Science.gov

Sample records for cortex reveals altered

  1. A Mouse Model of Visual Perceptual Learning Reveals Alterations in Neuronal Coding and Dendritic Spine Density in the Visual Cortex

    PubMed Central

    Wang, Yan; Wu, Wei; Zhang, Xian; Hu, Xu; Li, Yue; Lou, Shihao; Ma, Xiao; An, Xu; Liu, Hui; Peng, Jing; Ma, Danyi; Zhou, Yifeng; Yang, Yupeng

    2016-01-01

    Visual perceptual learning (VPL) can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF) for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS) and a 55% gain in visual acuity (VA). Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1) than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL. PMID:27014004

  2. Altered intrinsic connectivity of the auditory cortex in congenital amusia.

    PubMed

    Leveque, Yohana; Fauvel, Baptiste; Groussard, Mathilde; Caclin, Anne; Albouy, Philippe; Platel, Hervé; Tillmann, Barbara

    2016-07-01

    Congenital amusia, a neurodevelopmental disorder of music perception and production, has been associated with abnormal anatomical and functional connectivity in a right frontotemporal pathway. To investigate whether spontaneous connectivity in brain networks involving the auditory cortex is altered in the amusic brain, we ran a seed-based connectivity analysis, contrasting at-rest functional MRI data of amusic and matched control participants. Our results reveal reduced frontotemporal connectivity in amusia during resting state, as well as an overconnectivity between the auditory cortex and the default mode network (DMN). The findings suggest that the auditory cortex is intrinsically more engaged toward internal processes and less available to external stimuli in amusics compared with controls. Beyond amusia, our findings provide new evidence for the link between cognitive deficits in pathology and abnormalities in the connectivity between sensory areas and the DMN at rest. PMID:27009161

  3. Immunoprofiling of Rice Root Cortex Reveals Two Cortical Subdomains

    PubMed Central

    Henry, Sophia; Divol, Fanchon; Bettembourg, Mathilde; Bureau, Charlotte; Guiderdoni, Emmanuel; Périn, Christophe; Diévart, Anne

    2016-01-01

    The formation and differentiation of aerenchyma, i.e., air-containing cavities that are critical for flooding tolerance, take place exclusively in the cortex. The understanding of development and differentiation of the cortex is thus an important issue; however, studies on this tissue are limited, partly because of the lack of available molecular tools. We screened a commercially available library of cell wall antibodies to identify markers of cortical tissue in rice roots. Out of the 174 antibodies screened, eight were cortex-specific. Our analysis revealed that two types of cortical tissues are present in rice root seedlings. We named these cell layers “inner” and “outer” based on their location relative to the stele. We then used the antibodies to clarify cell identity in lateral roots. Without these markers, previous studies could not distinguish between the cortex and sclerenchyma in small lateral roots. By immunostaining lateral root sections, we showed that the internal ground tissue in small lateral roots has outer cortical identity. PMID:26779208

  4. Speech training alters consonant and vowel responses in multiple auditory cortex fields

    PubMed Central

    Engineer, Crystal T.; Rahebi, Kimiya C.; Buell, Elizabeth P.; Fink, Melyssa K.; Kilgard, Michael P.

    2015-01-01

    Speech sounds evoke unique neural activity patterns in primary auditory cortex (A1). Extensive speech sound discrimination training alters A1 responses. While the neighboring auditory cortical fields each contain information about speech sound identity, each field processes speech sounds differently. We hypothesized that while all fields would exhibit training-induced plasticity following speech training, there would be unique differences in how each field changes. In this study, rats were trained to discriminate speech sounds by consonant or vowel in quiet and in varying levels of background speech-shaped noise. Local field potential and multiunit responses were recorded from four auditory cortex fields in rats that had received 10 weeks of speech discrimination training. Our results reveal that training alters speech evoked responses in each of the auditory fields tested. The neural response to consonants was significantly stronger in anterior auditory field (AAF) and A1 following speech training. The neural response to vowels following speech training was significantly weaker in ventral auditory field (VAF) and posterior auditory field (PAF). This differential plasticity of consonant and vowel sound responses may result from the greater paired pulse depression, expanded low frequency tuning, reduced frequency selectivity, and lower tone thresholds, which occurred across the four auditory fields. These findings suggest that alterations in the distributed processing of behaviorally relevant sounds may contribute to robust speech discrimination. PMID:25827927

  5. Altered functional connectivity of the insular cortex across prefrontal networks in cocaine addiction.

    PubMed

    Cisler, Josh M; Elton, Amanda; Kennedy, Ashley P; Young, Jonathan; Smitherman, Sonet; Andrew James, George; Kilts, Clinton D

    2013-07-30

    Interoception is theorized to be an important process mediating substance use disorders, and the insular cortex is recognized as a core neural region supporting interoception. The purpose of this study was to compare the integration of the insular cortex into prefrontal-related resting-state networks between individuals with cocaine dependence and healthy controls. Participants comprised 41 patients with cocaine dependence and 19 controls who underwent a resting-state 3-T functional magnetic resonance imaging scan. Individuals with cocaine dependence demonstrated altered functional connectivity of the insular cortex, predominantly the right insular cortex, with all eight prefrontal-related resting-state networks identified through Independent Component Analysis (ICA). A conjunction analysis demonstrated that the right insular cortex was the neural region with the highest number of common group differences across the networks. There was no evidence that insular cortex connectivity commonly differed between groups for non-prefrontal-related networks. Further, seed-based functional connectivity analyses extended the network analyses and indicated that cocaine dependence was associated with greater connectivity of the right insula with the dorsomedial prefrontal cortex, inferior frontal gyrus, and bilateral dorsolateral prefrontal cortex. These data support the hypothesis that cocaine dependence is related to altered functional interactions of the insular cortex with prefrontal networks. The results suggest possible neural mechanisms by which the insular cortex and interoceptive information influence cognitive control and decision-making processes presumably mediated by prefrontal networks in the cocaine dependence process. PMID:23684980

  6. Immature cortex lesions alter retinotopic maps and interhemispheric connections.

    PubMed

    Restrepo, C Ernesto; Manger, Paul R; Spenger, Christian; Innocenti, Giorgio M

    2003-07-01

    Unilateral lesions of the occipital visual areas performed on postnatal day 5 (P5) in the ferret are not compensated by the appearance, in the lesioned hemisphere, of visual responses at ectopic locations. Instead, when parts of the visual areas are spared, they show abnormal retinotopic organizations; furthermore, callosal connections are abnormally distributed in relation to the retinotopic maps. Lesions that completely eliminate the visual areas including the posterior parietal cortex cause the appearance of abnormal callosal connections from the primary somatosensory cortex on the lesion side to the contralateral, intact, posterior parietal cortex. The occipital visual areas (17, 18, 19, and 21) of the intact hemisphere show a normal retinotopy but lose callosal connections in territories homotopic to the lesions. These findings clarify the nature and limits of structural developmental plasticity in the visual cortex. Early in life, certain regions of cortex have been irreversibly allocated to the visual areas, but two properties defining the areas, that is, retinotopy and connections, remain modifiable. The findings might be relevant for understanding the consequences of early-onset visual cortical lesions in humans. PMID:12838520

  7. Altered Functional Connectivity of the Insular Cortex across Prefrontal Networks in Cocaine Addiction

    PubMed Central

    Cisler, Josh M.; Elton, Amanda; Kennedy, Ashley P.; Young, Jonathan; Smitherman, Sonet; James, George Andrew; Kilts, Clinton D.

    2013-01-01

    Interoception is theorized to be an important process mediating substance use disorders, and the insular cortex is recognized as a core neural region supporting interoception. The purpose of this study was to compare the integration of the insular cortex into prefrontal-related resting-state networks between individuals with cocaine dependence and healthy controls. 41 participants with cocaine dependence and 19 control participants underwent a resting-state 3T fMRI scan. Individuals with cocaine dependence demonstrated altered functional connectivity of the insular cortex, predominantly the right insular cortex, with all eight prefrontal-related resting-state networks identified through Independent Component Analysis (ICA). A conjunction analysis demonstrated that the right insular cortex was the neural region with the highest number of common group differences across the networks. There was no evidence that insular cortex connectivity commonly differed between groups for non-prefrontal-related networks. Further, seed-based functional connectivity analyses extended the network analyses and indicated that cocaine dependence was associated with greater connectivity of the right insula with the dorsomedial PFC, inferior frontal gyrus, and bilateral dlPFC. These data support the hypothesis that cocaine dependence is related to altered functional interactions of the insular cortex with prefrontal networks. The results suggest possible neural mechanisms by which the insular cortex and interoceptive information influence cognitive control and decision-making processes presumably mediated by prefrontal networks in the cocaine dependence process. PMID:23684980

  8. MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subject

    PubMed Central

    Ioannides, Andreas A.; Liu, Lichan; Poghosyan, Vahe; Saridis, George A.; Gjedde, Albert; Ptito, Maurice; Kupers, Ron

    2013-01-01

    Cross-modal activity in visual cortex of blind subjects has been reported during performance of variety of non-visual tasks. A key unanswered question is through which pathways non-visual inputs are funneled to the visual cortex. Here we used tomographic analysis of single trial magnetoencephalography (MEG) data recorded from one congenitally blind and two sighted subjects after stimulation of the left and right median nerves at three intensities: below sensory threshold, above sensory threshold and above motor threshold; the last sufficient to produce thumb twitching. We identified reproducible brain responses in the primary somatosensory (S1) and motor (M1) cortices at around 20 ms post-stimulus, which were very similar in sighted and blind subjects. Time-frequency analysis revealed strong 45–70 Hz activity at latencies of 20–50 ms in S1 and M1, and posterior parietal cortex Brodmann areas (BA) 7 and 40, which compared to lower frequencies, were substantially more pronounced in the blind than the sighted subjects. Critically, at frequencies from α-band up to 100 Hz we found clear, strong, and widespread responses in the visual cortex of the blind subject, which increased with the intensity of the somatosensory stimuli. Time-delayed mutual information (MI) revealed that in blind subject the stimulus information is funneled from the early somatosensory to visual cortex through posterior parietal BA 7 and 40, projecting first to visual areas V5 and V3, and eventually V1. The flow of information through this pathway occurred in stages characterized by convergence of activations into specific cortical regions. In sighted subjects, no linked activity was found that led from the somatosensory to the visual cortex through any of the studied brain regions. These results provide the first evidence from MEG that in blind subjects, tactile information is routed from primary somatosensory to occipital cortex via the posterior parietal cortex. PMID:23935576

  9. Altered magnesium transport in slices of kidney cortex from chemically-induced diabetic rats

    SciTech Connect

    Hoskins, B.

    1981-10-01

    The uptake of magnesium-28 was measured in slices of kidney cortex from rats with alloxan-diabetes and from rats with streptozotocin-diabetes of increasing durations. In both forms of chemically-induced diabetes, magnesium-28 uptake by kidney cortex slices was significantly increased over uptake measured in kidney cortex slices from control rats. Immediate institution of daily insulin therapy to the diabetic rats prevented the diabetes-induced elevated uptake of magnesium without controlling blood glucose levels. Late institution of daily insulin therapy was ineffective in restoring the magnesium uptake to control values. These alterations in magnesium uptake occurred prior to any evidence of nephropathy (via the classic indices of proteinuria and increased BUN levels). The implications of these findings, together with our earlier demonstrations of altered calcium transport by kidney cortex slices from chemically-induced diabetic rats, are discussed in terms of disordered divalent cation transport being at least part of the basic pathogenesis underlying diabetic nephropathy.

  10. VOLUMETRIC ALTERATIONS OF THE ORBITOFRONTAL CORTEX IN AUTISM

    PubMed Central

    Girgis, Ragy R.; Minshew, Nancy J.; Melhem, Nadine M.; Nutche, Jeffrey J.; Keshavan, Matcheri S.; Hardan, Antonio Y.

    2010-01-01

    Recent evidence has implicated the orbitofrontal cortex (OFC) in the pathophysiology of social deficits in autism. An MRI-based morphometric study of the OFC was conducted involving 11 children with autism (age range 8.1–12.7 years) and 18 healthy, age-matched controls (age range 8.9–12.8 years). Decreased grey matter volume in the right lateral OFC in the patient group was found, and correlations were observed between social deficits and white, but not grey, matter structures of the OFC. These findings support the role of OFC in autism and warrant further investigations of this structure using structural and functional methodologies. PMID:16863674

  11. Altering risky decision-making: Influence of impulsivity on the neuromodulation of prefrontal cortex.

    PubMed

    Cheng, Gordon L F; Lee, Tatia M C

    2016-08-01

    The prefrontal cortex (PFC) subserves complex cognitive abilities, including risky decision-making; the modulation of this brain area is shown to alter the way people take risks. Yet, neuromodulation of the PFC in relation to risk-taking behavior remains relatively less well-studied. Moreover, the psychological variables that influence such neuromodulation remain poorly understood. To address these issues, 16 participants took part in 3 experimental sessions on separate days. They received: (i) left anodal-right cathodal transcranial direct current stimulation (tDCS); (ii) left cathodal-right anodal stimulation; or (iii) sham stimulation while they completed two risk-taking tasks. They also measured on several cognitive-affective abilities and personality traits. It was revealed that left cathodal-right anodal stimulation led to significantly reduced risk-taking under a context of haste. The reduction of risk-taking (relative to sham) correlated with state and trait impulsivity, such that the effect was larger in more impulsive individuals. For these individuals, the tDCS effect size was considered to be large (generalized partial η(2) > .17). The effect of prefrontal-neuromodulation in reducing risk-taking was influenced by baseline impulsivity, reflecting a state-dependent effect of neuromodulation on the PFC. The results of this study carry important insights into the use of neuromodulation to alter higher cognition. PMID:26343527

  12. Altered Value Coding in the Ventromedial Prefrontal Cortex in Healthy Older Adults

    PubMed Central

    Yu, Jing; Mamerow, Loreen; Lei, Xu; Fang, Lei; Mata, Rui

    2016-01-01

    Previous work suggests that aging is associated with changes in risk taking but less is known about their underlying neural basis, such as the potential age differences in the neural processing of value and risk. The goal of the present study was to investigate adult age differences in functional neural responses in a naturalistic risk-taking task. Twenty-six young adults and 27 healthy older adults completed the Balloon Analogue Risk Task while undergoing functional magnetic resonance imaging. Young and older adults showed similar overt risk-taking behavior. Group comparison of neural activity in response to risky vs. control stimuli revealed similar patterns of activation in the bilateral striatum, anterior insula (AI) and ventromedial prefrontal cortex (vmPFC). Group comparison of parametrically modulated activity in response to continued pumping similarly revealed comparable results for both age groups in the AI and, potentially, the striatum, yet differences emerged for regional activity in the vmPFC. At whole brain level, insular, striatal and vmPFC activation was predictive of behavioral risk taking for young but not older adults. The current results are interpreted and discussed as preserved neural tracking of risk and reward in the AI and striatum, respectively, but altered value coding in the vmPFC in the two age groups. The latter finding points toward older adults exhibiting differential vmPFC-related integration and value coding. Furthermore, neural activation holds differential predictive validity for behavioral risk taking in young and older adults.

  13. Early life adversity alters the developmental profiles of addiction-related prefrontal cortex circuitry.

    PubMed

    Brenhouse, Heather C; Lukkes, Jodi L; Andersen, Susan L

    2013-01-01

    Early adverse experience is a well-known risk factor for addictive behaviors later in life. Drug addiction typically manifests during adolescence in parallel with the later-developing prefrontal cortex (PFC). While it has been shown that dopaminergic modulation within the PFC is involved in addiction-like behaviors, little is known about how early adversity modulates its development. Here, we report that maternal separation stress (4 h per day between postnatal days 2-20) alters the development of the prelimbic PFC. Immunofluorescence and confocal microscopy revealed differences between maternally-separated and control rats in dopamine D1 and D2 receptor expression during adolescence, and specifically the expression of these receptors on projection neurons. In control animals, D1 and D2 receptors were transiently increased on all glutamatergic projection neurons, as well as specifically on PFC→nucleus accumbens projection neurons (identified with retrograde tracer). Maternal separation exacerbated the adolescent peak in D1 expression and blunted the adolescent peak in D2 expression on projection neurons overall. However, neurons retrogradely traced from the accumbens expressed lower levels of D1 during adolescence after maternal separation, compared to controls. Our findings reveal microcircuitry-specific changes caused by early life adversity that could help explain heightened vulnerability to drug addiction during adolescence. PMID:24961311

  14. Altered Neural Responses to Sounds in Primate Primary Auditory Cortex during Slow-Wave Sleep

    PubMed Central

    Issa, Elias B.

    2011-01-01

    How sounds are processed by the brain during sleep is an important question for understanding how we perceive the sensory environment in this unique behavioral state. While human behavioral data have indicated selective impairments of sound processing during sleep, brain imaging and neurophysiology studies have reported that overall neural activity in auditory cortex during sleep is surprisingly similar to that during wakefulness. This responsiveness to external stimuli leaves open the question of how neural responses during sleep differ, if at all, from wakefulness. Using extracellular neural recordings in the primary auditory cortex of naturally sleeping common marmosets, we show that slow-wave sleep (SWS) alters neural responses in the primate auditory cortex in two specific ways. SWS reduced the sensitivity of auditory cortex such that quiet sounds elicited weak responses in SWS compared with wakefulness, while loud sounds evoked similar responses in SWS and wakefulness. Furthermore, SWS reduced the extent of sound-evoked response suppression. This pattern of alterations was not observed during rapid eye movement sleep and could not be easily explained by the presence of slow rhythms in SWS. The alteration of excitatory and inhibitory responses during SWS suggests limitations in auditory processing and provides novel insights for understanding why certain sounds are processed while others are missed during deep sleep. PMID:21414918

  15. Novel domain formation reveals proto-architecture in inferotemporal cortex

    PubMed Central

    Srihasam, Krishna; Vincent, Justin L.; Livingstone, Margaret S.

    2014-01-01

    Primate inferotemporal cortex is subdivided into domains for biologically important categories, like faces, bodies, and scenes, as well as domains for culturally entrained categories, like text or buildings. These domains are in stereotyped locations in most humans and monkeys. To ask what determines the location of such domains, we intensively trained 7 juvenile monkeys to recognize 3 distinct sets of shapes. After training, the monkeys developed regions that were selectively responsive to each trained set. The location of each specialization was similar across monkeys, despite differences in training order. This indicates that the location of training effects does not depend on function or expertise, but rather some kind of proto-organization. We explore the possibility that this proto-organization is retinotopic or shape-based. PMID:25362472

  16. Novel domain formation reveals proto-architecture in inferotemporal cortex.

    PubMed

    Srihasam, Krishna; Vincent, Justin L; Livingstone, Margaret S

    2014-12-01

    Primate inferotemporal cortex is subdivided into domains for biologically important categories, such as faces, bodies and scenes, as well as domains for culturally entrained categories, such as text or buildings. These domains are in stereotyped locations in most humans and monkeys. To ask what determines the locations of such domains, we intensively trained seven juvenile monkeys to recognize three distinct sets of shapes. After training, the monkeys developed regions that were selectively responsive to each trained set. The location of each specialization was similar across monkeys, despite differences in training order. This indicates that the location of training effects does not depend on function or expertise, but rather on some kind of proto-organization. We explore the possibility that this proto-organization is retinotopic or shape-based. PMID:25362472

  17. Spatial representation of neural responses to natural and altered conspecific vocalizations in cat auditory cortex.

    PubMed

    Gourévitch, Boris; Eggermont, Jos J

    2007-01-01

    This study shows the neural representation of cat vocalizations, natural and altered with respect to carrier and envelope, as well as time-reversed, in four different areas of the auditory cortex. Multiunit activity recorded in primary auditory cortex (AI) of anesthetized cats mainly occurred at onsets (<200-ms latency) and at subsequent major peaks of the vocalization envelope and was significantly inhibited during the stationary course of the stimuli. The first 200 ms of processing appears crucial for discrimination of a vocalization in AI. The dorsal and ventral parts of AI appear to have different roles in coding vocalizations. The dorsal part potentially discriminated carrier-altered meows, whereas the ventral part showed differences primarily in its response to natural and time-reversed meows. In the posterior auditory field, the different temporal response types of neurons, as determined by their poststimulus time histograms, showed discrimination for carrier alterations in the meow. Sustained firing neurons in the posterior ectosylvian gyrus (EP) could discriminate, among others, by neural synchrony, temporal envelope alterations of the meow, and time reversion thereof. These findings suggest an important role of EP in the detection of information conveyed by the alterations of vocalizations. Discrimination of the neural responses to different alterations of vocalizations could be based on either firing rate, type of temporal response, or neural synchrony, suggesting that all these are likely simultaneously used in processing of natural and altered conspecific vocalizations. PMID:17021022

  18. Altered Intra- and Inter-Regional Synchronization of Superior Temporal Cortex in Deaf People

    PubMed Central

    Li, Yanyan; Booth, James R.; Peng, Danling; Zang, Yufeng; Li, Junhong; Yan, Chaogan; Ding, Guosheng

    2013-01-01

    Functional organization of the brain can be fundamentally altered by auditory deprivation. Previous studies found that the superior temporal cortex in deaf people is reorganized to process non-auditory stimuli, as revealed by the extrinsic task-induced brain activities. However, it is unknown how the intrinsic activities of this region are impacted by deafness. This study explored this issue using resting-state functional magnetic resonance imaging. We examined 60 congenitally deaf (CD) individuals, 39 acquired deaf (AD) individuals, and 38 hearing controls (HC), and focused on the effect of deafness on the intra- and inter-regional synchronization of different parts of superior temporal sulcus (STS). We found that intra-regional synchronization or regional homogeneity (ReHo) of the middle STS (mSTS) was decreased in AD compared with HC or CD, while the CD had preserved ReHo in mSTS. Greater connectivity was observed between mSTS and posterior STS in CD and HC than in AD, while both CD and AD had weaker connectivity of mSTS with the anterior STS (aSTS) compared with HC. Moreover, the connectivity of mSTS–aSTS in CD and AD was associated with their language skills. These findings confirmed our hypothesis that the intrinsic function of different parts of STS is distinctly impacted by deafness. PMID:22767633

  19. Mild blast events alter anxiety, memory, and neural activity patterns in the anterior cingulate cortex.

    PubMed

    Xie, Kun; Kuang, Hui; Tsien, Joe Z

    2013-01-01

    There is a general interest in understanding of whether and how exposure to emotionally traumatizing events can alter memory function and anxiety behaviors. Here we have developed a novel laboratory-version of mild blast exposure comprised of high decibel bomb explosion sound coupled with strong air blast to mice. This model allows us to isolate the effects of emotionally fearful components from those of traumatic brain injury or bodily injury typical associated with bomb blasts. We demonstrate that this mild blast exposure is capable of impairing object recognition memory, increasing anxiety in elevated O-maze test, and resulting contextual generalization. Our in vivo neural ensemble recording reveal that such mild blast exposures produced diverse firing changes in the anterior cingulate cortex, a region processing emotional memory and inhibitory control. Moreover, we show that these real-time neural ensemble patterns underwent post-event reverberations, indicating rapid consolidation of those fearful experiences. Identification of blast-induced neural activity changes in the frontal brain may allow us to better understand how mild blast experiences result in abnormal changes in memory functions and excessive fear generalization related to post-traumatic stress disorder. PMID:23741416

  20. Mild Blast Events Alter Anxiety, Memory, and Neural Activity Patterns in the Anterior Cingulate Cortex

    PubMed Central

    Xie, Kun; Kuang, Hui; Tsien, Joe Z.

    2013-01-01

    There is a general interest in understanding of whether and how exposure to emotionally traumatizing events can alter memory function and anxiety behaviors. Here we have developed a novel laboratory-version of mild blast exposure comprised of high decibel bomb explosion sound coupled with strong air blast to mice. This model allows us to isolate the effects of emotionally fearful components from those of traumatic brain injury or bodily injury typical associated with bomb blasts. We demonstrate that this mild blast exposure is capable of impairing object recognition memory, increasing anxiety in elevated O-maze test, and resulting contextual generalization. Our in vivo neural ensemble recording reveal that such mild blast exposures produced diverse firing changes in the anterior cingulate cortex, a region processing emotional memory and inhibitory control. Moreover, we show that these real-time neural ensemble patterns underwent post-event reverberations, indicating rapid consolidation of those fearful experiences. Identification of blast-induced neural activity changes in the frontal brain may allow us to better understand how mild blast experiences result in abnormal changes in memory functions and excessive fear generalization related to post-traumatic stress disorder. PMID:23741416

  1. Adaptive Processes in Thalamus and Cortex Revealed by Silencing of Primary Visual Cortex during Contrast Adaptation.

    PubMed

    King, Jillian L; Lowe, Matthew P; Stover, Kurt R; Wong, Aimee A; Crowder, Nathan A

    2016-05-23

    Visual adaptation illusions indicate that our perception is influenced not only by the current stimulus but also by what we have seen in the recent past. Adaptation to stimulus contrast (the relative luminance created by edges or contours in a scene) induces the perception of the stimulus fading away and increases the contrast detection threshold in psychophysical tests [1, 2]. Neural correlates of contrast adaptation have been described throughout the visual system including the retina [3], dorsal lateral geniculate nucleus (dLGN) [4, 5], primary visual cortex (V1) [6], and parietal cortex [7]. The apparent ubiquity of adaptation at all stages raises the question of how this process cascades across brain regions [8]. Focusing on V1, adaptation could be inherited from pre-cortical stages, arise from synaptic depression at the thalamo-cortical synapse [9], or develop locally, but what is the weighting of these contributions? Because contrast adaptation in mouse V1 is similar to classical animal models [10, 11], we took advantage of the optogenetic tools available in mice to disentangle the processes contributing to adaptation in V1. We disrupted cortical adaptation by optogenetically silencing V1 and found that adaptation measured in V1 now resembled that observed in dLGN. Thus, the majority of adaptation seen in V1 neurons arises through local activity-dependent processes, with smaller contributions from dLGN inheritance and synaptic depression at the thalamo-cortical synapse. Furthermore, modeling indicates that divisive scaling of the weakly adapted dLGN input can predict some of the emerging features of V1 adaptation. PMID:27112300

  2. Optical tweezers reveal how proteins alter replication

    NASA Astrophysics Data System (ADS)

    Chaurasiya, Kathy

    Single molecule force spectroscopy is a powerful method that explores the DNA interaction properties of proteins involved in a wide range of fundamental biological processes such as DNA replication, transcription, and repair. We use optical tweezers to capture and stretch a single DNA molecule in the presence of proteins that bind DNA and alter its mechanical properties. We quantitatively characterize the DNA binding mechanisms of proteins in order to provide a detailed understanding of their function. In this work, we focus on proteins involved in replication of Escherichia coli (E. coli ), endogenous eukaryotic retrotransposons Ty3 and LINE-1, and human immunodeficiency virus (HIV). DNA polymerases replicate the entire genome of the cell, and bind both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) during DNA replication. The replicative DNA polymerase in the widely-studied model system E. coli is the DNA polymerase III subunit alpha (DNA pol III alpha). We use optical tweezers to determine that UmuD, a protein that regulates bacterial mutagenesis through its interactions with DNA polymerases, specifically disrupts alpha binding to ssDNA. This suggests that UmuD removes alpha from its ssDNA template to allow DNA repair proteins access to the damaged DNA, and to facilitate exchange of the replicative polymerase for an error-prone translesion synthesis (TLS) polymerase that inserts nucleotides opposite the lesions, so that bacterial DNA replication may proceed. This work demonstrates a biophysical mechanism by which E. coli cells tolerate DNA damage. Retroviruses and retrotransposons reproduce by copying their RNA genome into the nuclear DNA of their eukaryotic hosts. Retroelements encode proteins called nucleic acid chaperones, which rearrange nucleic acid secondary structure and are therefore required for successful replication. The chaperone activity of these proteins requires strong binding affinity for both single- and double-stranded nucleic

  3. Renal cortex taurine content regulates renal adaptive response to altered dietary intake of sulfur amino acids.

    PubMed Central

    Chesney, R W; Gusowski, N; Dabbagh, S

    1985-01-01

    Rats fed a reduced sulfur amino acid diet (LTD) or a high-taurine diet (HTD) demonstrate a renal adaptive response. The LTD results in hypotaurinuria and enhanced brush border membrane vesicle (BBMV) accumulation of taurine. The HTD causes hypertaurinuria and reduced BBMV uptake. This adaptation may relate to changes in plasma or renal cortex taurine concentration. Rats were fed a normal-taurine diet (NTD), LTD, or HTD for 14 d or they underwent: (a) 3% beta-alanine for the last 8 d of each diet; (b) 3 d of fasting; or (c) a combination of 3% beta-alanine added for 8 d and 3 d of fasting. Each maneuver lowered the cortex taurine concentration, but did not significantly lower plasma taurine values compared with controls. Increased BBMV taurine uptake occurred after each manipulation. Feeding 3% glycine did not alter the plasma, renal cortex, or urinary taurine concentrations, or BBMV uptake of taurine. Feeding 3% methionine raised plasma and urinary taurine excretion but renal tissue taurine was unchanged, as was initial BBMV uptake. Hence, nonsulfur-containing alpha-amino acids did not change beta-amino acid transport. The increase in BBMV uptake correlates with the decline in renal cortex and plasma taurine content. However, since 3% methionine changed plasma taurine without altering BBMV uptake, it is more likely that the change in BBMV uptake and the adaptive response expressed at the brush border surface relate to changes in renal cortex taurine concentrations. Finally, despite changes in urine and renal cortex taurine content, brain taurine values were unchanged, which suggests that this renal adaptive response maintains stable taurine concentrations where taurine serves as a neuromodulator. PMID:3935668

  4. State- and Trait-Related Alterations of Motor Cortex Excitability in Tinnitus Patients

    PubMed Central

    Schecklmann, Martin; Landgrebe, Michael; Kleinjung, Tobias; Frank, Elmar; Rupprecht, Rainer; Sand, Philipp G.; Eichhammer, Peter; Hajak, Göran; Langguth, Berthold

    2014-01-01

    Chronic tinnitus is a brain network disorder with involvement of auditory and non-auditory areas. Repetitive transcranial magnetic stimulation (rTMS) over the temporal cortex has been investigated for the treatment of tinnitus. Several small studies suggest that motor cortex excitability is altered in people with tinnitus. We retrospectively analysed data from 231 patients with chronic tinnitus and 120 healthy controls by pooling data from different studies. Variables of interest were resting motor threshold (RMT), short-interval intra-cortical inhibition (SICI), intra-cortical facilitation (ICF), and cortical silent period (CSP). 118 patients were tested twice - before and after ten rTMS treatment sessions over the left temporal cortex. In tinnitus patients SICI and ICF were increased and CSP was shortened as compared to healthy controls. There was no group difference in RMT. Treatment related amelioration of tinnitus symptoms were correlated with normalisations in SICI. These findings confirm earlier studies of abnormal motor cortex excitability in tinnitus patients. Moreover our longitudinal data suggest that altered SICI may reflect a state parameter, whereas CSP and ICF may rather mirror a trait-like predisposing factor of tinnitus. These findings are new and innovative as they enlarge the knowledge about basic physiologic and neuroplastic processes in tinnitus. PMID:24409317

  5. From Blame to Punishment: Disrupting Prefrontal Cortex Activity Reveals Norm Enforcement Mechanisms.

    PubMed

    Buckholtz, Joshua W; Martin, Justin W; Treadway, Michael T; Jan, Katherine; Zald, David H; Jones, Owen; Marois, René

    2015-09-23

    The social welfare provided by cooperation depends on the enforcement of social norms. Determining blameworthiness and assigning a deserved punishment are two cognitive cornerstones of norm enforcement. Although prior work has implicated the dorsolateral prefrontal cortex (DLPFC) in norm-based judgments, the relative contribution of this region to blameworthiness and punishment decisions remains poorly understood. Here, we used repetitive transcranial magnetic stimulation (rTMS) and fMRI to determine the specific role of DLPFC function in norm-enforcement behavior. DLPFC rTMS reduced punishment for wrongful acts without affecting blameworthiness ratings, and fMRI revealed punishment-selective DLPFC recruitment, suggesting that these two facets of norm-based decision making are neurobiologically dissociable. Finally, we show that DLPFC rTMS affects punishment decision making by altering the integration of information about culpability and harm. Together, these findings reveal a selective, causal role for DLPFC in norm enforcement: representational integration of the distinct information streams used to make punishment decisions. PMID:26386518

  6. Alteration of Rat Fetal Cerebral Cortex Development after Prenatal Exposure to Polychlorinated Biphenyls

    PubMed Central

    Naveau, Elise; Pinson, Anneline; Gérard, Arlette; Nguyen, Laurent; Charlier, Corinne; Thomé, Jean-Pierre; Zoeller, R. Thomas; Bourguignon, Jean-Pierre; Parent, Anne-Simone

    2014-01-01

    Polychlorinated biphenyls (PCBs) are environmental contaminants that persist in environment and human tissues. Perinatal exposure to these endocrine disruptors causes cognitive deficits and learning disabilities in children. These effects may involve their ability to interfere with thyroid hormone (TH) action. We tested the hypothesis that developmental exposure to PCBs can concomitantly alter TH levels and TH-regulated events during cerebral cortex development: progenitor proliferation, cell cycle exit and neuron migration. Pregnant rats exposed to the commercial PCB mixture Aroclor 1254 ended gestation with reduced total and free serum thyroxine levels. Exposure to Aroclor 1254 increased cell cycle exit of the neuronal progenitors and delayed radial neuronal migration in the fetal cortex. Progenitor cell proliferation, cell death and differentiation rate were not altered by prenatal exposure to PCBs. Given that PCBs remain ubiquitous, though diminishing, contaminants in human systems, it is important that we further understand their deleterious effects in the brain. PMID:24642964

  7. Dynamic of neurochemical alterations in striatum, hippocampus and cortex after the 6-OHDA mesostriatal lesion.

    PubMed

    Zhang, Sheng; Gui, Xue-Hong; Xue, Zhong-Feng; Huang, Li-Ping; Fang, Ruo-Ming; Ke, Xue-Hong; Li, Ling; Fang, Yong-Qi

    2014-08-01

    Immediate neurochemical alterations produced by 6-OHDA could explain the general toxic pattern in the central nervous system. However, no evidences describe the effects of 6-OHDA on early changes of neurotransmitters in rats' striatum, cortex and hippocampus. In our study, unilateral 6-OHDA injection into medial forebrain bundle (MFB) was used in rats, then five neurotransmitters were analyzed at 3, 6, 12, 24, 48 and 72 h, respectively. Results showed that 6-OHDA injection caused a sharp decline of striatal dopamine (DA) levels in the first 12h followed by a further reduction between 12 and 48 h. However, striatal levels of homovanillic acid (HVA) were stable in the first 12h and showed a marked reduction between 12 and 24h. Striatal levels of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) decreased linearly for 72 h, whereas levels of norepinephrine (NE) showed a slight reduction in the first 48 h, and returned back to normal afterwards. Striatal HVA/DA ratio increased significantly in the first 12h, but 5-HIAA/5-HT ratio showed a sharp increase between 12 and 72 h. Besides, neurochemical alterations were also found in hippocampus and cortex, and the correlations of neurotransmitters were analyzed. Our study indicated that NE system had little influence in the early phase of 6-OHDA injection, moreover, early neurochemical alterations were involved with striatum, hippocampus and cortex. PMID:24814667

  8. Context–Specific Social Behavior is Altered by Orbitofrontal Cortex Lesions in Adult Rhesus Macaques

    PubMed Central

    Babineau, Brooke A.; Bliss-Moreau, Eliza; Machado, Christopher J.; Toscano, Jessica E.; Mason, William A.; Amaral, David G.

    2012-01-01

    Although the orbitofrontal cortex has been implicated in important aspects of social behavior, few studies have evaluated semi-naturalistic social behavior in nonhuman primates after discrete lesions of this cortical area. In the present report, we evaluated the behavior of adult rhesus monkeys during dyadic social interactions with novel animals following discrete lesions of the orbitofrontal cortex. In a constrained condition, in which animals could engage in only restricted social behaviors, there were no significant differences in social behavior between the lesion group and the sham-operated control group. When the experimental animals could freely interact with partner animals, however, lesioned animals differed from control animals in terms of social interest and fear-related behaviors. These alterations were contingent on the partner with which they interacted. The lesioned animals, when compared to the control animals, had a significantly greater propensity to approach some but not all of their social partners. They also grimaced more towards the partner animal that they did not approach. Behavioral alterations were more apparent during the initial interactions between animals. We discuss these findings in relation to the role of the orbitofrontal cortex in context dependent modulation of social behavior. PMID:21256192

  9. Maturational alterations in constitutive activity of medial prefrontal cortex kappa-opioid receptors in Wistar rats.

    PubMed

    Sirohi, Sunil; Walker, Brendan M

    2015-11-01

    Opioid receptors can display spontaneous agonist-independent G-protein signaling (basal signaling/constitutive activity). While constitutive κ-opioid receptor (KOR) activity has been documented in vitro, it remains unknown if KORs are constitutively active in native systems. Using [(35) S] guanosine 5'-O-[gamma-thio] triphosphate coupling assay that measures receptor functional state, we identified the presence of medial prefrontal cortex KOR constitutive activity in young rats that declined with age. Furthermore, basal signaling showed an age-related decline and was insensitive to neutral opioid antagonist challenge. Collectively, the present data are first to demonstrate age-dependent alterations in the medial prefrontal cortex KOR constitutive activity in rats and changes in the constitutive activity of KORs can differentially impact KOR ligand efficacy. These data provide novel insights into the functional properties of the KOR system and warrant further consideration of KOR constitutive activity in normal and pathophysiological behavior. Opioid receptors exhibit agonist-independent constitutive activity; however, kappa-opioid receptor (KOR) constitutive activity has not been demonstrated in native systems. Our results confirm KOR constitutive activity in the medial prefrontal cortex (mPFC) that declines with age. With the ability to presynaptically inhibit multiple neurotransmitter systems in the mPFC, maturational or patho-logical alterations in constitutive activity could disrupt corticofugal glutamatergic pyramidal projection neurons mediating executive function. Regulation of KOR constitutive activity could serve as a therapeutic target to treat compromised executive function. PMID:26257334

  10. Representational cortex in musicians. Plastic alterations in response to musical practice.

    PubMed

    Pantev, C; Engelien, A; Candia, V; Elbert, T

    2001-06-01

    The lifelong ability to adapt to environmental needs is based on the capacity of the central nervous system for plastic alterations. In a series of neurophysiological experiments, we studied the impact of music and musical training in musicians on the specific functional organization in auditory and somatosensory representational cortex. In one such study, subjects listened to music from which one specific spectral frequency was removed. This led to rapid and reversible adaptation of neuronal responses in auditory cortex. Further experimental evidence demonstrated that long years of practice and training by professional musicians to enable them to reach their capacity is associated with enlarged cortical representations in the somatosensory and auditory domains. This tuning of neuronal representations was specifically observed for musical tones and was absent when pure sinusoidal tones were used as stimuli. In the somatosensory cortex, plastic changes proved to be specific for the fingers frequently used and stimulated. These changes were not detected in the fingers of the hand that were not involved in playing the particular instrument. Neuroplastic alterations also may be driven into a domain where they may become maladaptive. The clinical syndrome of focal hand dystonia that may occur in musicians who engage in forceful practice may be one such consequence. We will discuss the possibilities of reversing maladaptive responses leading to the successful treatment of focal hand dystonia, which relies on basic research about cortical reorganization. This example elucidates how neuroscientific progress can guide the development of practice guidelines and therapeutic measures for the benefit of professional musicians. PMID:11458837

  11. Reversible Deactivation of Motor Cortex Reveals Functional Connectivity with Posterior Parietal Cortex in the Prosimian Galago (Otolemur garnettii)

    PubMed Central

    Cooke, Dylan F.; Stepniewska, Iwona; Miller, Daniel J.; Kaas, Jon H.

    2015-01-01

    We examined the functional macrocircuitry of frontoparietal networks in the neocortex of prosimian primates (Otolemur garnettii) using a microfluidic thermal regulator to reversibly deactivate selected regions of motor cortex (M1). During deactivation of either forelimb or mouth/face movement domains within M1, we used long-train intracortical microstimulation techniques to evoke movements from the rostral division of posterior parietal cortex (PPCr). We found that deactivation of M1 movement domains in most instances abolished movements evoked in PPCr. The most common effect of deactivating M1 was to abolish evoked movements in a homotopic domain in PPCr. For example, deactivating M1 forelimb lift domains resulted in loss of evoked movement in forelimb domains in PPCr. However, at some sites, we also observed heterotopic effects; deactivating a specific domain in M1 (e.g., forelimb lift) resulted in loss of evoked movement in a different movement domain in PPCr (e.g., hand-to-mouth or eye-blink). At most sites examined in PPCr, rewarming M1 resulted in a reestablishment of the baseline movement at the same amplitude as that observed before cooling. However, at some sites, reactivation did not result in a return to baseline movement or to the full amplitude of the baseline movement. We discuss our findings in the context of frontoparietal circuits and how they may subserve a repertoire of ecologically relevant behaviors. SIGNIFICANCE STATEMENT The posterior parietal cortex (PPC) of primates integrates sensory information used to guide movements. Different modules within PPC and motor cortex (M1) appear to control various motor behaviors (e.g., reaching, defense, and feeding). How these modules work together may vary across species and may explain differences in dexterity and even the capacity for tool use. We investigated the functional connectivity of these modules in galagos, a prosimian primate with relatively simple frontoparietal circuitry. By deactivating a

  12. Altered SPECT 123I-iomazenil Binding in the Cingulate Cortex of Children with Anorexia Nervosa

    PubMed Central

    Nagamitsu, Shinichiro; Sakurai, Rieko; Matsuoka, Michiko; Chiba, Hiromi; Ozono, Shuichi; Tanigawa, Hitoshi; Yamashita, Yushiro; Kaida, Hayato; Ishibashi, Masatoshi; Kakuma, Tatsuki; Croarkin, Paul E.; Matsuishi, Toyojiro

    2016-01-01

    Several lines of evidence suggest that anxiety plays a key role in the development and maintenance of anorexia nervosa (AN) in children. The purpose of this study was to examine cortical GABA(A)-benzodiazepine receptor binding before and after treatment in children beginning intensive AN treatment. Brain single-photon emission computed tomography (SPECT) measurements using 123I-iomazenil, which binds to GABA(A)-benzodiazepine receptors, was performed in 26 participants with AN who were enrolled in a multimodal treatment program. Sixteen of the 26 participants underwent a repeat SPECT scan immediately before discharge at conclusion of the intensive treatment program. Eating behavior and mood disturbances were assessed using Eating Attitudes Test with 26 items (EAT-26) and the short form of the Profile of Mood States (POMS). Clinical outcome scores were evaluated after a 1-year period. We examined association between relative iomazenil-binding activity in cortical regions of interest and psychometric profiles and determined which psychometric profiles show interaction effects with brain regions. Further, we determined if binding activity could predict clinical outcome and treatment changes. Higher EAT-26 scores were significantly associated with lower iomazenil-binding activity in the anterior and posterior cingulate cortex. Higher POMS subscale scores were significantly associated with lower iomazenil-binding activity in the left frontal, parietal cortex, and posterior cingulate cortex (PCC). “Depression–Dejection” and “Confusion” POMS subscale scores, and total POMS score showed interaction effects with brain regions in iomazenil-binding activity. Decreased binding in the anterior cingulate cortex and left parietal cortex was associated with poor clinical outcomes. Relative binding increases throughout the PCC and occipital gyrus were observed after weight gain in children with AN. These findings suggest that cortical GABAergic receptor binding is altered

  13. Altered SPECT (123)I-iomazenil Binding in the Cingulate Cortex of Children with Anorexia Nervosa.

    PubMed

    Nagamitsu, Shinichiro; Sakurai, Rieko; Matsuoka, Michiko; Chiba, Hiromi; Ozono, Shuichi; Tanigawa, Hitoshi; Yamashita, Yushiro; Kaida, Hayato; Ishibashi, Masatoshi; Kakuma, Tatsuki; Croarkin, Paul E; Matsuishi, Toyojiro

    2016-01-01

    Several lines of evidence suggest that anxiety plays a key role in the development and maintenance of anorexia nervosa (AN) in children. The purpose of this study was to examine cortical GABA(A)-benzodiazepine receptor binding before and after treatment in children beginning intensive AN treatment. Brain single-photon emission computed tomography (SPECT) measurements using (123)I-iomazenil, which binds to GABA(A)-benzodiazepine receptors, was performed in 26 participants with AN who were enrolled in a multimodal treatment program. Sixteen of the 26 participants underwent a repeat SPECT scan immediately before discharge at conclusion of the intensive treatment program. Eating behavior and mood disturbances were assessed using Eating Attitudes Test with 26 items (EAT-26) and the short form of the Profile of Mood States (POMS). Clinical outcome scores were evaluated after a 1-year period. We examined association between relative iomazenil-binding activity in cortical regions of interest and psychometric profiles and determined which psychometric profiles show interaction effects with brain regions. Further, we determined if binding activity could predict clinical outcome and treatment changes. Higher EAT-26 scores were significantly associated with lower iomazenil-binding activity in the anterior and posterior cingulate cortex. Higher POMS subscale scores were significantly associated with lower iomazenil-binding activity in the left frontal, parietal cortex, and posterior cingulate cortex (PCC). "Depression-Dejection" and "Confusion" POMS subscale scores, and total POMS score showed interaction effects with brain regions in iomazenil-binding activity. Decreased binding in the anterior cingulate cortex and left parietal cortex was associated with poor clinical outcomes. Relative binding increases throughout the PCC and occipital gyrus were observed after weight gain in children with AN. These findings suggest that cortical GABAergic receptor binding is altered in

  14. Altered cerebellar and prefrontal cortex function in rhesus monkeys that previously self-administered cocaine

    PubMed Central

    Porter, Jessica N.; Minhas, Davneet; Lopresti, Brian J.; Price, Julie C.; Bradberry, Charles W.

    2014-01-01

    Rationale Differences in brain function in cocaine users can occur even when frank deficits are not apparent, indicating neuroadaptive consequences of use. Using monkeys to investigate altered metabolic activity following chronic cocaine self-administration allows an assessment of altered function due to cocaine use, without the confound of pre-existing differences or polysubstance use often present in clinical studies. Objectives To evaluate alterations in metabolic function during a working memory task in prefrontal cortex and the cerebellum following one year of chronic cocaine self-administration followed by a 20 month drug-free period. Methods [18F] Fluorodeoxyglucose PET imaging was used to evaluate changes in relative regional metabolic activity associated with a delayed match to sample working memory task. Chronic cocaine animals were compared to a control group, and region of interest analyses focused on the dorsolateral prefrontal cortex (DLPFC) and cerebellum. Results Despite no differences in task performance, in the cocaine group, the cerebellum showed greater metabolic activity during the working memory task (relative to the control task) compared to the control group. There was also a trend towards a significant difference between the groups in DLPFC activity (p=0.054), with the cocaine group exhibiting lower DLPFC metabolic activity during the delay task (relative to the control task) than the control group. Conclusion The results support clinical indications of increased cerebellar activity associated with chronic cocaine exposure. Consistent with evidence of functional interactions between cerebellum and prefrontal cortex, these changes may serve to compensate for potential impairments in functionality of DLPFC. PMID:24733237

  15. Interactions between behaviorally relevant rhythms and synaptic plasticity alter coding in the piriform cortex

    PubMed Central

    Urban, Nathaniel N.

    2012-01-01

    Understanding how neural and behavioral timescales interact to influence cortical activity and stimulus coding is an important issue in sensory neuroscience. In air-breathing animals, voluntary changes in respiratory frequency alter the temporal patterning olfactory input. In the olfactory bulb, these behavioral timescales are reflected in the temporal properties of mitral/tufted (M/T) cell spike trains. As the odor information contained in these spike trains is relayed from the bulb to the cortex, interactions between presynaptic spike timing and short-term synaptic plasticity dictate how stimulus features are represented in cortical spike trains. Here we demonstrate how the timescales associated with respiratory frequency, spike timing and short-term synaptic plasticity interact to shape cortical responses. Specifically, we quantified the timescales of short-term synaptic facilitation and depression at excitatory synapses between bulbar M/T cells and cortical neurons in slices of mouse olfactory cortex. We then used these results to generate simulated M/T population synaptic currents that were injected into real cortical neurons. M/T population inputs were modulated at frequencies consistent with passive respiration or active sniffing. We show how the differential recruitment of short-term plasticity at breathing versus sniffing frequencies alters cortical spike responses. For inputs at sniffing frequencies, cortical neurons linearly encoded increases in presynaptic firing rates with increased phase locked, firing rates. In contrast, at passive breathing frequencies, cortical responses saturated with changes in presynaptic rate. Our results suggest that changes in respiratory behavior can gate the transfer of stimulus information between the olfactory bulb and cortex. PMID:22553016

  16. Exploratory Metabolomic Analyses Reveal Compounds Correlated with Lutein Concentration in Frontal Cortex, Hippocampus, and Occipital Cortex of Human Infant Brain

    PubMed Central

    Lieblein-Boff, Jacqueline C.; Johnson, Elizabeth J.; Kennedy, Adam D.; Lai, Chron-Si; Kuchan, Matthew J.

    2015-01-01

    Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510) were excluded. In addition, moderate correlations with xenobiotic relationships (2) or those driven by single outliers (3) were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region—specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development. PMID:26317757

  17. Altered gene expression profiles in the hippocampus and prefrontal cortex of type 2 diabetic rats

    PubMed Central

    2012-01-01

    Background There has been an increasing body of epidemiologic and biochemical evidence implying the role of cerebral insulin resistance in Alzheimer-type dementia. For a better understanding of the insulin effect on the central nervous system, we performed microarray-based global gene expression profiling in the hippocampus, striatum and prefrontal cortex of streptozotocin-induced and spontaneously diabetic Goto-Kakizaki rats as model animals for type 1 and type 2 diabetes, respectively. Results Following pathway analysis and validation of gene lists by real-time polymerase chain reaction, 30 genes from the hippocampus, such as the inhibitory neuropeptide galanin, synuclein gamma and uncoupling protein 2, and 22 genes from the prefrontal cortex, e.g. galanin receptor 2, protein kinase C gamma and epsilon, ABCA1 (ATP-Binding Cassette A1), CD47 (Cluster of Differentiation 47) and the RET (Rearranged During Transfection) protooncogene, were found to exhibit altered expression levels in type 2 diabetic model animals in comparison to non-diabetic control animals. These gene lists proved to be partly overlapping and encompassed genes related to neurotransmission, lipid metabolism, neuronal development, insulin secretion, oxidative damage and DNA repair. On the other hand, no significant alterations were found in the transcriptomes of the corpus striatum in the same animals. Changes in the cerebral gene expression profiles seemed to be specific for the type 2 diabetic model, as no such alterations were found in streptozotocin-treated animals. Conclusions According to our knowledge this is the first characterization of the whole-genome expression changes of specific brain regions in a diabetic model. Our findings shed light on the complex role of insulin signaling in fine-tuning brain functions, and provide further experimental evidence in support of the recently elaborated theory of type 3 diabetes. PMID:22369239

  18. Alterations of the cerebral cortex in sporadic small vessel disease: A systematic review of in vivo MRI data.

    PubMed

    Peres, Roxane; De Guio, François; Chabriat, Hugues; Jouvent, Eric

    2016-04-01

    Cerebral small vessel diseases of the brain are a major determinant of cognitive impairment in the elderly. In small vessel diseases, the most easily identifiable lesions, both at post-mortem evaluation and magnetic resonance imaging, lie in subcortical areas. However, recent results obtained post-mortem, particularly in severe cases, have highlighted the burden of cortex lesions such as microinfarcts and diffuse neuronal loss. The recent development of image post-processing methods allows now assessing in vivo multiple aspects of the cerebral cortex. This systematic review aimed to analyze in vivo magnetic resonance imaging studies evaluating cortex alterations at different stages of small vessel diseases. Studies assessing the relationships between small vessel disease magnetic resonance imaging markers obtained at the subcortical level and cortex estimates were reviewed both in community-dwelling elderly and in patients with symptomatic small vessel diseases. Thereafter, studies analyzing cortex estimates in small vessel disease patients compared with healthy subjects were evaluated. The results support that important cortex alterations develop along the course of small vessel diseases independently of concomitant neurodegenerative processes. Easy detection and quantification of cortex changes in small vessel diseases as well as understanding their underlying mechanisms are challenging tasks for better understanding cognitive decline in small vessel diseases. PMID:26787108

  19. Widespread alterations in the synaptic proteome of the adolescent cerebral cortex following prenatal immune activation in rats.

    PubMed

    Györffy, Balázs A; Gulyássy, Péter; Gellén, Barbara; Völgyi, Katalin; Madarasi, Dóra; Kis, Viktor; Ozohanics, Olivér; Papp, Ildikó; Kovács, Péter; Lubec, Gert; Dobolyi, Árpád; Kardos, József; Drahos, László; Juhász, Gábor; Kékesi, Katalin A

    2016-08-01

    An increasing number of studies have revealed associations between pre- and perinatal immune activation and the development of schizophrenia and autism spectrum disorders (ASDs). Accordingly, neuroimmune crosstalk has a considerably large impact on brain development during early ontogenesis. While a plethora of heterogeneous abnormalities have already been described in established maternal immune activation (MIA) rodent and primate animal models, which highly correlate to those found in human diseases, the underlying molecular background remains obscure. In the current study, we describe the long-term effects of MIA on the neocortical pre- and postsynaptic proteome of adolescent rat offspring in detail. Molecular differences were revealed in sub-synaptic fractions, which were first thoroughly characterized using independent methods. The widespread proteomic examination of cortical samples from offspring exposed to maternal lipopolysaccharide administration at embryonic day 13.5 was conducted via combinations of different gel-based proteomic techniques and tandem mass spectrometry. Our experimentally validated proteomic data revealed more pre- than postsynaptic protein level changes in the offspring. The results propose the relevance of altered synaptic vesicle recycling, cytoskeletal structure and energy metabolism in the presynaptic region in addition to alterations in vesicle trafficking, the cytoskeleton and signal transduction in the postsynaptic compartment in MIA offspring. Differing levels of the prominent signaling regulator molecule calcium/calmodulin-dependent protein kinase II in the postsynapse was validated and identified specifically in the prefrontal cortex. Finally, several potential common molecular regulators of these altered proteins, which are already known to be implicated in schizophrenia and ASD, were identified and assessed. In summary, unexpectedly widespread changes in the synaptic molecular machinery in MIA rats were demonstrated which

  20. Neuronal responses in cat primary auditory cortex to natural and altered species-specific calls.

    PubMed

    Gehr, D D; Komiya, H; Eggermont, J J

    2000-12-01

    We investigated how natural and morphed cat vocalizations are represented in primary auditory cortex (AI). About 40% of the neurons showed time-locked responses to major peaks in the vocalization envelope, 60% only responded at the onset. Simultaneously recorded multi-unit (MU) activity of these peak-tracking neurons on separate electrodes was significantly more synchronous during stimulation than under silence. Thus, the representation of the vocalizations is likely synchronously distributed across the cortex. The sum of the responses to the low and high frequency part of the meow, with the boundary at 2.5 kHz, was larger than the neuronal response to the natural meow itself, suggesting that strong lateral inhibition is shaping the response to the natural meow. In this sense, the neurons are combination-sensitive. The frequency-tuning properties and the response to amplitude-modulated tones of the MU recordings can explain the responses to natural, and temporally and spectrally altered vocalizations. Analysis of the mutual information in the firing rate suggests that the activity of at least 95 recording sites in AI would be needed to reliably distinguish between the nine different vocalizations. This suggests that a distributed representation based on temporal stimulus aspects may be more efficient than one based on firing rate. PMID:11077191

  1. Memory impairment and alterations in prefrontal cortex gamma band activity following methamphetamine sensitization

    PubMed Central

    Linsenbardt, David N.; Lapish, Christopher C.

    2015-01-01

    Rationale Repeated methamphetamine (MA) use leads to increases in the incentive motivational properties of the drug as well as cognitive impairments. These behavioral alterations persist for some time following abstinence, and neuroadaptations in the structure and function of the prefrontal cortex (PFC) are particularly important for their expression. However, there is a weak understanding of the changes in neural firing and oscillatory activity in the PFC evoked by repeated drug use, thus complicating the development of novel treatment strategies for addiction. Objectives The purpose of the current study was to assess changes in cognitive and brain function following MA sensitization. Methods Sensitization was induced in rats, then temporal and recognition memory were assessed after 1 or 30 days of abstinence. Electrophysiological recordings from the medial PFC were also acquired from rats whereupon simultaneous measures of oscillatory and spiking activity were examined. Results Impaired temporal memory was observed after 1 and 30 days of abstinence. However, recognition memory was only impaired after 1 day of abstinence. An injection of MA profoundly decreased neuronal firing rate and the anesthesia-induced slow oscillation (SO) in both sensitized (SENS) and control (CTRL) rats. Strong correlations were observed between the SO and gamma band power, which was altered in SENS animals. A decrease in the number of neurons phase-locked to the gamma oscillation was also observed in SENS animals. Conclusions The changes observed in PFC function may play an integral role in the expression of the altered behavioral phenotype evoked by MA sensitization. PMID:25572530

  2. Calbindin Knockout Alters Sex-Specific Regulation of Behavior and Gene Expression in Amygdala and Prefrontal Cortex.

    PubMed

    Harris, Erin P; Abel, Jean M; Tejada, Lucia D; Rissman, Emilie F

    2016-05-01

    Calbindin-D(28K) (Calb1), a high-affinity calcium buffer/sensor, shows abundant expression in neurons and has been associated with a number of neurobehavioral diseases, many of which are sexually dimorphic in incidence. Behavioral and physiological end points are affected by experimental manipulations of calbindin levels, including disruption of spatial learning, hippocampal long-term potentiation, and circadian rhythms. In this study, we investigated novel aspects of calbindin function on social behavior, anxiety-like behavior, and fear conditioning in adult mice of both sexes by comparing wild-type to littermate Calb1 KO mice. Because Calb1 mRNA and protein are sexually dimorphic in some areas of the brain, we hypothesized that sex differences in behavioral responses of these behaviors would be eliminated or revealed in Calb1 KO mice. We also examined gene expression in the amygdala and prefrontal cortex, two areas of the brain intimately connected with limbic system control of the behaviors tested, in response to sex and genotype. Our results demonstrate that fear memory and social behavior are altered in male knockout mice, and Calb1 KO mice of both sexes show less anxiety. Moreover, gene expression studies of the amygdala and prefrontal cortex revealed several significant genotype and sex effects in genes related to brain-derived neurotrophic factor signaling, hormone receptors, histone deacetylases, and γ-aminobutyric acid signaling. Our findings are the first to directly link calbindin with affective and social behaviors in rodents; moreover, the results suggest that sex differences in calbindin protein influence behavior. PMID:27010449

  3. Genetic tracing reveals a stereotyped sensory map in the olfactory cortex

    NASA Astrophysics Data System (ADS)

    Zou, Zhihua; Horowitz, Lisa F.; Montmayeur, Jean-Pierre; Snapper, Scott; Buck, Linda B.

    2001-11-01

    The olfactory system translates myriad chemical structures into diverse odour perceptions. To gain insight into how this is accomplished, we prepared mice that coexpressed a transneuronal tracer with only one of about 1,000 different odorant receptors. The tracer travelled from nasal neurons expressing that receptor to the olfactory bulb and then to the olfactory cortex, allowing visualization of cortical neurons that receive input from a particular odorant receptor. These studies revealed a stereotyped sensory map in the olfactory cortex in which signals from a particular receptor are targeted to specific clusters of neurons. Inputs from different receptors overlap spatially and could be combined in single neurons, potentially allowing for an integration of the components of an odorant's combinatorial receptor code. Signals from the same receptor are targeted to multiple olfactory cortical areas, permitting the parallel, and perhaps differential, processing of inputs from a single receptor before delivery to the neocortex and limbic system.

  4. TRPV1-Dependent and -Independent Alterations in the Limbic Cortex of Neuropathic Mice: Impact on Glial Caspases and Pain Perception

    PubMed Central

    Giordano, Catia; Cristino, Luigia; Luongo, Livio; Siniscalco, Dario; Petrosino, Stefania; Piscitelli, Fabiana; Marabese, Ida; Gatta, Luisa; Rossi, Francesca; Imperatore, Roberta; Palazzo, Enza; de Novellis, Vito; Di Marzo, Vincenzo

    2012-01-01

    During neuropathic pain, caspases are activated in the limbic cortex. We investigated the role of TRPV1 channels and glial caspases in the mouse prelimbic and infralimbic (PL-IL) cortex after spared nerve injury (SNI). Reverse transcriptase-polymerase chain reaction, western blots, and immunfluorescence showed overexpression of several caspases in the PL-IL cortex 7 days postinjury. Caspase-3 release and upregulation of AMPA receptors in microglia, caspase-1 and IL-1β release in astrocytes, and upregulation of Il-1 receptor-1, TRPV1, and VGluT1 in glutamatergic neurons, were also observed. Of these alterations, only those in astrocytes persisted in SNI Trpv1−/− mice. A pan-caspase inhibitor, injected into the PL-IL cortex, reduced mechanical allodynia, this effect being reduced but not abolished in Trpv1−/− mice. Single-unit extracellular recordings in vivo following electrical stimulation of basolateral amygdala or application of pressure on the hind paw, showed increased excitatory pyramidal neuron activity in the SNI PL-IL cortex, which also contained higher levels of the endocannabinoid 2-arachidonoylglycerol. Intra-PL-IL cortex injection of mGluR5 and NMDA receptor antagonists and AMPA exacerbated, whereas TRPV1 and AMPA receptor antagonists and a CB1 agonist inhibited, allodynia. We suggest that SNI triggers both TRPV1-dependent and independent glutamate- and caspase-mediated cross-talk among IL-PL cortex neurons and glia, which either participates or counteracts pain. PMID:22139792

  5. The endocannabinoid system is altered in the post-mortem prefrontal cortex of alcoholic subjects.

    PubMed

    Erdozain, Amaia M; Rubio, Marina; Valdizan, Elsa M; Pazos, Angel; Meana, J Javier; Fernández-Ruiz, Javier; Alexander, Stephen P H; Callado, Luis F

    2015-07-01

    There is strong biochemical, pharmacological and genetic evidence for the involvement of the endocannabinoid system (ECS) in alcohol dependence. However, the majority of studies have been performed in animal models. The aim of the present study was to assess the state of the CB1 receptor, the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), and the extracellular signal-regulated kinase (ERK) and cyclic-AMP response element-binding protein (CREB) in the post-mortem prefrontal cortex of alcoholic subjects. Experiments were performed in samples from 44 subjects classified in four experimental groups: (1) non-suicidal alcoholic subjects (n = 11); (2) suicidal alcoholic subjects (n = 11); (3) non-alcoholic suicide victims (n = 11); and (4) control subjects (n = 11). We did not observe statistically significant differences in CB1 mRNA relative expression among the four experimental groups. Conversely, our results showed an increase in CB1 receptor protein expression in the prefrontal cortex of the suicidal alcoholic group (127.2 ± 7.3%), with no changes in functionality with regard to either G protein activation or the inhibition of adenylyl cyclase. In parallel, alcoholic subjects presented lower levels of MAGL activity, regardless of the cause of death. A significant decrease in the active form of ERK and CREB levels was also observed in both alcoholic groups. Taken together, our data are consistent with a role for the ECS in the neurobiological mechanisms underlying alcoholism. Moreover, the alterations reported here should be of great interest for the therapeutic treatment of this chronic psychiatric disease. PMID:25041461

  6. COMT val158met polymorphism and molecular alterations in the human dorsolateral prefrontal cortex: Differences in controls and in schizophrenia.

    PubMed

    Shukla, Abhay A; Jha, Manish; Birchfield, Thomas; Mukherjee, Shibani; Gleason, Kelly; Abdisalaam, Salim; Asaithamby, Aroumougame; Adams-Huet, Beverley; Tamminga, Carol A; Ghose, Subroto

    2016-05-01

    The single nucleotide val158met polymorphism in catechol o-methyltransferase (COMT) influences prefrontal cortex function. Working memory, dependent on the dorsolateral prefrontal cortex (DLPFC), has been repeatedly shown to be influenced by this COMT polymorphism. The high activity COMT val isoform is associated with lower synaptic dopamine levels. Altered synaptic dopamine levels are expected to lead to molecular adaptations within the synapse and within DLPFC neural circuitry. In this human post mortem study using high quality DLPFC tissue, we first examined the influence of the COMT val158met polymorphism on markers of dopamine neurotransmission, N-methyl-d-aspartate (NMDA) receptor subunits and glutamatic acid decarboxylase 67 (GAD67), all known to be critical to DLPFC circuitry and function. Next, we compared target gene expression profiles in a cohort of control and schizophrenia cases, each characterized by COMT genotype. We find that the COMT val allele in control subjects is associated with significant upregulation of GluN2A and GAD67 mRNA levels compared to met carriers. Comparisons between control and schizophrenia groups reveal that GluN2A, GAD67 and DRD2 are differentially regulated between diagnostic groups in a genotype specific manner. Chronic antipsychotic treatment in rodents did not explain these differences. These data demonstrate an association between COMTval158met genotype and gene expression profile in the DLPFC of controls, possibly adaptations to maintain DLPFC function. In schizophrenia val homozygotes, these adaptations are not seen and could reflect pathophysiologic mechanisms related to the known poorer performance of these subjects on DLPFC-dependent tasks. PMID:27021555

  7. Altered intrinsic properties and bursting activities of neurons in layer IV of somatosensory cortex from Fmr-1 knockout mice.

    PubMed

    Zhang, Linming; Liang, Zhanrong; Zhu, Pingping; Li, Meng; Yi, Yong-Hong; Liao, Wei-Ping; Su, Tao

    2016-06-01

    Neuroadaptations and alterations in neuronal excitability are critical in brain maturation and many neurological diseases. Fragile X syndrome (FXS) is a pervasive neurodevelopmental disorder characterized by extensive synaptic and circuit dysfunction. It is still unclear about the alterations in intrinsic excitability of individual neurons and their link to hyperexcitable circuitry. In this study, whole cell patch-clamp recordings were employed to characterize the membrane and firing properties of layer IV cells in slices of the somatosensory cortex of Fmr-1 knockout (KO) mice. These cells generally exhibited a regular spiking (RS) pattern, while there were significant increases in the number of cells that adopted intrinsic bursting (IB) compared with age-matched wild type (WT) cells. The cells subgrouped according to their firing patterns and maturation differed significantly in membrane and discharge properties between KO and WT. The changes in the intrinsic properties were consistent with highly facilitated discharges in KO cells induced by current injection. Spontaneous activities of RS neurons driven by local network were also increased in the KO cells, especially in neonate groups. Under an epileptiform condition mimicked by omission of Mg(2+) in extracellular solution, these RS neurons from KO mice were more likely to switch to burst discharges. Analysis on bursts revealed that the KO cells tended to form burst discharges and even severe events manifested as seizure-like ictal discharges. These results suggest that alterations in intrinsic properties in individual neurons are involved in the abnormal excitability of cortical circuitry and possibly account for the pathogenesis of epilepsy in FXS. PMID:27048919

  8. Laminar-dependent dendritic spine alterations in the motor cortex of adult rats following callosal transection and forced forelimb use.

    PubMed

    Adkins, DeAnna L; Bury, Scott D; Jones, Theresa A

    2002-07-01

    Previously, the authors found that partial denervation of the motor cortex in adult animals can enhance this region's neuronal growth response to relevant behavioral change. Rats with partial corpus callosum transections that were forced to rely on one forelimb for 18 days had increased dendritic arborization of layer V pyramidal neurons in the opposite motor cortex compared to controls. This was not found as a result of denervation alone or of forced forelimb use alone. However, it seemed possible that each independent manipulation (i.e., forced forelimb use alone and callosal transections alone) resulted in neural structural alterations that were simply not revealed in measurements of dendritic branch number and/or not inclusive of layer V dendrites. This possibility was assessed in the current study with a reexamination of the Golgi-Cox impregnated tissue generated in the previous study. Tissue was quantified from rats that received either partial transections of the rostral two-thirds of the corpus callosum (CCX) or sham operations (Sham) followed either by 18 days of forced use of one forelimb (Use) or unrestricted use of both forelimbs (Cont). Measurements of apical and basilar dendrites from pyramidal neurons of layer II/III and layer V were performed to detect spine addition resulting from either increased spine density or the addition of dendritic material. As hypothesized, significant spine addition was found following forced forelimb use alone (Sham+Use) and callosal transections alone (CCX+Cont). However, forced use primarily increased spines on layer II/III pyramidal neurons, whereas callosal transections primarily increased dendritic spines on layer V pyramidal neurons in comparison to Sham+Cont. A much more robust increase in layer V dendritic spines was found in animals with the combination of forced forelimb use and denervation (CCX+Use). In contrast to the effects of forced use alone, however, CCX+Use rats failed to show major net increases in

  9. Functional magnetic resonance imaging adaptation reveals a noncategorical representation of hue in early visual cortex

    PubMed Central

    Persichetti, Andrew S.; Thompson-Schill, Sharon L.; Butt, Omar H.; Brainard, David H.; Aguirre, Geoffrey K.

    2015-01-01

    Color names divide the fine-grained gamut of color percepts into discrete categories. A categorical transition must occur somewhere between the initial encoding of the continuous spectrum of light by the cones and the verbal report of the name of a color stimulus. Here, we used a functional magnetic resonance imaging (fMRI) adaptation experiment to examine the representation of hue in the early visual cortex. Our stimuli varied in hue between blue and green. We found in the early visual areas (V1, V2/3, and hV4) a smoothly increasing recovery from adaptation with increasing hue distance between adjacent stimuli during both passive viewing (Experiment 1) and active categorization (Experiment 2). We examined the form of the adaptation effect and found no evidence that a categorical representation mediates the release from adaptation for stimuli that cross the blue–green color boundary. Examination of the direct effect of stimulus hue on the fMRI response did, however, reveal an enhanced response to stimuli near the blue–green category border. This was largest in hV4 and when subjects were engaged in active categorization of the stimulus hue. In contrast with a recent report from another laboratory (Bird, Berens, Horner, & Franklin, 2014), we found no evidence for a categorical representation of color in the middle frontal gyrus. A post hoc whole-brain analysis, however, revealed several regions in the frontal cortex with a categorical effect in the adaptation response. Overall, our results support the idea that the representation of color in the early visual cortex is primarily fine grained and does not reflect color categories. PMID:26024465

  10. Structural and functional alterations to rat medial prefrontal cortex following chronic restraint stress and recovery

    PubMed Central

    Goldwater, Deena S.; Pavlides, Constantine; Hunter, Richard G.; Bloss, Erik B.; Hof, Patrick R.; McEwen, Bruce S.; Morrison, John H.

    2009-01-01

    Chronic stress has been shown in animal models to result in altered dendritic morphology of pyramidal neurons of the medial prefrontal cortex (mPFC). It has been hypothesized that the stress-induced dendritic retractions and spine loss lead to disrupted connectivity that results in stress-induced functional impairment of mPFC. While these alterations were initially viewed as a neurodegenerative event, it has recently been established that stress induced dendritic alterations are reversible if animals are given time to recover from chronic stress. However, whether spine growth accompanies dendritic extension remains to be demonstrated. It is also not known if recovery-phase dendritic extension allows for re-establishment of functional capacity. The goal of this study, therefore, was to characterize the structural and functional effects of chronic stress and recovery on the infralimbic (IL) region of the rat mPFC. We compared neuronal morphology of layer V IL pyramidal neurons from animals subjected to 21 days of chronic restraint stress (CRS) to those that experienced CRS followed by a 21 day recovery period. Layer V pyramidal cell functional capacity was assessed by intra-IL long-term potentiation (LTP) both in the absence and presence of SKF38393, a dopamine receptor partial agonist and a known PFC LTP modulator. We found that stress-induced IL apical dendritic retraction and spine loss co-occur with receptor-mediated impairments to catecholaminergic facilitation of synaptic plasticity. We also found that while post-stress recovery did not reverse distal dendritic retraction, it did result in over-extension of proximal dendritic neuroarchitecture and spine growth as well as a full reversal of CRS-induced impairments to catecholaminergic-mediated synaptic plasticity. Our results support the hypothesis that disease-related PFC dysfunction is a consequence of network disruption secondary to altered structural and functional plasticity and that circuitry

  11. Sensory Deprivation during Early Postnatal Period Alters the Density of Interneurons in the Mouse Prefrontal Cortex

    PubMed Central

    Ueno, Hiroshi; Suemitsu, Shunsuke; Matsumoto, Yosuke; Okamoto, Motoi

    2015-01-01

    Early loss of one sensory system can cause improved function of other sensory systems. However, both the time course and neuronal mechanism of cross-modal plasticity remain elusive. Recent study using functional MRI in humans suggests a role of the prefrontal cortex (PFC) in cross-modal plasticity. Since this phenomenon is assumed to be associated with altered GABAergic inhibition in the PFC, we have tested the hypothesis that early postnatal sensory deprivation causes the changes of inhibitory neuronal circuit in different regions of the PFC of the mice. We determined the effects of sensory deprivation from birth to postnatal day 28 (P28) or P58 on the density of parvalbumin (PV), calbindin (CB), and calretinin (CR) neurons in the prelimbic, infralimbic, and dorsal anterior cingulate cortices. The density of PV and CB neurons was significantly increased in layer 5/6 (L5/6). Moreover, the density of CR neurons was higher in L2/3 in sensory deprived mice compared to intact mice. These changes were more prominent at P56 than at P28. These results suggest that long-term sensory deprivation causes the changes of intracortical inhibitory networks in the PFC and the changes of inhibitory networks in the PFC may contribute to cross-modal plasticity. PMID:26161272

  12. Early-Life Seizures Produce Lasting Alterations in the Structure and Function of the Prefrontal Cortex

    PubMed Central

    Kleen, Jonathan K.; Sesqué, Alexandre; Wu, Edie X.; Miller, Forrest A.; Hernan, Amanda E.; Holmes, Gregory L.; Scott, Rod C.

    2011-01-01

    Early-life seizures (ELS) are associated with long-term behavioral disorders including autism and ADHD, suggesting that frontal lobe structures may be permanently affected. We tested whether ELS produce structural alterations in the prefrontal cortex (PFC) and impair PFC-mediated function using an operant task of behavioral flexibility in rats. Adult rats that had been exposed to 75 flurothyl seizures during postnatal days 1–10 showed decreased behavioral flexibility in the task compared to controls over multiple behavioral sessions, measured as a lever preference asymmetry (p<0.001) and a decreased efficiency of attaining food rewards (p<0.05). ELS rats also showed an increased thickness of the PFC (p<0.01), primarily attributed to layer V (p<0.01) with no differences in cell density. These structural changes correlated with lever preference behavioral impairments (p<0.05). This study demonstrates that the consequences of ELS extend to the PFC, which may help explain the high prevalence of comorbid behavioral disorders following ELS. PMID:21873119

  13. Primary motor cortex of the parkinsonian monkey: altered neuronal responses to muscle stretch

    PubMed Central

    Pasquereau, Benjamin; Turner, Robert S.

    2013-01-01

    Exaggeration of the long-latency stretch reflex (LLSR) is a characteristic neurophysiologic feature of Parkinson's disease (PD) that contributes to parkinsonian rigidity. To explore one frequently-hypothesized mechanism, we studied the effects of fast muscle stretches on neuronal activity in the macaque primary motor cortex (M1) before and after the induction of parkinsonism by unilateral administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We compared results from the general population of M1 neurons and two antidromically-identified subpopulations: distant-projecting pyramidal-tract type neurons (PTNs) and intra-telecenphalic-type corticostriatal neurons (CSNs). Rapid rotations of elbow or wrist joints evoked short-latency responses in 62% of arm-related M1 neurons. As in PD, the late electromyographic responses that constitute the LLSR were enhanced following MPTP. This was accompanied by a shortening of M1 neuronal response latencies and a degradation of directional selectivity, but surprisingly, no increase in single unit response magnitudes. The results suggest that parkinsonism alters the timing and specificity of M1 responses to muscle stretch. Observation of an exaggerated LLSR with no change in the magnitude of proprioceptive responses in M1 is consistent with the idea that the increase in LLSR gain that contributes to parkinsonian rigidity is localized to the spinal cord. PMID:24324412

  14. Alteration of transcriptional networks in the entorhinal cortex after maternal immune activation and adolescent cannabinoid exposure.

    PubMed

    Hollins, Sharon L; Zavitsanou, Katerina; Walker, Frederick Rohan; Cairns, Murray J

    2016-08-01

    Maternal immune activation (MIA) and adolescent cannabinoid exposure (ACE) have both been identified as major environmental risk factors for schizophrenia. We examined the effects of these two risk factors alone, and in combination, on gene expression during late adolescence. Pregnant rats were exposed to the viral infection mimic polyriboinosinic-polyribocytidylic acid (poly I:C) on gestational day (GD) 15. Adolescent offspring received daily injections of the cannabinoid HU210 for 14days starting on postnatal day (PND) 35. Gene expression was examined in the left entorhinal cortex (EC) using mRNA microarrays. We found prenatal treatment with poly I:C alone, or HU210 alone, produced relatively minor changes in gene expression. However, following combined treatments, offspring displayed significant changes in transcription. This dramatic and persistent alteration of transcriptional networks enriched with genes involved in neurotransmission, cellular signalling and schizophrenia, was associated with a corresponding perturbation in the expression of small non-coding microRNA (miRNA). These results suggest that a combination of environmental exposures during development leads to significant genomic remodeling that disrupts maturation of the EC and its associated circuitry with important implications as the potential antecedents of memory and learning deficits in schizophrenia and other neuropsychiatric disorders. PMID:26923065

  15. Alteration of neurotrophins in the hippocampus and cerebral cortex of young rats exposed to chlorpyrifos and methyl parathion.

    PubMed

    Betancourt, Angela M; Filipov, Nikolay M; Carr, Russell L

    2007-12-01

    Exposure to either chlorpyrifos (CPS) or methyl parathion (MPS) results in the inhibition of acetylcholinesterase and leads to altered neuronal activity which normally regulates critical genes such as the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). The effects of postnatal exposure to CPS and MPS on the expression of messenger RNA (mRNA) and protein levels for NGF and BDNF were investigated in the frontal cerebral cortex (cortex) and hippocampus of rats. Oral administration of CPS (4.0 or 6.0 mg/kg), MPS (0.6 or 0.9 mg/kg), or the safflower oil vehicle was performed daily from postnatal day 10 (PND10) through PND20. Exposure induced significant effects on growth and cholinesterase activity. Increased NGF protein levels were observed in the hippocampus but not the cortex on PND20 with some reduction occurring on PND28 in both regions. These changes did not correlate with the changes in NGF mRNA. BDNF mRNA was increased in both regions on PND20 and PND28, whereas BDNF protein levels were increased on PND20. On PND12, c-fos mRNA, a marker of neuronal activation, was increased in both regions. Total BDNF protein was increased in the hippocampus but decreased in the cortex. No changes in NGF protein were observed. These results indicate that repeated developmental OP exposure during the postnatal period alters NGF and BDNF in the cortex and the hippocampus and the patterns of these alterations differ between regions. PMID:17893397

  16. Awake fMRI reveals a specialized region in dog temporal cortex for face processing.

    PubMed

    Dilks, Daniel D; Cook, Peter; Weiller, Samuel K; Berns, Helen P; Spivak, Mark; Berns, Gregory S

    2015-01-01

    Recent behavioral evidence suggests that dogs, like humans and monkeys, are capable of visual face recognition. But do dogs also exhibit specialized cortical face regions similar to humans and monkeys? Using functional magnetic resonance imaging (fMRI) in six dogs trained to remain motionless during scanning without restraint or sedation, we found a region in the canine temporal lobe that responded significantly more to movies of human faces than to movies of everyday objects. Next, using a new stimulus set to investigate face selectivity in this predefined candidate dog face area, we found that this region responded similarly to images of human faces and dog faces, yet significantly more to both human and dog faces than to images of objects. Such face selectivity was not found in dog primary visual cortex. Taken together, these findings: (1) provide the first evidence for a face-selective region in the temporal cortex of dogs, which cannot be explained by simple low-level visual feature extraction; (2) reveal that neural machinery dedicated to face processing is not unique to primates; and (3) may help explain dogs' exquisite sensitivity to human social cues. PMID:26290784

  17. Awake fMRI reveals a specialized region in dog temporal cortex for face processing

    PubMed Central

    Dilks, Daniel D.; Cook, Peter; Weiller, Samuel K.; Berns, Helen P.; Spivak, Mark

    2015-01-01

    Recent behavioral evidence suggests that dogs, like humans and monkeys, are capable of visual face recognition. But do dogs also exhibit specialized cortical face regions similar to humans and monkeys? Using functional magnetic resonance imaging (fMRI) in six dogs trained to remain motionless during scanning without restraint or sedation, we found a region in the canine temporal lobe that responded significantly more to movies of human faces than to movies of everyday objects. Next, using a new stimulus set to investigate face selectivity in this predefined candidate dog face area, we found that this region responded similarly to images of human faces and dog faces, yet significantly more to both human and dog faces than to images of objects. Such face selectivity was not found in dog primary visual cortex. Taken together, these findings: (1) provide the first evidence for a face-selective region in the temporal cortex of dogs, which cannot be explained by simple low-level visual feature extraction; (2) reveal that neural machinery dedicated to face processing is not unique to primates; and (3) may help explain dogs’ exquisite sensitivity to human social cues. PMID:26290784

  18. Structural and Functional Alterations in Right Dorsomedial Prefrontal and Left Insular Cortex Co-Localize in Adolescents with Aggressive Behaviour: An ALE Meta-Analysis

    PubMed Central

    Raschle, Nora Maria; Menks, Willeke Martine; Fehlbaum, Lynn Valérie; Tshomba, Ebongo; Stadler, Christina

    2015-01-01

    Recent neuroimaging work has suggested that aggressive behaviour (AB) is associated with structural and functional brain abnormalities in processes subserving emotion processing and regulation. However, most neuroimaging studies on AB to date only contain relatively small sample sizes. To objectively investigate the consistency of previous structural and functional research in adolescent AB, we performed a systematic literature review and two coordinate-based activation likelihood estimation meta-analyses on eight VBM and nine functional neuroimaging studies in a total of 783 participants (408 [224AB/184 controls] and 375 [215 AB/160 controls] for structural and functional analysis respectively). We found 19 structural and eight functional foci of significant alterations in adolescents with AB, mainly located within the emotion processing and regulation network (including orbitofrontal, dorsomedial prefrontal and limbic cortex). A subsequent conjunction analysis revealed that functional and structural alterations co-localize in right dorsomedial prefrontal cortex and left insula. Our results are in line with meta-analytic work as well as structural, functional and connectivity findings to date, all of which make a strong point for the involvement of a network of brain areas responsible for emotion processing and regulation, which is disrupted in AB. Increased knowledge about the behavioural and neuronal underpinnings of AB is crucial for the development of novel and implementation of existing treatment strategies. Longitudinal research studies will have to show whether the observed alterations are a result or primary cause of the phenotypic characteristics in AB. PMID:26339798

  19. Speech training alters tone frequency tuning in rat primary auditory cortex

    PubMed Central

    Engineer, Crystal T.; Perez, Claudia A.; Carraway, Ryan S.; Chang, Kevin Q.; Roland, Jarod L.; Kilgard, Michael P.

    2013-01-01

    Previous studies in both humans and animals have documented improved performance following discrimination training. This enhanced performance is often associated with cortical response changes. In this study, we tested the hypothesis that long-term speech training on multiple tasks can improve primary auditory cortex (A1) responses compared to rats trained on a single speech discrimination task or experimentally naïve rats. Specifically, we compared the percent of A1 responding to trained sounds, the responses to both trained and untrained sounds, receptive field properties of A1 neurons, and the neural discrimination of pairs of speech sounds in speech trained and naïve rats. Speech training led to accurate discrimination of consonant and vowel sounds, but did not enhance A1 response strength or the neural discrimination of these sounds. Speech training altered tone responses in rats trained on six speech discrimination tasks but not in rats trained on a single speech discrimination task. Extensive speech training resulted in broader frequency tuning, shorter onset latencies, a decreased driven response to tones, and caused a shift in the frequency map to favor tones in the range where speech sounds are the loudest. Both the number of trained tasks and the number of days of training strongly predict the percent of A1 responding to a low frequency tone. Rats trained on a single speech discrimination task performed less accurately than rats trained on multiple tasks and did not exhibit A1 response changes. Our results indicate that extensive speech training can reorganize the A1 frequency map, which may have downstream consequences on speech sound processing. PMID:24344364

  20. Molecularly Defined Circuitry Reveals Input-Output Segregation in Deep Layers of the Medial Entorhinal Cortex

    PubMed Central

    Sürmeli, Gülşen; Marcu, Daniel Cosmin; McClure, Christina; Garden, Derek L.F.; Pastoll, Hugh; Nolan, Matthew F.

    2015-01-01

    Summary Deep layers of the medial entorhinal cortex are considered to relay signals from the hippocampus to other brain structures, but pathways for routing of signals to and from the deep layers are not well established. Delineating these pathways is important for a circuit level understanding of spatial cognition and memory. We find that neurons in layers 5a and 5b have distinct molecular identities, defined by the transcription factors Etv1 and Ctip2, and divergent targets, with extensive intratelencephalic projections originating in layer 5a, but not 5b. This segregation of outputs is mirrored by the organization of glutamatergic input from stellate cells in layer 2 and from the hippocampus, with both preferentially targeting layer 5b over 5a. Our results suggest a molecular and anatomical organization of input-output computations in deep layers of the MEC, reveal precise translaminar microcircuitry, and identify molecularly defined pathways for spatial signals to influence computation in deep layers. PMID:26606996

  1. Altered structural and functional connectivity between the bilateral primary motor cortex in unilateral subcortical stroke

    PubMed Central

    Zhang, Yong; Li, Kuang-Shi; Ning, Yan-Zhe; Fu, Cai-Hong; Liu, Hong-Wei; Han, Xiao; Cui, Fang-Yuan; Ren, Yi; Zou, Yi-Huai

    2016-01-01

    Abstract A large number of functional imaging studies have focused on the understanding of motor-related neural activities after ischemic stroke. However, the knowledge is still limited in the structural and functional changes of the interhemispheric connections of the bilateral primary motor cortices (M1s) and their potential influence on motor function recovery following stroke. Twenty-four stroke patients with right hemispheric subcortical infarcts and 25 control subjects were recruited to undergo multimodal magnetic resonance imaging examinations. Structural impairments between the bilateral M1s were measured by fractional anisotropy. Functional changes of the bilateral M1s were assessed via M1-M1 resting-state functional connectivity. Task-evoked activation analysis was applied to identify the roles of the bilateral hemispheres in motor function recovery. Compared with control subjects, unilateral subcortical stroke patients revealed significantly decreased fractional anisotropy and functional connectivity between the bilateral M1s. Stroke patients also revealed higher activations in multiple brain regions in both hemispheres and that more regions were located in the contralesional hemisphere. This study increased our understanding of the structural and functional alterations between the bilateral M1s that occur in unilateral subcortical stroke and provided further evidence for the compensatory role played by the contralesional hemisphere for these alterations during motor function recovery. PMID:27495109

  2. Plasticity and alterations of trunk motor cortex following spinal cord injury and non-stepping robot and treadmill training.

    PubMed

    Oza, Chintan S; Giszter, Simon F

    2014-06-01

    Spinal cord injury (SCI) induces significant reorganization in the sensorimotor cortex. Trunk motor control is crucial for postural stability and propulsion after low thoracic SCI and several rehabilitative strategies are aimed at trunk stability and control. However little is known about the effect of SCI and rehabilitation training on trunk motor representations and their plasticity in the cortex. Here, we used intracortical microstimulation to examine the motor cortex representations of the trunk in relation to other representations in three groups of chronic adult complete low thoracic SCI rats: chronic untrained, treadmill trained (but 'non-stepping') and robot assisted treadmill trained (but 'non-stepping') and compared with a group of normal rats. Our results demonstrate extensive and significant reorganization of the trunk motor cortex after chronic adult SCI which includes (1) expansion and rostral displacement of trunk motor representations in the cortex, with the greatest significant increase observed for rostral (to injury) trunk, and slight but significant increase of motor representation for caudal (to injury) trunk at low thoracic levels in all spinalized rats; (2) significant changes in coactivation and the synergy representation (or map overlap) between different trunk muscles and between trunk and forelimb. No significant differences were observed between the groups of transected rats for the majority of the comparisons. However, (3) the treadmill and robot-treadmill trained groups of rats showed a further small but significant rostral migration of the trunk representations, beyond the shift caused by transection alone. We conclude that SCI induces a significant reorganization of the trunk motor cortex, which is not qualitatively altered by non-stepping treadmill training or non-stepping robot assisted treadmill training, but is shifted further from normal topography by the training. This shift may potentially make subsequent rehabilitation with

  3. Alterations in neuronal morphology in infralimbic cortex predict resistance to fear extinction following acute stress

    PubMed Central

    Moench, Kelly M.; Maroun, Mouna; Kavushansky, Alexandra; Wellman, Cara

    2015-01-01

    Dysfunction in corticolimbic circuits that mediate the extinction of learned fear responses is thought to underlie the perseveration of fear in stress-related psychopathologies, including post-traumatic stress disorder. Chronic stress produces dendritic hypertrophy in basolateral amygdala (BLA) and dendritic hypotrophy in medial prefrontal cortex, whereas acute stress leads to hypotrophy in both BLA and prelimbic cortex. Additionally, both chronic and acute stress impair extinction retrieval. Here, we examined the effects of a single elevated platform stress on extinction learning and dendritic morphology in infralimbic cortex, a region considered to be critical for extinction. Acute stress produced resistance to extinction, as well as dendritic retraction in infralimbic cortex. Spine density on apical and basilar terminal branches was unaffected by stress. However, animals that underwent conditioning and extinction had decreased spine density on apical terminal branches. Thus, whereas dendritic morphology in infralimbic cortex appears to be particularly sensitive to stress, changes in spines may more sensitively reflect learning. Further, in stressed rats that underwent conditioning and extinction, the level of extinction learning was correlated with spine densities, in that rats with poorer extinction retrieval had more immature spines and fewer thin spines than rats with better extinction retrieval, suggesting that stress may have impaired learning-related spine plasticity. These results may have implications for understanding the role of medial prefrontal cortex in learning deficits associated with stress-related pathologies. PMID:26844245

  4. Alterations in neuronal morphology in infralimbic cortex predict resistance to fear extinction following acute stress.

    PubMed

    Moench, Kelly M; Maroun, Mouna; Kavushansky, Alexandra; Wellman, Cara

    2016-06-01

    Dysfunction in corticolimbic circuits that mediate the extinction of learned fear responses is thought to underlie the perseveration of fear in stress-related psychopathologies, including post-traumatic stress disorder. Chronic stress produces dendritic hypertrophy in basolateral amygdala (BLA) and dendritic hypotrophy in medial prefrontal cortex, whereas acute stress leads to hypotrophy in both BLA and prelimbic cortex. Additionally, both chronic and acute stress impair extinction retrieval. Here, we examined the effects of a single elevated platform stress on extinction learning and dendritic morphology in infralimbic cortex, a region considered to be critical for extinction. Acute stress produced resistance to extinction, as well as dendritic retraction in infralimbic cortex. Spine density on apical and basilar terminal branches was unaffected by stress. However, animals that underwent conditioning and extinction had decreased spine density on apical terminal branches. Thus, whereas dendritic morphology in infralimbic cortex appears to be particularly sensitive to stress, changes in spines may more sensitively reflect learning. Further, in stressed rats that underwent conditioning and extinction, the level of extinction learning was correlated with spine densities, in that rats with poorer extinction retrieval had more immature spines and fewer thin spines than rats with better extinction retrieval, suggesting that stress may have impaired learning-related spine plasticity. These results may have implications for understanding the role of medial prefrontal cortex in learning deficits associated with stress-related pathologies. PMID:26844245

  5. Voxel-based morphometry reveals reduced grey matter volume in the temporal cortex of developmental prosopagnosics

    PubMed Central

    Furl, Nicholas; Draganski, Bogdan; Weiskopf, Nikolaus; Stevens, John; Tan, Geoffrey Chern-Yee; Driver, Jon; Dolan, Ray J.; Duchaine, Bradley

    2009-01-01

    Individuals with developmental prosopagnosia exhibit severe and lasting difficulties in recognizing faces despite the absence of apparent brain abnormalities. We used voxel-based morphometry to investigate whether developmental prosopagnosics show subtle neuroanatomical differences from controls. An analysis based on segmentation of T1-weighted images from 17 developmental prosopagnosics and 18 matched controls revealed that they had reduced grey matter volume in the right anterior inferior temporal lobe and in the superior temporal sulcus/middle temporal gyrus bilaterally. In addition, a voxel-based morphometry analysis based on the segmentation of magnetization transfer parameter maps showed that developmental prosopagnosics also had reduced grey matter volume in the right middle fusiform gyrus and the inferior temporal gyrus. Multiple regression analyses relating three distinct behavioural component scores, derived from a principal component analysis, to grey matter volume revealed an association between a component related to facial identity and grey matter volume in the left superior temporal sulcus/middle temporal gyrus plus the right middle fusiform gyrus/inferior temporal gyrus. Grey matter volume in the lateral occipital cortex was associated with component scores related to object recognition tasks. Our results demonstrate that developmental prosopagnosics have reduced grey matter volume in several regions known to respond selectively to faces and provide new evidence that integrity of these areas relates to face recognition ability. PMID:19887506

  6. A 'complex' of brain metabolites distinguish altered chemistry in the cingulate cortex of episodic migraine patients.

    PubMed

    Becerra, L; Veggeberg, R; Prescot, A; Jensen, J E; Renshaw, P; Scrivani, S; Spierings, E L H; Burstein, R; Borsook, D

    2016-01-01

    Despite the prevalence of migraine, the pathophysiology of the disease remains unclear. Current understanding of migraine has alluded to the possibility of a hyperexcitable brain. The aim of the current study is to investigate human brain metabolite differences in the anterior cingulate cortex (ACC) during the interictal phase in migraine patients. We hypothesized that there may be differences in levels of excitatory neurotransmitters and/or their derivatives in the migraine cohort in support of the theory of hyperexcitability in migraine. 2D J-resolved proton magnetic resonance spectroscopy ((1)H-MRS) data were acquired on a 3 Tesla (3 T) MRI from a voxel placed over the ACC of 32 migraine patients (MP; 23 females, 9 males, age 33 ± 9.6 years) and 33 healthy controls (HC; 25 females, 8 males, age 32 ± 9.6 years). Amplitude correlation matrices were constructed for each subject to evaluate metabolite discriminability. ProFit-estimated metabolite peak areas were normalized to a water reference signal to assess subject differences. The initial analysis of variance (ANOVA) was performed to test for group differences for all metabolites/creatine (Cre) ratios between healthy controls and migraineurs but showed no statistically significant differences. In addition, we used a multivariate approach to distinguish migraineurs from healthy subjects based on the metabolite/Cre ratio. A quadratic discriminant analysis (QDA) model was used to identify 3 metabolite ratios sufficient to minimize minimum classification error (MCE). The 3 selected metabolite ratios were aspartate (Asp)/Cre, N-acetyl aspartate (NAA)/Cre, and glutamine (Gln)/Cre. These findings are in support of a 'complex' of metabolite alterations, which may underlie changes in neuronal chemistry in the migraine brain. Furthermore, the parallel changes in the three-metabolite 'complex' may confer more subtle but biological processes that are ongoing. The data also support the current theory that the

  7. Alterations of motor performance and brain cortex mitochondrial function during ethanol hangover.

    PubMed

    Bustamante, Juanita; Karadayian, Analia G; Lores-Arnaiz, Silvia; Cutrera, Rodolfo A

    2012-08-01

    Ethanol has been known to affect various behavioral parameters in experimental animals, even several hours after ethanol (EtOH) is absent from blood circulation, in the period known as hangover. The aim of this study was to assess the effects of acute ethanol hangover on motor performance in association with the brain cortex energetic metabolism. Evaluation of motor performance and brain cortex mitochondrial function during alcohol hangover was performed in mice 6 hours after a high ethanol dose (hangover onset). Animals were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Ethanol hangover group showed a bad motor performance compared with control animals (p < .05). Oxygen uptake in brain cortex mitochondria from hangover animals showed a 34% decrease in the respiratory control rate as compared with the control group. Mitochondrial complex activities were decreased being the complex I-III the less affected by the hangover condition; complex II-III was markedly decreased by ethanol hangover showing 50% less activity than controls. Complex IV was 42% decreased as compared with control animals. Hydrogen peroxide production was 51% increased in brain cortex mitochondria from the hangover group, as compared with the control animals. Quantification of the mitochondrial transmembrane potential indicated that ethanol injected animals presented 17% less ability to maintain the polarized condition as compared with controls. These results indicate that a clear decrease in proton motive force occurs in brain cortex mitochondria during hangover conditions. We can conclude that a decreased motor performance observed in the hangover group of animals could be associated with brain cortex mitochondrial dysfunction and the resulting impairment of its energetic metabolism. PMID:22608205

  8. Cortical connectivity maps reveal anatomically distinct areas in the parietal cortex of the rat

    PubMed Central

    Wilber, Aaron A.; Clark, Benjamin J.; Demecha, Alexis J.; Mesina, Lilia; Vos, Jessica M.; McNaughton, Bruce L.

    2015-01-01

    A central feature of theories of spatial navigation involves the representation of spatial relationships between objects in complex environments. The parietal cortex has long been linked to the processing of spatial visual information and recent evidence from single unit recording in rodents suggests a role for this region in encoding egocentric and world-centered frames. The rat parietal cortex can be subdivided into four distinct rostral-caudal and medial-lateral regions, which includes a zone previously characterized as secondary visual cortex. At present, very little is known regarding the relative connectivity of these parietal subdivisions. Thus, we set out to map the connectivity of the entire anterior-posterior and medial-lateral span of this region. To do this we used anterograde and retrograde tracers in conjunction with open source neuronal segmentation and tracer detection tools to generate whole brain connectivity maps of parietal inputs and outputs. Our present results show that inputs to the parietal cortex varied significantly along the medial-lateral, but not the rostral-caudal axis. Specifically, retrosplenial connectivity is greater medially, but connectivity with visual cortex, though generally sparse, is more significant laterally. Finally, based on connection density, the connectivity between parietal cortex and hippocampus is indirect and likely achieved largely via dysgranular retrosplenial cortex. Thus, similar to primates, the parietal cortex of rats exhibits a difference in connectivity along the medial-lateral axis, which may represent functionally distinct areas. PMID:25601828

  9. Natural grouping of neural responses reveals spatially segregated clusters in prearcuate cortex

    PubMed Central

    Kiani, Roozbeh; Cueva, Christopher J.; Reppas, John B.; Peixoto, Diogo; Ryu, Stephen I.; Newsome, William T.

    2015-01-01

    Summary A fundamental challenge in studying the frontal lobe is to parcellate this cortex into ‘natural’ functional modules despite the absence of topographic maps, which are so helpful in primary sensory areas. Here we show that unsupervised clustering algorithms, applied to 96-channel array recordings from prearcuate gyrus, reveal spatially segregated sub-networks that remain stable across behavioral contexts. Looking for natural groupings of neurons based on response similarities, we discovered that the recorded area includes at least two spatially segregated sub-networks that differentially represent behavioral choice and reaction time. Importantly, these sub-networks are detectable during different behavioral states, and surprisingly, are defined better by ‘common noise’ than task-evoked responses. Our parcellation process works well on ‘spontaneous’ neural activity, and thus bears strong resemblance to the identification of ‘resting state’ networks in fMRI datasets. Our results demonstrate a powerful new tool for identifying cortical sub-networks by objective classification of simultaneously recorded electrophysiological activity. PMID:25728571

  10. Noradrenaline depletion blocks behavioral sparing and alters cortical morphogenesis after neonatal frontal cortex damage in rats.

    PubMed

    Kolb, B; Sutherland, R J

    1992-06-01

    The possibility that cortical noradrenaline (NA) is necessary for sparing of function that occurs after neonatal frontal cortex damage was examined. Spatial localization by rats with frontal cortex damage on postnatal day 7 (P7) was better than that by rats with similar damage sustained as adults. The sparing was abolished in rats depleted of cortical NA by means of neonatal 6-hydroxydopamine (6HDA) administration. The blockade of sparing in the P7 frontal operates was associated with a smaller brain, thinner cortex, and reduced cortical dendritic branching relative to saline-treated P7 frontal operates. NA depletion alone in unoperated rats did not affect spatial learning but did reduce brain size and dendritic branching. Rats with frontal lesions on P4 did not show sparing of spatial localization, and 6HDA administration had no additional behavioral effect. Overall, these data are consistent with the notion that NA has some general function in maintaining some forms of plasticity in posterior cortex. PMID:1607943

  11. Feedforward and quick recurrent processes in early visual cortex revealed by TMS?

    PubMed

    de Graaf, Tom A; Goebel, Rainer; Sack, Alexander T

    2012-07-01

    Transcranial magnetic stimulation (TMS) can be applied to occipital cortex to abolish (conscious) perception of visual stimuli. TMS research has revealed several time windows of masking relative to visual stimulus onset, most consistently a time window around 100ms post-stimulus. However, the exact nature of visual processing in this 'classical' time window, e.g. whether it represents the feedforward processing of the visual information, or rather a feedback projection from higher visual areas, remains unclear. Here, we used TMS to mask in the same participants two types of stimuli of different complexities (orientation Gratings and Faces) over different time windows. Interestingly, the masking functions were not the same for both stimulus types. We found an earlier peak masking latency for orientation stimuli, and a slower recovery for Faces. In a second, follow-up experiment, we superimposed both types of stimuli to create one composite stimulus set. Depending on the instruction, participants could then perform orientation or face discrimination tasks on the exact same stimuli. In addition, for each participant, stimuli were calibrated to equate task difficulties. The peak masking latency was now identical for both tasks, but the masking function revealed again a slower recovery during the face discrimination task, suggesting top-down (recurrent) effects in the second half of the masking function. Hence, rather than this masking window reflecting either feedforward or feedback processing, the early part of what is traditionally considered one masking window may reflect feedforward processing, while the latter part may already reflect recurrent processing. These findings shed new light on recurrent models of vision and related theoretical accounts of visual awareness. PMID:22032946

  12. Computational Image Analysis Reveals Intrinsic Multigenerational Differences between Anterior and Posterior Cerebral Cortex Neural Progenitor Cells.

    PubMed

    Winter, Mark R; Liu, Mo; Monteleone, David; Melunis, Justin; Hershberg, Uri; Goderie, Susan K; Temple, Sally; Cohen, Andrew R

    2015-10-13

    Time-lapse microscopy can capture patterns of development through multiple divisions for an entire clone of proliferating cells. Images are taken every few minutes over many days, generating data too vast to process completely by hand. Computational analysis of this data can benefit from occasional human guidance. Here we combine improved automated algorithms with minimized human validation to produce fully corrected segmentation, tracking, and lineaging results with dramatic reduction in effort. A web-based viewer provides access to data and results. The improved approach allows efficient analysis of large numbers of clones. Using this method, we studied populations of progenitor cells derived from the anterior and posterior embryonic mouse cerebral cortex, each growing in a standardized culture environment. Progenitors from the anterior cortex were smaller, less motile, and produced smaller clones compared to those from the posterior cortex, demonstrating cell-intrinsic differences that may contribute to the areal organization of the cerebral cortex. PMID:26344906

  13. Computational Image Analysis Reveals Intrinsic Multigenerational Differences between Anterior and Posterior Cerebral Cortex Neural Progenitor Cells

    PubMed Central

    Winter, Mark R.; Liu, Mo; Monteleone, David; Melunis, Justin; Hershberg, Uri; Goderie, Susan K.; Temple, Sally; Cohen, Andrew R.

    2015-01-01

    Summary Time-lapse microscopy can capture patterns of development through multiple divisions for an entire clone of proliferating cells. Images are taken every few minutes over many days, generating data too vast to process completely by hand. Computational analysis of this data can benefit from occasional human guidance. Here we combine improved automated algorithms with minimized human validation to produce fully corrected segmentation, tracking, and lineaging results with dramatic reduction in effort. A web-based viewer provides access to data and results. The improved approach allows efficient analysis of large numbers of clones. Using this method, we studied populations of progenitor cells derived from the anterior and posterior embryonic mouse cerebral cortex, each growing in a standardized culture environment. Progenitors from the anterior cortex were smaller, less motile, and produced smaller clones compared to those from the posterior cortex, demonstrating cell-intrinsic differences that may contribute to the areal organization of the cerebral cortex. PMID:26344906

  14. Altered Functional Protein Networks in the Prefrontal Cortex and Amygdala of Victims of Suicide

    PubMed Central

    Kékesi, Katalin Adrienna; Juhász, Gábor; Simor, Attila; Gulyássy, Péter; Szegő, Éva Mónika; Hunyadi-Gulyás, Éva; Darula, Zsuzsanna; Medzihradszky, Katalin F.; Palkovits, Miklós; Penke, Botond; Czurkó, András

    2012-01-01

    Probing molecular brain mechanisms related to increased suicide risk is an important issue in biological psychiatry research. Gene expression studies on post mortem brains indicate extensive changes prior to a successful suicide attempt; however, proteomic studies are scarce. Thus, we performed a DIGE proteomic analysis of post mortem tissue samples from the prefrontal cortex and amygdala of suicide victims to identify protein changes and biomarker candidates of suicide. Among our matched spots we found 46 and 16 significant differences in the prefrontal cortex and amygdala, respectively; by using the industry standard t test and 1.3 fold change as cut off for significance. Because of the risk of false discoveries (FDR) in these data, we also made FDR adjustment by calculating the q-values for all the t tests performed and by using 0.06 and 0.4 as alpha thresholds we reduced the number of significant spots to 27 and 9 respectively. From these we identified 59 proteins in the cortex and 11 proteins in the amygdala. These proteins are related to biological functions and structures such as metabolism, the redox system, the cytoskeleton, synaptic function, and proteolysis. Thirteen of these proteins (CBR1, DPYSL2, EFHD2, FKBP4, GFAP, GLUL, HSPA8, NEFL, NEFM, PGAM1, PRDX6, SELENBP1 and VIM,) have already been suggested to be biomarkers of psychiatric disorders at protein or genome level. We also pointed out 9 proteins that changed in both the amygdala and the cortex, and from these, GFAP, INA, NEFL, NEFM and TUBA1 are interacting cytoskeletal proteins that have a functional connection to glutamate, GABA, and serotonin receptors. Moreover, ACTB, CTSD and GFAP displayed opposite changes in the two examined brain structures that might be a suitable characteristic for brain imaging studies. The opposite changes of ACTB, CTSD and GFAP in the two brain structures were validated by western blot analysis. PMID:23272063

  15. Altered temporal dynamics of neural adaptation in the aging human auditory cortex.

    PubMed

    Herrmann, Björn; Henry, Molly J; Johnsrude, Ingrid S; Obleser, Jonas

    2016-09-01

    Neural response adaptation plays an important role in perception and cognition. Here, we used electroencephalography to investigate how aging affects the temporal dynamics of neural adaptation in human auditory cortex. Younger (18-31 years) and older (51-70 years) normal hearing adults listened to tone sequences with varying onset-to-onset intervals. Our results show long-lasting neural adaptation such that the response to a particular tone is a nonlinear function of the extended temporal history of sound events. Most important, aging is associated with multiple changes in auditory cortex; older adults exhibit larger and less variable response magnitudes, a larger dynamic response range, and a reduced sensitivity to temporal context. Computational modeling suggests that reduced adaptation recovery times underlie these changes in the aging auditory cortex and that the extended temporal stimulation has less influence on the neural response to the current sound in older compared with younger individuals. Our human electroencephalography results critically narrow the gap to animal electrophysiology work suggesting a compensatory release from cortical inhibition accompanying hearing loss and aging. PMID:27459921

  16. Lower Expression of Glutamic Acid Decarboxylase 67 in the Prefrontal Cortex in Schizophrenia: Contribution of Altered Regulation by Zif268

    PubMed Central

    Kimoto, Sohei; Bazmi, H. Holly; Lewis, David A.

    2015-01-01

    Objective Cognitive deficits of schizophrenia may be due at least in part to lower expression of the 67-kDa isoform of glutamic acid decarboxylase (GAD67), a key enzyme for GABA synthesis, in the dorsolateral prefrontal cortex of individuals with schizophrenia. However, little is known about the molecular regulation of lower cortical GAD67 levels in schizophrenia. The GAD67 promoter region contains a conserved Zif268 binding site, and Zif268 activation is accompanied by increased GAD67 expression. Thus, altered expression of the immediate early gene Zif268 may contribute to lower levels of GAD67 mRNA in the dorsolateral prefrontal cortex in schizophrenia. Method The authors used polymerase chain reaction to quantify GAD67 and Zif268 mRNA levels in dorsolateral pre-frontal cortex area 9 from 62 matched pairs of schizophrenia and healthy comparison subjects, and in situ hybridization to assess Zif268 expression at laminar and cellular levels of resolution. The effects of potentially confounding variables were assessed in human subjects, and the effects of antipsychotic treatments were tested in antipsychotic-exposed monkeys. The specificity of the Zif268 findings was assessed by quantifying mRNA levels for other immediate early genes. Results GAD67 and Zif268 mRNA levels were significantly lower and were positively correlated in the schizophrenia subjects. Both Zif268 mRNA-positive neuron density and Zif268 mRNA levels per neuron were significantly lower in the schizophrenia subjects. These findings were robust to the effects of the confounding variables examined and differed from other immediate early genes. Conclusions Deficient Zif268 mRNA expression may contribute to lower cortical GAD67 levels in schizophrenia, suggesting a potential mechanistic basis for altered cortical GABA synthesis and impaired cognition in schizophrenia. PMID:24874453

  17. Physical exercise improves brain cortex and cerebellum mitochondrial bioenergetics and alters apoptotic, dynamic and auto(mito)phagy markers.

    PubMed

    Marques-Aleixo, I; Santos-Alves, E; Balça, M M; Rizo-Roca, D; Moreira, P I; Oliveira, P J; Magalhães, J; Ascensão, A

    2015-08-20

    We here investigate the effects of two exercise modalities (endurance treadmill training-TM and voluntary free-wheel activity-FW) on the brain cortex and cerebellum mitochondrial bioenergetics, permeability transition pore (mPTP), oxidative stress, as well as on proteins involved in mitochondrial biogenesis, apoptosis, and quality control. Eighteen male rats were assigned to sedentary-SED, TM and FW groups. Behavioral alterations and ex vivo brain mitochondrial function endpoints were assessed. Proteins involved in oxidative phosphorylation (OXPHOS, including the adenine nucleotide translocator), oxidative stress markers and regulatory proteins (SIRT3, p66shc, UCP2, carbonyls, MDA, -SH, aconitase, Mn-SOD), as well as proteins involved in mitochondrial biogenesis (PGC1α, TFAM) were evaluated. Apoptotic signaling was measured through quantifying caspase 3, 8 and 9-like activities, Bax, Bcl2, CypD, and cofilin expression. Mitochondrial dynamics (Mfn1/2, OPA1 and DRP1) and auto(mito)phagy (LC3II, Beclin1, Pink1, Parkin, p62)-related proteins were also measured by Western blotting. Only the TM exercise group showed increased spontaneous alternation and exploratory activity. Both exercise regimens improved mitochondrial respiratory activity, increased OXPHOS complexes I, III and V subunits in both brain subareas and decreased oxidative stress markers. Increased resistance to mPTP and decreased apoptotic signaling were observed in the brain cortex from TM and in the cerebellum from TM and FW groups. Also, exercise increased the expression of proteins involved in mitochondrial biogenesis, autophagy and fusion, simultaneous with decreased expression of mitochondrial fission-related protein DRP1. In conclusion, physical exercise improves brain cortex and cerebellum mitochondrial function, decreasing oxidative stress and apoptotic related markers. It is also possible that favorable alterations in mitochondrial biogenesis, dynamics and autophagy signaling induced by exercise

  18. Sleep Deprivation Reveals Altered Brain Perfusion Patterns in Somnambulism

    PubMed Central

    Dang-Vu, Thien Thanh; Zadra, Antonio; Labelle, Marc-Antoine; Petit, Dominique; Soucy, Jean-Paul; Montplaisir, Jacques

    2015-01-01

    Background Despite its high prevalence, relatively little is known about the pathophysiology of somnambulism. Increasing evidence indicates that somnambulism is associated with functional abnormalities during wakefulness and that sleep deprivation constitutes an important drive that facilitates sleepwalking in predisposed patients. Here, we studied the neural mechanisms associated with somnambulism using Single Photon Emission Computed Tomography (SPECT) with 99mTc-Ethylene Cysteinate Dimer (ECD), during wakefulness and after sleep deprivation. Methods Ten adult sleepwalkers and twelve controls with normal sleep were scanned using 99mTc-ECD SPECT in morning wakefulness after a full night of sleep. Eight of the sleepwalkers and nine of the controls were also scanned during wakefulness after a night of total sleep deprivation. Between-group comparisons of regional cerebral blood flow (rCBF) were performed to characterize brain activity patterns during wakefulness in sleepwalkers. Results During wakefulness following a night of total sleep deprivation, rCBF was decreased bilaterally in the inferior temporal gyrus in sleepwalkers compared to controls. Conclusions Functional neural abnormalities can be observed during wakefulness in somnambulism, particularly after sleep deprivation and in the inferior temporal cortex. Sleep deprivation thus not only facilitates the occurrence of sleepwalking episodes, but also uncovers patterns of neural dysfunction that characterize sleepwalkers during wakefulness. PMID:26241047

  19. Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones

    PubMed Central

    Herculano-Houzel, Suzana; Watson, Charles; Paxinos, George

    2013-01-01

    How are neurons distributed along the cortical surface and across functional areas? Here we use the isotropic fractionator (Herculano-Houzel and Lent, 2005) to analyze the distribution of neurons across the entire isocortex of the mouse, divided into 18 functional areas defined anatomically. We find that the number of neurons underneath a surface area (the N/A ratio) varies 4.5-fold across functional areas and neuronal density varies 3.2-fold. The face area of S1 contains the most neurons, followed by motor cortex and the primary visual cortex. Remarkably, while the distribution of neurons across functional areas does not accompany the distribution of surface area, it mirrors closely the distribution of cortical volumes—with the exception of the visual areas, which hold more neurons than expected for their volume. Across the non-visual cortex, the volume of individual functional areas is a shared linear function of their number of neurons, while in the visual areas, neuronal densities are much higher than in all other areas. In contrast, the 18 functional areas cluster into three different zones according to the relationship between the N/A ratio and cortical thickness and neuronal density: these three clusters can be called visual, sensory, and, possibly, associative. These findings are remarkably similar to those in the human cerebral cortex (Ribeiro et al., 2013) and suggest that, like the human cerebral cortex, the mouse cerebral cortex comprises two zones that differ in how neurons form the cortical volume, and three zones that differ in how neurons are distributed underneath the cortical surface, possibly in relation to local differences in connectivity through the white matter. Our results suggest that beyond the developmental divide into visual and non-visual cortex, functional areas initially share a common distribution of neurons along the parenchyma that become delimited into functional areas according to the pattern of connectivity established later

  20. LSD alters eyes-closed functional connectivity within the early visual cortex in a retinotopic fashion.

    PubMed

    Roseman, Leor; Sereno, Martin I; Leech, Robert; Kaelen, Mendel; Orban, Csaba; McGonigle, John; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin L

    2016-08-01

    The question of how spatially organized activity in the visual cortex behaves during eyes-closed, lysergic acid diethylamide (LSD)-induced "psychedelic imagery" (e.g., visions of geometric patterns and more complex phenomena) has never been empirically addressed, although it has been proposed that under psychedelics, with eyes-closed, the brain may function "as if" there is visual input when there is none. In this work, resting-state functional connectivity (RSFC) data was analyzed from 10 healthy subjects under the influence of LSD and, separately, placebo. It was suspected that eyes-closed psychedelic imagery might involve transient local retinotopic activation, of the sort typically associated with visual stimulation. To test this, it was hypothesized that, under LSD, patches of the visual cortex with congruent retinotopic representations would show greater RSFC than incongruent patches. Using a retinotopic localizer performed during a nondrug baseline condition, nonadjacent patches of V1 and V3 that represent the vertical or the horizontal meridians of the visual field were identified. Subsequently, RSFC between V1 and V3 was measured with respect to these a priori identified patches. Consistent with our prior hypothesis, the difference between RSFC of patches with congruent retinotopic specificity (horizontal-horizontal and vertical-vertical) and those with incongruent specificity (horizontal-vertical and vertical-horizontal) increased significantly under LSD relative to placebo, suggesting that activity within the visual cortex becomes more dependent on its intrinsic retinotopic organization in the drug condition. This result may indicate that under LSD, with eyes-closed, the early visual system behaves as if it were seeing spatially localized visual inputs. Hum Brain Mapp 37:3031-3040, 2016. © 2016 Wiley Periodicals, Inc. PMID:27125770

  1. Sleep loss alters synaptic and intrinsic neuronal properties in mouse prefrontal cortex

    PubMed Central

    Winters, Bradley D.; Huang, Yanhua H.; Dong, Yan; Krueger, James M.

    2011-01-01

    Despite sleep-loss-induced cognitive deficits, little is known about the cellular adaptations that occur with sleep loss. We used brain slices obtained from mice that were sleep deprived for 8 h to examine the electrophysiological effects of sleep deprivation (SD). We employed a modified pedestal (flowerpot) over water method for SD that eliminated rapid eye movement sleep and greatly reduced non-rapid eye movement sleep. In layer V/VI pyramidal cells of the medial prefrontal cortex, miniature excitatory post synaptic current amplitude was slightly reduced, miniature inhibitory post synaptic currents were unaffected, and intrinsic membrane excitability was increased after SD. PMID:21962531

  2. Physical exercise mitigates doxorubicin-induced brain cortex and cerebellum mitochondrial alterations and cellular quality control signaling.

    PubMed

    Marques-Aleixo, I; Santos-Alves, E; Balça, M M; Moreira, P I; Oliveira, P J; Magalhães, J; Ascensão, A

    2016-01-01

    Doxorubicin (DOX) is a highly effective anti-neoplastic agent, whose clinical use is limited by a dose-dependent mitochondrial toxicity in non-target tissues, including the brain. Here we analyzed the effects of distinct exercise modalities (12-week endurance treadmill-TM or voluntary free-wheel activity-FW) performed before and during sub-chronic DOX treatment on brain cortex and cerebellum mitochondrial bioenergetics, oxidative stress, permeability transition pore (mPTP), and proteins involved in mitochondrial biogenesis, apoptosis and auto(mito)phagy. Male Sprague-Dawley rats were divided into saline-sedentary (SAL+SED), DOX-sedentary (DOX+SED; 7-week DOX (2 mg · kg(-1)per week)), DOX+TM and DOX+FW. Animal behavior and post-sacrifice mitochondrial function were assessed. Oxidative phosphorylation (OXPHOS) subunits, oxidative stress markers or related proteins (SIRT3, p66shc, UCP2, carbonyls, MDA, -SH, aconitase, Mn-SOD), as well as proteins involved in mitochondrial biogenesis (PGC1α and TFAM) were evaluated. Apoptotic signaling was followed through caspases 3, 8 and 9-like activities, Bax, Bcl2, CypD, ANT and cofilin expression. Mitochondrial dynamics (Mfn1, Mfn2, OPA1 and DRP1) and auto(mito)phagy (LC3II, Beclin1, Pink1, Parkin and p62)-related proteins were measured by semi-quantitative Western blotting. DOX impaired behavioral performance, mitochondrial function, including lower resistance to mPTP and increased apoptotic signaling, decreased the content in OXPHOS complex subunits and increased oxidative stress in brain cortex and cerebellum. Molecular markers of mitochondrial biogenesis, dynamics and autophagy were also altered by DOX treatment in both brain subareas. Generally, TM and FW were able to mitigate DOX-related impairments in brain cortex and cerebellum mitochondrial activity, mPTP and apoptotic signaling. We conclude that the alterations in mitochondrial biogenesis, dynamics and autophagy markers induced by exercise performed before and during

  3. Proteome alterations in cortex of mice exposed to fluoride and lead.

    PubMed

    Niu, Ruiyan; Zhang, Yuliang; Liu, Shuangling; Liu, Fengyu; Sun, Zilong; Wang, Jundong

    2015-03-01

    Both fluoride and lead can cross the blood-brain barrier and produce toxic effects on the central neural system, resulting in low learning and memory abilities, especially in children. In order to identify the proteomic pattern in the cortex of young animals, from the beginning of fertilization to the age of postnatal day 56, pregnant female mice and pups were administrated with 150 mg sodium fluoride/L and/or 300 mg lead acetate/L in their drinking water. Two-dimensional electrophoresis (2-DE) combined with mass spectrometry (MS) was applied to identify differently expressed protein spots. Results showed that there were eight proteins in the cortex that significantly changed, whose biological functions were involved in (1) energy metabolism (Ndufs1, Atp5h, Atp6v1b2), (2) cytoskeleton (Spna2, Tuba1a, Tubb2a), (3) glycation repair (Hdhd2), and (4) cell stress response (Hspa8). Based on the previous and current studies, ATPase, Spna2, and Hspa8 were shared by fluoride and lead both as common target molecules. PMID:25529766

  4. Overlapping representations of the neck and whiskers in the rat motor cortex revealed by mapping at different anaesthetic depths

    PubMed Central

    Tandon, Shashank; Kambi, Niranjan; Jain, Neeraj

    2008-01-01

    The primary motor cortex of mammals has an orderly representation of different body parts. Within the representation of each body part the organization is more complex, with groups of neurons representing movements of a muscle or a group of muscles. In rats, uncertainties continue to exist regarding organization of the primary motor cortex in the whisker and the neck region. Using intracortical microstimulation (ICMS) we show that movements evoked in the whisker and the neck region of the rat motor cortex are highly sensitive to the depth of anaesthesia. At light anaesthetic depth, whisker movements are readily evoked from a large medial region of the motor cortex. Lateral to this is a small region where movements of the neck are evoked. However, in animals under deep anaesthesia whisker movements cannot be evoked. Instead, neck movements are evoked from this region. The neck movement region thus becomes greatly expanded. An analysis of the threshold currents required to evoke movements at different anaesthetic depths reveals that the caudal portion of the whisker region has dual representation, of both the whisker and the neck movements. The results also underline the importance of carefully controlling the depth of anaesthesia during ICMS experiments. PMID:18093166

  5. Selective responses to specular surfaces in the macaque visual cortex revealed by fMRI.

    PubMed

    Okazawa, Gouki; Goda, Naokazu; Komatsu, Hidehiko

    2012-11-15

    The surface properties of objects, such as gloss, transparency and texture, provide important information about the material characteristics of objects in our visual environment. However, because there have been few reports on the neuronal responses to surface properties in primates, we still lack information about where and how surface properties are processed in the primate visual cortex. In this study, we used functional magnetic resonance imaging (fMRI) to examine the cortical responses to specular surfaces in the macaque visual cortex. Using computer graphics, we generated images of specular and matte objects and prepared scrambled images by locally randomizing the luminance phases of the images with specular and matte objects. In experiment 1, we contrasted the responses to specular images with those to matte and scrambled images. Activation was observed along the ventral visual pathway, including V1, V2, V3, V4 and the posterior inferior temporal (IT) cortex. In experiment 2, we manipulated the contrasts of images and found that the activation observed in these regions could not be explained solely by the global or local contrasts. These results suggest that image features related to specular surface are processed along the ventral visual pathway from V1 to specific regions in the IT cortex. This is consistent with previous human fMRI experiments that showed surface properties are processed in the ventral visual pathway. PMID:22885246

  6. Dual-Channel Circuit Mapping Reveals Sensorimotor Convergence in the Primary Motor Cortex

    PubMed Central

    Lin, John Y.; Guo, Caiying

    2015-01-01

    Cortical cells integrate synaptic input from multiple sources, but how these different inputs are distributed across individual neurons is largely unknown. Differences in input might account for diverse responses in neighboring neurons during behavior. We present a strategy for comparing the strengths of multiple types of input onto the same neuron. We developed methods for independent dual-channel photostimulation of synaptic inputs using ChR2 together with ReaChR, a red-shifted channelrhodopsin. We used dual-channel photostimulation to probe convergence of sensory information in the mouse primary motor cortex. Input from somatosensory cortex and thalamus converges in individual neurons. Similarly, inputs from distinct somatotopic regions of the somatosensory cortex are integrated at the level of single motor cortex neurons. We next developed a ReaChR transgenic mouse under the control of both Flp- and Cre-recombinases that is an effective tool for circuit mapping. Our approach to dual-channel photostimulation enables quantitative comparison of the strengths of multiple pathways across all length scales of the brain. PMID:25762684

  7. Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex

    PubMed Central

    Wang, Quanxin; Sporns, Olaf; Burkhalter, Andreas

    2012-01-01

    Much of the information used for visual perception and visually guided actions is processed in complex networks of connections within the cortex. To understand how this works in the normal brain and to determine the impact of disease, mice are promising models. In primate visual cortex, information is processed in a dorsal stream specialized for visuospatial processing and guided action and a ventral stream for object recognition. Here, we traced the outputs of 10 visual areas and used quantitative graph analytic tools of modern network science to determine, from the projection strengths in 39 cortical targets, the community structure of the network. We found a high density of the cortical graph that exceeded that previously shown in monkey. Each source area showed a unique distribution of projection weights across its targets (i.e. connectivity profile) that was well-fit by a lognormal function. Importantly, the community structure was strongly dependent on the location of the source area: outputs from medial/anterior extrastriate areas were more strongly linked to parietal, motor and limbic cortex, whereas lateral extrastriate areas were preferentially connected to temporal and parahippocampal cortex. These two subnetworks resemble dorsal and ventral cortical streams in primates, demonstrating that the basic layout of cortical networks is conserved across species. PMID:22457489

  8. Microstimulation Reveals Opposing Influences of Prelimbic and Infralimbic Cortex on the Expression of Conditioned Fear

    ERIC Educational Resources Information Center

    Vidal-Gonzalez, Ivan; Rauch, Scott L.; Quirk, Gregory J.; Vidal-Gonzalez, Benjamin

    2006-01-01

    Recent studies using lesion, infusion, and unit-recording techniques suggest that the infralimbic (IL) subregion of medial prefrontal cortex (mPFC) is necessary for the inhibition of conditioned fear following extinction. Brief microstimulation of IL paired with conditioned tones, designed to mimic neuronal tone responses, reduces the expression…

  9. Second harmonic generation reveals matrix alterations during breast tumor progression

    NASA Astrophysics Data System (ADS)

    Burke, Kathleen; Tang, Ping; Brown, Edward

    2013-03-01

    Alteration of the extracellular matrix in tumor stroma influences efficiency of cell locomotion away from the primary tumor into surrounding tissues and vasculature, thereby affecting metastatic potential. We study matrix changes in breast cancer through the use of second harmonic generation (SHG) of collagen in order to improve the current understanding of breast tumor stromal development. Specifically, we utilize a quantitative analysis of the ratio of forward to backward propagating SHG signal (F/B ratio) to monitor collagen throughout ductal and lobular carcinoma development. After detection of a significant decrease in the F/B ratio of invasive but not in situ ductal carcinoma compared with healthy tissue, the collagen F/B ratio is investigated to determine the evolution of fibrillar collagen changes throughout tumor progression. Results are compared with the progression of lobular carcinoma, whose F/B signature also underwent significant evolution during progression, albeit in a different manner, which offers insight into varying methods of tissue penetration and collagen manipulation between the carcinomas. This research provides insights into trends of stromal reorganization throughout breast tumor development.

  10. Altered motor cortex excitability in tinnitus patients: a hint at crossmodal plasticity.

    PubMed

    Langguth, Berthold; Eichhammer, Peter; Zowe, Marc; Kleinjung, Tobias; Jacob, Peter; Binder, Harald; Sand, Philipp; Hajak, Göran

    2005-06-01

    Idiopathic tinnitus is a frequent and often debilitating auditory phantom perception of largely unknown pathological conditions. In electrophysiological and functional neuroimaging studies, affected subjects have shown excessive spontaneous activity in the central auditory system. To further investigate the underlying central nervous component, we assessed motor cortex excitability in 19 patients with chronic tinnitus by means of transcranial magnetic stimulation (TMS). When results were compared with data from 19 healthy controls matched for age and sex, we found significantly enhanced intracortical facilitation in tinnitus patients. These findings parallel excitability changes after limb amputation and experimental deafferentation. Our results give further support to crossmodal interactions involving neuroplastic changes in some forms of tinnitus and may help to better understand mechanisms of maladaptive cortical reorganisation involved in phantom perceptions. PMID:15862911

  11. Changing the Spatial Scope of Attention Alters Patterns of Neural Gain in Human Cortex

    PubMed Central

    Garcia, Javier O.; Rungratsameetaweemana, Nuttida; Sprague, Thomas C.

    2014-01-01

    Over the last several decades, spatial attention has been shown to influence the activity of neurons in visual cortex in various ways. These conflicting observations have inspired competing models to account for the influence of attention on perception and behavior. Here, we used electroencephalography (EEG) to assess steady-state visual evoked potentials (SSVEP) in human subjects and showed that highly focused spatial attention primarily enhanced neural responses to high-contrast stimuli (response gain), whereas distributed attention primarily enhanced responses to medium-contrast stimuli (contrast gain). Together, these data suggest that different patterns of neural modulation do not reflect fundamentally different neural mechanisms, but instead reflect changes in the spatial extent of attention. PMID:24381272

  12. Short-term monocular deprivation alters GABA in the adult human visual cortex.

    PubMed

    Lunghi, Claudia; Emir, Uzay E; Morrone, Maria Concetta; Bridge, Holly

    2015-06-01

    Neuroplasticity is a fundamental property of the nervous system that is maximal early in life, within the critical period [1-3]. Resting GABAergic inhibition is necessary to trigger ocular dominance plasticity and to modulate the onset and offset of the critical period [4, 5]. GABAergic inhibition also plays a crucial role in neuroplasticity of adult animals: the balance between excitation and inhibition in the primary visual cortex (V1), measured at rest, modulates the susceptibility of ocular dominance to deprivation [6-10]. In adult humans, short-term monocular deprivation strongly modifies ocular balance, unexpectedly boosting the deprived eye, reflecting homeostatic plasticity [11, 12]. There is no direct evidence, however, to support resting GABAergic inhibition in homeostatic plasticity induced by visual deprivation. Here, we tested the hypothesis that GABAergic inhibition, measured at rest, is reduced by deprivation, as demonstrated by animal studies. GABA concentration in V1 of adult humans was measured using ultra-high-field 7T magnetic resonance spectroscopy before and after short-term monocular deprivation. After monocular deprivation, resting GABA concentration decreased in V1 but was unaltered in a control parietal area. Importantly, across participants, the decrease in GABA strongly correlated with the deprived eye perceptual boost measured by binocular rivalry. Furthermore, after deprivation, GABA concentration measured during monocular stimulation correlated with the deprived eye dominance. We suggest that reduction in resting GABAergic inhibition triggers homeostatic plasticity in adult human V1 after a brief period of abnormal visual experience. These results are potentially useful for developing new therapeutic strategies that could exploit the intrinsic residual plasticity of the adult human visual cortex. PMID:26004760

  13. Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo.

    PubMed

    Cayce, Jonathan M; Friedman, Robert M; Jansen, E Duco; Mahavaden-Jansen, Anita; Roe, Anna W

    2011-07-01

    Pulsed infrared light has shown promise as an alternative to electrical stimulation in applications where contact free or high spatial precision stimulation is desired. Infrared neural stimulation (INS) is well characterized in the peripheral nervous system; however, to date, research has been limited in the central nervous system. In this study, pulsed infrared light (λ=1.875 μm, pulse width=250 μs, radiant exposure=0.01-0.55 J/cm(2), fiber size=400 μm, repetition rate=50-200 Hz) was used to stimulate the somatosensory cortex of anesthetized rats, and its efficacy was assessed using intrinsic optical imaging and electrophysiology techniques. INS was found to evoke an intrinsic response of similar magnitude to that evoked by tactile stimulation (0.3-0.4% change in intrinsic signal magnitude). A maximum deflection in the intrinsic signal was measured to range from 0.05% to 0.4% in response to INS, and the activated region of cortex measured approximately 2mm in diameter. The intrinsic signal magnitude increased with faster laser repetition rates and increasing radiant exposures. Single unit recordings indicated a statistically significant decrease in neuronal firing that was observed at the onset of INS stimulation (0.5s stimulus) and continued up to 1s after stimulation onset. The pattern of neuronal firing differed from that observed during tactile stimulation, potentially due to a different spatial integration field of the pulsed infrared light compared to tactile stimulation. The results demonstrate that INS can be used safely and effectively to manipulate neuronal firing. PMID:21513806

  14. Genomic Interaction Profiles in Breast Cancer Reveal Altered Chromatin Architecture

    PubMed Central

    Zeitz, Michael J.; Ay, Ferhat; Heidmann, Julia D.; Lerner, Paula L.

    2013-01-01

    Gene transcription can be regulated by remote enhancer regions through chromosome looping either in cis or in trans. Cancer cells are characterized by wholesale changes in long-range gene interactions, but the role that these long-range interactions play in cancer progression and metastasis is not well understood. In this study, we used IGFBP3, a gene involved in breast cancer pathogenesis, as bait in a 4C-seq experiment comparing normal breast cells (HMEC) with two breast cancer cell lines (MCF7, an ER positive cell line, and MDA-MB-231, a triple negative cell line). The IGFBP3 long-range interaction profile was substantially altered in breast cancer. Many interactions seen in normal breast cells are lost and novel interactions appear in cancer lines. We found that in HMEC, the breast carcinoma amplified sequence gene family (BCAS) 1–4 were among the top 10 most significantly enriched regions of interaction with IGFBP3. 3D-FISH analysis indicated that the translocation-prone BCAS genes, which are located on chromosomes 1, 17, and 20, are in close physical proximity with IGFBP3 and each other in normal breast cells. We also found that epidermal growth factor receptor (EGFR), a gene implicated in tumorigenesis, interacts significantly with IGFBP3 and that this interaction may play a role in their regulation. Breakpoint analysis suggests that when an IGFBP3 interacting region undergoes a translocation an additional interaction detectable by 4C is gained. Overall, our data from multiple lines of evidence suggest an important role for long-range chromosomal interactions in the pathogenesis of cancer. PMID:24019942

  15. Adults with high social anhedonia have altered neural connectivity with ventral lateral prefrontal cortex when processing positive social signals

    PubMed Central

    Yin, Hong; Tully, Laura M.; Lincoln, Sarah Hope; Hooker, Christine I.

    2015-01-01

    Social anhedonia (SA) is a debilitating characteristic of schizophrenia, a common feature in individuals at psychosis-risk, and a vulnerability for developing schizophrenia-spectrum disorders. Prior work (Hooker et al., 2014) revealed neural deficits in the ventral lateral prefrontal cortex (VLPFC) when processing positive social cues in a community sample of people with high SA. Lower VLPFC neural activity was related to more severe self-reported schizophrenia-spectrum symptoms as well as the exacerbation of symptoms after social stress. In the current study, psycho-physiological interaction (PPI) analysis was applied to further investigate the neural mechanisms mediated by the VLPFC during emotion processing. PPI analysis revealed that, compared to low SA controls, participants with high SA exhibited reduced connectivity between the VLPFC and the motor cortex, the inferior parietal and the posterior temporal regions when viewing socially positive (relative to neutral) emotions. Across all participants, VLPFC connectivity correlated with behavioral and self-reported measures of attentional control, emotion management, and reward processing. Our results suggest that impairments to the VLPFC mediated neural circuitry underlie the cognitive and emotional deficits associated with social anhedonia, and may serve as neural targets for prevention and treatment of schizophrenia-spectrum disorders. PMID:26379532

  16. Alterations of prefrontal cortex GABAergic transmission in the complex psychotic-like phenotype induced by adolescent delta-9-tetrahydrocannabinol exposure in rats.

    PubMed

    Zamberletti, Erica; Beggiato, Sarah; Steardo, Luca; Prini, Pamela; Antonelli, Tiziana; Ferraro, Luca; Rubino, Tiziana; Parolaro, Daniela

    2014-03-01

    Although several findings indicate an association between adolescent cannabis abuse and the risk to develop schizophrenia later in life, the evidence for a causal relationship is still inconclusive. In the present study, we investigated the emergence of psychotic-like behavior in adult female rats chronically exposed to delta-9-tetrahydrocannabinol (THC) during adolescence. To this aim, female Sprague-Dawley rats were treated with THC during adolescence (PND 35-45) and, in adulthood (PND 75), a series of behavioral tests and biochemical assays were performed in order to investigate the long-term effects of adolescent THC exposure. Adolescent THC pretreatment leads to long-term behavioral alterations, characterized by recognition memory deficits, social withdrawal, altered emotional reactivity and sensitization to the locomotor activating effects of acute PCP. Moreover, since cortical disinhibition seems to be a key feature of many different animal models of schizophrenia and GABAergic hypofunction in the prefrontal cortex (PFC) has been observed in postmortem brains from schizophrenic patients, we then investigated the long-lasting consequences of adolescent THC exposure on GABAergic transmission in the adult rat PFC. Biochemical analyses revealed that adolescent THC exposure results in reduced GAD67 and basal GABA levels within the adult PFC. GAD67 expression is reduced both in parvalbumin (PV)- and cholecystokinin (CCK)-containing interneurons; this alteration may be related to the altered emotional reactivity triggered by adolescent THC, as silencing PFC GAD67 expression through a siRNA-mediated approach is sufficient to impact rats' behavior in the forced swim test. Finally, the cellular underpinnings of the observed sensitized response to acute PCP in adult THC-treated rats could be ascribed to the increased cFos immunoreactivity and glutamate levels in the PFC and dorsal striatum. The present findings support the hypothesis that adolescent THC exposure may

  17. Structural reorganization of pyramidal neurons in the medial prefrontal cortex of alcohol dependent rats is associated with altered glial plasticity

    PubMed Central

    Kim, Airee; Zamora-Martinez, Eva R.; Edwards, Scott; Mandyam, Chitra D.

    2014-01-01

    In rodents, chronic intermittent ethanol vapor exposure (CIE) produces alcohol dependence, alters the activity of pyramidal neurons and decreases the number of glial progenitors in the medial prefrontal cortex (mPFC). Adult male Wistar rats were exposed to CIE and were injected with mitotic markers to label and phenotype proliferating cells to test the hypothesis that CIE produces concurrent alterations in the structure of pyramidal neurons and the cell cycle kinetics and developmental stages of glial progenitors in the mPFC. Medial prefrontal cortical tissue was processed for Golgi-Cox staining, immunohistochemistry and Western blotting analysis. CIE increased dendritic arborization and spine densities within basal and apical dendrites of pyramidal neurons via aberrant reorganization of actin cytoskeleton-associated molecules. CIE concomitantly increased expression of total NR2B subunits without affecting phosphorylation of NR2B at Tyr-1472 or levels of PSD-95. CIE reduced the length of S phase of the cell cycle of glial progenitors and reduced proliferation and differentiation of progenitors into bHLH transcription factor Olig2-expressing premyelinating oligodendrocyte progenitor cells (OPCs). CIE also produced a corresponding hyperphosphorylation of Olig2, and reduced expression of myelin basic protein. Our findings demonstrate that CIE-induced alterations in OPCs and myelin-related proteins are associated with profound alterations in the structure of pyramidal neurons. In sum, our results not only provide evidence that alcohol dependence leads to pathological changes in the mPFC, which may in part define a cellular basis for cognitive impairments associated with alcoholism, but also show dependence-associated morphological changes in the PFC at the single neuron level. PMID:24667898

  18. Structural reorganization of pyramidal neurons in the medial prefrontal cortex of alcohol dependent rats is associated with altered glial plasticity.

    PubMed

    Kim, Airee; Zamora-Martinez, Eva R; Edwards, Scott; Mandyam, Chitra D

    2015-01-01

    In rodents, chronic intermittent ethanol vapor exposure (CIE) produces alcohol dependence, alters the activity of pyramidal neurons and decreases the number of glial progenitors in the medial prefrontal cortex (mPFC). Adult male Wistar rats were exposed to CIE and were injected with mitotic markers to label and phenotype proliferating cells to test the hypothesis that CIE produces concurrent alterations in the structure of pyramidal neurons and the cell cycle kinetics and developmental stages of glial progenitors in the mPFC. Medial prefrontal cortical tissue was processed for Golgi-Cox staining, immunohistochemistry and Western blotting analysis. CIE increased dendritic arborization and spine densities within basal and apical dendrites of pyramidal neurons via aberrant reorganization of actin cytoskeleton-associated molecules. CIE concomitantly increased the expression of total NR2B subunits without affecting phosphorylation of NR2B at Tyr-1472 or levels of PSD-95. CIE reduced the length of S-phase of the cell cycle of glial progenitors and reduced proliferation and differentiation of progenitors into bHLH transcription factor Olig2-expressing premyelinating oligodendrocyte progenitor cells (OPCs). CIE also produced a corresponding hyperphosphorylation of Olig2, and reduced expression of myelin basic protein. Our findings demonstrate that CIE-induced alterations in OPCs and myelin-related proteins are associated with profound alterations in the structure of pyramidal neurons. In sum, our results not only provide evidence that alcohol dependence leads to pathological changes in the mPFC, which may in part define a cellular basis for cognitive impairments associated with alcoholism, but also show dependence-associated morphological changes in the PFC at the single neuron level. PMID:24667898

  19. Ketamine Alters Outcome-Related Local Field Potentials in Monkey Prefrontal Cortex.

    PubMed

    Skoblenick, Kevin J; Womelsdorf, Thilo; Everling, Stefan

    2016-06-01

    A subanesthetic dose of the noncompetitive N-methyl-d-aspartate receptor antagonist ketamine is known to induce a schizophrenia-like phenotype in humans and nonhuman primates alike. The transient behavioral changes mimic the positive, negative, and cognitive symptoms of the disease but the neural mechanisms behind these changes are poorly understood. A growing body of evidence indicates that the cognitive control processes associated with prefrontal cortex (PFC) regions relies on groups of neurons synchronizing at narrow-band frequencies measurable in the local field potential (LFP). Here, we recorded LFPs from the caudo-lateral PFC of 2 macaque monkeys performing an antisaccade task, which requires the suppression of an automatic saccade toward a stimulus and the initiation of a goal-directed saccade in the opposite direction. Preketamine injection activity showed significant differences in a narrow 20-30 Hz beta frequency band between correct and error trials in the postsaccade response epoch. Ketamine significantly impaired the animals' performance and was associated with a loss of the differences in outcome-specific beta-band power. Instead, we observed a large increase in high-gamma-band activity. Our results suggest that the PFC employs beta-band synchronization to prepare for top-down cognitive control of saccades and the monitoring of task outcome. PMID:26045564

  20. Ventromedial prefrontal cortex damage alters resting blood flow to the bed nucleus of stria terminalis

    PubMed Central

    Motzkin, Julian C.; Philippi, Carissa L.; Oler, Jonathan A.; Kalin, Ned H.; Baskaya, Mustafa K.; Koenigs, Michael

    2014-01-01

    The ventromedial prefrontal cortex (vmPFC) plays a key role in modulating emotional responses, yet the precise neural mechanisms underlying this function remain unclear. vmPFC interacts with a number of subcortical structures involved in affective processing, including the amygdala, hypothalamus, periaqueductal gray, ventral striatum, and bed nucleus of stria terminalis (BNST). While a previous study of non-human primates shows that vmPFC lesions reduce BNST activity and anxious behavior, no such causal evidence exists in humans. In this study, we used a novel application of MRI in neurosurgical patients with focal, bilateral vmPFC damage to determine whether vmPFC is indeed critical for modulating BNST function in humans. Relative to neurologically healthy subjects, who exhibited robust rest-state functional connectivity between vmPFC and BNST, the vmPFC lesion patients had significantly lower resting-state perfusion of the right BNST. No such perfusion differences were observed for the amygdala, striatum, hypothalamus, or periaqueductal gray. This study thus provides unique data on the relationship between vmPFC and BNST, suggesting that vmPFC serves to promote BNST activity in humans. This finding is relevant for neural circuitry models of mood and anxiety disorders. PMID:25569763

  1. Alterations of attention and emotional processing following childhood-onset damage to the prefrontal cortex

    PubMed Central

    Sánchez-Navarro, Juan P.; Driscoll, David; Anderson, Steven W.; Tranel, Daniel; Bechara, Antoine; Buchanan, Tony W.

    2015-01-01

    The prefrontal cortex (PFC), especially the medial sector, plays a crucial role in emotional processing. Damage to this region results in impaired processing of emotional information, perhaps due to an inability to initiate and maintain attention toward emotional materials, a process that is normally automatic. Childhood onset damage to the PFC impairs emotional processing more than adult-onset PFC damage. The aim of this work was to study the involvement of the PFC in attention to emotional stimuli, and to explore how age at lesion onset affects this involvement. To address these issues, we studied both the emotional and attentional modulation of the startle reflex. Our sample was composed of 4 patients with childhood-onset PFC damage, 6 patients with adult-onset PFC damage, and 10 healthy comparison participants. Subjects viewed 54 affective pictures; acoustic startle probes were presented at 300 ms after picture onset in 18 pictures (as an index of attentional modulation) and at 3,800 ms after picture onset in 18 pictures (as an index of emotional modulation). Childhood-onset PFC patients did not show attentional or emotional modulation of the response, in contrast to adult-onset PFC damage and comparison participants. Early-onset damage to the PFC results, therefore, in more severe dysfunction in the processing of affective stimuli than adult-onset PFC damage, perhaps reflecting limited plasticity in the neural systems that support these processes. PMID:24377423

  2. Altered perirhinal cortex activity patterns during taste neophobia and their habituation in aged rats.

    PubMed

    Gómez-Chacón, B; Morillas, E; Gallo, M

    2015-03-15

    Perirhinal cortex (PRh) pathology and chemosensory identification dysfunction are early signs of Alzheimer's disease. We have assessed the impact of normal aging on PRh activity during flavor recognition memory using c-Fos immunoreactivity as a marker for neuronal activity. Adult (5-month-old) and aged (24-month-old) Wistar male rats were exposed to a vinegar solution on a daily basis for a period of six days. Behavioral assessment indicated similar performance in both age groups but suggested slower attenuation of neophobia in aged rats. Regarding c-Fos immunoreactivity, an opposite pattern of PRh activity was found in adult and aged groups drinking the flavor solution during the first (Novel), second (Familiar I) or sixth (Familiar II) exposure as the flavor became familiar. While adult rats exhibited a higher number of PRh c-Fos-positive neurons during the presentation of the novel flavor than during the second and sixth presentation, in aged rats the number of PRh c-Fos-positive neurons was higher during the presentation of the familiar flavor in the last session than in the first and second. The results suggest that the role of the PRh changes during aging and can help to dissociate PRh dysfuntions induced by neurodegenerative diseases and normal aging. PMID:25532913

  3. Altered Cingulate and Insular Cortex Activation During Risk-Taking in Methamphetamine Dependence: Losses Lose Impact

    PubMed Central

    Gowin, Joshua L.; Stewart, Jennifer L.; May, April C.; Ball, Tali M.; Wittmann, Marc; Tapert, Susan F.; Paulus, Martin P.

    2013-01-01

    Aims To determine if methamphetamine-dependent (MD) individuals exhibit behavioral or neural processing differences in risk-taking relative to healthy comparison participants (CTL). Design This was a cross-sectional study comparing two groups’ behavior on a risk-taking task and neural processing as assessed using functional magnetic resonance imaging (fMRI). Settings The study was conducted in an inpatient treatment center and a research fMRI facility in the United States. Participants Sixty-eight recently abstinent MD individuals recruited from a treatment program and forty CTL recruited from the community completed the study. Measurements The study assessed risk-taking behavior (overall and post-loss) using the Risky Gains Task (RGT), sensation-seeking, impulsivity and blood-oxygenation level dependent activation in the brain during the decision phase of the RGT. Findings Relative to CTL, MD displayed decreased activation in the bilateral rostral anterior cingulate cortex (ACC) and greater activation in the left insula across risky and safe decisions (p<.05). Right mid insula activation among CTL did not vary between risky and safe decisions, but among MD it was higher during risky relative to safe decisions (p<.05). Among MD, lower activation in the right rostral ACC (r=−.39, p<.01) and higher activation in the right mid insula (r=.35, p<.01) during risky decisions were linked to a higher likelihood of choosing a risky option following a loss. Conclusions Methamphetamine-dependent individuals show disrupted risk-related processing in both anterior cingulate and insula, brain areas that have been implicated in cognitive control and interoceptive processing. Attenuated neural processing of risky options may lead to risk-taking despite experiencing negative consequences. PMID:24033715

  4. Mild systemic inflammation and moderate hypoxia transiently alter neuronal excitability in mouse somatosensory cortex.

    PubMed

    Mordel, Jérôme; Sheikh, Aminah; Tsohataridis, Simeon; Kanold, Patrick O; Zehendner, Christoph M; Luhmann, Heiko J

    2016-04-01

    During the perinatal period, the brain is highly vulnerable to hypoxia and inflammation, which often cause white matter injury and long-term neuronal dysfunction such as motor and cognitive deficits or epileptic seizures. We studied the effects of moderate hypoxia (HYPO), mild systemic inflammation (INFL), or the combination of both (HYPO+INFL) in mouse somatosensory cortex induced during the first postnatal week on network activity and compared it to activity in SHAM control animals. By performing in vitro electrophysiological recordings with multi-electrode arrays from slices prepared directly after injury (P8-10), one week after injury (P13-16), or in young adults (P28-30), we investigated how the neocortical network developed following these insults. No significant difference was observed between the four groups in an extracellular solution close to physiological conditions. In extracellular 8mM potassium solution, slices from the HYPO, INFL, and HYPO+INFL group were more excitable than SHAM at P8-10 and P13-16. In these two age groups, the number and frequency of spontaneous epileptiform events were significantly increased compared to SHAM. The frequency of epileptiform events was significantly reduced by the NMDA antagonist D-APV in HYPO, INFL, and HYPO+INFL, but not in SHAM, indicating a contribution of NMDA receptors to this pathophysiological activity. In addition, the AMPA/kainate receptor antagonist CNQX suppressed the remaining epileptiform activity. Electrical stimulation evoked prominent epileptiform activity in slices from HYPO, INFL and HYPO+INFL animals. Stimulation threshold to elicit epileptiform events was lower in these groups than in SHAM. Evoked events spread over larger areas and lasted longer in treated animals than in SHAM. In addition, the evoked epileptiform activity was reduced in the older (P28-30) group indicating that cortical dysfunction induced by hypoxia and inflammation was transient and compensated during early development. PMID

  5. Altered Expression Pattern of Acid-Sensing Ion Channel Isoforms in Piriform Cortex After Seizures.

    PubMed

    Wu, Hao; Wang, Chao; Liu, Bei; Li, Huanfa; Zhang, Yu; Dong, Shan; Gao, Guodong; Zhang, Hua

    2016-04-01

    The piriform cortex (PC) is highly susceptible to chemical and electrical seizure induction. Epileptiform activity is associated with an acid shift in extracellular pH, suggesting that acid-sensing ion channels (ASICs) expressed by PC neurons may contribute to this enhanced epileptogenic potential. In epileptic rats and surgical samples from patients with medial temporal lobe epilepsy (TLE), PC layer II ASIC1a-immunopositive neurons appeared swollen with dendritic elongation, and there was loss of ASIC1a-positive neurons in layer III, consistent with enhanced vulnerability to TLE-induced plasticity and cell death. In rats, pilocarpine-induced seizures led to transient downregulation of ASIC1a and concomitant upregulation of ASIC2a in the first few days post-seizure. These changes in expression may be due to seizure-induced oxidative stress as a similar reciprocal change in ASIC1a, and ASIC2a expression was observed in PC12 cells following H2O2 application. The proportion of ASIC1a/ASIC2a heteromers was reduced in the acute phase following status epilepticus (SE) but increased during the latent phase when rats developed spontaneous seizures. Knockdown of ASIC2a by RNAi reduced dendritic length and spine density in primary neurons, suggesting that seizure-induced upregulation of ASIC2a contributes to dendritic lengthening in PC layer II in rats. Administration of the ASIC inhibitor amiloride before pilocarpine reduced the proportion of rats reaching Racine level IV seizures, protected layer II and III neurons, and prolonged survival in the acute phase following SE. Our findings suggest that ASICs may enhance susceptibility to epileptogenesis in the PC. Inhibition of ASICs, particularly ASIC2a, may suppress seizures originating in the PC. PMID:25744567

  6. Suppression of voluntary motor activity revealed using transcranial magnetic stimulation of the motor cortex in man.

    PubMed Central

    Davey, N J; Romaiguère, P; Maskill, D W; Ellaway, P H

    1994-01-01

    1. Suppression of voluntary muscle activity of hand and arm muscles in response to transcranial magnetic stimulation (TMS) of the motor cortex has been investigated in man. 2. Suppression could be elicited by low levels of TMS without any prior excitatory response. The latency of the suppression was 3-8 ms longer than the excitation observed at a higher stimulus intensity. The duration of the suppression ranged from 8 to 26 ms. 3. A circular stimulating coil was used to determine threshold intensity for excitation and suppression of contraction of thenar muscles in response to TMS at different locations over the motor cortex. The locations for lowest threshold excitation coincided with those for lowest threshold suppression. Suppression was elicited at a lower threshold than excitation at all locations. 4. A figure-of-eight stimulating coil was positioned over the left motor cortex at the lowest threshold point for excitation of the right thenar muscles. The orientation for the lowest threshold excitatory and inhibitory responses was the same for all subjects. That orientation induced a stimulating current travelling in an antero-medial direction. Suppression was invariably elicited at lower thresholds than excitation. 5. When antagonistic muscles (second and third dorsal interosseus) were co-contracted, TMS evoked coincident suppression of voluntary EMG in the two muscles without prior excitation of either muscle. This suggests that the suppression is not mediated via corticospinal activation of spinal interneurones. 6. Test responses to electrical stimulation of the cervical spinal cord were evoked in both relaxed and activated thenar muscles. In the relaxed muscle, prior TMS at an intensity that would suppress voluntary activity failed to influence the test responses, suggesting absence of inhibition at a spinal level. However, in the activated muscle, prior TMS could reduce the test response. This may be explained by disfacilitation of motoneurones due to

  7. Natural speech reveals the semantic maps that tile human cerebral cortex.

    PubMed

    Huth, Alexander G; de Heer, Wendy A; Griffiths, Thomas L; Theunissen, Frédéric E; Gallant, Jack L

    2016-04-28

    The meaning of language is represented in regions of the cerebral cortex collectively known as the 'semantic system'. However, little of the semantic system has been mapped comprehensively, and the semantic selectivity of most regions is unknown. Here we systematically map semantic selectivity across the cortex using voxel-wise modelling of functional MRI (fMRI) data collected while subjects listened to hours of narrative stories. We show that the semantic system is organized into intricate patterns that seem to be consistent across individuals. We then use a novel generative model to create a detailed semantic atlas. Our results suggest that most areas within the semantic system represent information about specific semantic domains, or groups of related concepts, and our atlas shows which domains are represented in each area. This study demonstrates that data-driven methods--commonplace in studies of human neuroanatomy and functional connectivity--provide a powerful and efficient means for mapping functional representations in the brain. PMID:27121839

  8. 7 tesla FMRI reveals systematic functional organization for binocular disparity in dorsal visual cortex.

    PubMed

    Goncalves, Nuno R; Ban, Hiroshi; Sánchez-Panchuelo, Rosa M; Francis, Susan T; Schluppeck, Denis; Welchman, Andrew E

    2015-02-18

    The binocular disparity between the views of the world registered by the left and right eyes provides a powerful signal about the depth structure of the environment. Despite increasing knowledge of the cortical areas that process disparity from animal models, comparatively little is known about the local architecture of stereoscopic processing in the human brain. Here, we take advantage of the high spatial specificity and image contrast offered by 7 tesla fMRI to test for systematic organization of disparity representations in the human brain. Participants viewed random dot stereogram stimuli depicting different depth positions while we recorded fMRI responses from dorsomedial visual cortex. We repeated measurements across three separate imaging sessions. Using a series of computational modeling approaches, we report three main advances in understanding disparity organization in the human brain. First, we show that disparity preferences are clustered and that this organization persists across imaging sessions, particularly in area V3A. Second, we observe differences between the local distribution of voxel responses in early and dorsomedial visual areas, suggesting different cortical organization. Third, using modeling of voxel responses, we show that higher dorsal areas (V3A, V3B/KO) have properties that are characteristic of human depth judgments: a simple model that uses tuning parameters estimated from fMRI data captures known variations in human psychophysical performance. Together, these findings indicate that human dorsal visual cortex contains selective cortical structures for disparity that may support the neural computations that underlie depth perception. PMID:25698743

  9. 7 Tesla fMRI Reveals Systematic Functional Organization for Binocular Disparity in Dorsal Visual Cortex

    PubMed Central

    Goncalves, Nuno R.; Ban, Hiroshi; Sánchez-Panchuelo, Rosa M.; Francis, Susan T.; Schluppeck, Denis

    2015-01-01

    The binocular disparity between the views of the world registered by the left and right eyes provides a powerful signal about the depth structure of the environment. Despite increasing knowledge of the cortical areas that process disparity from animal models, comparatively little is known about the local architecture of stereoscopic processing in the human brain. Here, we take advantage of the high spatial specificity and image contrast offered by 7 tesla fMRI to test for systematic organization of disparity representations in the human brain. Participants viewed random dot stereogram stimuli depicting different depth positions while we recorded fMRI responses from dorsomedial visual cortex. We repeated measurements across three separate imaging sessions. Using a series of computational modeling approaches, we report three main advances in understanding disparity organization in the human brain. First, we show that disparity preferences are clustered and that this organization persists across imaging sessions, particularly in area V3A. Second, we observe differences between the local distribution of voxel responses in early and dorsomedial visual areas, suggesting different cortical organization. Third, using modeling of voxel responses, we show that higher dorsal areas (V3A, V3B/KO) have properties that are characteristic of human depth judgments: a simple model that uses tuning parameters estimated from fMRI data captures known variations in human psychophysical performance. Together, these findings indicate that human dorsal visual cortex contains selective cortical structures for disparity that may support the neural computations that underlie depth perception. PMID:25698743

  10. Altered resting state connectivity of the insular cortex in individuals with fibromyalgia

    PubMed Central

    Ichesco, Eric; Schmidt-Wilcke, Tobias; Bhavsar, Rupal; Clauw, Daniel J.; Peltier, Scott J.; Kim, Jieun; Napadow, Vitaly; Hampson, Johnson P.; Kairys, Anson E.; Williams, David A.; Harris, Richard E.

    2014-01-01

    The insular (IC) and cingulate cortices (CC) are critically involved in pain perception. Previously we demonstrated that fibromyalgia (FM) patients have greater connectivity between the insula and Default Mode Network at rest, and that changes in the degree of this connectivity were associated with changes in the intensity of ongoing clinical pain. Here we more thoroughly evaluate the degree of resting state connectivity to multiple regions of the IC in individuals with FM and healthy controls (HC). We also investigated the relationship between connectivity, experimental pain and current clinical chronic pain. Functional connectivity was assessed using resting state functional magnetic resonance imaging in 18 FM patients and 18 age- and sex-matched HC using pre-defined seed regions in the anterior, middle and posterior IC. FM patients exhibited greater connectivity between: (1) right mid IC and right mid/posterior CC and right mid IC; (2) right posterior IC and the left CC; and (3) right anterior IC and left superior temporal gyrus. HCs displayed greater connectivity between: left anterior IC and the bilateral medial frontal gyrus/ACC; and left posterior IC and the right superior frontal gyrus. Within the FM group, greater connectivity between the IC and CC was associated with decreased pressure-pain thresholds. Perspective These data provide further support for altered resting-state connectivity between the IC and other brain regions known to participate in pain perception/modulation playing a pathogenic role in conditions such as FM. We speculate that altered IC connectivity is associated with the experience of chronic pain in individuals with fibromyalgia. PMID:24815079

  11. Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans.

    PubMed

    Wilson, Benjamin; Kikuchi, Yukiko; Sun, Li; Hunter, David; Dick, Frederic; Smith, Kenny; Thiele, Alexander; Griffiths, Timothy D; Marslen-Wilson, William D; Petkov, Christopher I

    2015-01-01

    An evolutionary account of human language as a neurobiological system must distinguish between human-unique neurocognitive processes supporting language and evolutionarily conserved, domain-general processes that can be traced back to our primate ancestors. Neuroimaging studies across species may determine whether candidate neural processes are supported by homologous, functionally conserved brain areas or by different neurobiological substrates. Here we use functional magnetic resonance imaging in Rhesus macaques and humans to examine the brain regions involved in processing the ordering relationships between auditory nonsense words in rule-based sequences. We find that key regions in the human ventral frontal and opercular cortex have functional counterparts in the monkey brain. These regions are also known to be associated with initial stages of human syntactic processing. This study raises the possibility that certain ventral frontal neural systems, which play a significant role in language function in modern humans, originally evolved to support domain-general abilities involved in sequence processing. PMID:26573340

  12. Turning visual shapes into sounds: early stages of reading acquisition revealed in the ventral occipitotemporal cortex.

    PubMed

    Perrone-Bertolotti, M; Vidal, J R; de Palma, L; Hamamé, C M; Ossandon, T; Kahane, P; Minotti, L; Bertrand, O; Lachaux, J-P

    2014-04-15

    The exact role of the left ventral occipitotemporal cortex (VOTC) during the initial stages of reading acquisition is a hotly debated issue, especially regarding the comparative effect of learning on early stimulus-dependent vs. later task-dependent processes. We show that this controversy can be solved with high-temporal resolution intracerebral EEG recordings of the VOTC. We measured High-Frequency Activity (50-150 Hz) as a proxy of population-level spiking activity while participants learned Japanese Katakana symbols, and found that learning primarily affects top-down/task-dependent neural processing, after a few minutes only. In contrast, adaptation of early bottom-up/stimulus-dependent processing takes several days to adapt and provides the basis for fluent reading. Such evidence that two consecutive stages of neural processing, stimulus- and task-dependent are differentially affected by learning, can reconcile seemingly opposite hypotheses on the role of the VOTC during reading acquisition. PMID:24370818

  13. Diffusion tensor imaging reveals thalamus and posterior cingulate cortex abnormalities in internet gaming addicts

    PubMed Central

    Dong, Guangheng; DeVito, Elise; Huang, Jie; Du, Xiaoxia

    2013-01-01

    Internet gaming addiction (IGA) is increasingly recognized as a widespread disorder with serious psychological and health consequences. Diminished white matter integrity has been demonstrated in a wide range of other addictive disorders which share clinical characteristics with IGA. Abnormal white matter integrity in addictive populations has been associated with addiction severity, treatment response and cognitive impairments. This study assessed white matter integrity in individuals with internet gaming addiction (IGA) using diffusion tensor imaging (DTI). IGA subjects (N=16) showed higher fractional anisotropy (FA), indicating greater white matter integrity, in the thalamus and left posterior cingulate cortex (PCC) relative to healthy controls (N=15). Higher FA in the thalamus was associated with greater severity of internet addiction. Increased regional FA in individuals with internet gaming addiction may be a pre-existing vulnerability factor for IGA, or may arise secondary to IGA, perhaps as a direct result of excessive internet game playing. PMID:22727905

  14. Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans

    PubMed Central

    Wilson, Benjamin; Kikuchi, Yukiko; Sun, Li; Hunter, David; Dick, Frederic; Smith, Kenny; Thiele, Alexander; Griffiths, Timothy D.; Marslen-Wilson, William D.; Petkov, Christopher I.

    2015-01-01

    An evolutionary account of human language as a neurobiological system must distinguish between human-unique neurocognitive processes supporting language and evolutionarily conserved, domain-general processes that can be traced back to our primate ancestors. Neuroimaging studies across species may determine whether candidate neural processes are supported by homologous, functionally conserved brain areas or by different neurobiological substrates. Here we use functional magnetic resonance imaging in Rhesus macaques and humans to examine the brain regions involved in processing the ordering relationships between auditory nonsense words in rule-based sequences. We find that key regions in the human ventral frontal and opercular cortex have functional counterparts in the monkey brain. These regions are also known to be associated with initial stages of human syntactic processing. This study raises the possibility that certain ventral frontal neural systems, which play a significant role in language function in modern humans, originally evolved to support domain-general abilities involved in sequence processing. PMID:26573340

  15. Chronic desipramine treatment alters tyrosine hydroxylase but not norepinephrine transporter immunoreactivity in norepinephrine axons in the rat prefrontal cortex

    PubMed Central

    Erickson, Susan L.; Gandhi, Anjalika R.; Asafu-Adjei, Josephine K.; Sampson, Allan R.; Miner, LeeAnn; Blakely, Randy D.; Sesack, Susan R.

    2011-01-01

    Pharmacological blockade of norepinephrine (NE) reuptake is clinically effective in treating several mental disorders. Drugs that bind to the NE transporter (NET) alter both protein levels and activity of NET and also the catecholamine synthetic enzyme tyrosine hydroxylase (TH). We examined the rat prefrontal cortex (PFC) by electron microscopy to determine whether the density and subcellular distribution of immunolabeling for NET and colocalization of NET with TH within individual NE axons were altered by chronic treatment with the selective NE uptake inhibitor desipramine (DMI). Following DMI treatment (21 days, 15 mg/kg/day), NET-immunoreactive (-ir) axons were significantly less likely to colocalize TH. This finding is consistent with reports of reduced TH levels and activity in the locus coeruleus after chronic DMI and indicates a reduction of NE synthetic capacity in the PFC. Measures of NET expression and membrane localization, including the number of NET-ir profiles per tissue area sampled, the number of gold particles per NET-ir profile area, and the proportion of gold particles associated with the plasma membrane, were similar in DMI and vehicle treated rats. These findings were verified using two different antibodies directed against distinct epitopes of the NET protein. The results suggest that chronic DMI treatment does not reduce NET expression within individual NE axons in vivo or induce an overall translocation of NET protein away from the plasma membrane in the PFC as measured by ultrastructural immunogold labeling. Our findings encourage consideration of possible postranslational mechanisms for regulating NET activity in antidepressant-induced modulation of NE clearance. PMID:21208501

  16. Astrocyte activation in the anterior cingulate cortex and altered glutamatergic gene expression during paclitaxel-induced neuropathic pain in mice

    PubMed Central

    2015-01-01

    Spinal astrocyte activation contributes to the pathogenesis of paclitaxel-induced neuropathic pain (PINP) in animal models. We examined glial fibrillary acidic protein (GFAP; an astrocyte marker) immunoreactivity and gene expression of GFAP, glutamate transporters and receptor subunits by real time PCR in the anterior cingulate cortex (ACC) at 7 days post first administration of paclitaxel, a time point when mice had developed thermal hyperalgesia. The ACC, an area in the brain involved in pain perception and modulation, was chosen because changes in this area might contribute to the pathophysiology of PINP. GFAP transcripts levels were elevated by more than fivefold and GFAP immunoreactivity increased in the ACC of paclitaxel-treated mice. The 6 glutamate transporters (GLAST, GLT-1 EAAC1, EAAT4, VGLUT-1 and VGLUT-2) quantified were not significantly altered by paclitaxel treatment. Of the 12 ionotropic glutamate receptor subunits transcripts analysed 6 (GLuA1, GLuA3, GLuK2, GLuK3, GLuK5 and GLuN1) were significantly up-regulated, whereas GLuA2, GLuK1, GLuK4, GLuN2A and GLuN2B were not significantly altered and GLuA4 was lowly expressed. Amongst the 8 metabotropic receptor subunits analysed only mGLuR8 was significantly elevated. In conclusion, during PINP there is astrocyte activation, with no change in glutamate transporter expression and differential up-regulation of glutamate receptor subunits in the ACC. Thus, targeting astrocyte activation and the glutamatergic system might be another therapeutic avenue for management of PINP. PMID:26528412

  17. Homeostatic metaplasticity of the motor cortex is altered during headache-free intervals in migraine with aura.

    PubMed

    Antal, Andrea; Lang, Nicolas; Boros, Klara; Nitsche, Michael; Siebner, Hartwig R; Paulus, Walter

    2008-11-01

    Preconditioning of the human primary motor cortex (M1) with transcranial direct current stimulation (tDCS) can shape the magnitude and direction of excitability changes induced by a subsequent session of repetitive transcranial magnetic stimulation (rTMS). Here, we examined this form of metaplasticity in migraine patients with visual aura and healthy controls. In both groups, facilitatory preconditioning of left M1 with anodal tDCS increased the mean amplitudes of motor-evoked potentials (MEPs) elicited in the contralateral hand, whereas inhibitory preconditioning with cathodal tDCS produced a decrease in amplitude. Following cathodal tDCS, a short train of low-intensity 5-Hz rTMS antagonized the suppression of the mean MEP amplitude in both groups. In contrast, the homeostatic effects of 5-Hz rTMS differed between groups when rTMS was given after anodal tDCS. In controls 5-Hz rTMS induced a marked decrease in MEP amplitudes, whereas in migraineurs rTMS induced only a modest decrease in MEP amplitudes, which were still facilitated after rTMS when compared with baseline amplitudes. These findings indicate that short-term homeostatic plasticity is altered in patients with visual aura between the attacks. PMID:18372292

  18. Altered activity of the medial prefrontal cortex and amygdala during acquisition and extinction of an active avoidance task

    PubMed Central

    Jiao, Xilu; Beck, Kevin D.; Myers, Catherine E.; Servatius, Richard J.; Pang, Kevin C. H.

    2015-01-01

    Altered medial prefrontal cortex (mPFC) and amygdala function is associated with anxiety-related disorders. While the mPFC-amygdala pathway has a clear role in fear conditioning, these structures are also involved in active avoidance. Given that avoidance perseveration represents a core symptom of anxiety disorders, the neural substrate of avoidance, especially its extinction, requires better understanding. The present study was designed to investigate the activity, particularly, inhibitory neuronal activity in mPFC and amygdala during acquisition and extinction of lever-press avoidance in rats. Neural activity was examined in the mPFC, intercalated cell clusters (ITCs) lateral (LA), basal (BA) and central (CeA) amygdala, at various time points during acquisition and extinction, using induction of the immediate early gene product, c-Fos. Neural activity was greater in the mPFC, LA, BA, and ITC during the extinction phase as compared to the acquisition phase. In contrast, the CeA was the only region that was more activated during acquisition than during extinction. Our results indicate inhibitory neurons are more activated during late phase of acquisition and extinction in the mPFC and LA, suggesting the dynamic involvement of inhibitory circuits in the development and extinction of avoidance response. Together, these data start to identify the key brain regions important in active avoidance behavior, areas that could be associated with avoidance perseveration in anxiety disorders. PMID:26441578

  19. Alterations in primary motor cortex neurotransmission and gene expression in hemi-parkinsonian rats with drug-induced dyskinesia.

    PubMed

    Lindenbach, D; Conti, M M; Ostock, C Y; Dupre, K B; Bishop, C

    2015-12-01

    Treatment of Parkinson's disease (PD) with dopamine replacement relieves symptoms of poverty of movement, but often causes drug-induced dyskinesias. Accumulating clinical and pre-clinical evidence suggests that the primary motor cortex (M1) is involved in the pathophysiology of PD and that modulating cortical activity may be a therapeutic target in PD and dyskinesia. However, surprisingly little is known about how M1 neurotransmitter tone or gene expression is altered in PD, dyskinesia or associated animal models. The present study utilized the rat unilateral 6-hydroxydopamine (6-OHDA) model of PD/dyskinesia to characterize structural and functional changes taking place in M1 monoamine innervation and gene expression. 6-OHDA caused dopamine pathology in M1, although the lesion was less severe than in the striatum. Rats with 6-OHDA lesions showed a PD motor impairment and developed dyskinesia when given L-DOPA or the D1 receptor agonist, SKF81297. M1 expression of two immediate-early genes (c-Fos and ARC) was strongly enhanced by either L-DOPA or SKF81297. At the same time, expression of genes specifically involved in glutamate and GABA signaling were either modestly affected or unchanged by lesion and/or treatment. We conclude that M1 neurotransmission and signal transduction in the rat 6-OHDA model of PD/dyskinesia mirror features of human PD, supporting the utility of the model to study M1 dysfunction in PD and the elucidation of novel pathophysiological mechanisms and therapeutic targets. PMID:26363150

  20. Functional Magnetic Resonance Imaging of Rats with Experimental Autoimmune Encephalomyelitis Reveals Brain Cortex Remodeling

    PubMed Central

    Tambalo, Stefano; Peruzzotti-Jametti, Luca; Rigolio, Roberta; Fiorini, Silvia; Bontempi, Pietro; Mallucci, Giulia; Balzarotti, Beatrice; Marmiroli, Paola; Sbarbati, Andrea; Cavaletti, Guido

    2015-01-01

    Cortical reorganization occurring in multiple sclerosis (MS) patients is thought to play a key role in limiting the effect of structural tissue damage. Conversely, its exhaustion may contribute to the irreversible disability that accumulates with disease progression. Several aspects of MS-related cortical reorganization, including the overall functional effect and likely modulation by therapies, still remain to be elucidated. The aim of this work was to assess the extent of functional cortical reorganization and its brain structural/pathological correlates in Dark Agouti rats with experimental autoimmune encephalomyelitis (EAE), a widely accepted preclinical model of chronic MS. Morphological and functional MRI (fMRI) were performed before disease induction and during the relapsing and chronic phases of EAE. During somatosensory stimulation of the right forepaw, fMRI demonstrated that cortical reorganization occurs in both relapsing and chronic phases of EAE with increased activated volume and decreased laterality index versus baseline values. Voxel-based morphometry demonstrated gray matter (GM) atrophy in the cerebral cortex, and both GM and white matter atrophy were assessed by ex vivo pathology of the sensorimotor cortex and corpus callosum. Neuroinflammation persisted in the relapsing and chronic phases, with dendritic spine density in the layer IV sensory neurons inversely correlating with the number of cluster of differentiation 45-positive inflammatory lesions. Our work provides an innovative experimental platform that may be pivotal for the comprehension of key mechanisms responsible for the accumulation of irreversible brain damage and for the development of innovative therapies to reduce disability in EAE/MS. SIGNIFICANCE STATEMENT Since the early 2000s, functional MRI (fMRI) has demonstrated profound modifications in the recruitment of cortical areas during motor, cognitive, and sensory tasks in multiple sclerosis (MS) patients. Experimental autoimmune

  1. Hue Selectivity in Human Visual Cortex Revealed by Functional Magnetic Resonance Imaging

    PubMed Central

    Kuriki, Ichiro; Sun, Pei; Ueno, Kenichi; Tanaka, Keiji; Cheng, Kang

    2015-01-01

    The variability of color-selective neurons in human visual cortex is considered more diverse than cone-opponent mechanisms. We addressed this issue by deriving histograms of hue-selective voxels measured using fMRI with a novel stimulation paradigm, where the stimulus hue changed continuously. Despite the large between-subject difference in hue-selective histograms, individual voxels exhibited selectivity for intermediate hues, such as purple, cyan, and orange, in addition to those along cone-opponent axes. In order to rule the possibility out that the selectivity for intermediate hues emerged through spatial summation of activities of neurons selectively responding to cone-opponent signals, we further tested hue-selective adaptations in intermediate directions of cone-opponent axes, by measuring responses to 4 diagonal hues during concurrent adaptation to 1 of the 4 hues. The selective and unidirectional reduction in response to the adapted hue lends supports to our argument that cortical neurons respond selectively to intermediate hues. PMID:26423093

  2. Velocity Selective Networks in Human Cortex Reveal Two Functionally Distinct Auditory Motion Systems

    PubMed Central

    Meng, Jhao-An; Saberi, Kourosh; Hsieh, I-Hui

    2016-01-01

    The auditory system encounters motion cues through an acoustic object’s movement or rotation of the listener’s head in a stationary sound field, generating a wide range of naturally occurring velocities from a few to several hundred degrees per second. The angular velocity of moving acoustic objects relative to a listener is typically slow and does not exceed tens of degrees per second, whereas head rotations in a stationary acoustic field may generate fast-changing spatial cues in the order of several hundred degrees per second. We hypothesized that these two types of systems (i.e., encoding slow movements of an object or fast head rotations) may engage functionally distinct substrates in processing spatially dynamic auditory cues, with the latter potentially involved in maintaining perceptual constancy in a stationary field during head rotations and therefore possibly involving corollary-discharge mechanisms in premotor cortex. Using fMRI, we examined cortical response patterns to sound sources moving at a wide range of velocities in 3D virtual auditory space. We found a significant categorical difference between fast and slow moving sounds, with stronger activations in response to higher velocities in the posterior superior temporal regions, the planum temporale, and notably the premotor ventral-rostral (PMVr) area implicated in planning neck and head motor functions. PMID:27294673

  3. Nonlinear properties of medial entorhinal cortex neurons reveal frequency selectivity during multi-sinusoidal stimulation.

    PubMed

    Magnani, Christophe; Economo, Michael N; White, John A; Moore, Lee E

    2014-01-01

    The neurons in layer II of the medial entorhinal cortex are part of the grid cell network involved in the representation of space. Many of these neurons are likely to be stellate cells with specific oscillatory and firing properties important for their function. A fundamental understanding of the nonlinear basis of these oscillatory properties is critical for the development of theories of grid cell firing. In order to evaluate the behavior of stellate neurons, measurements of their quadratic responses were used to estimate a second order Volterra kernel. This paper uses an operator theory, termed quadratic sinusoidal analysis (QSA), which quantitatively determines that the quadratic response accounts for a major part of the nonlinearity observed at membrane potential levels characteristic of normal synaptic events. Practically, neurons were probed with multi-sinusoidal stimulations to determine a Hermitian operator that captures the quadratic function in the frequency domain. We have shown that the frequency content of the stimulation plays an important role in the characteristics of the nonlinear response, which can distort the linear response as well. Stimulations with enhanced low frequency amplitudes evoked a different nonlinear response than broadband profiles. The nonlinear analysis was also applied to spike frequencies and it was shown that the nonlinear response of subthreshold membrane potential at resonance frequencies near the threshold is similar to the nonlinear response of spike trains. PMID:25191226

  4. Optical Coherence Tomography angiography reveals laminar microvascular hemodynamics in the rat somatosensory cortex during activation

    PubMed Central

    Srinivasan, Vivek J.; Radhakrishnan, Harsha

    2014-01-01

    The BOLD (blood-oxygen-level dependent) fMRI (functional Magnetic Resonance Imaging) signal is shaped, in part, by changes in red blood cell (RBC) content and flow across vascular compartments over time. These complex dynamics have been challenging to characterize directly due to a lack of appropriate imaging modalities. In this study, making use of infrared light scattering from RBCs, depth-resolved Optical Coherence Tomography (OCT) angiography was applied to image laminar functional hyperemia in the rat somatosensory cortex. After defining and validating depth-specific metrics for changes in RBC content and speed, laminar hemodynamic responses in microvasculature up to cortical depths of >1 mm were measured during a forepaw stimulus. The results provide a comprehensive picture of when and where changes in RBC content and speed occur during and immediately following cortical activation. In summary, the earliest and largest microvascular RBC content changes occurred in the middle cortical layers, while post-stimulus undershoots were most prominent superficially. These laminar variations in positive and negative responses paralleled known distributions of excitatory and inhibitory synapses, suggesting neuronal underpinnings. Additionally, the RBC speed response consistently returned to baseline more promptly than RBC content after the stimulus across cortical layers, supporting a “flow-volume mismatch” of hemodynamic origin. PMID:25111471

  5. Post-Stroke Longitudinal Alterations of Inter-Hemispheric Correlation and Hemispheric Dominance in Mouse Pre-Motor Cortex

    PubMed Central

    Panarese, Alessandro; Alia, Claudia; Micera, Silvestro; Caleo, Matteo; Di Garbo, Angelo

    2016-01-01

    Purpose Limited restoration of function is known to occur spontaneously after an ischemic injury to the primary motor cortex. Evidence suggests that Pre-Motor Areas (PMAs) may “take over” control of the disrupted functions. However, little is known about functional reorganizations in PMAs. Forelimb movements in mice can be driven by two cortical regions, Caudal and Rostral Forelimb Areas (CFA and RFA), generally accepted as primary motor and pre-motor cortex, respectively. Here, we examined longitudinal changes in functional coupling between the two RFAs following unilateral photothrombotic stroke in CFA (mm from Bregma: +0.5 anterior, +1.25 lateral). Methods Local field potentials (LFPs) were recorded from the RFAs of both hemispheres in freely moving injured and naïve mice. Neural signals were acquired at 9, 16 and 23 days after surgery (sub-acute period in stroke animals) through one bipolar electrode per hemisphere placed in the center of RFA, with a ground screw over the occipital bone. LFPs were pre-processed through an efficient method of artifact removal and analysed through: spectral,cross-correlation, mutual information and Granger causality analysis. Results Spectral analysis demonstrated an early decrease (day 9) in the alpha band power in both the RFAs. In the late sub-acute period (days 16 and 23), inter-hemispheric functional coupling was reduced in ischemic animals, as shown by a decrease in the cross-correlation and mutual information measures. Within the gamma and delta bands, correlation measures were already reduced at day 9. Granger analysis, used as a measure of the symmetry of the inter-hemispheric causal connectivity, showed a less balanced activity in the two RFAs after stroke, with more frequent oscillations of hemispheric dominance. Conclusions These results indicate robust electrophysiological changes in PMAs after stroke. Specifically, we found alterations in transcallosal connectivity, with reduced inter-hemispheric functional

  6. Region-specific alterations of A-to-I RNA editing of serotonin 2c receptor in the cortex of suicides with major depression.

    PubMed

    Weissmann, D; van der Laan, S; Underwood, M D; Salvetat, N; Cavarec, L; Vincent, L; Molina, F; Mann, J J; Arango, V; Pujol, J F

    2016-01-01

    Brain region-specific abnormalities in serotonergic transmission appear to underlie suicidal behavior. Alterations of RNA editing on the serotonin receptor 2C (HTR2C) pre-mRNA in the brain of suicides produce transcripts that attenuate 5-HT2CR signaling by impairing intracellular G-protein coupling and subsequent intracellular signal transduction. In brain, the distribution of RNA-editing enzymes catalyzing deamination (A-to-I modification) shows regional variation, including within the cerebral cortex. We tested the hypothesis that altered pre-mRNA 5-HT2CR receptor editing in suicide is region-specific. To this end, we investigated the complete 5-HT2CR mRNA-editing profile in two architectonically distinct cortical areas involved in mood regulation and decision-making in a clinically well-characterized cohort of age- and sex-matched non-psychiatric drug-free controls and depressed suicides. By using an original biochemical detection method, that is, capillary electrophoresis single-stranded conformational polymorphism (CE-SSCP), we corroborated the 5-HT2CR mRNA-editing profile previously described in the dorsolateral prefrontal cortex (Brodmann area 9 (BA9)). Editing of 5-HT2CR mRNA displayed clear regional difference when comparing dorsolateral prefrontal cortex (BA9) and anterior cingulate cortex (BA24). Compared with non-psychiatric control individuals, alterations of editing levels of 5-HT2CR mRNA were detected in both cortical areas of depressed suicides. A marked increase in editing on 5-HT2CR was especially observed in the anterior cingulate cortex in suicides, implicating this cortical area in suicide risk. The results suggest that region-specific changes in RNA editing of 5-HT2CR mRNA and deficient receptor function likely contribute to the etiology of major depressive disorder or suicide. PMID:27576167

  7. Spectral resolution of monkey primary auditory cortex (A1) revealed with two-noise masking.

    PubMed

    Fishman, Yonatan I; Steinschneider, Mitchell

    2006-09-01

    An important function of the auditory nervous system is to analyze the frequency content of environmental sounds. The neural structures involved in determining psychophysical frequency resolution remain unclear. Using a two-noise masking paradigm, the present study investigates the spectral resolution of neural populations in primary auditory cortex (A1) of awake macaques and the degree to which it matches psychophysical frequency resolution. Neural ensemble responses (auditory evoked potentials, multiunit activity, and current source density) evoked by a pulsed 60-dB SPL pure-tone signal fixed at the best frequency (BF) of the recorded neural populations were examined as a function of the frequency separation (DeltaF) between the tone and two symmetrically flanking continuous 80-dB SPL, 50-Hz-wide bands of noise. DeltaFs ranged from 0 to 50% of the BF, encompassing the range typically examined in psychoacoustic experiments. Responses to the signal were minimal for DeltaF = 0% and progressively increased with DeltaF, reaching a maximum at DeltaF = 50%. Rounded exponential functions, used to model auditory filter shapes in psychoacoustic studies of frequency resolution, provided excellent fits to neural masking functions. Goodness-of-fit was greatest for response components in lamina 4 and lower lamina 3 and least for components recorded in more superficial cortical laminae. Physiological equivalent rectangular bandwidths (ERBs) increased with BF, measuring nearly 15% of the BF. These findings parallel results of psychoacoustic studies in both monkeys and humans, and thus indicate that a representation of perceptual frequency resolution is available at the level of A1. PMID:16738218

  8. Altered Cross-Modal Processing in the Primary Auditory Cortex of Congenitally Deaf Adults: A Visual-Somatosensory fMRI Study with a Double-Flash Illusion

    PubMed Central

    Dow, Mark W.; Neville, Helen J.

    2012-01-01

    The developing brain responds to the environment by using statistical correlations in input to guide functional and structural changes—that is, the brain displays neuroplasticity. Experience shapes brain development throughout life, but neuroplasticity is variable from one brain system to another. How does the early loss of a sensory modality affect this complex process? We examined cross-modal neuroplasticity in anatomically defined subregions of Heschl's gyrus, the site of human primary auditory cortex, in congenitally deaf humans by measuring the fMRI signal change in response to spatially coregistered visual, somatosensory, and bimodal stimuli. In the deaf Heschl's gyrus, signal change was greater for somatosensory and bimodal stimuli than that of hearing participants. Visual responses in Heschl's gyrus, larger in deaf than hearing, were smaller than those elicited by somatosensory stimulation. In contrast to Heschl's gyrus, in the superior-temporal cortex visual signal was comparable to somatosensory signal. In addition, deaf adults perceived bimodal stimuli differently; in contrast to hearing adults, they were susceptible to a double-flash visual illusion induced by two touches to the face. Somatosensory and bimodal signal change in rostrolateral Heschl's gyrus predicted the strength of the visual illusion in the deaf adults in line with the interpretation that the illusion is a functional consequence of the altered cross-modal organization observed in deaf auditory cortex. Our results demonstrate that congenital and profound deafness alters how vision and somatosensation are processed in primary auditory cortex. PMID:22787048

  9. Ectopic Aire Expression in the Thymic Cortex Reveals Inherent Properties of Aire as a Tolerogenic Factor within the Medulla.

    PubMed

    Nishijima, Hitoshi; Kitano, Satsuki; Miyachi, Hitoshi; Morimoto, Junko; Kawano, Hiroshi; Hirota, Fumiko; Morita, Ryoko; Mouri, Yasuhiro; Masuda, Kiyoshi; Imoto, Issei; Ikuta, Koichi; Matsumoto, Mitsuru

    2015-11-15

    Cortical thymic epithelial cells (cTECs) and medullary thymic epithelial cells (mTECs) play essential roles in the positive and negative selection of developing thymocytes, respectively. Aire in mTECs plays an essential role in the latter process through expression of broad arrays of tissue-restricted Ags. To determine whether the location of Aire within the medulla is absolutely essential or whether Aire could also function within the cortex for establishment of self-tolerance, we used bacterial artificial chromosome technology to establish a semiknockin strain of NOD-background (β5t/Aire-transgenic) mice expressing Aire under control of the promoter of β5t, a thymoproteasome expressed exclusively in the cortex. Although Aire was expressed in cTECs as typical nuclear dot protein in β5t/Aire-Tg mice, cTECs expressing Aire ectopically did not confer transcriptional expression of either Aire-dependent or Aire-independent tissue-restricted Ag genes. We then crossed β5t/Aire-Tg mice with Aire-deficient NOD mice, generating a strain in which Aire expression was confined to cTECs. Despite the presence of Aire(+) cTECs, these mice succumbed to autoimmunity, as did Aire-deficient NOD mice. The thymic microenvironment harboring Aire(+) cTECs, within which many Aire-activated genes were present, also showed no obvious alteration of positive selection, suggesting that Aire's unique property of generating a self-tolerant T cell repertoire is functional only in mTECs. PMID:26453754

  10. Cell-Targeted Optogenetics and Electrical Microstimulation Reveal the Primate Koniocellular Projection to Supra-granular Visual Cortex.

    PubMed

    Klein, Carsten; Evrard, Henry C; Shapcott, Katharine A; Haverkamp, Silke; Logothetis, Nikos K; Schmid, Michael C

    2016-04-01

    Electrical microstimulation and more recently optogenetics are widely used to map large-scale brain circuits. However, the neuronal specificity achieved with both methods is not well understood. Here we compare cell-targeted optogenetics and electrical microstimulation in the macaque monkey brain to functionally map the koniocellular lateral geniculate nucleus (LGN) projection to primary visual cortex (V1). Selective activation of the LGN konio neurons with CamK-specific optogenetics caused selective electrical current inflow in the supra-granular layers of V1. Electrical microstimulation targeted at LGN konio layers revealed the same supra-granular V1 activation pattern as the one elicited by optogenetics. Taken together, these findings establish a selective koniocellular LGN influence on V1 supra-granular layers, and they indicate comparable capacities of both stimulation methods to isolate thalamo-cortical circuits in the primate brain. PMID:27021172

  11. Traumatic stress reactivity promotes excessive alcohol drinking and alters the balance of prefrontal cortex-amygdala activity

    PubMed Central

    Edwards, S; Baynes, B B; Carmichael, C Y; Zamora-Martinez, E R; Barrus, M; Koob, G F; Gilpin, N W

    2013-01-01

    Post-traumatic stress disorder (PTSD) and alcoholism are highly comorbid in humans and have partially overlapping symptomatic profiles. The aim of these studies was to examine the effects of traumatic stress (and stress reactivity) on alcohol-related behaviors and neuronal activation patterns. Male Wistar rats were trained to respond for alcohol, were exposed to predator odor (bobcat urine) paired with context and were tested for short- and long-term avoidance of the predator odor-paired context, alcohol self-administration and compulsivity of alcohol responding. Rats were re-exposed to the odor-paired context for western blot analysis of ERK phosphorylation in subregions of the medial prefrontal cortex (mPFC) and the amygdala. Rats that avoided the predator-paired chamber (Avoiders) exhibited persistent avoidance up to 6 weeks post conditioning. Avoiders exhibited increases in operant alcohol responding over weeks, as well as more compulsive-like responding for alcohol adulterated with quinine. Following re-exposure to the predator odor-paired context, Avoiders and Non-Avoiders exhibited unique patterns of neuronal activation in subregions of the mPFC and the amygdala, which were correlated with changes in avoidance and alcohol drinking. Furthermore, activity of upstream regions was differentially predictive of downstream regional activity in the Avoiders versus Non-Avoiders. An animal model for assessing the effect of traumatic stress on alcohol drinking reveals individual differences in neuronal activation patterns associated with re-exposure to traumatic stress-related stimuli, and may provide insight into the neural mechanisms underlying excessive alcohol consumption in humans with PTSD. PMID:23982628

  12. Experimentally-induced maternal hypothyroidism alters crucial enzyme activities in the frontal cortex and hippocampus of the offspring rat.

    PubMed

    Koromilas, Christos; Tsakiris, Stylianos; Kalafatakis, Konstantinos; Zarros, Apostolos; Stolakis, Vasileios; Kimpizi, Despoina; Bimpis, Alexios; Tsagianni, Anastasia; Liapi, Charis

    2015-02-01

    Thyroid hormone insufficiency during neurodevelopment can result into significant structural and functional changes within the developing central nervous system (CNS), and is associated with the establishment of serious cognitive impairment and neuropsychiatric symptomatology. The aim of the present study was to shed more light on the effects of gestational and/or lactational maternal exposure to propylthiouracil (PTU)-induced hypothyroidism as a multilevel experimental approach to the study of hypothyroidism-induced changes on crucial brain enzyme activities of 21-day-old Wistar rat offspring in a brain region-specific manner. This experimental approach has been recently developed and characterized by the authors based on neurochemical analyses performed on newborn and 21-day-old rat offspring whole brain homogenates; as a continuum to this effort, the current study focused on two CNS regions of major significance for cognitive development: the frontal cortex and the hippocampus. Maternal exposure to PTU in the drinking water during gestation and/or lactation resulted into changes in the activities of acetylcholinesterase and two important adenosinetriphosphatases (Na(+),K(+)- and Mg(2+)-ATPase), that seemed to take place in a CNS-region-specific manner and that were dependent upon the PTU-exposure timeframe followed. As these findings are analyzed and compared to the available literature, they: (i) highlight the variability involved in the changes of the aforementioned enzymatic parameters in the studied CNS regions (attributed to both the different neuroanatomical composition and the thyroid-hormone-dependent neurodevelopmental growth/differentiation patterns of the latter), (ii) reveal important information with regards to the neurochemical mechanisms that could be involved in the way clinical hypothyroidism could affect optimal neurodevelopment and, ultimately, cognitive function, as well as (iii) underline the need for the adoption of more consistent

  13. A ‘complex’ of brain metabolites distinguish altered chemistry in the cingulate cortex of episodic migraine patients

    PubMed Central

    Becerra, L.; Veggeberg, R.; Prescot, A.; Jensen, J.E.; Renshaw, P.; Scrivani, S.; Spierings, E.L.H.; Burstein, R.; Borsook, D.

    2016-01-01

    Despite the prevalence of migraine, the pathophysiology of the disease remains unclear. Current understanding of migraine has alluded to the possibility of a hyperexcitable brain. The aim of the current study is to investigate human brain metabolite differences in the anterior cingulate cortex (ACC) during the interictal phase in migraine patients. We hypothesized that there may be differences in levels of excitatory neurotransmitters and/or their derivatives in the migraine cohort in support of the theory of hyperexcitability in migraine. 2D J-resolved proton magnetic resonance spectroscopy (1H-MRS) data were acquired on a 3 Tesla (3 T) MRI from a voxel placed over the ACC of 32 migraine patients (MP; 23 females, 9 males, age 33 ± 9.6 years) and 33 healthy controls (HC; 25 females, 8 males, age 32 ± 9.6 years). Amplitude correlation matrices were constructed for each subject to evaluate metabolite discriminability. ProFit-estimated metabolite peak areas were normalized to a water reference signal to assess subject differences. The initial analysis of variance (ANOVA) was performed to test for group differences for all metabolites/creatine (Cre) ratios between healthy controls and migraineurs but showed no statistically significant differences. In addition, we used a multivariate approach to distinguish migraineurs from healthy subjects based on the metabolite/Cre ratio. A quadratic discriminant analysis (QDA) model was used to identify 3 metabolite ratios sufficient to minimize minimum classification error (MCE). The 3 selected metabolite ratios were aspartate (Asp)/Cre, N-acetyl aspartate (NAA)/Cre, and glutamine (Gln)/Cre. These findings are in support of a ‘complex’ of metabolite alterations, which may underlie changes in neuronal chemistry in the migraine brain. Furthermore, the parallel changes in the three-metabolite ‘complex’ may confer more subtle but biological processes that are ongoing. The data also support the current theory that the

  14. An integrated multi-omics study revealed metabolic alterations underlying the effects of coffee consumption.

    PubMed

    Takahashi, Shoko; Saito, Kenji; Jia, Huijuan; Kato, Hisanori

    2014-01-01

    Many epidemiological studies have indicated that coffee consumption may reduce the risks of developing obesity and diabetes, but the underlying mechanisms of these effects are poorly understood. Our previous study revealed the changes on gene expression profiles in the livers of C57BL/6J mice fed a high-fat diet containing three types of coffee (caffeinated, decaffeinated and green unroasted coffee), using DNA microarrays. The results revealed remarkable alterations in lipid metabolism-related molecules which may be involved in the anti-obesity effects of coffee. We conducted the present study to further elucidate the metabolic alterations underlying the effects of coffee consumption through comprehensive proteomic and metabolomic analyses. Proteomics revealed an up-regulation of isocitrate dehydrogenase (a key enzyme in the TCA cycle) and its related proteins, suggesting increased energy generation. The metabolomics showed an up-regulation of metabolites involved in the urea cycle, with which the transcriptome data were highly consistent, indicating accelerated energy expenditure. The TCA cycle and the urea cycle are likely be accelerated in a concerted manner, since they are directly connected by mutually providing each other's intermediates. The up-regulation of these pathways might result in a metabolic shift causing increased ATP turnover, which is related to the alterations of lipid metabolism. This mechanism may play an important part in the suppressive effects of coffee consumption on obesity, inflammation, and hepatosteatosis. This study newly revealed global metabolic alterations induced by coffee intake, providing significant insights into the association between coffee intake and the prevention of type 2 diabetes, utilizing the benefits of multi-omics analyses. PMID:24618914

  15. Altered Structural and Functional Connectivity in Late Preterm Preadolescence: An Anatomic Seed-Based Study of Resting State Networks Related to the Posteromedial and Lateral Parietal Cortex

    PubMed Central

    Degnan, Andrew J.; Wisnowski, Jessica L.; Choi, SoYoung; Ceschin, Rafael; Bhushan, Chitresh; Leahy, Richard M.; Corby, Patricia; Schmithorst, Vincent J.; Panigrahy, Ashok

    2015-01-01

    Objective Late preterm birth confers increased risk of developmental delay, academic difficulties and social deficits. The late third trimester may represent a critical period of development of neural networks including the default mode network (DMN), which is essential to normal cognition. Our objective is to identify functional and structural connectivity differences in the posteromedial cortex related to late preterm birth. Methods Thirty-eight preadolescents (ages 9–13; 19 born in the late preterm period (≥32 weeks gestational age) and 19 at term) without access to advanced neonatal care were recruited from a low socioeconomic status community in Brazil. Participants underwent neurocognitive testing, 3-dimensional T1-weighted imaging, diffusion-weighted imaging and resting state functional MRI (RS-fMRI). Seed-based probabilistic diffusion tractography and RS-fMRI analyses were performed using unilateral seeds within the posterior DMN (posterior cingulate cortex, precuneus) and lateral parietal DMN (superior marginal and angular gyri). Results Late preterm children demonstrated increased functional connectivity within the posterior default mode networks and increased anti-correlation with the central-executive network when seeded from the posteromedial cortex (PMC). Key differences were demonstrated between PMC components with increased anti-correlation with the salience network seen only with posterior cingulate cortex seeding but not with precuneus seeding. Probabilistic tractography showed increased streamlines within the right inferior longitudinal fasciculus and inferior fronto-occipital fasciculus within late preterm children while decreased intrahemispheric streamlines were also observed. No significant differences in neurocognitive testing were demonstrated between groups. Conclusion Late preterm preadolescence is associated with altered functional connectivity from the PMC and lateral parietal cortex to known distributed functional cortical networks

  16. Nonlinear optical microscopy reveals invading endothelial cells anisotropically alter three-dimensional collagen matrices

    SciTech Connect

    Lee, P.-F.; Yeh, Alvin T.; Bayless, Kayla J.

    2009-02-01

    The interactions between endothelial cells (ECs) and the extracellular matrix (ECM) are fundamental in mediating various steps of angiogenesis, including cell adhesion, migration and sprout formation. Here, we used a noninvasive and non-destructive nonlinear optical microscopy (NLOM) technique to optically image endothelial sprouting morphogenesis in three-dimensional (3D) collagen matrices. We simultaneously captured signals from collagen fibers and endothelial cells using second harmonic generation (SHG) and two-photon excited fluorescence (TPF), respectively. Dynamic 3D imaging revealed EC interactions with collagen fibers along with quantifiable alterations in collagen matrix density elicited by EC movement through and morphogenesis within the matrix. Specifically, we observed increased collagen density in the area between bifurcation points of sprouting structures and anisotropic increases in collagen density around the perimeter of lumenal structures, but not advancing sprout tips. Proteinase inhibition studies revealed membrane-associated matrix metalloproteinase were utilized for sprout advancement and lumen expansion. Rho-associated kinase (p160ROCK) inhibition demonstrated that the generation of cell tension increased collagen matrix alterations. This study followed sprouting ECs within a 3D matrix and revealed that the advancing structures recognize and significantly alter their extracellular environment at the periphery of lumens as they progress.

  17. Voltage Sensitive Dye Imaging Reveals Improved Topographic Activation of Cortex in Response to Manipulation of Thalamic Microstimulation Parameters

    PubMed Central

    Wang, Qi; Millard, Daniel C.; Zheng, He J.V.; Stanley, Garrett B.

    2012-01-01

    Voltage sensitive dye (VSD) imaging was used to quantify in-vivo, network level spatiotemporal cortical activation in response to electrical microstimulation of the thalamus in the rat vibrissa pathway. Thalamic microstimulation evoked a distinctly different cortical response than natural sensory stimulation, with the response to microstimulation spreading over a larger area of cortex and being topographically misaligned with the cortical column to which the stimulated thalamic region projects. Electrical stimulation with cathode-leading asymmetric waveforms reduced this topographic misalignment while simultaneously increasing the spatial specificity of the cortical activation. Systematically increasing the asymmetry of the microstimulation pulses revealed a continuum between symmetric and asymmetric stimulation that gradually reduced the topographic bias. These data strongly support the hypothesis that manipulation of the electrical stimulation waveform can be used to selectively activate specific neural elements. Specifically, our results are consistent with the prediction that cathode-leading asymmetric waveforms preferentially stimulating cell bodies over axons, while symmetric waveforms preferentially activate axons over cell bodies. The findings here provide some initial steps toward the design and optimization of microstimulation of neural circuitry, and open the door to more sophisticated engineering tools, such as nonlinear system identification techniques, to develop technologies for more effective control of activity in the nervous system. PMID:22327024

  18. Simultaneous fNIRS and thermal infrared imaging during cognitive task reveal autonomic correlates of prefrontal cortex activity

    NASA Astrophysics Data System (ADS)

    Pinti, Paola; Cardone, Daniela; Merla, Arcangelo

    2015-12-01

    Functional Near Infrared-Spectroscopy (fNIRS) represents a powerful tool to non-invasively study task-evoked brain activity. fNIRS assessment of cortical activity may suffer for contamination by physiological noises of different origin (e.g. heart beat, respiration, blood pressure, skin blood flow), both task-evoked and spontaneous. Spontaneous changes occur at different time scales and, even if they are not directly elicited by tasks, their amplitude may result task-modulated. In this study, concentration changes of hemoglobin were recorded over the prefrontal cortex while simultaneously recording the facial temperature variations of the participants through functional infrared thermal (fIR) imaging. fIR imaging provides touch-less estimation of the thermal expression of peripheral autonomic. Wavelet analysis revealed task-modulation of the very low frequency (VLF) components of both fNIRS and fIR signals and strong coherence between them. Our results indicate that subjective cognitive and autonomic activities are intimately linked and that the VLF component of the fNIRS signal is affected by the autonomic activity elicited by the cognitive task. Moreover, we showed that task-modulated changes in vascular tone occur both at a superficial and at larger depth in the brain. Combined use of fNIRS and fIR imaging can effectively quantify the impact of VLF autonomic activity on the fNIRS signals.

  19. Tactile Object Familiarity in the Blind Brain Reveals the Supramodal Perceptual-Mnemonic Nature of the Perirhinal Cortex

    PubMed Central

    Cacciamani, Laura; Likova, Lora T.

    2016-01-01

    This study is the first to investigate the neural underpinnings of tactile object familiarity in the blind during both perception and memory. In the sighted, the perirhinal cortex (PRC) has been implicated in the assessment of visual object familiarity—a crucial everyday task—as evidenced by reduced activation when an object becomes familiar. Here, to examine the PRC’s role in tactile object familiarity in the absence of vision, we trained blind participants on a unique memory-guided drawing technique and measured brain activity while they perceptually explored raised-line drawings, drew them from tactile memory, and scribbled (control). Functional magnetic resonance imaging (fMRI) before and after a week of training revealed a significant decrease in PRC activation from pre- to post-training (i.e., from unfamiliar to familiar) during perceptual exploration as well as memory-guided drawing, but not scribbling. This familiarity-based reduction is the first evidence that the PRC represents tactile object familiarity in the blind. Furthermore, the finding of this effect during both tactile perception and tactile memory provides the critical link in establishing the PRC as a structure whose representations are supramodal for both perception and memory. PMID:27148002

  20. Simultaneous fNIRS and thermal infrared imaging during cognitive task reveal autonomic correlates of prefrontal cortex activity

    PubMed Central

    Pinti, Paola; Cardone, Daniela; Merla, Arcangelo

    2015-01-01

    Functional Near Infrared-Spectroscopy (fNIRS) represents a powerful tool to non-invasively study task-evoked brain activity. fNIRS assessment of cortical activity may suffer for contamination by physiological noises of different origin (e.g. heart beat, respiration, blood pressure, skin blood flow), both task-evoked and spontaneous. Spontaneous changes occur at different time scales and, even if they are not directly elicited by tasks, their amplitude may result task-modulated. In this study, concentration changes of hemoglobin were recorded over the prefrontal cortex while simultaneously recording the facial temperature variations of the participants through functional infrared thermal (fIR) imaging. fIR imaging provides touch-less estimation of the thermal expression of peripheral autonomic. Wavelet analysis revealed task-modulation of the very low frequency (VLF) components of both fNIRS and fIR signals and strong coherence between them. Our results indicate that subjective cognitive and autonomic activities are intimately linked and that the VLF component of the fNIRS signal is affected by the autonomic activity elicited by the cognitive task. Moreover, we showed that task-modulated changes in vascular tone occur both at a superficial and at larger depth in the brain. Combined use of fNIRS and fIR imaging can effectively quantify the impact of VLF autonomic activity on the fNIRS signals. PMID:26632763

  1. Voltage-sensitive dye imaging reveals improved topographic activation of cortex in response to manipulation of thalamic microstimulation parameters

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Millard, Daniel C.; Zheng, He J. V.; Stanley, Garrett B.

    2012-04-01

    Voltage-sensitive dye imaging was used to quantify in vivo, network level spatiotemporal cortical activation in response to electrical microstimulation of the thalamus in the rat vibrissa pathway. Thalamic microstimulation evoked a distinctly different cortical response than natural sensory stimulation, with response to microstimulation spreading over a larger area of cortex and being topographically misaligned with the cortical column to which the stimulated thalamic region projects. Electrical stimulation with cathode-leading asymmetric waveforms reduced this topographic misalignment while simultaneously increasing the spatial specificity of the cortical activation. Systematically increasing the asymmetry of the microstimulation pulses revealed a continuum between symmetric and asymmetric stimulation that gradually reduced the topographic bias. These data strongly support the hypothesis that manipulation of the electrical stimulation waveform can be used to selectively activate specific neural elements. Specifically, our results are consistent with the prediction that cathode-leading asymmetric waveforms preferentially stimulate cell bodies over axons, while symmetric waveforms preferentially activate axons over cell bodies. The findings here provide some initial steps toward the design and optimization of microstimulation of neural circuitry, and open the door to more sophisticated engineering tools, such as nonlinear system identification techniques, to develop technologies for more effective control of activity in the nervous system.

  2. Direct 3D Analyses Reveal Barrel-Specific Vascular Distribution and Cross-Barrel Branching in the Mouse Barrel Cortex.

    PubMed

    Wu, Jingpeng; Guo, Congdi; Chen, Shangbin; Jiang, Tao; He, Yong; Ding, Wenxiang; Yang, Zhongqin; Luo, Qingming; Gong, Hui

    2016-01-01

    Whether vascular distribution is spatially specific among cortical columns is a fundamental yet controversial question. Here, we have obtained 1-μm resolution 3D datasets that cover the whole mouse barrel cortex by combining Nissl staining with micro-optical sectioning tomography to simultaneously visualize individual cells and blood vessels, including capillaries. Pinpointing layer IV of the posteromedial barrel subfield, direct 3D reconstruction and quantitative analysis showed that (1) penetrating vessels preferentially locate in the interbarrel septa/barrel wall (75.1%) rather than the barrel hollows, (2) the branches of 70% penetrating vessels only reach the neighboring but not always all the neighboring barrels and the other 30% extend beyond the neighboring barrels and may provide cross-barrel blood supply or drainage, (3) the branches of 59.6% penetrating vessels reach all the neighboring barrels, while the rest only reach part of them, and (4) the length density of microvessels in the interbarrel septa/barrel wall is lower than that in the barrel hollows with a ratio of 0.92. These results reveal that the penetrating vessels and microvessels exhibit a barrel-specific organization, whereas the branches of penetrating vessels do not, which suggests a much more complex vascular distribution pattern among cortical columns than previously thought. PMID:25085882

  3. Tactile Object Familiarity in the Blind Brain Reveals the Supramodal Perceptual-Mnemonic Nature of the Perirhinal Cortex.

    PubMed

    Cacciamani, Laura; Likova, Lora T

    2016-01-01

    This study is the first to investigate the neural underpinnings of tactile object familiarity in the blind during both perception and memory. In the sighted, the perirhinal cortex (PRC) has been implicated in the assessment of visual object familiarity-a crucial everyday task-as evidenced by reduced activation when an object becomes familiar. Here, to examine the PRC's role in tactile object familiarity in the absence of vision, we trained blind participants on a unique memory-guided drawing technique and measured brain activity while they perceptually explored raised-line drawings, drew them from tactile memory, and scribbled (control). Functional magnetic resonance imaging (fMRI) before and after a week of training revealed a significant decrease in PRC activation from pre- to post-training (i.e., from unfamiliar to familiar) during perceptual exploration as well as memory-guided drawing, but not scribbling. This familiarity-based reduction is the first evidence that the PRC represents tactile object familiarity in the blind. Furthermore, the finding of this effect during both tactile perception and tactile memory provides the critical link in establishing the PRC as a structure whose representations are supramodal for both perception and memory. PMID:27148002

  4. Laminar and Dorsoventral Molecular Organization of the Medial Entorhinal Cortex Revealed by Large-scale Anatomical Analysis of Gene Expression

    PubMed Central

    Ramsden, Helen L.; Sürmeli, Gülşen; McDonagh, Steven G.; Nolan, Matthew F.

    2015-01-01

    Neural circuits in the medial entorhinal cortex (MEC) encode an animal’s position and orientation in space. Within the MEC spatial representations, including grid and directional firing fields, have a laminar and dorsoventral organization that corresponds to a similar topography of neuronal connectivity and cellular properties. Yet, in part due to the challenges of integrating anatomical data at the resolution of cortical layers and borders, we know little about the molecular components underlying this organization. To address this we develop a new computational pipeline for high-throughput analysis and comparison of in situ hybridization (ISH) images at laminar resolution. We apply this pipeline to ISH data for over 16,000 genes in the Allen Brain Atlas and validate our analysis with RNA sequencing of MEC tissue from adult mice. We find that differential gene expression delineates the borders of the MEC with neighboring brain structures and reveals its laminar and dorsoventral organization. We propose a new molecular basis for distinguishing the deep layers of the MEC and show that their similarity to corresponding layers of neocortex is greater than that of superficial layers. Our analysis identifies ion channel-, cell adhesion- and synapse-related genes as candidates for functional differentiation of MEC layers and for encoding of spatial information at different scales along the dorsoventral axis of the MEC. We also reveal laminar organization of genes related to disease pathology and suggest that a high metabolic demand predisposes layer II to neurodegenerative pathology. In principle, our computational pipeline can be applied to high-throughput analysis of many forms of neuroanatomical data. Our results support the hypothesis that differences in gene expression contribute to functional specialization of superficial layers of the MEC and dorsoventral organization of the scale of spatial representations. PMID:25615592

  5. Analysis of Graph Invariants in Functional Neocortical Circuitry Reveals Generalized Features Common to Three Areas of Sensory Cortex

    PubMed Central

    Gururangan, Suchin S.; Sadovsky, Alexander J.; MacLean, Jason N.

    2014-01-01

    Correlations in local neocortical spiking activity can provide insight into the underlying organization of cortical microcircuitry. However, identifying structure in patterned multi-neuronal spiking remains a daunting task due to the high dimensionality of the activity. Using two-photon imaging, we monitored spontaneous circuit dynamics in large, densely sampled neuronal populations within slices of mouse primary auditory, somatosensory, and visual cortex. Using the lagged correlation of spiking activity between neurons, we generated functional wiring diagrams to gain insight into the underlying neocortical circuitry. By establishing the presence of graph invariants, which are label-independent characteristics common to all circuit topologies, our study revealed organizational features that generalized across functionally distinct cortical regions. Regardless of sensory area, random and -nearest neighbors null graphs failed to capture the structure of experimentally derived functional circuitry. These null models indicated that despite a bias in the data towards spatially proximal functional connections, functional circuit structure is best described by non-random and occasionally distal connections. Eigenvector centrality, which quantifies the importance of a neuron in the temporal flow of circuit activity, was highly related to feedforwardness in all functional circuits. The number of nodes participating in a functional circuit did not scale with the number of neurons imaged regardless of sensory area, indicating that circuit size is not tied to the sampling of neocortex. Local circuit flow comprehensively covered angular space regardless of the spatial scale that we tested, demonstrating that circuitry itself does not bias activity flow toward pia. Finally, analysis revealed that a minimal numerical sample size of neurons was necessary to capture at least 90 percent of functional circuit topology. These data and analyses indicated that functional circuitry

  6. Early stress is associated with alterations in the orbitofrontal cortex: a tensor-based morphometry investigation of brain structure and behavioral risk.

    PubMed

    Hanson, Jamie L; Chung, Moo K; Avants, Brian B; Shirtcliff, Elizabeth A; Gee, James C; Davidson, Richard J; Pollak, Seth D

    2010-06-01

    Individuals who experience early adversity, such as child maltreatment, are at heightened risk for a broad array of social and health difficulties. However, little is known about how this behavioral risk is instantiated in the brain. Here we examine a neurobiological contribution to individual differences in human behavior using methodology appropriate for use with pediatric populations paired with an in-depth measure of social behavior. We show that alterations in the orbitofrontal cortex among individuals who experienced physical abuse are related to social difficulties. These data suggest a biological mechanism linking early social learning to later behavioral outcomes. PMID:20519521

  7. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels

    PubMed Central

    Tsai, Philbert S.; Kaufhold, John P.; Blinder, Pablo; Friedman, Beth; Drew, Patrick J.; Karten, Harvey J.; Lyden, Patrick D.; Kleinfeld, David

    2016-01-01

    It is well known that the density of neurons varies within the adult brain. In neocortex, this includes variations in neuronal density between different lamina as well as between different regions. Yet the concomitant variation of the microvessels is largely uncharted. Here we present automated histological, imaging, and analysis tools to simultaneously map the locations of all neuronal and non-neuronal nuclei and the centerlines and diameters of all blood vessels within thick slabs of neocortex from mice. Based on total inventory measurements of different cortical regions (~ 107 cells vectorized across brains), these methods revealed: (1) In three dimensions, the mean distance of the center of neuronal somata to the closest microvessel was 14 μm. (2) Volume samples within lamina of a given region show that the density of microvessels does not match the strong laminar variation in neuronal density. This holds for both agranular and granular cortex. (3) Volume samples in successive radii from the midline to the ventral-lateral edge, where each volume summed the number of cells and microvessels from the pia to the white matter, show a significant correlation between neuronal and microvessel densities. These data show that while neuronal and vascular densities do not track each other on the 100 μm scale of cortical lamina, they do track each other on the 1 – 10 mm scale of the cortical mantle. The absence of a disproportionate density of blood vessels in granular lamina is argued to be consistent with the initial locus of functional brain imaging signals. PMID:19923289

  8. Minocycline provides protection against beta-amyloid(25-35)-induced alterations of the somatostatin signaling pathway in the rat temporal cortex.

    PubMed

    Burgos-Ramos, E; Puebla-Jiménez, L; Arilla-Ferreiro, E

    2008-07-17

    Minocycline is a semi-synthetic second-generation tetracycline known to improve cognition in amyloid precursor protein transgenic mice. Whether it can protect the somatostatin (SRIF) receptor-effector system, also involved in learning and memory, from alterations induced by chronic i.c.v. infusion of beta-amyloid peptide (Abeta)(25-35) is presently unknown. Hence, in the present study, we tested the effects of minocycline on the SRIF signaling pathway in the rat temporal cortex. To this end, male Wistar rats were injected with minocycline (45 mg/kg body weight) i.p. twice on the first day of treatment. On the following day and during 14 days, Abeta(25-35) was administered i.c.v. via an osmotic minipump connected to a cannula implanted in the left lateral ventricle (300 pmol/day). Minocycline (22.5 mg/kg, i.p.) was injected once again the last 2 days of the Abeta(25-35) infusion. The animals were killed by decapitation 24 h after the last drug injection. Our results show that minocycline prevents the decrease in SRIF receptor density and somatostatin receptor (sst) 2 expression and the attenuated capacity of SRIF to inhibit adenylyl cyclase (AC) activity, alterations present in the temporal cortex of Abeta(25-35)-treated rats. Furthermore, minocycline blocks the Abeta(25-35)-induced decrease in phosphorylated cyclic AMP (cAMP) response element binding protein (p-CREB) content and G-protein-coupled receptor kinase 2 (GRK) protein expression in this brain area. Altogether, the present data demonstrate that minocycline in vivo provides protection against Abeta-induced impairment of the SRIF signal transduction pathway in the rat temporal cortex and suggest that it may have a potential as a therapeutic agent in human Alzheimer's disease, although further studies are warranted. PMID:18555616

  9. FGF-2 deficiency causes dysregulation of Arhgef6 and downstream targets in the cerebral cortex accompanied by altered neurite outgrowth and dendritic spine morphology.

    PubMed

    Baum, Philip; Vogt, Miriam A; Gass, Peter; Unsicker, Klaus; von Bohlen Und Halbach, Oliver

    2016-05-01

    Fibroblast growth factor 2 (FGF-2) is an abundant growth factor in the brain and exerts multiple functions on neural cells ranging from cell division, cell fate determination to differentiation. However, many details of the molecular mechanisms underlying the diverse functions of FGF-2 are poorly understood. In a comparative microarray analysis of motor sensory cortex (MSC) tissue of adult knockout (FGF-2(-/-)) and control (FGF-2(+/+)) mice, we found a substantial number of regulated genes, which are implicated in cytoskeletal machinery dynamics. Specifically, we found a prominent downregulation of Arhgef6. Arhgef6 mRNA was significantly reduced in the FGF-2(-/-) cortex, and Arhgef6 protein virtually absent, while RhoA protein levels were massively increased and Cdc42 protein levels were reduced. Since Arhgef6 is localized to dendritic spines, we next analyzed dendritic spines of adult FGF2(-/-) and control mouse cortices. Spine densities were significantly increased, whereas mean length of spines on dendrites of layer V of MSC neurons in adult FGF-2(-/-) mice was significantly decreased as compared to respective controls. Furthermore, neurite length in dissociated cortical cultures from E18 FGF-2(-/-) mice was significantly reduced at DIV7 as compared to wildtype neurons. Despite the fact that altered neuronal morphology and alterations in dendritic spines were observed, FGF-2(-/-) mice behave relatively unsuspicious in several behavioral tasks. However, FGF-2(-/-) mice exhibited decreased thermal pain sensitivity in the hotplate-test. PMID:26970009

  10. Alteration in 5-HT₂C, NMDA receptor and IP3 in cerebral cortex of epileptic rats: restorative role of Bacopa monnieri.

    PubMed

    Krishnakumar, Amee; Anju, T R; Abraham, Pretty Mary; Paulose, C S

    2015-01-01

    Bacopa monnieri is effective in stress management, brain function and a balanced mood. 5-HT2C receptors have been implicated in stress whereas NMDA receptors and mGlu5 play crucial role in memory and cognition. In the present study, we investigated the role of B. monnieri extract in ameliorating pilocarpine induced temporal lobe epilepsy through regulation of 5-HT2C and NMDA receptors in cerebral cortex. Our studies confirmed an increased 5-HT2C receptor function during epilepsy thereby facilitating IP3 release. We also observed an decreased NMDA receptor function with an elevated mGlu5 and GLAST gene expression in epileptic condition indicating the possibility for glutamate mediated excitotoxicity. These alterations lead to impaired behavioural functions as indicated by the Elevated Plus maze test. Carbamazepine and B. monnieri treatments to epileptic rats reversed the alterations in 5-HT2C, NMDA receptor functions and IP3 content thereby effectively managing the neurotransmitter balance in the cerebral cortex. PMID:25503823

  11. NMR-Based Metabolic Profiling Reveals Neurochemical Alterations in the Brain of Rats Treated with Sorafenib.

    PubMed

    Du, Changman; Shao, Xue; Zhu, Ruiming; Li, Yan; Zhao, Qian; Fu, Dengqi; Gu, Hui; Kong, Jueying; Luo, Li; Long, Hailei; Deng, Pengchi; Wang, Huijuan; Hu, Chunyan; Zhao, Yinglan; Cen, Xiaobo

    2015-11-01

    Sorafenib, an active multi-kinase inhibitor, has been widely used as a chemotherapy drug to treat advanced clear-cell renal cell carcinoma patients. In spite of the relative safety, sorafenib has been shown to exert a negative impact on cognitive functioning in cancer patients, specifically on learning and memory; however, the underlying mechanism remains unclear. In this study, an NMR-based metabolomics approach was applied to investigate the neurochemical effects of sorafenib in rats. Male rats were once daily administrated with 120 mg/kg sorafenib by gavage for 3, 7, and 28 days, respectively. NMR-based metabolomics coupled with histopathology examinations for hippocampus, prefrontal cortex (PFC), and striatum were performed. The (1)H NMR spectra data were analyzed by using multivariate pattern recognition techniques to show the time-dependent biochemical variations induced by sorafenib. Excellent separation was obtained and distinguishing metabolites were observed between sorafenib-treated and control rats. A total of 36 differential metabolites in hippocampus of rats treated with sorafenib were identified, some of which were significantly changed. Furthermore, these modified metabolites mainly reflected the disturbances in neurotransmitters, energy metabolism, membrane, and amino acids. However, only a few metabolites in PFC and striatum were altered by sorafenib. Additionally, no apparent histological changes in these three brain regions were observed in sorafenib-treated rats. Together, our findings demonstrate the disturbed metabonomics pathways, especially, in hippocampus, which may underlie the sorafenib-induced cognitive deficits in patients. This work also shows the advantage of NMR-based metabolomics over traditional approach on the study of biochemical effects of drugs. PMID:26233726

  12. Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function.

    PubMed

    Sunitha, Balaraju; Gayathri, Narayanappa; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Nalini, Atchayaram; Padmanabhan, Balasundaram; Srinivas Bharath, Muchukunte Mukunda

    2016-07-01

    Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies

  13. Altered Spontaneous Brain Activity in Patients with Acute Spinal Cord Injury Revealed by Resting-State Functional MRI

    PubMed Central

    Zhu, Ling; Wu, Guangyao; Zhou, Xin; Li, Jielan; Wen, Zhi; Lin, Fuchun

    2015-01-01

    Background Previous neuroimaging studies have provided evidence of structural and functional reorganization of brain in patients with chronic spinal cord injury (SCI). However, it remains unknown whether the spontaneous brain activity changes in acute SCI. In this study, we investigated intrinsic brain activity in acute SCI patients using a regional homogeneity (ReHo) analysis based on resting-state functional magnetic resonance imaging. Methods A total of 15 patients with acute SCI and 16 healthy controls participated in the study. The ReHo value was used to evaluate spontaneous brain activity, and voxel-wise comparisons of ReHo were performed to identify brain regions with altered spontaneous brain activity between groups. We also assessed the associations between ReHo and the clinical scores in brain regions showing changed spontaneous brain activity. Results Compared with the controls, the acute SCI patients showed decreased ReHo in the bilateral primary motor cortex/primary somatosensory cortex, bilateral supplementary motor area/dorsal lateral prefrontal cortex, right inferior frontal gyrus, bilateral dorsal anterior cingulate cortex and bilateral caudate; and increased ReHo in bilateral precuneus, the left inferior parietal lobe, the left brainstem/hippocampus, the left cingulate motor area, bilateral insula, bilateral thalamus and bilateral cerebellum. The average ReHo values of the left thalamus and right insula were negatively correlated with the international standards for the neurological classification of spinal cord injury motor scores. Conclusion Our findings indicate that acute distant neuronal damage has an immediate impact on spontaneous brain activity. In acute SCI patients, the ReHo was prominently altered in brain regions involved in motor execution and cognitive control, default mode network, and which are associated with sensorimotor compensatory reorganization. Abnormal ReHo values in the left thalamus and right insula could serve as

  14. Regional Coherence Alterations Revealed by Resting-State fMRI in Post-Stroke Patients with Cognitive Dysfunction

    PubMed Central

    Peng, Cheng-Yu; Chen, Yu-Chen; Cui, Ying; Zhao, Deng-Ling; Jiao, Yun; Tang, Tian-Yu; Ju, Shenghong; Teng, Gao-Jun

    2016-01-01

    Objectives Post-stroke cognitive dysfunction greatly influences patients’ quality of life after stroke. However, its neurophysiological basis remains unknown. This study utilized resting-state functional magnetic resonance imaging (fMRI) to investigate the alterations in regional coherence in patients after subcortical stroke. Methods Resting-state fMRI measurements were acquired from 16 post-stroke patients with poor cognitive function (PSPC), 16 post-stroke patients with good cognitive function (PSGC) and 30 well-matched healthy controls (HC). Regional homogeneity (ReHo) was used to detect alterations in regional coherence. Abnormalities in regional coherence correlated with scores on neuropsychological scales. Results Compared to the HC and the PSGC, the PSPC showed remarkably decreased ReHo in the bilateral anterior cingulate cortex and the left posterior cingulate cortex/precuneus. ReHo in the bilateral anterior cingulate cortex positively correlated with the scores on the Symbol Digit Modalities Test (r = 0.399, P = 0.036) and the Complex Figure Test-delayed recall subtest (r = 0.397, P = 0.036) in all post-stroke patients. Moreover, ReHo in the left posterior cingulate cortex/precuneus positively correlated with the scores on the Forward Digit Span Test (r = 0.485, P = 0.009) in all post-stroke patients. Conclusions Aberrant regional coherence was observed in the anterior and posterior cingulate cortices in post-stroke patients with cognitive dysfunction. ReHo could represent a promising indicator of neurobiological deficiencies in post-stroke patients. PMID:27454170

  15. Age-Dependent Alterations in the Interactions of NF-κB and N-myc with GLT-1/EAAT2 Promoter in the Pericontusional Cortex of Mice Subjected to Traumatic Brain Injury.

    PubMed

    Gupta, Rajaneesh K; Prasad, S

    2016-07-01

    Traumatic brain injury (TBI) is one of the major risk factors of dementia, aging, and cognitive impairments, etc. We have previously reported that expression of the astrocytic glutamate transporter GLT-1/EAAT2 is downregulated in the pericontusional cortex of adult and old mice in post-TBI time-dependent manner, and the process of decline starts before in old than in adult TBI mice. However, relationship between age- and TBI-dependent alterations in GLT-1/EAAT2 expression and interactions of transcription factors NF-κB and N-myc with their cognate GLT-1/EAAT2 promoter sequences, an important step of its transcriptional control, is not known. To understand this, we developed TBI mouse model by modified chronic head injury (CHI) method, analyzed expression of GFAP, TNF-α, and AQP4 by RT-PCR for its validation, and analyzed interactions of NF-κB and N-myc with GLT-1/EAAT2 promoter sequences by electrophoretic mobility shift assay (EMSA). Our EMSA data revealed that interactions of NF-κB and N-myc with GLT-1/EAAT2 promoter sequences was significantly elevated in the ipsi-lateral cortex of both adult and old TBI mice in post-TBI time-dependent manner; however, these interactions started immediately in the old compared to that in adult TBI mice, which could be attributed to our previously reported age- and post-TBI time-dependent differential expression of GLT-1/EAAT2 in the pericontusional cortex. PMID:26081154

  16. Transcriptional profiling reveals that C5a alters microRNA in brain endothelial cells.

    PubMed

    Eadon, Michael T; Jacob, Alexander; Cunningham, Patrick N; Quigg, Richard J; Garcia, Joe G N; Alexander, Jessy J

    2014-11-01

    Blood-brain barrier (BBB) disturbance is a crucial occurrence in many neurological diseases, including systemic lupus erythematosus (SLE). Our previous studies showed that experimental lupus serum altered the integrity of the mouse brain endothelial layer, an important constituent of the BBB. Complement activation occurs in lupus with increased circulating complement components. Using a genomics approach, we identified the microRNA (miRNA) altered in mouse brain endothelial cells (bEnd3) by lupus serum and the complement protein, C5a. Of the 318 miRNA evaluated, 23 miRNAs were altered by lupus serum and 32 were altered by C5a alone compared with controls. Seven miRNAs (P < 0 · 05) were differentially expressed by both treatments: mmu-miR-133a*, mmu-miR-193*, mmu-miR-26b, mmu-miR-28*, mmu-miR-320a, mmu-miR-423-3p and mmu-miR-509-5p. The microarray results were validated by quantitative RT-PCR. In line with the in vitro results, expression of miR-26b and miR-28* were also significantly up-regulated in lupus mouse brain which was reduced by C5a receptor inhibition. Target prediction analysis revealed miR gene targets encoding components involved in inflammation, matrix arrangement, and apoptosis, pathways known to play important roles in central nervous system lupus. Our findings suggest that the miRNAs reported in this study may represent novel therapeutic targets in central nervous system lupus and other similar neuroinflammatory settings. PMID:24801999

  17. Transcriptional profiling reveals that C5a alters microRNA in brain endothelial cells

    PubMed Central

    Eadon, Michael T; Jacob, Alexander; Cunningham, Patrick N; Quigg, Richard J; Garcia, Joe G N; Alexander, Jessy J

    2014-01-01

    Blood–brain barrier (BBB) disturbance is a crucial occurrence in many neurological diseases, including systemic lupus erythematosus (SLE). Our previous studies showed that experimental lupus serum altered the integrity of the mouse brain endothelial layer, an important constituent of the BBB. Complement activation occurs in lupus with increased circulating complement components. Using a genomics approach, we identified the microRNA (miRNA) altered in mouse brain endothelial cells (bEnd3) by lupus serum and the complement protein, C5a. Of the 318 miRNA evaluated, 23 miRNAs were altered by lupus serum and 32 were altered by C5a alone compared with controls. Seven miRNAs (P < 0·05) were differentially expressed by both treatments: mmu-miR-133a*, mmu-miR-193*, mmu-miR-26b, mmu-miR-28*, mmu-miR-320a, mmu-miR-423-3p and mmu-miR-509-5p. The microarray results were validated by quantitative RT-PCR. In line with the in vitro results, expression of miR-26b and miR-28* were also significantly up-regulated in lupus mouse brain which was reduced by C5a receptor inhibition. Target prediction analysis revealed miR gene targets encoding components involved in inflammation, matrix arrangement, and apoptosis, pathways known to play important roles in central nervous system lupus. Our findings suggest that the miRNAs reported in this study may represent novel therapeutic targets in central nervous system lupus and other similar neuroinflammatory settings. PMID:24801999

  18. High-field fMRI reveals tonotopically-organized and core auditory cortex in the cat.

    PubMed

    Hall, Amee J; Lomber, Stephen G

    2015-07-01

    As frequency is one of the most basic elements of sound, it is not surprising that the earliest stages of auditory cortical processing are tonotopically organized. In cats, there are four known tonotopically organized cortical areas: the anterior (AAF), posterior (PAF), and ventral posterior (VPAF) auditory fields and primary auditory cortex (A1). Electrophysiological and anatomical evidence have suggested that AAF and A1 form core auditory cortex. The purpose of this investigation was to determine if high-field functional magnetic resonance imaging (fMRI) could be used to define the borders of all four tonotopically organized areas, identify core auditory cortex, and demonstrate tonotopy similar to that found using more invasive techniques. Five adult cats were examined. Eight different pure tones or one broad-band noise (BBN) stimuli were presented in a block paradigm during continuous fMRI scanning. Analysis was performed on each animal individually using conservative familywise error thresholds. Group analysis was performed by extracting data from fMRI analysis software and performing a battery of statistical tests. In auditory cortex, a reversal of the tonotopic gradient is known to occur at the borders between tonotopically organized areas. Therefore, high and low tones were used to delineate these borders. Activations in response to BBN as opposed to tonal stimulation demonstrated that core auditory cortex consists of both A1 and AAF. Finally, tonotopy was identified in each of the four known tonotopically organized areas. Therefore, we conclude that fMRI is effective at defining all four tonotopically organized cortical areas and delineating core auditory cortex. PMID:25776742

  19. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?

    PubMed Central

    Lang, Nicolas; Siebner, Hartwig R.; Ward, Nick S.; Lee, Lucy; Nitsche, Michael A.; Paulus, Walter; Rothwell, John C.; Lemon, Roger N.; Frackowiak, Richard S.

    2013-01-01

    Transcranial direct current stimulation (tDCS) of the primary motor hand area (M1) can produce lasting polarity-specific effects on corticospinal excitability and motor learning in humans. In 16 healthy volunteers, H215O positron emission tomography (PET) of regional cerebral blood flow (rCBF) at rest and during finger movements was used to map lasting changes in regional synaptic activity following 10 min of tDCS (± 1 mA). Bipolar tDCS was given through electrodes placed over the left M1 and right frontopolar cortex. Eight subjects received anodal or cathodal tDCS of the left M1, respectively. When compared to sham tDCS, anodal and cathodal tDCS induced widespread increases and decreases in rCBF in cortical and subcortical areas. These changes in rCBF were of the same magnitude as task-related rCBF changes during finger movements and remained stable throughout the 50-min period of PET scanning. Relative increases in rCBF after real tDCS compared to sham tDCS were found in the left M1, right frontal pole, right primary sensorimotor cortex and posterior brain regions irrespective of polarity. With the exception of some posterior and ventral areas, anodal tDCS increased rCBF in many cortical and subcortical regions compared to cathodal tDCS. Only the left dorsal premotor cortex demonstrated an increase in movement related activity after cathodal tDCS, however, modest compared with the relatively strong movement-independent effects of tDCS. Otherwise, movement related activity was unaffected by tDCS. Our results indicate that tDCS is an effective means of provoking sustained and widespread changes in regional neuronal activity. The extensive spatial and temporal effects of tDCS need to be taken into account when tDCS is used to modify brain function. PMID:16045502

  20. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?

    PubMed

    Lang, Nicolas; Siebner, Hartwig R; Ward, Nick S; Lee, Lucy; Nitsche, Michael A; Paulus, Walter; Rothwell, John C; Lemon, Roger N; Frackowiak, Richard S

    2005-07-01

    Transcranial direct current stimulation (tDCS) of the primary motor hand area (M1) can produce lasting polarity-specific effects on corticospinal excitability and motor learning in humans. In 16 healthy volunteers, O positron emission tomography (PET) of regional cerebral blood flow (rCBF) at rest and during finger movements was used to map lasting changes in regional synaptic activity following 10 min of tDCS (+/-1 mA). Bipolar tDCS was given through electrodes placed over the left M1 and right frontopolar cortex. Eight subjects received anodal or cathodal tDCS of the left M1, respectively. When compared to sham tDCS, anodal and cathodal tDCS induced widespread increases and decreases in rCBF in cortical and subcortical areas. These changes in rCBF were of the same magnitude as task-related rCBF changes during finger movements and remained stable throughout the 50-min period of PET scanning. Relative increases in rCBF after real tDCS compared to sham tDCS were found in the left M1, right frontal pole, right primary sensorimotor cortex and posterior brain regions irrespective of polarity. With the exception of some posterior and ventral areas, anodal tDCS increased rCBF in many cortical and subcortical regions compared to cathodal tDCS. Only the left dorsal premotor cortex demonstrated an increase in movement related activity after cathodal tDCS, however, modest compared with the relatively strong movement-independent effects of tDCS. Otherwise, movement related activity was unaffected by tDCS. Our results indicate that tDCS is an effective means of provoking sustained and widespread changes in regional neuronal activity. The extensive spatial and temporal effects of tDCS need to be taken into account when tDCS is used to modify brain function. PMID:16045502

  1. Competitive (AP7) and non-competitive (MK-801) NMDA receptor antagonists differentially alter glucose utilization in rat cortex

    SciTech Connect

    Clow, D.W.; Lee, S.J.; Hammer, R.P. Jr. )

    1991-04-01

    The effects of D,L-2-amino-7-phosphonoheptanoic acid (AP7), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, and MK-801, a non-competitive NMDA receptor antagonist, on regional brain metabolism were studied in unanesthetized, freely moving rats by using the quantitative {sup 14}C2-deoxyglucose autoradiographic procedure. AP7 (338 or 901 mg/kg) produced a dose-dependent decrease of metabolic activity throughout most of the regions studied including sensory, motor, and limbic cortices. In contrast, MK-801 (0.1 or 1.0 mg/kg) resulted in a dose-dependent decrease of metabolic activity in sensory cortices, and an increase in limbic regions such as the hippocampal stratum lacunosum moleculare and entorhinal cortex. MK-801 also produced a biphasic response in agranular motor cortex, whereby the low dose increased while the high dose decreased labeling. In addition, MK-801 produced heterogeneous effects on regional cerebral metabolism in sensory cortices. Metabolic activity decreased in layer IV relative to layer Va following MK-801 treatment in primary somatosensory (SI) and visual (VI) cortices, suggesting a shift in activity from afferent fibers innervating layer IV to those innervating layer Va. MK-801 administration also decreased metabolic activity in granular SI relative to dysgranular SI, and in VI relative to secondary visual cortex (VII), thus providing a relative sparing of activity in dysgranular SI and VII. Thus, the non-competitive NMDA receptor antagonist suppressed activity from extrinsic neocortical sources, enhancing relative intracortical activity and stimulating limbic regions, while the competitive NMDA antagonist depressed metabolic activity in all cortical regions.

  2. Early auditory enrichment with music enhances auditory discrimination learning and alters NR2B protein expression in rat auditory cortex.

    PubMed

    Xu, Jinghong; Yu, Liping; Cai, Rui; Zhang, Jiping; Sun, Xinde

    2009-01-01

    Previous studies have shown that the functional development of auditory system is substantially influenced by the structure of environmental acoustic inputs in early life. In our present study, we investigated the effects of early auditory enrichment with music on rat auditory discrimination learning. We found that early auditory enrichment with music from postnatal day (PND) 14 enhanced learning ability in auditory signal-detection task and in sound duration-discrimination task. In parallel, a significant increase was noted in NMDA receptor subunit NR2B protein expression in the auditory cortex. Furthermore, we found that auditory enrichment with music starting from PND 28 or 56 did not influence NR2B expression in the auditory cortex. No difference was found in the NR2B expression in the inferior colliculus (IC) between music-exposed and normal rats, regardless of when the auditory enrichment with music was initiated. Our findings suggest that early auditory enrichment with music influences NMDA-mediated neural plasticity, which results in enhanced auditory discrimination learning. PMID:18706452

  3. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients.

    PubMed

    Lazar, Adina N; Bich, Claudia; Panchal, Maï; Desbenoit, Nicolas; Petit, Vanessa W; Touboul, David; Dauphinot, Luce; Marquer, Catherine; Laprévote, Olivier; Brunelle, Alain; Duyckaerts, Charles

    2013-01-01

    Although cholesterol has been involved in the pathophysiology of Alzheimer disease (AD), its distribution in the cerebral cortex over the course of AD is unknown. We describe an original method to quantify cholesterol distribution using time-of-flight secondary ion mass spectrometry imaging. Cholesterol was unevenly distributed along the cortical thickness, being more abundant close to the white matter, in both control and AD cases. However, the mean cholesterol signal was significantly higher in the lower half of the cortex in AD samples compared to controls. This increase, when converted into cortical layers, was statistically significant for layers III and IV and did not reach significance in layers V + VI, the variability being too high at the interface between grey and white matter. The density of neurofibrillary tangles and of senile plaques was not statistically linked to the abundance of cholesterol. Cholesterol overload thus appears a new and independent alteration of AD cerebral cortex. The structure in which cholesterol accumulates and the mechanism of this accumulation remain to be elucidated. PMID:22956244

  4. Cortex mapping reveals regionally specific patterns of genetic and disease-specific gray-matter deficits in twins discordant for schizophrenia.

    PubMed

    Cannon, Tyrone D; Thompson, Paul M; van Erp, Theo G M; Toga, Arthur W; Poutanen, Veli-Pekka; Huttunen, Matti; Lonnqvist, Jouko; Standerskjold-Nordenstam, Carl-Gustav; Narr, Katherine L; Khaledy, Mohammad; Zoumalan, Chris I; Dail, Rajneesh; Kaprio, Jaakko

    2002-03-01

    The symptoms of schizophrenia imply disruption to brain systems supporting higher-order cognitive activity, but whether these systems are impacted differentially against a background of diffuse cortical gray-matter deficit remains ambiguous. Some unaffected first-degree relatives of schizophrenics also manifest cortical gray-matter deficits, but it is unclear whether these changes are isomorphic with those in patients, and the answer is critical to understanding the neurobiological conditions necessary for disease expression given a predisposing genotype. Here we report three-dimensional cortical surface maps (probabilistic atlases matching subjects' anatomy point by point throughout cortex) in monozygotic (MZ) and dizygotic (DZ) twins discordant for chronic schizophrenia along with demographically matched control twins. A map encoding the average differences between schizophrenia patients and their unaffected MZ co-twins revealed deficits primarily in dorsolateral prefrontal cortex, superior temporal gyrus, and superior parietal lobule. A map encoding variation associated with genetic proximity to a patient (MZ co-twins > DZ co-twins > control twins) isolated deficits primarily in polar and dorsolateral prefrontal cortex. In each case, the statistical significance was confirmed through analysis of 10,000 Monte Carlo permutations, and the remaining cortex was shown to be significantly less affected by contrast analysis. The disease-related deficits in gray matter were correlated with measures of symptom severity and cognitive dysfunction but not with duration of illness or antipsychotic drug treatment. Genetic and disease-specific influences thus affect gray matter in partially nonoverlapping areas of predominantly heteromodal association cortex, changes that may act synergistically in producing overt behavioral features of the disorder. PMID:11867725

  5. Social play in juvenile hamsters alters dendritic morphology in the medial prefrontal cortex and attenuates effects of social stress in adulthood.

    PubMed

    Burleson, Cody A; Pedersen, Robert W; Seddighi, Sahba; DeBusk, Lauren E; Burghardt, Gordon M; Cooper, Matthew A

    2016-08-01

    Social play is a fundamental aspect of behavioral development in many species. Social play deprivation in rats alters dendritic morphology in the ventromedial prefrontal cortex (vmPFC) and we have shown that this brain region regulates responses to social defeat stress in Syrian hamsters. In this study, we tested whether play deprivation during the juvenile period disrupts dendritic morphology in the prefrontal cortex and potentiates the effects of social defeat stress. At weaning, male hamsters were either group-housed with peers or pair-housed with their mother, with whom they do not play. In adulthood, animals received acute social defeat stress or no-defeat control treatment. The hamsters were then tested for a conditioned defeat response in a social interaction test with a novel intruder, and were also tested for social avoidance of a familiar opponent. Brains were collected for Golgi-Cox staining and analysis of dendritic morphology in the infralimbic (IL), prelimbic (PL), and orbitofrontal cortex (OFC). Play-deprived animals showed an increased conditioned defeat response and elevated avoidance of a familiar opponent compared with play-exposed animals. Furthermore, play-deprived animals showed increased total length and branch points in apical dendrites of pyramidal neurons in the IL and PL cortices, but not in the OFC. These findings suggest that social play deprivation in juvenile hamsters disrupts neuronal development in the vmPFC and increases vulnerability to the effects of social stress in adulthood. Overall, these results suggest that social play is necessary for the natural dendritic pruning process during adolescence and promotes coping with stress in adulthood. (PsycINFO Database Record PMID:27176563

  6. The BTBR mouse model of autism spectrum disorders has learning and attentional impairments and alterations in acetylcholine and kynurenic acid in prefrontal cortex.

    PubMed

    McTighe, Stephanie M; Neal, Sarah J; Lin, Qian; Hughes, Zoë A; Smith, Daniel G

    2013-01-01

    Autism is a complex spectrum of disorders characterized by core behavioral deficits in social interaction, communication, repetitive stereotyped behaviors and restricted interests. Autism frequently presents with additional cognitive symptoms, including attentional deficits and intellectual disability. Preclinical models are important tools for studying the behavioral domains and biological underpinnings of autism, and potential treatment targets. The inbred BTBR T+tf/J (BTBR) mouse strain has been used as an animal model of core behavioral deficits in autism. BTBR mice exhibit repetitive behaviors and deficits in sociability and communication, but other aspects of their cognitive phenotype, including attentional performance, are not well characterized. We examined the attentional abilities of BTBR mice in the 5-choice serial reaction time task (5-CSRTT) using an automated touchscreen testing apparatus. The 5-CSRTT is an analogue of the human continuous performance task of attention, and so both the task and apparatus have translational relevance to human touchscreen cognitive testing. We also measured basal extracellular levels of a panel of neurotransmitters within the medial prefrontal cortex, a brain region critically important for performing the 5-CSRTT. We found that BTBR mice have increased impulsivity, defined as an inability to withhold responding, and decreased motivation, as compared to C57Bl/6J mice. Both of these features characterize attentional deficit disorders in humans. BTBR mice also display decreased accuracy in detecting short stimuli, lower basal levels of extracellular acetylcholine and higher levels of kynurenic acid within the prefrontal cortex. Intact cholinergic transmission in prefrontal cortex is required for accurate performance of the 5-CSRTT, consequently this cholinergic deficit may underlie less accurate performance in BTBR mice. Based on our findings that BTBR mice have attentional impairments and alterations in a key neural

  7. Association between As and Cu renal cortex accumulation and physiological and histological alterations after chronic arsenic intake

    SciTech Connect

    Rubatto Birri, Paolo N.; Perez, Roberto D.; Cremonezzi, David; Perez, Carlos A.; Rubio, Marcelo; Bongiovanni, Guillermina A.

    2010-07-15

    Arsenic (As) is one of the most abundant hazards in the environment and it is a human carcinogen. Related to excretory functions, the kidneys in humans, animal models or naturally exposed fauna, are target organs for As accumulation and deleterious effects. Previous studies carried out using X-ray fluorescence spectrometry by synchrotron radiation (SR-{mu}XRF) showed a high concentration of As in the renal cortex of chronically exposed rats, suggesting that this is a suitable model for studies on renal As accumulation. This accumulation was accompanied by a significant increase in copper (Cu) concentration. The present study focused on the localization of these elements in the renal cortex and their correlation with physiological and histological As-related renal effects. Experiments were performed on nine male Wistar rats, divided into three experimental groups. Two groups received 100 {mu}g/ml sodium arsenite in drinking water for 60 and 120 consecutive days, respectively. The control group received water without sodium arsenite (<50 ppb As). For histological analysis, 5-{mu}m-thick sections of kidneys were stained with hematoxylin and eosin. Biochemical analyses were used to determine concentrations of plasma urea and creatinine. The As and Cu mapping were carried out by SR-{mu}XRF using a collimated white synchrotron spectrum (300 {mu}mx300 {mu}m) on kidney slices (2 mm thick) showing As and Cu co-distribution in the renal cortex. Then, renal cortical slices (100 {mu}m thick) were scanned with a focused white synchrotron spectrum (30 {mu}mx30 {mu}m). Peri-glomerular accumulation of As and Cu at 60 and 120 days was found. The effects of 60 days of arsenic consumption were seen in a decreased Bowman's space as well as a decreased plasma blood urea nitrogen (BUN)/creatinine ratio. Major deleterious effects; however, were seen on tubules at 120 days of exposition. This study supports the hypothesis that tubular accumulation of As-Cu may have some bearing on the

  8. High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations.

    PubMed

    Edelmann, Jennifer; Holzmann, Karlheinz; Miller, Florian; Winkler, Dirk; Bühler, Andreas; Zenz, Thorsten; Bullinger, Lars; Kühn, Michael W M; Gerhardinger, Andreas; Bloehdorn, Johannes; Radtke, Ina; Su, Xiaoping; Ma, Jing; Pounds, Stanley; Hallek, Michael; Lichter, Peter; Korbel, Jan; Busch, Raymonde; Mertens, Daniel; Downing, James R; Stilgenbauer, Stephan; Döhner, Hartmut

    2012-12-01

    To identify genomic alterations in chronic lymphocytic leukemia (CLL), we performed single-nucleotide polymorphism-array analysis using Affymetrix Version 6.0 on 353 samples from untreated patients entered in the CLL8 treatment trial. Based on paired-sample analysis (n = 144), a mean of 1.8 copy number alterations per patient were identified; approximately 60% of patients carried no copy number alterations other than those detected by fluorescence in situ hybridization analysis. Copy-neutral loss-of-heterozygosity was detected in 6% of CLL patients and was found most frequently on 13q, 17p, and 11q. Minimally deleted regions were refined on 13q14 (deleted in 61% of patients) to the DLEU1 and DLEU2 genes, on 11q22.3 (27% of patients) to ATM, on 2p16.1-2p15 (gained in 7% of patients) to a 1.9-Mb fragment containing 9 genes, and on 8q24.21 (5% of patients) to a segment 486 kb proximal to the MYC locus. 13q deletions exhibited proximal and distal breakpoint cluster regions. Among the most common novel lesions were deletions at 15q15.1 (4% of patients), with the smallest deletion (70.48 kb) found in the MGA locus. Sequence analysis of MGA in 59 samples revealed a truncating mutation in one CLL patient lacking a 15q deletion. MNT at 17p13.3, which in addition to MGA and MYC encodes for the network of MAX-interacting proteins, was also deleted recurrently. PMID:23047824

  9. Transcriptomic profiling of urine extracellular vesicles reveals alterations of CDH3 in prostate cancer

    PubMed Central

    Sanchez-Mosquera, Pilar; Ugalde-Olano, Aitziber; González, Esperanza; Cortazar, Ana R.; Palomo, Laura; Fernández-Ruiz, Sonia; Lacasa-Viscasillas, Isabel; Berdasco, Maria; Sutherland, James D.; Barrio, Rosa; Zabala-Letona, Amaia; Martín-Martín, Natalia; Arruabarrena-Aristorena, Amaia; Valcarcel-Jimenez, Lorea; Caro-Maldonado, Alfredo; Gonzalez-Tampan, Jorge; Cachi-Fuentes, Guido; Esteller, Manel; Aransay, Ana M.; Unda, Miguel

    2016-01-01

    Extracellular vesicles (EV) are emerging structures with promising properties for intercellular communication. In addition, the characterization of EV in biofluids is an attractive source of non-invasive diagnostic, prognostic and predictive biomarkers. Here we show that urinary EV (uEV) from prostate cancer (PCa) patients exhibit genuine and differential physical and biological properties compared to benign prostate hyperplasia (BPH). Importantly, transcriptomics characterization of uEVs led us to define the decreased abundance of Cadherin 3, type 1 (CDH3) transcript in uEV from PCa patients. Tissue and cell line analysis strongly suggested that the status of CDH3 in uEVs is a distal reflection of changes in the expression of this cadherin in the prostate tumor. CDH3 was negatively regulated at the genomic, transcriptional, and epigenetic level in PCa. Our results reveal that uEVs could represent a non-invasive tool to inform about the molecular alterations in PCa. PMID:26771841

  10. Historical comparisons reveal altered competitive interactions in a guild of crustose coralline algae.

    PubMed

    McCoy, S J; Pfister, C A

    2014-04-01

    As the ocean environment changes over time, a paucity of long-term data sets and historical comparisons limits the exploration of community dynamics over time in natural systems. Here, we used a long-term experimental data set to present evidence for a reversal of competitive dominance within a group of crustose coralline algae (CCA) from the 1980s to present time in the northeast Pacific Ocean. CCA are cosmopolitan species distributed globally, and dominant space holders in intertidal and subtidal systems. Competition experiments showed a markedly lower competitive ability of the previous competitively dominant species and a decreased response of competitive dynamics to grazer presence. Competitive networks obtained from survey data showed concordance between the 1980s and 2013, yet also revealed reductions in interaction strengths across the assemblage. We discuss the potential role of environmental change, including ocean acidification, in altered ecological dynamics in this system. PMID:24422586

  11. Alterations of the Ceramide Metabolism in the Peri-Infarct Cortex Are Independent of the Sphingomyelinase Pathway and Not Influenced by the Acid Sphingomyelinase Inhibitor Fluoxetine.

    PubMed

    Brunkhorst, R; Friedlaender, F; Ferreirós, N; Schwalm, S; Koch, A; Grammatikos, G; Toennes, S; Foerch, C; Pfeilschifter, J; Pfeilschifter, W

    2015-01-01

    Ceramides induce important intracellular signaling pathways, modulating proliferation, migration, apoptosis, and inflammation. However, the relevance of the ceramide metabolism in the reconvalescence phase after stroke is unclear. Besides its well-known property as a selective serotonin reuptake inhibitor, fluoxetine has been reported to inhibit the acid sphingomyelinase (ASM), a key regulator of ceramide levels which derives ceramide from sphingomyelin. Furthermore, fluoxetine has shown therapeutic potential in a randomized controlled rehabilitation trial in stroke patients. Our aim was to investigate and modulate ceramide concentrations in the peri-infarct cortex, whose morphological and functional properties correlate with long-term functional outcome in stroke. We show that certain ceramide species are modulated after experimental stroke and that these changes do not result from alterations of ASM activity, but rather from nontranscriptional induction of the ceramide de novo pathway. Unexpectedly, although reducing lesion size, fluoxetine did not improve functional outcome in our model and had no significant influence on ASM activity or the concentration of ceramides. The ceramide metabolism could emerge as a potential therapeutic target in the reconvalescence phase after stroke, as its accumulation in the peri-infarct cortex potentially influences membrane functions as well as signaling events in the tissue essential for neurological recovery. PMID:26605090

  12. Phasic alterations in dopamine and serotonin release in striatum and prefrontal cortex in response to cocaine predictive cues in behaving rhesus macaques.

    PubMed

    Bradberry, Charles W; Rubino, Susan R

    2004-04-01

    The ability of environmental cues associated with cocaine availability to cause relapse may result from conditioned activation of dopamine (DA) release. We examined this hypothesis in macaque monkeys by conducting microdialysis studies in animals during exposure to a cocaine predictive compound cue. In addition to studying DA release in mesolimbic and sensorimotor striatum, both DA and serotonin levels were determined in the prefrontal cortex (medial orbitofrontal and anterior cingulate). The compound cue employed visual, auditory, and olfactory components, and was salient to the animals as demonstrated by anticipatory lever pressing in the absence of cocaine. During a 10-min period of exposure prior to cocaine availability, there was no significant increase in striatal or cortical DA. The addition of a DA uptake inhibitor to the striatal perfusate to reduce the potential interference of neuronal uptake did not alter the results. In contrast to the lack of any change in striatal DA, a significant decrease in extracellular serotonin in the prefrontal cortex during the 10 min of cue exposure was observed. PMID:14747825

  13. Loss of lysophosphatidic acid receptor LPA1 alters oligodendrocyte differentiation and myelination in the mouse cerebral cortex.

    PubMed

    García-Díaz, Beatriz; Riquelme, Raquel; Varela-Nieto, Isabel; Jiménez, Antonio Jesús; de Diego, Isabel; Gómez-Conde, Ana Isabel; Matas-Rico, Elisa; Aguirre, José Ángel; Chun, Jerold; Pedraza, Carmen; Santín, Luis Javier; Fernández, Oscar; Rodríguez de Fonseca, Fernando; Estivill-Torrús, Guillermo

    2015-11-01

    Lysophosphatidic acid (LPA) is an intercellular signaling lipid that regulates multiple cellular functions, acting through specific G-protein coupled receptors (LPA(1-6)). Our previous studies using viable Malaga variant maLPA1-null mice demonstrated the requirement of the LPA1 receptor for normal proliferation, differentiation, and survival of the neuronal precursors. In the cerebral cortex LPA1 is expressed extensively in differentiating oligodendrocytes, in parallel with myelination. Although exogenous LPA-induced effects have been investigated in myelinating cells, the in vivo contribution of LPA1 to normal myelination remains to be demonstrated. This study identified a relevant in vivo role for LPA1 as a regulator of cortical myelination. Immunochemical analysis in adult maLPA1-null mice demonstrated a reduction in the steady-state levels of the myelin proteins MBP, PLP/DM20, and CNPase in the cerebral cortex. The myelin defects were confirmed using magnetic resonance spectroscopy and electron microscopy. Stereological analysis limited the defects to adult differentiating oligodendrocytes, without variation in the NG2+ precursor cells. Finally, a possible mechanism involving oligodendrocyte survival was demonstrated by the impaired intracellular transport of the PLP/DM20 myelin protein which was accompanied by cellular loss, suggesting stress-induced apoptosis. These findings describe a previously uncharacterized in vivo functional role for LPA1 in the regulation of oligodendrocyte differentiation and myelination in the CNS, underlining the importance of the maLPA1-null mouse as a model for the study of demyelinating diseases. PMID:25226845

  14. Functionally defined white matter reveals segregated pathways in human ventral temporal cortex associated with category-specific processing.

    PubMed

    Gomez, Jesse; Pestilli, Franco; Witthoft, Nathan; Golarai, Golijeh; Liberman, Alina; Poltoratski, Sonia; Yoon, Jennifer; Grill-Spector, Kalanit

    2015-01-01

    It is unknown if the white-matter properties associated with specific visual networks selectively affect category-specific processing. In a novel protocol we combined measurements of white-matter structure, functional selectivity, and behavior in the same subjects. We find two parallel white-matter pathways along the ventral temporal lobe connecting to either face-selective or place-selective regions. Diffusion properties of portions of these tracts adjacent to face- and place-selective regions of ventral temporal cortex correlate with behavioral performance for face or place processing, respectively. Strikingly, adults with developmental prosopagnosia (face blindness) express an atypical structure-behavior relationship near face-selective cortex, suggesting that white-matter atypicalities in this region may have behavioral consequences. These data suggest that examining the interplay between cortical function, anatomical connectivity, and visual behavior is integral to understanding functional networks and their role in producing visual abilities and deficits. PMID:25569351

  15. Concurrent TMS–fMRI reveals dynamic interhemispheric influences of the right parietal cortex during exogenously cued visuospatial attention

    PubMed Central

    Heinen, Klaartje; Ruff, Christian C; Bjoertomt, Otto; Schenkluhn, Bertram; Bestmann, Sven; Blankenburg, Felix; Driver, Jon; Chambers, Christopher D

    2011-01-01

    We used concurrent transcranial magnetic stimulation and functional MRI (TMS-fMRI) during a visuospatial cueing paradigm in humans, to study the causal role of the right angular gyrus (AG) as a source of attentional control. Our findings show that TMS over the right AG (high vs. low intensity) modulates neural responses interhemispherically, in a manner that varies dynamically with the current attentional condition. The behavioural impact of such TMS depended not only on the target hemifield but also on exogenous cue validity, facilitating spatial reorienting to invalidly cued right visual targets. On a neural level, right AG TMS had corresponding interhemispheric effects in the left AG and left retinotopic cortex, including area V1. We conclude that the direction of covert visuospatial attention can involve dynamic interplay between the right AG and remote interconnected regions of the opposite left hemisphere, whereas our findings also suggest that the right AG can influence responses in the retinotopic visual cortex. PMID:21324004

  16. In Vivo Imaging of Flavoprotein Fluorescence During Hypoxia Reveals the Importance of Direct Arterial Oxygen Supply to Cerebral Cortex Tissue.

    PubMed

    Chisholm, K I; Ida, K K; Davies, A L; Papkovsky, D B; Singer, M; Dyson, A; Tachtsidis, I; Duchen, M R; Smith, K J

    2016-01-01

    Live imaging of mitochondrial function is crucial to understand the important role played by these organelles in a wide range of diseases. The mitochondrial redox potential is a particularly informative measure of mitochondrial function, and can be monitored using the endogenous green fluorescence of oxidized mitochondrial flavoproteins. Here, we have observed flavoprotein fluorescence in the exposed murine cerebral cortex in vivo using confocal imaging; the mitochondrial origin of the signal was confirmed using agents known to manipulate mitochondrial redox potential. The effects of cerebral oxygenation on flavoprotein fluorescence were determined by manipulating the inspired oxygen concentration. We report that flavoprotein fluorescence is sensitive to reductions in cortical oxygenation, such that reductions in inspired oxygen resulted in loss of flavoprotein fluorescence with the exception of a preserved 'halo' of signal in periarterial regions. The findings are consistent with reports that arteries play an important role in supplying oxygen directly to tissue in the cerebral cortex, maintaining mitochondrial function. PMID:26782217

  17. Functionally defined white matter reveals segregated pathways in human ventral temporal cortex associated with category-specific processing

    PubMed Central

    Gomez, Jesse; Pestilli, Franco; Witthoft, Nathan; Golarai, Golijeh; Liberman, Alina; Poltoratski, Sonia; Yoon, Jennifer; Grill-Spector, Kalanit

    2014-01-01

    Summary It is unknown if the white matter properties associated with specific visual networks selectively affect category-specific processing. In a novel protocol we combined measurements of white matter structure, functional selectivity, and behavior in the same subjects. We find two parallel white matter pathways along the ventral temporal lobe connecting to either face-selective or place-selective regions. Diffusion properties of portions of these tracts adjacent to face- and place-selective regions of ventral temporal cortex correlate with behavioral performance for face or place processing, respectively. Strikingly, adults with developmental prosopagnosia (face blindness) express an atypical structure-behavior relationship near face-selective cortex, suggesting that white matter atypicalities in this region may have behavioral consequences. These data suggest that examining the interplay between cortical function, anatomical connectivity, and visual behavior is integral to understanding functional networks and their role in producing visual abilities and deficits. PMID:25569351

  18. Object Representations in the Temporal Cortex of Monkeys and Humans as Revealed by Functional Magnetic Resonance Imaging

    PubMed Central

    Bell, Andrew H.; Hadj-Bouziane, Fadila; Frihauf, Jennifer B.; Tootell, Roger B. H.; Ungerleider, Leslie G.

    2009-01-01

    Increasing evidence suggests that the neural processes associated with identifying everyday stimuli include the classification of those stimuli into a limited number of semantic categories. How the neural representations of these stimuli are organized in the temporal lobe remains under debate. Here we used functional magnetic resonance imaging (fMRI) to identify correlates for three current hypotheses concerning object representations in the inferior temporal (IT) cortex of monkeys and humans: representations based on animacy, semantic categories, or visual features. Subjects were presented with blocked images of faces, body parts (animate stimuli), objects, and places (inanimate stimuli), and multiple overlapping contrasts were used to identify the voxels most selective for each category. Stimulus representations appeared to segregate according to semantic relationships. Discrete regions selective for animate and inanimate stimuli were found in both species. These regions could be further subdivided into regions selective for individual categories. Notably, face-selective regions were contiguous with body-part-selective regions, and object-selective regions were contiguous with place-selective regions. When category-selective regions in monkeys were tested with blocks of single exemplars, individual voxels showed preferences for visually dissimilar exemplars from the same category and voxels with similar preferences tended to cluster together. Our results provide some novel observations with respect to how stimulus representations are organized in IT cortex. In addition, they further support the idea that representations of complex stimuli in IT cortex are organized into multiple hierarchical tiers, encompassing both semantic and physical properties. PMID:19052111

  19. Our Faces in the Dog's Brain: Functional Imaging Reveals Temporal Cortex Activation during Perception of Human Faces

    PubMed Central

    Cuaya, Laura V.; Hernández-Pérez, Raúl; Concha, Luis

    2016-01-01

    Dogs have a rich social relationship with humans. One fundamental aspect of it is how dogs pay close attention to human faces in order to guide their behavior, for example, by recognizing their owner and his/her emotional state using visual cues. It is well known that humans have specific brain regions for the processing of other human faces, yet it is unclear how dogs’ brains process human faces. For this reason, our study focuses on describing the brain correlates of perception of human faces in dogs using functional magnetic resonance imaging (fMRI). We trained seven domestic dogs to remain awake, still and unrestrained inside an MRI scanner. We used a visual stimulation paradigm with block design to compare activity elicited by human faces against everyday objects. Brain activity related to the perception of faces changed significantly in several brain regions, but mainly in the bilateral temporal cortex. The opposite contrast (i.e., everyday objects against human faces) showed no significant brain activity change. The temporal cortex is part of the ventral visual pathway, and our results are consistent with reports in other species like primates and sheep, that suggest a high degree of evolutionary conservation of this pathway for face processing. This study introduces the temporal cortex as candidate to process human faces, a pillar of social cognition in dogs. PMID:26934715

  20. Characterizing VIP Neurons in the Barrel Cortex of VIPcre/tdTomato Mice Reveals Layer-Specific Differences

    PubMed Central

    Prönneke, Alvar; Scheuer, Bianca; Wagener, Robin J.; Möck, Martin; Witte, Mirko; Staiger, Jochen F.

    2015-01-01

    Neocortical GABAergic interneurons have a profound impact on cortical circuitry and its information processing capacity. Distinct subgroups of inhibitory interneurons can be distinguished by molecular markers, such as parvalbumin, somatostatin, and vasoactive intestinal polypeptide (VIP). Among these, VIP-expressing interneurons sparked a substantial interest since these neurons seem to operate disinhibitory circuit motifs found in all major neocortical areas. Several of these recent studies used transgenic Vip-ires-cre mice to specifically target the population of VIP-expressing interneurons. This makes it necessary to elucidate in detail the sensitivity and specificity of Cre expression for VIP neurons in these animals. Thus, we quantitatively compared endogenous tdTomato with Vip fluorescence in situ hybridization and αVIP immunohistochemistry in the barrel cortex of VIPcre/tdTomato mice in a layer-specific manner. We show that VIPcre/tdTomato mice are highly sensitive and specific for the entire population of VIP-expressing neurons. In the barrel cortex, approximately 13% of all GABAergic neurons are VIP expressing. Most VIP neurons are found in layer II/III (∼60%), whereas approximately 40% are found in the other layers of the barrel cortex. Layer II/III VIP neurons are significantly different from VIP neurons in layers IV–VI in several morphological and membrane properties, which suggest layer-dependent differences in functionality. PMID:26420784

  1. Our Faces in the Dog's Brain: Functional Imaging Reveals Temporal Cortex Activation during Perception of Human Faces.

    PubMed

    Cuaya, Laura V; Hernández-Pérez, Raúl; Concha, Luis

    2016-01-01

    Dogs have a rich social relationship with humans. One fundamental aspect of it is how dogs pay close attention to human faces in order to guide their behavior, for example, by recognizing their owner and his/her emotional state using visual cues. It is well known that humans have specific brain regions for the processing of other human faces, yet it is unclear how dogs' brains process human faces. For this reason, our study focuses on describing the brain correlates of perception of human faces in dogs using functional magnetic resonance imaging (fMRI). We trained seven domestic dogs to remain awake, still and unrestrained inside an MRI scanner. We used a visual stimulation paradigm with block design to compare activity elicited by human faces against everyday objects. Brain activity related to the perception of faces changed significantly in several brain regions, but mainly in the bilateral temporal cortex. The opposite contrast (i.e., everyday objects against human faces) showed no significant brain activity change. The temporal cortex is part of the ventral visual pathway, and our results are consistent with reports in other species like primates and sheep, that suggest a high degree of evolutionary conservation of this pathway for face processing. This study introduces the temporal cortex as candidate to process human faces, a pillar of social cognition in dogs. PMID:26934715

  2. In vitro binding assays using (3)H nisoxetine and (3)H WIN 35,428 reveal selective effects of gonadectomy and hormone replacement in adult male rats on norepinephrine but not dopamine transporter sites in the cerebral cortex.

    PubMed

    Meyers, B; Kritzer, M F

    2009-03-01

    The prefrontal cortices mediate cognitive functions that critically depend on local dopamine levels. In male rats, many prefrontal tasks where performance is disrupted by changes in dopamine signaling are also impaired by gonadectomy, a manipulation that increases cortical dopamine concentration, prefrontal dopamine axon density and possibly extracellular prefrontal dopamine levels as well. Because these actions could be responsible for the impairing effects of gonadectomy on prefrontal function, the question of how they might arise comes to the fore. Accordingly, the present studies asked whether dopamine levels might be increased via a hormone sensitivity of transporter-mediated dopamine uptake. Specifically, (3)H WIN 35,428 and (3)H nisoxetine, ligands selective for the dopamine (DAT)- and norepinephrine transporter (NET) respectively, were used in in vitro binding assays to ask whether gonadectomy altered transporter affinity (Kd) and/or binding site number (Bmax) in prefrontal cortex, sensorimotor cortex and/or caudate. Assays performed on tissues dissected from sham-operated, gonadectomized and gonadectomized rats supplemented with testosterone propionate or estradiol for 4 or 28 days revealed no significant group differences or obvious trends in Kd or Bmax for DAT binding or in measures of Bmax for NET binding. However, affinity constants for (3)H nisoxetine were found to be significantly higher in sensorimotor and/or prefrontal cortex of rats gonadectomized and gonadectomized and supplemented with estradiol for 4 or 28 days but similar to control in gonadectomized rats given testosterone. Because the NET contributes substantially to extracellular prefrontal dopamine clearance, these androgen-mediated effects could influence prefrontal dopamine levels and might thus be relevant for observed effects of gonadectomy on dopamine-dependent prefrontal behaviors. A hormone sensitivity of the NET could also have bearing on the prefrontal dopamine dysfunction seen in

  3. Electrophysiology Alterations in Primary Visual Cortex Neurons of Retinal Degeneration (S334ter-line-3) Rats

    PubMed Central

    Chen, Ke; Wang, Yi; Liang, Xiaohua; Zhang, Yihuai; Ng, Tsz Kin; Chan, Leanne Lai Hang

    2016-01-01

    The dynamic nature of the brain is critical for the success of treatments aimed at restoring vision at the retinal level. The success of these treatments relies highly on the functionality of the surviving neurons along the entire visual pathway. Electrophysiological properties at the retina level have been investigated during the progression of retinal degeneration; however, little is known about the changes in electrophysiological properties that occur in the primary visual cortex (V1) during the course of retinal degeneration. By conducting extracellular recording, we examined the electrophysiological properties of V1 in S334ter-line-3 rats (a transgenic model of retinal degeneration developed to express a rhodopsin mutation similar to that found in human retinitis pigmentosa patients). We measured the orientation tuning, spatial and temporal frequency tunings and the receptive field (RF) size for 127 V1 neurons from 11 S334ter-3 rats and 10 Long-Evans (LE) rats. V1 neurons in the S334ter-3 rats showed weaker orientation selectivity, lower optimal spatial and temporal frequency values and a smaller receptive field size compared to the LE rats. These results suggest that the visual cognitive ability significantly changes during retinal degeneration. PMID:27225415

  4. Electrophysiology Alterations in Primary Visual Cortex Neurons of Retinal Degeneration (S334ter-line-3) Rats.

    PubMed

    Chen, Ke; Wang, Yi; Liang, Xiaohua; Zhang, Yihuai; Ng, Tsz Kin; Chan, Leanne Lai Hang

    2016-01-01

    The dynamic nature of the brain is critical for the success of treatments aimed at restoring vision at the retinal level. The success of these treatments relies highly on the functionality of the surviving neurons along the entire visual pathway. Electrophysiological properties at the retina level have been investigated during the progression of retinal degeneration; however, little is known about the changes in electrophysiological properties that occur in the primary visual cortex (V1) during the course of retinal degeneration. By conducting extracellular recording, we examined the electrophysiological properties of V1 in S334ter-line-3 rats (a transgenic model of retinal degeneration developed to express a rhodopsin mutation similar to that found in human retinitis pigmentosa patients). We measured the orientation tuning, spatial and temporal frequency tunings and the receptive field (RF) size for 127 V1 neurons from 11 S334ter-3 rats and 10 Long-Evans (LE) rats. V1 neurons in the S334ter-3 rats showed weaker orientation selectivity, lower optimal spatial and temporal frequency values and a smaller receptive field size compared to the LE rats. These results suggest that the visual cognitive ability significantly changes during retinal degeneration. PMID:27225415

  5. Low back pain associates with altered activity of the cerebral cortex prior to arm movements that require postural adjustment

    PubMed Central

    Jacobs, Jesse V.; Henry, Sharon M.; Nagle, Keith J.

    2009-01-01

    Objective: To determine whether low back pain (LBP) associates with altered postural stabilization and concomitant changes in cerebrocortical motor physiology. Methods: Ten participants with LBP and 10 participants without LBP performed self-initiated, voluntary arm raises. Electromyographic onset latencies of the bilateral internal oblique and erector spinae muscles were analyzed relative to that of the deltoid muscle as measures of anticipatory postural adjustments (APAs). Amplitudes of alpha event-related desynchronization (ERD) and of Bereitschaftspotentials (BP) were calculated from scalp electroencephalography as measures of cerebrocortical motor physiology. Results: The APA was first evident in the trunk muscles contralateral to the arm raise for both groups. Significant alpha ERD was evident bilaterally at the central and parietal electrodes for participants with LBP but only at the electrodes contralateral and midline to the arm raise for those without LBP. The BP amplitudes negatively correlated with APA onset latencies for participants with (but not for those without) LBP. Conclusions: Cerebrocortical activity becomes altered prior to arm movements requiring APAs for individuals with chronic LBP. Significance: These results support a theoretical model that altered central motor neurophysiology associates with LBP, thereby implying that rehabilitation strategies should address these neuromotor impairments. PMID:20071225

  6. Probabilistic and single-subject retinotopic maps reveal the topographic organization of face patches in the macaque cortex.

    PubMed

    Janssens, Thomas; Zhu, Qi; Popivanov, Ivo D; Vanduffel, Wim

    2014-07-30

    Face perception is crucial to survival among social primates. It has been suggested that a group of extrastriate cortical regions responding more strongly to faces than to nonface objects is critical for face processing in primates. It is generally assumed that these regions are not retinotopically organized, as with human face-processing areas, showing foveal bias but lacking any organization with respect to polar angle. Despite many electrophysiological studies targeting monkey face patches, the retinotopic organization of these patches remains largely unclear. We have examined the relationship between cortical face patches and the topographic organization of extrastriate cortex using biologically relevant, phase-encoded retinotopic mapping stimuli in macaques. Single-subject fMRI results indicated a gradual shift from highly retinotopic to no topographic organization from posterior to anterior face patches in inferotemporal cortex. We also constructed a probabilistic retinotopic atlas of occipital and ventral extrastriate visual cortex. By comparing this probabilistic map to the locations of face patches at the group level, we showed that a previously identified posterior lateral temporal face patch (PL) is located within the posterior inferotemporal dorsal (PITd) retinotopic area. Furthermore, we identified a novel face patch posterior PL, which is located in retinotopically organized transitional area V4 (V4t). Previously published coordinates of human PITd coincide with the group-level occipital face area (OFA), according to a probabilistic map derived from a large population, implying a potential correspondence between monkey PL/PITd and human OFA/PITd. Furthermore, the monkey middle lateral temporal face patch (ML) shows consistent foveal biases but no obvious polar-angle structure. In contrast, middle fundus temporal (MF), anterior temporal and prefrontal monkey face patches lacked topographic organization. PMID:25080579

  7. A form of DISC1 enriched in nucleus: Altered subcellular distribution in orbitofrontal cortex in psychosis and substance/alcohol abuse

    PubMed Central

    Sawamura, Naoya; Sawamura-Yamamoto, Takako; Ozeki, Yuji; Ross, Christopher A.; Sawa, Akira

    2005-01-01

    Disrupted-In-Schizophrenia 1 (DISC1) was identified as the sole gene whose ORF is truncated and cosegregates with major mental illnesses in a Scottish family. DISC1 has also been suggested, by association and linkage studies, to be a susceptibility gene for schizophrenia (SZ) in independent populations. However, no analysis of DISC1 protein in human brains, especially those of patients with SZ, has yet been conducted. Here we performed a biochemical analysis of DISC1 protein in a well characterized set of autopsied brains, including brains of patients with SZ, bipolar disorder, and major depression (MD), as well as normal control brains. We identified an isoform of DISC1 by using MS and demonstrated that it is enriched in the nucleus of HeLa cells. In the orbitofrontal cortex, the subcellular distribution of this DISC1 isoform, assessed by the nuclear to cytoplasmic ratio in the immunoreactivity of the isoform, is significantly changed in brains from patients with SZ and MD. This altered distribution is also observed in those subjects with substance and alcohol abuse. The changes in MD brains are significantly influenced by substance/alcohol abuse as well as postmortem interval; however, the alteration in SZ brains is free from brain-associated confounding factors, although an interaction with substance/alcohol abuse cannot be completely ruled out. These results suggest that DISC1 may be implicated in psychiatric conditions in other populations than the unique Scottish family. PMID:15657124

  8. Adolescent Social Stress Produces an Enduring Activation of the Rat Locus Coeruleus and Alters its Coherence with the Prefrontal Cortex.

    PubMed

    Zitnik, Gerard A; Curtis, Andrè L; Wood, Susan K; Arner, Jay; Valentino, Rita J

    2016-04-01

    Early life stress is associated with the development of psychiatric disorders. Because the locus coeruleus-norepinephrine (LC-NE) system is a major stress-response system that is implicated in psychopathology, developmental differences in the response of this system to stress may contribute to increased vulnerability. Here LC single unit and network activity were compared between adult and adolescent rats during resident-intruder stress. In some rats, LC and medial prefrontal cortex (mPFC) coherence was quantified. The initial stress tonically activated LC neurons and induced theta oscillations, while simultaneously decreasing LC auditory-evoked responses in both age groups. Stress increased LC-mPFC coherence within the theta range. With repeated exposures, adolescent LC neuronal and network activity remained elevated even in the absence of the stressor and were unresponsive to stressor presentation. In contrast, LC neurons of adult rats exposed to repeated social stress were relatively inhibited in the absence of the stressor and mounted robust responses upon stressor presentation. LC sensory-evoked responses were selectively blunted in adolescent rats exposed to repeated social stress. Finally, repeated stress decreased LC-mPFC coherence in the high frequency range (beta and gamma) while maintaining strong coherence in the theta range, selectively in adolescents. Together, these results suggest that adaptive mechanisms that promote stress recovery and maintain basal activity of the brain norepinephrine system in the absence of stress are not fully developed or are vulnerable stress-induced impairments in adolescence. The resulting sustained activation of the LC-NE system after repeated social stress may adversely impact cognition and future social behavior of adolescents. PMID:26361057

  9. Bimodal stimulus timing-dependent plasticity in primary auditory cortex is altered after noise exposure with and without tinnitus.

    PubMed

    Basura, Gregory J; Koehler, Seth D; Shore, Susan E

    2015-12-01

    Central auditory circuits are influenced by the somatosensory system, a relationship that may underlie tinnitus generation. In the guinea pig dorsal cochlear nucleus (DCN), pairing spinal trigeminal nucleus (Sp5) stimulation with tones at specific intervals and orders facilitated or suppressed subsequent tone-evoked neural responses, reflecting spike timing-dependent plasticity (STDP). Furthermore, after noise-induced tinnitus, bimodal responses in DCN were shifted from Hebbian to anti-Hebbian timing rules with less discrete temporal windows, suggesting a role for bimodal plasticity in tinnitus. Here, we aimed to determine if multisensory STDP principles like those in DCN also exist in primary auditory cortex (A1), and whether they change following noise-induced tinnitus. Tone-evoked and spontaneous neural responses were recorded before and 15 min after bimodal stimulation in which the intervals and orders of auditory-somatosensory stimuli were randomized. Tone-evoked and spontaneous firing rates were influenced by the interval and order of the bimodal stimuli, and in sham-controls Hebbian-like timing rules predominated as was seen in DCN. In noise-exposed animals with and without tinnitus, timing rules shifted away from those found in sham-controls to more anti-Hebbian rules. Only those animals with evidence of tinnitus showed increased spontaneous firing rates, a purported neurophysiological correlate of tinnitus in A1. Together, these findings suggest that bimodal plasticity is also evident in A1 following noise damage and may have implications for tinnitus generation and therapeutic intervention across the central auditory circuit. PMID:26289461

  10. Alterations in brain connectivity in three sub-regions of the anterior cingulate cortex in heroin-dependent individuals: Evidence from resting state fMRI.

    PubMed

    Zhang, Y; Gong, J; Xie, C; Ye, E M; Jin, X; Song, H; Yang, Z; Shao, Y

    2015-01-22

    Previous studies that utilized task-based approaches have demonstrated that the chronic use of heroin is associated with altered activity of the anterior cingulate cortex (ACC). However, few studies have focused on examining the variation in resting-state functional connectivity in heroin-dependent individuals, which might help further understanding the mechanisms underlying heroin addiction. Due to the structural and functional heterogeneity of the ACC, we systematically mapped the resting-state functional connectivity patterns of three sub-regions of the ACC in heroin-dependent individuals, wondered whether the partition of three sub-regions of the ACC is feasible in heroin-dependent individuals, and identified how heroin affected the correlated activities among three sub-regions of the ACC using resting-state functional magnetic resonance imaging (fMRI). In the present study, fMRI data were acquired from 21 heroin-dependent individuals (Her group) and 15 non-addicted controls (CN group). Compared to controls, there were reduced functional connectivities in the dorsal ACC (dACC) and rostral ACC (rACC) networks with different areas of the dorsal striatum (the caudate and the putamen) in the Her group. Meanwhile, there exhibited an inverted alteration of pattern for orbital frontal cortex (OFC) and superior frontal gyrus (SFG) in the functional connectivity network with the dACC and subcallosal ACC (sACC), and a different alteration of the cerebellum and the amygdala in the functional connectivity network with the rACC and the sACC. In addition, we also found reduced connectivities between dACC and rACC, as well as reduced connectivities between sACC and dACC. Our findings of variations of functional connectivities in three sub-regions of ACC in Her group implied that these sub-regions of the ACC together with other key brain areas (such as dorsal striatum, OFC, SFG, cerebellum, amygdale, etc.) might potentially play independent and/or overlapping roles in heroin

  11. (1)H NMR based metabolomic profiling revealed doxorubicin-induced systematic alterations in a rat model.

    PubMed

    Niu, Qian-Yun; Li, Zhen-Yu; Du, Guan-Hua; Qin, Xue-Mei

    2016-01-25

    Doxorubicin (DOX) is used as a chemotherapy drug with severe carditoxicity. In this study, an integrated echocardiography along with pathological examination and (1)H NMR analysis of multiple biological matrices (urine, serum, heart, and kidney) was employed to systemically assess the toxicity of DOX. Echocardiographic results showed that impaired left ventricular contractility and degenerative pathology lesions in DOX group, which were in consistent with pathology. The endogenous metabolites in the urine, serum, heart and kidney was identified by comparison with the data from the literature and databases. Multivariate analysis, including PCA and OPLS, revealed 8 metabolites in urine, including succinate, 2-ketoglutarate, citrate, hippurate, methylamine, benzoate, allantion, and acetate were the potential changed biomarkers. In serum, perturbed metabolites include elevation of leucine, β-glucose, O-acetyl-glycoprotein, creatine, lysine, glycerin, dimethylglycine, trimethylamine-N-oxide, myo-inositol, and N-acetyl-glycoprotein, together with level decreases of acetone, lipid, lactate, glutamate, phosphocholine, acetoacetate and pyruvate. For heart, DOX exposure caused decline of lipid, lactate, leucine, alanine, glutamate, choline, xanthine, glycerin, carnitine, and fumarate, together with elevation of glutamine, creatine, inosine, taurine and malate. Metabolic changes of kidney were mainly involved in the accumulation of α-glucose, lactate, phosphocholine, betaine, threonine, choline, taurine, glycine, urea, hypoxanthine, glutamate, and nicotinamide, coupled with reduction of asparagine, valine, methionine, tyrosine, lysine, alanine, leucine, ornithine, creatine, lipid, and acetate. In addition, alterations of urinary metabolites exhibited a time-dependent manner. Complementary evidences by multiple matrices revealed disturbed pathways concerning energy metabolism, fatty acids oxidation, amino acids and purine metabolism, choline metabolism, and gut microbiota

  12. Functionally Brain Network Connected to the Retrosplenial Cortex of Rats Revealed by 7T fMRI

    PubMed Central

    Wang, Jingjuan; Nie, Binbin; Duan, Shaofeng; Zhu, Haitao; Liu, Hua; Shan, Baoci

    2016-01-01

    Functional networks are regarded as important mechanisms for increasing our understanding of brain function in healthy and diseased states, and increased interest has been focused on extending the study of functional networks to animal models because such models provide a functional understanding of disease progression, therapy and repair. In rodents, the retrosplenial cortex (RSC) is an important cortical region because it has a large size and presents transitional patterns of lamination between the neocortex and archicortex. In addition, a number of invasive studies have highlighted the importance of the RSC for many functions. However, the network based on the RSC in rodents remains unclear. Based on the critical importance of the RSC, we defined the bilateral RSCs as two regions of interest and estimated the network based on the RSC. The results showed that the related regions include the parietal association cortex, hippocampus, thalamus nucleus, midbrain structures, and hypothalamic mammillary bodies. Our findings indicate two possible major networks: a sensory-cognitive network that has a hub in the RSCs and processes sensory information, spatial learning, and episodic memory; and a second network that is involved in the regulation of visceral functions and arousal. In addition, functional asymmetry between the bilateral RSCs was observed. PMID:26745803

  13. Topographic representations of object size and relationships with numerosity reveal generalized quantity processing in human parietal cortex

    PubMed Central

    Harvey, Ben M.; Fracasso, Alessio; Petridou, Natalia; Dumoulin, Serge O.

    2015-01-01

    Humans and many animals analyze sensory information to estimate quantities that guide behavior and decisions. These quantities include numerosity (object number) and object size. Having recently demonstrated topographic maps of numerosity, we ask whether the brain also contains maps of object size. Using ultra-high-field (7T) functional MRI and population receptive field modeling, we describe tuned responses to visual object size in bilateral human posterior parietal cortex. Tuning follows linear Gaussian functions and shows surround suppression, and tuning width narrows with increasing preferred object size. Object size-tuned responses are organized in bilateral topographic maps, with similar cortical extents responding to large and small objects. These properties of object size tuning and map organization all differ from the numerosity representation, suggesting that object size and numerosity tuning result from distinct mechanisms. However, their maps largely overlap and object size preferences correlate with numerosity preferences, suggesting associated representations of these two quantities. Object size preferences here show no discernable relation to visual position preferences found in visuospatial receptive fields. As such, object size maps (much like numerosity maps) do not reflect sensory organ structure but instead emerge within the brain. We speculate that, as in sensory processing, optimization of cognitive processing using topographic maps may be a common organizing principle in association cortex. Interactions between object size and numerosity maps may associate cognitive representations of these related features, potentially allowing consideration of both quantities together when making decisions. PMID:26483452

  14. Topographic representations of object size and relationships with numerosity reveal generalized quantity processing in human parietal cortex.

    PubMed

    Harvey, Ben M; Fracasso, Alessio; Petridou, Natalia; Dumoulin, Serge O

    2015-11-01

    Humans and many animals analyze sensory information to estimate quantities that guide behavior and decisions. These quantities include numerosity (object number) and object size. Having recently demonstrated topographic maps of numerosity, we ask whether the brain also contains maps of object size. Using ultra-high-field (7T) functional MRI and population receptive field modeling, we describe tuned responses to visual object size in bilateral human posterior parietal cortex. Tuning follows linear Gaussian functions and shows surround suppression, and tuning width narrows with increasing preferred object size. Object size-tuned responses are organized in bilateral topographic maps, with similar cortical extents responding to large and small objects. These properties of object size tuning and map organization all differ from the numerosity representation, suggesting that object size and numerosity tuning result from distinct mechanisms. However, their maps largely overlap and object size preferences correlate with numerosity preferences, suggesting associated representations of these two quantities. Object size preferences here show no discernable relation to visual position preferences found in visuospatial receptive fields. As such, object size maps (much like numerosity maps) do not reflect sensory organ structure but instead emerge within the brain. We speculate that, as in sensory processing, optimization of cognitive processing using topographic maps may be a common organizing principle in association cortex. Interactions between object size and numerosity maps may associate cognitive representations of these related features, potentially allowing consideration of both quantities together when making decisions. PMID:26483452

  15. Time-dependent metabolomic profiling of Ketamine drug action reveals hippocampal pathway alterations and biomarker candidates.

    PubMed

    Weckmann, K; Labermaier, C; Asara, J M; Müller, M B; Turck, C W

    2014-01-01

    Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has fast-acting antidepressant activities and is used for major depressive disorder (MDD) patients who show treatment resistance towards drugs of the selective serotonin reuptake inhibitor (SSRI) type. In order to better understand Ketamine's mode of action, a prerequisite for improved drug development efforts, a detailed understanding of the molecular events elicited by the drug is mandatory. In the present study we have carried out a time-dependent hippocampal metabolite profiling analysis of mice treated with Ketamine. After a single injection of Ketamine, our metabolomics data indicate time-dependent metabolite level alterations starting already after 2 h reflecting the fast antidepressant effect of the drug. In silico pathway analyses revealed that several hippocampal pathways including glycolysis/gluconeogenesis, pentose phosphate pathway and citrate cycle are affected, apparent by changes not only in metabolite levels but also connected metabolite level ratios. The results show that a single injection of Ketamine has an impact on the major energy metabolism pathways. Furthermore, seven of the identified metabolites qualify as biomarkers for the Ketamine drug response. PMID:25386958

  16. Correlative nonlinear optical microscopy and infrared nanoscopy reveals collagen degradation in altered parchments

    NASA Astrophysics Data System (ADS)

    Latour, Gaël; Robinet, Laurianne; Dazzi, Alexandre; Portier, François; Deniset-Besseau, Ariane; Schanne-Klein, Marie-Claire

    2016-05-01

    This paper presents the correlative imaging of collagen denaturation by nonlinear optical microscopy (NLO) and nanoscale infrared (IR) spectroscopy to obtain morphological and chemical information at different length scales. Such multiscale correlated measurements are applied to the investigation of ancient parchments, which are mainly composed of dermal fibrillar collagen. The main issue is to characterize gelatinization, the ultimate and irreversible alteration corresponding to collagen denaturation to gelatin, which may also occur in biological tissues. Key information about collagen and gelatin signatures is obtained in parchments and assessed by characterizing the denaturation of pure collagen reference samples. A new absorbing band is observed near the amide I band in the IR spectra, correlated to the onset of fluorescence signals in NLO images. Meanwhile, a strong decrease is observed in Second Harmonic signals, which are a structural probe of the fibrillar organization of the collagen at the micrometer scale. NLO microscopy therefore appears as a powerful tool to reveal collagen degradation in a non-invasive way. It should provide a relevant method to assess or monitor the condition of collagen-based materials in museum and archival collections and opens avenues for a broad range of applications regarding this widespread biological material.

  17. Super-Resolution Microscopy Reveals Altered Desmosomal Protein Organization in Tissue from Patients with Pemphigus Vulgaris.

    PubMed

    Stahley, Sara N; Warren, Maxine F; Feldman, Ron J; Swerlick, Robert A; Mattheyses, Alexa L; Kowalczyk, Andrew P

    2016-01-01

    Pemphigus vulgaris (PV) is an autoimmune epidermal blistering disease in which autoantibodies (IgG) are directed against the desmosomal cadherin desmoglein 3. To better understand how PV IgG alters desmosome morphology and function in vivo, biopsies from patients with PV were analyzed by structured illumination microscopy, a form of superresolution fluorescence microscopy. In patient tissue, desmosomal proteins were aberrantly clustered and patient IgG colocalized with markers for lipid rafts and endosomes. Additionally, steady-state levels of desmoglein 3 were decreased and desmosomes were reduced in size in patient tissue. Desmosomes at blister sites were occasionally split, with PV IgG decorating the extracellular faces of split desmosomes. Desmosome splitting was recapitulated in vitro by exposing cultured keratinocytes both to PV IgG and to mechanical stress, demonstrating that splitting at the blister interface in patient tissue is due to compromised desmosomal adhesive function. These findings indicate that desmoglein 3 clustering and endocytosis are associated with reduced desmosome size and adhesion defects in tissue of patients with PV. Further, this study reveals that superresolution optical imaging is a powerful approach for studying epidermal adhesion structures in normal and diseased skin. PMID:26763424

  18. Correlative nonlinear optical microscopy and infrared nanoscopy reveals collagen degradation in altered parchments.

    PubMed

    Latour, Gaël; Robinet, Laurianne; Dazzi, Alexandre; Portier, François; Deniset-Besseau, Ariane; Schanne-Klein, Marie-Claire

    2016-01-01

    This paper presents the correlative imaging of collagen denaturation by nonlinear optical microscopy (NLO) and nanoscale infrared (IR) spectroscopy to obtain morphological and chemical information at different length scales. Such multiscale correlated measurements are applied to the investigation of ancient parchments, which are mainly composed of dermal fibrillar collagen. The main issue is to characterize gelatinization, the ultimate and irreversible alteration corresponding to collagen denaturation to gelatin, which may also occur in biological tissues. Key information about collagen and gelatin signatures is obtained in parchments and assessed by characterizing the denaturation of pure collagen reference samples. A new absorbing band is observed near the amide I band in the IR spectra, correlated to the onset of fluorescence signals in NLO images. Meanwhile, a strong decrease is observed in Second Harmonic signals, which are a structural probe of the fibrillar organization of the collagen at the micrometer scale. NLO microscopy therefore appears as a powerful tool to reveal collagen degradation in a non-invasive way. It should provide a relevant method to assess or monitor the condition of collagen-based materials in museum and archival collections and opens avenues for a broad range of applications regarding this widespread biological material. PMID:27194180

  19. Correlative nonlinear optical microscopy and infrared nanoscopy reveals collagen degradation in altered parchments

    PubMed Central

    Latour, Gaël; Robinet, Laurianne; Dazzi, Alexandre; Portier, François; Deniset-Besseau, Ariane; Schanne-Klein, Marie-Claire

    2016-01-01

    This paper presents the correlative imaging of collagen denaturation by nonlinear optical microscopy (NLO) and nanoscale infrared (IR) spectroscopy to obtain morphological and chemical information at different length scales. Such multiscale correlated measurements are applied to the investigation of ancient parchments, which are mainly composed of dermal fibrillar collagen. The main issue is to characterize gelatinization, the ultimate and irreversible alteration corresponding to collagen denaturation to gelatin, which may also occur in biological tissues. Key information about collagen and gelatin signatures is obtained in parchments and assessed by characterizing the denaturation of pure collagen reference samples. A new absorbing band is observed near the amide I band in the IR spectra, correlated to the onset of fluorescence signals in NLO images. Meanwhile, a strong decrease is observed in Second Harmonic signals, which are a structural probe of the fibrillar organization of the collagen at the micrometer scale. NLO microscopy therefore appears as a powerful tool to reveal collagen degradation in a non-invasive way. It should provide a relevant method to assess or monitor the condition of collagen-based materials in museum and archival collections and opens avenues for a broad range of applications regarding this widespread biological material. PMID:27194180

  20. Defining the human adipose tissue proteome to reveal metabolic alterations in obesity.

    PubMed

    Mardinoglu, Adil; Kampf, Caroline; Asplund, Anna; Fagerberg, Linn; Hallström, Björn M; Edlund, Karolina; Blüher, Matthias; Pontén, Fredrik; Uhlen, Mathias; Nielsen, Jens

    2014-11-01

    White adipose tissue (WAT) has a major role in the progression of obesity. Here, we combined data from RNA-Seq and antibody-based immunohistochemistry to describe the normal physiology of human WAT obtained from three female subjects and explored WAT-specific genes by comparing WAT to 26 other major human tissues. Using the protein evidence in WAT, we validated the content of a genome-scale metabolic model for adipocytes. We employed this high-quality model for the analysis of subcutaneous adipose tissue (SAT) gene expression data obtained from subjects included in the Swedish Obese Subjects Sib Pair study to reveal molecular differences between lean and obese individuals. We integrated SAT gene expression and plasma metabolomics data, investigated the contribution of the metabolic differences in the mitochondria of SAT to the occurrence of obesity, and eventually identified cytosolic branched-chain amino acid (BCAA) transaminase 1 as a potential target that can be used for drug development. We observed decreased glutaminolysis and alterations in the BCAAs metabolism in SAT of obese subjects compared to lean subjects. We also provided mechanistic explanations for the changes in the plasma level of BCAAs, glutamate, pyruvate, and α-ketoglutarate in obese subjects. Finally, we validated a subset of our model-based predictions in 20 SAT samples obtained from 10 lean and 10 obese male and female subjects. PMID:25219818

  1. Super-resolution microscopy reveals altered desmosomal protein organization in pemphigus vulgaris patient tissue

    PubMed Central

    Stahley, Sara N.; Warren, Maxine F.; Feldman, Ron J.; Swerlick, Robert A.; Mattheyses, Alexa L.; Kowalczyk, Andrew P.

    2015-01-01

    Pemphigus vulgaris (PV) is an autoimmune epidermal blistering disease in which autoantibodies (IgG) are directed against the desmosomal cadherin desmoglein 3 (Dsg3). In order to better understand how PV IgG alters desmosome morphology and function in vivo, PV patient biopsies were analyzed by structured illumination microscopy (SIM), a form of super-resolution fluorescence microscopy. In patient tissue, desmosomal proteins were aberrantly clustered and localized to PV IgG-containing endocytic linear arrays. Patient IgG also colocalized with markers for lipid rafts and endosomes. Additionally, steady-state levels of Dsg3 were decreased and desmosomes were reduced in size in patient tissue. Desmosomes at blister sites were occasionally split, with PV IgG decorating the extracellular faces of split desmosomes. Desmosome splitting was recapitulated in vitro by exposing cultured keratinocytes both to PV IgG and to mechanical stress, demonstrating that splitting at the blister interface in patient tissue is due to compromised desmosomal adhesive function. These findings indicate that Dsg3 clustering and endocytosis are associated with reduced desmosome size and adhesion defects in PV patient tissue. Further, this study reveals that super-resolution optical imaging is powerful approach for studying epidermal adhesion structures in normal and diseased skin. PMID:26763424

  2. Inflammation-related alterations of lipids after spinal cord injury revealed by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Tamosaityte, Sandra; Galli, Roberta; Uckermann, Ortrud; Sitoci-Ficici, Kerim H.; Koch, Maria; Later, Robert; Schackert, Gabriele; Koch, Edmund; Steiner, Gerald; Kirsch, Matthias

    2016-06-01

    Spinal cord injury (SCI) triggers several lipid alterations in nervous tissue. It is characterized by extensive demyelination and the inflammatory response leads to accumulation of activated microglia/macrophages, which often transform into foam cells by accumulation of lipid droplets after engulfment of the damaged myelin sheaths. Using an experimental rat model, Raman microspectroscopy was applied to retrieve the modifications of the lipid distribution following SCI. Coherent anti-Stokes Raman scattering (CARS) and endogenous two-photon fluorescence (TPEF) microscopies were used for the detection of lipid-laden inflammatory cells. The Raman mapping of CH2 deformation mode intensity at 1440 cm-1 retrieved the lipid-depleted injury core. Preserved white matter and inflammatory regions with myelin fragmentation and foam cells were localized by specifically addressing the distribution of esterified lipids, i.e., by mapping the intensity of the carbonyl Raman band at 1743 cm-1, and were in agreement with CARS/TPEF microscopy. Principal component analysis revealed that the inflammatory regions are notably rich in saturated fatty acids. Therefore, Raman spectroscopy enabled to specifically detect inflammation after SCI and myelin degradation products.

  3. Flicker-assisted localization microscopy reveals altered mitochondrial architecture in hypertension

    PubMed Central

    Chalmers, Susan; Saunter, Christopher D.; Girkin, John M.; McCarron, John G.

    2015-01-01

    Mitochondrial morphology is central to normal physiology and disease development. However, in many live cells and tissues, complex mitochondrial structures exist and morphology has been difficult to quantify. We have measured the shape of electrically-discrete mitochondria, imaging them individually to restore detail hidden in clusters and demarcate functional boundaries. Stochastic “flickers” of mitochondrial membrane potential were visualized with a rapidly-partitioning fluorophore and the pixel-by-pixel covariance of spatio-temporal fluorescence changes analyzed. This Flicker-assisted Localization Microscopy (FaLM) requires only an epifluorescence microscope and sensitive camera. In vascular myocytes, the apparent variation in mitochondrial size was partly explained by densely-packed small mitochondria. In normotensive animals, mitochondria were small spheres or rods. In hypertension, mitochondria were larger, occupied more of the cell volume and were more densely clustered. FaLM provides a convenient tool for increased discrimination of mitochondrial architecture and has revealed mitochondrial alterations that may contribute to hypertension. PMID:26593883

  4. Alterations in locomotor activity after microinjections of GBR-12909, selective dopamine antagonists or neurotensin into the medial prefrontal cortex.

    PubMed

    Radcliffe, R A; Erwin, V G

    1996-06-01

    It has been postulated that increased dopamine (DA) activity in the medial prefrontal cortex (mPFC) exerts an inhibitory influence over DA release in the nucleus accumbens and, thus, also over locomotor activity. Experiments were designed to examine the role of mPFC DA and neurotensin (NT), a neuropeptide which interacts with DA, in spontaneous locomotor activity. LS/IBG mice were injected bilaterally with either GBR-12909, a selective DA uptake blocker, the DA D1 receptor antagonist R-(+)-SCH-23390, the DA D2 receptor antagonist epidepride, NT or a combination of drugs. GBR-12909 produced a U-shaped dose-response curve with a maximum inhibition of 47% of control. Postmortem tissue levels of DA, 5-hydroxytryptamine, norepinephrine and their major metabolites were determined after microinjections of GBR-12909. Tissue levels of these compounds were not significantly affected by GBR-12909. However, the ratios of homovanilic acid/DA and homovanilic acid + 3,4-dihyroxyphenylacetic acid/DA were significantly decreased, whereas the 5-hydroxyindoleacetic acid/5-hydroxytryptamine ratio was not affected by GBR-12909, suggesting a selective effect on DAergic processes. By itself, R-(+)-SCH-23390 had no effect on locomotor activity except at a very high dose which caused locomotor inhibition (49% of control). Epidepride caused a dose-dependent inhibition of locomotor activity with a maximum inhibition of 49% of control. When coinjected with an inhibitory dose of GBR-12909, both epidepride and R-(+)-SCH-23390 attenuated the GBR-12909 effect in a dose-dependent manner. A broad range of doses of NT was found to have no consistent effect on locomotor activity. However, when coinjected with an inhibitory dose of GBR-12909, NT attenuated the GBR-12909-induced inhibition in a dose-dependent manner. The results suggest that stimulation of DA receptors in the mPFC, both DA D1 and DA D2 receptors mediates locomotor inhibition. Furthermore, stimulation of NT receptors appears to

  5. Low level postnatal methylmercury exposure in vivo alters developmental forms of short-term synaptic plasticity in the visual cortex of rat

    SciTech Connect

    Dasari, Sameera; Yuan, Yukun

    2009-11-01

    Methylmercury (MeHg) has been previously shown to affect neurotransmitter release. Short-term synaptic plasticity (STP) is primarily related to changes in the probability of neurotransmitter release. To determine if MeHg affects STP development, we examined STP forms in the visual cortex of rat following in vivo MeHg exposure. Neonatal rats received 0 (0.9% NaCl), 0.75 or 1.5 mg/kg/day MeHg subcutaneously for 15 or 30 days beginning on postnatal day 5, after which visual cortical slices were prepared for field potential recordings. In slices prepared from rats treated with vehicle, field excitatory postsynaptic potentials (fEPSPs) evoked by paired-pulse stimulation at 20-200 ms inter-stimulus intervals showed a depression (PPD) of the second fEPSP (fEPSP2). PPD was also seen in slices prepared from rats after 15 day treatment with 0.75 or 1.5 mg/kg/day MeHg. However, longer duration treatment (30 days) with either dose of MeHg resulted in paired-pulse facilitation (PPF) of fEPSP2 in the majority of slices examined. PPF remained observable in slices prepared from animals in which MeHg exposure had been terminated for 30 days after completion of the initial 30 day MeHg treatment, whereas slices from control animals still showed PPD. MeHg did not cause any frequency- or region-preferential effect on STP. Manipulations of [Ca{sup 2+}]{sub e} or application of the GABA{sub A} receptor antagonist bicuculline could alter the strength and polarity of MeHg-induced changes in STP. Thus, these data suggest that low level postnatal MeHg exposure interferes with the developmental transformation of STP in the visual cortex, which is a long-lasting effect.

  6. Low level postnatal methylmercury exposure in vivo alters developmental forms of short-term synaptic plasticity in the visual cortex of rat

    PubMed Central

    Dasari, Sameera; Yuan, Yukun

    2009-01-01

    Methylmercury (MeHg) has been previously shown to affect neurotransmitter release. Short-term synaptic plasticity (STP) is primarily related to changes in the probability of neurotransmitter release. To determine if MeHg affects STP development, we examined STP forms in the visual cortex of rat following in vivo MeHg exposure. Neonatal rats received 0 (0.9% NaCl), 0.75 or 1.5 mg/kg/day MeHg subcutaneously for 15 or 30 days beginning on postnatal day 5, after which visual cortical slices were prepared for field potential recordings. In slices prepared from rats treated with vehicle, field excitatory postsynaptic potentials (fEPSPs) evoked by paired-pulse stimulation at 20 - 200 ms inter-stimulus intervals showed a depression (PPD) of the second fEPSP (fEPSP2). PPD was also seen in slices prepared from rats after 15 day treatment with 0.75 or 1.5 mg/kg/day MeHg. However, longer duration treatment (30 days) with either dose of MeHg resulted in paired-pulse facilitation (PPF) of fEPSP2 in the majority of slices examined. PPF remained observable in slices prepared from animals in which MeHg exposure had been terminated for 30 days after completion of the initial 30 day MeHg treatment, whereas slices from control animals still showed PPD. MeHg did not cause any frequency- or region-preferential effect on STP. Manipulations of [Ca2+]e or application of the GABAA receptor antagonist bicuculline could alter the strength and polarity of MeHg-induced changes in STP. Thus, these data suggest that low level postnatal MeHg exposure interferes with the developmental transformation of STP in the visual cortex, which is a long-lasting effect. PMID:19664649

  7. Learning-related representational changes reveal dissociable integration and separation signatures in the hippocampus and prefrontal cortex

    PubMed Central

    Schlichting, Margaret L.; Mumford, Jeanette A.; Preston, Alison R.

    2015-01-01

    The episodic memory system enables accurate retrieval while maintaining flexibility by representing both specific episodes and generalizations across events. Although theories suggest that the hippocampus (HPC) is dedicated to represent specific episodes while the medial prefrontal cortex (MPFC) generalizes, other accounts posit that HPC can also integrate related memories. Here we use high-resolution functional magnetic resonance imaging in humans to examine how representations of memory elements change to either differentiate or generalize across related events. We show that while posterior HPC and anterior MPFC maintain distinct memories for individual events, anterior HPC and posterior MPFC integrate across memories. Integration is particularly likely for established memories versus those encoded simultaneously, highlighting the greater impact of prior knowledge on new encoding. We also show dissociable coding signatures in ventrolateral PFC, a region previously implicated in interference resolution. These data highlight how memory elements are represented to simultaneously promote generalization across memories and protect from interference. PMID:26303198

  8. Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex

    PubMed Central

    Neubert, Franz-Xaver; Mars, Rogier B.; Sallet, Jérôme; Rushworth, Matthew F. S.

    2015-01-01

    Reward-guided decision-making depends on a network of brain regions. Among these are the orbitofrontal and the anterior cingulate cortex. However, it is difficult to ascertain if these areas constitute anatomical and functional unities, and how these areas correspond between monkeys and humans. To address these questions we looked at connectivity profiles of these areas using resting-state functional MRI in 38 humans and 25 macaque monkeys. We sought brain regions in the macaque that resembled 10 human areas identified with decision making and brain regions in the human that resembled six macaque areas identified with decision making. We also used diffusion-weighted MRI to delineate key human orbital and medial frontal brain regions. We identified 21 different regions, many of which could be linked to particular aspects of reward-guided learning, valuation, and decision making, and in many cases we identified areas in the macaque with similar coupling profiles. PMID:25947150

  9. Learning-related representational changes reveal dissociable integration and separation signatures in the hippocampus and prefrontal cortex.

    PubMed

    Schlichting, Margaret L; Mumford, Jeanette A; Preston, Alison R

    2015-01-01

    The episodic memory system enables accurate retrieval while maintaining flexibility by representing both specific episodes and generalizations across events. Although theories suggest that the hippocampus (HPC) is dedicated to represent specific episodes while the medial prefrontal cortex (MPFC) generalizes, other accounts posit that HPC can also integrate related memories. Here we use high-resolution functional magnetic resonance imaging in humans to examine how representations of memory elements change to either differentiate or generalize across related events. We show that while posterior HPC and anterior MPFC maintain distinct memories for individual events, anterior HPC and posterior MPFC integrate across memories. Integration is particularly likely for established memories versus those encoded simultaneously, highlighting the greater impact of prior knowledge on new encoding. We also show dissociable coding signatures in ventrolateral PFC, a region previously implicated in interference resolution. These data highlight how memory elements are represented to simultaneously promote generalization across memories and protect from interference. PMID:26303198

  10. Structure of Spike Count Correlations Reveals Functional Interactions between Neurons in Dorsolateral Prefrontal Cortex Area 8a of Behaving Primates

    PubMed Central

    Leavitt, Matthew L.; Pieper, Florian; Sachs, Adam; Joober, Ridha; Martinez-Trujillo, Julio C.

    2013-01-01

    Neurons within the primate dorsolateral prefrontal cortex (dlPFC) are clustered in microcolumns according to their visuospatial tuning. One issue that remains poorly investigated is how this anatomical arrangement influences functional interactions between neurons during behavior. To investigate this question we implanted 4 mm×4 mm multielectrode arrays in two macaques' dlPFC area 8a and measured spike count correlations (rsc) between responses of simultaneously recorded neurons when animals maintained stationary gaze. Positive and negative rsc were significantly higher than predicted by chance across a wide range of inter-neuron distances (from 0.4 to 4 mm). Positive rsc were stronger between neurons with receptive fields (RFs) separated by ≤90° of angular distance and progressively decreased as a function of inter-neuron physical distance. Negative rsc were stronger between neurons with RFs separated by >90° and increased as a function of inter-neuron distance. Our results show that short- and long-range functional interactions between dlPFC neurons depend on the physical distance between them and the relationship between their visuospatial tuning preferences. Neurons with similar visuospatial tuning show positive rsc that decay with inter-neuron distance, suggestive of excitatory interactions within and between adjacent microcolumns. Neurons with dissimilar tuning from spatially segregated microcolumns show negative rsc that increase with inter-neuron distance, suggestive of inhibitory interactions. This pattern of results shows that functional interactions between prefrontal neurons closely follow the pattern of connectivity reported in anatomical studies. Such interactions may be important for the role of the prefrontal cortex in the allocation of attention to targets in the presence of competing distracters. PMID:23630595

  11. Monocular inhibition reveals temporal and spatial changes in gene expression in the primary visual cortex of marmoset

    PubMed Central

    Nakagami, Yuki; Watakabe, Akiya; Yamamori, Tetsuo

    2013-01-01

    We investigated the time course of the expression of several activity-dependent genes evoked by visual inputs in the primary visual cortex (V1) in adult marmosets. In order to examine the rapid time course of activity-dependent gene expression, marmosets were first monocularly inactivated by tetrodotoxin (TTX), kept in darkness for two days, and then exposed to various length of light stimulation. Activity-dependent genes including HTR1B, HTR2A, whose activity-dependency were previously reported by us, and well-known immediate early genes (IEGs), c-FOS, ZIF268, and ARC, were examined by in situ hybridization. Using this system, first, we demonstrated the ocular dominance type of gene expression pattern in V1 under this condition. IEGs were expressed in columnar patterns throughout layers II–VI of all the tested monocular marmosets. Second, we showed the regulation of HTR1B and HTR2A expressions by retinal spontaneous activity, because HTR1B and HTR2A mRNA expressions sustained a certain level regardless of visual stimulation and were inhibited by a blockade of the retinal activity with TTX. Third, IEGs dynamically changed its laminar distribution from half an hour to several hours upon a stimulus onset with the unique time course for each gene. The expression patterns of these genes were different in neurons of each layer as well. These results suggest that the regulation of each neuron in the primary visual cortex of marmosets is subjected to different regulation upon the change of activities from retina. It should be related to a highly differentiated laminar structure of marmoset visual systems, reflecting the functions of the activity-dependent gene expression in marmoset V1. PMID:23576954

  12. Mars 520-d mission simulation reveals protracted crew hypokinesis and alterations of sleep duration and timing

    PubMed Central

    Basner, Mathias; Dinges, David F.; Mollicone, Daniel; Ecker, Adrian; Jones, Christopher W.; Hyder, Eric C.; Di Antonio, Adrian; Savelev, Igor; Kan, Kevin; Goel, Namni; Morukov, Boris V.; Sutton, Jeffrey P.

    2013-01-01

    The success of interplanetary human spaceflight will depend on many factors, including the behavioral activity levels, sleep, and circadian timing of crews exposed to prolonged microgravity and confinement. To address the effects of the latter, we used a high-fidelity ground simulation of a Mars mission to objectively track sleep–wake dynamics in a multinational crew of six during 520 d of confined isolation. Measurements included continuous recordings of wrist actigraphy and light exposure (4.396 million min) and weekly computer-based neurobehavioral assessments (n = 888) to identify changes in the crew's activity levels, sleep quantity and quality, sleep–wake periodicity, vigilance performance, and workload throughout the record-long 17 mo of mission confinement. Actigraphy revealed that crew sedentariness increased across the mission as evident in decreased waking movement (i.e., hypokinesis) and increased sleep and rest times. Light exposure decreased during the mission. The majority of crewmembers also experienced one or more disturbances of sleep quality, vigilance deficits, or altered sleep–wake periodicity and timing, suggesting inadequate circadian entrainment. The results point to the need to identify markers of differential vulnerability to hypokinesis and sleep–wake changes during the prolonged isolation of exploration spaceflight and the need to ensure maintenance of circadian entrainment, sleep quantity and quality, and optimal activity levels during exploration missions. Therefore, successful adaptation to such missions will require crew to transit in spacecraft and live in surface habitats that instantiate aspects of Earth's geophysical signals (appropriately timed light exposure, food intake, exercise) required for temporal organization and maintenance of human behavior. PMID:23297197

  13. Mars 520-d mission simulation reveals protracted crew hypokinesis and alterations of sleep duration and timing.

    PubMed

    Basner, Mathias; Dinges, David F; Mollicone, Daniel; Ecker, Adrian; Jones, Christopher W; Hyder, Eric C; Di Antonio, Adrian; Savelev, Igor; Kan, Kevin; Goel, Namni; Morukov, Boris V; Sutton, Jeffrey P

    2013-02-12

    The success of interplanetary human spaceflight will depend on many factors, including the behavioral activity levels, sleep, and circadian timing of crews exposed to prolonged microgravity and confinement. To address the effects of the latter, we used a high-fidelity ground simulation of a Mars mission to objectively track sleep-wake dynamics in a multinational crew of six during 520 d of confined isolation. Measurements included continuous recordings of wrist actigraphy and light exposure (4.396 million min) and weekly computer-based neurobehavioral assessments (n = 888) to identify changes in the crew's activity levels, sleep quantity and quality, sleep-wake periodicity, vigilance performance, and workload throughout the record-long 17 mo of mission confinement. Actigraphy revealed that crew sedentariness increased across the mission as evident in decreased waking movement (i.e., hypokinesis) and increased sleep and rest times. Light exposure decreased during the mission. The majority of crewmembers also experienced one or more disturbances of sleep quality, vigilance deficits, or altered sleep-wake periodicity and timing, suggesting inadequate circadian entrainment. The results point to the need to identify markers of differential vulnerability to hypokinesis and sleep-wake changes during the prolonged isolation of exploration spaceflight and the need to ensure maintenance of circadian entrainment, sleep quantity and quality, and optimal activity levels during exploration missions. Therefore, successful adaptation to such missions will require crew to transit in spacecraft and live in surface habitats that instantiate aspects of Earth's geophysical signals (appropriately timed light exposure, food intake, exercise) required for temporal organization and maintenance of human behavior. PMID:23297197

  14. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts

    PubMed Central

    Maldini, Mariateresa; Natella, Fausta; Baima, Simona; Morelli, Giorgio; Scaccini, Cristina; Langridge, James; Astarita, Giuseppe

    2015-01-01

    The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower) is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird’s-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle). We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant’s developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the potential of an

  15. Trauma-associated Human Neutrophil Alterations Revealed by Comparative Proteomics Profiling

    PubMed Central

    Zhou, Jian-Ying; Krovvidi, Ravi K.; Gao, Yuqian; Gao, Hong; Petritis, Brianne O.; De, Asit; Miller-Graziano, Carol; Bankey, Paul E.; Petyuk, Vladislav A.; Nicora, Carrie D.; Clauss, Therese R; Moore, Ronald J.; Shi, Tujin; Brown, Joseph N.; Kaushal, Amit; Xiao, Wenzhong; Davis, Ronald W.; Maier, Ronald V.; Tompkins, Ronald G.; Qian, Wei-Jun; Camp, David G.; Smith, Richard D.

    2013-01-01

    PURPOSE Polymorphonuclear neutrophils (PMNs) play an important role in mediating the innate immune response after severe traumatic injury; however, the cellular proteome response to traumatic condition is still largely unknown. EXPERIMENTAL DESIGN We applied 2D-LC-MS/MS based shotgun proteomics to perform comparative proteome profiling of human PMNs from severe trauma patients and healthy controls. RESULTS A total of 197 out of ~2500 proteins (being identified with at least two peptides) were observed with significant abundance changes following the injury. The proteomics data were further compared with transcriptomics data for the same genes obtained from an independent patient cohort. The comparison showed that the protein abundance changes for the majority of proteins were consistent with the mRNA abundance changes in terms of directions of changes. Moreover, increased protein secretion was suggested as one of the mechanisms contributing to the observed discrepancy between protein and mRNA abundance changes. Functional analyses of the altered proteins showed that many of these proteins were involved in immune response, protein biosynthesis, protein transport, NRF2-mediated oxidative stress response, the ubiquitin-proteasome system, and apoptosis pathways. CONCLUSIONS AND CLINICAL RELEVANCE Our data suggest increased neutrophil activation and inhibited neutrophil apoptosis in response to trauma. The study not only reveals an overall picture of functional neutrophil response to trauma at the proteome level, but also provides a rich proteomics data resource of trauma-associated changes in the neutrophil that will be valuable for further studies of the functions of individual proteins in PMNs. PMID:23589343

  16. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts.

    PubMed

    Maldini, Mariateresa; Natella, Fausta; Baima, Simona; Morelli, Giorgio; Scaccini, Cristina; Langridge, James; Astarita, Giuseppe

    2015-01-01

    The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower) is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird's-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle). We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant's developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the potential of an

  17. Alterations of the vascular basal lamina in the cerebral cortex in drug abuse: a combined morphometric and immunohistochemical investigation.

    PubMed

    Büttner, Andreas; Kroehling, Claus; Mall, Gita; Penning, Randolph; Weis, Serge

    2005-07-01

    In drug abusers, white matter hyperintensities, perfusion deficits, and metabolic disturbances are detected by neuroimaging analyses in different brain regions. A specific pattern of involvement or a predominance of a specific brain region cannot be drawn. To examine changes of the cerebral microvasculature as a possible morphological substrate of the neuroimaging findings, brain specimens of 12 polydrug abusers and 8 controls were obtained at autopsy. The basal lamina of blood vessels from the frontal, temporal, parietal, and occipital lobes was analysed by means of immunohistochemistry for collagen type IV. The numerical density of vessels was determined in the gray and white matter, and their staining intensity was rated using a three-point scale. In the gray and white matter of polydrug abusers, the number of vessels showing strong immunoreactivity for collagen type IV was significantly reduced, whereas the number of vessels with mild and moderate immunoreactivity was increased as compared to controls. The total numerical density of vessels was not significantly changed. Our results show a significant reduction in immunoreactivity for collagen type IV in the brains from polydrug abusers compared to controls, which may be due to a thinning of the basal lamina of cerebral vessels. The data of the present study show morphological changes of the basal lamina in the brain of polydrug abusers, which might represent the morphological substrate of a disturbed blood-brain barrier. However, it remains yet to be established if the observed changes are responsible for the alterations seen in different neuroimaging analyses and which drug might be of major pathogenetic significance. PMID:15943945

  18. Medial prefrontal cortex neuronal activation and synaptic alterations after stress-induced reinstatement of palatable food seeking: a study using c-fos-GFP transgenic female rats

    PubMed Central

    Cifani, Carlo; Koya, Eisuke; Navarre, Brittany M.; Calu, Donna J.; Baumann, Michael H.; Marchant, Nathan J.; Liu, Qing-Rong; Khuc, Thi; Pickel, James; Lupica, Carl R.; Shaham, Yavin; Hope, Bruce T.

    2012-01-01

    Relapse to maladaptive eating habits during dieting is often provoked by stress and there is evidence for a role of ovarian hormones in stress responses and feeding. We studied the role of these hormones in stress-induced reinstatement of food seeking and medial prefrontal cortex (mPFC) neuronal activation in c-fos-GFP transgenic female rats, which express green fluorescent protein (GFP) in strongly activated neurons. Food-restricted ovariectomized or sham-operated c-fos-GFP rats were trained to lever-press for palatable food pellets. Subsequently, lever-pressing was extinguished and reinstatement of food seeking and mPFC neuronal activation was assessed after injections of the pharmacological stressor yohimbine (0.5–2 mg/kg) or pellet priming (1–4 non-contingent pellets). Estrous cycle effects on reinstatement were also assessed in wild-type rats. Yohimbine- and pellet-priming-induced reinstatement was associated with Fos and GFP induction in mPFC; both reinstatement and neuronal activation were minimally affected by ovarian hormones in both c-fos-GFP and wild-type rats. c-fos-GFP transgenic rats were then used to assess glutamatergic synaptic alterations within activated GFP-positive and non-activated GFP-negative mPFC neurons following yohimbine-induced reinstatement of food seeking. This reinstatement was associated with reduced AMPAR/NMDAR current ratios and increased paired-pulse facilitation in activated GFP-positive but not GFP-negative neurons. Together, while ovarian hormones do not appear to play a role in stress-induced relapse of food seeking in our rat model, this reinstatement was associated with unique synaptic alterations in strongly activated mPFC neurons. Our paper introduces the c-fos-GFP transgenic rat as a new tool to study unique synaptic changes in activated neurons during behavior. PMID:22723688

  19. Early exposure to bisphenol A alters neuron and glia number in the rat prefrontal cortex of adult males, but not females

    PubMed Central

    Sadowski, Renee N.; Wise, Leslie M.; Park, Pul Y.; Schantz, Susan L.; Juraska, Janice M.

    2014-01-01

    Previous work has shown that exposure to bisphenol A (BPA) during early development can alter sexual differentiation of the brain in rodents, although few studies have examined effects on areas of the brain associated with cognition. The current study examined if developmental BPA exposure alters the total number of neurons and glia in the medial prefrontal cortex (mPFC) in adulthood. Pregnant Long-Evans rats were orally exposed to 0, 4, 40, or 400 μg/kg BPA in corn oil throughout pregnancy. From postnatal days 1-9, pups were given daily oral doses of oil or BPA, at doses corresponding to those given during gestation. Brains were examined in adulthood, and the volume of layers 2/3 and layers 5/6 of the mPFC were parcellated. The density of neurons and glia in these layers was quantified stereologically with the optical disector, and density was multiplied by volume for each animal. Males exposed to 400 μg/kg BPA were found to have increased numbers of neurons and glia in layers 5/6. Although there were no significant effects of BPA in layers 2/3, the pattern of increased neuron number in males exposed to 400 μg/kg BPA was similar to that seen in layers 5/6. No effects of BPA were seen in females or in males exposed to the other doses of BPA. This study indicates that males are more susceptible to the long-lasting effects of BPA on anatomy of the mPFC, an area implicated in neurological disorders. PMID:25193849

  20. Sevoflurane anesthesia induces neither contextual fear memory impairment nor alterations in local population connectivity of medial prefrontal cortex local field potentials networks in aged rats.

    PubMed

    Xu, Xinyu; Zhang, Qian; Tian, Xin; Wang, Guolin

    2016-08-01

    Sevoflurane has been found to increase apoptosis and pathologic markers associated with Alzheimer disease, provoking concern over their potential contribution to postoperative cognitive dysfunction. This study aimed to determine the effects of sevoflurane on contextual fear memory of aged rats and to characterize local population connectivity of local field potentials (LFPs) in medial prefrontal cortex (mPFC) of aged rats during contextual fear memory. Eighteen-month-old male SD rats were implanted with one multichannel electrode array in mPFC. The aged rats were divided into control group, sevoflurane group (1 MAC sevoflurane for 2 h) and surgical group with 1.0 MAC sevoflurane for 2 h. We then assessed the effect of the anesthesia on contextual fear memory, and alterations in the local population connectivity of mPFC LFP networks by partial directed coherence (PDC). Surgery impaired contextual fear memory and reduced local population connectivity of mPFC LFP networks in aged rats at day 1 after the surgery and anesthesia. 1 MAC Sevoflurane anesthesia induced neither contextual fear memory impairment nor alterations in local population connectivity of mPFC LFP networks in aged rats when tested 1, 7, 15 and 30 days after exposure (P > 0.05). PDC values of theta band mPFC LFPs became strongly increased during contextual fear memory at 1, 7, 15, and 30 days after anesthesia. Our results suggest that 1 MAC sevoflurane anesthesia does not induce contextual fear memory impairment in aged rats and suggest that the increased local population connectivity in theta bands LFPs of mPFC plays a role in contextual fear memory. PMID:26946081

  1. Orbitofrontal cortex 5-HT2A receptor mediates chronic stress-induced depressive-like behaviors and alterations of spine density and Kalirin7.

    PubMed

    Xu, Chang; Ma, Xin-Ming; Chen, Hui-Bin; Zhou, Meng-He; Qiao, Hui; An, Shu-Cheng

    2016-10-01

    Neuroimaging studies show that patients with major depression have reduced volume of the orbitofrontal cortex (OFC). Although the serotonin (5-HT) 2A receptor, which is abundant in the OFC, has been implicated in depression, the underlying mechanisms in the development of stress-induced depression remain unclear. Kalirin-7 (Kal7) is an essential component of mature excitatory synapses for maintaining dendritic spines density, size and synaptic functions. The aim of this study was to investigate the role of orbitofrontal 5-HT and 5-HT2A receptors in depressive-like behaviors and their associations with Kal7 and dendritic spines using chronic unpredictable mild stress (CUMS), an established animal model of depression. CUMS had no effect on the levels of 5-HT or the 5-HT2A receptor in the OFC. However, CUMS or microinjection of the 5-HT2A/2C receptor agonist (±)-1-(2, 5-Dimethoxy-4-iodophenyl)- 2-aminopropane hydrochloride (DOI, 5 μg/0.5 μL) into the OFC induced depressive-like behaviors, including anhedonia in the sucrose preference test and behavioral despair in the tail suspension test, a significant reduction in body weight gain and locomotor activity in the open field test, which were accompanied by decreased expression of Kal7 and PSD95 as well as decreased density of dendritic spines in the OFC. These alterations induced by CUMS were reversed by pretreatment with the 5-HT2A receptor antagonist Ketanserin (Ket, 5 μg/0.5 μL into the OFC). These results suggest that CUMS alters structural plasticity through activation of the orbital 5-HT2A receptor and is associated with decreased expression of Kal7, thereby resulting in depressive-like behaviors in rats, suggesting an important role of Kal7 in the OFC in depression. PMID:26921771

  2. Dopamine alters AMPA receptor synaptic expression and subunit composition in dopamine neurons of the ventral tegmental area cultured with prefrontal cortex neurons.

    PubMed

    Gao, Can; Wolf, Marina E

    2007-12-26

    Excitatory synapses onto dopamine (DA) neurons of the ventral tegmental area (VTA) represent a critical site of psychostimulant-induced synaptic plasticity. This plasticity involves alterations in synaptic strength through AMPA receptor (AMPAR) redistribution. Here, we report an in vitro model for studying regulation of AMPAR trafficking in DA neurons under control conditions and after elevation of DA levels, mimicking cocaine exposure. We used cocultures containing rat VTA neurons and prefrontal cortex (PFC) neurons from enhanced cyan fluorescent protein-expressing mice. In VTA-PFC cocultures, D1 receptor activation (10 min) increased synaptic and nonsynaptic glutamate receptor subunit 1 (GluR1) and GluR2 surface expression on DA neurons. NMDA or AMPA receptor antagonists blocked this effect, and it was not observed in pure VTA cultures, suggesting that DA agonists acted on D1 receptors on PFC neurons, altering their excitatory transmission onto VTA DA neurons and, thus, influencing AMPARs. To mimic the longer elevation in extracellular DA levels produced by systemic cocaine, cocultures were incubated with DA for 1 h. Synaptic GluR1 was increased 24 h later, reminiscent of the increased AMPA/NMDA ratio at excitatory synapses onto VTA DA neurons 24 h after cocaine injection (Ungless et al., 2001). In contrast, GluR2 was unchanged. Analysis of colocalization of surface GluR1-3 labeling suggested that control DA neurons express a substantial number of GluR1/2, GluR2/3, and homomeric GluR1 receptors and that the increase in surface AMPARs 24 h after DA exposure may in part reflect increased GluR1/3-containing receptors. These results help define the cellular basis for plasticity underlying the development of behavioral sensitization. PMID:18160635

  3. Altered resting state functional connectivity of anterior cingulate cortex in drug naïve adolescents at the earliest stages of anorexia nervosa

    PubMed Central

    Gaudio, Santino; Piervincenzi, Claudia; Beomonte Zobel, Bruno; Romana Montecchi, Francesca; Riva, Giuseppe; Carducci, Filippo; Cosimo Quattrocchi, Carlo

    2015-01-01

    Previous Resting-State Functional Connectivity (RSFC) studies have shown several functional alterations in adults with or recovered from long Anorexia Nervosa (AN). The aim of this paper was to investigate whole brain RSFC in adolescents with AN in the earliest stages, less than 6 months, of the disorder. Sixteen drug-naïve outpatient female adolescents with AN-restrictive type (AN-r) (mean age: 15,8; SD 1,7) were compared to 16 age-matched healthy female (mean age: 16,3; SD 1,4). Relevant resting state networks (RSNs) were identified using independent component analysis (ICA) from functional magnetic resonance imaging data; a dual regression technique was used to detect between-group differences in the RSNs. Between-group differences of the functional connectivity maps were found in the executive control network (ECN). Particularly, decreased temporal correlation was observed in AN-r patients relative to healthy controls between the ECN functional connectivity maps and the anterior cingulate cortex (p < 0.05 corrected). Our results in AN adolescents may represent an early trait-related biomarker of the disease. Considering that the above mentioned network and its area are mainly involved in cognitive control and emotional processing, our findings could explain the impaired cognitive flexibility in relation to body image and appetite in AN patients. PMID:26043139

  4. Altered resting state functional connectivity of anterior cingulate cortex in drug naïve adolescents at the earliest stages of anorexia nervosa.

    PubMed

    Gaudio, Santino; Piervincenzi, Claudia; Beomonte Zobel, Bruno; Romana Montecchi, Francesca; Riva, Giuseppe; Carducci, Filippo; Quattrocchi, Carlo Cosimo

    2015-01-01

    Previous Resting-State Functional Connectivity (RSFC) studies have shown several functional alterations in adults with or recovered from long Anorexia Nervosa (AN). The aim of this paper was to investigate whole brain RSFC in adolescents with AN in the earliest stages, less than 6 months, of the disorder. Sixteen drug-naïve outpatient female adolescents with AN-restrictive type (AN-r) (mean age: 15,8; SD 1,7) were compared to 16 age-matched healthy female (mean age: 16,3; SD 1,4). Relevant resting state networks (RSNs) were identified using independent component analysis (ICA) from functional magnetic resonance imaging data; a dual regression technique was used to detect between-group differences in the RSNs. Between-group differences of the functional connectivity maps were found in the executive control network (ECN). Particularly, decreased temporal correlation was observed in AN-r patients relative to healthy controls between the ECN functional connectivity maps and the anterior cingulate cortex (p < 0.05 corrected). Our results in AN adolescents may represent an early trait-related biomarker of the disease. Considering that the above mentioned network and its area are mainly involved in cognitive control and emotional processing, our findings could explain the impaired cognitive flexibility in relation to body image and appetite in AN patients. PMID:26043139

  5. Maternal separation and early stress cause long-lasting effects on dopaminergic and endocannabinergic systems and alters dendritic morphology in the nucleus accumbens and frontal cortex in rats.

    PubMed

    Romano-López, Antonio; Méndez-Díaz, Mónica; García, Fabio García; Regalado-Santiago, Citlalli; Ruiz-Contreras, Alejandra E; Prospéro-García, Oscar

    2016-08-01

    A considerable amount experimental studies have shown that maternal separation (MS) is associated with adult offspring abnormal behavior and cognition disorder. Accordingly, this experimental procedure has been proposed as a predictor for alcohol and drug dependence based on the neurodevelopmental soon after birth. Endocannabinoid system (eCBs) has been implicated in reward processes, including drug abuse and dependence. MS and associated stress causes changes in the eCBs that seem to facilitate alcohol consumption. In this study, we seek to evaluate potential morphological changes in neurons of the frontal cortex (FCx) and nucleus accumbens (NAcc), in the expression of receptors and enzymes of the endocannabinoid and dopamine systems and in second messengers, such as Akt, in adult rats subjected to MS and early stress (MS + ES; 2 × 180 min daily) vs. nonseparated rats (NMS). Results showed that MS + ES induces higher D2R expression and lower D3R, FAAH, and MAGL expression compared with NMS rats. Alterations in total dendritic length were also detected and were characterized by increases in the NAcc while there were decreases in the FCx. We believe MS + ES-induced changes in the dopaminergic and endocannabinergic systems and in the neuronal microstructure might be contributing to alcohol seeking behavior and, potential vulnerability to other drugs in rats. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 819-831, 2016. PMID:26539755

  6. The structure of pairwise correlation in mouse primary visual cortex reveals functional organization in the absence of an orientation map.

    PubMed

    Denman, Daniel J; Contreras, Diego

    2014-10-01

    Neural responses to sensory stimuli are not independent. Pairwise correlation can reduce coding efficiency, occur independent of stimulus representation, or serve as an additional channel of information, depending on the timescale of correlation and the method of decoding. Any role for correlation depends on its magnitude and structure. In sensory areas with maps, like the orientation map in primary visual cortex (V1), correlation is strongly related to the underlying functional architecture, but it is unclear whether this correlation structure is an essential feature of the system or arises from the arrangement of cells in the map. We assessed the relationship between functional architecture and pairwise correlation by measuring both synchrony and correlated spike count variability in mouse V1, which lacks an orientation map. We observed significant pairwise synchrony, which was organized by distance and relative orientation preference between cells. We also observed nonzero correlated variability in both the anesthetized (0.16) and awake states (0.18). Our results indicate that the structure of pairwise correlation is maintained in the absence of an underlying anatomical organization and may be an organizing principle of the mammalian visual system preserved by nonrandom connectivity within local networks. PMID:23689635

  7. Metabolomic analysis reveals metabolic disturbances in the prefrontal cortex of the lipopolysaccharide-induced mouse model of depression.

    PubMed

    Wu, Yu; Fu, Yuying; Rao, Chenglong; Li, Wenwen; Liang, Zihong; Zhou, Chanjuan; Shen, Peng; Cheng, Pengfei; Zeng, Li; Zhu, Dan; Zhao, Libo; Xie, Peng

    2016-07-15

    Major depressive disorder (MDD) is a debilitating illness. However, the underlying molecular mechanisms of depression remain largely unknown. Increasing evidence supports that inflammatory cytokine disturbances may be associated with the pathophysiology of depression in humans. Systemic administration of lipopolysaccharide (LPS) has been used to study inflammation-associated neurobehavioral changes in rodents, but no metabonomic study has been conducted to assess differential metabolites in the prefrontal cortex (PFC) of a LPS-induced mouse model of depression. Here, we employed a gas chromatography-mass spectrometry-based metabonomic approach in the LPS-induced mouse model of depression to investigate any significant metabolic changes in the PFC. Multivariate statistical analysis, including principal component analysis (PCA), partial least squares-discriminate analysis (PLS-DA), and pair-wise orthogonal projections to latent structures discriminant analysis (OPLS-DA), was implemented to identify differential PFC metabolites between LPS-induced depressed mice and healthy controls. A total of 20 differential metabolites were identified. Compared with control mice, LPS-treated mice were characterized by six lower level metabolites and 14 higher level metabolites. These molecular changes were closely related to perturbations in neurotransmitter metabolism, energy metabolism, oxidative stress, and lipid metabolism, which might be evolved in the pathogenesis of MDD. These findings provide insight into the pathophysiological mechanisms underlying MDD and could be of valuable assistance in the clinical diagnosis of MDD. PMID:27102340

  8. Beta-blocker migraine prophylaxis affects the excitability of the visual cortex as revealed by transcranial magnetic stimulation.

    PubMed

    Gerwig, Marcus; Niehaus, L; Stude, P; Katsarava, Z; Diener, H C

    2012-01-01

    The objective of this study is to assess effects of beta-blocker migraine prophylaxis on cortical excitability determined by transcranial magnetic stimulation (TMS). Phosphene and motor thresholds (PT, MT) were investigated in 29 patients with migraine, in 15 of them prior to and following preventive medication with metoprolol and in 14 patients without prophylaxis. Following prophylaxis headache frequency significantly decreased (p = 0.005) and mean PT were significantly increased (51.5 ± 7.5 vs. 63.6 ± 8.4%) compared to patients without preventive treatment (53.7 ± 5.3 vs. 52.3 ± 6.3%; p = 0.040). Mean MT did not significantly differ either between groups or due to treatment. In the group of all patients, a significant inverse correlation between headache frequency and the level of PT was found (R = -0.629; p < 0.01). There was, however, no significant correlation in the subgroups of patients. We conclude that (a) clinical efficacy of beta-blocker treatment in migraine could be (at least partly) linked to its ability to modulate the excitability of the visual cortex and (b) the PT determined by TMS appears suitable to assess the effects of prophylaxis on cortical excitability in the individual patient. This may be useful in clinical trials investigating migraine preventive drugs. PMID:22089539

  9. Two distinct auditory-motor circuits for monitoring speech production as revealed by content-specific suppression of auditory cortex.

    PubMed

    Ylinen, Sari; Nora, Anni; Leminen, Alina; Hakala, Tero; Huotilainen, Minna; Shtyrov, Yury; Mäkelä, Jyrki P; Service, Elisabet

    2015-06-01

    Speech production, both overt and covert, down-regulates the activation of auditory cortex. This is thought to be due to forward prediction of the sensory consequences of speech, contributing to a feedback control mechanism for speech production. Critically, however, these regulatory effects should be specific to speech content to enable accurate speech monitoring. To determine the extent to which such forward prediction is content-specific, we recorded the brain's neuromagnetic responses to heard multisyllabic pseudowords during covert rehearsal in working memory, contrasted with a control task. The cortical auditory processing of target syllables was significantly suppressed during rehearsal compared with control, but only when they matched the rehearsed items. This critical specificity to speech content enables accurate speech monitoring by forward prediction, as proposed by current models of speech production. The one-to-one phonological motor-to-auditory mappings also appear to serve the maintenance of information in phonological working memory. Further findings of right-hemispheric suppression in the case of whole-item matches and left-hemispheric enhancement for last-syllable mismatches suggest that speech production is monitored by 2 auditory-motor circuits operating on different timescales: Finer grain in the left versus coarser grain in the right hemisphere. Taken together, our findings provide hemisphere-specific evidence of the interface between inner and heard speech. PMID:24414279

  10. Cholinergic Neurotransmission in the Posterior Insular Cortex Is Altered in Preclinical Models of Neuropathic Pain: Key Role of Muscarinic M2 Receptors in Donepezil-Induced Antinociception

    PubMed Central

    Ferrier, Jérémy; Bayet-Robert, Mathilde; Dalmann, Romain; El Guerrab, Abderrahim; Aissouni, Youssef; Graveron-Demilly, Danielle; Chalus, Maryse; Pinguet, Jérémy; Eschalier, Alain; Richard, Damien; Daulhac, Laurence; Balayssac, David

    2015-01-01

    Neuropathic pain is one of the most debilitating pain conditions, yet no therapeutic strategy has been really effective for its treatment. Hence, a better understanding of its pathophysiological mechanisms is necessary to identify new pharmacological targets. Here, we report important metabolic variations in brain areas involved in pain processing in a rat model of oxaliplatin-induced neuropathy using HRMAS 1H-NMR spectroscopy. An increased concentration of choline has been evidenced in the posterior insular cortex (pIC) of neuropathic animal, which was significantly correlated with animals' pain thresholds. The screening of 34 genes mRNA involved in the pIC cholinergic system showed an increased expression of the high-affinity choline transporter and especially the muscarinic M2 receptors, which was confirmed by Western blot analysis in oxaliplatin-treated rats and the spared nerve injury model (SNI). Furthermore, pharmacological activation of M2 receptors in the pIC using oxotremorine completely reversed oxaliplatin-induced mechanical allodynia. Consistently, systemic treatment with donepezil, a centrally active acetylcholinesterase inhibitor, prevented and reversed oxaliplatin-induced cold and mechanical allodynia as well as social interaction impairment. Intracerebral microdialysis revealed a lower level of acetylcholine in the pIC of oxaliplatin-treated rats, which was significantly increased by donepezil. Finally, the analgesic effect of donepezil was markedly reduced by a microinjection of the M2 antagonist, methoctramine, within the pIC, in both oxaliplatin-treated rats and spared nerve injury rats. These findings highlight the crucial role of cortical cholinergic neurotransmission as a critical mechanism of neuropathic pain, and suggest that targeting insular M2 receptors using central cholinomimetics could be used for neuropathic pain treatment. SIGNIFICANCE STATEMENT Our study describes a decrease in cholinergic neurotransmission in the posterior insular

  11. Electrical brain imaging reveals the expression and timing of altered error monitoring functions in major depression.

    PubMed

    Aarts, Kristien; Vanderhasselt, Marie-Anne; Otte, Georges; Baeken, Chris; Pourtois, Gilles

    2013-11-01

    Major depressive disorder (MDD) is characterized by disturbances in affect, motivation, and cognitive control processes, including error detection. However, the expression and timing of the impairments during error monitoring remain unclear in MDD. The behavior and event-related brain responses (ERPs) of 20 patients with MDD were compared with those of 20 healthy controls (HCs), while they performed a Go/noGo task. Errors during this task were associated with 2 ERP components, the error-related negativity (ERN/Ne) and the error positivity (Pe). Results show that the ERN/Ne-correct-related negativity (CRN) amplitude difference was significantly larger in MDD patients (after controlling for speed), compared with HCs, although MDD patients exhibited overactive medial frontal cortex (MFC) activation. By comparison, the subsequent Pe component was smaller in MDD patients compared with HCs and this effect was accompanied by a reduced activation of ventral anterior cingulate cortex (ACC) regions. These results suggest that MDD has multiple cascade effects on early error monitoring brain mechanisms. PMID:24364597

  12. Systems reconsolidation reveals a selective role for the anterior cingulate cortex in generalized contextual fear memory expression.

    PubMed

    Einarsson, Einar Ö; Pors, Jennifer; Nader, Karim

    2015-01-01

    After acquisition, hippocampus-dependent memories undergo a systems consolidation process, during which they become independent of the hippocampus and dependent on the anterior cingulate cortex (ACC) for memory expression. However, consolidated remote memories can become transiently hippocampus-dependent again following memory reactivation. How this systems reconsolidation affects the role of the ACC in remote memory expression is not known. Using contextual fear conditioning, we show that the expression of 30-day-old remote memory can transiently be supported by either the ACC or the dorsal hippocampus following memory reactivation, and that the ACC specifically mediates expression of remote generalized contextual fear memory. We found that suppression of neural activity in the ACC with the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) impaired the expression of remote, but not recent, contextual fear memory. Fear expression was not affected by this treatment if preceded by memory reactivation 6 h earlier, nor was it affected by suppression of neural activity in the dorsal hippocampus with the GABA-receptor agonist muscimol. However, simultaneous targeting of both the ACC and the dorsal hippocampus 6 h after memory reactivation disrupted contextual fear memory expression. Second, we observed that expression of a 30-day-old generalized contextual fear memory in a novel context was not affected by memory reactivation 6 h earlier. However, intra-ACC CNQX infusion before testing impaired contextual fear expression in the novel context, but not the original training context. Together, these data suggest that although the dorsal hippocampus may be recruited during systems reconsolidation, the ACC remains necessary for the expression of generalized contextual fear memory. PMID:25091528

  13. MicroRNA expression profiling reveals miRNA families regulating specific biological pathways in mouse frontal cortex and hippocampus.

    PubMed

    Juhila, Juuso; Sipilä, Tessa; Icay, Katherine; Nicorici, Daniel; Ellonen, Pekka; Kallio, Aleksi; Korpelainen, Eija; Greco, Dario; Hovatta, Iiris

    2011-01-01

    MicroRNAs (miRNAs) are small regulatory molecules that cause post-transcriptional gene silencing. Although some miRNAs are known to have region-specific expression patterns in the adult brain, the functional consequences of the region-specificity to the gene regulatory networks of the brain nuclei are not clear. Therefore, we studied miRNA expression patterns by miRNA-Seq and microarrays in two brain regions, frontal cortex (FCx) and hippocampus (HP), which have separate biological functions. We identified 354 miRNAs from FCx and 408 from HP using miRNA-Seq, and 245 from FCx and 238 from HP with microarrays. Several miRNA families and clusters were differentially expressed between FCx and HP, including the miR-8 family, miR-182|miR-96|miR-183 cluster, and miR-212|miR-312 cluster overexpressed in FCx and miR-34 family overexpressed in HP. To visualize the clusters, we developed support for viewing genomic alignments of miRNA-Seq reads in the Chipster genome browser. We carried out pathway analysis of the predicted target genes of differentially expressed miRNA families and clusters to assess their putative biological functions. Interestingly, several miRNAs from the same family/cluster were predicted to regulate specific biological pathways. We have developed a miRNA-Seq approach with a bioinformatic analysis workflow that is suitable for studying miRNA expression patterns from specific brain nuclei. FCx and HP were shown to have distinct miRNA expression patterns which were reflected in the predicted gene regulatory pathways. This methodology can be applied for the identification of brain region-specific and phenotype-specific miRNA-mRNA-regulatory networks from the adult and developing rodent brain. PMID:21731767

  14. Causal relationships between frequency bands of extracellular signals in visual cortex revealed by an information theoretic analysis.

    PubMed

    Besserve, Michel; Schölkopf, Bernhard; Logothetis, Nikos K; Panzeri, Stefano

    2010-12-01

    Characterizing how different cortical rhythms interact and how their interaction changes with sensory stimulation is important to gather insights into how these rhythms are generated and what sensory function they may play. Concepts from information theory, such as Transfer Entropy (TE), offer principled ways to quantify the amount of causation between different frequency bands of the signal recorded from extracellular electrodes; yet these techniques are hard to apply to real data. To address the above issues, in this study we develop a method to compute fast and reliably the amount of TE from experimental time series of extracellular potentials. The method consisted in adapting efficiently the calculation of TE to analog signals and in providing appropriate sampling bias corrections. We then used this method to quantify the strength and significance of causal interaction between frequency bands of field potentials and spikes recorded from primary visual cortex of anaesthetized macaques, both during spontaneous activity and during binocular presentation of naturalistic color movies. Causal interactions between different frequency bands were prominent when considering the signals at a fine (ms) temporal resolution, and happened with a very short (ms-scale) delay. The interactions were much less prominent and significant at coarser temporal resolutions. At high temporal resolution, we found strong bidirectional causal interactions between gamma-band (40-100 Hz) and slower field potentials when considering signals recorded within a distance of 2 mm. The interactions involving gamma bands signals were stronger during movie presentation than in absence of stimuli, suggesting a strong role of the gamma cycle in processing naturalistic stimuli. Moreover, the phase of gamma oscillations was playing a stronger role than their amplitude in increasing causations with slower field potentials and spikes during stimulation. The dominant direction of causality was mainly found

  15. MicroRNA Expression Profiling Reveals MiRNA Families Regulating Specific Biological Pathways in Mouse Frontal Cortex and Hippocampus

    PubMed Central

    Juhila, Juuso; Sipilä, Tessa; Icay, Katherine; Nicorici, Daniel; Ellonen, Pekka; Kallio, Aleksi; Korpelainen, Eija; Greco, Dario; Hovatta, Iiris

    2011-01-01

    MicroRNAs (miRNAs) are small regulatory molecules that cause post-transcriptional gene silencing. Although some miRNAs are known to have region-specific expression patterns in the adult brain, the functional consequences of the region-specificity to the gene regulatory networks of the brain nuclei are not clear. Therefore, we studied miRNA expression patterns by miRNA-Seq and microarrays in two brain regions, frontal cortex (FCx) and hippocampus (HP), which have separate biological functions. We identified 354 miRNAs from FCx and 408 from HP using miRNA-Seq, and 245 from FCx and 238 from HP with microarrays. Several miRNA families and clusters were differentially expressed between FCx and HP, including the miR-8 family, miR-182|miR-96|miR-183 cluster, and miR-212|miR-312 cluster overexpressed in FCx and miR-34 family overexpressed in HP. To visualize the clusters, we developed support for viewing genomic alignments of miRNA-Seq reads in the Chipster genome browser. We carried out pathway analysis of the predicted target genes of differentially expressed miRNA families and clusters to assess their putative biological functions. Interestingly, several miRNAs from the same family/cluster were predicted to regulate specific biological pathways. We have developed a miRNA-Seq approach with a bioinformatic analysis workflow that is suitable for studying miRNA expression patterns from specific brain nuclei. FCx and HP were shown to have distinct miRNA expression patterns which were reflected in the predicted gene regulatory pathways. This methodology can be applied for the identification of brain region-specific and phenotype-specific miRNA-mRNA-regulatory networks from the adult and developing rodent brain. PMID:21731767

  16. Altered Spontaneous Activity in Patients with Persistent Somatoform Pain Disorder Revealed by Regional Homogeneity

    PubMed Central

    Yan, Chao; Lu, Jing; Li, Xuzhou; Tang, Chaozheng; Fan, Mingxia; Luo, Yanli

    2016-01-01

    Persistent somatoform pain disorder (PSPD) is a mental disorder un-associated with any somatic injury and can cause severe somatosensory and emotional impairments in patients. However, so far, the neuro-pathophysiological mechanism of the functional impairments in PSPD is still unclear. The present study assesses the difference in regional spontaneous activity between PSPD and healthy controls (HC) during a resting state, in order to elucidate the neural mechanisms underlying PSPD. Resting-state functional Magnetic Resonance Imaging data were obtained from 13 PSPD patients and 23 age- and gender-matched HC subjects in this study. Kendall’s coefficient of concordance was used to measure regional homogeneity (ReHo), and a two-sample t-test was subsequently performed to investigate the ReHo difference between PSPD and HC. Additionally, the correlations between the mean ReHo of each survived area and the clinical assessments were further analyzed. Compared with the HC group, patients with PSPD exhibited decreased ReHo in the bilateral primary somatosensory cortex, posterior cerebellum, and occipital lobe, while increased ReHo in the prefrontal cortex (PFC) and default mode network (including the medial PFC, right inferior parietal lobe (IPL), and left supramarginal gyrus). In addition, significant positive correlations were found between the mean ReHo of both right IPL and left supramarginal gyrus and participants’ Self-Rating Anxiety Scale (SAS) scores, and between the mean ReHo of the left middle frontal gyrus and Visual Analogue Scale (VAS) scores. Our results suggest that abnormal spontaneous brain activity in specific brain regions during a resting state may be associated with the dysfunctions in pain, memory and emotional processing commonly observed in patients with PSPD. These findings help us to understand the neural mechanisms underlying PSPD and suggest that the ReHo metric could be used as a clinical marker for PSPD. PMID:26977802

  17. Altered Spontaneous Activity in Patients with Persistent Somatoform Pain Disorder Revealed by Regional Homogeneity.

    PubMed

    Huang, Tianming; Zhao, Zhiyong; Yan, Chao; Lu, Jing; Li, Xuzhou; Tang, Chaozheng; Fan, Mingxia; Luo, Yanli

    2016-01-01

    Persistent somatoform pain disorder (PSPD) is a mental disorder un-associated with any somatic injury and can cause severe somatosensory and emotional impairments in patients. However, so far, the neuro-pathophysiological mechanism of the functional impairments in PSPD is still unclear. The present study assesses the difference in regional spontaneous activity between PSPD and healthy controls (HC) during a resting state, in order to elucidate the neural mechanisms underlying PSPD. Resting-state functional Magnetic Resonance Imaging data were obtained from 13 PSPD patients and 23 age- and gender-matched HC subjects in this study. Kendall's coefficient of concordance was used to measure regional homogeneity (ReHo), and a two-sample t-test was subsequently performed to investigate the ReHo difference between PSPD and HC. Additionally, the correlations between the mean ReHo of each survived area and the clinical assessments were further analyzed. Compared with the HC group, patients with PSPD exhibited decreased ReHo in the bilateral primary somatosensory cortex, posterior cerebellum, and occipital lobe, while increased ReHo in the prefrontal cortex (PFC) and default mode network (including the medial PFC, right inferior parietal lobe (IPL), and left supramarginal gyrus). In addition, significant positive correlations were found between the mean ReHo of both right IPL and left supramarginal gyrus and participants' Self-Rating Anxiety Scale (SAS) scores, and between the mean ReHo of the left middle frontal gyrus and Visual Analogue Scale (VAS) scores. Our results suggest that abnormal spontaneous brain activity in specific brain regions during a resting state may be associated with the dysfunctions in pain, memory and emotional processing commonly observed in patients with PSPD. These findings help us to understand the neural mechanisms underlying PSPD and suggest that the ReHo metric could be used as a clinical marker for PSPD. PMID:26977802

  18. Quantitative Proteomics Reveals an Altered Cystic Fibrosis In Vitro Bronchial Epithelial Secretome

    PubMed Central

    Peters-Hall, Jennifer R.; Brown, Kristy J.; Pillai, Dinesh K.; Tomney, Amarel; Garvin, Lindsay M.; Wu, Xiaofang

    2015-01-01

    Alterations in epithelial secretions and mucociliary clearance contribute to chronic bacterial infection in cystic fibrosis (CF) lung disease, but whether CF lungs are unchanged in the absence of infection remains controversial. A proteomic comparison of airway secretions from subjects with CF and control subjects shows alterations in key biological processes, including immune response and proteolytic activity, but it is unclear if these are due to mutant CF transmembrane conductance regulator (CFTR) and/or chronic infection. We hypothesized that the CF lung apical secretome is altered under constitutive conditions in the absence of inflammatory cells and pathogens. To test this, we performed quantitative proteomics of in vitro apical secretions from air–liquid interface cultures of three life-extended CF (ΔF508/ΔF508) and three non-CF human bronchial epithelial cells after labeling of CF cells by stable isotope labeling with amino acids in cell culture. Mass spectrometry analysis identified and quantitated 666 proteins across samples, of which 70 exhibited differential enrichment or depletion in CF secretions (±1.5-fold change; P < 0.05). The key molecular functions were innate immunity (24%), cytoskeleton/extracellular matrix organization (24%), and protease/antiprotease activity (17%). Oxidative proteins and classical complement pathway proteins that are altered in CF secretions in vivo were not altered in vitro. Specific differentially increased proteins—MUC5AC and MUC5B mucins, fibronectin, and matrix metalloproteinase-9—were validated by antibody-based assays. Overall, the in vitro CF secretome data are indicative of a constitutive airway epithelium with altered innate immunity, suggesting that downstream consequences of mutant CFTR set the stage for chronic inflammation and infection in CF airways. PMID:25692303

  19. Prenatal exposure to moderate levels of ethanol alters social behavior in adult rats: Relationship to structural plasticity and immediate early gene expression in frontal cortex

    PubMed Central

    Hamilton, Derek A.; Akers, Katherine G.; Rice, James P.; Johnson, Travis E.; Candelaria-Cook, Felicha T.; Maes, Levi I.; Rosenberg, Martina; Valenzuela, C. Fernando; Savage, Daniel D.

    2009-01-01

    The goals of the present study were to characterize the effects of prenatal exposure to moderate levels of ethanol on adult social behavior, and to evaluate fetal-ethanol-related effects on dendritic morphology, structural plasticity and activity-related immediate early gene (IEG) expression in the agranular insular (AID) and prelimbic (Cg3) regions of frontal cortex. Baseline fetal-ethanol-related alterations in social behavior were limited to reductions in social investigation in males. Repeated experience with novel cage-mates resulted in comparable increases in wrestling and social investigation among saccharin- and ethanol-exposed females, whereas social behavioral effects among males were more evident in ethanol-exposed animals. Male ethanol-exposed rats also displayed profound increases in wrestling when social interaction was motivated by 24 hours of isolation. Baseline decreases in dendritic length and spine density in AID were observed in ethanol-exposed rats that were always housed with the same cage-mate. Modest experience-related decreases in dendritic length and spine density in AID were observed in saccharin-exposed rats housed with various cage-mates. In contrast, fetal-ethanol-exposed rats displayed experience-related increases in dendritic length in AID, and no experience-related changes in spine density. The only effect observed in Cg3 was a baseline increase in basilar dendritic length among male ethanol-exposed rats. Robust increases in activity-related IEG expression in AID (c-fos and Arc) and Cg3 (c-fos) were observed following social interaction in saccharin-exposed rats, however, activity-related increases in IEG expression were not observed in fetal-ethanol-exposed rats in either region. The results indicate that deficits in social behavior are among the long-lasting behavioral consequences of moderate ethanol exposure during brain development, and implicate AID, and to a lesser degree Cg3, in fetal-ethanol-related social behavior

  20. Repeated exposure to amphetamine during adolescence alters inhibitory tone in the medial prefrontal cortex following drug re-exposure in adulthood.

    PubMed

    Paul, Kush; Kang, Shuo; Cox, Charles L; Gulley, Joshua M

    2016-08-01

    Behavioral sensitization following repeated amphetamine (AMPH) exposure is associated with changes in GABA function in the medial prefrontal cortex (mPFC). In rats exposed to AMPH during adolescence compared to adulthood, there are unique patterns of sensitization that may reflect age-dependent differences in drug effects on prefrontal GABAergic function. In the current study, we used a sensitizing regimen of repeated AMPH exposure in adolescent and adult rats to determine if a post-withdrawal AMPH challenge would alter inhibitory transmission in the mPFC in a manner that depends on age of exposure. Male Sprague-Dawley rats were treated with saline or 3mg/kg AMPH (i.p.) during adolescence [postnatal day (P) 27-P45] or adulthood (P85- P103) and were sacrificed either at similar ages in adulthood (∼P133; experiment 1) or after similar withdrawal times (3-4 weeks; experiment 2). Spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded in vitro from deep layer pyramidal cells in the mPFC using the whole-cell configuration. We found no effect of AMPH pre-exposure on baseline sIPSC frequency. Subsequent application of AMPH (25μM) produced a stable increase in sIPSC frequency in controls, suggesting that AMPH increases inhibitory tone in the mPFC. However, AMPH failed to increase sIPSCs in adolescent- or adult-exposed rats. In experiment 2, where withdrawal period was kept similar for both exposure groups, AMPH induced a suppression of sIPSC activity in adolescent-exposed rats. These results suggest that sensitizing treatment with AMPH during adolescence or adulthood dampens inhibitory influences on mPFC pyramidal cells, but potentially through different mechanisms. PMID:27085589

  1. Effects of enriched environment on alterations in the prefrontal cortex GFAP- and S100B-immunopositive astrocytes and behavioral deficits in MK-801-treated rats.

    PubMed

    Rahati, M; Nozari, M; Eslami, H; Shabani, M; Basiri, M

    2016-06-21

    A plethora of studies have indicated that enriched environment (EE) paradigm provokes plastic and morphological changes in astrocytes with accompanying increments of their density and positively affects the behavior of rodents. We also previously documented that EE could be employed to preclude several behavioral abnormalities, mainly cognitive deficits, attributed to postnatal N-methyl-d-aspartate (NMDA) receptor antagonist (MK-801) treatment, as a rodent model of schizophrenia (SCH) aspects. Given this, the current study quantitatively investigated the number of cells, presumed to be astrocytes, expressing two astroglia-associated proteins (S100B and glial fibrillary acidic protein (GFAP)) by immunohistochemistry in the prefrontal cortex (PFC), along with anxiety and passive avoidance (PA) learning behaviors by utilizing elevated plus maze (EPM) and shuttle-box tests, in MK-801-treated male wistar rats submitted to EE and non-EE rats. Following a treatment regime of sub-chronic MK-801 (1.0mg/kg i.p. daily for five consecutive days from postnatal day (P) 6), S-100B-positive cells and anxiety level were markedly increased, while the GFAP-positive cells and PA learning were notably attenuated. The trend of diminished GFAP-immunopositive cells and elevated S100B-immunostained cells in the PFC was reversed in the SCH-like rats by exposure of animals to EE, commencing from birth up to the time of experiments on P28-85. Additionally, EE exhibited an ameliorating effect on the behavioral abnormalities evoked by MK-801. Overall, present findings support that improper astrocyte functioning and behavioral changes, reminiscent of the many facets of SCH, occur consequential to repetitive administration of MK-801 and that raising rat pups in an EE mitigates these alterations. PMID:27063100

  2. Oral administration of curcumin relieves behavioral alterations and oxidative stress in the frontal cortex, hippocampus, and striatum of ovariectomized Wistar rats.

    PubMed

    Da Silva Morrone, Maurilio; Schnorr, Carlos Eduardo; Behr, Guilherme Antônio; Gasparotto, Juciano; Bortolin, Rafael Calixto; Moresco, Karla Suzana; Bittencourt, Leonardo; Zanotto-Filho, Alfeu; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2016-06-01

    Menopause occurs gradually and is characterized by increased susceptibility to developing mood disorders. Several studies have suggested treatments based on the antioxidant properties of vitamins and herbal compounds as an alternative to hormone replacement therapies, with few or none reporting toxicity. The present study was performed to explore the effects of curcumin oral supplementation on anxiety-like behavior and oxidative stress parameters in different central nervous system (CNS) areas of ovariectomized (OVX) rats. Female Wistar rats were randomly divided into either sham-operated or OVX groups. Sham-operated group (n=8) and an OVX group (n=11) were treated with vehicle, and the other two OVX groups received curcumin at 50 or 100mg/kg/day doses (n=8/group). Elevated plus maze (EPM) test was performed on the 28th day of treatment. On the 30th day, animals were killed and the dissected brain regions were removed and stored at-80°C until analysis. Ovariectomy induced deficit in the locomotor activity and increased anxiety-like behavior. Moreover, OVX rats showed increased lipid oxidized in the frontal cortex and striatum, increased hippocampal and striatal carbonylated protein level, and decreased striatal thiol content of non-protein fraction indicative of a glutathione (GSH) pool. Curcumin oral treatment for 30days reduced oxidative stress in the CNS areas as well as the behavior alterations resulting from ovariectomy. Curcumin supplementation attenuated most of these parameters to sham comparable values, suggesting that curcumin could have positive effects against anxiety-like disturbances and brain oxidative damage due to hormone deprivation. PMID:27142750

  3. A single intracerebroventricular Aβ25-35 infusion leads to prolonged alterations in arginine metabolism in the rat hippocampus and prefrontal cortex.

    PubMed

    Bergin, D H; Jing, Y; Zhang, H; Liu, P

    2015-07-01

    While amyloid beta (Aβ) plays a central role in the development of Alzheimer's disease (AD), recent evidence suggests the involvement of arginine metabolism in AD pathogenesis. Earlier research has shown that a single intracerebroventricular (i.c.v.) infusion of pre-aggregated Aβ25-35 (the neurotoxic domain of the full-length Aβ) altered arginine metabolism in the rat hippocampus (particularly the CA2/3 and dentate gyrus (DG) sub-regions) and prefrontal cortex (PFC) at the time point of 8 days post-infusion. The present study measured the levels of L-arginine and its nine downstream metabolites (L-citrulline, L-ornithine, agmatine, putrescine, spermidine, spermine, glutamate, GABA and glutamine) in the hippocampus and PFC at the time points of 42 and 97 days following a single bilateral i.c.v. infusion of Aβ25-35 (30 nmol/rat) or Aβ35-25 (reverse peptide; 30 nmol/rat). At the 42-day time point, Aβ25-35 resulted in decreased levels of glutamate, glutamine and spermine in the CA2/3 sub-region of the hippocampus. At the 97-day time point, however, there were decreased L-ornithine, GABA and putrescine levels, but increased glutamate/GABA ratio, in the PFC and increased spermine levels in the DG sub-region. Cluster analyses showed that L-arginine and its three main metabolites L-citrulline, L-ornithine and agmatine formed distinct groups, which changed as a function of Aβ25-35 at the 42-day and 97-day time points, particularly in the CA2/3 and PFC regions respectively. This study, for the first time, demonstrates that a single i.c.v. infusion of pre-aggregated Aβ25-35 leads to prolonged alterations in arginine metabolism in a region-specific and time-dependent manner, which further supports the involvement of arginine metabolism in AD pathogenesis. PMID:25907447

  4. Transcriptomes reveal alterations in gravity impact circadian clocks and activate mechanotransduction pathways with adaptation through epigenetic change.

    PubMed

    Casey, Theresa; Patel, Osman V; Plaut, Karen

    2015-04-01

    Few studies have investigated the impact of alterations in gravity on mammalian transcriptomes. Here, we describe the impact of spaceflight on mammary transcriptome of late pregnant rats and the effect of hypergravity exposure on mammary, liver, and adipose transcriptomes in late pregnancy and at the onset of lactation. RNA was isolated from mammary collected on pregnancy day 20 from rats exposed to spaceflight from days 11 to 20 of gestation. To measure the impact of hypergravity on mammary, liver, and adipose transcriptomes we isolated RNA from tissues collected on P20 and lactation day 1 from rats exposed to hypergravity beginning on pregnancy day 9. Gene expression was measured with Affymetrix GeneChips. Microarray analysis of variance revealed alterations in gravity affected the expression of genes that regulate circadian clocks and activate mechanotransduction pathways. Changes in these systems may explain global gene expression changes in immune response, metabolism, and cell proliferation. Expression of genes that modify chromatin structure and methylation was affected, suggesting adaptation to gravity alterations may proceed through epigenetic change. Altered gravity experiments offer insights into the role of forces omnipresent on Earth that shape genomes in heritable ways. Our study is the first to analyze the impact of alterations in gravity on transcriptomes of pregnant and lactating mammals. Findings provide insight into systems that sense gravity and the way in which they affect phenotype, as well as the possibility of sustaining life beyond Earth's orbit. PMID:25649141

  5. Metabolomics Reveals Altered Lipid Metabolism in a Mouse Model of Endometriosis.

    PubMed

    Dutta, Mainak; Anitha, Mallappa; Smith, Philip B; Chiaro, Christopher R; Maan, Meenu; Chaudhury, Koel; Patterson, Andrew D

    2016-08-01

    Endometriosis is a common chronic estrogen-dependent gynecological disease affecting 10% of women in their reproductive age. It is characterized by proliferation of functional endometrial glands and stroma outside the uterine cavity. In the present study, we used mass spectrometry-based lipidomics to investigate the alterations in serum lipid profiles of mice induced with endometriosis. We identified several dysregulated lipids such as phosphatidylcholines, sphingomyelins, phosphatidylethanolamines, and triglycerides and show that triglycerides may be due to a general inflammatory condition in the peritoneum. We also show that in addition to phosphatidylcholine alteration, there is also an effect in the ratio of phosphatidylcholine/phosphatidylethanolamine in serum of mice induced with the disease and that this change may be due to increased expression of the phosphatidylethanolamine N-methyltransferase gene. The study provides new insight into the etiology of endometriosis. PMID:27246581

  6. A network-level analysis of cognitive flexibility reveals a differential influence of the anterior cingulate cortex in bilinguals versus monolinguals.

    PubMed

    Becker, Theresa M; Prat, Chantel S; Stocco, Andrea

    2016-05-01

    Mounting evidence suggests that bilingual development may change the brain in a way that gives rise to differences in non-linguistic cognitive functioning; however, only a limited number of studies have investigated the mechanism by which bilingualism shapes the brain. The current study used a network-level analysis to investigate differences in the mechanisms by which bilinguals and monolinguals flexibly adapt their neural networks in the face of novel task demands. Three competing hypotheses concerning differences in network-level adaptation were examined using Dynamic Causal Modeling of data from 15 bilinguals and 14 monolinguals who performed a Rapid Instructed Task Learning paradigm. The results demonstrated that the best-fitting model for the data from both groups specified that novel task execution is accomplished through a modulation of the influence of the anterior cingulate cortex (ACC) on the dorsolateral prefrontal cortex (DLPFC) and on the striatum. Further examination of the best-fitting model revealed that ACC activity increased DLPFC and striatal activity in bilinguals but decreased activity in these regions in monolinguals. Interestingly, an increased positive connection between the ACC and striatum was associated with decreased accuracy across groups. Taken together, the results suggest that regardless of language experience, the ACC plays a critical role in cognitive flexibility, but the exact influence of the ACC on other primary control regions seems to be dependent on language experience. When paired with the behavioral results, these results suggest that bilinguals and monolinguals may employ different neurocognitive mechanisms for conflict monitoring to flexibly adapt to novel situations. PMID:26796713

  7. Loss of photoreceptorness and gain of genomic alterations in retinoblastoma reveal tumor progression

    PubMed Central

    Kooi, Irsan E.; Mol, Berber M.; Moll, Annette C.; van der Valk, Paul; de Jong, Marcus C.; de Graaf, Pim; van Mil, Saskia E.; Schouten-van Meeteren, Antoinette Y.N.; Meijers-Heijboer, Hanne; Kaspers, Gertjan L.; te Riele, Hein; Cloos, Jacqueline; Dorsman, Josephine C.

    2015-01-01

    Background Retinoblastoma is a pediatric eye cancer associated with RB1 loss or MYCN amplification (RB1+/+MYCNA). There are controversies concerning the existence of molecular subtypes within RB1−/− retinoblastoma. To test whether these molecular subtypes exist, we performed molecular profiling. Methods Genome-wide mRNA expression profiling was performed on 76 primary human retinoblastomas. Expression profiling was complemented by genome-wide DNA profiling and clinical, histopathological, and ex vivo drug sensitivity data. Findings RNA and DNA profiling identified major variability between retinoblastomas. While gene expression differences between RB1+/+MYCNA and RB1−/− tumors seemed more dichotomous, differences within the RB1−/− tumors were gradual. Tumors with high expression of a photoreceptor gene signature were highly differentiated, smaller in volume and diagnosed at younger age compared with tumors with low photoreceptor signature expression. Tumors with lower photoreceptor expression showed increased expression of genes involved in M-phase and mRNA and ribosome synthesis and increased frequencies of somatic copy number alterations. Interpretation Molecular, clinical and histopathological differences between RB1−/− tumors are best explained by tumor progression, reflected by a gradual loss of differentiation and photoreceptor expression signature. Since copy number alterations were more frequent in tumors with less photoreceptorness, genomic alterations might be drivers of tumor progression. Research in context Retinoblastoma is an ocular childhood cancer commonly caused by mutations in the RB1 gene. In order to determine optimal treatment, tumor subtyping is considered critically important. However, except for very rare retinoblastomas without an RB1 mutation, there are controversies as to whether subtypes of retinoblastoma do exist. Our study shows that retinoblastomas are highly diverse but rather than reflecting distinct tumor types with

  8. Electron cryotomography reveals ultrastructure alterations in platelets from patients with ovarian cancer.

    PubMed

    Wang, Rui; Stone, Rebecca L; Kaelber, Jason T; Rochat, Ryan H; Nick, Alpa M; Vijayan, K Vinod; Afshar-Kharghan, Vahid; Schmid, Michael F; Dong, Jing-Fei; Sood, Anil K; Chiu, Wah

    2015-11-17

    Thrombocytosis and platelet hyperreactivity are known to be associated with malignancy; however, there have been no ultrastructure studies of platelets from patients with ovarian cancer. Here, we used electron cryotomography (cryo-ET) to examine frozen-hydrated platelets from patients with invasive ovarian cancer (n = 12) and control subjects either with benign adnexal mass (n = 5) or free from disease (n = 6). Qualitative inspections of the tomograms indicate significant morphological differences between the cancer and control platelets, including disruption of the microtubule marginal band. Quantitative analysis of subcellular features in 120 platelet electron tomograms from these two groups showed statistically significant differences in mitochondria, as well as microtubules. These structural variations in the platelets from the patients with cancer may be correlated with the altered platelet functions associated with malignancy. Cryo-ET of platelets shows potential as a noninvasive biomarker technology for ovarian cancer and other platelet-related diseases. PMID:26578771

  9. Concatenated hERG1 Tetramers Reveal Stoichiometry of Altered Channel Gating by RPR-260243

    PubMed Central

    Wu, Wei; Gardner, Alison

    2015-01-01

    Activation of human ether-a-go-go–related gene 1 (hERG1) K+ channels mediates repolarization of action potentials in cardiomyocytes. RPR-260243 [(3R,4R)-4-[3-(6-methoxy-quinolin-4-yl)-3-oxo-propyl]-1-[3-(2,3,5-trifluorophenyl)-prop-2-ynyl]-piperidine-3-carboxylic acid] (RPR) slows deactivation and attenuates inactivation of hERG1 channels. A detailed understanding of the molecular mechanism of hERG1 agonists such as RPR may facilitate the design of more selective and potent compounds for prevention of arrhythmia associated with abnormally prolonged ventricular repolarization. RPR binds to a hydrophobic pocket located between two adjacent hERG1 subunits, and, hence, a homotetrameric channel has four identical RPR binding sites. To investigate the stoichiometry of altered channel gating induced by RPR, we constructed and characterized tetrameric hERG1 concatemers containing a variable number of wild-type subunits and subunits containing a point mutation (L553A) that rendered the channel insensitive to RPR, ostensibly by preventing ligand binding. The slowing of deactivation by RPR was proportional to the number of wild-type subunits incorporated into a concatenated tetrameric channel, and four wild-type subunits were required to achieve maximal slowing of deactivation. In contrast, a single wild-type subunit within a concatenated tetramer was sufficient to achieve half of the maximal RPR-induced shift in the voltage dependence of hERG1 inactivation, and maximal effect was achieved in channels containing three or four wild-type subunits. Together our findings suggest that the allosteric modulation of channel gating involves distinct mechanisms of coupling between drug binding and altered deactivation and inactivation. PMID:25519838

  10. Concatenated hERG1 tetramers reveal stoichiometry of altered channel gating by RPR-260243.

    PubMed

    Wu, Wei; Gardner, Alison; Sanguinetti, Michael C

    2015-01-01

    Activation of human ether-a-go-go-related gene 1 (hERG1) K(+) channels mediates repolarization of action potentials in cardiomyocytes. RPR-260243 [(3R,4R)-4-[3-(6-methoxy-quinolin-4-yl)-3-oxo-propyl]-1-[3-(2,3,5-trifluorophenyl)-prop-2-ynyl]-piperidine-3-carboxylic acid] (RPR) slows deactivation and attenuates inactivation of hERG1 channels. A detailed understanding of the molecular mechanism of hERG1 agonists such as RPR may facilitate the design of more selective and potent compounds for prevention of arrhythmia associated with abnormally prolonged ventricular repolarization. RPR binds to a hydrophobic pocket located between two adjacent hERG1 subunits, and, hence, a homotetrameric channel has four identical RPR binding sites. To investigate the stoichiometry of altered channel gating induced by RPR, we constructed and characterized tetrameric hERG1 concatemers containing a variable number of wild-type subunits and subunits containing a point mutation (L553A) that rendered the channel insensitive to RPR, ostensibly by preventing ligand binding. The slowing of deactivation by RPR was proportional to the number of wild-type subunits incorporated into a concatenated tetrameric channel, and four wild-type subunits were required to achieve maximal slowing of deactivation. In contrast, a single wild-type subunit within a concatenated tetramer was sufficient to achieve half of the maximal RPR-induced shift in the voltage dependence of hERG1 inactivation, and maximal effect was achieved in channels containing three or four wild-type subunits. Together our findings suggest that the allosteric modulation of channel gating involves distinct mechanisms of coupling between drug binding and altered deactivation and inactivation. PMID:25519838

  11. Apolipoprotein E*4 (APOE*4) Genotype Is Associated with Altered Levels of Glutamate Signaling Proteins and Synaptic Coexpression Networks in the Prefrontal Cortex in Mild to Moderate Alzheimer Disease.

    PubMed

    Sweet, Robert A; MacDonald, Matthew L; Kirkwood, Caitlin M; Ding, Ying; Schempf, Tadhg; Jones-Laughner, Jackie; Kofler, Julia; Ikonomovic, Milos D; Lopez, Oscar L; Garver, Megan E; Fitz, Nicholas F; Koldamova, Radosveta; Yates, Nathan A

    2016-07-01

    It has been hypothesized that Alzheimer disease (AD) is primarily a disorder of the synapse. However, assessment of the synaptic proteome in AD subjects has been limited to a small number of proteins and often included subjects with end-stage pathology. Protein from prefrontal cortex gray matter of 59 AD subjects with mild to moderate dementia and 12 normal elderly subjects was assayed using targeted mass spectrometry to quantify 191 synaptically expressed proteins. The profile of synaptic protein expression clustered AD subjects into two groups. One of these was characterized by reduced expression of glutamate receptor proteins, significantly increased synaptic protein network coexpression, and associated withApolipoprotein E*4 (APOE*4) carrier status. The second group, by contrast, showed few differences from control subjects. A subset of AD subjects had altered prefrontal cortex synaptic proteostasis for glutamate receptors and their signaling partners. Efforts to therapeutically target glutamate receptors in AD may have outcomes dependent on APOE*4 genotype. PMID:27103636

  12. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex.

    PubMed

    Pollen, Alex A; Nowakowski, Tomasz J; Shuga, Joe; Wang, Xiaohui; Leyrat, Anne A; Lui, Jan H; Li, Nianzhen; Szpankowski, Lukasz; Fowler, Brian; Chen, Peilin; Ramalingam, Naveen; Sun, Gang; Thu, Myo; Norris, Michael; Lebofsky, Ronald; Toppani, Dominique; Kemp, Darnell W; Wong, Michael; Clerkson, Barry; Jones, Brittnee N; Wu, Shiquan; Knutsson, Lawrence; Alvarado, Beatriz; Wang, Jing; Weaver, Lesley S; May, Andrew P; Jones, Robert C; Unger, Marc A; Kriegstein, Arnold R; West, Jay A A

    2014-10-01

    Large-scale surveys of single-cell gene expression have the potential to reveal rare cell populations and lineage relationships but require efficient methods for cell capture and mRNA sequencing. Although cellular barcoding strategies allow parallel sequencing of single cells at ultra-low depths, the limitations of shallow sequencing have not been investigated directly. By capturing 301 single cells from 11 populations using microfluidics and analyzing single-cell transcriptomes across downsampled sequencing depths, we demonstrate that shallow single-cell mRNA sequencing (~50,000 reads per cell) is sufficient for unbiased cell-type classification and biomarker identification. In the developing cortex, we identify diverse cell types, including multiple progenitor and neuronal subtypes, and we identify EGR1 and FOS as previously unreported candidate targets of Notch signaling in human but not mouse radial glia. Our strategy establishes an efficient method for unbiased analysis and comparison of cell populations from heterogeneous tissue by microfluidic single-cell capture and low-coverage sequencing of many cells. PMID:25086649

  13. Dissociable effects of anodal and cathodal tDCS reveal distinct functional roles for right parietal cortex in the detection of single and competing stimuli.

    PubMed

    Filmer, Hannah L; Dux, Paul E; Mattingley, Jason B

    2015-07-01

    Spatial attention can be used to direct neural processing resources to a subset of task-relevant or otherwise salient items within the environment. Such selective processes are particularly important for resolving competition between multiple stimuli. Deficits in processing single stimuli can arise after damage to parietal, frontal and temporal brain regions, as is typical in patients with contralesional spatial neglect. By contrast, deficits in processing multiple competing stimuli may arise specifically following lesions of the posterior parietal cortex (PPC), as occurs in the disorder of spatial extinction. It remains unclear, however, whether mechanisms involved in selecting single and competing stimuli reflect the same or dissociable neural operations within the PPC. To address this issue, in separate sessions, we applied transcranial direct current stimulation (tDCS) to the left or right PPC and measured the effect on detecting and discriminating single and competing visual stimulus events. Our results revealed reliable tDCS modulations of stimulus processing, specific to the right PPC, as well as a dissociation in the detection of single and competing stimuli. For the right PPC only, single stimuli presented to the left (contralateral) visual field were affected selectively by anodal tDCS, whereas competing stimuli across the two visual fields were affected by both anodal and cathodal tDCS. These contrasting effects of anodal and cathodal tDCS on perception of single and competing stimuli suggest dissociable neural coding properties within the right PPC. PMID:25637773

  14. Proteomic analysis reveals energy metabolic dysfunction and neurogenesis in the prefrontal cortex of a lipopolysaccharide-induced mouse model of depression.

    PubMed

    Wang, Ziye; Li, Wenwen; Chen, Jin; Shi, Haiyang; Zhao, Mingjun; You, Hongmin; Rao, Chenglong; Zhan, Yuan; Yang, Yongtao; Xie, Peng

    2016-02-01

    Substantial evidence from previous studies has suggested an association between major depressive disorder (MDD) and inflammation, and previous studies have associated prefrontal cortex (PFC) dysfunction with MDD. Systemic administration of bacterial lipopolysaccharide has been used to study inflammation-associated behavioral changes in rodents. However, proteomic studies investigating PFC protein expression in an LPS-induced mouse model of depression have yet to be conducted. Using two-dimensional electrophoresis coupled with matrix-assisted laser desorption ionization-time of flight-tandem mass spectrometry, PFC proteomes were comparatively assessed in LPS-induced acute inflammation reaction mice, LPS-induced depressive-like behavior mice (Dep), and control mice. A total of 26 differentially expressed proteins were identified, two of which were selected for western blot analysis, the results of which revealed a significant increase in the expression levels of creatine kinase B and dihydropyrimidinase-like 3 in Dep mice, suggesting that changes in energy metabolism and neuro-genesis occur in the PFC of Dep mice. Further investigation on these processes and on the proteins of the PFC are required in order to elucidate the pathophysiological mechanism underlying MDD. PMID:26718926

  15. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex

    PubMed Central

    Pollen, Alex A; Nowakowski, Tomasz J; Shuga, Joe; Wang, Xiaohui; Leyrat, Anne A; Lui, Jan H; Li, Nianzhen; Szpankowski, Lukasz; Fowler, Brian; Chen, Peilin; Ramalingam, Naveen; Sun, Gang; Thu, Myo; Norris, Michael; Lebofsky, Ronald; Toppani, Dominique; Kemp, Darnell; Wong, Michael; Clerkson, Barry; Jones, Brittnee N; Wu, Shiquan; Knutsson, Lawrence; Alvarado, Beatriz; Wang, Jing; Weaver, Lesley S; May, Andrew P; Jones, Robert C; Unger, Marc A; Kriegstein, Arnold R; West, Jay AA

    2014-01-01

    Large-scale surveys of single-cell gene expression have the potential to reveal rare cell populations and lineage relationships, but require efficient methods for cell capture and mRNA sequencing1–4. Although cellular barcoding strategies allow parallel sequencing of single cells at ultra-low depths5, the limitations of shallow sequencing have not been directly investigated. By capturing 301 single cells from 11 populations using microfluidics and analyzing single-cell transcriptomes across downsampled sequencing depths, we demonstrate that shallow single-cell mRNA sequencing (~50,000 reads per cell) is sufficient for unbiased cell-type classification and biomarker identification. In developing cortex we identify diverse cell types including multiple progenitor and neuronal subtypes, and we identify EGR1 and FOS as previously unreported candidate targets of Notch signaling in human but not mouse radial glia. Our strategy establishes an efficient method for unbiased analysis and comparison of cell populations from heterogeneous tissue by microfluidic single-cell capture and low-coverage sequencing of many cells. PMID:25086649

  16. Metabolic profiling reveals altered sugar and secondary metabolism in response to UGPase overexpression in Populus

    DOE PAGESBeta

    Payyavula, Raja S.; Tschaplinski, Timothy J.; Jawdy, Sara; Sykes, Robert; Tuskan, Gerald A.; Kalluri, Udaya C.

    2014-10-07

    Background: UDP-glucose pyrophopharylase (UGPase) is a sugar metabolizing enzyme (E.C. 2.7.7.9) that catalyzes a reversible reaction of UDP-glucose and pyrophosphate from glucose-1-phosphate and uridine triphosphate glucose. UDP-glucose is a key intermediate sugar that is channeled to multiple metabolic pathways. The functional role of UGPase in woody plants such as Populus is poorly understood. Results: We characterized the functional role of UGPase in Populus deltoides by overexpressing a native gene. Overexpression of the native gene resulted in increased leaf area and leaf-to-shoot biomass ratio but decreased shoot and root growth. Metabolomic analyses showed that manipulation of UGPase results in perturbations inmore » primary as well as secondary metabolism resulting in reduced sugar and starch levels and increased phenolics such as caffeoyl- and feruloyl conjugates. While cellulose and lignin levels in the cell walls were not significantly altered, the syringyl-to-guaiacyl ratio was significantly reduced. Conclusions: These results demonstrate that UGPase plays a key role in the tightly coupled primary and secondary metabolic pathways and perturbation in its function results in pronounced effects on growth and metabolism outside of cell wall biosynthesis of Populus.« less

  17. Metabolic profiling reveals altered sugar and secondary metabolism in response to UGPase overexpression in Populus

    SciTech Connect

    Payyavula, Raja S.; Tschaplinski, Timothy J.; Jawdy, Sara; Sykes, Robert; Tuskan, Gerald A.; Kalluri, Udaya C.

    2014-10-07

    Background: UDP-glucose pyrophopharylase (UGPase) is a sugar metabolizing enzyme (E.C. 2.7.7.9) that catalyzes a reversible reaction of UDP-glucose and pyrophosphate from glucose-1-phosphate and uridine triphosphate glucose. UDP-glucose is a key intermediate sugar that is channeled to multiple metabolic pathways. The functional role of UGPase in woody plants such as Populus is poorly understood. Results: We characterized the functional role of UGPase in Populus deltoides by overexpressing a native gene. Overexpression of the native gene resulted in increased leaf area and leaf-to-shoot biomass ratio but decreased shoot and root growth. Metabolomic analyses showed that manipulation of UGPase results in perturbations in primary as well as secondary metabolism resulting in reduced sugar and starch levels and increased phenolics such as caffeoyl- and feruloyl conjugates. While cellulose and lignin levels in the cell walls were not significantly altered, the syringyl-to-guaiacyl ratio was significantly reduced. Conclusions: These results demonstrate that UGPase plays a key role in the tightly coupled primary and secondary metabolic pathways and perturbation in its function results in pronounced effects on growth and metabolism outside of cell wall biosynthesis of Populus.

  18. Immunologic profiles of multiple sclerosis treatments reveal shared early B cell alterations

    PubMed Central

    Dooley, James; Pauwels, Ine; Franckaert, Dean; Smets, Ide; Garcia-Perez, Josselyn E.; Hilven, Kelly; Danso-Abeam, Dina; Terbeek, Joanne; Nguyen, Anh T.L.; De Muynck, Louis; Decallonne, Brigitte; Dubois, Bénédicte

    2016-01-01

    Objective: We undertook a systems immunology approach of the adaptive immune system in multiple sclerosis (MS), overcoming tradeoffs between scale and level of detail, in order to identify the immunologic signature of MS and the changes wrought by current immunomodulatory treatments. Methods: We developed a comprehensive flow cytometry platform measuring 38 immunologic cell types in the peripheral blood of 245 individuals in a routine clinical setting. These include patients with MS, untreated or receiving any of 4 current immunomodulatory treatments (interferon-β, glatiramer acetate, natalizumab, or fingolimod), patients with autoimmune thyroid disease, and healthy controls. Results: An increase in memory CD8+ T cells and B cells was observed in untreated patients with MS. Interferon-β and fingolimod induce significant changes upon multiple aspects of the peripheral immune system, with an unexpectedly prominent alteration of B cells. Overall, both treatments push the immune system in different directions, with only 2 significant effects shared across these treatments—an increase in transitional B cells and a decrease in class-switched B cells. We further identified heightened B cell-activating factor (BAFF) levels as regulating this shared B cell pathway. Conclusions: A systems immunology approach established different immunologic profiles induced by current immunomodulatory MS treatments, offering perspectives for personalized medicine. Pathways shared between the immunologic architecture of existing efficacious treatments identify targets for future treatment design. PMID:27231713

  19. Urinary proteome alterations in HER2 enriched breast cancer revealed by multipronged quantitative proteomics.

    PubMed

    Gajbhiye, Akshada; Dabhi, Raju; Taunk, Khushman; Vannuruswamy, Garikapati; RoyChoudhury, Sourav; Adhav, Ragini; Seal, Shubhendu; Mane, Anupama; Bayatigeri, Santhakumari; Santra, Manas K; Chaudhury, Koel; Rapole, Srikanth

    2016-09-01

    Globally, breast cancer is the second most common cancer among women. Although biomarker discoveries through various proteomic approaches of tissue and serum samples have been studied in breast cancer, urinary proteome alterations in breast cancer are least studied. Urine being a noninvasive biofluid and a significant source of proteins, it has the potential in early diagnosis of breast cancer. This study used complementary quantitative gel-based and gel-free proteomic approaches to find a panel of urinary protein markers that could discriminate HER2 enriched (HE) subtype breast cancer from the healthy controls. A total of 183 differentially expressed proteins were identified using three complementary approaches, namely 2D-DIGE, iTRAQ, and sequential window acquisition of all theoretical mass spectra. The differentially expressed proteins were subjected to various bioinformatics analyses for deciphering the biological context of these proteins using protein analysis through evolutionary relationships, database for annotation, visualization and integrated discovery, and STRING. Multivariate statistical analysis was undertaken to identify the set of most significant proteins, which could discriminate HE breast cancer from healthy controls. Immunoblotting and MRM-based validation in a separate cohort testified a panel of 21 proteins such as zinc-alpha2-glycoprotein, A2GL, retinol-binding protein 4, annexin A1, SAP3, SRC8, gelsolin, kininogen 1, CO9, clusterin, ceruloplasmin, and α1-antitrypsin could be a panel of candidate markers that could discriminate HE breast cancer from healthy controls. PMID:27324523

  20. Serum Metabolic Profiling Reveals Altered Metabolic Pathways in Patients with Post-traumatic Cognitive Impairments

    PubMed Central

    Yi, Lunzhao; Shi, Shuting; Wang, Yang; Huang, Wei; Xia, Zi-an; Xing, Zhihua; Peng, Weijun; Wang, Zhe

    2016-01-01

    Cognitive impairment, the leading cause of traumatic brain injury (TBI)-related disability, adversely affects the quality of life of TBI patients, and exacts a personal and economic cost that is difficult to quantify. The underlying pathophysiological mechanism is currently unknown, and an effective treatment of the disease has not yet been identified. This study aimed to advance our understanding of the mechanism of disease pathogenesis; thus, metabolomics based on gas chromatography/mass spectrometry (GC-MS), coupled with multivariate and univariate statistical methods were used to identify potential biomarkers and the associated metabolic pathways of post-TBI cognitive impairment. A biomarker panel consisting of nine serum metabolites (serine, pyroglutamic acid, phenylalanine, galactose, palmitic acid, arachidonic acid, linoleic acid, citric acid, and 2,3,4-trihydroxybutyrate) was identified to be able to discriminate between TBI patients with cognitive impairment, TBI patients without cognitive impairment and healthy controls. Furthermore, associations between these metabolite markers and the metabolism of amino acids, lipids and carbohydrates were identified. In conclusion, our study is the first to identify several serum metabolite markers and investigate the altered metabolic pathway that is associated with post-TBI cognitive impairment. These markers appear to be suitable for further investigation of the disease mechanisms of post-TBI cognitive impairment. PMID:26883691

  1. Alterations in fiber pathways reveal brain tumor typology: a diffusion tractography study.

    PubMed

    Campanella, Martina; Ius, Tamara; Skrap, Miran; Fadiga, Luciano

    2014-01-01

    Conventional structural Magnetic Resonance (MR) techniques can accurately identify brain tumors but do not provide exhaustive information about the integrity of the surrounding/embedded white matter (WM). In this study, we used Diffusion-Weighted (DW) MRI tractography to explore tumor-induced alterations of WM architecture without any a priori knowledge about the fiber paths under consideration. We used deterministic multi-fiber tractography to analyze 16 cases of histologically classified brain tumors (meningioma, low-grade glioma, high-grade glioma) to evaluate the integrity of WM bundles in the tumoral region, in relation to the contralateral unaffected hemisphere. Our new tractographic approach yielded measures of WM involvement which were strongly correlated with the histopathological features of the tumor (r = 0.83, p = 0.0001). In particular, the number of affected fiber tracts were significantly (p = 0.0006) different among tumor types. Our method proposes a new application of diffusion tractography for the detection of tumor aggressiveness in those cases in which the lesion does not involve any major/known WM paths and when a priori information about the local fiber anatomy is lacking. PMID:25250209

  2. From shape to cells: mouse models reveal mechanisms altering palate development in Apert syndrome

    PubMed Central

    Martínez-Abadías, Neus; Holmes, Greg; Pankratz, Talia; Wang, Yingli; Zhou, Xueyan; Jabs, Ethylin Wang; Richtsmeier, Joan T.

    2013-01-01

    SUMMARY Apert syndrome is a congenital disorder characterized by severe skull malformations and caused by one of two missense mutations, S252W and P253R, on fibroblast growth factor receptor 2 (FGFR2). The molecular bases underlying differential Apert syndrome phenotypes are still poorly understood and it is unclear why cleft palate is more frequent in patients carrying the S252W mutation. Taking advantage of Apert syndrome mouse models, we performed a novel combination of morphometric, histological and immunohistochemical analyses to precisely quantify distinct palatal phenotypes in Fgfr2+/S252W and Fgfr2+/P253R mice. We localized regions of differentially altered FGF signaling and assessed local cell patterns to establish a baseline for understanding the differential effects of these two Fgfr2 mutations. Palatal suture scoring and comparative 3D shape analysis from high resolution μCT images of 120 newborn mouse skulls showed that Fgfr2+/S252W mice display relatively more severe palate dysmorphologies, with contracted and more separated palatal shelves, a greater tendency to fuse the maxillary-palatine sutures and aberrant development of the inter-premaxillary suture. These palatal defects are associated with suture-specific patterns of abnormal cellular proliferation, differentiation and apoptosis. The posterior region of the developing palate emerges as a potential target for therapeutic strategies in clinical management of cleft palate in Apert syndrome patients. PMID:23519026

  3. Exercise Challenge in Gulf War Illness Reveals Two Subgroups with Altered Brain Structure and Function

    PubMed Central

    Rayhan, Rakib U.; Stevens, Benson W.; Raksit, Megna P.; Ripple, Joshua A.; Timbol, Christian R.; Adewuyi, Oluwatoyin; VanMeter, John W.; Baraniuk, James N.

    2013-01-01

    Nearly 30% of the approximately 700,000 military personnel who served in Operation Desert Storm (1990–1991) have developed Gulf War Illness, a condition that presents with symptoms such as cognitive impairment, autonomic dysfunction, debilitating fatigue and chronic widespread pain that implicate the central nervous system. A hallmark complaint of subjects with Gulf War Illness is post-exertional malaise; defined as an exacerbation of symptoms following physical and/or mental effort. To study the causal relationship between exercise, the brain, and changes in symptoms, 28 Gulf War veterans and 10 controls completed an fMRI scan before and after two exercise stress tests to investigate serial changes in pain, autonomic function, and working memory. Exercise induced two clinical Gulf War Illness subgroups. One subgroup presented with orthostatic tachycardia (n = 10). This phenotype correlated with brainstem atrophy, baseline working memory compensation in the cerebellar vermis, and subsequent loss of compensation after exercise. The other subgroup developed exercise induced hyperalgesia (n = 18) that was associated with cortical atrophy and baseline working memory compensation in the basal ganglia. Alterations in cognition, brain structure, and symptoms were absent in controls. Our novel findings may provide an understanding of the relationship between the brain and post-exertional malaise in Gulf War Illness. PMID:23798990

  4. Characterization of Gaucher disease bone marrow mesenchymal stromal cells reveals an altered inflammatory secretome

    PubMed Central

    Campeau, Philippe M.; Rafei, Moutih; Boivin, Marie-Noëlle; Sun, Ying; Grabowski, Gregory A.

    2009-01-01

    Gaucher disease causes pathologic skeletal changes that are not fully explained. Considering the important role of mesenchymal stromal cells (MSCs) in bone structural development and maintenance, we analyzed the cellular biochemistry of MSCs from an adult patient with Gaucher disease type 1 (N370S/L444P mutations). Gaucher MSCs possessed a low glucocerebrosidase activity and consequently had a 3-fold increase in cellular glucosylceramide. Gaucher MSCs have a typical MSC marker phenotype, normal osteocytic and adipocytic differentiation, growth, exogenous lactosylceramide trafficking, cholesterol content, lysosomal morphology, and total lysosomal content, and a marked increase in COX-2, prostaglandin E2, interleukin-8, and CCL2 production compared with normal controls. Transcriptome analysis on normal MSCs treated with the glucocerebrosidase inhibitor conduritol B epoxide showed an up-regulation of an array of inflammatory mediators, including CCL2, and other differentially regulated pathways. These cells also showed a decrease in sphingosine-1-phosphate. In conclusion, Gaucher disease MSCs display an altered secretome that could contribute to skeletal disease and immune disease manifestations in a manner distinct and additive to Gaucher macrophages themselves. PMID:19587377

  5. Proteomics study revealed altered proteome of Dichogaster curgensis upon exposure to fly ash.

    PubMed

    Markad, Vijaykumar L; Adav, Sunil S; Ghole, Vikram S; Sze, Siu Kwan; Kodam, Kisan M

    2016-10-01

    Fly ash is toxic and its escalating use as a soil amendment and disposal by dumping into environment is receiving alarming attention due to its impact on environment. Proteomics technology is being used for environmental studies since proteins respond rapidly when an organism is exposed to a toxicant, and hence soil engineers such as earthworms are used as model organisms to assess the toxic effects of soil toxicants. This study adopted proteomics technology and profiled proteome of earthworm Dichogaster curgensis that was exposed to fly ash, with main aim to elucidate fly ash effects on cellular and metabolic pathways. The functional classification of identified proteins revealed carbohydrate metabolism (14.36%), genetic information processing (15.02%), folding, sorting and degradation (10.83%), replication and repair (3.95%); environmental information processing (2.19%), signal transduction (9.61%), transport and catabolism (17.27%), energy metabolism (6.69%), etc. in the proteome. Proteomics data and functional assays revealed that the exposure of earthworm to fly ash induced protein synthesis, up-regulation of gluconeogenesis, disturbed energy metabolism, oxidative and cellular stress, and mis-folding of proteins. The regulation of ubiquitination, proteasome and modified alkaline comet assay in earthworm coelomocytes suggested DNA-protein cross link affecting chromatin remodeling and protein folding. PMID:27371791

  6. Alterations of miRNAs reveal a dysregulated molecular regulatory network in Parkinson's disease striatum.

    PubMed

    Nair, Venugopalan D; Ge, Yongchao

    2016-08-26

    Molecular adaptations in the striatum mediated by dopamine (DA) denervation and/or levodopa (L-dopa) treatments have been implicated in the motor deficits found in Parkinson's disease (PD). Alterations in inflammatory response mechanisms and glutamatergic neurotransmission are reported to play important roles in mediating these changes. However, the mechanisms mediating the molecular adaptations in the striatum are not well understood. Small non-coding microRNAs (miRNAs) influence numerous biological processes including the development and maintenance of striatal neurons by regulating gene expression post-transcriptionally. To investigate miRNA function in human PD striatum, we examined the global expression of miRNAs in postmortem putamen (putamen along with caudate forms the striatum) tissues obtained from PD patients and neurologically normal controls using Nanostring miRNA assays. We found that 6 miRNAs were significantly (p≤0.05) upregulated and 7 miRNAs were downregulated in PD putamen when compared with control. The differential expression (DE) of the 4 highest scoring miRNAs was further confirmed by reverse transcription polymerase chain reaction. Ingenuity pathway analysis demonstrated that these miRNAs are enriched in the processes of inflammatory responses. We found that the expression of DE miRNAs in PD putamen negatively correlates with the expression of gene transcripts implicated in inflammatory response with p53 and NF-kB as central signaling molecules. Taken together, our results suggest that in PD striatum, the DE miRNAs are associated with the oxidative stress pathway. This mechanism may contribute to the molecular adaptations and related motor complications found in PD. PMID:27369327

  7. High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection.

    PubMed

    De Smet, Jeroen; Zimmermann, Michael; Kogadeeva, Maria; Ceyssens, Pieter-Jan; Vermaelen, Wesley; Blasdel, Bob; Bin Jang, Ho; Sauer, Uwe; Lavigne, Rob

    2016-08-01

    Phage-mediated metabolic changes in bacteria are hypothesized to markedly alter global nutrient and biogeochemical cycles. Despite their theoretic importance, experimental data on the net metabolic impact of phage infection on the bacterial metabolism remains scarce. In this study, we tracked the dynamics of intracellular metabolites using untargeted high coverage metabolomics in Pseudomonas aeruginosa cells infected with lytic bacteriophages from six distinct phage genera. Analysis of the metabolomics data indicates an active interference in the host metabolism. In general, phages elicit an increase in pyrimidine and nucleotide sugar metabolism. Furthermore, clear phage-specific and infection stage-specific responses are observed, ranging from extreme metabolite depletion (for example, phage YuA) to complete reorganization of the metabolism (for example, phage phiKZ). As expected, pathways targeted by the phage-encoded auxiliary metabolic genes (AMGs) were enriched among the metabolites changing during infection. The effect on pyrimidine metabolism of phages encoding AMGs capable of host genome degradation (for example, YuA and LUZ19) was distinct from those lacking nuclease-encoding genes (for example, phiKZ), which demonstrates the link between the encoded set of AMGs of a phage and its impact on host physiology. However, a large fraction of the profound effect on host metabolism could not be attributed to the phage-encoded AMGs. We suggest a potentially crucial role for small, 'non-enzymatic' peptides in metabolism take-over and hypothesize on potential biotechnical applications for such peptides. The highly phage-specific nature of the metabolic impact emphasizes the potential importance of the 'phage diversity' parameter when studying metabolic interactions in complex communities. PMID:26882266

  8. Silicon isotopes reveal recycled altered oceanic crust in the mantle sources of Ocean Island Basalts

    NASA Astrophysics Data System (ADS)

    Pringle, Emily A.; Moynier, Frédéric; Savage, Paul S.; Jackson, Matthew G.; Moreira, Manuel; Day, James M. D.

    2016-09-01

    The study of silicon (Si) isotopes in Ocean Island Basalts (OIB) has the potential to discern between different models for the origins of geochemical heterogeneities in the mantle. Relatively large (∼several per mil per atomic mass unit) Si isotope fractionation occurs in low-temperature environments during biochemical and geochemical precipitation of dissolved Si, where the precipitate is preferentially enriched in the lighter isotopes relative to the dissolved Si. In contrast, only a limited range (∼tenths of a per mil) of Si isotope fractionation has been observed from high-temperature igneous processes. Therefore, Si isotopes may be useful as tracers for the presence of crustal material within OIB mantle source regions that experienced relatively low-temperature surface processes in a manner similar to other stable isotope systems, such as oxygen. Characterizing the isotopic composition of the mantle is also of central importance to the use of the Si isotope system as a basis for comparisons with other planetary bodies (e.g., Moon, Mars, asteroids). Here we present the first comprehensive suite of high-precision Si isotope data obtained by MC-ICP-MS for a diverse suite of OIB. Samples originate from ocean islands in the Pacific, Atlantic, and Indian Ocean basins and include representative end-members for the EM-1, EM-2, and HIMU mantle components. On average, δ30Si values for OIB (-0.32 ± 0.09‰, 2 sd) are in general agreement with previous estimates for the δ30Si value of Bulk Silicate Earth (-0.29 ± 0.07‰, 2 sd; Savage et al., 2014). Nonetheless, some small systematic variations are present; specifically, most HIMU-type (Mangaia; Cape Verde; La Palma, Canary Islands) and Iceland OIB are enriched in the lighter isotopes of Si (δ30Si values lower than MORB), consistent with recycled altered oceanic crust and lithospheric mantle in their mantle sources.

  9. Comparative Multi-Epitope-Ligand-Cartography reveals essential immunological alterations in Barrett's metaplasia and esophageal adenocarcinoma

    PubMed Central

    2010-01-01

    Background Barrett's esophagus (BE) is caused by gastroesophageal reflux with consecutive mucosal inflammation, predisposing patients to the development of esophageal adenocarcinoma (EAC). We investigated changes in T cell-related mucosal combinatorial molecular protein patterns in both diseases using the novel Multi-Epitope-Ligand-Cartography, a unique robotic whole-cell imaging technology that simultaneously visualizes dozens of proteins in structurally intact tissues and correlates cellular localization of proteins with function. Results Biopsies were taken during endoscopy from BE, EAC, and normal control tissue, and proteomic microscopy was performed on 32 different epitopes. When the significance level was set to p < 0.0005 and the search depth to five antibody combinations, controls and BE can be differentiated by 63, controls and EAC by 3222, and BE from EAC by 1521 distinct protein combinations. For example, the number of activated apoptotic naïve and memory T cells was significantly increased only in BE, whereas the number of activated apoptotic helper and regulatory T cells was significantly elevated in BE and EAC. In contrast, the number of activated apoptotic cytotoxic T cells was significantly elevated only in EAC. Confirming different pathways in BE and EAC, the number of T lymphocytes with p53 expression and downregulation of bcl2 expression (CD3+p53+Bcl2-NfkB-) was significantly increased in EAC compared to BE and controls. Interestingly, the number of precursor T cells (CD7+) was significantly elevated only in EAC. These cells lack Bax and caspase-8, suggesting impaired apoptosis in the early stages of T cell differentiation. Conclusion Proteomic analysis showed for the first time that proteins, which are critically involved in the mucosal immune system of the esophagus, are distinctly expressed in BE and EAC, whereas others are comparably altered in both diseases, suggesting that many pathogenic events might be shared by both diseases

  10. Spaceflight Alters Bacterial Gene Expression and Virulence and Reveals Role for Global Regulator Hfq

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Ott, C. M.; zuBentrup, K. Honer; Ramamurthy R.; Quick, L.; Porwollik, S.; Cheng, P.; McClellan, M.; Tsaprailis, G.; Radabaugh, T.; Hunt, A.; Fernandez, D.; Richter, E.; Shah, M.; Kilcoyne, M.; Joshi, L.; Nelman-Gonzalez, M.; Hing, S.; Parra, M.; Dumaras, P.; Norwood, K.; Nickerson, C. A.; Bober, R.; Devich, J.; Ruggles, A.

    2007-01-01

    A comprehensive analysis of both the molecular genetic and phenotypic responses of any organism to the spaceflight environment has never been accomplished due to significant technological and logistical hurdles. Moreover, the effects of spaceflight on microbial pathogenicity and associated infectious disease risks have not been studied. The bacterial pathogen Salmonella typhimurium was grown aboard Space Shuttle mission STS-115 and compared to identical ground control cultures. Global microarray and proteomic analyses revealed 167 transcripts and 73 proteins changed expression with the conserved RNA-binding protein Hfq identified as a likely global regulator involved in the response to this environment. Hfq involvement was confirmed with a ground based microgravity culture model. Spaceflight samples exhibited enhanced virulence in a murine infection model and extracellular matrix accumulation consistent with a biofilm. Strategies to target Hfq and related regulators could potentially decrease infectious disease risks during spaceflight missions and provide novel therapeutic options on Earth.

  11. Modulators of Stomatal Lineage Signal Transduction Alter Membrane Contact Sites and Reveal Specialization among ERECTA Kinases.

    PubMed

    Ho, Chin-Min Kimmy; Paciorek, Tomasz; Abrash, Emily; Bergmann, Dominique C

    2016-08-22

    Signal transduction from a cell's surface to its interior requires dedicated signaling elements and a cellular environment conducive to signal propagation. Plant development, defense, and homeostasis rely on plasma membrane receptor-like kinases to perceive endogenous and environmental signals, but little is known about their immediate downstream targets and signaling modifiers. Using genetics, biochemistry, and live-cell imaging, we show that the VAP-RELATED SUPPRESSOR OF TMM (VST) family is required for ERECTA-mediated signaling in growth and cell-fate determination and reveal a role for ERECTA-LIKE2 in modulating signaling by its sister kinases. We show that VSTs are peripheral plasma membrane proteins that can form complexes with integral ER-membrane proteins, thereby potentially influencing the organization of the membrane milieu to promote efficient and differential signaling from the ERECTA-family members to their downstream intracellular targets. PMID:27554856

  12. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq

    PubMed Central

    Wilson, J. W.; Ott, C. M.; zu Bentrup, K. Höner; Ramamurthy, R.; Quick, L.; Porwollik, S.; Cheng, P.; McClelland, M.; Tsaprailis, G.; Radabaugh, T.; Hunt, A.; Fernandez, D.; Richter, E.; Shah, M.; Kilcoyne, M.; Joshi, L.; Nelman-Gonzalez, M.; Hing, S.; Parra, M.; Dumars, P.; Norwood, K.; Bober, R.; Devich, J.; Ruggles, A.; Goulart, C.; Rupert, M.; Stodieck, L.; Stafford, P.; Catella, L.; Schurr, M. J.; Buchanan, K.; Morici, L.; McCracken, J.; Allen, P.; Baker-Coleman, C.; Hammond, T.; Vogel, J.; Nelson, R.; Pierson, D. L.; Stefanyshyn-Piper, H. M.; Nickerson, C. A.

    2007-01-01

    A comprehensive analysis of both the molecular genetic and phenotypic responses of any organism to the space flight environment has never been accomplished because of significant technological and logistical hurdles. Moreover, the effects of space flight on microbial pathogenicity and associated infectious disease risks have not been studied. The bacterial pathogen Salmonella typhimurium was grown aboard Space Shuttle mission STS-115 and compared with identical ground control cultures. Global microarray and proteomic analyses revealed that 167 transcripts and 73 proteins changed expression with the conserved RNA-binding protein Hfq identified as a likely global regulator involved in the response to this environment. Hfq involvement was confirmed with a ground-based microgravity culture model. Space flight samples exhibited enhanced virulence in a murine infection model and extracellular matrix accumulation consistent with a biofilm. Strategies to target Hfq and related regulators could potentially decrease infectious disease risks during space flight missions and provide novel therapeutic options on Earth. PMID:17901201

  13. Untargeted Metabolomics Analysis Reveals a Link between ETHE1-Mediated Disruptive Redox State and Altered Metabolic Regulation.

    PubMed

    Sahebekhtiari, Navid; Nielsen, Camilla Bak; Johannsen, Mogens; Palmfeldt, Johan

    2016-05-01

    Defects in the gene encoding the persulfide dioxygenase ETHE1 are known to cause the severe inherited metabolic disorder ethylmalonic encephalopathy (EE). In spite of known clinical characteristics, the molecular mechanisms underlying the ETHE1 deficiency are still obscure. Herein, to further analyze the molecular phenotype of the disease, we applied an untargeted metabolomics approach on cultivated fibroblasts of EE patients for pinpointing alterations in metabolite levels. Metabolites, as direct signatures of biochemical functions, can decipher biochemical pathways involved in the cellular phenotype of patient cells. Using liquid chromatography-mass spectrometry-based untargeted metabolomics, we identified 18 metabolites that have altered levels in fibroblasts from EE patients. Our data demonstrate disrupted redox state in EE patient cells, which is reflected by significantly decreased level of reduced glutathione. Furthermore, the down-regulation of several intermediate metabolites such as the redox cofactors NAD(+) and NADH as well as Krebs cycle intermediates revealed clear alteration in metabolic regulation. Pantothenic acid and several amino acids exhibited decreased levels, whereas the β-citrylglutamate with a putative role in brain development had an increased level in the EE patient cells. These observations indicate the severe impact of ETHE1 deficiency on cellular physiology and redox state, meanwhile suggesting targets for experimental studies on novel treatment options for the devastating metabolic disorder. PMID:27074420

  14. Multimodal Characterization of Proliferative Diabetic Retinopathy Reveals Alterations in Outer Retinal Function and Structure

    PubMed Central

    Boynton, Grace E.; Stem, Maxwell S.; Kwark, Leon; Jackson, Gregory R.; Farsiu, Sina; Gardner, Thomas W.

    2014-01-01

    diffusely thinned RPE layers (p=0.031) compared to controls. Conclusions Patients with untreated PDR exhibit inner retinal dysfunction, as evidenced by reduced contrast sensitivity and FDP performance, accompanied by alterations in inner and outer retinal structure. PRP-treated patients had more profound changes in outer retinal structure and function. Distinguishing the effects of PDR and PRP may guide the development of restorative vision therapies for patients with advanced diabetic retinopathy. PMID:25601533

  15. Genomic Profiling of Advanced-Stage Oral Cancers Reveals Chromosome 11q Alterations as Markers of Poor Clinical Outcome

    PubMed Central

    Ambatipudi, Srikant; Gerstung, Moritz; Gowda, Ravindra; Pai, Prathamesh; Borges, Anita M.; Schäffer, Alejandro A.; Beerenwinkel, Niko; Mahimkar, Manoj B.

    2011-01-01

    Identifying oral cancer lesions associated with high risk of relapse and predicting clinical outcome remain challenging questions in clinical practice. Genomic alterations may add prognostic information and indicate biological aggressiveness thereby emphasizing the need for genome-wide profiling of oral cancers. High-resolution array comparative genomic hybridization was performed to delineate the genomic alterations in clinically annotated primary gingivo-buccal complex and tongue cancers (n = 60). The specific genomic alterations so identified were evaluated for their potential clinical relevance. Copy-number changes were observed on chromosomal arms with most frequent gains on 3q (60%), 5p (50%), 7p (50%), 8q (73%), 11q13 (47%), 14q11.2 (47%), and 19p13.3 (58%) and losses on 3p14.2 (55%) and 8p (83%). Univariate statistical analysis with correction for multiple testing revealed chromosomal gain of region 11q22.1–q22.2 and losses of 17p13.3 and 11q23–q25 to be associated with loco-regional recurrence (P = 0.004, P = 0.003, and P = 0.0003) and shorter survival (P = 0.009, P = 0.003, and P 0.0001) respectively. The gain of 11q22 and loss of 11q23-q25 were validated by interphase fluorescent in situ hybridization (I-FISH). This study identifies a tractable number of genomic alterations with few underlying genes that may potentially be utilized as biological markers for prognosis and treatment decisions in oral cancers. PMID:21386901

  16. Longitudinal Alterations in the Dynamic Autoregulation of Optic Nerve Head Blood Flow Revealed in Experimental Glaucoma

    PubMed Central

    Wang, Lin; Cull, Grant; Burgoyne, Claude F.; Thompson, Simon; Fortune, Brad

    2014-01-01

    Purpose. To use a novel dynamic autoregulation analysis (dAR) to test the hypothesis that the optic nerve head (ONH) blood flow (BF) autoregulation is disrupted during early stages of experimental glaucoma (EG) in nonhuman primates. Methods. Retinal nerve fiber layer thickness (RNFLT, assessed by optical coherence tomography) and ONH BF (assessed by laser speckle imaging technique) were measured biweekly before and after unilateral laser treatment to the trabecular meshwork. Each nonhuman primate was followed until reaching either an early stage of damage (RNFLT loss < 20%, n = 6) or moderate to advanced stages of damage (RNFLT loss > 20%, n = 9). At each test, dAR was assessed by characterizing ONH BF changes during the first minute of rapid manometrical intraocular pressure (IOP) elevation from 10 to 40 mm Hg. The dAR analysis extracted the following parameters: baseline BF, average BF 10 seconds before IOP elevation; BFΔmax, maximum BF change from baseline BF; Tr, time from baseline BF to the BFΔmax; Kr, average descending BF rate. Results. Mean postlaser IOP was 20.2 ± 5.9 and 12.3 ± 2.6 mm Hg in EG and control eyes, respectively (P < 0.0001). Compared with prelaser values, baseline BF was higher in early EG, but lower in moderate to advanced EG (P = 0.01). Tr was increased and Kr was reduced in both stages (P < 0.01). BFΔmax was smaller in the early EG (P = 0.05) and remained low in the moderate to advanced EG (P = 0.15). No changes in the parameters were observed in control eyes. Conclusions. Chronic IOP elevation causes ONH autoregulation dysfunction in the early stage of EG, characterized by a disrupted BF response and delayed Tr, revealed by dAR analysis. PMID:24812551

  17. Genome-wide gene expression profiling reveals unsuspected molecular alterations in pemphigus foliaceus

    PubMed Central

    Malheiros, Danielle; Panepucci, Rodrigo A; Roselino, Ana M; Araújo, Amélia G; Zago, Marco A; Petzl-Erler, Maria Luiza

    2014-01-01

    Pemphigus foliaceus (PF) is a complex autoimmune disease characterized by bullous skin lesions and the presence of antibodies against desmoglein 1. In this study we sought to contribute to a better understanding of the molecular processes in endemic PF, as the identification of factors that participate in the pathogenesis is a prerequisite for understanding its biological basis and may lead to novel therapeutic interventions. CD4+ T lymphocytes are central to the development of the disease. Therefore, we compared genome-wide gene expression profiles of peripheral CD4+ T cells of various PF patient subgroups with each other and with that of healthy individuals. The patient sample was subdivided into three groups: untreated patients with the generalized form of the disease, patients submitted to immunosuppressive treatment, and patients with the localized form of the disease. Comparisons between different subgroups resulted in 135, 54 and 64 genes differentially expressed. These genes are mainly related to lymphocyte adhesion and migration, apoptosis, cellular proliferation, cytotoxicity and antigen presentation. Several of these genes were differentially expressed when comparing lesional and uninvolved skin from the same patient. The chromosomal regions 19q13 and 12p13 concentrate differentially expressed genes and are candidate regions for PF susceptibility genes and disease markers. Our results reveal genes involved in disease severity, potential therapeutic targets and previously unsuspected processes involved in the pathogenesis. Besides, this study adds original information that will contribute to the understanding of PF's pathogenesis and of the still poorly defined in vivo functions of most of these genes. PMID:24813052

  18. Differential activation of human core, non-core and auditory-related cortex during speech categorization tasks as revealed by intracranial recordings

    PubMed Central

    Steinschneider, Mitchell; Nourski, Kirill V.; Rhone, Ariane E.; Kawasaki, Hiroto; Oya, Hiroyuki; Howard, Matthew A.

    2014-01-01

    Speech perception requires that sounds be transformed into speech-related objects with lexical and semantic meaning. It is unclear at what level in the auditory pathways this transformation emerges. Primary auditory cortex has been implicated in both representation of acoustic sound attributes and sound objects. While non-primary auditory cortex located on the posterolateral superior temporal gyrus (PLST) is clearly involved in acoustic-to-phonetic pre-lexical representations, it is unclear what role this region plays in auditory object formation. Additional data support the importance of prefrontal cortex in the formation of auditory objects, while other data would implicate this region in auditory object selection. To help clarify the respective roles of auditory and auditory-related cortex in the formation and selection of auditory objects, we examined high gamma activity simultaneously recorded directly from Heschl's gyrus (HG), PLST and prefrontal cortex, while subjects performed auditory semantic detection tasks. Subjects were patients undergoing evaluation for treatment of medically intractable epilepsy. We found that activity in posteromedial HG and early activity on PLST was robust to sound stimuli regardless of their context, and minimally modulated by tasks. Later activity on PLST could be strongly modulated by semantic context, but not by behavioral performance. Activity within prefrontal cortex also was related to semantic context, and did co-vary with behavior. We propose that activity in posteromedial HG and early activity on PLST primarily reflect the representation of spectrotemporal sound attributes. Later activity on PLST represents a pre-lexical processing stage and is an intermediate step in the formation of word objects. Activity in prefrontal cortex appears directly involved in word object selection. The roles of other auditory and auditory-related cortical areas in the formation of word objects remain to be explored. PMID:25157216

  19. Transcriptome Profiling of Human Ulcerative Colitis Mucosa Reveals Altered Expression of Pathways Enriched in Genetic Susceptibility Loci

    PubMed Central

    Li, Jin; Zhu, Junfei; Gu, Mengnan; Baldassano, Robert N.; Grant, Struan F. A.; Hakonarson, Hakon

    2014-01-01

    Human colonic mucosa altered by inflammation due to ulcerative colitis (UC) displays a drastically altered pattern of gene expression compared with healthy tissue. We aimed to understand the underlying molecular pathways influencing these differences by analyzing three publically-available, independently-generated microarray datasets of gene expression from endoscopic biopsies of the colon. Gene set enrichment analysis (GSEA) revealed that all three datasets share 87 gene sets upregulated in UC lesions and 8 gene sets downregulated (false discovery rate <0.05). The upregulated pathways were dominated by gene sets involved in immune function and signaling, as well as the control of mitosis. We applied pathway analysis to genotype data derived from genome-wide association studies (GWAS) of UC, consisting of 5,584 cases and 11,587 controls assembled from eight European-ancestry cohorts. The upregulated pathways derived from the gene expression data showed a highly significant overlap with pathways derived from the genotype data (33 of 56 gene sets, hypergeometric P = 1.49×10–19). This study supports the hypothesis that heritable variation in gene expression as measured by GWAS signals can influence key pathways in the development of disease, and that comparison of genetic susceptibility loci with gene expression signatures can differentiate key drivers of inflammation from secondary effects on gene expression of the inflammatory process. PMID:24788701

  20. Advances in the translational genomics of neuroblastoma: From improving risk stratification and revealing novel biology to identifying actionable genomic alterations.

    PubMed

    Bosse, Kristopher R; Maris, John M

    2016-01-01

    Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus and not only has catalyzed a more comprehensive understanding of neuroblastoma tumorigenesis but also has revealed novel oncogenic vulnerabilities that are being therapeutically leveraged. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high-level MYCN (v-myc avian myelocytomatosis viral oncogene neuroblastoma-derived homolog) amplification, for risk stratification. Given the relative paucity of recurrent, activating, somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed toward aberrantly regulated pathways in relapsed disease. This review summarizes the current state of knowledge about neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma. PMID:26539795

  1. Top-down lipidomics of low density lipoprotein reveal altered lipid profiles in advanced chronic kidney disease[S

    PubMed Central

    Reis, Ana; Rudnitskaya, Alisa; Chariyavilaskul, Pajaree; Dhaun, Neeraj; Melville, Vanessa; Goddard, Jane; Webb, David J.; Pitt, Andrew R.; Spickett, Corinne M.

    2015-01-01

    This study compared the molecular lipidomic profile of LDL in patients with nondiabetic advanced renal disease and no evidence of CVD to that of age-matched controls, with the hypothesis that it would reveal proatherogenic lipid alterations. LDL was isolated from 10 normocholesterolemic patients with stage 4/5 renal disease and 10 controls, and lipids were analyzed by accurate mass LC/MS. Top-down lipidomics analysis and manual examination of the data identified 352 lipid species, and automated comparative analysis demonstrated alterations in lipid profile in disease. The total lipid and cholesterol content was unchanged, but levels of triacylglycerides and N-acyltaurines were significantly increased, while phosphatidylcholines, plasmenyl ethanolamines, sulfatides, ceramides, and cholesterol sulfate were significantly decreased in chronic kidney disease (CKD) patients. Chemometric analysis of individual lipid species showed very good discrimination of control and disease sample despite the small cohorts and identified individual unsaturated phospholipids and triglycerides mainly responsible for the discrimination. These findings illustrate the point that although the clinical biochemistry parameters may not appear abnormal, there may be important underlying lipidomic changes that contribute to disease pathology. The lipidomic profile of CKD LDL offers potential for new biomarkers and novel insights into lipid metabolism and cardiovascular risk in this disease. PMID:25424003

  2. Evolution of neuronal and astroglial disruption in the peri-contusional cortex of mice revealed by in vivo two-photon imaging

    PubMed Central

    Masuda, Tadashi; Croom, Deborah

    2013-01-01

    In traumatic brain injury mechanical forces applied to the cranium and brain cause irreversible primary neuronal and astroglial damage associated with terminal dendritic beading and spine loss representing acute damage to synaptic circuitry. Oedema develops quickly after trauma, raising intracranial pressure that results in a decrease of blood flow and consequently in cerebral ischaemia, which can cause secondary injury in the peri-contusional cortex. Spreading depolarizations have also been shown to occur after traumatic brain injury in humans and in animal models and are thought to accelerate and exacerbate secondary tissue injury in at-risk cortical territory. Yet, the mechanisms of acute secondary injury to fine synaptic circuitry within the peri-contusional cortex after mild traumatic brain injury remain unknown. A mild focal cortical contusion model in adult mouse sensory-motor cortex was implemented by the controlled cortical impact injury device. In vivo two-photon microscopy in the peri-contusional cortex was used to monitor via optical window yellow fluorescent protein expressing neurons, enhanced green fluorescent protein expressing astrocytes and capillary blood flow. Dendritic beading in the peri-contusional cortex developed slowly and the loss of capillary blood flow preceded terminal dendritic injury. Astrocytes were swollen indicating oedema and remained swollen during the next 24 h throughout the imaging session. There were no recurrent spontaneous spreading depolarizations in this mild traumatic brain injury model; however, when spreading depolarizations were repeatedly induced outside the peri-contusional cortex by pressure-injecting KCl, dendrites undergo rapid beading and recovery coinciding with passage of spreading depolarizations, as was confirmed with electrophysiological recordings in the vicinity of imaged dendrites. Yet, accumulating metabolic stress resulting from as few as four rounds of spreading depolarization significantly added to

  3. Urinary Metabolomics Reveals Alterations of Aromatic Amino Acid Metabolism of Alzheimer's Disease in the Transgenic CRND8 Mice.

    PubMed

    Tang, Zhi; Liu, Liangfeng; Li, Yongle; Dong, Jiyang; Li, Min; Huang, Jiandong; Lin, Shuhai; Cai, Zongwei

    2016-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder, with amyloid plaques accumulation as the key feature involved in its pathology. To date, however, the biochemical changes in AD have not been clearly characterized. Here, we present that urinary metabolomics based on high resolution mass spectrometry was employed for delineation of metabolic alterations in transgenic CRND8 mice. In this noninvasive approach, urinary metabolome reveals the biochemical changes in early onset of this AD mouse model. In virtue of comprehensive metabolite profiling and multivariate statistical analysis, a total of 73 differential metabolites of urine sample sets was identified in 12-week and 18-week transgenic mice compared to wild-type littermates, covering perturbations of aromatic amino acid metabolism, the Krebs cycle and one-carbon metabolism. Of particular interest is that divergent tryptophan metabolism, such as upregulation of serotonin pathway while downregulation of kynurenine pathway, was observed. Meanwhile, the accumulation of both N-acetylvanilalanine and 3-methoxytyrosine indicated aromatic L-amino acid decarboxylase deficiency. And the microbial metabolites derived from aromatic amino acid metabolism and drug-like phase II metabolic response via the glycine conjugation reactions were also highlighted, indicating that genetic modification in mouse brain not only alters genotype but also perturbs the gut microbiome. Together, our study demonstrated that the integrative approach employing mass spectrometry-based metabolomics and a transgenic mouse model for AD may provide new evidence for distinct metabolic signatures. The perturbations of metabolic pathways may have far-reaching implications for early diagnosis and intervention in AD. PMID:26825095

  4. Task and Resting-State fMRI Reveal Altered Salience Responses to Positive Stimuli in Patients with Major Depressive Disorder

    PubMed Central

    Yang, Yang; Zhong, Ning; Imamura, Kazuyuki; Lu, Shengfu; Li, Mi; Zhou, Haiyan; Li, Huaizhou; Yang, Xiaojing; Wan, Zhijiang; Wang, Gang; Hu, Bin; Li, Kuncheng

    2016-01-01

    Altered brain function in patients with major depressive disorder (MDD) has been repeatedly demonstrated by task-based and resting-state studies, respectively. However, less is known concerning whether overlapped abnormalities in functional activities across modalities exist in MDD patients. To find out the answer, we implemented an fMRI experiment and collected both task and resting-state data from 19 MDD patients and 19 matched, healthy, controls. A distraction paradigm involving emotionally valenced pictures was applied to induce affective responses in subjects. As a result, concurrent deficits were found in arousing activation during a positive task in both the reward circuit and salience network (SN) that is composed of the dorsal part of anterior cingulate cortex (dACC) and bilateral anterior insulae (AI) in only the MDD group. Subsequent amplitude of low frequency fluctuations (ALFF) and functional connectivity analyses based on resting-state data exhibited consistent alterations in the bilateral AI of MDD patients, and indicated patients’ difficulties in regulating the balance between central executive network (CEN) and default mode network (DMN) due to altered connectivity among the CEN, DMN, and SN. Our findings provide new evidence demonstrating impaired salience processing and resulting alterations in responses to positive stimuli in MDD patients. Furthermore, brain abnormalities synchronized across functional states in MDD patients can be evidenced by a combination of task and resting-state fMRI analyses. PMID:27192082

  5. Task and Resting-State fMRI Reveal Altered Salience Responses to Positive Stimuli in Patients with Major Depressive Disorder.

    PubMed

    Yang, Yang; Zhong, Ning; Imamura, Kazuyuki; Lu, Shengfu; Li, Mi; Zhou, Haiyan; Li, Huaizhou; Yang, Xiaojing; Wan, Zhijiang; Wang, Gang; Hu, Bin; Li, Kuncheng

    2016-01-01

    Altered brain function in patients with major depressive disorder (MDD) has been repeatedly demonstrated by task-based and resting-state studies, respectively. However, less is known concerning whether overlapped abnormalities in functional activities across modalities exist in MDD patients. To find out the answer, we implemented an fMRI experiment and collected both task and resting-state data from 19 MDD patients and 19 matched, healthy, controls. A distraction paradigm involving emotionally valenced pictures was applied to induce affective responses in subjects. As a result, concurrent deficits were found in arousing activation during a positive task in both the reward circuit and salience network (SN) that is composed of the dorsal part of anterior cingulate cortex (dACC) and bilateral anterior insulae (AI) in only the MDD group. Subsequent amplitude of low frequency fluctuations (ALFF) and functional connectivity analyses based on resting-state data exhibited consistent alterations in the bilateral AI of MDD patients, and indicated patients' difficulties in regulating the balance between central executive network (CEN) and default mode network (DMN) due to altered connectivity among the CEN, DMN, and SN. Our findings provide new evidence demonstrating impaired salience processing and resulting alterations in responses to positive stimuli in MDD patients. Furthermore, brain abnormalities synchronized across functional states in MDD patients can be evidenced by a combination of task and resting-state fMRI analyses. PMID:27192082

  6. Alterations in levels and ratios of n-3 and n-6 polyunsaturated fatty acids in the temporal cortex and liver of vervet monkeys from birth to early adulthood.

    PubMed

    Miller, Leslie R; Jorgensen, Matthew J; Kaplan, Jay R; Seeds, Michael C; Rahbar, Elaheh; Morgan, Timothy M; Welborn, Andrea; Chilton, Sarah M; Gillis, Julianne; Hester, Austin; Rukstalis, Mae; Sergeant, Susan; Chilton, Floyd H

    2016-03-15

    Deficiencies in omega-3 (n-3) long chain polyunsaturated fatty acids (LC-PUFAs) and increases in the ratio of omega-6 (n-6) to n-3 LC-PUFAs in brain tissues and blood components have been associated with psychiatric and developmental disorders. Most studies have focused on n-3 LC-PUFA accumulation in the brain from birth until 2years of age, well before the symptomatic onset of such disorders. The current study addresses changes that occur in childhood and adolescence. Postmortem brain (cortical gray matter, inferior temporal lobe; n=50) and liver (n=60) from vervet monkeys fed a uniform diet from birth through young adulthood were collected from archived tissues. Lipids were extracted and fatty acid levels determined. There was a marked reduction in the ratio of n-6 LC-PUFAs, arachidonic acid (ARA) and adrenic acid (ADR), relative to the n-3 LC-PUFA, docosahexaenoic acid (DHA), in temporal cortex lipids from birth to puberty and then a more gradual decrease though adulthood. This decrease in ratio resulted from a 3-fold accumulation of DHA levels while concentrations of ARA remained constant. Early childhood through adolescence appears to be a critical period for DHA accretion in the cortex of vervet monkeys and may represent a vulnerable stage where lack of dietary n-3 LC-PUFAs impacts development in humans. PMID:26705667

  7. Functional Connectivity Estimated from Resting-State fMRI Reveals Selective Alterations in Male Adolescents with Pure Conduct Disorder

    PubMed Central

    Lu, Feng-Mei; Zhou, Jian-Song; Zhang, Jiang; Xiang, Yu-Tao; Zhang, Jian; Liu, Qi; Wang, Xiao-Ping; Yuan, Zhen

    2015-01-01

    Conduct disorder (CD) is characterized by a persistent pattern of antisocial behavior and aggression in childhood and adolescence. Previous task-based and resting-state functional magnetic resonance imaging (fMRI) studies have revealed widespread brain regional abnormalities in adolescents with CD. However, whether the resting-state networks (RSNs) are altered in adolescents with CD remains unknown. In this study, resting-state fMRI data were first acquired from eighteen male adolescents with pure CD and eighteen age- and gender-matched typically developing (TD) individuals. Independent component analysis (ICA) was implemented to extract nine representative RSNs, and the generated RSNs were then compared to show the differences between the CD and TD groups. Interestingly, it was observed from the brain mapping results that compared with the TD group, the CD group manifested decreased functional connectivity in four representative RSNs: the anterior default mode network (left middle frontal gyrus), which is considered to be correlated with impaired social cognition, the somatosensory network (bilateral supplementary motor area and right postcentral gyrus), the lateral visual network (left superior occipital gyrus), and the medial visual network (right fusiform, left lingual gyrus and right calcarine), which are expected to be relevant to the perceptual systems responsible for perceptual dysfunction in male adolescents with CD. Importantly, the novel findings suggested that male adolescents with pure CD were identified to have dysfunctions in both low-level perceptual networks (the somatosensory network and visual network) and a high-order cognitive network (the default mode network). Revealing the changes in the functional connectivity of these RSNs enhances our understanding of the neural mechanisms underlying the modulation of emotion and social cognition and the regulation of perception in adolescents with CD. PMID:26713867

  8. Liquid Chromatography-Mass Spectrometry-Based In Vitro Metabolic Profiling Reveals Altered Enzyme Expressions in Eicosanoid Metabolism

    PubMed Central

    Lee, Su Hyeon; Kim, Eung Ju; Lee, Dong-Hyoung; Lee, Won-Yong; Chung, Bong Chul

    2016-01-01

    Background Eicosanoids are metabolites of arachidonic acid that are rapidly biosynthesized and degraded during inflammation, and their metabolic changes reveal altered enzyme expression following drug treatment. We developed an eicosanoid profiling method and evaluated their changes on drug treatment. Methods Simultaneous quantitative profiling of 32 eicosanoids in liver S9 fractions obtained from rabbits with carrageenan-induced inflammation was performed and validated by liquid chromatography-mass spectrometry coupled to anion-exchange solid-phase purification. Results The limit of quantification for the devised method ranged from 0.5 to 20.0 ng/mg protein, and calibration linearity was achieved (R2>0.99). The precision (% CV) and accuracy (% bias) ranged from 4.7 to 10.3% and 88.4 to 110.9%, respectively, and overall recoveries ranged from 58.0 to 105.3%. Our method was then applied and showed that epitestosterone treatment reduced the levels of all eicosanoids that were generated by cyclooxygenases and lipoxygenases. Conclusions Quantitative eicosanoid profiling combined with in vitro metabolic assays may be useful for evaluating metabolic changes affected by drugs during eicosanoid metabolism. PMID:27139607

  9. Global detection of molecular changes reveals concurrent alteration of several biological pathways in nonsmall cell lung cancer cells

    PubMed Central

    Ju, Z.; Kapoor, M.; Newton, K; Cheon, K.; Ramaswamy, A.; Lotan, R.; Strong, L. C.; Koo, J. S.

    2006-01-01

    To identify the molecular changes that occur in non-small cell lung carcinoma (NSCLC), we compared the gene expression profile of the NCI-H292 (H292) NSCLC cell line with that of normal human tracheobronchial epithelial (NHTBE) cells. The NHTBE cells were grown in a three-dimensional organotypic culture system that permits maintenance of the normal pseudostratified mucociliary phenotype characteristic of bronchial epithelium in vivo. Microarray analysis using the Affymetrix oligonucleotide chip U95Av2 revealed that 1,683 genes showed a > 1.5-fold change in expression in the H292 cell line relative to the NHTBE cells. Specifically, 418 genes were downregulated and 1,265 were upregulated in the H292 cells. The expression data for selected genes were validated in several different NSCLC cell lines using quantitative real-time PCR and Western analysis. Further analysis of the differentially expressed genes indicated that WNT responses, apoptosis, cell cycle regulation and cell proliferation were significantly altered in the H292 cells. Functional analysis using fluorescence-activated cell sorting confirmed concurrent changes in the activity of these pathways in the H292 line. These findings show that (1) NSCLC cells display deregulation of the WNT, apoptosis, proliferation and cell cycle pathways, as has been found in many other types of cancer cells, and (2) that organotypically cultured NHTBE cells can be used as a reference to identify genes and pathways that are differentially expressed in tumor cells derived from bronchogenic epithelium. PMID:16049682

  10. Alterations in Hepatic Metabolism in fld Mice Reveal a Role for Lipin 1 in Regulating VLDL-Triacylglyceride Secretion

    PubMed Central

    Chen, Zhouji; Gropler, Matthew C.; Norris, Jin; Lawrence, John C.; Harris, Thurl E.; Finck, Brian N.

    2009-01-01

    Objective Lipin 1 controls fatty acid metabolism in the nucleus as a transcriptional regulator and in the cytosol as an enzyme catalyzing the penultimate step in phosphoglycerol triacylglyceride (TAG) synthesis. We sought to evaluate the effects of lipin 1 on hepatic TAG synthesis and secretion by gain-of-function and loss-of-function approaches. Methods and Results Rates of TAG synthesis were not impaired in hepatocytes isolated from adult lipin 1—deficient (fld) mice and were actually increased in 14-day-old fld mice. Additionally, compared to littermate controls, VLDL-TAG secretion rates were markedly increased in fld mice of both ages. Lipin 1 overexpression did not alter TAG synthesis rates but significantly suppressed VLDL-TAG secretion. The lipin 1-mediated suppression of VLDL-TAG secretion was linked to the peptide motif mediating its transcriptional-regulatory effects. However, the expression of candidate genes required for VLDL assembly and secretion was unaltered by lipin 1 activation or deficiency. Finally, the hepatic expression of lipin 1 was diminished in obese insulin-resistant mice, whereas adenoviral-mediated overexpression of lipin 1 in liver of these mice inhibits VLDL-TAG secretion and improves hepatic insulin signaling. Conclusions Collectively, these studies reveal new and unexpected effects of lipin 1 on hepatic TAG metabolism and obesity-related hepatic insulin resistance. PMID:18669885

  11. TERMINAL ARBORS OF AXONS PROJECTING TO THE SOMATOSENSORY CORTEX OF THE ADULT RAT. 2. THE ALTERED MORPHOLOGY OF THALAMOCORTICAL AFFERENTS FOLLOWING NEONATAL INFRAORBITAL NERVE CUT (JOURNAL VERSION)

    EPA Science Inventory

    The organization of the whisker representation within the neocortex of the rat is dependent on an intact periphery during development. To further investigate how alterations in the cortical map arise the authors examined the organization of thalamocortical afferents to the whiske...

  12. La3+ Alters the Response Properties of Neurons in the Mouse Primary Somatosensory Cortex to Low-Temperature Noxious Stimulation of the Dental Pulp

    PubMed Central

    Jin, Yanjiao

    2015-01-01

    Although dental pain is a serious health issue with high incidence among the human population, its cellular and molecular mechanisms are still unclear. Transient receptor potential (TRP) channels are assumed to be involved in the generation of dental pain. However, most of the studies were conducted with molecular biological or histological methods. In vivo functional studies on the role of TRP channels in the mechanisms of dental pain are lacking. This study uses in vivo cellular electrophysiological and neuropharmacological method to directly disclose the effect of LaCl3, a broad spectrum TRP channel blocker, on the response properties of neurons in the mouse primary somatosensory cortex to low-temperature noxious stimulation of the dental pulp. It was found that LaCl3 suppresses the high-firing-rate responses of all nociceptive neurons to noxious low-temperature stimulation and also inhibits the spontaneous activities in some nonnociceptive neurons. The effect of LaCl3 is reversible. Furthermore, this effect is persistent and stable unless LaCl3 is washed out. Washout of LaCl3 quickly revitalized the responsiveness of neurons to low-temperature noxious stimulation. This study adds direct evidence for the hypothesis that TRP channels are involved in the generation of dental pain and sensation. Blockade of TRP channels may provide a novel therapeutic treatment for dental pain. PMID:26604777

  13. Alteration of imprinted Dlk1-Dio3 miRNA cluster expression in the entorhinal cortex induced by maternal immune activation and adolescent cannabinoid exposure.

    PubMed

    Hollins, S L; Zavitsanou, K; Walker, F R; Cairns, M J

    2014-01-01

    A significant feature of the cortical neuropathology of schizophrenia is a disturbance in the biogenesis of short non-coding microRNA (miRNA) that regulate translation and stability of mRNA. While the biological origin of this phenomenon has not been defined, it is plausible that it relates to major environmental risk factors associated with the disorder such as exposure to maternal immune activation (MIA) and adolescent cannabis use. To explore this hypothesis, we administered the viral mimic poly I:C to pregnant rats and further exposed some of their maturing offsprings to daily injections of the synthetic cannabinoid HU210 for 14 days starting on postnatal day 35. Whole-genome miRNA expression analysis was then performed on the left and right hemispheres of the entorhinal cortex (EC), a region strongly associated with schizophrenia. Animals exposed to either treatment alone or in combination exhibited significant differences in the expression of miRNA in the left hemisphere, whereas the right hemisphere was less responsive. Hemisphere-associated differences in miRNA expression were greatest in the combined treatment and highly over-represented in a single imprinted locus on chromosome 6q32. This observation was significant as the syntenic 14q32 locus in humans encodes a large proportion of miRNAs differentially expressed in peripheral blood lymphocytes from patients with schizophrenia, suggesting that interaction of early and late environmental insults may affect miRNA expression, in a manner that is relevant to schizophrenia. PMID:25268256

  14. Alteration of imprinted Dlk1-Dio3 miRNA cluster expression in the entorhinal cortex induced by maternal immune activation and adolescent cannabinoid exposure

    PubMed Central

    Hollins, S L; Zavitsanou, K; Walker, F R; Cairns, M J

    2014-01-01

    A significant feature of the cortical neuropathology of schizophrenia is a disturbance in the biogenesis of short non-coding microRNA (miRNA) that regulate translation and stability of mRNA. While the biological origin of this phenomenon has not been defined, it is plausible that it relates to major environmental risk factors associated with the disorder such as exposure to maternal immune activation (MIA) and adolescent cannabis use. To explore this hypothesis, we administered the viral mimic poly I:C to pregnant rats and further exposed some of their maturing offsprings to daily injections of the synthetic cannabinoid HU210 for 14 days starting on postnatal day 35. Whole-genome miRNA expression analysis was then performed on the left and right hemispheres of the entorhinal cortex (EC), a region strongly associated with schizophrenia. Animals exposed to either treatment alone or in combination exhibited significant differences in the expression of miRNA in the left hemisphere, whereas the right hemisphere was less responsive. Hemisphere-associated differences in miRNA expression were greatest in the combined treatment and highly over-represented in a single imprinted locus on chromosome 6q32. This observation was significant as the syntenic 14q32 locus in humans encodes a large proportion of miRNAs differentially expressed in peripheral blood lymphocytes from patients with schizophrenia, suggesting that interaction of early and late environmental insults may affect miRNA expression, in a manner that is relevant to schizophrenia. PMID:25268256

  15. Mutations in Traf3ip1 reveal defects in ciliogenesis, embryonic development, and altered cell size regulation.

    PubMed

    Berbari, Nicolas F; Kin, Nicholas W; Sharma, Neeraj; Michaud, Edward J; Kesterson, Robert A; Yoder, Bradley K

    2011-12-01

    Tumor necrosis factor alpha receptor 3 interacting protein 1 (Traf3ip1), also known as MIPT3, was initially characterized through its interactions with tubulin, actin, TNFR-associated factor-3 (Traf3), IL-13R1, and DISC1. It functions as an inhibitor of IL-13-mediated phosphorylation of Stat6 and in sequestration of Traf3 and DISC1 to the cytoskeleton. Studies of the Traf3ip1 homologs in C. elegans (DYF-11), Zebrafish (elipsa), and Chlamydomonas (IFT54) revealed that the protein localizes to the cilium and is required for ciliogenesis. Similar localization data has now been reported for mammalian Traf3ip1. This raises the possibility that Traf3ip1 has an evolutionarily conserved role in mammalian ciliogenesis in addition to its previously indicated functions. To evaluate this possibility, a Traf3ip1 mutant mouse line was generated. Traf3ip1 mutant cells are unable to form cilia. Homozygous Traf3ip1 mutant mice are not viable and have both neural developmental defects and polydactyly, phenotypes typical of mouse mutants with ciliary assembly defects. Furthermore, in Traf3ip1 mutants the hedgehog pathway is disrupted, as evidenced by abnormal dorsal-ventral neural tube patterning and diminished expression of a hedgehog reporter. Analysis of the canonical Wnt pathway indicates that it was largely unaffected; however, specific domains in the pharyngeal arches have elevated levels of reporter activity. Interestingly, Traf3ip1 mutant embryos and cells failed to show alterations in IL-13 signaling, one of the pathways associated with its initial discovery. Novel phenotypes observed in Traf3ip1 mutant cells include elevated cytosolic levels of acetylated microtubules and a marked increase in cell size in culture. The enlarged Traf3ip1 mutant cell size was associated with elevated basal mTor pathway activity. Taken together, these data demonstrate that Traf3ip1 function is highly conserved in ciliogenesis and is important for proper regulation of a number of essential

  16. Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRNAome

    PubMed Central

    Joyce, Cailin E.; Zhou, Xiang; Xia, Jing; Ryan, Caitriona; Thrash, Breck; Menter, Alan; Zhang, Weixiong; Bowcock, Anne M.

    2011-01-01

    Psoriasis is a chronic and complex inflammatory skin disease with lesions displaying dramatically altered mRNA expression profiles. However, much less is known about the expression of small RNAs. Here, we describe a comprehensive analysis of the normal and psoriatic skin miRNAome with next-generation sequencing in a large patient cohort. We generated 6.7 × 108 small RNA reads representing 717 known and 284 putative novel microRNAs (miRNAs). We also observed widespread expression of isomiRs and miRNA*s derived from known and novel miRNA loci, and a low frequency of miRNA editing in normal and psoriatic skin. The expression and processing of selected novel miRNAs were confirmed with qRT-PCR in skin and other human tissues or cell lines. Eighty known and 18 novel miRNAs were 2–42-fold differentially expressed in psoriatic skin. Of particular significance was the 2.7-fold upregulation of a validated novel miRNA derived from the antisense strand of the miR-203 locus, which plays a role in epithelial differentiation. Other differentially expressed miRNAs included hematopoietic-specific miRNAs such as miR-142-3p and miR-223/223*, and angiogenic miRNAs such as miR-21, miR-378, miR-100 and miR-31, which was the most highly upregulated miRNA in psoriatic skin. The functions of these miRNAs are consistent with the inflammatory and hyperproliferative phenotype of psoriatic lesions. In situ hybridization of differentially expressed miRNAs revealed stratified epidermal expression of an uncharacterized keratinocyte-derived miRNA, miR-135b, as well as the epidermal infiltration of the hematopoietic-specific miRNA, miR-142-3p, in psoriatic lesions. This study lays a critical framework for functional characterization of miRNAs in healthy and diseased skin. PMID:21807764

  17. Alterations in task-induced activity and resting-state fluctuations in visual and DMN areas revealed in long-term meditators.

    PubMed

    Berkovich-Ohana, Aviva; Harel, Michal; Hahamy, Avital; Arieli, Amos; Malach, Rafael

    2016-07-15

    Recently we proposed that the information contained in spontaneously emerging (resting-state) fluctuations may reflect individually unique neuro-cognitive traits. One prediction of this conjecture, termed the "spontaneous trait reactivation" (STR) hypothesis, is that resting-state activity patterns could be diagnostic of unique personalities, talents and life-styles of individuals. Long-term meditators could provide a unique experimental group to test this hypothesis. Using fMRI we found that, during resting-state, the amplitude of spontaneous fluctuations in long-term mindfulness meditation (MM) practitioners was enhanced in the visual cortex and significantly reduced in the DMN compared to naïve controls. Importantly, during a visual recognition memory task, the MM group showed heightened visual cortex responsivity, concomitant with weaker negative responses in Default Mode Network (DMN) areas. This effect was also reflected in the behavioral performance, where MM practitioners performed significantly faster than the control group. Thus, our results uncover opposite changes in the visual and default mode systems in long-term meditators which are revealed during both rest and task. The results support the STR hypothesis and extend it to the domain of local changes in the magnitude of the spontaneous fluctuations. PMID:27109713

  18. Abstinence from Cocaine and Sucrose Self-Administration Reveals Altered Mesocorticolimbic Circuit Connectivity by Resting State MRI

    PubMed Central

    Lu, Hanbing; Zou, Qihong; Chefer, Svetlana; Ross, Thomas J.; Vaupel, D. Bruce; Guillem, Karine; Rea, William P.; Yang, Yihong; Peoples, Laura L.

    2014-01-01

    Abstract Previous preclinical studies have emphasized that drugs of abuse, through actions within and between mesocorticolimbic (MCL) regions, usurp learning and memory processes normally involved in the pursuit of natural rewards. To distinguish MCL circuit pathobiological neuroadaptations that accompany addiction from general learning processes associated with natural reward, we trained two groups of rats to self-administer either cocaine (IV) or sucrose (orally) followed by an identically enforced 30 day abstinence period. These procedures are known to induce behavioral changes and neuroadaptations. A third group of sedentary animals served as a negative control group for general handling effects. We examined low-frequency spontaneous fluctuations in the functional magnetic resonance imaging (fMRI) signal, known as resting-state functional connectivity (rsFC), as a measure of intrinsic neurobiological interactions between brain regions. Decreased rsFC was seen in the cocaine-SA compared with both sucrose-SA and housing control groups between prelimbic (PrL) cortex and entopeduncular nucleus and between nucleus accumbens core (AcbC) and dorsomedial prefrontal cortex (dmPFC). Moreover, individual differences in cocaine SA escalation predicted connectivity strength only in the Acb-dmPFC circuit. These data provide evidence of fronto-striatal plasticity across the addiction trajectory, which are consistent with Acb-PFC hypoactivity seen in abstinent human drug addicts, indicating potential circuit level biomarkers that may inform therapeutic interventions. They further suggest that available data from cross-sectional human studies may reflect the consequence of rather a predispositional predecessor to their dependence. PMID:24999822

  19. Microglial activation, increased TNF and SERT expression in the prefrontal cortex define stress-altered behaviour in mice susceptible to anhedonia.

    PubMed

    Couch, Yvonne; Anthony, Daniel C; Dolgov, Oleg; Revischin, Alexander; Festoff, Barry; Santos, Ana Isabel; Steinbusch, Harry W; Strekalova, Tatyana

    2013-03-01

    A chronic stress paradigm comprising exposure to predation, tail suspension and restraint induces a depressive syndrome in C57BL/6J mice that occurs in some, but not all, animals. Here, we sought to extend our behavioural studies to investigate how susceptibility (sucrose preference<65%) or resilience (sucrose preference>65%) to stress-induced anhedonia affects the 5HT system and the expression of inflammation-related genes. All chronically stressed animals, displayed increased level of anxiety, but susceptible mice exhibited an increased propensity to float in the forced swim test and demonstrate hyperactivity under stressful lighting conditions. These changes were not present in resilient or acutely stressed animals. Compared to resilient animals, susceptible mice showed elevated expression of tumour necrosis factor alpha (TNF) and the 5-HT transporter (SERT) in the pre-frontal area. Enhanced expression of 5HT(2A) and COX-1 in the pre-frontal area was observed in all stressed animals. In turn, indoleamine-2,3-dioxygenase (IDO) was significantly unregulated in the raphe of susceptible animals. At the cellular level, increased numbers of Iba-1-positive microglial cells were also present in the prefrontal area of susceptible animals compared to resilient animals. Consequently, the susceptible animals display a unique molecular profile when compared to resilient, but anxious, animals. Unexpectedly, this altered profile provides a rationale for exploring anti-inflammatory, and possibly, TNF-targeted therapy for major depression. PMID:23305936

  20. Cognition without Cortex.

    PubMed

    Güntürkün, Onur; Bugnyar, Thomas

    2016-04-01

    Assumptions on the neural basis of cognition usually focus on cortical mechanisms. Birds have no cortex, but recent studies in parrots and corvids show that their cognitive skills are on par with primates. These cognitive findings are accompanied by neurobiological discoveries that reveal avian and mammalian forebrains are homologous, and show similarities in connectivity and function down to the cellular level. But because birds have a large pallium, but no cortex, a specific cortical architecture cannot be a requirement for advanced cognitive skills. During the long parallel evolution of mammals and birds, several neural mechanisms for cognition and complex behaviors may have converged despite an overall forebrain organization that is otherwise vastly different. PMID:26944218

  1. A unique gene expression signature associated with serotonin 2C receptor RNA editing in the prefrontal cortex and altered in suicide

    PubMed Central

    Di Narzo, Antonio Fabio; Kozlenkov, Alexey; Roussos, Panos; Hao, Ke; Hurd, Yasmin; Lewis, David A.; Sibille, Etienne; Siever, Larry J.; Koonin, Eugene; Dracheva, Stella

    2014-01-01

    Editing of the pre-mRNA for the serotonin receptor 2C (5-HT2CR) by site-specific adenosine deamination (A-to-I pre-mRNA editing) substantially increases the functional plasticity of this key neurotransmitter receptor and is thought to contribute to homeostatic mechanisms in neurons. 5-HT2CR mRNA editing generates up to 24 different receptor isoforms. The extent of editing correlates with 5-HT2CR functional activity: more highly edited isoforms exhibit the least function. Altered 5-HT2CR editing has been reported in postmortem brains of suicide victims. We report a comparative analysis of the connections among 5-HT2CR editing, genome-wide gene expression and DNA methylation in suicide victims, individuals with major depressive disorder and non-psychiatric controls. The results confirm previous findings of an overrepresentation of highly edited mRNA variants (which encode hypoactive 5-HT2CR receptors) in the brains of suicide victims. A large set of genes for which the expression level is associated with editing was detected. This signature set of editing-associated genes is significantly enriched for genes that are involved in synaptic transmission, genes that are preferentially expressed in neurons, and genes whose expression is correlated with the level of DNA methylation. Notably, we report that the link between 5-HT2CR editing and gene expression is disrupted in suicide victims. The results suggest that the postulated homeostatic function of 5-HT2CR editing is dysregulated in individuals who committed suicide. PMID:24781207

  2. Similarity-Based Fusion of MEG and fMRI Reveals Spatio-Temporal Dynamics in Human Cortex During Visual Object Recognition.

    PubMed

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2016-08-01

    Every human cognitive function, such as visual object recognition, is realized in a complex spatio-temporal activity pattern in the brain. Current brain imaging techniques in isolation cannot resolve the brain's spatio-temporal dynamics, because they provide either high spatial or temporal resolution but not both. To overcome this limitation, we developed an integration approach that uses representational similarities to combine measurements of magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) to yield a spatially and temporally integrated characterization of neuronal activation. Applying this approach to 2 independent MEG-fMRI data sets, we observed that neural activity first emerged in the occipital pole at 50-80 ms, before spreading rapidly and progressively in the anterior direction along the ventral and dorsal visual streams. Further region-of-interest analyses established that dorsal and ventral regions showed MEG-fMRI correspondence in representations later than early visual cortex. Together, these results provide a novel and comprehensive, spatio-temporally resolved view of the rapid neural dynamics during the first few hundred milliseconds of object vision. They further demonstrate the feasibility of spatially unbiased representational similarity-based fusion of MEG and fMRI, promising new insights into how the brain computes complex cognitive functions. PMID:27235099

  3. Quantitative Proteomic Analysis of the Orbital Frontal Cortex in Rats Following Extended Exposure to Caffeine Reveals Extensive Changes to Protein Expression: Implications for Neurological Disease.

    PubMed

    Franklin, Jane L; Mirzaei, Mehdi; Wearne, Travis A; Homewood, Judi; Goodchild, Ann K; Haynes, Paul A; Cornish, Jennifer L

    2016-05-01

    Caffeine is a plant-derived psychostimulant and a common additive found in a wide range of foods and pharmaceuticals. The orbitofrontal cortex (OFC) is rapidly activated by flavours, integrates gustatory and olfactory information, and plays a critical role in decision-making, with dysfunction contributing to psychopathologies and neurodegenerative conditions. This study investigated whether long-term consumption of caffeine causes changes to behavior and protein expression in the OFC. Male adult Sprague-Dawley rats (n = 8 per group) were treated for 26 days with either water or a 0.6 g/L caffeine solution. Locomotor behavior was measured on the first and last day of treatment, then again after 9 days treatment free following exposure to a mild stressor. When tested drug free, caffeine-treated animals were hyperactive compared to controls. Two hours following final behavioral testing, brains were rapidly removed and prepared for proteomic analysis of the OFC. Label free shotgun proteomics found 157 proteins differentially expressed in the caffeine-drinking rats compared to control. Major proteomic effects were seen for cell-to-cell communication, cytoskeletal regulation, and mitochondrial function. Similar changes have been observed in neurological disorders including Alzheimer's disease, Parkinson's disease, and schizophrenia. PMID:26941107

  4. Direct recordings in human cortex reveal the dynamics of gamma-band [50-150 Hz] activity during pursuit eye movement control.

    PubMed

    Bastin, Julien; Lebranchu, Pierre; Jerbi, Karim; Kahane, Philippe; Orban, Guy; Lachaux, Jean-Philippe; Berthoz, Alain

    2012-10-15

    The time course of neural activity in human brain regions involved in mediating pursuit eye movements is unclear. To address this question, we recorded intracerebral electroencephalography activity in eight epileptic patients while they performed a pursuit task that dissociates reactive, predictive and inhibited pursuits. A sustained gamma band (50-150 Hz) activity corresponding to pursuit maintenance was observed in the pursuit (and not saccade) area of the frontal eye field (FEF), in the ventral intraparietal sulcus (VIPS) and in occipital areas. The latency of gamma increase was found to precede target onset in FEF and VIPS, suggesting that those areas could also be involved during pursuit preparation/initiation. During pursuit inhibition, a sustained gamma band response was observed within prefrontal areas (pre-supplementary-motor-area, dorso-lateral prefrontal and frontopolar cortex). This study describes for the first time the dynamics of the neural activity in four areas of the pursuit system, not previously available in humans. These findings provide novel timing constraints to current models of the human pursuit system and establish the relevance of direct recordings to precisely relate eye movement behavior with neural activity in humans. PMID:22819950

  5. Quantitative shotgun proteomics reveals extensive changes to the proteome of the orbitofrontal cortex in rats that are hyperactive following withdrawal from a high sugar diet.

    PubMed

    Franklin, Jane L; Mirzaei, Mehdi; Wearne, Travis A; Sauer, Melanie K; Homewood, Judi; Goodchild, Ann K; Haynes, Paul A; Cornish, Jennifer L

    2016-02-01

    In most Westernized societies, there has been an alarming increase in the consumption of sugar-sweetened drinks. For many adults these drinks represent a substantial proportion of their total daily caloric intake. Here we investigated whether extended exposure to sugar changes behavior and protein expression in the orbitofrontal cortex (OFC). Male adult Sprague-Dawley rats (n = 8 per group) were treated for 26 days with either water or a 10% sucrose solution. Locomotor behavior was measured on the first and last day of treatment, then 1 week after treatment. Following the 1-week period free from treatment, sucrose treated rats were significantly more active than the control. Two hours following final behavioral testing, brains were rapidly removed and prepared for proteomic analysis of the OFC. Label free quantitative shotgun proteomic analyses of three rats from each group found 290 proteins were differentially expressed in the sucrose treated group when compared to the control group. Major changes in the proteome were seen in proteins related to energy metabolism, mitochondrial function and the cellular response to stress. This research does not seek to suggest that sugar will cause specific neurological disorders, however similar changes in proteins have been seen in neurological disorders such as Alzheimer's disease, Parkinson's disease and schizophrenia. PMID:26621205

  6. Similarity-Based Fusion of MEG and fMRI Reveals Spatio-Temporal Dynamics in Human Cortex During Visual Object Recognition

    PubMed Central

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2016-01-01

    Every human cognitive function, such as visual object recognition, is realized in a complex spatio-temporal activity pattern in the brain. Current brain imaging techniques in isolation cannot resolve the brain's spatio-temporal dynamics, because they provide either high spatial or temporal resolution but not both. To overcome this limitation, we developed an integration approach that uses representational similarities to combine measurements of magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) to yield a spatially and temporally integrated characterization of neuronal activation. Applying this approach to 2 independent MEG–fMRI data sets, we observed that neural activity first emerged in the occipital pole at 50–80 ms, before spreading rapidly and progressively in the anterior direction along the ventral and dorsal visual streams. Further region-of-interest analyses established that dorsal and ventral regions showed MEG–fMRI correspondence in representations later than early visual cortex. Together, these results provide a novel and comprehensive, spatio-temporally resolved view of the rapid neural dynamics during the first few hundred milliseconds of object vision. They further demonstrate the feasibility of spatially unbiased representational similarity-based fusion of MEG and fMRI, promising new insights into how the brain computes complex cognitive functions. PMID:27235099

  7. Covariation between Spike and LFP Modulations Revealed with Focal and Asynchronous Stimulation of Receptive Field Surround in Monkey Primary Visual Cortex

    PubMed Central

    Kim, Kayeon; Kim, Taekjun; Yoon, Taehwan; Lee, Choongkil

    2015-01-01

    A focal visual stimulus outside the classical receptive field (RF) of a V1 neuron does not evoke a spike response by itself, and yet evokes robust changes in the local field potential (LFP). This subthreshold LFP provides a unique opportunity to investigate how changes induced by surround stimulation leads to modulation of spike activity. In the current study, two identical Gabor stimuli were sequentially presented with a variable stimulus onset asynchrony (SOA) ranging from 0 to 100 ms: the first (S1) outside the RF and the second (S2) over the RF of primary visual cortex neurons, while trained monkeys performed a fixation task. This focal and asynchronous stimulation of the RF surround enabled us to analyze the modulation of S2-evoked spike activity and covariation between spike and LFP modulation across SOA. In this condition, the modulation of S2-evoked spike response was dominantly facilitative and was correlated with the change in LFP amplitude, which was pronounced for the cells recorded in the upper cortical layers. The time course of covariation between the SOA-dependent spike modulation and LFP amplitude suggested that the subthreshold LFP evoked by the S1 can predict the magnitude of upcoming spike modulation. PMID:26670337

  8. Sex-specific effects of cytotoxic chemotherapy agents cyclophosphamide and mitomycin C on gene expression, oxidative DNA damage, and epigenetic alterations in the prefrontal cortex and hippocampus - an aging connection.

    PubMed

    Kovalchuk, Anna; Rodriguez-Juarez, Rocio; Ilnytskyy, Yaroslav; Byeon, Boseon; Shpyleva, Svitlana; Melnyk, Stepan; Pogribny, Igor; Kolb, Bryan; Kovalchuk, Olga

    2016-04-01

    Recent research shows that chemotherapy agents can be more toxic to healthy brain cells than to the target cancer cells. They cause a range of side effects, including memory loss and cognitive dysfunction that can persist long after the completion of treatment. This condition is known as chemo brain. The molecular and cellular mechanisms of chemo brain remain obscure. Here, we analyzed the effects of two cytotoxic chemotherapy drugs-cyclophosphamide (CPP) and mitomycin C (MMC) - on transcriptomic and epigenetic changes in the murine prefrontal cortex (PFC) and hippocampal regions. We for the first time showed that CPP and MMC treatments led to profound sex- and brain region-specific alterations in gene expression profiles. Gene expression changes were most prominent in the PFC tissues of female mice 3 weeks after MMC treatment, and the gene expression response was much greater for MCC than CPP exposure. MMC exposure resulted in oxidative DNA damage, evidenced by accumulation of 8-oxo-2'-deoxyguanosine (8-oxodG) and a decrease in the level of 8-oxodG repair protein OGG1 in the PFC of female animals 3 weeks after treatment. MMC treatment decreased global DNA methylation and increased DNA hydroxymethylation in the PFC tissues of female mice. The majority of the changes induced by chemotherapy in the PFC tissues of female mice resembled those that occur during the brain's aging processes. Therefore, our study suggests a link between chemotherapy-induced chemo brain and brain aging, and provides an important roadmap for future analysis. PMID:27032448

  9. Integration of tissue metabolomics, transcriptomics and immunohistochemistry reveals ERG- and gleason score-specific metabolomic alterations in prostate cancer

    PubMed Central

    Meller, Sebastian; Meyer, Hellmuth-A; Bethan, Bianca; Dietrich, Dimo; Maldonado, Sandra González; Lein, Michael; Montani, Matteo; Reszka, Regina; Schatz, Philipp; Peter, Erik; Stephan, Carsten; Jung, Klaus; Kamlage, Beate; Kristiansen, Glen

    2016-01-01

    Integrated analysis of metabolomics, transcriptomics and immunohistochemistry can contribute to a deeper understanding of biological processes altered in cancer and possibly enable improved diagnostic or prognostic tests. In this study, a set of 254 metabolites was determined by gas-chromatography/liquid chromatography-mass spectrometry in matched malignant and non-malignant prostatectomy samples of 106 prostate cancer (PCa) patients. Transcription analysis of matched samples was performed on a set of 15 PCa patients using Affymetrix U133 Plus 2.0 arrays. Expression of several proteins was immunohistochemically determined in 41 matched patient samples and the association with clinico-pathological parameters was analyzed by an integrated data analysis. These results further outline the highly deregulated metabolism of fatty acids, sphingolipids and polyamines in PCa. For the first time, the impact of the ERG translocation on the metabolome was demonstrated, highlighting an altered fatty acid oxidation in TMPRSS2-ERG translocation positive PCa specimens. Furthermore, alterations in cholesterol metabolism were found preferentially in high grade tumors, enabling the cells to create energy storage. With this integrated analysis we could not only confirm several findings from previous metabolomic studies, but also contradict others and finally expand our concepts of deregulated biological pathways in PCa. PMID:26623558

  10. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease.

    PubMed

    Jiang, Qiong; Chen, Shuangxi; Hu, Chengliang; Huang, Peizhi; Shen, Huifan; Zhao, Weijiang

    2016-09-01

    Alzheimer's disease (AD), one of the neurodegenerative disorders that may develop in the elderly, is characterized by the deposition of β‑amyloid protein (Aβ) and extensive neuronal cell death in the brain. Neuregulin‑1 (Nrg1)‑mediated intercellular and intracellular communication via binding to ErbB receptors regulates a diverse set of biological processes involved in the development of the nervous system. In the present study, a linear correlation was identified between Nrg1 and phosphorylated ErbB (pNeu and pErbB4) receptors in a human cortical tissue microarray. In addition, increased expression levels of Nrg1, but reduced pErbB receptor levels, were detected in the frontal lobe of a patient with AD. Western blotting and immunofluorescence staining were subsequently performed to uncover the potential preventive role of Nrg1 in cortical neurons affected by the neurodegenerative processes of AD. It was observed that the expression of Nrg1 increased as the culture time of the cortical neurons progressed. In addition, H2O2 and Aβ1‑42, two inducers of oxidative stress and neuronal damage, led to a dose‑dependent decrease in Nrg1 expression. Recombinant Nrg1β, however, was revealed to exert a pivotal role in preventing oxidative stress and neuronal damage from occurring in the mouse cortical neurons. Taken together, these results suggest that changes in Nrg1 signaling may influence the pathological development of AD, and exogenous Nrg1 may serve as a potential candidate for the prevention and treatment of AD. PMID:27486021

  11. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease

    PubMed Central

    Jiang, Qiong; Chen, Shuangxi; Hu, Chengliang; Huang, Peizhi; Shen, Huifan; Zhao, Weijiang

    2016-01-01

    Alzheimer's disease (AD), one of the neurodegenerative disorders that may develop in the elderly, is characterized by the deposition of β-amyloid protein (Aβ) and extensive neuronal cell death in the brain. Neuregulin-1 (Nrg1)-mediated intercellular and intracellular communication via binding to ErbB receptors regulates a diverse set of biological processes involved in the development of the nervous system. In the present study, a linear correlation was identified between Nrg1 and phosphorylated ErbB (pNeu and pErbB4) receptors in a human cortical tissue microarray. In addition, increased expression levels of Nrg1, but reduced pErbB receptor levels, were detected in the frontal lobe of a patient with AD. Western blotting and immunofluorescence staining were subsequently performed to uncover the potential preventive role of Nrg1 in cortical neurons affected by the neurodegenerative processes of AD. It was observed that the expression of Nrg1 increased as the culture time of the cortical neurons progressed. In addition, H2O2 and Aβ1–42, two inducers of oxidative stress and neuronal damage, led to a dose-dependent decrease in Nrg1 expression. Recombinant Nrg1β, however, was revealed to exert a pivotal role in preventing oxidative stress and neuronal damage from occurring in the mouse cortical neurons. Taken together, these results suggest that changes in Nrg1 signaling may influence the pathological development of AD, and exogenous Nrg1 may serve as a potential candidate for the prevention and treatment of AD. PMID:27486021

  12. Proteomic profiling of neuromas reveals alterations in protein composition and local protein synthesis in hyper-excitable nerves

    PubMed Central

    Huang, Hong-Lei; Cendan, Cruz-Miguel; Roza, Carolina; Okuse, Kenji; Cramer, Rainer; Timms, John F; Wood, John N

    2008-01-01

    Neuropathic pain may arise following peripheral nerve injury though the molecular mechanisms associated with this are unclear. We used proteomic profiling to examine changes in protein expression associated with the formation of hyper-excitable neuromas derived from rodent saphenous nerves. A two-dimensional difference gel electrophoresis (2D-DIGE) profiling strategy was employed to examine protein expression changes between developing neuromas and normal nerves in whole tissue lysates. We found around 200 proteins which displayed a >1.75-fold change in expression between neuroma and normal nerve and identified 55 of these proteins using mass spectrometry. We also used immunoblotting to examine the expression of low-abundance ion channels Nav1.3, Nav1.8 and calcium channel α2δ-1 subunit in this model, since they have previously been implicated in neuronal hyperexcitability associated with neuropathic pain. Finally, S35methionine in vitro labelling of neuroma and control samples was used to demonstrate local protein synthesis of neuron-specific genes. A number of cytoskeletal proteins, enzymes and proteins associated with oxidative stress were up-regulated in neuromas, whilst overall levels of voltage-gated ion channel proteins were unaffected. We conclude that altered mRNA levels reported in the somata of damaged DRG neurons do not necessarily reflect levels of altered proteins in hyper-excitable damaged nerve endings. An altered repertoire of protein expression, local protein synthesis and topological re-arrangements of ion channels may all play important roles in neuroma hyper-excitability. PMID:18700027

  13. Exome capture sequencing of adenoma reveals genetic alterations in multiple cellular pathways at the early stage of colorectal tumorigenesis.

    PubMed

    Zhou, Donger; Yang, Liu; Zheng, Liangtao; Ge, Weiting; Li, Dan; Zhang, Yong; Hu, Xueda; Gao, Zhibo; Xu, Jinghong; Huang, Yanqin; Hu, Hanguang; Zhang, Hang; Zhang, Hao; Liu, Mingming; Yang, Huanming; Zheng, Lei; Zheng, Shu

    2013-01-01

    Most of colorectal adenocarcinomas are believed to arise from adenomas, which are premalignant lesions. Sequencing the whole exome of the adenoma will help identifying molecular biomarkers that can predict the occurrence of adenocarcinoma more precisely and help understanding the molecular pathways underlying the initial stage of colorectal tumorigenesis. We performed the exome capture sequencing of the normal mucosa, adenoma and adenocarcinoma tissues from the same patient and sequenced the identified mutations in additional 73 adenomas and 288 adenocarcinomas. Somatic single nucleotide variations (SNVs) were identified in both the adenoma and adenocarcinoma by comparing with the normal control from the same patient. We identified 12 nonsynonymous somatic SNVs in the adenoma and 42 nonsynonymous somatic SNVs in the adenocarcinoma. Most of these mutations including OR6X1, SLC15A3, KRTHB4, RBFOX1, LAMA3, CDH20, BIRC6, NMBR, GLCCI1, EFR3A, and FTHL17 were newly reported in colorectal adenomas. Functional annotation of these mutated genes showed that multiple cellular pathways including Wnt, cell adhesion and ubiquitin mediated proteolysis pathways were altered genetically in the adenoma and that the genetic alterations in the same pathways persist in the adenocarcinoma. CDH20 and LAMA3 were mutated in the adenoma while NRXN3 and COL4A6 were mutated in the adenocarcinoma from the same patient, suggesting for the first time that genetic alterations in the cell adhesion pathway occur as early as in the adenoma. Thus, the comparison of genomic mutations between adenoma and adenocarcinoma provides us a new insight into the molecular events governing the early step of colorectal tumorigenesis. PMID:23301059

  14. Comprehensive genomic profiling of inflammatory breast cancer cases reveals a high frequency of clinically relevant genomic alterations.

    PubMed

    Ross, Jeffrey S; Ali, Siraj M; Wang, Kai; Khaira, Depinder; Palma, Norma A; Chmielecki, Juliann; Palmer, Gary A; Morosini, Deborah; Elvin, Julia A; Fernandez, Sandra V; Miller, Vincent A; Stephens, Philip J; Cristofanilli, Massimo

    2015-11-01

    Inflammatory breast cancer (IBC) is a distinct clinicopathologic entity that carries a worse prognosis relative to non-IBC breast cancer even when matched for standard biomarkers (ER/PR/HER2). The objective of this study was to identify opportunities for benefit from targeted therapy, which are not currently identifiable in the standard workup for advanced breast cancer. Comprehensive genomic profiling on 53 IBC formalin-fixed paraffin-embedded specimens (mean, 800× + coverage) using the hybrid capture-based FoundationOne assay. Academic and community oncology clinics. From a series of 2208 clinical cases of advanced/refractory invasive breast cancers, 53 cases with IBC were identified. The presence of clinically relevant genomic alterations (CRGA) in IBC and responses to targeted therapies. CRGA were defined as genomic alterations (GA) associated with on label targeted therapies and targeted therapies in mechanism-driven clinical trials. For the 44 IBCs with available biomarker data, 19 (39 %) were ER-/PR-/HER2- (triple-negative breast cancer, TNBC). For patients in which the clinical HER2 status was known, 11 (25 %) were HER2+ with complete (100 %) concordance with ERBB2 (HER2) amplification detected by the CGP assay. The 53 sequenced IBC cases harbored a total of 266 GA with an average of 5.0 GA/tumor (range 1-15). At least one alteration associated with an FDA approved therapy or clinical trial was identified in 51/53 (96 %) of cases with an average of 2.6 CRGA/case. The most frequently altered genes were TP53 (62 %), MYC (32 %), PIK3CA (28 %), ERBB2 (26 %), FGFR1 (17 %), BRCA2 (15 %), and PTEN (15 %). In the TNBC subset of IBC, 8/19 (42 %) showed MYC amplification (median copy number 8X, range 7-20) as compared to 9/32 (28 %) in non-TNBC IBC (median copy number 7X, range 6-21). Comprehensive genomic profiling uncovered a high frequency of GA in IBC with 96 % of cases harboring at least 1 CRGA. The clinical benefit of selected targeted

  15. Bisphenol A-associated alterations in genome-wide DNA methylation and gene expression patterns reveal sequence-dependent and non-monotonic effects in human fetal liver

    PubMed Central

    Faulk, Christopher; Kim, Jung H.; Jones, Tamara R.; McEachin, Richard C.; Nahar, Muna S.; Dolinoy, Dana C.; Sartor, Maureen A.

    2016-01-01

    Bisphenol A (BPA), a high production volume chemical widely used in consumer products, is an endocrine active compound associated with complex epigenetic responses in animal models and humans. Developmental BPA exposure in mice previously revealed widespread changes in the mouse liver methylome. Here, we undertake the first epigenome-wide analysis of the effect of BPA concentration on human fetal liver DNA methylation. Enzymatic enrichment of genomic DNA for high CG density and methylation followed by next-generation sequencing yielded data for positional methylation across the genome. Comparing three groups of BPA-exposed subjects (n=18; 6 per group), high (35.44–96.76 ng/g), low (3.50 to 5.79 ng/g), and non-detect (<0.83 ng/g), revealed regions of altered methylation. Similar numbers of regions of altered methylations were detected in pairwise comparisons; however, their genomic locations were distinct between the non-detect and low or high BPA groups. In general, BPA levels were positively associated with methylation in CpG islands and negatively associated with methylation in CpG shores, shelves, and repetitive regions. DNA methylation at the SNORD imprinted cluster (15q11q13) illustrated both linear and non-monotonic associations with BPA levels. Integrated methylation and RNA-sequencing gene expression analysis revealed differential regulation of transcription at low BPA levels, as well as expression changes in RNA for ligand-binding proteins as BPA levels increase. BPA levels in human fetal liver tissue are associated with complex linear and non-monotonic as well as sequence-dependent alterations in DNA methylation. Future longitudinal studies are needed to link these changes with altered health risks.

  16. Sensory experience modifies feature map relationships in visual cortex.

    PubMed

    Cloherty, Shaun L; Hughes, Nicholas J; Hietanen, Markus A; Bhagavatula, Partha S; Goodhill, Geoffrey J; Ibbotson, Michael R

    2016-01-01

    The extent to which brain structure is influenced by sensory input during development is a critical but controversial question. A paradigmatic system for studying this is the mammalian visual cortex. Maps of orientation preference (OP) and ocular dominance (OD) in the primary visual cortex of ferrets, cats and monkeys can be individually changed by altered visual input. However, the spatial relationship between OP and OD maps has appeared immutable. Using a computational model we predicted that biasing the visual input to orthogonal orientation in the two eyes should cause a shift of OP pinwheels towards the border of OD columns. We then confirmed this prediction by rearing cats wearing orthogonally oriented cylindrical lenses over each eye. Thus, the spatial relationship between OP and OD maps can be modified by visual experience, revealing a previously unknown degree of brain plasticity in response to sensory input. PMID:27310531

  17. Sensory experience modifies feature map relationships in visual cortex

    PubMed Central

    Cloherty, Shaun L; Hughes, Nicholas J; Hietanen, Markus A; Bhagavatula, Partha S

    2016-01-01

    The extent to which brain structure is influenced by sensory input during development is a critical but controversial question. A paradigmatic system for studying this is the mammalian visual cortex. Maps of orientation preference (OP) and ocular dominance (OD) in the primary visual cortex of ferrets, cats and monkeys can be individually changed by altered visual input. However, the spatial relationship between OP and OD maps has appeared immutable. Using a computational model we predicted that biasing the visual input to orthogonal orientation in the two eyes should cause a shift of OP pinwheels towards the border of OD columns. We then confirmed this prediction by rearing cats wearing orthogonally oriented cylindrical lenses over each eye. Thus, the spatial relationship between OP and OD maps can be modified by visual experience, revealing a previously unknown degree of brain plasticity in response to sensory input. DOI: http://dx.doi.org/10.7554/eLife.13911.001 PMID:27310531

  18. Deep sequencing of the hepatitis B virus in hepatocellular carcinoma patients reveals enriched integration events, structural alterations and sequence variations.

    PubMed

    Toh, Soo Ting; Jin, Yu; Liu, Lizhen; Wang, Jingbo; Babrzadeh, Farbod; Gharizadeh, Baback; Ronaghi, Mostafa; Toh, Han Chong; Chow, Pierce Kah-Hoe; Chung, Alexander Y-F; Ooi, London L-P-J; Lee, Caroline G-L

    2013-04-01

    Chronic hepatitis B virus (HBV) infection is epidemiologically associated with hepatocellular carcinoma (HCC), but its role in HCC remains poorly understood due to technological limitations. In this study, we systematically characterize HBV in HCC patients. HBV sequences were enriched from 48 HCC patients using an oligo-bead-based strategy, pooled together and sequenced using the FLX-Genome-Sequencer. In the tumors, preferential integration of HBV into promoters of genes (P < 0.001) and significant enrichment of integration into chromosome 10 (P < 0.01) were observed. Integration into chromosome 10 was significantly associated with poorly differentiated tumors (P < 0.05). Notably, in the tumors, recurrent integration into the promoter of the human telomerase reverse transcriptase (TERT) gene was found to correlate with increased TERT expression. The preferred region within the HBV genome involved in integration and viral structural alteration is at the 3'-end of hepatitis B virus X protein (HBx), where viral replication/transcription initiates. Upon integration, the 3'-end of the HBx is often deleted. HBx-human chimeric transcripts, the most common type of chimeric transcripts, can be expressed as chimeric proteins. Sequence variation resulting in non-conservative amino acid substitutions are commonly observed in HBV genome. This study highlights HBV as highly mutable in HCC patients with preferential regions within the host and virus genome for HBV integration/structural alterations. PMID:23276797

  19. MicroRNA Expression Is Altered in an Ovalbumin-Induced Asthma Model and Targeting miR-155 with Antagomirs Reveals Cellular Specificity

    PubMed Central

    Plank, Maximilian W.; Maltby, Steven; Tay, Hock L.; Stewart, Jessica; Eyers, Fiona; Hansbro, Philip M.; Foster, Paul S.

    2015-01-01

    MicroRNAs are post-transcriptional regulators of gene expression that are differentially regulated during development and in inflammatory diseases. A role for miRNAs in allergic asthma is emerging and further investigation is required to determine whether they may serve as potential therapeutic targets. We profiled miRNA expression in murine lungs from an ovalbumin-induced allergic airways disease model, and compared expression to animals receiving dexamethasone treatment and non-allergic controls. Our analysis identified 29 miRNAs that were significantly altered during allergic inflammation. Target prediction analysis revealed novel genes with altered expression in allergic airways disease and suggests synergistic miRNA regulation of target mRNAs. To assess the impacts of one induced miRNA on pathology, we targeted miR-155-5p using a specific antagomir. Antagomir administration successfully reduced miR-155-5p expression with high specificity, but failed to alter the disease phenotype. Interestingly, further investigation revealed that antagomir delivery has variable efficacy across different immune cell types, effectively targeting myeloid cell populations, but exhibiting poor uptake in lymphocytes. Our findings demonstrate that antagomir-based targeting of miRNA function in the lung is highly specific, but highlights cell-specificity as a key limitation to be considered for antagomir-based strategies as therapeutics. PMID:26693910

  20. Microarray Analysis Reveals Higher Gestational Folic Acid Alters Expression of Genes in the Cerebellum of Mice Offspring—A Pilot Study

    PubMed Central

    Barua, Subit; Kuizon, Salomon; Chadman, Kathryn K.; Brown, W. Ted; Junaid, Mohammed A.

    2015-01-01

    Folate is a water-soluble vitamin that is critical for nucleotide synthesis and can modulate methylation of DNA by altering one-carbon metabolism. Previous studies have shown that folate status during pregnancy is associated with various congenital defects including the risk of aberrant neural tube closure. Maternal exposure to a methyl supplemented diet also can alter DNA methylation and gene expression, which may influence the phenotype of offspring. We investigated if higher gestational folic acid (FA) in the diet dysregulates the expression of genes in the cerebellum of offspring in C57BL/6 J mice. One week before gestation and throughout the pregnancy, groups of dams were supplemented with FA either at 2 mg/kg or 20 mg/kg of diet. Microarray analysis was used to investigate the genome wide gene expression profile in the cerebellum from day old pups. Our results revealed that exposure to the higher dose FA diet during gestation dysregulated expression of several genes in the cerebellum of both male and female pups. Several transcription factors, imprinted genes, neuro-developmental genes and genes associated with autism spectrum disorder exhibited altered expression levels. These findings suggest that higher gestational FA potentially dysregulates gene expression in the offspring brain and such changes may adversely alter fetal programming and overall brain development. PMID:25629700

  1. Integrated Proteomic and Glycoproteomic Analyses of Prostate Cancer Cells Reveal Glycoprotein Alteration in Protein Abundance and Glycosylation.

    PubMed

    Shah, Punit; Wang, Xiangchun; Yang, Weiming; Toghi Eshghi, Shadi; Sun, Shisheng; Hoti, Naseruddin; Chen, Lijun; Yang, Shuang; Pasay, Jered; Rubin, Abby; Zhang, Hui

    2015-10-01

    Prostate cancer is the most common cancer among men in the U.S. and worldwide, and androgen-deprivation therapy remains the principal treatment for patients. Although a majority of patients initially respond to androgen-deprivation therapy, most will eventually develop castration resistance. An increased understanding of the mechanisms that underline the pathogenesis of castration resistance is therefore needed to develop novel therapeutics. LNCaP and PC3 prostate cancer cell lines are models for androgen-dependence and androgen-independence, respectively. Herein, we report the comparative analysis of these two prostate cancer cell lines using integrated global proteomics and glycoproteomics. Global proteome profiling of the cell lines using isobaric tags for relative and absolute quantitation (iTRAQ) labeling and two- dimensional (2D) liquid chromatography-tandem MS (LC-MS/MS) led to the quantification of 8063 proteins. To analyze the glycoproteins, glycosite-containing peptides were isolated from the same iTRAQ-labeled peptides from the cell lines using solid phase extraction followed by LC-MS/MS analysis. Among the 1810 unique N-linked glycosite-containing peptides from 653 identified N-glycoproteins, 176 glycoproteins were observed to be different between the two cell lines. A majority of the altered glycoproteins were also observed with changes in their global protein expression levels. However, alterations in 21 differentially expressed glycoproteins showed no change at the protein abundance level, indicating that the glycosylation site occupancy was different between the two cell lines. To determine the glycosylation heterogeneity at specific glycosylation sites, we further identified and quantified 1145 N-linked glycopeptides with attached glycans in the same iTRAQ-labeled samples. These intact glycopeptides contained 67 glycan compositions and showed increased fucosylation in PC3 cells in several of the examined glycosylation sites. The increase in

  2. Fetal Liver Bisphenol A Concentrations and Biotransformation Gene Expression Reveal Variable Exposure and Altered Capacity for Metabolism in Humans

    PubMed Central

    Nahar, Muna S.; Liao, Chunyang; Kannan, Kurunthachalam; Dolinoy, Dana C.

    2013-01-01

    Widespread exposure to the endocrine active compound, bisphenol A (BPA), is well documented in humans. A growing body of literature suggests adverse health outcomes associated with varying ranges of exposure to BPA. In the current study, we measured the internal dose of free BPA and conjugated BPA and evaluated gene expression of bio-transformation enzymes specific for BPA metabolism in 50 first- and second-trimester human fetal liver samples. Both free BPA and conjugated BPA concentrations varied widely, with free BPA exhibiting three times higher concentrations than conjugated BPA concentrations. As compared to gender-matched adult liver controls, UDP-glucuronyltransferase, sulfotransferase, and steroid sulfatase genes exhibited reduced expression whereas β-glucuronidase mRNA expression remained unchanged in the fetal tissues. This study provides evidence that there is considerable exposure to BPA during human pregnancy and that the capacity for BPA metabolism is altered in the human fetal liver. PMID:23208979

  3. Global analyses revealed age-related alterations in innate immune responses after stimulation of pathogen recognition receptors.

    PubMed

    Metcalf, Talibah U; Cubas, Rafael A; Ghneim, Khader; Cartwright, Michael J; Grevenynghe, Julien Van; Richner, Justin M; Olagnier, David P; Wilkinson, Peter A; Cameron, Mark J; Park, Byung S; Hiscott, John B; Diamond, Michael S; Wertheimer, Anne M; Nikolich-Zugich, Janko; Haddad, Elias K

    2015-06-01

    Aging leads to dysregulation of multiple components of the immune system that results in increased susceptibility to infections and poor response to vaccines in the aging population. The dysfunctions of adaptive B and T cells are well documented, but the effect of aging on innate immunity remains incompletely understood. Using a heterogeneous population of peripheral blood mononuclear cells (PBMCs), we first undertook transcriptional profiling and found that PBMCs isolated from old individuals (≥ 65 years) exhibited a delayed and altered response to stimulation with TLR4, TLR7/8, and RIG-I agonists compared to cells obtained from adults (≤ 40 years). This delayed response to innate immune agonists resulted in the reduced production of pro-inflammatory and antiviral cytokines and chemokines including TNFα, IL-6, IL-1β, IFNα, IFNγ, CCL2, and CCL7. While the major monocyte and dendritic cell subsets did not change numerically with aging, activation of specific cell types was altered. PBMCs from old subjects also had a lower frequency of CD40+ monocytes, impaired up-regulation of PD-L1 on monocytes and T cells, and increased expression of PD-L2 and B7-H4 on B cells. The defective immune response to innate agonists adversely affected adaptive immunity as TLR-stimulated PBMCs (minus CD3 T cells) from old subjects elicited significantly lower levels of adult T-cell proliferation than those from adult subjects in an allogeneic mixed lymphocyte reaction (MLR). Collectively, these age-associated changes in cytokine, chemokine and interferon production, as well as co-stimulatory protein expression could contribute to the blunted memory B- and T-cell immune responses to vaccines and infections. PMID:25728020

  4. A novel automated test battery reveals enduring behavioural alterations and cognitive impairments in survivors of murine pneumococcal meningitis.

    PubMed

    Too, L K; Ball, H J; McGregor, I S; Hunt, N H

    2014-01-01

    Pneumococcal meningitis, caused by Streptococcus pneumoniae infection, is a major form of lethal bacterial meningitis. Survivors are predisposed to developing lifelong disabling sequelae, including cognitive impairment, psychological problems and motor deficits. In our experimental model, ventricular inoculation of 10(5) colony-forming units of S. pneumoniae type 3 caused 90% of mice to develop life-threatening meningitis within 48 h. Antibiotic treatment with ceftriaxone 20 h post infection reduced the incidence of severe meningitis to <10%. At the time of treatment, upregulation of pro-inflammatory cytokines was detected, including interleukin-1β, interleukin-6 and tumour necrosis factor. We evaluated the long-term behavioural and cognitive sequelae in control mice and those surviving meningitis using an automated system (the IntelliCage) in which mice perform a range of behavioural and spatial tasks to obtain water rewards from conditioning units in their home cage. Surviving mice showed a number of altered behaviours relative to controls, including (i) hypoexploration when first exposed to the IntelliCage, (ii) altered activity patterns (fewer visits to conditioning stations during the light phase and more in the dark phase), (iii) avoidance of light (a constant or flashing LED stimulus), (iv) impaired spatial learning (a complex patrolling task), and (v) impaired discrimination reversal learning. Overall these results suggest photophobia and weakened learning ability in post-meningitic mice, particularly on tasks engaging hippocampal and prefrontal neural substrates. This study also demonstrates a standardised and comprehensive battery of tests that can be readily used to investigate neurological sequelae in undisturbed mice residing in a complex home cage environment. PMID:24060586

  5. cDNA microarray reveals the alterations of cytoskeleton-related genes in osteoblast under high magneto-gravitational environment.

    PubMed

    Qian, Airong; Di, Shengmeng; Gao, Xiang; Zhang, Wei; Tian, Zongcheng; Li, Jingbao; Hu, Lifang; Yang, Pengfei; Yin, Dachuan; Shang, Peng

    2009-07-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has been widely applied in many fields. In this study, a special designed superconducting magnet, which can produce three apparent gravity levels (0, 1, and 2 g), namely high magneto-gravitational environment (HMGE), was used to simulate space gravity environment. The effects of HMGE on osteoblast gene expression profile were investigated by microarray. Genes sensitive to diamagnetic levitation environment (0 g), gravity changes, and high magnetic field changes were sorted on the basis of typical cell functions. Cytoskeleton, as an intracellular load-bearing structure, plays an important role in gravity perception. Therefore, 13 cytoskeleton-related genes were chosen according to the results of microarray analysis, and the expressions of these genes were found to be altered under HMGE by real-time PCR. Based on the PCR results, the expressions of WASF2 (WAS protein family, member 2), WIPF1 (WAS/WASL interacting protein family, member 1), paxillin, and talin 1 were further identified by western blot assay. Results indicated that WASF2 and WIPF1 were more sensitive to altered gravity levels, and talin 1 and paxillin were sensitive to both magnetic field and gravity changes. Our findings demonstrated that HMGE can affect osteoblast gene expression profile and cytoskeleton-related genes expression. The identification of mechanosensitive genes may enhance our understandings to the mechanism of bone loss induced by microgravity and may provide some potential targets for preventing and treating bone loss or osteoporosis. PMID:19578720

  6. Global analyses revealed age-related alterations in innate immune responses after stimulation of pathogen recognition receptors

    PubMed Central

    Metcalf, Talibah U; Cubas, Rafael A; Ghneim, Khader; Cartwright, Michael J; Grevenynghe, Julien Van; Richner, Justin M; Olagnier, David P; Wilkinson, Peter A; Cameron, Mark J; Park, Byung S; Hiscott, John B; Diamond, Michael S; Wertheimer, Anne M; Nikolich-Zugich, Janko; Haddad, Elias K

    2015-01-01

    Aging leads to dysregulation of multiple components of the immune system that results in increased susceptibility to infections and poor response to vaccines in the aging population. The dysfunctions of adaptive B and T cells are well documented, but the effect of aging on innate immunity remains incompletely understood. Using a heterogeneous population of peripheral blood mononuclear cells (PBMCs), we first undertook transcriptional profiling and found that PBMCs isolated from old individuals (≥ 65 years) exhibited a delayed and altered response to stimulation with TLR4, TLR7/8, and RIG-I agonists compared to cells obtained from adults (≤ 40 years). This delayed response to innate immune agonists resulted in the reduced production of pro-inflammatory and antiviral cytokines and chemokines including TNFα, IL-6, IL-1β, IFNα, IFNγ, CCL2, and CCL7. While the major monocyte and dendritic cell subsets did not change numerically with aging, activation of specific cell types was altered. PBMCs from old subjects also had a lower frequency of CD40+ monocytes, impaired up-regulation of PD-L1 on monocytes and T cells, and increased expression of PD-L2 and B7-H4 on B cells. The defective immune response to innate agonists adversely affected adaptive immunity as TLR-stimulated PBMCs (minus CD3 T cells) from old subjects elicited significantly lower levels of adult T-cell proliferation than those from adult subjects in an allogeneic mixed lymphocyte reaction (MLR). Collectively, these age-associated changes in cytokine, chemokine and interferon production, as well as co-stimulatory protein expression could contribute to the blunted memory B- and T-cell immune responses to vaccines and infections. PMID:25728020

  7. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex

    PubMed Central

    Scott, Gregory D.; Karns, Christina M.; Dow, Mark W.; Stevens, Courtney; Neville, Helen J.

    2014-01-01

    Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl's gyrus. In addition to reorganized auditory cortex (cross-modal plasticity), a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case), as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral vs. perifoveal visual stimulation (11–15° vs. 2–7°) in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl's gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl's gyrus) indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral vs. perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory, and multisensory and/or supramodal regions, such as posterior parietal cortex (PPC), frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal, and multisensory regions, to altered visual processing in congenitally deaf

  8. Sex-specific effects of cytotoxic chemotherapy agents cyclophospha-mide and mitomycin C on gene expression, oxidative DNA damage, and epigenetic alterations in the prefrontal cortex and hippocampus – an aging connection

    PubMed Central

    Kovalchuk, Anna; Rodriguez-Juarez, Rocio; Ilnytskyy, Yaroslav; Byeon, Boseon; Shpyleva, Svitlana; Melnyk, Stepan; Pogribny, Igor; Kolb, Bryan; Kovalchuk, Olga

    2016-01-01

    Recent research shows that chemotherapy agents can be more toxic to healthy brain cells than to the target cancer cells. They cause a range of side effects, including memory loss and cognitive dysfunction that can persist long after the completion of treatment. This condition is known as chemo brain. The molecular and cellular mechanisms of chemo brain remain obscure. Here, we analyzed the effects of two cytotoxic chemotherapy drugs—cyclophosphamide (CPP) and mitomycin C (MMC) - on transcriptomic and epigenetic changes in the murine prefrontal cortex (PFC) and hippocampal regions. We for the first time showed that CPP and MMC treatments led to profound sex- and brain region-specific alterations in gene expression profiles. Gene expression changes were most prominent in the PFC tissues of female mice 3 weeks after MMC treatment, and the gene expression response was much greater for MCC than CPP exposure. MMC exposure resulted in oxidative DNA damage, evidenced by accumulation of 8-oxo-2′-deoxyguanosine (8-oxodG) and a decrease in the level of 8-oxodG repair protein OGG1 in the PFC of female animals 3 weeks after treatment. MMC treatment decreased global DNA methylation and increased DNA hydroxymethylation in the PFC tissues of female mice. The majority of the changes induced by chemotherapy in the PFC tissues of female mice resembled those that occur during the brain's aging processes. Therefore, our study suggests a link between chemotherapy-induced chemo brain and brain aging, and provides an important roadmap for future analysis. PMID:27032448

  9. CX-516 Cortex pharmaceuticals.

    PubMed

    Danysz, Wojciech

    2002-07-01

    CX-516 is one of a series of AMPA modulators under development by Cortex, in collaboration with Shire and Servier, for the potential treatment of Alzheimer's disease (AD), schizophrenia and mild cognitive impairment (MCI) [234221]. By June 2001, CX-516 was in phase II trials for both schizophrenia and attention deficit hyperactivity disorder (ADHD) [412513]. A phase II trial in fragile X syndrome and autism was expected to start in May 2002 [449861]. In October 2001, Cortex was awarded a Phase II SBIR grant of $769,818 from the National Institutes of Mental Health to investigate the therapeutic potential of AMPAkines in schizophrenia. This award was to support a phase IIb study of CX-516 as a combination therapy in schizophrenia patients concomitantly treated with olanzapine. The trial was to enroll 80 patients and employ a randomized, double-blind, placebo-controlled design in which the placebo group was to receive olanzapine plus placebo and the active group was to receive olanzapine plus CX-516 [425982]. In April 2000, Shire and Cortex signed an option agreement in which Shire was to evaluate CX-516for the treatment of ADHD. Under the terms of the agreement, Shire would undertake a double-blind, placebo-controlled evaluation of CX-516 involving ADHD patients. If the study proved effective, Shire would have the right to convert its option into an exclusive worldwide license for the AMPAkines for ADHD under a development and licensing agreement. Should Shire elect to execute this agreement, Shire would bear all future developmental costs [363618]. By February 2002, Cortex and Servier had revealed their intention to begin enrolment for an international study of an AMPAkine compound as a potential treatment for MCI in the near future. Assuming enrollment proceeded as anticipated, results were expected during the second quarter of 2003 [439301]. By May 2002, phase II trials were underway [450134]. In March 2002, Cortex was awarded extended funding under the

  10. Gentamicin differentially alters cellular metabolism of cochlear hair cells as revealed by NAD(P)H fluorescence lifetime imaging

    PubMed Central

    Zholudeva, Lyandysha V.; Ward, Kristina G.; Nichols, Michael G.; Smith, Heather Jensen

    2015-01-01

    Abstract. Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). Changes in metabolic state resulted in a redistribution of NAD(P)H between subcellular fluorescence lifetime pools. Supporting cells had a significantly longer lifetime than sensory cells. Pretreatment with GM increased NAD(P)H intensity in high-frequency sensory cells, as well as the NAD(P)H lifetime within IHCs. GM specifically increased NAD(P)H concentration in high-frequency OHCs, but not in IHCs or pillar cells. Variations in NAD(P)H intensity in response to mitochondrial toxins and GM were greatest in high-frequency OHCs. These results demonstrate that GM rapidly alters mitochondrial metabolism, differentially modulates cell metabolism, and provides evidence that GM-induced changes in metabolism are significant and greatest in high-frequency OHCs. PMID:25688541

  11. An integrated approach to reveal miRNAs' impacts on the functional consequence of copy number alterations in cancer.

    PubMed

    Li, Kening; Liu, Yongjing; Zhou, Yuanshuai; Zhang, Rui; Zhao, Ning; Yan, Zichuang; Zhang, Qiang; Zhang, Shujuan; Qiu, Fujun; Xu, Yan

    2015-01-01

    Copy number alteration (CNA) is known to induce gene expression changes mainly through dosage effect, and therefore affect the initiation and progression of tumor. However, tumor samples exhibit heterogeneity in gene dosage sensitivity due to the complicated mechanisms of transcriptional regulation. Currently, no high-throughput method has been available for identifying the regulatory factors affecting the functional consequences of CNA, and determining their effects on cancer. In view of the important regulatory role of miRNA, we investigated the influence of miRNAs on the dosage sensitivities of genes within the CNA regions. By integrating copy number, mRNA expression, miRNA expression profiles of three kinds of cancer, we observed a tendency for high dosage-sensitivity genes to be more targeted by miRNAs in cancer, and identified the miRNAs regulating the dosage sensitivity of amplified/deleted target genes. The results show that miRNAs can modulate oncogenic biological functions by regulating the genes within the CNA regions, and thus play a role as a trigger or balancer in cancer, affecting cancer processes, even survival. This work provided a framework for analyzing the regulation of dosage effect, which will shed a light on understanding the oncogenic and tumor suppressive mechanisms of CNA. Besides, new cancer-related miRNAs were identified. PMID:26099552

  12. Comparative analysis of somatic copy-number alterations across different human cancer types reveals two distinct classes of breakpoint hotspots

    PubMed Central

    Li, Yudong; Zhang, Li; Ball, Robyn L.; Liang, Xinle; Li, Jianrong; Lin, Zhenguo; Liang, Han

    2012-01-01

    Somatic copy-number alterations (SCNAs) play a crucial role in the development of human cancer. However, it is not well understood what evolutionary mechanisms contribute to the global patterns of SCNAs in cancer genomes. Taking advantage of data recently available through The Cancer Genome Atlas, we performed a systematic analysis on genome-wide SCNA breakpoint data for eight cancer types. First, we observed a high degree of overall similarity among the SCNA breakpoint landscapes of different cancer types. Then, we compiled 19 genomic features and evaluated their effects on the observed SCNA patterns. We found that evolutionary indel and substitution rates between species (i.e. humans and chimpanzees) consistently show the strongest correlations with breakpoint frequency among all the surveyed features; whereas the effects of some features are quite cancer-type dependent. Focusing on SCNA breakpoint hotspots, we found that cancer-type-specific breakpoint hotspots and common hotspots show distinct patterns. Cancer-type-specific hotspots are enriched with known cancer genes but are poorly predicted from genomic features; whereas common hotspots show the opposite patterns. This contrast suggests that explaining high-frequency SCNAs in cancer may require different evolutionary models: positive selection driven by cancer genes, and non-adaptive evolution related to an intrinsically unstable genomic context. Our results not only present a systematic view of the effects of genetic factors on genome-wide SCNA patterns, but also provide deep insights into the evolutionary process of SCNAs in cancer. PMID:22899649

  13. Metabonomic Analysis Reveals Efficient Ameliorating Effects of Acupoint Stimulations on the Menopause-caused Alterations in Mammalian Metabolism

    NASA Astrophysics Data System (ADS)

    Zhang, Limin; Wang, Yulan; Xu, Yunxiang; Lei, Hehua; Zhao, Ying; Li, Huihui; Lin, Xiaosheng; Chen, Guizhen; Tang, Huiru

    2014-01-01

    Acupoint stimulations are effective in ameliorating symptoms of menopause which is an unavoidable ageing consequence for women. To understand the mechanistic aspects of such treatments, we systematically analyzed the effects of acupoint laser-irradiation and catgut-embedding on the ovariectomy-induced rat metabolic changes using NMR and GC-FID/MS methods. Results showed that ovariectomization (OVX) caused comprehensive metabolic changes in lipid peroxidation, glycolysis, TCA cycle, choline and amino acid metabolisms. Both acupoint laser-irradiation and catgut-embedding ameliorated the OVX-caused metabonomic changes more effectively than hormone replacement therapy (HRT) with nilestriol. Such effects of acupoint stimulations were highlighted in alleviating lipid peroxidation, restoring glucose homeostasis and partial reversion of the OVX-altered amino acid metabolism. These findings provided new insights into the menopause effects on mammalian biochemistry and beneficial effects of acupoint stimulations in comparison with HRT, demonstrating metabonomics as a powerful approach for potential applications in disease prognosis and developments of effective therapies.

  14. Gentamicin differentially alters cellular metabolism of cochlear hair cells as revealed by NAD(P)H fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Zholudeva, Lyandysha V.; Ward, Kristina G.; Nichols, Michael G.; Smith, Heather Jensen

    2015-05-01

    Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). Changes in metabolic state resulted in a redistribution of NAD(P)H between subcellular fluorescence lifetime pools. Supporting cells had a significantly longer lifetime than sensory cells. Pretreatment with GM increased NAD(P)H intensity in high-frequency sensory cells, as well as the NAD(P)H lifetime within IHCs. GM specifically increased NAD(P)H concentration in high-frequency OHCs, but not in IHCs or pillar cells. Variations in NAD(P)H intensity in response to mitochondrial toxins and GM were greatest in high-frequency OHCs. These results demonstrate that GM rapidly alters mitochondrial metabolism, differentially modulates cell metabolism, and provides evidence that GM-induced changes in metabolism are significant and greatest in high-frequency OHCs.

  15. Cell-specific expression and pathway analyses reveal alterations in trauma-related human T cell and monocyte pathways

    PubMed Central

    Laudanski, Krzysztof; Miller-Graziano, Carol; Xiao, Wenzhong; Mindrinos, Michael N.; Richards, Daniel R.; De, Asit; Moldawer, Lyle L.; Maier, Ronald V.; Bankey, Paul; Baker, Henry V.; Brownstein, Bernard H.; Cobb, J. Perren; Calvano, Steve E.; Davis, Ronald W.; Tompkins, Ronald G.

    2006-01-01

    Monitoring genome-wide, cell-specific responses to human disease, although challenging, holds great promise for the future of medicine. Patients with injuries severe enough to develop multiple organ dysfunction syndrome have multiple immune derangements, including T cell apoptosis and anergy combined with depressed monocyte antigen presentation. Genome-wide expression analysis of highly enriched circulating leukocyte subpopulations, combined with cell-specific pathway analyses, offers an opportunity to discover leukocyte regulatory networks in critically injured patients. Severe injury induced significant changes in T cell (5,693 genes), monocyte (2,801 genes), and total leukocyte (3,437 genes) transcriptomes, with only 911 of these genes common to all three cell populations (12%). T cell-specific pathway analyses identified increased gene expression of several inhibitory receptors (PD-1, CD152, NRP-1, and Lag3) and concomitant decreases in stimulatory receptors (CD28, CD4, and IL-2Rα). Functional analysis of T cells and monocytes confirmed reduced T cell proliferation and increased cell surface expression of negative signaling receptors paired with decreased monocyte costimulation ligands. Thus, genome-wide expression from highly enriched cell populations combined with knowledge-based pathway analyses leads to the identification of regulatory networks differentially expressed in injured patients. Importantly, application of cell separation, genome-wide expression, and cell-specific pathway analyses can be used to discover pathway alterations in human disease. PMID:17032758

  16. Transcriptional Analysis of Vitiligo Skin Reveals the Alteration of WNT Pathway: A Promising Target for Repigmenting Vitiligo Patients.

    PubMed

    Regazzetti, Claire; Joly, Florence; Marty, Carine; Rivier, Michel; Mehul, Bruno; Reiniche, Pascale; Mounier, Carine; Rival, Yves; Piwnica, David; Cavalié, Marine; Chignon-Sicard, Bérengère; Ballotti, Robert; Voegel, Johannes; Passeron, Thierry

    2015-12-01

    Vitiligo affects 1% of the worldwide population. Halting disease progression and repigmenting the lesional skin represent the two faces of therapeutic challenge in vitiligo. We performed transcriptome analysis on lesional, perilesional, and non-depigmented skin from vitiligo patients and on matched skin from healthy subjects. We found a significant increase in CXCL10 in non-depigmented and perilesional vitiligo skin compared with levels in healthy control skin; however, neither CXCL10 nor other immune factors were deregulated in depigmented vitiligo skin. Interestingly, the WNT pathway, which is involved in melanocyte differentiation, was altered specifically in vitiligo skin. We demonstrated that oxidative stress decreases WNT expression/activation in keratinocytes and melanocytes. We developed an ex vivo skin model and confirmed the decrease activation of the WNT pathway in human skin subjected to oxidative stress. Finally, using pharmacological agents that activate the WNT pathway, we treated ex vivo depigmented skin from vitiligo patients and successfully induced differentiation of resident stem cells into pre-melanocytes. Our results shed light on the previously unrecognized role of decreased WNT activation in the prevention of melanocyte differentiation in depigmented vitiligo skin. Furthermore, these results support further clinical exploration of WNT agonists to repigment vitiligo lesions. PMID:26322948

  17. Combinational losses of synucleins reveal their differential requirements for compensating age-dependent alterations in motor behavior and dopamine metabolism.

    PubMed

    Connor-Robson, Natalie; Peters, Owen M; Millership, Steven; Ninkina, Natalia; Buchman, Vladimir L

    2016-10-01

    Synucleins are involved in multiple steps of the neurotransmitter turnover, but the largely normal synaptic function in young adult animals completely lacking synucleins suggests their roles are dispensable for execution of these processes. Instead, they may be utilized for boosting the efficiency of certain molecular mechanisms in presynaptic terminals, with a deficiency of synuclein proteins sensitizing to or exacerbating synaptic malfunction caused by accumulation of mild alterations, which are commonly associated with aging. Although functional redundancy within the family has been reported, it is unclear whether the remaining synucleins can fully compensate for the deficiency of a lost family member or whether some functions are specific for a particular member. We assessed several structural and functional characteristics of the nigrostriatal system of mice lacking members of the synuclein family in every possible combination and demonstrated that stabilization of the striatal dopamine level depends on the presence of α-synuclein and cannot be compensated by other family members, whereas β-synuclein is required for efficient maintenance of animal's balance and coordination in old age. PMID:27614017

  18. Genetic alterations and their clinical implications in gastric cancer peritoneal carcinomatosis revealed by whole-exome sequencing of malignant ascites

    PubMed Central

    Kim, Jeong-Hwan; Kwon, Woo Sun; Lee, Won Seok; Kim, Jeong Min; Park, Jun Yong; Kim, Hyo Song; Park, Kyu Hyun; Kim, Tae Soo; Park, Jong-Lyul; Chung, Hyun Cheol; Rha, Sun Young; Kim, Seon-Young

    2016-01-01

    Peritoneal carcinomatosis accompanied by malignant ascites is a major cause of death of advanced gastric cancer (GC). To comprehensively characterize the underlying genomic events involved in GC peritoneal carcinomatosis, we analyzed whole-exome sequences of normal gastric tissues, primary tumors, and malignant ascites from eight GC patients. We identified a unique mutational signature biased toward C-to-A substitutions in malignant ascites. In contrast, the patients who received treatment of adjuvant chemotherapy showed a high rate of C-to-T substitutions along with hypermutation in malignant ascites. Comparative analysis revealed several candidate mutations for GC peritoneal carcinomatosis: recurrent mutations in COL4A6, INTS2, and PTPN13; mutations in druggable genes including TEP1, PRKCD, BRAF, ERBB4, PIK3CA, HDAC9, FYN, FASN, BIRC2, FLT3, ROCK1, CD22, and PIK3C2B; and mutations in metastasis-associated genes including TNFSF12, L1CAM, DIAPH3, ROCK1, TGFBR1, MYO9B, NR4A1, and RHOA. Notably, gene ontology analysis revealed the significant enrichment of mutations in the Rho-ROCK signaling pathway-associated biological processes in malignant ascites. At least four of the eight patients acquired somatic mutations in the Rho-ROCK pathway components, suggesting the possible relevance of this pathway to GC peritoneal carcinomatosis. These results provide a genome-wide molecular understanding of GC peritoneal carcinomatosis and its clinical implications, thereby facilitating the development of effective therapeutics. PMID:26811494

  19. PhyloChip microarray analysis reveals altered gastrointestinal microbial communities in a rat model of colonic hypersensitivity

    SciTech Connect

    Nelson, T.A.; Holmes, S.; Alekseyenko, A.V.; Shenoy, M.; DeSantis, T.; Wu, C.H.; Andersen, G.L.; Winston, J.; Sonnenburg, J.; Pasricha, P.J.; Spormann, A.

    2010-12-01

    Irritable bowel syndrome (IBS) is a chronic, episodic gastrointestinal disorder that is prevalent in a significant fraction of western human populations; and changes in the microbiota of the large bowel have been implicated in the pathology of the disease. Using a novel comprehensive, high-density DNA microarray (PhyloChip) we performed a phylogenetic analysis of the microbial community of the large bowel in a rat model in which intracolonic acetic acid in neonates was used to induce long lasting colonic hypersensitivity and decreased stool water content and frequency, representing the equivalent of human constipation-predominant IBS. Our results revealed a significantly increased compositional difference in the microbial communities in rats with neonatal irritation as compared with controls. Even more striking was the dramatic change in the ratio of Firmicutes relative to Bacteroidetes, where neonatally irritated rats were enriched more with Bacteroidetes and also contained a different composition of species within this phylum. Our study also revealed differences at the level of bacterial families and species. The PhyloChip is a useful and convenient method to study enteric microflora. Further, this rat model system may be a useful experimental platform to study the causes and consequences of changes in microbial community composition associated with IBS.

  20. Isotropic 3D Nuclear Morphometry of Normal, Fibrocystic and Malignant Breast Epithelial Cells Reveals New Structural Alterations

    PubMed Central

    Nandakumar, Vivek; Kelbauskas, Laimonas; Hernandez, Kathryn F.; Lintecum, Kelly M.; Senechal, Patti; Bussey, Kimberly J.; Davies, Paul C. W.; Johnson, Roger H.; Meldrum, Deirdre R.

    2012-01-01

    Background Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria. Methodology We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure. Principal Findings We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio) between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At p<0.0025 by ANOVA and Kruskal-Wallis tests, 90% of our computed descriptors statistically differentiated control from abnormal cell populations, but only 69% of these features statistically differentiated the fibrocystic from the metastatic cell populations. Conclusions Our results provide a new perspective on nuclear structure variations

  1. Transcriptional profile reveals altered hepatic lipid and cholesterol metabolism in hyposulfatemic NaS1 null mice.

    PubMed

    Dawson, Paul Anthony; Gardiner, Brooke; Grimmond, Sean; Markovich, Daniel

    2006-07-12

    Sulfate plays an essential role in human growth and development, and its circulating levels are maintained by the renal Na+-SO42- cotransporter, NaS1. We previously generated a NaS1 knockout (Nas1-/-) mouse, an animal model for hyposulfatemia, that exhibits reduced growth and liver abnormalities including hepatomegaly. In this study, we investigated the hepatic gene expression profile of Nas1-/- mice using oligonucleotide microarrays. The mRNA expression levels of 92 genes with known functional roles in metabolism, cell signaling, cell defense, immune response, cell structure, transcription, or protein synthesis were increased (n = 51) or decreased (n = 41) in Nas1-/- mice when compared with Nas1+/+ mice. The most upregulated transcript levels in Nas1-/- mice were found for the sulfotransferase genes, Sult3a1 (approximately 500% increase) and Sult2a2 (100% increase), whereas the metallothionein-1 gene, Mt1, was among the most downregulated genes (70% decrease). Several genes involved in lipid and cholesterol metabolism, including Scd1, Acly, Gpam, Elov16, Acsl5, Mvd, Insig1, and Apoa4, were found to be upregulated (> or = 30% increase) in Nas1-/- mice. In addition, Nas1-/- mice exhibited increased levels of hepatic lipid (approximately 16% increase), serum cholesterol (approximately 20% increase), and low-density lipoprotein (approximately 100% increase) and reduced hepatic glycogen (approximately 50% decrease) levels. In conclusion, these data suggest an altered lipid and cholesterol metabolism in the hyposulfatemic Nas1-/- mouse and provide new insights into the metabolic state of the liver in Nas1-/- mice. PMID:16621889

  2. Metabolic profiling reveals altered pattern of central metabolism in navel orange plants as a result of boron deficiency.

    PubMed

    Liu, Guidong; Dong, Xiaochang; Liu, Leichao; Wu, Lishu; Peng, Shu'ang; Jiang, Cuncang

    2015-04-01

    We focused on the changes of metabolite profiles in navel orange plants under long-term boron (B) deficiency using a gas chromatography-mass spectrometry (GC-MS) approach. Curling of the leaves and leaf chlorosis were observed only in the upper leaves (present before start of the treatment) of B-deficient plants, while the lower leaves (grown during treatment) did not show any visible symptoms. The metabolites with up-accumulation in B-deficient leaves were mainly proline, l-ornithine, lysine, glucoheptonic acid, fucose, fumarate, oxalate, quinate, myo-inositol and allo-inositol, while the metabolites with down-accumulation in B-deficient leaves were mainly serine, asparagine, saccharic acid, citrate, succinate, shikimate and phytol. The levels of glucose and fructose were increased only in the upper leaves by B deficiency, while starch content was increased in all the leaves and in roots. The increased levels of malate, ribitol, gluconic acid and glyceric acid occurred only in the lower leaves of B-deficient plants. The increased levels of phenols only in the upper leaves indicated that the effects of B on phenol metabolism in citrus plants may be a consequence of disruptions in leaf structure. Metabolites with opposite reactions in upper and lower leaves were mainly glutamine, glycine and pyrrole-2-carboxylic acid. To our knowledge, the phenomena of allo-inositol even higher than myo-inositol occurred characterized for the first time in this species. These results suggested that the altered pattern of central metabolism may be either specific or adaptive responses of navel orange plants to B deficiency. PMID:25212059

  3. Genome-wide single nucleotide polymorphism array analysis reveals recurrent genomic alterations associated with histopathologic features in intrahepatic cholangiocarcinoma

    PubMed Central

    Huang, Wan-Ting; Weng, Shao-Wen; Wei, Yu-Ching; You, Huey-Ling; Wang, Jui-Tzu; Eng, Hock-Liew

    2014-01-01

    Recent studies indicate that genomic alterations (GAs) are associated with many human malignancies. Genome-wide analysis of GAs involved in intrahepatic cholangiocarcinoma (ICC) and association with histopathologic features are limited. To help characterize this relatively rare neoplasm, we collected 32 frozen tissue samples of ICC to study GAs and molecular karyotypes by using single-nucleotide polymorphism array. Recurrent GAs occurring in at least 40% of the patients were further correlated with histopathologic features. Gain of 1q21.3-q23.1 and losses of 1p36.33-p35.3 and 3p26.3-p13 were significantly associated with larger tumor size more than 5 cm in diameter; and loss of 4q13.2-q35.2 with tumor multiplicity. Moreover, losses of 1p36.32-p35.3, 3p26.3-p22.2, 4q13.1-q21.23, 4q31.3-q34.3 and 4q34.3-35.2 were inclined to be associated with high histological grade. As to tumor vascular invasion, gain of 1q21.3-q23.1 and losses of 3p22.1-p12.3 and 4q13.2-q35.2 were significantly associated with tumor vascular invasion. Some regions were concurrently associated with multiple histopathologic characteristics, including loss of 4q13.2-q35.2 associated with larger tumor size, high histological grade and vascular invasion; losses of 1p36.33-p35.3 and 3p26.3-p22.2 with larger tumor size and high histological grade; and gain of 1q21.3-q23.1 with larger tumor size and vascular invasion. Our study indicates that complex chromosomal instability is characteristic of ICC. Detecting crucial GAs will enable risk stratification and development of personalized therapies. PMID:25400767

  4. Affective decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in 10th grade Chinese adolescent binge drinkers.

    PubMed

    Johnson, C Anderson; Xiao, Lin; Palmer, Paula; Sun, Ping; Wang, Qiong; Wei, Yonglan; Jia, Yong; Grenard, Jerry L; Stacy, Alan W; Bechara, Antoine

    2008-01-31

    The primary aim of this study was to test the hypothesis that adolescent binge drinkers, but not lighter drinkers, would show signs of impairment on tasks of affective decision-making as measured by the Iowa Gambling Test (IGT), when compared to adolescents who never drank. We tested 207 10th grade adolescents in Chengdu City, China, using two versions of the IGT, the original and a variant, in which the reward/punishment contingencies were reversed. This enables one to distinguish among different possibilities of impaired decision-making, such as insensitivity to long-term consequences, or hypersensitivity to reward. Furthermore, we tested working memory capacity using the Self-ordered Pointing Test (SOPT). Paper and pencil questionnaires were used to assess drinking behaviors and school academic performance. Results indicated that relative to never-drinkers, adolescent binge drinkers, but not other (ever, past 30-day) drinkers, showed significantly lower net scores on the original version of the IGT especially in the latter trials. Furthermore, the profiles of behavioral performance from the original and variant versions of the IGT were consistent with a decision-making impairment attributed to hypersensitivity to reward. In addition, working memory and school academic performance revealed no differences between drinkers (at all levels) and never-drinkers. Logistic regression analysis showed that after controlling for demographic variables, working memory, and school academic performance, the IGT significantly predicted binge-drinking. These findings suggest that a "myopia" for future consequences linked to hypersensitivity to reward is a key characteristic of adolescents with binge-drinking behavior, and that underlying neural mechanisms for this "myopia" for future consequences may serve as a predisposing factor that renders some adolescents more susceptible to future addictive behaviors. PMID:17996909

  5. Affective decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in 10th-grade Chinese adolescent smokers.

    PubMed

    Xiao, Lin; Bechara, Antoine; Cen, Steven; Grenard, Jerry L; Stacy, Alan W; Gallaher, Peggy; Wei, Yonglan; Jia, Yong; Anderson Johnson, C

    2008-06-01

    This study addressed the question of whether poor decision making would be associated with adolescent past 7-day smoking. We conducted a cross-sectional study of 208 10th-grade adolescents in Chengdu City, China. We used the Iowa Gambling Task (IGT) to assess decision-making, and the Self-ordered Pointing Task (SOPT) to assess working memory capacity. Paper and pencil questionnaires assessed the school academic performance (SAP) and smoking variables. The results showed that a significantly higher proportion of past 7-day smokers (91.7%) were susceptible to future smoking and cigarette offers from best friends compared to other levels of smokers (never, ever and past 30-day smokers). Consistent with these behavioral data, the neuropsychological assessments revealed that relative to never smokers, past 7-day adolescent smokers (but not ever smokers or past 30-day smokers) demonstrated significantly lower scores on the IGT. Moreover, a higher proportion of past 7-day smokers (91.7%) performed poorly (no more than an overall net score of 10) on the IGT than nonsmokers and irregular (ever or past 30-day) smokers (about 65.3%). There were no differences on working memory performance for smokers (at any level) compared to never smokers after adjusting for school-type. In addition, logistic regression showed that the IGT significantly predicted past 7-day smoking after controlling for the working memory, school academic performance and demographic variables. These results suggest that poor affective decision making might predispose some adolescents to smoking in the future or in the social situations where their peers are smoking. Intervention targeting affective decision making might hold promise for reducing adolescents' risks for substance use. PMID:18584472

  6. Affective decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in 10th-grade Chinese adolescent smokers

    PubMed Central

    Xiao, Lin; Bechara, Antoine; Cen, Steven; Grenard, Jerry L.; Stacy, Alan W.; Gallaher, Peggy; Wei, Yonglan; Jia, Yong; Johnson, C. Anderson

    2008-01-01

    This study addressed the question of whether poor decision making would be associated with adolescent past 7-day smoking. We conducted a cross-sectional study of 208 10th-grade adolescents in Chengdu City, China. We used the Iowa Gambling Task (IGT) to assess decision-making, and the Self-ordered Pointing Task (SOPT) to assess working memory capacity. Paper and pencil questionnaires assessed the school academic performance (SAP) and smoking variables. The results showed that a significantly higher proportion of past 7-day smokers (91.7%) were susceptible to future smoking and cigarette offers from best friends compared to other levels of smokers (never, ever and past 30-day smokers). Consistent with these behavioral data, the neuropsychological assessments revealed that relative to never smokers, past 7-day adolescent smokers (but not ever smokers or past 30-day smokers) demonstrated significantly lower scores on the IGT. Moreover, a higher proportion of past 7-day smokers (91.7%) performed poorly (no more than an overall net score of 10) on the IGT than nonsmokers and irregular (ever or past 30-day) smokers (about 65.3%). There were no differences on working memory performance for smokers (at any level) compared to never smokers after adjusting for school-type. In addition, logistic regression showed that the IGT significantly predicted past 7-day smoking after controlling for the working memory, school academic performance and demographic variables. These results suggest that poor affective decision making might predispose some adolescents to smoking in the future or in the social situations where their peers are smoking. Intervention targeting affective decision making might hold promise for reducing adolescents’ risks for substance use. PMID:18584472

  7. RNA Sequencing Reveals the Alteration of the Expression of Novel Genes in Ethanol-Treated Embryoid Bodies

    PubMed Central

    Mandal, Chanchal; Kim, Sun Hwa; Chai, Jin Choul; Oh, Seon Mi; Lee, Young Seek; Jung, Kyoung Hwa; Chai, Young Gyu

    2016-01-01

    Fetal alcohol spectrum disorder is a collective term representing fetal abnormalities associated with maternal alcohol consumption. Prenatal alcohol exposure and related anomalies are well characterized, but the molecular mechanism behind this phenomenon is not well characterized. In this present study, our aim is to profile important genes that regulate cellular development during fetal development. Human embryonic carcinoma cells (NCCIT) are cultured to form embryoid bodies and then treated in the presence and absence of ethanol (50 mM). We employed RNA sequencing to profile differentially expressed genes in the ethanol-treated embryoid bodies from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH data sets. A total of 632, 205 and 517 differentially expressed genes were identified from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH, respectively. Functional annotation using bioinformatics tools reveal significant enrichment of differential cellular development and developmental disorders. Furthermore, a group of 42, 15 and 35 transcription factor-encoding genes are screened from all of the differentially expressed genes obtained from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH, respectively. We validated relative gene expression levels of several transcription factors from these lists by quantitative real-time PCR. We hope that our study substantially contributes to the understanding of the molecular mechanism underlying the pathology of alcohol-mediated anomalies and ease further research. PMID:26930486

  8. 520-d Isolation and confinement simulating a flight to Mars reveals heightened immune responses and alterations of leukocyte phenotype.

    PubMed

    Yi, B; Rykova, M; Feuerecker, M; Jäger, B; Ladinig, C; Basner, M; Hörl, M; Matzel, S; Kaufmann, I; Strewe, C; Nichiporuk, I; Vassilieva, G; Rinas, K; Baatout, S; Schelling, G; Thiel, M; Dinges, D F; Morukov, B; Choukèr, A

    2014-08-01

    During interplanetary exploration, chronic stress caused by long term isolation and confinement in the spacecraft is one of the major concerns of physical and psychological health of space travelers. And for human on Earth, more and more people live in an isolated condition, which has become a common social problem in modern western society. Collective evidences have indicated prolonged chronic stress could bring big influence to human immune function, which may lead to a variety of health problems. However, to what extent long-term isolation can affect the immune system still remains largely unknow. A simulated 520-d Mars mission provided an extraordinary chance to study the effect of prolonged isolation. Six healthy males participated in this mission and their active neuroendocrine and immune conditions were studied with saliva and blood samples from all participants on chosen time points during the isolation period. As a typical neuroendocrine parameter, stress hormone cortisol was measured in the morning saliva samples. Immune phenotype changes were monitored through peripheral leukocyte phenotype analysis. Using an ex vivo viral infection simulation assay we assessed the immune response changes characterized by the ability to produce representative endogenous pro-inflammatory cytokines. The results of this study revealed elevated cortisol levels, increased lymphocyte amount and heightened immune responses, suggesting that prolonged isolation acting as chronic stressors are able to trigger leukocyte phenotype changes and poorly controlled immune responses. PMID:24704568

  9. Transcriptomics and physiological analyses reveal co-ordinated alteration of metabolic pathways in Jatropha curcas drought tolerance.

    PubMed

    Sapeta, Helena; Lourenço, Tiago; Lorenz, Stefan; Grumaz, Christian; Kirstahler, Philipp; Barros, Pedro M; Costa, Joaquim Miguel; Sohn, Kai; Oliveira, M Margarida

    2016-02-01

    Jatropha curcas, a multipurpose plant attracting a great deal of attention due to its high oil content and quality for biofuel, is recognized as a drought-tolerant species. However, this drought tolerance is still poorly characterized. This study aims to contribute to uncover the molecular background of this tolerance, using a combined approach of transcriptional profiling and morphophysiological characterization during a period of water-withholding (49 d) followed by rewatering (7 d). Morphophysiological measurements showed that J. curcas plants present different adaptation strategies to withstand moderate and severe drought. Therefore, RNA sequencing was performed for samples collected under moderate and severe stress followed by rewatering, for both roots and leaves. Jatropha curcas transcriptomic analysis revealed shoot- and root-specific adaptations across all investigated conditions, except under severe stress, when the dramatic transcriptomic reorganization at the root and shoot level surpassed organ specificity. These changes in gene expression were clearly shown by the down-regulation of genes involved in growth and water uptake, and up-regulation of genes related to osmotic adjustments and cellular homeostasis. However, organ-specific gene variations were also detected, such as strong up-regulation of abscisic acid synthesis in roots under moderate stress and of chlorophyll metabolism in leaves under severe stress. Functional validation further corroborated the differential expression of genes coding for enzymes involved in chlorophyll metabolism, which correlates with the metabolite content of this pathway. PMID:26602946

  10. Genome Wide Analysis of Chromosomal Alterations in Oral Squamous Cell Carcinomas Revealed over Expression of MGAM and ADAM9

    PubMed Central

    Vincent-Chong, Vui King; Anwar, Arif; Karen-Ng, Lee Peng; Cheong, Sok Ching; Yang, Yi-Hsin; Pradeep, Padmaja Jayaprasad; Rahman, Zainal Ariff Abdul; Ismail, Siti Mazlipah; Zaini, Zuraiza Mohamad; Prepageran, Narayanan; Kallarakkal, Thomas George; Ramanathan, Anand; Mohayadi, Nur Aaina Binti Mohd; Rosli, Nurul Shielawati Binti Mohamed; Mustafa, Wan Mahadzir Wan; Abraham, Mannil Thomas; Tay, Keng Kiong; Zain, Rosnah Binti

    2013-01-01

    Despite the advances in diagnosis and treatment of oral squamous cell carcinoma (OSCC), mortality and morbidity rates have not improved over the past decade. A major drawback in diagnosis and treatment of OSCC is the lack of knowledge relating to how genetic instability in oral cancer genomes affects oral carcinogenesis. Hence, the key aim of this study was to identify copy number alterations (CNAs) that may be cancer associated in OSCC using high-resolution array comparative genomic hybridization (aCGH). To our knowledge this is the first study to use ultra-high density aCGH microarrays to profile a large number of OSCC genomes (n = 46). The most frequently amplified CNAs were located on chromosome 11q11(52%), 2p22.3(52%), 1q21.3–q22(54%), 6p21.32(59%), 20p13(61%), 7q34(52% and 72%),8p11.23–p11.22(80%), 8q11.1–q24.4(54%), 9q13–q34.3(54%), 11q23.3–q25(57%); 14q21.3–q31.1(54%); 14q31.3–q32.33(57%), 20p13–p12.3(54%) and 20q11.21–q13.33(52%). The most frequently deleted chromosome region was located on 3q26.1 (54%). In order to verify the CNAs from aCGH using quantitative polymerase chain reaction (qPCR), the three top most amplified regions and their associated genes, namely ADAM5P (8p11.23–p11.22), MGAM (7q34) and SIRPB1 (20p13.1), were selected in this study. The ADAM5P locus was found to be amplified in 39 samples and deleted in one; MGAM (24 amplifications and 3 deletions); and SIRPB1 (12 amplifications, others undetermined). On the basis of putative cancer-related annotations, two genes, namely ADAM metallopeptidase domain 9 (ADAM9) and maltase-glucoamylase alpha-glucosidase (MGAM), that mapped to CNA regions were selected for further evaluation of their mRNA expression using reverse transcriptase qPCR. The over-expression of MGAM was confirmed with a 6.6 fold increase in expression at the mRNA level whereas the fold change in ADAM9 demonstrated a 1.6 fold increase. This study has identified significant regions in the OSCC genome that

  11. Metabolic profiling reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants.

    PubMed

    Urbanczyk-Wochniak, Ewa; Fernie, Alisdair R

    2005-01-01

    The role of inorganic nitrogen assimilation in the production of amino acids is one of the most important biochemical processes in plants. For this reason, a detailed broad-range characterization of the metabolic response of tomato (Solanum lycopersicum) leaves to the alteration of nitrate level was performed. Tomato plants were grown hydroponically in liquid culture under three different nitrate regimes: saturated (8 mM NO3-), replete (4 mM NO3-) and deficient (0.4 mM NO3-). All treatments were performed under varied light intensity, with leaf samples being collected after 7, 14, and 21 d. In addition, the short-term response (after 1, 24, 48, and 94 h) to varying nutrient status was evaluated at the higher light intensity. GC-MS analysis of the levels of amino acids, tricarboxylic acid cycle intermediates, sugars, sugar alcohols, and representative compounds of secondary metabolism revealed substantial changes under the various growth regimes applied. The data presented here suggest that nitrate nutrition has wide-ranging effects on plant leaf metabolism with nitrate deficiency resulting in decreases in many amino and organic acids and increases in the level of several carbohydrates and phosphoesters, as well as a handful of secondary metabolites. These results are compared with previously reported transcript profiles of altered nitrogen regimes and discussed within the context of current models of carbon nitrogen interaction. PMID:15596475

  12. High-resolution magic angle spinning and 1H magnetic resonance spectroscopy reveal significantly altered neuronal metabolite profiles in CLN1 but not in CLN3.

    PubMed

    Sitter, Beathe; Autti, Taina; Tyynelä, Jaana; Sonnewald, Ursula; Bathen, Tone F; Puranen, Johanna; Santavuori, Pirkko; Haltia, Matti J; Paetau, Anders; Polvikoski, Tuomo; Gribbestad, Ingrid S; Häkkinen, Anna-Maija

    2004-09-01

    The neuronal ceroid lipofuscinoses (NCLs) are among the most severe inherited progressive neurodegenerative disorders of children. The purpose of this study was to compare the in vivo 1.5-T 1H magnetic resonance (MR) and ex vivo 14.3-T high-resolution (HR) magic angle spinning (MAS) 1H MR brain spectra of patients with infantile (CLN1) and juvenile (CLN3) types of NCL, to obtain detailed information about the alterations in the neuronal metabolite profiles in these diseases and to test the suitability of the ex vivo HR MAS (1)H MRS technique in analysis of autopsy brain tissue. Ex vivo spectra from CLN1 autopsy brain tissue (n = 9) significantly differed from those of the control (n = 9) and CLN3 (n = 5) groups, although no differences were found between the CLN3 and the control groups. Principal component analysis of ex vivo data showed that decreased levels of N-acetylaspartate (NAA), gamma-aminobutyric acid (GABA), glutamine, and glutamate as well as increased levels of inositols characterized the CLN1 spectra. Also, the intensity ratio of lipid methylene/methyl protons was decreased in spectra of CLN1 brain tissue compared with CLN3 and control brain tissue. In concordance with the ex vivo data, the in vivo spectra of late-stage patients with CLN1 (n = 3) revealed a dramatic decrease of NAA and a proportional increase of myo-inositol and lipids compared with control subjects. Again, the spectra of patients with CLN3 (n = 13) did not differ from those of controls (n = 15). In conclusion, the ex vivo and in vivo spectroscopic findings were in good agreement within all analyzed groups and revealed significant alterations in metabolite profiles in CLN1 brain tissue but not in CLN3 compared with controls. Furthermore, HR MAS 1H MR spectra facilitated refined detection of neuronal metabolites, including GABA, and composition of lipids in the autopsy brain tissue of NCL patients. PMID:15352223

  13. Reduced Anterior Cingulate Cortex Glutamatergic Concentrations in Childhood Major Depression

    ERIC Educational Resources Information Center

    Mirza, Yousha; Tang, Jennifer; Russell, Aileen; Banerjee, S. Preeya; Bhandari, Rashmi; Ivey, Jennifer; Rose, Michelle; Moore, Gregory J.; Rosenberg, David R.

    2004-01-01

    Objective: To examine in vivo glutamatergic neurochemical alterations in the anterior cingulate cortex of children with major depressive disorder (MDD). Method: Single-voxel proton magnetic resonance spectroscopic ([.sup.1]H-MRS) examinations of the anterior cingulate cortex were conducted in 13 psychotropic-naive children and adolescents with MDD…

  14. Alteration of the Alkaloid Profile in Genetically Modified Tobacco Reveals a Role of Methylenetetrahydrofolate Reductase in Nicotine N-Demethylation1[C][W][OA

    PubMed Central

    Hung, Chiu-Yueh; Fan, Longjiang; Kittur, Farooqahmed S.; Sun, Kehan; Qiu, Jie; Tang, She; Holliday, Bronwyn M.; Xiao, Bingguang; Burkey, Kent O.; Bush, Lowell P.; Conkling, Mark A.; Roje, Sanja; Xie, Jiahua

    2013-01-01

    Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of the tetrahydrofolate (THF)-mediated one-carbon (C1) metabolic network. This enzyme catalyzes the reduction of 5,10-methylene-THF to 5-methyl-THF. The latter donates its methyl group to homocysteine, forming methionine, which is then used for the synthesis of S-adenosyl-methionine, a universal methyl donor for numerous methylation reactions, to produce primary and secondary metabolites. Here, we demonstrate that manipulating tobacco (Nicotiana tabacum) MTHFR gene (NtMTHFR1) expression dramatically alters the alkaloid profile in transgenic tobacco plants by negatively regulating the expression of a secondary metabolic pathway nicotine N-demethylase gene, CYP82E4. Quantitative real-time polymerase chain reaction and alkaloid analyses revealed that reducing NtMTHFR expression by RNA interference dramatically induced CYP82E4 expression, resulting in higher nicotine-to-nornicotine conversion rates. Conversely, overexpressing NtMTHFR1 suppressed CYP82E4 expression, leading to lower nicotine-to-nornicotine conversion rates. However, the reduced expression of NtMTHFR did not affect the methionine and S-adenosyl-methionine levels in the knockdown lines. Our finding reveals a new regulatory role of NtMTHFR1 in nicotine N-demethylation and suggests that the negative regulation of CYP82E4 expression may serve to recruit methyl groups from nicotine into the C1 pool under C1-deficient conditions. PMID:23221678

  15. Alteration in Nuclear Factor-KappaB Pathway and Functionality of Estrogen via Receptors Promote Neuroinflammation in Frontal Cortex after 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Treatment

    PubMed Central

    Mitra, Soham; Ghosh, Nabanita; Sinha, Priyobrata; Chakrabarti, Nilkanta; Bhattacharyya, Arindam

    2015-01-01

    The MPTP mediated neurodegeneration in substantia nigra has been well studied, but not the status of frontal cortex. The novelty of the present study is to explore the sex difference of frontal cortex during MPTP intoxication and to investigate the role of estrogen and its receptors in presence of glial cells in a time chase experiment; to identify which pathway of NF-kappaB exist to proceed the neuroinflammation; to investigate the estrogen binding with its nuclear or cytosolic receptors and whether any direct relation exists between estrogen receptor (ER) -beta and NF-kappaB molecules p65 and RelB. The progression of neurodegeneration occurred with the association of glial cells and functional (via its nuclear and cytosolic receptors) estrogen level. Both the canonical and/or non canonical pathways of NF-kappaB exist in frontal cortex of both the sexes after MPTP treatment. The homodimeric or heterodimeric form of ER-beta binds with NF-kappaB molecules p65 and RelB differently, but the canonical or non canonical pathways of NF-kappaB molecules could not be stopped or may be promoted. The changes in the molecular and cellular pattern in frontal cortex of both sexes during MPTP intoxication depends on the estrogen function via its nuclear or cytosolic estrogen receptors. PMID:26365888

  16. Lithium/pilocarpine status epilepticus-induced neuropathology of piriform cortex and adjoining structures in rats is age-dependent.

    PubMed

    Druga, R; Kubová, H; Suchomelová, L; Haugvicová, R

    2003-01-01

    Distribution of LiCl/pilocarpine status epilepticus-induced neuronal damage was studied in the piriform cortex and in adjoining structures in 12-day-old, 25-day-old and adult rats. No distinct structural and neuronal alterations were detected in the basal telencephalon in 12-day-old rats surviving status epilepticus (SE) for one week or two months. In 25-day-old rats a decrease in Nissl staining was evident. There was also cell loss and gliosis in the caudal 2/3 of the piriform cortex, in the superficial amygdaloid nuclei, in the dorsal and ventral endopiriform nucleus and in the rostrolateral part of the entorhinal cortical area. In adult animals, the topography of neuropathological changes in the basal telencephalon was comparable to those in 25-day-old rats. The damage in the caudal 2/3 or caudal half of the piriform cortex in adult rats with survival times one week or two months was characterized by a marked loss of neurons and striking glial infiltration. The thickness of the piriform cortex and superficial amygdaloid nuclei was significantly reduced. In 25-day-old and in adult animals the sublayer IIb and layer III of the piriform cortex was more affected, while sublayer IIa was less damaged. Parvalbumin (PV) immunocytochemistry revealed a significant decrease in the number of PV-immunoreactive neurons in the rostral piriform cortex and in the dorsal claustrum in animals surviving for two months. PMID:12678669

  17. Disturbed Dreaming and the Instability of Sleep: Altered Nonrapid Eye Movement Sleep Microstructure in Individuals with Frequent Nightmares as Revealed by the Cyclic Alternating Pattern

    PubMed Central

    Simor, Péter; Bódizs, Róbert; Horváth, Klára; Ferri, Raffaele

    2013-01-01

    Study Objectives: Nightmares are disturbing mental experiences during sleep that usually result in abrupt awakenings. Frequent nightmares are associated with poor subjective sleep quality, and recent polysomnographic data suggest that nightmare sufferers exhibit impaired sleep continuity during nonrapid eye movement (NREM) sleep. Because disrupted sleep might be related to abnormal arousal processes, the goal of this study was to examine polysomnographic arousal-related activities in a group of nightmare sufferers and a healthy control group. Design: Sleep microstructure analysis was carried out by scoring the cyclic alternating pattern (CAP) in NREM sleep and the arousal index in rapid eye movement (REM) sleep on the second night of the polysomnographic examination. Setting: Hospital-based sleep research laboratory. Participants: There were 17 in the nightmare (NMs) group and 23 in the healthy control (CTLs) group. Interventions: N/A. Measurements and Results: The NMs group exhibited reduced amounts of CAP A1 subtype and increased CAP A2 and A3 subtypes, as well as longer duration of CAP A phases in comparison with CTLs. Moreover, these differences remained significant after controlling for the confounding factors of anxious and depressive symptoms. The absolute number and frequency of REM arousals did not differ significantly between the two groups. Conclusions: The results of our study indicate that NREM sleep microstructure is altered during nonsymptomatic nights of nightmares. Disrupted sleep in the NMs group seems to be related to abnormal arousal processes, specifically an imbalance in sleep-promoting and arousing mechanisms during sleep. Citation: Simor P; Bódizs R; Horváth K; Ferri R. Disturbed dreaming and the instability of sleep: altered nonrapid eye movement sleep microstructure in individuals with frequent nightmares as revealed by the cyclic alternating pattern. SLEEP 2013;36(3):413-419. PMID:23449753

  18. Optical Cryoimaging Reveals a Heterogeneous Distribution of Mitochondrial Redox State in ex vivo Guinea Pig Hearts and Its Alteration During Ischemia and Reperfusion

    PubMed Central

    Motlagh, Mohammad Masoudi; Salehpour, Fahimeh; Sepehr, Reyhaneh; Heisner, James S.; Dash, Ranjan K.; Camara, Amadou K. S.

    2016-01-01

    Oxidation of substrates to generate ATP in mitochondria is mediated by redox reactions of NADH and FADH2. Cardiac ischemia and reperfusion (IR) injury compromises mitochondrial oxidative phosphorylation. We hypothesize that IR alters the metabolic heterogeneity of mitochondrial redox state of the heart that is only evident in the 3-D optical cryoimaging of the perfused heart before, during, and after IR. The study involved four groups of hearts: time control (TC: heart perfusion without IR), global ischemia (Isch), global ischemia followed by reperfusion (IR) and TC with PCP (a mitochondrial uncoupler) perfusion. Mitochondrial NADH and FAD autofluorescence signals were recorded spectrofluorometrically online in guinea pig ex vivo-perfused hearts in the Langendorff mode. At the end of each specified protocol, hearts were rapidly removed and snap frozen in liquid N2 for later 3-D optical cryoimaging of the mitochondrial NADH, FAD, and NADH/FAD redox ratio (RR). The TC hearts revealed a heterogeneous spatial distribution of NADH, FAD, and RR. Ischemia and IR altered the spatial distribution and caused an overall increase and decrease in the RR by 55% and 64%, respectively. Uncoupling with PCP resulted in the lowest level of the RR (73% oxidation) compared with TC. The 3-D optical cryoimaging of the heart provides novel insights into the heterogeneous distribution of mitochondrial NADH, FAD, RR, and metabolism from the base to the apex during ischemia and IR. This 3-D information of the mitochondrial redox state in the normal and ischemic heart was not apparent in the dynamic spectrofluorometric data. PMID:27574574

  19. Optical Cryoimaging Reveals a Heterogeneous Distribution of Mitochondrial Redox State in ex vivo Guinea Pig Hearts and Its Alteration During Ischemia and Reperfusion.

    PubMed

    Ranji, Mahsa; Motlagh, Mohammad Masoudi; Salehpour, Fahimeh; Sepehr, Reyhaneh; Heisner, James S; Dash, Ranjan K; Camara, Amadou K S

    2016-01-01

    Oxidation of substrates to generate ATP in mitochondria is mediated by redox reactions of NADH and FADH2. Cardiac ischemia and reperfusion (IR) injury compromises mitochondrial oxidative phosphorylation. We hypothesize that IR alters the metabolic heterogeneity of mitochondrial redox state of the heart that is only evident in the 3-D optical cryoimaging of the perfused heart before, during, and after IR. The study involved four groups of hearts: time control (TC: heart perfusion without IR), global ischemia (Isch), global ischemia followed by reperfusion (IR) and TC with PCP (a mitochondrial uncoupler) perfusion. Mitochondrial NADH and FAD autofluorescence signals were recorded spectrofluorometrically online in guinea pig ex vivo-perfused hearts in the Langendorff mode. At the end of each specified protocol, hearts were rapidly removed and snap frozen in liquid N2 for later 3-D optical cryoimaging of the mitochondrial NADH, FAD, and NADH/FAD redox ratio (RR). The TC hearts revealed a heterogeneous spatial distribution of NADH, FAD, and RR. Ischemia and IR altered the spatial distribution and caused an overall increase and decrease in the RR by 55% and 64%, respectively. Uncoupling with PCP resulted in the lowest level of the RR (73% oxidation) compared with TC. The 3-D optical cryoimaging of the heart provides novel insights into the heterogeneous distribution of mitochondrial NADH, FAD, RR, and metabolism from the base to the apex during ischemia and IR. This 3-D information of the mitochondrial redox state in the normal and ischemic heart was not apparent in the dynamic spectrofluorometric data. PMID:27574574

  20. Cochlear Injury and Adaptive Plasticity of the Auditory Cortex

    PubMed Central

    Fetoni, Anna Rita; Troiani, Diana; Petrosini, Laura; Paludetti, Gaetano

    2015-01-01

    Growing evidence suggests that cochlear stressors as noise exposure and aging can induce homeostatic/maladaptive changes in the central auditory system from the brainstem to the cortex. Studies centered on such changes have revealed several mechanisms that operate in the context of sensory disruption after insult (noise trauma, drug-, or age-related injury). The oxidative stress is central to current theories of induced sensory-neural hearing loss and aging, and interventions to attenuate the hearing loss are based on antioxidant agent. The present review addresses the recent literature on the alterations in hair cells and spiral ganglion neurons due to noise-induced oxidative stress in the cochlea, as well on the impact of cochlear damage on the auditory cortex neurons. The emerging image emphasizes that noise-induced deafferentation and upward spread of cochlear damage is associated with the altered dendritic architecture of auditory pyramidal neurons. The cortical modifications may be reversed by treatment with antioxidants counteracting the cochlear redox imbalance. These findings open new therapeutic approaches to treat the functional consequences of the cortical reorganization following cochlear damage. PMID:25698966

  1. Dyslexic children lack word selectivity gradients in occipito-temporal and inferior frontal cortex

    PubMed Central

    Olulade, O.A.; Flowers, D.L.; Napoliello, E.M.; Eden, G.F.

    2015-01-01

    fMRI studies using a region-of-interest approach have revealed that the ventral portion of the left occipito-temporal cortex, which is specialized for orthographic processing of visually presented words (and includes the so-called “visual word form area”, VWFA), is characterized by a posterior-to-anterior gradient of increasing selectivity for words in typically reading adults, adolescents, and children (e.g. Brem et al., 2006, 2009). Similarly, the left inferior frontal cortex (IFC) has been shown to exhibit a medial-to-lateral gradient of print selectivity in typically reading adults (Vinckier et al., 2007). Functional brain imaging studies of dyslexia have reported relative underactivity in left hemisphere occipito-temporal and inferior frontal regions using whole-brain analyses during word processing tasks. Hence, the question arises whether gradient sensitivities in these regions are altered in dyslexia. Indeed, a region-of-interest analysis revealed the gradient-specific functional specialization in the occipito-temporal cortex to be disrupted in dyslexic children (van der Mark et al., 2009). Building on these studies, we here (1) investigate if a word-selective gradient exists in the inferior frontal cortex in addition to the occipito-temporal cortex in normally reading children, (2) compare typically reading with dyslexic children, and (3) examine functional connections between these regions in both groups. We replicated the previously reported anterior-to-posterior gradient of increasing selectivity for words in the left occipito-temporal cortex in typically reading children, and its absence in the dyslexic children. Our novel finding is the detection of a pattern of increasing selectivity for words along the medial-to-lateral axis of the left inferior frontal cortex in typically reading children and evidence of functional connectivity between the most lateral aspect of this area and the anterior aspects of the occipito-temporal cortex. We report

  2. Dyslexic children lack word selectivity gradients in occipito-temporal and inferior frontal cortex.

    PubMed

    Olulade, O A; Flowers, D L; Napoliello, E M; Eden, G F

    2015-01-01

    fMRI studies using a region-of-interest approach have revealed that the ventral portion of the left occipito-temporal cortex, which is specialized for orthographic processing of visually presented words (and includes the so-called "visual word form area", VWFA), is characterized by a posterior-to-anterior gradient of increasing selectivity for words in typically reading adults, adolescents, and children (e.g. Brem et al., 2006, 2009). Similarly, the left inferior frontal cortex (IFC) has been shown to exhibit a medial-to-lateral gradient of print selectivity in typically reading adults (Vinckier et al., 2007). Functional brain imaging studies of dyslexia have reported relative underactivity in left hemisphere occipito-temporal and inferior frontal regions using whole-brain analyses during word processing tasks. Hence, the question arises whether gradient sensitivities in these regions are altered in dyslexia. Indeed, a region-of-interest analysis revealed the gradient-specific functional specialization in the occipito-temporal cortex to be disrupted in dyslexic children (van der Mark et al., 2009). Building on these studies, we here (1) investigate if a word-selective gradient exists in the inferior frontal cortex in addition to the occipito-temporal cortex in normally reading children, (2) compare typically reading with dyslexic children, and (3) examine functional connections between these regions in both groups. We replicated the previously reported anterior-to-posterior gradient of increasing selectivity for words in the left occipito-temporal cortex in typically reading children, and its absence in the dyslexic children. Our novel finding is the detection of a pattern of increasing selectivity for words along the medial-to-lateral axis of the left inferior frontal cortex in typically reading children and evidence of functional connectivity between the most lateral aspect of this area and the anterior aspects of the occipito-temporal cortex. We report absence

  3. Quantitative Proteomics by SWATH-MS Reveals Altered Expression of Nucleic Acid Binding and Regulatory Proteins in HIV-1-Infected Macrophages

    PubMed Central

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection remains a worldwide epidemic, and innovative therapies to combat the virus are needed. Developing a host-oriented antiviral strategy capable of targeting the biomolecules that are directly or indirectly required for viral replication may provide advantages over traditional virus-centric approaches. We used quantitative proteomics by SWATH-MS in conjunction with bioinformatic analyses to identify host proteins, with an emphasis on nucleic acid binding and regulatory proteins, which could serve as candidates in the development of host-oriented antiretroviral strategies. Using SWATH-MS, we identified and quantified the expression of 3608 proteins in uninfected and HIV-1-infected monocyte-derived macrophages. Of these 3608 proteins, 420 were significantly altered upon HIV-1 infection. Bioinformatic analyses revealed functional enrichment for RNA binding and processing as well as transcription regulation. Our findings highlight a novel subset of proteins and processes that are involved in the host response to HIV-1 infection. In addition, we provide an original and transparent methodology for the analysis of label-free quantitative proteomics data generated by SWATH-MS that can be readily adapted to other biological systems. PMID:24564501

  4. Protein kinase A alterations in adrenocortical tumors.

    PubMed

    Espiard, S; Ragazzon, B; Bertherat, J

    2014-11-01

    Stimulation of the cAMP pathway by adrenocorticotropin (ACTH) is essential for adrenal cortex maintenance, glucocorticoid and adrenal androgens synthesis, and secretion. Various molecular and cellular alterations of the cAMP pathway have been observed in endocrine tumors. Protein kinase A (PKA) is a central key component of the cAMP pathway. Molecular alterations of PKA subunits have been observed in adrenocortical tumors. PKA molecular defects can be germline in hereditary disorders or somatic in sporadic tumors. Heterozygous germline inactivating mutations of the PKA regulatory subunit RIα gene (PRKAR1A) can be observed in patients with ACTH-independent Cushing's syndrome (CS) due to primary pigmented nodular adrenocortical disease (PPNAD). PRKAR1A is considered as a tumor suppressor gene. Interestingly, these mutations can also be observed as somatic alterations in sporadic cortisol-secreting adrenocortical adenomas. Germline gene duplication of the catalytic subunits Cα (PRKACA) has been observed in patients with PPNAD. Furthermore, exome sequencing revealed recently activating somatic mutations of PRKACA in about 40% of cortisol-secreting adrenocortical adenomas. In vitro and in vivo functional studies help in the progress to understand the mechanisms of adrenocortical tumors development due to PKA regulatory subunits alterations. All these alterations are observed in benign oversecreting tumors and are mimicking in some way cAMP pathway constitutive activation. On the long term, unraveling these alterations will open new strategies of pharmacological treatment targeting the cAMP pathway in adrenal tumors and cortisol-secretion disorders. PMID:25105543

  5. Focal thinning of the cerebral cortex in multiple sclerosis.

    PubMed

    Sailer, Michael; Fischl, Bruce; Salat, David; Tempelmann, Claus; Schönfeld, Mircea Ariel; Busa, Evelina; Bodammer, Nils; Heinze, Hans-Jochen; Dale, Anders

    2003-08-01

    Brain atrophy as determined by quantitative MRI can be used to characterize disease progression in multiple sclerosis. Many studies have addressed white matter (WM) alterations leading to atrophy, while changes of the cerebral cortex have been studied to a lesser extent. In vivo, the cerebral cortex has been difficult to study due to its complex structure and regional variability. Measurement of cerebral cortex thickness at different disease stages may provide new insights into grey matter (GM) pathology. In the present investigation, we evaluated in vivo cortical thickness and its relationship to disability, disease duration, WM T2 hyper-intense and T1 hypo-intense lesion volumes. High-resolution MRI brain scans were obtained in 20 patients with clinically definite multiple sclerosis and 15 age-matched normal subjects. A novel method of automated surface reconstruction yielded measurements of the cortical thickness for each subject's entire brain and computed cross-subject statistics based on the cortical anatomy. Statistical thickness difference maps were generated by performing t-tests between patient and control groups and individual thickness measures were submitted to analyses of variance to investigate the relationship between cortical thickness and clinical variables. The mean overall thickness of the cortical ribbon was reduced in multiple sclerosis patients compared with controls [2.30 mm (SD 0.14) versus 2.48 mm (SD 0.11)], showing a significant main effect of group (controls versus patients). In patients, we found significant main effects for disability, disease duration, T2 and T1 lesion volumes. The visualization of statistical difference maps of the cortical GM thickness on inflated brains across the cortical surface revealed a distinct distribution of significant focal thinning of the cerebral cortex in addition to the diffuse cortical atrophy. Focal cortical thinning in frontal [2.37 mm (SD 0.17) versus 2.73 mm (SD 0.25)] and in temporal [2.65 mm

  6. Single-quantum-dot tracking reveals altered membrane dynamics of an attention-deficit/hyperactivity-disorder-derived dopamine transporter coding variant.

    PubMed

    Kovtun, Oleg; Sakrikar, Dhananjay; Tomlinson, Ian D; Chang, Jerry C; Arzeta-Ferrer, Xochitl; Blakely, Randy D; Rosenthal, Sandra J

    2015-04-15

    The presynaptic, cocaine- and amphetamine-sensitive dopamine (DA) transporter (DAT, SLC6A3) controls the intensity and duration of synaptic dopamine signals by rapid clearance of DA back into presynaptic nerve terminals. Abnormalities in DAT-mediated DA clearance have been linked to a variety of neuropsychiatric disorders, including addiction, autism, and attention deficit/hyperactivity disorder (ADHD). Membrane trafficking of DAT appears to be an important, albeit incompletely understood, post-translational regulatory mechanism; its dysregulation has been recently proposed as a potential risk determinant of these disorders. In this study, we demonstrate a link between an ADHD-associated DAT mutation (Arg615Cys, R615C) and variation on DAT transporter cell surface dynamics, a combination only previously studied with ensemble biochemical and optical approaches that featured limited spatiotemporal resolution. Here, we utilize high-affinity, DAT-specific antagonist-conjugated quantum dot (QD) probes to establish the dynamic mobility of wild-type and mutant DATs at the plasma membrane of living cells. Single DAT-QD complex trajectory analysis revealed that the DAT 615C variant exhibited increased membrane mobility relative to DAT 615R, with diffusion rates comparable to those observed after lipid raft disruption. This phenomenon was accompanied by a loss of transporter mobilization triggered by amphetamine, a common component of ADHD medications. Together, our data provides the first dynamic imaging of single DAT proteins, providing new insights into the relationship between surface dynamics and trafficking of both wild-type and disease-associated transporters. Our approach should be generalizable to future studies that explore the possibilities of perturbed surface DAT dynamics that may arise as a consequence of genetic alterations, regulatory changes, and drug use that contribute to the etiology or treatment of neuropsychiatric disorders. PMID:25747272

  7. Cross-Species Integrative Functional Genomics in GeneWeaver Reveals a Role for Pafah1b1 in Altered Response to Alcohol.

    PubMed

    Bubier, Jason A; Wilcox, Troy D; Jay, Jeremy J; Langston, Michael A; Baker, Erich J; Chesler, Elissa J

    2016-01-01

    Identifying the biological substrates of complex neurobehavioral traits such as alcohol dependency pose a tremendous challenge given the diverse model systems and phenotypic assessments used. To address this problem we have developed a platform for integrated analysis of high-throughput or genome-wide functional genomics studies. A wealth of such data exists, but it is often found in disparate, non-computable forms. Our interactive web-based software system, Gene Weaver (http://www.geneweaver.org), couples curated results from genomic studies to graph-theoretical tools for combinatorial analysis. Using this system we identified a gene underlying multiple alcohol-related phenotypes in four species. A search of over 60,000 gene sets in GeneWeaver's database revealed alcohol-related experimental results including genes identified in mouse genetic mapping studies, alcohol selected Drosophila lines, Rattus differential expression, and human alcoholic brains. We identified highly connected genes and compared these to genes currently annotated to alcohol-related behaviors and processes. The most highly connected gene not annotated to alcohol was Pafah1b1. Experimental validation using a Pafah1b1 conditional knock-out mouse confirmed that this gene is associated with an increased preference for alcohol and an altered thermoregulatory response to alcohol. Although this gene has not been previously implicated in alcohol-related behaviors, its function in various neural mechanisms makes a role in alcohol-related phenomena plausible. By making diverse cross-species functional genomics data readily computable, we were able to identify and confirm a novel alcohol-related gene that may have implications for alcohol use disorders and other effects of alcohol. PMID:26834590

  8. Sperm DNA methylation analysis in swine reveals conserved and species-specific methylation patterns and highlights an altered methylation at the GNAS locus in infertile boars.

    PubMed

    Congras, Annabelle; Yerle-Bouissou, Martine; Pinton, Alain; Vignoles, Florence; Liaubet, Laurence; Ferchaud, Stéphane; Acloque, Hervé

    2014-12-01

    Male infertility is an increasing health issue in today's society for both human and livestock populations. In livestock, male infertility slows the improvement of animal selection programs and agricultural productivity. There is increasing evidence that epigenetic marks play an important role in the production of good-quality sperm. We therefore screened for specific or common epigenetic signatures of livestock infertility. To do so, we compared DNA methylation level in sperm DNA from fertile and infertile boars. We evaluated first the global level of sperm DNA methylation and found no difference between the two groups of boars. We then selected 42 loci of interest, most of them known to be imprinted in human or mice, and assessed the imprinting status of five of them not previously described in swine tissues: WT1, CNTN3, IMPACT, QPCT, and GRB10. DNA methylation level was then quantified in fertile and infertile boars at these 42 loci. Results from fertile boars indicated that the methylation level of the selected loci is highly conserved between pig, human, and mice, with a few exceptions, including the POU5F1 (OCT4) promoter and RTL1. Comparison between fertile and infertile boars revealed that one imprinted region, the GNAS locus, shows an increase in sperm DNA methylation in three out of eight infertile boars with low semen quality. This increase in DNA methylation is associated with an altered expression of the genes belonging to the GNAS locus, suggesting a new role for GNAS in the proper formation of functional gametes. PMID:25320151

  9. Cross-Species Integrative Functional Genomics in GeneWeaver Reveals a Role for Pafah1b1 in Altered Response to Alcohol

    PubMed Central

    Bubier, Jason A.; Wilcox, Troy D.; Jay, Jeremy J.; Langston, Michael A.; Baker, Erich J.; Chesler, Elissa J.

    2016-01-01

    Identifying the biological substrates of complex neurobehavioral traits such as alcohol dependency pose a tremendous challenge given the diverse model systems and phenotypic assessments used. To address this problem we have developed a platform for integrated analysis of high-throughput or genome-wide functional genomics studies. A wealth of such data exists, but it is often found in disparate, non-computable forms. Our interactive web-based software system, Gene Weaver (http://www.geneweaver.org), couples curated results from genomic studies to graph-theoretical tools for combinatorial analysis. Using this system we identified a gene underlying multiple alcohol-related phenotypes in four species. A search of over 60,000 gene sets in GeneWeaver's database revealed alcohol-related experimental results including genes identified in mouse genetic mapping studies, alcohol selected Drosophila lines, Rattus differential expression, and human alcoholic brains. We identified highly connected genes and compared these to genes currently annotated to alcohol-related behaviors and processes. The most highly connected gene not annotated to alcohol was Pafah1b1. Experimental validation using a Pafah1b1 conditional knock-out mouse confirmed that this gene is associated with an increased preference for alcohol and an altered thermoregulatory response to alcohol. Although this gene has not been previously implicated in alcohol-related behaviors, its function in various neural mechanisms makes a role in alcohol-related phenomena plausible. By making diverse cross-species functional genomics data readily computable, we were able to identify and confirm a novel alcohol-related gene that may have implications for alcohol use disorders and other effects of alcohol. PMID:26834590

  10. Visual cortex in aging and Alzheimer's disease: changes in visual field maps and population receptive fields

    PubMed Central

    Brewer, Alyssa A.; Barton, Brian

    2012-01-01

    Although several studies have suggested that cortical alterations underlie such age-related visual deficits as decreased acuity, little is known about what changes actually occur in visual cortex during healthy aging. Two recent studies showed changes in primary visual cortex (V1) during normal aging; however, no studies have characterized the effects of aging on visual cortex beyond V1, important measurements both for understanding the aging process and for comparison to changes in age-related diseases. Similarly, there is almost no information about changes in visual cortex in Alzheimer's disease (AD), the most common form of dementia. Because visual deficits are often reported as one of the first symptoms of AD, measurements of such changes in the visual cortex of AD patients might improve our understanding of how the visual system is affected by neurodegeneration as well as aid early detection, accurate diagnosis and timely treatment of AD. Here we use fMRI to first compare the visual field map (VFM) organization and population receptive fields (pRFs) between young adults and healthy aging subjects for occipital VFMs V1, V2, V3, and hV4. Healthy aging subjects do not show major VFM organizational deficits, but do have reduced surface area and increased pRF sizes in the foveal representations of V1, V2, and hV4 relative to healthy young control subjects. These measurements are consistent with behavioral deficits seen in healthy aging. We then demonstrate the feasibility and first characterization of these measurements in two patients with mild AD, which reveal potential changes in visual cortex as part of the pathophysiology of AD. Our data aid in our understanding of the changes in the visual processing pathways in normal aging and provide the foundation for future research into earlier and more definitive detection of AD. PMID:24570669

  11. Decreased Premotor Cortex Volume in Victims of Urban Violence with Posttraumatic Stress Disorder

    PubMed Central

    Rocha-Rego, Vanessa; Pereira, Mirtes G.; Oliveira, Leticia; Mendlowicz, Mauro V.; Fiszman, Adriana; Marques-Portella, Carla; Berger, William; Chu, Carlton; Joffily, Mateus; Moll, Jorge; Mari, Jair J.; Figueira, Ivan; Volchan, Eliane

    2012-01-01

    Background Studies addressing posttraumatic stress disorder (PTSD) have demonstrated that PTSD patients exhibit structural abnormalities in brain regions that relate to stress regulation and fear responses, such as the hippocampus, amygdala, anterior cingulate cortex, and ventromedial prefrontal cortex. Premotor cortical areas are involved in preparing to respond to a threatening situation and in representing the peripersonal space. Urban violence is an important and pervasive cause of human suffering, especially in large urban centers in the developing world. Violent events, such as armed robbery, are very frequent in certain cities, and these episodes increase the risk of PTSD. Assaultive trauma is characterized by forceful invasion of the peripersonal space; therefore, could this traumatic event be associated with structural alteration of premotor areas in PTSD? Methodology/Principal Findings Structural magnetic resonance imaging scans were acquired from a sample of individuals that had been exposed to urban violence. This sample consisted of 16 PTSD patients and 16 age- and gender-matched controls. Psychometric questionnaires differentiated PTSD patients from trauma-exposed controls with regard to PTSD symptoms, affective, and resilience predispositions. Voxel-based morphometric analysis revealed that, compared with controls, the PTSD patients presented significant reductions in gray matter volume in the ventral premotor cortex and in the pregenual anterior cingulate cortex. Conclusions Volume reduction in the premotor cortex that is observed in victims of urban violence with PTSD may be associated with a disruption in the dynamical modulation of the safe space around the body. The finding that PTSD patients presented a smaller volume of pregenual anterior cingulate cortex is consistent with the results of other PTSD neuroimaging studies that investigated different types of traumatic events. PMID:22952599

  12. Inhibitory neuron transplantation into adult visual cortex creates a new critical period that rescues impaired vision

    PubMed Central

    Davis, Melissa F.; Figueroa Velez, Dario X.; Guevarra, Roblen P.; Yang, Michael C.; Habeeb, Mariyam; Carathedathu, Mathew C.; Gandhi, Sunil P.

    2015-01-01

    The maturation of inhibitory circuits in the juvenile cortex triggers a critical period of plasticity in visual system development. Although several manipulations of inhibition can alter its timing, none have reactivated critical period plasticity in adulthood. We developed a transplantation method to reactivate critical period plasticity in the adult visual cortex. Transplanted embryonic inhibitory neurons from the medial ganglionic eminence reinstate ocular dominance plasticity in adult recipients. Transplanted inhibitory cells develop cell-type appropriate molecular characteristics and visually evoked responses. In adult mice impaired by deprivation during the juvenile critical period, transplantation also recovers both visual cortical responses and performance on a behavioral test of visual acuity. Plasticity and recovery are induced when the critical period would have occurred in the donor animal. These results reveal that the focal reactivation of visual cortical plasticity using inhibitory cell transplantation creates a new critical period that restores visual perception after childhood deprivation. PMID:25937171

  13. Neural circuit remodeling and structural plasticity in the cortex during chronic pain

    PubMed Central

    Kim, Woojin

    2016-01-01

    Damage in the periphery or spinal cord induces maladaptive plastic changes along the somatosensory nervous system from the periphery to the cortex, often leading to chronic pain. Although the role of neural circuit remodeling and structural synaptic plasticity in the 'pain matrix' cortices in chronic pain has been thought as a secondary epiphenomenon to altered nociceptive signaling in the spinal cord, progress in whole brain imaging studies on human patients and animal models has suggested a possibility that plastic changes in cortical neural circuits may actively contribute to chronic pain symptoms. Furthermore, recent development in two-photon microscopy and fluorescence labeling techniques have enabled us to longitudinally trace the structural and functional changes in local circuits, single neurons and even individual synapses in the brain of living animals. These technical advances has started to reveal that cortical structural remodeling following tissue or nerve damage could rapidly occur within days, which are temporally correlated with functional plasticity of cortical circuits as well as the development and maintenance of chronic pain behavior, thereby modifying the previous concept that it takes much longer periods (e.g. months or years). In this review, we discuss the relation of neural circuit plasticity in the 'pain matrix' cortices, such as the anterior cingulate cortex, prefrontal cortex and primary somatosensory cortex, with chronic pain. We also introduce how to apply long-term in vivo two-photon imaging approaches for the study of pathophysiological mechanisms of chronic pain. PMID:26807017

  14. Comparative Proteomic Analysis of Carbonylated Proteins from the Striatum and Cortex of Pesticide-Treated Mice.

    PubMed

    Coughlan, Christina; Walker, Douglas I; Lohr, Kelly M; Richardson, Jason R; Saba, Laura M; Caudle, W Michael; Fritz, Kristofer S; Roede, James R

    2015-01-01

    Epidemiological studies indicate exposures to the herbicide paraquat (PQ) and fungicide maneb (MB) are associated with increased risk of Parkinson's disease (PD). Oxidative stress appears to be a premier mechanism that underlies damage to the nigrostriatal dopamine system in PD and pesticide exposure. Enhanced oxidative stress leads to lipid peroxidation and production of reactive aldehydes; therefore, we conducted proteomic analyses to identify carbonylated proteins in the striatum and cortex of pesticide-treated mice in order to elucidate possible mechanisms of toxicity. Male C57BL/6J mice were treated biweekly for 6 weeks with saline, PQ (10 mg/kg), MB (30 mg/kg), or the combination of PQ and MB (PQMB). Treatments resulted in significant behavioral alterations in all treated mice and depleted striatal dopamine in PQMB mice. Distinct differences in 4-hydroxynonenal-modified proteins were observed in the striatum and cortex. Proteomic analyses identified carbonylated proteins and peptides from the cortex and striatum, and pathway analyses revealed significant enrichment in a variety of KEGG pathways. Further analysis showed enrichment in proteins of the actin cytoskeleton in treated samples, but not in saline controls. These data indicate that treatment-related effects on cytoskeletal proteins could alter proper synaptic function, thereby resulting in impaired neuronal function and even neurodegeneration. PMID:26345149

  15. Comparative Proteomic Analysis of Carbonylated Proteins from the Striatum and Cortex of Pesticide-Treated Mice

    PubMed Central

    Coughlan, Christina; Walker, Douglas I.; Lohr, Kelly M.; Richardson, Jason R.; Saba, Laura M.; Caudle, W. Michael; Fritz, Kristofer S.; Roede, James R.

    2015-01-01

    Epidemiological studies indicate exposures to the herbicide paraquat (PQ) and fungicide maneb (MB) are associated with increased risk of Parkinson's disease (PD). Oxidative stress appears to be a premier mechanism that underlies damage to the nigrostriatal dopamine system in PD and pesticide exposure. Enhanced oxidative stress leads to lipid peroxidation and production of reactive aldehydes; therefore, we conducted proteomic analyses to identify carbonylated proteins in the striatum and cortex of pesticide-treated mice in order to elucidate possible mechanisms of toxicity. Male C57BL/6J mice were treated biweekly for 6 weeks with saline, PQ (10 mg/kg), MB (30 mg/kg), or the combination of PQ and MB (PQMB). Treatments resulted in significant behavioral alterations in all treated mice and depleted striatal dopamine in PQMB mice. Distinct differences in 4-hydroxynonenal-modified proteins were observed in the striatum and cortex. Proteomic analyses identified carbonylated proteins and peptides from the cortex and striatum, and pathway analyses revealed significant enrichment in a variety of KEGG pathways. Further analysis showed enrichment in proteins of the actin cytoskeleton in treated samples, but not in saline controls. These data indicate that treatment-related effects on cytoskeletal proteins could alter proper synaptic function, thereby resulting in impaired neuronal function and even neurodegeneration. PMID:26345149

  16. Targeted detection of genetic alterations reveal the prognostic impact of H3K27M and MAPK pathway aberrations in paediatric thalamic glioma.

    PubMed

    Ryall, Scott; Krishnatry, Rahul; Arnoldo, Anthony; Buczkowicz, Pawel; Mistry, Matthew; Siddaway, Robert; Ling, Cino; Pajovic, Sanja; Yu, Man; Rubin, Joshua B; Hukin, Juliette; Steinbok, Paul; Bartels, Ute; Bouffet, Eric; Tabori, Uri; Hawkins, Cynthia

    2016-01-01

    Paediatric brain tumours arising in the thalamus present significant diagnostic and therapeutic challenges to physicians due to their sensitive midline location. As such, genetic analysis for biomarkers to aid in the diagnosis, prognosis and treatment of these tumours is needed. Here, we identified 64 thalamic gliomas with clinical follow-up and characterized targeted genomic alterations using newly optimized droplet digital and NanoString-based assays. The median age at diagnosis was 9.25 years (range, 0.63-17.55) and median survival was 6.43 (range, 0.01-27.63) years. Our cohort contained 42 and 22 tumours reviewed as low and high grade gliomas, respectively. Five (12 %) low grade and 11 (50 %) high grade gliomas were positive for the H3F3A/HIST1H3B K27M (H3K27M) mutation. Kaplan-Meier survival analysis revealed significantly worse overall survival for patients harbouring the H3K27M mutation versus H3F3A/HIST1H3B wild type (H3WT) samples (log-rank p < 0.0001) with a median survival of 1.02 vs. 9.12 years. Mitogen-activated protein kinase (MAPK) pathway activation via BRAF or FGFR1 hotspot mutations or fusion events were detected in 44 % of patients, and was associated with long-term survival in the absence of H3K27M (log-rank p < 0.0001). Multivariate analysis demonstrated H3K27M status and high grade histology to be the most significant independent predictors of poor overall survival with hazard ratios of 6.945 and 7.721 (p < 0.0001), respectively. In contrast, MAPK pathway activation is a predictor of favourable patient outcome, although not independent of other clinical factors. Importantly, we show that low grade malignancies may harbour H3K27M mutations and that these tumours show a dismal survival compared to low grade H3WT cases. Our data strongly supports the inclusion of targeted genetic testing in childhood thalamic tumours to most accurately stratify patients into appropriate risk groups. PMID:27577993

  17. Experience-dependent gene expression in adult visual cortex.

    PubMed

    Chen, Jiabin; Yamahachi, Homare; Gilbert, Charles D

    2010-03-01

    Experience-dependent plasticity of the adult visual cortex underlies perceptual learning and recovery of function following central nervous system lesions. To reveal the signal transduction cascades involved in adult cortical plasticity, we utilized a model of remapping of cortical topography following binocular retinal lesions. In this model, the lesion projection zone (LPZ) of primary visual cortex (V1) recovers visually driven activity by the sprouting of horizontal axonal connections originating from the cells in the surrounding region. To explore the molecular mechanism underlying this process, we used gene microarrays from an expression library prepared from Macaque V1. By microarray analysis of gene expression levels in the LPZ and the surrounding region, and subsequent confirmation with Quantitative Real-Time polymerase chain reaction and in situ hybridization, the participation of a number of genes was observed, including the Rho GTPase family. Its role in regulation of cytoskeleton assembly provides a possible link between the alteration of neural activity and cortical functional reorganization. PMID:19571270

  18. Orbitofrontal cortex and representation of incentive value in associative learning.

    PubMed

    Gallagher, M; McMahan, R W; Schoenbaum, G

    1999-08-01

    Clinical evidence indicates that damage to ventromedial prefrontal cortex disrupts goal-directed actions that are guided by motivational and emotional factors. As a consequence, patients with such damage characteristically engage in maladaptive behaviors. Other research has shown that neurons in the corresponding orbital region of prefrontal cortex in laboratory animals encode information regarding the incentive properties of goals or expected events. The present study investigates the effect of neurotoxic orbitofrontal cortex (OFC) lesions in the rat on responses that are normally influenced by associations between a conditioned stimulus (CS) and the incentive value of reinforcement. Rats were first trained to associate a visual CS with delivery of food pellets to a food cup. As a consequence of learning, rats approached the food cup during the CS in anticipation of reinforcement. In a second training phase, injection of LiCl followed consumption of the food unconditioned stimulus (US) in the home cage, a procedure used to alter the incentive value of the US. Subsequently, rats were returned to the conditioning chamber, and their responding to the CS in the absence of the food US was tested. Lesions of OFC did not affect either the initial acquisition of a conditioned response to the light CS in the first training phase or taste aversion learning in the second training phase. In the test for devaluation, however, OFC rats exhibited no change in conditioned responding to the visual CS. This outcome contrasts with the behavior of control rats; after devaluation of the US a significant decrease occurred in approach to the food cup during presentation of the CS. The results reveal an inability of a cue to access representational information about the incentive value of associated reinforcement after OFC damage. PMID:10414988

  19. The neural representation of Arabic digits in visual cortex

    PubMed Central

    Peters, Lien; De Smedt, Bert; Op de Beeck, Hans P.

    2015-01-01

    In this study, we investigated how Arabic digits are represented in the visual cortex, and how their representation changes throughout the ventral visual processing stream, compared to the representation of letters. We probed these questions with two functional magnetic resonance imaging (fMRI) experiments. In Experiment 1, we explored whether we could find brain regions that were more activated for digits than for number words in a subtraction task. One such region was detected in lateral occipital cortex. However, the activity in this region might have been confounded by string length—number words contain more characters than digits. We therefore conducted a second experiment in which string length was systematically controlled. Experiment 2 revealed that the findings of the first experiment were task dependent (as it was only observed in a task in which numerosity was relevant) or stimulus dependent (as it was only observed when the number of characters of a stimulus was not controlled). We further explored the characteristics of the activation patterns for digit and letter strings across the ventral visual processing stream through multi-voxel pattern analyses. We found an alteration in representations throughout the ventral processing stream from clustering based on amount of visual information in primary visual cortex (V1) towards clustering based on symbolic stimulus category higher in the visual hierarchy. The present findings converge to the conclusion that in the ventral visual system, as far as can be detected with fMRI, the distinction between Arabic digits and letter strings is represented in terms of distributed patterns rather than separate regions. PMID:26441613

  20. Alterations of Hippocampal Projections in Adult Macaques with Neonatal Hippocampal Lesions: A Diffusion Tensor Imaging Study

    PubMed Central

    Meng, Yuguang; Payne, Christa; Li, Longchuan; Hu, Xiaoping; Zhang, Xiaodong; Bachevalier, Jocelyne

    2014-01-01

    Neuropsychological and brain imaging studies have demonstrated persistent deficits in memory functions and structural changes after neonatal neurotoxic hippocampal lesion in monkeys. However, the relevant microstructural changes in the white matter of affected brain regions following this early insult remain unknown. This study assessed white matter integrity in the main hippocampal projections of adult macaque monkeys with neonatal hippocampal lesions, by diffusion tensor imaging (DTI). Data analysis was performed using tract-based spatial statistics (TBSS) and compared with volume of interest statistics. Alterations of fractional anisotropy (FA) and diffusivity indices were observed in fornix, temporal stem, ventromedial prefrontal cortex and optical radiations. To further validate the lesion effects on the prefrontal cortex, probabilistic diffusion tractography was used to examine the integrity of the fiber connections between hippocampus and ventromedial prefrontal cortex, and alterations were found in these connections. In addition, increased radial diffusivity in the left ventromedial prefrontal cortex correlated negatively with the severity of deficits in working memory in the same monkeys. The findings revealed microstructural changes due to neonatal hippocampal lesion, and confirmed that neonatal neurotoxic hippocampal lesions resulted in significant and enduring functional alterations in the hippocampal projection system. PMID:25204865

  1. Rhyolite genesis at the Picabo Volcanic Center of the Snake River Plain: Progressive recycling of hydrothermally altered rhyolites revealed by high resolution analysis of individual zircons

    NASA Astrophysics Data System (ADS)

    Drew, D.; Bindeman, I. N.; Watts, K. E.; Schmitt, A. K.; McCurry, M. O.

    2012-12-01

    The Picabo eruptive center of the Snake River Plain (SRP) produced a series of normal and low δ18O rhyolites from 10.44 Ma to 6.62 Ma, providing the first evidence of progressive recycling of hydrothermally altered rhyolites during the formation of a caldera complex. In this study we present a characterization of ignimbrites and associated lavas based on U-Pb ages and δ18O compositions of individual zircon cores measured by ion microprobe, phenocryst δ18O values measured by laser fluorination, whole rock 87Sr/86Sr and 143Nd/144Nd compositions, and whole rock geochemistry. Our data define rhyolite genesis at the Picabo volcanic center through time and have implications for the transition between volcanic centers. Caldera complex evolution at Picabo began with eruption of the 10.44 ± 0.27 Ma Tuff of Arbon Valley (TAV), a chemically zoned unit with a normal δ18Omelt value (8.15‰), very high 87Sr/86Sr (up to 0.734430) and very low ɛNd (-18). Eruptions continued with the ~9.1 Ma Two-and-a-Half-Mile Rhyolite (Kellogg et al., 1988), a unit significant in that it has an even lower ɛNd than the TAV and a normal δ18Omelt value (8.10‰). This low ɛNd of -23, of the Two-and-a-Half-Mile Rhyolite, reveals that greater than 40% of Archean crust was assimilated. These normal δ18O eruptions were followed by a series of lower δ18O eruptions distinguishable by Sr and Nd isotopes and whole rock chemistry. The 8.25 ± 0.26 Ma Rhyolite of West Pocatello has the lowest δ18Omelt value (3.34‰) of these eruptions, and based on nearly identical age, 87Sr/86Sr, 143Nd/144Nd, and whole rock chemistry, we correlate it to a 1,000 m thick intracaldera tuff (present in the INEL drillcore). Along with a distinct decrease in δ18O, from the TAV to the Rhyolite of West Pocatello, there is a corresponding increase in δ18Ozircon heterogeneity from the TAV (1‰ variation) to the low δ18O units with the greatest δ18Ozircon diversity (up to 5‰). Although morphological evidence for

  2. Altered cingulostriatal coupling in obsessive-compulsive disorder.

    PubMed

    Beucke, Jan Carl; Kaufmann, Christian; Linnman, Clas; Gruetzmann, Rosa; Endrass, Tanja; Deckersbach, Thilo; Dougherty, Darin D; Kathmann, Norbert

    2012-01-01

    Neurobiological models of obsessive-compulsive disorder (OCD) assume abnormalities in corticostriatal networks involving cingulate and orbitofrontal cortices, but the connectivity within these systems is rarely addressed in experimental imaging studies in this patient group. Using an established monetary reinforcement paradigm known to involve the cingulate cortex and the ventral striatum, the present study sought to test for altered corticostriatal coupling in OCD patients anticipating potential punishment. The anterior midcingulate cortex (aMCC), a region integrating negative emotion, pain, and cognitive control, was chosen as a seed region due to its particular relevance in OCD, representing the neurosurgical target for cingulotomy, and showing increased responses to errors in OCD patients. Results from psychophysiological interaction analyses revealed that significantly altered, inverse coupling occurs between the aMCC and the ventral striatum when OCD patients anticipate potential punishment. This abnormality links the two major contemporary neurosurgical OCD target sites, and provides direct experimental evidence of altered corticostriatal connectivity in OCD. Noteworthy, an abnormal aMCC coupling with cortical areas outside of traditional corticostriatal circuitry was identified besides the alteration in the cingulostriatal pathway. In conclusion, these findings support the importance of applying connectivity methods to study corticostriatal networks in OCD, and favor the application of effective connectivity methods to study corticostriatal abnormalities in OCD patients performing tasks that involve symptom provocation and reinforcement learning. PMID:22823561

  3. Multicenter mapping of structural network alterations in autism.

    PubMed

    Valk, Sofie L; Di Martino, Adriana; Milham, Michael P; Bernhardt, Boris C

    2015-06-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions primarily characterized by abnormalities in social cognition. Abundant previous functional MRI studies have shown atypical activity in networks encompassing medial prefrontal cortex (mPFC) and medial parietal regions corresponding to posterior cingulate cortex and precuneus (PCC/PCU). Conversely, studies assessing structural brain anomalies in ASD have been rather inconsistent. The current work evaluated whether structural changes in ASD can be reliability detected in a large multicenter dataset. Our comprehensive structural MRI framework encompassed cortical thickness mapping and structural covariance analysis based on three independent samples comprising individuals with ASD and controls (n = 220), selected from the Autism Brain Imaging Data Exchange open-access database. Surface-based analysis revealed increased cortical thickness in ASD relative to controls in mPFC and lateral prefrontal cortex. Clusters encompassing mPFC were embedded in altered inter-regional covariance networks, showing decreased covariance in ASD relative to controls primarily to PCC/PCU and inferior parietal regions. Cortical thickness increases and covariance reductions in ASD were consistent, yet of variable effect size, across the different sites evaluated and measurable both in children and adults. Our multisite study shows regional and network-level structural alterations in mPFC in ASD that, possibly, relate to atypical socio-cognitive functions in this condition. PMID:25727858

  4. Altered brain arginine metabolism in schizophrenia.

    PubMed

    Liu, P; Jing, Y; Collie, N D; Dean, B; Bilkey, D K; Zhang, H

    2016-01-01

    Previous research implicates altered metabolism of l-arginine, a versatile amino acid with a number of bioactive metabolites, in the pathogenesis of schizophrenia. The present study, for we believe the first time, systematically compared the metabolic profile of l-arginine in the frontal cortex (Brodmann's area 8) obtained post-mortem from schizophrenic individuals and age- and gender-matched non-psychiatric controls (n=20 per group). The enzyme assays revealed no change in total nitric oxide synthase (NOS) activity, but significantly increased arginase activity in the schizophrenia group. Western blot showed reduced endothelial NOS protein expression and increased arginase II protein level in the disease group. High-performance liquid chromatography and liquid chromatography/mass spectrometric assays confirmed significantly reduced levels of γ-aminobutyric acid (GABA), but increased agmatine concentration and glutamate/GABA ratio in the schizophrenia cases. Regression analysis indicated positive correlations between arginase activity and the age of disease onset and between l-ornithine level and the duration of illness. Moreover, cluster analyses revealed that l-arginine and its main metabolites l-citrulline, l-ornithine and agmatine formed distinct groups, which were altered in the schizophrenia group. The present study provides further evidence of altered brain arginine metabolism in schizophrenia, which enhances our understanding of the pathogenesis of schizophrenia and may lead to the future development of novel preventions and/or therapeutics for the disease. PMID:27529679

  5. Comparative transcriptomic analysis reveals the oncogenic fusion protein PAX3-FOXO1 globally alters mRNA and miRNA to enhance myoblast invasion

    PubMed Central

    Loupe, J M; Miller, P J; Bonner, B P; Maggi, E C; Vijayaraghavan, J; Crabtree, J S; Taylor, C M; Zabaleta, J; Hollenbach, A D

    2016-01-01

    Rhabdomyosarcoma, one of the most common childhood sarcomas, is comprised of two main subtypes, embryonal and alveolar (ARMS). ARMS, the more aggressive subtype, is primarily characterized by the t(2;13)(p35;p14) chromosomal translocation, which fuses two transcription factors, PAX3 and FOXO1 to generate the oncogenic fusion protein PAX3-FOXO1. Patients with PAX3-FOXO1-postitive tumors have a poor prognosis, in part due to the enhanced local invasive capacity of these cells, which leads to the increased metastatic potential for this tumor. Despite this knowledge, little is known about the role that the oncogenic fusion protein has in this increased invasive potential. In this report we use large-scale comparative transcriptomic analyses in physiologically relevant primary myoblasts to demonstrate that the presence of PAX3-FOXO1 is sufficient to alter the expression of 70 mRNA and 27 miRNA in a manner predicted to promote cellular invasion. In contrast the expression of PAX3 alters 60 mRNA and 23 miRNA in a manner predicted to inhibit invasion. We demonstrate that these alterations in mRNA and miRNA translate into changes in the invasive potential of primary myoblasts with PAX3-FOXO1 increasing invasion nearly 2-fold while PAX3 decreases invasion nearly 4-fold. Taken together, these results allow us to build off of previous reports and develop a more expansive molecular model by which the presence of PAX3-FOXO1 alters global gene regulatory networks to enhance the local invasiveness of cells. Further, the global nature of our observed changes highlights the fact that instead of focusing on a single-gene target, we must develop multi-faceted treatment regimens targeting multiple genes of a single oncogenic phenotype or multiple genes that target different oncogenic phenotypes for tumor progression. PMID:27454080

  6. Melanogenesis stimulation in B16-F10 melanoma cells induces cell cycle alterations, increased ROS levels and a differential expression of proteins as revealed by proteomic analysis

    SciTech Connect

    Cunha, Elizabeth S.; Kawahara, Rebeca; Kadowaki, Marina K.; Amstalden, Hudson G.; Noleto, Guilhermina R.; Cadena, Silvia Maria S.C.; Winnischofer, Sheila M.B.; Martinez, Glaucia R.

    2012-09-10

    Considering that stimulation of melanogenesis may lead to alterations of cellular responses, besides melanin production, our main goal was to study the cellular effects of melanogenesis stimulation of B16-F10 melanoma cells. Our results show increased levels of the reactive oxygen species after 15 h of melanogenesis stimulation. Following 48 h of melanogenesis stimulation, proliferation was inhibited (by induction of cell cycle arrest in the G1 phase) and the expression levels of p21 mRNA were increased. In addition, melanogenesis stimulation did not induce cellular senescence. Proteomic analysis demonstrated the involvement of proteins from other pathways besides those related to the cell cycle, including protein disulfide isomerase A3, heat-shock protein 70, and fructose biphosphate aldolase A (all up-regulated), and lactate dehydrogenase (down-regulated). In RT-qPCR experiments, the levels of pyruvate kinase M2 mRNA dropped, whereas the levels of ATP synthase (beta-F1) mRNA increased. These data indicate that melanogenesis stimulation of B16-F10 cells leads to alterations in metabolism and cell cycle progression that may contribute to an induction of cell quiescence, which may provide a mechanism of resistance against cellular injury promoted by melanin synthesis. -- Highlights: Black-Right-Pointing-Pointer Melanogenesis stimulation by L-tyrosine+NH{sub 4}Cl in B16-F10 melanoma cells increases ROS levels. Black-Right-Pointing-Pointer Melanogenesis inhibits cell proliferation, and induced cell cycle arrest in the G1 phase. Black-Right-Pointing-Pointer Proteomic analysis showed alterations in proteins of the cell cycle and glucose metabolism. Black-Right-Pointing-Pointer RT-qPCR analysis confirmed alterations of metabolic targets after melanogenesis stimulation.

  7. Comparative transcriptomic analysis reveals the oncogenic fusion protein PAX3-FOXO1 globally alters mRNA and miRNA to enhance myoblast invasion.

    PubMed

    Loupe, J M; Miller, P J; Bonner, B P; Maggi, E C; Vijayaraghavan, J; Crabtree, J S; Taylor, C M; Zabaleta, J; Hollenbach, A D

    2016-01-01

    Rhabdomyosarcoma, one of the most common childhood sarcomas, is comprised of two main subtypes, embryonal and alveolar (ARMS). ARMS, the more aggressive subtype, is primarily characterized by the t(2;13)(p35;p14) chromosomal translocation, which fuses two transcription factors, PAX3 and FOXO1 to generate the oncogenic fusion protein PAX3-FOXO1. Patients with PAX3-FOXO1-postitive tumors have a poor prognosis, in part due to the enhanced local invasive capacity of these cells, which leads to the increased metastatic potential for this tumor. Despite this knowledge, little is known about the role that the oncogenic fusion protein has in this increased invasive potential. In this report we use large-scale comparative transcriptomic analyses in physiologically relevant primary myoblasts to demonstrate that the presence of PAX3-FOXO1 is sufficient to alter the expression of 70 mRNA and 27 miRNA in a manner predicted to promote cellular invasion. In contrast the expression of PAX3 alters 60 mRNA and 23 miRNA in a manner predicted to inhibit invasion. We demonstrate that these alterations in mRNA and miRNA translate into changes in the invasive potential of primary myoblasts with PAX3-FOXO1 increasing invasion nearly 2-fold while PAX3 decreases invasion nearly 4-fold. Taken together, these results allow us to build off of previous reports and develop a more expansive molecular model by which the presence of PAX3-FOXO1 alters global gene regulatory networks to enhance the local invasiveness of cells. Further, the global nature of our observed changes highlights the fact that instead of focusing on a single-gene target, we must develop multi-faceted treatment regimens targeting multiple genes of a single oncogenic phenotype or multiple genes that target different oncogenic phenotypes for tumor progression. PMID:27454080

  8. Genome-wide analysis of pediatric-type follicular lymphoma reveals low genetic complexity and recurrent alterations of TNFRSF14 gene.

    PubMed

    Schmidt, Janine; Gong, Shunyou; Marafioti, Teresa; Mankel, Barbara; Gonzalez-Farre, Blanca; Balagué, Olga; Mozos, Ana; Cabeçadas, José; van der Walt, Jon; Hoehn, Daniela; Rosenwald, Andreas; Ott, German; Dojcinov, Stefan; Egan, Caoimhe; Nadeu, Ferran; Ramis-Zaldívar, Joan Enric; Clot, Guillem; Bárcena, Carmen; Pérez-Alonso, Vanesa; Endris, Volker; Penzel, Roland; Lome-Maldonado, Carmen; Bonzheim, Irina; Fend, Falko; Campo, Elias; Jaffe, Elaine S; Salaverria, Itziar; Quintanilla-Martinez, Leticia

    2016-08-25

    Pediatric-type follicular lymphoma (PTFL) is a variant of follicular lymphoma (FL) with distinctive clinicopathological features. Patients are predominantly young males presenting with localized lymphadenopathy; the tumor shows high-grade cytology and lacks both BCL2 expression and t(14;18) translocation. The genetic alterations involved in the pathogenesis of PTFL are unknown. Therefore, 42 PTFL (40 males and 2 females; mean age, 16 years; range, 5-31) were genetically characterized. For comparison, 11 cases of conventional t(14:18)(-) FL in adults were investigated. Morphologically, PTFL cases had follicular growth pattern without diffuse areas and characteristic immunophenotype. All cases showed monoclonal immunoglobulin (IG) rearrangement. PTFL displays low genomic complexity when compared with t(14;18)(-) FL (mean, 0.77 vs 9 copy number alterations per case; P <001). Both groups presented 1p36 alterations including TNFRSF14, but copy-number neutral loss of heterozygosity (CNN-LOH) of this locus was more frequently observed in PTFL (40% vs 9%; P =075). TNFRSF14 was the most frequently affected gene in PTFL (21 mutations and 2 deletions), identified in 54% of cases, followed by KMT2D mutations in 16%. Other histone-modifying genes were rarely affected. In contrast, t(14;18)(-) FL displayed a mutational profile similar to t(14;18)(+) FL. In 8 PTFL cases (19%), no genetic alterations were identified beyond IG monoclonal rearrangement. The genetic landscape of PTFL suggests that TNFRSF14 mutations accompanied by CNN-LOH of the 1p36 locus in over 70% of mutated cases, as additional selection mechanism, might play a key role in the pathogenesis of this disease. The genetic profiles of PTFL and t(14;18)(-) FL in adults indicate that these are two different disorders. PMID:27257180

  9. Transcriptomics Profiling of Alzheimer’s Disease Reveal Neurovascular Defects, Altered Amyloid-β Homeostasis, and Deregulated Expression of Long Noncoding RNAs

    PubMed Central

    Magistri, Marco; Velmeshev, Dmitry; Makhmutova, Madina; Faghihi, Mohammad Ali

    2015-01-01

    Abstract The underlying genetic variations of late-onset Alzheimer’s disease (LOAD) cases remain largely unknown. A combination of genetic variations with variable penetrance and lifetime epigenetic factors may converge on transcriptomic alterations that drive LOAD pathological process. Transcriptome profiling using deep sequencing technology offers insight into common altered pathways regardless of underpinning genetic or epigenetic factors and thus represents an ideal tool to investigate molecular mechanisms related to the pathophysiology of LOAD. We performed directional RNA sequencing on high quality RNA samples extracted from hippocampi of LOAD and age-matched controls. We further validated our data using qRT-PCR on a larger set of postmortem brain tissues, confirming downregulation of the gene encoding substance P (TAC1) and upregulation of the gene encoding the plasminogen activator inhibitor-1 (SERPINE1). Pathway analysis indicates dysregulation in neural communication, cerebral vasculature, and amyloid-β clearance. Beside protein coding genes, we identified several annotated and non-annotated long noncoding RNAs that are differentially expressed in LOAD brain tissues, three of them are activity-dependent regulated and one is induced by Aβ1 - 42 exposure of human neural cells. Our data provide a comprehensive list of transcriptomics alterations in LOAD hippocampi and warrant holistic approach including both coding and non-coding RNAs in functional studies aimed to understand the pathophysiology of LOAD. PMID:26402107

  10. RNA-seq Analysis of δ9-Tetrahydrocannabinol-treated T Cells Reveals Altered Gene Expression Profiles That Regulate Immune Response and Cell Proliferation.

    PubMed

    Yang, Xiaoming; Bam, Marpe; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2016-07-22

    Marijuana has drawn significant public attention and concern both for its medicinal and recreational use. Δ9-Tetrahydrocannabinol (THC), which is the main bioactive component in marijuana, has also been shown to possess potent anti-inflammatory properties by virtue of its ability to activate cannabinoid receptor-2 (CB-2) expressed on immune cells. In this study, we used RNA-seq to quantify the transcriptomes and transcript variants that are differentially regulated by THC in super antigen-activated lymph node cells and CD4(+) T cells. We found that the expressions of many transcripts were altered by THC in both total lymph node cells and CD4(+) T cells. Furthermore, the abundance of many miRNA precursors and long non-coding RNAs was dramatically altered in THC-treated mice. For example, the expression of miR-17/92 cluster and miR-374b/421 cluster was down-regulated by THC. On the other hand miR-146a, which has been shown to induce apoptosis, was up-regulated by THC. Long non-coding RNAs that are expressed from the opposite strand of CD27 and Appbp2 were induced by THC. In addition, THC treatment also caused alternative promoter usage and splicing. The functions of those altered transcripts were mainly related to immune response and cell proliferation. PMID:27268054

  11. Occipital cortex of blind individuals is functionally coupled with executive control areas of frontal cortex.

    PubMed

    Deen, Ben; Saxe, Rebecca; Bedny, Marina

    2015-08-01

    In congenital blindness, the occipital cortex responds to a range of nonvisual inputs, including tactile, auditory, and linguistic stimuli. Are these changes in functional responses to stimuli accompanied by altered interactions with nonvisual functional networks? To answer this question, we introduce a data-driven method that searches across cortex for functional connectivity differences across groups. Replicating prior work, we find increased fronto-occipital functional connectivity in congenitally blind relative to blindfolded sighted participants. We demonstrate that this heightened connectivity extends over most of occipital cortex but is specific to a subset of regions in the inferior, dorsal, and medial frontal lobe. To assess the functional profile of these frontal areas, we used an n-back working memory task and a sentence comprehension task. We find that, among prefrontal areas with overconnectivity to occipital cortex, one left inferior frontal region responds to language over music. By contrast, the majority of these regions responded to working memory load but not language. These results suggest that in blindness occipital cortex interacts more with working memory systems and raise new questions about the function and mechanism of occipital plasticity. PMID:25803598

  12. Neural correlates of the LSD experience revealed by multimodal neuroimaging.

    PubMed

    Carhart-Harris, Robin L; Muthukumaraswamy, Suresh; Roseman, Leor; Kaelen, Mendel; Droog, Wouter; Murphy, Kevin; Tagliazucchi, Enzo; Schenberg, Eduardo E; Nest, Timothy; Orban, Csaba; Leech, Robert; Williams, Luke T; Williams, Tim M; Bolstridge, Mark; Sessa, Ben; McGonigle, John; Sereno, Martin I; Nichols, David; Hellyer, Peter J; Hobden, Peter; Evans, John; Singh, Krish D; Wise, Richard G; Curran, H Valerie; Feilding, Amanda; Nutt, David J

    2016-04-26

    Lysergic acid diethylamide (LSD) is the prototypical psychedelic drug, but its effects on the human brain have never been studied before with modern neuroimaging. Here, three complementary neuroimaging techniques: arterial spin labeling (ASL), blood oxygen level-dependent (BOLD) measures, and magnetoencephalography (MEG), implemented during resting state conditions, revealed marked changes in brain activity after LSD that correlated strongly with its characteristic psychological effects. Increased visual cortex cerebral blood flow (CBF), decreased visual cortex alpha power, and a greatly expanded primary visual cortex (V1) functional connectivity profile correlated strongly with ratings of visual hallucinations, implying that intrinsic brain activity exerts greater influence on visual processing in the psychedelic state, thereby defining its hallucinatory quality. LSD's marked effects on the visual cortex did not significantly correlate with the drug's other characteristic effects on consciousness, however. Rather, decreased connectivity between the parahippocampus and retrosplenial cortex (RSC) correlated strongly with ratings of "ego-dissolution" and "altered meaning," implying the importance of this particular circuit for the maintenance of "self" or "ego" and its processing of "meaning." Strong relationships were also found between the different imaging metrics, enabling firmer inferences to be made about their functional significance. This uniquely comprehensive examination of the LSD state represents an important advance in scientific research with psychedelic drugs at a time of growing interest in their scientific and therapeutic value. The present results contribute important new insights into the characteristic hallucinatory and consciousness-altering properties of psychedelics that inform on how they can model certain pathological states and potentially treat others. PMID:27071089

  13. Neural correlates of the LSD experience revealed by multimodal neuroimaging

    PubMed Central

    Carhart-Harris, Robin L.; Muthukumaraswamy, Suresh; Roseman, Leor; Kaelen, Mendel; Droog, Wouter; Murphy, Kevin; Tagliazucchi, Enzo; Schenberg, Eduardo E.; Nest, Timothy; Orban, Csaba; Leech, Robert; Williams, Luke T.; Williams, Tim M.; Bolstridge, Mark; Sessa, Ben; McGonigle, John; Sereno, Martin I.; Nichols, David; Hobden, Peter; Evans, John; Singh, Krish D.; Wise, Richard G.; Curran, H. Valerie; Feilding, Amanda; Nutt, David J.

    2016-01-01

    Lysergic acid diethylamide (LSD) is the prototypical psychedelic drug, but its effects on the human brain have never been studied before with modern neuroimaging. Here, three complementary neuroimaging techniques: arterial spin labeling (ASL), blood oxygen level-dependent (BOLD) measures, and magnetoencephalography (MEG), implemented during resting state conditions, revealed marked changes in brain activity after LSD that correlated strongly with its characteristic psychological effects. Increased visual cortex cerebral blood flow (CBF), decreased visual cortex alpha power, and a greatly expanded primary visual cortex (V1) functional connectivity profile correlated strongly with ratings of visual hallucinations, implying that intrinsic brain activity exerts greater influence on visual processing in the psychedelic state, thereby defining its hallucinatory quality. LSD’s marked effects on the visual cortex did not significantly correlate with the drug’s other characteristic effects on consciousness, however. Rather, decreased connectivity between the parahippocampus and retrosplenial cortex (RSC) correlated strongly with ratings of “ego-dissolution” and “altered meaning,” implying the importance of this particular circuit for the maintenance of “self” or “ego” and its processing of “meaning.” Strong relationships were also found between the different imaging metrics, enabling firmer inferences to be made about their functional significance. This uniquely comprehensive examination of the LSD state represents an important advance in scientific research with psychedelic drugs at a time of growing interest in their scientific and therapeutic value. The present results contribute important new insights into the characteristic hallucinatory and consciousness-altering properties of psychedelics that inform on how they can model certain pathological states and potentially treat others. PMID:27071089

  14. Epigenetic Profiling of H3K4Me3 Reveals Herbal Medicine Jinfukang-Induced Epigenetic Alteration Is Involved in Anti-Lung Cancer Activity.

    PubMed

    Lu, Jun; Zhang, Xiaoli; Shen, Tingting; Ma, Chao; Wu, Jun; Kong, Hualei; Tian, Jing; Shao, Zhifeng; Zhao, Xiaodong; Xu, Ling

    2016-01-01

    Traditional Chinese medicine Jinfukang (JFK) has been clinically used for treating lung cancer. To examine whether epigenetic modifications are involved in its anticancer activity, we performed a global profiling analysis of H3K4Me3, an epigenomic marker associated with active gene expression, in JFK-treated lung cancer cells. We identified 11,670 genes with significantly altered status of H3K4Me3 modification following JFK treatment (P < 0.05). Gene Ontology analysis indicates that these genes are involved in tumor-related pathways, including pathway in cancer, basal cell carcinoma, apoptosis, induction of programmed cell death, regulation of transcription (DNA-templated), intracellular signal transduction, and regulation of peptidase activity. In particular, we found that the levels of H3K4Me3 at the promoters of SUSD2, CCND2, BCL2A1, and TMEM158 are significantly altered in A549, NCI-H1975, NCI-H1650, and NCI-H2228 cells, when treated with JFK. Collectively, these findings provide the first evidence that the anticancer activity of JFK involves modulation of histone modification at many cancer-related gene loci. PMID:27087825

  15. Epigenetic Profiling of H3K4Me3 Reveals Herbal Medicine Jinfukang-Induced Epigenetic Alteration Is Involved in Anti-Lung Cancer Activity

    PubMed Central

    Lu, Jun; Zhang, Xiaoli; Shen, Tingting; Ma, Chao; Wu, Jun; Kong, Hualei; Tian, Jing; Shao, Zhifeng; Zhao, Xiaodong; Xu, Ling

    2016-01-01

    Traditional Chinese medicine Jinfukang (JFK) has been clinically used for treating lung cancer. To examine whether epigenetic modifications are involved in its anticancer activity, we performed a global profiling analysis of H3K4Me3, an epigenomic marker associated with active gene expression, in JFK-treated lung cancer cells. We identified 11,670 genes with significantly altered status of H3K4Me3 modification following JFK treatment (P < 0.05). Gene Ontology analysis indicates that these genes are involved in tumor-related pathways, including pathway in cancer, basal cell carcinoma, apoptosis, induction of programmed cell death, regulation of transcription (DNA-templated), intracellular signal transduction, and regulation of peptidase activity. In particular, we found that the levels of H3K4Me3 at the promoters of SUSD2, CCND2, BCL2A1, and TMEM158 are significantly altered in A549, NCI-H1975, NCI-H1650, and NCI-H2228 cells, when treated with JFK. Collectively, these findings provide the first evidence that the anticancer activity of JFK involves modulation of histone modification at many cancer-related gene loci. PMID:27087825

  16. A systematic review of non-motor rTMS induced motor cortex plasticity

    PubMed Central

    Nordmann, Grégory; Azorina, Valeriya; Langguth, Berthold; Schecklmann, Martin

    2015-01-01

    Motor cortex excitability can be measured by single- and paired-pulse transcranial magnetic stimulation (TMS). Repetitive transcranial magnetic stimulation (rTMS) can induce neuroplastic effects in stimulated and in functionally connected cortical regions. Due to its ability to non-invasively modulate cortical activity, rTMS has been investigated for the treatment of various neurological and psychiatric disorders. However, such studies revealed a high variability of both clinical and neuronal effects induced by rTMS. In order to better elucidate this meta-plasticity, rTMS-induced changes in motor cortex excitability have been monitored in various studies in a pre-post stimulation design. Here, we give a literature review of studies investigating motor cortex excitability changes as a neuronal marker for rTMS effects over non-motor cortical areas. A systematic literature review in April 2014 resulted in 29 articles in which motor cortex excitability was assessed before and after rTMS over non-motor areas. The majority of the studies focused on the stimulation of one of three separate cortical areas: the prefrontal area (17 studies), the cerebellum (8 studies), or the temporal cortex (3 studies). One study assessed the effects of multi-site rTMS. Most studies investigated healthy controls but some also stimulated patients with neuropsychiatric conditions (e.g., affective disorders, tinnitus). Methods and findings of the identified studies were highly variable showing no clear systematic pattern of interaction of non-motor rTMS with measures of motor cortex excitability. Based on the available literature, the measurement of motor cortex excitability changes before and after non-motor rTMS has only limited value in the investigation of rTMS related meta-plasticity as a neuronal state or as a trait marker for neuropsychiatric diseases. Our results do not suggest that there are systematic alterations of cortical excitability changes during rTMS treatment, which calls

  17. Clinico-pathological features and somatic gene alterations in refractory ceramic fibre-induced murine mesothelioma reveal mineral fibre-induced mesothelioma identities

    PubMed Central

    Andujar, Pascal; Lecomte, Céline; Renier, Annie; Fleury-Feith, Jocelyne; Kheuang, Laurence; Daubriac, Julien; Janin, Anne; Jaurand, Marie-Claude

    2007-01-01

    Although human malignant mesothelioma (HMM) is mainly caused by asbestos exposure, refractory ceramic fibres (RCFs) have been classified as possibly carcinogenic to humans on the basis of their biological effects in rodents’ lung and pleura and in cultured cells. Hence, further investigations are needed to clarify the mechanism of fibre-induced carcinogenicity and to prevent use of harmful particles. In a previous study, mesotheliomas were found in hemizygous Nf2 (Nf2+/−) mice exposed to asbestos fibres, and showed similar alterations in genes at the Ink4 locus and in Trp53 as described in HMM. Here we found that Nf2+/− mice developed mesotheliomas after intra-peritoneal inoculation of a RCF sample (RCF1). Clinical features in exposed mice were similar to those observed in HMM, showing association between ascite and mesothelioma. Early passages of 12 mesothelioma cell cultures from ascites developed in RCF1-exposed Nf2+/− mice demonstrated frequent inactivation by deletion of genes at the Ink4 locus, and low rate of Trp53 point and insertion mutations. Nf2 gene was inactivated in all cultures. In most cases, co-inactivation of genes at the Ink4 locus and Nf2 was found and, at a lower rate, of Trp53 and Nf2. These results are the first to identify mutations in RCF-induced mesothelioma. They suggest that nf2 mutation is complementary of p15Ink4b, p16Ink4a and p19Arf or p53 mutations and show similar profile of gene alterations resulting from exposure to ceramic or asbestos fibres in Nf2+/− mice, also consistent with the one found in HMM. These somatic genetic changes define different pathways of mesothelial cell transformation. PMID:17272307

  18. High-throughput 16S rRNA gene sequencing reveals alterations of intestinal microbiota in myalgic encephalomyelitis/chronic fatigue syndrome patients.

    PubMed

    Frémont, Marc; Coomans, Danny; Massart, Sebastien; De Meirleir, Kenny

    2013-08-01

    Human intestinal microbiota plays an important role in the maintenance of host health by providing energy, nutrients, and immunological protection. Intestinal dysfunction is a frequent complaint in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients, and previous reports suggest that dysbiosis, i.e. the overgrowth of abnormal populations of bacteria in the gut, is linked to the pathogenesis of the disease. We used high-throughput 16S rRNA gene sequencing to investigate the presence of specific alterations in the gut microbiota of ME/CFS patients from Belgium and Norway. 43 ME/CFS patients and 36 healthy controls were included in the study. Bacterial DNA was extracted from stool samples, PCR amplification was performed on 16S rRNA gene regions, and PCR amplicons were sequenced using Roche FLX 454 sequencer. The composition of the gut microbiota was found to differ between Belgian controls and Norwegian controls: Norwegians showed higher percentages of specific Firmicutes populations (Roseburia, Holdemania) and lower proportions of most Bacteroidetes genera. A highly significant separation could be achieved between Norwegian controls and Norwegian patients: patients presented increased proportions of Lactonifactor and Alistipes, as well as a decrease in several Firmicutes populations. In Belgian subjects the patient/control separation was less pronounced, however some abnormalities observed in Norwegian patients were also found in Belgian patients. These results show that intestinal microbiota is altered in ME/CFS. High-throughput sequencing is a useful tool to diagnose dysbiosis in patients and could help designing treatments based on gut microbiota modulation (antibiotics, pre and probiotics supplementation). PMID:23791918

  19. Genetic manipulation of cardiac Hsp72 levels does not alter substrate metabolism but reveals insights into high-fat feeding-induced cardiac insulin resistance.

    PubMed

    Henstridge, Darren C; Estevez, E; Allen, T L; Heywood, S E; Gardner, T; Yang, C; Mellett, N A; Kingwell, B A; Meikle, P J; Febbraio, M A

    2015-05-01

    Heat shock protein 72 (Hsp72) protects cells against a variety of stressors, and multiple studies have suggested that Hsp72 plays a cardioprotective role. As skeletal muscle Hsp72 overexpression can protect against high-fat diet (HFD)-induced insulin resistance, alterations in substrate metabolism may be a mechanism by which Hsp72 is cardioprotective. We investigated the impact of transgenically overexpressing (Hsp72 Tg) or deleting Hsp72 (Hsp72 KO) on various aspects of cardiac metabolism. Mice were fed a normal chow (NC) or HFD for 12 weeks from 8 weeks of age to examine the impact of diet-induced obesity on metabolic parameters in the heart. The HFD resulted in an increase in cardiac fatty acid oxidation and a decrease in cardiac glucose oxidation and insulin-stimulated cardiac glucose clearance; however, there was no difference in Hsp72 Tg or Hsp72 KO mice in these rates compared with their respective wild-type control mice. Although HFD-induced cardiac insulin resistance was not rescued in the Hsp72 Tg mice, it was preserved in the skeletal muscle, suggesting tissue-specific effects of Hsp72 overexpression on substrate metabolism. Comparison of two different strains of mice (BALB/c vs. C57BL/6J) also identified strain-specific differences in regard to HFD-induced cardiac lipid accumulation and insulin resistance. These strain differences suggest that cardiac lipid accumulation can be dissociated from cardiac insulin resistance. Our study finds that genetic manipulation of Hsp72 does not lead to alterations in metabolic processes in cardiac tissue under resting conditions, but identifies mouse strain-specific differences in cardiac lipid accumulation and insulin-stimulated glucose clearance. PMID:25618331

  20. Blood Pressure is Associated With Cerebral Blood Flow Alterations in Patients With T2DM as Revealed by Perfusion Functional MRI

    PubMed Central

    Xia, Wenqing; Rao, Hengyi; Spaeth, Andrea M.; Huang, Rong; Tian, Sai; Cai, Rongrong; Sun, Jie; Wang, Shaohua

    2015-01-01

    Abstract Type 2 diabetes mellitus (T2DM) and hypertension are both associated with cognitive impairment and brain function abnormalities. We investigated whether abnormal cerebral blood flow (CBF) patterns exists in T2DM patients and possible relationships between aberrant CBF and cognitive performance. Furthermore, we examined the influence of hypertension on CBF alterations in T2DM patients. T2DM patients (n = 38) and non-T2DM subjects (n = 40) were recruited from clinics, hospitals, and normal community health screenings. Cerebral blood flow images were collected and analyzed using arterial spin labeling perfusion functional magnetic resonance imaging (fMRI). Regions with major CBF differences between T2DM patients and non-T2DM controls were detected via 1-way ANOVA. The interaction effects between hypertension and T2DM for CBF alterations were also examined. Correlation analyses illustrated the association between CBF values and cognitive performance and between CBF and blood pressure. Compared with non-T2DM controls, T2DM patients exhibited decreased CBF, primarily in the visual area and the default mode network (DMN); decreased CBF in these regions was correlated with cognitive performance. There was a significant interaction effect between hypertension and diabetes for CBF in the precuneus and the middle occipital gyrus. Additionally, blood pressure correlated negatively with CBF in T2DM patients. T2DM patients exhibited reduced CBF in the visual area and DMN. Hypertension may facilitate a CBF decrease in the setting of diabetes. T2DM patients may benefit from blood pressure control to maintain their brain perfusion through CBF preservation. PMID:26632913

  1. Altered proteostasis in aging and heat shock response in C. elegans revealed by analysis of the global and de novo synthesized proteome.

    PubMed

    Liang, Vanessa; Ullrich, Milena; Lam, Hong; Chew, Yee Lian; Banister, Samuel; Song, Xiaomin; Zaw, Thiri; Kassiou, Michael; Götz, Jürgen; Nicholas, Hannah R

    2014-09-01

    Protein misfolding and aggregation as a consequence of impaired protein homeostasis (proteostasis) not only characterizes numerous age-related diseases but also the aging process itself. Functionally related to the aging process are, among others, ribosomal proteins, suggesting an intimate link between proteostasis and aging. We determined by iTRAQ quantitative proteomic analysis in C. elegans how the proteome changes with age and in response to heat shock. Levels of ribosomal proteins and mitochondrial chaperones were decreased in aged animals, supporting the notion that proteostasis is altered during aging. Mitochondrial enzymes of the tricarboxylic acid cycle and the electron transport chain were also reduced, consistent with an age-associated energy impairment. Moreover, we observed an age-associated decline in the heat shock response. In order to determine how protein synthesis is altered in aging and in response to heat shock, we complemented our global analysis by determining the de novo proteome. For that, we established a novel method that enables both the visualization and identification of de novo synthesized proteins, by incorporating the non-canonical methionine analogue, azidohomoalanine (AHA), into the nascent polypeptides, followed by reacting the azide group of AHA by 'click chemistry' with an alkyne-labeled tag. Our analysis of AHA-tagged peptides demonstrated that the decreased abundance of, for example, ribosomal proteins in aged animals is not solely due to degradation but also reflects a relative decrease in their synthesis. Interestingly, although the net rate of protein synthesis is reduced in aged animals, our analyses indicate that the synthesis of certain proteins such as the vitellogenins increases with age. PMID:24458371

  2. Altered functional connectivity in lesional peduncular hallucinosis with REM sleep behavior disorder.

    PubMed

    Geddes, Maiya R; Tie, Yanmei; Gabrieli, John D E; McGinnis, Scott M; Golby, Alexandra J; Whitfield-Gabrieli, Susan

    2016-01-01

    Brainstem lesions causing peduncular hallucinosis (PH) produce vivid visual hallucinations occasionally accompanied by sleep disorders. Overlapping brainstem regions modulate visual pathways and REM sleep functions via gating of thalamocortical networks. A 66-year-old man with paroxysmal atrial fibrillation developed abrupt-onset complex visual hallucinations with preserved insight and violent dream enactment behavior. Brain MRI showed restricted diffusion in the left rostrodorsal pons suggestive of an acute ischemic stroke. REM sleep behavior disorder (RBD) was diagnosed on polysomnography. We investigated the integrity of ponto-geniculate-occipital circuits with seed-based resting-state functional connectivity MRI (rs-fcMRI) in this patient compared to 46 controls. Rs-fcMRI revealed significantly reduced functional connectivity between the lesion and lateral geniculate nuclei (LGN), and between LGN and visual association cortex compared to controls. Conversely, functional connectivity between brainstem and visual association cortex, and between visual association cortex and prefrontal cortex (PFC) was significantly increased in the patient. Focal damage to the rostrodorsal pons is sufficient to cause RBD and PH in humans, suggesting an overlapping mechanism in both syndromes. This lesion produced a pattern of altered functional connectivity consistent with disrupted visual cortex connectivity via de-afferentation of thalamocortical pathways. PMID:26656284

  3. Specificity and randomness in the visual cortex

    PubMed Central

    Ohki, Kenichi; Reid, R. Clay

    2009-01-01

    Summary Research on the functional anatomy of visual cortical circuit has recently zoomed in from the macroscopic level to the microscopic. High-resolution functional imaging has revealed that the functional architecture of orientation maps in higher mammals is built with single-cell precision. In contrast, orientation selectivity in rodents is dispersed on visual cortex in a salt-and-pepper fashion, despite highly tuned visual responses. Recent studies of synaptic physiology indicate that there are disjoint subnetworks of interconnected cells in the rodent visual cortex. These intermingled subnetworks, described in vitro, may relate to the intermingled ensembles of cells tuned to different orientations, described in vivo. This hypothesis may soon be tested with new anatomic techniques that promise to reveal detailed wiring diagrams in cortical circuits. PMID:17720489

  4. Gas Chromatography/Mass Spectrometry-Based Metabolomic Profiling Reveals Alterations in Mouse Plasma and Liver in Response to Fava Beans

    PubMed Central

    Zhong, Guobing; Yan, Dongjing; Zeng, Huazong; Cai, Wangwei

    2016-01-01

    Favism is a life-threatening hemolytic anemia resulting from the intake of fava beans by susceptible individuals with low erythrocytic glucose 6-phosphate dehydrogenase (G6PD) activity. However, little is known about the metabolomic changes in plasma and liver after the intake of fava beans in G6PD normal and deficient states. In this study, gas chromatography/mass spectrometry was used to analyze the plasma and liver metabolic alterations underlying the effects of fava beans in C3H- and G6PD-deficient (G6PDx) mice, and to find potential biomarkers and metabolic changes associated with favism. Our results showed that fava beans induced oxidative stress in both C3H and G6PDx mice. Significantly, metabolomic differences were observed in plasma and liver between the control and fava bean treated groups of both C3H and G6PDx mice. The levels of 7 and 21 metabolites in plasma showed significant differences between C3H-control (C3H-C)- and C3H fava beans-treated (C3H-FB) mice, and G6PDx-control (G6PDx-C)- and G6PDx fava beans-treated (G6PDx-FB) mice, respectively. Similarly, the levels of 7 and 25 metabolites in the liver showed significant differences between C3H and C3H-FB, and G6PDx and G6PDx-FB, respectively. The levels of oleic acid, linoleic acid, and creatinine were significantly increased in the plasma of both C3H-FB and G6PDx-FB mice. In the liver, more metabolic alterations were observed in G6PDx-FB mice than in C3H-FB mice, and were involved in a sugar, fatty acids, amino acids, cholesterol biosynthesis, the urea cycle, and the nucleotide metabolic pathway. These findings suggest that oleic acid, linoleic acid, and creatinine may be potential biomarkers of the response to fava beans in C3H and G6PDx mice and therefore that oleic acid and linoleic acid may be involved in oxidative stress induced by fava beans. This study demonstrates that G6PD activity in mice can affect their metabolic pathways in response to fava beans. PMID:26981882

  5. Gas Chromatography/Mass Spectrometry-Based Metabolomic Profiling Reveals Alterations in Mouse Plasma and Liver in Response to Fava Beans.

    PubMed

    Xiao, Man; Du, Guankui; Zhong, Guobing; Yan, Dongjing; Zeng, Huazong; Cai, Wangwei

    2016-01-01

    Favism is a life-threatening hemolytic anemia resulting from the intake of fava beans by susceptible individuals with low erythrocytic glucose 6-phosphate dehydrogenase (G6PD) activity. However, little is known about the metabolomic changes in plasma and liver after the intake of fava beans in G6PD normal and deficient states. In this study, gas chromatography/mass spectrometry was used to analyze the plasma and liver metabolic alterations underlying the effects of fava beans in C3H- and G6PD-deficient (G6PDx) mice, and to find potential biomarkers and metabolic changes associated with favism. Our results showed that fava beans induced oxidative stress in both C3H and G6PDx mice. Significantly, metabolomic differences were observed in plasma and liver between the control and fava bean treated groups of both C3H and G6PDx mice. The levels of 7 and 21 metabolites in plasma showed significant differences between C3H-control (C3H-C)- and C3H fava beans-treated (C3H-FB) mice, and G6PDx-control (G6PDx-C)- and G6PDx fava beans-treated (G6PDx-FB) mice, respectively. Similarly, the levels of 7 and 25 metabolites in the liver showed significant differences between C3H and C3H-FB, and G6PDx and G6PDx-FB, respectively. The levels of oleic acid, linoleic acid, and creatinine were significantly increased in the plasma of both C3H-FB and G6PDx-FB mice. In the liver, more metabolic alterations were observed in G6PDx-FB mice than in C3H-FB mice, and were involved in a sugar, fatty acids, amino acids, cholesterol biosynthesis, the urea cycle, and the nucleotide metabolic pathway. These findings suggest that oleic acid, linoleic acid, and creatinine may be potential biomarkers of the response to fava beans in C3H and G6PDx mice and therefore that oleic acid and linoleic acid may be involved in oxidative stress induced by fava beans. This study demonstrates that G6PD activity in mice can affect their metabolic pathways in response to fava beans. PMID:26981882

  6. Neostriatal modulation of motor cortex excitability.

    PubMed

    Ryan, L J; Sanders, D J

    1994-07-18

    The influence of the basal ganglia motor loop on motor cortex function was examined by pharmacologically altering neostriatal activity while monitoring the electrical stimulation thresholds for eliciting movements of the ipsilateral and contralateral motor cortex in ketamine anesthetized rats. Repeated unilateral intraneostriatal infusions (1-3) of the glutamate agonist, kainic acid (0.1 microliter, 75 ng), or glutamate (0.3 microliter, 1.65 micrograms) reliably increased ipsilateral but not contralateral cortical thresholds. Single infusions of kainic acid (0.3 microliter, 150 or 225 ng) elevated ipsilateral cortical thresholds for 30-45 min; with glutamate (0.3 microliter, 1.65 micrograms), the change lasted less than 10 min. Antidromically identified striatonigral projection neurons (n = 8) located approximately 500 microM from the infusion cannula, showed either increased firing (n = 4) for less than 10 min following glutamate infusion or no change from their non-firing state (n = 4). Non-antidromically activated neurons (n = 3) were all excited by the infusion, although an interval of inhibition preceded or followed the excitation in two cases. Infusions (0.3 microliter) of inhibitory agents (GABA, 31 and 310 ng; muscimol 34.2 ng; and DNQX 34.2 ng) did not alter cortical threshold, nor did saline vehicle. Lesion of the ventrolateral but not ventromedial thalamic nucleus prevented the modulation of cortical thresholds following intraneostriatal infusion of 225 ng kainic acid. Thus the neostriatal alteration of cortical thresholds indicates a modulation of cortical excitability via thalamic projections and not the outcome of competing descending cortical and neonstriatal influences converging on motorneurons. These results suggest that tonic feedforward modulation of the motor cortex and the pyramidal tract by the basal ganglia can be inhibitory. PMID:7922571

  7. The insular cortex: a comparative perspective.

    PubMed

    Butti, Camilla; Hof, Patrick R

    2010-06-01

    The human insular cortex is involved in a variety of viscerosensory, visceromotor, and interoceptive functions, and plays a role in complex processes such as emotions, music, and language. Across mammals, the insula has considerable morphologic variability. We review the structure and connectivity of the insula in laboratory animals (mouse, domestic cat, macaque monkey), and we present original data on the morphology and cytoarchitecture of insular cortex in less common species including a large carnivore (the Atlantic walrus, Odobenus rosmarus), two artiodactyls (the pigmy hippopotamus, Hexaprotodon liberiensis, and the Western bongo, Tragelaphus eurycerus), two cetaceans (the beluga whale, Delphinapterus leucas, and the minke whale, Balaenoptera acutorostrata), and a sirenian (the Florida manatee, Trichechus manatus latirostris). The insula shows substantial variability in shape, extent, and gyral and sulcal patterns, as well as differences in laminar organization, cellular specialization, and structural association with the claustrum. Our observations reveal that the insular cortex is extremely variable among mammals. These differences could be related to the role exerted by specific and selective pressures on cortical structure during evolution. We conclude that it is not possible to identify a general model of organization for the mammalian insular cortex. PMID:20512368

  8. Morphogenetic and Histogenetic Roles of the Temporal-Spatial Organization of Cell Proliferation in the Vertebrate Corticogenesis as Revealed by Inter-specific Analyses of the Optic Tectum Cortex Development

    PubMed Central

    Rapacioli, Melina; Palma, Verónica; Flores, Vladimir

    2016-01-01

    The central nervous system areas displaying the highest structural and functional complexity correspond to the so called cortices, i.e., concentric alternating neuronal and fibrous layers. Corticogenesis, i.e., the development of the cortical organization, depends on the temporal-spatial organization of several developmental events: (a) the duration of the proliferative phase of the neuroepithelium, (b) the relative duration of symmetric (expansive) versus asymmetric (neuronogenic) sub phases, (c) the spatial organization of each kind of cell division, (e) the time of determination and cell cycle exit and (f) the time of onset of the post-mitotic neuronal migration and (g) the time of onset of the neuronal structural and functional differentiation. The first five events depend on molecular mechanisms that perform a fine tuning of the proliferative activity. Changes in any of them significantly influence the cortical size or volume (tangential expansion and radial thickness), morphology, architecture and also impact on neuritogenesis and synaptogenesis affecting the cortical wiring. This paper integrates information, obtained in several species, on the developmental roles of cell proliferation in the development of the optic tectum (OT) cortex, a multilayered associative area of the dorsal (alar) midbrain. The present review (1) compiles relevant information on the temporal and spatial organization of cell proliferation in different species (fish, amphibians, birds, and mammals), (2) revises the main molecular events involved in the isthmic organizer (IsO) determination and localization, (3) describes how the patterning installed by IsO is translated into spatially organized neural stem cell proliferation (i.e., by means of growth factors, receptors, transcription factors, signaling pathways, etc.) and (4) describes the morpho- and histogenetic effect of a spatially organized cell proliferation in the above mentioned species. A brief section on the OT evolution is

  9. Quantitative proteomic analysis reveals metabolic alterations, calcium dysregulation, and increased expression of extracellular matrix proteins in laminin α2 chain-deficient muscle.

    PubMed

    de Oliveira, Bruno Menezes; Matsumura, Cintia Y; Fontes-Oliveira, Cibely C; Gawlik, Kinga I; Acosta, Helena; Wernhoff, Patrik; Durbeej, Madeleine

    2014-11-01

    Congenital muscular dystrophy with laminin α2 chain deficiency (MDC1A) is one of the most severe forms of muscular disease and is characterized by severe muscle weakness and delayed motor milestones. The genetic basis of MDC1A is well known, yet the secondary mechanisms ultimately leading to muscle degeneration and subsequent connective tissue infiltration are not fully understood. In order to obtain new insights into the molecular mechanisms underlying MDC1A, we performed a comparative proteomic analysis of affected muscles (diaphragm and gastrocnemius) from laminin α2 chain-deficient dy(3K)/dy(3K) mice, using multidimensional protein identification technology combined with tandem mass tags. Out of the approximately 700 identified proteins, 113 and 101 proteins, respectively, were differentially expressed in the diseased gastrocnemius and diaphragm muscles compared with normal muscles. A large portion of these proteins are involved in different metabolic processes, bind calcium, or are expressed in the extracellular matrix. Our findings suggest that metabolic alterations and calcium dysregulation could be novel mechanisms that underlie MDC1A and might be targets that should be explored for therapy. Also, detailed knowledge of the composition of fibrotic tissue, rich in extracellular matrix proteins, in laminin α2 chain-deficient muscle might help in the design of future anti-fibrotic treatments. All MS data have been deposited in the ProteomeXchange with identifier PXD000978 (http://proteomecentral.proteomexchange.org/dataset/PXD000978). PMID:24994560

  10. Mutational analysis of genes coding for cell surface proteins in colorectal cancer cell lines reveal novel altered pathways, druggable mutations and mutated epitopes for targeted therapy

    PubMed Central

    Correa, Bruna R.; Bettoni, Fabiana; Koyama, Fernanda C.; Navarro, Fabio C.P.; Perez, Rodrigo O.; Mariadason, John; Sieber, Oliver M.; Strausberg, Robert L.; Simpson, Andrew J.G.; Jardim, Denis L.F.; Reis, Luiz Fernando L.; Parmigiani, Raphael B.; Galante, Pedro A.F.; Camargo, Anamaria A.

    2014-01-01

    We carried out a mutational analysis of 3,594 genes coding for cell surface proteins (Surfaceome) in 23 colorectal cancer cell lines, searching for new altered pathways, druggable mutations and mutated epitopes for targeted therapy in colorectal cancer. A total of 3,944 somatic non-synonymous substitutions and 595 InDels, occurring in 2,061 (57%) Surfaceome genes were catalogued. We identified 48 genes not previously described as mutated in colorectal tumors in the TCGA database, including genes that are mutated and expressed in >10% of the cell lines (SEMA4C, FGFRL1, PKD1, FAM38A, WDR81, TMEM136, SLC36A1, SLC26A6, IGFLR1). Analysis of these genes uncovered important roles for FGF and SEMA4 signaling in colorectal cancer with possible therapeutic implications. We also found that cell lines express on average 11 druggable mutations, including frequent mutations (>20%) in the receptor tyrosine kinases AXL and EPHA2, which have not been previously considered as potential targets for colorectal cancer. Finally, we identified 82 cell surface mutated epitopes, however expression of only 30% of these epitopes was detected in our cell lines. Notwithstanding, 92% of these epitopes were expressed in cell lines with the mutator phenotype, opening new venues for the use of “general” immune checkpoint drugs in this subset of patients. PMID:25193853

  11. Alteration of cortical functional connectivity as a result of traumatic brain injury revealed by graph theory, ICA, and sLORETA analyses of EEG signals.

    PubMed

    Cao, C; Slobounov, S

    2010-02-01

    In this paper, a novel approach to examine the cortical functional connectivity using multichannel electroencephalographic (EEG) signals is proposed. First we utilized independent component analysis (ICA) to transform multichannel EEG recordings into independent processes and then applied source reconstruction algorithm [i.e., standardize low resolution brain electromagnetic (sLORETA)] to identify the cortical regions of interest (ROIs). Second, we performed a graph theory analysis of the bipartite network composite of ROIs and independent processes to assess the connectivity between ROIs. We applied this proposed algorithm and compared the functional connectivity network properties under resting state condition using 29 student-athletes prior to and shortly after sport-related mild traumatic brain injury (MTBI). The major findings of interest are the following. There was 1) alterations in vertex degree at frontal and occipital regions in subjects suffering from MTBI, ( p < 0.05); 2) a significant decrease in the long-distance connectivity and significant increase in the short-distance connectivity as a result of MTBI, ( p < 0.05); 3) a departure from small-world network configuration in MTBI subjects. These major findings are discussed in relation to current debates regarding the brain functional connectivity within and between local and distal regions both in normal controls in pathological subjects. PMID:20064767

  12. Maternal and cord blood LC-HRMS metabolomics reveal alterations in energy and polyamine metabolism, and oxidative stress in very-low birth weight infants.

    PubMed

    Alexandre-Gouabau, Marie-Cécile; Courant, Frédérique; Moyon, Thomas; Küster, Alice; Le Gall, Gwénaëlle; Tea, Illa; Antignac, Jean-Philippe; Darmaun, Dominique

    2013-06-01

    To assess the global effect of preterm birth on fetal metabolism and maternal-fetal nutrient transfer, we used a mass spectrometric-based chemical phenotyping approach on cord blood obtained at the time of birth. We sampled umbilical venous, umbilical arterial, and maternal blood from mothers delivering very-low birth weight (VLBW, with a median gestational age and weight of 29 weeks, and 1210 g, respectively) premature or full-term (FT) neonates. In VLBW group, we observed a significant elevation in the levels and maternal-fetal gradients of butyryl-, isovaleryl-, hexanoyl- and octanoyl-carnitines, suggesting enhanced short- and medium chain fatty acid β-oxidation in human preterm feto-placental unit. The significant decrease in glutamine-glutamate in preterm arterial cord blood beside lower levels of amino acid precursors of Krebs cycle suggest increased glutamine utilization in the fast growing tissues of preterm fetus with a deregulation in placental glutamate-glutamine shuttling. Enhanced glutathione utilization is likely to account for the decrease in precursor amino acids (serine, betaine, glutamate and methionine) in arterial cord blood. An increase in both the circulating levels and maternal-fetal gradients of several polyamines in their acetylated form (diacetylspermine and acetylputrescine) suggests an enhanced polyamine metabolic cycling in extreme prematurity. Our metabolomics study allowed the identification of alterations in fetal energy, antioxidant defense, and polyamines and purines flux as a signature of premature birth. PMID:23527880

  13. Comparative Transcriptome Atlases Reveal Altered Gene Expression Modules between Two Cleomaceae C3 and C4 Plant Species[C][W][OPEN

    PubMed Central

    Külahoglu, Canan; Denton, Alisandra K.; Sommer, Manuel; Maß, Janina; Schliesky, Simon; Wrobel, Thomas J.; Berckmans, Barbara; Gongora-Castillo, Elsa; Buell, C. Robin; Simon, Rüdiger; De Veylder, Lieven; Bräutigam, Andrea; Weber, Andreas P.M.

    2014-01-01

    C4 photosynthesis outperforms the ancestral C3 state in a wide range of natural and agro-ecosystems by affording higher water-use and nitrogen-use efficiencies. It therefore represents a prime target for engineering novel, high-yielding crops by introducing the trait into C3 backgrounds. However, the genetic architecture of C4 photosynthesis remains largely unknown. To define the divergence in gene expression modules between C3 and C4 photosynthesis during leaf ontogeny, we generated comprehensive transcriptome atlases of two Cleomaceae species, Gynandropsis gynandra (C4) and Tarenaya hassleriana (C3), by RNA sequencing. Overall, the gene expression profiles appear remarkably similar between the C3 and C4 species. We found that known C4 genes were recruited to photosynthesis from different expression domains in C3, including typical housekeeping gene expression patterns in various tissues as well as individual heterotrophic tissues. Furthermore, we identified a structure-related module recruited from the C3 root. Comparison of gene expression patterns with anatomy during leaf ontogeny provided insight into genetic features of Kranz anatomy. Altered expression of developmental factors and cell cycle genes is associated with a higher degree of endoreduplication in enlarged C4 bundle sheath cells. A delay in mesophyll differentiation apparent both in the leaf anatomy and the transcriptome allows for extended vein formation in the C4 leaf. PMID:25122153

  14. Altering the Mitochondrial Fatty Acid Synthesis (mtFASII) Pathway Modulates Cellular Metabolic States and Bioactive Lipid Profiles as Revealed by Metabolomic Profiling

    PubMed Central

    Clay, Hayley B.; Parl, Angelika K.; Mitchell, Sabrina L.; Singh, Larry; Bell, Lauren N.; Murdock, Deborah G.

    2016-01-01

    Despite the presence of a cytosolic fatty acid synthesis pathway, mitochondria have retained their own means of creating fatty acids via the mitochondrial fatty acid synthesis (mtFASII) pathway. The reason for its conservation has not yet been elucidated. Therefore, to better understand the role of mtFASII in the cell, we used thin layer chromatography to characterize the contribution of the mtFASII pathway to the fatty acid composition of selected mitochondrial lipids. Next, we performed metabolomic analysis on HeLa cells in which the mtFASII pathway was either hypofunctional (through knockdown of mitochondrial acyl carrier protein, ACP) or hyperfunctional (through overexpression of mitochondrial enoyl-CoA reductase, MECR). Our results indicate that the mtFASII pathway contributes little to the fatty acid composition of mitochondrial lipid species examined. Additionally, loss of mtFASII function results in changes in biochemical pathways suggesting alterations in glucose utilization and redox state. Interestingly, levels of bioactive lipids, including lysophospholipids and sphingolipids, directly correlate with mtFASII function, indicating that mtFASII may be involved in the regulation of bioactive lipid levels. Regulation of bioactive lipid levels by mtFASII implicates the pathway as a mediator of intracellular signaling. PMID:26963735

  15. Alterations of the intracellular water and ion concentrations in brain and liver cells during aging as revealed by energy dispersive X-ray microanalysis of bulk specimens

    SciTech Connect

    Lustyik, G.; Nagy, I.

    1985-01-01

    Age dependence of the intracellular concentrations of monovalent ions (Na+, K+ and Cl-) was examined in 1, 11 and 25-month-old rat brain and liver cells by using energy dispersive X-ray microanalysis. The in vivo concentrations of Na+, K+ and Cl- ions were calculated from two different measurements: The elemental concentrations were measured in freeze-dried tissue pieces, and the intracellular water content was determined by means of a recently developed X-ray microanalytic method, using frozen-hydrated and fractured bulk specimens as well as subsequent freeze-drying. All the single monovalent ion concentrations and consequently, also the total monovalent ion content showed statistically significant increases during aging in brain cortical neurons. A 3-6% loss of the intracellular water content was accompanied by a 25-45% increase of the monovalent ionic strengths by the age of 25 months. A membrane protective OH radical scavenger (centrophenoxine) reversed the dehydration in the nerve cells of old animals, resulting in a decrease of the intracellular ion concentrations. Aging has a less prominent effect on the water and ion contents of the hepatocytes. The degree of water loss of cytoplasm exceeds that of the nuclei in the liver, suggesting that dominantly the translational steps can be involved in the general age altered slowing down of the protein synthetic machinery, predicted by the membrane hypothesis of aging.

  16. Invasive Mussels Alter the Littoral Food Web of a Large Lake: Stable Isotopes Reveal Drastic Shifts in Sources and Flow of Energy

    PubMed Central

    Ozersky, Ted; Evans, David O.; Barton, David R.

    2012-01-01

    We investigated how establishment of invasive dreissenid mussels impacted the structure and energy sources of the littoral benthic food web of a large temperate lake. We combined information about pre- and postdreissenid abundance, biomass, and secondary production of the littoral benthos with results of carbon and nitrogen stable isotope analysis of archival (predreissenid) and recent (postdreissenid) samples of all common benthic taxa. This approach enabled us to determine the importance of benthic and sestonic carbon to the littoral food web before, and more than a decade after dreissenid establishment. Long term dreissenid presence was associated with a 32-fold increase in abundance, 6-fold increase in biomass, and 14-fold increase in secondary production of the littoral benthos. Dreissenids comprised a large portion of the post-invasion benthos, making up 13, 38, and 56% of total abundance, biomass, and secondary production, respectively. The predreissenid food web was supported primarily by benthic primary production, while sestonic material was relatively more important to the postdreissenid food web. The absolute importance of both sestonic material and benthic primary production to the littoral benthos increased considerably following dreissenid establishment. Our results show drastic alterations to food web structure and suggest that dreissenid mussels redirect energy and material from the water column to the littoral benthos both through biodeposition of sestonic material as well as stimulation of benthic primary production. PMID:23284673

  17. Temporal Cortex Morphology in Mesial Temporal Lobe Epilepsy Patients and Their Asymptomatic Siblings.

    PubMed

    Alhusaini, Saud; Whelan, Christopher D; Doherty, Colin P; Delanty, Norman; Fitzsimons, Mary; Cavalleri, Gianpiero L

    2016-03-01

    Temporal cortex abnormalities are common in patients with mesial temporal lobe epilepsy due to hippocampal sclerosis (MTLE+HS) and believed to be relevant to the underlying mechanisms. In the present study, we set out to determine the familiarity of temporal cortex morphologic alterations in a cohort of MTLE+HS patients and their asymptomatic siblings. A surface-based morphometry (SBM) method was applied to process MRI data acquired from 140 individuals (50 patients with unilateral MTLE+HS, 50 asymptomatic siblings of patients, and 40 healthy controls). Using a region-of-interest approach, alterations in temporal cortex morphology were determined in patients and their asymptomatic siblings by comparing with the controls. Alterations in temporal cortex morphology were identified in MTLE+HS patients ipsilaterally within the anterio-medial regions, including the entorhinal cortex, parahippocampal gyrus, and temporal pole. Subtle but similar pattern of morphology changes with a medium effect size were also noted in the asymptomatic siblings. These localized alterations were related to volume loss that appeared driven by shared contractions in cerebral cortex surface area. These findings indicate that temporal cortex morphologic alterations are common to patients and their asymptomatic siblings and suggest that such localized traits are possibly heritable. PMID:25576532

  18. Attentional Modulation in Visual Cortex Is Modified during Perceptual Learning

    ERIC Educational Resources Information Center

    Bartolucci, Marco; Smith, Andrew T.

    2011-01-01

    Practicing a visual task commonly results in improved performance. Often the improvement does not transfer well to a new retinal location, suggesting that it is mediated by changes occurring in early visual cortex, and indeed neuroimaging and neurophysiological studies both demonstrate that perceptual learning is associated with altered activity…

  19. A little more conversation, a little less action - candidate roles for motor cortex in speech perception

    PubMed Central

    Scott, Sophie K; McGettigan, Carolyn; Eisner, Frank

    2014-01-01

    The motor theory of speech perception assumes that activation of the motor system is essential in the perception of speech. However, deficits in speech perception and comprehension do not arise from damage that is restricted to the motor cortex, few functional imaging studies reveal activity in motor cortex during speech perception, and the motor cortex is strongly activated by many different sound categories. Here, we evaluate alternative roles for the motor cortex in spoken communication and suggest a specific role in sensorimotor processing in conversation. We argue that motor-cortex activation it is essential in joint speech, particularly for the timing of turn-taking. PMID:19277052

  20. Orbitofrontal Cortex Volume and Brain Reward Response in Obesity

    PubMed Central

    Shott, Megan E.; Cornier, Marc-Andre; Mittal, Vijay A.; Pryor, Tamara L.; Orr, Joseph M.; Brown, Mark S.; Frank, Guido K.W.

    2014-01-01

    Background/Objectives What drives overconsumption of food is poorly understood. Alterations in brain structure and function could contribute to increased food seeking. Recently brain orbitofrontal cortex volume has been implicated in dysregulated eating but little is know how brain structure relates to function. Subjects/Methods We examined obese (n=18, age=28.7.4±8.3 years) and healthy control women (n=24, age=27.4±6.3 years) using a multimodal brain imaging approach. We applied magnetic resonance and diffusion tensor imaging to study brain gray and white matter volume as well as white matter integrity, and tested whether orbitofrontal cortex volume predicts brain reward circuitry activation in a taste reinforcement-learning paradigm that has been associated with dopamine function. Results Obese individuals displayed lower gray and associated white matter volumes (p<.05 family wise error (FWE)-small volume corrected) compared to controls in the orbitofrontal cortex, striatum, and insula. White matter integrity was reduced in obese individuals in fiber tracts including the external capsule, corona radiata, sagittal stratum, and the uncinate, inferior fronto-occipital, and inferior longitudinal fasciculi. Gray matter volume of the gyrus rectus at the medial edge of the orbitofrontal cortex predicted functional taste reward-learning response in frontal cortex, insula, basal ganglia, amygdala, hypothalamus and anterior cingulate cortex in control but not obese individuals. Conclusions This study indicates a strong association between medial orbitofrontal cortex volume and taste reinforcement-learning activation in the brain in control but not in obese women. Lower brain volumes in the orbitofrontal cortex and other brain regions associated with taste reward function as well as lower integrity of connecting pathways in obesity may support a more widespread disruption of reward pathways. The medial orbitofrontal cortex is an important structure in the termination of

  1. Left auditory cortex specialization for vertical harmonic structure of chords.

    PubMed

    Passynkova, Natalia; Sander, Kerstin; Scheich, Henning

    2005-12-01

    The representation of consonant and dissonant chords in the auditory cortex was investigated using low-noise functional magnetic resonance imaging and different experimental paradigms to separate the effects of vertical harmony from those of other musical features. The results revealed higher activation by consonant compared with dissonant chords in the left posterior auditory cortex, suggesting contributions of mechanisms of encoding the acoustical chord structure rather than mechanisms based on sequential integration of chords. PMID:16597802

  2. A zebrafish model of PMM2-CDG reveals altered neurogenesis and a substrate-accumulation mechanism for N-linked glycosylation deficiency

    PubMed Central

    Cline, Abigail; Gao, Ningguo; Flanagan-Steet, Heather; Sharma, Vandana; Rosa, Sabrina; Sonon, Roberto; Azadi, Parastoo; Sadler, Kirsten C.; Freeze, Hudson H.; Lehrman, Mark A.; Steet, Richard

    2012-01-01

    Congenital disorder of glycosylation (PMM2-CDG) results from mutations in pmm2, which encodes the phosphomannomutase (Pmm) that converts mannose-6-phosphate (M6P) to mannose-1-phosphate (M1P). Patients have wide-spectrum clinical abnormalities associated with impaired protein N-glycosylation. Although it has been widely proposed that Pmm2 deficiency depletes M1P, a precursor of GDP-mannose, and consequently suppresses lipid-linked oligosaccharide (LLO) levels needed for N-glycosylation, these deficiencies have not been demonstrated in patients or any animal model. Here we report a morpholino-based PMM2-CDG model in zebrafish. Morphant embryos had developmental abnormalities consistent with PMM2-CDG patients, including craniofacial defects and impaired motility associated with altered motor neurogenesis within the spinal cord. Significantly, global N-linked glycosylation and LLO levels were reduced in pmm2 morphants. Although M1P and GDP-mannose were below reliable detection/quantification limits, Pmm2 depletion unexpectedly caused accumulation of M6P, shown earlier to promote LLO cleavage in vitro. In pmm2 morphants, the free glycan by-products of LLO cleavage increased nearly twofold. Suppression of the M6P-synthesizing enzyme mannose phosphate isomerase within the pmm2 background normalized M6P levels and certain aspects of the craniofacial phenotype and abrogated pmm2-dependent LLO cleavage. In summary, we report the first zebrafish model of PMM2-CDG and uncover novel cellular insights not possible with other systems, including an M6P accumulation mechanism for underglycosylation. PMID:22956764

  3. The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway.

    PubMed

    García-Hurtado, Noemí; Carrera, Esther; Ruiz-Rivero, Omar; López-Gresa, Maria Pilar; Hedden, Peter; Gong, Fan; García-Martínez, José Luis

    2012-10-01

    Fruit-set and growth in tomato depend on the action of gibberellins (GAs). To evaluate the role of the GA biosynthetic enzyme GA 20-oxidase (GA20ox) in that process, the citrus gene CcGA20ox1 was overexpressed in tomato (Solanum lycopersicum L.) cv Micro-Tom. The transformed plants were taller, had non-serrated leaves, and some flowers displayed a protruding stigma due to a longer style, thus preventing self-pollination, similar to GA(3)-treated plants. Flowering was delayed compared with wild-type (WT) plants. Both yield and number of fruits per plant, some of them seedless, were higher in the transgenic plants. The Brix index value of fruit juice was also higher due to elevated citric acid content, but not glucose or fructose content. When emasculated, 14-30% of ovaries from transgenic flowers developed parthenocarpically, whereas no parthenocarpy was found in emasculated WT flowers. The presence of early-13-hydroxylation and non-13-hydroxylation GA pathways was demonstrated in the shoot and fruit of Micro-Tom, as well as in two tall tomato cultivars (Ailsa Craig and UC-82). The transgenic plants had altered GA profiles containing higher concentrations of GA(4), from the non-13-hydroxylation pathway, which is generally a minor active GA in tomato. The effect of GA(4) application in enhancing stem growth and parthenocarpic fruit development was proportional to dose, with the same activity as GA(1). The results support the contention that GA20ox overexpression diverts GA metabolism from the early-13-hydroxylation pathway to the non-13-hydroxylation pathway. This led to enhanced GA(4) synthesis and higher yield, although the increase in GA(4) content in the ovary was not sufficient to induce full parthenocarpy. PMID:22945942

  4. Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls

    PubMed Central

    Smith-Moritz, Andreia M.; Hao, Zhao; Fernández-Niño, Susana G.; Fangel, Jonatan U.; Verhertbruggen, Yves; Holman, Hoi-Ying N.; Willats, William G. T.; Ronald, Pamela C.; Scheller, Henrik V.; Heazlewood, Joshua L.; Vega-Sánchez, Miguel E.

    2015-01-01

    The CELLULOSE SYNTHASE-LIKE F6 (CslF6) gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG), a cell wall polysaccharide that is hypothesized to be tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to test the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of 3 day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared (FTM-IR) Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell walls of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion. PMID:26347754

  5. A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance.

    PubMed

    Wu, Chongde; Zhang, Juan; Chen, Wei; Wang, Miao; Du, Guocheng; Chen, Jian

    2012-01-01

    Lactobacillus casei has traditionally been recognized as a probiotic and frequently used as an adjunct culture in fermented dairy products, where acid stress is an environmental condition commonly encountered. In the present study, we carried out a comparative physiological and proteomic study to investigate lactic-acid-induced alterations in Lactobacillus casei Zhang (WT) and its acid-resistant mutant. Analysis of the physiological data showed that the mutant exhibited 33.8% higher glucose phosphoenolpyruvate:sugar phosphotransferase system activity and lower glycolytic pH compared with the WT under acidic conditions. In addition, significant differences were detected in both cells during acid stress between intracellular physiological state, including intracellular pH, H(+)-ATPase activity, and intracellular ATP pool. Comparison of the proteomic data based on 2D-DIGE and i-TRAQ indicated that acid stress invoked a global change in both strains. The mutant protected the cells against acid damage by regulating the expression of key proteins involved in cellular metabolism, DNA replication, RNA synthesis, translation, and some chaperones. Proteome results were validated by Lactobacillus casei displaying higher intracellular aspartate and arginine levels, and the survival at pH 3.3 was improved 1.36- and 2.10-fold by the addition of 50-mM aspartate and arginine, respectively. To our knowledge, this is the first demonstration that aspartate may be involved in acid tolerance in Lactobacillus casei. Results presented here may help us understand acid resistance mechanisms and help formulate new strategies to enhance the industrial applications of this species. PMID:22159611

  6. Analysis of Microtubule-Associated-Proteins during IBA-Mediated Adventitious Root Induction Reveals KATANIN Dependent and Independent Alterations of Expression Patterns.

    PubMed

    Abu-Abied, Mohamad; Mordehaev, Inna; Sunil Kumar, Gujulla B; Ophir, Ron; Wasteneys, Geoffrey O; Sadot, Einat

    2015-01-01

    Adventitious roots (AR) are post embryonic lateral organs that differentiate from non-root tissues. The understanding of the molecular mechanism which underlies their differentiation is important because of their central role in vegetative plant propagation. Here it was studied how the expression of different microtubule (MT)-associated proteins (MAPs) is affected during AR induction, and whether expression differences are dependent on MT organization itself. To examine AR formation when MTs are disturbed we used two mutants in the MT severing protein KATANIN. It was found that rate and number of AR primordium formed following IBA induction for three days was reduced in bot1-1 and bot1-7 plants. The reduced capacity to form ARs in bot1-1 was associated with altered expression of MAP-encoding genes along AR induction. While the expression of MAP65-4, MAP65-3, AURORA1, AURORA2 and TANGLED, increased in wild-type but not in bot1-1 plants, the expression of MAP65-8 and MDP25 decreased in wild type plants but not in the bot1-1 plant after two days of IBA-treatment. The expression of MOR1 was increased two days after AR induction in wild type and bot1-1 plants. To examine its expression specifically in AR primordium, MOR1 upstream regulatory sequence was isolated and cloned to regulate GFP. Expression of GFP was induced in the primary root tips and lateral roots, in the pericycle of the hypocotyls and in all stages of AR primordium formation. It is concluded that the expression of MAPs is regulated along AR induction and that reduction in KATANIN expression inhibits AR formation and indirectly influences the specific expression of some MAPs. PMID:26630265

  7. Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls

    SciTech Connect

    Smith-Moritz, Andreia M.; Hao, Zhao; Fernández-Nino, Susana G.; Fangel, Jonatan U.; Verhertbruggen, Yves; Holman, Hoi-Ying N.; Willats, William G. T.; Ronald, Pamela C.; Scheller, Henrik V.; Heazlewood, Joshua L.; Vega-Sanchez, Miguel E.

    2015-08-18

    The CELLULOSE SYNTHASE-LIKE F6 (CslF6) gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG), a cell wall polysaccharide that is hypothesized to be tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to test the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of 3 day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared (FTM-IR) Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell walls of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Finally, taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion.

  8. Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls

    DOE PAGESBeta

    Smith-Moritz, Andreia M.; Hao, Zhao; Fernández-Nino, Susana G.; Fangel, Jonatan U.; Verhertbruggen, Yves; Holman, Hoi-Ying N.; Willats, William G. T.; Ronald, Pamela C.; Scheller, Henrik V.; Heazlewood, Joshua L.; et al

    2015-08-18

    The CELLULOSE SYNTHASE-LIKE F6 (CslF6) gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG), a cell wall polysaccharide that is hypothesized to be tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to testmore » the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of 3 day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared (FTM-IR) Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell walls of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Finally, taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion.« less

  9. Analysis of Microtubule-Associated-Proteins during IBA-Mediated Adventitious Root Induction Reveals KATANIN Dependent and Independe