through other methods.

  11. Acoustical studies on corrugated tubes

    NASA Astrophysics Data System (ADS)

    Balaguru, Rajavel

    Corrugated tubes and pipes offer greater global flexibility combined with local rigidity. They are used in numerous engineering applications such as vacuum cleaner hosing, air conditioning systems of aircraft and automobiles, HVAC control systems of heating ducts in buildings, compact heat exchangers, medical equipment and offshore gas and oil transportation flexible riser pipelines. Recently there has been a renewed research interest in analyzing the flow through a corrugated tube to understand the underlying mechanism of so called whistling, although the whistling in such a tube was identified in early twentieth century. The phenomenon of whistling in a corrugated tube is interesting because an airflow through a smooth walled tube of similar dimensions will not generate any whistling tones. Study of whistling in corrugated tubes is important because, it not only causes an undesirable noise problem but also results in flow-acoustic coupling. Such a coupling can cause significant structural vibrations due to flow-acoustic-structure interaction. This interaction would cause flow-induced vibrations that could result in severe damage to mechanical systems having corrugated tubes. In this research work, sound generation (whistling) in corrugated tubes due to airflow is analyzed using experimental as well as Computational Fluid Dynamics-Large Eddy Simulation (CFD-LES) techniques. Sound generation mechanisms resulting in whistling have been investigated. The whistling in terms of frequencies and sound pressure levels for different flow velocities are studied. The analytical and experimental studies are carried out to understand the influence of various parameters of corrugated tubes such as cavity length, cavity width, cavity depth, pitch, Reynolds numbers and number of corrugations. The results indicate that there is a good agreement between theoretically calculated, computationally predicted and experimentally measured whistling frequencies and sound pressure levels

  12. Shape optimization of corrugated airfoils

    NASA Astrophysics Data System (ADS)

    Jain, Sambhav; Bhatt, Varun Dhananjay; Mittal, Sanjay

    2015-12-01

    The effect of corrugations on the aerodynamic performance of a Mueller C4 airfoil, placed at a 5° angle of attack and Re=10{,}000, is investigated. A stabilized finite element method is employed to solve the incompressible flow equations in two dimensions. A novel parameterization scheme is proposed that enables representation of corrugations on the surface of the airfoil, and their spontaneous appearance in the shape optimization loop, if indeed they improve aerodynamic performance. Computations are carried out for different location and number of corrugations, while holding their height fixed. The first corrugation causes an increase in lift and drag. Each of the later corrugations leads to a reduction in drag. Shape optimization of the Mueller C4 airfoil is carried out using various objective functions and optimization strategies, based on controlling airfoil thickness and camber. One of the optimal shapes leads to 50 % increase in lift coefficient and 23 % increase in aerodynamic efficiency compared to the Mueller C4 airfoil.

  13. Strain variation in corrugated graphene

    NASA Astrophysics Data System (ADS)

    Wang, Xuanye; Tantiwanichapan, Khwanchai; Christopher, Jason; Paiella, Roberto; Swan, Anna

    2015-03-01

    Raman spectroscopy is a powerful non-destructive technique for analyzing strain in graphene. Recently there has been interest in making corrugated graphene devices with varying spatial wavelengths Λ for plasmonic and THz applications. Transferring graphene onto corrugated substrates introduces strain, which if there was perfect clamping (high fraction) would cause a periodic strain variation. However, the strain variation for pattern size smaller than the diffraction limit λ makes it hard to precisely model the strain distribution. Here we present a detailed study on how strain varies in corrugated graphene with sub-diffraction limit periodicity Λ < λ. Mechanically exfoliated graphene was deposited onto sinusoidal shape silicon dioxide gratings with Λ=400 nm period using the pick and place transfer technique. We observed that the graphene is not rigidly clamped, but partially slides to relieve the strain. We model the linewidth variation to extract the local strain variation as well as the sliding in the presence of charge puddling in graphene. The method gives us a better understanding on graphene slippage and strain distribution in graphene on a corrugated substrate with sub-diffraction limit spatial period.

  14. Corrugated Membrane Fuel Cell Structures

    SciTech Connect

    Grot, Stephen

    2013-09-30

    One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

  15. Wakefield potentials of corrugated structures

    NASA Astrophysics Data System (ADS)

    Novokhatski, A.

    2015-10-01

    A corrugated structure, which is used in "dechirper" devices, is usually a pipe or two plates with small corrugations (bumps) on the walls. There is a good single-mode description of the wake potentials excited by a relativistic bunch if the wave length of the mode is much longer than the distance between the bumps in the pipe. However, ultrashort bunches, which are now used in free electron lasers, excite much higher frequency fields and the corresponding wake potentials will be very different from the single-mode description. We have made analyses of these wake potentials based on a numerical solution of Maxwell's equations. It was confirmed that the behavior of the wakefields of ultrashort bunches in corrugated structures is not much different from the fields excited usually in accelerating structures where the wake potentials are described by the exponential function. For a practical application we present results for the SLAC "dechirper." We also carried out calculations for a similar device, that was installed and measured at the Pohang Accelerator Laboratory, Korea. We find very good agreement with the experimental results.

  16. Numerical and Experimental Investigations on Mechanical Behavior of Composite Corrugated Core

    NASA Astrophysics Data System (ADS)

    Dayyani, Iman; Ziaei-Rad, Saeed; Salehi, Hamid

    2012-06-01

    Tensile and flexural characteristics of corrugated laminate panels were studied using numerical and analytical methods and compared with experimental data. Prepreg laminates of glass fiber plain woven cloth were hand-laid by use of a heat gun to ease the creation of the panel. The corrugated panels were then manufactured by using a trapezoidal machined aluminium mould. First, a series of simple tension tests were performed on standard samples to evaluate the material characteristics. Next, the corrugated panels were subjected to tensile and three-point bending tests. The force-displacement graphs were recorded. Numerical and analytical solutions were proposed to simulate the mechanical behavior of the panels. In order to model the energy dissipation due to delamination phenomenon observed in tensile tests in all members of corrugated core, plastic behavior was assigned to the whole geometry, not only to the corner regions. Contrary to the literature, it is shown that the three-stage mechanical behavior of composite corrugated core is not confined to aramid reinforced corrugated laminates and can be observed in other types such as fiber glass. The results reveal that the mechanical behavior of the core in tension is sensitive to the variation of core height. In addition, for the first time, the behavior of composite corrugated core was studied and verified in bending. Finally, the analytical and numerical results were validated by comparing them with experimental data. A good degree of correlation was observed which showed the suitability of the finite element model for predicting the mechanical behavior of corrugated laminate panels.

  17. Biaxially corrugated flexible sheet material

    DOEpatents

    Schmertz, John C.

    1991-04-16

    A flexible biaxially corrugated sheet material is formed from a plurality of identical trapezium segments which are arranged in a plurality of long strips a single segment wide. Adjacent strips are mirror images of each other and connected along adjoining sides with the angles of the four corners of adjacent segments being alternately less than 360.degree. and greater than 360.degree. along the length of a strip such that the sheet material has an undulating configuration, and is inherently curved and cannot lie in a flat plane.

  18. Helically corrugated circular waveguides as antenna feeders

    NASA Astrophysics Data System (ADS)

    Jecko, F.; Papiernik, A.

    1983-07-01

    Rotation of the plane of polarization of the TE(11)-mode is predicted and observed in a helically corrugated circular waveguide. Rotation is suppressed by a longitudinal deformation produced on the corrugation. This modified structure can be used as an antenna feeder with low losses.

  19. Aeroacoustic interaction in a corrugated duct

    NASA Astrophysics Data System (ADS)

    Kop'ev, V. F.; Mironov, M. A.; Solntseva, V. S.

    2008-03-01

    The sound generation by an air flow in a corrugated tube is studied experimentally for different values of the corrugation pitch and different tube lengths. The Strouhal numbers of sound generated in different tubes with different flow velocities lie within 0.4-0.6. As the flow velocity increases, the Strouhal number decreases. The effect of sound absorption by an air flow in a corrugated duct is described: in a corrugated tube with a flow, at frequencies below the generation frequency, the absorption of sound produced by an external source is observed. A semiempirical model of aeroacoustic interaction in a corrugated tube is proposed. The model provides a qualitative agreement with the experiment.

  20. Corrugated Pipe as a Beam Dechirper

    SciTech Connect

    Bane, K.L.F.; Stupakov, G.; /SLAC

    2012-04-20

    We have studied the use of a metallic pipe with small corrugations for the purpose of passively dechirping, through its wakefield, a short, intense electron bunch. The corrugated pipe is attractive for this purpose because its wake: (i) has near maximal possible amplitude for a given aperture and (ii) has a relatively large oscillation wave length, even when the aperture is small. We showed how the corrugated structure can satisfy dechirping requirements encountered in the NGLS project at LBNL. We found that a linear chirp of -40 MeV/mm can be induced by an NGLS-like beam, by having it pass through a corrugated, metallic pipe of radius 3 mm, length 8.2 m, and corrugation parameters full depth 450 {mu}m and period 1000 {mu}m. This structure is about 15 times as effective in the role of dechirper as an S-band accelerator structure used passively.

  1. Mechanical Analysis of Trapezoidal Corrugated Composite Skins

    NASA Astrophysics Data System (ADS)

    Ghabezi, P.; Golzar, M.

    2013-08-01

    Using of the corrugated skins and morphing technology is a good idea to provide the desired performance and improve aerodynamic efficiency. Corrugated structures and skins are flexible in the direction of corrugation and stiff in the transverse direction. In this paper a simple analytical model for the effective stiffness of the trapezoidal corrugated composites is developed in symmetrical and unsymmetrical lay-up. The elongation and effective stiffness in longitudinal and transverse directions of trapezoidal corrugated skins and flat composites are extracted using strain energy and Castiglione's theorem. Various dimensions of trapezoidal element for unidirectional and plain woven fabrics of E-glass/Epoxy are investigated. Trapezoidal corrugated composites were modelled by commercial FEM software ABAQUS and compared to analytical model. Analytical model is validated by experimental results from bending and tensile tests. Finally, load-displacement curves in the tensile and bending tests are studied and their different stages of behavior are identified. Results of FEM, experimental and analytical simulation show that how the corrugated composite skins can afford obviously larger deformation than the flat one and they are good solution to use in the morphing applications.

  2. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, Ray A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe within an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough.

  3. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, R.A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe with an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough. 4 figs.

  4. Brownian transport in corrugated channels with inertia

    NASA Astrophysics Data System (ADS)

    Ghosh, P. K.; Hänggi, P.; Marchesoni, F.; Nori, F.; Schmid, G.

    2012-08-01

    Transport of suspended Brownian particles dc driven along corrugated narrow channels is numerically investigated in the regime of finite damping. We show that inertial corrections cannot be neglected as long as the width of the channel bottlenecks is smaller than an appropriate particle diffusion length, which depends on the the channel corrugation and the drive intensity. With such a diffusion length being inversely proportional to the damping constant, transport through sufficiently narrow obstructions turns out to be always sensitive to the viscosity of the suspension fluid. The inertia corrections to the transport quantifiers, mobility, and diffusivity markedly differ for smoothly and sharply corrugated channels.

  5. The characterization of tandem and corrugated wings

    NASA Astrophysics Data System (ADS)

    Lian, Yongsheng; Broering, Timothy; Hord, Kyle; Prater, Russell

    2014-02-01

    Dragonfly wings have two distinct features: a tandem configuration and wing corrugation. Both features have been extensively studied with the aim to understand the superior flight performance of dragonflies. In this paper we review recent development of tandem and corrugated wing aerodynamics. With regards to the tandem configuration, this review will focus on wing/wing and wing/vortex interactions at different flapping modes and wing spacing. In addition, the aerodynamics of tandem wings under gusty conditions will be reviewed and compared with isolated wings to demonstrate the gust resistance characteristics of flapping wings. Regarding corrugated wings, we review their structural and aerodynamic characteristics.

  6. Method and apparatus for corrugating strips

    DOEpatents

    Day, J.R.; Curtis, C.H.

    1981-10-27

    The invention relates to a method and a machine for transversely corrugating a continuous strip of metallic foil. The product foil comprises a succession of alternately disposed corrugations, each defining in a cross section, a major segment of a circle. The foil to be corrugated is positioned to extend within a vertical passage in the machine. The walls of the passage are heated to promote the desired deformation of the foil. Foil-deforming rollers are alternately passed obliquely across the passage to respectively engage transverse sections of the foil. The rollers and their respective section of deformed foil comprise a stacked assembly which is moved incrementally through the heated passageway. As the assembly emerges from the passageway, the rollers spill from the corrugated foil and are recovered for re-use.

  7. Method and apparatus for corrugating strips

    DOEpatents

    Day, Jack R.; Curtis, Charles H.

    1983-01-01

    The invention relates to a method and a machine for transversely corrugating a continuous strip of metallic foil. The product foil comprises a succession of alternately disposed corrugations, each defining in cross section, a major segment of a circle. The foil to be corrugated is positioned to extend within a vertical passage in the machine. The walls of the passage are heated to promote the desired deformation of the foil. Foil-deforming rollers are alternately passed obliquely across the passage to respectively engage transverse sections of the foil. The rollers and their respective section of deformed foil comprise a stacked assembly which is moved incrementally through the heated passageway. As the assembly emerges from the passageway, the rollers spill from the corrugated foil and are recovered for re-use.

  8. Evolutionary design of corrugated horn antennas

    NASA Technical Reports Server (NTRS)

    Hoorfar, F.; Manshadi, V.; Jamnejad, A.

    2002-01-01

    An evolutionary progranirnitzg (EP) algorithm is used to optimize pattern of a corrugated circularhorn subject to various constraints on return loss and antenna beamwidth and pattern circularity and low crosspolarization. The EP algorithm uses a Gaussian mutation operator. Examples on design synthesis of a 45 section corrugated horn, with a total of 90 optimization parameters, are presented. The results show excellent and efficient optimization of the desired horn parameters.

  9. Time-resolved measurement of quadrupole wakefields in corrugated structures

    NASA Astrophysics Data System (ADS)

    Lu, Chao; Fu, Feichao; Jiang, Tao; Liu, Shengguang; Shi, Libin; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Zhang, Zhen; Xiang, Dao

    2016-02-01

    Corrugated structures have recently been widely used for manipulating electron beam longitudinal phase space and for producing THz radiation. Here we report on time-resolved measurements of the quadrupole wakefields in planar corrugated structures. It is shown that while the time-dependent quadrupole wakefield produced by a planar corrugated structure causes significant growth in beam transverse emittance, it can be effectively canceled with a second corrugated structure with orthogonal orientation. The strengths of the time-dependent quadrupole wakefields for various corrugated structure gaps are also measured and found to be in good agreement with theories. Our work should forward the applications of corrugated structures in many accelerator based scientific facilities.

  10. High frequency scattering from corrugated stratified cylinders

    NASA Technical Reports Server (NTRS)

    Sarabandi, Kamal; Ulaby, Fawwaz T.

    1991-01-01

    Interest in applying radar remote sensing for the study of forested areas led to the development of a model for scattering from corrugated stratified dielectric cylinders. The model is used to investigate the effect of bark and its roughness on scattering from tree trunks and branches. The outer layer of the cylinder (bark) is assumed to be a low-loss dielectric material and to have a regular (periodic) corrugation pattern. The inner layers are treated as lossy dielectrics with smooth boundaries. A hybrid solution based on the moment method and the physical optics approximation is obtained. In the solution, the corrugations are replaced with polarization currents that are identical to those of the local tangential periodic corrugated surface, and the stratified cylinder is replaced with equivalent surface currents. New expressions for the equivalent physical-optics currents are used which are more convenient than the standard ones. It is shown that the bark layer and its roughness both reduce the radar cross-section. It is also demonstrated that the corrugations can be replaced by an equivalent anisotropic layer.

  11. Ultrasonic geometrical characterization of periodically corrugated surfaces.

    PubMed

    Liu, Jingfei; Declercq, Nico F

    2013-04-01

    Accurate characterization of the characteristic dimensions of a periodically corrugated surface using ultrasonic imaging technique is investigated both theoretically and experimentally. The possibility of accurately characterizing the characteristic dimensions is discussed. The condition for accurate characterization and the quantitative relationship between the accuracy and its determining parameters are given. The strategies to avoid diffraction effects instigated by the periodical nature of a corrugated surface are also discussed. Major causes of erroneous measurements are theoretically discussed and experimentally illustrated. A comparison is made between the presented results and the optical measurements, revealing acceptable agreement. This work realistically exposes the capability of the proposed ultrasonic technique to accurately characterize the lateral and vertical characteristic dimensions of corrugated surfaces. Both the general principles developed theoretically as well as the proposed practical techniques may serve as useful guidelines to peers. PMID:23294990

  12. Plasmonic corrugated cylinder-cone terahertz probe.

    PubMed

    Yao, Haizi; Zhong, Shuncong

    2014-08-01

    The spoof surface plasmon polariton (SPP) effect on the electromagnetic field distribution near the tip of a periodically corrugated metal cylinder-cone probe working at the terahertz regime was studied. We found that radially polarized terahertz radiation could be coupled effectively through a spoof SPP into a surface wave and propagated along the corrugated surface, resulting in more than 20× electric field enhancement near the tip of probe. Multiple resonances caused by the antenna effect were discussed in detail by finite element computation and theoretical analysis of dispersion relation for spoof SPP modes. Moreover, the key figures of merit such as the resonance frequency of the SPP can be flexibly tuned by modifying the geometry of the probe structure, making it attractive for application in an apertureless background-free terahertz near-field microscope. PMID:25121543

  13. Corrugation of Relativistic Magnetized Shock Waves

    NASA Astrophysics Data System (ADS)

    Lemoine, Martin; Ramos, Oscar; Gremillet, Laurent

    2016-08-01

    As a shock front interacts with turbulence it develops corrugation, which induces outgoing wave modes in the downstream plasma. For a fast shock wave, the incoming wave modes can either be fast magnetosonic waves originating downstream, outrunning the shock, or eigenmodes of the upstream plasma drifting through the shock. Using linear perturbation theory in relativistic MHD, this paper provides a general analysis of the corrugation of relativistic magnetized fast shock waves resulting from their interaction with small amplitude disturbances. Transfer functions characterizing the linear response for each of the outgoing modes are calculated as a function of the magnetization of the upstream medium and as a function of the nature of the incoming wave. Interestingly, if the latter is an eigenmode of the upstream plasma, we find that there exists a resonance at which the (linear) response of the shock becomes large or even diverges. This result may have profound consequences on the phenomenology of astrophysical relativistic magnetized shock waves.

  14. Relating temperature dependence of atom scattering spectra to surface corrugation.

    PubMed

    Hayes, W W; Manson, J R

    2011-12-01

    It is suggested that a measurement of the temperature dependence of the most probable intensity of energy-resolved atom-surface scattering spectra can reveal the strength of the surface corrugation. To support this conjecture, a classical mechanical theory of atom scattering from a corrugated surface, valid in the weak corrugation limit, is developed. The general result for the scattering probability is expressed in terms of spatial integrals over the impact parameter within a surface unit cell. For the case of a one-dimensional corrugation, approximate expressions for the scattering probability are obtained in terms of analytic closed form expressions. As an indicator of its relation to experimental measurements, calculations using a one-dimensional corrugation model are compared with data for Ar scattering from a molten Ga surface and an approximate value of the corrugation height parameter is extracted. PMID:22085838

  15. Performance of zigzag corrugated furrows in Bolivia

    NASA Astrophysics Data System (ADS)

    Roldán Cañas, J.; Chipana, R.; Moreno-Pérez, M. F.; Chipana, G.

    2012-04-01

    In Bolivia, irrigation area is estimated in more than 250000 ha, being surface irrigation the most common method. In highland areas (Altiplano) and in interandean valleys, traditional and ancestral irrigation systems such as flood irrigation, contour furrows, zigzag corrugated furrows, suka kollus and irrigation by kanis, are the most important. In the case of very steep terrains and shallow soils, the zigzag corrugated irrigation method is very frequent. This irrigation method has been used for a long time but their low application efficiency and the shortage of water justify this work devoted to their characterization and to study their performance. The experimental study was conducted southeast of the city of La Paz in the community of Cebollino located at 2600 meters above sea level. Furrow characteristics vary in function of crop type and soil slope, so that the larger the slope the greater the separation between furrows. In our case, the crop chosen was the lettuce and the experimental plot had an area of 800 m2 with a slope ranging between 14 and 18%. Blocks of corrugated furrows were identified and experimental measures were made during each irrigation, once per week, in the central blocks to avoid border effects. To determine advance curves 15 stations were used spaced 18 m. At each station, advance and recession time and infiltration depth were measured. Inlet and outlet flow were controlled each 5 min. To calculate the reference evapotranspiration, the Hargraves-Samani equation was used. Due to the very high terrain slopes, the advance curve takes a linear form rather than the typical exponential form. This hinders the proper calculation of the parameters of the Kostiakov-Lewis equation used to determine the infiltrated depth values. The inlet flow range, along irrigation events, between 0.01 and 0.085 L/s due to the uncontrolled use of water in fields located upstream. The large variability of inflow flow difficult irrigation management especially in

  16. Lower San Fernando corrugated metal pipe failure

    SciTech Connect

    Bardet, J.P.; Davis, C.A.

    1995-12-31

    During the January 17, 1994, Northridge earthquake, a 2.4 m diameter corrugated metal pipe was subjected to 90 m of extensive lateral crushing failure at the Lower San Fernando Dam. The dam and outlet works were reconstructed after the 1971 San Fernando Earthquake. In 1994, the dam underwent liquefaction upstream of the reconstructed berm. The pipe collapsed on the west side of the liquefied zone and a large sinkhole formed over the drain line. The failure of this drain line provides a unique opportunity to study the seismic response of buried drains and culverts.

  17. Disappointment and regret enhance corrugator reactivity in a gambling task

    PubMed Central

    Wu, Yin; Clark, Luke

    2015-01-01

    This study investigated how the corrugator and zygomaticus respond to decision outcomes (i.e., gains and losses). We used a gambling task in which participants were presented with obtained followed by non-obtained outcomes. Activity at the corrugator site was sensitive to decision outcomes, such that higher obtained losses (disappointment) and higher non-obtained gains (regret) both heightened corrugator reactivity. Activity at the zygomaticus site was not responsive to obtained or non-obtained outcomes, but did show sensitivity to emotional images in the same participants, in the form of a positive linear relationship with self-reported emotional valence. Corrugator activity was negatively related to emotional valence. The findings indicate the sensitivity of corrugator to objective decision outcomes and also counterfactual comparisons, highlighting the utility of facial electromyography in research on decision making and gambling behavior. PMID:25345723

  18. Corrugated Quantum Well Infrared Photodetectors and Arrays

    NASA Technical Reports Server (NTRS)

    Choi, K. K.; Chen, C. J.; Rohkinson, L. P.; Das, N. C.; Jhabvala, M.

    1999-01-01

    Quantum well infrared photodetectors (QWIPs) have many advantages in infrared detection, mainly due to the mature Ill-V material technology. The employment of the corrugation structure further advances the technology by providing a simple, yet efficient light-coupling scheme. A C-QWIP enjoys the same flexibility as a detector with intrinsic normal incident absorption. In this paper, we will discuss the utilities of C-QWIPs in different applications, including two-color detection and polarization-sensitive detection. Besides practical applications, C-QWIPs are also useful in detector characterization. They can be used for measuring the absorption coefficient of light propagating parallel to the layers under bias and providing information on the energy resolved photoconductive gain. These two quantities have never been measured before. Based on the corrugation design, we have made several modifications that further improve the detector sensitivity without increasing its complexity. Other than the C-QWIP structure, we also continue searching for other sensitive detector architectures. In a quantum grid infrared photodetector, 3-dimensional electron confinement can be achieved, with which the detector is able to absorb light in all directions. At the same time, the photoconductive gain can also be improved. We further improve the design using a blazed structure. All the experimental results are supported by a rigorous electromagnetic modal transmission-line theory developed especially for these types of structures. Preliminary thermal imaging using C-QWIP FPAs validates the advantages of the present approach.

  19. Biased Brownian motion in extremely corrugated tubes

    NASA Astrophysics Data System (ADS)

    Martens, S.; Schmid, G.; Schimansky-Geier, L.; Hänggi, P.

    2011-12-01

    Biased Brownian motion of point-size particles in a three-dimensional tube with varying cross-section is investigated. In the fashion of our recent work, Martens et al. [Phys. Rev. E 83, 051135 (2011)] we employ an asymptotic analysis to the stationary probability density in a geometric parameter of the tube geometry. We demonstrate that the leading order term is equivalent to the Fick-Jacobs approximation. Expression for the higher order corrections to the probability density is derived. Using this expansion orders, we obtain that in the diffusion dominated regime the average particle current equals the zeroth order Fick-Jacobs result corrected by a factor including the corrugation of the tube geometry. In particular, we demonstrate that this estimate is more accurate for extremely corrugated geometries compared with the common applied method using a spatially-dependent diffusion coefficient D(x, f) which substitutes the constant diffusion coefficient in the common Fick-Jacobs equation. The analytic findings are corroborated with the finite element calculation of a sinusoidal-shaped tube.

  20. Corrugation Profile for the Quasioptical Polarization Separator

    NASA Astrophysics Data System (ADS)

    Koposova, E. V.; Lubyako, L. V.

    2014-07-01

    We consider and classify the regime of separation of two orthogonally polarized E and H waves by using a reflecting metal diffraction grating, which sends all the energy of an incident wave with one polarization to the specular order of diffraction, and that of an incident wave with the other polarization, to the (-1)st order of diffraction (in this case, the autocollimation regime is used). The conditions of existence of such a regime are studied in the simplest cases (generalization of the approach presented in [1, 2] to the case of a sinusoidal surface), along with the possibility to construct more complex (nonsinusoidal) corrugation profiles, for which the specified regime has certain advantages, e.g., a wider bandwidth. Examples of such profiles are presented. The studies are performed on the basis of numerical solution of the problem of diffraction of a plane electromagnetic wave by a perfectly conducting corrugated surface within the framework of the integral-equation method employing the authors' computer visualization code.

  1. Iron line variability of discoseismic corrugation modes

    NASA Astrophysics Data System (ADS)

    Tsang, David; Butsky, Iryna

    2013-10-01

    Using a fast semi-analytic raytracing code, we study the variability of relativistically broadened Fe-Kα lines due to discoseismic oscillations concentrated in the innermost regions of accretion discs around black holes. The corrugation mode, or c-mode, is of particular interest as its natural frequency corresponds well to the ˜0.1-15 Hz range observed for low-frequency quasi-periodic oscillations (LFQPOs) for lower spins. Comparison of the oscillation phase dependent variability and quasi-periodic oscillation-phase stacked Fe-Kα line observations will allow such discoseismic models to be confirmed or ruled out as a source of particular LFQPOs. The spectral range and frequency of the variability of the Fe-Kα line due to c-modes can also potentially be used to constrain the black hole spin if observed with sufficient temporal and spectral resolution.

  2. Effective Thermal Conductivity of Corrugated Insulating Materials

    NASA Astrophysics Data System (ADS)

    Yamada, Etsuro; Kato, Masayasu; Tomikawa, Takayuki; Takahashi, Kaneko

    The effective thermal conductivity of corrugated insulating materials which are made by polypropylene or polycarbonate have been measured by employing steady state comparison method for several specimen having various thickness and specific weight. The thermal conductivity of them evaluated are also by using the thermal resistance models, and are compared with above measured values and raw materials' conductivity. The main results obtained in this paper are as follows: (1) In regard to the specimen in this paper, the effective thermal conductivity increases with increasing temperature, but the increasing rate of them is small. (2) There are considerable differences between the measured values and the predicted ones that are estimated by using the thermal resistance model in which heat flow by conduction only. This differences increase with increasing specimens' thickness. This difference become extinct by considering the coexistence heat flow of conduction and radiation in the air phase of specimen. (3) The thermal resistance of specimen increases linearly with increasing specimens' thickness.

  3. Fatigue testing of corrugated and Teflon hoses

    NASA Technical Reports Server (NTRS)

    Benner, Steve M.; Swanson, Theodore D.; Costello, Frederick A.

    1990-01-01

    Single and two-phase heat transport systems for the thermal control of large space facilities require fluid lines that traverse joints and either rotate or move in some other manner. Flexible hoses are being considered as one means of traversing these joints. To test the resilience of flexible hoses to bending stress, a test assembly was constructed to determine the number of flexing cycles the hoses could withstand before losing their ability to maintain a constant pressure. Corrugated metal hoses and Teflon hoses were tested at different pressures with nitrogen gas. The metal hoses had lives ranging from 30,000 to 100,000 flexing cycles. But, even after 400,000 cycles, the Teflon hoses remained essentially intact, though some leakage in the convoluted Teflon is noted.

  4. Demonstration of angle-dependent Casimir force between corrugations.

    PubMed

    Banishev, A A; Wagner, J; Emig, T; Zandi, R; Mohideen, U

    2013-06-21

    The normal Casimir force between a sinusoidally corrugated gold coated plate and a sphere was measured at various angles between the corrugations using an atomic force microscope. A strong dependence on the orientation angle of the corrugation is found. The measured forces were found to deviate from the proximity force approximation and are in agreement with the theory based on the gradient expansion including correlation effects of geometry and material properties. We analyze the role of temperature. The obtained results open new opportunities for control of the Casimir effect in micromechanical systems. PMID:23829717

  5. Experiments on sound generation in corrugated pipes with flow.

    PubMed

    Kristiansen, Ulf R; Wiik, Geir A

    2007-03-01

    The article reports acoustic measurements on short corrugated pipes with flow. Such pipes might generate high sound levels associated with length resonances. One of the main objectives of the study was to estimate the location of the effective sources by studying the energy flow through the pipes. It was found that a short section of corrugations will only produce sound effectively when placed at the inflow end, while for fully corrugated pipes, the sound-producing regions are located around the pressure maxima of the observed standing waves. It was further found that the net energy flow is in the upstream direction for nearly the complete length of pipe. PMID:17407869

  6. Pulse propagation and electron acceleration in a corrugated plasma channel.

    PubMed

    Palastro, J P; Antonsen, T M; Morshed, S; York, A G; Milchberg, H M

    2008-03-01

    A preformed plasma channel provides a guiding structure for laser pulses unbound by the intensity thresholds of standard waveguides. The recently realized corrugated plasma channel [Layer, Phys. Rev. Lett. 99, 035001 (2007)] allows for the guiding of laser pulses with subluminal spatial harmonics. These spatial harmonics can be phase matched to high energy electrons, making the corrugated plasma channel ideal for the acceleration of electrons. We present a simple analytic model of pulse propagation in a corrugated plasma channel and examine the laser-electron beam interaction. Simulations show accelerating gradients of several hundred MeV/cm for laser powers much lower than required by standard laser wakefield schemes. PMID:18517531

  7. The influence of the microtexture, corrugation inclination angle, and perforation of corrugated surfaces on the character of liquid spreading

    NASA Astrophysics Data System (ADS)

    Pavlenko, A. N.; Li, X.; Li, H.; Gao, X.; Volodin, O. A.; Surtaev, A. S.; Serdyukov, V. S.

    2015-08-01

    The spreading of liquid nitrogen film over the surface of single structured packing elements has been experimentally studied. Comparative analysis of experimental data showed the influence of a horizontal microtexture, perforation, and inclination angle of large corrugation ribs on the character of liquid film spreading over the corrugated surface at various values of the film-flow Reynolds number. Experimental data are also presented on the dependence of the relative fraction of liquid retained in a single irrigated channel in corrugated plates of various thicknesses on the extent of irrigation.

  8. 1. Elkmont vehicle bridge at Elkmont Campground, galvanized corrugated arch. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Elkmont vehicle bridge at Elkmont Campground, galvanized corrugated arch. - Great Smoky Mountains National Park Roads & Bridges, Elkmont Vehicle Bridge, Spanning Little River at Elkmont Campground, Gatlinburg, Sevier County, TN

  9. Hydrodynamics of Gas-Liquid Counterflow Through Corrugated Parallel Plates

    SciTech Connect

    de Almeida, V.F.

    1999-11-05

    Structured packings utilized in today's distillation packed towers consist of stacked units of many vertically oriented parallel corrugated plates. The V-shaped corrugations are oriented at a fixed angle with respect to the vertical direction, and the corrugation angle in adjacent plates are oriented in reverse direction. Points of contact, at the crests of the corrugations, between adjacent plates, form an unconsolidated porous medium with known topology. Modern structured packings have been gaining acceptance in several separation processes, particularly distillation where gas/vapor and liquid flow countercurrently through the packing. In addition, structured packings have been credited with relatively low pressure drop, high efficiency, low holdup, and higher capacity; the packing also can be made corrosion resistive.

  10. 15. Culvert and corrugated pipe with place of a thousand ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Culvert and corrugated pipe with place of a thousand drips in background looking S. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  11. Spoof plasmon radiation using sinusoidally modulated corrugated reactance surfaces.

    PubMed

    Panaretos, Anastasios H; Werner, Douglas H

    2016-02-01

    In this paper we theoretically investigate the feasibility of creating leaky wave antennas capable of converting spoof plasmons to radiating modes. Spoof plasmons are surface waves excited along metallic corrugated surfaces and they are considered the microwave and THz equivalent of optical surface plasmon polaritons. Given that a corrugated surface is essentially a reactance surface, the proposed design methodology relies on engineering a corrugated surface so that it exhibits a sinusoidally modulated reactance profile. Through such non-uniform periodic reactance surfaces, guided surface waves can efficiently couple into free-space radiating modes. This requires the development of a realistic methodology that effectively maps the necessary sinusoidal reactance variation to a sinusoidal variation corresponding to the depth of the grooves. Both planar and cylindrical corrugated surfaces are examined and it is numerically demonstrated that the corresponding sinusoidally modulated leaky wave structures can very efficiently convert guided spoof plasmons to radiating modes. PMID:26906820

  12. 7. DETAIL VIEW UNDER BRIDGE OF CORRUGATED STEEL, BEAMS, RODS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL VIEW UNDER BRIDGE OF CORRUGATED STEEL, BEAMS, RODS, AND ABUTMENT - Price River Bridge, Spanning Price River, 760 North Street in Carbonville, 1 mile northwest of Price, Carbonville, Carbon County, UT

  13. Cleaning process for corrugated aluminum electrical transmission line enclosure

    DOEpatents

    Bowman, Gary K.

    1984-07-24

    A process for preparing the interior of a corrugated pipe or sheath comprises the steps of placing a predetermined amount of a tumbling abrasive material into the sheath, and then rotating the sheath.

  14. A Wideband Profiled Corrugated Horn for Multichroic Applications

    NASA Technical Reports Server (NTRS)

    Zeng, Lingzhen; Tong, Cheuk-yu Edward; Wollack, Edward J.; Chuss, David T.

    2015-01-01

    A wideband profiled corrugated feedhorn was developed for multichroic applications. This feedhorn features a return loss of better than -25 dB and cross polarization peaks below -30 dB, over a fractional bandwidth of greater than 50%. Its performance is close to that of the ring-loaded corrugated feedhorn; however, the design presented is much easier to fabricate at millimeter wavelengths.

  15. Bandwidth Study of the Microwave Reflectors with Rectangular Corrugations

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; He, Wenlong; Donaldson, Craig R.; Cross, Adrian W.

    2016-09-01

    The mode-selective microwave reflector with periodic rectangular corrugations in the inner surface of a circular metallic waveguide is studied in this paper. The relations between the bandwidth and reflection coefficient for different numbers of corrugation sections were studied through a global optimization method. Two types of reflectors were investigated. One does not consider the phase response and the other does. Both types of broadband reflectors operating at W-band were machined and measured to verify the numerical simulations.

  16. Theoretical study of corrugated plates: Shearing of a trapezoidally corrugated plate with trough lines permitted to curve

    NASA Technical Reports Server (NTRS)

    Lin, C.; Libove, C.

    1971-01-01

    A theoretical analysis is presented of the elastic shearing of a trapezoidally corrugated plate with discrete attachments at the ends of the corrugations. Numerical results on effective shear stiffness, stresses, and displacements are presented for selected geometries and end-attachment conditions. It is shown that the frame-like deformation of the cross-sections, which results from the absence of continuous end attachments, can lead to large transverse bending stresses and large reductions in shearing stiffness.

  17. Finite-temperature Casimir force between perfectly metallic corrugated surfaces

    SciTech Connect

    Sarabadani, Jalal; Miri, MirFaez

    2011-09-15

    We study the Casimir force between two corrugated plates due to thermal fluctuations of a scalar field. For arbitrary corrugations and temperature T, we provide an analytical expression for the Casimir force, which is exact to second order in the corrugation amplitude. We study the specific case of two sinusoidally corrugated plates with corrugation wavelength {lambda}, lateral displacement b, and mean separation H. We find that the lateral Casimir force is F{sub l}(T,H)sin(2{pi}b/{lambda}). In other words, at all temperatures, the lateral force is a sinusoidal function of the lateral shift. In the limit {lambda}>>H, F{sub l}(T{yields}{infinity},H){proportional_to}k{sub B}TH{sup -4}{lambda}{sup -1}. In the opposite limit {lambda}<

  18. Aerodynamic Performances of Corrugated Dragonfly Wings at Low Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Tamai, Masatoshi; He, Guowei; Hu, Hui

    2006-11-01

    The cross-sections of dragonfly wings have well-defined corrugated configurations, which seem to be not very suitable for flight according to traditional airfoil design principles. However, previous studies have led to surprising conclusions of that corrugated dragonfly wings would have better aerodynamic performances compared with traditional technical airfoils in the low Reynolds number regime where dragonflies usually fly. Unlike most of the previous studies of either measuring total aerodynamics forces (lift and drag) or conducting qualitative flow visualization, a series of wind tunnel experiments will be conducted in the present study to investigate the aerodynamic performances of corrugated dragonfly wings at low Reynolds numbers quantitatively. In addition to aerodynamics force measurements, detailed Particle Image Velocimetry (PIV) measurements will be conducted to quantify of the flow field around a two-dimensional corrugated dragonfly wing model to elucidate the fundamental physics associated with the flight features and aerodynamic performances of corrugated dragonfly wings. The aerodynamic performances of the dragonfly wing model will be compared with those of a simple flat plate and a NASA low-speed airfoil at low Reynolds numbers.

  19. Detection of rail corrugation based on fiber laser accelerometers

    NASA Astrophysics Data System (ADS)

    Huang, Wenzhu; Zhang, Wentao; Du, Yanliang; Sun, Baochen; Ma, Huaixiang; Li, Fang

    2013-09-01

    Efficient inspection methods are necessary for detection of rail corrugation to improve the safety and ride quality of railway operations. This paper presents a novel fiber optic technology for detection of rail corrugation based on fiber laser accelerometers (FLAs), tailored to the measurement of surface damage on rail structures. The principle of detection of rail corrugation using double integration of axle-box acceleration is presented. Then we present the theoretical model and test results of FLAs which are installed on the bogie to detect the vertical axle-box acceleration of the train. Characteristics of high sensitivity and large dynamic range are achieved when using fiber optic interferometric demodulation. A flexible inertial algorithm based on double integration and the wavelet denoising method is proposed to accurately estimate the rail corrugation. A field test is carried out on the Datong-Qinhuangdao Railway in north China. The test results are compared with the results of a rail inspection car, which shows that the fiber laser sensing system has a good performance in monitoring rail corrugation.

  20. Corrugated capillary as THz Cherenkov Smith-Purcell radiator

    NASA Astrophysics Data System (ADS)

    Lekomtsev, K. V.; Aryshev, A. S.; Tishchenko, A. A.; Ponomarenko, A. A.; Sukharev, V. M.; Terunuma, N.; Urakawa, J.; Strikhanov, M. N.

    2016-07-01

    In this article we discussed Particle In Cell electromagnetic simulations and mechanical design of dielectric capillaries that produce THz Cherenkov Smith-Purcell radiation (ChSPR), arising when a femtosecond electron multi-bunch beam propagates through corrugated and non-corrugated dielectric capillaries with metallic radiation reflectors. We investigated the influence of the four-bunch beam on the SPR field spectrum and on the ChSPR power spectrum, and the influence of the non-central beam propagation on the ChSPR power spectrum. We also discussed the design and assembly of the capillaries, constructed as sets of cylindrical rings.

  1. Mode switching in a gyrotron with azimuthally corrugated resonator.

    PubMed

    Nusinovich, G S; Sinitsyn, O V; Antonsen, T M

    2007-05-18

    The operation of a gyrotron having a cylindrical resonator with an azimuthally corrugated wall is analyzed. In such a device, wall corrugation cancels the degeneracy of the modes with azimuthally standing patterns. The coupling between these modes depends on the radius of electron beam. It is shown that such a gyrotron can be easily switched from one mode to another. When the switching is done with the repetition frequency equal to the rotational frequency of magnetic islands, this sort of operation can be used for suppression of neoclassical tearing modes in large-scale tokamaks and stellarators. PMID:17677705

  2. Mode Switching in a Gyrotron with Azimuthally Corrugated Resonator

    SciTech Connect

    Nusinovich, G. S.; Sinitsyn, O. V.; Antonsen, T. M. Jr.

    2007-05-18

    The operation of a gyrotron having a cylindrical resonator with an azimuthally corrugated wall is analyzed. In such a device, wall corrugation cancels the degeneracy of the modes with azimuthally standing patterns. The coupling between these modes depends on the radius of electron beam. It is shown that such a gyrotron can be easily switched from one mode to another. When the switching is done with the repetition frequency equal to the rotational frequency of magnetic islands, this sort of operation can be used for suppression of neoclassical tearing modes in large-scale tokamaks and stellarators.

  3. Mechanical behavior of Kenaf/Epoxy corrugated sandwich structures

    NASA Astrophysics Data System (ADS)

    Bakhori, S.; Hassan, M. Z.; Daud, Y.; Sarip, S.; Rahman, N.; Ismail, Z.; Aziz, S. A.

    2015-12-01

    This study presents the response of kenaf/epoxy corrugated sandwich structure during quasi-static test. Force-displacements curves have been deducted to determine the deformation pattern and collapse behavior of the structure. Kenaf/epoxy sandwich structures skins fabricated by using hand layup technique and the corrugated core were moulded by using steel mould. Different thicknesses of corrugated core web with two sizes of kenaf fibers were used. The corrugated core is then bonded with the skins by using poly-epoxy resin and has been cut into different number of cells. The specimens then tested under tensile and compression at different constant speeds until the specimens fully crushed. Tensile tests data showed the structure can be considered brittle when it breaking point strain, ε less than 0.025. In compression test, the specimens fail due to dominated by stress concentration that initiated by prior cracks. Also, the specimens with more number of cells and thicker core web have higher strength and the ability to absorb higher energy.

  4. A corrugated termination shock in pulsar wind nebulae?

    NASA Astrophysics Data System (ADS)

    Lemoine, Martin

    2016-08-01

    > Successful phenomenological models of pulsar wind nebulae assume efficient dissipation of the Poynting flux of the magnetized electron-positron wind as well as efficient acceleration of the pairs in the vicinity of the termination shock, but how this is realized is not yet well understood. This paper suggests that the corrugation of the termination shock, at the onset of nonlinearity, may lead towards the desired phenomenology. Nonlinear corrugation of the termination shock would convert a fraction of order unity of the incoming ordered magnetic field into downstream turbulence, slowing down the flow to sub-relativistic velocities. The dissipation of turbulence would further preheat the pair population on short length scales, close to equipartition with the magnetic field, thereby reducing the initial high magnetization to values of order unity. Furthermore, it is speculated that the turbulence generated by the corrugation pattern may sustain a relativistic Fermi process, accelerating particles close to the radiation reaction limit, as observed in the Crab nebula. The required corrugation could be induced by the fast magnetosonic modes of downstream nebular turbulence; but it could also be produced by upstream turbulence, either carried by the wind or seeded in the precursor by the accelerated particles themselves.

  5. Unitary formalism for scattering from a hard corrugated wall

    NASA Astrophysics Data System (ADS)

    Brown, G. C.; Celli, V.; Coopersmith, M.; Haller, M.

    1982-07-01

    We obtain two coupled integral equations for the diffraction of waves from a hard corrugated surface. This rearrangement is shown to be equivalent to the integral equation for the scattering amplitude obtained by an application of the Rayleigh method. The formalism presented here, analogous to K-matrix theory, makes the unitarity of the theory apparent at each stage of approximation.

  6. Linearly Polarized Modes of a Corrugated Metallic Waveguide

    SciTech Connect

    Kowalski, E.J.; Tax, David; Bigelow, Timothy; Rasmussen, David A

    2010-01-01

    A linearly polarized (LP(mn)) mode basis set for oversized, corrugated, metallic waveguides is derived for the special case of quarter-wavelength-depth circumferential corrugations. The relationship between the LP(mn) modes and the conventional modes (HE(mn), EH(mn), TE(0n), TM(0n)) of the corrugated guide is shown. The loss in a gap or equivalent miter bend in the waveguide is calculated for single-mode and multimode propagation on the line. In the latter case, it is shown that modes of the same symmetry interfere with one another, causing enhanced or reduced loss, depending on the relative phase of the modes. If two modes with azimuthal (m) indexes that differ by one propagate in the waveguide, the resultant centroid and the tilt angle of radiation at the guide end are shown to be related through a constant of the motion. These results describe the propagation of high-power linearly polarized radiation in overmoded corrugated waveguides.

  7. Laser Welded Corrugated Steel Panels in Industrial Applications

    NASA Astrophysics Data System (ADS)

    Kananen, M.; Mäntyjärvi, K.; Keskitalo, M.; Hietala, M.; Järvenpää, A.; Holappa, K.; Saine, K.; Teiskonen, J.

    Corrugated core steel panels are an effective way to reduce weight and increase stiffness of steel structures. In numerous applications, these panels have shown very promising commercial possibilities. This study presents the design, manufacturing and commercializing process for two practical examples: Case 1) a fly wheel cover for a diesel engine and Case 2) rotationally symmetrical panel for an electric motor. Test materials of various kinds were used for corrugated cores and skin plates: conventional low-carbon steel grade EN 10130 and ferritic stainless steel grade 1.4509 with plate the thicknesses of 0.5, 0.6 and 0.75 mm. To manufacture different kinds of corrugated core steel panels, flexible manufacturing tools and cost-effective processes are needed. The most important criterion for laser welding panels was the capability of forming tools for producing high quality geometry for the core. Laser welding assembly showed that the quality of the core in both studied cases was good enough for welding the lap joints properly. Developed panels have been tested in industrial applications with excellent feedback. If thickness of a corrugated panel structure is not a limiting issue, these panels are good solution on application where stiffness and lighter weight are required as well as vibrational aspect considered.

  8. CLOSED PROCESS WATER LOOP IN NSSC CORRUGATING MEDIUM MANUFACTURE

    EPA Science Inventory

    Over the last 5 years, the Green Bay Packaging corrugating medium mill has converted to an essentially closed process water system. The mill is a net consumer of water. This is due to the greater amount of water carried out of the system with the sheet compared to the lower water...

  9. Bending of five-layer beams with crosswise corrugated main core

    SciTech Connect

    Magnucka-Blandzi, Ewa; Walczak, Zbigniew

    2015-03-10

    The subject of the study is one orthotropic thin-walled sandwich beam with trapezoidal core and two-layer facings. The outer layers of facings are flat, but inner layers are trapezoidal corrugated. The main core of the beam is also trapezoidal corrugated – in perpendicular direction to the corrugation of inner layers of facings. The beam is with lengthwise corrugated layers and crosswise corrugated main core. The mathematical and physical model of this beam is formulated, and also the field of displacements. The system of equilibrium equations is analytically derived using the energy method. The obtained solutions will be verified numerically (FEM)

  10. Optimization of photonics for corrugated thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Deparis, Olivier; Vigneron, Jean Pol; Agustsson, Otto; Decroupet, Daniel

    2009-11-01

    The amount of solar energy reaching the active (photovoltaic) layer in a thin-film solar cell can be increased by reducing the Fresnel reflection losses at the interfaces. By using corrugated interfaces (at the wavelength scale), adiabatic propagation of the electromagnetic radiation is achieved over a broad wavelength range throughout the structure, which leads to an increase in the light that is absorbed in the active layer and, ultimately, to the improvement of the photovoltaic conversion efficiency. In this article, we have considered the case of corrugated thin-film solar cell structures and we have studied theoretically the optimization of such structures from the point of view of photonics. The focus was put on periodic pyramidal interface corrugations because they were similar to those existing at the surface of corrugated transparent electrodes on which active layers can be deposited. Because of their technological importance, we chose to work with fluorine-doped tin oxide as front electrode material and with amorphous silicon as active material. Using an original three dimensional transfer matrix method, we solved the electromagnetic wave propagation problem in the general case of laterally periodic stratified media and we compared this solution with effective medium approximated solution. On the basis of typical pyramid sizes, we demonstrated, through numerical simulations, the optimization of the global light energy intake by means of corrugations of increasing complexity. The best structures were found to be based on pyramid arrays having subwavelength periods and aspect ratio values close to one. Typically, a pyramidal structure with base and height both equal to 300 nm led to a global energy intake equal to I =0.98 (integrated over the spectral range 400-710 nm), which represented a 24% improvement in comparison with the global energy intake of a planar structure (I =0.79).

  11. Condensation of refrigerants flowing inside smooth and corrugated tubes

    SciTech Connect

    Hinton, D.L.; Conklin, J.C.; Vineyard, E.A.

    1995-07-01

    Because heat exchanger thermal performance has a direct fluence on the overall cycle performance of vapor-compression refrigeration machinery,enhanced heat transfer surfaces are of interest to improve the efficiency of heat pumps and air conditioners. We investigated R-22 and a nonazeotropic refrigerant mixture (NARM) of 75% R-143a and 25% R-124 (by mass) to study their thermal performance in a condenser made of conventional smooth tubes and another condenser made of corrugated, or spirally indented, tubes. We investigated the condensing heat transfer and pressure drop characteristics in an experimental test loop model of a domestic beat pump system employing a variable speed compressor. The refrigerant circulates inside the central tube and the water circulates in the annulus. At refrigerant mass fluxes of approximately 275--300 kg/m{sup 2}s, the measured irreversible pressure drop of the corrugated surface was 23% higher than that of the smooth surface for the R-22. At refrigerant mass fluxes of 350-370 kg/m{sup 2}s, the irreversible pressure drop of the corrugated surface was 36% higher than that of the smooth surface for the NARM. The average heat transfer coefficient for the corrugated surface for R-22 was roughly 40% higher than that for the smooth tube surface at refrigerant mass fluxes of 275--295 kg/m{sup 2}s. The average heat transfer coefficient for the corrugated surface for the NARM was typically 70% higher than that for the smooth tube surface at refrigerant mass fluxes of 340--385 kg/m{sup 2}s.

  12. Porus electrode comprising a bonded stack of pieces of corrugated metal foil

    NASA Technical Reports Server (NTRS)

    Mccallum, J. (Inventor)

    1973-01-01

    An electrode suitable for use in an electrochemical cell is described. The electrode is composed of a porous conductive support with a bonded stack of pieces of thin corrugated nickel foil where the corrugations are oriented approximately perpendicular to the sides of the electrode and form an array of passages through the electrode. Active material such as cadmium hydroxide or nickel hydroxide is uniformly distributed within the passages. The support may comprise also a piece of thin flat nickel foil between adjacent pieces of the corrugated foil, forming a barrier between the passages formed on each side of it. Typically the corrugations in the odd corrugated layers are oriented at a small angle from the perpendicular in one direction and the corrugations in the even corrugated layers are oriented at a small angle from the perpendicular in the opposite direction.

  13. Test of superplastically formed corrugated aluminum compression specimens with beaded webs

    NASA Technical Reports Server (NTRS)

    Davis, Randall C.; Royster, Dick M.; Bales, Thomas T.; James, William F.; Shinn, Joseph M., Jr.

    1991-01-01

    Corrugated wall sections provide a highly efficient structure for carrying compressive loads in aircraft and spacecraft fuselages. The superplastic forming (SPF) process offers a means to produce complex shells and panels with corrugated wall shapes. A study was made to investigate the feasibility of superplastically forming 7475-T6 aluminum sheet into a corrugated wall configuration and to demonstrate the structural integrity of the construction by testing. The corrugated configuration selected has beaded web segments separating curved-cap segments. Eight test specimens were fabricated. Two specimens were simply a single sheet of aluminum superplastically formed to a beaded-web, curved-cap corrugation configuration. Six specimens were single-sheet corrugations modified by adhesive bonding additional sheet material to selectively reinforce the curved-cap portion of the corrugation. The specimens were tested to failure by crippling in end compression at room temperature.

  14. Corrugated Organic Light Emitting Diodes Using Low Tg Electron Transporting Materials.

    PubMed

    Peng, Cheng; Liu, Shuyi; Fu, Xiangyu; Pan, Zhenxing; Chen, Ying; So, Franky; Schanze, Kirk S

    2016-06-29

    A corrugated organic light emitting diode (OLED) with enhanced light extraction is realized by incorporating a corrugated composite electron transport layer (ETL) consisting of two ETLs with different glass transition temperatures. The morphology of the corrugated structure is characterized with atomic force microscopy. The results show that the corrugation can be controlled by the layer thicknesses and annealing temperature. Compared with the control planar device, the corrugated OLED shows a more than 35% enhancement in current efficiency from 31 cd/A to 43 cd/A and a 20% enhancement in external quantum efficiency from 10% to 12% at 100 cd/m(2). In addition, the corrugated OLED also has a greatly improved operational stability. The LT90 lifetime of a device operated at 1000 cd/m(2) is improved greater than 100-fold in the corrugated OLED. PMID:27245622

  15. Plastic Surgery

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Plastic Surgery KidsHealth > For Teens > Plastic Surgery Print A ... her forehead lightened with a laser? What Is Plastic Surgery? Just because the name includes the word " ...

  16. Direct Acceleration of Electrons in a Corrugated Plasma Channel

    SciTech Connect

    Palastro, J. P.; Antonsen, T. M.; Morshed, S.; York, A. G.; Layer, B.; Aubuchon, M.; Milchberg, H. M.; Froula, D. H.

    2009-01-22

    Direct laser acceleration of electrons provides a low power tabletop alternative to laser wakefield accelerators. Until recently, however, direct acceleration has been limited by diffraction, phase matching, and material damage thresholds. The development of the corrugated plasma channel [B. Layer et al., Phys. Rev. Lett. 99, 035001 (2007)] has removed all of these limitations and promises to allow direct acceleration of electrons over many centimeters at high gradients using femtosecond lasers [A. G. York et al., Phys Rev. Lett 100, 195001 (2008), J. P. Palastro et al., Phys. Rev. E 77, 036405 (2008)]. We present a simple analytic model of laser propagation in a corrugated plasma channel and examine the laser-electron beam interaction. Simulations show accelerating gradients of several hundred MeV/cm for laser powers much lower than required by standard laser wakefield schemes. In addition, the laser provides a transverse force that confines the high energy electrons on axis, while expelling low energy electrons.

  17. Progress Toward Corrugated Feed Horn Arrays in Silicon

    SciTech Connect

    Britton, J.; Yoon, K. W.; Beall, J. A.; Becker, D.; Cho, H. M.; Hilton, G. C.; Niemack, M. D.; Irwin, K. D.

    2009-12-16

    We are developing monolithic arrays of corrugated feed horns fabricated in silicon for dual-polarization single-mode operation at 90, 145 and 220 GHz. The arrays consist of hundreds of platelet feed horns assembled from gold-coated stacks of micro-machined silicon wafers. As a first step, Au-coated Si waveguides with a circular, corrugated cross section were fabricated; their attenuation was measured to be less than 0.15 dB/cm from 80 to 110 GHz at room temperature. To ease the manufacture of horn arrays, electrolytic deposition of Au on degenerate Si without a metal seed layer was demonstrated. An apparatus for measuring the radiation pattern, optical efficiency, and spectral band-pass of prototype horns is described. Feed horn arrays made of silicon may find use in measurements of the polarization anisotropy of the cosmic microwave background radiation.

  18. Optimization of the leading edge segment of a corrugated wing

    NASA Astrophysics Data System (ADS)

    Khurana, Manas; Chahl, Javaan

    2014-03-01

    Insect wings consist of flat plates of membranes stiffened by spars. The effect of this structure is that the wings appear as corrugated surfaces when considered on chordwise sections. We know that aerodynamically efficient insects such as a dragonfly engage in fixed wing flight modes for extended periods. The analysis in the literature has shown that the aerodynamic efficiency (cl/cd) of a corrugated aerofoil is sensitive to Reynolds number (Re) and angle-of-attack (AoA), yet the conclusions established are on the basis of flow analysis on a single baseline shape only. The sample size of the aerofoils must be extended further so that the influence and merits of corrugated shape features can be established. In this work, a design-of-experiments (DoE) approach is applied to induce systematic shape perturbations on a select, off-the-shelf baseline shape one feature at a time over a set number of increments. At each shape increment, the aerodynamic forces are established using a high fidelity CFD solver. The design space is modeled at a Re of 20,000 and 34,000 and at flow angle of 4.0° to represent a Micro Air Vehicle (MAV) in glide. The results confirmed the importance of the leading and trailing edge deflections on cl/cd. At Re = 20, 000, cl/cd of a corrugated aerofoil with deflection at the leading edge region only is 16% higher than the baseline shape, and 39% higher than the flat plate. At Re = 34, 000, cl/cd performance is sensitive to the trailing edge deflection. At the optimum deflection setting, cl/cd is 18% higher than the baseline shape and 23% higher than the flat plate. The results confirm that the leading and trailing edge deflections are critical to cl/cd for a MAV in glide.

  19. Optimization of a corrugated stiffened composite panel under uniaxial compression

    NASA Technical Reports Server (NTRS)

    Agarwal, B. L.; Sobel, L. H.

    1973-01-01

    An approach of structural optimization has been used to optimize the weight of a simply supported, corrugated hat stiffened composite panel under uniaxial compression. The approach consists of the employment of nonlinear mathematical programming techniques to reach an optimum solution. Some simplifying assumptions are made in the stress analysis to obtain faster convergence to an optimum solution. With these simplifying assumptions the number of unknown design parameters is reduced to twelve.

  20. Corrugated outer sheath gas-insulated transmission line

    DOEpatents

    Kemeny, George A.; Cookson, Alan H.

    1981-01-01

    A gas-insulated transmission line includes two transmission line sections each of which are formed of a corrugated outer housing enclosing an inner high-voltage conductor disposed therein, with insulating support means supporting the inner conductor within the outer housing and an insulating gas providing electrical insulation therebetween. The outer housings in each section have smooth end sections at the longitudinal ends thereof which are joined together by joining means which provide for a sealing fixed joint.

  1. PROCESSING OF NANOSTRUCTURED COPPER BY REPETITIVE CORRUGATION AND STRAIGHTENING (RCS)

    SciTech Connect

    Zhu, Y.T.; Jiang, H.

    2000-10-01

    A new process, Repetitive Corrugation and Straightening (RCS), has been developed to create bulk, nanostructured copper. In this investigation, a high purity (99.99%). copper bar measuring 6 x 6 x 50 mm with an average grain size of 765 {micro}m was used as the starting material. It was repetitively corrugated and straightened for 14 times with 90{degree} rotations along its longitudinal axis between consecutive corrugation-straightening cycles. The copper was cooled to below room temperature before each RCS cycle. The grain size obtained after the RCS process was in the range of twenty to a few hundred nanometers, and microhardness was increased by 100%. Both equilibrium and non-equilibrium grain boundaries are observed. This work demonstrates the capability of the RCS process in refining grain size of metal materials. The RCS process can be easily adapted to large-scale industrial production and has the potential to pave the way to large-scale structural applications of nanostructured materials.

  2. Flow Pressure Loss through Straight Annular Corrugated Pipes

    NASA Technical Reports Server (NTRS)

    Sargent, Joseph R.; Kirk, Daniel R.; Marsell, Brandon; Roth, Jacob; Schallhorn, Paul A.; Pitchford, Brian; Weber, Chris; Bulk, Timothy

    2016-01-01

    Pressure loss through annular corrugated pipes, using fully developed gaseous nitrogen representing purge pipes in spacecraft fairings, was studied to gain insight into a friction factor coefficient for these pipes. Twelve pipes were tested: four Annuflex, four Masterflex and two Titeflex with ¼”, 3/8”, ½” and ¾” inner diameters. Experimental set-up was validated using smooth-pipe and showed good agreement to the Moody diagram. Nitrogen flow rates between 0-200 standard cubic feet per hour were used, producing approximate Reynolds numbers from 300-23,000. Corrugation depth varied from 0.248 = E/D = 0.349 and relative corrugation pitch of 0.192 = P/D = 0.483. Differential pressure per unit length was measured and calculated using 8-9 equidistant pressure taps. A detailed experimental uncertainty analysis, including correlated bias error terms, is presented. Results show larger differential pressure losses than smooth-pipes with similar inner diameters resulting in larger friction factor coefficients.

  3. Experimental Investigation of the Strength of Multiweb Beams with Corrugated Webs

    NASA Technical Reports Server (NTRS)

    Fraser, Allister F

    1956-01-01

    The results of an experimental investigation of the strength of multiweb beams with corrugated webs are reported. Included in the investigation were two types of connection between the web and the skin. A comparison between the structural efficiency of corrugated-web and channel-web multiweb beams is presented, and it is shown that, for a considerable range of the structural index, corrugated-web beams can be built which are structurally more efficient than channel-web beams.

  4. Outcoupling efficiency of OLEDs with 2D periodical corrugation at the cathode

    NASA Astrophysics Data System (ADS)

    Belousov, Sergei; Bogdanova, Maria; Teslyuk, Anton

    2016-03-01

    We study theoretically the optical performance of organic light-emitting diodes (OLEDs) with 2D periodical corrugation at the cathode. We show how emergence of radiative surface plasmon resonances at the 2D corrugated cathode leads to the enhancement of the outcoupling efficiency of the OLED, which is primarily due to the outcoupling of emission generated by vertically oriented emitting excitons in the emission layer. We analyze the outcoupling efficiency of the OLED as a function of geometrical parameters of the corrugation and establish design rules for optimal outcoupling enhancement with the 2D corrugation at the cathode.

  5. TRUNK SPROUTING AND GROWTH OF CITRUS AS AFFECTED BY NAA, ALUMINUM FOIL, AND PLASTIC TRUNK WRAPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In spring 1999, a commercial NAA (1-naphthaleneacetic acid) preparation for trunk sprout inhibition was compared to a corrugated plastic trunk wrap, aluminum foil wrap, bimonthly hand-removal of sprouts, use of NAA preparation plus bimonthly hand-removal when sprouts appeared, and a non-treated cont...

  6. Dispersion of helically corrugated waveguides: analytical, numerical, and experimental study.

    PubMed

    Burt, G; Samsonov, S V; Ronald, K; Denisov, G G; Young, A R; Bratman, V L; Phelps, A D R; Cross, A W; Konoplev, I V; He, W; Thomson, J; Whyte, C G

    2004-10-01

    Helically corrugated waveguides have recently been studied for use in various applications such as interaction regions in gyrotron traveling-wave tubes and gyrotron backward-wave oscillators and as a dispersive medium for passive microwave pulse compression. The paper presents a summary of various methods that can be used for analysis of the wave dispersion of such waveguides. The results obtained from an analytical approach, simulations with the three-dimensional numerical code MAGIC, and cold microwave measurements are analyzed and compared. PMID:15600525

  7. Three-dimensional train track model for study of rail corrugation

    NASA Astrophysics Data System (ADS)

    Jin, X. S.; Wen, Z. F.; Wang, K. Y.; Zhou, Z. R.; Liu, Q. Y.; Li, C. H.

    2006-06-01

    Rail corrugation is a main factor causing the vibration and noise from the structures of railway vehicles and tracks. A calculation model is put forward to analyse the effect of rail corrugation with different depths and wavelengths on the dynamical behaviour of a passenger car and a curved track in detail. Also the evolution of initial corrugation with different wavelengths is investigated. In the numerical analysis, Kalker's non-Hertzian rolling contact theory is modified and used to calculate the frictional work density on the contact area of the wheel and rail in rolling contact. The material loss per unit area is assumed to be proportional to the frictional work density to determine the wear depth of the contact surfaces of the curved rails. The combined influences of the corrugation development and the vertical and lateral coupled dynamics of the passenger car and the curved track are taken into account. The numerical results indicate that: (1) the corrugation with high passing frequencies has a great influence on the dynamical performance of the wheelset and track, but little on the car-body and the bogie frame; (2) the deeper the corrugation depth is, the greater the influence and the rail material wear are; but the longer the corrugation wavelength is, the smaller the influence and the wear are; and (3) the initial corrugation with a fixed wavelength on the rail running surface decreases with increasing number of the passenger car passages.

  8. Plastic Jellyfish.

    ERIC Educational Resources Information Center

    Moseley, Christine

    2000-01-01

    Presents an environmental science activity designed to enhance students' awareness of the hazards of plastic waste for wildlife in aquatic environments. Discusses how students can take steps to reduce the effects of plastic waste. (WRM)

  9. Aeroacoustics of the swinging corrugated tube: voice of the Dragon.

    PubMed

    Nakiboğlu, Güneş; Rudenko, Oleksii; Hirschberg, Avraham

    2012-01-01

    When one swings a short corrugated pipe segment around one's head, it produces a musically interesting whistling sound. As a musical toy it is called a "Hummer" and as a musical instrument, the "Voice of the Dragon." The fluid dynamics aspects of the instrument are addressed, corresponding to the sound generation mechanism. Velocity profile measurements reveal that the turbulent velocity profile developed in a corrugated pipe differs notably from the one of a smooth pipe. This velocity profile appears to have a crucial effect both on the non-dimensional whistling frequency (Strouhal number) and on the amplitude of the pressure fluctuations. Using a numerical model based on incompressible flow simulations and vortex sound theory, excellent predictions of the whistling Strouhal numbers are achieved. The model does not provide an accurate prediction of the amplitude. In the second part of the paper the sound radiation from a Hummer is discussed. The acoustic measurements obtained in a semi-anechoic chamber are compared with a theoretical radiation model. Globally the instrument behaves as a rotating (Leslie) horn. The effects of Doppler shift, wall reflections, bending of the tube, non-constant rotational speed on the observed frequency, and amplitude are discussed. PMID:22280698

  10. Imaging Local Electronic Corrugations and Doped Regions in Graphene

    SciTech Connect

    B Schultz; C Patridge; V Lee; C Jaye; P Lysaght; C Smith; J Barnett; D Fischer; D Prendergast; S Banerjee

    2011-12-31

    Electronic structure heterogeneities are ubiquitous in two-dimensional graphene and profoundly impact the transport properties of this material. Here we show the mapping of discrete electronic domains within a single graphene sheet using scanning transmission X-ray microscopy in conjunction with ab initio density functional theory calculations. Scanning transmission X-ray microscopy imaging provides a wealth of detail regarding the extent to which the unoccupied levels of graphene are modified by corrugation, doping and adventitious impurities, as a result of synthesis and processing. Local electronic corrugations, visualized as distortions of the {pi}*cloud, have been imaged alongside inhomogeneously doped regions characterized by distinctive spectral signatures of altered unoccupied density of states. The combination of density functional theory calculations, scanning transmission X-ray microscopy imaging, and in situ near-edge X-ray absorption fine structure spectroscopy experiments also provide resolution of a longstanding debate in the literature regarding the spectral assignments of pre-edge and interlayer states.

  11. Simulation of terahertz generation in corrugated plasma waveguides

    SciTech Connect

    Pearson, Andrew J.; Palastro, John; Antonsen, Thomas M.

    2011-05-15

    We simulate the response of a corrugated plasma channel to an ultrashort laser pulse in two dimensions with the goal of demonstrating the production of terahertz frequency electromagnetic modes. Corrugated channels support electromagnetic modes that have a Floquet-type dispersion relation and thus consist of a sum of spatial harmonics with subluminal phase velocities. This allows the possibility of phase matching between the ponderomotive potential associated with the laser pulse and the electromagnetic modes of the channel. Since the bandwidth of an ultrashort pulse includes terahertz frequencies, significant excitation of terahertz radiation is possible. Here we consider realistic density profiles to obtain predictions of the terahertz power output and mode structure for a channel with periodic boundary conditions. We then estimate pulse depletion effects from our simulation results. The fraction of laser energy converted to terahertz is independent of laser pulse energy in the linear regime, and we find it to be around 1%. Extrapolating to a pulse energy of 0.5 J gives a terahertz power output of 6 mJ with a pulse depletion length of less than 20 cm.

  12. Corrugated Waveguide Mode Content Analysis Using Irradiance Moments

    PubMed Central

    Jawla, Sudheer K.; Shapiro, Michael A.; Idei, Hiroshi; Temkin, Richard J.

    2015-01-01

    We present a novel, relatively simple method for determining the mode content of the linearly polarized modes of a corrugated waveguide using the moments of the intensity pattern of the field radiated from the end of the waveguide. This irradiance moment method is based on calculating the low-order irradiance moments, using measured intensity profiles only, of the radiated field from the waveguide aperture. Unlike the phase retrieval method, this method does not use or determine the phase distribution at the waveguide aperture. The new method was benchmarked numerically by comparison with sample mode mixtures. The results predict less than ±0.7% error bar in the retrieval of the mode content. The method was also tested using high-resolution experimental data from beams radiated from 63.5 mm and 19 mm corrugated waveguides at 170 and 250 GHz, respectively. The results showed a very good agreement of the mode content retrieved using the irradiance moment method versus the phase retrieval technique. The irradiance moment method is most suitable for cases where the modal power is primarily in the fundamental HE11 mode, with <8% of the power in high-order modes. PMID:25821260

  13. The biofouling potential of flow on corrugated surfaces

    NASA Astrophysics Data System (ADS)

    Miño, Gastón L.; Rusconi, Roberto; Kantsler, Vasily; Stocker, Roman

    2015-11-01

    Both natural and man-made surfaces are rarely smooth, and are instead often characterized by geometric heterogeneity or roughness over a broad range of scales. Because of the predicted importance of the local interaction between microorganisms and surfaces, roughness at the microbial scale can be an important element in determining the outcome of microbe-surface interactions, which represent the first step in biofilm formation and biofouling. In microbial habitats this interaction often occurs in flowing fluids, which can be important because regions with high hydrodynamic shear can induce a strong reorientation of bacteria towards surfaces, promoting attachment. Here we study the combination of flow and surface topography using video microscopy of Escherichia coli in corrugated microfluidic channels. We report that flow preferentially promotes attachment to specific regions of a corrugated surface, as result of the hydrodynamics of bacteria swimming in flow. We compute from the data a ``Local Biofouling Potential'' (LBP) and compare this successfully with predictions of a mathematical model, yielding one step towards the ability to mechanistically predict and thus ultimately either prevent or induce biofouling.

  14. A comprehensive track model for the improvement of corrugation models

    NASA Astrophysics Data System (ADS)

    Gómez, J.; Vadillo, E. G.; Santamaría, J.

    2006-06-01

    This paper presents a detailed model of the railway track based on wave propagation, suitable for corrugation studies. The model analyses both the vertical and the transverse dynamics of the track. Using the finite strip method (FSM), only the cross-section of the rail must be meshed, and thus it is not necessary to discretise a whole span in 3D. This model takes into account the discrete nature of the support, introducing concepts pertaining to the theory of periodic structures in the formulation. Wave superposition is enriched taking into account the contribution of residual vectors. In this way, the model obtains accurate results when a finite section of railway track is considered. Results for the infinite track have been compared against those presented by Gry and Müller. Aside from the improvements provided by the model presented in this paper, which Gry's and Müller's models do not contemplate, the results arising from the comparison prove satisfactory. Finally, the calculated receptances are compared against the experimental values obtained by the authors, demonstrating a fair degree of adequacy. Finally, these receptances are used within a linear model of corrugation developed by the authors.

  15. Plane-wave diffraction at the periodically corrugated boundary of vacuum and a negative-phase-velocity material.

    PubMed

    Depine, Ricardo A; Lakhtakia, Akhlesh

    2004-05-01

    Considering the diffraction of a plane wave by a periodically corrugated half-space, we show that the transformation of the refracting medium from positive (negative) phase velocity to negative (positive) phase velocity type has an influence on the diffraction efficiencies. This effect increases with increasing corrugation depth, owing to the presence of evanescent waves in the troughs of the corrugated interface. PMID:15244981

  16. Study on rail corrugation of a metro tangential track with Cologne-egg type fasteners

    NASA Astrophysics Data System (ADS)

    Cui, X. L.; Chen, G. X.; Yang, H. G.; Zhang, Q.; Ouyang, H.; Zhu, M. H.

    2016-03-01

    In Chinese metro lines, rail corrugation on both tangential and tight curved tracks with Cologne-egg type fasteners is very severe. Based on the viewpoint of friction-induced vibration causing rail corrugation, the rail corrugation on a tangential track with Cologne-egg type fasteners is studied in this paper. A vibration model of an elastic multiple-wheelset-track system with Cologne-egg type fasteners is established. Both the complex eigenvalue analysis and the transient dynamic analysis are performed to study the stability and the dynamic performance of the wheelset-track system. The simulation results show that a low rail support stiffness value is responsible for rail corrugation on the tangential track. When the Cologne-egg fasteners characterised by a lower stiffness value are replaced with the DTVI2 fasteners characterised by a higher stiffness value, rail corrugation disappears. However, rail corrugation on tight curved tracks cannot be suppressed using the same replacement. The above conclusions are consistent with the corrugation occurrences in actual metro tracks.

  17. Numerical investigation of the aerodynamic and structural characteristics of a corrugated wing

    NASA Astrophysics Data System (ADS)

    Hord, Kyle

    Previous experimental studies on static, bio-inspired corrugated wings have shown that they produce favorable aerodynamic properties such as delayed stall compared to streamlined wings and flat plates at high Reynolds numbers (Re ≥ 4x104). The majority of studies have been carried out with scaled models of dragonfly forewings from the Aeshna Cyanea in either wind tunnels or water channels. In this thesis, the aerodynamics of a corrugated airfoil was studied using computational fluid dynamics methods at a low Reynolds number of 1000. Structural analysis was also performed using the commercial software SolidWorks 2009. The flow field is described by solving the incompressible Navier-Stokes equations on an overlapping grid using the pressure-Poisson method. The equations are discretized in space with second-order accurate central differences. Time integration is achieved through the second-order Crank-Nicolson implicit method. The complex vortex structures that form in the corrugated airfoil valleys and around the corrugated airfoil are studied in detail. Comparisons are made with experimental measurements from corrugated wings and also with simulations of a flat plate. Contrary to the studies at high Reynolds numbers, our study shows that at low Reynolds numbers the wing corrugation does not provide any aerodynamic benefit compared to a smoothed flat plate. Instead, the corrugated profile generates more pressure drag which is only partially offset by the reduction of friction drag, leading to more total drag than the flat plate. Structural analysis shows that the wing corrugation can increase the resistance to bending moments on the wing structure. A smoothed structure has to be three times thicker to provide the same stiffness. It was concluded the corrugated wing has the structural benefit to provide the same resistance to bending moments with a much reduced weight.

  18. Terahertz Radiation from a Pipe with Small Corrugations

    SciTech Connect

    Bane, K.L.F.; Stupakov, G.; /SLAC

    2012-01-26

    We have studied through analytical and numerical methods the use of a relativistic electron bunch to drive a metallic beam pipe with small corrugations for the purpose of generating terahertz radiation. For the case of a pipe with dimensions that do not change along its length, we have shown that - with reasonable parameters - one can generate a narrow-band radiation pulse with frequency {approx}1 THz, and total energy of a few milli-Joules. The pulse length tends to be on the order of tens of picoseconds. We have also shown that, if the pipe radius is tapered along its length, the generated pulse will end up with a frequency chirp; if the pulse is then made to pass through a compressor, its final length can be reduced to a few picoseconds and its peak power increased to 1 GW. We have also shown that wall losses tend to be significant and need to be included in the structure design.

  19. Geometrical properties of turbulent premixed flames and other corrugated interfaces

    NASA Astrophysics Data System (ADS)

    Thiesset, F.; Maurice, G.; Halter, F.; Mazellier, N.; Chauveau, C.; Gökalp, I.

    2016-01-01

    This study focuses on the geometrical properties of turbulent flame fronts and other interfaces. Toward that end, we use an original tool based on proper orthogonal decomposition (POD), which is applied to the interface spatial coordinates. The focus is mainly on the degree of roughness of the flame front, which is quantified through the scale dependence of its coverage arclength. POD is first validated by comparing with the caliper technique. Fractal characteristics are extracted in an unambiguous fashion using a parametric expression which appears to be impressively well suited for representing Richardson plots. Then it is shown that, for the range of Reynolds numbers investigated here, the scale-by-scale contribution to the arclength does not comply with scale similarity, irrespectively of the type of similarity which is invoked. The finite ratios between large and small scales, referred to as finite Reynolds number effects, are likely to explain this observation. In this context, the Reynolds number that ought to be achieved for a proper inertial range to be discernible, and for scale similarity to be likely to apply, is calculated. Fractal characteristics of flame folding are compared to available predictions. It is confirmed that the inner cutoff satisfactorily correlates with the Kolmogorov scale while the outer cutoff appears to be proportional to the integral length scale. However, the scaling for the fractal dimension is much less obvious. It is argued that much higher Reynolds numbers have to be reached for drawing firm statements about the evolution (or constancy) of the fractal dimension with respect to flame and flow parameters. Finally, a heuristic phenomenology of corrugated interfaces is highlighted. The degree of generality of the latter phenomenology is confirmed by comparing the folding of different interfaces including a turbulent-nonturbulent interface, a liquid jet destabilized by a surrounding air jet, a cavitating flow, and an isoscalar

  20. A nonlinear investigation of corrugation instabilities in magnetic accretion shocks

    NASA Astrophysics Data System (ADS)

    Ernst, Scott

    2011-05-01

    Accretion shock waves are present in many important astrophysical systems and have been a focus of research for decades. These investigations provide a large body of understanding as to the nature, characteristics, and evolutionary behaviors of accretion shock waves over a wide range of conditions. However, largely absent are investigations into the properties of accretion shock waves in the presence of strong magnetic fields. In such cases these strong magnetic fields can significantly alter the stability behaviors and evolution of the accretion shock wave through the production and propagation of magnetic waves as well as magnetically constrained advection. With strong magnetic fields likely found in a number of accretion shock systems, such as compact binary and protostellar systems, a better understanding of the behaviors of magnetic accretion shock waves is needed. A new magnetohydrodynamics simulation tool, IMOGEN, was developed to carry out an investigation of instabilities in strong, slow magnetic accretion shocks by modelling their long-term, nonlinear evolution. IMOGEN implements a relaxed, second-order, total variation diminishing, monotonic upwind scheme for conservation laws and incorporates a staggered-grid constrained transport scheme for magnetic advection. Through the simulated evolution of magnetic accretion shocks over a wide range of initial conditions, it has been shown, for sufficiently high magnetic field strengths, that magnetic accretion shocks are generally susceptible to corrugation instabilities, which arise in the presence of perturbations of the initial shock front. As these corrugation instabilities grow, they manifestas magnetic wave propagation in the upstream region of the accretion column, which propagate away from the accretion shock front, and as density columns, or fingers, that grow into the higher density downstream flow, defined and constrained by current loops created during the early evolution of the instability.

  1. Gyrokinetic simulations of off-axis minimum-q profile corrugations

    SciTech Connect

    Waltz, R.E.; Austin, M.E.; Burrell, K.H.; Candy, J.

    2006-05-15

    Quasiequilibrium radial 'profile corrugations' in the electron temperature gradient are found at lowest-order singular surfaces in global gyrokinetic code simulations of both monotonic-q and off-axis minimum-q discharges. The profile corrugations in the temperature and density gradients are time-averaged components of zonal flows. The m/n=2/1 electron temperature gradient corrugation is measurably large and appears to trigger an internal transport barrier as the off-axis minimum-q=2 surfaces enter the plasma.

  2. Experimental and analytical determination of vibration characteristics of corrugated, flexibly supported, heat-shield panels

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1974-01-01

    Experimental and analytical natural frequencies, nodal patterns, and typical modal displacements for a corrugated, flexibly supported, heat-shield panel are discussed. Good correlation was found between the experimental data and NASTRAN analytical results for the corrugated panel over a relatively wide frequency spectrum covered in the investigation. Of the two experimental techniques used for mode shape and displacement measurements (a noncontacting displacement sensor system and a holographic technique using a helium-neon, continuous-wave laser), the holographic technique was found, in the present investigation, to be faster and better suited for determining a large number of complex nodal patterns of the corrugated panel.

  3. Bending of five-layer beams with lengthwise corrugated main core

    SciTech Connect

    Magnucka-Blandzi, Ewa; Walczak, Zbigniew

    2015-03-10

    The paper is devoted to one orthotropic thin-walled sandwich beam with trapezoidal core and two-layer facings. The inner layers of the facings are also corrugated. The orientation of the corrugations of the inner layers of the facings is perpendicular to trapezoidal corrugation of the beam core. The mathematical and physical model of this beam is formulated, and also the field of displacements. Basing on the principle of the total potential energy the system of equilibrium equations is derived. The analytical solutions will be verified numerically with the use of the finite element method (MES)

  4. Plastics Technology.

    ERIC Educational Resources Information Center

    Barker, Tommy G.

    This curriculum guide is designed to assist junior high schools industrial arts teachers in planning new courses and revising existing courses in plastics technology. Addressed in the individual units of the guide are the following topics: introduction to production technology; history and development of plastics; safety; youth leadership,…

  5. Bending Tests of Circular Cylinders of Corrugated Aluminum-alloy Sheet

    NASA Technical Reports Server (NTRS)

    Buckwalter, John C; Reed, Warren D; Niles, Alfred S

    1937-01-01

    Bending tests were made of two circular cylinders of corrugated aluminum-alloy sheet. In each test failure occurred by bending of the corrugations in a plane normal to the skin. It was found, after analysis of the effect of short end bays, that the computed stress on the extreme fiber of a corrugated cylinder is in excess of that for a flat panel of the same basic pattern and panel length tested as a pin-ended column. It is concluded that this increased strength was due to the effects of curvature of the pitch line. It is also concluded from the tests that light bulkheads closely spaced strengthen corrugated cylinders very materially.

  6. 5. Detail, 5panel door and corrugated metal siding, Oil House, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Detail, 5-panel door and corrugated metal siding, Oil House, Southern Pacific Railroad Carlin Shops, southwest facade, view to northeast (210mm lens). - Southern Pacific Railroad, Carlin Shops, Oil House, Foot of Sixth Street, Carlin, Elko County, NV

  7. Leaky-Wave Radiations by Modulating Surface Impedance on Subwavelength Corrugated Metal Structures

    PubMed Central

    Cai, Ben Geng; Li, Yun Bo; Ma, Hui Feng; Jiang, Wei Xiang; Cheng, Qiang; Cui, Tie Jun

    2016-01-01

    One-dimensional (1D) subwavelength corrugated metal structures has been described to support spoof surface plasmon polaritons (SPPs). Here we demonstrate that a periodically modulated 1D subwavelength corrugated metal structure can convert spoof SPPs to propagating waves. The structure is fed at the center through a slit with a connected waveguide on the input side. The subwavelength corrugated metal structure on the output surface is regarded as metasurface and modulated periodically to realize the leaky-wave radiation at the broadside. The surface impedance of the corrugated metal structure is modulated by using cosine function and triangle-wave function, respectively, to reach the radiation effect. Full wave simulations and measuremental results are presented to validate the proposed design. PMID:27035269

  8. Surface Impedance Formalism for a Metallic Beam Pipe with Small Corrugations

    SciTech Connect

    Stupakov, G.; Bane, K.L.F.; /SLAC

    2012-08-30

    A metallic pipe with wall corrugations is of special interest in light of recent proposals to use such a pipe for the generation of terahertz radiation and for energy dechirping of electron bunches in free electron lasers. In this paper we calculate the surface impedance of a corrugated metal wall and show that it can be reduced to that of a thin layer with dielectric constant {epsilon} and magnetic permeability {mu}. We develop a technique for the calculation of these constants, given the geometrical parameters of the corrugations. We then calculate, for the specific case of a round metallic pipe with small corrugations, the frequency and strength of the resonant mode excited by a relativistic beam. Our analytical results are compared with numerical simulations, and are shown to agree well.

  9. Leaky-Wave Radiations by Modulating Surface Impedance on Subwavelength Corrugated Metal Structures.

    PubMed

    Cai, Ben Geng; Li, Yun Bo; Ma, Hui Feng; Jiang, Wei Xiang; Cheng, Qiang; Cui, Tie Jun

    2016-01-01

    One-dimensional (1D) subwavelength corrugated metal structures has been described to support spoof surface plasmon polaritons (SPPs). Here we demonstrate that a periodically modulated 1D subwavelength corrugated metal structure can convert spoof SPPs to propagating waves. The structure is fed at the center through a slit with a connected waveguide on the input side. The subwavelength corrugated metal structure on the output surface is regarded as metasurface and modulated periodically to realize the leaky-wave radiation at the broadside. The surface impedance of the corrugated metal structure is modulated by using cosine function and triangle-wave function, respectively, to reach the radiation effect. Full wave simulations and measuremental results are presented to validate the proposed design. PMID:27035269

  10. Plasmonic modes in a conductor-corrugated gap-dielectric system at telecommunication wavelength

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Li, Wei; Jiang, Xunya

    2016-04-01

    We propose a conductor-corrugated gap-dielectric structure to realize broadband plasmonic modes at telecommunication wavelength. The structure consists of a corrugated low-index dielectric gap layer sandwiched by high-index dielectric and conductor layers. The electric field of the plasmonic modes is primarily concentrated in the corrugated gap, which not only reduces the metal absorption resulting in long propagation length but also causes good field confinement. It is proved that periodic modulation introduced into the gap can significantly increase the cutoff gap thickness of the structure. The effective medium theory and numerical simulation demonstrate that the cutoff gap thickness can be further increased by decreasing the filling factor of the low-index dielectric in the corrugated gap. Meanwhile, the scattering effects induced by the periodic modulation are also investigated. The results not only provide a new understanding of the surface plasmonic modes but also benefit the designing of compact devices.

  11. Development of a model for flaming combustion of double-wall corrugated cardboard

    NASA Astrophysics Data System (ADS)

    McKinnon, Mark B.

    Corrugated cardboard is used extensively in a storage capacity in warehouses and frequently acts as the primary fuel for accidental fires that begin in storage facilities. A one-dimensional numerical pyrolysis model for double-wall corrugated cardboard was developed using the Thermakin modeling environment to describe the burning rate of corrugated cardboard. The model parameters corresponding to the thermal properties of the corrugated cardboard layers were determined through analysis of data collected in cone calorimeter tests conducted with incident heat fluxes in the range 20--80 kW/m 2. An apparent pyrolysis reaction mechanism and thermodynamic properties for the material were obtained using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The fully-parameterized bench-scale model predicted burning rate profiles that were in agreement with the experimental data for the entire range of incident heat fluxes, with more consistent predictions at higher heat fluxes.

  12. Reconciling the electronic and geometric corrugations of the hexagonal boron nitride and graphene nanomeshes

    NASA Astrophysics Data System (ADS)

    McKee, William C.; Meunier, Vincent; Xu, Ye

    2015-12-01

    Monolayer hexagonal boron nitride on Rh(111) and graphene on Ru(0001) illustrate a trend of divergence between the density functional theory (DFT) calculated geometric corrugation, and scanning tunneling microscope (STM) measured apparent corrugation, of metal-supported 2D films that feature chemically distinct regions. Notably, the geometric and apparent corrugations differ by up to 2 Å for boron nitride/Rh(111), whereas both the DFT-simulated and the experimentally observed STM images agree in the apparent corrugation over a wide range of bias voltages. The disparity is due to unequal contributions of the low/high-lying atoms to the local density of states in the vicinity of the Fermi level. This phenomenon has important implications for the structural characterization of certain supported 2D films, which are being explored for novel electronic and material applications.

  13. Flexural strengthening of Reinforced Concrete (RC) Beams Retrofitted with Corrugated Glass Fiber Reinforced Polymer (GFRP) Laminates

    NASA Astrophysics Data System (ADS)

    Aravind, N.; Samanta, Amiya K.; Roy, Dilip Kr. Singha; Thanikal, Joseph V.

    2015-01-01

    Strengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.

  14. Leaky-Wave Radiations by Modulating Surface Impedance on Subwavelength Corrugated Metal Structures

    NASA Astrophysics Data System (ADS)

    Cai, Ben Geng; Li, Yun Bo; Ma, Hui Feng; Jiang, Wei Xiang; Cheng, Qiang; Cui, Tie Jun

    2016-04-01

    One-dimensional (1D) subwavelength corrugated metal structures has been described to support spoof surface plasmon polaritons (SPPs). Here we demonstrate that a periodically modulated 1D subwavelength corrugated metal structure can convert spoof SPPs to propagating waves. The structure is fed at the center through a slit with a connected waveguide on the input side. The subwavelength corrugated metal structure on the output surface is regarded as metasurface and modulated periodically to realize the leaky-wave radiation at the broadside. The surface impedance of the corrugated metal structure is modulated by using cosine function and triangle-wave function, respectively, to reach the radiation effect. Full wave simulations and measuremental results are presented to validate the proposed design.

  15. 14. DETAIL OF SOUTHWEST FRONT OF WAREHOUSE, SHOWING CORRUGATED PLASTER/ASBESTOS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. DETAIL OF SOUTHWEST FRONT OF WAREHOUSE, SHOWING CORRUGATED PLASTER/ASBESTOS WALLS, WINDOWS AND ROOF. VIEW TO NORTHEAST. - Commercial & Industrial Buildings, International Harvester Company Showroom, Office & Warehouse, 10 South Main Street, Dubuque, Dubuque County, IA

  16. Numerical analysis of sandwich beam with corrugated core under three-point bending

    SciTech Connect

    Wittenbeck, Leszek; Grygorowicz, Magdalena; Paczos, Piotr

    2015-03-10

    The strength problem of sandwich beam with corrugated core under three-point bending is presented.The beam are made of steel and formed by three mutually orthogonal corrugated layers. The finite element analysis (FEA) of the sandwich beam is performed with the use of the FEM system - ABAQUS. The relationship between the applied load and deflection in three-point bending is considered.

  17. Numerical analysis of bio-inspired corrugated airfoil at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Mondal, Partha Protim; Rahman, Md. Masudur; Hasan, A. B. M. Toufique

    2016-07-01

    A numerical study was conducted to investigate the aerodynamic performance of a bio-inspired corrugated airfoil at the chord Reynolds number of Rec=80,000 to explore the potential advantages of such airfoils at low Reynolds numbers. This study represents the transient nature of corrugated airfoils at low Reynolds number where flow is assumed to be laminar, unsteady, incompressible and two dimensional. The simulations include a sharp interface Cartesian grid based meshing employed with laminar viscous model. The flow field surrounding the corrugated airfoil has been analyzed using structured grid Finite Volume Method (FVM) based on Navier-Stokes equation. All parameters used in flow simulation are expressed in non-dimensional quantities for better understanding of flow behavior, regardless of dimensions or the fluid that is used. The simulated results revealed that the corrugated airfoil provides high lift with moderate drag and prevents large scale flow separation at higher angles of attack. This happens due to the negative shear drag produced by the recirculation zones which occurs in the valleys of the corrugated airfoils. The existence of small circulation bubbles sitting in the valleys prevents large scale flow separation thus increasing the aerodynamic performance of the corrugated airfoil.

  18. Propagation of Lamb waves in one-dimensional radial phononic crystal plates with periodic corrugations

    NASA Astrophysics Data System (ADS)

    Li, Yinggang; Chen, Tianning; Wang, Xiaopeng; Yu, Kunpeng; Chen, Weihua

    2014-02-01

    In this paper, we theoretically investigate the propagation characteristics of Lamb waves in one-dimensional radial phononic crystal plates with periodic corrugations. The dispersion relations, the power transmission spectra, and the displacement fields of the eigenmodes are calculated by using the finite element method based on two-dimensional axial symmetry models in cylindrical coordinates. The axial symmetry model is validated by three-dimensional finite element model in rectangular coordinates. The effects of the geometrical parameters on the band gaps are further explored numerically. Numerical results show that several complete band gaps with a variable bandwidth exist for Lamb waves in the proposed structures. The formation mechanism of opening the acoustic band gaps is attributed to the coupling between the Lamb modes and the corrugation mode. The band gaps are significantly dependent upon the geometrical parameters such as the corrugation height, the corrugation width, and the plate thickness. Significantly, as the increase of corrugation height, band width shifts, new band gaps appear, the bands become flat, and the corrugation mode plays a more prominent role in the opening of Lamb wave band gaps. These properties of Lamb waves in the radial phononic crystal plates can potentially be applied to optimize band gaps, generate filters, and design acoustic devices.

  19. Geometrical properties of turbulent premixed flames and other corrugated interfaces.

    PubMed

    Thiesset, F; Maurice, G; Halter, F; Mazellier, N; Chauveau, C; Gökalp, I

    2016-01-01

    This study focuses on the geometrical properties of turbulent flame fronts and other interfaces. Toward that end, we use an original tool based on proper orthogonal decomposition (POD), which is applied to the interface spatial coordinates. The focus is mainly on the degree of roughness of the flame front, which is quantified through the scale dependence of its coverage arclength. POD is first validated by comparing with the caliper technique. Fractal characteristics are extracted in an unambiguous fashion using a parametric expression which appears to be impressively well suited for representing Richardson plots. Then it is shown that, for the range of Reynolds numbers investigated here, the scale-by-scale contribution to the arclength does not comply with scale similarity, irrespectively of the type of similarity which is invoked. The finite ratios between large and small scales, referred to as finite Reynolds number effects, are likely to explain this observation. In this context, the Reynolds number that ought to be achieved for a proper inertial range to be discernible, and for scale similarity to be likely to apply, is calculated. Fractal characteristics of flame folding are compared to available predictions. It is confirmed that the inner cutoff satisfactorily correlates with the Kolmogorov scale while the outer cutoff appears to be proportional to the integral length scale. However, the scaling for the fractal dimension is much less obvious. It is argued that much higher Reynolds numbers have to be reached for drawing firm statements about the evolution (or constancy) of the fractal dimension with respect to flame and flow parameters. Finally, a heuristic phenomenology of corrugated interfaces is highlighted. The degree of generality of the latter phenomenology is confirmed by comparing the folding of different interfaces including a turbulent-nonturbulent interface, a liquid jet destabilized by a surrounding air jet, a cavitating flow, and an isoscalar

  20. Superradiance of short electron pulses in regular and corrugated waveguides

    SciTech Connect

    Ginzburg, N.S.; Konoplev, I.V.; Sergeev, A.S.

    1995-12-31

    The report is devoted to theoretical and experimental study of superradiance of short electron pulses moving through waveguide systems. It is suggested that electrons oscillate or in undulator field (undulator SR) or in homogeneous magnetic field (cyclotron SR). We studied specific regimes of SR which may occur due to peculiarities of waveguide dispersion. Among them there are regimes of radiation near cut-off frequency as well as regimes of group synchronism. At the last operating regimes an electron bunch longitudinal velocity coincide with group velocity of e.m. wave. It is found the increasing of the SR instability grows rate and energy extraction efficiency in such regimes. It is also possible to observe the same enhancement using external feedback in periodically corrugated waveguide when Bragg resonance condition with forward propagated e.m. wave is fulfill. For experimental observation of cyclotron SR we intend to use compact subnanosecond accelerator RADAN 303B on the base of the high voltage generator with special subnansecond transformer. Accelerator generates short 0.3ns electron pulses with current about 1kA and particles energy 200keV. Design of magnetic confound system provide possibility to install an active locker to impose to electrons cyclotron rotation with pitch-factor about 1-1.5. According to numerical simulation at the mm and submm wavebands it is possible to achieve radiation pick power about 5-10MW with pulse duration less than 1ns.

  1. Corrugated Quantum Well Infrared Photodetector Focal Plane Array Test Results

    NASA Technical Reports Server (NTRS)

    Goldberg, A.; Choi, K. K.; Das, N. C.; La, A.; Jhabvala, M.

    1999-01-01

    The corrugated quantum-well infrared photodetector (C-QWIP) uses total internal reflection to couple normal incident light into the optically active quantum wells. The coupling efficiency has been shown to be relatively independent of the pixel size and wavelength thus making the C-QWIP a candidate for detectors over the entire infrared spectrum. The broadband coupling efficiency of the C-QWIP makes it an ideal candidate for multiwavelength detectors. We fabricated and tested C-QWIP focal plane arrays (FPAs) with cutoff wavelengths of 11.2 and 16.2 micrometers. Each FPA has 256 x 256 pixels that are bump-bonded to a direct injection readout circuit. Both FPAs provided infrared imagery with good aesthetic attributes. For the 11.2-micrometers FPA, background-limited performance (BLIP) was observed at 60 K with f/3 optics. For the 16.2-micrometers FPA, BLIP was observed at 38 K. Besides the reduction of dark current in C-QWIP structures, the measured internal quantum efficiency (eta) remains to be high. The values for responsivity and quantum efficiency obtained from the FPA results agree well with those measured for single devices.

  2. Dispersionless Manipulation of Reflected Acoustic Wavefront by Subwavelength Corrugated Surface

    PubMed Central

    Zhu, Yi-Fan; Zou, Xin-Ye; Li, Rui-Qi; Jiang, Xue; Tu, Juan; Liang, Bin; Cheng, Jian-Chun

    2015-01-01

    Free controls of optic/acoustic waves for bending, focusing or steering the energy of wavefronts are highly desirable in many practical scenarios. However, the dispersive nature of the existing metamaterials/metasurfaces for wavefront manipulation necessarily results in limited bandwidth. Here, we propose the concept of dispersionless wavefront manipulation and report a theoretical, numerical and experimental work on the design of a reflective surface capable of controlling the acoustic wavefront arbitrarily without bandwidth limitation. Analytical analysis predicts the possibility to completely eliminate the frequency dependence with a specific gradient surface which can be implemented by designing a subwavelength corrugated surface. Experimental and numerical results, well consistent with the theoretical predictions, have validated the proposed scheme by demonstrating a distinct phenomenon of extraordinary acoustic reflection within an ultra-broad band. For acquiring a deeper insight into the underlying physics, a simple physical model is developed which helps to interpret this extraordinary phenomenon and predict the upper cutoff frequency precisely. Generations of planar focusing and non-diffractive beam have also been exemplified. With the dispersionless wave-steering capability and deep discrete resolution, our designed structure may open new avenue to fully steer classical waves and offer design possibilities for broadband optical/acoustical devices. PMID:26077772

  3. Dispersionless Manipulation of Reflected Acoustic Wavefront by Subwavelength Corrugated Surface.

    PubMed

    Zhu, Yi-Fan; Zou, Xin-Ye; Li, Rui-Qi; Jiang, Xue; Tu, Juan; Liang, Bin; Cheng, Jian-Chun

    2015-01-01

    Free controls of optic/acoustic waves for bending, focusing or steering the energy of wavefronts are highly desirable in many practical scenarios. However, the dispersive nature of the existing metamaterials/metasurfaces for wavefront manipulation necessarily results in limited bandwidth. Here, we propose the concept of dispersionless wavefront manipulation and report a theoretical, numerical and experimental work on the design of a reflective surface capable of controlling the acoustic wavefront arbitrarily without bandwidth limitation. Analytical analysis predicts the possibility to completely eliminate the frequency dependence with a specific gradient surface which can be implemented by designing a subwavelength corrugated surface. Experimental and numerical results, well consistent with the theoretical predictions, have validated the proposed scheme by demonstrating a distinct phenomenon of extraordinary acoustic reflection within an ultra-broad band. For acquiring a deeper insight into the underlying physics, a simple physical model is developed which helps to interpret this extraordinary phenomenon and predict the upper cutoff frequency precisely. Generations of planar focusing and non-diffractive beam have also been exemplified. With the dispersionless wave-steering capability and deep discrete resolution, our designed structure may open new avenue to fully steer classical waves and offer design possibilities for broadband optical/acoustical devices. PMID:26077772

  4. Corrugator activity confirms immediate negative affect in surprise.

    PubMed

    Topolinski, Sascha; Strack, Fritz

    2015-01-01

    The emotion of surprise entails a complex of immediate responses, such as cognitive interruption, attention allocation to, and more systematic processing of the surprising stimulus. All these processes serve the ultimate function to increase processing depth and thus cognitively master the surprising stimulus. The present account introduces phasic negative affect as the underlying mechanism responsible for this switch in operating mode. Surprising stimuli are schema-discrepant and thus entail cognitive disfluency, which elicits immediate negative affect. This affect in turn works like a phasic cognitive tuning switching the current processing mode from more automatic and heuristic to more systematic and reflective processing. Directly testing the initial elicitation of negative affect by surprising events, the present experiment presented high and low surprising neutral trivia statements to N = 28 participants while assessing their spontaneous facial expressions via facial electromyography. High compared to low surprising trivia elicited higher corrugator activity, indicative of negative affect and mental effort, while leaving zygomaticus (positive affect) and frontalis (cultural surprise expression) activity unaffected. Future research shall investigate the mediating role of negative affect in eliciting surprise-related outcomes. PMID:25762956

  5. Corrugator activity confirms immediate negative affect in surprise

    PubMed Central

    Topolinski, Sascha; Strack, Fritz

    2015-01-01

    The emotion of surprise entails a complex of immediate responses, such as cognitive interruption, attention allocation to, and more systematic processing of the surprising stimulus. All these processes serve the ultimate function to increase processing depth and thus cognitively master the surprising stimulus. The present account introduces phasic negative affect as the underlying mechanism responsible for this switch in operating mode. Surprising stimuli are schema-discrepant and thus entail cognitive disfluency, which elicits immediate negative affect. This affect in turn works like a phasic cognitive tuning switching the current processing mode from more automatic and heuristic to more systematic and reflective processing. Directly testing the initial elicitation of negative affect by surprising events, the present experiment presented high and low surprising neutral trivia statements to N = 28 participants while assessing their spontaneous facial expressions via facial electromyography. High compared to low surprising trivia elicited higher corrugator activity, indicative of negative affect and mental effort, while leaving zygomaticus (positive affect) and frontalis (cultural surprise expression) activity unaffected. Future research shall investigate the mediating role of negative affect in eliciting surprise-related outcomes. PMID:25762956

  6. Designing the inner surface corrugations of hollow fibers to enhance CO2 absorption efficiency.

    PubMed

    Fashandi, Hossein; Zarrebini, Mohammad; Ghodsi, Ali; Saghafi, Reza

    2016-08-15

    For the first time, a low cost strategy is introduced to enhance the efficiency of CO2 absorption using gas-liquid membrane contactors. This is implemented by designing the corrugations in the inner layer of poly(vinyl chloride) hollow fibers (PVC HFs) through changing the bore fluid composition. In fact, the number of corrugations in the HF inner layer is engineered via changing the phase separation time within the inner layer. Such that expedited phase separation leads to highly corrugated inner layer. In contrast, decelerated phase separation is responsible for reduced number of inner layer corrugations. Phase separation causes the initial polymer solution with low viscoelastic moduli to be transferred into polymer-rich domains with high viscoelastic moduli. These domains resist against stretching-induced radial forces toward the center of HF; therefore, the inner layer of HF buckles. Delayed phase separation defers formation of polymer-rich domains and hence, HF with less corrugated inner surface is expected. The phase separation within the HF inner layer is controlled through changing the rate of solvent/nonsolvent exchange. This is conducted by variation the solvent content in the bore fluid; as higher as solvent content, as slower as solvent/nonsolvent exchange. PMID:27179177

  7. An experimental study of a bio-inspired corrugated airfoil for micro air vehicle applications

    NASA Astrophysics Data System (ADS)

    Murphy, Jeffery T.; Hu, Hui

    2010-08-01

    An experimental study was conducted to investigate the aerodynamic characteristics of a bio-inspired corrugated airfoil compared with a smooth-surfaced airfoil and a flat plate at the chord Reynolds number of Re C = 58,000-125,000 to explore the potential applications of such bio-inspired corrugated airfoils for micro air vehicle designs. In addition to measuring the aerodynamic lift and drag forces acting on the tested airfoils, a digital particle image velocimetry system was used to conduct detailed flowfield measurements to quantify the transient behavior of vortex and turbulent flow structures around the airfoils. The measurement result revealed clearly that the corrugated airfoil has better performance over the smooth-surfaced airfoil and the flat plate in providing higher lift and preventing large-scale flow separation and airfoil stall at low Reynolds numbers (Re C < 100,000). While aerodynamic performance of the smooth-surfaced airfoil and the flat plate would vary considerably with the changing of the chord Reynolds numbers, the aerodynamic performance of the corrugated airfoil was found to be almost insensitive to the Reynolds numbers. The detailed flow field measurements were correlated with the aerodynamic force measurement data to elucidate underlying physics to improve our understanding about how and why the corrugation feature found in dragonfly wings holds aerodynamic advantages for low Reynolds number flight applications.

  8. Diffraction of homogeneous and inhomogeneous plane waves on a doubly corrugated liquid/solid interface.

    PubMed

    Declercq, Nico F; Degrieck, Joris; Briers, Rudy; Leroy, Oswald

    2005-08-01

    This paper extends the theory of the diffraction of sound on 1D corrugated surfaces to 2D corrugated surfaces. Such surfaces, that are egg crate shaped, diffract incoming sound into all polar directions, which is fundamentally different from 1D corrugated surfaces. A theoretical justification is given for extending the classical grating equation to the case of incident inhomogeneous waves, for 1D corrugated surfaces as well as for 2D corrugated surfaces. Even though the present paper presents a theory which is valid for all angles of incidence, special attention is given to the particular case of the stimulation of surface waves by normal incident sound. The most interesting conclusion is that, depending on the frequency and the incident inhomogeneity, Scholte-Stoneley waves and leaky Rayleigh waves can be generated in different directions. This effect might be of particular interest in the development of surface acoustic wave devices and the basic idea of this steering effect can be of importance for planar actuators. PMID:15913694

  9. Linear analysis of a backward wave oscillator with triangular corrugated slow wave structure

    NASA Astrophysics Data System (ADS)

    Saber, Md. Ghulam; Sagor, Rakibul Hasan; Amin, Md. Ruhul

    2016-05-01

    In this work, a backward wave oscillator (BWO) with triangularly corrugated periodic metallic slow wave structure (TrCSWS) driven by an infinitely thin annular electron beam is studied using linear theory. The electron beam is assumed to be guided by a strong magnetic field. The triangular axial profile of the SWS is approximated by a Fourier series in order to apply the linear Rayleigh-Fourier (R-F) theory that has long been used in the theoretical analysis of BWOs with sinusoidally corrugated SWS (SCSWS). The dispersion equation for various beam parameters has been solved and the temporal growth rate (TGR) of the electromagnetic wave for the fundamental TM_{01} mode is calculated numerically. The TGR values for different beam parameters have been compared with those of the BWO with SCSWS, semi-circularly corrugated SWS (SCCSWS) and trapezoidally corrugated SWS (TCSWS). In order to compare the TGR values, the amplitude of corrugation of the TrCSWS is varied so that its dispersion curve of TM_{01} mode almost coincides with that of the SCSWS and TCSWS. The study reveals that the performance (in terms of TGR) of the proposed BWO with TrCSWS is comparable to that of other BWOs with SCSWS and TCSWS for the same set of beam parameters and it provides significantly better performance than SCCSWS. So, the proposed TrCSWS that can easily be constructed may replace SCSWS, SCCSWS or TCSWS as their viable alternative.

  10. Plastic Bronchitis.

    PubMed

    Rubin, Bruce K

    2016-09-01

    Plastic bronchitis is an uncommon and probably underrecognized disorder, diagnosed by the expectoration or bronchoscopic removal of firm, cohesive, branching casts. It should not be confused with purulent mucous plugging of the airway as seen in patients with cystic fibrosis or bronchiectasis. Few medications have been shown to be effective and some are now recognized as potentially harmful. Current research directions in plastic bronchitis research include understanding the genetics of lymphatic development and maldevelopment, determining how abnormal lymphatic malformations contribute to cast formation, and developing new treatments. PMID:27514587

  11. Cosmetic Plastic Surgery Statistics

    MedlinePlus

    2014 Cosmetic Plastic Surgery Statistics Cosmetic Procedure Trends 2014 Plastic Surgery Statistics Report Please credit the AMERICAN SOCIETY OF PLASTIC SURGEONS when citing statistical data or using ...

  12. Impact-damaged graphite-thermoplastic trapezoidal-corrugation sandwich and semi-sandwich panels

    NASA Technical Reports Server (NTRS)

    Jegley, D.

    1993-01-01

    The results of a study of the effects of impact damage on compression-loaded trapezoidal-corrugation sandwich and semi-sandwich graphite-thermoplastic panels are presented. Sandwich panels with two identical face sheets and a trapezoidal corrugated core between them, and semi-sandwich panels with a corrugation attached to a single skin are considered in this study. Panels were designed, fabricated and tested. The panels were made using the manufacturing process of thermoforming, a less-commonly used technique for fabricating composite parts. Experimental results for unimpacted control panels and panels subjected to impact damage prior to loading are presented. Little work can be found in the literature about these configurations of thermoformed panels.

  13. Measurement and correlation of aerodynamic heating to surface corrugation stiffened structures in thick turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Brandon, H. J.; Masek, R. V.

    1974-01-01

    The flow conditions for which heating distributions were measured on corrugated surfaces and wavy walls in turbulent boundary layers are shown, along with the ratio of the displacement thickness to the roughness height versus the local edge Mach number for an equivalent smooth surface. The present data are seen to greatly extend the range of data available on corrugated surfaces in turbulent boundary layers. These data were obtained by testing fullscale corrugation roughened panels in the wall boundary layer of a supersonic and hypersonic wind tunnel. The experimental program used to obtain the data is described. The data are analyzed and correlated in terms of the pertinent flow and geometric parameters. The developed correlations are compared with the available thin boundary layer data, as well as with previously published correlation techniques.

  14. Demonstration of nonlinear-energy-spread compensation in relativistic electron bunches with corrugated structures.

    PubMed

    Fu, Feichao; Wang, Rui; Zhu, Pengfei; Zhao, Lingrong; Jiang, Tao; Lu, Chao; Liu, Shengguang; Shi, Libin; Yan, Lixin; Deng, Haixiao; Feng, Chao; Gu, Qiang; Huang, Dazhang; Liu, Bo; Wang, Dong; Wang, Xingtao; Zhang, Meng; Zhao, Zhentang; Stupakov, Gennady; Xiang, Dao; Zhang, Jie

    2015-03-20

    High quality electron beams with flat distributions in both energy and current are critical for many accelerator-based scientific facilities such as free-electron lasers and MeV ultrafast electron diffraction and microscopes. In this Letter, we report on using corrugated structures to compensate for the beam nonlinear energy chirp imprinted by the curvature of the radio-frequency field, leading to a significant reduction in beam energy spread. By using a pair of corrugated structures with orthogonal orientations, we show that the quadrupole wakefields, which, otherwise, increase beam emittance, can be effectively canceled. This work also extends the applications of corrugated structures to the low beam charge (a few pC) and low beam energy (a few MeV) regime and may have a strong impact in many accelerator-based facilities. PMID:25839281

  15. Error-related electromyographic activity over the corrugator supercilii is associated with neural performance monitoring.

    PubMed

    Elkins-Brown, Nathaniel; Saunders, Blair; Inzlicht, Michael

    2016-02-01

    Emerging research in social and affective neuroscience has implicated a role for affect and motivation in performance monitoring and cognitive control. No study, however, has investigated whether facial electromyography (EMG) over the corrugator supercilii-a measure associated with negative affect and the exertion of effort-is related to neural performance monitoring. Here, we explored these potential relationships by simultaneously measuring the error-related negativity, error positivity (Pe), and facial EMG over the corrugator supercilii muscle during a punished, inhibitory control task. We found evidence for increased facial EMG activity over the corrugator immediately following error responses, and this activity was related to the Pe for both between- and within-subject analyses. These results are consistent with the idea that early, avoidance-motivated processes are associated with performance monitoring, and that such processes may also be related to orienting toward errors, the emergence of error awareness, or both. PMID:26470645

  16. A Simple Experiment to Explore Standing Waves in a Flexible Corrugated Sound Tube

    NASA Astrophysics Data System (ADS)

    Amorim, Maria Eva; Sousa, Teresa Delmira; Carvalho, P. Simeão; Sousa, Adriano Sampaioe

    2011-09-01

    Sound tubes, pipes, and singing rods are used as musical instruments and as toys to perform amusing experiments. In particular, corrugated tubes present unique characteristics with respect to the sounds they can produce; that is why they have been studied so intensively, both at theoretical and experimental levels.1-4 Experimental studies usually involve expensive and sophisticated equipment that is out of reach of school laboratory facilities.3-6 In this paper we show how to investigate quantitatively the sounds produced by a flexible sound tube corrugated on the inside by using educational equipment readily available in school laboratories, such as the oscilloscope, the microphone, the anemometer, and the air pump. We show that it is possible for students to study the discontinuous spectrum of sounds produced by a flexible corrugated tube and go even further, computing the speed of sound in air with a simple experimental procedure.

  17. Ohmic Losses During Scattering of a Plane Electromagnetic Wave by a Metal Corrugated Surface

    NASA Astrophysics Data System (ADS)

    Koposova, E. V.

    2015-10-01

    We estimate the ohmic losses in the case of scattering of a plane electromagnetic wave by a metal corrugated surface. Comparative analysis of the losses is performed for different regimes of wave incidence and scattering (self-collimation and different incidence angles), and their dependence on the amplitude and shape of the corrugation profile is studied. The study is based on numerical solving of the integral equation which describes the diffraction of a plane electromagnetic wave by a corrugated interface between two dielectrics. Metal is regarded as a dielectric with purely imaginary dielectric permittivity of a great value which is determined by metal conductivity. The waves with E polarization (i.e., the waves with the electric-field vector directed along the grooves), which are used in echelette gyrotron cavities, are studied in detail.

  18. Plastics Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document contains 16 units to consider for use in a tech prep competency profile for the occupation of plastics technician. All the units listed will not necessarily apply to every situation or tech prep consortium, nor will all the competencies within each unit be appropriate. Several units appear within each specific occupation and would…

  19. Corrugated velocity pattern in spiral galaxies: NGC 278, NGC 1058, NGC 2500 and UGC 3574

    NASA Astrophysics Data System (ADS)

    Sánchez Gil, M. C.; Alfaro, E. J.; Pérez, E.

    2011-11-01

    We report the detection in Hα emission of a radial corrugation pattern in the vertical velocity field of a sample of nearby face-on, spiral galaxies. We obtain long-slit spectra with the double arm ISIS spectrograph, attached to the 4.2 m William Herschel Telescope. The existence of corrugations has been already reported, e.g. Alfaro et al. (2001), Matthews & Uson (2008). Corrugations are closely link, as cause/effect, to the large scale star formation processes: density waves, tidal interactions, galactic bores, collisions of high velocity clouds with disk, etc. Which mechanism is the origin of disk corrugations is still an open problem. In this work not only the existence of radial and azimuthal corrugations are clearly observed, we report a first systematic study on the velocity corrugations in a sample of nearly face-on spiral galaxies. NGC 278 and NGC 1058 show a similar behavior to NGC 5427 (Alfaro et al. 2001), with a clear displacement between the velocities and emission line peaks. Where the approaching velocity peaks occur in the convex border of the arms, and the receding maxima are located behind the Hα emission maxima, in the concave side. This kinematical behavior is similar to the one expected in a galactic bore generated by the interaction of a spiral density wave with a thick gaseous disk. NGC 2500 and UGC 3574 do not show so clear this last relation between the velocity and emission line peaks, a possible cause should a fainter and discontinuous Hα emission. Oddly, these two pairs of galaxies also differ between them in their ionization mechanism features obtained from diagnostic diagrams.

  20. Graphene-assisted near-field radiative heat transfer between corrugated polar materials

    SciTech Connect

    Liu, X. L.; Zhang, Z. M.

    2014-06-23

    Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

  1. Casimir force on a surface with shallow nanoscale corrugations: geometry and finite conductivity effects.

    PubMed

    Bao, Y; Guérout, R; Lussange, J; Lambrecht, A; Cirelli, R A; Klemens, F; Mansfield, W M; Pai, C S; Chan, H B

    2010-12-17

    We measure the Casimir force between a gold sphere and a silicon plate with nanoscale, rectangular corrugations with a depth comparable to the separation between the surfaces. In the proximity force approximation (PFA), both the top and bottom surfaces of the corrugations contribute to the force, leading to a distance dependence that is distinct from a flat surface. The measured Casimir force is found to deviate from the PFA by up to 10%, in good agreement with calculations based on scattering theory that includes both geometry effects and the optical properties of the material. PMID:21231564

  2. Experimental investigation of heat transfer and effectiveness in corrugated plate heat exchangers having different chevron angles

    NASA Astrophysics Data System (ADS)

    Kılıç, Bayram; İpek, Osman

    2016-06-01

    In this study, heat transfer rate and effectiveness of corrugated plate heat exchangers having different chevron angles were investigated experimentally. Chevron angles of plate heat exchangers are β = 30° and β = 60°. For this purpose, experimentally heating system used plate heat exchanger was designed and constructed. Thermodynamic analysis of corrugated plate heat exchangers having different chevron angles were carried out. The heat transfer rate and effectiveness values are calculated. The experimental results are shown that heat transfer rate and effectiveness values for β = 60° is higher than that of the other. Obtained experimental results were graphically presented.

  3. Structural efficiency studies of corrugated compression panels with curved caps and beaded webs

    NASA Technical Reports Server (NTRS)

    Davis, R. C.; Mills, C. T.; Prabhakaran, R.; Jackson, L. R.

    1984-01-01

    Curved cross-sectional elements are employed in structural concepts for minimum-mass compression panels. Corrugated panel concepts with curved caps and beaded webs are optimized by using a nonlinear mathematical programming procedure and a rigorous buckling analysis. These panel geometries are shown to have superior structural efficiencies compared with known concepts published in the literature. Fabrication of these efficient corrugation concepts became possible by advances made in the art of superplastically forming of metals. Results of the mass optimization studies of the concepts are presented as structural efficiency charts for axial compression.

  4. Elastic stability of superplastically formed/diffusion-bonded orthogonally corrugated core sandwich plates

    NASA Technical Reports Server (NTRS)

    Ko, W. L.

    1980-01-01

    The paper concerns the elastic buckling behavior of a newly developed superplastically formed/diffusion-bonded (SPF/DB) orthogonally corrugated core sandwich plate. Uniaxial buckling loads were calculated for this type of sandwich plate with simply supported edges by using orthotropic sandwich plate theory. The buckling behavior of this sandwich plate was then compared with that of an SPF/DB unidirectionally corrugated core sandwich plate under conditions of equal structural density. It was found that the buckling load for the former was considerably higher than that of the latter.

  5. Tests of Large Airfoils in the Propeller Research Tunnel, Including Two with Corrugated Surfaces

    NASA Technical Reports Server (NTRS)

    Wood, Donald H

    1930-01-01

    This report gives the results of the tests of seven 2 by 12 foot airfoils (Clark Y, smooth and corrugated, Gottingen 398, N.A.C.A. M-6, and N.A.C.A. 84). The tests were made in the propeller research tunnel of the National Advisory Committee for Aeronautics at Reynolds numbers up to 2,000,000. The Clark Y airfoil was tested with three degrees of surface smoothness. Corrugating the surface causes a flattening of the lift curve at the burble point and an increase in drag at small flying angles.

  6. Elastic constants for superplastically formed/diffusion-bonded corrugated sandwich core

    NASA Technical Reports Server (NTRS)

    Ko, W. L.

    1980-01-01

    Formulas and associated graphs for evaluating the effective elastic constants for a superplastically formed/diffusion bonded (SPF/DB) corrugated sandwich core, are presented. A comparison of structural stiffnesses of the sandwich core and a honeycomb core under conditions of equal sandwich core density was made. The stiffness in the thickness direction of the optimum SPF/DB corrugated core (that is, triangular truss core) is lower than that of the honeycomb core, and that the former has higher transverse shear stiffness than the latter.

  7. Determination of the geometric corrugation of graphene on SiC(0001) by grazing incidence fast atom diffraction

    SciTech Connect

    Zugarramurdi, A.; Debiossac, M.; Lunca-Popa, P.; Mayne, A. J.; Borisov, A. G.; Mu, Z.; Roncin, P.; Khemliche, H.; Momeni, A.

    2015-03-09

    We present a grazing incidence fast atom diffraction (GIFAD) study of monolayer graphene on 6H-SiC(0001). This system shows a Moiré-like 13 × 13 superlattice above the reconstructed carbon buffer layer. The averaging property of GIFAD results in electronic and geometric corrugations that are well decoupled; the graphene honeycomb corrugation is only observed with the incident beam parallel to the zigzag direction while the geometric corrugation arising from the superlattice is revealed along the armchair direction. Full-quantum calculations of the diffraction patterns show the very high GIFAD sensitivity to the amplitude of the surface corrugation. The best agreement between the calculated and measured diffraction intensities yields a corrugation height of 0.27 ± 0.03 Å.

  8. Photochromic plastics

    SciTech Connect

    Chu, N.Y.C.

    1990-12-31

    The benefits of photochromic glazing materials as well as other switchable devices for solar control and/or use have been analyzed. The analysis indicates that the saving in cooling costs may be significant for a commercial building. This saving can be further increased if other solar control technologies which operate in the solar spectra region outside the visible range are integrated with photochromic property. Photochromic plastics have the advantage of readiness to integrate with other solar control technologies as in the case of retrofit polyester film. The glazing applications of spirooxazines have only been considered recently. The few examples described in the preceding section are just exploratory. Improvements in photochromic performance and durability are definitely probable as more spirooxazine compounds and formulations are tested and stabilization methods are discovered. Recently, an all plastic model house was constructed by General Electric in which both photochromic and electrochromic switchable windows were employed. Thus, commercialization of photochromic plastics for glazing applications may not be as remote as it was not too long ago. 66 refs., 4 figs., 1 tab.

  9. Survey of recent work on the analysis of discretely attached corrugated shear webs.

    NASA Technical Reports Server (NTRS)

    Libove, C.

    1972-01-01

    Summary and progress report of more recent work by the author and his students on the theoretical analysis of stiffness, stresses, and deformations of corrugated shear webs with discrete, rather than continuous, attachment between the ends of the corrugations and the surrounding members. Various kinds of discrete attachment are considered, and two kinds of corrugation cross section: the trapezoidal and the curvilinear, the latter having crests and valleys made up of identical circular arcs. The more recent analyses employ the method of minimum total potential energy and the calculus of variations to obtain differential equations and boundary conditions governing the longitudinal variation of various component modes used to describe the deformations of a cross section. They are believed to be more accurate than earlier analyses in that they generally permit more degrees of freedom in the assumed deformations. In particular, they abandon the assumption, characteristic of the earlier analyses, that the straight-line generators of the corrugation remain straight during the shearing of the web.

  10. Experimental and theoretical investigation of the angular dependence of the Casimir force between sinusoidally corrugated surfaces

    NASA Astrophysics Data System (ADS)

    Banishev, A. A.; Wagner, J.; Emig, T.; Zandi, R.; Mohideen, U.

    2014-06-01

    In the current work we present the complete results for the measurement of normal Casimir force between a shallow and smooth sinusoidally corrugated gold coated sphere and a plate at various angles between the corrugations using an atomic force microscope. All measured data were compared with the theoretical approach using the proximity force approximation and theory based on derivative expansion. In both cases real material properties of the surfaces and nonzero temperature were taken into account. Special attention is paid to the description of electrostatic interactions between corrugated surfaces at different angles between corrugations and samples preparation and characterization. The measured forces are found to be in good agreement with the theory including correlation effects of geometry and material properties and deviate significantly from the predictions of the proximity force approximation approach. This provides the quantitative confirmation for the observation of diffraction-type effects that are disregarded within the PFA approach. The obtained results open new opportunities for control of the Casimir effect in micromechanical systems.

  11. Conductor load bearing roller for a gas-insulated transmission line having a corrugated outer conductor

    DOEpatents

    Fischer, William H.; Yoon, Kue H.

    1984-04-10

    A gas-insulated transmission line includes a corrugated outer conductor, an inner conductor disposed within and insulated from the outer conductor by means of support insulators and an insulating gas, and a transport device for supporting and permitting movement of the inner conductor/insulating support assembly axially along the corrugated outer conductor without radial displacement. The transport device includes two movable contacts, such as skids or rollers, supported on a common pivot lever, the pivot lever being rotatably disposed about a pivot lever axis, which pivot lever axis is in turn disposed on the periphery of a support insulator or particle trap if one is used. The movable contacts are separated axially a distance equal to the axial distance between the peaks and valleys of the corrugations of the outer conductor and separated radially a distance equal to the radial distance between the peaks and valleys of the corrugations of the outer conductor. The transport device has the pivot lever axis disposed perpendicular to the direction of travel of the inner conductor/insulating support assembly.

  12. Wakefield computations for a corrugated pipe as a beam dechirper for FEL applications

    SciTech Connect

    Ng, C. K.; Bane, K. L.F.

    2015-06-09

    A beam “dechirper” based on a corrugated, metallic vacuum chamber has been proposed recently to cancel residual energy chirp in a beam before it enters the undulator in a linac-based X-ray FEL. Rather than the round geometry that was originally proposed, we consider a pipe composed of two parallel plates with corrugations. The advantage is that the strength of the wake effect can be tuned by adjusting the separation of the plates. The separation of the plates is on the order of millimeters, and the corrugations are fractions of a millimeter in size. The dechirper needs to be meters long in order to provide sufficient longitudinal wakefield to cancel the beam chirp. Considerable computation resources are required to determine accurately the wakefield for such a long structure with small corrugation gaps. Combining the moving window technique and parallel computing using multiple processors, the time domain module in the parallel finite-element electromagnetic suite ACE3P allows efficient determination of the wakefield through convergence studies. In this paper, we will calculate the longitudinal, dipole and quadrupole wakefields for the dechirper and compare the results with those of analytical and field matching approaches.

  13. Method for producing ultrafine-grained materials using repetitive corrugation and straightening

    DOEpatents

    Zhu, Yuntian T.; Lowe, Terry C.; Jiang, Honggang; Huang, Jianyu

    2001-01-01

    A method of refining the grain structure and improving the hardness and strength properties of a metal or metal alloy workpiece is disclosed. The workpiece is subjected to forces that corrugate and then straighten the workpiece. These steps are repeated until an ultrafine-grained product having improved hardness and strength is produced.

  14. A Simple Experiment to Explore Standing Waves in a Flexible Corrugated Sound Tube

    ERIC Educational Resources Information Center

    Amorim, Maria Eva; Sousa, Teresa Delmira; Carvalho, P. Simeao; Sousa, Adriano Sampaioe

    2011-01-01

    Sound tubes, pipes, and singing rods are used as musical instruments and as toys to perform amusing experiments. In particular, corrugated tubes present unique characteristics with respect to the sounds they can produce; that is why they have been studied so intensively, both at theoretical and experimental levels. Experimental studies usually…

  15. Effects of corrugation shape on frequency band-gaps for longitudinal wave motion in a periodic elastic layer.

    PubMed

    Sorokin, Vladislav S

    2016-04-01

    The paper concerns determining frequency band-gaps for longitudinal wave motion in a periodic waveguide. The waveguide may be considered either as an elastic layer with variable thickness or as a rod with variable cross section. As a result, widths and locations of all frequency band-gaps are determined by means of the method of varying amplitudes. For the general symmetric corrugation shape, the width of each odd band-gap is controlled only by one harmonic in the corrugation series with its number being equal to the number of the band-gap. Widths of even band-gaps, however, are influenced by all the harmonics involved in the corrugation series, so that the lower frequency band-gaps can emerge. These are band-gaps located below the frequency corresponding to the lowest harmonic in the corrugation series. For the general non-symmetric corrugation shape, the mth band-gap is controlled only by one, the mth, harmonic in the corrugation series. The revealed insights into the mechanism of band-gap formation can be used to predict locations and widths of all frequency band-gaps featured by any corrugation shape. These insights are general and can be valid also for other types of wave motion in periodic structures, e.g., transverse or torsional vibration. PMID:27106336

  16. Nonlinear deformation of a longitudinally corrugated shell structure with uniform load

    NASA Astrophysics Data System (ADS)

    Yang, Lin; He, Zeng; Jiang, Wen

    2012-11-01

    In this paper, we study the nonlinear deformation of a longitudinally corrugated shell (a type of morphing structure) with a uniform load. We derived the governing equations of the deformations of that corrugated shell with Nayfeh and Pai's [1] initial curvature of shell geometries and developed numerical solutions for that nonlinear mechanics problem. This numerical method is extremely efficient since no element discretization is implemented. The obtained solutions can be verified by comparing with the analytical solution for the same structure with infinitesimal strains. Furthermore, we apply the present method to study a cylindrical shell under the uniform internal pressure, and find that the displacements and internal forces of the cylindrical shell agree well with results obtained from von Kármán nonlinear shell theory. Finally, from parametric studies, we can figure out that the increment of the percentage of the arc part and the total length of the corrugated ring can increase the expansion and internal forces of the corrugated ring. And the configuration of the corrugated ring are more sensitive to the change of geometry and material parameters than internal forces, which indicate that the morphing function can be realized through the change of geometry and material parameters of the structure without great change in the maximum internal forces of the ring. By comparing the results from present nonlinear theory with those from linear theory, we can also find that the displacements and internal forces obtained from linear shell theory can either be exaggerated or disguised for the different configurations of the ring.

  17. Research on a 170 GHz, 2 MW coaxial cavity gyrotron with inner-outer corrugation

    SciTech Connect

    Hou, Shenyong; Yu, Sheng; Li, Hongfu

    2015-03-15

    In this paper, a coaxial cavity gyrotron with inner-outer corrugation is researched. The electron kineto-equations and the first order transmission line equations of the gyrotron are derived from Lorentz force equation and the transmission line theory, respectively. And then, a 2 MW, 170 GHz coaxial cavity gyrotron with inner-outer corrugation is designed. By means of numerical calculation, the beam-wave interaction of the coaxial cavity gyrotron with inner-outer corrugation is investigated. Results show that the efficient and the outpower of the gyrotron are 42.3% and 2.38 MW, respectively.

  18. Analysis of a disk-on-rod surface wave element inside a corrugated horn using the mode-matching technique

    NASA Technical Reports Server (NTRS)

    Chen, J. C.

    1995-01-01

    A disk-on-rod inside a corrugated horn is one of the horn configurations for dual-frequency or wide-band operation. A mode-matching analysis method is described. A disk-on-rod inside a corrugated horn is represented as a series of coaxial waveguide sections and circular waveguide sections connected to each other. Three kinds of junctions need to be considered: coaxial-to-coaxial, coaxial-to-circular, and circular-to-circular. A computer program was developed to calculate the scattering matrix and the radiation pattern of a disk-on-rod inside a corrugated horn. The software as verified by experiment, and good agreement between calculation and measurement was obtained. The disk-on-rod inside a corrugated horn design gives an option to the Deep Space Network dual-frequency operation system, which currently is a two-horn/one-dichroic plate system.

  19. Particle trap to sheath contact for a gas-insulated transmission line having a corrugated outer conductor

    DOEpatents

    Fischer, William H.; Cookson, Alan H.; Yoon, Kue H.

    1984-04-10

    A particle trap to outer elongated conductor or sheath contact for gas-insulated transmission lines. The particle trap to outer sheath contact of the invention is applicable to gas-insulated transmission lines having either corrugated or non-corrugated outer sheaths. The contact of the invention includes an electrical contact disposed on a lever arm which in turn is rotatably disposed on the particle trap and biased in a direction to maintain contact between the electrical contact and the outer sheath.

  20. Simulation and analysis on ultrasonic testing for the cement grouting defects of the corrugated pipe

    NASA Astrophysics Data System (ADS)

    Qingbang, Han; Ling, Chen; Changping, Zhu

    2014-02-01

    The defects exist in the cement grouting process of prestressed corrugated pipe may directly impair the bridge safety. In this paper, sound fields propagation in concrete structures with corrugated pipes and the influence of various different defects are simulated and analyzed using finite element method. The simulation results demonstrate a much complex propagation characteristic due to multiple reflection, refraction and scattering, where the scattering signals caused by metal are very strong, while the signals scattered by an air bubble are weaker. The influence of defect both in time and frequency domain are found through deconvolution treatment. In the time domain, the deconvolution signals correspond to larger defect display a larger head wave amplitude and shorter arrive time than those of smaller defects; in the frequency domain, larger defect also shows a stronger amplitude, lower center frequency and lower cutoff frequency.

  1. Flow noise in a corrugated pipe in terms of the theory of instability waves

    NASA Astrophysics Data System (ADS)

    Kopiev, V. F.; Mironov, M. A.; Yakovets, M. A.

    2015-09-01

    An air flow through a pipe with a corrugated inner surface is accompanied by the generation of a tone (multitone), i.e., coherent, acoustic signal. The main processes giving rise to such a generation include the forced excitation of the active medium in the resonator (the pipe) and the feedback, which leads to nonlinear amplification of one or several resonator harmonics because of the nonlinear competition of waves. The medium in the pipe becomes active owing to the processes that accompany the air flow about the corrugated wall. The purpose of the present study is to provide qualitative explanations based on a simple example for the possibility of multitone sound generation, as well as for the known experimental data.

  2. Low-Frequency Quasi-Periodic Oscillations and Iron Line Variability of Discoseismic Corrugation Modes

    NASA Astrophysics Data System (ADS)

    Butsky, Iryna; Tsang, D.

    2013-01-01

    Using a fast semi-analytic raytracing code, we study the variability of iron lines due to discoseismic oscillations concentrated in the inner-most regions of accretion discs around black holes. The dependence of the relativistically broadened line profile on the oscillation-phase is studied for discoseismic corrugation modes. The corrugation mode, or c-mode, is of particular interest as their natural frequency corresponds well to the 0.1-10 Hz range observed for low-frequency quasi-periodic oscillations (LFQPOs) in X-ray binaries. Comparison of the oscillation phase dependent variability and QPO-phase stacked Fe-Kalpha line observations will allow such discoseismic models to be confirmed or ruled out as a source of LFQPOs.

  3. Wavelength filtering and demultiplexing devices based on ultrathin corrugated MIM waveguides

    NASA Astrophysics Data System (ADS)

    Yang, Bao Jia; Zhou, Yong Jin

    2016-05-01

    We have numerically investigated the transmission properties of spoof surface plasmon polaritons on the ultrathin corrugated metal-insulator-metal (MIM) waveguides with different grooves. A band-pass plasmonic filter with T-shaped grooves and a compact 4-way wavelength division demultiplexing (WDM) incorporating the filter have been proposed. The whole 4-way WDM is more compact by the use of corrugated MIM waveguides with meander grooves. The near electric field distributions show that electromagnetic waves at different frequencies are guided and propagate along different branches with good isolation between branches. The experimental and numerical results have shown good agreements and validated the functions of the 4-way wavelength splitter. We also numerically investigate the 4-way WDM at terahertz frequencies by scaling down the whole structure. It is believed that the spoof plasmonic devices can find more applications in the plasmonic integration platform, such as optical communications, signal processing and spectral engineering.

  4. Wavelength shifts of cladding-mode resonance in corrugated long-period fiber gratings under torsion.

    PubMed

    Ivanov, Oleg V; Wang, Lon A

    2003-05-01

    A finite deformation theory of elasticity and a theory of nonlinear photoelasticity are applied to describe the wavelength shifts of cladding-mode resonance in corrugated long-period fiber gratings under torsion. The deformation of fiber is found by use of the Murnaghan model of a solid elastic body. The quadratic photoelastic effect that is proportional to the second-order displacement gradient is investigated and compared with the classical photoelastic effect. The electromagnetic field in the twisted corrugated structure is presented as a superposition of circularly polarized modes of the etched fiber section. The wavelength shift is found to be proportional to the square of the twist angle. As predicted by our theory, a wavelength shift of the same nature has been found in a conventionally photoinduced long-period fiber grating. PMID:12737456

  5. Long-range spoof surface plasmons on the doubly corrugated metal surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Yong-Qiang; Kong, Ling-Bao; Liu, Pu-Kun

    2016-07-01

    In this paper, symmetric spoof surface plasmon (SSP) mode on the doubly corrugated metal surfaces is indentified as long-range spoof surface plasmon (LRSSP) because of its extreme low propagation loss and symmetric dominant field profile so as short-range SSP (SRSSP) for anti-symmetric mode. Based on theoretical calculation and numerical simulation of finite integration method, symmetric and anti-symmetric SSP modes with various gap sizes between these two identical corrugated metal surfaces are investigated in terahertz (THz) regime and good agreement is realized. Besides, the low loss superiority of LRSSP diminishes along with the increased gap size. This work opens up new avenues to utilize this long-range surface mode in far-infrared, THz or lower frequency band and can find many potential applications such as low-loss waveguide, filters and novel electronic sources.

  6. Enhanced response and sensitivity of self-corrugated graphene sensors with anisotropic charge distribution

    PubMed Central

    Yol Jeong, Seung; Jeong, Sooyeon; Won Lee, Sang; Tae Kim, Sung; Kim, Daeho; Jin Jeong, Hee; Tark Han, Joong; Baeg, Kang-Jun; Yang, Sunhye; Seok Jeong, Mun; Lee, Geon-Woong

    2015-01-01

    We introduce a high-performance molecular sensor using self-corrugated chemically modified graphene as a three dimensional (3D) structure that indicates anisotropic charge distribution. This is capable of room-temperature operation, and, in particular, exhibiting high sensitivity and reversible fast response with equilibrium region. The morphology consists of periodic, “cratered” arrays that can be formed by condensation and evaporation of graphene oxide (GO) solution on interdigitated electrodes. Subsequent hydrazine reduction, the corrugated edge area of the graphene layers have a high electric potential compared with flat graphene films. This local accumulation of electrons interacts with a large number of gas molecules. The sensitivity of 3D-graphene sensors significantly increases in the atmosphere of NO2 gas. The intriguing structures have several advantages for straightforward fabrication on patterned substrates, high-performance graphene sensors without post-annealing process. PMID:26053892

  7. Spoof localized surface plasmons in corrugated ring structures excited by microstrip line.

    PubMed

    Yang, Bao Jia; Zhou, Yong Jin; Xiao, Qian Xun

    2015-08-10

    We have investigated the fundamental and high-order spoof localized surface plasmons (LSPs) modes in the proposed corrugated ring resonator printed on a thin dielectric substrate with or without ground plane. An efficient and ease-of-integration method to excite spoof LSPs in the textured ring resonator has been adopted to suppress unwanted high-order modes and enhance fundamental modes. A multi-band-pass filter has been proposed and numerically demonstrated. Experimental results at the microwave frequencies verify the high performances of the corrugated ring resonator and the filter, showing great agreements with the simulation results. We have also shown that the fabricated device is sensitive to the variation of the refraction index of materials under test, even when the material is as thin as paper. PMID:26367991

  8. Simulation and analysis on ultrasonic testing for the cement grouting defects of the corrugated pipe

    SciTech Connect

    Qingbang, Han; Ling, Chen; Changping, Zhu

    2014-02-18

    The defects exist in the cement grouting process of prestressed corrugated pipe may directly impair the bridge safety. In this paper, sound fields propagation in concrete structures with corrugated pipes and the influence of various different defects are simulated and analyzed using finite element method. The simulation results demonstrate a much complex propagation characteristic due to multiple reflection, refraction and scattering, where the scattering signals caused by metal are very strong, while the signals scattered by an air bubble are weaker. The influence of defect both in time and frequency domain are found through deconvolution treatment. In the time domain, the deconvolution signals correspond to larger defect display a larger head wave amplitude and shorter arrive time than those of smaller defects; in the frequency domain, larger defect also shows a stronger amplitude, lower center frequency and lower cutoff frequency.

  9. Self-Trapping of Diskoseismic Corrugation Modes in Neutron Star Spacetimes

    NASA Astrophysics Data System (ADS)

    Tsang, David; Pappas, George

    2016-02-01

    We examine the effects of higher-order multipole contributions of rotating neutron star (NS) spacetimes on the propagation of corrugation (c-)modes within a thin accretion disk. We find that the Lense-Thirring precession frequency, which determines the propagation region of the low-frequency fundamental corrugation modes, can experience a turnover allowing for c-modes to become self-trapped for sufficiently high dimensionless spin j and quadrupole rotational deformability α. If such self-trapping c-modes can be detected, e.g., through phase-resolved spectroscopy of the iron line for a high-spin low-mass accreting neutron star, this could potentially constrain the spin-induced NS quadrupole and the NS equation of state.

  10. Buckling test of a 3-meter-diameter corrugated graphite-epoxy ring-stiffened cylinder

    NASA Technical Reports Server (NTRS)

    Davis, R. C.

    1982-01-01

    A three m diameter by three m long corrugated cylindrical shell with external stiffening rings was tested to failure by buckling. The corrugation geometry for the graphite epoxy composite cylinder wall was optimized to withstand a compressive load producing an ultimate load intensity of 157.6 kN/m without buckling. The test method used to produce the design load intensity was to mount the specimen as a cantilevered cylinder and apply a pure bending moment to the end. A load introduction problem with the specimen was solved by using the BOSOR 4 shell of revolution computer code to analyze the shell and attached loading fixtures. The cylinder test loading achieved was 101 percent of design ultimate, and the resulting mass per unit of shell wall area was 1.96 kg/sq m.

  11. Enhanced response and sensitivity of self-corrugated graphene sensors with anisotropic charge distribution

    NASA Astrophysics Data System (ADS)

    Yol Jeong, Seung; Jeong, Sooyeon; Won Lee, Sang; Tae Kim, Sung; Kim, Daeho; Jin Jeong, Hee; Tark Han, Joong; Baeg, Kang-Jun; Yang, Sunhye; Seok Jeong, Mun; Lee, Geon-Woong

    2015-06-01

    We introduce a high-performance molecular sensor using self-corrugated chemically modified graphene as a three dimensional (3D) structure that indicates anisotropic charge distribution. This is capable of room-temperature operation, and, in particular, exhibiting high sensitivity and reversible fast response with equilibrium region. The morphology consists of periodic, “cratered” arrays that can be formed by condensation and evaporation of graphene oxide (GO) solution on interdigitated electrodes. Subsequent hydrazine reduction, the corrugated edge area of the graphene layers have a high electric potential compared with flat graphene films. This local accumulation of electrons interacts with a large number of gas molecules. The sensitivity of 3D-graphene sensors significantly increases in the atmosphere of NO2 gas. The intriguing structures have several advantages for straightforward fabrication on patterned substrates, high-performance graphene sensors without post-annealing process.

  12. Quasiclassical trajectory studies of rigid rotor--rigid surface scattering. II. Corrugated surface

    SciTech Connect

    Park, S.C.; Bowman, J.M.

    1984-03-01

    The quasiclassical trajectory method, previously applied to rigid rotor--rigid flat surface scattering (J. M. Bowman and S. C. Park, J. Chem. Phys. 77, 5441 (1982)) is applied to a rigid rotor--rigid corrugated surface, i.e., a N/sub 2/--LiF(001), system. The mechanisms for rotational excitation at low and high collision energies are studied as well as their dependence on initial beam orientation and corrugation strength. A significant correlation between long-lived trajectories and high rotational excitation is found for low energy collisions and rotational rainbows are clearly observed in the high energy regime, although these features are broadened relative to the flat surface reported previously.

  13. Tailoring the surface of ZnO nanorods into corrugated nanorods via a selective chemical etch method

    NASA Astrophysics Data System (ADS)

    Duan, Xiangyang; Chen, Guangde; Li, Chu; Yin, Yuan; Jin, Wentao; Guo, Lu’an; Ye, Honggang; Zhu, Youzhang; Wu, Yelong

    2016-07-01

    Using the chemical vapour deposition method, we successfully converted smooth ZnO nanorods (NRs) into corrugated NRs by simply increasing the reaction time. The surface morphology and crystallographic structure of the corrugated NRs were investigated. The corrugated NRs were decorated by alternant (11\\bar{2}1) and (11\\bar{2}\\bar{1}) planes at the exposed side surfaces while the conventional \\{10\\bar{1}0\\} planes disappeared. No twinning boundaries were found in the periodically corrugated structures, indicating that they were type II corrugated NRs. Further investigation told us that they were selectively etched. We introduced a hydrothermal method to synthesize the smooth ZnO NRs and then etched them in a tube furnace at 950 °C with a flow of carbon monoxide. By separating the growth stage and the selective etching stage, we explicitly demonstrated a successfully selective etching effect on ZnO NRs with a carbon monoxide reducing atmosphere for the first time. An etching mechanism based on the selective reaction between carbon monoxide and the different exposed surfaces was proposed. Our results will improve the understanding of the growth mechanism on coarse or corrugated NRs and provide a new strategy for the application of surface controlled nanostructured materials.

  14. Tailoring the surface of ZnO nanorods into corrugated nanorods via a selective chemical etch method.

    PubMed

    Duan, Xiangyang; Chen, Guangde; Li, Chu; Yin, Yuan; Jin, Wentao; Guo, Lu'an; Ye, Honggang; Zhu, Youzhang; Wu, Yelong

    2016-07-22

    Using the chemical vapour deposition method, we successfully converted smooth ZnO nanorods (NRs) into corrugated NRs by simply increasing the reaction time. The surface morphology and crystallographic structure of the corrugated NRs were investigated. The corrugated NRs were decorated by alternant [Formula: see text] and [Formula: see text] planes at the exposed side surfaces while the conventional [Formula: see text] planes disappeared. No twinning boundaries were found in the periodically corrugated structures, indicating that they were type II corrugated NRs. Further investigation told us that they were selectively etched. We introduced a hydrothermal method to synthesize the smooth ZnO NRs and then etched them in a tube furnace at 950 °C with a flow of carbon monoxide. By separating the growth stage and the selective etching stage, we explicitly demonstrated a successfully selective etching effect on ZnO NRs with a carbon monoxide reducing atmosphere for the first time. An etching mechanism based on the selective reaction between carbon monoxide and the different exposed surfaces was proposed. Our results will improve the understanding of the growth mechanism on coarse or corrugated NRs and provide a new strategy for the application of surface controlled nanostructured materials. PMID:27276661

  15. MTR BUILDING, TRA603. EAST SIDE. CAMERA FACING WEST. CORRUGATED IRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR BUILDING, TRA-603. EAST SIDE. CAMERA FACING WEST. CORRUGATED IRON BUILDING MARKED WITH "X" IS TRA-651. TRA-626, TO ITS RIGHT, HOUSED COMPRESSOR EQUIPMENT FOR THE AIRCRAFT NUCLEAR PROPULSION PROGRAM. LATER, IT WAS USED FOR STORAGE. INL NEGATIVE NO. HD46-42-4. Mike Crane, Photographer, April 2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  16. Effects of Antimicrobial Peptide Revealed by Simulations: Translocation, Pore Formation, Membrane Corrugation and Euler Buckling

    PubMed Central

    Chen, Licui; Jia, Nana; Gao, Lianghui; Fang, Weihai; Golubovic, Leonardo

    2013-01-01

    We explore the effects of the peripheral and transmembrane antimicrobial peptides on the lipid bilayer membrane by using the coarse grained Dissipative Particle Dynamics simulations. We study peptide/lipid membrane complexes by considering peptides with various structure, hydrophobicity and peptide/lipid interaction strength. The role of lipid/water interaction is also discussed. We discuss a rich variety of membrane morphological changes induced by peptides, such as pore formation, membrane corrugation and Euler buckling. PMID:23579956

  17. Corrugation-pitch-modulated DFB semiconductor lasers realized by common holographic exposure

    NASA Astrophysics Data System (ADS)

    Li, Simin; Li, Lianyan; Shi, Yuechun; Cao, Baoli; Guo, Renjia; Zheng, Junshou; Chen, Xiangfei

    2014-07-01

    Experimental results of corrugation-pitch-modulated (CPM) DFB lasers with distributed phase shift (DPS) based on reconstruction-equivalent-chirp (REC) technique are demonstrated. The DPS can flatten the light intensity distribution along the laser cavity and reduce the spatial hole burning (SHB). The lasers have good single longitudinal mode (SLM) property even under high injection current. Thanks to the sampling technique, the grating can be easily fabricated by holographic exposure and conventional lithograph.

  18. Fast diffusion along defects and corrugations in phospholipid P beta, liquid crystals.

    PubMed Central

    Schneider, M B; Chan, W K; Webb, W W

    1983-01-01

    The diffusion of a fluorescent lipid analogue in liquid crystals of the anisotropic P beta, phase of dimyristoylphosphatidylcholine (DMPC) had been found to be highly variable, suggesting structural defect pathways. Fluorescence photobleaching recovery (FPR) experiments imply two effective diffusion pathways with coefficients differing by at least 100. This is consistent with fast diffusion along submicroscopic bands of disordered material ("defects") in the bilayer corrugations characteristic of this phase. Due to strains during transformation from the L alpha phase, the axis of the corrugations is ordinarily disrupted by mosaic patches rotationally disoriented within the mean plane of the molecular bilayers, although larger oriented domains are sometimes adventitiously aligned into microscopically visible striped textures. The corrugations are also systematically aligned along positive disclinations pairs or "oily streaks." Thus, fast diffusion occurs parallel to the disclination lines and along the textured stripes. FPR results yield an upper limit on the effective diffusion in the ordered material of D less than or equal to 2 X 10(-16) cm2/s at 22 degrees C, D less than or equal to 3 X 10(-17) cm2/s at 13 degrees C. In contrast the diffusion coefficient along defect pathways where disordered ribbons are aligned is D approximately 4 X 10(-11) cm2/s at 16 degrees C. Images FIGURE 4 FIGURE 6 FIGURE 7 PMID:6616004

  19. Method of Green's function of nonlinear vibration of corrugated shallow shells

    NASA Astrophysics Data System (ADS)

    Yuan, Hong

    2008-06-01

    Based on the dynamic equations of nonlinear large deflection of axisymmetric shallow shells of revolution, the nonlinear free vibration and forced vibration of a corrugated shallow shell under concentrated load acting at the center have been investigated. The nonlinear partial differential equations of shallow shell were reduced to the nonlinear integral-differential equations by using the method of Green’s function. To solve the integral-differential equations, the expansion method was used to obtain Green’s function. Then the integral-differential equations were reduced to the form with a degenerate core by expanding Green’s function as a series of characteristic function. Therefore, the integral-differential equations became nonlinear ordinary differential equations with regard to time. The amplitude-frequency relation, with respect to the natural frequency of the lowest order and the amplitude-frequency response under harmonic force, were obtained by considering single mode vibration. As a numerical example, nonlinear free and forced vibration phenomena of shallow spherical shells with sinusoidal corrugation were studied. The obtained solutions are available for reference to the design of corrugated shells.

  20. Atomic force spectroscopy and density-functional study of graphene corrugation on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Voloshina, Elena; Dedkov, Yuriy

    2016-06-01

    Graphene, the thinnest material in the world, can form moiré structures on different substrates, including graphite, h -BN, or metal surfaces. In such systems, the structure of graphene, i.e., its corrugation, as well as its electronic and elastic properties, are defined by the combination of the system geometry and local interaction strength at the interface. The corrugation in such structures on metals is heavily extracted from diffraction or local probe microscopy experiments, and it can be obtained only via comparison with theoretical data, which usually simulate the experimental findings. Here we show that graphene corrugation on metals can be measured directly employing atomic force spectroscopy, and the obtained value coincides with state-of-the-art theoretical results. The presented results demonstrate an unexpected space selectivity for the Δ f (z ) signal in the atomic force spectroscopy in the moiré graphene lattice on Ru(0001), which is explained by the different response of the graphene layer on the indentation process. We also address the elastic reaction of the formed graphene nanodoms on the indentation process by the scanning tip that is important for the modeling and fabrication of graphene-based nanoresonators on the nanoscale.

  1. Experimental investigation on the dynamic response of clamped corrugated sandwich plates subjected to underwater impulsive loadings

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Zhang, Wei; Li, Dacheng; Hypervelocity Impact Research Center Team

    2015-06-01

    Corrugated sandwich plates are widely used in marine industry because such plates have high strength-to-weight ratios and blast resistance. The laboratory-scaled fluid-structure interaction experiments are performed to demonstrate the shock resistance of solid monolithic plates and corrugated sandwich plates by quantifying the permanent transverse deflection at mid-span of the plates as a function of impulsive loadings per areal mass. Sandwich structures with 6mm-thick and 10mm-thick 3003 aluminum corrugated core and 5A06 face sheets are compared with the 5A06 solid monolithic plates in this paper. The dynamic deformation of plates are captured with the the 3D digital speckle correlation method (DIC). The results affirm that sandwich structures show a 30% reduction in the maximum plate deflection compare with a monolithic plate of identical mass per unit area, and the peak value of deflection effectively reduced by increasing the thickness core. The failure modes of sandwich plates consists of core crushing, imprinting, stretch tearing of face sheets, bending and permanent deformation of entire structure with the increasing impulsive loads, and the failure mechanisms are analyzed with the postmortem panels and dynamic deflection history captured by cameras. National Natural Science Foundation of China (NO.: 11372088).

  2. Fabrication and evaluation of superplastically formed/weld-brazed corrugated compression panels with beaded webs

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Davis, R. C.; Shinn, J. M., Jr.; Bales, T. T.; Wiant, H. R.

    1985-01-01

    A study was made to investigate the feasibility of superplastically forming corrugated panels with beaded webs and to demonstrate the structural integrity of these panels by testing. The test panels in the study consist of superplastically formed titanium alloy Ti-6Al-4V half-hat elements that are joined by weld-brazing to titanium alloy Ti-6Al-4V caps to form either single-corrugation compression panels or multiple-corrugation compression panels. Stretching and subsequent thinning of the titanium sheet during superplastic forming is reduced by approximately 35 percent with a shallow half-hat die concept instead of a deep die concept and results in a more uniform thickness across the beaded webs. The complete panels are tested in end compression at room temperature and the results compared with analysis. The heavily loaded panels failed at loads approaching the yield strength of the titanium material. At maximum load, the caps wrinkled locally accompanied with separation of the weld-braze joint in the wrinkle. None of the panels tested, however, failed catastrophically in the weld-braze joint. Experimental test results are in good agreement with structural analysis of the panels.

  3. Flow Regimes of Air-Water Counterflow Through Cross Corrugated Parallel Plates

    SciTech Connect

    de Almeida, V.F.

    2000-06-07

    Heretofore unknown flow regimes of air-water counterflow through a pair of transparent vertical parallel cross corrugated plates were observed via high-speed video. Air flows upward driven by pressure gradient and water, downward driven by gravity. The crimp geometry of the corrugations was drawn from typical corrugated sheets used as filling material in modern structured packed towers. Four regimes were featured, namely, rivulet, bicontinuous, flooding fronts, and flooding waves. It is conceivable that the regimes observed might constitute the basis for understanding how gas and liquid phases contend for available space in the interstices of structured packings in packed towers. Flow regime transitions were expressed in terms of liquid load (liquid superficial velocity) and gas flow factor parameters commonly used in pressure drop and capacity curves. We have carefully examined the range of parameters equivalent to the ill-understood high-liquid-flow operation in packed towers. More importantly, our findings should prove valuable in validating improved first-principles modeling of gas-liquid flows in these industrially important devices.

  4. Corrugated Waveguide and Directional Coupler for CW 250-GHz Gyrotron DNP Experiments

    PubMed Central

    Woskov, Paul P.; Bajaj, Vikram S.; Hornstein, Melissa K.; Temkin, Richard J.; Griffin, Robert G.

    2007-01-01

    A 250-GHz corrugated transmission line with a directional coupler for forward and backward power monitoring has been constructed and tested for use with a 25-W continuous-wave gyrotron for dynamic nuclear polarization (DNP) experiments. The main corrugated line (22-mm internal diameter, 2.4-m long) connects the gyrotron output to the DNP probe input. The directional coupler, inserted approximately midway, is a four-port crossed waveguide beamsplitter design. Two beamsplitters, a quartz plate and ten-wire array, were tested with output coupling of 2.5% (−16 dB) at 250.6 GHz and 1.6% (−18 dB), respectively. A pair of mirrors in the DNP probe transferred the gyrotron beam from the 22-mm waveguide to an 8-mm helically corrugated waveguide for transmission through the final 0.58-m distance inside the NMR magnet to the sample. The transmission-line components were all cold tested with a 248 ± 4-GHz radiometer. A total insertion loss of 0.8 dB was achieved for HE11 -mode propagation from the gyrotron to the sample with only 1% insertion loss for the 22-mm-diameter waveguide. A clean Gaussian gyrotron beam at the waveguide output and reliable forward power monitoring were achieved for many hours of continuous operation. PMID:17901907

  5. Corrugated Waveguide and Directional Coupler for CW 250-GHz Gyrotron DNP Experiments.

    PubMed

    Woskov, Paul P; Bajaj, Vikram S; Hornstein, Melissa K; Temkin, Richard J; Griffin, Robert G

    2005-06-01

    A 250-GHz corrugated transmission line with a directional coupler for forward and backward power monitoring has been constructed and tested for use with a 25-W continuous-wave gyrotron for dynamic nuclear polarization (DNP) experiments. The main corrugated line (22-mm internal diameter, 2.4-m long) connects the gyrotron output to the DNP probe input. The directional coupler, inserted approximately midway, is a four-port crossed waveguide beamsplitter design. Two beamsplitters, a quartz plate and ten-wire array, were tested with output coupling of 2.5% (-16 dB) at 250.6 GHz and 1.6% (-18 dB), respectively. A pair of mirrors in the DNP probe transferred the gyrotron beam from the 22-mm waveguide to an 8-mm helically corrugated waveguide for transmission through the final 0.58-m distance inside the NMR magnet to the sample. The transmission-line components were all cold tested with a 248 ± 4-GHz radiometer. A total insertion loss of 0.8 dB was achieved for HE(11) -mode propagation from the gyrotron to the sample with only 1% insertion loss for the 22-mm-diameter waveguide. A clean Gaussian gyrotron beam at the waveguide output and reliable forward power monitoring were achieved for many hours of continuous operation. PMID:17901907

  6. Six Centuries Old Spiral of Vertical Corrugations in Saturn's C-Ring

    NASA Astrophysics Data System (ADS)

    Marouf, E. A.; French, R. G.; Rappaport, N. J.; Wong, K.; McGhee, C.; Anabtawi, A.

    2011-12-01

    Likely evidence of nearly six centuries old collision of captured cometary material with Saturn's Ring C is uncovered in recent Cassini Radio Science ring observations. Three Cassini ring occultation experiments were especially designed so that radio signals transmitted by Cassini to the Earth pass through the rings when the rings are nearly closed as viewed by the ground receiving stations of the NASA Deep Space Network (DSN). In this special geometry, the long path of the radio signals through the rings enhances sensitivity to detection of very tenuous ring material and allows ~400 meters resolution profiling of its radial structure. The observations uncover previously undetectable quasi-periodic optical depth undulations in 4 sub-regions of the innermost ~4000 km of Ring C (~74,480-77,740 km). The structure modulates a tenuous background optical depth of ~0.05 and has peak-to-peak fluctuations < ~0.01, making detection possible only in the case of these 3 special occultations (ring opening angle of 4.8, 4.8, and 1.9 degrees; Cassini Revs 123, 125, and 133, respectively). The structure is detectable at two observation wavelengths (0.94 and 3.6 cm), at multiple observing DSN ground stations, and in data from all 3 occultations. It's characterized by two interfering "tones" of spatial wavelength ~1.3 and ~1.2 km. The wavelength increases slowly with ring radius. The behavior appears consistent with presence of vertical corrugations 4-10 meters in height likely caused by a past ring tilting event (collision with cometary debris) and subsequent differential nodal regression of particle orbits. Time evolution of the perturbations creates a tightly wound spiral pattern of ring height variations which when probed by the radio signals yield the observed tenuous quasi-periodic optical depth fluctuations. The corrugations model was proposed by Hedman et al. [Science 332, 2011] to explain intriguing 30-50 km wavelength structure observed in Cassini images (ISS) across Ring

  7. Effect of discrete track support by sleepers on rail corrugation at a curved track

    NASA Astrophysics Data System (ADS)

    Jin, X. S.; Wen, Z. F.

    2008-08-01

    The paper investigates into the effect of discrete track support by sleepers on the initiation and development of rail corrugation at a curved track when a railway vehicle passes through using a numerical method. The numerical method considers a combination of Kalker's rolling contact theory with non-Hertzian form, a linear frictional work model and a dynamics model of a half railway vehicle coupled with the curved track. The half-vehicle has a two-axle bogie and doubled suspension systems. It is treated as a full dynamic rigid multi-body model. In the track model, an Euler beam is used to model the rail, and the discrete track support by sleepers moving backward with respect to the vehicle running direction is considered to simulate the effect of the discrete sleeper support on the wheels/rails in rolling contact when the vehicle moves on the track. The sleeper is treated as a rigid body and the ballast bed is replaced with equivalent mass bodies. The numerical analysis exams in detail the variations of wheel/rail normal loads, the creepages, and the rail wear volume along the curved track. Their variations are much concerned with the discrete track support. The numerical results show that the discrete track support causes the fluctuating of the normal loads and creepages at a few frequencies. These frequencies comprise the passing frequency of the sleepers and the excited track resonant frequencies, which are higher than the sleeper passing frequency. Consequently, rail corrugation with several wavelengths initiates and develops. Also the results show that the contact vibrating between the curved rails and the four wheels of the same bogie has different frequencies. In this way, the different key frequencies to be excited play an important role in the initiation and development of curved rail corrugation. Therefore, the corrugations caused by the four wheels of the same bogie present different wavelengths. The paper shows and discusses the depths of the initial

  8. The Band-Gap and TRUE Band-Gap in Nominally Metallic Carbon Nanotubes: the Tight-Binding Study on Corrugation Effect

    NASA Astrophysics Data System (ADS)

    Lu, Hongxia; Wu, Jianbao; Wang, Jizhen; Shi, Shaocong; Zhang, Weiyi

    2014-11-01

    In this paper, the band-gap and true band-gap are analyzed for the corrugated structures of various types of single wall carbon nanotubes (SWCNTs) within the tight binding approximation. We show that corrugation, combined with curvature effect, yields naturally the true small band-gap in all SWCNTs with small radius. The more stable corrugated structures of SWCNTs are backed by the abinitio total energy calculations for nominally metallic armchair SWCNTs.

  9. Non-binding conductor load bearing roller for a gas-insulated transmission line having a corrugated outer conductor

    SciTech Connect

    Fischer, W.H.

    1984-04-24

    A gas-insulated transmission line includes a corrugated outer conductor, an inner conductor disposed within and insulated from the outer conductor by means of support insulators and an insulating gas, and a non-binding transport device for supporting and permitting movement of the inner conductor/insulating support assembly axially along the corrugated outer conductor without radial displacement and for moving without binding along corrugations of any slope less than vertical. The transport device includes two movable contacts, such as skids or rollers, supported on a common pivot lever, the pivot lever being rotatably disposed about a pivot lever axis, which pivot lever axis is in turn disposed on the periphery of a support insulator or particle trap if one is used. The movable contacts are separated axially a distance equal to the axial distance between the peaks and valleys of the corrugations of the outer conductor and separated radially a distance equal to the radial distance between the peaks and valleys of the corrugations of the outer conductor. The transport device has the pivot lever axis disposed parallel to the motion of travel of the inner conductor/insulating support assembly. 7 figs.

  10. Non-binding conductor load bearing roller for a gas-insulated transmission line having a corrugated outer conductor

    DOEpatents

    Fischer, William H.

    1984-01-01

    A gas-insulated transmission line includes a corrugated outer conductor, an inner conductor disposed within and insulated from the outer conductor by means of support insulators and an insulating gas, and a non-binding transport device for supporting and permitting movement of the inner conductor/insulating support assembly axially along the corrugated outer conductor without radial displacement and for moving without binding along corrugations of any slope less than vertical. The transport device includes two movable contacts, such as skids or rollers, supported on a common pivot lever, the pivot lever being rotatably disposed about a pivot lever axis, which pivot lever axis is in turn disposed on the periphery of a support insulator or particle trap if one is used. The movable contacts are separated axially a distance equal to the axial distance between the peaks and valleys of the corrugations of the outer conductor and separated radially a distance equal to the radial distance between the peaks and valleys of the corrugations of the outer conductor. The transport device has the pivot lever axis disposed parallel to the motion of travel of the inner conductor/insulating support assembly.

  11. Spectral Formulation for the Solution of Full-Wave Scattering from a Conducting Wedge Tipped with a Corrugated Cylinder

    SciTech Connect

    Polycarpou, A. C.; Christou, M. A.

    2011-11-29

    A spectral mode-matching technique is formulated to solve for the full-wave scattering of a corrugated cylinder-tipped wedge in the presence of an impressed electric or magnetic line source. Asymptotic approximations of large-order Bessel or Henkel functions for a fixed argument were introduced in order to overcome numerical difficulties in their regular series expansions. The corrugations on the conducting cylinder have the shape of annular sectors. The primary objective of this work is to investigate the impact of corrugations on the scattered field in the shadow region of the structure. An optimally designed corrugated cylinder placed at the tip of a conducting wedge can effectively suppress electromagnetic scattering in the shadow region. Obtained numerical results using the proposed approach prove the above concept. These results were validated against numerical data obtained using a nodal finite element method. The aim of this research is to utilize these corrugated tips in horn antenna design for the reduction of side-lobe level and the shaping of the respective E-plane radiation pattern.

  12. Spoof surface plasmon modes on doubly corrugated metal surfaces at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Liu, Yong-Qiang; Kong, Ling-Bao; Du, Chao-Hai; Liu, Pu-Kun

    2016-06-01

    Spoof surface plasmons (SSPs) have many potential applications such as imaging and sensing, communications, innovative leaky wave antenna and many other passive devices in the microwave and terahertz (THz) spectrum. The extraordinary properties of SSPs (e.g. extremely strong near field, enhanced beam–wave interaction) make them especially attractive for developing novel THz electronic sources. SSP modes on doubly corrugated metal surfaces are investigated and analyzed both theoretically and numerically in this paper. The analytical SSP dispersion expressions of symmetric and anti-symmetric modes are obtained with a simplified modal field expansion method; the results are also verified by the finite integration method. Additionally, the propagation losses are also considered for real copper surfaces with a limited constant conductivity in a THz regime. It is shown that the asymptotical frequency of the symmetric mode at the Brillouin boundary decreases along with the decreased gap size between these two corrugated metal surfaces while the asymptotical frequency increases for the anti-symmetric mode. The anti-symmetric mode demonstrates larger propagation losses than the symmetric mode. Further, the losses for both symmetric and anti-symmetric modes decrease when this gap size enlarges. By decreasing groove depth, the asymptotical frequency increases for both the symmetric and the anti-symmetric mode, but the variation of propagation losses is more complicated. Propagation losses increase along with the increased period. Our studies on the dispersion characteristics and propagation losses of SSP modes on this doubly corrugated metallic structure with various parameters is instructive for numerous applications such as waveguides, circuitry systems with high integration, filters and powerful electronic sources in the THz regime.

  13. Eddy Current System for Detection of Cracking Beneath Braiding in Corrugated Metal Hose

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Simpson, John; Hall, George

    2008-01-01

    In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.

  14. Pauli Equation on a Curved Surface and Rashba Splitting on a Corrugated Surface

    NASA Astrophysics Data System (ADS)

    Kosugi, Taichi

    2011-07-01

    The Schrödinger equation for a spinless charged particle on a curved surface under an electromagnetic field has been obtained by adopting a proper gauge which allows the separation of the on-surface and transverse dynamics [Phys. Rev. Lett. 100 (2008) 230403]. As its extension, I provide the Pauli equation for a charged spin-1/2 particle confined to a curved surface under an electromagnetic field. Energy spectra of a sphere and a corrugated surface to which a particle is confined are given as simple applications of the equation. The energy levels obtained exhibit splittings due to the relativistic effect known as the Rashba effect.

  15. Analysis of Bonded Joints Between the Facesheet and Flange of Corrugated Composite Panels

    NASA Technical Reports Server (NTRS)

    Yarrington, Phillip W.; Collier, Craig S.; Bednarcyk, Brett A.

    2008-01-01

    This paper outlines a method for the stress analysis of bonded composite corrugated panel facesheet to flange joints. The method relies on the existing HyperSizer Joints software, which analyzes the bonded joint, along with a beam analogy model that provides the necessary boundary loading conditions to the joint analysis. The method is capable of predicting the full multiaxial stress and strain fields within the flange to facesheet joint and thus can determine ply-level margins and evaluate delamination. Results comparing the method to NASTRAN finite element model stress fields are provided illustrating the accuracy of the method.

  16. Shear Lag in Corrugated Sheets Used for the Chord Member of a Box Beam

    NASA Technical Reports Server (NTRS)

    Newell, Joseph S; Reissner, Eric

    1941-01-01

    The problem of the distribution of normal stress across a wide corrugated sheet used as the chord of a box-beam-like structure is investigated theoretically and experimentally. Expressions are developed giving the stress distribution in beams, symmetrical or unsymmetrical, about a plane passed spanwise through the center of the sheet. The experiments were arranged to insure bending without torsion and surveys of the normal stresses were made by means of mechanical and electrical strain gages. The experimental data showed very good agreement with the new b of the theoretical curves, especially at the highly stressed sections, for both the symmetrical and unsymmetrical beams. Several suggestions for future research are included.

  17. Distributed-feedback Terahertz Quantum-cascade Lasers with Laterally Corrugated Metal Waveguides

    NASA Technical Reports Server (NTRS)

    Williams, Benjamin S.; Kumar, Sushil; Hu, Qing; Reno, John L.

    2005-01-01

    We report the demonstration of distributed-feedback terahertz quantum-cascade lasers based on a first-order grating fabricated via a lateral corrugation in a double-sided metal ridge waveguide. The phase of the facet reflection was precisely set by lithographically defined facets by dry etching. Single-mode emission was observed at low to moderate injection currents, although multimode emission was observed far beyond threshold owing to spatial hole burning. Finite-element simulations were used to calculate the modal and threshold characteristics for these devices, with results in good agreement with experiments.

  18. Radiation characteristics of electromagnetic eigenmodes at the corrugated interface of a left-handed material.

    PubMed

    Cuevas, Mauro; Depine, Ricardo A

    2009-08-28

    We study the radiation characteristics of electromagnetic surface waves at a periodically corrugated interface between a conventional and a negatively refracting (or left-handed) material. In this case, and contrary to the surface plasmon polariton in a metallic grating, surface plasmon polaritons may radiate on both sides of the rough interface along which they propagate. We find novel radiation regimes which provide an indirect demonstration of other unusual phenomena characteristic of electromagnetic wave propagation in left-handed materials, such as negative refraction or backward wave propagation. PMID:19792827

  19. EDDY CURRENT SYSTEM FOR DETECTION OF CRACKING BENEATH BRAIDING IN CORRUGATED METAL HOSE

    SciTech Connect

    Wincheski, Buzz; Simpson, John; Hall, George

    2009-03-03

    In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented.

  20. Geometric and electronic structures of corannulene polymers: Ultra narrow graphene ribbons with corrugation and topological defects

    NASA Astrophysics Data System (ADS)

    Narita, Kohei; Okada, Susumu

    2016-04-01

    We used density functional theory to study the geometric and electronic structure of dimerized and one-dimensionally polymerized corannulene as ultra-narrow graphene ribbons with corrugation and topological defects. Our computations reveal that the relative stability and electronic structure of dimerized and polymerized corannulene are sensitive to the intermolecular covalent networks. The energy gap between the highest occupied and lowest unoccupied states of corannulene dimers is narrower than that of isolated corannulene. The corannulene polymers are semiconductors with a direct energy gap of about 1 eV depending on intermolecular bonds. The polymers possess moderate mechanical stiffness having Young's moduli of 200 GPa.

  1. Tailoring of spectral response and spatial field distribution with corrugated photonic crystal slab.

    PubMed

    Gad, Raanan; Lau, Wah Tung; Nicholaou, Costa; Ahmadi, Soroosh; Sigal, Iliya; Levi, Ofer

    2015-08-15

    We report a new physical mechanism for simultaneous tuning of quality factors, spectral responses, and field distributions in photonic crystal slabs through removal of polarization mode degeneracy using a lattice of elliptical nano-holes. The quality factors in these structures can become higher than those obtained with much smaller circular nano-holes. Furthermore, the modes can be superimposed by either rotating or morphing the elliptical nano-holes into a corrugated grating. These findings will enable improved radiation-matter interaction in optical, microwave, and THZ frequencies along with enhanced opto-acoustic coupling. PMID:26274642

  2. Dual nature of localization in guiding systems with randomly corrugated boundaries: Anderson-type versus entropic

    SciTech Connect

    Tarasov, Yu.V. Shostenko, L.D.

    2015-05-15

    A unified theory for the conductance of an infinitely long multimode quantum wire whose finite segment has randomly rough lateral boundaries is developed. It enables one to rigorously take account of all feasible mechanisms of wave scattering, both related to boundary roughness and to contacts between the wire rough section and the perfect leads within the same technical frameworks. The rough part of the conducting wire is shown to act as a mode-specific randomly modulated effective potential barrier whose height is governed essentially by the asperity slope. The mean height of the barrier, which is proportional to the average slope squared, specifies the number of conducting channels. Under relatively small asperity amplitude this number can take on arbitrary small, up to zero, values if the asperities are sufficiently sharp. The consecutive channel cut-off that arises when the asperity sharpness increases can be regarded as a kind of localization, which is not related to the disorder per se but rather is of entropic or (equivalently) geometric origin. The fluctuating part of the effective barrier results in two fundamentally different types of guided wave scattering, viz., inter- and intramode scattering. The intermode scattering is shown to be for the most part very strong except in the cases of (a) extremely smooth asperities, (b) excessively small length of the corrugated segment, and (c) the asperities sharp enough for only one conducting channel to remain in the wire. Under strong intermode scattering, a new set of conducting channels develops in the corrugated waveguide, which have the form of asymptotically decoupled extended modes subject to individual solely intramode random potentials. In view of this fact, two transport regimes only are realizable in randomly corrugated multimode waveguides, specifically, the ballistic and the localized regime, the latter characteristic of one-dimensional random systems. Two kinds of localization are thus shown to

  3. A study of structurally efficient graphite-thermoplastic trapezoidal-corrugation sandwich and semi-sandwich panels

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    1993-01-01

    The structural efficiency of compression-loaded trapezoidal-corrugation sandwich and semi-sandwich composite panels is studied to determine their weight savings potential. Sandwich panels with two identical face sheets and a trapezoidal corrugated core between them, and semi-sandwich panels with a corrugation attached to a single skin are considered. An optimization code is used to find the minimum weight designs for critical compressive load levels ranging from 3,000 to 24,000 lb/in. Graphite-thermoplastic panels based on the optimal minimum weight designs were fabricated and tested. A finite-element analysis of several test specimens was also conducted. The results of the optimization study, the finite-element analysis, and the experiments are presented.

  4. Polarized Raman spectroscopy of corrugated MBE grown GaAs (6¯3¯1¯) homoepitaxial films

    NASA Astrophysics Data System (ADS)

    Espinosa-Vega, L. I.; Rodriguez, A. G.; Cruz-Hernandez, E.; Martinez-Veliz, I.; Rojas-Ramirez, J.; Ramirez-Lopez, M.; Nieto-Navarro, J.; Lopez-Lopez, M.; Mendez-Garcia, V. H.

    2013-09-01

    In this work, we present a Raman scattering study of GaAs layers grown on (6¯3¯1¯)-oriented substrates by molecular beam epitaxy. A set of samples whose morphology sustained different corrugation order were grown by MBE by varying the growth parameters such as temperature and As/Ga flux ratio. We employed polarized Raman spectroscopy using the backscattering configurations Z(XX) Z¯, Z(XY) Z¯ and Z(YY)Z¯. According to the calculated dipole selection rules both TO and LO phonons are allowed for backscattering from a perfect GaAs (6¯3¯1¯) crystal, but with the intensity of the TO phonon much larger than that of the LO phonon. However, it is found that the selection rules differ for corrugated samples. Besides, the TO/LO phonon resonances intensity ratio and the LO peak asymmetry depend on the corrugation order of the samples.

  5. Ear Plastic Surgery

    MedlinePlus

    ... Meeting Calendar Find an ENT Doctor Near You Ear Plastic Surgery Ear Plastic Surgery Patient Health Information ... they may improve appearance and self-confidence. Can Ear Deformities Be Corrected? Formation of the ear during ...

  6. Plastic Surgery for Teenagers

    MedlinePlus

    ... or severe acne and scarring. Teens frequently gain self-esteem and confidence when their physical problems are corrected. ... art as a helpful index of anxiety and self-esteem with plastic surgery. Plastic and Reconstructive Surgery 2002. ...

  7. Plastic encapsulated parts

    SciTech Connect

    Castillo, T.

    1994-10-01

    Plastic semiconductor packages were characterized as possible alternatives for canned devices, which are susceptible to internal shorts caused by conductive particles. Highly accelerated stress testing (HAST) as well as electrical and mechanical testing were conducted on plastic technology devices.

  8. Periodontal Plastic Surgery

    MedlinePlus

    ... Dental Implants Dentures Direct Bonding Implants versus Bridges Orthodontics and Aligners Periodontal Plastic Surgery Porcelain Crowns Porcelain ... Dental Implants Dentures Direct Bonding Implants versus Bridges Orthodontics and Aligners Periodontal Plastic Surgery Porcelain Crowns Porcelain ...

  9. Plasticity and Geotechnics

    NASA Astrophysics Data System (ADS)

    Yu, Hai-Sui

    Plasticity and Geotechnics is the first attempt to summarize and present, in one volume, the major developments achieved to date in the field of plasticity theory for geotechnical materials and its applications to geotechnical analysis and design.

  10. Processing of plastics

    PubMed Central

    Spaak, Albert

    1975-01-01

    An overview is given of the processing of plastic materials from the handling of polymers in the pellet and powder form to manufacturing of a plastic fabricated product. Various types of equipment used and melt processing ranges of various polymer formulations to make the myriad of plastic products that are commercially available are discussed. PMID:1175556

  11. Plastics in Building.

    ERIC Educational Resources Information Center

    Skeist, Irving, Ed.

    The evaluation and use of plastics in the construction industry are explained. The contributors offer extensive, timely, and thoroughly researched data on the chemistry, properties, functions, engineering behavior, and specific applications of plastics to building requirements. The major subjects discussed in depth are--(1) the role of plastics in…

  12. Tomorrow's Plastic World

    ERIC Educational Resources Information Center

    Macdonald, Averil

    2005-01-01

    Far from being just cheap packaging materials, plastics may be the materials of tomorrow. Plastic can conduct electricity, and this opens up a host of high-tech possibilities in the home and in energy generation. These possibilities are discussed here along with how plastic can be recycled and perhaps even grown.

  13. Energy corrugation in atomic-scale friction on graphite revisited by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Yu; Qi, Yi-Zhou; Ouyang, Wengen; Feng, Xi-Qiao; Li, Qunyang

    2015-12-01

    Although atomic stick-slip friction has been extensively studied since its first demonstration on graphite, the physical understanding of this dissipation-dominated phenomenon is still very limited. In this work, we perform molecular dynamics (MD) simulations to study the frictional behavior of a diamond tip sliding over a graphite surface. In contrast to the common wisdom, our MD results suggest that the energy barrier associated lateral sliding (known as energy corrugation) comes not only from interaction between the tip and the top layer of graphite but also from interactions among the deformed atomic layers of graphite. Due to the competition of these two subentries, friction on graphite can be tuned by controlling the relative adhesion of different interfaces. For relatively low tip-graphite adhesion, friction behaves normally and increases with increasing normal load. However, for relatively high tip-graphite adhesion, friction increases unusually with decreasing normal load leading to an effectively negative coefficient of friction, which is consistent with the recent experimental observations on chemically modified graphite. Our results provide a new insight into the physical origins of energy corrugation in atomic scale friction.

  14. Investigation of a corrugated channel flow with an open source PIV software

    NASA Astrophysics Data System (ADS)

    Sivas, Deniz; Bahadır Olcay, A.; Ahn, Hojin

    2016-03-01

    In this study, the corrugated channel flow was investigated by using an open-source particle image velocimetry (PIV) software. The open-source software called OpenPIV was first verified by using images of an earlier experimental work of a vortex ring formation. The corrugated channel flow images were taken with 200 W power LED light source and a high speed camera and those images were analysed with these spatial and temporal tools of OpenPIV. Laminar, transient and turbulent flow regimes were identified when Reynolds number was below 1100, in between 1100 and 2000 and higher than 2000, respectively. The velocity vectors were found to be about 20% lower than the previous study results. The flow inside the grooves was also investigated with OpenPIV and flow characteristics at the grooves were captured when interrogation window size was lowered. The visualization of the flow was presented for different Reynolds numbers with the relative scale values. As a result of this study, OpenPIV software was determined as promising open source PIV analysis software.

  15. Study of the effects of corrugated wall structures due to blanket modules around ICRH antennas

    SciTech Connect

    Dumortier, Pierre; Louche, Fabrice; Messiaen, André; Vervier, Michel

    2014-02-12

    In future fusion reactors, and in ITER, the first wall will be covered by blanket modules. These blanket modules, whose dimensions are of the order of the ICRF wavelengths, together with the clearance gaps between them will constitute a corrugated structure which will interact with the electromagnetic waves launched by ICRF antennas. The conditions in which the grooves constituted by the clearance gaps between the blanket modules can become resonant are studied. Simple analytical models and numerical simulations show that mushroom type structures (with larger gaps at the back than at the front) can bring down the resonance frequencies, which could lead to large voltages in the gaps between the blanket modules and perturb the RF properties of the antenna if they are in the ICRF operating range. The effect on the wave propagation along the wall structure, which is acting as a spatially periodic (toroidally and poloidally) corrugated structure, and hence constitutes a slow wave structure modifying the wall boundary condition, is examined.

  16. Study of the effects of corrugated wall structures due to blanket modules around ICRH antennas

    NASA Astrophysics Data System (ADS)

    Dumortier, Pierre; Louche, Fabrice; Messiaen, André; Vervier, Michel

    2014-02-01

    In future fusion reactors, and in ITER, the first wall will be covered by blanket modules. These blanket modules, whose dimensions are of the order of the ICRF wavelengths, together with the clearance gaps between them will constitute a corrugated structure which will interact with the electromagnetic waves launched by ICRF antennas. The conditions in which the grooves constituted by the clearance gaps between the blanket modules can become resonant are studied. Simple analytical models and numerical simulations show that mushroom type structures (with larger gaps at the back than at the front) can bring down the resonance frequencies, which could lead to large voltages in the gaps between the blanket modules and perturb the RF properties of the antenna if they are in the ICRF operating range. The effect on the wave propagation along the wall structure, which is acting as a spatially periodic (toroidally and poloidally) corrugated structure, and hence constitutes a slow wave structure modifying the wall boundary condition, is examined.

  17. Simple Correctors for Elimination of High-Order Modes in Corrugated Waveguide Transmission Lines.

    PubMed

    Kowalski, Elizabeth J; Shapiro, Michael A; Temkin, Richard J

    2014-01-01

    When using overmoded corrugated waveguide transmission lines for high power applications, it is necessary to control the mode content of the system. Ideally, overmoded corrugated transmission lines operate in the fundamental HE11 mode and provide low losses for long distances. Unwanted higher order modes (HOMs), particularly LP11 and HE12, are often excited in the experimental systems due to practical misalignments in the transmission line system. This paper discusses how the unwanted modes propagate along with the fundamental mode in the transmission line system by formulating an equation that relates the center of power offset and angle of propagation of a beam (for the HE11 and LP11 modes) or the waist size and phase front radius of curvature of a beam (for the HE11 and HE12 modes). By introducing two miter bend correctors into the transmission system-miter bends that have slightly angled or ellipsoidal mirrors-the HOMs can be precisely manipulated in the system. This technique can be used to eliminate small quantities of unwanted modes, thereby creating a nearly pure fundamental mode beam with minimal losses. Examples of these applications are calculated and show the theoretical conversion of up to 10% HOM content into the fundamental HE11 mode with minimal losses. PMID:25067859

  18. Corrugation of Phase-Separated Lipid Bilayers Supported by Nanoporous Silica Xerogel Surfaces

    SciTech Connect

    Goksu, E I; Nellis, B A; Lin, W; Satcher Jr., J H; Groves, J T; Risbud, S H; Longo, M L

    2008-10-30

    Lipid bilayers supported by substrates with nanometer-scale surface corrugations holds interest in understanding both nanoparticle-membrane interactions and the challenges of constructing models of cell membranes on surfaces with desirable properties, e.g. porosity. Here, we successfully form a two-phase (gel-fluid) lipid bilayer supported by nanoporous silica xerogel. Surface topology, diffusion, and lipid density in comparison to mica-supported lipid bilayers were characterized by AFM, FRAP, FCS, and quantitative fluorescence microscopy, respectively. We found that the two-phase lipid bilayer follows the xerogel surface contours. The corrugation imparted on the lipid bilayer results in a lipid density that is twice that on a flat mica surface. In direct agreement with the doubling of actual bilayer area in a projected area, we find that the lateral diffusion coefficient (D) of lipids on xerogel ({approx}1.7 {micro}m{sup 2}/s) is predictably lower than on mica ({approx}4.1 {micro}m{sup 2}/s) by both FRAP and FCS techniques. Furthermore, the gel-phase domains on xerogel compared to mica were larger and less numerous. Overall, our results suggest the presence of a relatively defect-free continuous two-phase bilayer that penetrates approximately midway into the first layer of {approx}50 nm xerogel beads.

  19. Transmission Loss and Absorption of Corrugated Core Sandwich Panels With Embedded Resonators

    NASA Technical Reports Server (NTRS)

    Allen, Albert R.; Schiller, Noah H.; Zalewski, Bart F.; Rosenthal, Bruce N.

    2014-01-01

    The effect of embedded resonators on the diffuse field sound transmission loss and absorption of composite corrugated core sandwich panels has been evaluated experimentally. Two 1.219 m × 2.438 m panels with embedded resonator arrangements targeting frequencies near 100 Hz were evaluated using non-standard processing of ASTM E90-09 acoustic transmission loss and ASTM C423-09a room absorption test measurements. Each panel is comprised of two composite face sheets sandwiching a corrugated core with a trapezoidal cross section. When inlet openings are introduced in one face sheet, the chambers within the core can be used as embedded acoustic resonators. Changes to the inlet and chamber partition locations allow this type of structure to be tuned for targeted spectrum passive noise control. Because the core chambers are aligned with the plane of the panel, the resonators can be tuned for low frequencies without compromising the sandwich panel construction, which is typically sized to meet static load requirements. Absorption and transmission loss performance improvements attributed to opening the inlets were apparent for some configurations and inconclusive for others.

  20. Inkjet printing of UHF antennas on corrugated cardboards for packaging applications

    NASA Astrophysics Data System (ADS)

    Sowade, Enrico; Göthel, Frank; Zichner, Ralf; Baumann, Reinhard R.

    2015-03-01

    In this study, a method based on inkjet printing has been established to develop UHF antennas on a corrugated cardboard for packaging applications. The use of such a standardized, paper-based packaging substrate as material for printing electronics is challenging in terms of its high surface roughness and high ink absorption rate, especially when depositing very thin films with inkjet printing technology. However, we could obtain well-defined silver layers on the cardboard substrates due to a primer layer approach. The primer layer is based on a UV-curable ink formulation and deposited as well as the silver ink with inkjet printing technology. Industrial relevant printheads were chosen for the deposition of the materials. The usage of inkjet printing allows highest flexibility in terms of pattern design. The primer layer was proven to optimize the surface characteristics of the substrate, mainly reducing the surface roughness and water absorptiveness. Thanks to the primer layer approach, ultra-high-frequency (UHF) radio-frequency identification (RFID) antennas were deposited by inkjet printing on the corrugated cardboards. Along with the characterization and interpretation of electrical properties of the established conductive antenna patterns, the performance of the printed antennas were analyzed in detail by measuring the scattering parameter S11 and the antenna gain.

  1. Design detail verification tests for a lightly loaded open-corrugation graphite-epoxy cylinder

    NASA Technical Reports Server (NTRS)

    Davis, R. C.; Starnes, J. H., Jr.

    1982-01-01

    Flat corrugated graphite-epoxy panels were tested in compression to verify selected design details of a ring-stiffened cylinder that was designed to support an axial compressive load of 157.6 kN/m without buckling. Three different sizes of subcomponent panels, with the same basic corrugation geometry, were tested: (1) 60.96-cm-long by 45.72-cm-wide panels to evaluate the local buckling strength of the shell wall design; (2) 91.44-cm-long by 45.72-cm-wide panels to evaluate a longitudinal joint and the load-introduction method; and (3) 254.0-cm-long by 91.44-cm-wide panels with four simulated-ring stiffeners to evaluate the ring-attachment method. The test results indicate that the modified shell-wall design, the longitudinal joint, the load-introduction method, and the stiffener-attachment method for the proposed cylinder have adequate strength to support the design load.

  2. Simple Expressions for the Design of Linear Tapers in Overmoded Corrugated Waveguides

    NASA Astrophysics Data System (ADS)

    Schaub, S. C.; Shapiro, M. A.; Temkin, R. J.

    2016-01-01

    Simple analytical formulae are presented for the design of linear tapers with very low mode conversion loss in overmoded corrugated waveguides. For tapers from waveguide radius a 2 to a 1, with a 1< a 2, the optimal length of the taper is 3.198 a 1 a 2/ λ. Here, λ is the wavelength of radiation. The fractional loss of the HE 11 mode in an optimized taper is 0.0293 (a2-a1)4/{a12}{a22}. These formulae are accurate when a 2≲2 a 1. Slightly more complex formulae, accurate for a 2≤4 a 1, are also presented in this paper. The loss in an overmoded corrugated linear taper is less than 1 % when a 2≤2.12 a 1 and less than 0.1 % when a 2≤1.53 a 1. The present analytic results have been benchmarked against a rigorous mode matching code and have been found to be very accurate. The results for linear tapers are compared with the analogous expressions for parabolic tapers. Parabolic tapers may provide lower loss, but linear tapers with moderate values of a 2/ a 1 may be attractive because of their simplicity of fabrication.

  3. Simple Correctors for Elimination of High-Order Modes in Corrugated Waveguide Transmission Lines

    PubMed Central

    Kowalski, Elizabeth J.; Shapiro, Michael A.; Temkin, Richard J.

    2014-01-01

    When using overmoded corrugated waveguide transmission lines for high power applications, it is necessary to control the mode content of the system. Ideally, overmoded corrugated transmission lines operate in the fundamental HE11 mode and provide low losses for long distances. Unwanted higher order modes (HOMs), particularly LP11 and HE12, are often excited in the experimental systems due to practical misalignments in the transmission line system. This paper discusses how the unwanted modes propagate along with the fundamental mode in the transmission line system by formulating an equation that relates the center of power offset and angle of propagation of a beam (for the HE11 and LP11 modes) or the waist size and phase front radius of curvature of a beam (for the HE11 and HE12 modes). By introducing two miter bend correctors into the transmission system—miter bends that have slightly angled or ellipsoidal mirrors—the HOMs can be precisely manipulated in the system. This technique can be used to eliminate small quantities of unwanted modes, thereby creating a nearly pure fundamental mode beam with minimal losses. Examples of these applications are calculated and show the theoretical conversion of up to 10% HOM content into the fundamental HE11 mode with minimal losses. PMID:25067859

  4. Simple Expressions for the Design of Linear Tapers in Overmoded Corrugated Waveguides

    PubMed Central

    Schaub, S. C.; Shapiro, M. A.; Temkin, R. J.

    2016-01-01

    Simple analytical formulae are presented for the design of linear tapers with very low mode conversion loss in overmoded corrugated waveguides. For tapers from waveguide radius a2 to a1, with a1 < a2, the optimal length of the taper is 3.198a1a2/λ. Here, λ is the wavelength of radiation. The fractional loss of the HE11 mode in an optimized taper is 0.0293(a2−a1)4∕a12a22. These formulae are accurate when a2 ≲ 2a1. Slightly more complex formulae, accurate for a2 ≤ 4a1, are also presented in this paper. The loss in an overmoded corrugated linear taper is less than 1 % when a2 ≤ 2.12a1 and less than 0.1 % when a2 ≤ 1.53a1. The present analytic results have been benchmarked against a rigorous mode matching code and have been found to be very accurate. The results for linear tapers are compared with the analogous expressions for parabolic tapers. Parabolic tapers may provide lower loss, but linear tapers with moderate values of a2/a1 may be attractive because of their simplicity of fabrication. PMID:27053963

  5. Atomic-scale friction modulated by potential corrugation in multi-layered graphene materials

    SciTech Connect

    Zhuang, Chunqiang; Liu, Lei

    2015-03-21

    Friction is an important issue that has to be carefully treated for the fabrication of graphene-based nano-scale devices. So far, the friction mechanism of graphene materials on the atomic scale has not yet been clearly presented. Here, first-principles calculations were employed to unveil the friction behaviors and their atomic-scale mechanism. We found that potential corrugations on sliding surfaces dominate the friction force and the friction anisotropy of graphene materials. Higher friction forces correspond to larger corrugations of potential energy, which are tuned by the number of graphene layers. The friction anisotropy is determined by the regular distributions of potential energy. The sliding along a fold-line path (hollow-atop-hollow) has a relatively small potential energy barrier. Thus, the linear sliding observed in macroscopic friction experiments may probably be attributed to the fold-line sliding mode on the atomic scale. These findings can also be extended to other layer-structure materials, such as molybdenum disulfide (MoS{sub 2}) and graphene-like BN sheets.

  6. Biodegradability of Plastics

    PubMed Central

    Tokiwa, Yutaka; Calabia, Buenaventurada P.; Ugwu, Charles U.; Aiba, Seiichi

    2009-01-01

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed. PMID:19865515

  7. Atomic scale study of corrugating and anticorrugating states on the bare Si(1 0 0) surface.

    PubMed

    Yengui, Mayssa; Pinto, Henry P; Leszczynski, Jerzy; Riedel, Damien

    2015-02-01

    In this article, we study the origin of the corrugating and anticorrugating states through the electronic properties of the Si(1 0 0) surface via a low-temperature (9 K) scanning tunneling microscope (STM). Our study is based on the analysis of the STM topographies corrugation variations when related to the shift of the local density of states (LDOS) maximum in the [Formula: see text] direction. Our experimental results are correlated with numerical simulations using the density-functional theory with hybrid Heyd-Scuseria-Ernzerhof (HSE06) functional to simulate the STM topographies, the projected density of states variations at different depths in the silicon surface as well as the three dimensional partial charge density distributions in real-space. This work reveals that the Si(1 0 0) surface exhibits two anticorrugating states at +0.8 and +2.8 V that are associated with a phase shift of the LDOS maximum in the unoccupied states STM topographies. By comparing the calculated data with our experimental results, we have been able to identify the link between the variations of the STM topographies corrugation and the shift of the LDOS maximum observed experimentally. Each surface voltage at which the STM topographies corrugation drops is defined as anticorrugating states. In addition, we have evidenced a sharp jump in the tunnel current when the second LDOS maximum shift is probed, whose origin is discussed and associated with the presence of Van Hove singularities. PMID:25524935

  8. Tension-induced tunable corrugation in bio-inspired two-phase soft composite materials: mechanisms and implications

    NASA Astrophysics Data System (ADS)

    Elbanna, Ahmed; Chen, Qianli

    We numerically investigate the elastic deformation response of a two-phase bio-inspired soft composite material under externally applied concentric tension using the finite element method. We show that by carefully designing the inclusion pattern it is possible to induce corrugations normal to the direction of stretch. By stacking 1D composite fibers to form 2D membranes, these corrugations collectively lead to the formation of membrane channels with shapes and sizes that are tunable by the level of stretch. Furthermore, we show that by using specific inclusion patterns in laminated plates, it is possible to create pop-ups and troughs enabling the development of complex 3D geometries from planar construction. We have found that the corrugation amplitude increases with the stiffness of inclusion and its eccentricity from the tension axis. We discuss the mechanisms leading to the development of corrugations as well as its different implications. We discuss applications for this design in a variety of fields including tunable band gap formation, surface roughness controllability, auxetic materials and toughness enhancement via programmable evolving geometrical effects..

  9. Pressure drop of slush nitrogen flow in converging-diverging pipes and corrugated pipes

    NASA Astrophysics Data System (ADS)

    Ohira, Katsuhide; Okuyama, Jun; Nakagomi, Kei; Takahashi, Koichi

    2012-12-01

    Cryogenic slush fluids such as slush hydrogen and slush nitrogen are solid-liquid, two-phase fluids. As a functional thermal fluid, there are high expectations for use of slush fluids in various applications such as fuels for spacecraft engines, clean-energy fuels to improve the efficiency of transportation and storage, and as refrigerants for high-temperature superconducting equipment. Experimental flow tests were performed using slush nitrogen to elucidate pressure-drop characteristics of converging-diverging (C-D) pipes and corrugated pipes. In experimental results regarding pressure drop in two different types of C-D Pipes, i.e., a long-throated pipe and a short-throated pipe, each having an inner diameter of 15 mm, pressure drop for slush nitrogen in the long-throated pipe at a flow velocity of over 1.3 m/s increased by a maximum of 50-60% as compared to that for liquid nitrogen, while the increase was about 4 times as compared to slush nitrogen in the short-throated pipe. At a flow velocity of over 1.5 m/s in the short-throated pipe, pressure drop reduction became apparent, and it was confirmed that the decrease in pressure drop compared to liquid nitrogen was a maximum of 40-50%. In the case of two different types of corrugated pipes with an inner diameter of either 12 mm or 15 mm, a pressure-drop reduction was confirmed at a flow velocity of over 2 m/s, and reached a maximum value of 37% at 30 wt.% compared to liquid nitrogen. The greater the solid fractions, the smaller the pipe friction factor became, and the pipe friction factor at the same solid fraction showed a constant value regardless of the Reynolds number. From the observation of the solid particles' behavior using a high-speed video camera and the PIV method, the pressure-drop reduction mechanisms for both C-D and corrugated pipes were demonstrated.

  10. Growth of InP directly on Si by corrugated epitaxial lateral overgrowth

    NASA Astrophysics Data System (ADS)

    Metaferia, Wondwosen; Kataria, Himanshu; Sun, Yan-Ting; Lourdudoss, Sebastian

    2015-02-01

    In an attempt to achieve an InP-Si heterointerface, a new and generic method, the corrugated epitaxial lateral overgrowth (CELOG) technique in a hydride vapor phase epitaxy reactor, was studied. An InP seed layer on Si (0 0 1) was patterned into closely spaced etched mesa stripes, revealing the Si surface in between them. The surface with the mesa stripes resembles a corrugated surface. The top and sidewalls of the mesa stripes were then covered by a SiO2 mask after which the line openings on top of the mesa stripes were patterned. Growth of InP was performed on this corrugated surface. It is shown that growth of InP emerges selectively from the openings and not on the exposed silicon surface, but gradually spreads laterally to create a direct interface with the silicon, hence the name CELOG. We study the growth behavior using growth parameters. The lateral growth is bounded by high index boundary planes of {3 3 1} and {2 1 1}. The atomic arrangement of these planes, crystallographic orientation dependent dopant incorporation and gas phase supersaturation are shown to affect the extent of lateral growth. A lateral to vertical growth rate ratio as large as 3.6 is achieved. X-ray diffraction studies confirm substantial crystalline quality improvement of the CELOG InP compared to the InP seed layer. Transmission electron microscopy studies reveal the formation of a direct InP-Si heterointerface by CELOG without threading dislocations. While CELOG is shown to avoid dislocations that could arise due to the large lattice mismatch (8%) between InP and Si, staking faults could be seen in the layer. These are probably created by the surface roughness of the Si surface or SiO2 mask which in turn would have been a consequence of the initial process treatments. The direct InP-Si heterointerface can find applications in high efficiency and cost-effective Si based III-V semiconductor multijunction solar cells and optoelectronics integration.

  11. How Plastics Work

    NASA Astrophysics Data System (ADS)

    Bloomfield, Louis

    2013-03-01

    We encounter plastics every day, but despite their widespread use, amazing range of properties, and basic scientific underpinnings, most physicists--like most people--know relatively little about plastics. In contrast to hard crystalline and amorphous solids (e.g., metals, salts, ceramics, and glasses), we take plastics for granted, select them carelessly, and examine them more closely only on a need-to-know basis. By ignoring plastics until we need them, however, we risk not knowing what we don't know and using the wrong ones. To repurpose a familiar advertisement, ``there's a plastic for that.'' This talk will review some of the basic physics and science of plastics. It will examine the roles of temperature, order, intermolecular forces, entanglements, and linkages in plastics, and how those issues affect the properties of a given plastic. We'll stop along the way to recognize a few of the more familiar plastics, natural and synthetic, and explain some of their mechanical, chemical, and optical properties. The talk will conclude by explaining the remarkable properties of a plastic that has been largely misunderstood since its discovery 70 years ago: Silly Putty.

  12. Our plastic age.

    PubMed

    Thompson, Richard C; Swan, Shanna H; Moore, Charles J; vom Saal, Frederick S

    2009-07-27

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation. PMID:19528049

  13. Our plastic age

    PubMed Central

    Thompson, Richard C.; Swan, Shanna H.; Moore, Charles J.; vom Saal, Frederick S.

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation. PMID:19528049

  14. High second-order nonlinear response of platinum nanoflowers: the role of surface corrugation.

    PubMed

    Ngo, Hoang Minh; Lai, Ngoc Diep; Ledoux-Rak, Isabelle

    2016-02-14

    Platinum nanoflowers (PtNFs) were elaborated using the seed-mediated growth technique applied to monodisperse platinum nanoparticles (∼3.0 nm) synthesized by the chemical reduction method. The X-ray diffraction pattern confirmed the formation of face-centered-cubic platinum nanocrystals. We report the Harmonic Light Scattering (HLS) properties of PtNFs for six different diameters (∼7.0; 8.0; 10.0; 14.0; 20.0 and 31.0 nm). From these HLS data we infer, for the first time, large hyperpolarizability β values of PtNFs. These very high β values of PtNFs are assigned mainly to highly corrugated surfaces for nanoparticles with irregular shapes. PMID:26795722

  15. Constraints on axion-nucleon coupling constants from measuring the Casimir force between corrugated surfaces

    NASA Astrophysics Data System (ADS)

    Bezerra, V. B.; Klimchitskaya, G. L.; Mostepanenko, V. M.; Romero, C.

    2014-09-01

    We obtain stronger laboratory constraints on the coupling constants of axion-like particles to nucleons from measurements of the normal and lateral Casimir forces between sinusoidally corrugated surfaces of a sphere and a plate. For this purpose, the normal and lateral additional forces arising in the experimental configurations due to the two-axion exchange between protons and neutrons are calculated. Our constraints following from measurements of the normal and lateral Casimir forces are stronger than the laboratory constraints reported so far for masses of axion-like particles larger than 11 and 8 eV, respectively. A comparison between various laboratory constraints on the coupling constants of axion-like particles to nucleons obtained from the magnetometer measurements, Eötvos- and Cavendish-type experiments, and from the Casimir effect is performed over the wide range of masses of axion-like particles from 10-10 to 20 eV.

  16. Energy shift of collective electron excitations in highly corrugated graphitic nanostructures: Experimental and theoretical investigation

    NASA Astrophysics Data System (ADS)

    Sedelnikova, O. V.; Bulusheva, L. G.; Asanov, I. P.; Yushina, I. V.; Okotrub, A. V.

    2014-04-01

    Effect of corrugation of hexagonal carbon network on the collective electron excitations has been studied using optical absorption and X-ray photoelectron spectroscopy in conjunction with density functional theory calculations. Onion-like carbon (OLC) was taken as a material, where graphitic mantle enveloping agglomerates of multi-shell fullerenes is strongly curved. Experiments showed that positions of π and π + σ plasmon modes as well as π → π* absorption peak are substantially redshifted for OLC as compared with those of highly ordered pyrolytic graphite and thermally exfoliated graphite consisted of planar sheets. This effect was reproduced in behavior of dielectric functions of rippled graphite models calculated within the random phase approximation. We conclude that the energy of electron excitations in graphitic materials could be precisely tuned by a simple bending of hexagonal network without change of topology. Moreover, our investigation suggests that in such materials optical exciton can transfer energy to plasmon non-radiatively.

  17. Euler buckling, membrane corrugation and pore formation induced by antimicrobial peptide

    NASA Astrophysics Data System (ADS)

    Golubovic, Leonardo; Gao, Lianghui; Chen, Licui; Jia, Nana; Fang, Weihai

    2014-03-01

    Antimicrobial peptides serve as defense weapons against bacteria. They are secreted by organisms of plants and animals and have a wide variety in composition and structure. In this study, we theoretically explore the effects of the antimicrobial peptides on the lipid bilayer membrane by using analytic arguments and the coarse grained dissipative particle dynamics simulations. We study peptide/lipid membrane complexes by considering peptides with various structure, hydrophobicity and peptide/lipid interaction strength. The role of lipid/water interaction is also discussed. We discuss a rich variety of membrane morphological changes induced by peptides, such as pore formation, membrane corrugation and Euler buckling. Such buckled membrane states have been indeed seen in a number of experiments with bacteria affected by peptide, yet this is the first theoretical study addressing these phenomena more deeply.

  18. Entropically induced asymmetric passage times of charged tracers across corrugated channels

    NASA Astrophysics Data System (ADS)

    Malgaretti, Paolo; Pagonabarraga, Ignacio; Miguel Rubi, J.

    2016-01-01

    We analyze the diffusion of charged and neutral tracers suspended in an electrolyte embedded in a channel of varying cross section. Making use of systematic approximations, the diffusion equation governing the motion of tracers is mapped into an effective 1D equation describing the dynamics along the longitudinal axis of the channel where its varying-section is encoded as an effective entropic potential. This simplified approach allows us to characterize tracer diffusion under generic confinement by measuring their mean first passage time (MFPT). In particular, we show that the interplay between geometrical confinement and electrostatic interactions strongly affect the MFTP of tracers across corrugated channels hence leading to alternative means to control tracers translocation across charged pores. Finally, our results show that the MFPTs of a charged tracer in opposite directions along an asymmetric channel may differ We expect our results to be relevant for biological as well synthetic devices whose dynamics is controlled by the detection of diluted tracers.

  19. Dynamical back-action at 5.5 GHz in a corrugated optomechanical beam

    SciTech Connect

    Navarro-Urrios, D.; Gomis-Bresco, J.; Alzina, F.; El-Jallal, S.; Oudich, M.; Pennec, Y.; Djafari-Rouhani, B.; Pitanti, A.; Capuj, N.; Tredicucci, A.; Griol, A.; Martínez, A.; Sotomayor Torres, C. M.

    2014-12-15

    We report on the optomechanical properties of a breathing mechanical mode oscillating at 5.5 GHz in a 1D corrugated Si nanobeam. This mode has an experimental single-particle optomechanical coupling rate of |g{sub o,OM}| = 1.8 MHz (|g{sub o,OM}|/2π = 0.3 MHz) and shows strong dynamical back-action effects at room temperature. The geometrical flexibility of the unit-cell would lend itself to further engineering of the cavity region to localize the mode within the full phononic band-gap present at 4 GHz while keeping high g{sub o,OM} values. This would lead to longer lifetimes at cryogenic temperatures, due to the suppression of acoustic leakage.

  20. A new mechanism for negative refraction and focusing using selective diffraction from surface corrugation

    NASA Astrophysics Data System (ADS)

    Lu, W. T.; Huang, Y. J.; Vodo, P.; Banyal, R. K.; Perry, C. H.; Sridhar, S.

    2007-07-01

    Refraction at a smooth interface is accompanied by momentum transfer normal to the interface. We show that corrugating an initially smooth, totally reflecting, non-metallic interface provides a momentum kick parallel to the surface, which can be used to refract light negatively or positively. This new mechanism of negative refraction is demonstrated by visible light and microwave experiments on grisms (grating-prisms). Single-beam all-angle-negative-refraction is achieved by incorporating a surface grating on a flat multilayered material. This negative refraction mechanism is used to create a new optical device, a grating lens. A planoconcave grating lens is demonstrated to focus plane microwaves to a point image. These results show that customized surface engineering can be used to achieve negative refraction even though the bulk material has positive refractive index. The surface periodicity provides a tunable parameter to control beam propagation leading to novel optical and microwave devices.

  1. Energy shift of collective electron excitations in highly corrugated graphitic nanostructures: Experimental and theoretical investigation

    SciTech Connect

    Sedelnikova, O. V. Bulusheva, L. G.; Okotrub, A. V.; Asanov, I. P.; Yushina, I. V.

    2014-04-21

    Effect of corrugation of hexagonal carbon network on the collective electron excitations has been studied using optical absorption and X-ray photoelectron spectroscopy in conjunction with density functional theory calculations. Onion-like carbon (OLC) was taken as a material, where graphitic mantle enveloping agglomerates of multi-shell fullerenes is strongly curved. Experiments showed that positions of π and π + σ plasmon modes as well as π → π* absorption peak are substantially redshifted for OLC as compared with those of highly ordered pyrolytic graphite and thermally exfoliated graphite consisted of planar sheets. This effect was reproduced in behavior of dielectric functions of rippled graphite models calculated within the random phase approximation. We conclude that the energy of electron excitations in graphitic materials could be precisely tuned by a simple bending of hexagonal network without change of topology. Moreover, our investigation suggests that in such materials optical exciton can transfer energy to plasmon non-radiatively.

  2. Biased transport of Brownian particles in a weakly corrugated serpentine channel.

    PubMed

    Wang, Xinli

    2016-01-28

    We investigate the biased transport of Brownian particles in a weakly corrugated channel with constant width but a varying centerline (called serpentine channel). Two different types of channels are considered: a soft-channel is confined by a potential energy landscape; a solid-channel is confined by solid walls. Based on the small amplitude of channel boundaries, the asymptotic method is used to analytically calculate two important macroscopic transport properties--average velocity (or mobility) and effective dispersion coefficient. We find the nonlinear dependence of transport properties on Péclet numbers, which is qualitatively different from the results in a narrow serpentine channel, in which the leading order terms of mobility and the effective dispersion coefficient do not depend on Péclet numbers. In the purely diffusive case where the Péclet number is zero, the Sutherland-Einstein relation is satisfied in both soft and solid channels. PMID:26827196

  3. Radial Corrugations of Multi-Walled Carbon Nanotubes Driven by Inter-Wall Nonbonding Interactions

    PubMed Central

    2011-01-01

    We perform large-scale quasi-continuum simulations to determine the stable cross-sectional configurations of free-standing multi-walled carbon nanotubes (MWCNTs). We show that at an inter-wall spacing larger than the equilibrium distance set by the inter-wall van der Waals (vdW) interactions, the initial circular cross-sections of the MWCNTs are transformed into symmetric polygonal shapes or asymmetric water-drop-like shapes. Our simulations also show that removing several innermost walls causes even more drastic cross-sectional polygonization of the MWCNTs. The predicted cross-sectional configurations agree with prior experimental observations. We attribute the radial corrugations to the compressive stresses induced by the excessive inter-wall vdW energy release of the MWCNTs. The stable cross-sectional configurations provide fundamental guidance to the design of single MWCNT-based devices and shed lights on the mechanical control of electrical properties.

  4. Theory of the corrugation instability of a piston-driven shock wave.

    PubMed

    Bates, J W

    2015-01-01

    We analyze the two-dimensional stability of a shock wave driven by a steadily moving corrugated piston in an inviscid fluid with an arbitrary equation of state. For h≤-1 or h>h(c), where h is the D'yakov parameter and h(c) is the Kontorovich limit, we find that small perturbations on the shock front are unstable and grow--at first quadratically and later linearly--with time. Such instabilities are associated with nonequilibrium fluid states and imply a nonunique solution to the hydrodynamic equations. The above criteria are consistent with instability limits observed in shock-tube experiments involving ionizing and dissociating gases and may have important implications for driven shocks in laser-fusion, astrophysical, and/or detonation studies. PMID:25679715

  5. Highly tapered pentagonal bipyramidal Au microcrystals with high index faceted corrugation: Synthesis and optical properties

    NASA Astrophysics Data System (ADS)

    Mettela, Gangaiah; Boya, Radha; Singh, Danveer; Kumar, G. V. Pavan; Kulkarni, G. U.

    2013-05-01

    Focusing light at sub-wavelength region opens up interesting applications in optical sensing and imaging beyond the diffraction limit. In the past, tapered Au wires with carved gratings have been employed to achieve nanofocusing. The fabrication process however, is expensive and the obtained wires are polycrystalline with high surface roughness. A chemical synthetic method overcoming these hurdles should be an attractive alternative. Here, we report a method to chemically synthesize Au microcrystals (~10 μm) bearing pentagonal bipyramidal morphology with surface corrugations assignable to high index planes. The method is a single step solid state synthesis at a temperature amenable to common substrates. The microcrystals are tapered at both ends forming sharp tips (~55 nm). Individual microcrystals have been used as pick and probe SERS substrates for a dye embedded in a polymer matrix. The unique geometry of the microcrystal also enables light propagation across its length.

  6. Biased transport of Brownian particles in a weakly corrugated serpentine channel

    NASA Astrophysics Data System (ADS)

    Wang, Xinli

    2016-01-01

    We investigate the biased transport of Brownian particles in a weakly corrugated channel with constant width but a varying centerline (called serpentine channel). Two different types of channels are considered: a soft-channel is confined by a potential energy landscape; a solid-channel is confined by solid walls. Based on the small amplitude of channel boundaries, the asymptotic method is used to analytically calculate two important macroscopic transport properties—average velocity (or mobility) and effective dispersion coefficient. We find the nonlinear dependence of transport properties on Péclet numbers, which is qualitatively different from the results in a narrow serpentine channel, in which the leading order terms of mobility and the effective dispersion coefficient do not depend on Péclet numbers. In the purely diffusive case where the Péclet number is zero, the Sutherland-Einstein relation is satisfied in both soft and solid channels.

  7. Plasticized phenolphthalein polycarbonate

    NASA Technical Reports Server (NTRS)

    Harrison, E. S.

    1976-01-01

    Phenolphthalein polycarbonate was successfully plasticized with polychlorinated biphenyls (e.g., Aroclor 1231) or tricresyl phosphate and cast from tetrahydrofuran to give clear films without loss of fire resistance. At loadings of 20 to 30 percent plasticizer the Tg was lowered to approximately 100 C which would render phenolphthalein polycarbonate easily moldable. Although these materials had some mechanical integrity as shown by their film forming ability, the room temperature toughness of the plasticized polymer was not significantly improved over unmodified polymer.

  8. Additives in plastics.

    PubMed Central

    Deanin, R D

    1975-01-01

    The polymers used in plastics are generally harmless. However, they are rarely used in pure form. In almost all commercial plastics, they are "compounded" with monomeric ingredients to improve their processing and end-use performance. In order of total volume used, these monomeric additives may be classified as follows: reinforcing fibers, fillers, and coupling agents; plasticizers; colorants; stabilizers (halogen stabilizers, antioxidants, ultraviolet absorbers, and biological preservatives); processing aids (lubricants, others, and flow controls); flame retardants, peroxides; and antistats. Some information is already available, and much more is needed, on potential toxicity and safe handling of these additives during processing and manufacture of plastics products. PMID:1175566

  9. Plastics and health risks.

    PubMed

    Halden, Rolf U

    2010-01-01

    By 2010, the worldwide annual production of plastics will surpass 300 million tons. Plastics are indispensable materials in modern society, and many products manufactured from plastics are a boon to public health (e.g., disposable syringes, intravenous bags). However, plastics also pose health risks. Of principal concern are endocrine-disrupting properties, as triggered for example by bisphenol A and di-(2-ethylhexyl) phthalate (DEHP). Opinions on the safety of plastics vary widely, and despite more than five decades of research, scientific consensus on product safety is still elusive. This literature review summarizes information from more than 120 peer-reviewed publications on health effects of plastics and plasticizers in lab animals and humans. It examines problematic exposures of susceptible populations and also briefly summarizes adverse environmental impacts from plastic pollution. Ongoing efforts to steer human society toward resource conservation and sustainable consumption are discussed, including the concept of the 5 Rs--i.e., reduce, reuse, recycle, rethink, restrain--for minimizing pre- and postnatal exposures to potentially harmful components of plastics. PMID:20070188

  10. Astrocytes: Orchestrating synaptic plasticity?

    PubMed

    De Pittà, M; Brunel, N; Volterra, A

    2016-05-26

    Synaptic plasticity is the capacity of a preexisting connection between two neurons to change in strength as a function of neural activity. Because synaptic plasticity is the major candidate mechanism for learning and memory, the elucidation of its constituting mechanisms is of crucial importance in many aspects of normal and pathological brain function. In particular, a prominent aspect that remains debated is how the plasticity mechanisms, that encompass a broad spectrum of temporal and spatial scales, come to play together in a concerted fashion. Here we review and discuss evidence that pinpoints to a possible non-neuronal, glial candidate for such orchestration: the regulation of synaptic plasticity by astrocytes. PMID:25862587

  11. Surface Plasmon-Polariton Mediated Red Emission from Organic Light-Emitting Devices Based on Metallic Electrodes Integrated with Dual-Periodic Corrugation

    PubMed Central

    Bi, Yan-Gang; Feng, Jing; Liu, Yu-Shan; Li, Yun-Fei; Chen, Yang; Zhang, Xu-Lin; Han, Xiao-Chi; Sun, Hong-Bo

    2014-01-01

    We demonstrate an effective approach to realize excitation and outcoupling of the SPP modes associated with both cathode/organic and anode/organic interfaces in OLEDs by integrating dual-periodic corrugation. The dual-periodic corrugation consists of two set gratings with different periods. The light trapped in the SPP modes associated with both top and bottom electrode/organic interfaces are efficiently extracted from the OLEDs by adjusting appropriate periods of two set corrugations, and a 29% enhancement in the current efficiency has been obtained. PMID:25407776

  12. Detecting plastics in seedcotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To increase global market share and value the US cotton industry needs to supply cotton lint that is free of contamination. Removing plastic contamination first requires developing a means to detect plastics in seedcotton. This study was conducted to validate a custom Ion Mobility Spectrometer (IM...

  13. Reinforced plastics durability

    SciTech Connect

    Pritchard, G.

    1999-01-01

    Written especially for first-time users of reinforced plastics. The book offers substantial introductory information with key concepts. Chapters examine the long-term threats to the integrity of reinforced plastics: outdoor weathering, solvent/water attack, high temperatures, and repetitive stress.

  14. Laser processing of plastics

    NASA Astrophysics Data System (ADS)

    Atanasov, Peter A.

    1995-03-01

    CO2-laser processing of plastics has been studied experimentally and theoretically. Welding of cylindrical parts made from polycarbonate and polypropylene, cutting of polymethyl-methacrylate plates, and drilling holes in polypropylene are presented as examples. A good coincidence between theoretical and experimental results in case of laser welding has been found. Some practical aspects of laser processing of plastics has been given.

  15. Detecting plastics in seedcotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US cotton industry wants to increase market share and value by supplying pure cotton. Removing contamination requires developing a means to detect plastics in seedcotton. This study was conducted to determine if Ion Mobility Spectrometry (IMS) could be used to find small amounts of plastic in ...

  16. Track recording plastic compositions

    NASA Technical Reports Server (NTRS)

    Tarle, Gregory (Inventor)

    1983-01-01

    Improved nuclear track recording plastic compositions are provided which exhibit greatly decreased surface roughness when etched to produce visible tracks of energetic nuclear particles which have passed into and/or through said plastic. The improved compositions incorporate a small quantity of a phthalic acid ester into the major plastic component which is derived from the polymerization of monomeric di-ethylene glycol bis allyl carbonate. Di-substituted phthalic acid esters are preferred as the added component, with the further perference that the ester substituent has a chain length of 2 or more carbon atoms. The inclusion of the phthalic acid ester to an extent of from about 1-2% by weight of the plastic compositions is sufficient to drastically reduce the surface roughness ordinarily produced when the track recording plastic is contacted by etchants.

  17. Plastic Surgery for Ethnic Patients

    MedlinePlus

    ... Briefing Papers > Plastic Surgery for Ethnic Patients Briefing Paper: Plastic Surgery for Ethnic Patients More than 3. ... 2067-2071. Share Related Links Plastic Surgery Briefing Papers Menu Cosmetic Reconstructive Patient Safety Before & After Find ...

  18. American Society of Plastic Surgeons

    MedlinePlus

    ... doctor who is a member of the American Society of Plastic Surgeons (ASPS®), you can rest assured ... ASPS The Plastic Surgery Foundation Copyright © 2016 American Society of Plastic Surgeons | Privacy Policy | Sitemap | Terms and ...

  19. Reinforced corrugated thin metal foil strip useful in a catalytic converter core, a catalytic converter core containing said strip and an electrically heatable catalytic converter containing said core

    SciTech Connect

    Cornelison, R.C.; Whittenberger, W.A.

    1993-08-31

    A corrugated thin metal foil strip is described having a longitudinally extending center line with an initial strip width and having at least one longitudinal edge folded toward the center line of the strip prior to corrugating said strip to form a folded section and a remaining portion of the strip which is unfolded, the width of the folded section being from about 5% to about 25% of the width of the remaining portion of the strip which is unfolded.

  20. Reduction of the azimuthal beamwidth of quasi-optical circular waveguide slot-type launchers using a corrugated horn-like structure

    SciTech Connect

    Sealy, P.J.; Vernon, R.J.

    1995-12-31

    The radiation pattern of a rotating TE{sub mn}{sup O} mode quasi-optical launcher with corrugated flares is examined. A potential use of the launcher would be to excite a beam-shaping reflector system. Without the flares the launcher has a broad azimuthal beamwidth. The corrugated flares decrease the azimuthal beamwidth and increase the peak power density of the launcher`s radiation pattern.

  1. Study on light extraction efficiency of light-emitting diodes having periodically corrugated enhancement structures with different duty cycles

    NASA Astrophysics Data System (ADS)

    Ku, Hao Ming; Wang, Huei Tsz; Huang, Chen Yang; Pan, Huang Wei; Chao, Shiuh

    2016-02-01

    The duty cycle effect on the light extraction efficiency of light-emitting diodes having different periodically corrugated enhancement structures placed opposite to the emission surface was studied. The experimental results were compared with numerical simulation results. The numerical simulation was performed using a rigorous-coupled-wave-analysis method. In the case of common structures such as a patterned-sapphire structure, we found that, in general, extraction efficiency increased drastically when duty cycle was increased from zero, and then it varied relatively slowly as the duty cycle was increased further; after that, the extraction efficiency dropped drastically as the duty cycle approached 100%. However, for a structure that was composed of autocloned-photonic crystals super-imposing on the periodical corrugation, the efficiency increased monotonically with the duty cycle and reached 83.4% (corresponding to 589% enhancement efficiency) when the duty cycle approached 100%. A method for the fabrication of such high-efficiency structures was proposed.

  2. Emission Characteristics of Organic Light-Emitting Diodes and Organic Thin-Films with Planar and Corrugated Structures

    PubMed Central

    Wei, Mao-Kuo; Lin, Chii-Wann; Yang, Chih-Chung; Kiang, Yean-Woei; Lee, Jiun-Haw; Lin, Hoang-Yan

    2010-01-01

    In this paper, we review the emission characteristics from organic light-emitting diodes (OLEDs) and organic molecular thin films with planar and corrugated structures. In a planar thin film structure, light emission from OLEDs was strongly influenced by the interference effect. With suitable design of microcavity structure and layer thicknesses adjustment, optical characteristics can be engineered to achieve high optical intensity, suitable emission wavelength, and broad viewing angles. To increase the extraction efficiency from OLEDs and organic thin-films, corrugated structure with micro- and nano-scale were applied. Microstructures can effectively redirects the waveguiding light in the substrate outside the device. For nanostructures, it is also possible to couple out the organic and plasmonic modes, not only the substrate mode. PMID:20480033

  3. Rayleigh and Wood anomalies in the diffraction of acoustic waves from the periodically corrugated surface of an elastic medium

    NASA Astrophysics Data System (ADS)

    Maradudin, A. A.; Simonsen, I.

    2016-05-01

    By the use of the Rayleigh method we have calculated the angular dependence of the reflectivity and the efficiencies of several other diffracted orders when the periodically corrugated surface of an isotropic elastic medium is illuminated by a volume acoustic wave of shear horizontal polarization. These dependencies display the signatures of Rayleigh and Wood anomalies, usually associated with the diffraction of light from a metallic grating. The Rayleigh anomalies occur at angles of incidence at which a diffracted order appears or disappears; the Wood anomalies here are caused by the excitation of the shear horizontal surface acoustic waves supported by the periodically corrugated surface of an isotropic elastic medium. The dispersion curves of these waves in both the nonradiative and radiative regions of the frequency-wavenumber plane are calculated, and used in predicting the angles of incidence at which the Wood anomalies are expected to occur.

  4. Experimental Demonstration of Longitudinal Beam Phase-Space Linearizer in a Free-Electron Laser Facility by Corrugated Structures

    NASA Astrophysics Data System (ADS)

    Deng, Haixiao; Zhang, Meng; Feng, Chao; Zhang, Tong; Wang, Xingtao; Lan, Taihe; Feng, Lie; Zhang, Wenyan; Liu, Xiaoqing; Yao, Haifeng; Shen, Lei; Li, Bin; Zhang, Junqiang; Li, Xuan; Fang, Wencheng; Wang, Dan; Couprie, Marie-emmanuelle; Lin, Guoqiang; Liu, Bo; Gu, Qiang; Wang, Dong; Zhao, Zhentang

    2014-12-01

    Removal of the undesired time-energy correlations in the electron beam is of paramount importance for efficient lasing of a high-gain free-electron laser. Recently, it has been theoretically and experimentally demonstrated that the longitudinal wakefield excited by the electrons themselves in a corrugated structure allows for precise control of the electron beam phase space. In this Letter, we report the first utilization of a corrugated structure as a beam linearizer in the operation of a seeded free-electron laser driven by a 140 MeV linear accelerator, where a gain of ˜10 000 over spontaneous emission was achieved at the second harmonic of the 1047 nm seed laser, and a free-electron laser bandwidth narrowing by 50% was observed, in good agreement with the theoretical expectations.

  5. Particle trap to sheath non-binding contact for a gas-insulated transmission line having a corrugated outer conductor

    DOEpatents

    Fischer, William H.

    1984-04-24

    A non-binding particle trap to outer sheath contact for use in gas insulated transmission lines having a corrugated outer conductor. The non-binding feature of the contact according to the teachings of the invention is accomplished by having a lever arm rotatably attached to a particle trap by a pivot support axis disposed parallel to the direction of travel of the inner conductor/insulator/particle trap assembly.

  6. Synaptic plasticity and phosphorylation

    PubMed Central

    Lee, Hey-Kyoung

    2009-01-01

    A number of neuronal functions, including synaptic plasticity, depend on proper regulation of synaptic proteins, many of which can be rapidly regulated by phosphorylation. Neuronal activity controls the function of these synaptic proteins by exquisitely regulating the balance of various protein kinase and protein phosphatase activity. Recent understanding of synaptic plasticity mechanisms underscores important roles that these synaptic phosphoproteins play in regulating both pre- and post-synaptic functions. This review will focus on key postsynaptic phosphoproteins that have been implicated to play a role in synaptic plasticity. PMID:16904750

  7. Tunable and efficient terahertz radiation generation by photomixing of two super Gaussian laser pulses in a corrugated magnetized plasma

    SciTech Connect

    Varshney, Prateek; Sajal, Vivek Kumar, Ravindra; Sharma, Navneet K.; Singh, Kunwar Pal

    2015-05-21

    A scheme of terahertz (THz) radiation generation is investigated by photo-mixing of two super Gaussian laser beams having different frequencies (ω{sub 1}, ω{sub 2}) and wave numbers (k{sup →}{sub 1}, k{sup →}{sub 2}) in a performed corrugated plasma embedded with transverse dc magnetic field. Lasers exert a nonlinear ponderomotive force, imparting an oscillatory velocity to plasma electrons that couples with the density corrugations (n{sup ′}=n{sub α0}e{sup iαz}) to generate a strong transient nonlinear current, that resonantly derives THz radiation of frequency ∼ω{sub h} (upper hybrid frequency). The periodicity of density corrugations is suitably chosen to transfer maximum momentum from lasers to THz radiation at phase matching conditions ω=ω{sub 1}−ω{sub 2} and k{sup →}=k{sup →}{sub 1}−k{sup →}{sub 2}+α{sup →}. The efficiency, power, beam quality, and tunability of the present scheme exhibit high dependency upon the applied transverse dc magnetic field along with q-indices and beam width parameters (a{sub 0}) of super Gaussian lasers. In the present scheme, efficiency ∼10{sup −2} is achieved with the optimization of all these parameters.

  8. Evaporation heat transfer and friction characteristics of R-134a flowing downward in a vertical corrugated tube

    SciTech Connect

    Aroonrat, Kanit; Wongwises, Somchai

    2011-01-15

    Differently from most previous studies, the heat transfer and friction characteristics of the pure refrigerant HFC-134a during evaporation inside a vertical corrugated tube are experimentally investigated. The double tube test sections are 0.5 m long with refrigerant flowing in the inner tube and heating water flowing in the annulus. The inner tubes are one smooth tube and two corrugated tubes, which are constructed from smooth copper tube of 8.7 mm inner diameter. The test runs are performed at evaporating temperatures of 10, 15, and 20 C, heat fluxes of 20, 25, and 30 kW/m{sup 2}, and mass fluxes of 200, 300, and 400 kg/m{sup 2} s. The quality of the refrigerant in the test section is calculated using the temperature and pressure obtained from the experiment. The pressure drop across the test section is measured directly by a differential pressure transducer. The effects of heat flux, mass flux, and evaporation temperature on the heat transfer coefficient and two-phase friction factor are also discussed. It is found that the percentage increases of the heat transfer coefficient and the two-phase friction factor of the corrugated tubes compared with those of the smooth tube are approximately 0-10% and 70-140%, respectively. (author)

  9. Evanescent waves propagation along a periodically corrugated surface and their amplification by relativistic electron beam (quasi-optical theory)

    SciTech Connect

    Ginzburg, N. S.; Malkin, A. M.; Zheleznov, I. V.; Sergeev, A. S.

    2013-06-15

    By using a quasi-optical approach, we study propagation of evanescent waves along a periodically corrugated surface and their excitation by relativistic electron beams. Under assumption of a shallow (in the scale of period) corrugation, the dispersion equation for normal waves is derived and two particular cases are studied. In the first case, the wave frequency is far from the Bragg resonance; therefore, the evanescent wave propagation can be described by using the impedance approximation with deceleration of the zeroth spatial harmonic. The second case takes place at the frequencies close to the Bragg resonance. There, the field can be represented as two counter-propagating quasi-optical wave beams, which are coupled on the corrugated surface and form an evanescent normal wave. With regard to the interaction with an electron beam, the first case corresponds to the convective instability that can be used for amplification of radiation, while the second case corresponds to the absolute instability used in surface-wave oscillators. This paper is focused on studying main features of amplifier schemes, such as the increments, electron efficiency, and formation of a self-consistent spatial structure of the radiated field. For practical applications, the feasibility of realization of relativistic surface-wave amplifiers in the submillimeter wavelength range is estimated.

  10. Dreaming in plastic

    NASA Astrophysics Data System (ADS)

    Korzhov, Marianna; Andelman, David; Shikler, Rafi

    2008-07-01

    Plastic is one of the most versatile materials available. It is cheap, flexible and easy to process, and as a result it is all around us - from our computer keyboards to the soles of our shoes. One of its most common applications is as an insulating coating for electric wires; indeed, plastic is well known for its insulating characteristics. It came as something of a surprise, therefore, when in the late 1970s a new generation of plastics was discovered that displayed exactly the opposite behaviour - the ability to conduct electricity. In fact, plastics can be made with a whole range of conductivities - there are polymer materials that behave like semiconductors and there are those that can conduct as well as metals. This discovery sparked a revolution in the electronics community, and three decades of research effort is now yielding a range of stunning new applications for this ubiquitous material.

  11. A Plastic Menagerie

    ERIC Educational Resources Information Center

    Hadley, Mary Jane

    2010-01-01

    Bobble heads had become quite popular, depicting all sorts of sports figures, animals, and even presidents. In this article, the author describes how her fourth graders made bobble head sculptures out of empty plastic drink bottles. (Contains 1 online resource.)

  12. Shape-Shifting Plastic

    SciTech Connect

    2015-05-20

    A new plastic developed by ORNL and Washington State University transforms from its original shape through a series of temporary shapes and returns to its initial form. The shape-shifting process is controlled through changes in temperature

  13. Recycle plastics into feedstocks

    SciTech Connect

    Kastner, H.; Kaminsky, W.

    1995-05-01

    Thermal cracking of mixed-plastics wastes with a fluidized-bed reactor can be a viable and cost-effective means to meet mandatory recycling laws. Strict worldwide environmental statutes require the hydrocarbon processing industry (HPI) to develop and implement product applications and technologies that reuse post-consumer mixed-plastics waste. Recycling or reuse of plastics waste has a broad definition. Recycling entails more than mechanical regranulation and remelting of polymers for film and molding applications. A European consortium of academia and refiners have investigated if it is possible and profitable to thermally crack plastics into feedstocks for refining and petrochemical applications. Development and demonstration of pyrolysis methods show promising possibilities of converting landfill garbage into valuable feedstocks such as ethylene, propylene, BTX, etc. Fluidized-bed reactor technologies offer HPI operators a possible avenue to meet recycling laws, conserve raw materials and yield a profit. The paper describes thermal cracking for feedstocks and pyrolysis of polyolefins.

  14. Extruded plastic scintillation detectors

    SciTech Connect

    Anna Pla-Dalmau, Alan D. Bross and Kerry L. Mellott

    1999-04-16

    As a way to lower the cost of plastic scintillation detectors, commercially available polystyrene pellets have been used in the production of scintillating materials that can be extruded into different profiles. The selection of the raw materials is discussed. Two techniques to add wavelength shifting dopants to polystyrene pellets and to extrude plastic scintillating strips are described. Data on light yield and transmittance measurements are presented.

  15. Laser cutting plastic materials

    SciTech Connect

    Van Cleave, R.A.

    1980-08-01

    A 1000-watt CO/sub 2/ laser has been demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics have been laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass-reinforced laminates, Kevlar/epoxy composites, fiberglass-reinforced phenolics, nylon/epoxy laminates, ceramics, and disposable tooling made from acrylic.

  16. Ratcheting of Brownian swimmers in periodically corrugated channels: A reduced Fokker-Planck approach

    NASA Astrophysics Data System (ADS)

    Yariv, Ehud; Schnitzer, Ory

    2014-09-01

    We consider the motion of self-propelling Brownian particles in two-dimensional periodically corrugated channels. The point-size swimmers propel themselves in a direction which fluctuates by Brownian rotation; in addition, they undergo Brownian motion. The impermeability of the channel boundaries in conjunction with an asymmetry of the unit-cell geometry enables ratcheting, where a nonzero particle current is animated along the channel. This effect is studied here in the continuum limit using a diffusion-advection description of the probability density in a four-dimensional position-orientation space. Specifically, the mean particle velocity is calculated using macrotransport (generalized Taylor-dispersion) theory. This description reveals that the ratcheting mechanism is indirect: swimming gives rise to a biased spatial particle distribution which in turn results in a purely diffusive net current. For a slowly varying channel geometry, the dependence of this current upon the channel geometry and fluid-particle parameters is studied via a long-wave approximation over a reduced two-dimensional space. This allows for a straightforward seminumerical solution. In the limit where both rotational diffusion and swimming are strong, we find an asymptotic approximation to the particle current, scaling inversely with the square of the swimming Péclet number. For a given swimmer-fluid system, this limit is physically realized with increasing unit-cell size.

  17. Ratcheting of Brownian swimmers in periodically corrugated channels: a reduced Fokker-Planck approach.

    PubMed

    Yariv, Ehud; Schnitzer, Ory

    2014-09-01

    We consider the motion of self-propelling Brownian particles in two-dimensional periodically corrugated channels. The point-size swimmers propel themselves in a direction which fluctuates by Brownian rotation; in addition, they undergo Brownian motion. The impermeability of the channel boundaries in conjunction with an asymmetry of the unit-cell geometry enables ratcheting, where a nonzero particle current is animated along the channel. This effect is studied here in the continuum limit using a diffusion-advection description of the probability density in a four-dimensional position-orientation space. Specifically, the mean particle velocity is calculated using macrotransport (generalized Taylor-dispersion) theory. This description reveals that the ratcheting mechanism is indirect: swimming gives rise to a biased spatial particle distribution which in turn results in a purely diffusive net current. For a slowly varying channel geometry, the dependence of this current upon the channel geometry and fluid-particle parameters is studied via a long-wave approximation over a reduced two-dimensional space. This allows for a straightforward seminumerical solution. In the limit where both rotational diffusion and swimming are strong, we find an asymptotic approximation to the particle current, scaling inversely with the square of the swimming Péclet number. For a given swimmer-fluid system, this limit is physically realized with increasing unit-cell size. PMID:25314403

  18. Disrupting the wall accumulation of human sperm cells by artificial corrugation

    PubMed Central

    Jeyaram, Y.; Condat, C. A.; Oviedo, M.; Berdakin, I.; Moshchalkov, V. V.; Giojalas, L. C.; Silhanek, A. V.; Marconi, V. I.

    2015-01-01

    Many self-propelled microorganisms are attracted to surfaces. This makes their dynamics in restricted geometries very different from that observed in the bulk. Swimming along walls is beneficial for directing and sorting cells, but may be detrimental if homogeneous populations are desired, such as in counting microchambers. In this work, we characterize the motion of human sperm cells ∼60 μm long, strongly confined to ∼25 μm shallow chambers. We investigate the nature of the cell trajectories between the confining surfaces and their accumulation near the borders. Observed cell trajectories are composed of a succession of quasi-circular and quasi-linear segments. This suggests that the cells follow a path of intermittent trappings near the top and bottom surfaces separated by stretches of quasi-free motion in between the two surfaces, as confirmed by depth resolved confocal microscopy studies. We show that the introduction of artificial petal-shaped corrugation in the lateral boundaries removes the tendency of cells to accumulate near the borders, an effect which we hypothesize may be valuable for microfluidic applications in biomedicine. PMID:26015834

  19. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Zotova, I. V.; Sergeev, A. S.; Zaslavsky, V. Yu.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V.

    2015-11-01

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by "fresh" electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.

  20. Single-step holographic fabrication of large-area periodically corrugated metal films

    PubMed Central

    Lu, Mengqian; Krishna Juluri, Bala; Zhao, Yanhui; Jun Liu, Yan; Bunning, Timothy J.; Jun Huang, Tony

    2012-01-01

    We have developed a simple, high-throughput, and cost-effective method to fabricate one-dimensional and two-dimensional periodically corrugated silver films over centimeter scale areas. This fabrication uses a single-step holographic patterning technique with laser intensities as low as 88.8 mW/cm2 to deposit silver nanoparticles directly from solution to create gratings with periodicities of 570 nm. A dip in the transmission spectrum for these samples is observed due to certain visible wavelengths coupling to surface plasmon polaritons (SPPs) and the peak wavelength of this dip has a linear relationship with the surrounding material's refractive index (RI) with a sensitivity of 553.4 nm/RIU. The figure of merit (the ratio of refractive index sensitivity to the full width at half maximum (FWHM)) is typically in the range of 12–23. Our technique enables single-step fabrication of uniform, sub-wavelength periodic metal structures over a large area with low cost. Such sub-wavelength periodic metal structures are promising candidates as disposable sensors in applications such as affordable environmental monitoring systems and point-of-care diagnostics. PMID:23284185

  1. Corrugated velocity patterns in the spiral galaxies: NGC 278, NGC 1058, NGC 2500 & UGC 3574

    NASA Astrophysics Data System (ADS)

    Sánchez-Gil, M. Carmen; Alfaro, Emilio J.; Pérez, Enrique

    2015-12-01

    We address the study of the H α vertical velocity field in a sample of four nearly face-on galaxies using long-slit spectroscopy taken with the Intermediate dispersion Spectrograph and Imaging System (ISIS), attached to the William Herschel Telescope (WHT) at the Roque de los Muchachos Observatory (Spain). The spatial structure of the velocity vertical component shows a radial corrugated pattern with spatial scales higher or within the order of 1 kpc. The gas is mainly ionized by high-energy photons: only in some locations of NGC 278 and NGC 1058 is there some evidence of ionization by low-velocity shocks, which, in the case of NGC 278, could be due to minor mergers. The behaviour of the gas in the neighbourhood of the spiral arms fits, in the majority of the observed cases, with that predicted by the so-called hydraulic bore mechanism, where a thick magnetized disc encounters a spiral density perturbation. The results obtained show that it is difficult to explain the H α large-scale velocity field without the presence of a magnetized, thick galactic disc. Larger samples and spatial covering of the galaxy discs are needed to provide further insight into this problem.

  2. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    SciTech Connect

    Ginzburg, N. S. Zaslavsky, V. Yu.; Zotova, I. V.; Sergeev, A. S.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V.

    2015-11-15

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.

  3. Improving wet and dry strength properties of recycled old corrugated carton (OCC) pulp using various polymers.

    PubMed

    Hamzeh, Yahya; Sabbaghi, Sanaz; Ashori, Alireza; Abdulkhani, Ali; Soltani, Farshid

    2013-04-15

    In this study, the application of different dosages of low and high molecular weights (MW) of chitosan (Ch), cationic starch (CS) and poly vinyl alcohol (PVA) were systematically investigated using old corrugated carton (OCC) furnishes. Various sequences of above-mentioned polymeric additives were also examined to find out the optimal combination for improving both wet and dry tensile strength. For each treatment, 4 handsheets, each having basis weight of 100 g/m(2), were made. In general, the tensile strength of handsheets was significantly affected by the addition of polymeric agents. The enhancing effect of additives on dry tensile property was much higher than wet condition. The results also showed that the tensile strength of the samples made from OCC furnishes were improved upon the addition of high molecular weight chitosan (ChI) compared to the untreated ones (control). The low MW chitosan did not change the properties of handsheets dramatically. Application of polymeric agents moderately decreased the stretch to rupture, however with increasing dosage the stretch was improved. Sequential addition of used polymers showed that triple application of polymers was beneficial to both dry and wet tensile strength, although the effect was larger for dry. The best results in wet and dry tensile strengths were achieved using sequential of PVA-ChI-CS. Sequential addition of oppositely charged polymers forms a macromolecular layered structure of polyelectrolytes. PMID:23544577

  4. Simulation of the evolution of rail corrugation using a rotating flexible wheelset model

    NASA Astrophysics Data System (ADS)

    Vila, Paloma; Fayos, Juan; Baeza, Luis

    2011-11-01

    This paper presents a simulation tool designed for predicting the wear pattern on the running surface of the rails and for studying the evolution of rail corrugation after thousands of wheelset passages. This simulation tool implements a cyclic track model, a rotating flexible wheelset model, a wheel-rail contact model and a wear model. The vehicle-track system is modelled by using a substructuring technique, by which the vehicle, the rails and the sleepers are treated independently of each other and are coupled by the forces transmitted through the wheel-rail contact and the railpad. The vehicle model takes only account of the wheelset since the sprung masses of the vehicle are not relevant in the frequency range analysed. The wheelset model considers the flexibility of the wheelset and the effects associated with rotation. By using the Campbell diagram, two cases have been identified in which the combined effect of two different modes may give rise to higher wheel-rail contact forces and wear.

  5. Dynamic test of a corrugated steel keyworker blast shelter MISTY PICTURE. Final report

    SciTech Connect

    Holmes, R.L.; Slawson, T.R.; Harris, A.L.

    1987-11-01

    The 18-man blast shelter was tested dynamically on May 14, 1987 in the MISTY PICTURE event at White Sands Missile Range, NM. The main section of the shelter was fabricated from a 9-foot-diameter, 27.5-foot-long section of 10-gage, galvanized, corrugated steel culvert. The shelter included a vertical entryway and air intake and exhaust stacks. The shelter design was found to be conservative during a previous 50-psi validation test, and some constructibility problems were encountered with the entryway-to-shelter connections. This test was conducted to validate the modifications made to the shelter design. The modifications were made to reduce construction costs and improve constructibility. Primary modifications included: replacing the stiffened endwalls with lighter-weight unstiffened plates, connecting the entryway to an endwall rather than to the main section of the shelter, and the inclusion of an emergency exit. The structure was located at the anticipated 200-psi peak overpressure level. Post-test inspection revealed that the main section of the shelter suffered very little damage during the test. Due to the failure of the emergency exit cover plate, it was necessary to determine if enough pressure entered the shelter to affect its structural response. This test also investigated the shock environment inside the shelter.

  6. Sound Transmission Loss Through a Corrugated-Core Sandwich Panel with Integrated Acoustic Resonators

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Allen, Albert R.; Zalewski, Bart F; Beck, Benjamin S.

    2014-01-01

    The goal of this study is to better understand the effect of structurally integrated resonators on the transmission loss of a sandwich panel. The sandwich panel has facesheets over a corrugated core, which creates long aligned chambers that run parallel to the facesheets. When ports are introduced through the facesheet, the long chambers within the core can be used as low-frequency acoustic resonators. By integrating the resonators within the structure they contribute to the static load bearing capability of the panel while also attenuating noise. An analytical model of a panel with embedded resonators is derived and compared with numerical simulations. Predictions show that acoustic resonators can significantly improve the transmission loss of the sandwich panel around the natural frequency of the resonators. In one configuration with 0.813 m long internal chambers, the diffuse field transmission loss is improved by more than 22 dB around 104 Hz. The benefit is achieved with no added mass or volume relative to the baseline structure. The embedded resonators are effective because they radiate sound out-of-phase with the structure. This results in destructive interference, which leads to less transmitted sound power.

  7. SHOCK CORRUGATION BY RAYLEIGH-TAYLOR INSTABILITY IN GAMMA-RAY BURST AFTERGLOW JETS

    SciTech Connect

    Duffell, Paul C.; MacFadyen, Andrew I. E-mail: macfadyen@nyu.edu

    2014-08-10

    Afterglow jets are Rayleigh-Taylor unstable and therefore turbulent during the early part of their deceleration. There are also several processes which actively cool the jet. In this Letter, we demonstrate that if cooling significantly increases the compressibility of the flow, the turbulence collides with the forward shock, destabilizing and corrugating it. In this case, the forward shock is turbulent enough to produce the magnetic fields responsible for synchrotron emission via small-scale turbulent dynamo. We calculate light curves assuming the magnetic field is in energy equipartition with the turbulent kinetic energy and discover that dynamic magnetic fields are well approximated by a constant magnetic-to-thermal energy ratio of 1%, though there is a sizeable delay in the time of peak flux as the magnetic field turns on only after the turbulence has activated. The reverse shock is found to be significantly more magnetized than the forward shock, with a magnetic-to-thermal energy ratio of the order of 10%. This work motivates future Rayleigh-Taylor calculations using more physical cooling models.

  8. Pressure drop testing of corrugated stainless steel pliable gas tubing (PLT)

    NASA Astrophysics Data System (ADS)

    Srinivasan, Bharadwaj

    An experimental program was initiated to determine the Darcy friction factor in straight corrugated stainless steel pliable gas tubing (PLT). Pressure loss tests were conducted on PLT per I.S. EN 15266:2007. A power law least-squares curve fit was used to relate pressure loss per unit length as a function of volume flow rate. The calculated coefficient of determination values for the straight PLT exceeded 0.90 indicating suitable correlation. Darcy friction factors were calculated from test data for each case and plotted on a Moody diagram as a function of Reynolds number based on the minimum PLT cross section. For Reynolds numbers less than 2300 the pressure loss data for PLT yielded an inverse relationship between the Darcy friction factor and the Reynolds number, with a proportionality coefficient of 49. The measurement uncertainty estimates for straight sections was performed with a 95% confidence level. Straight PLT flow rates for air and representative fuel gases that would yield a pressure loss Deltap = 1 mbar were calculated as a function of PLT length and diameter. Fitting pressure loss tests were performed for elbows, tees, and bullhead tees. The loss coefficients were evaluated and tabulated. The calculated coefficient of determination values for the fittings was found to be low. The measurement uncertainty was calculated using the root sum square error method and was found to be very high because of the low flow rates considered in this experiment.

  9. Graphene on Ni(111): Electronic Corrugation and Dynamics from Helium Atom Scattering

    PubMed Central

    2015-01-01

    Using helium atom scattering, we have studied the structure and dynamics of a graphene layer prepared in situ on a Ni(111) surface. Graphene/Ni(111) exhibits a helium reflectivity of ∼20% for a thermal helium atom beam and a particularly small surface electron density corrugation ((0.06 ± 0.02) Å peak to peak height). The Debye–Waller attenuation of the elastic diffraction peaks of graphene/Ni(111) and Ni(111) was measured at surface temperatures between 150 and 740 K. A surface Debye temperature of θD = (784 ± 14) K is determined for the graphene/Ni(111) system and θD = (388 ± 7) K for Ni(111), suggesting that the interlayer interaction between graphene and the Ni substrate is intermediary between those for strongly interacting systems like graphene/Ru(0001) and weakly interacting systems like graphene/Pt(111). In addition we present measurements of low frequency surface phonon modes on graphene/Ni(111) where the phonon modes of the Ni(111) substrate can be clearly observed. The similarity of these findings with the graphene/Ru(0001) system indicates that the bonding of graphene to a metal substrate alters the dynamic properties of the graphene surface strongly and is responsible for the high helium reflectivity of these systems. PMID:26617683

  10. High-power corrugates waveguide components for mm-wave fusion heating systems

    SciTech Connect

    Olstad, R.A.; Doane, J.L.; Moeller, C.P.; O`Neill, R.C.; Di Martino, M.

    1996-10-01

    Considerable progress has been made over the last year in the U.S., Japan, Russia, and Europe in developing high power long pulse gyrotrons for fusion plasma heating and current drive. These advanced gyrotrons typically operate at a frequency in the range 82 GHz to 170 GHz at nearly megawatt power levels for pulse lengths up to 5 s. To take advantage of these new microwave sources for fusion research, new and improved transmission line components are needed to reliably transmit microwave power to plasmas with minimal losses. Over the last year, General Atomics and collaborating companies (Spinner GmbH in Europe and Toshiba Corporation in Japan) have developed a wide variety of new components which meet the demanding power, pulse length, frequency, and vacuum requirements for effective utilization of the new generation of gyrotrons. These components include low-loss straight corrugated waveguides, miter bends, miter bend polarizers, power monitors, waveguide bellows, de breaks, waveguide switches, dummy loads, and distributed windows. These components have been developed with several different waveguide diameters (32, 64, and 89 mm) and frequency ranges (82 GHz to 170 GHz). This paper describes the design requirements of selected components and their calculated and measured performance characteristics.

  11. Electronic and thermal transport study of sinusoidally corrugated nanowires aiming to improve thermoelectric efficiency.

    PubMed

    Park, K H; Martin, P N; Ravaioli, U

    2016-01-22

    Improvement of thermoelectric efficiency has been very challenging in the solid-state industry due to the interplay among transport coefficients which measure the efficiency. In this work, we modulate the geometry of nanowires to interrupt thermal transport with causing only a minimal impact on electronic transport properties, thereby maximizing the thermoelectric power generation. As it is essential to scrutinize comprehensively both electronic and thermal transport behaviors for nano-scale thermoelectric devices, we investigate the Seebeck coefficient, the electrical conductance, and the thermal conductivity of sinusoidally corrugated silicon nanowires and eventually look into an enhancement of the thermoelectric figure-of-merit [Formula: see text] from the modulated nanowires over typical straight nanowires. A loss in the electronic transport coefficient is calculated with the recursive Green function along with the Landauer formalism, and the thermal transport is simulated with the molecular dynamics. In contrast to a small influence on the thermopower and the electrical conductance of the geometry-modulated nanowires, a large reduction of the thermal conductivity yields an enhancement of the efficiency by 10% to 35% from the typical nanowires. We find that this approach can be easily extended to various structures and materials as we consider the geometrical modulation as a sole source of perturbation to the system. PMID:26650977

  12. Diffraction inspired unidirectional and bidirectional beam splitting in defect-containing photonic structures without interface corrugations

    NASA Astrophysics Data System (ADS)

    Colak, Evrim; Serebryannikov, Andriy E.; Usik, P. V.; Ozbay, Ekmel

    2016-05-01

    It is shown that strong diffractions and related dual-beam splitting can be obtained at transmission through the nonsymmetric structures that represent two slabs of photonic crystal (PhC) separated by a single coupled-cavity type defect layer, while there are no grating-like corrugations at the interfaces. The basic operation regimes include unidirectional and bidirectional splitting that occur due to the dominant contribution of the first positive and first negative diffraction orders to the transmission, which is typically connected with different manifestations of the asymmetric transmission phenomenon. Being the main component of the resulting transmission mechanism, diffractions appear owing to the effect exerted by the defect layer that works like an embedded diffractive element. Two mechanisms can co-exist in one structure, which differ, among others, in that whether dispersion allows coupling of zero order to a wave propagating in the regular, i.e., defect-free PhC segments or not. The possibility of strong diffractions and efficient splitting related to it strongly depend on the dispersion properties of the Floquet-Bloch modes of the PhC. Existence of one of the studied transmission scenarios is not affected by location of the defect layer.

  13. Tribological characteristics of corrugated nano-scale dimpled and nanostructured surfaces.

    PubMed

    Park, In-Gyu; Lee, Chang-Soon; Cho, In-Shik

    2013-12-01

    The effects of ultrasonic nanocrystalline surface modification (UNSM) on the tribological characteristics of two different Cu-based alloys sintered on low carbon steel were investigated using a ball-on-disk reciprocating tribometer with a hardened bearing steel ball under oil-lubricated conditions. Experimental results showed that both the UNSM-treated Cu-based alloy specimens reduced the friction coefficient and enhanced the wear resistance compared to those of the polished specimens. Improvements in tribological characteristics of the UNSM-treated specimens may be attributed to the corrugated nano-scale dimpled and nanostructured surfaces and increased hardness. Addition of the 0.52% ferrum to Cu-based alloy is found to be beneficial in improving the tribological characteristics and in reducing the grain size. Scanning electron microscopy (SEM) was utilized to analyze the worn surfaces and characterize the wear mechanisms of the polished and UNSM-treated specimens. SEM analyses showed that the UNSM could reduce the abrasive wear which was the dominant wear mechanism of both Cu-based alloys specimens. In addition, the density and porosity measurement of both sintered Cu-based alloys revealed that the density increased and the porosity decreased after UNSM. PMID:24266221

  14. Corrugated paraffin nanocomposite films as large stroke thermal actuators and self-activating thermal interfaces.

    PubMed

    Copic, Davor; Hart, A John

    2015-04-22

    High performance active materials are of rapidly growing interest for applications including soft robotics, microfluidic systems, and morphing composites. In particular, paraffin wax has been used to actuate miniature pumps, solenoid valves, and composite fibers, yet its deployment is typically limited by the need for external volume constraint. We demonstrate that compact, high-performance paraffin actuators can be made by confining paraffin within vertically aligned carbon nanotube (CNT) films. This large-stroke vertical actuation is enabled by strong capillary interaction between paraffin and CNTs and by engineering the CNT morphology by mechanical compression before capillary-driven infiltration of the molten paraffin. The maximum actuation strain of the corrugated CNT-paraffin films (∼0.02-0.2) is comparable to natural muscle, yet the maximum stress is limited to ∼10 kPa by collapse of the CNT network. We also show how a CNT-paraffin film can serve as a self-activating thermal interface that closes a gap when it is heated. These new CNT-paraffin film actuators could be produced by large-area CNT growth, infiltration, and lamination methods, and are attractive for use in miniature systems due to their self-contained design. PMID:25822633

  15. The Need for Plastics Education.

    ERIC Educational Resources Information Center

    Society of Plastics Engineers, Inc., Stamford, CT.

    In view of a lack of trained personnel in the industry, the Plastics Education Foundation proposes that educators (1) add more plastics programs, (2) establish plastics engineering degrees at appropriate 4-year institutions, (3) add plastics processing technology to current engineering curricula, and (4) interest younger students in courses and/or…

  16. The plasticity of clays

    USGS Publications Warehouse

    Group, F.F.

    1905-01-01

    (1) Sand injures plasticity little at first because the grains are suspended in a plastic mass. It is only when grains are abundant enough to come in contact with their neighbors, that the effect becomes serious, and then both strength and amount of possible flow are injured. (2) Certain rare organic colloids increase the plasticity by rendering the water viscous. (3) Fineness also tends to increase plasticity. (4) Plane surfaces (plates) increase the amount of possible flow. They also give a chance for lubrication by thinner films, thus increasing the friction of film, and the strength of the whole mass. The action of plates is thus twofold ; but fineness may be carried to such an extent as to break up plate-like grains into angular fragments. The beneficial effects of plates are also decreased by the fact that each is so closely surrounded by others in the mass. (5) Molecular attraction is twofold in increasing plasticity. As the attraction increases, the coherence and strength of the mass increase, and the amount of possible deformation before crumbling also increases. Fineness increases this action by requiring more water. Colloids and crystalloids in solution may also increase the attraction. It is thus seen to be more active than any other single factor.

  17. Mechanisms of large strain, high strain rate plastic flow in the explosively driven collapse of Ni-Al laminate cylinders

    NASA Astrophysics Data System (ADS)

    Olney, K. L.; Chiu, P. H.; Higgins, A.; Serge, M.; Weihs, T. P.; Fritz, G.; Stover, A.; Benson, D. J.; Nesterenko, V. F.

    2014-05-01

    Ni-Al laminates have shown promise as reactive materials due to their high energy release through intermetallic reaction. In addition to the traditional ignition methods, the reaction may be initiated in hot spots that can be created during mechanical loading. The explosively driven thick walled cylinder (TWC) technique was performed on two Ni-Al laminates composed of thin foil layers with different mesostructues: concentric and corrugated. These experiments were conducted to examine how these materials accommodate large plastic strain under high strain rates. Finite element simulations of these specimens with mesostuctures digitized from the experimental samples were conducted to provide insight into the mesoscale mechanisms of plastic flow. The dependence of dynamic behaviour on mesostructure may be used to tailor the hot spot formation and therefore the reactivity of the material system.

  18. Mode Content Determination of Terahertz Corrugated Waveguides Using Experimentally Measured Radiated Field Patterns.

    PubMed

    Jawla, Sudheer K; Nanni, Emilio A; Shapiro, Michael A; Woskov, Paul P; Temkin, Richard J

    2012-06-01

    This work focuses on the accuracy of the mode content measurements in an overmoded corrugated waveguide using measured radiated field patterns. Experimental results were obtained at 250 GHz using a vector network analyzer with over 70 dB of dynamic range. The intensity and phase profiles of the fields radiated from the end of the 19 mm diameter helically tapped brass waveguide were measured on planes at 7, 10, and 13 cm from the waveguide end. The measured fields were back propagated to the waveguide aperture to provide three independent estimates of the field at the waveguide exit aperture. Projecting that field onto the modes of the guide determined the waveguide mode content. The three independent mode content estimates were found to agree with one another to an accuracy of better than ±0.3%. These direct determinations of the mode content were compared with indirect measurements using the experimentally measured amplitude in three planes, with the phase determined by a phase retrieval algorithm. The phase retrieval technique using the planes at 7, 10, and 13 cm yielded a mode content estimate in excellent agreement, within 0.3%, of the direct measurements. Phase retrieval results using planes at 10, 20, and 30 cm were less accurate due to truncation of the measurement in the transverse plane. The reported measurements benefited greatly from a precise mechanical alignment of the scanner with respect to the waveguide axis. These results will help to understand the accuracy of mode content measurements made directly in cold test and indirectly in hot test using the phase retrieval technique. PMID:25264391

  19. Mode Content Determination of Terahertz Corrugated Waveguides Using Experimentally Measured Radiated Field Patterns

    PubMed Central

    Jawla, Sudheer K.; Nanni, Emilio A.; Shapiro, Michael A.; Woskov, Paul P.; Temkin, Richard J.

    2012-01-01

    This work focuses on the accuracy of the mode content measurements in an overmoded corrugated waveguide using measured radiated field patterns. Experimental results were obtained at 250 GHz using a vector network analyzer with over 70 dB of dynamic range. The intensity and phase profiles of the fields radiated from the end of the 19 mm diameter helically tapped brass waveguide were measured on planes at 7, 10, and 13 cm from the waveguide end. The measured fields were back propagated to the waveguide aperture to provide three independent estimates of the field at the waveguide exit aperture. Projecting that field onto the modes of the guide determined the waveguide mode content. The three independent mode content estimates were found to agree with one another to an accuracy of better than ±0.3%. These direct determinations of the mode content were compared with indirect measurements using the experimentally measured amplitude in three planes, with the phase determined by a phase retrieval algorithm. The phase retrieval technique using the planes at 7, 10, and 13 cm yielded a mode content estimate in excellent agreement, within 0.3%, of the direct measurements. Phase retrieval results using planes at 10, 20, and 30 cm were less accurate due to truncation of the measurement in the transverse plane. The reported measurements benefited greatly from a precise mechanical alignment of the scanner with respect to the waveguide axis. These results will help to understand the accuracy of mode content measurements made directly in cold test and indirectly in hot test using the phase retrieval technique. PMID:25264391

  20. An InP/Si heterojunction photodiode fabricated by self-aligned corrugated epitaxial lateral overgrowth

    SciTech Connect

    Sun, Y. T. Omanakuttan, G.; Lourdudoss, S.

    2015-05-25

    An n-InP/p-Si heterojunction photodiode fabricated by corrugated epitaxial lateral overgrowth (CELOG) method is presented. N-InP/p-Si heterojunction has been achieved from a suitable pattern containing circular shaped openings in a triangular lattice on the InP seed layer on p-Si substrate and subsequent CELOG of completely coalesced n-InP. To avoid current path through the seed layer in the final photodiode, semi-insulating InP:Fe was grown with adequate thickness prior to n-InP growth in a low pressure hydride vapor phase epitaxy reactor. The n-InP/p-Si heterointerface was analyzed by scanning electron microscopy and Raman spectroscopy. Room temperature cross-sectional photoluminescence (PL) mapping illustrates the defect reduction effect in InP grown on Si by CELOG method. The InP PL intensity measured above the InP/Si heterojunction is comparable to that of InP grown on a native planar substrate indicating low interface defect density of CELOG InP despite of 8% lattice mismatch with Si. The processed n-InP/p-Si heterojunction photodiodes show diode characteristics from the current-voltage (I-V) measurements with a dark current density of 0.324 mA/cm{sup 2} at a reverse voltage of −1 V. Under the illumination of AM1.5 conditions, the InP/Si heterojunction photodiode exhibited photovoltaic effect with an open circuit voltage of 180 mV, a short circuit current density of 1.89 mA/cm{sup 2}, an external quantum efficiency of 4.3%, and an internal quantum efficiency of 6.4%. This demonstration of epitaxially grown InP/Si heterojunction photodiode will open the door for low cost and high efficiency solar cells and photonic integration of III-Vs on silicon.

  1. Consumer hazards of plastics.

    PubMed Central

    Wiberg, G S

    1976-01-01

    The modern consumer is exposed to a wide variety of plastic and rubber products in his day to day life: at home, work, school, shopping, recreation and play, and transport. A large variety of toxic sequellae have resulted from untoward exposures by many different routes: oral, dermal, inhalation, and parenteral. Toxic change may result from the plastic itself, migration of unbound components and additives, chemical decomposition or toxic pyrolysis products. The type of damage may involve acute poisoning, chronic organ damage, reproductive disorders, and carcinogenic, mutagenic and teratogenic episodes. Typical examples for all routes are cited along with the activites of Canadian regulatory agencies to reduce both the incidence and severity of plastic-induced disease. PMID:1026409

  2. Plastic heliostat enclosure analysis

    NASA Astrophysics Data System (ADS)

    Berry, M. J.

    1984-12-01

    The conceptual design and cost analysis of an enclosed plastic heliostat for a 50-MW/sub e/ central receiver solar thermal electric power plant are presented. The purpose of the study was to analyze the most recent design of the Boeing enclosed plastic heliostat for cost and compare results with a reference second generation glass heliostat case provided by Sandia National Laboratories, Livermore. In addition, sensitivities of busbar energy costs to variations in capital cost (installed cost), operation and maintenance most and overall reflectivity were evaluated.

  3. Analysis of brook trout spatial behavior during passage attempts in corrugated culverts using near-infrared illumination video imagery

    USGS Publications Warehouse

    Bergeron, Normand E.; Constantin, Pierre-Marc; Goerig, Elsa; Castro-Santos, Theodore R.

    2016-01-01

    We used video recording and near-infrared illumination to document the spatial behavior of brook trout of various sizes attempting to pass corrugated culverts under different hydraulic conditions. Semi-automated image analysis was used to digitize fish position at high temporal resolution inside the culvert, which allowed calculation of various spatial behavior metrics, including instantaneous ground and swimming speed, path complexity, distance from side walls, velocity preference ratio (mean velocity at fish lateral position/mean crosssectional velocity) as well as number and duration of stops in forward progression. The presentation summarizes the main results and discusses how they could be used to improve fish passage performance in culverts.

  4. Electron Transport at the TiO₂ Surfaces of Rutile, Anatase, and Strontium Titanate: The Influence of Orbital Corrugation.

    PubMed

    Sarkar, Tarapada; Gopinadhan, Kalon; Zhou, Jun; Saha, Surajit; Coey, J M D; Feng, Yuan Ping; Ariando; Venkatesan, T

    2015-11-11

    The two-dimensional electron gas in SrTiO3 created by an overlayer of amorphous LaAlO3 is compared with those at the TiO2-terminated surfaces of rutile and anatase. Differences in conductivity are explained in terms of the limiting Ti-O-Ti bond angles (orbital corrugation), band dispersion, and polaron formation. At 300 K, the sheet conductivity and mobility of anatase exceed those for SrTiO3 or rutile by one or two orders of magnitude, respectively. The electrons in rutile become localized below 25 K. PMID:26509804

  5. Individual differences in behavioural plasticities.

    PubMed

    Stamps, Judy A

    2016-05-01

    Interest in individual differences in animal behavioural plasticities has surged in recent years, but research in this area has been hampered by semantic confusion as different investigators use the same terms (e.g. plasticity, flexibility, responsiveness) to refer to different phenomena. The first goal of this review is to suggest a framework for categorizing the many different types of behavioural plasticities, describe examples of each, and indicate why using reversibility as a criterion for categorizing behavioural plasticities is problematic. This framework is then used to address a number of timely questions about individual differences in behavioural plasticities. One set of questions concerns the experimental designs that can be used to study individual differences in various types of behavioural plasticities. Although within-individual designs are the default option for empirical studies of many types of behavioural plasticities, in some situations (e.g. when experience at an early age affects the behaviour expressed at subsequent ages), 'replicate individual' designs can provide useful insights into individual differences in behavioural plasticities. To date, researchers using within-individual and replicate individual designs have documented individual differences in all of the major categories of behavioural plasticities described herein. Another important question is whether and how different types of behavioural plasticities are related to one another. Currently there is empirical evidence that many behavioural plasticities [e.g. contextual plasticity, learning rates, IIV (intra-individual variability), endogenous plasticities, ontogenetic plasticities) can themselves vary as a function of experiences earlier in life, that is, many types of behavioural plasticity are themselves developmentally plastic. These findings support the assumption that differences among individuals in prior experiences may contribute to individual differences in behavioural

  6. Preserving in Plastic.

    ERIC Educational Resources Information Center

    Wahla, James

    1985-01-01

    Outlines steps for casting insects in permanent molds prepared from commercially available liquid plastic. Also describes dry mountings in glass, acrylic, and petri dishes. The rationale for specimen use, hints for producing quality results, purchasing information, and safety precautions are considered. (DH)

  7. Plastics in Perspective.

    ERIC Educational Resources Information Center

    Bergandine, David R.; Holm, D. Andrew

    The materials in this curriculum supplement, developed for middle school or high school science classes, present solid waste problems related to plastics. The set of curriculum materials is divided into two units to be used together or independently. Unit I begins by comparing patterns in solid waste from 1960 to 1990 and introducing methods for…

  8. Plastics in medical applications.

    PubMed

    Lantos, P R

    1988-01-01

    Plastics are fulfilling a number of critical roles in a variety of medical applications. While some of these are low-technology, throw-away products, many of the applications impose critical requirements as to mechanical performance, chemical resistance, biocompatibility, ability to be sterilized and to remain sterile. By performing capably and reliably in these applications, plastics have found a major outlet, one that offers good opportunities for the present materials as well as for future developments. Numerous challenges remain. The present materials perform, though barely adequately, and superior performance over longer periods of time is an important goal. While off-the-shelf plastics have been used in most medical applications, it is likely that development work will focus on the needs of specific important medical applications. In addition to the usual need for ever decreasing costs and prices, there is the opportunity for materials that possess improved blood compatibility, radiation resistance, and/or in vivo compatibility for improved degradable sutures, coatings for pacemakers, phthalate-free plastics, bags with improved gas impermeability and disposables with controlled degradability. PMID:3230510

  9. Hydrodynamic Elastic Magneto Plastic

    Energy Science and Technology Software Center (ESTSC)

    1985-02-01

    The HEMP code solves the conservation equations of two-dimensional elastic-plastic flow, in plane x-y coordinates or in cylindrical symmetry around the x-axis. Provisions for calculation of fixed boundaries, free surfaces, pistons, and boundary slide planes have been included, along with other special conditions.

  10. Music drives brain plasticity

    PubMed Central

    2009-01-01

    Music is becoming more and more of an issue in the cognitive neurosciences. A major finding in this research area is that musical practice is associated with structural and functional plasticity of the brain. In this brief review, I will give an overview of the most recent findings of this research area. PMID:20948610

  11. Study of compression-loaded and impact-damaged structurally efficient graphite-thermoplastic trapezoidal-corrugation sandwich and semisandwich panels

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    1992-01-01

    The structural efficiency of compression-loaded trapezoidal-corrugation sandwich and semisandwich composite panels is studied to determine their weight savings potential. Sandwich panels with two identical face sheets and a trapezoidal corrugated core between them and semisandwich panels with a corrugation attached to a single skin are considered. An optimization code is used to find the minimum weight designs for critical compressive load levels ranging from 3000 to 24,000 lb/in. Graphite-thermoplastic panels based on the optimal minimum weight designs were fabricated and tested. A finite element analysis of several test specimens was also conducted. The results of the optimization study, the finite element analysis, and the experiments are presented. The results of testing impact damage panels are also discussed.

  12. Effect of projection velocity and temperature on the reflection of ultracold atoms from a periodic one-dimensional corrugated magnetic potential

    SciTech Connect

    Singh, Mandip; Hannaford, Peter

    2010-07-15

    The spatial profile of ultracold atoms reflecting from an exponentially decaying magnetic potential depends on parameters such as the corrugation in the magnetic potential and the temperature of the atomic cloud. We report on experimental investigations of the effect of projection velocity which determines the strength of the interaction of the atom cloud with the magnetic potential and the effect of temperature of ultracold {sup 87}Rb atoms reflecting from a periodic one-dimensional corrugated magnetic potential. The magnetic potential is generated on an atom chip by a periodic permanent magnetic structure of period 10 {mu}m. The amplitude of the corrugation is controlled by applying a uniform external-bias magnetic field.

  13. Application of WinSRFR4 program to zigzag corrugated furrow irrigation in Bolivia

    NASA Astrophysics Data System (ADS)

    Roldán Cañas, José; Moreno Perez, Maria Fatima; Garcia Moreno, Francisco Javier; Chipana, Rene

    2013-04-01

    Program WinSRFR4, developed by the Agricultural Research Service-U.S. Department of Agriculture, is used to perform surface irrigation evaluations, to establish appropriate irrigation parameters to get better irrigation efficiencies, to execute irrigation simulations and so to set several alternatives to the design of an irrigation. This paper aims to adapt WinSRFR4 program to zigzag corrugated furrow irrigation performed in the Andean regions of Bolivia. These irrigations are quite peculiar as they are carried out in areas with steep slope and with very low flow rates to avoid the risk of erosion. Besides of this, the flow rates are quite variable during the irrigation application. The greater length of the furrows is drawn on contours performing small jumps between consecutive contours. Available data are taken for seven irrigations for different periods of lettuce crop growth. First, a model that fits irrigations executed has been searched. For this, we have conducted a series of tests with the program WinSRFR4, being necessary to carry some simplifications given the peculiarity of this type of irrigation. The procedure consisted in determining the advance curves during irrigation. Later, the parameters of the Kostiakov - Lewis equation have been calculated by the method of Walker and Elliot. Although the furrow longitudinal profile was available, a mean slope was used at the time of establishing the model. WinSRFR provides a model of analyzed irrigation with a coefficient of determination ranged from R2 = 0.3520 to R2 = 0.9095. Finally, the errors obtained in the mass balances are between 2% and 14%. The model showed that application efficiencies ranged between 9% and 35%, rather poor, while runoff coefficients varied between 47% and 91%. Not too much importance is given to the fact that runoff occurs because runoff water is used in plots located at a lower level Irrigation simulations have been carried out using WinSRFR by changing the operation variables

  14. Cooling Performance and Structural Reliability of a Modified Corrugated-insert Air-cooled Turbine Blade with an Integrally Cast Shell and Base

    NASA Technical Reports Server (NTRS)

    Freche, John C; Schum, Eugene F

    1957-01-01

    A modified corrugated-insert blade with integrally cast shell and base was developed. This blade was as light as a conventional fabricated corrugated-insert blade. Of four test blades operated in a full-scale turbojet engine, one failed after about 15 hours operation at an inlet gas temperature of 1670 degrees F, a coolant-flow ratio of 0.0064, and a 1/3-span centrifugal stress of approximately 28,000 psi. Three other test blades ran for approximately 16, 31, and 36 hours without failure at similar conditions.

  15. Plastics for Elementary School Children

    ERIC Educational Resources Information Center

    Hanson, Jack

    1977-01-01

    Describes three plastics projects (which involve making a styrene fishing bobber, an acrylic salad fork and spoon set, and acetate shrink art) designed to provide elementary level students an opportunity to work with plastics and to learn about careers in plastics production and distribution. (TA)

  16. Surface-adsorption-induced polymer translocation through a nanopore: Effects of the adsorption strength and the surface corrugation

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoyu; Yu, Wancheng; Luo, Kaifu

    2015-08-01

    The surface corrugation plays an important role in single polymer diffusion on attractive surfaces. However, its effect on dynamics of surface adsorption-induced polymer translocation through a nanopore is not clear. Using three-dimensional Langevin dynamics simulations, we investigate the dynamics of a flexible polymer chain translocation through a nanopore induced by the selective adsorption of translocated segments onto the trans side of the membrane. The translocation probability Pt r a n s increases monotonically, while the mean translocation time τ has a minimum as a function of the adsorption strength ɛ , which are explained from the perspective of the effective driving force for the translocation. With the surface being smoother, τ as well as the scaling exponent α of τ with the chain length N decreases. Finally, we show that the distributions of the translocation time are non-Gaussian even for strong adsorption at a moderate surface corrugation. A nearly Gaussian distribution of the translocation time is observed only for the smoothest surface we studied.

  17. A secondary diffraction effect and the generation of Scholte-Stoneley acoustic wave on periodically corrugated surface

    NASA Astrophysics Data System (ADS)

    Liu, Jingfei; Declercq, Nico F.

    2016-05-01

    When a wideband sound beam is incident onto a periodically corrugated surface, a series of diffraction related phenomena can occur. In this work, we report the observation of a secondary diffraction, which is different from those previously investigated. The search of the physical origin of this newly observed diffraction leads to the discovery of the possibility of generating Scholte-Stoneley waves, inspired by Guo, Margetan, and Thompson's work in sound backscattering from rough surfaces, through a nonconventional energy conversion mechanism: direct coupling of the incident energy with the periodic interface. This mechanism allows for the Scholte-Stoneley wave generation at any angle of incidence, which distinguishes it from the well-known energy conversion mechanism of the diffraction-related phenomena such as acoustic Wood anomaly and backward displacement in which wave generation is highly angle dependent. The findings of this work not only enrich the understanding of the interaction of sound with periodically corrugated structures but also provide a new surface wave generation method for the potential applications in nondestructive evaluation of materials.

  18. Liquid Metal Droplet and Micro Corrugated Diaphragm RF-MEMS for reconfigurable RF filters

    NASA Astrophysics Data System (ADS)

    Irshad, Wasim

    detail and have proved pivotal to this work. The second part of the dissertation focuses on the Liquid Metal Droplet RF-MEMS. A novel tunable RF MEMS resonator that is based upon electrostatic control over the morphology of a liquid metal droplet (LMD) is conceived. We demonstrate an LMD evanescent-mode cavity resonator that simultaneously achieves wide analog tuning from 12 to 18 GHz with a measured quality factor of 1400-1840. A droplet of 250-mum diameter is utilized and the applied bias is limited to 100 V. This device operates on a principle called Electro-Wetting On Dielectric (EWOD). The liquid metal employed is a non-toxic eutectic alloy of Gallium, Indium and Tin known as Galinstan. This device also exploits interfacial surface energy and viscous body forces that dominate at nanoliter scale. We then apply our Liquid Metal Droplet (LMD) RF-MEMS architecture to demonstrate a continuously tunable electrostatic Ku-Band Filter. A 2-pole bandpass filter with measured insertion loss of less than 0.4dB and 3dB FBW of 3.4% is achieved using a Galinstan droplet of 250mum diameter and bias limited to 100V. We demonstrate that the LMD is insensitive to gravity by performing inversion and tilt experiments. In addition, we study its thermal tolerance by subjecting the LMD up to 150° C. The third part of the dissertation is dedicated to the Micro-Corrugated Diaphragm (MCD) RF-MEMS. We present an evanescent-mode cavity bandpass filter with state-of-the-art RF performance metrics like 4:1 tuning ratio from 5 to 20 GHz with less than 2dB insertion loss and 2-6% 3dB bandwidth. Micro-Corrugated Diaphragm (MCD) is a novel electrostatic MEMS design specifically engineered to provide large-scale analog deflections necessary for such continuous and wide tunable filtering with very high quality factor. We demonstrate a 1.25mm radius and 2mum thick Gold MCD which provides 30mum total deflection with nearly 60% analog range. We also present a detailed and systematic MCD design

  19. [Anesthetic circle system failure caused by a plastic film--a case report].

    PubMed

    Hara, Naoki; Tanaka, Tomohiro; Minami, Toshiaki

    2006-02-01

    A 44-year-old woman, ASA I, with breast cancer was scheduled for mastectomy. The anesthetic induction was performed by inhalation of 5% sevoflurane and 66% nitrous oxide in oxygen. After the loss of eyelash reflex assisted ventilation was initiated. At this point, the capnograph indicated inspired carbon dioxide tension of 18mmHg. Anesthetic machine check was soon carried out again. A visual check of non-return valves detected a plastic film, 18 x 21mm large, caught in the expiratory valve. This plastic film impaired complete occlusion of the orifice for the expiratory gas flow. As a result, the patient was rebreathing carbon dioxide. After removing it, the wave form of the capnograph was normalized and end-tidal carbon dioxide tension decreased immediately from 45mmHg to 33mmHg. As we did not detect any foreign matters at the non-return valves on anesthetic machine check before use, the plastic film might have already existed in the disposable corrugated tube before use. The capnograph is a useful device for detecting anesthetic circle system failure in such a case. It is important that the patients' airway is separated from the anesthetic circle system through the use of a filter to prevent foreign matter from being inhaled. PMID:16491902

  20. Breathing: Rhythmicity, Plasticity, Chemosensitivity

    PubMed Central

    Feldman, Jack L.; Mitchell, Gordon S.; Nattie, Eugene E.

    2010-01-01

    Breathing is a vital behavior that is particularly amenable to experimental investigation. We review recent progress on three problems of broad interest. (i) Where and how is respiratory rhythm generated? The preBötzinger Complex is a critical site, whereas pacemaker neurons may not be essential. The possibility that coupled oscillators are involved is considered. (ii) What are the mechanisms that underlie the plasticity necessary for adaptive changes in breathing? Serotonin-dependent long-term facilitation following intermittent hypoxia is an important example of such plasticity, and a model that can account for this adaptive behavior is discussed. (iii) Where and how are the regulated variables CO2 and pH sensed? These sensors are essential if breathing is to be appropriate for metabolism. Neurons with appropriate chemosensitivity are spread throughout the brainstem; their individual properties and collective role are just beginning to be understood. PMID:12598679

  1. 77 FR 54930 - Carlyle Plastics and Resins, Formerly Known as Fortis Plastics, A Subsidiary of Plastics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... determination was published in the Federal Register on Monday, July 23, 2012 (77 FR 43123). ] At the request of... Employment and Training Administration Carlyle Plastics and Resins, Formerly Known as Fortis Plastics, A Subsidiary of Plastics Acquisitions Inc., Including On-Site Leased Workers From Kelly Services and...

  2. Frozen cultural plasticity.

    PubMed

    Houdek, Petr; Novakova, Julie

    2016-01-01

    We discuss cultural group selection under the view of the frozen plasticity theory and the different explanatory power and predictions of this framework. We present evidence that cultural adaptations and their influence on the degree of cooperation may be more complex than presented by Richerson et al., and conclude with the gene-environment-culture relationship and its impacts on cultural group selection. PMID:27561647

  3. Compensatory plasticity: time matters

    PubMed Central

    Lazzouni, Latifa; Lepore, Franco

    2014-01-01

    Plasticity in the human and animal brain is the rule, the base for development, and the way to deal effectively with the environment for making the most efficient use of all the senses. When the brain is deprived of one sensory modality, plasticity becomes compensatory: the exception that invalidates the general loss hypothesis giving the opportunity of effective change. Sensory deprivation comes with massive alterations in brain structure and function, behavioral outcomes, and neural interactions. Blind individuals do as good as the sighted and even more, show superior abilities in auditory, tactile and olfactory processing. This behavioral enhancement is accompanied with changes in occipital cortex function, where visual areas at different levels become responsive to non-visual information. The intact senses are in general used more efficiently in the blind but are also used more exclusively. New findings are disentangling these two aspects of compensatory plasticity. What is due to visual deprivation and what is dependent on the extended use of spared modalities? The latter seems to contribute highly to compensatory changes in the congenitally blind. Short-term deprivation through the use of blindfolds shows that cortical excitability of the visual cortex is likely to show rapid modulatory changes after few minutes of light deprivation and therefore changes are possible in adulthood. However, reorganization remains more pronounced in the congenitally blind. Cortico-cortical pathways between visual areas and the areas of preserved sensory modalities are inhibited in the presence of vision, but are unmasked after loss of vision or blindfolding as a mechanism likely to drive cross-modal information to the deafferented visual cortex. The development of specialized higher order visual pathways independently from early sensory experience is likely to preserve their function and switch to the intact modalities. Plasticity in the blind is also accompanied with

  4. Plastic footwear for leprosy.

    PubMed

    Antia, N H

    1990-03-01

    The anaesthetic foot in leprosy poses the most major problem in the rehabilitation of its patients. Various attempts have been made to produce protective footwear such as the microcellular rubber-car-tyre sandals. Unfortunately these attempts have had little success on a large scale because of the inability to produce them in large numbers and the stigma attached to such unusual footwear. While such footwear may be superior to the 'tennis' shoe in protecting the foot from injury by the penetration of sharp objects, it fails to distribute the weight-bearing forces which is the major cause of plantar damage and ulceration in the anaesthetic foot. This can be achieved by providing rigidity to the sole, as demonstrated by the healing of ulcers in plaster of paris casts or the rigid wooden clog. A new type of moulded plastic footwear has been evolved in conjunction with the plastic footwear industry which provides footwear that can be mass produced at a low price and which overcomes the stigma of leprosy. Controlled rigidity is provided by the incorporation of a spring steel shank between the sponge insole and the hard wearing plastic sole. Trials have demonstrated both the acceptability of the footwear and its protective effects as well as its hard wearing properties. PMID:2319903

  5. Plasticity of amyloid fibrils†

    PubMed Central

    Wetzel, Ronald; Shivaprasad, Shankaramma; Williams, Angela D.

    2008-01-01

    In experiments designed to characterize the basis of amyloid fibril stability through mutational analysis of the Aβ(1-40) molecule, fibrils exhibit consistent, significant structural malleability. In these results, and in other properties, amyloid fibrils appear to more resemble plastic materials generated from synthetic polymers than they do globular proteins. Thus, like synthetic polymers and plastics, amyloid fibrils exhibit both polymorphism, the ability of one polypeptide to form aggregates of different morphologies, and isomorphism, the ability of different polypeptides to grow into a fibrillar amyloid morphology. This view links amyloid with the prehistorical and 20th Century use of proteins as starting materials to make films, fibers, and plastics, and with the classic protein fiber stretching experiments of the Astbury group. Viewing amyloid from the point of view of the polymer chemist may shed new light on issues such as the role of protofibrils in the mechanism of amyloid formation, the biological potency of fibrils, and the prospects for discovering inhibitors of amyloid fibril formation. PMID:17198370

  6. Respiratory Muscle Plasticity

    PubMed Central

    Gransee, Heather M.; Mantilla, Carlos B.; Sieck, Gary C.

    2014-01-01

    Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle’s plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles. PMID:23798306

  7. Microelectronics plastic molded packaging

    SciTech Connect

    Johnson, D.R.; Palmer, D.W.; Peterson, D.W.

    1997-02-01

    The use of commercial off-the-shelf (COTS) microelectronics for nuclear weapon applications will soon be reality rather than hearsay. The use of COTS for new technologies for uniquely military applications is being driven by the so-called Perry Initiative that requires the U.S. Department of Defense (DoD) to accept and utilize commercial standards for procurement of military systems. Based on this philosophy, coupled with several practical considerations, new weapons systems as well as future upgrades will contain plastic encapsulated microelectronics. However, a conservative Department of Energy (DOE) approach requires lifetime predictive models. Thus, the focus of the current project is on accelerated testing to advance current aging models as well as on the development of the methodology to be used during WR qualification of plastic encapsulated microelectronics. An additional focal point involves achieving awareness of commercial capabilities, materials, and processes. One of the major outcomes of the project has been the definition of proper techniques for handling and evaluation of modern surface mount parts which might be used in future systems. This program is also raising the familiarity level of plastic within the weapons complex, allowing subsystem design rules accommodating COTS to evolve. A two year program plan is presented along with test results and commercial interactions during this first year.

  8. New perspectives in plastic biodegradation.

    PubMed

    Sivan, Alex

    2011-06-01

    During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution. PMID:21356588

  9. Interfacial interactions between plastic particles in plastics flotation.

    PubMed

    Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian

    2015-12-01

    Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation. PMID:26337962

  10. A finite element study on rail corrugation based on saturated creep force-induced self-excited vibration of a wheelset-track system

    NASA Astrophysics Data System (ADS)

    Chen, G. X.; Zhou, Z. R.; Ouyang, H.; Jin, X. S.; Zhu, M. H.; Liu, Q. Y.

    2010-10-01

    The present work proposes friction coupling at the wheel-rail interface as the mechanism for formation of rail corrugation. Stability of a wheelset-track system is studied using the finite element complex eigenvalue method. Two models for a wheelset-track system on a tight curved track and on a straight track are established. In these two models, motion of the wheelset is coupled with that of the rail by friction. Creep force at the interface is assumed to become saturated and approximately equal to friction force, which is equal to the normal contact force multiplied by dynamic coefficient of friction. The rail is supported by vertical and lateral springs and dampers at the positions of sleepers. Numerical results show that there is a strong propensity of self-excited vibration of the wheelset-track system when the friction coefficient is larger than 0.21. Some unstable frequencies fall in the range 60-1200 Hz, which correspond to frequencies of rail corrugation. Parameter sensitivity analysis shows that the dynamic coefficient of friction, spring stiffness and damping of the sleeper supports all have important influences on the rail corrugation formation. Bringing the friction coefficient below a certain level can suppress or eliminate rail corrugation.

  11. Use of recycled plastics in wood plastic composites - a review.

    PubMed

    Kazemi Najafi, Saeed

    2013-09-01

    The use of recycled and waste thermoplastics has been recently considered for producing wood plastic composites (WPCs). They have great potential for WPCs manufacturing according to results of some limited researches. This paper presents a detailed review about some essential properties of waste and recycled plastics, important for WPCs production, and of research published on the effect of recycled plastics on the physical and mechanical properties of WPCs. PMID:23777666

  12. Direct liquefaction of plastics and coprocessing of coal with plastics

    SciTech Connect

    Huffman, G.P.; Feng, Z.; Mahajan, V.

    1995-12-31

    The objectives of this work were to optimize reaction conditions for the direct liquefaction of waste plastics and the coprocessing of coal with waste plastics. In previous work, the direct liquefaction of medium and high density polyethylene (PE), polypropylene (PPE), poly(ethylene terephthalate) (PET), and a mixed plastic waste, and the coliquefaction of these plastics with coals of three different ranks was studied. The results established that a solid acid catalyst (HZSM-5 zeolite) was highly active for the liquefaction of the plastics alone, typically giving oil yields of 80-95% and total conversions of 90-100% at temperatures of 430-450 {degrees}C. In the coliquefaction experiments, 50:50 mixtures of plastic and coal were used with a tetralin solvent (tetralin:solid = 3:2). Using approximately 1% of the HZSM-5 catalyst and a nanoscale iron catalyst, oil yields of 50-70% and total conversion of 80-90% were typical. In the current year, further investigations were conducted of the liquefaction of PE, PPE, and a commingled waste plastic obtained from the American Plastics Council (APC), and the coprocessing of PE, PPE and the APC plastic with Black Thunder subbituminous coal. Several different catalysts were used in these studies.

  13. Plastic Surgery and Suicide: A Clinical Guide for Plastic Surgeons.

    PubMed

    Reddy, Vikram; Coffey, M Justin

    2016-08-01

    Several studies have identified an increased risk of suicide among patient populations which a plastic surgeon may have a high risk of encountering: women undergoing breast augmentation, cosmetic surgery patients, and breast cancer patients. No formal guidelines exist to assist a plastic surgeon when faced with such a patient, and not every plastic surgery team has mental health clinicians that are readily accessible for consultation or referral. The goal of this clinical guide is to offer plastic surgeons a set of practical approaches to manage potentially suicidal patients. In addition, the authors review a screening tool, which can assist surgeons when encountering high-risk patients. PMID:27622096

  14. Plastic Surgery and Suicide: A Clinical Guide for Plastic Surgeons

    PubMed Central

    Coffey, M. Justin

    2016-01-01

    Summary: Several studies have identified an increased risk of suicide among patient populations which a plastic surgeon may have a high risk of encountering: women undergoing breast augmentation, cosmetic surgery patients, and breast cancer patients. No formal guidelines exist to assist a plastic surgeon when faced with such a patient, and not every plastic surgery team has mental health clinicians that are readily accessible for consultation or referral. The goal of this clinical guide is to offer plastic surgeons a set of practical approaches to manage potentially suicidal patients. In addition, the authors review a screening tool, which can assist surgeons when encountering high-risk patients. PMID:27622096

  15. Plastic star coupler

    NASA Astrophysics Data System (ADS)

    Yuuki, Hayato; Ito, Takeharu; Sugimoto, Tetsuo

    1991-12-01

    We applied an ultrasonic welding method for the bonding of plastic fibers, and obtained many types of optical star couplers for optical communication systems. It enables the manufacturing of optical components with low loss without damaging the clad layer except for the welding surface. Therefore, they have some merits, such as low loss, small size, light weight, and low cost. The 4-ports (2 X 2) star coupler of 1000 micrometers diam APF has 0.7 dB excess loss at most, and the welding length is 20 mm.

  16. Fabrication of plastic biochips

    SciTech Connect

    Saaem, Ishtiaq; Ma, Kuo-Sheng; Alam, S. Munir; Tian Jingdong

    2010-07-15

    A versatile surface functionalization procedure based on rf magnetron sputtering of silica was performed on poly(methylmethacrylate), polycarbonate, polypropylene, and cyclic olefin copolymers (Topas 6015). The hybrid thermoplastic surfaces were characterized by x-ray photoelectron spectrometer analysis and contact angle measurements. The authors then used these hybrid materials to perform a sandwich assay targeting an HIV-1 antibody using fluorescent detection and biotinylated peptides immobilized using the bioaffinity of biotin-neutravidin. They found a limit of detection similar to arrays on glass surfaces and believed that this plastic biochip platform may be used for the development of disposable immunosensing and diagnostic applications.

  17. History of reinforced plastics

    SciTech Connect

    Milewski, J.V.; Rosato, D.V.

    1981-01-01

    This history of reinforced plastics is told by combining the individual histories of each reinforcement and the way in which they added to and changed the direction and rate of growth of the industry. The early history is based on all resins, fillers, and fibers found in nature. Then came the Baekeland revolution with the first synthetic resin which lasted about 25 years, at which time synthetic fiber glass and polyester resin dramatically changed the industry. Now, for the 1980s, the high modulus fibers developed 10 to 20 years ago are reshaping the industry. 32 figures.

  18. ABS plastic RPCs

    SciTech Connect

    Ables, E.; Bionta, R.; Olson, H.; Ott, L.; Parker, E.; Wright, D.; Wuest, C

    1996-02-01

    After investigating a number of materials, we discovered that an ABS plastic doped with a conducting polymer performs well as the resistive electrode in a narrow gap RPC (resistive plate chamber). Operating in the streamer mode, we find efficiencies of 90-96% with low noise and low strip multiplicities. We have also studied a variety of operating gases and found that a mixture containing SF{sub 6}, a non-ozone depleting gas, argon and isobutane gives good streamer mode performance, even with isobutane concentrations of 20% or less.

  19. Psychotherapy and brain plasticity

    PubMed Central

    Collerton, Daniel

    2013-01-01

    In this paper, I will review why psychotherapy is relevant to the question of how consciousness relates to brain plasticity. A great deal of the research and theorizing on consciousness and the brain, including my own on hallucinations for example (Collerton and Perry, 2011) has focused upon specific changes in conscious content which can be related to temporal changes in restricted brain systems. I will argue that psychotherapy, in contrast, allows only a focus on holistic aspects of consciousness; an emphasis which may usefully complement what can be learnt from more specific methodologies. PMID:24046752

  20. Advances in engineering plastics

    SciTech Connect

    Leonard, L.

    1997-12-01

    New polymers are being commercialized in record numbers, offering the product designer a new realm of possibilities, and promising tough competition to the traditional engineering resins. Most of the growth is in single-site catalyzed resins. Metallocene (and non-metallocene) single-site catalysts enhance polymer architecture to generate highly uniform molecules, and even permit tailoring new categories of polymers. These new materials include the truly unique aliphatic polyketone, syndiotactic polystyrene (SPS); polyethylene naphthalate (PEN) resins; and novel variations of established polymers. This article provides a closer look at these newcomers to the plastics marketplace, with an emphasis on their properties and potential applications.

  1. Seabed corrugations beneath an Antarctic ice shelf revealed by autonomous underwater vehicle survey: Origin and implications for the history of Pine Island Glacier

    NASA Astrophysics Data System (ADS)

    Graham, Alastair G. C.; Dutrieux, Pierre; Vaughan, David G.; Nitsche, Frank O.; Gyllencreutz, Richard; Greenwood, Sarah L.; Larter, Robert D.; Jenkins, Adrian

    2013-09-01

    Ice shelves are critical features in the debate about West Antarctic ice sheet change and sea level rise, both because they limit ice discharge and because they are sensitive to change in the surrounding ocean. The Pine Island Glacier ice shelf has been thinning rapidly since at least the early 1990s, which has caused its trunk to accelerate and retreat. Although the ice shelf front has remained stable for the past six decades, past periods of ice shelf collapse have been inferred from relict seabed "corrugations" (corrugated ridges), preserved 340 km from the glacier in Pine Island Trough. Here we present high-resolution bathymetry gathered by an autonomous underwater vehicle operating beneath an Antarctic ice shelf, which provides evidence of long-term change in Pine Island Glacier. Corrugations and ploughmarks on a sub-ice shelf ridge that was a former grounding line closely resemble those observed offshore, interpreted previously as the result of iceberg grounding. The same interpretation here would indicate a significantly reduced ice shelf extent within the last 11 kyr, implying Holocene glacier retreat beyond present limits, or a past tidewater glacier regime different from today. The alternative, that corrugations were not formed in open water, would question ice shelf collapse events interpreted from the geological record, revealing detail of another bed-shaping process occurring at glacier margins. We assess hypotheses for corrugation formation and suggest periodic grounding of ice shelf keels during glacier unpinning as a viable origin. This interpretation requires neither loss of the ice shelf nor glacier retreat and is consistent with a "stable" grounding-line configuration throughout the Holocene.

  2. Presynaptic long-term plasticity

    PubMed Central

    Yang, Ying; Calakos, Nicole

    2013-01-01

    Long-term synaptic plasticity is a major cellular substrate for learning, memory, and behavioral adaptation. Although early examples of long-term synaptic plasticity described a mechanism by which postsynaptic signal transduction was potentiated, it is now apparent that there is a vast array of mechanisms for long-term synaptic plasticity that involve modifications to either or both the presynaptic terminal and postsynaptic site. In this article, we discuss current and evolving approaches to identify presynaptic mechanisms as well as discuss their limitations. We next provide examples of the diverse circuits in which presynaptic forms of long-term synaptic plasticity have been described and discuss the potential contribution this form of plasticity might add to circuit function. Finally, we examine the present evidence for the molecular pathways and cellular events underlying presynaptic long-term synaptic plasticity. PMID:24146648

  3. Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves.

    PubMed

    Zhou, Yong Jin; Yang, Bao Jia

    2015-05-10

    Although subwavelength planar terahertz (THz) plasmonic devices can be implemented based on planar spoof surface plasmons (SPs), they still suffer from a little high propagation loss. Here the dispersion and propagation characteristics of the spoof plasmonic waveguide composed of double metal strips corrugated with dumbbell shaped grooves have been investigated. It has been found that much lower propagation loss and longer propagation length can be achieved based on the waveguide compared with the conventional spoof plasmonic waveguide with rectangular grooves. Moreover, the waveguide can implement a decrease in size of about 22%. An ultra-wideband THz plasmonic filter for planar circuits has been demonstrated based on the proposed waveguide. The experimental verification at the microwave frequency has been conducted by scaling up the geometry size of the filter. PMID:25967512

  4. Constraints on non-Newtonian gravity from measuring the Casimir force in a configuration with nanoscale rectangular corrugations

    SciTech Connect

    Bezerra, V. B.; Romero, C.; Klimchitskaya, G. L.; Mostepanenko, V. M.

    2011-04-01

    We report constraints on the parameters of Yukawa-type corrections to Newtonian gravity from measurements of the gradient of the Casimir force in the configuration of an Au-coated sphere above a Si plate covered with corrugations of trapezoidal shape. For this purpose, the exact expression for the gradient of Yukawa force in the experimental configuration is derived and compared with that obtained using the proximity force approximation. The reported constraints are of almost the same strength as those found previously from several different experiments on the Casimir force and extend over a wide interaction range from 30 to 1260 nm. It is discussed how to make them stronger by replacing the material of the plate.

  5. Polyolefins as additives in plastics

    SciTech Connect

    Deanin, R.D.

    1993-12-31

    Polyolefins are not only major commodity plastics - they are also very useful as additives, both in other polyolefins and also in other types of plastics. This review covers ethylene, propylene, butylene and isobutylene polymers, in blends with each other, and as additives to natural rubber, styrene/butadiene rubber, polystyrene, polyvinyl chloride, polymethyl methacrylate, polyphenylene oxide, polycarbonate, thermoplastic polyesters, polyurethanes, polyamides, and mixed automotive plastics recycling.

  6. Post-Hartree-Fock studies of the He/Mg(0001) interaction: Anti-corrugation, screening, and pairwise additivity.

    PubMed

    de Lara-Castells, María Pilar; Fernández-Perea, Ricardo; Madzharova, Fani; Voloshina, Elena

    2016-06-28

    The adsorption of noble gases on metallic surfaces represents a paradigmatic case of van-der-Waals (vdW) interaction due to the role of screening effects on the corrugation of the interaction potential [J. L. F. Da Silva et al., Phys. Rev. Lett. 90, 066104 (2003)]. The extremely small adsorption energy of He atoms on the Mg(0001) surface (below 3 meV) and the delocalized nature and mobility of the surface electrons make the He/Mg(0001) system particularly challenging, even for state-of-the-art vdW-corrected density functional-based (vdW-DFT) approaches [M. P. de Lara-Castells et al., J. Chem. Phys. 143, 194701 (2015)]. In this work, we meet this challenge by applying two different procedures. First, the dispersion-corrected second-order Möller-Plesset perturbation theory (MP2C) approach is adopted, using bare metal clusters of increasing size. Second, the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)] is applied at coupled cluster singles and doubles and perturbative triples level, using embedded cluster models of the metal surface. Both approaches provide clear evidences of the anti-corrugation of the interaction potential: the He atom prefers on-top sites, instead of the expected hollow sites. This is interpreted as a signature of the screening of the He atom by the metal for the on-top configuration. The strong screening in the metal is clearly reflected in the relative contribution of successively deeper surface layers to the main dispersion contribution. Aimed to assist future dynamical simulations, a pairwise potential model for the He/surface interaction as a sum of effective He-Mg pair potentials is also presented, as an improvement of the approximation using isolated He-Mg pairs. PMID:27369533

  7. Post-Hartree-Fock studies of the He/Mg(0001) interaction: Anti-corrugation, screening, and pairwise additivity

    NASA Astrophysics Data System (ADS)

    de Lara-Castells, María Pilar; Fernández-Perea, Ricardo; Madzharova, Fani; Voloshina, Elena

    2016-06-01

    The adsorption of noble gases on metallic surfaces represents a paradigmatic case of van-der-Waals (vdW) interaction due to the role of screening effects on the corrugation of the interaction potential [J. L. F. Da Silva et al., Phys. Rev. Lett. 90, 066104 (2003)]. The extremely small adsorption energy of He atoms on the Mg(0001) surface (below 3 meV) and the delocalized nature and mobility of the surface electrons make the He/Mg(0001) system particularly challenging, even for state-of-the-art vdW-corrected density functional-based (vdW-DFT) approaches [M. P. de Lara-Castells et al., J. Chem. Phys. 143, 194701 (2015)]. In this work, we meet this challenge by applying two different procedures. First, the dispersion-corrected second-order Möller-Plesset perturbation theory (MP2C) approach is adopted, using bare metal clusters of increasing size. Second, the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)] is applied at coupled cluster singles and doubles and perturbative triples level, using embedded cluster models of the metal surface. Both approaches provide clear evidences of the anti-corrugation of the interaction potential: the He atom prefers on-top sites, instead of the expected hollow sites. This is interpreted as a signature of the screening of the He atom by the metal for the on-top configuration. The strong screening in the metal is clearly reflected in the relative contribution of successively deeper surface layers to the main dispersion contribution. Aimed to assist future dynamical simulations, a pairwise potential model for the He/surface interaction as a sum of effective He-Mg pair potentials is also presented, as an improvement of the approximation using isolated He-Mg pairs.

  8. Plastics recycling: challenges and opportunities

    PubMed Central

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  9. Plastics recycling: challenges and opportunities.

    PubMed

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  10. Plastics & Composites Technology Needs Assessment.

    ERIC Educational Resources Information Center

    Oakland Community Coll., Farmington, MI. Office of Institutional Planning and Analysis.

    In 1991, a study was conducted by Oakland Community College (OCC) to evaluate the need for a proposed plastics and composites technology program for design engineers. General information was obtained through a literature search, from the Society of the Plastics Industry, Inc., the Michigan Employment Security Commission, and interviews with…

  11. Boron Doped Plastic Scintillator Efficiency

    NASA Astrophysics Data System (ADS)

    Mahl, Adam; Chouinard-Dussault, Pascale; Pecinovsky, Cory; Potter, Andrew; Remedes, Tyler; Dorgan, John; Greife, Uwe

    2013-04-01

    This talk will describe the progress made in an interdisciplinary development project aimed at cost-effective, neutron sensitive, plastic scintillator. Colorado School of Mines researchers with backgrounds in Physics, Chemistry, and Chemical Engineering have worked on the incorporation of ^10B in plastics through extrusion. First results on transparent samples using fluorescent spectroscopy and beta excitation will be presented.

  12. Plastics to fuel: A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reviews recent developments in catalytic and non-catalytic degradation of waste plastics into fuels. Thermal degradation decomposes plastic into three fractions: gas, crude oil, and solid residue. Crude oil from non-catalytic pyrolysis is usually composed of higher boiling point hydrocarb...

  13. Imaging brain plasticity after trauma

    PubMed Central

    Kou, Zhifeng; Iraji, Armin

    2014-01-01

    The brain is highly plastic after stroke or epilepsy; however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrated both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the field is still short of proper means on how to guide the choice of TBI rehabilitation or treatment plan to promote brain plasticity. The authors also point out the new direction of brain plasticity investigation. PMID:25206874

  14. Computational strain gradient crystal plasticity

    NASA Astrophysics Data System (ADS)

    Niordson, Christian F.; Kysar, Jeffrey W.

    2014-01-01

    A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale.

  15. Patient Safety: Guide to Safe Plastic Surgery

    MedlinePlus

    ... and Consumer Information > Patient Safety Guide to Safe Plastic Surgery Patient Safety More Resources Choose a surgeon ... Important facts about the safety and risks of plastic surgery Questions to ask my plastic surgeon Choose ...

  16. Extruding plastic scintillator at Fermilab

    SciTech Connect

    Anna Pla-Dalmau; Alan D. Bross; Victor V. Rykalin

    2003-10-31

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R&D program at Fermilab.

  17. The Rectangular Waveguide Board Wall Slot Array Antenna Integrated with One Dimensional Subwavelength Periodic Corrugated Grooves and Artificially Soft Surface Structure

    NASA Astrophysics Data System (ADS)

    Huang, Cheng; Zhao, Zeyu; Luo, Xiangang

    2009-04-01

    In this letter, we propose a high gain rectangular waveguide board wall slot array antenna, which is integrated with one dimensional subwavelength periodic corrugated grooves and artificially soft surface structure. The corresponding far field radiation characteristics are investigated. The simulation results show that the gain of planar 2 × 8 slot array antenna with the introduction of corrugated grooves structure is increased to 26.1 dB, and half power beamwidth in the E plane is considerably reduced. Compared with the subwavelength periodic grooves slits array antenna proposed by Huang et al.[Appl. Phys. Lett. 91, 143512 (2007)], the side and back lobe level of this antenna are also significantly reduced by 6 dB and 10 dB, respectively. The physical mechanism for radiation-pattern improvement has been well explained by the modulation of surface wave, the reradiation of surface energy, and suppression of surplus surface wave at the grounded edge.

  18. Aerodynamic heating on the corrugated surface of a 10.2 deg half-angle blunted cone at Mach 6.7

    NASA Technical Reports Server (NTRS)

    Weinstein, I.; Avery, D. E.; Hunt, L. R.

    1981-01-01

    A 10.2 deg half-angle blunted cone with corrugated surfaces was tested in the Langley 8-foot high-temperature structures tunnel to measure the aerodynamic heating of its surfaces. The tests were made in a turbulent boundary layer at angles of attack of 0 deg, 5 deg, and 10 deg. Heating of the windward side was in reasonable agreement with theoretical turbulent predictions for a smooth cone, while heating on the leeward side was between laminar and turbulent predictions as a result of local transitional flow or flow separation produced by high lee-side pressures. Localized heating measurements indicated a significant increase in heating at large cross-flow angles, with the maximum heating rates occurring where the flow reattaches on the upstream side of the corrugation crest and the minimum occurring on the downstream side where the flow is separated.

  19. The face of negative affect: Trial-by-trial corrugator responses to negative pictures are positively associated with amygdala and negatively associated with ventromedial prefrontal cortex activity

    PubMed Central

    Heller, Aaron S; Lapate, Regina C; Mayer, Kaitlyn; Davidson, Richard J

    2014-01-01

    The ability to simultaneously acquire objective physiological measures of emotion concurrent with fMRI holds the promise to enhance our understanding of the biological bases of affect, and thus improve our knowledge of the neural circuitry underlying psychiatric disorders. However, the vast majority of neuroimaging studies to date examining emotion have not anchored the examination of emotion-responding circuitry to objective measures of emotional processing. To that end, we acquired electromyographic (EMG) activity of a valence-sensitive facial muscle involved in the frowning response (corrugator muscle) concurrent with fMRI while twenty-six human participants viewed negative and neutral images. Trial-by-trial increases in corrugator EMG activity to negative pictures were associated with greater amygdala activity, and a concurrent decrease in ventromedial prefrontal cortex activity. Thus, this study highlights the reciprocal relation between amygdalar and ventromedial prefrontal cortex in the encoding of emotional valence as reflected by facial expression. PMID:24669790

  20. Respiratory supercomplexes: plasticity and implications

    PubMed Central

    Porras, Christina A.; Bai, Yidong

    2015-01-01

    The plasticity model of the electron transport chain has slowly begun to replace both the liquid model of free complexes and the solid model of supercomplexes. The plasticity model predicts that respiratory complexes exist and function both as single complexes and as supercomplexes. The advantages of this system is an electron transport train which is able to adapt to changes in its environment. This review will investigate the current body of work on supercomplexes including their assembly, regulation, and plasticity, and particularly their role in the generation of reactive oxygen species and aging. PMID:25553469

  1. Circadian Regulation of Synaptic Plasticity.

    PubMed

    Frank, Marcos G

    2016-01-01

    Circadian rhythms refer to oscillations in biological processes with a period of approximately 24 h. In addition to the sleep/wake cycle, there are circadian rhythms in metabolism, body temperature, hormone output, organ function and gene expression. There is also evidence of circadian rhythms in synaptic plasticity, in some cases driven by a master central clock and in other cases by peripheral clocks. In this article, I review the evidence for circadian influences on synaptic plasticity. I also discuss ways to disentangle the effects of brain state and rhythms on synaptic plasticity. PMID:27420105

  2. The commercialization of plastic surgery.

    PubMed

    Swanson, Eric

    2013-09-01

    The last decade has brought a major challenge to the traditional practice of plastic surgery from corporations that treat plastic surgery as a commercial product and market directly to the public. This corporate medicine model may include promotion of a trademarked procedure or device, national advertising that promises stunning results, sales consultants, and claims of innovation, superiority, and improved safety. This article explores the ethics of this business practice and whether corporate medicine is a desirable model for patients and plastic surgeons. PMID:24081699

  3. Plastic surgery on identical twins.

    PubMed

    Mühlbauer, W

    1991-01-01

    Four pairs of identical female twins have undergone a variety of plastic surgery procedures, including rhinoplasties, rhytidectomies, augmentation mammaplasties, and trochanteric liposuction. Performing plastic surgery on identical twins implies special considerations: the extent of preoperative phenotypic identity, the behavior of each twin (dominant or recessive), the twins' personal interdependence and individual expectations, the operative strategy (simultaneous versus sequential operations), the eventual complications, and the extent to which the operative results and postoperative appearance are identical. In general, counseling, operative technique, and responsibility for producing good results place greater demands on surgeons when performing plastic surgery on identical twins than on singletons. Still, the results have been gratifying. PMID:1994809

  4. Effects of flanges on pressure distribution on a flat plate and on a corrugated surface at Mach numbers from 0.60 to 1.97

    NASA Technical Reports Server (NTRS)

    Johns, A. L.; Jones, M. L.

    1974-01-01

    An 8 by 6 foot supersonic wind tunnel was used to obtain the static pressure distribution on a plate in the region of a flange placed normal to the airstream. Tests were conducted on both a flat plate surface and a corrugated surface using flange heights ranging from 10 to 125 percent of the boundary layer height. Data were obtained at a zero degree angle-of-attack and at Mach numbers from 0.60 to 1.97.

  5. Enhanced light out-coupling efficiency of organic light-emitting diodes with an extremely low haze by plasma treated nanoscale corrugation

    NASA Astrophysics Data System (ADS)

    Hwang, Ju Hyun; Lee, Hyun Jun; Shim, Yong Sub; Park, Cheol Hwee; Jung, Sun-Gyu; Kim, Kyu Nyun; Park, Young Wook; Ju, Byeong-Kwon

    2015-01-01

    Extremely low-haze light extraction from organic light-emitting diodes (OLEDs) was achieved by utilizing nanoscale corrugation, which was simply fabricated with plasma treatment and sonication. The haze of the nanoscale corrugation for light extraction (NCLE) corresponds to 0.21% for visible wavelengths, which is comparable to that of bare glass. The OLEDs with NCLE showed enhancements of 34.19% in current efficiency and 35.75% in power efficiency. Furthermore, the OLEDs with NCLE exhibited angle-stable electroluminescence (EL) spectra for different viewing angles, with no change in the full width at half maximum (FWHM) and peak wavelength. The flexibility of the polymer used for the NCLE and plasma treatment process indicates that the NCLE can be applied to large and flexible OLED displays.Extremely low-haze light extraction from organic light-emitting diodes (OLEDs) was achieved by utilizing nanoscale corrugation, which was simply fabricated with plasma treatment and sonication. The haze of the nanoscale corrugation for light extraction (NCLE) corresponds to 0.21% for visible wavelengths, which is comparable to that of bare glass. The OLEDs with NCLE showed enhancements of 34.19% in current efficiency and 35.75% in power efficiency. Furthermore, the OLEDs with NCLE exhibited angle-stable electroluminescence (EL) spectra for different viewing angles, with no change in the full width at half maximum (FWHM) and peak wavelength. The flexibility of the polymer used for the NCLE and plasma treatment process indicates that the NCLE can be applied to large and flexible OLED displays. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06547f

  6. Ecology and plastics

    SciTech Connect

    Nelson, G.L.

    1995-12-01

    Materials are used in applications for well-defined reasons. For example, plastics used in electrical and electric applications for enclosures must resistant impact and heat as well as ignition. The emergence of ``green`` products with the requirement for recyclability has added a new dimension to product design. The issue is more than material recyclability, however simple or complex that may be; it involves rethinking the entire end-product life cycle to develop products that have a lesser effect on human health and the environment than do alternative products. In the information and telecommunications products industries, companies have been involved in life-cycle analysis and in the development of environmentally conscious products (ECPs) for some time. In November 1991 IBM established an Engineering Center for Environmentally Conscious Products at IBM, Research Triangle Park, NC. The mission of the Engineering Center is to provide guidance and leadership in the development and manufacturing of ECPs which are safe for their intended use, protective of the environment and that can be recycled, re-utilized, or disposed of safely. The paper discusses new laws being enacted that require recycling, marking, ecolabeling, and new product take back.

  7. Visco-plastic sculpting

    NASA Astrophysics Data System (ADS)

    Hormozi, S.; Dunbrack, G.; Frigaard, I. A.

    2014-09-01

    Visco-plastic lubrication (VPL) has been established as a method for reliably suppressing interfacial instabilities and enhancing flow stability for multi-layer systems. Here we extend this methodology to the formation of shaped interfaces in multifluid core-annular configurations. We study multi-layer VPL flows in which we perform both experiment and computation with oscillating the flow rates of the individual phases. According to the flow rate variations we succeed in freezing in a range of different interfacial patterns. Experiments performed with carbopol as lubricating fluid, and with xanthan and polyethylene oxide solutions as core fluid, serve to illustrate the potential of the method. We show that single pulsed changes in the imposed inflow rates can result in small interface indentations that remain frozen into the interface as it propagates downstream. Repeated pulses produce periodically patterned interfaces. We are able to control the frequency and amplitude of the interfacial patterns, but not directly the shape. Inelastic core fluids have been observed to produce rounded bulges whereas elastic core fluids have produced diamond shapes. Moreover, numerical simulations extend the range of shapes achievable and give us interesting insights into the forming process.

  8. Recycling of Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  9. Topographic Relationship between the Supratrochlear Nerve and Corrugator Supercilii Muscle—Can This Anatomical Knowledge Improve the Response to Botulinum Toxin Injections in Chronic Migraine?

    PubMed Central

    Lee, Hyung-Jin; Choi, Kwang-Seok; Won, Sung-Yoon; Apinuntrum, Prawit; Hu, Kyung-Seok; Kim, Seong-Taek; Tansatit, Tanvaa; Kim, Hee-Jin

    2015-01-01

    Chronic migraine has been related to the entrapment of the supratrochlear nerve within the corrugator supercilii muscle. Recently, research has shown that people who have undergone botulinum neurotoxin A injection in frontal regions reported disappearance or alleviation of their migraines. There have been numerous anatomical studies conducted on Caucasians revealing possible anatomical problems leading to migraine; on the other hand, relatively few anatomical studies have been conducted on Asians. Thus, the aim of the present study was to determine the topographic relationship between the supratrochlear nerve and corrugator supercilii muscle in the forehead that may be the cause of migraine. Fifty-eight hemifaces from Korean and Thai cadavers were used for this study. The supratrochlear nerve entered the corrugator supercilii muscle in every case. Type I, in which the supratrochlear nerve emerged separately from the supraorbital nerve at the medial one-third portion of the orbit, was observed in 69% (40/58) of cases. Type II, in which the supratrochlear nerve emerged from the orbit at the same location as the supraorbital nerve, was observed in 31% (18/58) of cases. PMID:26193317

  10. Mitigation of Biofilm Formation on Corrugated Cardboard Fresh Produce Packaging Surfaces Using a Novel Thiazolidinedione Derivative Integrated in Acrylic Emulsion Polymers

    PubMed Central

    Brandwein, Michael; Al-Quntar, Abed; Goldberg, Hila; Mosheyev, Gregory; Goffer, Moshe; Marin-Iniesta, Fulgencio; López-Gómez, Antonio; Steinberg, Doron

    2016-01-01

    Various surfaces associated with the storage and packing of food are known to harbor distinct bacterial pathogens. Conspicuously absent among the plethora of studies implicating food packaging materials and machinery is the study of corrugated cardboard packaging, the worldwide medium for transporting fresh produce. In this study, we observed the microbial communities of three different store-bought fruits and vegetables, along with their analog cardboard packaging using high throughput sequencing technology. We further developed an anti-biofilm polymer meant to coat corrugated cardboard surfaces and mediate bacterial biofilm growth on said surfaces. Integration of a novel thiazolidinedione derivative into the acrylic emulsion polymers was assessed using Energy Dispersive X-ray Spectrometry (EDS) analysis and surface topography was visualized and quantified on corrugated cardboard surfaces. Biofilm growth was measured using q-PCR targeting the gene encoding 16s rRNA. Additionally, architectural structure of the biofilm was observed using SEM. The uniform integration of the thiazolidinedione derivative TZD-6 was confirmed, and it was determined via q-PCR to reduce biofilm growth by ~80% on tested surfaces. A novel and effective method for reducing microbial load and preventing contamination on food packaging is thereby proposed. PMID:26909074

  11. Corrugated mesh flow channel and novel microporous layers for reducing flooding and resistance in gas diffusion layer-less polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Tanaka, Shiro; Shudo, Toshio

    2014-12-01

    Electrode flooding at the cathode impedes the increase in power density of polymer electrolyte fuel cells (PEFCs), limiting their use at high current densities. Liquid water can accumulate in the pores of the gas-diffusion layer (GDL), deteriorating performances significantly. This paper reports a novel fuel-cell structure for the reduction of electrode flooding utilizing corrugated mesh as gas-flow channels and gas diffusers placed directly onto the microporous layer (MPL) without a conventional GDL in between. The polarization curve of the corrugated-mesh fuel cell shows a lower flooding tendency at a high current density; however, the high-frequency resistance (HFR) of this fuel cell increases significantly as a result of fewer contact points between the corrugated mesh and MPL. In addition, MPL conductivity and rigidity are investigated in efforts to reduce the flow-channel pattern resistance. The rigidity of the MPL has a small effect on the reduction in HFR, which may be caused by an improved pressure distribution on the catalyst layer.

  12. Mitigation of Biofilm Formation on Corrugated Cardboard Fresh Produce Packaging Surfaces Using a Novel Thiazolidinedione Derivative Integrated in Acrylic Emulsion Polymers.

    PubMed

    Brandwein, Michael; Al-Quntar, Abed; Goldberg, Hila; Mosheyev, Gregory; Goffer, Moshe; Marin-Iniesta, Fulgencio; López-Gómez, Antonio; Steinberg, Doron

    2016-01-01

    Various surfaces associated with the storage and packing of food are known to harbor distinct bacterial pathogens. Conspicuously absent among the plethora of studies implicating food packaging materials and machinery is the study of corrugated cardboard packaging, the worldwide medium for transporting fresh produce. In this study, we observed the microbial communities of three different store-bought fruits and vegetables, along with their analog cardboard packaging using high throughput sequencing technology. We further developed an anti-biofilm polymer meant to coat corrugated cardboard surfaces and mediate bacterial biofilm growth on said surfaces. Integration of a novel thiazolidinedione derivative into the acrylic emulsion polymers was assessed using Energy Dispersive X-ray Spectrometry (EDS) analysis and surface topography was visualized and quantified on corrugated cardboard surfaces. Biofilm growth was measured using q-PCR targeting the gene encoding 16s rRNA. Additionally, architectural structure of the biofilm was observed using SEM. The uniform integration of the thiazolidinedione derivative TZD-6 was confirmed, and it was determined via q-PCR to reduce biofilm growth by ~80% on tested surfaces. A novel and effective method for reducing microbial load and preventing contamination on food packaging is thereby proposed. PMID:26909074

  13. delta. M/sub j/ transitions in homonuclear molecule scattering off corrugated surfaces. Square and rectangular lattice symmetry and purely repulsive interaction

    SciTech Connect

    Proctor, T.R.; Kouri, D.J.; Gerber, R.B.

    1984-04-15

    In this paper, we present the first formal and computational studies of ..delta..m/sub j/ transitions occurring in homonuclear molecule-corrugated surface collisions. The model potential is a pairwise additive one which correctly incorporates the fact that ..delta..m/sub j/ transitions occur only for corrugated surfaces (provided the quantization axis is chosen to be the average surface normal). The principal results are: (a) ..delta..m/sub j/ transitions are extremely sensitive to lattice symmetry; (b) strong selection rules obtain for specular scattering; (c) the magnitude of ..delta..m/sub j/ -transition probabilities are strongly sensitive to surface corrugation; (d) the ..delta..m/sub j/ transitions depend strongly on diffraction peak; (e) the ratio of molecular length to lattice dimension (r/a) has a strong influence on the magnitude of ..delta..m/sub j/ -transition probabilities (with the probabilities increasing as (r/a) increases); (f) ..delta..m/sub j/ rainbows are predicted to occur as a function of the (r/a) ratio increases; (g) ..delta..m/sub j/ transitions and the ..delta..m/sub j/ rainbow are expected to accompany ..delta..j-rotational rainbows; (h) such magnetic transition rainbows accompanying ..delta..j rainbows are suggested as an explanation of recent experimental observations of quenching of NO polarization for larger ..delta..j transitions in NO/Ag(111) scattering.

  14. THERMAL DEPOLYMERIZATION OF POSTCONSUMER PLASTICS

    EPA Science Inventory

    The University of North Dakota Energy & Environmental Research Center (EERC) performed two series of tests to evaluate process conditions for thermal depolymerization of postconsumer plastics. The objective of the first test series was to provide data for optimization of reactio...

  15. WEATHERABILITY OF ENHANCED DEGRADABLE PLASTICS

    EPA Science Inventory

    The main objective of this study was to assess the performance and the associated variability of several selected enhanced degradable plastic materials under a variety of different exposure conditions. ther objectives were to identify the major products formed during degradation ...

  16. Network Plasticity as Bayesian Inference

    PubMed Central

    Legenstein, Robert; Maass, Wolfgang

    2015-01-01

    General results from statistical learning theory suggest to understand not only brain computations, but also brain plasticity as probabilistic inference. But a model for that has been missing. We propose that inherently stochastic features of synaptic plasticity and spine motility enable cortical networks of neurons to carry out probabilistic inference by sampling from a posterior distribution of network configurations. This model provides a viable alternative to existing models that propose convergence of parameters to maximum likelihood values. It explains how priors on weight distributions and connection probabilities can be merged optimally with learned experience, how cortical networks can generalize learned information so well to novel experiences, and how they can compensate continuously for unforeseen disturbances of the network. The resulting new theory of network plasticity explains from a functional perspective a number of experimental data on stochastic aspects of synaptic plasticity that previously appeared to be quite puzzling. PMID:26545099

  17. WEATHERABILITY OF ENHANCED DEGRADABLE PLASTICS

    EPA Science Inventory

    The main objective of this study was to assess the performance and the asociated variability of several selected enhanced degradable plastic materials under a variety of different exposure conditions. Other objectives were to identify the major products formed during degradation ...

  18. Nano-Ceramic Coated Plastics

    NASA Technical Reports Server (NTRS)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (<100 C) is also a key to generating these ceramic coatings on the plastics. One possible way of processing nanoceramic coatings at low temperatures (< 90 C) is to take advantage of in-situ precipitated nanoparticles and nanostructures grown from aqueous solution. These nanostructures can be tailored to ceramic film formation and the subsequent microstructure development. In addition, the process provides environment- friendly processing because of the

  19. Nanoscale plasticity in silica glass

    SciTech Connect

    Glosli, J.N.; Boercker, D.B.; Tesar, A.; Belak, J.

    1993-10-01

    Mechanisms of nano-scale plasticity and damage initiation in silica glass is examined using molecular dynamics simulation. Computer experiments are carried out by indenting a sharp diamond-like tool, containing 4496 atoms, into a silica slab consisting of 12288 atoms. Both elastic and plastic deformation of silica is observed during nanoindentation simulation; this transition occurs at an indentation of 1.25 nm, and the calculated hardness (15GPa for 1.5 nm indentation) agrees with experiment.

  20. [Plasticity of the cellular phenotype].

    PubMed

    Chneiweiss, Hervé

    2011-01-01

    The tragical consequences of the Hiroshima and Nagasaki atomic bombs in 1945 were to lead to the discovery of hematopoietic stem cells and their phenotypic plasticity, in response to environmental factors. These concepts were much later extended to the founding cells of other tissues. In the following collection of articles, the mechanisms underlying this plasticity, at the frontiers of developmental biology and oncology, are illustrated in the case of various cell types of neural origin and of some tumours. PMID:21501574

  1. Helene: A Plastic Model

    NASA Astrophysics Data System (ADS)

    Umurhan, O. M.; Moore, J. M.; Howard, A. D.; Schenk, P.; White, O. L.

    2014-12-01

    Helene, the Saturnian L4 Trojan satellite co-orbiting Dionne and sitting within the E-ring, possesses an unusual morphology characteristic of broad km-scale basins and depressions and a generally smooth surface patterned with streaks and grooves which are indicative of non-typical mass transport. Elevation angles do not appear to exceed 10o at most. The nature and origin of the surface materials forming these grooved patterns is unknown. Given the low surface gravity (<5mm/s2), it hard to imagine how such transport features can come about with such low grades and surface gravities. Preliminary examinations of classical linear and nonlinear mass wasting mechanisms do not appear to reproduce these curious features. A suite of hypothesis that we examine is the possibility that the fine grain material on the surface has been either (i) accreted or (ii) generated as refractory detritus resulting from sublimation of the icy bedrock, and that these materials subsequently mass-waste like a non-Newtonian highly non-linear creeping flow. Modifying the landform evolution model MARSSIM to handle two new mass-wasting mechanism, the first due to glacial-like flow via Glen's Law and the second due to plastic-like flow like a Bingham fluid, we setup and test a number of likely scenarios to explain the observations. The numerical results qualitatively indicate that treating the mass-wasting materials as a Bingham material reproduces many of the qualitative features observed. We also find that in those simulations in which accretion is concomitant with Bingham mass-wasting, the long time-evolution of the surface flow shows intermittency in the total surface activity (defined as total surface integral of the absolute magnitude of the mass-flux). Detailed analyses identify the locations where this activity is most pronounced and we will discuss these and its implications in further detail.

  2. Implicit Large Eddy Simulation of Flow over a Corrugated Dragonfly Wing Using High-Order Spectral Difference Method

    NASA Astrophysics Data System (ADS)

    Wang, Z. J.

    2009-11-01

    Implicit large eddy simulations of flow over a corrugated dragonfly wing at a Reynolds number of 34,000 at high angles of attack have been investigated with a high-order unstructured spectral difference Navier-Stokes solver. The computational results are compared with a recent experimental study by Hu et al. Both 2D and 3D simulations are carried out to assess how realistic and reliable the 2D simulations are in comparison with 3D simulations. At the angle of attack of 16 degrees, the 2D simulation failed to predict the stall observed in the experiment, while the 3D simulation correctly predicted the stall. In addition, the 3D simulation predicted a mean lift coefficient within 5% of the experimental data. We plan to compute at least another angle of attack and compare with the experimental data. The numerical simulations demonstrated the potential of the high-order SD method in large eddy simulation of physically complex problems.

  3. Quantitative Photochemical Immobilization of Biomolecules on Planar and Corrugated Substrates: A Versatile Strategy for Creating Functional Biointerfaces

    PubMed Central

    Martin, Teresa A.; Herman, Christine T.; Limpoco, Francis T.; Michael, Madeline C.; Potts, Gregory K.; Bailey, Ryan C.

    2014-01-01

    Methods for the generation of substrates presenting biomolecules in a spatially controlled manner are enabling tools for applications in biosensor systems, microarray technologies, fundamental biological studies and biointerface science. We have implemented a method to create biomolecular patterns by using light to control the direct covalent immobilization of biomolecules onto benzophenone-modified glass substrates. We have generated substrates presenting up to three different biomolecules patterned in sequence, and demonstrate biomolecular photopatterning on corrugated substrates. The chemistry of the underlying monolayer was optimized to incorporate poly(ethylene glycol) to enable adhesive cell adhesion onto patterned extracellular matrix proteins. Substrates were characterized with contact angle goniometry, AFM, and immunofluorescence microscopy. Importantly, radioimmunoassays were performed to quantify the site density of immobilized biomolecules on photopatterned substrates. Retention of function of photopatterned proteins was demonstrated both by native ligand recognition and cell adhesion to photopatterned substrates, revealing that substrates generated with this method are suitable for probing specific cell receptor-ligand interactions. This molecularly general photochemical patterning method is an enabling tool that will allow the creation of substrates presenting both biochemical and topographical variation, which is an important feature of many native biointerfaces. PMID:21793535

  4. Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication.

    PubMed

    Tang, Yanjun; Shen, Xiaochuang; Zhang, Junhua; Guo, Daliang; Kong, Fangong; Zhang, Nan

    2015-07-10

    Due to its amazing physicochemical properties and high environmental compatibility, cellulose nano-crystals (CNC) hold great promise for serving as a strategic platform for sustainable development. Now, there has been growing interest in the development of processes using waste or residual biomass as CNC source for addressing economic and environmental concerns. In the present work, a combined process involving phosphoric acid hydrolysis, enzymatic hydrolysis and sonication was proposed aiming to efficiently exact CNC from low-cost old corrugated container (OCC) pulp fiber. The effect of enzymatic hydrolysis on the yield and microstructure of resulting CNC was highlighted. Results showed that the enzymatic hydrolysis was effective in enhancing CNC yield after phosphoric acid hydrolysis. CNC was obtained with a yield of 23.98 wt% via the combined process with phosphoric acid concentration of 60 wt%, cellulase dosage of 2 mL (84 EGU) per 2g fiber and sonication intensity of 200 W. Moreover, the presence of enzymatic hydrolysis imparted the obtained CNC with improved dispersion, increased crystallinity and thermal stability. PMID:25857993

  5. Giant corrugations in Bi2Se3 layers grown on high-index InP substrates

    NASA Astrophysics Data System (ADS)

    Takagaki, Y.; Jenichen, B.; Tominaga, J.

    2013-06-01

    Epitaxial growth of Bi2Se3 layers usually takes place in the (0001) orientation due to the stability of this surface terminated by the van der Waals bonds. Here, we show that the layers grown on InP(11n) substrates (n= 3, 4, and 5) are not (0001) oriented. The approximate lattice match at the heterointerface leads to an alignment between the [0001] direction of Bi2Se3 and the [111] direction of InP. The consequential tilt of the Bi2Se3(0001) plane with respect to the surface of the high-index substrates gives rise to a formation of giant corrugations consisting of the (0001) and (11¯00) facets. We demonstrate critical influences of the in-plane polarization and miscut of the substrates which emerge owing to the strong overlayer-substrate interaction in the semicoherent heteroepitaxy: Twin domains are eliminated and the layers are strained to the extent that the lattice symmetry is altered. We examine the Dirac band structure under strain using density functional calculations. The Dirac point shifts away from the Γ point and the spin degeneracy is lifted when the strain is in the Bi2Se3[11¯00] direction as the spatial inversion symmetry is removed.

  6. Plasticity effects in hydraulic fracturing

    SciTech Connect

    Medlin, W.L.; Masse, L.

    1986-09-01

    The importance of reservoir rock plasticity in fracturing operations has been investigated by laboratory experiments and field results. A Lagrangian formulation for crack propagation provided the basis for the laboratory experiments. A simple crack propagation experiment showed that plasticity effects can be observed and that the importance of plasticity depends on the relative magnitudes of surface energy and energy dissipated in plastic deformation of a reservoir rock. The latter can be evaluated by laboratory measurements of a plasticity coefficient, ..cap alpha.., which comes out of the Lagrangian analysis. To measure ..cap alpha.., the authors developed a triaxial system for applying tensile stress to rock cores under confining pressure at strain rates characteristic of fracturing operations. Strain gauges mounted on each core were used with a servo-controlled press to apply strain at a linear rate between 10/sup -4/ and 10/sup -6/ seconds /sup -1/ and to obtain stress/strain data to the point of tensile failure. To distinguish between plasticity and nonlinear elastic phenomena, the authors also obtained strain hysteresis data.

  7. Transmission laser welding of plastics

    NASA Astrophysics Data System (ADS)

    Hilton, Paul A.; Jones, I. A.; Kennish, Y.

    2003-03-01

    The use of lasers for welding plastics was demonstrated in the early 1970s. However, it was not until late in the 1990s that production applications started to be considered widely. This followed the broad realization that by selection of a suitable combination of radiation wavelength and plastics additives, to control light transmission and absorption, heat could be generated at the joint of a pre-assembled part without melting its outer surfaces. It is of added benefit that the window of transmission for an unpigmented and unfilled plastic typically covers the wavelengths delivered by small and cost effective diode lasers. Recent developments in the transmission laser welding process for plastics are discussed, including methods for the generation of welds between two clear plastics, application of similar techniques to the joining of thermoplastic textiles and new equipment, able to heat a complete joint and assist in the sealing of assemblies where the joint surfaces are not particuarly smooth. An analytical heat flow model for the welding of clear plastics is shown in use for selecting process parameters.

  8. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  9. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  10. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  11. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  12. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  13. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic...

  14. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  15. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint...

  16. Evolution of phenotypic plasticity in colonizing species.

    PubMed

    Lande, Russell

    2015-05-01

    I elaborate an hypothesis to explain inconsistent empirical findings comparing phenotypic plasticity in colonizing populations or species with plasticity from their native or ancestral range. Quantitative genetic theory on the evolution of plasticity reveals that colonization of a novel environment can cause a transient increase in plasticity: a rapid initial increase in plasticity accelerates evolution of a new optimal phenotype, followed by slow genetic assimilation of the new phenotype and reduction of plasticity. An association of colonization with increased plasticity depends on the difference in the optimal phenotype between ancestral and colonized environments, the difference in mean, variance and predictability of the environment, the cost of plasticity, and the time elapsed since colonization. The relative importance of these parameters depends on whether a phenotypic character develops by one-shot plasticity to a constant adult phenotype or by labile plasticity involving continuous and reversible development throughout adult life. PMID:25558898

  17. Structural Plasticity and Hippocampal Function

    PubMed Central

    Leuner, Benedetta; Gould, Elizabeth

    2010-01-01

    The hippocampus is a region of the mammalian brain that shows an impressive capacity for structural reorganization. Preexisting neural circuits undergo modifications in dendritic complexity and synapse number, and entirely novel neural connections are formed through the process of neurogenesis. These types of structural change were once thought to be restricted to development. However, it is now generally accepted that the hippocampus remains structurally plastic throughout life. This article reviews structural plasticity in the hippocampus over the lifespan, including how it is investigated experimentally. The modulation of structural plasticity by various experiential factors as well as the possible role it may have in hippocampal functions such as learning and memory, anxiety, and stress regulation are also considered. Although significant progress has been made in many of these areas, we highlight some of the outstanding issues that remain. PMID:19575621

  18. Oxytocin and Maternal Brain Plasticity.

    PubMed

    Kim, Sohye; Strathearn, Lane

    2016-09-01

    Although dramatic postnatal changes in maternal behavior have long been noted, we are only now beginning to understand the neurobiological mechanisms that support this transition. The present paper synthesizes growing insights from both animal and human research to provide an overview of the plasticity of the mother's brain, with a particular emphasis on the oxytocin system. We examine plasticity observed within the oxytocin system and discuss how these changes mediate an array of other adaptations observed within the maternal brain. We outline factors that affect the oxytocin-mediated plasticity of the maternal brain and review evidence linking disruptions in oxytocin functions to challenges in maternal adaptation. We conclude by suggesting a strategy for intervention with mothers who may be at risk for maladjustment during this transition to motherhood, while highlighting areas where further research is needed. PMID:27589498

  19. MIPP Plastic Ball electronics upgrade

    SciTech Connect

    Baldin, Boris; /Fermilab

    2009-01-01

    An upgrade electronics design for Plastic Ball detector is described. The Plastic Ball detector was a part of several experiments in the past and its back portion (proposed to be used in MIPP) consists of 340 photomultipliers equipped with a sandwich scintillator. The scintillator sandwich has fast and slow signal component with decay times 10 ns and 1 {micro}s respectively. The upgraded MIPP experiment will collect up to 12,000 events during each 4 second spill and read them out in {approx}50 seconds between spills. The MIPP data acquisition system will employ deadtime-less concept successfully implemented in Muon Electronics of Dzero experiment at Fermilab. An 8-channel prototype design of the Plastic Ball Front End (PBFE) implementing these requirements is discussed. Details of the schematic design, simulation and prototype test results are discussed.

  20. Plastic folding of buckling structures.

    PubMed

    Colin, Jérôme; Coupeau, Christophe; Grilhé, Jean

    2007-07-27

    Atomic force microscopy observations of the free surface of gold thin films deposited on silicon substrates have evidenced the buckling of the films and the formation of blister patterns undergoing plastic folding. The classical elastic buckling and plastic deformation of the films are analyzed in the framework of the Föppl-Von Kármán theory of thin plates introducing the notion of low-angle tilt boundaries and dislocation distributions to describe this folding effect. It is demonstrated that, in agreement with elementary plasticity of bent crystals, the presence of such tilt-boundaries results in the formation of buckling patterns of lower energy than "classical" elastic blisters. PMID:17678376

  1. Surface properties of beached plastics.

    PubMed

    Fotopoulou, Kalliopi N; Karapanagioti, Hrissi K

    2015-07-01

    Studying plastic characteristics in the marine environment is important to better understand interaction between plastics and the environment. In the present study, high-density polyethylene (HDPE), polyethylene terephalate (PET), and polyvinyl chloride (PVC) samples were collected from the coastal environment in order to study their surface properties. Surface properties such as surface functional groups, surface topography, point of zero charge, and color change are important factors that change during degradation. Eroded HDPE demonstrated an altered surface topography and color and new functional groups. Eroded PET surface was uneven, yellow, and occasionally, colonized by microbes. A decrease in Fourier transform infrared (FTIR) peaks was observed for eroded PET suggesting that degradation had occurred. For eroded PVC, its surface became more lamellar and a new FTIR peak was observed. These surface properties were obtained due to degradation and could be used to explain the interaction between plastics, microbes, and pollutants. PMID:25787219

  2. Optimization of heat and mass transfers in counterflow corrugated-plate liquid-gas exchangers used in a greenhouse dehumidifier

    NASA Astrophysics Data System (ADS)

    Bentounes, N.; Jaffrin, A.

    1998-09-01

    Heat and mass transfers occuring in a counterflow direct contact liquid-gas exchanger determine the performance of a new greenhouse air dehumidifier designed at INRA. This prototype uses triethylene glycol (TEG) as the desiccant fluid which extracts water vapor from the air. The regeneration of the TEG desiccant fluid is then performed by direct contact with combustion gas from a high efficiency boiler equipped with a condensor. The heat and mass transfers between the thin film of diluted TEG and the hot gas were simulated by a model which uses correlation formula from the literature specifically relevant to the present cross-corrugated plates geometry. A simple set of analytical solutions is first derived, which explains why some possible processes can clearly be far from optimal. Then, more exact numerical calculations confirm that some undesirable water recondensations on the upper part of the exchanger were limiting the performance of this prototype. More suitable conditions were defined for the process, which lead to a new design of the apparatus. In this second prototype, a gas-gas exchanger provides dryer and cooler gas to the basis of the regenerators, while a warmer TEG is fed on the top. A whole range of operating conditions was experimented and measured parameters were compared with numerical simulations of this new configuration: recondensation did not occur any more. As a consequence, this second prototype was able to concentrate the desiccant fluid at the desired rate of 20 kg H_{2O}/hour, under temperature and humidity conditions which correspond to the dehumidification of a 1000 m2 greenhouse heated at night during the winter season.

  3. Extruded plastic scintillator including inorganic powders

    DOEpatents

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-06-27

    A method for producing a plastic scintillator is disclosed. A plurality of nano-sized particles and one or more dopants can be combined with a plastic material for the formation of a plastic scintillator thereof. The nano-sized particles, the dopant and the plastic material can be combined within the dry inert atmosphere of an extruder to produce a reaction that results in the formation of a plastic scintillator thereof and the deposition of energy within the plastic scintillator, such that the plastic scintillator produces light signifying the detection of a radiative element. The nano-sized particles can be treated with an inert gas prior to processing the nano-sized particles, the dopant and the plastic material utilizing the extruder. The plastic scintillator can be a neutron-sensitive scintillator, x-ray sensitive scintillator and/or a scintillator for the detection of minimum ionizing particles.

  4. Polishing compound for plastic surfaces

    DOEpatents

    Stowell, Michael S.

    1995-01-01

    A polishing compound for plastic surfaces. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains fine particles silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS.TM., LEXAN.TM., LUCITE.TM., polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

  5. Polishing compound for plastic surfaces

    DOEpatents

    Stowell, M.S.

    1995-08-22

    A polishing compound for plastic surfaces is disclosed. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains fine particles silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS{trademark}, LEXAN{trademark}, LUCITE{trademark}, polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired. 5 figs.

  6. A plastic scintillation counter prototype.

    PubMed

    Furuta, Etsuko; Kawano, Takao

    2015-10-01

    A new prototype device for beta-ray measurement, a plastic scintillation counter, was assembled as an alternative device to liquid scintillation counters. This device uses plastic scintillation sheets (PS sheets) as a sample applicator without the use of a liquid scintillator. The performance was evaluated using tritium labeled compounds, and good linearity was observed between the activity and net count rate. The calculated detection limit of the device was 0.01 Bq mL(-1) after 10 h measurement for 2 mL sample. PMID:26164628

  7. Random organization and plastic depinning

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia

    2008-01-01

    We provide evidence that the general phenomenon of plastic depinning can be described as an absorbing phase transition, and shows the same features as the random organization which was recently studied in periodically driven particle systems [L. Corte, Nature Phys. 4, 420 (2008)]. In the plastic flow system, the pinned regime corresponds to the absorbing state and the moving state corresponds to the fluctuating state. When an external force is suddenly applied, the system eventually organizes into one of these two states with a time scale that diverges as a power law at a nonequilibrium transition. We propose a simple experiment to test for this transition in systems with random disorder.

  8. Plasticity: Resource justification and development

    NASA Astrophysics Data System (ADS)

    Sayre, Eleanor C.

    Physics education research is fundamentally concerned with understanding the processes of student learning and facilitating the development of student understanding. A better understanding of learning processes and outcomes is integral to improving said learning. In this thesis, I detail and expand upon Resource Theory, allowing it to account for the development of resources and connecting the activation and use of resources to experimental data. Resource Theory is a general knowledge-in-pieces schema theory. It bridges cognitive science and education research to describe the phenomenology of problem solving. Resources are small, reusable pieces of thought that make up concepts and arguments. The physical context and cognitive state of the user determine which resources are available to be activated; different people have different resources about different things. Over time, resources may develop, acquiring new meanings as they activate in different situations. In this thesis, I introduce "plasticity," a continuum for describing the development of resources. The plasticity continuum blends elements of Process/Object and Cognitive Science with Resource Theory. The name evokes brain plasticity and myelination (markers of learning power and reasoning speed, respectively) and materials plasticity and solidity (with their attendant properties, deformability and stability). In the plasticity continuum, the two directions are more plastic and more solid. More solid resources are more durable and more connected to other resources. Users tend to be more committed to them because reasoning with them has been fruitful in the past. Similarly, users tend not to perform consistency checks on them any more. In contrast, more plastic resources need to be tested against the existing network more often, as users forge links between them and other resources. To explore these expansions and their application, I present several extended examples drawn from an Intermediate Mechanics

  9. Polishing compound for plastic surfaces

    SciTech Connect

    Stowell, M.S.

    1993-01-01

    A polishing compound for plastic surfaces is disclosed. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains colloidal silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS{sup TM}, LEXAN{sup TM}, LUCITE{sup TM}, polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

  10. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Surface Corrugation in Rotational and Diffractive Scattering of O2 from LiF (001)

    NASA Astrophysics Data System (ADS)

    Xu, Kai; Chen, Xiang-Rong; Wei, Dong-Qing; Gou, Qing-Quan

    2010-12-01

    A quantum dynamic calculation on a five-dimensional O2/LiF (001) model system is performed using the multi-configuration time-dependent Hartree method. The obtained results show that the mechanism of rotational and diffractive excitation in details: Comparison with the rotational excited state, the initially non-rotational state is seen to favor the inelastic scattering in the rotational excitation process. The surface corrugation can damp the quantum interferences and produce a greater amount of rotational inelastic scattering at the expense of the elastic process in the rotational excitation process. The diffraction process and the average energy transferred into the rotational and diffractive mode are also discussed.

  11. Scribable coating for plastic films

    NASA Technical Reports Server (NTRS)

    Clark, R. T.

    1967-01-01

    Scribable opaque coating for transparent plastic film tape is not affected by aging, vacuum, and moderate temperature extremes. It consists of titanium dioxide, a water-compatible acrylic polymer emulsion, and a detergent. The coating mixture is readily dispersed in water before it is dried.

  12. Task Analysis for Industrial Plastics.

    ERIC Educational Resources Information Center

    Washington State Coordinating Council for Occupational Education, Olympia.

    The guide is designed to provide a basis for effective communication between local education agencies and local advisory committees regarding industrial plastics eudcation and to communicate national and statewide program requirements so that local advisory committees may recommend program requirements that meet local needs with due concern for…

  13. Plastic failure of nonlocal beams.

    PubMed

    Challamel, Noël; Lanos, Christophe; Casandjian, Charles

    2008-08-01

    This paper questions the mode of collapse of some simple softening nonlocal structural systems comprising the classical cantilever beam. Nanobeams can be concerned by such an elementary model. The homogeneous cantilever beam loaded by a concentrated force at its extremity is first considered as a structural paradigm. A nonlocal plasticity model is developed in order to control the localization process induced by microcracking phenomena. An implicit gradient plasticity model equivalent to a nonlocal integral plasticity model is used in this paper. It is shown that the regularized problem is well posed. Closed-form solutions of the elastoplastic deflection are finally derived. The length of the plastic zone grows during the softening process until an asymptotic limited value, which depends on the characteristic length of the material. Scale effects are clearly obtained for these static bending tests. Other structural cases are also presented, including the simply supported beam under uniform transverse loading. It is concluded that the mode of collapse is firmly a nonlocal phenomenon. PMID:18850959

  14. Micromechanics of nonlinear plastic modes

    NASA Astrophysics Data System (ADS)

    Lerner, Edan

    2016-05-01

    Nonlinear plastic modes (NPMs) are collective displacements that are indicative of imminent plastic instabilities in elastic solids. In this work we formulate the atomistic theory that describes the reversible evolution of NPMs and their associated stiffnesses under external deformations. The deformation dynamics of NPMs is compared to those of the analogous observables derived from atomistic linear elastic theory, namely, destabilizing eigenmodes of the dynamical matrix and their associated eigenvalues. The key result we present and explain is that the dynamics of NPMs and of destabilizing eigenmodes under external deformations follow different scaling laws with respect to the proximity to imminent instabilities. In particular, destabilizing modes vary with a singular rate, whereas NPMs exhibit no such singularity. As a result, NPMs converge much earlier than destabilizing eigenmodes to their common final form at plastic instabilities. This dynamical difference between NPMs and linear destabilizing eigenmodes underlines the usefulness of NPMs for predicting the locus and geometry of plastic instabilities, compared to their linear-elastic counterparts.

  15. Synaptic Plasticity and Translation Initiation

    ERIC Educational Resources Information Center

    Klann, Eric; Antion, Marcia D.; Banko, Jessica L.; Hou, Lingfei

    2004-01-01

    It is widely accepted that protein synthesis, including local protein synthesis at synapses, is required for several forms of synaptic plasticity. Local protein synthesis enables synapses to control synaptic strength independent of the cell body via rapid protein production from pre-existing mRNA. Therefore, regulation of translation initiation is…

  16. For the Classroom: "Plastic" Jellyfish.

    ERIC Educational Resources Information Center

    Current: The Journal of Marine Education, 1989

    1989-01-01

    Describes an activity in which students monitor the plastic waste production in their households, research its effects on freshwater and marine life, and propose ways to lessen the problem. Provides objectives, background information, materials, procedures, extension activities, and an evaluation for students. (Author/RT)

  17. Boron trifluoride coatings for plastics

    NASA Technical Reports Server (NTRS)

    Kubacki, R. M.

    1978-01-01

    Tough, durable coatings of boron triflouride can be deposited on plastic optical components to protect them from destructive effects of abrasion, scratching, and environment. Coating material can be applied simultaneously with organic polymers, using plasma glow-discharge methods, or it can be used as base material for other coatings to increase adhesion.

  18. [Humanitarian plastic surgery in question].

    PubMed

    Montandon, D; Quinodoz, P; Pittet, B

    2004-06-01

    Humanitarian plastic surgery has become very fashionable and more and more surgeons are attracted by this type of commitment. The authors remind here of the necessary conditions and limitations of these actions. The communicative action according to J. Habermas, which means a true partnership with the local health care specialists should be the only valid engagement. PMID:15276263

  19. Farm surpluses: sources for plastics

    SciTech Connect

    Hardin, B.

    1986-10-01

    Starch from corn may soon replace petrochemicals in plastic films. And glycerol - a byproduct from processing of animal fats, soybeans, and other vegetable oil crops - may one day compete with petrochemicals in acrylic plastic manufacturing. These are two examples of how research may help convert the nation's surplus farm commodities into needed industrial products. Studies at the USDA Agricultural Research Service center in Peoria, IL, show that starch can be blended into plastic films that may serve as biodegradable mulches for tomatoes and other high-value crops. We are working on new formulas for mulches that micro-organisms can break down after a crop is harvested, says chemist Felix Otey. This feature preserves the environment and saves the expense of having to remove and burn or bury the mulches. Home gardeners and farmers use plastic mulches to protect crops from weeds and drought and extend the growing season by warming the soil sooner in the spring. And farmers use them to produce an earlier crop that commands a good price.

  20. A DFT study of planar vs. corrugated graphene-like carbon nitride (g-C3N4) and its role in the catalytic performance of CO2 conversion.

    PubMed

    Azofra, Luis Miguel; MacFarlane, Douglas R; Sun, Chenghua

    2016-07-21

    Graphene-like carbon nitride (g-C3N4), a metal-free 2D material that is of interest as a CO2 reduction catalyst, is stabilised by corrugation in order to minimise the electronic repulsions experienced by the N lone pairs located in their structural holes. This conformational change not only stabilises the Fermi level in comparison with the totally planar structure, but also increases the potential depth of the π-holes, representing the active sites where the catalytic CO2 conversion takes place. Finally, as a result of corrugation, our DFT-D3 calculations indicate that the reaction Gibbs free energy for the first H(+)/e(-) addition decreases by 0.49 eV with respect to the totally planar case, suggesting that corrugation not only involves the material's stabilisation but also enhances the catalytic performance for the selective production of CO/CH3OH. PMID:27339031

  1. Plastic surgeons: a gender comparison.

    PubMed

    Capek, L; Edwards, D E; Mackinnon, S E

    1997-02-01

    This study surveyed plastic surgeons for the purpose of identifying gender-related differences within the specialty. A confidential 108-item questionnaire was mailed to all female members and candidates of the American Society of Plastic and Reconstructive Surgeons (ASPRS) and to an equal number of male colleagues. The survey was conducted between September of 1992 and October of 1993 using a modified Dillman five-step computerized method. The response rate was 73 percent for women (157 of 216) and 57 percent for men (124 of 216). Of those who responded, 65 percent of women and 89 percent of men were married (p < 0.01). Fifty-two percent of women and 86 percent of men had biologic children (p < 0.001). The majority of surgeons surveyed (97 percent) were in full-time surgical practice. Many women reported delaying childbearing until they had begun full-time practice of plastic surgery (p < 0.001). No significant gender-related differences were noted with respect to medical school rank, training history, advanced degrees, subspecialty practiced, hospital affiliation, or hours worked. Women surgeons in academic practice held lower rank than men and were less likely to be tenured (p < 0.04). Gross annual income was lower for women (p < 0.001). In contrast to men (27 percent), most women (89 percent) perceived sexual discrimination and harassment (p < 0.001). The majority of plastic surgeons were satisfied with their financial situation (80 percent), work (94 percent), and family life (76 percent). Over 90 percent of both women and men were happy with their career choice and would encourage medical students to become surgeons. Plastic surgeons do not differ in training or professional practice characteristics. Discrimination and harassment and unequal promotion and remuneration of women in the university environment are problems that need to be eliminated. PMID:9030134

  2. Chemistry technology: Adhesives and plastics: A compilation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Technical information on chemical formulations for improving and/or producing adhesives is presented. Data are also reported on polymeric plastics with special characteristics or those plastics that were produced by innovative means.

  3. Gas Experiments with Plastic Soda Bottles.

    ERIC Educational Resources Information Center

    Kavanah, Patrick; Zipp, Arden P.

    1998-01-01

    Describes the use of an inexpensive device consisting of a plastic soda bottle and a modified plastic cap in a range of demonstrations and experimental activities having to do with the behavior of gases. (Author/WRM)

  4. Plastics and beaches: a degrading relationship.

    PubMed

    Corcoran, Patricia L; Biesinger, Mark C; Grifi, Meriem

    2009-01-01

    Plastic debris in Earth's oceans presents a serious environmental issue because breakdown by chemical weathering and mechanical erosion is minimal at sea. Following deposition on beaches, plastic materials are exposed to UV radiation and physical processes controlled by wind, current, wave and tide action. Plastic particles from Kauai's beaches were sampled to determine relationships between composition, surface textures, and plastics degradation. SEM images indicated that beach plastics feature both mechanically eroded and chemically weathered surface textures. Granular oxidation textures were concentrated along mechanically weakened fractures and along the margins of the more rounded plastic particles. Particles with oxidation textures also produced the most intense peaks in the lower wavenumber region of FTIR spectra. The textural results suggest that plastic debris is particularly conducive to both chemical and mechanical breakdown in beach environments, which cannot be said for plastics in other natural settings on Earth. PMID:18834997

  5. The advent of the restorative plastic surgeon.

    PubMed

    Carty, Matthew J; Pribaz, Julian J; Talbot, Simon G; Caterson, Edward J; Pomahac, Bohdan

    2014-01-01

    Plastic surgery is presently typified by the existence of discrete clinical identities, namely that of the cosmetic plastic surgeon and the reconstructive plastic surgeon. The emergence of vascularized composite allotransplantation has been accompanied by the development of a third distinct clinical identity, that of the restorative plastic surgeon. The authors describe the core competencies that characterize this new identity, and discuss the implications of the advent of this new professional paradigm. PMID:24374677

  6. 21 CFR 181.27 - Plasticizers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Plasticizers. Substances classified as plasticizers, when migrating from food-packaging material shall include... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Plasticizers. 181.27 Section 181.27 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  7. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion..., see § 192.7). (3) The joint may not be heated to accelerate the setting of the cement. (c) Heat-fusion joints. Each heat-fusion joint on plastic pipe must comply with the following: (1) A butt...

  8. 49 CFR 192.281 - Plastic pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion..., see § 192.7). (3) The joint may not be heated to accelerate the setting of the cement. (c) Heat-fusion joints. Each heat-fusion joint on plastic pipe must comply with the following: (1) A butt...

  9. Adult myelination: wrapping up neuronal plasticity

    PubMed Central

    O’Rourke, Megan; Gasperini, Robert; Young, Kaylene M.

    2014-01-01

    In this review, we outline the major neural plasticity mechanisms that have been identified in the adult central nervous system (CNS), and offer a perspective on how they regulate CNS function. In particular we examine how myelin plasticity can operate alongside neurogenesis and synaptic plasticity to influence information processing and transfer in the mature CNS. PMID:25221576

  10. 7 CFR 58.326 - Plastic cream.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Plastic cream. 58.326 Section 58.326 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.326 Plastic cream. To produce plastic cream eligible for official certification, the...

  11. 7 CFR 58.326 - Plastic cream.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Plastic cream. 58.326 Section 58.326 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.326 Plastic cream. To produce plastic cream eligible for official certification, the...

  12. 7 CFR 58.326 - Plastic cream.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Plastic cream. 58.326 Section 58.326 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.326 Plastic cream. To produce plastic cream eligible for official certification, the...

  13. 7 CFR 58.326 - Plastic cream.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Plastic cream. 58.326 Section 58.326 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.326 Plastic cream. To produce plastic cream eligible for official certification, the...

  14. 7 CFR 58.326 - Plastic cream.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Plastic cream. 58.326 Section 58.326 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.326 Plastic cream. To produce plastic cream eligible for official certification, the...

  15. The Rhetorical Limits of the "Plastic Body"

    ERIC Educational Resources Information Center

    Jordan, John W.

    2004-01-01

    This essay analyzes the "plastic body" as it is produced in the discourse of plastic surgery. The contemporary industry has constructed a popular image of plastic surgery as a readily available and personally empowering means to resolve body image issues, on the presumption that any body can become a "better" body. The ideology underlying the…

  16. A Multifrequency Notch Filter for Millimeter Wave Plasma Diagnostics based on Photonic Bandgaps in Corrugated Circular Waveguides

    NASA Astrophysics Data System (ADS)

    Wagner, D.; Bongers, W.; Kasparek, W.; Leuterer, F.; Monaco, F.; Münich, M.; Schütz, H.; Stober, J.; Thumm, M.; Brand, H. v. d.

    2015-03-01

    Sensitive millimeter wave diagnostics need often to be protected against unwanted radiation like, for example, stray radiation from high power Electron Cyclotron Heating applied in nuclear fusion plasmas. A notch filter based on a waveguide Bragg reflector (photonic band-gap) may provide several stop bands of defined width within up to two standard waveguide frequency bands. A Bragg reflector that reflects an incident fundamental TE11 into a TM1n mode close to cutoff is combined with two waveguide tapers to fundamental waveguide diameter. Here the fundamental TE11 mode is the only propagating mode at both ends of the reflector. The incident TE11 mode couples through the taper and is converted to the high order TM1n mode by the Bragg structure at the specific Bragg resonances. The TM1n mode is trapped in the oversized waveguide section by the tapers. Once reflected at the input taper it will be converted back into the TE11 mode which then can pass through the taper. Therefore at higher order Bragg resonances, the filter acts as a reflector for the incoming TE11 mode. Outside of the Bragg resonances the TE11 mode can propagate through the oversized waveguide structure with only very small Ohmic attenuation compared to propagating in a fundamental waveguide. Coupling to other modes is negligible in the non-resonant case due to the small corrugation amplitude (typically 0.05·λ0, where λ0 is the free space wavelength). A Bragg reflector for 105 and 140 GHz was optimized by mode matching (scattering matrix) simulations and manufactured by SWISSto12 SA, where the required mechanical accuracy of ± 5 μm could be achieved by stacking stainless steel rings, manufactured by micro-machining, in a high precision guiding pipe. The two smooth-wall tapers were fabricated by electroforming. Several measurements were performed using vector network analyzers from Agilent (E8362B), ABmm (MVNA 8-350) and Rohde&Schwarz (ZVA24) together with frequency multipliers. The stop bands

  17. SUSTAINABLE PLASTICS: DESIGNING AND DEMONSTRATING RENEWABLE, BIODEGRADABLE PRODUCTS MADE OF SOY PROTEIN-BASED PLASTICS

    EPA Science Inventory

    We have found that soy protein plastics have flow properties that are comparable to fossil fuel-based plastics. Soy plastics are processed at much lower temperatures, however, yielding energy savings over synthetic plastics during processing. These comparable flow properties m...

  18. The steady-state tangential contact problem for a falling drop type of contact area on corrugated rail by simplified theory of rolling contact

    NASA Astrophysics Data System (ADS)

    Piotrowski, Jerzy

    1991-10-01

    Investigation of contact mechanical nonlinearities of a mathematical model of corrugation revealed that the typical shape of contact patch resembles a falling drop of water. A contact patch of that shape was approximated with a figure composed of two parts of ellipses with different eccentricities. The contact pressure distribution was assumed as a smoothing ensemble of two paraboloidal distributions. The description of a general case of double half elliptical contact area was given but a special case of double half elliptical contact is more interesting as it possesses some Hertzian properties. It was shown how three geometrical parameters of double half elliptical contact can be chosen when actual, non-Hertzian contact is known. A linear theory was written which indicates that the lateral vibrations of the rail may be excited only due to shape variation on corrugation even if any other cause for these vibrations does not exist. For nonlinear theory a computer program, based on FASTSIM algorithm by Kalker, was written. The aim is to calculate the creep forces and frictional power density distribution over the contact area. Also, a graphic program visualizing the solution was written. Numerical results are not provided; unattended and unsolved problems relevant for this type of contact are listed.

  19. The role of surface corrugation and tip oscillation in single-molecule manipulation with a non-contact atomic force microscope

    PubMed Central

    Fournier, Norman; Tautz, F Stefan; Temirov, Ruslan

    2014-01-01

    Summary Scanning probe microscopy (SPM) plays an important role in the investigation of molecular adsorption. The possibility to probe the molecule–surface interaction while tuning its strength through SPM tip-induced single-molecule manipulation has particularly promising potential to yield new insights. We recently reported experiments, in which 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) molecules were lifted with a qPlus-sensor and analyzed these experiments by using force-field simulations. Irrespective of the good agreement between the experiment and those simulations, systematic inconsistencies remained that we attribute to effects omitted from the initial model. Here we develop a more realistic simulation of single-molecule manipulation by non-contact AFM that includes the atomic surface corrugation, the tip elasticity, and the tip oscillation amplitude. In short, we simulate a full tip oscillation cycle at each step of the manipulation process and calculate the frequency shift by solving the equation of motion of the tip. The new model correctly reproduces previously unexplained key features of the experiment, and facilitates a better understanding of the mechanics of single-molecular junctions. Our simulations reveal that the surface corrugation adds a positive frequency shift to the measurement that generates an apparent repulsive force. Furthermore, we demonstrate that the scatter observed in the experimental data points is related to the sliding of the molecule across the surface. PMID:24605287

  20. The role of surface corrugation and tip oscillation in single-molecule manipulation with a non-contact atomic force microscope.

    PubMed

    Wagner, Christian; Fournier, Norman; Tautz, F Stefan; Temirov, Ruslan

    2014-01-01

    Scanning probe microscopy (SPM) plays an important role in the investigation of molecular adsorption. The possibility to probe the molecule-surface interaction while tuning its strength through SPM tip-induced single-molecule manipulation has particularly promising potential to yield new insights. We recently reported experiments, in which 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) molecules were lifted with a qPlus-sensor and analyzed these experiments by using force-field simulations. Irrespective of the good agreement between the experiment and those simulations, systematic inconsistencies remained that we attribute to effects omitted from the initial model. Here we develop a more realistic simulation of single-molecule manipulation by non-contact AFM that includes the atomic surface corrugation, the tip elasticity, and the tip oscillation amplitude. In short, we simulate a full tip oscillation cycle at each step of the manipulation process and calculate the frequency shift by solving the equation of motion of the tip. The new model correctly reproduces previously unexplained key features of the experiment, and facilitates a better understanding of the mechanics of single-molecular junctions. Our simulations reveal that the surface corrugation adds a positive frequency shift to the measurement that generates an apparent repulsive force. Furthermore, we demonstrate that the scatter observed in the experimental data points is related to the sliding of the molecule across the surface. PMID:24605287

  1. Experimental study of ethylene glycol-based Al2O3 nanofluid turbulent heat transfer enhancement in the corrugated tube with twisted tapes

    NASA Astrophysics Data System (ADS)

    Mohammadiun, Hamid; Mohammadiun, Mohammad; Hazbehian, Mohammad; Maddah, Heydar

    2016-01-01

    In this study, fluid flow of the Al2O3/ethylene glycol (EG) nanofluid in a corrugated tube fitted with twisted tapes were experimentally studied under turbulent flow conditions. The experiments with different twists ratio and different nanofluid concentration were performed under similar operation condition. The investigated ranges are (1) three different Al2O3 concentrations: 0.5, 1 and 1.5 % by volume (2) three different twist ratios of twisted tape: y/w = 2, 3.6 and 5 and (3) Reynolds number from 6000 to 30,000. Regarding the experimental data, utilization of twists together with nanofluids tends to increase heat transfer and friction factor as compared with the base fluid. In addition, heat transfer performances were weakened by using for high nanoparticle concentration. The thermal performances of the heat exchanger with nanofluid and twisted tapes were evaluated for the assessment of overall improvement in thermal behavior. Over the range studied, the maximum thermal performance factor 4.2 is found with the use of Al2O3/EG nanofluid at concentration of 0.5 % by volume in corrugated tube together with twisted tape at twist ratio of 2.

  2. Plastic Creep and Brittle-Ductile Transition in Hydrated Rocks of the Plate Interface

    NASA Astrophysics Data System (ADS)

    Reynard, B.

    2014-12-01

    Geophysical observations suggest that the formation of hydrous phyllosilicate-bearing rocks such as serpentinites favor aseismic slip on the plate interface. I review our current understanding of deformation of serpentines and similar phyllosilicates in the first 100 km of subduction and discuss some pending questions on measurements and modeling of the behavior and properties of the complex serpentinite rocks. Experimental studies suggest that serpentines have low enough mechanical strength to act as a "stabilizer" of stable creep, but the actual strength of serpentinites will depend on the exact nature of the crystallographic structure and fabric of the stable serpentine variety. Low-temperature, flat-layered lizardite has strong anisotropy in strength. Lizardite-serpentinite strength will depend crystal-preferred orientation (CPO), with isotropic texture having high strength (>300 MPa) and foliated serpentinites having small strength (<100 MPa), independent of temperature, pressure, and strain rate. Thus, the transition between brittle and plastic (or stable creep) behavior may result from progressive deformation. High-temperature serpentine antigorite has a complex corrugated-layered structure, and complex deformation modes were evidenced from experimental studies. Mechanical strength shows a strong stress dependence, suggesting dislocation-creep, and low temperature dependence, suggesting plastic behavior. Extrapolation of experimental results to natural strain rates suggests that antigorite-serpentinites have low strength (<100 MPa or lower), and will favor stable-creep. However, the extrapolation relies on mechanical flow laws that may not apply to serpentine. Electron microscopy observations reveals dislocation-like deformation mechanisms that are not sufficient to explain global deformation of antigorite aggregates, and that are likely accompanied by dissolution-precipitation at low natural strain-rates. Establishing reliable flow laws relevant to the

  3. Polishing compound for plastic surfaces

    DOEpatents

    Stowell, M.S.

    1991-01-01

    This invention is comprised of a polishing compound for plastic materials. The compound includes approximately by approximately by weight 25 to 80 parts at least one petroleum distillate lubricant, 1 to 12 parts mineral spirits, 50 to 155 parts abrasive paste, and 15 to 60 parts water. Preferably, the compound includes approximately 37 to 42 parts at least one petroleum distillate lubricant, up to 8 parts mineral spirits, 95 to 110 parts abrasive paste, and 50 to 55 parts water. The proportions of the ingredients are varied in accordance with the particular application. The compound is used on PLEXIGLAS{trademark}, LEXAN{trademark}, LUCITE{trademark}, polyvinyl chloride (PVC), and similar plastic materials whenever a smooth, clear polished surface is desired.

  4. Transformation plasticity in ductile solids

    SciTech Connect

    Olson, G.B.

    1993-02-01

    Research has addressed the role of martensitic transformation plasticity in the enhancement of toughness in high-strength austenitic steels, and the enhancement of formability in multiphase low-alloy sheet steels. In the austenitic steels, optimal processing conditions have been established to achieve a significant increase in strength level, in order to investigate the interaction of strain-induced transformation with the microvoid nucleation and shear localization mechanisms operating at ultrahigh strength levels. The stress-state dependence of transformation and fracture mechanisms has been investigated in model alloys, comparing behavior in uniaxial tension and blunt-notch tension specimens. A numerical constitutive model for transformation plasticity has been reformulated to allow a more thorough analysis of transformation/fracture interactions. Processing of a new low alloy steel composition has been optimized to stabilize retained austenite by isothermal bainitic transformation after intercritical annealing. Preliminary results show a good correlation of uniform ductility with the austenite amount and stability.

  5. Public health impact of plastics: An overview

    PubMed Central

    Rustagi, Neeti; Pradhan, S. K.; Singh, Ritesh

    2011-01-01

    Plastic, one of the most preferred materials in today's industrial world is posing serious threat to environment and consumer's health in many direct and indirect ways. Exposure to harmful chemicals during manufacturing, leaching in the stored food items while using plastic packages or chewing of plastic teethers and toys by children are linked with severe adverse health outcomes such as cancers, birth defects, impaired immunity, endocrine disruption, developmental and reproductive effects etc. Promotion of plastics substitutes and safe disposal of plastic waste requires urgent and definitive action to take care of this potential health hazard in future. PMID:22412286

  6. Process for remediation of plastic waste

    SciTech Connect

    Pol, Vilas G.; Thiyagarajan, Pappannan

    2012-04-10

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  7. Process for remediation of plastic waste

    DOEpatents

    Pol, Vilas G; Thiyagarajan, Pappannan

    2013-11-12

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of about 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically carbon nanotubes having a partially filled core (encapsulated) adjacent to one end of the nanotube. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  8. Homegrown lubricants and plastics. [Brassica

    SciTech Connect

    Senft, D.

    1988-10-01

    A small bushy lesquerella plant of the mustard family growing wild in Arizona, New Mexico, Oklahoma and Texas produces seeds that may be used to make lubricants, plastics, protective coatings, surfactants, and pharmaceuticals. The plant thrives on poor soils that receive as little as 10 inches of rain a year. Studies to date indicate that target yields can be reached with a reasonable breeding effort coupled with agronomic research.

  9. Anxiety disorders in plastic surgery.

    PubMed

    Rankin, M; Borah, G L

    1997-08-01

    Surgery is a stressful event, with the potential for profound disturbance to the patient's psychological and physiologic homeostasis. Cosmetic surgery is a particularly intense psychological experience because, in addition to the usual concerns about surgical side effects, cosmetic patients bring their hopes and expectations for improved self-image, putting them at risk for the added anxiety of disappointment. High levels of anxiety coupled with the perception of vulnerability or threat to self can cause significant psychological reactions complicating care for the plastic surgical patient. This paper outlines the diagnostic features of the common types of anxiety disorders seen in plastic surgical patients, and it offers treatment strategies for the practitioner, delineating when referral to a mental health expert is advised. Specific clinical case studies of panic attack, posttraumatic stress disorder, and acute stress disorder are presented to illustrate the variety of abnormal anxiety responses that may be encountered in the perioperative setting. Interventions for the anxious patient are part science and part art. Careful questioning and psychosocial assessment can identify those patients who are at greater risk for psychological problems after surgery. However, some patients may mask or keep secret their concerns, which can be manifested with resulting anger and hostility. Plastic surgeons must use appropriate indicators of psychological anxiety and measure a specific patient's reactions to surgery to make the diagnosis of abnormal anxiety. Close follow-up by the plastic surgical team is an essential part of the anxiety disorder patient's psychological treatment, but it is imperative that these problematic patients be referred promptly to a qualified mental health professional to limit their adverse experience and promote their well-being. Patients who are less anxious during the perioperative period report less emotional distress and fewer defensive

  10. Anaesthetic complications in plastic surgery

    PubMed Central

    Nath, Soumya Sankar; Roy, Debashis; Ansari, Farrukh; Pawar, Sundeep T.

    2013-01-01

    Anaesthesia related complications in plastic surgeries are fortunately rare, but potentially catastrophic. Maintaining patient safety in the operating room is a major concern of anaesthesiologists, surgeons, hospitals and surgical facilities. Circumventing preventable complications is essential and pressure to avoid these complications in cosmetic surgery is increasing. Key aspects of patient safety in the operating room are outlined, including patient positioning, airway management and issues related to some specific conditions, essential for minimizing post-operative morbidity. Risks associated with extremes of age in the plastic surgery population, may be minimised by a better understanding of the physiologic changes as well as the pre-operative and post-operative considerations in caring for this special group of patients. An understanding of the anaesthesiologist's concerns during paediatric plastic surgical procedures can facilitate the coordination of efforts between the multiple services involved in the care of these children. Finally, the reader will have a better understanding of the perioperative care of unique populations including the morbidly obese and the elderly. Attention to detail in these aspects of patient safety can help avoid unnecessary complication and significantly improve the patients’ experience and surgical outcome. PMID:24501480

  11. Anaesthetic complications in plastic surgery.

    PubMed

    Nath, Soumya Sankar; Roy, Debashis; Ansari, Farrukh; Pawar, Sundeep T

    2013-05-01

    Anaesthesia related complications in plastic surgeries are fortunately rare, but potentially catastrophic. Maintaining patient safety in the operating room is a major concern of anaesthesiologists, surgeons, hospitals and surgical facilities. Circumventing preventable complications is essential and pressure to avoid these complications in cosmetic surgery is increasing. Key aspects of patient safety in the operating room are outlined, including patient positioning, airway management and issues related to some specific conditions, essential for minimizing post-operative morbidity. Risks associated with extremes of age in the plastic surgery population, may be minimised by a better understanding of the physiologic changes as well as the pre-operative and post-operative considerations in caring for this special group of patients. An understanding of the anaesthesiologist's concerns during paediatric plastic surgical procedures can facilitate the coordination of efforts between the multiple services involved in the care of these children. Finally, the reader will have a better understanding of the perioperative care of unique populations including the morbidly obese and the elderly. Attention to detail in these aspects of patient safety can help avoid unnecessary complication and significantly improve the patients' experience and surgical outcome. PMID:24501480

  12. Particulate contamination in plastic ampoules.

    PubMed

    Oppenheim, R C; Gillies, I R

    1986-05-01

    Plastic ampoules of Water for Injections, JP, and Injection Sodium Chloride, JP, were investigated to determine their particle load. Four batches were studied. The ampoules were twist-opened as they would be in the clinical setting and the total particle load, both inherent and that created in opening, was determined by reading the contents with a HIAC 420 particle counter with a CMB 60 sensor. The total particle content was found to be minimal, easily complying with world L.V.P. standards and the S.V.P. standard of the USP XXI. The number of particles found in these opened plastic ampoules was significantly lower than that found in clinically snap-opened glass ampoules and also slightly lower than that found in laboratory heat-opened glass ampoules. Whilst the plastic ampoule has a restricted application because it is not suitable for all drugs, it is concluded that when they are used as the immediate container for Water for Injections and Injection Sodium Chloride they are highly effective in reducing the particulate contamination generated in opening. PMID:2872309

  13. The Future of Plastic Surgery: Surgeon's Perspective.

    PubMed

    Ozturk, Sinan; Karagoz, Huseyin; Zor, Fatih

    2015-11-01

    Since the days of Sushruta, innovation has shaped the history of plastic surgery. Plastic surgeons have always been known as innovators or close followers of innovations. With this descriptive international survey study, the authors aimed to evaluate the future of plastic surgeons by analyzing how plastic surgery and plastic surgeons will be affected by new trends in medicine. Aesthetic surgery is the main subclass of plastic surgery thought to be the one that will change the most in the future. Stem cell therapy is considered by plastic surgeons to be the most likely "game changer." Along with changes in surgery, plastic surgeons also expect changes in plastic surgery education. The most approved assumption for the future of plastic surgery is, "The number of cosmetic nonsurgical procedures will increase in the future." If surgeons want to have better outcomes in their practice, they must at least be open minded for innovations if they do not become innovators themselves. Besides the individual effort of each surgeon, international and local plastic surgery associations should develop new strategies to adopt these innovations in surgical practice and education. PMID:26594981

  14. Singing Corrugated Pipes.

    ERIC Educational Resources Information Center

    Cadwell, Louis H.

    1994-01-01

    This article describes different techniques used to measure air flow velocity. The two methods used were Crawford's Wastebasket and a video camera. The results were analyzed and compared to the air flow velocity predicted by Bernoulli's principle. (ZWH)

  15. Plastic ingestion by Procellariiformes in Southern Brazil.

    PubMed

    Colabuono, Fernanda I; Barquete, Viviane; Domingues, Beatriz S; Montone, Rosalinda C

    2009-01-01

    The Procellariiformes are the birds most affected by plastic pollution. Plastic fragments and pellets were the most frequent items found in the digestive tract of eight species of Procellariiformes incidentally caught by longline fisheries as well as beached birds in Southern Brazil. Plastic objects were found in 62% of the petrels and 12% of the albatrosses. The Great shearwater, Manx shearwater, Cory's shearwater and Antarctic fulmar were found to have greater quantities and frequencies of occurrence of plastic. There was no significant difference in the number of plastics between the birds from longline fisheries and beached birds. No correlation was found between the number of prey and number of plastics in the digestive tract of the birds analyzed, but this does not discard the hypothesis that, in some cases, the presence of plastic in the digestive tract has a negative effect on the feeding efficiency of these birds. PMID:18840384

  16. Regulatory mechanisms link phenotypic plasticity to evolvability.

    PubMed

    van Gestel, Jordi; Weissing, Franz J

    2016-01-01

    Organisms have a remarkable capacity to respond to environmental change. They can either respond directly, by means of phenotypic plasticity, or they can slowly adapt through evolution. Yet, how phenotypic plasticity links to evolutionary adaptability is largely unknown. Current studies of plasticity tend to adopt a phenomenological reaction norm (RN) approach, which neglects the mechanisms underlying plasticity. Focusing on a concrete question - the optimal timing of bacterial sporulation - we here also consider a mechanistic approach, the evolution of a gene regulatory network (GRN) underlying plasticity. Using individual-based simulations, we compare the RN and GRN approach and find a number of striking differences. Most importantly, the GRN model results in a much higher diversity of responsive strategies than the RN model. We show that each of the evolved strategies is pre-adapted to a unique set of unseen environmental conditions. The regulatory mechanisms that control plasticity therefore critically link phenotypic plasticity to the adaptive potential of biological populations. PMID:27087393

  17. Applications and societal benefits of plastics.

    PubMed

    Andrady, Anthony L; Neal, Mike A

    2009-07-27

    This article explains the history, from 1600 BC to 2008, of materials that are today termed 'plastics'. It includes production volumes and current consumption patterns of five main commodity plastics: polypropylene, polyethylene, polyvinyl chloride, polystyrene and polyethylene terephthalate. The use of additives to modify the properties of these plastics and any associated safety, in use, issues for the resulting polymeric materials are described. A comparison is made with the thermal and barrier properties of other materials to demonstrate the versatility of plastics. Societal benefits for health, safety, energy saving and material conservation are described, and the particular advantages of plastics in society are outlined. Concerns relating to littering and trends in recycling of plastics are also described. Finally, we give predictions for some of the potential applications of plastic over the next 20 years. PMID:19528050

  18. Recycling of plastic waste: Presence of phthalates in plastics from households and industry.

    PubMed

    Pivnenko, K; Eriksen, M K; Martín-Fernández, J A; Eriksson, E; Astrup, T F

    2016-08-01

    Plastics recycling has the potential to substitute virgin plastics partially as a source of raw materials in plastic product manufacturing. Plastic as a material may contain a variety of chemicals, some potentially hazardous. Phthalates, for instance, are a group of chemicals produced in large volumes and are commonly used as plasticisers in plastics manufacturing. Potential impacts on human health require restricted use in selected applications and a need for the closer monitoring of potential sources of human exposure. Although the presence of phthalates in a variety of plastics has been recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP had the highest frequency of detection in the samples analysed, with 360μg/g, 460μg/g and 2700μg/g as the maximum measured concentrations, respectively. Among other, statistical analysis of the analytical results suggested that phthalates were potentially added in the later stages of plastic product manufacturing (labelling, gluing, etc.) and were not removed following recycling of household waste plastics. Furthermore, DEHP was identified as a potential indicator for phthalate contamination of plastics. Close monitoring of plastics intended for phthalates-sensitive applications is recommended if recycled plastics are to be used as raw material in production. PMID:27211312

  19. Leadership in plastic surgery today.

    PubMed

    Prado, Arturo; Parada, Francisco

    2010-10-01

    This article was developed after the authors heard young plastic surgeons of their unit ask what attribute makes people want to follow a leader. What people most seek to find in a leader has been constant over time and shared in different countries, genders, and age groups. These qualities include honesty, a forward-looking perspective, inspiration, and competence (Kouzes and Posner, Clin Lab Manage Rev 8:340, 1994). However, the residents and fellows thought differently and told the authors how "they" wanted to be seen when they became leaders. They wanted to viewed as shifting engines pulling forward teams of plastic surgery as hard as possible, leaving space for followers to develop and grow. They also wanted to be seen as having impeccable behavior related to the assumption of obligations, and finally as having the "most" informal authority possible, an authority that is not negotiable because it is given by peers to the leader due to personal qualities and actions. Obtaining formal authority at a very young age is fine, but if a surgeon's associates have not given him or her informal authority, the surgeon is only the "boss" and not the leader of the group. Informal authority is constructed over a time line and given by others to the leader because of what he or she has in values and personal attitudes and because of what the leader has done and can go on doing with sustained credibility and competency. Therefore, it is the authors' opinion that the exercise of leadership in plastic surgery is supported by informal authority and that the leader of leaders will be the one who has the most of this attribute that never is given formally. PMID:20376661

  20. Glassy features of crystal plasticity

    NASA Astrophysics Data System (ADS)

    Lehtinen, Arttu; Costantini, Giulio; Alava, Mikko J.; Zapperi, Stefano; Laurson, Lasse

    2016-08-01

    Crystal plasticity occurs by deformation bursts due to the avalanchelike motion of dislocations. Here we perform extensive numerical simulations of a three-dimensional dislocation dynamics model under quasistatic stress-controlled loading. Our results show that avalanches are power-law distributed and display peculiar stress and sample size dependence: The average avalanche size grows exponentially with the applied stress, and the amount of slip increases with the system size. These results suggest that intermittent deformation processes in crystalline materials exhibit an extended critical-like phase in analogy to glassy systems instead of originating from a nonequilibrium phase transition critical point.

  1. Plasticity of hematopoietic stem cells.

    PubMed

    Ogawa, Makio; LaRue, Amanda C; Mehrotra, Meenal

    2015-01-01

    Almost two decades ago, a number of cell culture and preclinical transplantation studies suggested the striking concept of the tissue-reconstituting ability of hematopoietic stem cells (HSCs). While this heralded an exciting time of radically new therapies for disorders of many organs and tissues, the concept was soon mired by controversy and remained dormant. This chapter provides a brief review of evidence for HSC plasticity including our findings based on single HSC transplantation in mouse. These studies strongly support the concept that HSCs are pluripotent and may be the source for the majority, if not all, of the cell types in our body. PMID:26590762

  2. Phantom limbs and neural plasticity.

    PubMed

    Ramachandran, V S; Rogers-Ramachandran, D

    2000-03-01

    The study of phantom limbs has received tremendous impetus from recent studies linking changes in cortical topography with perceptual experience. Systematic psychophysical testing and functional imaging studies on patients with phantom limbs provide 2 unique opportunities. First, they allow us to demonstrate neural plasticity in the adult human brain. Second, by tracking perceptual changes (such as referred sensations) and changes in cortical topography in individual patients, we can begin to explore how the activity of sensory maps gives rise to conscious experience. Finally, phantom limbs also allow us to explore intersensory effects and the manner in which the brain constructs and updates a "body image" throughout life. PMID:10714655

  3. Evolution of environmental cues for phenotypic plasticity.

    PubMed

    Chevin, Luis-Miguel; Lande, Russell

    2015-10-01

    Phenotypically plastic characters may respond to multiple variables in their environment, but the evolutionary consequences of this phenomenon have rarely been addressed theoretically. We model the evolution of linear reaction norms in response to several correlated environmental variables, in a population undergoing stationary environmental fluctuations. At evolutionary equilibrium, the linear combination of environmental variables that acts as a developmental cue for the plastic trait is the multivariate best linear predictor of changes in the optimum. However, the reaction norm with respect to any single environmental variable may exhibit nonintuitive patterns. Apparently maladaptive, or hyperadaptive plasticity can evolve with respect to single environmental variables, and costs of plasticity may increase, rather than reduce, plasticity in response to some variables. We also find conditions for the evolution of an indirect environmental indicator that affects expression of a plastic phenotype, despite not influencing natural selection on it. PMID:26292649

  4. Tunable plasticity in amorphous silicon carbide films.

    PubMed

    Matsuda, Yusuke; Kim, Namjun; King, Sean W; Bielefeld, Jeff; Stebbins, Jonathan F; Dauskardt, Reinhold H

    2013-08-28

    Plasticity plays a crucial role in the mechanical behavior of engineering materials. For instance, energy dissipation during plastic deformation is vital to the sufficient fracture resistance of engineering materials. Thus, the lack of plasticity in brittle hybrid organic-inorganic glasses (hybrid glasses) often results in a low fracture resistance and has been a significant challenge for their integration and applications. Here, we demonstrate that hydrogenated amorphous silicon carbide films, a class of hybrid glasses, can exhibit a plasticity that is even tunable by controlling their molecular structure and thereby leads to an increased and adjustable fracture resistance in the films. We decouple the plasticity contribution from the fracture resistance of the films by estimating the "work-of-fracture" using a mean-field approach, which provides some insight into a potential connection between the onset of plasticity in the films and the well-known rigidity percolation threshold. PMID:23876200

  5. Applications and societal benefits of plastics

    PubMed Central

    Andrady, Anthony L.; Neal, Mike A.

    2009-01-01

    This article explains the history, from 1600 BC to 2008, of materials that are today termed ‘plastics’. It includes production volumes and current consumption patterns of five main commodity plastics: polypropylene, polyethylene, polyvinyl chloride, polystyrene and polyethylene terephthalate. The use of additives to modify the properties of these plastics and any associated safety, in use, issues for the resulting polymeric materials are described. A comparison is made with the thermal and barrier properties of other materials to demonstrate the versatility of plastics. Societal benefits for health, safety, energy saving and material conservation are described, and the particular advantages of plastics in society are outlined. Concerns relating to littering and trends in recycling of plastics are also described. Finally, we give predictions for some of the potential applications of plastic over the next 20 years. PMID:19528050

  6. Antibiotic Use in Facial Plastic Surgery.

    PubMed

    González-Castro, Javier; Lighthall, Jessyka G

    2016-08-01

    Prophylactic antibiotic use in facial plastic surgery is a highly controversial topic primarily due to the lack of evidence in support of or against antibiotic use. In this section the authors present the available literature on the most commonly performed procedures within facial plastic surgery in an attempt to see if the data support or contradict the need for antibiotic prophylaxis in facial plastic surgery. PMID:27400848

  7. Plastic Recycling Experiments in Materials Education

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, Tommy L.

    1996-01-01

    The objective of this project was to introduce a series of plastic recycling experiments to students in materials-related courses such as materials science, material technology and materials testing. With the plastic recycling experiments, students not only can learn the fundamentals of plastic processing and properties as in conventional materials courses, but also can be exposed to the issue of materials life cycle and the impact on society and environment.

  8. Development of a Propagating Millimeter-Wave Beam Position and Profile Monitor in the Oversize Corrugated Waveguide Used in an ECRH System

    NASA Astrophysics Data System (ADS)

    Shimozuma, Takashi; Kobayashi, Sakuji; Ito, Satoshi; Ito, Yasuhiko; Kubo, Shin; Yoshimura, Yasuo; Nishiura, Masaki; Igami, Hiroe; Takahashi, Hiromi; Mizuno, Yoshinori; Okada, Kohta; Mutoh, Takashi

    2016-01-01

    In a high-power electron cyclotron resonance heating (ECRH) system for plasma heating, a long-distance and low-loss transmission system of the millimeter wave is required. A real-time monitor of the millimeter-wave beam position and its intensity profile, which can be used in a high-power, evacuated, and cooled transmission line, is proposed, designed, manufactured, and tested. The beam-position and profile monitor (BPM) consists of a reflector, Peltier-device array, and a heat-sink, which is installed in the reflector-plate of a miterbend. The BPM was tested using both simulated electric heater power and high-power gyrotron output power. The profile obtained from the monitor using the gyrotron output was well agreed with the burn patter on a thermal sensitive paper. Methods of data analysis and mode-content analysis of a propagating millimeter-wave in the corrugated waveguide are proposed.

  9. Finite-difference time-domain analysis of electromagnetic wave propagation in corrugated waveguide: Effect of miter bend/polarizer miter bend

    NASA Astrophysics Data System (ADS)

    Fujita, Yoshihisa; Ikuno, Soichiro; Kubo, Shin; Nakamura, Hiroaki

    2016-01-01

    The effect of the polarizer miter bend (PMB) reflector on polarization is numerically investigated by using the finite-difference time-domain (FDTD) method. The Drude model is implemented to take into account the fact that the waveguide wall is prepared from a dispersive medium. In electron cyclotron resonance heating (ECRH), the corrugated waveguide and miter bend are adopted for transmitting millimeter electromagnetic waves. In addition, PMB is employed to improve the plasma heating efficiency. The results of computations show that modes other than the input mode are also generated owing to the reflection at the miter bend mirror/PMB reflector. Moreover, it is found that elliptical polarization is observed after the linear polarization passes through PMB.

  10. The plasticity of social emotions.

    PubMed

    Klimecki, Olga M

    2015-01-01

    Social emotions such as empathy or compassion greatly facilitate our interactions with others. Despite the importance of social emotions, scientific studies have only recently revealed functional neural plasticity associated with the training of such emotions. Using the framework of two antagonistic neural systems, the threat and social disconnection system on the one hand, and the reward and social connection system on the other, this article describes how training compassion and empathy can change the functioning of these systems in a targeted manner. Whereas excessive empathic sharing of suffering can increase negative feelings and activations in the insula and anterior cingulate cortex (corresponding to the threat and social disconnection system), compassion training can strengthen positive affect and neural activations in the medial orbitofrontal cortex and striatum (corresponding to the reward and social connection system). These neuroimaging findings are complemented by results from behavioral studies showing that compassion is linked to helping and forgiveness behavior, whereas empathic distress not only decreases helping behavior, but is even associated with increased aggressive behavior. Taken together, these data provide encouraging evidence for the plasticity of adaptive social emotions with wide-ranging implications for basic science and applied settings. PMID:26369728

  11. Network-timing-dependent plasticity.

    PubMed

    Delattre, Vincent; Keller, Daniel; Perich, Matthew; Markram, Henry; Muller, Eilif B

    2015-01-01

    Bursts of activity in networks of neurons are thought to convey salient information and drive synaptic plasticity. Here we report that network bursts also exert a profound effect on Spike-Timing-Dependent Plasticity (STDP). In acute slices of juvenile rat somatosensory cortex we paired a network burst, which alone induced long-term depression (LTD), with STDP-induced long-term potentiation (LTP) and LTD. We observed that STDP-induced LTP was either unaffected, blocked or flipped into LTD by the network burst, and that STDP-induced LTD was either saturated or flipped into LTP, depending on the relative timing of the network burst with respect to spike coincidences of the STDP event. We hypothesized that network bursts flip STDP-induced LTP to LTD by depleting resources needed for LTP and therefore developed a resource-dependent STDP learning rule. In a model neural network under the influence of the proposed resource-dependent STDP rule, we found that excitatory synaptic coupling was homeostatically regulated to produce power law distributed burst amplitudes reflecting self-organized criticality, a state that ensures optimal information coding. PMID:26106298

  12. Phenotypic plasticity in bacterial plasmids.

    PubMed Central

    Turner, Paul E

    2004-01-01

    Plasmid pB15 was previously shown to evolve increased horizontal (infectious) transfer at the expense of reduced vertical (intergenerational) transfer and vice versa, a key trade-off assumed in theories of parasite virulence. Whereas the models predict that susceptible host abundance should determine which mode of transfer is selectively favored, host density failed to mediate the trade-off in pB15. One possibility is that the plasmid's transfer deviates from the assumption that horizontal spread (conjugation) occurs in direct proportion to cell density. I tested this hypothesis using Escherichia coli/pB15 associations in laboratory serial culture. Contrary to most models of plasmid transfer kinetics, my data show that pB15 invades static (nonshaking) bacterial cultures only at intermediate densities. The results can be explained by phenotypic plasticity in traits governing plasmid transfer. As cells become more numerous, the plasmid's conjugative transfer unexpectedly declines, while the trade-off between transmission routes causes vertical transfer to increase. Thus, at intermediate densities the plasmid's horizontal transfer can offset selection against plasmid-bearing cells, but at high densities pB15 conjugates so poorly that it cannot invade. I discuss adaptive vs. nonadaptive causes for the phenotypic plasticity, as well as potential mechanisms that may lead to complex transfer dynamics of plasmids in liquid environments. PMID:15166133

  13. Network-timing-dependent plasticity

    PubMed Central

    Delattre, Vincent; Keller, Daniel; Perich, Matthew; Markram, Henry; Muller, Eilif B.

    2015-01-01

    Bursts of activity in networks of neurons are thought to convey salient information and drive synaptic plasticity. Here we report that network bursts also exert a profound effect on Spike-Timing-Dependent Plasticity (STDP). In acute slices of juvenile rat somatosensory cortex we paired a network burst, which alone induced long-term depression (LTD), with STDP-induced long-term potentiation (LTP) and LTD. We observed that STDP-induced LTP was either unaffected, blocked or flipped into LTD by the network burst, and that STDP-induced LTD was either saturated or flipped into LTP, depending on the relative timing of the network burst with respect to spike coincidences of the STDP event. We hypothesized that network bursts flip STDP-induced LTP to LTD by depleting resources needed for LTP and therefore developed a resource-dependent STDP learning rule. In a model neural network under the influence of the proposed resource-dependent STDP rule, we found that excitatory synaptic coupling was homeostatically regulated to produce power law distributed burst amplitudes reflecting self-organized criticality, a state that ensures optimal information coding. PMID:26106298

  14. Neural prostheses and brain plasticity

    NASA Astrophysics Data System (ADS)

    Fallon, James B.; Irvine, Dexter R. F.; Shepherd, Robert K.

    2009-12-01

    The success of modern neural prostheses is dependent on a complex interplay between the devices' hardware and software and the dynamic environment in which the devices operate: the patient's body or 'wetware'. Over 120 000 severe/profoundly deaf individuals presently receive information enabling auditory awareness and speech perception from cochlear implants. The cochlear implant therefore provides a useful case study for a review of the complex interactions between hardware, software and wetware, and of the important role of the dynamic nature of wetware. In the case of neural prostheses, the most critical component of that wetware is the central nervous system. This paper will examine the evidence of changes in the central auditory system that contribute to changes in performance with a cochlear implant, and discuss how these changes relate to electrophysiological and functional imaging studies in humans. The relationship between the human data and evidence from animals of the remarkable capacity for plastic change of the central auditory system, even into adulthood, will then be examined. Finally, we will discuss the role of brain plasticity in neural prostheses in general.

  15. Fabrication of plastic microfluidic components

    NASA Astrophysics Data System (ADS)

    Martin, Peter M.; Matson, Dean W.; Bennett, Wendy D.; Hammerstrom, D. J.

    1998-09-01

    Plastic components have many advantages, including ease of fabrication, low cost, chemical inertness, lightweight, and disposability. We report on the fabrication of three plastics-based microfluidic components: a motherboard, a dialysis unit, and a metal sensor. Microchannels, headers, and interconnects were produced in thin sheets (>=50 microns) of polyimide, PMMA, polyethylene, and polycarbonate using a direct-write excimer laser micromachining system. Machined sheets were laminated by thermal and adhesive bonding to form leak-tight microfluidic components. The microfluidic motherboard borrowed the `functionality on a chip' concept from the electronics industry and was the heart of a complex microfluidic analytical device. The motherboard platform was designed to be tightly integrated and self-contained (i.e., liquid flows are all confined within machined microchannels), reducing the need for tubing with fluid distribution and connectivity. This concept greatly facilitated system integration and miniaturization. As fabricated, the motherboard consisted of three fluid reservoirs connected to micropumps by microchannels. The fluids could either be pumped independently or mixed in microchannels prior to being directed to exterior analytical components via outlet ports. The microdialysis device was intended to separate electrolytic solutes from low volume samples prior to mass spectrometric analysis. The device consisted of a dialysis membrane laminated between opposed serpentine microchannels containing the sample fluid and a buffer solution. The laminated metal sensor consisted of fluid reservoirs, micro-flow channels, micropumps, mixing channels, reaction channels, and detector circuitry.

  16. Neuroimaging and plasticity in schizophrenia.

    PubMed

    Meyer-Lindenberg, Andreas; Tost, Heike

    2014-01-01

    Schizophrenia is a frequent and highly heritable brain disorder that typically manifests around or after puberty and has a fluctuating course. Multiple lines of evidence point to a neurodevelopmental origin of the illness and suggest that its (post) pubertal manifestation is related to genetic and environmental risk factors that interfere with the structural and functional reorganization of neural networks at this time. Longitudinal structural neuroimaging studies point to a progressive reduction in gray matter volume in many brain regions in schizophrenia. It has been proposed that these neuroimaging observations reflect an enduring disturbance of experience-dependent synaptic plasticity arising from developmental abnormalities in key neural circuits implicated in schizophrenia, including dorsolateral prefrontal cortex and hippocampal formation. Recent work has identified genetic variants linked to neural plasticity that are associated with changes in these circuits. Furthermore, non-invasive interventions such as transcranial magnetic stimulation have been shown to impact some of these systems-level intermediate phenotypes, suggesting a modifiability of these core pathophysiological processes of schizophrenia that may be exploited by therapy. PMID:23902983

  17. Abrasion-resistant coatings for plastic surfaces

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Hollahan, J. R.

    1976-01-01

    Optically clear composition of organosilicon compounds insulates plastic surfaces and protects them from abrasion. Plasma polymerization process produces superior uniformity and clarity than previous coating techniques.

  18. Are we eating plastic-ingesting fish?

    PubMed

    Miranda, Daniele de A; de Carvalho-Souza, Gustavo Freire

    2016-02-15

    Yes, we are eating plastic-ingesting fish. A baseline assessment of plastic pellet ingestion by two species of important edible fish caught along the eastern coast of Brazil is described. The rate of plastic ingestion by king mackerel (Scomberomorus cavalla) was quite high (62.5%), followed by the Brazilian sharpnose shark (Rhizoprionodon lalandii, 33%). From 2 to 6 plastic resin pellets were encountered in the stomachs of each fish, with sizes of from 1 to 5 mm, and with colors ranging from clear to white and yellowish. Ecological and health-related implications are discussed and the potential for transferring these materials through the food-chain are addressed PMID:26763323

  19. Imaging plasticity in cochlear implant patients.

    PubMed

    Giraud, A L; Truy, E; Frackowiak, R

    2001-01-01

    Auditory re-afferentation by cochlear implants (CI) offers a unique opportunity to study directly from within the auditory modality plastic changes taking place at organisational levels up to the supra- or polymodal level. These plastic changes resulting from deafness and chronic electrical stimulation can be studied using modern neuroimaging techniques. In this paper, we review the available techniques and the experimental approaches to human studies of plasticity, we discuss the different forms of plasticity that are associated with cochlear implantation and we point to the interest of imaging studies for providing a prognosis of functional outcome after implantation. PMID:11847465

  20. Extruded plastic scintillator for MINERvA

    SciTech Connect

    Pla-Dalmau, Anna; Bross, Alan D.; Rykalin, Victor V.; Wood, Brian M.; /NICADD, DeKalb

    2005-11-01

    An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. A new experiment at Fermilab is pursuing the use of extruded plastic scintillator. A new plastic scintillator strip is being tested and its properties characterized. The initial results are presented here.

  1. Heterosynaptic Plasticity: Multiple Mechanisms and Multiple Roles

    PubMed Central

    Chistiakova, Marina; Bannon, Nicholas M.; Bazhenov, Maxim; Volgushev, Maxim

    2016-01-01

    Plasticity is a universal property of synapses. It is expressed in a variety of forms mediated by a multitude of mechanisms. Here we consider two broad kinds of plasticity that differ in their requirement for presynaptic activity during the induction. Homosynaptic plasticity occurs at synapses that were active during the induction. It is also called input specific or associative, and it is governed by Hebbian-type learning rules. Heterosynaptic plasticity can be induced by episodes of strong postsynaptic activity also at synapses that were not active during the induction, thus making any synapse at a cell a target to heterosynaptic changes. Both forms can be induced by typical protocols used for plasticity induction and operate on the same time scales but have differential computational properties and play different roles in learning systems. Homosynaptic plasticity mediates associative modifications of synaptic weights. Heterosynaptic plasticity counteracts runaway dynamics introduced by Hebbian-type rules and balances synaptic changes. It provides learning systems with stability and enhances synaptic competition. We conclude that homosynaptic and heterosynaptic plasticity represent complementary properties of modifiable synapses, and both are necessary for normal operation of neural systems with plastic synapses. PMID:24727248

  2. For lighter cars, a heavier plastics diet

    SciTech Connect

    Not Available

    1980-09-17

    The competition between plastics and aluminum for use in automobile components will intensify after 1985, since up to that time the automobile industry will rely primarily on size reduction to reduce automobile weights. If 1985 automobiles are to achieve 50 mpg, the average weight will have to be cut from the current 2120 lb to 1300 lb, which will require the use of 1000 lb of lightweight material. The cost of plastics in the lightweight car would be less than the cost of aluminum, and the equipment for working plastics is cheaper than metalworking equipment. The equipment for working plastics operates more slowly , however, and plastics cannot withstand the 400/sup 0/F heat of paint ovens, or acquire as good a finish as aluminum. According to the Society of the Plastics Industry Inc., the 1979 uses of plastics in U.S. transportation equipment amounted to (in millions of lb): all thermosets, 569; polyesters, 362; urea and melamine, 24; phenolics, 171; polyurethane foam, 418; all thermoplastics, 1365; low-density polyethylene, 56; high-density polyethylene, 90; polypropylene, 260; ABS and SAN, 317; polystyrene, 23; nylon, 96; PVC, 270; all other thermoplastics, 187; and all plastics (excluding polyurethane foam), 1934. Uses of plastics in specific automobile models are discussed.

  3. Hydrogen bonding motifs, spectral characterization, theoretical computations and anticancer studies on chloride salt of 6-mercaptopurine: An assembly of corrugated lamina shows enhanced solubility

    NASA Astrophysics Data System (ADS)

    Suresh Kumar, S.; Athimoolam, S.; Sridhar, B.

    2015-10-01

    6-Mercaptopurine (an anti cancer drug), is coming under the class II Biopharmaceutics Classification System (BCS). In order to enhance the solubility with retained physiochemical/pharmaceutical properties, the present work was attempted with its salt form. The single crystals of 6-mercaptopurinium chloride (6MPCl) were successfully grown by slow evaporation technique under ambient temperature. The X-ray diffraction study shows that the crystal packing is dominated by N-H⋯Cl classical hydrogen bonds leading to corrugated laminar network. The hydrogen bonds present in the lamina can be dismantled as three chain C21(6), C21(7) and C21(8) motifs running along ab-diagonal of the unit cell. These primary chain motifs are interlinked to each other forming ring R63(21) motifs. These chain and ring motifs are aggregated like a dendrimer structure leading to the above said corrugated lamina. This low dimensional molecular architecture differs from the ladder like arrays in pure drug though it possess lattice water molecule in lieu of the chloride anion in the present compound. Geometrical optimizations of 6MPCl were done by Density Functional Theory (DFT) using B3LYP function with two different basis sets. The optimized molecular geometries and computed vibrational spectra are compared with their experimental counterparts. The Natural Bond Orbital (NBO) analysis was carried out to interpret hyperconjugative interaction and Intramolecular Charge Transfer (ICT). The chemical hardness, electronegativity, chemical potential and electrophilicity index of 6MPCl were found along with the HOMO-LUMO plot. The lower band gap value obtained from the Frontier Molecular Orbital (FMO) analysis reiterates the pharmaceutical activity of the compound. The anticancer studies show that 6MPCl retains its activity against human cervical cancer cell line (HeLa). Hence, this anticancer efficacy and improved solubility demands 6MPCl towards the further pharmaceutical applications.

  4. National Plastics Corporation: Energy Assessment Helps Automotive Plastic Parts Maker Save $34,000 Per Year

    SciTech Connect

    Not Available

    2005-09-01

    Industrial Technologies Program's BestPractices case study based on a comprehensive plant assessment conducted at National Plastics Corporation by ITP's Industrial Assessment Center in conjunction with The Society of the Plastics Industry, Inc.

  5. Melting the Plastic Ceiling: Overcoming Obstacles to Foster Leadership in Women Plastic Surgeons.

    PubMed

    Silva, Amanda K; Preminger, Aviva; Slezak, Sheri; Phillips, Linda G; Johnson, Debra J

    2016-09-01

    The underrepresentation of women leaders in plastic surgery echoes a phenomenon throughout society. The importance of female leadership is presented, and barriers to gender equality in plastic surgery, both intrinsic and extrinsic, are discussed. Strategies for fostering women in leadership on an individual level and for the specialty of plastic surgery are presented. PMID:27556609

  6. Method to separate and recover oil and plastic from plastic contaminated with oil

    DOEpatents

    Smith, H.M.; Bohnert, G.W.; Olson, R.B.; Hand, T.E.

    1998-01-27

    The present invention provides a method to separate and recover oils and recyclable plastic from plastic contaminated with oil. The invention utilizes the different solubility of oil in a liquid or supercritical fluid as compared to a gas to effect separation of the oil from the plastic. 3 figs.

  7. Method to separate and recover oil and plastic from plastic contaminated with oil

    DOEpatents

    Smith, Henry M.; Bohnert, George W.; Olson, Ronald B.; Hand, Thomas E.

    1998-01-27

    The present invention provides a method to separate and recover oils and recyclable plastic from plastic contaminated with oil. The invention utilizes the different solubility of oil in as liquid or supercritical fluid as compared to a gas to effect separation of the oil from the plastic.

  8. 75 FR 34170 - Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... Assistance on March 18, 2010, applicable to workers of Plastic Omnium Automotive Exteriors, LLC, Anderson, South Carolina. The notice was published in the Federal Register April 23, 2010 (75 FR 21356). The... Employment and Training Administration Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic...

  9. Molecular Signaling in Muscle Plasticity

    NASA Technical Reports Server (NTRS)

    Epstein, Henry F.

    1999-01-01

    Extended spaceflight under microgravity conditions leads to significant atrophy of weight-bearing muscles. Atrophy and hypertrophy are the extreme outcomes of the high degree of plasticity exhibited by skeletal muscle. Stimuli which control muscle plasticity include neuronal, hormonal, nutritional, and mechanical inputs. The mechanical stimulus for muscle is directly related to the work or exercise against a load performed. Little or no work is performed by weight-bearing muscles under microgravity conditions. A major hypothesis is that focal adhesion kinase (FAK) which is associated with integrin at the adherens junctions and costa meres of all skeletal muscles is an integral part of the major mechanism for molecular signaling upon mechanical stimulation in all muscle fibers. Additionally, we propose that myotonic protein kinase (DMPK) and dystrophin (DYSTR) also participate in distinct mechanically stimulated molecular signaling pathways that are most critical in type I and type II muscle fibers, respectively. To test these hypotheses, we will use the paradigms of hindlimb unloading and overloading in mice as models for microgravity conditions and a potential exercise countermeasure, respectively, in mice. We expect that FAK loss-of-function will impair hypertrophy and enhance atrophy in all skeletal muscle fibers whereas DYSTR and DMPK loss-of-function will have similar but more selective effects on Type IT and Type I fibers, respectively. Gene expression will be monitored by muscle-specific creatine kinase M promoter-reporter construct activity and specific MRNA and protein accumulation in the soleus (type I primarily) and plantaris (type 11 primarily) muscles. With these paradigms and assays, the following Specific Project Aims will be tested in genetically altered mice: 1) identify the roles of DYSTR and its pathway; 2) evaluate the roles of the DMPK and its pathway; 3) characterize the roles of FAK and its pathway and 4) genetically analyze the mechanisms

  10. Neuronal avalanches and brain plasticity

    NASA Astrophysics Data System (ADS)

    de Arcangelis, L.; Herrmann, H. J.; Perrone-Capano, C.

    2007-12-01

    Networks of living neurons exhibit an avalanche mode of activity, experimentally found in organotypic cultures. Moreover, experimental studies of morphology indicate that neurons develop a network of small-world-like connections, with the possibility of a very high connectivity degree. Here we discuss a recent model based on self-organized criticality, which consists of an electrical network with threshold firing and activity-dependent synapse strengths. The model is implemented on regular and small world lattices and on a scale-free network, the Apollonian network. The system exhibits an avalanche activity with a power law distribution of sizes and durations. The analysis of the power spectra of the electrical signal reproduces very robustly the power law behaviour with the exponent 0.8, experimentally measured in electroencephalogram (EEG) spectra. The exponents are found to be quite stable with respect to initial configurations and strength of plastic remodelling, indicating that universality holds for a wide class of neural network models.

  11. Plastic flow of polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Langer, James

    Leo Kadanoff had a long interest in fluid flows, especially fingering instabilities. This interest was one example of his insatiable curiosity about simple, fundamentally important, and often multidisciplinary phenomena. Here is an example of another class of such phenomena that I had hoped to show him this year. The experts in polycrystalline solid mechanics have insisted for decades that their central problem - dislocation-mediated strain hardening - is intrinsically unsolvable. I think they're wrong. My colleagues and I have made progress recently in theories of both amorphous and polycrystalline plasticity by introducing an effective disorder temperature as a dynamical variable in our equations of motion. In this way, we have been able to describe how the densities of flow defects or dislocations evolve in response to external forcing, and thus to develop theories that promise to become as predictive, and full of surprises, as the laws of fluid flow. For Kadanoff session.

  12. Sushruta: father of plastic surgery.

    PubMed

    Champaneria, Manish C; Workman, Adrienne D; Gupta, Subhas C

    2014-07-01

    Sushruta is considered the "Father of Plastic Surgery." He lived in India sometime between 1000 and 800 BC, and is responsible for the advancement of medicine in ancient India. His teaching of anatomy, pathophysiology, and therapeutic strategies were of unparalleled luminosity, especially considering his time in the historical record. He is notably famous for nasal reconstruction, which can be traced throughout the literature from his depiction within the Vedic period of Hindu medicine to the era of Tagliacozzi during Renaissance Italy to modern-day surgical practices. The primary focus of this historical review is centered on Sushruta's anatomical and surgical knowledge and his creation of the cheek flap for nasal reconstruction and its transition to the "Indian method." The influential nature of the Sushruta Samhita, the compendium documenting Sushruta's theories about medicine, is supported not only by anatomical knowledge and surgical procedural descriptions contained within its pages, but by the creative approaches that still hold true today. PMID:23788147

  13. Plastic cars for developing nations

    SciTech Connect

    Ashley, S.

    1997-11-01

    Plastic automobiles may have passed a milestone on the long road to commercial reality with the development of Composite Concept Vehicle (CCV) from Chrysler Corp. in Auburn Hills, Mich. This basic compact car--so basic it could be called bare bones--is built by attaching an injection-molded thermoplastic polyester body onto a tubular steel chassis. The 1,200-pound CCV, which is expected to require one-third the labor and investment needed to build a conventional small car, was designed for new buyers in the emerging economies of China, India, and Southeast Asia. If commercialized, the car would likely cost about $6,000--halfway between a motorcycle and an entry-level auto. The small car was unveiled in September 1996 at the Frankfurt Auto Show in Germany.

  14. Polymer thermolysis for plastics recycling

    SciTech Connect

    Madras, G.; Smith, J.M.; McCoy, B.J.

    1996-12-31

    One approach to plastics recycling is the thermolytic degradation of polymer in solution to simpler molecules. We have investigated fundamental aspects of polymer thermolysis in a steady-state flow reactor operated at low temperatures (relative to pyrolysis) and at pressures high enough to maintain a liquid solution. The molecular-weight distributions (MWDs) of the feed and effluent at each condition were examined by gel permeation chromatography (GPC) as a function of residence time. In general the polymers are degraded by either random chain scission, and/or by depolymerization to specific low molecular-weight compounds (e.g., monomers, dimers,...). The experimental data for MWDs were interpreted with rate expressions based on continuous kinetics, and rate coefficients and activation energies were determined for the specific and random degradation processes. Experimental results are described for poly(styrene-allyl alcohol), poly(x-methyl styrene), and poly(methyl methacrylate). 10 refs.

  15. Brain plasticity-based therapeutics.

    PubMed

    Merzenich, Michael M; Van Vleet, Thomas M; Nahum, Mor

    2014-01-01

    The primary objective of this review article is to summarize how the neuroscience of brain plasticity, exploiting new findings in fundamental, integrative and cognitive neuroscience, is changing the therapeutic landscape for professional communities addressing brain-based disorders and disease. After considering the neurological bases of training-driven neuroplasticity, we shall describe how this neuroscience-guided perspective distinguishes this new approach from (a) the more-behavioral, traditional clinical strategies of professional therapy practitioners, and (b) an even more widely applied pharmaceutical treatment model for neurological and psychiatric treatment domains. With that background, we shall argue that neuroplasticity-based treatments will be an important part of future best-treatment practices in neurological and psychiatric medicine. PMID:25018719

  16. Brain plasticity-based therapeutics

    PubMed Central

    Merzenich, Michael M.; Van Vleet, Thomas M.; Nahum, Mor

    2014-01-01

    The primary objective of this review article is to summarize how the neuroscience of brain plasticity, exploiting new findings in fundamental, integrative and cognitive neuroscience, is changing the therapeutic landscape for professional communities addressing brain-based disorders and disease. After considering the neurological bases of training-driven neuroplasticity, we shall describe how this neuroscience-guided perspective distinguishes this new approach from (a) the more-behavioral, traditional clinical strategies of professional therapy practitioners, and (b) an even more widely applied pharmaceutical treatment model for neurological and psychiatric treatment domains. With that background, we shall argue that neuroplasticity-based treatments will be an important part of future best-treatment practices in neurological and psychiatric medicine. PMID:25018719

  17. Glove perforation during plastic surgery.

    PubMed

    Cole, R P; Gault, D T

    1989-07-01

    Intraoperative perforation of surgical gloves is common. Nine hundred and forty surgical gloves were tested after 100 consecutive plastic surgical operations, each involving a surgeon, a variable number of assistants and a scrub nurse. In the first 52 operations, single gloves were used and 21.5% of the staff were found to have a perforated glove. In the second 48 operations, double gloves were used by all members of the surgical team and the number with perforations (of both inner and outer gloves) was reduced to 9%. Most perforations occurred on the dorsum of the hand and fingers and on the thumb tip, especially in the non-dominant hand. The risk of acquiring AIDS due to glove perforation is low but the consequences of such an event could be lethal. PMID:2765743

  18. Augmentation-related brain plasticity.

    PubMed

    Di Pino, Giovanni; Maravita, Angelo; Zollo, Loredana; Guglielmelli, Eugenio; Di Lazzaro, Vincenzo

    2014-01-01

    Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyses the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain. Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools. Augmentation modifies function and structure of a number of areas, i.e., primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the sense of the self

  19. Augmentation-related brain plasticity

    PubMed Central

    Di Pino, Giovanni; Maravita, Angelo; Zollo, Loredana; Guglielmelli, Eugenio; Di Lazzaro, Vincenzo

    2014-01-01

    Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyses the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain. Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools. Augmentation modifies function and structure of a number of areas, i.e., primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the sense of the self

  20. Microwave interferometer controls cutting depth of plastics

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Iceland, W. F.

    1969-01-01

    Microwave interferometer system controls the cutting of plastic materials to a prescribed depth. The interferometer is mounted on a carriage with a spindle and cutting tool. A cross slide, mounted on the carriage, allows the interferometer and cutter to move toward or away from the plastic workpiece.