Science.gov

Sample records for cortical auditory system

  1. Cortical auditory disorders: clinical and psychoacoustic features.

    PubMed Central

    Mendez, M F; Geehan, G R

    1988-01-01

    The symptoms of two patients with bilateral cortical auditory lesions evolved from cortical deafness to other auditory syndromes: generalised auditory agnosia, amusia and/or pure word deafness, and a residual impairment of temporal sequencing. On investigation, both had dysacusis, absent middle latency evoked responses, acoustic errors in sound recognition and matching, inconsistent auditory behaviours, and similarly disturbed psychoacoustic discrimination tasks. These findings indicate that the different clinical syndromes caused by cortical auditory lesions form a spectrum of related auditory processing disorders. Differences between syndromes may depend on the degree of involvement of a primary cortical processing system, the more diffuse accessory system, and possibly the efferent auditory system. Images PMID:2450968

  2. Auditory cortical processing in real-world listening: the auditory system going real.

    PubMed

    Nelken, Israel; Bizley, Jennifer; Shamma, Shihab A; Wang, Xiaoqin

    2014-11-12

    The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well. PMID:25392481

  3. Auditory Cortical Processing in Real-World Listening: The Auditory System Going Real

    PubMed Central

    Bizley, Jennifer; Shamma, Shihab A.; Wang, Xiaoqin

    2014-01-01

    The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well. PMID:25392481

  4. Behavioral Dependence of Auditory Cortical Responses

    PubMed Central

    Osmanski, Michael S.; Wang, Xiaoqin

    2015-01-01

    Neural responses in the auditory cortex have historically been measured from either anesthetized or awake but non-behaving animals. A growing body of work has begun to focus instead on recording from auditory cortex of animals actively engaged in behavior tasks. These studies have shown that auditory cortical responses are dependent upon the behavioral state of the animal. The longer ascending subcortical pathway of the auditory system and unique characteristics of auditory processing suggest that such dependencies may have a more profound influence on cortical processing in auditory system compared to other sensory systems. It is important to understand the nature of these dependencies and their functional implications. In this article, we review the literature on this topic pertaining to cortical processing of sounds. PMID:25690831

  5. Brainstem origins for cortical 'what' and 'where' pathways in the auditory system.

    PubMed

    Kraus, Nina; Nicol, Trent

    2005-04-01

    We have developed a data-driven conceptual framework that links two areas of science: the source-filter model of acoustics and cortical sensory processing streams. The source-filter model describes the mechanics behind speech production: the identity of the speaker is carried largely in the vocal cord source and the message is shaped by the ever-changing filters of the vocal tract. Sensory processing streams, popularly called 'what' and 'where' pathways, are well established in the visual system as a neural scheme for separately carrying different facets of visual objects, namely their identity and their position/motion, to the cortex. A similar functional organization has been postulated in the auditory system. Both speaker identity and the spoken message, which are simultaneously conveyed in the acoustic structure of speech, can be disentangled into discrete brainstem response components. We argue that these two response classes are early manifestations of auditory 'what' and 'where' streams in the cortex. This brainstem link forges a new understanding of the relationship between the acoustics of speech and cortical processing streams, unites two hitherto separate areas in science, and provides a model for future investigations of auditory function. PMID:15808351

  6. Phonological Processing in Human Auditory Cortical Fields

    PubMed Central

    Woods, David L.; Herron, Timothy J.; Cate, Anthony D.; Kang, Xiaojian; Yund, E. W.

    2011-01-01

    We used population-based cortical-surface analysis of functional magnetic imaging data to characterize the processing of consonant–vowel–consonant syllables (CVCs) and spectrally matched amplitude-modulated noise bursts (AMNBs) in human auditory cortex as subjects attended to auditory or visual stimuli in an intermodal selective attention paradigm. Average auditory cortical field (ACF) locations were defined using tonotopic mapping in a previous study. Activations in auditory cortex were defined by two stimulus-preference gradients: (1) Medial belt ACFs preferred AMNBs and lateral belt and parabelt fields preferred CVCs. This preference extended into core ACFs with medial regions of primary auditory cortex (A1) and the rostral field preferring AMNBs and lateral regions preferring CVCs. (2) Anterior ACFs showed smaller activations but more clearly defined stimulus preferences than did posterior ACFs. Stimulus preference gradients were unaffected by auditory attention suggesting that ACF preferences reflect the automatic processing of different spectrotemporal sound features. PMID:21541252

  7. Primary auditory cortical responses to electrical stimulation of the thalamus.

    PubMed

    Atencio, Craig A; Shih, Jonathan Y; Schreiner, Christoph E; Cheung, Steven W

    2014-03-01

    Cochlear implant electrical stimulation of the auditory system to rehabilitate deafness has been remarkably successful. Its deployment requires both an intact auditory nerve and a suitably patent cochlear lumen. When disease renders prerequisite conditions impassable, such as in neurofibromatosis type II and cochlear obliterans, alternative treatment targets are considered. Electrical stimulation of the cochlear nucleus and midbrain in humans has delivered encouraging clinical outcomes, buttressing the promise of central auditory prostheses to mitigate deafness in those who are not candidates for cochlear implantation. In this study we explored another possible implant target: the auditory thalamus. In anesthetized cats, we first presented pure tones to determine frequency preferences of thalamic and cortical sites. We then electrically stimulated tonotopically organized thalamic sites while recording from primary auditory cortical sites using a multichannel recording probe. Cathode-leading biphasic thalamic stimulation thresholds that evoked cortical responses were much lower than published accounts of cochlear and midbrain stimulation. Cortical activation dynamic ranges were similar to those reported for cochlear stimulation, but they were narrower than those found through midbrain stimulation. Our results imply that thalamic stimulation can activate auditory cortex at low electrical current levels and suggest an auditory thalamic implant may be a viable central auditory prosthesis. PMID:24335216

  8. Visual change detection recruits auditory cortices in early deafness.

    PubMed

    Bottari, Davide; Heimler, Benedetta; Caclin, Anne; Dalmolin, Anna; Giard, Marie-Hélène; Pavani, Francesco

    2014-07-01

    Although cross-modal recruitment of early sensory areas in deafness and blindness is well established, the constraints and limits of these plastic changes remain to be understood. In the case of human deafness, for instance, it is known that visual, tactile or visuo-tactile stimuli can elicit a response within the auditory cortices. Nonetheless, both the timing of these evoked responses and the functional contribution of cross-modally recruited areas remain to be ascertained. In the present study, we examined to what extent auditory cortices of deaf humans participate in high-order visual processes, such as visual change detection. By measuring visual ERPs, in particular the visual MisMatch Negativity (vMMN), and performing source localization, we show that individuals with early deafness (N=12) recruit the auditory cortices when a change in motion direction during shape deformation occurs in a continuous visual motion stream. Remarkably this "auditory" response for visual events emerged with the same timing as the visual MMN in hearing controls (N=12), between 150 and 300 ms after the visual change. Furthermore, the recruitment of auditory cortices for visual change detection in early deaf was paired with a reduction of response within the visual system, indicating a shift from visual to auditory cortices of part of the computational process. The present study suggests that the deafened auditory cortices participate at extracting and storing the visual information and at comparing on-line the upcoming visual events, thus indicating that cross-modally recruited auditory cortices can reach this level of computation. PMID:24636881

  9. Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study.

    PubMed

    Gao, Patrick P; Zhang, Jevin W; Fan, Shu-Juan; Sanes, Dan H; Wu, Ed X

    2015-12-01

    The cortex contains extensive descending projections, yet the impact of cortical input on brainstem processing remains poorly understood. In the central auditory system, the auditory cortex contains direct and indirect pathways (via brainstem cholinergic cells) to nuclei of the auditory midbrain, called the inferior colliculus (IC). While these projections modulate auditory processing throughout the IC, single neuron recordings have samples from only a small fraction of cells during stimulation of the corticofugal pathway. Furthermore, assessments of cortical feedback have not been extended to sensory modalities other than audition. To address these issues, we devised blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) paradigms to measure the sound-evoked responses throughout the rat IC and investigated the effects of bilateral ablation of either auditory or visual cortices. Auditory cortex ablation increased the gain of IC responses to noise stimuli (primarily in the central nucleus of the IC) and decreased response selectivity to forward species-specific vocalizations (versus temporally reversed ones, most prominently in the external cortex of the IC). In contrast, visual cortex ablation decreased the gain and induced a much smaller effect on response selectivity. The results suggest that auditory cortical projections normally exert a large-scale and net suppressive influence on specific IC subnuclei, while visual cortical projections provide a facilitatory influence. Meanwhile, auditory cortical projections enhance the midbrain response selectivity to species-specific vocalizations. We also probed the role of the indirect cholinergic projections in the auditory system in the descending modulation process by pharmacologically blocking muscarinic cholinergic receptors. This manipulation did not affect the gain of IC responses but significantly reduced the response selectivity to vocalizations. The results imply that auditory cortical

  10. Auditory system

    NASA Technical Reports Server (NTRS)

    Ades, H. W.

    1973-01-01

    The physical correlations of hearing, i.e. the acoustic stimuli, are reported. The auditory system, consisting of external ear, middle ear, inner ear, organ of Corti, basilar membrane, hair cells, inner hair cells, outer hair cells, innervation of hair cells, and transducer mechanisms, is discussed. Both conductive and sensorineural hearing losses are also examined.

  11. Spatial Coherence in Auditory Cortical Activity Fluctuations

    NASA Astrophysics Data System (ADS)

    Yoshida, Takamasa; Katura, Takusige; Yamazaki, Kyoko; Tanaka, Shigeru; Iwamoto, Mitsumasa; Tanaka, Naoki

    2007-07-01

    We examined activity fluctuations as ongoing and spontaneous activities that were recorded with voltage sensitive dye imaging in the auditory cortex of guinea pigs. We investigated whether such activities demonstrated spatial coherence, which represents the cortical functional organization. We used independent component analysis to extract neural activities from observed signals and a scaled signal-plus-noise model to estimate ongoing activities from the neural activities including response components. We mapped the correlation between the time courses in each channel and in the others for the whole observed region. Ongoing and spontaneous activities in the auditory cortex were found to have strong spatial coherence corresponding to the tonotopy, which is one of auditory functional organization.

  12. Music perception: information flow within the human auditory cortices.

    PubMed

    Angulo-Perkins, Arafat; Concha, Luis

    2014-01-01

    Information processing of all acoustic stimuli involves temporal lobe regions referred to as auditory cortices, which receive direct afferents from the auditory thalamus. However, the perception of music (as well as speech or spoken language) is a complex process that also involves secondary and association cortices that conform a large functional network. Using different analytical techniques and stimulation paradigms, several studies have shown that certain areas are particularly sensitive to specific acoustic characteristics inherent to music (e.g., rhythm). This chapter reviews the functional anatomy of the auditory cortices, and highlights specific experiments that suggest the existence of distinct cortical networks for the perception of music and speech. PMID:25358716

  13. Cortical Synaptic Inhibition Declines during Auditory Learning

    PubMed Central

    von Trapp, Gardiner; Mowery, Todd M.; Kotak, Vibhakar C.; Sanes, Dan H.

    2015-01-01

    Auditory learning is associated with an enhanced representation of acoustic cues in primary auditory cortex, and modulation of inhibitory strength is causally involved in learning. If this inhibitory plasticity is associated with task learning and improvement, its expression should emerge and persist until task proficiency is achieved. We tested this idea by measuring changes to cortical inhibitory synaptic transmission as adult gerbils progressed through the process of associative learning and perceptual improvement. Using either of two procedures, aversive or appetitive conditioning, animals were trained to detect amplitude-modulated noise and then tested daily. Following each training session, a thalamocortical brain slice was generated, and inhibitory synaptic properties were recorded from layer 2/3 pyramidal neurons. Initial associative learning was accompanied by a profound reduction in the amplitude of spontaneous IPSCs (sIPSCs). However, sIPSC amplitude returned to control levels when animals reached asymptotic behavioral performance. In contrast, paired-pulse ratios decreased in trained animals as well as in control animals that experienced unpaired conditioned and unconditioned stimuli. This latter observation suggests that inhibitory release properties are modified during behavioral conditioning, even when an association between the sound and reinforcement cannot occur. These results suggest that associative learning is accompanied by a reduction of postsynaptic inhibitory strength that persists for several days during learning and perceptual improvement. PMID:25904785

  14. Diverse cortical codes for scene segmentation in primate auditory cortex

    PubMed Central

    Semple, Malcolm N.

    2015-01-01

    The temporal coherence of amplitude fluctuations is a critical cue for segmentation of complex auditory scenes. The auditory system must accurately demarcate the onsets and offsets of acoustic signals. We explored how and how well the timing of onsets and offsets of gated tones are encoded by auditory cortical neurons in awake rhesus macaques. Temporal features of this representation were isolated by presenting otherwise identical pure tones of differing durations. Cortical response patterns were diverse, including selective encoding of onset and offset transients, tonic firing, and sustained suppression. Spike train classification methods revealed that many neurons robustly encoded tone duration despite substantial diversity in the encoding process. Excellent discrimination performance was achieved by neurons whose responses were primarily phasic at tone offset and by those that responded robustly while the tone persisted. Although diverse cortical response patterns converged on effective duration discrimination, this diversity significantly constrained the utility of decoding models referenced to a spiking pattern averaged across all responses or averaged within the same response category. Using maximum likelihood-based decoding models, we demonstrated that the spike train recorded in a single trial could support direct estimation of stimulus onset and offset. Comparisons between different decoding models established the substantial contribution of bursts of activity at sound onset and offset to demarcating the temporal boundaries of gated tones. Our results indicate that relatively few neurons suffice to provide temporally precise estimates of such auditory “edges,” particularly for models that assume and exploit the heterogeneity of neural responses in awake cortex. PMID:25695655

  15. Cortical Auditory Evoked Potentials in Unsuccessful Cochlear Implant Users

    ERIC Educational Resources Information Center

    Munivrana, Boska; Mildner, Vesna

    2013-01-01

    In some cochlear implant users, success is not achieved in spite of optimal clinical factors (including age at implantation, duration of rehabilitation and post-implant hearing level), which may be attributed to disorders at higher levels of the auditory pathway. We used cortical auditory evoked potentials to investigate the ability to perceive…

  16. Representation of Sound Categories in Auditory Cortical Maps

    ERIC Educational Resources Information Center

    Guenther, Frank H.; Nieto-Castanon, Alfonso; Ghosh, Satrajit S.; Tourville, Jason A.

    2004-01-01

    Functional magnetic resonance imaging (fMRI) was used to investigate the representation of sound categories in human auditory cortex. Experiment 1 investigated the representation of prototypical (good) and nonprototypical (bad) examples of a vowel sound. Listening to prototypical examples of a vowel resulted in less auditory cortical activation…

  17. Cortical development and neuroplasticity in Auditory Neuropathy Spectrum Disorder.

    PubMed

    Sharma, Anu; Cardon, Garrett

    2015-12-01

    Cortical development is dependent to a large extent on stimulus-driven input. Auditory Neuropathy Spectrum Disorder (ANSD) is a recently described form of hearing impairment where neural dys-synchrony is the predominant characteristic. Children with ANSD provide a unique platform to examine the effects of asynchronous and degraded afferent stimulation on cortical auditory neuroplasticity and behavioral processing of sound. In this review, we describe patterns of auditory cortical maturation in children with ANSD. The disruption of cortical maturation that leads to these various patterns includes high levels of intra-individual cortical variability and deficits in cortical phase synchronization of oscillatory neural responses. These neurodevelopmental changes, which are constrained by sensitive periods for central auditory maturation, are correlated with behavioral outcomes for children with ANSD. Overall, we hypothesize that patterns of cortical development in children with ANSD appear to be markers of the severity of the underlying neural dys-synchrony, providing prognostic indicators of success of clinical intervention with amplification and/or electrical stimulation. This article is part of a Special Issue entitled <Auditory Synaptology>. PMID:26070426

  18. AUDITORY CORTICAL PLASTICITY: DOES IT PROVIDE EVIDENCE FOR COGNITIVE PROCESSING IN THE AUDITORY CORTEX?

    PubMed Central

    Irvine, Dexter R. F.

    2007-01-01

    The past 20 years have seen substantial changes in our view of the nature of the processing carried out in auditory cortex. Some processing of a cognitive nature, previously attributed to higher order “association” areas, is now considered to take place in auditory cortex itself. One argument adduced in support of this view is the evidence indicating a remarkable degree of plasticity in the auditory cortex of adult animals. Such plasticity has been demonstrated in a wide range of paradigms, in which auditory input or the behavioural significance of particular inputs is manipulated. Changes over the same time period in our conceptualization of the receptive fields of cortical neurons, and well-established mechanisms for use-related changes in synaptic function, can account for many forms of auditory cortical plasticity. On the basis of a review of auditory cortical plasticity and its probable mechanisms, it is argued that only plasticity associated with learning tasks provides a strong case for cognitive processing in auditory cortex. Even in this case the evidence is indirect, in that it has not yet been established that the changes in auditory cortex are necessary for behavioural learning and memory. Although other lines of evidence provide convincing support for cognitive processing in auditory cortex, that provided by auditory cortical plasticity remains equivocal. PMID:17303356

  19. Visual-induced expectations modulate auditory cortical responses.

    PubMed

    van Wassenhove, Virginie; Grzeczkowski, Lukasz

    2015-01-01

    Active sensing has important consequences on multisensory processing (Schroeder et al., 2010). Here, we asked whether in the absence of saccades, the position of the eyes and the timing of transient color changes of visual stimuli could selectively affect the excitability of auditory cortex by predicting the "where" and the "when" of a sound, respectively. Human participants were recorded with magnetoencephalography (MEG) while maintaining the position of their eyes on the left, right, or center of the screen. Participants counted color changes of the fixation cross while neglecting sounds which could be presented to the left, right, or both ears. First, clear alpha power increases were observed in auditory cortices, consistent with participants' attention directed to visual inputs. Second, color changes elicited robust modulations of auditory cortex responses ("when" prediction) seen as ramping activity, early alpha phase-locked responses, and enhanced high-gamma band responses in the contralateral side of sound presentation. Third, no modulations of auditory evoked or oscillatory activity were found to be specific to eye position. Altogether, our results suggest that visual transience can automatically elicit a prediction of "when" a sound will occur by changing the excitability of auditory cortices irrespective of the attended modality, eye position or spatial congruency of auditory and visual events. To the contrary, auditory cortical responses were not significantly affected by eye position suggesting that "where" predictions may require active sensing or saccadic reset to modulate auditory cortex responses, notably in the absence of spatial orientation to sounds. PMID:25705174

  20. Bat's auditory system: Corticofugal feedback and plasticity

    NASA Astrophysics Data System (ADS)

    Suga, Nobuo

    2001-05-01

    The auditory system of the mustached bat consists of physiologically distinct subdivisions for processing different types of biosonar information. It was found that the corticofugal (descending) auditory system plays an important role in improving and adjusting auditory signal processing. Repetitive acoustic stimulation, cortical electrical stimulation or auditory fear conditioning evokes plastic changes of the central auditory system. The changes are based upon egocentric selection evoked by focused positive feedback associated with lateral inhibition. Focal electric stimulation of the auditory cortex evokes short-term changes in the auditory cortex and subcortical auditory nuclei. An increase in a cortical acetylcholine level during the electric stimulation changes the cortical changes from short-term to long-term. There are two types of plastic changes (reorganizations): centripetal best frequency shifts for expanded reorganization of a neural frequency map and centrifugal best frequency shifts for compressed reorganization of the map. Which changes occur depends on the balance between inhibition and facilitation. Expanded reorganization has been found in different sensory systems and different species of mammals, whereas compressed reorganization has been thus far found only in the auditory subsystems highly specialized for echolocation. The two types of reorganizations occur in both the frequency and time domains. [Work supported by NIDCO DC00175.

  1. Longitudinal maturation of auditory cortical function during adolescence

    PubMed Central

    Fitzroy, Ahren B.; Krizman, Jennifer; Tierney, Adam; Agouridou, Manto; Kraus, Nina

    2015-01-01

    Cross-sectional studies have demonstrated that the cortical auditory evoked potential (CAEP) changes substantially in amplitude and latency from childhood to adulthood, suggesting that these aspects of the CAEP continue to mature through adolescence. However, no study to date has longitudinally followed maturation of these CAEP measures through this developmental period. Additionally, no study has examined the trial-to-trial variability of the CAEP during adolescence. Therefore, we longitudinally tracked changes in the latency, amplitude, and variability of the P1, N1, P2, and N2 components of the CAEP in 68 adolescents from age 14 years to age 17 years. Latency decreased for N1 and N2, and did not change for P1 or P2. Amplitude decreased for P1 and N2, increased for N1, and did not change for P2. Variability decreased with age for all CAEP components. These findings provide longitudinal support for the view that the human auditory system continues to mature through adolescence. Continued auditory system maturation through adolescence suggests that CAEP neural generators remain plastic during this age range and potentially amenable to experience-based enhancement or deprivation. PMID:26539092

  2. Effects of category learning on auditory perception and cortical maps

    NASA Astrophysics Data System (ADS)

    Guenther, Frank H.

    2002-05-01

    Our ability to discriminate sounds is not uniform throughout acoustic space. One example of auditory space warping, termed the perceptual magnet effect by Kuhl and colleagues, appears to arise from exposure to the phonemes of an infant's native language. We have developed a neural model that accounts for the magnet effect in terms of neural map dynamics in auditory cortex. This model predicts that it should be possible to induce a magnet effect for non-speech stimuli. This prediction was verified by a psychophysical experiment in which subjects underwent categorization training involving non-speech auditory stimuli that were not categorical prior to training. The model further predicts that the magnet effect arises because prototypical vowels have a smaller cortical representation than non-prototypical vowels. This prediction was supported by an fMRI experiment involving prototypical and non-prototypical examples of the vowel /i/. Finally, the model predicts that categorization training with non-speech stimuli should lead to a decreased cortical representation for stimuli near the center of the category. This prediction was supported by an fMRI experiment involving categorization training with non-speech auditory stimuli. These results provide strong support for the model's account of the effects of category learning on auditory perception and auditory cortical maps.

  3. Auditory Cortical Plasticity in Learning to Discriminate Modulation Rate

    PubMed Central

    van Wassenhove, Virginie; Nagarajan, Srikantan S.

    2014-01-01

    The discrimination of temporal information in acoustic inputs is a crucial aspect of auditory perception, yet very few studies have focused on auditory perceptual learning of timing properties and associated plasticity in adult auditory cortex. Here, we trained participants on a temporal discrimination task. The main task used a base stimulus (four tones separated by intervals of 200 ms) that had to be distinguished from a target stimulus (four tones with intervals down to ~180 ms). We show that participants’ auditory temporal sensitivity improves with a short amount of training (3 d, 1 h/d). Learning to discriminate temporal modulation rates was accompanied by a systematic amplitude increase of the early auditory evoked responses to trained stimuli, as measured by magnetoencephalography. Additionally, learning and auditory cortex plasticity partially generalized to interval discrimination but not to frequency discrimination. Auditory cortex plasticity associated with short-term perceptual learning was manifested as an enhancement of auditory cortical responses to trained acoustic features only in the trained task. Plasticity was also manifested as induced non-phase–locked high gamma-band power increases in inferior frontal cortex during performance in the trained task. Functional plasticity in auditory cortex is here interpreted as the product of bottom-up and top-down modulations. PMID:17344404

  4. Visual-induced expectations modulate auditory cortical responses

    PubMed Central

    van Wassenhove, Virginie; Grzeczkowski, Lukasz

    2015-01-01

    Active sensing has important consequences on multisensory processing (Schroeder et al., 2010). Here, we asked whether in the absence of saccades, the position of the eyes and the timing of transient color changes of visual stimuli could selectively affect the excitability of auditory cortex by predicting the “where” and the “when” of a sound, respectively. Human participants were recorded with magnetoencephalography (MEG) while maintaining the position of their eyes on the left, right, or center of the screen. Participants counted color changes of the fixation cross while neglecting sounds which could be presented to the left, right, or both ears. First, clear alpha power increases were observed in auditory cortices, consistent with participants' attention directed to visual inputs. Second, color changes elicited robust modulations of auditory cortex responses (“when” prediction) seen as ramping activity, early alpha phase-locked responses, and enhanced high-gamma band responses in the contralateral side of sound presentation. Third, no modulations of auditory evoked or oscillatory activity were found to be specific to eye position. Altogether, our results suggest that visual transience can automatically elicit a prediction of “when” a sound will occur by changing the excitability of auditory cortices irrespective of the attended modality, eye position or spatial congruency of auditory and visual events. To the contrary, auditory cortical responses were not significantly affected by eye position suggesting that “where” predictions may require active sensing or saccadic reset to modulate auditory cortex responses, notably in the absence of spatial orientation to sounds. PMID:25705174

  5. Intrahemispheric cortico-cortical connections of the human auditory cortex.

    PubMed

    Cammoun, Leila; Thiran, Jean Philippe; Griffa, Alessandra; Meuli, Reto; Hagmann, Patric; Clarke, Stephanie

    2015-11-01

    The human auditory cortex comprises the supratemporal plane and large parts of the temporal and parietal convexities. We have investigated the relevant intrahemispheric cortico-cortical connections using in vivo DSI tractography combined with landmark-based registration, automatic cortical parcellation and whole-brain structural connection matrices in 20 right-handed male subjects. On the supratemporal plane, the pattern of connectivity was related to the architectonically defined early-stage auditory areas. It revealed a three-tier architecture characterized by a cascade of connections from the primary auditory cortex to six adjacent non-primary areas and from there to the superior temporal gyrus. Graph theory-driven analysis confirmed the cascade-like connectivity pattern and demonstrated a strong degree of segregation and hierarchy within early-stage auditory areas. Putative higher-order areas on the temporal and parietal convexities had more widely spread local connectivity and long-range connections with the prefrontal cortex; analysis of optimal community structure revealed five distinct modules in each hemisphere. The pattern of temporo-parieto-frontal connectivity was partially asymmetrical. In conclusion, the human early-stage auditory cortical connectivity, as revealed by in vivo DSI tractography, has strong similarities with that of non-human primates. The modular architecture and hemispheric asymmetry in higher-order regions is compatible with segregated processing streams and lateralization of cognitive functions. PMID:25173473

  6. Lifespan Differences in Cortical Dynamics of Auditory Perception

    ERIC Educational Resources Information Center

    Muller, Viktor; Gruber, Walter; Klimesch, Wolfgang; Lindenberger, Ulman

    2009-01-01

    Using electroencephalographic recordings (EEG), we assessed differences in oscillatory cortical activity during auditory-oddball performance between children aged 9-13 years, younger adults, and older adults. From childhood to old age, phase synchronization increased within and between electrodes, whereas whole power and evoked power decreased. We…

  7. The cortical dynamics underlying effective switching of auditory spatial attention

    PubMed Central

    Larson, Eric; Lee, Adrian KC

    2012-01-01

    Successful rapid deployment of attention to relevant sensory stimuli is critical for survival. In a complex environment, attention can be captured by salient events or be deployed volitionally. Furthermore, when multiple events are of interest concurrently, effective interaction with one's surroundings hinges on efficient top-down control of shifting attention. It has been hypothesized that two separate cortical networks coordinate attention shifts across multiple modalities. However, the cortical dynamics of these networks and their behavioral relevance to switching of auditory attention are unknown. Here we show that the strength of each subject's right temporal-parietal junction (RTPJ, part of the ventral network) activation was highly correlated with their behavioral performance in an auditory task. We also provide evidence that the recruitment of the RTPJ likely precedes the right frontal eye fields (FEF; participating in both the dorsal and ventral networks) and middle frontal gyrus (MFG) by around 100 ms when subjects switch their auditory spatial attention. PMID:22974974

  8. An anatomical and functional topography of human auditory cortical areas

    PubMed Central

    Moerel, Michelle; De Martino, Federico; Formisano, Elia

    2014-01-01

    While advances in magnetic resonance imaging (MRI) throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla). Importantly, we illustrate that—whereas a group-based approach to analyze functional (tonotopic) maps is appropriate to highlight the main tonotopic axis—the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e., myelination) as well as of functional properties (e.g., broadness of frequency tuning) is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post-mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions. PMID:25120426

  9. An anatomical and functional topography of human auditory cortical areas.

    PubMed

    Moerel, Michelle; De Martino, Federico; Formisano, Elia

    2014-01-01

    While advances in magnetic resonance imaging (MRI) throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla). Importantly, we illustrate that-whereas a group-based approach to analyze functional (tonotopic) maps is appropriate to highlight the main tonotopic axis-the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e., myelination) as well as of functional properties (e.g., broadness of frequency tuning) is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post-mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions. PMID:25120426

  10. Attention Modulates the Auditory Cortical Processing of Spatial and Category Cues in Naturalistic Auditory Scenes

    PubMed Central

    Renvall, Hanna; Staeren, Noël; Barz, Claudia S.; Ley, Anke; Formisano, Elia

    2016-01-01

    This combined fMRI and MEG study investigated brain activations during listening and attending to natural auditory scenes. We first recorded, using in-ear microphones, vocal non-speech sounds, and environmental sounds that were mixed to construct auditory scenes containing two concurrent sound streams. During the brain measurements, subjects attended to one of the streams while spatial acoustic information of the scene was either preserved (stereophonic sounds) or removed (monophonic sounds). Compared to monophonic sounds, stereophonic sounds evoked larger blood-oxygenation-level-dependent (BOLD) fMRI responses in the bilateral posterior superior temporal areas, independent of which stimulus attribute the subject was attending to. This finding is consistent with the functional role of these regions in the (automatic) processing of auditory spatial cues. Additionally, significant differences in the cortical activation patterns depending on the target of attention were observed. Bilateral planum temporale and inferior frontal gyrus were preferentially activated when attending to stereophonic environmental sounds, whereas when subjects attended to stereophonic voice sounds, the BOLD responses were larger at the bilateral middle superior temporal gyrus and sulcus, previously reported to show voice sensitivity. In contrast, the time-resolved MEG responses were stronger for mono- than stereophonic sounds in the bilateral auditory cortices at ~360 ms after the stimulus onset when attending to the voice excerpts within the combined sounds. The observed effects suggest that during the segregation of auditory objects from the auditory background, spatial sound cues together with other relevant temporal and spectral cues are processed in an attention-dependent manner at the cortical locations generally involved in sound recognition. More synchronous neuronal activation during monophonic than stereophonic sound processing, as well as (local) neuronal inhibitory mechanisms in

  11. Evaluating long-latency auditory evoked potentials in the diagnosis of cortical hearing loss in children

    PubMed Central

    Lopez-Soto, Teresa; Postigo-Madueno, Amparo; Nunez-Abades, Pedro

    2016-01-01

    In centrally related hearing loss, there is no apparent damage in the auditory system, but the patient is unable to hear sounds. In patients with cortical hearing loss (and in the absence of communication deficit, either total or partial, as in agnosia or aphasia), some attention-related or language-based disorders may lead to a wrong diagnosis of hearing impairment. The authors present two patients (8 and 11 years old) with no anatomical damage to the ear, the absence of neurological damage or trauma, but immature cortical auditory evoked potentials. Both patients presented a clinical history of multiple diagnoses over several years. Because the most visible symptom was moderate hearing loss, the patients were recurrently referred to audiological testing, with no improvement. This report describes the use of long-latency evoked potentials to determine cases of cortical hearing loss, where hearing impairment is a consequence of underdevelopment at the central nervous system. PMID:27006780

  12. Cortical auditory evoked potentials in the assessment of auditory neuropathy: two case studies.

    PubMed

    Pearce, Wendy; Golding, Maryanne; Dillon, Harvey

    2007-05-01

    Infants with auditory neuropathy and possible hearing impairment are being identified at very young ages through the implementation of hearing screening programs. The diagnosis is commonly based on evidence of normal cochlear function but abnormal brainstem function. This lack of normal brainstem function is highly problematic when prescribing amplification in young infants because prescriptive formulae require the input of hearing thresholds that are normally estimated from auditory brainstem responses to tonal stimuli. Without this information, there is great uncertainty surrounding the final fitting. Cortical auditory evoked potentials may, however, still be evident and reliably recorded to speech stimuli presented at conversational levels. The case studies of two infants are presented that demonstrate how these higher order electrophysiological responses may be utilized in the audiological management of some infants with auditory neuropathy. PMID:17715648

  13. Cortico‐cortical connectivity within ferret auditory cortex

    PubMed Central

    Bajo, Victoria M.; Nodal, Fernando R.; King, Andrew J.

    2015-01-01

    ABSTRACT Despite numerous studies of auditory cortical processing in the ferret (Mustela putorius), very little is known about the connections between the different regions of the auditory cortex that have been characterized cytoarchitectonically and physiologically. We examined the distribution of retrograde and anterograde labeling after injecting tracers into one or more regions of ferret auditory cortex. Injections of different tracers at frequency‐matched locations in the core areas, the primary auditory cortex (A1) and anterior auditory field (AAF), of the same animal revealed the presence of reciprocal connections with overlapping projections to and from discrete regions within the posterior pseudosylvian and suprasylvian fields (PPF and PSF), suggesting that these connections are frequency specific. In contrast, projections from the primary areas to the anterior dorsal field (ADF) on the anterior ectosylvian gyrus were scattered and non‐overlapping, consistent with the non‐tonotopic organization of this field. The relative strength of the projections originating in each of the primary fields differed, with A1 predominantly targeting the posterior bank fields PPF and PSF, which in turn project to the ventral posterior field, whereas AAF projects more heavily to the ADF, which then projects to the anteroventral field and the pseudosylvian sulcal cortex. These findings suggest that parallel anterior and posterior processing networks may exist, although the connections between different areas often overlap and interactions were present at all levels. J. Comp. Neurol. 523:2187–2210, 2015. © 2015 Wiley Periodicals, Inc. PMID:25845831

  14. Cortico-Cortical Connectivity Within Ferret Auditory Cortex.

    PubMed

    Bizley, Jennifer K; Bajo, Victoria M; Nodal, Fernando R; King, Andrew J

    2015-10-15

    Despite numerous studies of auditory cortical processing in the ferret (Mustela putorius), very little is known about the connections between the different regions of the auditory cortex that have been characterized cytoarchitectonically and physiologically. We examined the distribution of retrograde and anterograde labeling after injecting tracers into one or more regions of ferret auditory cortex. Injections of different tracers at frequency-matched locations in the core areas, the primary auditory cortex (A1) and anterior auditory field (AAF), of the same animal revealed the presence of reciprocal connections with overlapping projections to and from discrete regions within the posterior pseudosylvian and suprasylvian fields (PPF and PSF), suggesting that these connections are frequency specific. In contrast, projections from the primary areas to the anterior dorsal field (ADF) on the anterior ectosylvian gyrus were scattered and non-overlapping, consistent with the non-tonotopic organization of this field. The relative strength of the projections originating in each of the primary fields differed, with A1 predominantly targeting the posterior bank fields PPF and PSF, which in turn project to the ventral posterior field, whereas AAF projects more heavily to the ADF, which then projects to the anteroventral field and the pseudosylvian sulcal cortex. These findings suggest that parallel anterior and posterior processing networks may exist, although the connections between different areas often overlap and interactions were present at all levels. PMID:25845831

  15. Covariation of pupillary and auditory cortical activity in rats under isoflurane anesthesia.

    PubMed

    Takahashi, H; Tokushige, H; Shiramatsu, T I; Noda, T; Kanzaki, R

    2015-08-01

    Very slow fluctuations of spontaneous activities significantly influence not only behavioral performance in a conscious state, but also neural activities in an unconscious state. Covariation of pupil and cortical activities may lend important insights into the state-dependent modulation of stimulus encoding, yet this phenomenon has received little attention, especially with regard to non-visual cortices. In the present study, we investigated co-fluctuation of pupil size and neural activity in the auditory cortex of rats under isoflurane anesthesia. Pupil fluctuation consisted of longitudinal irregular shifts, and 1-min cyclic modulations. Both spontaneous and auditory-evoked potentials (AEPs) covaried with the longitudinal fluctuation of pupil size, but not with the 1-min cycle. Pupil size exhibited a positive correlation with spontaneous activity and negative correlation with AEP amplitude, particularly when the pupil size was beyond the normal range. Stimulus-specific adaptation characterized using an oddball paradigm was less dependent on pupil size than AEP. In contrast to the cortical activity, heart rate covaried with pupil size with the 1-min oscillatory component, but not the non-oscillatory component. Furthermore, light exposure induced the pupil reflex through the autonomic system, but did not modify cortical activity, indicating that autonomic activity was not causing the cortical modulation. These results together suggest that cortical activities spontaneously covary with pupillary activity through central cholinergic modulation that triggers sympathetic nerve activation. Such a state-dependent property may be a confounding factor in cortical electrophysiology studies. PMID:25967265

  16. The Drosophila Auditory System

    PubMed Central

    Boekhoff-Falk, Grace; Eberl, Daniel F.

    2013-01-01

    Development of a functional auditory system in Drosophila requires specification and differentiation of the chordotonal sensilla of Johnston’s organ (JO) in the antenna, correct axonal targeting to the antennal mechanosensory and motor center (AMMC) in the brain, and synaptic connections to neurons in the downstream circuit. Chordotonal development in JO is functionally complicated by structural, molecular and functional diversity that is not yet fully understood, and construction of the auditory neural circuitry is only beginning to unfold. Here we describe our current understanding of developmental and molecular mechanisms that generate the exquisite functions of the Drosophila auditory system, emphasizing recent progress and highlighting important new questions arising from research on this remarkable sensory system. PMID:24719289

  17. Vestibular receptors contribute to cortical auditory evoked potentials☆

    PubMed Central

    Todd, Neil P.M.; Paillard, Aurore C.; Kluk, Karolina; Whittle, Elizabeth; Colebatch, James G.

    2014-01-01

    Acoustic sensitivity of the vestibular apparatus is well-established, but the contribution of vestibular receptors to the late auditory evoked potentials of cortical origin is unknown. Evoked potentials from 500 Hz tone pips were recorded using 70 channel EEG at several intensities below and above the vestibular acoustic threshold, as determined by vestibular evoked myogenic potentials (VEMPs). In healthy subjects both auditory mid- and long-latency auditory evoked potentials (AEPs), consisting of Na, Pa, N1 and P2 waves, were observed in the sub-threshold conditions. However, in passing through the vestibular threshold, systematic changes were observed in the morphology of the potentials and in the intensity dependence of their amplitude and latency. These changes were absent in a patient without functioning vestibular receptors. In particular, for the healthy subjects there was a fronto-central negativity, which appeared at about 42 ms, referred to as an N42, prior to the AEP N1. Source analysis of both the N42 and N1 indicated involvement of cingulate cortex, as well as bilateral superior temporal cortex. Our findings are best explained by vestibular receptors contributing to what were hitherto considered as purely auditory evoked potentials and in addition tentatively identify a new component that appears to be primarily of vestibular origin. PMID:24321822

  18. The cat's meow: A high-field fMRI assessment of cortical activity in response to vocalizations and complex auditory stimuli.

    PubMed

    Hall, Amee J; Butler, Blake E; Lomber, Stephen G

    2016-02-15

    Sensory systems are typically constructed in a hierarchical fashion such that lower level subcortical and cortical areas process basic stimulus features, while higher level areas reassemble these features into object-level representations. A number of anatomical pathway tracing studies have suggested that the auditory cortical hierarchy of the cat extends from a core region, consisting of the primary auditory cortex (A1) and the anterior auditory field (AAF), to higher level auditory fields that are located ventrally. Unfortunately, limitations on electrophysiological examination of these higher level fields have resulted in an incomplete understanding of the functional organization of the auditory cortex. Thus, the current study uses functional MRI in conjunction with a variety of simple and complex auditory stimuli to provide the first comprehensive examination of function across the entire cortical hierarchy. Auditory cortex function is shown to be largely lateralized to the left hemisphere, and is concentrated bilaterally in fields surrounding the posterior ectosylvian sulcus. The use of narrowband noise stimuli enables the visualization of tonotopic gradients in the posterior auditory field (PAF) and ventral posterior auditory field (VPAF) that have previously been unverifiable using fMRI and pure tones. Furthermore, auditory fields that are inaccessible to more invasive techniques, such as the insular (IN) and temporal (T) cortices, are shown to be selectively responsive to vocalizations. Collectively, these data provide a much needed functional correlate for anatomical examinations of the hierarchy of cortical structures within the cat auditory cortex. PMID:26658927

  19. Auditory perception vs. recognition: representation of complex communication sounds in the mouse auditory cortical fields.

    PubMed

    Geissler, Diana B; Ehret, Günter

    2004-02-01

    Details of brain areas for acoustical Gestalt perception and the recognition of species-specific vocalizations are not known. Here we show how spectral properties and the recognition of the acoustical Gestalt of wriggling calls of mouse pups based on a temporal property are represented in auditory cortical fields and an association area (dorsal field) of the pups' mothers. We stimulated either with a call model releasing maternal behaviour at a high rate (call recognition) or with two models of low behavioural significance (perception without recognition). Brain activation was quantified using c-Fos immunocytochemistry, counting Fos-positive cells in electrophysiologically mapped auditory cortical fields and the dorsal field. A frequency-specific labelling in two primary auditory fields is related to call perception but not to the discrimination of the biological significance of the call models used. Labelling related to call recognition is present in the second auditory field (AII). A left hemisphere advantage of labelling in the dorsoposterior field seems to reflect an integration of call recognition with maternal responsiveness. The dorsal field is activated only in the left hemisphere. The spatial extent of Fos-positive cells within the auditory cortex and its fields is larger in the left than in the right hemisphere. Our data show that a left hemisphere advantage in processing of a species-specific vocalization up to recognition is present in mice. The differential representation of vocalizations of high vs. low biological significance, as seen only in higher-order and not in primary fields of the auditory cortex, is discussed in the context of perceptual strategies. PMID:15009150

  20. Behavioral evidence for the role of cortical θ oscillations in determining auditory channel capacity for speech

    PubMed Central

    Ghitza, Oded

    2014-01-01

    Studies on the intelligibility of time-compressed speech have shown flawless performance for moderate compression factors, a sharp deterioration for compression factors above three, and an improved performance as a result of “repackaging”—a process of dividing the time-compressed waveform into fragments, called packets, and delivering the packets in a prescribed rate. This intricate pattern of performance reflects the reliability of the auditory system in processing speech streams with different information transfer rates; the knee-point of performance defines the auditory channel capacity. This study is concerned with the cortical computation principle that determines channel capacity. Oscillation-based models of speech perception hypothesize that the speech decoding process is guided by a cascade of oscillations with theta as “master,” capable of tracking the input rhythm, with the theta cycles aligned with the intervocalic speech fragments termed θ-syllables; intelligibility remains high as long as theta is in sync with the input, and it sharply deteriorates once theta is out of sync. In the study described here the hypothesized role of theta was examined by measuring the auditory channel capacity of time-compressed speech undergone repackaging. For all speech speeds tested (with compression factors of up to eight), packaging rate at capacity equals 9 packets/s—aligned with the upper limit of cortical theta, θmax (about 9 Hz)—and the packet duration equals the duration of one uncompressed θ-syllable divided by the compression factor. The alignment of both the packaging rate and the packet duration with properties of cortical theta suggests that the auditory channel capacity is determined by theta. Irrespective of speech speed, the maximum information transfer rate through the auditory channel is the information in one uncompressed θ-syllable long speech fragment per one θmax cycle. Equivalently, the auditory channel capacity is 9

  1. Shaping the aging brain: role of auditory input patterns in the emergence of auditory cortical impairments

    PubMed Central

    Kamal, Brishna; Holman, Constance; de Villers-Sidani, Etienne

    2013-01-01

    Age-related impairments in the primary auditory cortex (A1) include poor tuning selectivity, neural desynchronization, and degraded responses to low-probability sounds. These changes have been largely attributed to reduced inhibition in the aged brain, and are thought to contribute to substantial hearing impairment in both humans and animals. Since many of these changes can be partially reversed with auditory training, it has been speculated that they might not be purely degenerative, but might rather represent negative plastic adjustments to noisy or distorted auditory signals reaching the brain. To test this hypothesis, we examined the impact of exposing young adult rats to 8 weeks of low-grade broadband noise on several aspects of A1 function and structure. We then characterized the same A1 elements in aging rats for comparison. We found that the impact of noise exposure on A1 tuning selectivity, temporal processing of auditory signal and responses to oddball tones was almost indistinguishable from the effect of natural aging. Moreover, noise exposure resulted in a reduction in the population of parvalbumin inhibitory interneurons and cortical myelin as previously documented in the aged group. Most of these changes reversed after returning the rats to a quiet environment. These results support the hypothesis that age-related changes in A1 have a strong activity-dependent component and indicate that the presence or absence of clear auditory input patterns might be a key factor in sustaining adult A1 function. PMID:24062649

  2. Modeling attention-driven plasticity in auditory cortical receptive fields.

    PubMed

    Carlin, Michael A; Elhilali, Mounya

    2015-01-01

    To navigate complex acoustic environments, listeners adapt neural processes to focus on behaviorally relevant sounds in the acoustic foreground while minimizing the impact of distractors in the background, an ability referred to as top-down selective attention. Particularly striking examples of attention-driven plasticity have been reported in primary auditory cortex via dynamic reshaping of spectro-temporal receptive fields (STRFs). By enhancing the neural response to features of the foreground while suppressing those to the background, STRFs can act as adaptive contrast matched filters that directly contribute to an improved cognitive segregation between behaviorally relevant and irrelevant sounds. In this study, we propose a novel discriminative framework for modeling attention-driven plasticity of STRFs in primary auditory cortex. The model describes a general strategy for cortical plasticity via an optimization that maximizes discriminability between the foreground and distractors while maintaining a degree of stability in the cortical representation. The first instantiation of the model describes a form of feature-based attention and yields STRF adaptation patterns consistent with a contrast matched filter previously reported in neurophysiological studies. An extension of the model captures a form of object-based attention, where top-down signals act on an abstracted representation of the sensory input characterized in the modulation domain. The object-based model makes explicit predictions in line with limited neurophysiological data currently available but can be readily evaluated experimentally. Finally, we draw parallels between the model and anatomical circuits reported to be engaged during active attention. The proposed model strongly suggests an interpretation of attention-driven plasticity as a discriminative adaptation operating at the level of sensory cortex, in line with similar strategies previously described across different sensory modalities

  3. Development of the auditory system

    PubMed Central

    Litovsky, Ruth

    2015-01-01

    Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to communication tools such as language. Auditory signals are processed in a series of analysis stages, from peripheral to central. Coding of information has been studied for features of sound, including frequency, intensity, loudness, and location, in quiet and in the presence of maskers. In the latter case, the ability of the auditory system to perform an analysis of the scene becomes highly relevant. While some basic abilities are well developed at birth, there is a clear prolonged maturation of auditory development well into the teenage years. Maturation involves auditory pathways. However, non-auditory changes (attention, memory, cognition) play an important role in auditory development. The ability of the auditory system to adapt in response to novel stimuli is a key feature of development throughout the nervous system, known as neural plasticity. PMID:25726262

  4. Mismatch Responses in the Awake Rat: Evidence from Epidural Recordings of Auditory Cortical Fields

    PubMed Central

    Jung, Fabienne; Stephan, Klaas Enno; Backes, Heiko; Moran, Rosalyn; Gramer, Markus; Kumagai, Tetsuya; Graf, Rudolf

    2013-01-01

    Detecting sudden environmental changes is crucial for the survival of humans and animals. In the human auditory system the mismatch negativity (MMN), a component of auditory evoked potentials (AEPs), reflects the violation of predictable stimulus regularities, established by the previous auditory sequence. Given the considerable potentiality of the MMN for clinical applications, establishing valid animal models that allow for detailed investigation of its neurophysiological mechanisms is important. Rodent studies, so far almost exclusively under anesthesia, have not provided decisive evidence whether an MMN analogue exists in rats. This may be due to several factors, including the effect of anesthesia. We therefore used epidural recordings in awake black hooded rats, from two auditory cortical areas in both hemispheres, and with bandpass filtered noise stimuli that were optimized in frequency and duration for eliciting MMN in rats. Using a classical oddball paradigm with frequency deviants, we detected mismatch responses at all four electrodes in primary and secondary auditory cortex, with morphological and functional properties similar to those known in humans, i.e., large amplitude biphasic differences that increased in amplitude with decreasing deviant probability. These mismatch responses significantly diminished in a control condition that removed the predictive context while controlling for presentation rate of the deviants. While our present study does not allow for disambiguating precisely the relative contribution of adaptation and prediction error processing to the observed mismatch responses, it demonstrates that MMN-like potentials can be obtained in awake and unrestrained rats. PMID:23646197

  5. The temporal relationship between the brainstem and primary cortical auditory evoked potentials.

    PubMed

    Shaw, N A

    1995-10-01

    Many methods are employed in order to define more precisely the generators of an evoked potential (EP) waveform. One technique is to compare the timing of an EP whose origin is well established with that of one whose origin is less certain. In the present article, the latency of the primary cortical auditory evoked potential (PCAEP) was compared to each of the seven subcomponents which compose the brainstem auditory evoked potential (BAEP). The data for this comparison was derived from a retrospective analysis of previous recordings of the PCAEP and BAEP. Central auditory conduction time (CACT) was calculated by subtracting the latency of the cochlear nucleus BAEP component (wave III) from that of the PCAEP. It was found that CACT in humans is 12 msec which is more than double that of central somatosensory conduction time. The interpeak latencies between BAEP waves V, VI, and VII and the PCAEP were also calculated. It was deduced that all three waves must have an origin rather more caudally within the central auditory system than is commonly supposed. In addition, it is demonstrated that the early components of the middle latency AEP (No and Na) largely reside within the time domain between the termination of the BAEP components and the PCAEP which would be consistent with their being far field reflections of midbrain and subcortical auditory activity. It is concluded that as the afferent volley ascends the central auditory pathways, it generates not a sequence of high frequency BAEP responses but rather a succession of slower post-synaptic waves. The only means of reconciling the timing of the BAEP waves with that of the PCAEP is to assume that the generation of all the BAEP components must be largely restricted to a quite confined region within the auditory nerve and the lower half of the pons. PMID:8711132

  6. Auditory experience-dependent cortical circuit shaping for memory formation in bird song learning

    PubMed Central

    Yanagihara, Shin; Yazaki-Sugiyama, Yoko

    2016-01-01

    As in human speech acquisition, songbird vocal learning depends on early auditory experience. During development, juvenile songbirds listen to and form auditory memories of adult tutor songs, which they use to shape their own vocalizations in later sensorimotor learning. The higher-level auditory cortex, called the caudomedial nidopallium (NCM), is a potential storage site for tutor song memory, but no direct electrophysiological evidence of tutor song memory has been found. Here, we identify the neuronal substrate for tutor song memory by recording single-neuron activity in the NCM of behaving juvenile zebra finches. After tutor song experience, a small subset of NCM neurons exhibit highly selective auditory responses to the tutor song. Moreover, blockade of GABAergic inhibition, and sleep decrease their selectivity. Taken together, these results suggest that experience-dependent recruitment of GABA-mediated inhibition shapes auditory cortical circuits, leading to sparse representation of tutor song memory in auditory cortical neurons. PMID:27327620

  7. Auditory experience-dependent cortical circuit shaping for memory formation in bird song learning.

    PubMed

    Yanagihara, Shin; Yazaki-Sugiyama, Yoko

    2016-01-01

    As in human speech acquisition, songbird vocal learning depends on early auditory experience. During development, juvenile songbirds listen to and form auditory memories of adult tutor songs, which they use to shape their own vocalizations in later sensorimotor learning. The higher-level auditory cortex, called the caudomedial nidopallium (NCM), is a potential storage site for tutor song memory, but no direct electrophysiological evidence of tutor song memory has been found. Here, we identify the neuronal substrate for tutor song memory by recording single-neuron activity in the NCM of behaving juvenile zebra finches. After tutor song experience, a small subset of NCM neurons exhibit highly selective auditory responses to the tutor song. Moreover, blockade of GABAergic inhibition, and sleep decrease their selectivity. Taken together, these results suggest that experience-dependent recruitment of GABA-mediated inhibition shapes auditory cortical circuits, leading to sparse representation of tutor song memory in auditory cortical neurons. PMID:27327620

  8. Rapid cortical dynamics associated with auditory spatial attention gradients

    PubMed Central

    Mock, Jeffrey R.; Seay, Michael J.; Charney, Danielle R.; Holmes, John L.; Golob, Edward J.

    2015-01-01

    Behavioral and EEG studies suggest spatial attention is allocated as a gradient in which processing benefits decrease away from an attended location. Yet the spatiotemporal dynamics of cortical processes that contribute to attentional gradients are unclear. We measured EEG while participants (n = 35) performed an auditory spatial attention task that required a button press to sounds at one target location on either the left or right. Distractor sounds were randomly presented at four non-target locations evenly spaced up to 180° from the target location. Attentional gradients were quantified by regressing ERP amplitudes elicited by distractors against their spatial location relative to the target. Independent component analysis was applied to each subject's scalp channel data, allowing isolation of distinct cortical sources. Results from scalp ERPs showed a tri-phasic response with gradient slope peaks at ~300 ms (frontal, positive), ~430 ms (posterior, negative), and a plateau starting at ~550 ms (frontal, positive). Corresponding to the first slope peak, a positive gradient was found within a central component when attending to both target locations and for two lateral frontal components when contralateral to the target location. Similarly, a central posterior component had a negative gradient that corresponded to the second slope peak regardless of target location. A right posterior component had both an ipsilateral followed by a contralateral gradient. Lateral posterior clusters also had decreases in α and β oscillatory power with a negative slope and contralateral tuning. Only the left posterior component (120–200 ms) corresponded to absolute sound location. The findings indicate a rapid, temporally-organized sequence of gradients thought to reflect interplay between frontal and parietal regions. We conclude these gradients support a target-based saliency map exhibiting aspects of both right-hemisphere dominance and opponent process models. PMID:26082679

  9. Incorporating Midbrain Adaptation to Mean Sound Level Improves Models of Auditory Cortical Processing

    PubMed Central

    Schoppe, Oliver; King, Andrew J.; Schnupp, Jan W.H.; Harper, Nicol S.

    2016-01-01

    Adaptation to stimulus statistics, such as the mean level and contrast of recently heard sounds, has been demonstrated at various levels of the auditory pathway. It allows the nervous system to operate over the wide range of intensities and contrasts found in the natural world. Yet current standard models of the response properties of auditory neurons do not incorporate such adaptation. Here we present a model of neural responses in the ferret auditory cortex (the IC Adaptation model), which takes into account adaptation to mean sound level at a lower level of processing: the inferior colliculus (IC). The model performs high-pass filtering with frequency-dependent time constants on the sound spectrogram, followed by half-wave rectification, and passes the output to a standard linear–nonlinear (LN) model. We find that the IC Adaptation model consistently predicts cortical responses better than the standard LN model for a range of synthetic and natural stimuli. The IC Adaptation model introduces no extra free parameters, so it improves predictions without sacrificing parsimony. Furthermore, the time constants of adaptation in the IC appear to be matched to the statistics of natural sounds, suggesting that neurons in the auditory midbrain predict the mean level of future sounds and adapt their responses appropriately. SIGNIFICANCE STATEMENT An ability to accurately predict how sensory neurons respond to novel stimuli is critical if we are to fully characterize their response properties. Attempts to model these responses have had a distinguished history, but it has proven difficult to improve their predictive power significantly beyond that of simple, mostly linear receptive field models. Here we show that auditory cortex receptive field models benefit from a nonlinear preprocessing stage that replicates known adaptation properties of the auditory midbrain. This improves their predictive power across a wide range of stimuli but keeps model complexity low as it

  10. Predicting visual stimuli on the basis of activity in auditory cortices.

    PubMed

    Meyer, Kaspar; Kaplan, Jonas T; Essex, Ryan; Webber, Cecelia; Damasio, Hanna; Damasio, Antonio

    2010-06-01

    Using multivariate pattern analysis of functional magnetic resonance imaging data, we found that the subjective experience of sound, in the absence of auditory stimulation, was associated with content-specific activity in early auditory cortices in humans. As subjects viewed sound-implying, but silent, visual stimuli, activity in auditory cortex differentiated among sounds related to various animals, musical instruments and objects. These results support the idea that early sensory cortex activity reflects perceptual experience, rather than sensory stimulation alone. PMID:20436482

  11. Comparing Intrinsic Connectivity Models for the Primary Auditory Cortices

    NASA Astrophysics Data System (ADS)

    Hamid, Khairiah Abdul; Yusoff, Ahmad Nazlim; Mohamad, Mazlyfarina; Hamid, Aini Ismafairus Abd; Manan, Hanani Abd

    2010-07-01

    This fMRI study is about modeling the intrinsic connectivity between Heschl' gyrus (HG) and superior temporal gyrus (STG) in human primary auditory cortices. Ten healthy male subjects participated and required to listen to white noise stimulus during the fMRI scans. Two intrinsic connectivity models comprising bilateral HG and STG were constructed using statistical parametric mapping (SPM) and dynamic causal modeling (DCM). Group Bayes factor (GBF), positive evidence ratio (PER) and Bayesian model selection (BMS) for group studies were used in model comparison. Group results indicated significant bilateral asymmetrical activation (puncorr < 0.001) in HG and STG. Comparison results showed strong evidence of Model 2 as the preferred model (STG as the input center) with GBF value of 5.77 × 1073 The model is preferred by 6 out of 10 subjects. The results were supported by BMS results for group studies. One-sample t-test on connection values obtained from Model 2 indicates unidirectional parallel connections from STG to bilateral HG (p<0.05). Model 2 was determined to be the most probable intrinsic connectivity model between bilateral HG and STG when listening to white noise.

  12. Top-down modulation of visual and auditory cortical processing in aging.

    PubMed

    Guerreiro, Maria J S; Eck, Judith; Moerel, Michelle; Evers, Elisabeth A T; Van Gerven, Pascal W M

    2015-02-01

    Age-related cognitive decline has been accounted for by an age-related deficit in top-down attentional modulation of sensory cortical processing. In light of recent behavioral findings showing that age-related differences in selective attention are modality dependent, our goal was to investigate the role of sensory modality in age-related differences in top-down modulation of sensory cortical processing. This question was addressed by testing younger and older individuals in several memory tasks while undergoing fMRI. Throughout these tasks, perceptual features were kept constant while attentional instructions were varied, allowing us to devise all combinations of relevant and irrelevant, visual and auditory information. We found no top-down modulation of auditory sensory cortical processing in either age group. In contrast, we found top-down modulation of visual cortical processing in both age groups, and this effect did not differ between age groups. That is, older adults enhanced cortical processing of relevant visual information and suppressed cortical processing of visual distractors during auditory attention to the same extent as younger adults. The present results indicate that older adults are capable of suppressing irrelevant visual information in the context of cross-modal auditory attention, and thereby challenge the view that age-related attentional and cognitive decline is due to a general deficits in the ability to suppress irrelevant information. PMID:25300470

  13. Quantitative map of multiple auditory cortical regions with a stereotaxic fine-scale atlas of the mouse brain

    PubMed Central

    Tsukano, Hiroaki; Horie, Masao; Hishida, Ryuichi; Takahashi, Kuniyuki; Takebayashi, Hirohide; Shibuki, Katsuei

    2016-01-01

    Optical imaging studies have recently revealed the presence of multiple auditory cortical regions in the mouse brain. We have previously demonstrated, using flavoprotein fluorescence imaging, at least six regions in the mouse auditory cortex, including the anterior auditory field (AAF), primary auditory cortex (AI), the secondary auditory field (AII), dorsoanterior field (DA), dorsomedial field (DM), and dorsoposterior field (DP). While multiple regions in the visual cortex and somatosensory cortex have been annotated and consolidated in recent brain atlases, the multiple auditory cortical regions have not yet been presented from a coronal view. In the current study, we obtained regional coordinates of the six auditory cortical regions of the C57BL/6 mouse brain and illustrated these regions on template coronal brain slices. These results should reinforce the existing mouse brain atlases and support future studies in the auditory cortex. PMID:26924462

  14. Auditory Cortical Activity During Cochlear Implant-Mediated Perception of Spoken Language, Melody, and Rhythm

    PubMed Central

    Molloy, Anne T.; Jiradejvong, Patpong; Braun, Allen R.

    2009-01-01

    Despite the significant advances in language perception for cochlear implant (CI) recipients, music perception continues to be a major challenge for implant-mediated listening. Our understanding of the neural mechanisms that underlie successful implant listening remains limited. To our knowledge, this study represents the first neuroimaging investigation of music perception in CI users, with the hypothesis that CI subjects would demonstrate greater auditory cortical activation than normal hearing controls. H215O positron emission tomography (PET) was used here to assess auditory cortical activation patterns in ten postlingually deafened CI patients and ten normal hearing control subjects. Subjects were presented with language, melody, and rhythm tasks during scanning. Our results show significant auditory cortical activation in implant subjects in comparison to control subjects for language, melody, and rhythm. The greatest activity in CI users compared to controls was seen for language tasks, which is thought to reflect both implant and neural specializations for language processing. For musical stimuli, PET scanning revealed significantly greater activation during rhythm perception in CI subjects (compared to control subjects), and the least activation during melody perception, which was the most difficult task for CI users. These results may suggest a possible relationship between auditory performance and degree of auditory cortical activation in implant recipients that deserves further study. PMID:19662456

  15. Quantifying attentional modulation of auditory-evoked cortical responses from single-trial electroencephalography

    PubMed Central

    Choi, Inyong; Rajaram, Siddharth; Varghese, Lenny A.; Shinn-Cunningham, Barbara G.

    2013-01-01

    Selective auditory attention is essential for human listeners to be able to communicate in multi-source environments. Selective attention is known to modulate the neural representation of the auditory scene, boosting the representation of a target sound relative to the background, but the strength of this modulation, and the mechanisms contributing to it, are not well understood. Here, listeners performed a behavioral experiment demanding sustained, focused spatial auditory attention while we measured cortical responses using electroencephalography (EEG). We presented three concurrent melodic streams; listeners were asked to attend and analyze the melodic contour of one of the streams, randomly selected from trial to trial. In a control task, listeners heard the same sound mixtures, but performed the contour judgment task on a series of visual arrows, ignoring all auditory streams. We found that the cortical responses could be fit as weighted sum of event-related potentials evoked by the stimulus onsets in the competing streams. The weighting to a given stream was roughly 10 dB higher when it was attended compared to when another auditory stream was attended; during the visual task, the auditory gains were intermediate. We then used a template-matching classification scheme to classify single-trial EEG results. We found that in all subjects, we could determine which stream the subject was attending significantly better than by chance. By directly quantifying the effect of selective attention on auditory cortical responses, these results reveal that focused auditory attention both suppresses the response to an unattended stream and enhances the response to an attended stream. The single-trial classification results add to the growing body of literature suggesting that auditory attentional modulation is sufficiently robust that it could be used as a control mechanism in brain–computer interfaces (BCIs). PMID:23576968

  16. Vibrotactile Activation of the Auditory Cortices in Deaf versus Hearing Adults

    PubMed Central

    Auer, Edward T.; Bernstein, Lynne E.; Sungkarat, Witaya; Singh, Manbir

    2007-01-01

    Neuroplastic changes in auditory cortex as a result of lifelong perceptual experience were investigated. Adults with early-onset deafness and long-term hearing aid experience were hypothesized to have undergone auditory cortex plasticity due to somatosensory stimulation. Vibrations were presented on the hand of deaf and normal-hearing participants during functional magnetic resonance imaging (fMRI). Vibration stimuli were derived from speech or were a fixed frequency. Higher, more widespread activity was observed within auditory cortical regions of the deaf participants for both stimulus types. Life-long somatosensory stimulation due to hearing aid use could explain the greater activity observed with deaf participants. PMID:17426591

  17. Vibrotactile activation of the auditory cortices in deaf versus hearing adults.

    PubMed

    Auer, Edward T; Bernstein, Lynne E; Sungkarat, Witaya; Singh, Manbir

    2007-05-01

    Neuroplastic changes in auditory cortex as a result of lifelong perceptual experience were investigated. Adults with early-onset deafness and long-term hearing aid experience were hypothesized to have undergone auditory cortex plasticity due to somatosensory stimulation. Vibrations were presented on the hand of deaf and normal-hearing participants during functional MRI. Vibration stimuli were derived from speech or were a fixed frequency. Higher, more widespread activity was observed within auditory cortical regions of the deaf participants for both stimulus types. Life-long somatosensory stimulation due to hearing aid use could explain the greater activity observed with deaf participants. PMID:17426591

  18. Auditory stimuli from a sensor glove model modulate cortical audiotactile integration.

    PubMed

    Mendes, Raquel Metzker; Barbosa, Rafael Inácio; Salmón, Carlos Ernesto Garrido; Rondinoni, Carlo; Escorsi-Rosset, Sara; Delsim, Juliana Carla; Barbieri, Cláudio Henrique; Mazzer, Nilton

    2013-08-26

    The purpose of this study was to shed light on cortical audiotactile integration and sensory substitution mechanisms, thought to serve as a basis for the use of a sensor glove in the preservation of the cortical map of the hand after peripheral nerve injuries. Fourteen subjects were selected and randomly assigned either to a training group, trained to replace touch for hearing with the use of a sensor glove, or to a control group, untrained. Training group volunteers had to identify textures just by the sound. In an fMRI experiment, all subjects received three types of stimuli: tactile only, combined audiotactile stimulation, and auditory only. Results indicate that, for trained subjects, a coupling between auditory and somatosensory cortical areas is established through associative areas. Differences in signal correlation between groups point to a pairing mechanism, which, at first, connects functionally the primary auditory and sensory areas (trained subjects). Later, this connection seems to be mediated by associative areas. The training with the sensor glove influences cortical audiotactile integration mechanisms, determining BOLD signal changes in the somatosensory area during auditory stimulation. PMID:23628668

  19. Effect of Auditory Motion Velocity on Reaction Time and Cortical Processes

    ERIC Educational Resources Information Center

    Getzmann, Stephan

    2009-01-01

    The study investigated the processing of sound motion, employing a psychophysical motion discrimination task in combination with electroencephalography. Following stationary auditory stimulation from a central space position, the onset of left- and rightward motion elicited a specific cortical response that was lateralized to the hemisphere…

  20. Altered cortical activity in prelingually deafened cochlear implant users following long periods of auditory deprivation.

    PubMed

    Lammers, Marc J W; Versnel, Huib; van Zanten, Gijsbert A; Grolman, Wilko

    2015-02-01

    Auditory stimulation during childhood is critical for the development of the auditory cortex in humans and with that for hearing in adulthood. Age-related changes in morphology and peak latencies of the cortical auditory evoked potential (CAEP) have led to the use of this cortical response as a biomarker of auditory cortical maturation including studies of cortical development after deafness and subsequent cochlear implantation. To date, it is unknown whether prelingually deaf adults, with early onset deafness (before the age of 2 years) and who received a cochlear implant (CI) only during adulthood, would display absent or aberrant CAEP waveforms as predicted from CAEP studies in late implanted prelingually deaf children. In the current study, CAEP waveforms were recorded in response to electric stimuli in prelingually deaf adults, who received their CI after the age of 21 years. Waveform morphology and peak latencies were compared to the CAEP responses obtained in postlingually deaf adults, who became deaf after the age of 16. Unexpectedly, typical CAEP waveforms with adult-like P1-N1-P2 morphology could be recorded in the prelingually deaf adult CI users. On visual inspection, waveform morphology was comparable to the CAEP waveforms recorded in the postlingually deaf CI users. Interestingly, however, latencies of the N1 peak were significantly shorter and amplitudes were significantly larger in the prelingual group than in the postlingual group. The presence of the CAEP together with an early and large N1 peak might represent activation of the more innate and less complex components of the auditory cortex of the prelingually deaf CI user, whereas the CAEP in postlingually deaf CI users might reflect activation of the mature neural network still present in these patients. The CAEPs may therefore be helpful in the assessment of developmental state of the auditory cortex. PMID:25315357

  1. Noninvasive scalp recording of cortical auditory evoked potentials in the alert macaque monkey.

    PubMed

    Itoh, Kosuke; Nejime, Masafumi; Konoike, Naho; Nakada, Tsutomu; Nakamura, Katsuki

    2015-09-01

    Scalp-recorded evoked potentials (EP) provide researchers and clinicians with irreplaceable means for recording stimulus-related neural activities in the human brain, due to its high temporal resolution, handiness, and, perhaps more importantly, non-invasiveness. This work recorded the scalp cortical auditory EP (CAEP) in unanesthetized monkeys by using methods that are essentially identical to those applied to humans. Young adult rhesus monkeys (Macaca mulatta, 5-7 years old) were seated in a monkey chair, and their head movements were partially restricted by polystyrene blocks and tension poles placed around their head. Individual electrodes were fixated on their scalp using collodion according to the 10-20 system. Pure tone stimuli were presented while electroencephalograms were recorded from up to nineteen channels, including an electrooculogram channel. In all monkeys (n = 3), the recorded CAEP comprised a series of positive and negative deflections, labeled here as macaque P1 (mP1), macaque N1 (mN1), macaque P2 (mP2), and macaque N2 (mN2), and these transient responses to sound onset were followed by a sustained potential that continued for the duration of the sound, labeled the macaque sustained potential (mSP). mP1, mN2 and mSP were the prominent responses, and they had maximal amplitudes over frontal/central midline electrode sites, consistent with generators in auditory cortices. The study represents the first noninvasive scalp recording of CAEP in alert rhesus monkeys, to our knowledge. PMID:26031378

  2. Irregular Speech Rate Dissociates Auditory Cortical Entrainment, Evoked Responses, and Frontal Alpha

    PubMed Central

    Kayser, Stephanie J.; Ince, Robin A.A.; Gross, Joachim

    2015-01-01

    The entrainment of slow rhythmic auditory cortical activity to the temporal regularities in speech is considered to be a central mechanism underlying auditory perception. Previous work has shown that entrainment is reduced when the quality of the acoustic input is degraded, but has also linked rhythmic activity at similar time scales to the encoding of temporal expectations. To understand these bottom-up and top-down contributions to rhythmic entrainment, we manipulated the temporal predictive structure of speech by parametrically altering the distribution of pauses between syllables or words, thereby rendering the local speech rate irregular while preserving intelligibility and the envelope fluctuations of the acoustic signal. Recording EEG activity in human participants, we found that this manipulation did not alter neural processes reflecting the encoding of individual sound transients, such as evoked potentials. However, the manipulation significantly reduced the fidelity of auditory delta (but not theta) band entrainment to the speech envelope. It also reduced left frontal alpha power and this alpha reduction was predictive of the reduced delta entrainment across participants. Our results show that rhythmic auditory entrainment in delta and theta bands reflect functionally distinct processes. Furthermore, they reveal that delta entrainment is under top-down control and likely reflects prefrontal processes that are sensitive to acoustical regularities rather than the bottom-up encoding of acoustic features. SIGNIFICANCE STATEMENT The entrainment of rhythmic auditory cortical activity to the speech envelope is considered to be critical for hearing. Previous work has proposed divergent views in which entrainment reflects either early evoked responses related to sound encoding or high-level processes related to expectation or cognitive selection. Using a manipulation of speech rate, we dissociated auditory entrainment at different time scales. Specifically, our

  3. Hierarchical and serial processing in the spatial auditory cortical pathway is degraded by natural aging

    PubMed Central

    Juarez-Salinas, Dina L.; Engle, James R.; Navarro, Xochi O.; Recanzone, Gregg H.

    2010-01-01

    The compromised abilities to localize sounds and to understand speech are two hallmark deficits in aged individuals. The auditory cortex is necessary for these processes, yet we know little about how normal aging affects these early cortical fields. In this study, we recorded the spatial tuning of single neurons in primary (area A1) and secondary (area CL) auditory cortical areas in young and aged alert rhesus macaques. We found that the neurons of aged animals had greater spontaneous and driven activity, and broader spatial tuning compared to those of younger animals. Importantly, spatial tuning was not sharpened between A1 and CL in aged monkeys as it is in younger monkeys. This implies that a major effect of normal aging is a degradation of the hierarchical processing between serially connected cortical areas, which could be a key contributing mechanism of the general cognitive decline that is commonly observed in normal aging. PMID:21048138

  4. Frequency preference and attention effects across cortical depths in the human primary auditory cortex

    PubMed Central

    De Martino, Federico; Moerel, Michelle; Ugurbil, Kamil; Goebel, Rainer; Yacoub, Essa; Formisano, Elia

    2015-01-01

    Columnar arrangements of neurons with similar preference have been suggested as the fundamental processing units of the cerebral cortex. Within these columnar arrangements, feed-forward information enters at middle cortical layers whereas feedback information arrives at superficial and deep layers. This interplay of feed-forward and feedback processing is at the core of perception and behavior. Here we provide in vivo evidence consistent with a columnar organization of the processing of sound frequency in the human auditory cortex. We measure submillimeter functional responses to sound frequency sweeps at high magnetic fields (7 tesla) and show that frequency preference is stable through cortical depth in primary auditory cortex. Furthermore, we demonstrate that—in this highly columnar cortex—task demands sharpen the frequency tuning in superficial cortical layers more than in middle or deep layers. These findings are pivotal to understanding mechanisms of neural information processing and flow during the active perception of sounds. PMID:26668397

  5. Auditory cortical axons contact commissural cells throughout the guinea pig inferior colliculus.

    PubMed

    Nakamoto, Kyle T; Sowick, Colleen S; Schofield, Brett R

    2013-12-01

    Projections from auditory cortex (AC) affect how cells in both inferior colliculi (IC) respond to acoustic stimuli. The large projection from the AC to the ipsilateral IC is usually credited with the effects in the ipsilateral IC. The circuitry underlying effects in the contralateral IC is less clear. The direct projection from the AC to the contralateral IC is relatively small. An unexplored possibility is that the large ipsilateral cortical projection contacts the substantial number of cells in the ipsilateral IC that project through the commissure to the contralateral IC. Apparent contacts between cortical boutons and commissural cells were identified in the left IC after injection of different fluorescent tracers into the left AC and the right IC. Commissural cells were labeled throughout the left IC, and many (23-34%) appeared to be contacted by cortical axons. In the central nucleus, both disc-shaped and stellate cells were contacted. Antibodies to glutamic acid decarboxylase (GAD) were used to identify GABAergic commissural cells. The majority (>86%) of labeled commissural cells were GAD-immunonegative. Despite low numbers of GAD-immunopositive commissural cells, some of these cells were contacted by cortical boutons. Nonetheless, most cortically contacted commissural cells were GAD-immunonegative (i.e., presumably glutamatergic). We conclude that auditory cortical axons contact primarily excitatory commissural cells in the ipsilateral IC that project to the contralateral IC. These corticocollicular contacts occur in each subdivision of the ipsilateral IC, suggesting involvement of commissural cells throughout the IC. This pathway - from AC to commissural cells in the ipsilateral IC - is a prime candidate for the excitatory effects of activation of the auditory cortex on responses in the contralateral IC. Overall this suggests that the auditory corticofugal pathway is integrated with midbrain commissural connections. PMID:24140579

  6. Enhancement of auditory cortical development by musical experience in children.

    PubMed

    Shahin, Antoine; Roberts, Larry E; Trainor, Laurel J

    2004-08-26

    Auditory evoked potentials (AEPs) express the development of mature synaptic connections in the upper neocortical laminae known to occur between 4 and 15 years of age. AEPs evoked by piano, violin, and pure tones were measured twice in a group of 4- to 5-year-old children enrolled in Suzuki music lessons and in non-musician controls. P1 was larger in the Suzuki pupils for all tones whereas P2 was enhanced specifically for the instrument of practice (piano or violin). AEPs observed for the instrument of practice were comparable to those of non-musician children about 3 years older in chronological age. The findings set into relief a general process by which the neocortical synaptic matrix is shaped by an accumulation of specific auditory experiences. PMID:15305137

  7. Auditory Cortical Plasticity Drives Training-Induced Cognitive Changes in Schizophrenia.

    PubMed

    Dale, Corby L; Brown, Ethan G; Fisher, Melissa; Herman, Alexander B; Dowling, Anne F; Hinkley, Leighton B; Subramaniam, Karuna; Nagarajan, Srikantan S; Vinogradov, Sophia

    2016-01-01

    Schizophrenia is characterized by dysfunction in basic auditory processing, as well as higher-order operations of verbal learning and executive functions. We investigated whether targeted cognitive training of auditory processing improves neural responses to speech stimuli, and how these changes relate to higher-order cognitive functions. Patients with schizophrenia performed an auditory syllable identification task during magnetoencephalography before and after 50 hours of either targeted cognitive training or a computer games control. Healthy comparison subjects were assessed at baseline and after a 10 week no-contact interval. Prior to training, patients (N = 34) showed reduced M100 response in primary auditory cortex relative to healthy participants (N = 13). At reassessment, only the targeted cognitive training patient group (N = 18) exhibited increased M100 responses. Additionally, this group showed increased induced high gamma band activity within left dorsolateral prefrontal cortex immediately after stimulus presentation, and later in bilateral temporal cortices. Training-related changes in neural activity correlated with changes in executive function scores but not verbal learning and memory. These data suggest that computerized cognitive training that targets auditory and verbal learning operations enhances both sensory responses in auditory cortex as well as engagement of prefrontal regions, as indexed during an auditory processing task with low demands on working memory. This neural circuit enhancement is in turn associated with better executive function but not verbal memory. PMID:26152668

  8. Stimulus Phase Locking of Cortical Oscillation for Auditory Stream Segregation in Rats

    PubMed Central

    Noda, Takahiro; Kanzaki, Ryohei; Takahashi, Hirokazu

    2013-01-01

    The phase of cortical oscillations contains rich information and is valuable for encoding sound stimuli. Here we hypothesized that oscillatory phase modulation, instead of amplitude modulation, is a neural correlate of auditory streaming. Our behavioral evaluation provided compelling evidences for the first time that rats are able to organize auditory stream. Local field potentials (LFPs) were investigated in the cortical layer IV or deeper in the primary auditory cortex of anesthetized rats. In response to ABA- sequences with different inter-tone intervals and frequency differences, neurometric functions were characterized with phase locking as well as the band-specific amplitude evoked by test tones. Our results demonstrated that under large frequency differences and short inter-tone intervals, the neurometric function based on stimulus phase locking in higher frequency bands, particularly the gamma band, could better describe van Noorden’s perceptual boundary than the LFP amplitude. Furthermore, the gamma-band neurometric function showed a build-up-like effect within around 3 seconds from sequence onset. These findings suggest that phase locking and amplitude have different roles in neural computation, and support our hypothesis that temporal modulation of cortical oscillations should be considered to be neurophysiological mechanisms of auditory streaming, in addition to forward suppression, tonotopic separation, and multi-second adaptation. PMID:24376715

  9. Switching auditory attention using spatial and non-spatial features recruits different cortical networks

    PubMed Central

    Larson, Eric; Lee, Adrian KC

    2013-01-01

    Switching attention between different stimuli of interest based on particular task demands is important in many everyday settings. In audition in particular, switching attention between different speakers of interest that are talking concurrently is often necessary for effective communication. Recently, it has been shown by multiple studies that auditory selective attention suppresses the representation of unwanted streams in auditory cortical areas in favor of the target stream of interest. However, the neural processing that guides this selective attention process is not well understood. Here we investigated the cortical mechanisms involved in switching attention based on two different types of auditory features. By combining magneto- and electroencephalography (M-EEG) with an anatomical MRI constraint, we examined the cortical dynamics involved in switching auditory attention based on either spatial or pitch features. We designed a paradigm where listeners were cued in the beginning of each trial to switch or maintain attention halfway through the presentation of concurrent target and masker streams. By allowing listeners time to switch during a gap in the continuous target and masker stimuli, we were able to isolate the mechanisms involved in endogenous, top-down attention switching. Our results show a double dissociation between the involvement of right temporoparietal junction (RTPJ) and the left inferior parietal supramarginal part (LIPSP) in tasks requiring listeners to switch attention based on space and pitch features, respectively, suggesting that switching attention based on these features involves at least partially separate processes or behavioral strategies. PMID:24096028

  10. Summary of the N1-P2 Cortical Auditory Evoked Potential to Estimate the Auditory Threshold in Adults.

    PubMed

    Lightfoot, Guy

    2016-02-01

    This article introduces the cortical auditory evoked potential (CAEP) and describes the use of the N1-P2 response complex as an objective predictor of hearing threshold in adults and older children. The generators of the CAEP are discussed together with issues of maturation, subject factors, and stimuli and recording parameters for use in the clinic. The basic methods for response identification are outlined and suggestions are made for determining the CAEP threshold. Clinical applications are introduced and the accuracy of the CAEP as an estimator of hearing threshold is given. Finally, a case study provides an example of the technique in the context of medicolegal assessment. PMID:27587918

  11. Knowledge About Sounds-Context-Specific Meaning Differently Activates Cortical Hemispheres, Auditory Cortical Fields, and Layers in House Mice.

    PubMed

    Geissler, Diana B; Schmidt, H Sabine; Ehret, Günter

    2016-01-01

    Activation of the auditory cortex (AC) by a given sound pattern is plastic, depending, in largely unknown ways, on the physiological state and the behavioral context of the receiving animal and on the receiver's experience with the sounds. Such plasticity can be inferred when house mouse mothers respond maternally to pup ultrasounds right after parturition and naïve females have to learn to respond. Here we use c-FOS immunocytochemistry to quantify highly activated neurons in the AC fields and layers of seven groups of mothers and naïve females who have different knowledge about and are differently motivated to respond to acoustic models of pup ultrasounds of different behavioral significance. Profiles of FOS-positive cells in the AC primary fields (AI, AAF), the ultrasonic field (UF), the secondary field (AII), and the dorsoposterior field (DP) suggest that activation reflects in AI, AAF, and UF the integration of sound properties with animal state-dependent factors, in the higher-order field AII the news value of a given sound in the behavioral context, and in the higher-order field DP the level of maternal motivation and, by left-hemisphere activation advantage, the recognition of the meaning of sounds in the given context. Anesthesia reduced activation in all fields, especially in cortical layers 2/3. Thus, plasticity in the AC is field-specific preparing different output of AC fields in the process of perception, recognition and responding to communication sounds. Further, the activation profiles of the auditory cortical fields suggest the differentiation between brains hormonally primed to know (mothers) and brains which acquired knowledge via implicit learning (naïve females). In this way, auditory cortical activation discriminates between instinctive (mothers) and learned (naïve females) cognition. PMID:27013959

  12. Knowledge About Sounds—Context-Specific Meaning Differently Activates Cortical Hemispheres, Auditory Cortical Fields, and Layers in House Mice

    PubMed Central

    Geissler, Diana B.; Schmidt, H. Sabine; Ehret, Günter

    2016-01-01

    Activation of the auditory cortex (AC) by a given sound pattern is plastic, depending, in largely unknown ways, on the physiological state and the behavioral context of the receiving animal and on the receiver's experience with the sounds. Such plasticity can be inferred when house mouse mothers respond maternally to pup ultrasounds right after parturition and naïve females have to learn to respond. Here we use c-FOS immunocytochemistry to quantify highly activated neurons in the AC fields and layers of seven groups of mothers and naïve females who have different knowledge about and are differently motivated to respond to acoustic models of pup ultrasounds of different behavioral significance. Profiles of FOS-positive cells in the AC primary fields (AI, AAF), the ultrasonic field (UF), the secondary field (AII), and the dorsoposterior field (DP) suggest that activation reflects in AI, AAF, and UF the integration of sound properties with animal state-dependent factors, in the higher-order field AII the news value of a given sound in the behavioral context, and in the higher-order field DP the level of maternal motivation and, by left-hemisphere activation advantage, the recognition of the meaning of sounds in the given context. Anesthesia reduced activation in all fields, especially in cortical layers 2/3. Thus, plasticity in the AC is field-specific preparing different output of AC fields in the process of perception, recognition and responding to communication sounds. Further, the activation profiles of the auditory cortical fields suggest the differentiation between brains hormonally primed to know (mothers) and brains which acquired knowledge via implicit learning (naïve females). In this way, auditory cortical activation discriminates between instinctive (mothers) and learned (naïve females) cognition. PMID:27013959

  13. Auditory system of fruit flies.

    PubMed

    Ishikawa, Yuki; Kamikouchi, Azusa

    2016-08-01

    The fruit fly, Drosophila melanogaster, is an invaluable model for auditory research. Advantages of using the fruit fly include its stereotyped behavior in response to a particular sound, and the availability of molecular-genetic tools to manipulate gene expression and cellular activity. Although the receiver type in fruit flies differs from that in mammals, the auditory systems of mammals and fruit flies are strikingly similar with regard to the level of development, transduction mechanism, mechanical amplification, and central projections. These similarities strongly support the use of the fruit fly to study the general principles of acoustic information processing. In this review, we introduce acoustic communication and discuss recent advances in our understanding on hearing in fruit flies. This article is part of a Special Issue entitled . PMID:26560238

  14. Topographic Distribution of Stimulus-Specific Adaptation across Auditory Cortical Fields in the Anesthetized Rat

    PubMed Central

    Nieto-Diego, Javier; Malmierca, Manuel S.

    2016-01-01

    Stimulus-specific adaptation (SSA) in single neurons of the auditory cortex was suggested to be a potential neural correlate of the mismatch negativity (MMN), a widely studied component of the auditory event-related potentials (ERP) that is elicited by changes in the auditory environment. However, several aspects on this SSA/MMN relation remain unresolved. SSA occurs in the primary auditory cortex (A1), but detailed studies on SSA beyond A1 are lacking. To study the topographic organization of SSA, we mapped the whole rat auditory cortex with multiunit activity recordings, using an oddball paradigm. We demonstrate that SSA occurs outside A1 and differs between primary and nonprimary cortical fields. In particular, SSA is much stronger and develops faster in the nonprimary than in the primary fields, paralleling the organization of subcortical SSA. Importantly, strong SSA is present in the nonprimary auditory cortex within the latency range of the MMN in the rat and correlates with an MMN-like difference wave in the simultaneously recorded local field potentials (LFP). We present new and strong evidence linking SSA at the cellular level to the MMN, a central tool in cognitive and clinical neuroscience. PMID:26950883

  15. Cortical potentials in an auditory oddball task reflect individual differences in working memory capacity

    PubMed Central

    Yurgil, Kate A.; Golob, Edward J.

    2014-01-01

    This study determined whether auditory cortical responses associated with mechanisms of attention vary with individual differences in working memory capacity (WMC) and perceptual load. The operation span test defined subjects with low vs. high WMC, who then discriminated target/nontarget tones while EEG was recorded. Infrequent white noise distracters were presented at midline or ±90° locations, and perceptual load was manipulated by varying nontarget frequency. Amplitude of the N100 to distracters was negatively correlated with WMC. Relative to targets, only high WMC subjects showed attenuated N100 amplitudes to nontargets. In the higher WMC group, increased perceptual load was associated with decreased P3a amplitudes to distracters and longer-lasting negative slow wave to nontargets. Results show that auditory cortical processing is associated with multiple facets of attention control related to WMC and possibly higher-level cognition. PMID:24016201

  16. Binaural beats increase interhemispheric alpha-band coherence between auditory cortices.

    PubMed

    Solcà, Marco; Mottaz, Anaïs; Guggisberg, Adrian G

    2016-02-01

    Binaural beats (BBs) are an auditory illusion occurring when two tones of slightly different frequency are presented separately to each ear. BBs have been suggested to alter physiological and cognitive processes through synchronization of the brain hemispheres. To test this, we recorded electroencephalograms (EEG) at rest and while participants listened to BBs or a monaural control condition during which both tones were presented to both ears. We calculated for each condition the interhemispheric coherence, which expressed the synchrony between neural oscillations of both hemispheres. Compared to monaural beats and resting state, BBs enhanced interhemispheric coherence between the auditory cortices. Beat frequencies in the alpha (10 Hz) and theta (4 Hz) frequency range both increased interhemispheric coherence selectively at alpha frequencies. In a second experiment, we evaluated whether this coherence increase has a behavioral aftereffect on binaural listening. No effects were observed in a dichotic digit task performed immediately after BBs presentation. Our results suggest that BBs enhance alpha-band oscillation synchrony between the auditory cortices during auditory stimulation. This effect seems to reflect binaural integration rather than entrainment. PMID:26541421

  17. Neuromagnetic fields reveal cortical plasticity when learning an auditory discrimination task.

    PubMed

    Cansino, S; Williamson, S J

    1997-08-01

    Auditory evoked neuromagnetic fields of the primary and association auditory cortices were recorded while subjects learned to discriminate small differences in frequency and intensity between two consecutive tones. When discrimination was no better than chance, evoked field patterns across the scalp manifested no significant differences between correct and incorrect responses. However, when performance was correct on at least 75% of the trials, the spatial pattern of magnetic field differed significantly between correct and incorrect responses during the first 70 ms following the onset of the second tone. In this respect, the magnetic field pattern predicted when the subject would make an incorrect judgment more than 100 ms prior to indicating the judgment by a button press. One subject improved discrimination for much smaller differences between stimuli after 200 h of training. Evidence of cortical plasticity with improved discrimination is provided by an accompanying decrease of the relative magnetic field amplitude of the 100 ms response components in the primary and association auditory cortices. PMID:9295193

  18. Active engagement improves primary auditory cortical neurons’ ability to discriminate temporal modulation

    PubMed Central

    Niwa, Mamiko; Johnson, Jeffrey S.; O’Connor, Kevin N.; Sutter, Mitchell L.

    2012-01-01

    The effect of attention on single neuron responses in the auditory system is unresolved. We found that when monkeys discriminated temporally amplitude modulated (AM) from unmodulated sounds, primary auditory cortical (A1) neurons better discriminated those sounds than when the monkeys were not discriminating them. This was observed for both average firing rate and vector strength (VS), a measure of how well neurons temporally follow the stimulus’ temporal modulation. When data were separated by non-synchronized and synchronized responses, the firing rate of non-synchronized responses best distinguished AM-noise from unmodulated noise followed by VS for synchronized responses, with firing rate for synchronized neurons providing the poorest AM discrimination. Firing rate-based AM discrimination for synchronized neurons, however, improved most with task engagement, showing that the least sensitive code in the passive condition improves the most with task-engagement. Rate coding improved due to larger increases in absolute firing-rate at higher modulation depths than for lower depths and unmodulated sounds. Relative to spontaneous activity (which increased with engagement), the response to unmodulated sounds decreased substantially. The temporal coding improvement -- responses more precisely temporally following a stimulus when animals were required to attend to it -- expands the framework of possible mechanisms of attention to include increasing temporal precision of stimulus following. These findings provide a crucial step to understanding the coding of temporal modulation, and support a model where rate and temporal coding work in parallel, permitting a multiplexed code for temporal modulation, and for a complementary representation of rate and temporal coding. PMID:22764239

  19. Oscillatory Cortical Network Involved in Auditory Verbal Hallucinations in Schizophrenia

    PubMed Central

    van Lutterveld, Remko; Hillebrand, Arjan; Diederen, Kelly M. J.; Daalman, Kirstin; Kahn, René S.; Stam, Cornelis J.; Sommer, Iris E. C.

    2012-01-01

    Background Auditory verbal hallucinations (AVH), a prominent symptom of schizophrenia, are often highly distressing for patients. Better understanding of the pathogenesis of hallucinations could increase therapeutic options. Magnetoencephalography (MEG) provides direct measures of neuronal activity and has an excellent temporal resolution, offering a unique opportunity to study AVH pathophysiology. Methods Twelve patients (10 paranoid schizophrenia, 2 psychosis not otherwise specified) indicated the presence of AVH by button-press while lying in a MEG scanner. As a control condition, patients performed a self-paced button-press task. AVH-state and non-AVH state were contrasted in a region-of-interest (ROI) approach. In addition, the two seconds before AVH onset were contrasted with the two seconds after AVH onset to elucidate a possible triggering mechanism. Results AVH correlated with a decrease in beta-band power in the left temporal cortex. A decrease in alpha-band power was observed in the right inferior frontal gyrus. AVH onset was related to a decrease in theta-band power in the right hippocampus. Conclusions These results suggest that AVH are triggered by a short aberration in the theta band in a memory-related structure, followed by activity in language areas accompanying the experience of AVH itself. PMID:22844436

  20. High resolution auditory perception system

    NASA Astrophysics Data System (ADS)

    Alam, Iftekhar; Ghatol, Ashok

    2005-04-01

    Blindness is a sensory disability which is difficult to treat but can to some extent be helped by artificial aids. The paper describes the design aspects of a high resolution auditory perception system, which is designed on the principle of air sonar with binaural perception. This system is a vision substitution aid for enabling blind persons. The blind person wears ultrasonic eyeglasses which has ultrasonic sensor array embedded on it. The system has been designed to operate in multiresolution modes. The ultrasonic sound from the transmitter array is reflected back by the objects, falling in the beam of the array and is received. The received signal is converted to a sound signal, which is presented stereophonically for auditory perception. A detailed study has been done as the background work required for the system implementation; the appropriate range analysis procedure, analysis of space-time signals, the acoustic sensors study, amplification methods and study of the removal of noise using filters. Finally the system implementation including both the hardware and the software part of it has been described. Experimental results on actual blind subjects and inferences obtained during the study have also been included.

  1. Explaining the high voice superiority effect in polyphonic music: evidence from cortical evoked potentials and peripheral auditory models.

    PubMed

    Trainor, Laurel J; Marie, Céline; Bruce, Ian C; Bidelman, Gavin M

    2014-02-01

    Natural auditory environments contain multiple simultaneously-sounding objects and the auditory system must parse the incoming complex sound wave they collectively create into parts that represent each of these individual objects. Music often similarly requires processing of more than one voice or stream at the same time, and behavioral studies demonstrate that human listeners show a systematic perceptual bias in processing the highest voice in multi-voiced music. Here, we review studies utilizing event-related brain potentials (ERPs), which support the notions that (1) separate memory traces are formed for two simultaneous voices (even without conscious awareness) in auditory cortex and (2) adults show more robust encoding (i.e., larger ERP responses) to deviant pitches in the higher than in the lower voice, indicating better encoding of the former. Furthermore, infants also show this high-voice superiority effect, suggesting that the perceptual dominance observed across studies might result from neurophysiological characteristics of the peripheral auditory system. Although musically untrained adults show smaller responses in general than musically trained adults, both groups similarly show a more robust cortical representation of the higher than of the lower voice. Finally, years of experience playing a bass-range instrument reduces but does not reverse the high voice superiority effect, indicating that although it can be modified, it is not highly neuroplastic. Results of new modeling experiments examined the possibility that characteristics of middle-ear filtering and cochlear dynamics (e.g., suppression) reflected in auditory nerve firing patterns might account for the higher-voice superiority effect. Simulations show that both place and temporal AN coding schemes well-predict a high-voice superiority across a wide range of interval spacings and registers. Collectively, we infer an innate, peripheral origin for the higher-voice superiority observed in human

  2. Maturation of the Central Auditory Nervous System in Children with Auditory Processing Disorder.

    PubMed

    Tomlin, Dani; Rance, Gary

    2016-02-01

    Neurodevelopmental delay has been proposed as the underlying cause of the majority of cases of auditory processing disorder (APD). The current study employs the cortical auditory evoked potential (CAEP) to assess if maturational differences of the central auditory nervous system (CANS) can be identified between children who do and do not meet the diagnostic criterion for APD. The P1-N1 complex of the CAEP has previously been used for tracking development of the CANS in children with hearing impairment. Twenty-seven children (7 to 12 years old) who failed an APD behavioral test battery were age-matched (within 3 months) to children who had passed the same battery. CAEP responses to 500-Hz tone burst stimuli were recorded and analyzed for latency and amplitude measures. The P1-N1 complex of the CAEP, which has previously been used for tracking development of the CANS in children with hearing impairment, showed significant group differences. The children diagnosed with APD showed significantly increased latency (∼10 milliseconds) and significantly reduced amplitude (∼10 μV) of the early components of the CAEP compared with children with normal auditory processing. No significant differences were seen in the later P2 wave. The normal developmental course is for a decrease in latency and increase in amplitude as a function of age. The results of this study are, therefore, consistent with an immaturity of the CANS as an underlying cause of APD in children. PMID:27587924

  3. Role of cortical neurodynamics for understanding the neural basis of motivated behavior - lessons from auditory category learning.

    PubMed

    Ohl, Frank W

    2015-04-01

    Rhythmic activity appears in the auditory cortex in both microscopic and macroscopic observables and is modulated by both bottom-up and top-down processes. How this activity serves both types of processes is largely unknown. Here we review studies that have recently improved our understanding of potential functional roles of large-scale global dynamic activity patterns in auditory cortex. The experimental paradigm of auditory category learning allowed critical testing of the hypothesis that global auditory cortical activity states are associated with endogenous cognitive states mediating the meaning associated with an acoustic stimulus rather than with activity states that merely represent the stimulus for further processing. PMID:25241212

  4. Effects of broadband noise on cortical evoked auditory responses at different loudness levels in young adults.

    PubMed

    Sharma, Mridula; Purdy, Suzanne C; Munro, Kevin J; Sawaya, Kathleen; Peter, Varghese

    2014-03-26

    Young adults with no history of hearing concerns were tested to investigate their /da/-evoked cortical auditory evoked potentials (P1-N1-P2) recorded from 32 scalp electrodes in the presence and absence of noise at three different loudness levels (soft, comfortable, and loud), at a fixed signal-to-noise ratio (+3 dB). P1 peak latency significantly increased at soft and loud levels, and N1 and P2 latencies increased at all three levels in the presence of noise, compared with the quiet condition. P1 amplitude was significantly larger in quiet than in noise conditions at the loudest level. N1 amplitude was larger in quiet than in noise for the soft level only. P2 amplitude was reduced in the presence of noise to a similar degree at all loudness levels. The differential effects of noise on P1, N1, and P2 suggest differences in auditory processes underlying these peaks. The combination of level and signal-to-noise ratio should be considered when using cortical auditory evoked potentials as an electrophysiological indicator of degraded speech processing. PMID:24323122

  5. Extensive Cochleotopic Mapping of Human Auditory Cortical Fields Obtained with Phase-Encoding fMRI

    PubMed Central

    Amedi, Amir

    2011-01-01

    The primary sensory cortices are characterized by a topographical mapping of basic sensory features which is considered to deteriorate in higher-order areas in favor of complex sensory features. Recently, however, retinotopic maps were also discovered in the higher-order visual, parietal and prefrontal cortices. The discovery of these maps enabled the distinction between visual regions, clarified their function and hierarchical processing. Could such extension of topographical mapping to high-order processing regions apply to the auditory modality as well? This question has been studied previously in animal models but only sporadically in humans, whose anatomical and functional organization may differ from that of animals (e.g. unique verbal functions and Heschl's gyrus curvature). Here we applied fMRI spectral analysis to investigate the cochleotopic organization of the human cerebral cortex. We found multiple mirror-symmetric novel cochleotopic maps covering most of the core and high-order human auditory cortex, including regions considered non-cochleotopic, stretching all the way to the superior temporal sulcus. These maps suggest that topographical mapping persists well beyond the auditory core and belt, and that the mirror-symmetry of topographical preferences may be a fundamental principle across sensory modalities. PMID:21448274

  6. Effects of Aging and Adult-Onset Hearing Loss on Cortical Auditory Regions

    PubMed Central

    Cardin, Velia

    2016-01-01

    Hearing loss is a common feature in human aging. It has been argued that dysfunctions in central processing are important contributing factors to hearing loss during older age. Aging also has well documented consequences for neural structure and function, but it is not clear how these effects interact with those that arise as a consequence of hearing loss. This paper reviews the effects of aging and adult-onset hearing loss in the structure and function of cortical auditory regions. The evidence reviewed suggests that aging and hearing loss result in atrophy of cortical auditory regions and stronger engagement of networks involved in the detection of salient events, adaptive control and re-allocation of attention. These cortical mechanisms are engaged during listening in effortful conditions in normal hearing individuals. Therefore, as a consequence of aging and hearing loss, all listening becomes effortful and cognitive load is constantly high, reducing the amount of available cognitive resources. This constant effortful listening and reduced cognitive spare capacity could be what accelerates cognitive decline in older adults with hearing loss. PMID:27242405

  7. The 40-Hz auditory steady-state response: a selective biomarker for cortical NMDA function.

    PubMed

    Sivarao, Digavalli V

    2015-05-01

    When subjected to a phasic input, sensory cortical neurons display a remarkable ability to entrain faithfully to the driving stimuli. The entrainment to rhythmic sound stimuli is often referred to as the auditory steady-state response (ASSR) and can be captured using noninvasive techniques, such as scalp-recorded electroencephalography (EEG). An ASSR to a driving frequency of approximately 40 Hz is particularly interesting in that it shows, in relative terms, maximal power, synchrony, and synaptic activity. Moreover, the 40-Hz ASSR has been consistently found to be abnormal in schizophrenia patients across multiple studies. The nature of the reported abnormality has been less consistent; while most studies report a deficit in entrainment, several studies have reported increased signal power, particularly when there are concurrent positive symptoms, such as auditory hallucinations. However, the neuropharmacological basis for the 40-Hz ASSR, as well as its dysfunction in schizophrenia, has been unclear until recently. On the basis of several recent reports, it is argued that the 40-Hz ASSR represents a specific marker for cortical NMDA transmission. If confirmed, the 40-Hz ASSR may be a simple and easy-to-access pharmacodynamic biomarker for testing the integrity of cortical NMDA neurotransmission that is robustly translational across species. PMID:25809615

  8. Temporal Coherence in the Perceptual Organization and Cortical Representation of Auditory Scenes

    PubMed Central

    Elhilali, Mounya; Ma, Ling; Micheyl, Christophe; Oxenham, Andrew J.; Shamma, Shihab A.

    2009-01-01

    Just as the visual system parses complex scenes into identifiable objects, the auditory system must organize sound elements scattered in frequency and time into coherent “streams”. Current neuro-computational theories of auditory streaming rely on tonotopic organization of the auditory system to explain the observation that sequential spectrally distant sound elements tend to form separate perceptual streams. Here, we show that spectral components that are well separated in frequency are no longer heard as separate streams if presented synchronously rather than consecutively. In contrast, responses from neurons in primary auditory cortex of ferrets show that both synchronous and asynchronous tone sequences produce comparably segregated responses along the tonotopic axis. The results argue against tonotopic separation per se as a neural correlate of stream segregation. Instead we propose a computational model of stream segregation that can account for the data by using temporal coherence as the primary criterion for predicting stream formation. PMID:19186172

  9. Near-infrared spectroscopic imaging of stimulus-related hemodynamic responses on the neonatal auditory cortices

    NASA Astrophysics Data System (ADS)

    Kotilahti, Kalle; Nissila, Ilkka; Makela, Riikka; Noponen, Tommi; Lipiainen, Lauri; Gavrielides, Nasia; Kajava, Timo; Huotilainen, Minna; Fellman, Vineta; Merilainen, Pekka; Katila, Toivo

    2005-04-01

    We have used near-infrared spectroscopy (NIRS) to study hemodynamic auditory evoked responses on 7 full-term neonates. Measurements were done simultaneously above both auditory cortices to study the distribution of speech and music processing between hemispheres using a 16-channel frequency-domain instrument. The stimulation consisted of 5-second samples of music and speech with a 25-second silent interval. In response to stimulation, a significant increase in the concentration of oxygenated hemoglobin ([HbO2]) was detected in 6 out of 7 subjects. The strongest responses in [HbO2] were seen near the measurement location above the ear on both hemispheres. The mean latency of the maximum responses was 9.42+/-1.51 s. On the left hemisphere (LH), the maximum amplitude of the average [HbO2] response to the music stimuli was 0.76+/- 0.38 μ M (mean+/-std.) and to the speech stimuli 1.00+/- 0.45 μ+/- μM. On the right hemisphere (RH), the maximum amplitude of the average [HbO2] response was 1.29+/- 0.85 μM to the music stimuli and 1.23+/- 0.93 μM to the speech stimuli. The results indicate that auditory information is processed on both auditory cortices, but LH is more concentrated to process speech than music information. No significant differences in the locations and the latencies of the maximum responses relative to the stimulus type were found.

  10. Music-induced cortical plasticity and lateral inhibition in the human auditory cortex as foundations for tonal tinnitus treatment

    PubMed Central

    Pantev, Christo; Okamoto, Hidehiko; Teismann, Henning

    2012-01-01

    Over the past 15 years, we have studied plasticity in the human auditory cortex by means of magnetoencephalography (MEG). Two main topics nurtured our curiosity: the effects of musical training on plasticity in the auditory system, and the effects of lateral inhibition. One of our plasticity studies found that listening to notched music for 3 h inhibited the neuronal activity in the auditory cortex that corresponded to the center-frequency of the notch, suggesting suppression of neural activity by lateral inhibition. Subsequent research on this topic found that suppression was notably dependent upon the notch width employed, that the lower notch-edge induced stronger attenuation of neural activity than the higher notch-edge, and that auditory focused attention strengthened the inhibitory networks. Crucially, the overall effects of lateral inhibition on human auditory cortical activity were stronger than the habituation effects. Based on these results we developed a novel treatment strategy for tonal tinnitus—tailor-made notched music training (TMNMT). By notching the music energy spectrum around the individual tinnitus frequency, we intended to attract lateral inhibition to auditory neurons involved in tinnitus perception. So far, the training strategy has been evaluated in two studies. The results of the initial long-term controlled study (12 months) supported the validity of the treatment concept: subjective tinnitus loudness and annoyance were significantly reduced after TMNMT but not when notching spared the tinnitus frequencies. Correspondingly, tinnitus-related auditory evoked fields (AEFs) were significantly reduced after training. The subsequent short-term (5 days) training study indicated that training was more effective in the case of tinnitus frequencies ≤ 8 kHz compared to tinnitus frequencies >8 kHz, and that training should be employed over a long-term in order to induce more persistent effects. Further development and evaluation of TMNMT therapy

  11. Signal type and signal-to-noise ratio interact to affect cortical auditory evoked potentials.

    PubMed

    Billings, Curtis J; Grush, Leslie D

    2016-08-01

    Use of speech signals and background noise is emerging in cortical auditory evoked potential (CAEP) studies; however, the interaction between signal type and noise level remains unclear. Two experiments determined the interaction between signal type and signal-to-noise ratio (SNR) on CAEPs. Three signals (syllable /ba/, 1000-Hz tone, and the /ba/ envelope with 1000-Hz fine structure) with varying SNRs were used in two experiments, demonstrating signal-by-SNR interactions due to both envelope and spectral characteristics. When using real-world stimuli such as speech to evoke CAEPs, temporal and spectral complexity leads to differences with traditional tonal stimuli, especially when presented in background noise. PMID:27586784

  12. Cortical contributions to the auditory frequency-following response revealed by MEG.

    PubMed

    Coffey, Emily B J; Herholz, Sibylle C; Chepesiuk, Alexander M P; Baillet, Sylvain; Zatorre, Robert J

    2016-01-01

    The auditory frequency-following response (FFR) to complex periodic sounds is used to study the subcortical auditory system, and has been proposed as a biomarker for disorders that feature abnormal sound processing. Despite its value in fundamental and clinical research, the neural origins of the FFR are unclear. Using magnetoencephalography, we observe a strong, right-asymmetric contribution to the FFR from the human auditory cortex at the fundamental frequency of the stimulus, in addition to signal from cochlear nucleus, inferior colliculus and medial geniculate. This finding is highly relevant for our understanding of plasticity and pathology in the auditory system, as well as higher-level cognition such as speech and music processing. It suggests that previous interpretations of the FFR may need re-examination using methods that allow for source separation. PMID:27009409

  13. Cortical contributions to the auditory frequency-following response revealed by MEG

    PubMed Central

    Coffey, Emily B. J.; Herholz, Sibylle C.; Chepesiuk, Alexander M. P.; Baillet, Sylvain; Zatorre, Robert J.

    2016-01-01

    The auditory frequency-following response (FFR) to complex periodic sounds is used to study the subcortical auditory system, and has been proposed as a biomarker for disorders that feature abnormal sound processing. Despite its value in fundamental and clinical research, the neural origins of the FFR are unclear. Using magnetoencephalography, we observe a strong, right-asymmetric contribution to the FFR from the human auditory cortex at the fundamental frequency of the stimulus, in addition to signal from cochlear nucleus, inferior colliculus and medial geniculate. This finding is highly relevant for our understanding of plasticity and pathology in the auditory system, as well as higher-level cognition such as speech and music processing. It suggests that previous interpretations of the FFR may need re-examination using methods that allow for source separation. PMID:27009409

  14. Dysfunctional cortical inhibition in adult ADHD: neural correlates in auditory event-related potentials.

    PubMed

    Schubert, J K; Gonzalez-Trejo, E; Retz, W; Rösler, M; Corona-Strauss, F I; Steidl, G; Teuber, T; Strauss, D J

    2014-09-30

    In recent times, the relevance of an accurate diagnosis of attention-deficit/hyperactivity disorder (ADHD) in adults has been the focus of several studies. No longer considered a pathology exclusive to children and adolescents, and taking into account its social implications, developing enhanced support tools for the current diagnostic procedure becomes a priority. Here we present a method for the objective assessment of ADHD in adults using chirp-evoked, paired auditory late responses (ALRs) combined with a two-dimensional ALR denoising scheme to extract correlates of intracortical inhibition. Our method allows for an effective single-sweep denoising, thus requiring less trials to obtain recognizable physiological features, useful as pointers of cortical impairment. Results allow an optimized diagnosis, reduction of data loss and acquisition time; moreover, they do not account exclusively for critical elements within clinical evaluations, but also allow studying the pathophysiology of the condition by providing objective information regarding impaired cortical functions. PMID:25033725

  15. Golgi, histochemical, and immunocytochemical analyses of the neurons of auditory-related cortices of the rhesus monkey.

    PubMed

    Cipolloni, P B; Pandya, D N

    1991-10-01

    Morphological characteristics of the neurons of the auditory cortical areas of the rhesus monkey were investigated using Golgi and horseradish peroxidase methods. Neurons of the auditory cortices can be segregated into two categories, spinous and nonspinous, which can be further subclassified according to their dendritic arrays. The spinous neurons include pyramidal, "star pyramid," multipolar, and bipolar cells. As in other cortices, pyramidal cells are found in layers II-VI and appear to be the most numerous of all cortical neurons. The "star pyramids" have radially oriented dendrites with a less prominent apical shaft and are found mainly in the middle cortical layers. The spinous multipolar neurons are also found in the middle cortical layers and have their dendrites radially arrayed but have no apical dendrite. The spinous bipolar cells, found in the infragranular layers, occur most frequently in the lateral auditory association cortex. The nonspinous neurons include neurogliaform, multipolar, bitufted, and bipolar cells and are found in all cortical layers. The neurogliaform cells are the smallest of all neurons and have radially arrayed, recurving dendrites. The nonspinous multipolar cells also have radially arrayed dendrites but vary in size from being confined to one cortical layer to extending across four laminae. The bitufted neurons are subclassified into three groups: neurons whose primary dendrites arise radially from their somata, those whose dendrites arise from two poles of their somata, and those that have a single primary dendrite arising from one pole and multiple dendrites from another pole of their somata. The nonspinous bipolar cells also have several variants but usually have dendrites arising from two poles of the somata. The chemical characteristics of the auditory neurons were investigated using histochemical and immunocytochemical methods. Peptidergic neurons, i.e., cholecystokinin-, vasoactive intestinal polypeptide-, somatostatin-, and

  16. Auditory brainstem and cortical potentials following bone-anchored hearing aid stimulation.

    PubMed

    Rahne, Torsten; Ehelebe, Thomas; Rasinski, Christine; Götze, Gerrit

    2010-11-30

    Patients suffering from conductive or mixed hearing loss and Single-Sided Deafness may benefit from implantable hearing devices relying on bone conducted auditory stimulation. However, with only passively cooperative patients, objective methods are needed to estimate the aided and unaided pure-tone audiogram. This study focuses on the feasibility aspect of an electrophysiological determination of the hearing thresholds with bone-anchored hearing aid stimulation. Therefore, 10 normal-hearing subjects were provided with a Baha Intenso (Cochlear Ltd.) which was temporarily connected to the Baha Softband (Cochlear Ltd.). Auditory evoked potentials were measured by auditory stimulation paradigm used in clinical routine. The amplitudes, latencies, and thresholds of the resulting auditory brainstem responses (ABR) and the cortically evoked responses (CAEP) were correlated with the respective responses without the use of the Baha Intenso. The recording of ABR and CAEP by delivering the stimuli to the Baha results in response waveforms which are comparable to those evoked by earphone stimulation and appears appropriate to be measured using the Baha Intenso as stimulator. At the ABR recordings a stimulus artifact at higher stimulation levels and a constant latency shift caused by the Baha Intenso has to be considered. The CAEP recording appeared promising as a frequency specific objective method to approve the fitting of bone-anchored hearing aids. At all measurements, the ABR and CAEP thresholds seem to be consistent with the normal hearing of the investigated participants. Thus, a recording of auditory evoked potentials using a Baha is in general possible if specific limitations are considered. PMID:20875458

  17. A Brain System for Auditory Working Memory

    PubMed Central

    Joseph, Sabine; Gander, Phillip E.; Barascud, Nicolas; Halpern, Andrea R.; Griffiths, Timothy D.

    2016-01-01

    The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. SIGNIFICANCE STATEMENT In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. PMID:27098693

  18. Decision-related cortical potentials during an auditory signal detection task with cued observation intervals

    NASA Technical Reports Server (NTRS)

    Squires, K. C.; Squires, N. K.; Hillyard, S. A.

    1975-01-01

    Cortical-evoked potentials were recorded from human subjects performing an auditory detection task with confidence rating responses. Unlike earlier studies that used similar procedures, the observation interval during which the auditory signal could occur was clearly marked by a visual cue light. By precisely defining the observation interval and, hence, synchronizing all perceptual decisions to the evoked potential averaging epoch, it was possible to demonstrate that high-confidence false alarms are accompanied by late-positive P3 components equivalent to those for equally confident hits. Moreover the hit and false alarm evoked potentials were found to covary similarly with variations in confidence rating and to have similar amplitude distributions over the scalp. In a second experiment, it was demonstrated that correct rejections can be associated with a P3 component larger than that for hits. Thus it was possible to show, within the signal detection paradigm, how the two major factors of decision confidence and expectancy are reflected in the P3 component of the cortical-evoked potential.

  19. Cortical auditory evoked potentials as an objective measure of behavioral thresholds in cochlear implant users.

    PubMed

    Visram, Anisa S; Innes-Brown, Hamish; El-Deredy, Wael; McKay, Colette M

    2015-09-01

    The aim of this study was to assess the suitability of using cortical auditory evoked potentials (CAEPs) as an objective tool for predicting behavioral hearing thresholds in cochlear implant (CI) users. Nine experienced adult CI users of Cochlear(™) devices participated. Behavioral thresholds were measured in CI users across apical, mid and basal electrodes. CAEPs were measured for the same stimuli (50 ms pulse trains of 900-pps rate) at a range of input levels across the individual's psychophysical dynamic range (DR). Amplitude growth functions using global field power (GFP) were plotted, and from this the CAEP thresholds were extrapolated and compared to the behavioral thresholds. Increased amplitude and decreased latency of the N1-P2 response was seen with increasing input level. A strong correlation was found between CAEP and behavioral thresholds (r = 0.93), implying that the cortical response may be more useful as an objective programming tool for cochlear implants than the auditory nerve response. PMID:25959269

  20. Task-dependent decoding of speaker and vowel identity from auditory cortical response patterns.

    PubMed

    Bonte, Milene; Hausfeld, Lars; Scharke, Wolfgang; Valente, Giancarlo; Formisano, Elia

    2014-03-26

    Selective attention to relevant sound properties is essential for everyday listening situations. It enables the formation of different perceptual representations of the same acoustic input and is at the basis of flexible and goal-dependent behavior. Here, we investigated the role of the human auditory cortex in forming behavior-dependent representations of sounds. We used single-trial fMRI and analyzed cortical responses collected while subjects listened to the same speech sounds (vowels /a/, /i/, and /u/) spoken by different speakers (boy, girl, male) and performed a delayed-match-to-sample task on either speech sound or speaker identity. Univariate analyses showed a task-specific activation increase in the right superior temporal gyrus/sulcus (STG/STS) during speaker categorization and in the right posterior temporal cortex during vowel categorization. Beyond regional differences in activation levels, multivariate classification of single trial responses demonstrated that the success with which single speakers and vowels can be decoded from auditory cortical activation patterns depends on task demands and subject's behavioral performance. Speaker/vowel classification relied on distinct but overlapping regions across the (right) mid-anterior STG/STS (speakers) and bilateral mid-posterior STG/STS (vowels), as well as the superior temporal plane including Heschl's gyrus/sulcus. The task dependency of speaker/vowel classification demonstrates that the informative fMRI response patterns reflect the top-down enhancement of behaviorally relevant sound representations. Furthermore, our findings suggest that successful selection, processing, and retention of task-relevant sound properties relies on the joint encoding of information across early and higher-order regions of the auditory cortex. PMID:24672000

  1. Cortical substrates and functional correlates of auditory deviance processing deficits in schizophrenia

    PubMed Central

    Rissling, Anthony J.; Miyakoshi, Makoto; Sugar, Catherine A.; Braff, David L.; Makeig, Scott; Light, Gregory A.

    2014-01-01

    Although sensory processing abnormalities contribute to widespread cognitive and psychosocial impairments in schizophrenia (SZ) patients, scalp-channel measures of averaged event-related potentials (ERPs) mix contributions from distinct cortical source-area generators, diluting the functional relevance of channel-based ERP measures. SZ patients (n = 42) and non-psychiatric comparison subjects (n = 47) participated in a passive auditory duration oddball paradigm, eliciting a triphasic (Deviant−Standard) tone ERP difference complex, here termed the auditory deviance response (ADR), comprised of a mid-frontal mismatch negativity (MMN), P3a positivity, and re-orienting negativity (RON) peak sequence. To identify its cortical sources and to assess possible relationships between their response contributions and clinical SZ measures, we applied independent component analysis to the continuous 68-channel EEG data and clustered the resulting independent components (ICs) across subjects on spectral, ERP, and topographic similarities. Six IC clusters centered in right superior temporal, right inferior frontal, ventral mid-cingulate, anterior cingulate, medial orbitofrontal, and dorsal mid-cingulate cortex each made triphasic response contributions. Although correlations between measures of SZ clinical, cognitive, and psychosocial functioning and standard (Fz) scalp-channel ADR peak measures were weak or absent, for at least four IC clusters one or more significant correlations emerged. In particular, differences in MMN peak amplitude in the right superior temporal IC cluster accounted for 48% of the variance in SZ-subject performance on tasks necessary for real-world functioning and medial orbitofrontal cluster P3a amplitude accounted for 40%/54% of SZ-subject variance in positive/negative symptoms. Thus, source-resolved auditory deviance response measures including MMN may be highly sensitive to SZ clinical, cognitive, and functional characteristics. PMID:25379456

  2. Auditory Efferent System Modulates Mosquito Hearing.

    PubMed

    Andrés, Marta; Seifert, Marvin; Spalthoff, Christian; Warren, Ben; Weiss, Lukas; Giraldo, Diego; Winkler, Margret; Pauls, Stephanie; Göpfert, Martin C

    2016-08-01

    The performance of vertebrate ears is controlled by auditory efferents that originate in the brain and innervate the ear, synapsing onto hair cell somata and auditory afferent fibers [1-3]. Efferent activity can provide protection from noise and facilitate the detection and discrimination of sound by modulating mechanical amplification by hair cells and transmitter release as well as auditory afferent action potential firing [1-3]. Insect auditory organs are thought to lack efferent control [4-7], but when we inspected mosquito ears, we obtained evidence for its existence. Antibodies against synaptic proteins recognized rows of bouton-like puncta running along the dendrites and axons of mosquito auditory sensory neurons. Electron microscopy identified synaptic and non-synaptic sites of vesicle release, and some of the innervating fibers co-labeled with somata in the CNS. Octopamine, GABA, and serotonin were identified as efferent neurotransmitters or neuromodulators that affect auditory frequency tuning, mechanical amplification, and sound-evoked potentials. Mosquito brains thus modulate mosquito ears, extending the use of auditory efferent systems from vertebrates to invertebrates and adding new levels of complexity to mosquito sound detection and communication. PMID:27476597

  3. Tracking short-term auditory cortical plasticity during classical conditioning using frequency-tagged stimuli.

    PubMed

    Weisz, Nathan; Kostadinov, Branislav; Dohrmann, Katalin; Hartmann, Thomas; Schlee, Winfried

    2007-08-01

    Animal studies indicate that short-term plasticity during classical conditioning is a fast process. The temporal details of this process in humans are unknown. We employed amplitude-modulated tones in order to elicit the steady-state field (SSF). Conditioned stimulus (CS+) and CS- had a common low carrier frequency, however, differed in their high-frequency component. Low and high frequencies within one tone were modulated at 29 and 45 Hz, respectively. Mean fast Fourier transformation analysis of each single trial allowed extraction of the cortical response to these modulation frequencies, allowing to track cortical responses trial by trial. Mutilation pictures were used as unconditioned stimulus. Furthermore, heart rate and contingency awareness were assessed. Our main findings are the following: 1) A rapid (within 5 trials) enhancement of the amplitude of the high frequencies in contrast to the low frequency, while the high frequencies differentiated later (toward end of acquisition). This partially replicates rapid plasticity as shown before in animals. 2) Those participants who were less aware of the stimulus contingencies showed a relative heart rate acceleration and greater SSF increase to the CS+. This could possibly imply a stronger early amygdala activation in these participants, which then mediates the development of conditioning-related reorganization in auditory cortical areas. PMID:17053046

  4. Music perception, pitch, and the auditory system

    PubMed Central

    McDermott, Josh H.; Oxenham, Andrew J.

    2008-01-01

    The perception of music depends on many culture-specific factors, but is also constrained by properties of the auditory system. This has been best characterized for those aspects of music that involve pitch. Pitch sequences are heard in terms of relative, as well as absolute, pitch. Pitch combinations give rise to emergent properties not present in the component notes. In this review we discuss the basic auditory mechanisms contributing to these and other perceptual effects in music. PMID:18824100

  5. Differential Modification of Cortical and Thalamic Projections to Cat Primary Auditory Cortex Following Early- and Late-Onset Deafness.

    PubMed

    Chabot, Nicole; Butler, Blake E; Lomber, Stephen G

    2015-10-15

    Following sensory deprivation, primary somatosensory and visual cortices undergo crossmodal plasticity, which subserves the remaining modalities. However, controversy remains regarding the neuroplastic potential of primary auditory cortex (A1). To examine this, we identified cortical and thalamic projections to A1 in hearing cats and those with early- and late-onset deafness. Following early deafness, inputs from second auditory cortex (A2) are amplified, whereas the number originating in the dorsal zone (DZ) decreases. In addition, inputs from the dorsal medial geniculate nucleus (dMGN) increase, whereas those from the ventral division (vMGN) are reduced. In late-deaf cats, projections from the anterior auditory field (AAF) are amplified, whereas those from the DZ decrease. Additionally, in a subset of early- and late-deaf cats, area 17 and the lateral posterior nucleus (LP) of the visual thalamus project concurrently to A1. These results demonstrate that patterns of projections to A1 are modified following deafness, with statistically significant changes occurring within the auditory thalamus and some cortical areas. Moreover, we provide anatomical evidence for small-scale crossmodal changes in projections to A1 that differ between early- and late-onset deaf animals, suggesting that potential crossmodal activation of primary auditory cortex differs depending on the age of deafness onset. PMID:25879955

  6. Effects of location and timing of co-activated neurons in the auditory midbrain on cortical activity: implications for a new central auditory prosthesis

    NASA Astrophysics Data System (ADS)

    Straka, Małgorzata M.; McMahon, Melissa; Markovitz, Craig D.; Lim, Hubert H.

    2014-08-01

    Objective. An increasing number of deaf individuals are being implanted with central auditory prostheses, but their performance has generally been poorer than for cochlear implant users. The goal of this study is to investigate stimulation strategies for improving hearing performance with a new auditory midbrain implant (AMI). Previous studies have shown that repeated electrical stimulation of a single site in each isofrequency lamina of the central nucleus of the inferior colliculus (ICC) causes strong suppressive effects in elicited responses within the primary auditory cortex (A1). Here we investigate if improved cortical activity can be achieved by co-activating neurons with different timing and locations across an ICC lamina and if this cortical activity varies across A1. Approach. We electrically stimulated two sites at different locations across an isofrequency ICC lamina using varying delays in ketamine-anesthetized guinea pigs. We recorded and analyzed spike activity and local field potentials across different layers and locations of A1. Results. Co-activating two sites within an isofrequency lamina with short inter-pulse intervals (<5 ms) could elicit cortical activity that is enhanced beyond a linear summation of activity elicited by the individual sites. A significantly greater extent of normalized cortical activity was observed for stimulation of the rostral-lateral region of an ICC lamina compared to the caudal-medial region. We did not identify any location trends across A1, but the most cortical enhancement was observed in supragranular layers, suggesting further integration of the stimuli through the cortical layers. Significance. The topographic organization identified by this study provides further evidence for the presence of functional zones across an ICC lamina with locations consistent with those identified by previous studies. Clinically, these results suggest that co-activating different neural populations in the rostral-lateral ICC rather

  7. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices

    PubMed Central

    Tremblay, Marie-Ève; Zettel, Martha L.; Ison, James R.; Allen, Paul D.; Majewska, Ania K.

    2011-01-01

    Normal aging is often accompanied by a progressive loss of receptor sensitivity in hearing and vision, whose consequences on cellular function in cortical sensory areas have remained largely unknown. By examining the primary auditory (A1) and visual (V1) cortices in two inbred strains of mice undergoing either age-related loss of audition (C57BL/6J) or vision (CBA/CaJ), we were able to describe cellular and subcellular changes that were associated with normal aging (occurring in A1 and V1 of both strains) or specifically with age-related sensory loss (only in A1 of C57BL/6J or V1 of CBA/CaJ), using immunocytochemical electron microscopy and light microscopy. While the changes were subtle in neurons, glial cells and especially microglia were transformed in aged animals. Microglia became more numerous and irregularly distributed, displayed more variable cell body and process morphologies, occupied smaller territories, and accumulated phagocytic inclusions that often displayed ultrastructural features of synaptic elements. Additionally, evidence of myelination defects were observed, and aged oligodendrocytes became more numerous and were more often encountered in contiguous pairs. Most of these effects were profoundly exacerbated by age-related sensory loss. Together, our results suggest that the age-related alteration of glial cells in sensory cortical areas can be accelerated by activity-driven central mechanisms that result from an age-related loss of peripheral sensitivity. In light of our observations, these age-related changes in sensory function should be considered when investigating cellular, cortical and behavioral functions throughout the lifespan in these commonly used C57BL/6J and CBA/CaJ mouse models. PMID:22223464

  8. Auditory object salience: human cortical processing of non-biological action sounds and their acoustic signal attributes

    PubMed Central

    Lewis, James W.; Talkington, William J.; Tallaksen, Katherine C.; Frum, Chris A.

    2012-01-01

    Whether viewed or heard, an object in action can be segmented as a distinct salient event based on a number of different sensory cues. In the visual system, several low-level attributes of an image are processed along parallel hierarchies, involving intermediate stages wherein gross-level object form and/or motion features are extracted prior to stages that show greater specificity for different object categories (e.g., people, buildings, or tools). In the auditory system, though relying on a rather different set of low-level signal attributes, meaningful real-world acoustic events and “auditory objects” can also be readily distinguished from background scenes. However, the nature of the acoustic signal attributes or gross-level perceptual features that may be explicitly processed along intermediate cortical processing stages remain poorly understood. Examining mechanical and environmental action sounds, representing two distinct non-biological categories of action sources, we had participants assess the degree to which each sound was perceived as object-like versus scene-like. We re-analyzed data from two of our earlier functional magnetic resonance imaging (fMRI) task paradigms (Engel et al., 2009) and found that scene-like action sounds preferentially led to activation along several midline cortical structures, but with strong dependence on listening task demands. In contrast, bilateral foci along the superior temporal gyri (STG) showed parametrically increasing activation to action sounds rated as more “object-like,” independent of sound category or task demands. Moreover, these STG regions also showed parametric sensitivity to spectral structure variations (SSVs) of the action sounds—a quantitative measure of change in entropy of the acoustic signals over time—and the right STG additionally showed parametric sensitivity to measures of mean entropy and harmonic content of the environmental sounds. Analogous to the visual system, intermediate stages

  9. Complex Spectral Interactions Encoded by Auditory Cortical Neurons: Relationship Between Bandwidth and Pattern

    PubMed Central

    O'Connor, Kevin N.; Yin, Pingbo; Petkov, Christopher I.; Sutter, Mitchell L.

    2010-01-01

    The focus of most research on auditory cortical neurons has concerned the effects of rather simple stimuli, such as pure tones or broad-band noise, or the modulation of a single acoustic parameter. Extending these findings to feature coding in more complex stimuli such as natural sounds may be difficult, however. Generalizing results from the simple to more complex case may be complicated by non-linear interactions occurring between multiple, simultaneously varying acoustic parameters in complex sounds. To examine this issue in the frequency domain, we performed a parametric study of the effects of two global features, spectral pattern (here ripple frequency) and bandwidth, on primary auditory (A1) neurons in awake macaques. Most neurons were tuned for one or both variables and most also displayed an interaction between bandwidth and pattern implying that their effects were conditional or interdependent. A spectral linear filter model was able to qualitatively reproduce the basic effects and interactions, indicating that a simple neural mechanism may be able to account for these interdependencies. Our results suggest that the behavior of most A1 neurons is likely to depend on multiple parameters, and so most are unlikely to respond independently or invariantly to specific acoustic features. PMID:21152347

  10. Spiking in auditory cortex following thalamic stimulation is dominated by cortical network activity

    PubMed Central

    Krause, Bryan M.; Raz, Aeyal; Uhlrich, Daniel J.; Smith, Philip H.; Banks, Matthew I.

    2014-01-01

    The state of the sensory cortical network can have a profound impact on neural responses and perception. In rodent auditory cortex, sensory responses are reported to occur in the context of network events, similar to brief UP states, that produce “packets” of spikes and are associated with synchronized synaptic input (Bathellier et al., 2012; Hromadka et al., 2013; Luczak et al., 2013). However, traditional models based on data from visual and somatosensory cortex predict that ascending sensory thalamocortical (TC) pathways sequentially activate cells in layers 4 (L4), L2/3, and L5. The relationship between these two spatio-temporal activity patterns is unclear. Here, we used calcium imaging and electrophysiological recordings in murine auditory TC brain slices to investigate the laminar response pattern to stimulation of TC afferents. We show that although monosynaptically driven spiking in response to TC afferents occurs, the vast majority of spikes fired following TC stimulation occurs during brief UP states and outside the context of the L4>L2/3>L5 activation sequence. Specifically, monosynaptic subthreshold TC responses with similar latencies were observed throughout layers 2–6, presumably via synapses onto dendritic processes located in L3 and L4. However, monosynaptic spiking was rare, and occurred primarily in L4 and L5 non-pyramidal cells. By contrast, during brief, TC-induced UP states, spiking was dense and occurred primarily in pyramidal cells. These network events always involved infragranular layers, whereas involvement of supragranular layers was variable. During UP states, spike latencies were comparable between infragranular and supragranular cells. These data are consistent with a model in which activation of auditory cortex, especially supragranular layers, depends on internally generated network events that represent a non-linear amplification process, are initiated by infragranular cells and tightly regulated by feed-forward inhibitory

  11. Abnormal auditory cortical activation in dyslexia 100 msec after speech onset.

    PubMed

    Helenius, Päivi; Salmelin, Riitta; Richardson, Ulla; Leinonen, Seija; Lyytinen, Heikki

    2002-05-15

    Reading difficulties are associated with problems in processing and manipulating speech sounds. Dyslexic individuals seem to have, for instance, difficulties in perceiving the length and identity of consonants. Using magnetoencephalography (MEG), we characterized the spatio-temporal pattern of auditory cortical activation in dyslexia evoked by three types of natural bisyllabic pseudowords (/ata/, /atta/, and /a a/), complex nonspeech sound pairs (corresponding to /atta/ and /a a/) and simple 1-kHz tones. The most robust difference between dyslexic and non-reading-impaired adults was seen in the left supratemporal auditory cortex 100 msec after the onset of the vowel /a/. This N100m response was abnormally strong in dyslexic individuals. For the complex nonspeech sounds and tone, the N100m response amplitudes were similar in dyslexic and nonimpaired individuals. The responses evoked by syllable /ta/ of the pseudoword /atta/ also showed modest latency differences between the two subject groups. The responses evoked by the corresponding nonspeech sounds did not differ between the two subject groups. Further, when the initial formant transition, that is, the consonant, was removed from the syllable /ta/, the N100m latency was normal in dyslexic individuals. Thus, it appears that dyslexia is reflected as abnormal activation of the auditory cortex already 100 msec after speech onset, manifested as abnormal response strengths for natural speech and as delays for speech sounds containing rapid frequency transition. These differences between the dyslexic and nonimpaired individuals also imply that the N100m response codes stimulus-specific features likely to be critical for speech perception. Which features of speech (or nonspeech stimuli) are critical in eliciting the abnormally strong N100m response in dyslexic individuals should be resolved in future studies. PMID:12126501

  12. Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation.

    PubMed

    Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M; Lenarz, Thomas; Lim, Hubert H

    2015-01-01

    Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus. PMID:26046763

  13. Cortical motion deafness.

    PubMed

    Ducommun, Christine Y; Michel, Christoph M; Clarke, Stephanie; Adriani, Michela; Seeck, Margitta; Landis, Theodor; Blanke, Olaf

    2004-09-16

    The extent to which the auditory system, like the visual system, processes spatial stimulus characteristics such as location and motion in separate specialized neuronal modules or in one homogeneously distributed network is unresolved. Here we present a patient with a selective deficit for the perception and discrimination of auditory motion following resection of the right anterior temporal lobe and the right posterior superior temporal gyrus (STG). Analysis of stimulus identity and location within the auditory scene remained intact. In addition, intracranial auditory evoked potentials, recorded preoperatively, revealed motion-specific responses selectively over the resected right posterior STG, and electrical cortical stimulation of this region was experienced by the patient as incoming moving sounds. Collectively, these data present a patient with cortical motion deafness, providing evidence that cortical processing of auditory motion is performed in a specialized module within the posterior STG. PMID:15363389

  14. One year of musical training affects development of auditory cortical-evoked fields in young children.

    PubMed

    Fujioka, Takako; Ross, Bernhard; Kakigi, Ryusuke; Pantev, Christo; Trainor, Laurel J

    2006-10-01

    Auditory evoked responses to a violin tone and a noise-burst stimulus were recorded from 4- to 6-year-old children in four repeated measurements over a 1-year period using magnetoencephalography (MEG). Half of the subjects participated in musical lessons throughout the year; the other half had no music lessons. Auditory evoked magnetic fields showed prominent bilateral P100m, N250m, P320m and N450m peaks. Significant change in the peak latencies of all components except P100m was observed over time. Larger P100m and N450m amplitude as well as more rapid change of N250m amplitude and latency was associated with the violin rather than the noise stimuli. Larger P100m and P320m peak amplitudes in the left hemisphere than in the right are consistent with left-lateralized cortical development in this age group. A clear musical training effect was expressed in a larger and earlier N250m peak in the left hemisphere in response to the violin sound in musically trained children compared with untrained children. This difference coincided with pronounced morphological change in a time window between 100 and 400 ms, which was observed in musically trained children in response to violin stimuli only, whereas in untrained children a similar change was present regardless of stimulus type. This transition could be related to establishing a neural network associated with sound categorization and/or involuntary attention, which can be altered by music learning experience. PMID:16959812

  15. ICA-derived cortical responses indexing rapid multi-feature auditory processing in six-month-old infants.

    PubMed

    Piazza, Caterina; Cantiani, Chiara; Akalin-Acar, Zeynep; Miyakoshi, Makoto; Benasich, April A; Reni, Gianluigi; Bianchi, Anna Maria; Makeig, Scott

    2016-06-01

    The abilities of infants to perceive basic acoustic differences, essential for language development, can be studied using auditory event-related potentials (ERPs). However, scalp-channel averaged ERPs sum volume-conducted contributions from many cortical areas, reducing the functional specificity and interpretability of channel-based ERP measures. This study represents the first attempt to investigate rapid auditory processing in infancy using independent component analysis (ICA), allowing exploration of source-resolved ERP dynamics and identification of ERP cortical generators. Here, we recorded 60-channel EEG data in 34 typically developing 6-month-old infants during a passive acoustic oddball paradigm presenting 'standard' tones interspersed with frequency- or duration-deviant tones. ICA decomposition was applied to single-subject EEG data. The best-fitting equivalent dipole or bilaterally symmetric dipole pair was then estimated for each resulting independent component (IC) process using a four-layer infant head model. Similar brain-source ICs were clustered across subjects. Results showed ERP contributions from auditory cortex and multiple extra-auditory cortical areas (often, bilaterally paired). Different cortical source combinations contributed to the frequency- and duration-deviant ERP peak sequences. For ICs in an ERP-dominant source cluster located in or near the mid-cingulate cortex, source-resolved frequency-deviant response N2 latency and P3 amplitude at 6 months-of-age predicted vocabulary size at 20 months-of-age. The same measures for scalp channel F6 (though not for other frontal channels) showed similar but weaker correlations. These results demonstrate the significant potential of ICA analyses to facilitate a deeper understanding of the neural substrates of infant sensory processing. PMID:26944858

  16. Detection Rates of Cortical Auditory Evoked Potentials at Different Sensation Levels in Infants with Sensory/Neural Hearing Loss and Auditory Neuropathy Spectrum Disorder.

    PubMed

    Gardner-Berry, Kirsty; Chang, Hsiuwen; Ching, Teresa Y C; Hou, Sanna

    2016-02-01

    With the introduction of newborn hearing screening, infants are being diagnosed with hearing loss during the first few months of life. For infants with a sensory/neural hearing loss (SNHL), the audiogram can be estimated objectively using auditory brainstem response (ABR) testing and hearing aids prescribed accordingly. However, for infants with auditory neuropathy spectrum disorder (ANSD) due to the abnormal/absent ABR waveforms, alternative measures of auditory function are needed to assess the need for amplification and evaluate whether aided benefit has been achieved. Cortical auditory evoked potentials (CAEPs) are used to assess aided benefit in infants with hearing loss; however, there is insufficient information regarding the relationship between stimulus audibility and CAEP detection rates. It is also not clear whether CAEP detection rates differ between infants with SNHL and infants with ANSD. This study involved retrospective collection of CAEP, hearing threshold, and hearing aid gain data to investigate the relationship between stimulus audibility and CAEP detection rates. The results demonstrate that increases in stimulus audibility result in an increase in detection rate. For the same range of sensation levels, there was no difference in the detection rates between infants with SNHL and ANSD. PMID:27587922

  17. Least-squares (LS) deconvolution of a series of overlapping cortical auditory evoked potentials: a simulation and experimental study

    NASA Astrophysics Data System (ADS)

    Bardy, Fabrice; Van Dun, Bram; Dillon, Harvey; Cowan, Robert

    2014-08-01

    Objective. To evaluate the viability of disentangling a series of overlapping ‘cortical auditory evoked potentials’ (CAEPs) elicited by different stimuli using least-squares (LS) deconvolution, and to assess the adaptation of CAEPs for different stimulus onset-asynchronies (SOAs). Approach. Optimal aperiodic stimulus sequences were designed by controlling the condition number of matrices associated with the LS deconvolution technique. First, theoretical considerations of LS deconvolution were assessed in simulations in which multiple artificial overlapping responses were recovered. Second, biological CAEPs were recorded in response to continuously repeated stimulus trains containing six different tone-bursts with frequencies 8, 4, 2, 1, 0.5, 0.25 kHz separated by SOAs jittered around 150 (120-185), 250 (220-285) and 650 (620-685) ms. The control condition had a fixed SOA of 1175 ms. In a second condition, using the same SOAs, trains of six stimuli were separated by a silence gap of 1600 ms. Twenty-four adults with normal hearing (<20 dB HL) were assessed. Main results. Results showed disentangling of a series of overlapping responses using LS deconvolution on simulated waveforms as well as on real EEG data. The use of rapid presentation and LS deconvolution did not however, allow the recovered CAEPs to have a higher signal-to-noise ratio than for slowly presented stimuli. The LS deconvolution technique enables the analysis of a series of overlapping responses in EEG. Significance. LS deconvolution is a useful technique for the study of adaptation mechanisms of CAEPs for closely spaced stimuli whose characteristics change from stimulus to stimulus. High-rate presentation is necessary to develop an understanding of how the auditory system encodes natural speech or other intrinsically high-rate stimuli.

  18. Individualized covariance profile of cortical morphology for auditory hallucinations in first-episode psychosis.

    PubMed

    Yun, Je-Yeon; Kim, Sung Nyun; Lee, Tae Young; Chon, Myong-Wuk; Kwon, Jun Soo

    2016-03-01

    Neocortical phenotype of cortical surface area (CSA) and thickness (CT) are influenced by distinctive genetic factors and undergo differential developmental trajectories, which could be captured using the individualized cortical structural covariance (ISC). Disturbed patterns of neocortical development and maturation underlie the perceptual disturbance of psychosis including auditory hallucination (AH). To demonstrate the utility of selected ISC features as primal biomarker of AH in first-episode psychosis (FEP) subjects experiencing AH (FEP-AH), we employed herein a support vector machine (SVM). A total of 147 subjects (FEP-AH, n = 27; FEP-NAH, n = 24; HC, n = 96) underwent T1 -weighted magnetic resonance imaging at 3T. The FreeSurfer software suite was used for cortical parcellation, with the CSA-ISC and CT-ISC then calculated. The most informative ISCs showing statistical significance (P < 0.001) across every run of leave-one-out group-comparison were aligned according to the absolute value of averaged t-statistics and were packaged into candidate feature sets for classification analysis using the SVM. An optimal feature set comprising three CSA-ISCs, including the intraparietal sulcus, Broca's complex, and the anterior insula, distinguished FEP-AH from FEP-NAH subjects with 83.6% accuracy (sensitivity = 82.8%; specificity = 85.7%). Furthermore, six CT-ISCs encompassing the executive control network and Wernicke's module classified FEP-AH from FEP-NAH subjects with 82.3% accuracy (sensitivity = 79.5%; specificity = 88.6%). Finally, extended sets of ISCs related to the default-mode network distinguished FEP-AH or FEP-NAH from HC subjects with 89.0-93.0% accuracy (sensitivity = 88.4-93.4%; specificity = 89.0-94.1%). This study established a distinctive intermediate phenotype of biological proneness for AH in FEP using CSA-ISCs as well as a state marker of disease progression using CT-ISCs. PMID:26678706

  19. Cortical Auditory Evoked Potentials in (Un)aided Normal-Hearing and Hearing-Impaired Adults.

    PubMed

    Van Dun, Bram; Kania, Anna; Dillon, Harvey

    2016-02-01

    Cortical auditory evoked potentials (CAEPs) are influenced by the characteristics of the stimulus, including level and hearing aid gain. Previous studies have measured CAEPs aided and unaided in individuals with normal hearing. There is a significant difference between providing amplification to a person with normal hearing and a person with hearing loss. This study investigated this difference and the effects of stimulus signal-to-noise ratio (SNR) and audibility on the CAEP amplitude in a population with hearing loss. Twelve normal-hearing participants and 12 participants with a hearing loss participated in this study. Three speech sounds-/m/, /g/, and /t/-were presented in the free field. Unaided stimuli were presented at 55, 65, and 75 dB sound pressure level (SPL) and aided stimuli at 55 dB SPL with three different gains in steps of 10 dB. CAEPs were recorded and their amplitudes analyzed. Stimulus SNRs and audibility were determined. No significant effect of stimulus level or hearing aid gain was found in normal hearers. Conversely, a significant effect was found in hearing-impaired individuals. Audibility of the signal, which in some cases is determined by the signal level relative to threshold and in other cases by the SNR, is the dominant factor explaining changes in CAEP amplitude. CAEPs can potentially be used to assess the effects of hearing aid gain in hearing-impaired users. PMID:27587919

  20. A cortical network underpinning the perceptual priority for rising intensity and auditory ``looming.''

    NASA Astrophysics Data System (ADS)

    Neuhoff, John G.; Bilecen, Deniz; Mustovic, Henrietta; Schachinger, Hartmut; Seifritz, Erich; Scheffler, Klaus; di Salle, Francesco

    2002-05-01

    Relative motion between a sound source and a listener creates a change in acoustic intensity that can be used to anticipate the source's approach. Humans have been shown to overestimate the intensity change of rising compared to falling intensity sounds and underestimate the time-to-contact of approaching sound sources. From an evolutionary perspective, this perceptual priority for looming sounds may represent an adaptive advantage that provides an increased margin of safety for responding to approaching auditory objects. Here, using functional magnetic resonance imaging, we show that the prioritization of rising contrasted with falling intensity sine-tones is grounded in a specific neural network. This network is predominantly composed of the superior temporal sulci, the middle temporal gyri, the right temporo-parietal junction, the motor and premotor cortices mainly on the right hemisphere, the left frontal operculum, and the left superior posterior cerebellar cortex. These regions are critical for the allocation of attention, the analysis of space, object recognition, and neurobehavioral preparation for action. Our results identify a widespread neural network underpinning the perceptual priority for looming sounds that can be used in translating sensory information into preparedness for adverse events and appropriate action. [Work supported by the Swiss and the American NSFs.

  1. Effects of acute nicotine on prepulse inhibition of auditory change-related cortical responses.

    PubMed

    Kodaira, Minori; Tsuruhara, Aki; Motomura, Eishi; Tanii, Hisashi; Inui, Koji; Kakigi, Ryusuke

    2013-11-01

    Prepulse inhibition (PPI) of startle is a measure of inhibitory function in which a weak leading stimulus suppresses the startle response to an intense stimulus. Usually, startle blink reflexes to an intense sound are used for measuring PPI. A recent magnetoencephalographic study showed that a similar phenomenon is observed for auditory change-related cortical response (Change-N1m) to an abrupt change in sound features. It has been well established that nicotine enhances PPI of startle. Therefore, in the present magnetoencephalographic study, the effects of acute nicotine on PPI of the Change-N1m were studied in 12 healthy subjects (two females and 10 males) under a repeated measures and placebo-controlled design. Nicotine (4 mg) was given as nicotine gum. The test Change-N1m response was elicited with an abrupt increase in sound pressure by 6 dB in a continuous background sound of 65 dB. PPI was produced by an insertion of a prepulse with a 3-dB-louder or 6-dB-weaker sound pressure than the background 75 ms before the test stimulus. Results show that nicotine tended to enhance the test Change-N1m response and significantly enhanced PPI for both prepulses. Therefore, nicotine's enhancing effect on PPI of the Change-N1m was similar to that on PPI of the startle. The present results suggest that the two measures share at least some mechanisms. PMID:23933145

  2. 40 Hz Auditory Steady-State Response Is a Pharmacodynamic Biomarker for Cortical NMDA Receptors.

    PubMed

    Sivarao, Digavalli V; Chen, Ping; Senapati, Arun; Yang, Yili; Fernandes, Alda; Benitex, Yulia; Whiterock, Valerie; Li, Yu-Wen; Ahlijanian, Michael K

    2016-08-01

    Schizophrenia patients exhibit dysfunctional gamma oscillations in response to simple auditory stimuli or more complex cognitive tasks, a phenomenon explained by reduced NMDA transmission within inhibitory/excitatory cortical networks. Indeed, a simple steady-state auditory click stimulation paradigm at gamma frequency (~40 Hz) has been reproducibly shown to reduce entrainment as measured by electroencephalography (EEG) in patients. However, some investigators have reported increased phase locking factor (PLF) and power in response to 40 Hz auditory stimulus in patients. Interestingly, preclinical literature also reflects this contradiction. We investigated whether a graded deficiency in NMDA transmission can account for such disparate findings by administering subanesthetic ketamine (1-30 mg/kg, i.v.) or vehicle to conscious rats (n=12) and testing their EEG entrainment to 40 Hz click stimuli at various time points (~7-62 min after treatment). In separate cohorts, we examined in vivo NMDA channel occupancy and tissue exposure to contextualize ketamine effects. We report a robust inverse relationship between PLF and NMDA occupancy 7 min after dosing. Moreover, ketamine could produce inhibition or disinhibition of the 40 Hz response in a temporally dynamic manner. These results provide for the first time empirical data to understand how cortical NMDA transmission deficit may lead to opposite modulation of the auditory steady-state response (ASSR). Importantly, our findings posit that 40 Hz ASSR is a pharmacodynamic biomarker for cortical NMDA function that is also robustly translatable. Besides schizophrenia, such a functional biomarker may be of value to neuropsychiatric disorders like bipolar and autism spectrum where 40 Hz ASSR deficits have been documented. PMID:26837462

  3. Voxel-based morphometry in opera singers: Increased gray-matter volume in right somatosensory and auditory cortices.

    PubMed

    Kleber, Boris; Veit, Ralf; Moll, Christina Valérie; Gaser, Christian; Birbaumer, Niels; Lotze, Martin

    2016-06-01

    In contrast to instrumental musicians, professional singers do not train on a specific instrument but perfect a motor system that has already been extensively trained during speech motor development. Previous functional imaging studies suggest that experience with singing is associated with enhanced somatosensory-based vocal motor control. However, experience-dependent structural plasticity in vocal musicians has rarely been studied. We investigated voxel-based morphometry (VBM) in 27 professional classical singers and compared gray matter volume in regions of the "singing-network" to an age-matched group of 28 healthy volunteers with no special singing experience. We found right hemispheric volume increases in professional singers in ventral primary somatosensory cortex (larynx S1) and adjacent rostral supramarginal gyrus (BA40), as well as in secondary somatosensory (S2) and primary auditory cortices (A1). Moreover, we found that earlier commencement with vocal training correlated with increased gray-matter volume in S1. However, in contrast to studies with instrumental musicians, this correlation only emerged in singers who began their formal training after the age of 14years, when speech motor development has reached its first plateau. Structural data thus confirm and extend previous functional reports suggesting a pivotal role of somatosensation in vocal motor control with increased experience in singing. Results furthermore indicate a sensitive period for developing additional vocal skills after speech motor coordination has matured. PMID:27034024

  4. Altered Contralateral Auditory Cortical Morphology in Unilateral Sudden Sensorineural Hearing Loss

    PubMed Central

    Fan, Wenliang; Zhang, Wenjuan; Li, Jing; Zhao, Xueyan; Mella, Grace; Lei, Ping; Liu, Yuan; Wang, Haha; Cheng, Huamao; Shi, Hong; Xu, Haibo

    2015-01-01

    Objective: To investigate the cerebral gray matter volume alterations in unilateral sudden sensorineural hearing loss patients within the acute period by the voxel-based morphometry method, and to determine if hearing impairment is associated with regional gray matter alterations in unilateral sudden sensorineural hearing loss patients. Study Design: Prospective case study. Setting: Tertiary class A teaching hospital. Patients: Thirty-nine patients with left-side unilateral sudden sensorineural hearing loss and 47 patients with right-side unilateral sudden sensorineural hearing loss. Intervention: Diagnostic. Main Outcome Measure: To compare the regional gray matter of unilateral sudden sensorineural hearing loss patients and healthy control participants. Results: Compared with control groups, patients with left side unilateral sudden sensorineural hearing loss had significant gray matter reductions in the right middle temporal gyrus and right superior temporal gyrus, whereas patients with right side unilateral sudden sensorineural hearing loss showed gray matter decreases in the left superior temporal gyrus and left middle temporal gyrus. A significant negative correlation with the duration of the sudden sensorineural hearing loss (R = −0.427, p = 0.012 for left-side unilateral SSNHL and R = −0.412, p = 0.013 for right-side unilateral SSNHL) was also found in these brain areas. There was no region with increased gray matter found in both groups of unilateral sudden sensorineural hearing loss patients. Conclusions: This study confirms that detectable decreased contralateral auditory cortical morphological changes have occurred in unilateral SSNHL patients within the acute period by voxel-based morphometry methods. The gray matter volumes of these brain areas also perform a negative correlation with the duration of the disease, which suggests a gradual brain structural impairment after the progression of the disease. PMID:26595717

  5. Effects of Spectral Degradation on Attentional Modulation of Cortical Auditory Responses to Continuous Speech.

    PubMed

    Kong, Ying-Yee; Somarowthu, Ala; Ding, Nai

    2015-12-01

    This study investigates the effect of spectral degradation on cortical speech encoding in complex auditory scenes. Young normal-hearing listeners were simultaneously presented with two speech streams and were instructed to attend to only one of them. The speech mixtures were subjected to noise-channel vocoding to preserve the temporal envelope and degrade the spectral information of speech. Each subject was tested with five spectral resolution conditions (unprocessed speech, 64-, 32-, 16-, and 8-channel vocoder conditions) and two target-to-masker ratio (TMR) conditions (3 and 0 dB). Ongoing electroencephalographic (EEG) responses and speech comprehension were measured in each spectral and TMR condition for each subject. Neural tracking of each speech stream was characterized by cross-correlating the EEG responses with the envelope of each of the simultaneous speech streams at different time lags. Results showed that spectral degradation and TMR both significantly influenced how top-down attention modulated the EEG responses to the attended and unattended speech. That is, the EEG responses to the attended and unattended speech streams differed more for the higher (unprocessed, 64 ch, and 32 ch) than the lower (16 and 8 ch) spectral resolution conditions, as well as for the higher (3 dB) than the lower TMR (0 dB) condition. The magnitude of differential neural modulation responses to the attended and unattended speech streams significantly correlated with speech comprehension scores. These results suggest that severe spectral degradation and low TMR hinder speech stream segregation, making it difficult to employ top-down attention to differentially process different speech streams. PMID:26362546

  6. Cortical Auditory Event Related Potentials (P300) for Frequency Changing Dynamic Tones

    PubMed Central

    Kalaiah, Mohan Kumar

    2016-01-01

    Background and Objectives P300 has been studied with a variety of stimuli. However, the nature of P300 has not been investigated for deviant stimuli which change its characteristics from standard stimuli after a period of time from onset. Subjects and Methods Nine young adults with normal hearing participated in the study. The P300 was elicited using an oddball paradigm, the probability of standard and deviant stimuli was 80% and 20% respectively. Six stimuli were used to elicit P300, it included two pure-tones (1,000 Hz and 2,000 Hz) and four tone-complexes (tones with frequency changes). Among these stimuli, 1,000 Hz tone served as standard while others served as deviant stimuli. The P300 was recorded in five separate blocks, with one of the deviant stimuli as target in each block. Electroencephalographic was recorded from electrode sites Fz, Cz, C3, C4, and Pz. Latency and amplitude of components of the cortical auditory evoked potentials were measured at Cz. Results Waveforms obtained in the present study shows that, all the deviant stimuli elicited obligatory P1-N1-P2 for stimulus onset. 2,000 Hz deviant tone elicited P300 at a latency of 300 ms. While, tone-complexes elicited acoustic change complex (ACC) for frequency changes and finally elicited P300 at a latency of 600 ms. In addition, the results showed shorter latency and larger amplitude ACC and P300 for rising tone-complexes compared to falling tone-complexes. Conclusions Tone-complexes elicited distinct waveforms compared to 2,000 Hz deviant tone. Rising tone-complexes which had an increase in frequency elicited shorter latency and larger amplitude responses, which could be attributed to perceptual bias for frequency changes. PMID:27144230

  7. Quantifying and comparing the pattern of thalamic and cortical projections to the posterior auditory field in hearing and deaf cats.

    PubMed

    Butler, Blake E; Chabot, Nicole; Lomber, Stephen G

    2016-10-15

    Following sensory loss, compensatory crossmodal reorganization occurs such that the remaining modalities are functionally enhanced. For example, behavioral evidence suggests that peripheral visual localization is better in deaf than in normal hearing animals, and that this enhancement is mediated by recruitment of the posterior auditory field (PAF), an area that is typically involved in localization of sounds in normal hearing animals. To characterize the anatomical changes that underlie this phenomenon, we identified the thalamic and cortical projections to the PAF in hearing cats and those with early- and late-onset deafness. The retrograde tracer biotinylated dextran amine was deposited in the PAF unilaterally, to label cortical and thalamic afferents. Following early deafness, there was a significant decrease in callosal projections from the contralateral PAF. Late-deaf animals showed small-scale changes in projections from one visual cortical area, the posterior ectosylvian field (EPp), and the multisensory zone (MZ). With the exception of these minor differences, connectivity to the PAF was largely similar between groups, with the principle projections arising from the primary auditory cortex (A1) and the ventral division of the medial geniculate body (MGBv). This absence of large-scale connectional change suggests that the functional reorganization that follows sensory loss results from changes in synaptic strength and/or unmasking of subthreshold intermodal connections. J. Comp. Neurol. 524:3042-3063, 2016. © 2016 Wiley Periodicals, Inc. PMID:27019080

  8. Reduced habituation of auditory evoked potentials indicate cortical hyper-excitability in Fragile X Syndrome.

    PubMed

    Ethridge, L E; White, S P; Mosconi, M W; Wang, J; Byerly, M J; Sweeney, J A

    2016-01-01

    Sensory hypersensitivities are common, clinically distressing features of Fragile X Syndrome (FXS). Preclinical evidence suggests this abnormality may result from synaptic hyper-excitability in sensory systems. This model predicts reduced sensory habituation to repeated stimulus presentation. Fourteen adolescents and adults with FXS and 15 age-matched controls participated in a modified auditory gating task using trains of 4 identical tones during dense array electroencephalography (EEG). Event-related potential and single trial time-frequency analyses revealed decreased habituation of the N1 event-related potential response in FXS, and increased gamma power coupled with decreases in gamma phase-locking during the early-stimulus registration period. EEG abnormalities in FXS were associated with parent reports of heightened sensory sensitivities and social communication deficits. Reduced habituation and altered gamma power and phase-locking to auditory cues demonstrated here in FXS patients parallels preclinical findings with Fmr1 KO mice. Thus, the EEG abnormalities seen in FXS patients support the model of neocortical hyper-excitability in FXS, and may provide useful translational biomarkers for evaluating novel treatment strategies targeting its neural substrate. PMID:27093069

  9. Reduced habituation of auditory evoked potentials indicate cortical hyper-excitability in Fragile X Syndrome

    PubMed Central

    Ethridge, L E; White, S P; Mosconi, M W; Wang, J; Byerly, M J; Sweeney, J A

    2016-01-01

    Sensory hypersensitivities are common, clinically distressing features of Fragile X Syndrome (FXS). Preclinical evidence suggests this abnormality may result from synaptic hyper-excitability in sensory systems. This model predicts reduced sensory habituation to repeated stimulus presentation. Fourteen adolescents and adults with FXS and 15 age-matched controls participated in a modified auditory gating task using trains of 4 identical tones during dense array electroencephalography (EEG). Event-related potential and single trial time–frequency analyses revealed decreased habituation of the N1 event-related potential response in FXS, and increased gamma power coupled with decreases in gamma phase-locking during the early-stimulus registration period. EEG abnormalities in FXS were associated with parent reports of heightened sensory sensitivities and social communication deficits. Reduced habituation and altered gamma power and phase-locking to auditory cues demonstrated here in FXS patients parallels preclinical findings with Fmr1 KO mice. Thus, the EEG abnormalities seen in FXS patients support the model of neocortical hyper-excitability in FXS, and may provide useful translational biomarkers for evaluating novel treatment strategies targeting its neural substrate. PMID:27093069

  10. Spontaneous activity in the developing auditory system.

    PubMed

    Wang, Han Chin; Bergles, Dwight E

    2015-07-01

    Spontaneous electrical activity is a common feature of sensory systems during early development. This sensory-independent neuronal activity has been implicated in promoting their survival and maturation, as well as growth and refinement of their projections to yield circuits that can rapidly extract information about the external world. Periodic bursts of action potentials occur in auditory neurons of mammals before hearing onset. This activity is induced by inner hair cells (IHCs) within the developing cochlea, which establish functional connections with spiral ganglion neurons (SGNs) several weeks before they are capable of detecting external sounds. During this pre-hearing period, IHCs fire periodic bursts of Ca(2+) action potentials that excite SGNs, triggering brief but intense periods of activity that pass through auditory centers of the brain. Although spontaneous activity requires input from IHCs, there is ongoing debate about whether IHCs are intrinsically active and their firing periodically interrupted by external inhibitory input (IHC-inhibition model), or are intrinsically silent and their firing periodically promoted by an external excitatory stimulus (IHC-excitation model). There is accumulating evidence that inner supporting cells in Kölliker's organ spontaneously release ATP during this time, which can induce bursts of Ca(2+) spikes in IHCs that recapitulate many features of auditory neuron activity observed in vivo. Nevertheless, the role of supporting cells in this process remains to be established in vivo. A greater understanding of the molecular mechanisms responsible for generating IHC activity in the developing cochlea will help reveal how these events contribute to the maturation of nascent auditory circuits. PMID:25296716

  11. Cortical and thalamic connectivity of the auditory anterior ectosylvian cortex of early-deaf cats: Implications for neural mechanisms of crossmodal plasticity.

    PubMed

    Meredith, M Alex; Clemo, H Ruth; Corley, Sarah B; Chabot, Nicole; Lomber, Stephen G

    2016-03-01

    Early hearing loss leads to crossmodal plasticity in regions of the cerebrum that are dominated by acoustical processing in hearing subjects. Until recently, little has been known of the connectional basis of this phenomenon. One region whose crossmodal properties are well-established is the auditory field of the anterior ectosylvian sulcus (FAES) in the cat, where neurons are normally responsive to acoustic stimulation and its deactivation leads to the behavioral loss of accurate orienting toward auditory stimuli. However, in early-deaf cats, visual responsiveness predominates in the FAES and its deactivation blocks accurate orienting behavior toward visual stimuli. For such crossmodal reorganization to occur, it has been presumed that novel inputs or increased projections from non-auditory cortical areas must be generated, or that existing non-auditory connections were 'unmasked.' These possibilities were tested using tracer injections into the FAES of adult cats deafened early in life (and hearing controls), followed by light microscopy to localize retrogradely labeled neurons. Surprisingly, the distribution of cortical and thalamic afferents to the FAES was very similar among early-deaf and hearing animals. No new visual projection sources were identified and visual cortical connections to the FAES were comparable in projection proportions. These results support an alternate theory for the connectional basis for cross-modal plasticity that involves enhanced local branching of existing projection terminals that originate in non-auditory as well as auditory cortices. PMID:26724756

  12. Effects of musical training on the early auditory cortical representation of pitch transitions as indexed by change-N1.

    PubMed

    Itoh, Kosuke; Okumiya-Kanke, Yoko; Nakayama, Yoh; Kwee, Ingrid L; Nakada, Tsutomu

    2012-12-01

    The effects of musical training on the early auditory cortical response to pitch transitions in music were investigated by use of the change-N1 component of auditory event-related potentials. Musicians and non-musicians were presented with music stimuli comprising a melody and a harmony under various listening conditions. First, when the subjects played a video game and were instructed to ignore the auditory stimuli, the onset of stimuli elicited a typical, fronto-central onset-N1, whereas melodic and harmonic pitch transitions within the stimuli elicited so-called change-N1s that were more posterior in scalp distribution. The pitch transition change-N1s, but not onset-N1, were enhanced in musicians. Second, when the listeners attended to the same stimuli as above to detect infrequently occurring target stimuli, the change-N1 elicited by pitch changes (in non-target stimuli) was augmented, in non-musicians only when the target was easily detectable, and in both musicians and non-musicians when it was difficult to detect. Thus, the early, obligatory cortical response to pitch transitions during passive listening was chronically enhanced by training in musicians, and, reflecting this training-induced enhancement, the task-related modulation of this response was also different between musicians and non-musicians. These results are the first to demonstrate the long-term effects of training, short-term effects of task and the effects of their interaction on the early (~100-ms) cortical processing of pitch transitions in music. The scalp distributions of these enhancement effects were generally right dominant at temporal electrode sites, suggesting contributions from the radially oriented subcomponent of change-N1, namely, the Tb (N1c) wave of the T-complex. PMID:22958242

  13. Multimodal Diffusion-MRI and MEG Assessment of Auditory and Language System Development in Autism Spectrum Disorder

    PubMed Central

    Berman, Jeffrey I.; Edgar, James C.; Blaskey, Lisa; Kuschner, Emily S.; Levy, Susan E.; Ku, Matthew; Dell, John; Roberts, Timothy P. L.

    2016-01-01

    Background: Auditory processing and language impairments are prominent in children with autism spectrum disorder (ASD). The present study integrated diffusion MR measures of white-matter microstructure and magnetoencephalography (MEG) measures of cortical dynamics to investigate associations between brain structure and function within auditory and language systems in ASD. Based on previous findings, abnormal structure-function relationships in auditory and language systems in ASD were hypothesized. Methods: Evaluable neuroimaging data was obtained from 44 typically developing (TD) children (mean age 10.4 ± 2.4 years) and 95 children with ASD (mean age 10.2 ± 2.6 years). Diffusion MR tractography was used to delineate and quantitatively assess the auditory radiation and arcuate fasciculus segments of the auditory and language systems. MEG was used to measure (1) superior temporal gyrus auditory evoked M100 latency in response to pure-tone stimuli as an indicator of auditory system conduction velocity, and (2) auditory vowel-contrast mismatch field (MMF) latency as a passive probe of early linguistic processes. Results: Atypical development of white matter and cortical function, along with atypical lateralization, were present in ASD. In both auditory and language systems, white matter integrity and cortical electrophysiology were found to be coupled in typically developing children, with white matter microstructural features contributing significantly to electrophysiological response latencies. However, in ASD, we observed uncoupled structure-function relationships in both auditory and language systems. Regression analyses in ASD indicated that factors other than white-matter microstructure additionally contribute to the latency of neural evoked responses and ultimately behavior. Results also indicated that whereas delayed M100 is a marker for ASD severity, MMF delay is more associated with language impairment. Conclusion: Present findings suggest atypical

  14. One Year of Musical Training Affects Development of Auditory Cortical-Evoked Fields in Young Children

    ERIC Educational Resources Information Center

    Fujioka, Takako; Ross, Bernhard; Kakigi, Ryusuke; Pantev, Christo; Trainor, Laurel J.

    2006-01-01

    Auditory evoked responses to a violin tone and a noise-burst stimulus were recorded from 4- to 6-year-old children in four repeated measurements over a 1-year period using magnetoencephalography (MEG). Half of the subjects participated in musical lessons throughout the year; the other half had no music lessons. Auditory evoked magnetic fields…

  15. Validation of the Emotiv EPOC® EEG gaming system for measuring research quality auditory ERPs

    PubMed Central

    Mousikou, Petroula; Mahajan, Yatin; de Lissa, Peter; Thie, Johnson; McArthur, Genevieve

    2013-01-01

    . Our findings suggest that the gaming EEG system may prove a valid alternative to laboratory ERP systems for recording reliable late auditory ERPs (P1, N1, P2, N2, and the P3) over the frontal cortices. In the future, the gaming EEG system may also prove useful for measuring less reliable ERPs, such as the MMN, if the reliability of such ERPs can be boosted to the same level as late auditory ERPs. PMID:23638374

  16. Validation of the Emotiv EPOC(®) EEG gaming system for measuring research quality auditory ERPs.

    PubMed

    Badcock, Nicholas A; Mousikou, Petroula; Mahajan, Yatin; de Lissa, Peter; Thie, Johnson; McArthur, Genevieve

    2013-01-01

    . Conclusions. Our findings suggest that the gaming EEG system may prove a valid alternative to laboratory ERP systems for recording reliable late auditory ERPs (P1, N1, P2, N2, and the P3) over the frontal cortices. In the future, the gaming EEG system may also prove useful for measuring less reliable ERPs, such as the MMN, if the reliability of such ERPs can be boosted to the same level as late auditory ERPs. PMID:23638374

  17. The Effect of Short-Term Auditory Training on Speech in Noise Perception and Cortical Auditory Evoked Potentials in Adults with Cochlear Implants.

    PubMed

    Barlow, Nathan; Purdy, Suzanne C; Sharma, Mridula; Giles, Ellen; Narne, Vijay

    2016-02-01

    This study investigated whether a short intensive psychophysical auditory training program is associated with speech perception benefits and changes in cortical auditory evoked potentials (CAEPs) in adult cochlear implant (CI) users. Ten adult implant recipients trained approximately 7 hours on psychophysical tasks (Gap-in-Noise Detection, Frequency Discrimination, Spectral Rippled Noise [SRN], Iterated Rippled Noise, Temporal Modulation). Speech performance was assessed before and after training using Lexical Neighborhood Test (LNT) words in quiet and in eight-speaker babble. CAEPs evoked by a natural speech stimulus /baba/ with varying syllable stress were assessed pre- and post-training, in quiet and in noise. SRN psychophysical thresholds showed a significant improvement (78% on average) over the training period, but performance on other psychophysical tasks did not change. LNT scores in noise improved significantly post-training by 11% on average compared with three pretraining baseline measures. N1P2 amplitude changed post-training for /baba/ in quiet (p = 0.005, visit 3 pretraining versus visit 4 post-training). CAEP changes did not correlate with behavioral measures. CI recipients' clinical records indicated a plateau in speech perception performance prior to participation in the study. A short period of intensive psychophysical training produced small but significant gains in speech perception in noise and spectral discrimination ability. There remain questions about the most appropriate type of training and the duration or dosage of training that provides the most robust outcomes for adults with CIs. PMID:27587925

  18. Assessment of tonotopically organised subdivisions in human auditory cortex using volumetric and surface-based cortical alignments.

    PubMed

    Langers, Dave R M

    2014-04-01

    Although orderly representations of sound frequency in the brain play a guiding role in the investigation of auditory processing, a rigorous statistical evaluation of cortical tonotopic maps has so far hardly been attempted. In this report, the group-level significance of local tonotopic gradients was assessed using mass-multivariate statistics. The existence of multiple fields on the superior surface of the temporal lobe in both hemispheres was shown. These fields were distinguishable on the basis of tonotopic gradient direction and may likely be identified with the human homologues of the core areas AI and R in primates. Moreover, an objective comparison was made between the usage of volumetric and surface-based registration methods. Although the surface-based method resulted in a better registration across subjects of the grey matter segment as a whole, the alignment of functional subdivisions within the cortical sheet did not appear to improve over volumetric methods. This suggests that the variable relationship between the structural and the functional characteristics of auditory cortex is a limiting factor that cannot be overcome by morphology-based registration techniques alone. Finally, to illustrate how the proposed approach may be used in clinical practice, the method was used to test for focal differences regarding the tonotopic arrangements in healthy controls and tinnitus patients. No significant differences were observed, suggesting that tinnitus does not necessarily require tonotopic reorganisation to occur. PMID:23633425

  19. Auditory Cortical Maturation in a Child with Cochlear Implant: Analysis of Electrophysiological and Behavioral Measures

    PubMed Central

    Silva, Liliane Aparecida Fagundes; Couto, Maria Inês Vieira; Tsuji, Robinson Koji; Bento, Ricardo Ferreira; de Carvalho, Ana Claudia Martinho; Matas, Carla Gentile

    2015-01-01

    The purpose of this study was to longitudinally assess the behavioral and electrophysiological hearing changes of a girl inserted in a CI program, who had bilateral profound sensorineural hearing loss and underwent surgery of cochlear implantation with electrode activation at 21 months of age. She was evaluated using the P1 component of Long Latency Auditory Evoked Potential (LLAEP); speech perception tests of the Glendonald Auditory Screening Procedure (GASP); Infant Toddler Meaningful Auditory Integration Scale (IT-MAIS); and Meaningful Use of Speech Scales (MUSS). The study was conducted prior to activation and after three, nine, and 18 months of cochlear implant activation. The results of the LLAEP were compared with data from a hearing child matched by gender and chronological age. The results of the LLAEP of the child with cochlear implant showed gradual decrease in latency of the P1 component after auditory stimulation (172 ms–134 ms). In the GASP, IT-MAIS, and MUSS, gradual development of listening skills and oral language was observed. The values of the LLAEP of the hearing child were expected for chronological age (132 ms–128 ms). The use of different clinical instruments allow a better understanding of the auditory habilitation and rehabilitation process via CI. PMID:26881163

  20. Auditory Cortical Maturation in a Child with Cochlear Implant: Analysis of Electrophysiological and Behavioral Measures.

    PubMed

    Silva, Liliane Aparecida Fagundes; Couto, Maria Inês Vieira; Tsuji, Robinson Koji; Bento, Ricardo Ferreira; de Carvalho, Ana Claudia Martinho; Matas, Carla Gentile

    2015-01-01

    The purpose of this study was to longitudinally assess the behavioral and electrophysiological hearing changes of a girl inserted in a CI program, who had bilateral profound sensorineural hearing loss and underwent surgery of cochlear implantation with electrode activation at 21 months of age. She was evaluated using the P1 component of Long Latency Auditory Evoked Potential (LLAEP); speech perception tests of the Glendonald Auditory Screening Procedure (GASP); Infant Toddler Meaningful Auditory Integration Scale (IT-MAIS); and Meaningful Use of Speech Scales (MUSS). The study was conducted prior to activation and after three, nine, and 18 months of cochlear implant activation. The results of the LLAEP were compared with data from a hearing child matched by gender and chronological age. The results of the LLAEP of the child with cochlear implant showed gradual decrease in latency of the P1 component after auditory stimulation (172 ms-134 ms). In the GASP, IT-MAIS, and MUSS, gradual development of listening skills and oral language was observed. The values of the LLAEP of the hearing child were expected for chronological age (132 ms-128 ms). The use of different clinical instruments allow a better understanding of the auditory habilitation and rehabilitation process via CI. PMID:26881163

  1. Differential Coding of Conspecific Vocalizations in the Ventral Auditory Cortical Stream

    PubMed Central

    Saunders, Richard C.; Leopold, David A.; Mishkin, Mortimer; Averbeck, Bruno B.

    2014-01-01

    The mammalian auditory cortex integrates spectral and temporal acoustic features to support the perception of complex sounds, including conspecific vocalizations. Here we investigate coding of vocal stimuli in different subfields in macaque auditory cortex. We simultaneously measured auditory evoked potentials over a large swath of primary and higher order auditory cortex along the supratemporal plane in three animals chronically using high-density microelectrocorticographic arrays. To evaluate the capacity of neural activity to discriminate individual stimuli in these high-dimensional datasets, we applied a regularized multivariate classifier to evoked potentials to conspecific vocalizations. We found a gradual decrease in the level of overall classification performance along the caudal to rostral axis. Furthermore, the performance in the caudal sectors was similar across individual stimuli, whereas the performance in the rostral sectors significantly differed for different stimuli. Moreover, the information about vocalizations in the caudal sectors was similar to the information about synthetic stimuli that contained only the spectral or temporal features of the original vocalizations. In the rostral sectors, however, the classification for vocalizations was significantly better than that for the synthetic stimuli, suggesting that conjoined spectral and temporal features were necessary to explain differential coding of vocalizations in the rostral areas. We also found that this coding in the rostral sector was carried primarily in the theta frequency band of the response. These findings illustrate a progression in neural coding of conspecific vocalizations along the ventral auditory pathway. PMID:24672012

  2. Differential coding of conspecific vocalizations in the ventral auditory cortical stream.

    PubMed

    Fukushima, Makoto; Saunders, Richard C; Leopold, David A; Mishkin, Mortimer; Averbeck, Bruno B

    2014-03-26

    The mammalian auditory cortex integrates spectral and temporal acoustic features to support the perception of complex sounds, including conspecific vocalizations. Here we investigate coding of vocal stimuli in different subfields in macaque auditory cortex. We simultaneously measured auditory evoked potentials over a large swath of primary and higher order auditory cortex along the supratemporal plane in three animals chronically using high-density microelectrocorticographic arrays. To evaluate the capacity of neural activity to discriminate individual stimuli in these high-dimensional datasets, we applied a regularized multivariate classifier to evoked potentials to conspecific vocalizations. We found a gradual decrease in the level of overall classification performance along the caudal to rostral axis. Furthermore, the performance in the caudal sectors was similar across individual stimuli, whereas the performance in the rostral sectors significantly differed for different stimuli. Moreover, the information about vocalizations in the caudal sectors was similar to the information about synthetic stimuli that contained only the spectral or temporal features of the original vocalizations. In the rostral sectors, however, the classification for vocalizations was significantly better than that for the synthetic stimuli, suggesting that conjoined spectral and temporal features were necessary to explain differential coding of vocalizations in the rostral areas. We also found that this coding in the rostral sector was carried primarily in the theta frequency band of the response. These findings illustrate a progression in neural coding of conspecific vocalizations along the ventral auditory pathway. PMID:24672012

  3. Multimodal Geographic Information Systems: Adding Haptic and Auditory Displays.

    ERIC Educational Resources Information Center

    Jeong, Wooseob

    2001-01-01

    This study consists of two experiments. Pitch, volume, and tempo in auditory-haptic geographic information systems were compared in terms of effectiveness for multimodal interface; volume was determined to be better. Auditory display with volume and haptic display with vibration were compared and the results showed that, in more complex geographic…

  4. Multimodal Geographic Information Systems: Adding Haptic and Auditory Display.

    ERIC Educational Resources Information Center

    Jeong, Wooseob; Gluck, Myke

    2003-01-01

    Investigated the feasibility of adding haptic and auditory displays to traditional visual geographic information systems (GISs). Explored differences in user performance, including task completion time and accuracy, and user satisfaction with a multimodal GIS which was implemented with a haptic display, auditory display, and combined display.…

  5. Left Posterior Auditory-Related Cortices Participate Both in Speech Perception and Speech Production: Neural Overlap Revealed by fMRI

    ERIC Educational Resources Information Center

    Okada, Kayoko; Hickok, Gregory

    2006-01-01

    Recent neuroimaging studies and neuropsychological data suggest that there are regions in posterior auditory cortex that participate both in speech perception and speech production. An outstanding question is whether the same neural regions support both perception and production or whether there exist discrete cortical fields subserving these…

  6. Vision Loss Shifts the Balance of Feedforward and Intracortical Circuits in Opposite Directions in Mouse Primary Auditory and Visual Cortices

    PubMed Central

    Petrus, Emily; Rodriguez, Gabriela; Patterson, Ryan; Connor, Blaine; Kanold, Patrick O.

    2015-01-01

    Loss of a sensory modality leads to widespread changes in synaptic function across sensory cortices, which are thought to be the basis for cross-modal adaptation. Previous studies suggest that experience-dependent cross-modal regulation of the spared sensory cortices may be mediated by changes in cortical circuits. Here, we report that loss of vision, in the form of dark exposure (DE) for 1 week, produces laminar-specific changes in excitatory and inhibitory circuits in the primary auditory cortex (A1) of adult mice to promote feedforward (FF) processing and also strengthens intracortical inputs to primary visual cortex (V1). Specifically, DE potentiated FF excitatory synapses from layer 4 (L4) to L2/3 in A1 and recurrent excitatory inputs in A1–L4 in parallel with a reduction in the strength of lateral intracortical excitatory inputs to A1–L2/3. This suggests a shift in processing in favor of FF information at the expense of intracortical processing. Vision loss also strengthened inhibitory synaptic function in L4 and L2/3 of A1, but via laminar specific mechanisms. In A1–L4, DE specifically potentiated the evoked synaptic transmission from parvalbumin-positive inhibitory interneurons to principal neurons without changes in spontaneous miniature IPSCs (mIPSCs). In contrast, DE specifically increased the frequency of mIPSCs in A1–L2/3. In V1, FF excitatory inputs were unaltered by DE, whereas lateral intracortical connections in L2/3 were strengthened, suggesting a shift toward intracortical processing. Our results suggest that loss of vision produces distinct circuit changes in the spared and deprived sensory cortices to shift between FF and intracortical processing to allow adaptation. PMID:26063913

  7. Vision loss shifts the balance of feedforward and intracortical circuits in opposite directions in mouse primary auditory and visual cortices.

    PubMed

    Petrus, Emily; Rodriguez, Gabriela; Patterson, Ryan; Connor, Blaine; Kanold, Patrick O; Lee, Hey-Kyoung

    2015-06-10

    Loss of a sensory modality leads to widespread changes in synaptic function across sensory cortices, which are thought to be the basis for cross-modal adaptation. Previous studies suggest that experience-dependent cross-modal regulation of the spared sensory cortices may be mediated by changes in cortical circuits. Here, we report that loss of vision, in the form of dark exposure (DE) for 1 week, produces laminar-specific changes in excitatory and inhibitory circuits in the primary auditory cortex (A1) of adult mice to promote feedforward (FF) processing and also strengthens intracortical inputs to primary visual cortex (V1). Specifically, DE potentiated FF excitatory synapses from layer 4 (L4) to L2/3 in A1 and recurrent excitatory inputs in A1-L4 in parallel with a reduction in the strength of lateral intracortical excitatory inputs to A1-L2/3. This suggests a shift in processing in favor of FF information at the expense of intracortical processing. Vision loss also strengthened inhibitory synaptic function in L4 and L2/3 of A1, but via laminar specific mechanisms. In A1-L4, DE specifically potentiated the evoked synaptic transmission from parvalbumin-positive inhibitory interneurons to principal neurons without changes in spontaneous miniature IPSCs (mIPSCs). In contrast, DE specifically increased the frequency of mIPSCs in A1-L2/3. In V1, FF excitatory inputs were unaltered by DE, whereas lateral intracortical connections in L2/3 were strengthened, suggesting a shift toward intracortical processing. Our results suggest that loss of vision produces distinct circuit changes in the spared and deprived sensory cortices to shift between FF and intracortical processing to allow adaptation. PMID:26063913

  8. Object representation in the human auditory system

    PubMed Central

    Winkler, István; van Zuijen, Titia L.; Sussman, Elyse; Horváth, János; Näätänen, Risto

    2010-01-01

    One important principle of object processing is exclusive allocation. Any part of the sensory input, including the border between two objects, can only belong to one object at a time. We tested whether tones forming a spectro-temporal border between two sound patterns can belong to both patterns at the same time. Sequences were composed of low-, intermediate- and high-pitched tones. Tones were delivered with short onset-to-onset intervals causing the high and low tones to automatically form separate low and high sound streams. The intermediate-pitch tones could be perceived as part of either one or the other stream, but not both streams at the same time. Thus these tones formed a pitch ’border’ between the two streams. The tones were presented in a fixed, cyclically repeating order. Linking the intermediate-pitch tones with the high or the low tones resulted in the perception of two different repeating tonal patterns. Participants were instructed to maintain perception of one of the two tone patterns throughout the stimulus sequences. Occasional changes violated either the selected or the alternative tone pattern, but not both at the same time. We found that only violations of the selected pattern elicited the mismatch negativity event-related potential, indicating that only this pattern was represented in the auditory system. This result suggests that individual sounds are processed as part of only one auditory pattern at a time. Thus tones forming a spectro-temporal border are exclusively assigned to one sound object at any given time, as are spatio-temporal borders in vision. PMID:16836636

  9. Human Auditory and Adjacent Nonauditory Cerebral Cortices Are Hypermetabolic in Tinnitus as Measured by Functional Near-Infrared Spectroscopy (fNIRS)

    PubMed Central

    Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul

    2016-01-01

    Tinnitus is the phantom perception of sound in the absence of an acoustic stimulus. To date, the purported neural correlates of tinnitus from animal models have not been adequately characterized with translational technology in the human brain. The aim of the present study was to measure changes in oxy-hemoglobin concentration from regions of interest (ROI; auditory cortex) and non-ROI (adjacent nonauditory cortices) during auditory stimulation and silence in participants with subjective tinnitus appreciated equally in both ears and in nontinnitus controls using functional near-infrared spectroscopy (fNIRS). Control and tinnitus participants with normal/near-normal hearing were tested during a passive auditory task. Hemodynamic activity was monitored over ROI and non-ROI under episodic periods of auditory stimulation with 750 or 8000 Hz tones, broadband noise, and silence. During periods of silence, tinnitus participants maintained increased hemodynamic responses in ROI, while a significant deactivation was seen in controls. Interestingly, non-ROI activity was also increased in the tinnitus group as compared to controls during silence. The present results demonstrate that both auditory and select nonauditory cortices have elevated hemodynamic activity in participants with tinnitus in the absence of an external auditory stimulus, a finding that may reflect basic science neural correlates of tinnitus that ultimately contribute to phantom sound perception. PMID:27042360

  10. Tracking cortical entrainment in neural activity: auditory processes in human temporal cortex

    PubMed Central

    Thwaites, Andrew; Nimmo-Smith, Ian; Fonteneau, Elisabeth; Patterson, Roy D.; Buttery, Paula; Marslen-Wilson, William D.

    2015-01-01

    A primary objective for cognitive neuroscience is to identify how features of the sensory environment are encoded in neural activity. Current auditory models of loudness perception can be used to make detailed predictions about the neural activity of the cortex as an individual listens to speech. We used two such models (loudness-sones and loudness-phons), varying in their psychophysiological realism, to predict the instantaneous loudness contours produced by 480 isolated words. These two sets of 480 contours were used to search for electrophysiological evidence of loudness processing in whole-brain recordings of electro- and magneto-encephalographic (EMEG) activity, recorded while subjects listened to the words. The technique identified a bilateral sequence of loudness processes, predicted by the more realistic loudness-sones model, that begin in auditory cortex at ~80 ms and subsequently reappear, tracking progressively down the superior temporal sulcus (STS) at lags from 230 to 330 ms. The technique was then extended to search for regions sensitive to the fundamental frequency (F0) of the voiced parts of the speech. It identified a bilateral F0 process in auditory cortex at a lag of ~90 ms, which was not followed by activity in STS. The results suggest that loudness information is being used to guide the analysis of the speech stream as it proceeds beyond auditory cortex down STS toward the temporal pole. PMID:25713530

  11. [Auditory guidance systems for the visually impaired people].

    PubMed

    He, Jing; Nie, Min; Luo, Lan; Tong, Shanbao; Niu, Jinhai; Zhu, Yisheng

    2010-04-01

    Visually impaired people face many inconveniences because of the loss of vision. Therefore, scientists are trying to design various guidance systems for improving the lives of the blind. Based on sensory substitution, auditory guidance has become an interesting topic in the field of biomedical engineering. In this paper, we made a state-of-technique review of the auditory guidance system. Although there have been many technical challenges, the auditory guidance system would be a useful alternative for the visually impaired people. PMID:20481341

  12. Clinical Experience of Using Cortical Auditory Evoked Potentials in the Treatment of Infant Hearing Loss in Australia.

    PubMed

    Punch, Simone; Van Dun, Bram; King, Alison; Carter, Lyndal; Pearce, Wendy

    2016-02-01

    This article presents the clinical protocol that is currently being used within Australian Hearing for infant hearing aid evaluation using cortical auditory evoked potentials (CAEPs). CAEP testing is performed in the free field at two stimulus levels (65 dB sound pressure level [SPL], followed by 55 or 75 dB SPL) using three brief frequency-distinct speech sounds /m/, /ɡ/, and /t/, within a standard audiological appointment of up to 90 minutes. CAEP results are used to check or guide modifications of hearing aid fittings or to confirm unaided hearing capability. A retrospective review of 83 client files evaluated whether clinical practice aligned with the clinical protocol. It showed that most children could be assessed as part of their initial fitting program when they were identified as a priority for CAEP testing. Aided CAEPs were most commonly assessed within 8 weeks of the fitting. A survey of 32 pediatric audiologists provided information about their perception of cortical testing at Australian Hearing. The results indicated that clinical CAEP testing influenced audiologists' approach to rehabilitation and was well received by parents and that they were satisfied with the technique. Three case studies were selected to illustrate how CAEP testing can be used in a clinical environment. Overall, CAEP testing has been effectively integrated into the infant fitting program. PMID:27587921

  13. Attention modulates earliest responses in the primary auditory and visual cortices.

    PubMed

    Poghosyan, Vahe; Ioannides, Andreas A

    2008-06-12

    A fundamental question about the neural correlates of attention concerns the earliest sensory processing stage that it can affect. We addressed this issue by recording magnetoencephalography (MEG) signals while subjects performed detection tasks, which required employment of spatial or nonspatial attention, in auditory or visual modality. Using distributed source analysis of MEG signals, we found that, contrary to previous studies that used equivalent current dipole (ECD) analysis, spatial attention enhanced the initial feedforward response in the primary visual cortex (V1) at 55-90 ms. We also found attentional modulation of the putative primary auditory cortex (A1) activity at 30-50 ms. Furthermore, we reproduced our findings using ECD modeling guided by the results of distributed source analysis and suggest a reason why earlier studies using ECD analysis failed to identify the modulation of earliest V1 activity. PMID:18549790

  14. Listening to Another Sense: Somatosensory Integration in the Auditory System

    PubMed Central

    Wu, Calvin; Stefanescu, Roxana A.; Martel, David T.

    2014-01-01

    Conventionally, sensory systems are viewed as separate entities, each with its own physiological process serving a different purpose. However, many functions require integrative inputs from multiple sensory systems, and sensory intersection and convergence occur throughout the central nervous system. The neural processes for hearing perception undergo significant modulation by the two other major sensory systems, vision and somatosensation. This synthesis occurs at every level of the ascending auditory pathway: the cochlear nucleus, inferior colliculus, medial geniculate body, and the auditory cortex. In this review, we explore the process of multisensory integration from 1) anatomical (inputs and connections), 2) physiological (cellular responses), 3) functional, and 4) pathological aspects. We focus on the convergence between auditory and somatosensory inputs in each ascending auditory station. This review highlights the intricacy of sensory processing, and offers a multisensory perspective regarding the understanding of sensory disorders. PMID:25526698

  15. Cortical Response Variability as a Developmental Index of Selective Auditory Attention

    ERIC Educational Resources Information Center

    Strait, Dana L.; Slater, Jessica; Abecassis, Victor; Kraus, Nina

    2014-01-01

    Attention induces synchronicity in neuronal firing for the encoding of a given stimulus at the exclusion of others. Recently, we reported decreased variability in scalp-recorded cortical evoked potentials to attended compared with ignored speech in adults. Here we aimed to determine the developmental time course for this neural index of auditory…

  16. Decoding stimulus identity from multi-unit activity and local field potentials along the ventral auditory stream in the awake primate: implications for cortical neural prostheses

    NASA Astrophysics Data System (ADS)

    Smith, Elliot; Kellis, Spencer; House, Paul; Greger, Bradley

    2013-02-01

    Objective. Hierarchical processing of auditory sensory information is believed to occur in two streams: a ventral stream responsible for stimulus identity and a dorsal stream responsible for processing spatial elements of a stimulus. The objective of the current study is to examine neural coding in this processing stream in the context of understanding the possibility for an auditory cortical neural prosthesis. Approach. We examined the selectivity for species-specific primate vocalizations in the ventral auditory processing stream by applying a statistical classifier to neural data recorded from microelectrode arrays. Multi-unit activity (MUA) and local field potential (LFP) data recorded simultaneously from primary auditory complex (AI) and rostral parabelt (PBr) were decoded on a trial-by-trial basis. Main results. While decode performance in AI was well above chance, mean performance in PBr did not deviate >15% from chance level. Mean performance levels were similar for MUA and LFP decodes. Increasing the spectral and temporal resolution improved decode performance; while inter-electrode spacing could be as large as 1.14 mm without degrading decode performance. Significance. These results serve as preliminary guidance for a human auditory cortical neural prosthesis; instructing interface implementation, microstimulation patterns and anatomical placement.

  17. Auditory alert systems with enhanced detectability

    NASA Technical Reports Server (NTRS)

    Begault, Durand R. (Inventor)

    2008-01-01

    Methods and systems for distinguishing an auditory alert signal from a background of one or more non-alert signals. In a first embodiment, a prefix signal, associated with an existing alert signal, is provided that has a signal component in each of three or more selected frequency ranges, with each signal component in each of three or more selected level at least 3-10 dB above an estimated background (non-alert) level in that frequency range. The alert signal may be chirped within one or more frequency bands. In another embodiment, an alert signal moves, continuously or discontinuously, from one location to another over a short time interval, introducing a perceived spatial modulation or jitter. In another embodiment, a weighted sum of background signals adjacent to each ear is formed, and the weighted sum is delivered to each ear as a uniform background; a distinguishable alert signal is presented on top of this weighted sum signal at one ear, or distinguishable first and second alert signals are presented at two ears of a subject.

  18. Interacting parallel pathways associate sounds with visual identity in auditory cortices.

    PubMed

    Ahveninen, Jyrki; Huang, Samantha; Ahlfors, Seppo P; Hämäläinen, Matti; Rossi, Stephanie; Sams, Mikko; Jääskeläinen, Iiro P

    2016-01-01

    Spatial and non-spatial information of sound events is presumably processed in parallel auditory cortex (AC) "what" and "where" streams, which are modulated by inputs from the respective visual-cortex subsystems. How these parallel processes are integrated to perceptual objects that remain stable across time and the source agent's movements is unknown. We recorded magneto- and electroencephalography (MEG/EEG) data while subjects viewed animated video clips featuring two audiovisual objects, a black cat and a gray cat. Adaptor-probe events were either linked to the same object (the black cat meowed twice in a row in the same location) or included a visually conveyed identity change (the black and then the gray cat meowed with identical voices in the same location). In addition to effects in visual (including fusiform, middle temporal or MT areas) and frontoparietal association areas, the visually conveyed object-identity change was associated with a release from adaptation of early (50-150ms) activity in posterior ACs, spreading to left anterior ACs at 250-450ms in our combined MEG/EEG source estimates. Repetition of events belonging to the same object resulted in increased theta-band (4-8Hz) synchronization within the "what" and "where" pathways (e.g., between anterior AC and fusiform areas). In contrast, the visually conveyed identity changes resulted in distributed synchronization at higher frequencies (alpha and beta bands, 8-32Hz) across different auditory, visual, and association areas. The results suggest that sound events become initially linked to perceptual objects in posterior AC, followed by modulations of representations in anterior AC. Hierarchical what and where pathways seem to operate in parallel after repeating audiovisual associations, whereas the resetting of such associations engages a distributed network across auditory, visual, and multisensory areas. PMID:26419388

  19. Quantitative analysis of neuronal response properties in primary and higher-order auditory cortical fields of awake house mice (Mus musculus)

    PubMed Central

    Joachimsthaler, Bettina; Uhlmann, Michaela; Miller, Frank; Ehret, Günter; Kurt, Simone

    2014-01-01

    Because of its great genetic potential, the mouse (Mus musculus) has become a popular model species for studies on hearing and sound processing along the auditory pathways. Here, we present the first comparative study on the representation of neuronal response parameters to tones in primary and higher-order auditory cortical fields of awake mice. We quantified 12 neuronal properties of tone processing in order to estimate similarities and differences of function between the fields, and to discuss how far auditory cortex (AC) function in the mouse is comparable to that in awake monkeys and cats. Extracellular recordings were made from 1400 small clusters of neurons from cortical layers III/IV in the primary fields AI (primary auditory field) and AAF (anterior auditory field), and the higher-order fields AII (second auditory field) and DP (dorsoposterior field). Field specificity was shown with regard to spontaneous activity, correlation between spontaneous and evoked activity, tone response latency, sharpness of frequency tuning, temporal response patterns (occurrence of phasic responses, phasic-tonic responses, tonic responses, and off-responses), and degree of variation between the characteristic frequency (CF) and the best frequency (BF) (CF–BF relationship). Field similarities were noted as significant correlations between CFs and BFs, V-shaped frequency tuning curves, similar minimum response thresholds and non-monotonic rate-level functions in approximately two-thirds of the neurons. Comparative and quantitative analyses showed that the measured response characteristics were, to various degrees, susceptible to influences of anesthetics. Therefore, studies of neuronal responses in the awake AC are important in order to establish adequate relationships between neuronal data and auditory perception and acoustic response behavior. PMID:24506843

  20. Cortical potentials evoked by confirming and disconfirming feedback following an auditory discrimination.

    NASA Technical Reports Server (NTRS)

    Squires, K. C.; Hillyard, S. A.; Lindsay, P. H.

    1973-01-01

    Vertex potentials elicited by visual feedback signals following an auditory intensity discrimination have been studied with eight subjects. Feedback signals which confirmed the prior sensory decision elicited small P3s, while disconfirming feedback elicited P3s that were larger. On the average, the latency of P3 was also found to increase with increasing disparity between the judgment and the feedback information. These effects were part of an overall dichotomy in wave shape following confirming vs disconfirming feedback. These findings are incorporated in a general model of the role of P3 in perceptual decision making.

  1. The topography of frequency and time representation in primate auditory cortices

    PubMed Central

    Baumann, Simon; Joly, Olivier; Rees, Adrian; Petkov, Christopher I; Sun, Li; Thiele, Alexander; Griffiths, Timothy D

    2015-01-01

    Natural sounds can be characterised by their spectral content and temporal modulation, but how the brain is organized to analyse these two critical sound dimensions remains uncertain. Using functional magnetic resonance imaging, we demonstrate a topographical representation of amplitude modulation rate in the auditory cortex of awake macaques. The representation of this temporal dimension is organized in approximately concentric bands of equal rates across the superior temporal plane in both hemispheres, progressing from high rates in the posterior core to low rates in the anterior core and lateral belt cortex. In A1 the resulting gradient of modulation rate runs approximately perpendicular to the axis of the tonotopic gradient, suggesting an orthogonal organisation of spectral and temporal sound dimensions. In auditory belt areas this relationship is more complex. The data suggest a continuous representation of modulation rate across several physiological areas, in contradistinction to a separate representation of frequency within each area. DOI: http://dx.doi.org/10.7554/eLife.03256.001 PMID:25590651

  2. Dynamic faces speed up the onset of auditory cortical spiking responses during vocal detection

    PubMed Central

    Chandrasekaran, Chandramouli; Lemus, Luis; Ghazanfar, Asif A.

    2013-01-01

    How low-level sensory areas help mediate the detection and discrimination advantages of integrating faces and voices is the subject of intense debate. To gain insights, we investigated the role of the auditory cortex in face/voice integration in macaque monkeys performing a vocal-detection task. Behaviorally, subjects were slower to detect vocalizations as the signal-to-noise ratio decreased, but seeing mouth movements associated with vocalizations sped up detection. Paralleling this behavioral relationship, as the signal to noise ratio decreased, the onset of spiking responses were delayed and magnitudes were decreased. However, when mouth motion accompanied the vocalization, these responses were uniformly faster. Conversely, and at odds with previous assumptions regarding the neural basis of face/voice integration, changes in the magnitude of neural responses were not related consistently to audiovisual behavior. Taken together, our data reveal that facilitation of spike latency is a means by which the auditory cortex partially mediates the reaction time benefits of combining faces and voices. PMID:24218574

  3. Linguistic category structure influences early auditory processing: Converging evidence from mismatch responses and cortical oscillations.

    PubMed

    Scharinger, Mathias; Monahan, Philip J; Idsardi, William J

    2016-03-01

    While previous research has established that language-specific knowledge influences early auditory processing, it is still controversial as to what aspects of speech sound representations determine early speech perception. Here, we propose that early processing primarily depends on information propagated top-down from abstractly represented speech sound categories. In particular, we assume that mid-vowels (as in 'bet') exert less top-down effects than the high-vowels (as in 'bit') because of their less specific (default) tongue height position as compared to either high- or low-vowels (as in 'bat'). We tested this assumption in a magnetoencephalography (MEG) study where we contrasted mid- and high-vowels, as well as the low- and high-vowels in a passive oddball paradigm. Overall, significant differences between deviants and standards indexed reliable mismatch negativity (MMN) responses between 200 and 300ms post-stimulus onset. MMN amplitudes differed in the mid/high-vowel contrasts and were significantly reduced when a mid-vowel standard was followed by a high-vowel deviant, extending previous findings. Furthermore, mid-vowel standards showed reduced oscillatory power in the pre-stimulus beta-frequency band (18-26Hz), compared to high-vowel standards. We take this as converging evidence for linguistic category structure to exert top-down influences on auditory processing. The findings are interpreted within the linguistic model of underspecification and the neuropsychological predictive coding framework. PMID:26780574

  4. Monkey׳s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices.

    PubMed

    Fritz, Jonathan B; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C

    2016-06-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30 to 40s to a duration of ~1 to 2s, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. This article is part of a Special Issue entitled SI: Auditory working memory. PMID:26707975

  5. Selective adaptation to "oddball" sounds by the human auditory system.

    PubMed

    Simpson, Andrew J R; Harper, Nicol S; Reiss, Joshua D; McAlpine, David

    2014-01-29

    Adaptation to both common and rare sounds has been independently reported in neurophysiological studies using probabilistic stimulus paradigms in small mammals. However, the apparent sensitivity of the mammalian auditory system to the statistics of incoming sound has not yet been generalized to task-related human auditory perception. Here, we show that human listeners selectively adapt to novel sounds within scenes unfolding over minutes. Listeners' performance in an auditory discrimination task remains steady for the most common elements within the scene but, after the first minute, performance improves for distinct and rare (oddball) sound elements, at the expense of rare sounds that are relatively less distinct. Our data provide the first evidence of enhanced coding of oddball sounds in a human auditory discrimination task and suggest the existence of an adaptive mechanism that tracks the long-term statistics of sounds and deploys coding resources accordingly. PMID:24478375

  6. Naming the same entities from visual or from auditory stimulation engages similar regions of left inferotemporal cortices.

    PubMed

    Tranel, Daniel; Grabowski, Thomas J; Lyon, Jill; Damasio, Hanna

    2005-08-01

    We have proposed that the left inferotemporal (IT) region contains structures that mediate between conceptual knowledge retrieval and word-form retrieval, and we have hypothesized that these structures are utilized for word retrieval irrespective of the sensory modality through which an entity is apprehended, thus being "modality neutral." We tested this idea in two sensory modalities, visual and auditory, and for two categories of concrete entities, tools and animals. In a PET experiment, 10 normal participants named tools and animals either from pictures or from characteristic sounds (e.g., "scissors" from a picture of a scissors or from the sound of a scissors cutting; "rooster" from a picture of a rooster or from the sound of a rooster crowing). Visual and auditory naming of tools activated the left posterior/lateral IT; visual and auditory naming of animals activated the left anterior/ventral IT. For both tools and animals, the left IT activations were similar in location and magnitude regardless of whether participants were naming entities from pictures or from sounds. The results provide novel evidence to support the notion that left IT structures contain "modality-neutral" systems for mediating between conceptual knowledge and word retrieval. PMID:16197684

  7. Clinical Use of Aided Cortical Auditory Evoked Potentials as a Measure of Physiological Detection or Physiological Discrimination

    PubMed Central

    Billings, Curtis J.; Papesh, Melissa A.; Penman, Tina M.; Baltzell, Lucas S.; Gallun, Frederick J.

    2012-01-01

    The clinical usefulness of aided cortical auditory evoked potentials (CAEPs) remains unclear despite several decades of research. One major contributor to this ambiguity is the wide range of variability across published studies and across individuals within a given study; some results demonstrate expected amplification effects, while others demonstrate limited or no amplification effects. Recent evidence indicates that some of the variability in amplification effects may be explained by distinguishing between experiments that focused on physiological detection of a stimulus versus those that differentiate responses to two audible signals, or physiological discrimination. Herein, we ask if either of these approaches is clinically feasible given the inherent challenges with aided CAEPs. N1 and P2 waves were elicited from 12 noise-masked normal-hearing individuals using hearing-aid-processed 1000-Hz pure tones. Stimulus levels were varied to study the effect of hearing-aid-signal/hearing-aid-noise audibility relative to the noise-masked thresholds. Results demonstrate that clinical use of aided CAEPs may be justified when determining whether audible stimuli are physiologically detectable relative to inaudible signals. However, differentiating aided CAEPs elicited from two suprathreshold stimuli (i.e., physiological discrimination) is problematic and should not be used for clinical decision making until a better understanding of the interaction between hearing-aid-processed stimuli and CAEPs can be established. PMID:23093964

  8. Synaptic Properties of Thalamic Input to the Subgranular Layers of Primary Somatosensory and Auditory Cortices in the Mouse

    PubMed Central

    Viaene, Angela N.; Petrof, Iraklis; Sherman, S. Murray

    2011-01-01

    The classification of synaptic inputs is an essential part of understanding brain circuitry. In the present study, we examined the synaptic properties of thalamic inputs to pyramidal neurons in layers 5a, 5b, and 6 of primary somatosensory (S1) and auditory (A1) cortices in mouse thalamocortical slices. Stimulation of the ventral posterior medial nucleus (VPM) and the ventral division of the medial geniculate body (MGBv) resulted in three distinct response classes, two of which have never been described before in thalamocortical projections. Class 1A responses included synaptic depression and all-or-none responses while Class 1B responses exhibited synaptic depression and graded responses. Class 1C responses are characterized by mixed facilitation and depression as well as graded responses. Activation of metabotropic glutamate receptors was not observed in any of the response classes. We conclude that Class 1 responses can be broken up into three distinct subclasses, and that thalamic inputs to the subgranular layers of cortex may combine with other, intracortical inputs to drive their postsynaptic target cells. We also integrate these results with our recent, analogous study of thalamocortical inputs to granular and supragranular layers (Viaene et al., 2011). PMID:21900553

  9. Cortical Auditory Evoked Potentials Reveal Changes in Audibility with Nonlinear Frequency Compression in Hearing Aids for Children: Clinical Implications.

    PubMed

    Ching, Teresa Y C; Zhang, Vicky W; Hou, Sanna; Van Buynder, Patricia

    2016-02-01

    Hearing loss in children is detected soon after birth via newborn hearing screening. Procedures for early hearing assessment and hearing aid fitting are well established, but methods for evaluating the effectiveness of amplification for young children are limited. One promising approach to validating hearing aid fittings is to measure cortical auditory evoked potentials (CAEPs). This article provides first a brief overview of reports on the use of CAEPs for evaluation of hearing aids. Second, a study that measured CAEPs to evaluate nonlinear frequency compression (NLFC) in hearing aids for 27 children (between 6.1 and 16.8 years old) who have mild to severe hearing loss is reported. There was no significant difference in aided sensation level or the detection of CAEPs for /g/ between NLFC on and off conditions. The activation of NLFC was associated with a significant increase in aided sensation levels for /t/ and /s/. It also was associated with an increase in detection of CAEPs for /t/ and /s/. The findings support the use of CAEPs for checking audibility provided by hearing aids. Based on the current data, a clinical protocol for using CAEPs to validate audibility with amplification is presented. PMID:27587920

  10. Developmental refinement of cortical systems for speech and voice processing.

    PubMed

    Bonte, Milene; Ley, Anke; Scharke, Wolfgang; Formisano, Elia

    2016-03-01

    Development typically leads to optimized and adaptive neural mechanisms for the processing of voice and speech. In this fMRI study we investigated how this adaptive processing reaches its mature efficiency by examining the effects of task, age and phonological skills on cortical responses to voice and speech in children (8-9years), adolescents (14-15years) and adults. Participants listened to vowels (/a/, /i/, /u/) spoken by different speakers (boy, girl, man) and performed delayed-match-to-sample tasks on vowel and speaker identity. Across age groups, similar behavioral accuracy and comparable sound evoked auditory cortical fMRI responses were observed. Analysis of task-related modulations indicated a developmental enhancement of responses in the (right) superior temporal cortex during the processing of speaker information. This effect was most evident through an analysis based on individually determined voice sensitive regions. Analysis of age effects indicated that the recruitment of regions in the temporal-parietal cortex and posterior cingulate/cingulate gyrus decreased with development. Beyond age-related changes, the strength of speech-evoked activity in left posterior and right middle superior temporal regions significantly scaled with individual differences in phonological skills. Together, these findings suggest a prolonged development of the cortical functional network for speech and voice processing. This development includes a progressive refinement of the neural mechanisms for the selection and analysis of auditory information relevant to the ongoing behavioral task. PMID:26777479

  11. Frequency-Specific Coupling in the Cortico-Cerebellar Auditory System

    PubMed Central

    Pastor, M. A.; Vidaurre, C.; Fernández-Seara, M. A.; Villanueva, A.; Friston, K. J.

    2008-01-01

    Induced oscillatory activity in the auditory cortex peaks at around 40 Hz in humans. Using regional cerebral blood flow and positron emission tomography we previously confirmed frequency-selective cortical responses to 40-Hz tones in auditory primary cortices and concomitant bilateral activation of the cerebellar hemispheres. In this study, using functional magnetic resonance imaging (fMRI) we estimated the influence of 40-Hz auditory stimulation on the coupling between auditory cortex and superior temporal sulcus (STS) and Crus II, using a dynamic causal model of the interactions between medial geniculate nuclei, auditory superior temporal gyrus (STG)/STS, and the cerebellar Crus II auditory region. Specifically, we tested the hypothesis that 40-Hz-selective responses in the cerebellar Crus II auditory region could be explained by frequency-specific enabling of interactions in the auditory cortico–cerebellar–thalamic loop. Our model comparison results suggest that input from auditory STG/STS to cerebellum is enhanced selectively at gamma-band frequencies around 40 Hz. PMID:18684912

  12. Cortical reorganization in children with cochlear implants.

    PubMed

    Gilley, Phillip M; Sharma, Anu; Dorman, Michael F

    2008-11-01

    Congenital deafness leads to atypical organization of the auditory nervous system. However, the extent to which auditory pathways reorganize during deafness is not well understood. We recorded cortical auditory evoked potentials in normal hearing children and in congenitally deaf children fitted with cochlear implants. High-density EEG and source modeling revealed principal activity from auditory cortex in normal hearing and early implanted children. However, children implanted after a critical period of seven years revealed activity from parietotemporal cortex in response to auditory stimulation, demonstrating reorganized cortical pathways. Reorganization of central auditory pathways is limited by the age at which implantation occurs, and may help explain the benefits and limitations of implantation in congenitally deaf children. PMID:18775684

  13. Velocity Selective Networks in Human Cortex Reveal Two Functionally Distinct Auditory Motion Systems

    PubMed Central

    Meng, Jhao-An; Saberi, Kourosh; Hsieh, I-Hui

    2016-01-01

    The auditory system encounters motion cues through an acoustic object’s movement or rotation of the listener’s head in a stationary sound field, generating a wide range of naturally occurring velocities from a few to several hundred degrees per second. The angular velocity of moving acoustic objects relative to a listener is typically slow and does not exceed tens of degrees per second, whereas head rotations in a stationary acoustic field may generate fast-changing spatial cues in the order of several hundred degrees per second. We hypothesized that these two types of systems (i.e., encoding slow movements of an object or fast head rotations) may engage functionally distinct substrates in processing spatially dynamic auditory cues, with the latter potentially involved in maintaining perceptual constancy in a stationary field during head rotations and therefore possibly involving corollary-discharge mechanisms in premotor cortex. Using fMRI, we examined cortical response patterns to sound sources moving at a wide range of velocities in 3D virtual auditory space. We found a significant categorical difference between fast and slow moving sounds, with stronger activations in response to higher velocities in the posterior superior temporal regions, the planum temporale, and notably the premotor ventral-rostral (PMVr) area implicated in planning neck and head motor functions. PMID:27294673

  14. Auditory cortical and hippocampal local-field potentials to frequency deviant tones in urethane-anesthetized rats: An unexpected role of the sound frequencies themselves.

    PubMed

    Ruusuvirta, Timo; Lipponen, Arto; Pellinen, Eeva-Kaarina; Penttonen, Markku; Astikainen, Piia

    2015-06-01

    The human brain can automatically detect auditory changes, as indexed by the mismatch negativity of event-related potentials. The mechanisms that underlie this response are poorly understood. We recorded primary auditory cortical and hippocampal (dentate gyrus, CA1) local-field potentials to serial tones in urethane-anesthetized rats. In an oddball condition, a rare (deviant) tone (p=0.11) randomly replaced a repeated (standard) tone. The deviant tone was either lower (2200, 2700, 3200, 3700Hz) or higher (4300, 4800, 5300, 5800Hz) in frequency than the standard tone (4000Hz). In an equiprobability control condition, all nine tones were presented at random (p=0.11). Differential responses to deviant tones relative to the standard tone were found in the auditory cortex and the dentate gyrus but not in CA1. Only in the dentate gyrus, the responses were found to be standard- (i.e., oddball condition-) specific. In the auditory cortex, the sound frequencies themselves sufficed to explain their generation. These findings tentatively suggest dissociation among non-contextual afferent, contextual afferent and auditory change detection processes. Most importantly, they remind us about the importance of strict control of physical sound features in mismatch negativity studies in animals. PMID:25911953

  15. Insult-induced adaptive plasticity of the auditory system

    PubMed Central

    Gold, Joshua R.; Bajo, Victoria M.

    2014-01-01

    The brain displays a remarkable capacity for both widespread and region-specific modifications in response to environmental challenges, with adaptive processes bringing about the reweighing of connections in neural networks putatively required for optimizing performance and behavior. As an avenue for investigation, studies centered around changes in the mammalian auditory system, extending from the brainstem to the cortex, have revealed a plethora of mechanisms that operate in the context of sensory disruption after insult, be it lesion-, noise trauma, drug-, or age-related. Of particular interest in recent work are those aspects of auditory processing which, after sensory disruption, change at multiple—if not all—levels of the auditory hierarchy. These include changes in excitatory, inhibitory and neuromodulatory networks, consistent with theories of homeostatic plasticity; functional alterations in gene expression and in protein levels; as well as broader network processing effects with cognitive and behavioral implications. Nevertheless, there abounds substantial debate regarding which of these processes may only be sequelae of the original insult, and which may, in fact, be maladaptively compelling further degradation of the organism's competence to cope with its disrupted sensory context. In this review, we aim to examine how the mammalian auditory system responds in the wake of particular insults, and to disambiguate how the changes that develop might underlie a correlated class of phantom disorders, including tinnitus and hyperacusis, which putatively are brought about through maladaptive neuroplastic disruptions to auditory networks governing the spatial and temporal processing of acoustic sensory information. PMID:24904256

  16. Synaptic plasticity in the auditory system: a review.

    PubMed

    Friauf, Eckhard; Fischer, Alexander U; Fuhr, Martin F

    2015-07-01

    Synaptic transmission via chemical synapses is dynamic, i.e., the strength of postsynaptic responses may change considerably in response to repeated synaptic activation. Synaptic strength is increased during facilitation, augmentation and potentiation, whereas a decrease in synaptic strength is characteristic for depression and attenuation. This review attempts to discuss the literature on short-term and long-term synaptic plasticity in the auditory brainstem of mammals and birds. One hallmark of the auditory system, particularly the inner ear and lower brainstem stations, is information transfer through neurons that fire action potentials at very high frequency, thereby activating synapses >500 times per second. Some auditory synapses display morphological specializations of the presynaptic terminals, e.g., calyceal extensions, whereas other auditory synapses do not. The review focuses on short-term depression and short-term facilitation, i.e., plastic changes with durations in the millisecond range. Other types of short-term synaptic plasticity, e.g., posttetanic potentiation and depolarization-induced suppression of excitation, will be discussed much more briefly. The same holds true for subtypes of long-term plasticity, like prolonged depolarizations and spike-time-dependent plasticity. We also address forms of plasticity in the auditory brainstem that do not comprise synaptic plasticity in a strict sense, namely short-term suppression, paired tone facilitation, short-term adaptation, synaptic adaptation and neural adaptation. Finally, we perform a meta-analysis of 61 studies in which short-term depression (STD) in the auditory system is opposed to short-term depression at non-auditory synapses in order to compare high-frequency neurons with those that fire action potentials at a lower rate. This meta-analysis reveals considerably less STD in most auditory synapses than in non-auditory ones, enabling reliable, failure-free synaptic transmission even at

  17. Anatomy, Physiology and Function of the Auditory System

    NASA Astrophysics Data System (ADS)

    Kollmeier, Birger

    The human ear consists of the outer ear (pinna or concha, outer ear canal, tympanic membrane), the middle ear (middle ear cavity with the three ossicles malleus, incus and stapes) and the inner ear (cochlea which is connected to the three semicircular canals by the vestibule, which provides the sense of balance). The cochlea is connected to the brain stem via the eighth brain nerve, i.e. the vestibular cochlear nerve or nervus statoacusticus. Subsequently, the acoustical information is processed by the brain at various levels of the auditory system. An overview about the anatomy of the auditory system is provided by Figure 1.

  18. Modeling neural adaptation in the frog auditory system

    NASA Astrophysics Data System (ADS)

    Wotton, Janine; McArthur, Kimberly; Bohara, Amit; Ferragamo, Michael; Megela Simmons, Andrea

    2005-09-01

    Extracellular recordings from the auditory midbrain, Torus semicircularis, of the leopard frog reveal a wide diversity of tuning patterns. Some cells seem to be well suited for time-based coding of signal envelope, and others for rate-based coding of signal frequency. Adaptation for ongoing stimuli plays a significant role in shaping the frequency-dependent response rate at different levels of the frog auditory system. Anuran auditory-nerve fibers are unusual in that they reveal frequency-dependent adaptation [A. L. Megela, J. Acoust. Soc. Am. 75, 1155-1162 (1984)], and therefore provide rate-based input. In order to examine the influence of these peripheral inputs on central responses, three layers of auditory neurons were modeled to examine short-term neural adaptation to pure tones and complex signals. The response of each neuron was simulated with a leaky integrate and fire model, and adaptation was implemented by means of an increasing threshold. Auditory-nerve fibers, dorsal medullary nucleus neurons, and toral cells were simulated and connected in three ascending layers. Modifying the adaptation properties of the peripheral fibers dramatically alters the response at the midbrain. [Work supported by NOHR to M.J.F.; Gustavus Presidential Scholarship to K.McA.; NIH DC05257 to A.M.S.

  19. Theta, beta and gamma rate modulations in the developing auditory system.

    PubMed

    Vanvooren, Sophie; Hofmann, Michael; Poelmans, Hanne; Ghesquière, Pol; Wouters, Jan

    2015-09-01

    In the brain, the temporal analysis of many important auditory features relies on the synchronized firing of neurons to the auditory input rhythm. These so-called neural oscillations play a crucial role in sensory and cognitive processing and deviances in oscillatory activity have shown to be associated with neurodevelopmental disorders. Given the importance of neural auditory oscillations in normal and impaired sensory and cognitive functioning, there has been growing interest in their developmental trajectory from early childhood on. In the present study, neural auditory processing was investigated in typically developing young children (n = 40) and adults (n = 27). In all participants, auditory evoked theta, beta and gamma responses were recorded. The results of this study show maturational differences between children and adults in neural auditory processing at cortical as well as at brainstem level. Neural background noise at cortical level was shown to be higher in children compared to adults. In addition, higher theta response amplitudes were measured in children compared to adults. For beta and gamma rate modulations, different processing asymmetry patterns were observed between both age groups. The mean response phase was also shown to differ significantly between children and adults for all rates. Results suggest that cortical auditory processing of beta develops from a general processing pattern into a more specialized asymmetric processing preference over age. Moreover, the results indicate an enhancement of bilateral representation of monaural sound input at brainstem with age. A dissimilar efficiency of auditory signal transmission from brainstem to cortex along the auditory pathway between children and adults is suggested. These developmental differences might be due to both functional experience-dependent as well as anatomical changes. The findings of the present study offer important information about maturational differences between children

  20. Ability of primary auditory cortical neurons to detect amplitude modulation with rate and temporal codes: neurometric analysis

    PubMed Central

    Johnson, Jeffrey S.; Yin, Pingbo; O'Connor, Kevin N.

    2012-01-01

    Amplitude modulation (AM) is a common feature of natural sounds, and its detection is biologically important. Even though most sounds are not fully modulated, the majority of physiological studies have focused on fully modulated (100% modulation depth) sounds. We presented AM noise at a range of modulation depths to awake macaque monkeys while recording from neurons in primary auditory cortex (A1). The ability of neurons to detect partial AM with rate and temporal codes was assessed with signal detection methods. On average, single-cell synchrony was as or more sensitive than spike count in modulation detection. Cells are less sensitive to modulation depth if tested away from their best modulation frequency, particularly for temporal measures. Mean neural modulation detection thresholds in A1 are not as sensitive as behavioral thresholds, but with phase locking the most sensitive neurons are more sensitive, suggesting that for temporal measures the lower-envelope principle cannot account for thresholds. Three methods of preanalysis pooling of spike trains (multiunit, similar to convergence from a cortical column; within cell, similar to convergence of cells with matched response properties; across cell, similar to indiscriminate convergence of cells) all result in an increase in neural sensitivity to modulation depth for both temporal and rate codes. For the across-cell method, pooling of a few dozen cells can result in detection thresholds that approximate those of the behaving animal. With synchrony measures, indiscriminate pooling results in sensitive detection of modulation frequencies between 20 and 60 Hz, suggesting that differences in AM response phase are minor in A1. PMID:22422997

  1. Division of labor between left and right human auditory cortices during the processing of intensity and duration.

    PubMed

    Angenstein, Nicole; Brechmann, André

    2013-12-01

    Intensity and duration are important parameters for the processing of speech and music. Neuroimaging results on the processing of these parameters in tasks involving the discrimination of stimuli based on these parameters are controversial. Depending on the experimental approach, varying hypotheses on the involvement of the left and right auditory cortices (ACs) have been put forward. The aim of the present functional magnetic resonance imaging (fMRI) study was to find differences and commonalities in location and strength of brain activity during the processing of intensity and duration when the same stimuli have to be actively categorized according to these two parameters. For this we used a recently introduced method to determine lateralized processing in the AC with contralateral noise. Harmonic frequency modulated (FM) tone complexes were presented monaurally without and with contralateral noise. During categorization of the tones according to their intensity, contralateral noise increased activity mainly in the left AC, suggesting a special role for the left AC in this task. During categorization of tones according to their duration, contralateral noise increased activity in both the left and the right AC. This suggests that active categorization of FM tones according to their duration does not involve only the left AC as has been suggested, but also the right AC to a substantial degree. The area around Heschl's sulcus seems to be the most strongly involved during both intensity and duration categorization, albeit with different lateralization. Altogether the results of the present study support the view that the lateralized processing of the same stimuli in the human AC is strongly modulated by the given task (top-down effect). PMID:23831528

  2. A layered neural network model applied to the auditory system

    NASA Astrophysics Data System (ADS)

    Travis, Bryan J.

    1986-08-01

    The structure of the auditory system is described with emphasis on the cerebral cortex. A layered neural network model incorporating much of the known structure of the cortex is applied to word discrimination. The concepts of iterated maps and atrractive fixed points are used to enable the model to recognize words despite variations in pitch, intensity and duration.

  3. Teaching Vocational Skills with a Faded Auditory Prompting System.

    ERIC Educational Resources Information Center

    Mitchell, Rebecca J.; Schuster, John W.; Collins, Belva C.; Gassaway, Linda J.

    2000-01-01

    Three students (ages 14-16) with mild mental retardation were taught to use an auditory prompting system to complete the vocational tasks of cleaning a bathroom in a classroom setting. Students acquired the skills and generalized them to a novel setting. There were mixed results concerning maintenance of the skills. (Contains 10 references.)…

  4. Syntax processing by auditory cortical neurons in the FM-FM area of the mustached bat Pteronotus parnellii.

    PubMed

    Esser, K H; Condon, C J; Suga, N; Kanwal, J S

    1997-12-01

    Syntax denotes a rule system that allows one to predict the sequencing of communication signals. Despite its significance for both human speech processing and animal acoustic communication, the representation of syntactic structure in the mammalian brain has not been studied electrophysiologically at the single-unit level. In the search for a neuronal correlate for syntax, we used playback of natural and temporally destructured complex species-specific communication calls-so-called composites-while recording extracellularly from neurons in a physiologically well defined area (the FM-FM area) of the mustached bat's auditory cortex. Even though this area is known to be involved in the processing of target distance information for echolocation, we found that units in the FM-FM area were highly responsive to composites. The finding that neuronal responses were strongly affected by manipulation in the time domain of the natural composite structure lends support to the hypothesis that syntax processing in mammals occurs at least at the level of the nonprimary auditory cortex. PMID:9391145

  5. The frequency modulated auditory evoked response (FMAER), a technical advance for study of childhood language disorders: cortical source localization and selected case studies

    PubMed Central

    2013-01-01

    Background Language comprehension requires decoding of complex, rapidly changing speech streams. Detecting changes of frequency modulation (FM) within speech is hypothesized as essential for accurate phoneme detection, and thus, for spoken word comprehension. Despite past demonstration of FM auditory evoked response (FMAER) utility in language disorder investigations, it is seldom utilized clinically. This report's purpose is to facilitate clinical use by explaining analytic pitfalls, demonstrating sites of cortical origin, and illustrating potential utility. Results FMAERs collected from children with language disorders, including Developmental Dysphasia, Landau-Kleffner syndrome (LKS), and autism spectrum disorder (ASD) and also normal controls - utilizing multi-channel reference-free recordings assisted by discrete source analysis - provided demonstratrions of cortical origin and examples of clinical utility. Recordings from inpatient epileptics with indwelling cortical electrodes provided direct assessment of FMAER origin. The FMAER is shown to normally arise from bilateral posterior superior temporal gyri and immediate temporal lobe surround. Childhood language disorders associated with prominent receptive deficits demonstrate absent left or bilateral FMAER temporal lobe responses. When receptive language is spared, the FMAER may remain present bilaterally. Analyses based upon mastoid or ear reference electrodes are shown to result in erroneous conclusions. Serial FMAER studies may dynamically track status of underlying language processing in LKS. FMAERs in ASD with language impairment may be normal or abnormal. Cortical FMAERs can locate language cortex when conventional cortical stimulation does not. Conclusion The FMAER measures the processing by the superior temporal gyri and adjacent cortex of rapid frequency modulation within an auditory stream. Clinical disorders associated with receptive deficits are shown to demonstrate absent left or bilateral

  6. Functional and structural changes throughout the auditory system following congenital and early-onset deafness: implications for hearing restoration

    PubMed Central

    Butler, Blake E.; Lomber, Stephen G.

    2013-01-01

    The absence of auditory input, particularly during development, causes widespread changes in the structure and function of the auditory system, extending from peripheral structures into auditory cortex. In humans, the consequences of these changes are far-reaching and often include detriments to language acquisition, and associated psychosocial issues. Much of what is currently known about the nature of deafness-related changes to auditory structures comes from studies of congenitally deaf or early-deafened animal models. Fortunately, the mammalian auditory system shows a high degree of preservation among species, allowing for generalization from these models to the human auditory system. This review begins with a comparison of common methods used to obtain deaf animal models, highlighting the specific advantages and anatomical consequences of each. Some consideration is also given to the effectiveness of methods used to measure hearing loss during and following deafening procedures. The structural and functional consequences of congenital and early-onset deafness have been examined across a variety of mammals. This review attempts to summarize these changes, which often involve alteration of hair cells and supporting cells in the cochleae, and anatomical and physiological changes that extend through subcortical structures and into cortex. The nature of these changes is discussed, and the impacts to neural processing are addressed. Finally, long-term changes in cortical structures are discussed, with a focus on the presence or absence of cross-modal plasticity. In addition to being of interest to our understanding of multisensory processing, these changes also have important implications for the use of assistive devices such as cochlear implants. PMID:24324409

  7. Functional and structural changes throughout the auditory system following congenital and early-onset deafness: implications for hearing restoration.

    PubMed

    Butler, Blake E; Lomber, Stephen G

    2013-01-01

    The absence of auditory input, particularly during development, causes widespread changes in the structure and function of the auditory system, extending from peripheral structures into auditory cortex. In humans, the consequences of these changes are far-reaching and often include detriments to language acquisition, and associated psychosocial issues. Much of what is currently known about the nature of deafness-related changes to auditory structures comes from studies of congenitally deaf or early-deafened animal models. Fortunately, the mammalian auditory system shows a high degree of preservation among species, allowing for generalization from these models to the human auditory system. This review begins with a comparison of common methods used to obtain deaf animal models, highlighting the specific advantages and anatomical consequences of each. Some consideration is also given to the effectiveness of methods used to measure hearing loss during and following deafening procedures. The structural and functional consequences of congenital and early-onset deafness have been examined across a variety of mammals. This review attempts to summarize these changes, which often involve alteration of hair cells and supporting cells in the cochleae, and anatomical and physiological changes that extend through subcortical structures and into cortex. The nature of these changes is discussed, and the impacts to neural processing are addressed. Finally, long-term changes in cortical structures are discussed, with a focus on the presence or absence of cross-modal plasticity. In addition to being of interest to our understanding of multisensory processing, these changes also have important implications for the use of assistive devices such as cochlear implants. PMID:24324409

  8. Double dissociation of 'what' and 'where' processing in auditory cortex.

    PubMed

    Lomber, Stephen G; Malhotra, Shveta

    2008-05-01

    Studies of cortical connections or neuronal function in different cerebral areas support the hypothesis that parallel cortical processing streams, similar to those identified in visual cortex, may exist in the auditory system. However, this model has not yet been behaviorally tested. We used reversible cooling deactivation to investigate whether the individual regions in cat nonprimary auditory cortex that are responsible for processing the pattern of an acoustic stimulus or localizing a sound in space could be doubly dissociated in the same animal. We found that bilateral deactivation of the posterior auditory field resulted in deficits in a sound-localization task, whereas bilateral deactivation of the anterior auditory field resulted in deficits in a pattern-discrimination task, but not vice versa. These findings support a model of cortical organization that proposes that identifying an acoustic stimulus ('what') and its spatial location ('where') are processed in separate streams in auditory cortex. PMID:18408717

  9. Automatic hearing loss detection system based on auditory brainstem response

    NASA Astrophysics Data System (ADS)

    Aldonate, J.; Mercuri, C.; Reta, J.; Biurrun, J.; Bonell, C.; Gentiletti, G.; Escobar, S.; Acevedo, R.

    2007-11-01

    Hearing loss is one of the pathologies with the highest prevalence in newborns. If it is not detected in time, it can affect the nervous system and cause problems in speech, language and cognitive development. The recommended methods for early detection are based on otoacoustic emissions (OAE) and/or auditory brainstem response (ABR). In this work, the design and implementation of an automated system based on ABR to detect hearing loss in newborns is presented. Preliminary evaluation in adults was satisfactory.

  10. Large-scale organization of the primate cortical visual system

    NASA Astrophysics Data System (ADS)

    Young, Malcolm P.

    1994-03-01

    The primate cortical visual system is composed of many structurally and functionally distinct areas or processing compartments, each of which receives on average about ten afferent inputs from other cortical areas and sends about the same number of output projections. The visual cortex is thus served by a very large number of cortico-cortical connections, so that the areas and their interconnections form a network of remarkable complexity. The gross organization of this cortical processing system hence represents a formidable topological problem: while the spatial position of the areas in the brain are becoming fairly well established, the gross `processing architecture,' defined by the connections, is much less well understood. I have applied optimization analysis to connectional data on the cortical visual system to address this topological problem. This approach gives qualitative and quantitative insight into the connectional topology of the primate cortical visual system and provides new evidence supporting suggestions that the system is divided into a dorsal `stream' and a ventral `stream' with limited cross-talk, that these two streams reconverge in the region of the principal sulcus (area 46) and in the superior temporal polysensory areas, that the system is hierarchically organized, and that the majority of the connections are from nearest-neighbor and next-door- but-one areas. The robustness of the results is shown by reanalyzing the connection data after various manipulations that simulate gross changes to the neuroanatomical database.

  11. [Auditory evoked potentials: basics and clinical applications].

    PubMed

    Radeloff, A; Cebulla, M; Shehata-Dieler, W

    2014-09-01

    Auditory evoked potentials (AEPs) are elicited at various levels of the auditory system following acoustic stimulation. Electrocochleography is a technique for recording AEPs of the inner ear. The recording is performed by means of a needle electrode placed on the promontory or non-invasive with tympanic membrane or ear canal electrodes. Clinically, electrocochleography is used for the diagnosis of auditory neuropathy spectrum disorder (ANSD) and endolymphatic hydrops. According to their latencies, AEPs of the central auditory pathway are subdivided into early, middle and late (cortical) AEPs. These AEPs are recorded via surface scalp electrodes. Normally, the larger EEG masks AEPs. For unmasking the AEP, several techniques are applied. Early AEPs or auditory brainstem responses (ABR) are the most widely used AEPs for functional evaluation of the auditory pathway. In contrast to otoacoustic emissions, early AEPs can detect ANSD. Thus, they are more suitable for hearing screening in newborns. For this purpose automated procedures are implemented. PMID:25152975

  12. Auditory cortical deactivation during speech production and following speech perception: an EEG investigation of the temporal dynamics of the auditory alpha rhythm

    PubMed Central

    Jenson, David; Harkrider, Ashley W.; Thornton, David; Bowers, Andrew L.; Saltuklaroglu, Tim

    2015-01-01

    Sensorimotor integration (SMI) across the dorsal stream enables online monitoring of speech. Jenson et al. (2014) used independent component analysis (ICA) and event related spectral perturbation (ERSP) analysis of electroencephalography (EEG) data to describe anterior sensorimotor (e.g., premotor cortex, PMC) activity during speech perception and production. The purpose of the current study was to identify and temporally map neural activity from posterior (i.e., auditory) regions of the dorsal stream in the same tasks. Perception tasks required “active” discrimination of syllable pairs (/ba/ and /da/) in quiet and noisy conditions. Production conditions required overt production of syllable pairs and nouns. ICA performed on concatenated raw 68 channel EEG data from all tasks identified bilateral “auditory” alpha (α) components in 15 of 29 participants localized to pSTG (left) and pMTG (right). ERSP analyses were performed to reveal fluctuations in the spectral power of the α rhythm clusters across time. Production conditions were characterized by significant α event related synchronization (ERS; pFDR < 0.05) concurrent with EMG activity from speech production, consistent with speech-induced auditory inhibition. Discrimination conditions were also characterized by α ERS following stimulus offset. Auditory α ERS in all conditions temporally aligned with PMC activity reported in Jenson et al. (2014). These findings are indicative of speech-induced suppression of auditory regions, possibly via efference copy. The presence of the same pattern following stimulus offset in discrimination conditions suggests that sensorimotor contributions following speech perception reflect covert replay, and that covert replay provides one source of the motor activity previously observed in some speech perception tasks. To our knowledge, this is the first time that inhibition of auditory regions by speech has been observed in real-time with the ICA/ERSP technique. PMID

  13. Cortical Auditory Deafferentation Induces Long-Term Plasticity in the Inferior Colliculus of Adult Rats: Microarray and qPCR Analysis

    PubMed Central

    Clarkson, Cheryl; Herrero-Turrión, M. Javier; Merchán, Miguel A.

    2012-01-01

    The cortico-collicular pathway is a bilateral excitatory projection from the cortex to the inferior colliculus (IC). It is asymmetric and predominantly ipsilateral. Using microarrays and RT-qPCR we analyzed changes in gene expression in the IC after unilateral lesions of the auditory cortex, comparing the ICs ipsi- and contralateral to the lesioned side. At 15 days after surgery there were mainly changes in gene expression in the IC ipsilateral to the lesion. Regulation primarily involved inflammatory cascade genes, suggesting a direct effect of degeneration rather than a neuronal plastic reorganization. Ninety days after the cortical lesion the ipsilateral IC showed a significant up-regulation of genes involved in apoptosis and axonal regeneration combined with a down-regulation of genes involved in neurotransmission, synaptic growth, and gap junction assembly. In contrast, the contralateral IC at 90 days post-lesion showed an up-regulation in genes primarily related to neurotransmission, cell proliferation, and synaptic growth. There was also a down-regulation in autophagy and neuroprotection genes. These findings suggest that the reorganization in the IC after descending pathway deafferentation is a long-term process involving extensive changes in gene expression regulation. Regulated genes are involved in many different neuronal functions, and the number and gene rearrangement profile seems to depend on the density of loss of the auditory cortical inputs. PMID:23233834

  14. The Auditory Corticocollicular System: Molecular and Circuit-Level Considerations

    PubMed Central

    Stebbings, Kevin A.; Lesicko, Alexandria M.H.; Llano, Daniel A.

    2014-01-01

    We live in a world imbued with a rich mixture of complex sounds. Successful acoustic communication requires the ability to extract meaning from those sounds, even when degraded. One strategy used by the auditory system is to harness high-level contextual cues to modulate the perception of incoming sounds. An ideal substrate for this process is the massive set of top-down projections emanating from virtually every level of the auditory system. In this review, we provide a molecular and circuit-level description of one of the largest of these pathways: the auditory corticocollicular pathway. While its functional role remains to be fully elucidated, activation of this projection system can rapidly and profoundly change the tuning of neurons in the inferior colliculus. Several specific issues are reviewed. First, we describe the complex heterogeneous anatomical organization of the corticocollicular pathway, with particular emphasis on the topography of the pathway. We also review the laminar origin of the corticocollicular projection and discuss known physiological and morphological differences between subsets of corticocollicular cells. Finally, we discuss recent findings about the molecular micro-organization of the inferior colliculus and how it interfaces with corticocollicular termination patterns. Given the assortment of molecular tools now available to the investigator, it is hoped that his review will help guide future research on the role of this pathway in normal hearing. PMID:24911237

  15. Emergent Auditory Feature Tuning in a Real-Time Neuromorphic VLSI System

    PubMed Central

    Sheik, Sadique; Coath, Martin; Indiveri, Giacomo; Denham, Susan L.; Wennekers, Thomas; Chicca, Elisabetta

    2011-01-01

    Many sounds of ecological importance, such as communication calls, are characterized by time-varying spectra. However, most neuromorphic auditory models to date have focused on distinguishing mainly static patterns, under the assumption that dynamic patterns can be learned as sequences of static ones. In contrast, the emergence of dynamic feature sensitivity through exposure to formative stimuli has been recently modeled in a network of spiking neurons based on the thalamo-cortical architecture. The proposed network models the effect of lateral and recurrent connections between cortical layers, distance-dependent axonal transmission delays, and learning in the form of Spike Timing Dependent Plasticity (STDP), which effects stimulus-driven changes in the pattern of network connectivity. In this paper we demonstrate how these principles can be efficiently implemented in neuromorphic hardware. In doing so we address two principle problems in the design of neuromorphic systems: real-time event-based asynchronous communication in multi-chip systems, and the realization in hybrid analog/digital VLSI technology of neural computational principles that we propose underlie plasticity in neural processing of dynamic stimuli. The result is a hardware neural network that learns in real-time and shows preferential responses, after exposure, to stimuli exhibiting particular spectro-temporal patterns. The availability of hardware on which the model can be implemented, makes this a significant step toward the development of adaptive, neurobiologically plausible, spike-based, artificial sensory systems. PMID:22347163

  16. Motor-related signals in the auditory system for listening and learning.

    PubMed

    Schneider, David M; Mooney, Richard

    2015-08-01

    In the auditory system, corollary discharge signals are theorized to facilitate normal hearing and the learning of acoustic behaviors, including speech and music. Despite clear evidence of corollary discharge signals in the auditory cortex and their presumed importance for hearing and auditory-guided motor learning, the circuitry and function of corollary discharge signals in the auditory cortex are not well described. In this review, we focus on recent developments in the mouse and songbird that provide insights into the circuitry that transmits corollary discharge signals to the auditory system and the function of these signals in the context of hearing and vocal learning. PMID:25827273

  17. An acoustic gap between the NICU and womb: a potential risk for compromised neuroplasticity of the auditory system in preterm infants

    PubMed Central

    Lahav, Amir; Skoe, Erika

    2014-01-01

    The intrauterine environment allows the fetus to begin hearing low-frequency sounds in a protected fashion, ensuring initial optimal development of the peripheral and central auditory system. However, the auditory nursery provided by the womb vanishes once the preterm newborn enters the high-frequency (HF) noisy environment of the neonatal intensive care unit (NICU). The present article draws a concerning line between auditory system development and HF noise in the NICU, which we argue is not necessarily conducive to fostering this development. Overexposure to HF noise during critical periods disrupts the functional organization of auditory cortical circuits. As a result, we theorize that the ability to tune out noise and extract acoustic information in a noisy environment may be impaired, leading to increased risks for a variety of auditory, language, and attention disorders. Additionally, HF noise in the NICU often masks human speech sounds, further limiting quality exposure to linguistic stimuli. Understanding the impact of the sound environment on the developing auditory system is an important first step in meeting the developmental demands of preterm newborns undergoing intensive care. PMID:25538543

  18. Vocal Corollary Discharge Communicates Call Duration to Vertebrate Auditory System

    PubMed Central

    2013-01-01

    Corollary discharge is essential to an animal's ability to filter self-generated from external stimuli. This includes acoustic communication, although direct demonstration of a corollary discharge that both conveys a vocal motor signal and informs the auditory system about the physical attributes of a self-generated vocalization has remained elusive for vertebrates. Here, we show the underlying synaptic activity of a neuronal vocal corollary discharge pathway in the hindbrain of a highly vocal species of fish. Neurons carrying the vocal corollary discharge are specifically adapted for the transmission of duration information, a predominant acoustic cue. The results reveal that vertebrates, like some insects, have a robust corollary discharge conveying call duration. Along with evidence for the influence of vocal duration on auditory encoding in mammals, these new findings suggest that linking vocal motor and corollary discharge pathways with pattern generating, call duration neurons is a shared network character across the animal kingdom. PMID:24285884

  19. The memory systems of children with (central) auditory disorder.

    PubMed

    Pires, Mayra Monteiro; Mota, Mailce Borges; Pinheiro, Maria Madalena Canina

    2015-01-01

    This study aims to investigate working, declarative, and procedural memory in children with (central) auditory processing disorder who showed poor phonological awareness. Thirty 9- and 10-year-old children participated in the study and were distributed into two groups: a control group consisting of 15 children with typical development, and an experimental group consisting of 15 children with (central) auditory processing disorder who were classified according to three behavioral tests and who showed poor phonological awareness in the CONFIAS test battery. The memory systems were assessed through the adapted tests in the program E-PRIME 2.0. The working memory was assessed by the Working Memory Test Battery for Children (WMTB-C), whereas the declarative memory was assessed by a picture-naming test and the procedural memory was assessed by means of a morphosyntactic processing test. The results showed that, when compared to the control group, children with poor phonological awareness scored lower in the working, declarative, and procedural memory tasks. The results of this study suggest that in children with (central) auditory processing disorder, phonological awareness is associated with the analyzed memory systems. PMID:26398254

  20. Spontaneous EEG alpha oscillation interacts with positive and negative BOLD responses in the visual-auditory cortices and default-mode network.

    PubMed

    Mayhew, Stephen D; Ostwald, Dirk; Porcaro, Camillo; Bagshaw, Andrew P

    2013-08-01

    The human brain is continually, dynamically active and spontaneous fluctuations in this activity play a functional role in affecting both behavioural and neuronal responses. However, the mechanisms through which this occurs remain poorly understood. Simultaneous EEG-fMRI is a promising technique to study how spontaneous activity modulates the brain's response to stimulation, as temporal indices of ongoing cortical excitability can be integrated with spatially localised evoked responses. Here we demonstrate an interaction between the ongoing power of the electrophysiological alpha oscillation and the magnitude of both positive (PBR) and negative (NBR) fMRI responses to two contrasts of visual checkerboard reversal. Furthermore, the amplitude of pre-stimulus EEG alpha-power significantly modulated the amplitude and shape of subsequent PBR and NBR to the visual stimulus. A nonlinear reduction of visual PBR and an enhancement of auditory NBR and default-mode network NBR were observed in trials preceded by high alpha-power. These modulated areas formed a functionally connected network during a separate resting-state recording. Our findings suggest that the "baseline" state of the brain exhibits considerable trial-to-trial variability which arises from fluctuations in the balance of cortical inhibition/excitation that are represented by respective increases/decreases in the power of the EEG alpha oscillation. The consequence of this spontaneous electrophysiological variability is modulated amplitudes of both PBR and NBR to stimulation. Fluctuations in alpha-power may subserve a functional relationship in the visual-auditory network, acting as mediator for both short and long-range cortical inhibition, the strength of which is represented in part by NBR. PMID:23507378

  1. Embedding of Cortical Representations by the Superficial Patch System

    PubMed Central

    Da Costa, Nuno M. A.; Girardin, Cyrille C.; Naaman, Shmuel; Omer, David B.; Ruesch, Elisha; Grinvald, Amiram; Douglas, Rodney J.

    2011-01-01

    Pyramidal cells in layers 2 and 3 of the neocortex of many species collectively form a clustered system of lateral axonal projections (the superficial patch system—Lund JS, Angelucci A, Bressloff PC. 2003. Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cereb Cortex. 13:15–24. or daisy architecture—Douglas RJ, Martin KAC. 2004. Neuronal circuits of the neocortex. Annu Rev Neurosci. 27:419–451.), but the function performed by this general feature of the cortical architecture remains obscure. By comparing the spatial configuration of labeled patches with the configuration of responses to drifting grating stimuli, we found the spatial organizations both of the patch system and of the cortical response to be highly conserved between cat and monkey primary visual cortex. More importantly, the configuration of the superficial patch system is directly reflected in the arrangement of function across monkey primary visual cortex. Our results indicate a close relationship between the structure of the superficial patch system and cortical responses encoding a single value across the surface of visual cortex (self-consistent states). This relationship is consistent with the spontaneous emergence of orientation response–like activity patterns during ongoing cortical activity (Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A. 2003. Spontaneously emerging cortical representations of visual attributes. Nature. 425:954–956.). We conclude that the superficial patch system is the physical encoding of self-consistent cortical states, and that a set of concurrently labeled patches participate in a network of mutually consistent representations of cortical input. PMID:21383233

  2. Quantitative electroencephalogram of posterior cortical areas of fluent and stuttering participants during reading with normal and altered auditory feedback.

    PubMed

    Rastatter, M P; Stuart, A; Kalinowski, J

    1998-10-01

    In the left and right hemisphere, posterior quantitative electroencephalogram Beta band activity (13.5-25.5 Hz) of seven adult participants who stutter and seven age-matched normal controls was obtained while subjects read text under three experimental conditions of normal auditory feedback, delayed auditory feedback, and frequency-altered feedback. Data were obtained from surface electrodes affixed to the scalp using a commercial electrode cap. Electroencephalogram activity was amplified, band-pass analog-filtered, and then digitized. During nonaltered auditory feedback, stuttering participants displayed Beta band hyperreactivity, with the right temporal-parietal lobe region showing the greatest activity. Under conditions of delayed auditory feedback and frequency-altered auditory feedback, the stuttering participants displayed a decrease in stuttering behavior accompanied by a strong reduction in Beta activity for the posterior-temporal-parietal electrode sites, and the left hemisphere posterior sites evidenced a larger area of reactivity. Such findings suggest than an alteration in the electrical fields of the cortex occurred in the stuttering participants under both conditions, possibly reflecting changes in neurogenerator status or current dipole activity. Further, one could propose that stuttering reflects an anomaly of the sensory-linguistic motor integration wherein each hemisphere generates competing linguistic messages at hyperreactive amplitudes. PMID:9842614

  3. Arrhythmic Song Exposure Increases ZENK Expression in Auditory Cortical Areas and Nucleus Taeniae of the Adult Zebra Finch

    PubMed Central

    Lampen, Jennifer; Jones, Katherine; McAuley, J. Devin; Chang, Soo-Eun; Wade, Juli

    2014-01-01

    Rhythm is important in the production of motor sequences such as speech and song. Deficits in rhythm processing have been implicated in human disorders that affect speech and language processing, including stuttering, autism, and dyslexia. Songbirds provide a tractable model for studying the neural underpinnings of rhythm processing due to parallels with humans in neural structures and vocal learning patterns. In this study, adult zebra finches were exposed to naturally rhythmic conspecific song or arrhythmic song. Immunohistochemistry for the immediate early gene ZENK was used to detect neural activation in response to these two types of stimuli. ZENK was increased in response to arrhythmic song in the auditory association cortex homologs, caudomedial nidopallium (NCM) and caudomedial mesopallium (CMM), and the avian amygdala, nucleus taeniae (Tn). CMM also had greater ZENK labeling in females than males. The increased neural activity in NCM and CMM during perception of arrhythmic stimuli parallels increased activity in the human auditory cortex following exposure to unexpected, or perturbed, auditory stimuli. These auditory areas may be detecting errors in arrhythmic song when comparing it to a stored template of how conspecific song is expected to sound. CMM may also be important for females in evaluating songs of potential mates. In the context of other research in songbirds, we suggest that the increased activity in Tn may be related to the value of song for assessing mate choice and bonding or it may be related to perception of arrhythmic song as aversive. PMID:25259620

  4. Uncertainty in visual and auditory series is coded by modality-general and modality-specific neural systems.

    PubMed

    Nastase, Samuel; Iacovella, Vittorio; Hasson, Uri

    2014-04-01

    Coding for the degree of disorder in a temporally unfolding sensory input allows for optimized encoding of these inputs via information compression and predictive processing. Prior neuroimaging work has examined sensitivity to statistical regularities within single sensory modalities and has associated this function with the hippocampus, anterior cingulate, and lateral temporal cortex. Here we investigated to what extent sensitivity to input disorder, quantified by Markov entropy, is subserved by modality-general or modality-specific neural systems when participants are not required to monitor the input. Participants were presented with rapid (3.3 Hz) auditory and visual series varying over four levels of entropy, while monitoring an infrequently changing fixation cross. For visual series, sensitivity to the magnitude of disorder was found in early visual cortex, the anterior cingulate, and the intraparietal sulcus. For auditory series, sensitivity was found in inferior frontal, lateral temporal, and supplementary motor regions implicated in speech perception and sequencing. Ventral premotor and central cingulate cortices were identified as possible candidates for modality-general uncertainty processing, exhibiting marginal sensitivity to disorder in both modalities. The right temporal pole differentiated the highest and lowest levels of disorder in both modalities, but did not show general sensitivity to the parametric manipulation of disorder. Our results indicate that neural sensitivity to input disorder relies largely on modality-specific systems embedded in extended sensory cortices, though uncertainty-related processing in frontal regions may be driven by both input modalities. PMID:23408389

  5. The role of Six1 in mammalian auditory system development.

    PubMed

    Zheng, Weiming; Huang, Li; Wei, Zhu-Bo; Silvius, Derek; Tang, Bihui; Xu, Pin-Xian

    2003-09-01

    The homeobox Six genes, homologues to Drosophila sine oculis (so) gene, are expressed in multiple organs during mammalian development. However, their roles during auditory system development have not been studied. We report that Six1 is required for mouse auditory system development. During inner ear development, Six1 expression was first detected in the ventral region of the otic pit and later is restricted to the middle and ventral otic vesicle within which, respectively, the vestibular and auditory epithelia form. By contrast, Six1 expression is excluded from the dorsal otic vesicle within which the semicircular canals form. Six1 is also expressed in the vestibuloacoustic ganglion. At E15.5, Six1 is expressed in all sensory epithelia of the inner ear. Using recently generated Six1 mutant mice, we found that all Six1(+/-) mice showed some degree of hearing loss because of a failure of sound transmission in the middle ear. By contrast, Six1(-/-) mice displayed malformations of the auditory system involving the outer, middle and inner ears. The inner ear development in Six1(-/-) embryos arrested at the otic vesicle stage and all components of the inner ear failed to form due to increased cell death and reduced cell proliferation in the otic epithelium. Because we previously reported that Six1 expression in the otic vesicle is Eya1 dependent, we first clarified that Eya1 expression was unaffected in Six1(-/-) otic vesicle, further demonstrating that the Drosophila Eya-Six regulatory cassette is evolutionarily conserved during mammalian inner ear development. We also analyzed several other otic markers and found that the expression of Pax2 and Pax8 was unaffected in Six1(-/-) otic vesicle. By contrast, Six1 is required for the activation of Fgf3 expression and the maintenance of Fgf10 and Bmp4 expression in the otic vesicle. Furthermore, loss of Six1 function alters the expression pattern of Nkx5.1 and Gata3, indicating that Six1 is required for regional

  6. Axon Guidance in the Auditory System: Multiple Functions of Eph Receptors

    PubMed Central

    Cramer, Karina S.; Gabriele, Mark L.

    2014-01-01

    The neural pathways of the auditory system underlie our ability to detect sounds and to transform amplitude and frequency information into rich and meaningful perception. While it shares some organizational features with other sensory systems, the auditory system has some unique functions that impose special demands on precision in circuit assembly. In particular, the cochlear epithelium creates a frequency map rather than a space map, and specialized pathways extract information on interaural time and intensity differences to permit sound source localization. The assembly of auditory circuitry requires the coordinated function of multiple molecular cues. Eph receptors and their ephrin ligands constitute a large family of axon guidance molecules with developmentally regulated expression throughout the auditory system. Functional studies of Eph/ephrin signaling have revealed important roles at multiple levels of the auditory pathway, from the cochlea to the auditory cortex. These proteins provide graded cues used in establishing tonotopically ordered connections between auditory areas, as well as discrete cues that enable axons to form connections with appropriate postsynaptic partners within a target area. Throughout the auditory system, Eph proteins help to establish patterning in neural pathways during early development. This early targeting, which is further refined with neuronal activity, establishes the precision needed for auditory perception. PMID:25010398

  7. Lecture recording system in anatomy: possible benefit to auditory learners.

    PubMed

    Bacro, Thierry R H; Gebregziabher, Mulugeta; Ariail, Jennie

    2013-01-01

    The literature reports that using Learning Recording Systems (LRS) is usually well received by students but that the pedagogical value of LRS in academic settings remains somewhat unclear. The primary aim of the current study is to document students' perceptions, actual pattern of usage, and impact of use of LRS on students' grade in a dental gross and neuroanatomy course. Other aims are to determine if students' learning preference correlated with final grades and to see if other factors like gender, age, overall academic score on the Dental Aptitude Test (DAT), lecture levels of difficulty, type of lecture, category of lecture, or teaching faculty could explain the impact, if any, of the use of LRS on the course final grade. No significant correlation was detected between the final grades and the variables studied except for a significant but modest correlation between final grades and the number of times the students accessed the lecture recordings (r=0.33 with P=0.01). Also, after adjusting for gender, age, learning style, and academic DAT, a significant interaction between auditory and average usage time was found for final grade (P=0.03). Students who classified themselves as auditory and who used the LRS on average for fewer than 10 minutes per access, scored an average final grade of 16.43 % higher than the nonauditory students using the LRS for the same amount of time per access. Based on these findings, implications for teaching are discussed and recommendations for use of LRS are proposed. PMID:23508921

  8. Influences of multiple memory systems on auditory mental image acuity.

    PubMed

    Navarro Cebrian, Ana; Janata, Petr

    2010-05-01

    The influence of different memory systems and associated attentional processes on the acuity of auditory images, formed for the purpose of making intonation judgments, was examined across three experiments using three different task types (cued-attention, imagery, and two-tone discrimination). In experiment 1 the influence of implicit long-term memory for musical scale structure was manipulated by varying the scale degree (leading tone versus tonic) of the probe note about which a judgment had to be made. In experiments 2 and 3 the ability of short-term absolute pitch knowledge to develop was manipulated by presenting blocks of trials in the same key or in seven different keys. The acuity of auditory images depended on all of these manipulations. Within individual listeners, thresholds in the two-tone discrimination and cued-attention conditions were closely related. In many listeners, cued-attention thresholds were similar to thresholds in the imagery condition, and depended on the amount of training individual listeners had in playing a musical instrument. The results indicate that mental images formed at a sensory/cognitive interface for the purpose of making perceptual decisions are highly malleable. PMID:21117767

  9. Testing resonating vector strength: Auditory system, electric fish, and noise

    NASA Astrophysics Data System (ADS)

    Leo van Hemmen, J.; Longtin, André; Vollmayr, Andreas N.

    2011-12-01

    Quite often a response to some input with a specific frequency ν○ can be described through a sequence of discrete events. Here, we study the synchrony vector, whose length stands for the vector strength, and in doing so focus on neuronal response in terms of spike times. The latter are supposed to be given by experiment. Instead of singling out the stimulus frequency ν○ we study the synchrony vector as a function of the real frequency variable ν. Its length turns out to be a resonating vector strength in that it shows clear maxima in the neighborhood of ν○ and multiples thereof, hence, allowing an easy way of determining response frequencies. We study this "resonating" vector strength for two concrete but rather different cases, viz., a specific midbrain neuron in the auditory system of cat and a primary detector neuron belonging to the electric sense of the wave-type electric fish Apteronotus leptorhynchus. We show that the resonating vector strength always performs a clear resonance correlated with the phase locking that it quantifies. We analyze the influence of noise and demonstrate how well the resonance associated with maximal vector strength indicates the dominant stimulus frequency. Furthermore, we exhibit how one can obtain a specific phase associated with, for instance, a delay in auditory analysis.

  10. Perceptual Learning In The Developing Auditory Cortex

    PubMed Central

    Bao, Shaowen

    2015-01-01

    A hallmark of the developing auditory cortex is the heightened plasticity in the critical period, during which acoustic inputs can indelibly alter cortical function. However, not all sounds in the natural acoustic environment are ethologically relevant. How does the auditory system resolve relevant sounds from the acoustic environment in such an early developmental stage when most associative learning mechanisms are not yet fully functional? What can the auditory system learn from one of the most important classes of sounds—animal vocalizations? How does naturalistic acoustic experience shape cortical sound representation and perception? To answer these questions, we need to consider an unusual strategy—statistical learning—where what the system needs to learn is embedded in the sensory input. Here, I will review recent findings on how certain statistical structure of natural animal vocalizations shapes auditory cortical acoustic representations, and how cortical plasticity may underlie learned categorical sound perception. These results will be discussed in the context of human speech perception. PMID:25728188

  11. Mind the Gap: Two Dissociable Mechanisms of Temporal Processing in the Auditory System

    PubMed Central

    Anderson, Lucy A.

    2016-01-01

    High temporal acuity of auditory processing underlies perception of speech and other rapidly varying sounds. A common measure of auditory temporal acuity in humans is the threshold for detection of brief gaps in noise. Gap-detection deficits, observed in developmental disorders, are considered evidence for “sluggish” auditory processing. Here we show, in a mouse model of gap-detection deficits, that auditory brain sensitivity to brief gaps in noise can be impaired even without a general loss of central auditory temporal acuity. Extracellular recordings in three different subdivisions of the auditory thalamus in anesthetized mice revealed a stimulus-specific, subdivision-specific deficit in thalamic sensitivity to brief gaps in noise in experimental animals relative to controls. Neural responses to brief gaps in noise were reduced, but responses to other rapidly changing stimuli unaffected, in lemniscal and nonlemniscal (but not polysensory) subdivisions of the medial geniculate body. Through experiments and modeling, we demonstrate that the observed deficits in thalamic sensitivity to brief gaps in noise arise from reduced neural population activity following noise offsets, but not onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive channels underlying auditory temporal processing, and suggest that gap-detection deficits can arise from specific impairment of the sound-offset-sensitive channel. SIGNIFICANCE STATEMENT The experimental and modeling results reported here suggest a new hypothesis regarding the mechanisms of temporal processing in the auditory system. Using a mouse model of auditory temporal processing deficits, we demonstrate the existence of specific abnormalities in auditory thalamic activity following sound offsets, but not sound onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive mechanisms underlying auditory processing of temporally varying sounds. Furthermore, the

  12. Beat-induced fluctuations in auditory cortical beta-band activity: using EEG to measure age-related changes.

    PubMed

    Cirelli, Laura K; Bosnyak, Dan; Manning, Fiona C; Spinelli, Christina; Marie, Céline; Fujioka, Takako; Ghahremani, Ayda; Trainor, Laurel J

    2014-01-01

    People readily extract regularity in rhythmic auditory patterns, enabling prediction of the onset of the next beat. Recent magnetoencephalography (MEG) research suggests that such prediction is reflected by the entrainment of oscillatory networks in the brain to the tempo of the sequence. In particular, induced beta-band oscillatory activity from auditory cortex decreases after each beat onset and rebounds prior to the onset of the next beat across tempi in a predictive manner. The objective of the present study was to examine the development of such oscillatory activity by comparing electroencephalography (EEG) measures of beta-band fluctuations in 7-year-old children to adults. EEG was recorded while participants listened passively to isochronous tone sequences at three tempi (390, 585, and 780 ms for onset-to-onset interval). In adults, induced power in the high beta-band (20-25 Hz) decreased after each tone onset and rebounded prior to the onset of the next tone across tempo conditions, consistent with MEG findings. In children, a similar pattern was measured in the two slower tempo conditions, but was weaker in the fastest condition. The results indicate that the beta-band timing network works similarly in children, although there are age-related changes in consistency and the tempo range over which it operates. PMID:25071691

  13. Discovery of a lipid synthesising organ in the auditory system of an insect.

    PubMed

    Lomas, Kathryn F; Greenwood, David R; Windmill, James F C; Jackson, Joseph C; Corfield, Jeremy; Parsons, Stuart

    2012-01-01

    Weta possess typical Ensifera ears. Each ear comprises three functional parts: two equally sized tympanal membranes, an underlying system of modified tracheal chambers, and the auditory sensory organ, the crista acustica. This organ sits within an enclosed fluid-filled channel-previously presumed to be hemolymph. The role this channel plays in insect hearing is unknown. We discovered that the fluid within the channel is not actually hemolymph, but a medium composed principally of lipid from a new class. Three-dimensional imaging of this lipid channel revealed a previously undescribed tissue structure within the channel, which we refer to as the olivarius organ. Investigations into the function of the olivarius reveal de novo lipid synthesis indicating that it is producing these lipids in situ from acetate. The auditory role of this lipid channel was investigated using Laser Doppler vibrometry of the tympanal membrane, which shows that the displacement of the membrane is significantly increased when the lipid is removed from the auditory system. Neural sensitivity of the system, however, decreased upon removal of the lipid-a surprising result considering that in a typical auditory system both the mechanical and auditory sensitivity are positively correlated. These two results coupled with 3D modelling of the auditory system lead us to hypothesize a model for weta audition, relying strongly on the presence of the lipid channel. This is the first instance of lipids being associated with an auditory system outside of the Odentocete cetaceans, demonstrating convergence for the use of lipids in hearing. PMID:23251553

  14. Discovery of a Lipid Synthesising Organ in the Auditory System of an Insect

    PubMed Central

    Lomas, Kathryn F.; Greenwood, David R.; Windmill, James FC.; Jackson, Joseph C.; Corfield, Jeremy; Parsons, Stuart

    2012-01-01

    Weta possess typical Ensifera ears. Each ear comprises three functional parts: two equally sized tympanal membranes, an underlying system of modified tracheal chambers, and the auditory sensory organ, the crista acustica. This organ sits within an enclosed fluid-filled channel–previously presumed to be hemolymph. The role this channel plays in insect hearing is unknown. We discovered that the fluid within the channel is not actually hemolymph, but a medium composed principally of lipid from a new class. Three-dimensional imaging of this lipid channel revealed a previously undescribed tissue structure within the channel, which we refer to as the olivarius organ. Investigations into the function of the olivarius reveal de novo lipid synthesis indicating that it is producing these lipids in situ from acetate. The auditory role of this lipid channel was investigated using Laser Doppler vibrometry of the tympanal membrane, which shows that the displacement of the membrane is significantly increased when the lipid is removed from the auditory system. Neural sensitivity of the system, however, decreased upon removal of the lipid–a surprising result considering that in a typical auditory system both the mechanical and auditory sensitivity are positively correlated. These two results coupled with 3D modelling of the auditory system lead us to hypothesize a model for weta audition, relying strongly on the presence of the lipid channel. This is the first instance of lipids being associated with an auditory system outside of the Odentocete cetaceans, demonstrating convergence for the use of lipids in hearing. PMID:23251553

  15. No Counterpart of Visual Perceptual Echoes in the Auditory System

    PubMed Central

    İlhan, Barkın; VanRullen, Rufin

    2012-01-01

    It has been previously demonstrated by our group that a visual stimulus made of dynamically changing luminance evokes an echo or reverberation at ∼10 Hz, lasting up to a second. In this study we aimed to reveal whether similar echoes also exist in the auditory modality. A dynamically changing auditory stimulus equivalent to the visual stimulus was designed and employed in two separate series of experiments, and the presence of reverberations was analyzed based on reverse correlations between stimulus sequences and EEG epochs. The first experiment directly compared visual and auditory stimuli: while previous findings of ∼10 Hz visual echoes were verified, no similar echo was found in the auditory modality regardless of frequency. In the second experiment, we tested if auditory sequences would influence the visual echoes when they were congruent or incongruent with the visual sequences. However, the results in that case similarly did not reveal any auditory echoes, nor any change in the characteristics of visual echoes as a function of audio-visual congruence. The negative findings from these experiments suggest that brain oscillations do not equivalently affect early sensory processes in the visual and auditory modalities, and that alpha (8–13 Hz) oscillations play a special role in vision. PMID:23145143

  16. Lesion-induced insights in the plasticity of the insect auditory system

    PubMed Central

    Lakes-Harlan, Reinhard

    2013-01-01

    The auditory networks of Orthoptera offer a model system uniquely suited to the study of neuronal connectivity and lesion-dependent neural plasticity. Monaural animals, following the permanent removal of one ear in nymphs or adults, adjust their auditory pathways by collateral sprouting of afferents and deafferented interneurons which connect to neurons on the contralateral side. Transient lesion of the auditory nerve allows us to study regeneration as well as plasticity processes. After crushing the peripheral auditory nerve, the lesioned afferents regrow and re-establish new synaptic connections which are relevant for auditory behavior. During this process collateral sprouting occurs in the central nervous networks, too. Interestingly, after regeneration a changed neuronal network will be maintained. These paradigms are now been used to analyze molecular mechanism in neuronal plasticity on the level of single neurons and small networks. PMID:23986709

  17. Simultaneous real-time monitoring of multiple cortical systems

    NASA Astrophysics Data System (ADS)

    Gupta, Disha; Hill, N. Jeremy; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L.; Schalk, Gerwin

    2014-10-01

    Objective. Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. Approach. We study these questions using electrocorticographic signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (six for offline parameter optimization, six for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main results. Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelopes. These decoders were trained separately and executed simultaneously in real time. Significance. This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple

  18. A unique cellular scaling rule in the avian auditory system.

    PubMed

    Corfield, Jeremy R; Long, Brendan; Krilow, Justin M; Wylie, Douglas R; Iwaniuk, Andrew N

    2016-06-01

    Although it is clear that neural structures scale with body size, the mechanisms of this relationship are not well understood. Several recent studies have shown that the relationship between neuron numbers and brain (or brain region) size are not only different across mammalian orders, but also across auditory and visual regions within the same brains. Among birds, similar cellular scaling rules have not been examined in any detail. Here, we examine the scaling of auditory structures in birds and show that the scaling rules that have been established in the mammalian auditory pathway do not necessarily apply to birds. In galliforms, neuronal densities decrease with increasing brain size, suggesting that auditory brainstem structures increase in size faster than neurons are added; smaller brains have relatively more neurons than larger brains. The cellular scaling rules that apply to auditory brainstem structures in galliforms are, therefore, different to that found in primate auditory pathway. It is likely that the factors driving this difference are associated with the anatomical specializations required for sound perception in birds, although there is a decoupling of neuron numbers in brain structures and hair cell numbers in the basilar papilla. This study provides significant insight into the allometric scaling of neural structures in birds and improves our understanding of the rules that govern neural scaling across vertebrates. PMID:26002617

  19. Electrically evoked hearing perception by functional neurostimulation of the central auditory system.

    PubMed

    Tatagiba, M; Gharabaghi, A

    2005-01-01

    Perceptional benefits and potential risks of electrical stimulation of the central auditory system are constantly changing due to ongoing developments and technical modifications. Therefore, we would like to introduce current treatment protocols and strategies that might have an impact on functional results of auditory brainstem implants (ABI) in profoundly deaf patients. Patients with bilateral tumours as a result of neurofibromatosis type 2 with complete dysfunction of the eighth cranial nerves are the most frequent candidates for auditory brainstem implants. Worldwide, about 300 patients have already received an ABI through a translabyrinthine or suboccipital approach supported by multimodality electrophysiological monitoring. Patient selection is based on disease course, clinical signs, audiological, radiological and psycho-social criteria. The ABI provides the patients with access to auditory information such as environmental sound awareness together with distinct hearing cues in speech. In addition, this device markedly improves speech reception in combination with lip-reading. Nonetheless, there is only limited open-set speech understanding. Results of hearing function are correlated with electrode design, number of activated electrodes, speech processing strategies, duration of pre-existing deafness and extent of brainstem deformation. Functional neurostimulation of the central auditory system by a brainstem implant is a safe and beneficial procedure, which may considerably improve the quality of life in patients suffering from deafness due to bilateral retrocochlear lesions. The auditory outcome may be improved by a new generation of microelectrodes capable of penetrating the surface of the brainstem to access more directly the auditory neurons. PMID:15986735

  20. Optimizing sound features for cortical neurons.

    PubMed

    deCharms, R C; Blake, D T; Merzenich, M M

    1998-05-29

    The brain's cerebral cortex decomposes visual images into information about oriented edges, direction and velocity information, and color. How does the cortex decompose perceived sounds? A reverse correlation technique demonstrates that neurons in the primary auditory cortex of the awake primate have complex patterns of sound-feature selectivity that indicate sensitivity to stimulus edges in frequency or in time, stimulus transitions in frequency or intensity, and feature conjunctions. This allows the creation of classes of stimuli matched to the processing characteristics of auditory cortical neurons. Stimuli designed for a particular neuron's preferred feature pattern can drive that neuron with higher sustained firing rates than have typically been recorded with simple stimuli. These data suggest that the cortex decomposes an auditory scene into component parts using a feature-processing system reminiscent of that used for the cortical decomposition of visual images. PMID:9603734

  1. Evolution and function of auditory systems in insects

    NASA Astrophysics Data System (ADS)

    Stumpner, A.; von Helversen, D.

    2001-05-01

    While the sensing of substrate vibrations is common among arthropods, the reception of sound pressure waves is an adaptation restricted to insects, which has arisen independently several times in different orders. Wherever studied, tympanal organs were shown to derive from chordotonal precursors, which were modified such that mechanosensitive scolopidia became attached to thin cuticular membranes backed by air-filled tracheal cavities (except in lacewings). The behavioural context in which hearing has evolved has strongly determined the design and properties of the auditory system. Hearing organs which have evolved in the context of predator avoidance are highly sensitive, preferentially in a broad range of ultrasound frequencies, which release rapid escape manoeuvres. Hearing in the context of communication does not only require recognition and discrimination of highly specific song patterns but also their localisation. Typically, the spectrum of the conspecific signals matches the best sensitivity of the receiver. Directionality is achieved by means of sophisticated peripheral structures and is further enhanced by neuronal processing. Side-specific gain control typically allows the insect to encode the loudest signal on each side. The filtered information is transmitted to the brain, where the final steps of pattern recognition and localisation occur. The outputs of such filter networks, modulated or gated by further processes (subsumed by the term motivation), trigger command neurones for specific behaviours. Altogether, the many improvements opportunistically evolved at any stage of acoustic information-processing ultimately allow insects to come up with astonishing acoustic performances similar to those achieved by vertebrates.

  2. Cortical Suppression to Delayed Self-Initiated Auditory Stimuli in Schizotypy: Neurophysiological Evidence for a Continuum of Psychosis.

    PubMed

    Oestreich, Lena K L; Mifsud, Nathan G; Ford, Judith M; Roach, Brian J; Mathalon, Daniel H; Whitford, Thomas J

    2016-01-01

    Schizophrenia patients have been shown to exhibit subnormal levels of electrophysiological suppression to self-initiated, button press elicited sounds. These self-suppression deficits have been shown to improve following the imposition of a subsecond delay between the button press and the evoked sound. The current study aimed to investigate whether nonclinical individuals who scored highly on the personality dimension of schizotypy would exhibit similar patterns of self-suppression abnormalities to those exhibited in schizophrenia. Thirty-nine nonclinical individuals scoring above the median (High Schizotypy) and 41 individuals scoring below the median (Low Schizotypy) on the Schizotypal Personality Questionnaire (SPQ) underwent electroencephalographic recording. The amplitude of the N1-component was calculated while participants (1) listened to tones initiated by a willed button press and played back with varying delay periods between the button press and the tone (Active conditions) and (2) passively listened to a series of tones (Listen condition). N1-suppression was calculated by subtracting the amplitude of the N1-component of the auditory evoked potential in the Active condition from that of the Listen condition, while controlling for the activity evoked by the button press per se. The Low Schizotypy group exhibited significantly higher levels of N1-suppression to undelayed tones compared to the High Schizotypy group. Furthermore, while N1-suppression was found to decrease linearly with increasing delays between the button press and the tone in the Low Schizotypy group, this was not the case in the High Schizotypy group. The findings of this study suggest that nonclinical, highly schizotypal individuals exhibit subnormal levels of N1-suppression to undelayed self-initiated tones and an abnormal pattern of N1-suppression to delayed self-initiated tones. To the extent that these results are similar to those previously reported in patients with schizophrenia

  3. Role of the auditory system in speech production.

    PubMed

    Guenther, Frank H; Hickok, Gregory

    2015-01-01

    This chapter reviews evidence regarding the role of auditory perception in shaping speech output. Evidence indicates that speech movements are planned to follow auditory trajectories. This in turn is followed by a description of the Directions Into Velocities of Articulators (DIVA) model, which provides a detailed account of the role of auditory feedback in speech motor development and control. A brief description of the higher-order brain areas involved in speech sequencing (including the pre-supplementary motor area and inferior frontal sulcus) is then provided, followed by a description of the Hierarchical State Feedback Control (HSFC) model, which posits internal error detection and correction processes that can detect and correct speech production errors prior to articulation. The chapter closes with a treatment of promising future directions of research into auditory-motor interactions in speech, including the use of intracranial recording techniques such as electrocorticography in humans, the investigation of the potential roles of various large-scale brain rhythms in speech perception and production, and the development of brain-computer interfaces that use auditory feedback to allow profoundly paralyzed users to learn to produce speech using a speech synthesizer. PMID:25726268

  4. Evolutionary adaptations for the temporal processing of natural sounds by the anuran peripheral auditory system.

    PubMed

    Schrode, Katrina M; Bee, Mark A

    2015-03-01

    Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male-male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery. PMID:25617467

  5. Evolutionary adaptations for the temporal processing of natural sounds by the anuran peripheral auditory system

    PubMed Central

    Schrode, Katrina M.; Bee, Mark A.

    2015-01-01

    ABSTRACT Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male–male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery. PMID:25617467

  6. Absence of short-term effects of UMTS exposure on the human auditory system.

    PubMed

    Parazzini, Marta; Lutman, Mark E; Moulin, Annie; Barnel, Cécile; Sliwinska-Kowalska, Mariola; Zmyslony, Marek; Hernadi, Istvan; Stefanics, Gabor; Thuroczy, Gyorgy; Ravazzani, Paolo

    2010-01-01

    The aim of this study, which was performed in the framework of the European project EMFnEAR, was to investigate the potential effects of Universal Mobile Telecommunications System (UMTS, also known as 3G) exposure at a high specific absorption rate (SAR) on the human auditory system. Participants were healthy young adults with no hearing or ear disorders. Auditory function was assessed immediately before and after exposure to radiofrequency (RF) radiation, and only the exposed ear was tested. Tests for the assessment of auditory function were hearing threshold level (HTL), distortion product otoacoustic emissions (DPOAE), contralateral suppression of transiently evoked otoacoustic emission (CAS effect on TEOAE), and auditory evoked potentials (AEP). The exposure consisted of speech at a typical conversational level delivered via an earphone to one ear, plus genuine or sham RF-radiation exposure obtained by an exposure system based on a patch antenna and controlled by software. Results from 73 participants did not show any consistent pattern of effects on the auditory system after a 20-min UMTS exposure at 1947 MHz at a maximum SAR over 1 g of 1.75 W/kg at a position equivalent to the cochlea. Analysis entailed a double-blind comparison of genuine and sham exposure. It is concluded that short-term UMTS exposure at this relatively high SAR does not cause measurable immediate effects on the human auditory system. PMID:20041763

  7. Topology and hemodynamics of the cortical cerebrovascular system

    PubMed Central

    Hirsch, Sven; Reichold, Johannes; Schneider, Matthias; Székely, Gábor; Weber, Bruno

    2012-01-01

    The cerebrovascular system continuously delivers oxygen and energy substrates to the brain, which is one of the organs with the highest basal energy requirement in mammals. Discontinuities in the delivery lead to fatal consequences for the brain tissue. A detailed understanding of the structure of the cerebrovascular system is important for a multitude of (patho-)physiological cerebral processes and many noninvasive functional imaging methods rely on a signal that originates from the vasculature. Furthermore, neurodegenerative diseases often involve the cerebrovascular system and could contribute to neuronal loss. In this review, we focus on the cortical vascular system. In the first part, we present the current knowledge of the vascular anatomy. This is followed by a theory of topology and its application to vascular biology. We then discuss possible interactions between cerebral blood flow and vascular topology, before summarizing the existing body of the literature on quantitative cerebrovascular topology. PMID:22472613

  8. Suboptimal Use of Neural Information in a Mammalian Auditory System

    PubMed Central

    Zilany, Muhammad S. A.; Huang, Nicholas J.; Abrams, Kristina S.; Idrobo, Fabio

    2014-01-01

    Establishing neural determinants of psychophysical performance requires both behavioral and neurophysiological metrics amenable to correlative analyses. It is often assumed that organisms use neural information optimally, such that any information available in a neural code that could improve behavioral performance is used. Studies have shown that detection of amplitude-modulated (AM) auditory tones by humans is correlated to neural synchrony thresholds, as recorded in rabbit at the level of the inferior colliculus, the first level of the ascending auditory pathway where neurons are tuned to AM stimuli. Behavioral thresholds in rabbit, however, are ∼10 dB higher (i.e., 3 times less sensitive) than in humans, and are better correlated to rate-based than temporal coding schemes in the auditory midbrain. The behavioral and physiological results shown here illustrate an unexpected, suboptimal utilization of available neural information that could provide new insights into the mechanisms that link neuronal function to behavior. PMID:24453321

  9. Head-Up Auditory Displays for Traffic Collision Avoidance System Advisories: A Preliminary Investigation

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.

    1993-01-01

    The advantage of a head-up auditory display was evaluated in a preliminary experiment designed to measure and compare the acquisition time for capturing visual targets under two auditory conditions: standard one-earpiece presentation and two-earpiece three-dimensional (3D) audio presentation. Twelve commercial airline crews were tested under full mission simulation conditions at the NASA-Ames Man-Vehicle Systems Research Facility advanced concepts flight simulator. Scenario software generated visual targets corresponding to aircraft that would activate a traffic collision avoidance system (TCAS) aural advisory; the spatial auditory position was linked to the visual position with 3D audio presentation. Results showed that crew members using a 3D auditory display acquired targets approximately 2.2 s faster than did crew members who used one-earpiece head- sets, but there was no significant difference in the number of targets acquired.

  10. Tunable neuromimetic integrated system for emulating cortical neuron models.

    PubMed

    Grassia, Filippo; Buhry, Laure; Lévi, Timothée; Tomas, Jean; Destexhe, Alain; Saïghi, Sylvain

    2011-01-01

    Nowadays, many software solutions are currently available for simulating neuron models. Less conventional than software-based systems, hardware-based solutions generally combine digital and analog forms of computation. In previous work, we designed several neuromimetic chips, including the Galway chip that we used for this paper. These silicon neurons are based on the Hodgkin-Huxley formalism and they are optimized for reproducing a large variety of neuron behaviors thanks to tunable parameters. Due to process variation and device mismatch in analog chips, we use a full-custom fitting method in voltage-clamp mode to tune our neuromimetic integrated circuits. By comparing them with experimental electrophysiological data of these cells, we show that the circuits can reproduce the main firing features of cortical cell types. In this paper, we present the experimental measurements of our system which mimic the four most prominent biological cells: fast spiking, regular spiking, intrinsically bursting, and low-threshold spiking neurons into analog neuromimetic integrated circuit dedicated to cortical neuron simulations. This hardware and software platform will allow to improve the hybrid technique, also called "dynamic-clamp," that consists of connecting artificial and biological neurons to study the function of neuronal circuits. PMID:22163213

  11. Simultaneous Real-Time Monitoring of Multiple Cortical Systems

    PubMed Central

    Gupta, Disha; Hill, N. Jeremy; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L.; Schalk, Gerwin

    2014-01-01

    Objective Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor, or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. Approach We study these questions using electrocorticographic (ECoG) signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (6 for offline parameter optimization, 6 for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main results Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelope. These decoders were trained separately and executed simultaneously in real time. Significance This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple

  12. Maturation of cortical auditory evoked potentials (CAEPs) to speech recorded from frontocentral and temporal sites: three months to eight years of age

    PubMed Central

    Yu, Yan H.; Wagner, Monica

    2014-01-01

    The goal of the current analysis was to examine the maturation of cortical auditory evoked potentials (CAEPs) from three months of age to eight years of age. The superior frontal positive-negative-positive sequence (P1, N2, P2) and the temporal site, negative-positive-negative sequence (possibly, Na, Ta, Tb of the T-complex) were examined. Event-related potentials were recorded from 63 scalp sites to a 250- ms vowel. Amplitude and latency of peaks were measured at left and right frontal sites (near Fz) and at left and right temporal sites (T7 and T8). In addition the largest peak (typically corresponding to P1) was selected from global field power (GFP). The results revealed a large positive peak (P1) easily identified at frontal sites across all ages. The N2 emerged after 6 months of age and the following P2 between 8 and 30 months of age. The latencies of these peaks decreased exponentially with the most rapid decrease observed for P1. For amplitude, only P1 showed a clear relationship with age, becoming more positive in a somewhat linear fashion. At the temporal sites only a negative peak, which might be Na, was clearly observed at both left and right sites in children older than 14 months and peaking between 100 and 200 ms. P1 measures at frontal sites and Na peak latencies were moderately correlated. The temporal negative peak latency showed a different maturational timecourse (linear in nature) than the P1 peak, suggesting at least partial independence. Distinct Ta (positive) and Tb (negative) peaks, following Na and peaking between 120 and 220 ms were not consistently found in most age groups of children, except Ta which was present in 7 year olds. Future research, which includes manipulation of stimulus factors, and use of modeling techniques will be needed to explain the apparent, protracted maturation of the temporal site measures in the current study. PMID:25219893

  13. Maturation of cortical auditory evoked potentials (CAEPs) to speech recorded from frontocentral and temporal sites: three months to eight years of age.

    PubMed

    Shafer, Valerie L; Yu, Yan H; Wagner, Monica

    2015-02-01

    The goal of the current analysis was to examine the maturation of cortical auditory evoked potentials (CAEPs) from three months of age to eight years of age. The superior frontal positive-negative-positive sequence (P1, N2, P2) and the temporal site, negative-positive-negative sequence (possibly, Na, Ta, Tb of the T-complex) were examined. Event-related potentials were recorded from 63 scalp sites to a 250-ms vowel. Amplitude and latency of peaks were measured at left and right frontal sites (near Fz) and at left and right temporal sites (T7 and T8). In addition, the largest peak (typically corresponding to P1) was selected from global field power (GFP). The results revealed a large positive peak (P1) easily identified at frontal sites across all ages. The N2 emerged after 6 months of age and the following P2 between 8 and 30 months of age. The latencies of these peaks decreased exponentially with the most rapid decrease observed for P1. For amplitude, only P1 showed a clear relationship with age, becoming more positive in a somewhat linear fashion. At the temporal sites only a negative peak, which might be Na, was clearly observed at both left and right sites in children older than 14 months and peaking between 100 and 200 ms. P1 measures at frontal sites and Na peak latencies were moderately correlated. The temporal negative peak latency showed a different maturational timecourse (linear in nature) than the P1 peak, suggesting at least partial independence. Distinct Ta (positive) and Tb (negative) peaks, following Na and peaking between 120 and 220 ms were not consistently found in most age groups of children, except Ta which was present in 7 year olds. Future research, which includes manipulation of stimulus factors, and use of modeling techniques will be needed to explain the apparent, protracted maturation of the temporal site measures in the current study. PMID:25219893

  14. Sound Transduction in the Auditory System of Bushcrickets

    NASA Astrophysics Data System (ADS)

    Nowotny, Manuela; Udayashankar, Arun Palghat; Weber, Melanie; Hummel, Jennifer; Kössl, Manfred

    2011-11-01

    Place based frequency representation, called tonotopy,is a typical property of hearing organs for the discrimination of different frequencies. Due to its coiled structure and secure housing, it is difficult access the mammalian cochlea. Hence, our knowledge about in vivo inner-ear mechanics is restricted to small regions. In this study, we present in vivo measurements that focus on the easily accessible, uncoiled auditory organs in bushcrickets, which are located in their foreleg tibiae. Sound enters the body via an opening at the lateral side of the thorax and passes through a horn-shaped acoustic trachea before reaching the high frequency hearing organ called crista acustica. In addition to the acoustic trachea as structure that transmits incoming sound towards the hearing organ, bushcrickets also possess two tympana, specialized plate-like structures, on the anterior and posterior side of each tibia. They provide a secondary path of excitation for the sensory receptors at low frequencies. We investigated the mechanics of the crista acustica in the tropical bushcricket Mecopoda elongata. The frequency-dependent motion of the crista acustica was captured using a laser-Doppler-vibrometer system. Using pure tone stimulation of the crista acustica, we could elicit traveling waves along the length of the hearing organ that move from the distal high frequency to the proximal low frequency region. In addition, distinct maxima in the velocity response of the crista acustica could be measured at ˜7 and ˜17 kHz. The travelling-wave-based tonotopy provides the basis for mechanical frequency discrimination along the crista acustica and opens up new possibility to investigate traveling wave mechanics in vivo.

  15. Cockroach homologs of praying mantis peripheral auditory system components.

    PubMed

    Yager, David D

    2005-07-01

    This study identifies the cuticular metathoracic structures in earless cockroaches that are the homologs to the peripheral auditory components in their sister taxon, praying mantids, and defines the nature of the cuticular transition from earless to eared in the Dictyoptera. The single, midline ear of mantids comprises an auditory chamber with complex walls that contain the tympana and chordotonal transduction elements. The corresponding area in cockroaches, between the furcasternum and coxae, has many socketed hairs arranged in discrete fields and the Nerve 7 chordotonal organ, the homolog of the mantis tympanal organ. The Nerve 7 chordotonal organ attaches at the apex of the lateral ventropleurite (LVp), which has the same shape and general structure as an auditory chamber wall. High-speed video shows that when the coxa moves toward the midline, the LVp rotates medially to stimulate socketed hairs, and also moves like a triangular hinge giving the chordotonal organ maximal in-out stimulation. Formation of the mantis auditory chamber from the LVp and adjacent structures would involve only enlargement, a shift toward the midline, and a mild rotation. Almost all proprioceptive function would be lost, which may constitute the major cost of building and maintaining the mantis ear. Isolation from leg movement dictates the position of the mantis ear in the midline and the rigid frame, formed by the cuticular knobs, which protects the chordotonal organs. PMID:15887266

  16. Auditory connections and functions of prefrontal cortex

    PubMed Central

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  17. Cholinergic systems are essential for late-stage maturation and refinement of motor cortical circuits

    PubMed Central

    Ramanathan, Dhakshin S.; Conner, James M.; Anilkumar, Arjun A.

    2014-01-01

    Previous studies reported that early postnatal cholinergic lesions severely perturb early cortical development, impairing neuronal cortical migration and the formation of cortical dendrites and synapses. These severe effects of early postnatal cholinergic lesions preclude our ability to understand the contribution of cholinergic systems to the later-stage maturation of topographic cortical representations. To study cholinergic mechanisms contributing to the later maturation of motor cortical circuits, we first characterized the temporal course of cortical motor map development and maturation in rats. In this study, we focused our attention on the maturation of cortical motor representations after postnatal day 25 (PND 25), a time after neuronal migration has been accomplished and cortical volume has reached adult size. We found significant maturation of cortical motor representations after this time, including both an expansion of forelimb representations in motor cortex and a shift from proximal to distal forelimb representations to an extent unexplainable by simple volume enlargement of the neocortex. Specific cholinergic lesions placed at PND 24 impaired enlargement of distal forelimb representations in particular and markedly reduced the ability to learn skilled motor tasks as adults. These results identify a novel and essential role for cholinergic systems in the late refinement and maturation of cortical circuits. Dysfunctions in this system may constitute a mechanism of late-onset neurodevelopmental disorders such as Rett syndrome and schizophrenia. PMID:25505106

  18. Cholinergic systems are essential for late-stage maturation and refinement of motor cortical circuits.

    PubMed

    Ramanathan, Dhakshin S; Conner, James M; Anilkumar, Arjun A; Tuszynski, Mark H

    2015-03-01

    Previous studies reported that early postnatal cholinergic lesions severely perturb early cortical development, impairing neuronal cortical migration and the formation of cortical dendrites and synapses. These severe effects of early postnatal cholinergic lesions preclude our ability to understand the contribution of cholinergic systems to the later-stage maturation of topographic cortical representations. To study cholinergic mechanisms contributing to the later maturation of motor cortical circuits, we first characterized the temporal course of cortical motor map development and maturation in rats. In this study, we focused our attention on the maturation of cortical motor representations after postnatal day 25 (PND 25), a time after neuronal migration has been accomplished and cortical volume has reached adult size. We found significant maturation of cortical motor representations after this time, including both an expansion of forelimb representations in motor cortex and a shift from proximal to distal forelimb representations to an extent unexplainable by simple volume enlargement of the neocortex. Specific cholinergic lesions placed at PND 24 impaired enlargement of distal forelimb representations in particular and markedly reduced the ability to learn skilled motor tasks as adults. These results identify a novel and essential role for cholinergic systems in the late refinement and maturation of cortical circuits. Dysfunctions in this system may constitute a mechanism of late-onset neurodevelopmental disorders such as Rett syndrome and schizophrenia. PMID:25505106

  19. The impact of systemic cortical alterations on perception

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng

    2011-12-01

    Perception is the process of transmitting and interpreting sensory information, and the primary somatosensory (SI) area in the human cortex is the main sensory receptive area for the sensation of touch. The elaborate neuroanatomical connectivity that subserves the neuronal communication between adjacent and near-adjacent regions within sensory cortex has been widely recognized to be essential to normal sensory function. As a result, systemic cortical alterations that impact the cortical regional interaction, as associated with many neurological disorders, are expected to have significant impact on sensory perception. Recently, our research group has developed a novel sensory diagnostic system that employs quantitative sensory testing methods and is able to non-invasively assess central nervous system healthy status. The intent of this study is to utilize quantitative sensory testing methods that were designed to generate discriminable perception to objectively and quantitatively assess the impacts of different conditions on human sensory information processing capacity. The correlation between human perceptions with observations from animal research enables a better understanding of the underlying neurophysiology of human perception. Additional findings on different subject populations provide valuable insight of the underlying mechanisms for the development and maintenance of different neurological diseases. During the course of the study, several protocols were designed and utilized. And this set of sensory-based perceptual metrics was employed to study the effects of different conditions (non-noxious thermal stimulation, chronic pain stage, and normal aging) on sensory perception. It was found that these conditions result in significant deviations of the subjects' tactile information processing capacities from normal values. Although the observed shift of sensory detection sensitivity could be a result of enhanced peripheral activity, the changes in the effects

  20. Auditory Cortex Basal Activity Modulates Cochlear Responses in Chinchillas

    PubMed Central

    León, Alex; Elgueda, Diego; Silva, María A.; Hamamé, Carlos M.; Delano, Paul H.

    2012-01-01

    Background The auditory efferent system has unique neuroanatomical pathways that connect the cerebral cortex with sensory receptor cells. Pyramidal neurons located in layers V and VI of the primary auditory cortex constitute descending projections to the thalamus, inferior colliculus, and even directly to the superior olivary complex and to the cochlear nucleus. Efferent pathways are connected to the cochlear receptor by the olivocochlear system, which innervates outer hair cells and auditory nerve fibers. The functional role of the cortico-olivocochlear efferent system remains debated. We hypothesized that auditory cortex basal activity modulates cochlear and auditory-nerve afferent responses through the efferent system. Methodology/Principal Findings Cochlear microphonics (CM), auditory-nerve compound action potentials (CAP) and auditory cortex evoked potentials (ACEP) were recorded in twenty anesthetized chinchillas, before, during and after auditory cortex deactivation by two methods: lidocaine microinjections or cortical cooling with cryoloops. Auditory cortex deactivation induced a transient reduction in ACEP amplitudes in fifteen animals (deactivation experiments) and a permanent reduction in five chinchillas (lesion experiments). We found significant changes in the amplitude of CM in both types of experiments, being the most common effect a CM decrease found in fifteen animals. Concomitantly to CM amplitude changes, we found CAP increases in seven chinchillas and CAP reductions in thirteen animals. Although ACEP amplitudes were completely recovered after ninety minutes in deactivation experiments, only partial recovery was observed in the magnitudes of cochlear responses. Conclusions/Significance These results show that blocking ongoing auditory cortex activity modulates CM and CAP responses, demonstrating that cortico-olivocochlear circuits regulate auditory nerve and cochlear responses through a basal efferent tone. The diversity of the obtained effects

  1. Auditory perceptual restoration and illusory continuity correlates in the human brainstem.

    PubMed

    Bidelman, Gavin M; Patro, Chhayakanta

    2016-09-01

    When noise obstructs portions of target sounds the auditory system fills in missing information, a phenomenon known as auditory restoration or induction. Previous work in animal models demonstrates that neurons in primary auditory cortex (A1) are capable of restoring occluded target signals suggesting that early auditory cortex is capable of inducing continuity in discontinuous signals (i.e., endogenous restoration). Current consensus is that the neural correlates of auditory induction and perceptual restoration emerge no earlier than A1. Moreover, the neural mechanisms supporting induction in humans are poorly understood. Here, we show that in human listeners, auditory brainstem nuclei support illusory auditory continuity well before engagement of cerebral cortex. We recorded brainstem responses to modulated target tones that did or did not promote illusory auditory percepts. Auditory continuity was manipulated by introducing masking noise or brief temporal interruptions in otherwise continuous tones. We found that auditory brainstem responses paralleled illusory continuity by tagging target sounds even when they were occluded by the auditory scene. Our results reveal (i) a pre-attentive, subcortical origin to a presumed cortical function and (ii) that brainstem signal processing helps partially cancel the negative effects of masking by restoring missing portions of auditory objects that are fragmented in the soundscape. PMID:27241211

  2. Respiratory sinus arrhythmia and auditory processing in autism: Modifiable deficits of an integrated social engagement system?

    PubMed Central

    Porges, Stephen W.; Macellaio, Matthew; Stanfill, Shannon D.; McCue, Kimberly; Lewis, Gregory F.; Harden, Emily R.; Handelman, Mika; Denver, John; Bazhenova, Olga V.; Heilman, Keri J.

    2012-01-01

    The current study evaluated processes underlying two common symptoms (i.e., state regulation problems and deficits in auditory processing) associated with a diagnosis of autism spectrum disorders. Although these symptoms have been treated in the literature as unrelated, when informed by the Polyvagal Theory, these symptoms may be viewed as the predictable consequences of depressed neural regulation of an integrated social engagement system, in which there is down regulation of neural influences to the heart (i.e., via the vagus) and to the middle ear muscles (i.e., via the facial and trigeminal cranial nerves). Respiratory sinus arrhythmia (RSA) and heart period were monitored to evaluate state regulation during a baseline and two auditory processing tasks (i.e., the SCAN tests for Filtered Words and Competing Words), which were used to evaluate auditory processing performance. Children with a diagnosis of autism spectrum disorders (ASD) were contrasted with aged matched typically developing children. The current study identified three features that distinguished the ASD group from a group of typical developing children: 1) baseline RSA, 2) direction of RSA reactivity, and 3) auditory processing performance. In the ASD group, the pattern of change in RSA during the attention demanding SCAN tests moderated the relation between performance on the Competing Words test and IQ. In addition, in a subset of ASD participants, auditory processing performance improved and RSA increased following an intervention designed to improve auditory processing. PMID:23201146

  3. The olivocochlear reflex strength and cochlear sensitivity are independently modulated by auditory cortex microstimulation.

    PubMed

    Dragicevic, Constantino D; Aedo, Cristian; León, Alex; Bowen, Macarena; Jara, Natalia; Terreros, Gonzalo; Robles, Luis; Delano, Paul H

    2015-04-01

    In mammals, efferent projections to the cochlear receptor are constituted by olivocochlear (OC) fibers that originate in the superior olivary complex. Medial and lateral OC neurons make synapses with outer hair cells and with auditory nerve fibers, respectively. In addition to the OC system, there are also descending projections from the auditory cortex that are directed towards the thalamus, inferior colliculus, cochlear nucleus, and superior olivary complex. Olivocochlear function can be assessed by measuring a brainstem reflex mediated by auditory nerve fibers, cochlear nucleus neurons, and OC fibers. Although it is known that the OC reflex is activated by contralateral acoustic stimulation and produces a suppression of cochlear responses, the influence of cortical descending pathways in the OC reflex is largely unknown. Here, we used auditory cortex electrical microstimulation in chinchillas to study a possible cortical modulation of cochlear and auditory nerve responses to tones in the absence and presence of contralateral noise. We found that cortical microstimulation produces two different peripheral modulations: (i) changes in cochlear sensitivity evidenced by amplitude modulation of cochlear microphonics and auditory nerve compound action potentials and (ii) enhancement or suppression of the OC reflex strength as measured by auditory nerve responses, which depended on the intersubject variability of the OC reflex. Moreover, both corticofugal effects were not correlated, suggesting the presence of two functionally different efferent pathways. These results demonstrate that auditory cortex electrical microstimulation independently modulates the OC reflex strength and cochlear sensitivity. PMID:25663383

  4. Hearing loss and the central auditory system: Implications for hearing aids

    NASA Astrophysics Data System (ADS)

    Frisina, Robert D.

    2003-04-01

    Hearing loss can result from disorders or damage to the ear (peripheral auditory system) or the brain (central auditory system). Here, the basic structure and function of the central auditory system will be highlighted as relevant to cases of permanent hearing loss where assistive devices (hearing aids) are called for. The parts of the brain used for hearing are altered in two basic ways in instances of hearing loss: (1) Damage to the ear can reduce the number and nature of input channels that the brainstem receives from the ear, causing plasticity of the central auditory system. This plasticity may partially compensate for the peripheral loss, or add new abnormalities such as distorted speech processing or tinnitus. (2) In some situations, damage to the brain can occur independently of the ear, as may occur in cases of head trauma, tumors or aging. Implications of deficits to the central auditory system for speech perception in noise, hearing aid use and future innovative circuit designs will be provided to set the stage for subsequent presentations in this special educational session. [Work supported by NIA-NIH Grant P01 AG09524 and the International Center for Hearing & Speech Research, Rochester, NY.

  5. Visualisations of speech based on a model of the peripheral auditory system

    NASA Astrophysics Data System (ADS)

    Schofield, D.

    1985-07-01

    Application of information available concerning the peripheral auditory system to automatic speech recognition, in particular to the initial processing of the acoustic signal was studied. Problems with conventional methods of signal analysis, and knowledge on the peripheral auditory system are reviewed. This knowledge is applied to modeling the system as far as the input to the nerve cells, using a filterbank approach. Visualizations of the results are included. It is concluded that the model could be used as the first stage of a two layer process, the second stage modeling effects within the nervous system. The visualizations also have promise as an alternative to spectral displays derived from digital block-mode processing.

  6. Grey matter connectivity within and between auditory, language and visual systems in prelingually deaf adolescents

    PubMed Central

    Li, Wenjing; Li, Jianhong; Wang, Zhenchang; Li, Yong; Liu, Zhaohui; Yan, Fei; Xian, Junfang; He, Huiguang

    2015-01-01

    Abstract Purpose: Previous studies have shown brain reorganizations after early deprivation of auditory sensory. However, changes of grey matter connectivity have not been investigated in prelingually deaf adolescents yet. In the present study, we aimed to investigate changes of grey matter connectivity within and between auditory, language and visual systems in prelingually deaf adolescents. Methods: We recruited 16 prelingually deaf adolescents and 16 age-and gender-matched normal controls, and extracted the grey matter volume as the structural characteristic from 14 regions of interest involved in auditory, language or visual processing to investigate the changes of grey matter connectivity within and between auditory, language and visual systems. Sparse inverse covariance estimation (SICE) was utilized to construct grey matter connectivity between these brain regions. Results: The results show that prelingually deaf adolescents present weaker grey matter connectivity within auditory and visual systems, and connectivity between language and visual systems declined. Notably, significantly increased brain connectivity was found between auditory and visual systems in prelingually deaf adolescents. Conclusions: Our results indicate “cross-modal” plasticity after deprivation of the auditory input in prelingually deaf adolescents, especially between auditory and visual systems. Besides, auditory deprivation and visual deficits might affect the connectivity pattern within language and visual systems in prelingually deaf adolescents. PMID:25698109

  7. A real-time auditory feedback system for retraining gait.

    PubMed

    Maulucci, Ruth A; Eckhouse, Richard H

    2011-01-01

    Stroke is the third leading cause of death in the United States and the principal cause of major long-term disability, incurring substantial distress as well as medical cost. Abnormal and inefficient gait patterns are widespread in survivors of stroke, yet gait is a major determinant of independent living. It is not surprising, therefore, that improvement of walking function is the most commonly stated priority of the survivors. Although many such individuals achieve the goal of walking, the caliber of their walking performance often limits endurance and quality of life. The ultimate goal of the research presented here is to use real-time auditory feedback to retrain gait in patients with chronic stroke. The strategy is to convert the motion of the foot into an auditory signal, and then use this auditory signal as feedback to inform the subject of the existence as well as the magnitude of error during walking. The initial stage of the project is described in this paper. The design and implementation of the new feedback method for lower limb training is explained. The question of whether the patient is physically capable of handling such training is explored. PMID:22255509

  8. Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus.

    PubMed

    Kraus, Kari Suzanne; Canlon, Barbara

    2012-06-01

    Acoustic experience such as sound, noise, or absence of sound induces structural or functional changes in the central auditory system but can also affect limbic regions such as the amygdala and hippocampus. The amygdala is particularly sensitive to sound with valence or meaning, such as vocalizations, crying or music. The amygdala plays a central role in auditory fear conditioning, regulation of the acoustic startle response and can modulate auditory cortex plasticity. A stressful acoustic stimulus, such as noise, causes amygdala-mediated release of stress hormones via the HPA-axis, which may have negative effects on health, as well as on the central nervous system. On the contrary, short-term exposure to stress hormones elicits positive effects such as hearing protection. The hippocampus can affect auditory processing by adding a temporal dimension, as well as being able to mediate novelty detection via theta wave phase-locking. Noise exposure affects hippocampal neurogenesis and LTP in a manner that affects structural plasticity, learning and memory. Tinnitus, typically induced by hearing malfunctions, is associated with emotional stress, depression and anatomical changes of the hippocampus. In turn, the limbic system may play a role in the generation as well as the suppression of tinnitus indicating that the limbic system may be essential for tinnitus treatment. A further understanding of auditory-limbic interactions will contribute to future treatment strategies of tinnitus and noise trauma. PMID:22440225

  9. Repetitive auditory stimulation at a critical prenatal period modulates the postnatal functional development of the auditory as well as visual system in chicks (Gallus domesticus).

    PubMed

    Roy, Saborni; Nag, Tapas C; Upadhyay, Ashish Datt; Mathur, Rashmi; Jain, Suman

    2013-09-01

    The extrinsic sensory stimulation plays a crucial role in the formation and integration of sensory modalities during development. Postnatal behavior is thereby influenced by the type and timing of presentation of prenatal sensory stimuli. In this study, fertilized eggs of white Leghorn chickens during incubation were exposed to either species-specific calls or no sound. To find the prenatal critical period when auditory stimulation can modulate visual system development, the former group was divided into three subgroups: in subgroup A (SGA), the stimulus was provided during embryonic day (E)10 to E16, in SGB E17- hatching, and in SGC E10-hatching. The auditory and visual perceptual learning was recorded at posthatch day (PH) 1-3, whereas synaptic plasticity (evident from synaptophysin and PSD-95 expression), was observed at E19, E20, and PH 1-3. An increased number of responders were observed in both auditory and visual preference tests at PH 1 following stimulation. Although a decrease in latency of entry and an increase in total time spent were observed in all stimulated groups, it was most significant in SGC in auditory preference and in SGB and SGC in visual preference test. The auditory cortex of SGC and visual Wulst of SGB and SGC revealed higher expression of synaptic proteins, compared to control and SGA. A significant inter-hemispheric and gender-based difference in expression was also found in all groups. These results indicate facilitation of postnatal behaviour and synaptogenesis in both auditory and visual systems following prenatal repetitive auditory stimulation, only when given during prenatal critical period of development. PMID:23696545

  10. Word Recognition in Auditory Cortex

    ERIC Educational Resources Information Center

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  11. Interaural intensity and latency difference in the dolphin's auditory system.

    PubMed

    Popov, V V; Supin AYa

    1991-12-01

    Binaural hearing mechanisms were measured in dolphins (Inia geoffrensis) by recording the auditory nerve evoked response from the body surface. The azimuthal position of a sound source at 10-15 degrees from the longitudinal axis elicited interaural intensity disparity up to 20 dB and interaural latency difference as large as 250 microseconds. The latter was many times greater than the acoustical interaural time delay. This latency difference seems to be caused by the intensity disparity. The latency difference seems to be an effective way of coding of intensity disparity. PMID:1816509

  12. The Use of Auditory Prompting Systems for Increasing Independent Performance of Students with Autism in Employment Training

    ERIC Educational Resources Information Center

    Montgomery, Joyce; Storey, Keith; Post, Michal; Lemley, Jacky

    2011-01-01

    In this study a self-operated auditory prompting system is introduced to determine if it can increase the on-task behavior for two students with autism participating in an employment training program. In addition, the amount of prompts provided by support staff is measured. The self-operated auditory prompting system consisted of tape recordings…

  13. Intracortical circuits amplify sound-evoked activity in primary auditory cortex following systemic injection of salicylate in the rat.

    PubMed

    Stolzberg, Daniel; Chrostowski, Michael; Salvi, Richard J; Allman, Brian L

    2012-07-01

    A high dose of sodium salicylate temporarily induces tinnitus, mild hearing loss, and possibly hyperacusis in humans and other animals. Salicylate has well-established effects on cochlear function, primarily resulting in the moderate reduction of auditory input to the brain. Despite decreased peripheral sensitivity and output, salicylate induces a paradoxical enhancement of the sound-evoked field potential at the level of the primary auditory cortex (A1). Previous electrophysiologic studies have begun to characterize changes in thalamorecipient layers of A1; however, A1 is a complex neural circuit with recurrent intracortical connections. To describe the effects of acute systemic salicylate treatment on both thalamic and intracortical sound-driven activity across layers of A1, we applied current-source density (CSD) analysis to field potentials sampled across cortical layers in the anesthetized rat. CSD maps were normally characterized by a large, short-latency, monosynaptic, thalamically driven sink in granular layers followed by a lower amplitude, longer latency, polysynaptic, intracortically driven sink in supragranular layers. Following systemic administration of salicylate, there was a near doubling of both granular and supragranular sink amplitudes at higher sound levels. The supragranular sink amplitude input/output function changed from becoming asymptotic at approximately 50 dB to sharply nonasymptotic, often dominating the granular sink amplitude at higher sound levels. The supragranular sink also exhibited a significant decrease in peak latency, reflecting an acceleration of intracortical processing of the sound-evoked response. Additionally, multiunit (MU) activity was altered by salicylate; the normally onset/sustained MU response type was transformed into a primarily onset response type in granular and infragranular layers. The results from CSD analysis indicate that salicylate significantly enhances sound-driven response via intracortical circuits

  14. The Auditory System of the Dipteran Parasitoid Emblemasoma auditrix (Sarcophagidae).

    PubMed

    Tron, Nanina; Stölting, Heiko; Kampschulte, Marian; Martels, Gunhild; Stumpner, Andreas; Lakes-Harlan, Reinhard

    2016-01-01

    Several taxa of insects evolved a tympanate ear at different body positions, whereby the ear is composed of common parts: a scolopidial sense organ, a tracheal air space, and a tympanal membrane. Here, we analyzed the anatomy and physiology of the ear at the ventral prothorax of the sarcophagid fly, Emblemasoma auditrix (Soper). We used micro-computed tomography to analyze the ear and its tracheal air space in relation to the body morphology. Both tympana are separated by a small cuticular bridge, face in the same frontal direction, and are backed by a single tracheal enlargement. This enlargement is connected to the anterior spiracles at the dorsofrontal thorax and is continuous with the tracheal network in the thorax and in the abdomen. Analyses of responses of auditory afferents and interneurons show that the ear is broadly tuned, with a sensitivity peak at 5 kHz. Single-cell recordings of auditory interneurons indicate a frequency- and intensity-dependent tuning, whereby some neurons react best to 9 kHz, the peak frequency of the host's calling song. The results are compared to the convergently evolved ear in Tachinidae (Diptera). PMID:27538415

  15. The Auditory System of the Dipteran Parasitoid Emblemasoma auditrix (Sarcophagidae)

    PubMed Central

    Tron, Nanina; Stölting, Heiko; Kampschulte, Marian; Martels, Gunhild; Stumpner, Andreas; Lakes-Harlan, Reinhard

    2016-01-01

    Several taxa of insects evolved a tympanate ear at different body positions, whereby the ear is composed of common parts: a scolopidial sense organ, a tracheal air space, and a tympanal membrane. Here, we analyzed the anatomy and physiology of the ear at the ventral prothorax of the sarcophagid fly, Emblemasoma auditrix (Soper). We used micro-computed tomography to analyze the ear and its tracheal air space in relation to the body morphology. Both tympana are separated by a small cuticular bridge, face in the same frontal direction, and are backed by a single tracheal enlargement. This enlargement is connected to the anterior spiracles at the dorsofrontal thorax and is continuous with the tracheal network in the thorax and in the abdomen. Analyses of responses of auditory afferents and interneurons show that the ear is broadly tuned, with a sensitivity peak at 5 kHz. Single-cell recordings of auditory interneurons indicate a frequency- and intensity-dependent tuning, whereby some neurons react best to 9 kHz, the peak frequency of the host’s calling song. The results are compared to the convergently evolved ear in Tachinidae (Diptera). PMID:27538415

  16. Cross-Modal Plasticity in Higher-Order Auditory Cortex of Congenitally Deaf Cats Does Not Limit Auditory Responsiveness to Cochlear Implants

    PubMed Central

    Baumhoff, Peter; Tillein, Jochen; Lomber, Stephen G.; Hubka, Peter; Kral, Andrej

    2016-01-01

    Congenital sensory deprivation can lead to reorganization of the deprived cortical regions by another sensory system. Such cross-modal reorganization may either compete with or complement the “original“ inputs to the deprived area after sensory restoration and can thus be either adverse or beneficial for sensory restoration. In congenital deafness, a previous inactivation study documented that supranormal visual behavior was mediated by higher-order auditory fields in congenitally deaf cats (CDCs). However, both the auditory responsiveness of “deaf” higher-order fields and interactions between the reorganized and the original sensory input remain unknown. Here, we studied a higher-order auditory field responsible for the supranormal visual function in CDCs, the auditory dorsal zone (DZ). Hearing cats and visual cortical areas served as a control. Using mapping with microelectrode arrays, we demonstrate spatially scattered visual (cross-modal) responsiveness in the DZ, but show that this did not interfere substantially with robust auditory responsiveness elicited through cochlear implants. Visually responsive and auditory-responsive neurons in the deaf auditory cortex formed two distinct populations that did not show bimodal interactions. Therefore, cross-modal plasticity in the deaf higher-order auditory cortex had limited effects on auditory inputs. The moderate number of scattered cross-modally responsive neurons could be the consequence of exuberant connections formed during development that were not pruned postnatally in deaf cats. Although juvenile brain circuits are modified extensively by experience, the main driving input to the cross-modally (visually) reorganized higher-order auditory cortex remained auditory in congenital deafness. SIGNIFICANCE STATEMENT In a common view, the “unused” auditory cortex of deaf individuals is reorganized to a compensatory sensory function during development. According to this view, cross-modal plasticity takes

  17. A prediction of templates in the auditory cortex system

    NASA Astrophysics Data System (ADS)

    Ghanbeigi, Kimia

    In this study variation of human auditory evoked mismatch field amplitudes in response to complex tones as a function of the removal in single partials in the onset period was investigated. It was determined: 1-A single frequency elimination in a sound stimulus plays a significant role in human brain sound recognition. 2-By comparing the mismatches of the brain response due to a single frequency elimination in the "Starting Transient" and "Sustain Part" of the sound stimulus, it is found that the brain is more sensitive to frequency elimination in the Starting Transient. This study involves 4 healthy subjects with normal hearing. Neural activity was recorded with stimulus whole-head MEG. Verification of spatial location in the auditory cortex was determined by comparing with MRI images. In the first set of stimuli, repetitive ('standard') tones with five selected onset frequencies were randomly embedded in the string of rare ('deviant') tones with randomly varying inter stimulus intervals. In the deviant tones one of the frequency components was omitted relative to the deviant tones during the onset period. The frequency of the test partial of the complex tone was intentionally selected to preclude its reinsertion by generation of harmonics or combination tones due to either the nonlinearity of the ear, the electronic equipment or the brain processing. In the second set of stimuli, time structured as above, repetitive ('standard') tones with five selected sustained frequency components were embedded in the string of rare '(deviant') tones for which one of these selected frequencies was omitted in the sustained tone. In both measurements, the carefully frequency selection precluded their reinsertion by generation of harmonics or combination tones due to the nonlinearity of the ear, the electronic equipment and brain processing. The same considerations for selecting the test frequency partial were applied. Results. By comparing MMN of the two data sets, the relative

  18. The primate connectome in context: Principles of connections of the cortical visual system.

    PubMed

    Hilgetag, Claus C; Medalla, Maria; Beul, Sarah F; Barbas, Helen

    2016-07-01

    Which principles determine the organization of the intricate network formed by nerve fibers that link the primate cerebral cortex? We addressed this issue for the connections of primate visual cortices by systematically analyzing how the existence or absence of connections, their density as well as laminar patterns of projection origins and terminations are correlated with distance, similarity in cortical type as well as neuronal density or the thickness of cortical areas. Analyses were based on four extensive compilations of qualitative as well as quantitative data for connections of the primate visual cortical system in macaque monkeys (Felleman and Van Essen 1991; Barbas 1986; Barbas and Rempel-Clower 1997; Barone et al. 2000; Markov et al. 2014). Distance and thickness similarity were not consistently correlated with connection features, but similarity of cortical type, determined by qualitative features of laminar differentiation, or measured quantitatively as the areas' overall neuronal density, was a reliable predictor for the existence of connections between areas. Cortical type similarity was also consistently and closely correlated with characteristic laminar connection profiles: structurally dissimilar areas had origin and termination patterns that were biased to the upper or deep cortical layers, while similar areas showed more bilaminar origins and terminations. These results suggest that patterns of corticocortical connections of primate visual cortices are closely linked to the stratified architecture of the cerebral cortex. In particular, the regularity of laminar projection origins and terminations arises from the structural differences between cortical areas. The observed integration of projections with the intrinsic cortical architecture provides a structural basis for advanced theories of cortical organization and function. PMID:27083526

  19. Selectivity of optical stimulation in the auditory system

    NASA Astrophysics Data System (ADS)

    Izzo, Agnella D.; Pathria, Jyoti; Suh, Eul; Walsh, Joseph T., Jr.; Whitlon, Donna S.; Jansen, E. D.; Richter, Claus-Peter

    2006-02-01

    It is known that electrical current injected from cochlear implant contacts spreads within the cochlea, causing overlapping stimulation fields and possibly limiting the performance of cochlear implant users. We have investigated an alternative mechanism to stimulate auditory neurons in the gerbil cochlea using a laser, rather than electrical current. With the laser, it is possible to direct the light to a selected, known volume of tissue that is smaller than the electrically stimulated population of cells. In the present experiments, a transiently expressed transcription factor, c-FOS, was used to stain activated nerve cells. Immunohistochemical staining for c-FOS in the cochlea shows a small area of optical stimulation, which occurs directly opposite to the optical fiber. Additionally, masking data indicate that the laser can stimulate a small population of cells similar to an acoustic toneburst. Smaller populations of stimulated cells could reduce the amount of overlap in stimulation fields and allow more stimulation contacts in a neuroprothesis.

  20. Surgical implantation and biocompatibility of central nervous system auditory prostheses.

    PubMed

    Niparko, J K; Altschuler, R A; Xue, X L; Wiler, J A; Anderson, D J

    1989-12-01

    As part of a program to determine the feasibility of a CNS auditory prosthesis, the tissue reaction to electrodes chronically implanted in the cochlear nucleus (CN) of the guinea pig was examined. Varied open operative approaches and microelectrode designs were utilized. Silicon substrate thin film and platinum-iridium wire electrodes, tethered and untethered, were placed successfully in different divisions of the CN. Implantation through a posterior suboccipital approach was most successful. Histologic examinations demonstrated a glial cell proliferation confined to the area of the electrode track that never exceeded 15 microns in width. No neuronal loss or significant effect on cell morphology was seen, and reactive cells were absent. Electrode migration was apparent in a minority of animal preparations. Although potential problems were identified, our findings lend support to the feasibility of implanting a neuroprosthesis in the CN and have helped to establish methods for future studies of chronic intranuclear stimulation. PMID:2589766

  1. Self-Operated Auditory Prompting Systems: Creating and Using Them to Support Students with Disabilities

    ERIC Educational Resources Information Center

    Savage, Melissa N.

    2014-01-01

    Some students with disabilities develop a dependence on others for support and can benefit from self-management strategies to increase independence. Self-operated auditory prompting systems are an effective self-management intervention used to increase independence for students with disabilities while continuing to provide the support that they…

  2. Computer-aided system for measuring the mandibular cortical width on panoramic radiographs in osteoporosis diagnosis

    NASA Astrophysics Data System (ADS)

    Arifin, Agus Zainal; Asano, Akira; Taguchi, Akira; Nakamoto, Takashi; Ohtsuka, Masahiko; Tanimoto, Keiji

    2005-04-01

    Osteoporotic fractures are associated with substantial morbidity, increased medical cost and high mortality risk. Several equipments of bone assessment have been developed to identify individuals, especially postmenopausal women, with high risk of osteoporotic fracture; however, a large segment of women with low skeletal bone mineral density (BMD), namely women with high risk of osteoporotic fractures, cannot be identified sufficiently because osteoporosis is asymptomatic. Recent studies have been demonstrating that mandibular inferior cortical width manually measured on panoramic radiographs may be useful for the identification of women with low BMD. Automatic measurement of cortical width may enable us to identify a large number of asymptomatic women with low BMD. The purpose of this study was to develop a computer-aided system for measuring the mandibular cortical width on panoramic radiographs. Initially, oral radiologists determined the region of interest based on the position of mental foramen. Some enhancing image techniques were applied so as to measure the cortical width at the best point. Panoramic radiographs of 100 women who had BMD assessments of the lumbar spine and femoral neck were used to confirm the efficacy of our new system. Cortical width measured with our system was compared with skeletal BMD. There were significant correlation between cortical width measured with our system and skeletal BMD. These correlations were similar with those between cortical width manually measured by the dentist and skeletal BMD. Our results suggest that our new system may be useful for mass screening of osteoporosis.

  3. Integrated processing of spatial cues in human auditory cortex.

    PubMed

    Salminen, Nelli H; Takanen, Marko; Santala, Olli; Lamminsalo, Jarkko; Altoè, Alessandro; Pulkki, Ville

    2015-09-01

    Human sound source localization relies on acoustical cues, most importantly, the interaural differences in time and level (ITD and ILD). For reaching a unified representation of auditory space the auditory nervous system needs to combine the information provided by these two cues. In search for such a unified representation, we conducted a magnetoencephalography (MEG) experiment that took advantage of the location-specific adaptation of the auditory cortical N1 response. In general, the attenuation caused by a preceding adaptor sound to the response elicited by a probe depends on their spatial arrangement: if the two sounds coincide, adaptation is stronger than when the locations differ. Here, we presented adaptor-probe pairs that contained different localization cues, for instance, adaptors with ITD and probes with ILD. We found that the adaptation of the N1 amplitude was location-specific across localization cues. This result can be explained by the existence of auditory cortical neurons that are sensitive to sound source location independent on which cue, ITD or ILD, provides the location information. Such neurons would form a cue-independent, unified representation of auditory space in human auditory cortex. PMID:26074304

  4. Differential patterns of histone methylase EHMT2 and its catalyzed histone modifications H3K9me1 and H3K9me2 during maturation of central auditory system.

    PubMed

    Ebbers, Lena; Runge, Karen; Nothwang, Hans Gerd

    2016-08-01

    Histone methylation is an important epigenetic mark leading to changes in DNA accessibility and transcription. Here, we investigate immunoreactivity against the euchromatic histone-lysine N-methyltransferase EHMT2 and its catalyzed mono- and dimethylation marks at histone 3 lysine 9 (H3K9me1 and H3K9me2) during postnatal differentiation of the mouse central auditory system. In the brainstem, expression of EHMT2 was high in the first postnatal week and down-regulated thereafter. In contrast, immunoreactivity in the auditory cortex (AC) remained high during the first year of life. This difference might be related to distinct demands for adult plasticity. Analyses of two deaf mouse models, namely Cldn14 (-/-) and Cacna1d (-/-), demonstrated that sound-driven or spontaneous activity had no influence on EHMT2 immunoreactivity. The methylation marks H3K9me1 and H3K9me2 were high throughout the auditory system up to 1 year. Young auditory neurons showed immunoreactivity against both methylations at similar intensities, whereas many mature neurons showed stronger labeling for either H3K9me1 or H3K9me2. These differences were only poorly correlated with cell types. To identify methyltransferases contributing to the persistent H3K9me1 and H3K9me2 marks in the adult brainstem, EHMT1 and the retinoblastoma-interacting zinc-finger protein RIZ1 were analyzed. Both were down-regulated during brainstem development, similar to EHMT2. Contrary to EHMT2, EHMT1 was also down-regulated in adult cortical areas. Together, our data reveal a marked difference in EHMT2 levels between mature brainstem and cortical areas and a decoupling between EHMT2 abundance and histone 3 lysine 9 methylations during brainstem differentiation. Furthermore, EHMT1 and EHMT2 are differentially expressed in cortical areas. PMID:27083448

  5. One hundred ways to process time, frequency, rate and scale in the central auditory system: a pattern-recognition meta-analysis

    PubMed Central

    Hemery, Edgar; Aucouturier, Jean-Julien

    2015-01-01

    The mammalian auditory system extracts features from the acoustic environment based on the responses of spatially distributed sets of neurons in the subcortical and cortical auditory structures. The characteristic responses of these neurons (linearly approximated by their spectro-temporal receptive fields, or STRFs) suggest that auditory representations are formed, as early as in the inferior colliculi, on the basis of a time, frequency, rate (temporal modulations) and scale (spectral modulations) analysis of sound. However, how these four dimensions are integrated and processed in subsequent neural networks remains unclear. In this work, we present a new methodology to generate computational insights into the functional organization of such processes. We first propose a systematic framework to explore more than a hundred different computational strategies proposed in the literature to process the output of a generic STRF model. We then evaluate these strategies on their ability to compute perceptual distances between pairs of environmental sounds. Finally, we conduct a meta-analysis of the dataset of all these algorithms' accuracies to examine whether certain combinations of dimensions and certain ways to treat such dimensions are, on the whole, more computationally effective than others. We present an application of this methodology to a dataset of ten environmental sound categories, in which the analysis reveals that (1) models are most effective when they organize STRF data into frequency groupings—which is consistent with the known tonotopic organization of receptive fields in auditory structures -, and that (2) models that treat STRF data as time series are no more effective than models that rely only on summary statistics along time—which corroborates recent experimental evidence on texture discrimination by summary statistics. PMID:26190996

  6. One hundred ways to process time, frequency, rate and scale in the central auditory system: a pattern-recognition meta-analysis.

    PubMed

    Hemery, Edgar; Aucouturier, Jean-Julien

    2015-01-01

    The mammalian auditory system extracts features from the acoustic environment based on the responses of spatially distributed sets of neurons in the subcortical and cortical auditory structures. The characteristic responses of these neurons (linearly approximated by their spectro-temporal receptive fields, or STRFs) suggest that auditory representations are formed, as early as in the inferior colliculi, on the basis of a time, frequency, rate (temporal modulations) and scale (spectral modulations) analysis of sound. However, how these four dimensions are integrated and processed in subsequent neural networks remains unclear. In this work, we present a new methodology to generate computational insights into the functional organization of such processes. We first propose a systematic framework to explore more than a hundred different computational strategies proposed in the literature to process the output of a generic STRF model. We then evaluate these strategies on their ability to compute perceptual distances between pairs of environmental sounds. Finally, we conduct a meta-analysis of the dataset of all these algorithms' accuracies to examine whether certain combinations of dimensions and certain ways to treat such dimensions are, on the whole, more computationally effective than others. We present an application of this methodology to a dataset of ten environmental sound categories, in which the analysis reveals that (1) models are most effective when they organize STRF data into frequency groupings-which is consistent with the known tonotopic organization of receptive fields in auditory structures -, and that (2) models that treat STRF data as time series are no more effective than models that rely only on summary statistics along time-which corroborates recent experimental evidence on texture discrimination by summary statistics. PMID:26190996

  7. Vibration-induced auditory-cortex activation in a congenitally deaf adult.

    PubMed

    Levänen, S; Jousmäki, V; Hari, R

    1998-07-16

    Considerable changes take place in the number of cerebral neurons, synapses and axons during development, mainly as a result of competition between different neural activities [1-4]. Studies using animals suggest that when input from one sensory modality is deprived early in development, the affected neural structures have the potential to mediate functions for the remaining modalities [5-8]. We now show that similar potential exists in the human auditory system: vibrotactile stimuli, applied on the palm and fingers of a congenitally deaf adult, activated his auditory cortices. The recorded magnetoencephalographic (MEG) signals also indicated that the auditory cortices were able to discriminate between the applied 180 Hz and 250 Hz vibration frequencies. Our findings suggest that human cortical areas, normally subserving hearing, may process vibrotactile information in the congenitally deaf. PMID:9705933

  8. Coordinated forms of noradrenergic plasticity in the locus coeruleus and primary auditory cortex

    PubMed Central

    Martins, Ana Raquel O.; Froemke, Robert C.

    2015-01-01

    The cerebral cortex is plastic and represents the world according to the significance of sensory stimuli. However, cortical networks are embodied within complex circuits including neuromodulatory systems such as the noradrenergic locus coeruleus, providing information about internal state and behavioral relevance. While norepinephrine is important for cortical plasticity, it is unknown how modulatory neurons themselves respond to changes of sensory input. Here we examine how locus coeruleus neurons are modified by experience, and the consequences of locus coeruleus plasticity on cortical representations and sensory perception. We made whole-cell recordings from rat locus coeruleus and primary auditory cortex (AI), pairing sounds with locus coeruleus activation. Although initially unresponsive, locus coeruleus neurons developed and maintained auditory responses afterwards. Locus coeruleus plasticity induced changes in AI responses lasting at least hours and improved auditory perception for days to weeks. Our results demonstrate that locus coeruleus is highly plastic, leading to substantial changes in regulation of brain state by norepinephrine. PMID:26301326

  9. Dipole source encoding and tracking by the goldfish auditory system

    PubMed Central

    Coombs, Sheryl; Fay, Richard R.; Elepfandt, Andreas

    2010-01-01

    In goldfish and other otophysans, the Weberian ossicles mechanically link the saccule of the inner ear to the anterior swimbladder chamber (ASB). These structures are correlated with enhanced sound-pressure sensitivity and greater sensitivity at high frequencies (600–2000 Hz). However, surprisingly little is known about the potential impact of the ASB on other otolithic organs and about how auditory responses are modulated by discrete sources that change their location or orientation with respect to the ASB. In this study, saccular and lagenar nerve fiber responses and conditioned behaviors of goldfish were measured to a small, low-frequency (50 Hz) vibrating sphere (dipole) source as a function of its location along the body and its orientation with respect to the ASB. Conditioned behaviors and saccular nerve fiber activity exhibited response characteristics nearly identical to those measured from a hydrophone in the same relative position as the ASB. By contrast, response patterns from lagena fibers could not be predicted by pressure inputs to the ASB. Deflation of the ASB abolished the characteristic spatial response pattern of saccular but not lagena fibers. These results show that: (1) the lagena is not driven by ASB-mediated pressure inputs to the ear; (2) the ASB–saccule pathway dominates behavioral responsiveness, operating effectively at frequencies as low as 50 Hz; and (3) behavioral and neural (saccular) responses are strongly modulated by the position and orientation of the dipole with respect to the ASB. PMID:20889834

  10. Microelectrode mapping of tonotopic, laminar, and field-specific organization of thalamo-cortical pathway in rat.

    PubMed

    Shiramatsu, Tomoyo Isoguchi; Takahashi, Kazusa; Noda, Takahiro; Kanzaki, Ryohei; Nakahara, Haruka; Takahashi, Hirokazu

    2016-09-22

    The rat has long been considered an important model system for studying neural mechanisms of auditory perception and learning, and particularly mechanisms involving auditory thalamo-cortical processing. However, the functional topography of the auditory thalamus, or medial geniculate body (MGB) has not yet been fully characterized in the rat, and the anatomically-defined features of field-specific, layer-specific and tonotopic thalamo-cortical projections have never been confirmed electrophysiologically. In the present study, we have established a novel technique for recording simultaneously from a surface microelectrode array on the auditory cortex, and a depth electrode array across auditory cortical layers and within the MGB, and characterized the rat MGB and thalamo-cortical projections under isoflurane anesthesia. We revealed that the ventral division of the MGB (MGv) exhibited a low-high-low CF gradient and long-short-long latency gradient along the dorsolateral-to-ventromedial axis, suggesting that the rat MGv is divided into two subdivisions. We also demonstrated that microstimulation in the MGv elicited cortical activation in layer-specific, region-specific and tonotopically organized manners. To our knowledge, the present study has provided the first and most compelling electrophysiological confirmation of the anatomical organization of the primary thalamo-cortical pathway in the rat, setting the groundwork for further investigation. PMID:27329334

  11. Hearing and the round goby: Understanding the auditory system of the round goby (Neogobius melanostomus)

    NASA Astrophysics Data System (ADS)

    Belanger, Andrea J.; Higgs, Dennis M.

    2005-04-01

    The round goby (Neogobius melanostomus), is an invasive species in the Great Lakes watershed. Adult round gobies show behavioral responses to conspecific vocalizations but physiological investigations have not yet been conducted to quantify their hearing abilities. We have been examining the physiological and morphological development of the auditory system in the round goby. Various frequencies (100 Hz to 800 Hz and conspecific sounds), at various intensities (120 dB to 170 dB re 1 Pa) were presented to juveniles and adults and their auditory brain-stem responses (ABR) were recorded. Round gobies only respond physiologically to tones from 100-600 Hz, with threshold varying between 145 to 155 dB re 1 Pa. The response threshold to conspecific sounds was 140 dB re 1 Pa. There was no significant difference in auditory threshold between sizes of fish for either tones or conspecific sounds. Saccular epithelia were stained using phalloidin and there was a trend towards an increase in both hair cell number and density with an increase in fish size. These results represent a first attempt to quantify auditory abilities in this invasive species. This is an important step in understanding their reproductive physiology, which could potentially aid in their population control. [Funded by NSERC.

  12. Measurements of temporal-spatial change in blood flow and volume in exposed cortex of guinea pig evoked by auditory stimulation

    NASA Astrophysics Data System (ADS)

    Nakayama, Haruka; Sakaguchi, Koichiro; Matsuo, Satoshi; Sakashita, Naotaka; Katsura, Takushige; Yamazaki, Kyoko; Tanaka, Naoki; Kawaguchi, Hideo; Maki, Atsushi; Okada, Eiji

    2009-07-01

    The changes in cortical blood flow and blood volume of guinea pigs during auditory stimulation are measured by optical imaging systems. In this study, the change in blood flow distribution was measured by the laser speckle method and the change in blood volume was measured by the multi-spectral imaging system. The significant increase in blood flow and volume was observed around one side of the auditory area just after the onset of the stimulation. The decrease in blood volume around the other side of the auditory area was observed whereas the blood flow surrounding the auditory area is decreased during the post-resting period.

  13. Feel the Noise: Relating Individual Differences in Auditory Imagery to the Structure and Function of Sensorimotor Systems

    PubMed Central

    Lima, César F.; Lavan, Nadine; Evans, Samuel; Agnew, Zarinah; Halpern, Andrea R.; Shanmugalingam, Pradheep; Meekings, Sophie; Boebinger, Dana; Ostarek, Markus; McGettigan, Carolyn; Warren, Jane E.; Scott, Sophie K.

    2015-01-01

    Humans can generate mental auditory images of voices or songs, sometimes perceiving them almost as vividly as perceptual experiences. The functional networks supporting auditory imagery have been described, but less is known about the systems associated with interindividual differences in auditory imagery. Combining voxel-based morphometry and fMRI, we examined the structural basis of interindividual differences in how auditory images are subjectively perceived, and explored associations between auditory imagery, sensory-based processing, and visual imagery. Vividness of auditory imagery correlated with gray matter volume in the supplementary motor area (SMA), parietal cortex, medial superior frontal gyrus, and middle frontal gyrus. An analysis of functional responses to different types of human vocalizations revealed that the SMA and parietal sites that predict imagery are also modulated by sound type. Using representational similarity analysis, we found that higher representational specificity of heard sounds in SMA predicts vividness of imagery, indicating a mechanistic link between sensory- and imagery-based processing in sensorimotor cortex. Vividness of imagery in the visual domain also correlated with SMA structure, and with auditory imagery scores. Altogether, these findings provide evidence for a signature of imagery in brain structure, and highlight a common role of perceptual–motor interactions for processing heard and internally generated auditory information. PMID:26092220

  14. Early unilateral cochlear implantation promotes mature cortical asymmetries in adolescents who are deaf.

    PubMed

    Jiwani, Salima; Papsin, Blake C; Gordon, Karen A

    2016-01-01

    Unilateral cochlear implant (CI) stimulation establishes hearing to children who are deaf but compromises bilateral auditory development if a second implant is not provided within ∼ 1.5 years. In this study we asked: 1) What are the cortical consequences of missing this early sensitive period once children reach adolescence? 2) What are the effects of unilateral deprivation on the pathways from the opposite ear? Cortical responses were recorded from 64-cephalic electrodes within the first week of bilateral CI activation in 34 adolescents who had over 10 years of unilateral right CI experience and in 16 normal hearing peers. Cortical activation underlying the evoked peaks was localized to areas of the brain using beamformer imaging. The first CI evoked activity which was more strongly lateralized to the contralateral left hemisphere than normal, with abnormal recruitment of the left prefrontal cortex (involved in cognition/attention), left temporo-parietal-occipital junction (multi-modal integration), and right precuneus (visual processing) region. CI stimulation in the opposite deprived ear evoked atypical cortical responses with abnormally large and widespread dipole activity across the cortex. Thus, using a unilateral CI to hear beyond the period of cortical maturation causes lasting asymmetries in the auditory system, requires recruitment of additional cortical areas to support hearing, and does little to protect the unstimulated pathways from effects of auditory deprivation. The persistence of this reorganization into maturity could signal a closing of a sensitive period for promoting auditory development on the deprived side. PMID:26456629

  15. The Human Auditory System Modeled as AN Autocorrelator.

    NASA Astrophysics Data System (ADS)

    Martin, Mark Aaron

    This thesis is intended to investigate a new strategy for interpreting the human auditory physiology and assess the impact this knowledge might have on engineering applications such as speech encoding, word recognition, and speaker verification. The new interpretation is based around the signal processing properties associated with the autocorrelation function and has been developed from a strong foundation of literature that has been compiled over the last 50 years. A distilation of the pertinent literature includes the phylogenetic development of audition, a detailed description of the anatomy of the inner ear, and the well-recognized inconsistencies involved with traditional interpretations of physiology and psychoacoustic experiments. These issues are discussed and reinterpreted to support a new philosophy on the signal processing functionality of the inner ear. From this conceptual model, a mathematical description and a partly phenomenological computer model are developed. The responses of the new model to test stimuli show qualitative similarity to the results of important psychoacoustic experiments, demonstrating that the new philosophy represents a more unified theory on audition than any proposed so far. In particular the new model predicts the effects known as "pitch", "the second filter", and some other phenomena that are not specifically recognized in the literature. The knowledge gained in this effort is applied to techniques for speech encoding by real zeros, specifically, the reconstruction of signals that have been infinitely clipped. Finally, the concept is extended to include speculation on neural processes at the level of the cochlear nucleus in the brain. At this level an investigation is made to explore the power with which the new model can characterize phoneme signals generated by several different speakers. The results are shown to possess the historically accepted techniques for phoneme characterization as a subset of a dimensionally

  16. An analysis of nonlinear dynamics underlying neural activity related to auditory induction in the rat auditory cortex.

    PubMed

    Noto, M; Nishikawa, J; Tateno, T

    2016-03-24

    A sound interrupted by silence is perceived as discontinuous. However, when high-intensity noise is inserted during the silence, the missing sound may be perceptually restored and be heard as uninterrupted. This illusory phenomenon is called auditory induction. Recent electrophysiological studies have revealed that auditory induction is associated with the primary auditory cortex (A1). Although experimental evidence has been accumulating, the neural mechanisms underlying auditory induction in A1 neurons are poorly understood. To elucidate this, we used both experimental and computational approaches. First, using an optical imaging method, we characterized population responses across auditory cortical fields to sound and identified five subfields in rats. Next, we examined neural population activity related to auditory induction with high temporal and spatial resolution in the rat auditory cortex (AC), including the A1 and several other AC subfields. Our imaging results showed that tone-burst stimuli interrupted by a silent gap elicited early phasic responses to the first tone and similar or smaller responses to the second tone following the gap. In contrast, tone stimuli interrupted by broadband noise (BN), considered to cause auditory induction, considerably suppressed or eliminated responses to the tone following the noise. Additionally, tone-burst stimuli that were interrupted by notched noise centered at the tone frequency, which is considered to decrease the strength of auditory induction, partially restored the second responses from the suppression caused by BN. To phenomenologically mimic the neural population activity in the A1 and thus investigate the mechanisms underlying auditory induction, we constructed a computational model from the periphery through the AC, including a nonlinear dynamical system. The computational model successively reproduced some of the above-mentioned experimental results. Therefore, our results suggest that a nonlinear, self

  17. Auditory synesthesias.

    PubMed

    Afra, Pegah

    2015-01-01

    Synesthesia is experienced when sensory stimulation of one sensory modality (the inducer) elicits an involuntary or automatic sensation in another sensory modality or different aspect of the same sensory modality (the concurrent). Auditory synesthesias (AS) occur when auditory stimuli trigger a variety of concurrents, or when non-auditory sensory stimulations trigger auditory synesthetic perception. The AS are divided into three types: developmental, acquired, and induced. Developmental AS are not a neurologic disorder but a different way of experiencing one's environment. They are involuntary and highly consistent experiences throughout one's life. Acquired AS have been reported in association with neurologic diseases that cause deafferentation of anterior optic pathways, with pathologic lesions affecting the central nervous system (CNS) outside of the optic pathways, as well as non-lesional cases associated with migraine, and epilepsy. It also has been reported with mood disorders as well as a single idiopathic case. Induced AS has been reported in experimental and postsurgical blindfolding, as well as intake of hallucinogenics or psychedelics. In this chapter the three different types of synesthesia, their characteristics, and phenomologic differences, as well as their possible neural mechanisms are discussed. PMID:25726281

  18. Neuroendocrine control of seasonal plasticity in the auditory and vocal systems of fish

    PubMed Central

    Forlano, Paul M.; Sisneros, Joseph A.; Rohmann, Kevin N.; Bass, Andrew H.

    2014-01-01

    Seasonal changes in reproductive-related vocal behavior are widespread among fishes. This review highlights recent studies of the vocal plainfin midshipman fish, Porichthys notatus, a neuroethological model system used for the past two decades to explore neural and endocrine mechanisms of vocal-acoustic social behaviors shared with tetrapods. Integrative approaches combining behavior, neurophysiology, neuropharmacology, neuroanatomy, and gene expression methodologies have taken advantage of simple, stereotyped and easily quantifiable behaviors controlled by discrete neural networks in this model system to enable discoveries such as the first demonstration of adaptive seasonal plasticity in the auditory periphery of a vertebrate as well as rapid steroid and neuropeptide effects on vocal physiology and behavior. This simple model system has now revealed cellular and molecular mechanisms underlying seasonal and steroid-driven auditory and vocal plasticity in the vertebrate brain. PMID:25168757

  19. Activity in a Premotor Cortical Nucleus of Zebra Finches Is Locally Organized and Exhibits Auditory Selectivity in Neurons but Not in Glia

    PubMed Central

    Graber, Michael H.; Helmchen, Fritjof; Hahnloser, Richard H. R.

    2013-01-01

    Motor functions are often guided by sensory experience, most convincingly illustrated by complex learned behaviors. Key to sensory guidance in motor areas may be the structural and functional organization of sensory inputs and their evoked responses. We study sensory responses in large populations of neurons and neuron-assistive cells in the songbird motor area HVC, an auditory-vocal brain area involved in sensory learning and in adult song production. HVC spike responses to auditory stimulation display remarkable preference for the bird's own song (BOS) compared to other stimuli. Using two-photon calcium imaging in anesthetized zebra finches we measure the spatio-temporal structure of baseline activity and of auditory evoked responses in identified populations of HVC cells. We find strong correlations between calcium signal fluctuations in nearby cells of a given type, both in identified neurons and in astroglia. In identified HVC neurons only, auditory stimulation decorrelates ongoing calcium signals, less for BOS than for other sound stimuli. Overall, calcium transients show strong preference for BOS in identified HVC neurons but not in astroglia, showing diversity in local functional organization among identified neuron and astroglia populations. PMID:24312533

  20. Representation of complex vocalizations in the Lusitanian toadfish auditory system: evidence of fine temporal, frequency and amplitude discrimination

    PubMed Central

    Vasconcelos, Raquel O.; Fonseca, Paulo J.; Amorim, M. Clara P.; Ladich, Friedrich

    2011-01-01

    Many fishes rely on their auditory skills to interpret crucial information about predators and prey, and to communicate intraspecifically. Few studies, however, have examined how complex natural sounds are perceived in fishes. We investigated the representation of conspecific mating and agonistic calls in the auditory system of the Lusitanian toadfish Halobatrachus didactylus, and analysed auditory responses to heterospecific signals from ecologically relevant species: a sympatric vocal fish (meagre Argyrosomus regius) and a potential predator (dolphin Tursiops truncatus). Using auditory evoked potential (AEP) recordings, we showed that both sexes can resolve fine features of conspecific calls. The toadfish auditory system was most sensitive to frequencies well represented in the conspecific vocalizations (namely the mating boatwhistle), and revealed a fine representation of duration and pulsed structure of agonistic and mating calls. Stimuli and corresponding AEP amplitudes were highly correlated, indicating an accurate encoding of amplitude modulation. Moreover, Lusitanian toadfish were able to detect T. truncatus foraging sounds and A. regius calls, although at higher amplitudes. We provide strong evidence that the auditory system of a vocal fish, lacking accessory hearing structures, is capable of resolving fine features of complex vocalizations that are probably important for intraspecific communication and other relevant stimuli from the auditory scene. PMID:20861044

  1. SoundView: an auditory guidance system based on environment understanding for the visually impaired people.

    PubMed

    Nie, Min; Ren, Jie; Li, Zhengjun; Niu, Jinhai; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao

    2009-01-01

    Without visual information, the blind people live in various hardships with shopping, reading, finding objects and etc. Therefore, we developed a portable auditory guide system, called SoundView, for visually impaired people. This prototype system consists of a mini-CCD camera, a digital signal processing unit and an earphone, working with built-in customizable auditory coding algorithms. Employing environment understanding techniques, SoundView processes the images from a camera and detects objects tagged with barcodes. The recognized objects in the environment are then encoded into stereo speech signals for the blind though an earphone. The user would be able to recognize the type, motion state and location of the interested objects with the help of SoundView. Compared with other visual assistant techniques, SoundView is object-oriented and has the advantages of cheap cost, smaller size, light weight, low power consumption and easy customization. PMID:19965094

  2. Norepinephrine is necessary for experience-dependent plasticity in the developing mouse auditory cortex.

    PubMed

    Shepard, Kathryn N; Liles, L Cameron; Weinshenker, David; Liu, Robert C

    2015-02-11

    Critical periods are developmental windows during which the stimuli an animal encounters can reshape response properties in the affected system to a profound degree. Despite this window's importance, the neural mechanisms that regulate it are not completely understood. Pioneering studies in visual cortex initially indicated that norepinephrine (NE) permits ocular dominance column plasticity during the critical period, but later research has suggested otherwise. More recent work implicating NE in experience-dependent plasticity in the adult auditory cortex led us to re-examine the role of NE in critical period plasticity. Here, we exposed dopamine β-hydroxylase knock-out (Dbh(-/-)) mice, which lack NE completely from birth, to a biased acoustic environment during the auditory cortical critical period. This manipulation led to a redistribution of best frequencies (BFs) across auditory cortex in our control mice, consistent with prior work. By contrast, Dbh(-/-) mice failed to exhibit the expected redistribution of BFs, even though NE-deficient and NE-competent mice showed comparable auditory cortical organization when reared in a quiet colony environment. These data suggest that while intrinsic tonotopic patterning of auditory cortical circuitry occurs independently from NE, NE is required for critical period plasticity in auditory cortex. PMID:25673838

  3. Regularity of Spike Trains and Harmony Perception in a Model of the Auditory System

    NASA Astrophysics Data System (ADS)

    Ushakov, Yu. V.; Dubkov, A. A.; Spagnolo, B.

    2011-09-01

    Spike train regularity of the noisy neural auditory system model under the influence of two sinusoidal signals with different frequencies is investigated. For the increasing ratio m/n of the input signal frequencies (m, n are natural numbers) the linear growth of the regularity is found at the fixed difference (m-n). It is shown that the spike train regularity in the model is high for harmonious chords of input tones and low for dissonant ones.

  4. Adult deafness induces somatosensory conversion of ferret auditory cortex

    PubMed Central

    Allman, Brian L.; Keniston, Leslie P.; Meredith, M. Alex

    2009-01-01

    In response to early or developmental lesions, responsiveness of sensory cortex can be converted from the deprived modality to that of the remaining sensory systems. However, little is known about capacity of the adult cortex for cross-modal reorganization. The present study examined the auditory cortices of animals deafened as adults, and observed an extensive somatosensory conversion within as little as 16 days after deafening. These results demonstrate that cortical cross-modal reorganization can occur after the period of sensory system maturation. PMID:19307553

  5. Evolution and Development of the Tetrapod Auditory System: an Organ of Corti-Centric Perspective

    PubMed Central

    Fritzsch, Bernd; Pan, Ning; Jahan, Israt; Duncan, Jeremy S.; Kopecky, Benjamin J.; Elliott, Karen L.; Kersigo, Jennifer; Yang, Tian

    2013-01-01

    The tetrapod auditory system transmits sound through the outer and middle ear to the organ of Corti or other sound pressure receivers of the inner ear where specialized hair cells translate vibrations of the basilar membrane into electrical potential changes that are conducted by the spiral ganglion neurons to the auditory nuclei. In other systems, notably the vertebrate limb, a detailed connection between the evolutionary variations in adaptive morphology and the underlying alterations in the genetic basis of development has been partially elucidated. In this review, we attempt to correlate evolutionary and partially characterized molecular data into a cohesive perspective of the evolution of the mammalian organ of Corti out of the tetrapod basilar papilla. We propose a stepwise, molecularly partially characterized transformation of the ancestral, vestibular developmental program of the vertebrate ear. This review provides a framework to decipher both discrete steps in development and the evolution of unique functional adaptations of the auditory system. The combined analysis of evolution and development establishes a powerful cross-correlation where conclusions derived from either approach become more meaningful in a larger context not possible through exclusively evolution or development centered perspectives. PMID:23331918

  6. Communication Structure of Cortical Networks

    PubMed Central

    da Fontoura Costa, Luciano; Batista, João Luiz B.; Ascoli, Giorgio A.

    2011-01-01

    Large-scale cortical networks exhibit characteristic topological properties that shape communication between brain regions and global cortical dynamics. Analysis of complex networks allows the description of connectedness, distance, clustering, and centrality that reveal different aspects of how the network's nodes communicate. Here, we focus on a novel analysis of complex walks in a series of mammalian cortical networks that model potential dynamics of information flow between individual brain regions. We introduce two new measures called absorption and driftness. Absorption is the average length of random walks between any two nodes, and takes into account all paths that may diffuse activity throughout the network. Driftness is the ratio between absorption and the corresponding shortest path length. For a given node of the network, we also define four related measurements, namely in- and out-absorption as well as in- and out-driftness, as the averages of the corresponding measures from all nodes to that node, and from that node to all nodes, respectively. We find that the cat thalamo-cortical system incorporates features of two classic network topologies, Erdös–Rényi graphs with respect to in-absorption and in-driftness, and configuration models with respect to out-absorption and out-driftness. Moreover, taken together these four measures separate the network nodes based on broad functional roles (visual, auditory, somatomotor, and frontolimbic). PMID:21427794

  7. A cocktail party with a cortical twist: How cortical mechanisms contribute to sound segregation

    PubMed Central

    Elhilali, Mounya; Shamma, Shihab A.

    2008-01-01

    Sound systems and speech technologies can benefit greatly from a deeper understanding of how the auditory system, and particularly the auditory cortex, is able to parse complex acoustic scenes into meaningful auditory objects and streams under adverse conditions. In the current work, a biologically plausible model of this process is presented, where the role of cortical mechanisms in organizing complex auditory scenes is explored. The model consists of two stages: (i) a feature analysis stage that maps the acoustic input into a multidimensional cortical representation and (ii) an integrative stage that recursively builds up expectations of how streams evolve over time and reconciles its predictions with the incoming sensory input by sorting it into different clusters. This approach yields a robust computational scheme for speaker separation under conditions of speech or music interference. The model can also emulate the archetypal streaming percepts of tonal stimuli that have long been tested in human subjects. The implications of this model are discussed with respect to the physiological correlates of streaming in the cortex as well as the role of attention and other top-down influences in guiding sound organization. PMID:19206802

  8. Neural Hyperactivity of the Central Auditory System in Response to Peripheral Damage

    PubMed Central

    Zhao, Yi; Song, Qiang; Li, Xinyi; Li, Chunyan

    2016-01-01

    It is increasingly appreciated that cochlear pathology is accompanied by adaptive responses in the central auditory system. The cause of cochlear pathology varies widely, and it seems that few commonalities can be drawn. In fact, despite intricate internal neuroplasticity and diverse external symptoms, several classical injury models provide a feasible path to locate responses to different peripheral cochlear lesions. In these cases, hair cell damage may lead to considerable hyperactivity in the central auditory pathways, mediated by a reduction in inhibition, which may underlie some clinical symptoms associated with hearing loss, such as tinnitus. Homeostatic plasticity, the most discussed and acknowledged mechanism in recent years, is most likely responsible for excited central activity following cochlear damage. PMID:26881094

  9. Multiple benefits of personal FM system use by children with auditory processing disorder (APD).

    PubMed

    Johnston, Kristin N; John, Andrew B; Kreisman, Nicole V; Hall, James W; Crandell, Carl C

    2009-01-01

    Children with auditory processing disorders (APD) were fitted with Phonak EduLink FM devices for home and classroom use. Baseline measures of the children with APD, prior to FM use, documented significantly lower speech-perception scores, evidence of decreased academic performance, and psychosocial problems in comparison to an age- and gender-matched control group. Repeated measures during the school year demonstrated speech-perception improvement in noisy classroom environments as well as significant academic and psychosocial benefits. Compared with the control group, the children with APD showed greater speech-perception advantage with FM technology. Notably, after prolonged FM use, even unaided (no FM device) speech-perception performance was improved in the children with APD, suggesting the possibility of fundamentally enhanced auditory system function. PMID:19925345

  10. Cortical development, plasticity and re-organization in children with cochlear implants

    PubMed Central

    Sharma, Anu; Nash, Amy A.; Dorman, Michael

    2009-01-01

    A basic tenet of developmental neurobiology is that certain areas of the cortex will reorganize, if appropriate stimulation is withheld for long periods. Stimulation must be delivered to a sensory system within a narrow window of time (a sensitive period) if that system is to develop normally. In this article, we will describe age cut-offs for a sensitive period for central auditory development in children who receive cochlear implants. We will review de-coupling and reorganization of cortical areas, which are presumed to underlie the end of the sensitive period in congenitally deaf humans and cats. Finally, we present two clinical cases which demonstrate the use of the P1 cortical auditory evoked potential as a biomarker for central auditory system development and re-organization in congenitally deaf children fitted with cochlear implants. Learning outcomes Readers of this article should be able to (i) describe the importance of the sensitive period as it relates to development of central auditory pathways in children with cochlear implants, (ii) discuss the hypothesis of decoupling of primary from higher order auditory cortex as it relates to the end of the sensitive period, (iii) discuss cross-modal reorganization which may occur after long periods of auditory deprivation, and (iv) understand the use of the P1 response as a biomarker for development of central auditory pathways. PMID:19380150

  11. Long-term exposure to music enhances the sensitivity of the auditory system in children.

    PubMed

    Meyer, Martin; Elmer, Stefan; Ringli, Maya; Oechslin, Mathias S; Baumann, Simon; Jancke, Lutz

    2011-09-01

    This event-related brain potential study aims to contribute to the present debate regarding the effect of musical training on the maturation of the human auditory nervous system. To address this issue, we recorded the mismatch negativity (MMN) evoked by violin and pure sine-wave tones in a group of 7.5- to 12-year-old children who had either several years of musical experience with Suzuki violin lessons, or no musical training. The strength of the MMN responses to violin tones evident in the Suzuki students clearly surpassed responses in controls; the reverse pattern was observed for sine-wave tones. Suzuki students showed significantly shorter MMN latencies to violin tones than to pure tones; the MMN latency did not differ significantly between pure tones and violin sounds in the control group. Thus, our data provide general evidence of how and to what extent extensive musical experience affects the maturation of human auditory function at multiple levels, namely, accuracy and speed of auditory discrimination processing. Our findings add to the present understanding of neuroplastic organization and function of the mammalian nervous system. Furthermore, behavioural recordings obtained from the participating children provide corroborating evidence for a relationship between the duration and intensity of training, the specific sensitivity to instrumental timbre, and pitch recognition abilities. PMID:21848923

  12. Auditory models for speech analysis

    NASA Astrophysics Data System (ADS)

    Maybury, Mark T.

    This paper reviews the psychophysical basis for auditory models and discusses their application to automatic speech recognition. First an overview of the human auditory system is presented, followed by a review of current knowledge gleaned from neurological and psychoacoustic experimentation. Next, a general framework describes established peripheral auditory models which are based on well-understood properties of the peripheral auditory system. This is followed by a discussion of current enhancements to that models to include nonlinearities and synchrony information as well as other higher auditory functions. Finally, the initial performance of auditory models in the task of speech recognition is examined and additional applications are mentioned.

  13. Nymphal development of the auditory system in the praying mantis Hierodula membranacea Burmeister (Dictyoptera, Mantidae).

    PubMed

    Yager, D D

    1996-01-01

    Like other praying mantises, Hierodula membranacea has a single midline ear on the ventral surface of the metathorax. The ear comprises a deep groove with two tympana forming the walls. A tympanal organ on each side contains 30-40 scolopophorous sensillae with axons that terminate in the metathoracic ganglion in neuropil that does not match the auditory neuropil of other insects. Nymphal development of the mantis ear proceeds in three major stages: 1) The tympanal organ is completely formed with a full complement of sensillae before hatching; 2) the infolding and rotations that form the deep groove are completed primarily over the first half of nymphal development; and 3) over the last five instars (of ten), the tympana thicken and broaden to their adult size and shape, and the impedance-matching tracheal sacs also enlarge and move to become tightly apposed to the inner surfaces of the tympana. Auditory sensitivity gradually increases beginning with the fifth instar and closely parallels tympanum and tracheal sac growth. Late instar nymphs have auditory thresholds of 70-80 dB sound pressure level (SPL). Appropriate connections of afferents to a functional interneuronal system are clearly present by the eighth instar and possibly much earlier. The pattern of auditory system ontogeny in the mantis is similar to that in locusts and in noctuid moths, but it differs from crickets. In evolutionary terms, it is significant that the metathoracic anatomy of newly hatched mantis nymphs matches very closely the anatomy of the homologous regions in adult cockroaches, which are closely related to mantises but are without tympanal hearing, and in mantises that are thought to be primitively deaf. PMID:8788244

  14. A dynamic auditory-cognitive system supports speech-in-noise perception in older adults

    PubMed Central

    Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina

    2013-01-01

    Understanding speech in noise is one of the most complex activities encountered in everyday life, relying on peripheral hearing, central auditory processing, and cognition. These abilities decline with age, and so older adults are often frustrated by a reduced ability to communicate effectively in noisy environments. Many studies have examined these factors independently; in the last decade, however, the idea of the auditory-cognitive system has emerged, recognizing the need to consider the processing of complex sounds in the context of dynamic neural circuits. Here, we use structural equation modeling to evaluate interacting contributions of peripheral hearing, central processing, cognitive ability, and life experiences to understanding speech in noise. We recruited 120 older adults (ages 55 to 79) and evaluated their peripheral hearing status, cognitive skills, and central processing. We also collected demographic measures of life experiences, such as physical activity, intellectual engagement, and musical training. In our model, central processing and cognitive function predicted a significant proportion of variance in the ability to understand speech in noise. To a lesser extent, life experience predicted hearing-in-noise ability through modulation of brainstem function. Peripheral hearing levels did not significantly contribute to the model. Previous musical experience modulated the relative contributions of cognitive ability and lifestyle factors to hearing in noise. Our models demonstrate the complex interactions required to hear in noise and the importance of targeting cognitive function, lifestyle, and central auditory processing in the management of individuals who are having difficulty hearing in noise. PMID:23541911

  15. Can You Hear Me Now? Musical Training Shapes Functional Brain Networks for Selective Auditory Attention and Hearing Speech in Noise

    PubMed Central

    Strait, Dana L.; Kraus, Nina

    2011-01-01

    Even in the quietest of rooms, our senses are perpetually inundated by a barrage of sounds, requiring the auditory system to adapt to a variety of listening conditions in order to extract signals of interest (e.g., one speaker's voice amidst others). Brain networks that promote selective attention are thought to sharpen the neural encoding of a target signal, suppressing competing sounds and enhancing perceptual performance. Here, we ask: does musical training benefit cortical mechanisms that underlie selective attention to speech? To answer this question, we assessed the impact of selective auditory attention on cortical auditory-evoked response variability in musicians and non-musicians. Outcomes indicate strengthened brain networks for selective auditory attention in musicians in that musicians but not non-musicians demonstrate decreased prefrontal response variability with auditory attention. Results are interpreted in the context of previous work documenting perceptual and subcortical advantages in musicians for the hearing and neural encoding of speech in background noise. Musicians’ neural proficiency for selectively engaging and sustaining auditory attention to language indicates a potential benefit of music for auditory training. Given the importance of auditory attention for the development and maintenance of language-related skills, musical training may aid in the prevention, habilitation, and remediation of individuals with a wide range of attention-based language, listening and learning impairments. PMID:21716636

  16. Early Stages of Melody Processing: Stimulus-Sequence and Task-Dependent Neuronal Activity in Monkey Auditory Cortical Fields A1 and R

    PubMed Central

    Yin, Pingbo; Mishkin, Mortimer; Sutter, Mitchell; Fritz, Jonathan B.

    2008-01-01

    To explore the effects of acoustic and behavioral context on neuronal responses in the core of auditory cortex (fields A1 and R), two monkeys were trained on a go/no-go discrimination task in which they learned to respond selectively to a four-note target (S+) melody and withhold response to a variety of other nontarget (S−) sounds. We analyzed evoked activity from 683 units in A1/R of the trained monkeys during task performance and from 125 units in A1/R of two naive monkeys. We characterized two broad classes of neural activity that were modulated by task performance. Class I consisted of tone-sequence–sensitive enhancement and suppression responses. Enhanced or suppressed responses to specific tonal components of the S+ melody were frequently observed in trained monkeys, but enhanced responses were rarely seen in naive monkeys. Both facilitatory and suppressive responses in the trained monkeys showed a temporal pattern different from that observed in naive monkeys. Class II consisted of nonacoustic activity, characterized by a task-related component that correlated with bar release, the behavioral response leading to reward. We observed a significantly higher percentage of both Class I and Class II neurons in field R than in A1. Class I responses may help encode a long-term representation of the behaviorally salient target melody. Class II activity may reflect a variety of nonacoustic influences, such as attention, reward expectancy, somatosensory inputs, and/or motor set and may help link auditory perception and behavioral response. Both types of neuronal activity are likely to contribute to the performance of the auditory task. PMID:18842950

  17. Early stages of melody processing: stimulus-sequence and task-dependent neuronal activity in monkey auditory cortical fields A1 and R.

    PubMed

    Yin, Pingbo; Mishkin, Mortimer; Sutter, Mitchell; Fritz, Jonathan B

    2008-12-01

    To explore the effects of acoustic and behavioral context on neuronal responses in the core of auditory cortex (fields A1 and R), two monkeys were trained on a go/no-go discrimination task in which they learned to respond selectively to a four-note target (S+) melody and withhold response to a variety of other nontarget (S-) sounds. We analyzed evoked activity from 683 units in A1/R of the trained monkeys during task performance and from 125 units in A1/R of two naive monkeys. We characterized two broad classes of neural activity that were modulated by task performance. Class I consisted of tone-sequence-sensitive enhancement and suppression responses. Enhanced or suppressed responses to specific tonal components of the S+ melody were frequently observed in trained monkeys, but enhanced responses were rarely seen in naive monkeys. Both facilitatory and suppressive responses in the trained monkeys showed a temporal pattern different from that observed in naive monkeys. Class II consisted of nonacoustic activity, characterized by a task-related component that correlated with bar release, the behavioral response leading to reward. We observed a significantly higher percentage of both Class I and Class II neurons in field R than in A1. Class I responses may help encode a long-term representation of the behaviorally salient target melody. Class II activity may reflect a variety of nonacoustic influences, such as attention, reward expectancy, somatosensory inputs, and/or motor set and may help link auditory perception and behavioral response. Both types of neuronal activity are likely to contribute to the performance of the auditory task. PMID:18842950

  18. Lecture Recording System in Anatomy: Possible Benefit to Auditory Learners

    ERIC Educational Resources Information Center

    Bacro, Thierry R. H.; Gebregziabher, Mulugeta; Ariail, Jennie

    2013-01-01

    The literature reports that using Learning Recording Systems (LRS) is usually well received by students but that the pedagogical value of LRS in academic settings remains somewhat unclear. The primary aim of the current study is to document students' perceptions, actual pattern of usage, and impact of use of LRS on students' grade in a…

  19. GLUTAMATE NEUROTOXICITY IN RAT AUDITORY SYSTEM: COCHLEAR NUCLEAR COMPLEX

    EPA Science Inventory

    In other systems such as the hypothalamus and hippocampus, it has been shown that cells postsynaptic with respect to glutamatergic inputs degenerate when exposed to large doses of glutamate ("glutamate neurotoxicity"). e have shown that large doses of glutamate administered intra...

  20. Getting back on the beat: links between auditory-motor integration and precise auditory processing at fast time scales.

    PubMed

    Tierney, Adam; Kraus, Nina

    2016-03-01

    The auditory system is unique in its ability to precisely detect the timing of perceptual events and use this information to update motor plans, a skill that is crucial for language. However, the characteristics of the auditory system that enable this temporal precision are only beginning to be understood. Previous work has shown that participants who can tap consistently to a metronome have neural responses to sound with greater phase coherence from trial to trial. We hypothesized that this relationship is driven by a link between the updating of motor output by auditory feedback and neural precision. Moreover, we hypothesized that neural phase coherence at both fast time scales (reflecting subcortical processing) and slow time scales (reflecting cortical processing) would be linked to auditory-motor timing integration. To test these hypotheses, we asked participants to synchronize to a pacing stimulus, and then changed either the tempo or the timing of the stimulus to assess whether they could rapidly adapt. Participants who could rapidly and accurately resume synchronization had neural responses to sound with greater phase coherence. However, this precise timing was limited to the time scale of 10 ms (100 Hz) or faster; neural phase coherence at slower time scales was unrelated to performance on this task. Auditory-motor adaptation therefore specifically depends upon consistent auditory processing at fast, but not slow, time scales. PMID:26750313

  1. Epilepsy and the cortical vestibular system: tales of dizziness and recent concepts

    PubMed Central

    Hewett, Russell; Bartolomei, Fabrice

    2013-01-01

    Cortical representations of the vestibular system are now well recognized. In contrast, the fact that epilepsy can affect these systems, provoking transient vestibular symptoms, is less known. Focal seizures may nonetheless manifest by prominent vestibular changes ranging from mild unsteadiness to true rotational vertigo. Most often these symptoms are associated with other subjective manifestations. In pure vestibular forms, the diagnosis may be more difficult and is often delayed. The cortical origin of these symptoms will be discussed and compared with the known “vestibular” cortical representations. In addition, the existence of a specific “vestibular epilepsy” has been suggested in some publications. This condition affects young subjects with a frequent family history and most often a benign evolution, raising the possibility of a form of idiopathic epilepsy (Hewett etal., 2011). PMID:24273498

  2. Arousal recognition system based on heartbeat dynamics during auditory elicitation.

    PubMed

    Nardelli, Mimma; Valenza, Gaetano; Greco, Alberto; Lanata, Antonio; Scilingo, Enzo Pasquale

    2015-08-01

    This study reports on the recognition of different arousal levels, elicited by affective sounds, performed using estimates of autonomic nervous system dynamics. Specifically, as a part of the circumplex model of affect, arousal levels were recognized by properly combining information gathered from standard and nonlinear analysis of heartbeat dynamics, which was derived from the electrocardiogram (ECG). Affective sounds were gathered from the International Affective Digitized Sound System and grouped into four different levels of arousal. A group of 27 healthy volunteers underwent such elicitation while ECG signals were continuously recorded. Results showed that a quadratic discriminant classifier, as applied implementing a leave-one-subject-out procedure, achieved a recognition accuracy of 84.26%. Moreover, this study confirms the crucial role of heartbeat nonlinear dynamics for emotion recognition, hereby estimated through lagged Poincare plots. PMID:26737686

  3. A flexible and inexpensive high-performance auditory evoked response recording system appropriate for research purposes.

    PubMed

    Valderrama, Joaquin T; de la Torre, Angel; Alvarez, Isaac; Segura, Jose Carlos; Sainz, Manuel; Vargas, Jose Luis

    2014-10-01

    Recording auditory evoked responses (AER) is done not only in hospitals and clinics worldwide to detect hearing impairments and estimate hearing thresholds, but also in research centers to understand and model the mechanisms involved in the process of hearing. This paper describes a high-performance, flexible, and inexpensive AER recording system. A full description of the hardware and software modules that compose the AER recording system is provided. The performance of this system was evaluated by conducting five experiments with both real and artificially synthesized auditory brainstem response and middle latency response signals at different intensity levels and stimulation rates. The results indicate that the flexibility of the described system is appropriate to record AER signals under several recording conditions. The AER recording system described in this article is a flexible and inexpensive high-performance AER recording system. This recording system also incorporates a platform through which users are allowed to implement advanced signal processing methods. Moreover, its manufacturing cost is significantly lower than that of other commercially available alternatives. These advantages may prove useful in many research applications in audiology. PMID:24870606

  4. The Perception of Auditory Motion

    PubMed Central

    Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  5. The Perception of Auditory Motion.

    PubMed

    Carlile, Simon; Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  6. Contribution of psychoacoustics and neuroaudiology in revealing correlation of mental disorders with central auditory processing disorders

    PubMed Central

    Iliadou, V; Iakovides, S

    2003-01-01

    Background Psychoacoustics is a fascinating developing field concerned with the evaluation of the hearing sensation as an outcome of a sound or speech stimulus. Neuroaudiology with electrophysiologic testing, records the electrical activity of the auditory pathways, extending from the 8th cranial nerve up to the cortical auditory centers as a result of external auditory stimuli. Central Auditory Processing Disorders may co-exist with mental disorders and complicate diagnosis and outcome. Design A MEDLINE search was conducted to search for papers concerning the association between Central Auditory Processing Disorders and mental disorders. The research focused on the diagnostic methods providing the inter-connection of various mental disorders and central auditory deficits. Measurements and Main Results The medline research revealed 564 papers when using the keywords 'auditory deficits' and 'mental disorders'. 79 papers were referring specifically to Central Auditory Processing Disorders in connection with mental disorders. 175 papers were related to Schizophrenia, 126 to learning disabilities, 29 to Parkinson's disease, 88 to dyslexia and 39 to Alzheimer's disease. Assessment of the Central Auditory System is carried out through a great variety of tests that fall into two main categories: psychoacoustic and electrophysiologic testing. Different specialties are involved in the diagnosis and management of Central Auditory Processing Disorders as well as the mental disorders that may co-exist with them. As a result it is essential that they are all aware of the possibilities in diagnostic procedures. Conclusions Considerable evidence exists that mental disorders may correlate with CAPD and this correlation could be revealed through psychoacoustics and neuroaudiology. Mental disorders that relate to Central Auditory Processing Disorders are: Schizophrenia, attention deficit disorders, Alzheimer's disease, learning disabilities, dyslexia, depression, auditory

  7. A fuzzy system for helping medical diagnosis of malformations of cortical development.

    PubMed

    Alayón, Silvia; Robertson, Richard; Warfield, Simon K; Ruiz-Alzola, Juan

    2007-06-01

    Malformations of the cerebral cortex are recognized as a common cause of developmental delay, neurological deficits, mental retardation and epilepsy. Currently, the diagnosis of cerebral cortical malformations is based on a subjective interpretation of neuroimaging characteristics of the cerebral gray matter and underlying white matter. There is no automated system for aiding the observer in making the diagnosis of a cortical malformation. In this paper a fuzzy rule-based system is proposed as a solution for this problem. The system collects the available expert knowledge about cortical malformations and assists the medical observer in arriving at a correct diagnosis. Moreover, the system allows the study of the influence of the various factors that take part in the decision. The evaluation of the system has been carried out by comparing the automated diagnostic algorithm with known case examples of various malformations due to abnormal cortical organization. An exhaustive evaluation of the system by comparison with published cases and a ROC analysis is presented in the paper. PMID:17197247

  8. A Fuzzy System for Helping Medical Diagnosis of Malformations of Cortical Development

    PubMed Central

    Alayón, Silvia; Robertson, Richard; Warfield, Simon K.; Ruiz-Alzola, Juan

    2007-01-01

    Malformations of the cerebral cortex are recognized as a common cause of developmental delay, neurological deficits, mental retardation and epilepsy. Currently, the diagnosis of cerebral cortical malformations is based on a subjective interpretation of neuroimaging characteristics of the cerebral gray matter and underlying white matter. There is no automated system for aiding the observer in making the diagnosis of a cortical malformation. In this paper a fuzzy rule-based system is proposed as a solution for this problem. The system collects the available expert knowledge about cortical malformations and assists the medical observer in arriving at a correct diagnosis. Moreover, the system allows the study of the influence of the various factors that take part in the decision. The evaluation of the system has been carried out by comparing the automated diagnostic algorithm with known case examples of various malformations due to abnormal cortical organization. An exhaustive evaluation of the system by comparison with published cases and a ROC analysis is presented in the paper. PMID:17197247

  9. How do neurons work together? Lessons from auditory cortex

    PubMed Central

    Harris, Kenneth D.; Bartho, Peter; Chadderton, Paul; Curto, Carina; de la Rocha, Jaime; Hollender, Liad; Itskov, Vladimir; Luczak, Artur; Marguet, Stephan L.; Renart, Alfonso; Sakata, Shuzo

    2010-01-01

    Recordings of single neurons have yielded great insights into the way acoustic stimuli are represented in auditory cortex. However, any one neuron functions as part of a population whose combined activity underlies cortical information processing. Here we review some results obtained by recording simultaneously from auditory cortical populations and individual morphologically identified neurons, in urethane-anesthetized and unanesthetized passively listening rats. Auditory cortical populations produced structured activity patterns both in response to acoustic stimuli, and spontaneously without sensory input. Population spike time patterns were broadly conserved across multiple sensory stimuli and spontaneous events, exhibiting a generally conserved sequential organization lasting approximately 100ms. Both spontaneous and evoked events exhibited sparse, spatially localized activity in layer 2/3 pyramidal cells, and densely distributed activity in larger layer 5 pyramidal cells and putative interneurons. Laminar propagation differed however, with spontaneous activity spreading upward from deep layers and slowly across columns, but sensory responses initiating in presumptive thalamorecipient layers, spreading rapidly across columns. In both unanesthetized and urethanized rats, global activity fluctuated between “desynchronized” state characterized by low amplitude, high-frequency local field potentials and a “synchronized” state of larger, lower-frequency waves. Computational studies suggested that responses could be predicted by a simple dynamical system model fitted to the spontaneous activity immediately preceding stimulus presentation. Fitting this model to the data yielded a nonlinear self-exciting system model in synchronized states and an approximately linear system in desynchronized states. We comment on the significance of these results for auditory cortical processing of acoustic and non-acoustic information. PMID:20603208

  10. A portable system for marine mammal auditory-evoked potential measurements

    NASA Astrophysics Data System (ADS)

    Finneran, James J.; Houser, Dorian S.

    2001-05-01

    Limitations to behavioral measures of hearing sensitivity in marine mammals include the time and expense typically required to train subjects. These limitations have resulted in limited subjects and lingering questions regarding intraspecific variability. An alternative to behavioral methods is the electrophysiological method, where passive electrodes are used to measure auditory-evoked potentials (AEPs) generated by the brain in response to sound stimuli. Marine mammal AEP measurements have been limited by the complexity of the technique and the limited applicability of commercially available AEP systems. In this paper, a portable, laptop computer-based system for marine mammal AEP measurements will be presented. The system features commercial off-the-shelf components, including a data acquisition PC card, biopotential amplifier, and programmable attenuator. The system is housed in a rugged, shock-resistant case. Custom software is used to present sound stimuli, record evoked responses, and analyze the resulting data. The system has been used to measure auditory brainstem responses to clicks and tone pips and envelope following responses to amplitude-modulated tones in bottlenose dolphins. Preliminary data obtained with the system will be presented and compared to behavioral hearing measures. [Work supported by the ILIR at SPAWARSYSCEN-SD and the ONR.

  11. Central auditory development in children with cochlear implants: clinical implications.

    PubMed

    Sharma, Anu; Dorman, Michael F

    2006-01-01

    A common finding in developmental neurobiology is that stimulation must be delivered to a sensory system within a narrow window of time (a sensitive period) during development in order for that sensory system to develop normally. Experiments with congenitally deaf children have allowed us to establish the existence and time limits of a sensitive period for the development of central auditory pathways in humans. Using the latency of cortical auditory evoked potentials (CAEPs) as a measure we have found that central auditory pathways are maximally plastic for a period of about 3.5 years. If the stimulation is delivered within that period CAEP latencies reach age-normal values within 3-6 months after stimulation. However, if stimulation is withheld for more than 7 years, CAEP latencies decrease significantly over a period of approximately 1 month following the onset of stimulation. They then remain constant or change very slowly over months or years. The lack of development of the central auditory system in congenitally deaf children implanted after 7 years is correlated with relatively poor development of speech and language skills [Geers, this vol, pp 50-65]. Animal models suggest that the primary auditory cortex may be functionally decoupled from higher order auditory cortex due to restricted development of inter- and intracortical connections in late-implanted children [Kral and Tillein, this vol, pp 89-108]. Another aspect of plasticity that works against late-implanted children is the reorganization of higher order cortex by other sensory modalities (e.g. vision). The hypothesis of decoupling of primary auditory cortex from higher order auditory cortex in children deprived of sound for a long time may explain the speech perception and oral language learning difficulties of children who receive an implant after the end of the sensitive period. PMID:16891837

  12. Generators and Connectivity of the Early Auditory Evoked Gamma Band Response.

    PubMed

    Polomac, Nenad; Leicht, Gregor; Nolte, Guido; Andreou, Christina; Schneider, Till R; Steinmann, Saskia; Engel, Andreas K; Mulert, Christoph

    2015-11-01

    High frequency oscillations in the gamma range are known to be involved in early stages of auditory information processing in terms of synchronization of brain regions, e.g., in cognitive functions. It has been shown using EEG source localisation, as well as simultaneously recorded EEG-fMRI, that the auditory evoked gamma-band response (aeGBR) is modulated by attention. In addition to auditory cortex activity a dorsal anterior cingulate cortex (dACC) generator could be involved. In the present study we investigated aeGBR magnetic fields using magnetoencephalography (MEG). We aimed to localize the aeGBR sources and its connectivity features in relation to mental effort. We investigated the aeGBR magnetic fields in 13 healthy participants using a 275-channel CTF-MEG system. The experimental paradigms were two auditory choice reaction tasks with different difficulties and demands for mental effort. We performed source localization with eLORETA and calculated the aeGBR lagged phase synchronization between bilateral auditory cortices and frontal midline structures. The eLORETA analysis revealed sources of the aeGBR within bilateral auditory cortices and in frontal midline structures of the brain including the dACC. Compared to the control condition the dACC source activity was found to be significantly stronger during the performance of the cognitively demanding task. Moreover, this task involved a significantly stronger functional connectivity between auditory cortices and dACC. In accordance with previous EEG and EEG-fMRI investigations, our study confirms an aeGBR generator in the dACC by means of MEG and suggests its involvement in the effortful processing of auditory stimuli. PMID:25926268

  13. Attending to auditory memory.

    PubMed

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2016-06-01

    Attention to memory describes the process of attending to memory traces when the object is no longer present. It has been studied primarily for representations of visual stimuli with only few studies examining attention to sound object representations in short-term memory. Here, we review the interplay of attention and auditory memory with an emphasis on 1) attending to auditory memory in the absence of related external stimuli (i.e., reflective attention) and 2) effects of existing memory on guiding attention. Attention to auditory memory is discussed in the context of change deafness, and we argue that failures to detect changes in our auditory environments are most likely the result of a faulty comparison system of incoming and stored information. Also, objects are the primary building blocks of auditory attention, but attention can also be directed to individual features (e.g., pitch). We review short-term and long-term memory guided modulation of attention based on characteristic features, location, and/or semantic properties of auditory objects, and propose that auditory attention to memory pathways emerge after sensory memory. A neural model for auditory attention to memory is developed, which comprises two separate pathways in the parietal cortex, one involved in attention to higher-order features and the other involved in attention to sensory information. This article is part of a Special Issue entitled SI: Auditory working memory. PMID:26638836

  14. Bat auditory cortex – model for general mammalian auditory computation or special design solution for active time perception?

    PubMed

    Kössl, Manfred; Hechavarria, Julio; Voss, Cornelia; Schaefer, Markus; Vater, Marianne

    2015-03-01

    Audition in bats serves passive orientation, alerting functions and communication as it does in other vertebrates. In addition, bats have evolved echolocation for orientation and prey detection and capture. This put a selective pressure on the auditory system in regard to echolocation-relevant temporal computation and frequency analysis. The present review attempts to evaluate in which respect the processing modules of bat auditory cortex (AC) are a model for typical mammalian AC function or are designed for echolocation-unique purposes. We conclude that, while cortical area arrangement and cortical frequency processing does not deviate greatly from that of other mammals, the echo delay time-sensitive dorsal cortex regions contain special designs for very powerful time perception. Different bat species have either a unique chronotopic cortex topography or a distributed salt-and-pepper representation of echo delay. The two designs seem to enable similar behavioural performance. PMID:25728173

  15. Neurophysiological assessment of auditory, peripheral nerve, somatosensory, and visual system functions after developmental exposure to ethanol vapors.

    PubMed

    Boyes, William K; Degn, Laura L; Martin, Sheppard A; Lyke, Danielle F; Hamm, Charles W; Herr, David W

    2014-01-01

    Ethanol-blended gasoline entered the market in response to demand for domestic renewable energy sources, and may result in increased inhalation of ethanol vapors in combination with other volatile gasoline constituents. It is important to understand potential risks of inhalation of ethanol vapors by themselves, and also as a baseline for evaluating the risks of ethanol combined with a complex mixture of hydrocarbon vapors. Because sensory dysfunction has been reported after developmental exposure to ethanol, we evaluated the effects of developmental exposure to ethanol vapors on neurophysiological measures of sensory function as a component of a larger project evaluating developmental ethanol toxicity. Pregnant Long-Evans rats were exposed to target concentrations 0, 5000, 10,000, or 21,000 ppm ethanol vapors for 6.5h/day over GD9-GD20. Sensory evaluations of male offspring began between PND106 and PND128. Peripheral nerve function (compound action potentials, nerve conduction velocity (NCV)), somatosensory (cortical and cerebellar evoked potentials), auditory (brainstem auditory evoked responses), and visual evoked responses were assessed. Visual function assessment included pattern elicited visual evoked potentials (VEPs), VEP contrast sensitivity, and electroretinograms recorded from dark-adapted (scotopic), light-adapted (photopic) flashes, and UV flicker and green flicker. No consistent concentration-related changes were observed for any of the physiological measures. The results show that gestational exposure to ethanol vapor did not result in detectable changes in peripheral nerve, somatosensory, auditory, or visual function when the offspring were assessed as adults. PMID:24607749

  16. Comparison of the auditory systems of heterosexuals and homosexuals: Click-evoked otoacoustic emissions

    PubMed Central

    McFadden, Dennis; Pasanen, Edward G.

    1998-01-01

    Click-evoked otoacoustic emissions (CEOAEs) are echo-like waveforms emitted by normal-hearing cochleas in response to a brief transient. CEOAEs are known to be stronger in females than in males. In this experiment, the CEOAEs of homosexual and bisexual females were found to be intermediate to those of heterosexual females and heterosexual males. A parsimonious explanation is that the auditory systems of homosexual and bisexual females, and the brain structures responsible for their sexual orientation, have been partially masculinized by exposure to high levels of androgens prenatally. No difference in CEOAEs was observed between homosexual and heterosexual males. PMID:9482952

  17. Image-based retrieval system and computer-aided diagnosis system for renal cortical scintigraphy images

    NASA Astrophysics Data System (ADS)

    Mumcuoğlu, Erkan; Nar, Fatih; Uğur, Omer; Bozkurt, M. Fani; Aslan, Mehmet

    2008-03-01

    Cortical renal (kidney) scintigraphy images are 2D images (256x256) acquired in three projection angles (posterior, right-posterior-oblique and left-posterior-oblique). These images are used by nuclear medicine specialists to examine the functional morphology of kidney parenchyma. The main visual features examined in reading the images are: size, location, shape and activity distribution (pixel intensity distribution within the boundary of each kidney). Among the above features, activity distribution (in finding scars if any) was found to have the least interobserver reproducibility. Therefore, in this study, we developed an image-based retrieval (IBR) and a computer-based diagnosis (CAD) system, focused on this feature in particular. The developed IBR and CAD algorithms start with automatic segmentation, boundary and landmark detection. Then, shape and activity distribution features are computed. Activity distribution feature is obtained using the acquired image and image set statistics of the normal patients. Active Shape Model (ASM) technique is used for more accurate kidney segmentation. In the training step of ASM, normal patient images are used. Retrieval performance is evaluated by calculating precision and recall. CAD performance is evaluated by specificity and sensitivity. To our knowledge, this paper is the first IBR or CAD system reported in the literature on renal cortical scintigraphy images.

  18. Auditory spatial processing in Alzheimer's disease.

    PubMed

    Golden, Hannah L; Nicholas, Jennifer M; Yong, Keir X X; Downey, Laura E; Schott, Jonathan M; Mummery, Catherine J; Crutch, Sebastian J; Warren, Jason D

    2015-01-01

    The location and motion of sounds in space are important cues for encoding the auditory world. Spatial processing is a core component of auditory scene analysis, a cognitively demanding function that is vulnerable in Alzheimer's disease. Here we designed a novel neuropsychological battery based on a virtual space paradigm to assess auditory spatial processing in patient cohorts with clinically typical Alzheimer's disease (n = 20) and its major variant syndrome, posterior cortical atrophy (n = 12) in relation to healthy older controls (n = 26). We assessed three dimensions of auditory spatial function: externalized versus non-externalized sound discrimination, moving versus stationary sound discrimination and stationary auditory spatial position discrimination, together with non-spatial auditory and visual spatial control tasks. Neuroanatomical correlates of auditory spatial processing were assessed using voxel-based morphometry. Relative to healthy older controls, both patient groups exhibited impairments in detection of auditory motion, and stationary sound position discrimination. The posterior cortical atrophy group showed greater impairment for auditory motion processing and the processing of a non-spatial control complex auditory property (timbre) than the typical Alzheimer's disease group. Voxel-based morphometry in the patient cohort revealed grey matter correlates of auditory motion detection and spatial position discrimination in right inferior parietal cortex and precuneus, respectively. These findings delineate auditory spatial processing deficits in typical and posterior Alzheimer's disease phenotypes that are related to posterior cortical regions involved in both syndromic variants and modulated by the syndromic profile of brain degeneration. Auditory spatial deficits contribute to impaired spatial awareness in Alzheimer's disease and may constitute a novel perceptual model for probing brain network disintegration across the Alzheimer's disease

  19. Spatial representations of temporal and spectral sound cues in human auditory cortex.

    PubMed

    Herdener, Marcus; Esposito, Fabrizio; Scheffler, Klaus; Schneider, Peter; Logothetis, Nikos K; Uludag, Kamil; Kayser, Christoph

    2013-01-01

    Natural and behaviorally relevant sounds are characterized by temporal modulations of their waveforms, which carry important cues for sound segmentation and communication. Still, there is little consensus as to how this temporal information is represented in auditory cortex. Here, by using functional magnetic resonance imaging (fMRI) optimized for studying the auditory system, we report the existence of a topographically ordered spatial representation of temporal sound modulation rates in human auditory cortex. We found a topographically organized sensitivity within auditory cortex to sounds with varying modulation rates, with enhanced responses to lower modulation rates (2 and 4 Hz) on lateral parts of Heschl's gyrus (HG) and faster modulation rates (16 and 32 Hz) on medial HG. The representation of temporal modulation rates was distinct from the representation of sound frequencies (tonotopy) that was orientated roughly orthogonal. Moreover, the combination of probabilistic anatomical maps with a previously proposed functional delineation of auditory fields revealed that the distinct maps of temporal and spectral sound features both prevail within two presumed primary auditory fields hA1 and hR. Our results reveal a topographically ordered representation of temporal sound cues in human primary auditory cortex that is complementary to maps of spectral cues. They thereby enhance our understanding of the functional parcellation and organization of auditory cortical processing. PMID:23706955

  20. Deviance-Related Responses along the Auditory Hierarchy: Combined FFR, MLR and MMN Evidence

    PubMed Central

    Shiga, Tetsuya; Althen, Heike; Cornella, Miriam; Zarnowiec, Katarzyna; Yabe, Hirooki; Escera, Carles

    2015-01-01

    The mismatch negativity (MMN) provides a correlate of automatic auditory discrimination in human auditory cortex that is elicited in response to violation of any acoustic regularity. Recently, deviance-related responses were found at much earlier cortical processing stages as reflected by the middle latency response (MLR) of the auditory evoked potential, and even at the level of the auditory brainstem as reflected by the frequency following response (FFR). However, no study has reported deviance-related responses in the FFR, MLR and long latency response (LLR) concurrently in a single recording protocol. Amplitude-modulated (AM) sounds were presented to healthy human participants in a frequency oddball paradigm to investigate deviance-related responses along the auditory hierarchy in the ranges of FFR, MLR and LLR. AM frequency deviants modulated the FFR, the Na and Nb components of the MLR, and the LLR eliciting the MMN. These findings demonstrate that it is possible to elicit deviance-related responses at three different levels (FFR, MLR and LLR) in one single recording protocol, highlight the involvement of the whole auditory hierarchy in deviance detection and have implications for cognitive and clinical auditory neuroscience. Moreover, the present protocol provides a new research tool into clinical neuroscience so that the functional integrity of the auditory novelty system can now be tested as a whole in a range of clinical populations where the MMN was previously shown to be defective. PMID:26348628

  1. Electrostimulation mapping of comprehension of auditory and visual words.

    PubMed

    Roux, Franck-Emmanuel; Miskin, Krasimir; Durand, Jean-Baptiste; Sacko, Oumar; Réhault, Emilie; Tanova, Rositsa; Démonet, Jean-François

    2015-10-01

    In order to spare functional areas during the removal of brain tumours, electrical stimulation mapping was used in 90 patients (77 in the left hemisphere and 13 in the right; 2754 cortical sites tested). Language functions were studied with a special focus on comprehension of auditory and visual words and the semantic system. In addition to naming, patients were asked to perform pointing tasks from auditory and visual stimuli (using sets of 4 different images controlled for familiarity), and also auditory object (sound recognition) and Token test tasks. Ninety-two auditory comprehension interference sites were observed. We found that the process of auditory comprehension involved a few, fine-grained, sub-centimetre cortical territories. Early stages of speech comprehension seem to relate to two posterior regions in the left superior temporal gyrus. Downstream lexical-semantic speech processing and sound analysis involved 2 pathways, along the anterior part of the left superior temporal gyrus, and posteriorly around the supramarginal and middle temporal gyri. Electrostimulation experimentally dissociated perceptual consciousness attached to speech comprehension. The initial word discrimination process can be considered as an "automatic" stage, the attention feedback not being impaired by stimulation as would be the case at the lexical-semantic stage. Multimodal organization of the superior temporal gyrus was also detected since some neurones could be involved in comprehension of visual material and naming. These findings demonstrate a fine graded, sub-centimetre, cortical representation of speech comprehension processing mainly in the left superior temporal gyrus and are in line with those described in dual stream models of language comprehension processing. PMID:26332785

  2. A brain-computer interface controlled auditory event-related potential (p300) spelling system for locked-in patients.

    PubMed

    Kübler, Andrea; Furdea, Adrian; Halder, Sebastian; Hammer, Eva Maria; Nijboer, Femke; Kotchoubey, Boris

    2009-03-01

    Using brain-computer interfaces (BCI) humans can select letters or other targets on a computer screen without any muscular involvement. An intensively investigated kind of BCI is based on the recording of visual event-related brain potentials (ERP). However, some severely paralyzed patients who need a BCI for communication have impaired vision or lack control of gaze movement, thus making a BCI depending on visual input no longer feasible. In an effort to render the ERP-BCI usable for this group of patients, the ERP-BCI was adapted to auditory stimulation. Letters of the alphabet were assigned to cells in a 5 x 5 matrix. Rows of the matrix were coded with numbers 1 to 5, and columns with numbers 6 to 10, and the numbers were presented auditorily. To select a letter, users had to first select the row and then the column containing the desired letter. Four severely paralyzed patients in the end-stage of a neurodegenerative disease were examined. All patients performed above chance level. Spelling accuracy was significantly lower with the auditory system as compared with a similar visual system. Patients reported difficulties in concentrating on the task when presented with the auditory system. In future studies, the auditory ERP-BCI should be adjusted by taking into consideration specific features of severely paralyzed patients, such as reduced attention span. This adjustment in combination with more intensive training will show whether an auditory ERP-BCI can become an option for visually impaired patients. PMID:19351359

  3. Inferring cortical function in the mouse visual system through large-scale systems neuroscience.

    PubMed

    Hawrylycz, Michael; Anastassiou, Costas; Arkhipov, Anton; Berg, Jim; Buice, Michael; Cain, Nicholas; Gouwens, Nathan W; Gratiy, Sergey; Iyer, Ramakrishnan; Lee, Jung Hoon; Mihalas, Stefan; Mitelut, Catalin; Olsen, Shawn; Reid, R Clay; Teeter, Corinne; de Vries, Saskia; Waters, Jack; Zeng, Hongkui; Koch, Christof

    2016-07-01

    The scientific mission of the Project MindScope is to understand neocortex, the part of the mammalian brain that gives rise to perception, memory, intelligence, and consciousness. We seek to quantitatively evaluate the hypothesis that neocortex is a relatively homogeneous tissue, with smaller functional modules that perform a common computational function replicated across regions. We here focus on the mouse as a mammalian model organism with genetics, physiology, and behavior that can be readily studied and manipulated in the laboratory. We seek to describe the operation of cortical circuitry at the computational level by comprehensively cataloging and characterizing its cellular building blocks along with their dynamics and their cell type-specific connectivities. The project is also building large-scale experimental platforms (i.e., brain observatories) to record the activity of large populations of cortical neurons in behaving mice subject to visual stimuli. A primary goal is to understand the series of operations from visual input in the retina to behavior by observing and modeling the physical transformations of signals in the corticothalamic system. We here focus on the contribution that computer modeling and theory make to this long-term effort. PMID:27382147

  4. Inferring cortical function in the mouse visual system through large-scale systems neuroscience

    PubMed Central

    Hawrylycz, Michael; Anastassiou, Costas; Arkhipov, Anton; Berg, Jim; Buice, Michael; Cain, Nicholas; Gouwens, Nathan W.; Gratiy, Sergey; Iyer, Ramakrishnan; Lee, Jung Hoon; Mihalas, Stefan; Mitelut, Catalin; Olsen, Shawn; Reid, R. Clay; Teeter, Corinne; de Vries, Saskia; Waters, Jack; Zeng, Hongkui; Koch, Christof

    2016-01-01

    The scientific mission of the Project MindScope is to understand neocortex, the part of the mammalian brain that gives rise to perception, memory, intelligence, and consciousness. We seek to quantitatively evaluate the hypothesis that neocortex is a relatively homogeneous tissue, with smaller functional modules that perform a common computational function replicated across regions. We here focus on the mouse as a mammalian model organism with genetics, physiology, and behavior that can be readily studied and manipulated in the laboratory. We seek to describe the operation of cortical circuitry at the computational level by comprehensively cataloging and characterizing its cellular building blocks along with their dynamics and their cell type-specific connectivities. The project is also building large-scale experimental platforms (i.e., brain observatories) to record the activity of large populations of cortical neurons in behaving mice subject to visual stimuli. A primary goal is to understand the series of operations from visual input in the retina to behavior by observing and modeling the physical transformations of signals in the corticothalamic system. We here focus on the contribution that computer modeling and theory make to this long-term effort. PMID:27382147

  5. The use of auditory prompting systems for increasing independent performance of students with autism in employment training.

    PubMed

    Montgomery, Joyce; Storey, Keith; Post, Michal; Lemley, Jacky

    2011-12-01

    In this study a self-operated auditory prompting system is introduced to determine if it can increase the on-task behavior for two students with autism participating in an employment training program. In addition, the amount of prompts provided by support staff is measured. The self-operated auditory prompting system consisted of tape recordings of music interspersed with prompts of self-evaluation and encouragement related to the job tasks being performed in the employment setting. The results of the study indicated a potential positive relationship between the self-operated auditory prompting system and the on-task behavior of the participants as well as a positive relationship between the decreased amounts of prompts used by support staff. PMID:21885987

  6. Immediate manifestation of acoustic trauma in the auditory cortex is layer specific and cell type dependent.

    PubMed

    Novák, Ondřej; Zelenka, Ondřej; Hromádka, Tomáš; Syka, Josef

    2016-04-01

    Exposure to loud sounds damages the auditory periphery and induces maladaptive changes in central parts of the auditory system. Diminished peripheral afferentation and altered inhibition influence the processing of sounds in the auditory cortex. It is unclear, however, which types of inhibitory interneurons are affected by acoustic trauma. Here we used single-unit electrophysiological recording and two-photon calcium imaging in anesthetized mice to evaluate the effects of acute acoustic trauma (125 dB SPL, white noise, 5 min) on the response properties of neurons in the core auditory cortex. Electrophysiological measurements suggested the selective impact of acoustic trauma on inhibitory interneurons in the auditory cortex. To further investigate which interneuronal types were affected, we used two-photon calcium imaging to record the activity of neurons in cortical layers 2/3 and 4, specifically focusing on parvalbumin-positive (PV+) and somatostatin-positive (SST+) interneurons. Spontaneous and pure-tone-evoked firing rates of SST+ interneurons increased in layer 4 immediately after acoustic trauma and remained almost unchanged in layer 2/3. Furthermore, PV+ interneurons with high best frequencies increased their evoked-to-spontaneous firing rate ratios only in layer 2/3 and did not change in layer 4. Finally, acoustic trauma unmasked low-frequency excitatory inputs only in layer 2/3. Our results demonstrate layer-specific changes in the activity of auditory cortical inhibitory interneurons within minutes after acoustic trauma. PMID:26823513

  7. Differential auditory signal processing in an animal model

    NASA Astrophysics Data System (ADS)

    Lim, Dukhwan; Kim, Chongsun; Chang, Sun O.

    2002-05-01

    Auditory evoked responses were collected in male zebra finches (Poephila guttata) to objectively determine differential frequency selectivity. First, the mating call of the animal was recorded and analyzed for its frequency components through the customized program. Then, auditory brainstem responses and cortical responses of each anesthetized animal were routinely recorded in response to tone bursts of 1-8 kHz derived from the corresponding mating call spectrum. From the results, most mating calls showed relatively consistent spectral structures. The upper limit of the spectrum was well under 10 kHz. The peak energy bands were concentrated in the region less than 5 kHz. The assessment of auditory brainstem responses and cortical evoked potentials showed differential selectivity with a series of characteristic scales. This system appears to be an excellent model to investigate complex sound processing and related language behaviors. These data could also be used in designing effective signal processing strategies in auditory rehabilitation devices such as hearing aids and cochlear implants. [Work supported by Brain Science & Engineering Program from Korean Ministry of Science and Technology.

  8. Motor-Auditory-Visual Integration: The Role of the Human Mirror Neuron System in Communication and Communication Disorders

    ERIC Educational Resources Information Center

    Le Bel, Ronald M.; Pineda, Jaime A.; Sharma, Anu

    2009-01-01

    The mirror neuron system (MNS) is a trimodal system composed of neuronal populations that respond to motor, visual, and auditory stimulation, such as when an action is performed, observed, heard or read about. In humans, the MNS has been identified using neuroimaging techniques (such as fMRI and mu suppression in the EEG). It reflects an…

  9. Noise-induced hearing loss (NIHL) as a target of oxidative stress-mediated damage: cochlear and cortical responses after an increase in antioxidant defense.

    PubMed

    Fetoni, Anna Rita; De Bartolo, Paola; Eramo, Sara Letizia Maria; Rolesi, Rolando; Paciello, Fabiola; Bergamini, Christian; Fato, Romana; Paludetti, Gaetano; Petrosini, Laura; Troiani, Diana

    2013-02-27

    This study addresses the relationship between cochlear oxidative damage and auditory cortical injury in a rat model of repeated noise exposure. To test the effect of increased antioxidant defenses, a water-soluble coenzyme Q10 analog (Qter) was used. We analyzed auditory function, cochlear oxidative stress, morphological alterations in auditory cortices and cochlear structures, and levels of coenzymes Q9 and Q10 (CoQ9 and CoQ10, respectively) as indicators of endogenous antioxidant capability. We report three main results. First, hearing loss and damage in hair cells and spiral ganglion was determined by noise-induced oxidative stress. Second, the acoustic trauma altered dendritic morphology and decreased spine number of II-III and V-VI layer pyramidal neurons of auditory cortices. Third, the systemic administration of the water-soluble CoQ10 analog reduced oxidative-induced cochlear damage, hearing loss, and cortical dendritic injury. Furthermore, cochlear levels of CoQ9 and CoQ10 content increased. These findings indicate that antioxidant treatment restores auditory cortical neuronal morphology and hearing function by reducing the noise-induced redox imbalance in the cochlea and the deafferentation effects upstream the acoustic pathway. PMID:23447610

  10. A model of top-down gain control in the auditory system.

    PubMed

    Schneider, Bruce A; Parker, Scott; Murphy, Dana

    2011-07-01

    To evaluate a model of top-down gain control in the auditory system, 6 participants were asked to identify 1-kHz pure tones differing only in intensity. There were three 20-session conditions: (1) four soft tones (25, 30, 35, and 40 dB SPL) in the set; (2) those four soft tones plus a 50-dB SPL tone; and (3) the four soft tones plus an 80-dB SPL tone. The results were well described by a top-down, nonlinear gain-control system in which the amplifier's gain depended on the highest intensity in the stimulus set. Individual participants' identification judgments were generally compatible with an equal-variance signal-detection model in which the mean locations of the distribution of effects along the decision axis were determined by the operation of this nonlinear amplification system. PMID:21487927

  11. Role of the lateral line mechanosensory system in directionality of goldfish auditory evoked escape response

    PubMed Central

    Mirjany, Mana; Preuss, Thomas; Faber, Donald S.

    2011-01-01

    SUMMARY Goldfish (Carassius auratus) escape responses to sudden auditory stimuli are mediated by a pair of reticulospinal neurons, the Mauthner (M-) cells, which integrate mechanosensory inputs from the inner ear and the lateral line (LL) to initiate a fast directional response away from the aversive stimulus. This behavior is context dependent; when near an obstruction the fish may rather turn towards the sound to avoid hitting the object. Mechanisms underlying this directionality remain unknown. Here we investigate the contribution of the LL system to auditory evoked escapes and provide behavioral evidence that it transmits stimulus – and environmental-dependent information that determines the initial response direction of the escape. We quantified escape latency, probability and directionality following abrupt sound stimuli before and after removal of the entire LL with 0.03 mmol l–1 cobalt chloride (CoCl2), 0.002% gentamicin or selective posterior LL nerve (pLLn) transection. CoCl2 significantly increased escape onset latency without affecting probability and reduced open field directionality from 77% to chance, 52%. This effect on directionality was also observed with gentamicin. Transection of the pLLn had no effect on directionality, indicating the anterior LL nerve (aLLn) afferents are more likely to transmit directional information to the M-cell. When the fish were near a wall, the error rate was quadrupled by both CoCl2 and pLLn transection. Visual elimination had no influence on directionality unless combined with LL elimination. PMID:21957099

  12. A Robust Speaker Identification System Using the Responses from a Model of the Auditory Periphery

    PubMed Central

    Islam, Md. Atiqul; Jassim, Wissam A.; Cheok, Ng Siew; Zilany, Muhammad Shamsul Arefeen

    2016-01-01

    Speaker identification under noisy conditions is one of the challenging topics in the field of speech processing applications. Motivated by the fact that the neural responses are robust against noise, this paper proposes a new speaker identification system using 2-D neurograms constructed from the responses of a physiologically-based computational model of the auditory periphery. The responses of auditory-nerve fibers for a wide range of characteristic frequency were simulated to speech signals to construct neurograms. The neurogram coefficients were trained using the well-known Gaussian mixture model-universal background model classification technique to generate an identity model for each speaker. In this study, three text-independent and one text-dependent speaker databases were employed to test the identification performance of the proposed method. Also, the robustness of the proposed method was investigated using speech signals distorted by three types of noise such as the white Gaussian, pink, and street noises with different signal-to-noise ratios. The identification results of the proposed neural-response-based method were compared to the performances of the traditional speaker identification methods using features such as the Mel-frequency cepstral coefficients, Gamma-tone frequency cepstral coefficients and frequency domain linear prediction. Although the classification accuracy achieved by the proposed method was comparable to the performance of those traditional techniques in quiet, the new feature was found to provide lower error rates of classification under noisy environments. PMID:27392046

  13. Inhalation of Hydrocarbon Jet Fuel Suppress Central Auditory Nervous System Function.

    PubMed

    Guthrie, O'neil W; Wong, Brian A; McInturf, Shawn M; Reboulet, James E; Ortiz, Pedro A; Mattie, David R

    2015-01-01

    More than 800 million L/d of hydrocarbon fuels is used to power cars, boats, and jet airplanes. The weekly consumption of these fuels necessarily puts the public at risk for repeated inhalation exposure. Recent studies showed that exposure to hydrocarbon jet fuel produces lethality in presynaptic sensory cells, leading to hearing loss, especially in the presence of noise. However, the effects of hydrocarbon jet fuel on the central auditory nervous system (CANS) have not received much attention. It is important to investigate the effects of hydrocarbons on the CANS in order to complete current knowledge regarding the ototoxic profile of such exposures. The objective of the current study was to determine whether inhalation exposure to hydrocarbon jet fuel might affect the functions of the CANS. Male Fischer 344 rats were randomly divided into four groups (control, noise, fuel, and fuel + noise). The structural and functional integrity of presynaptic sensory cells was determined in each group. Neurotransmission in both peripheral and central auditory pathways was simultaneously evaluated in order to identify and differentiate between peripheral and central dysfunctions. There were no detectable effects on pre- and postsynaptic peripheral functions. However, the responsiveness of the brain was significantly depressed and neural transmission time was markedly delayed. The development of CANS dysfunctions in the general public and the military due to cumulative exposure to hydrocarbon fuels may represent a significant but currently unrecognized public health issue. PMID:26408153

  14. Modulation of auditory processing during speech movement planning is limited in adults who stutter.

    PubMed

    Daliri, Ayoub; Max, Ludo

    2015-04-01

    Stuttering is associated with atypical structural and functional connectivity in sensorimotor brain areas, in particular premotor, motor, and auditory regions. It remains unknown, however, which specific mechanisms of speech planning and execution are affected by these neurological abnormalities. To investigate pre-movement sensory modulation, we recorded 12 stuttering and 12 nonstuttering adults' auditory evoked potentials in response to probe tones presented prior to speech onset in a delayed-response speaking condition vs. no-speaking control conditions (silent reading; seeing nonlinguistic symbols). Findings indicate that, during speech movement planning, the nonstuttering group showed a statistically significant modulation of auditory processing (reduced N1 amplitude) that was not observed in the stuttering group. Thus, the obtained results provide electrophysiological evidence in support of the hypothesis that stuttering is associated with deficiencies in modulating the cortical auditory system during speech movement planning. This specific sensorimotor integration deficiency may contribute to inefficient feedback monitoring and, consequently, speech dysfluencies. PMID:25796060

  15. Experience-dependent learning of auditory temporal resolution: evidence from Carnatic-trained musicians.

    PubMed

    Mishra, Srikanta K; Panda, Manasa R

    2014-01-22

    Musical training and experience greatly enhance the cortical and subcortical processing of sounds, which may translate to superior auditory perceptual acuity. Auditory temporal resolution is a fundamental perceptual aspect that is critical for speech understanding in noise in listeners with normal hearing, auditory disorders, cochlear implants, and language disorders, yet very few studies have focused on music-induced learning of temporal resolution. This report demonstrates that Carnatic musical training and experience have a significant impact on temporal resolution assayed by gap detection thresholds. This experience-dependent learning in Carnatic-trained musicians exhibits the universal aspects of human perception and plasticity. The present work adds the perceptual component to a growing body of neurophysiological and imaging studies that suggest plasticity of the peripheral auditory system at the level of the brainstem. The present work may be intriguing to researchers and clinicians alike interested in devising cross-cultural training regimens to alleviate listening-in-noise difficulties. PMID:24264076

  16. Use of a highly transparent zebrafish mutant for investigations in the development of the vertebrate auditory system (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wisniowiecki, Anna M.; Mattison, Scott P.; Kim, Sangmin; Riley, Bruce; Applegate, Brian E.

    2016-03-01

    Zebrafish, an auditory specialist among fish, offer analogous auditory structures to vertebrates and is a model for hearing and deafness in vertebrates, including humans. Nevertheless, many questions remain on the basic mechanics of the auditory pathway. Phase-sensitive Optical Coherence Tomography has been proven as valuable technique for functional vibrometric measurements in the murine ear. Such measurements are key to building a complete understanding of auditory mechanics. The application of such techniques in the zebrafish is impeded by the high level of pigmentation, which develops superior to the transverse plane and envelops the auditory system superficially. A zebrafish double mutant for nacre and roy (mitfa-/- ;roya-/- [casper]), which exhibits defects for neural-crest derived melanocytes and iridophores, at all stages of development, is pursued to improve image quality and sensitivity for functional imaging. So far our investigations with the casper mutants have enabled the identification of the specialized hearing organs, fluid-filled canal connecting the ears, and sub-structures of the semicircular canals. In our previous work with wild-type zebrafish, we were only able to identify and observe stimulated vibration of the largest structures, specifically the anterior swim bladder and tripus ossicle, even among small, larval specimen, with fully developed inner ears. In conclusion, this genetic mutant will enable the study of the dynamics of the zebrafish ear from the early larval stages all the way into adulthood.

  17. Auditory agnosia.

    PubMed

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. PMID:25726291

  18. In Utero Electroporation: Assay System for Migration of Cerebral Cortical Neurons

    NASA Astrophysics Data System (ADS)

    Tabata, Hidenori; Nakajima, Kazunori

    During the development of the cerebral cortex, the majority of cortical neurons are generated in the ventricular zone (VZ) facing the lateral ventricle and then migrate toward the pial surface to form the highly organized 6-layered cerebral cortex. Detailed profiles of these processes and their molecular mechanisms had been largely unknown because of the absence of an efficient assay system. The in vivo electroporation system was initially devised for use within chick embryos (Funahashi et al., 1999; Itasaki et al., 1999; Momose et al., 1999; Muramatsu et al., 1997), and we and other groups have used that system as a basis for developing an in utero electroporation system, which allows plasmid DNA to be introduced into cortical progenitor cells in developing mouse embryos in the uterus (Fukuchi-Shimogori and Grove, 2001; Saito and Nakatsuji, 2001; Tabata and Nakajima, 2001; Takahashi et al., 2002). In utero electroporation of other sites in the brain, including the hippocampus (Navarro-Quiroga et al., 2007), cerebral basal ganglia (Borrell et al., 2005; Nakahira et al., 2006), cortical hem (Takiguchi-Hayashi et al., 2004), and dorsal thalamus (Bonnin et al., 2007), has recently been reported. Introducing green fluorescent protein (GFP) enables the entire processes of migration and layer formation to be visualized (Ajioka and Nakajima, 2005; Sasaki et al., 2008; Tabata and Nakajima, 2002, 2003), and the role of any gene involved in these processes can be easily assessed by overexpressing the proteins or their mutants (Ohshima et al., 2007), or by knocking down the genes by the RNA interference technique (Bai et al., 2003). Furthermore, the Tet-On/Off system and/or other plasmid- vector-based technologies will expand the potential of the analyses. In this section we review the principles and methods of gene transfer into the cortical wall of mouse embryos by means of the in utero electroporation system.

  19. An experimental and theoretical investigation of the mechanics of the goldfish peripheral auditory system

    NASA Astrophysics Data System (ADS)

    Finneran, James J.

    1997-11-01

    Despite the progress made in establishing the capabilities of the auditory system in several species of fish, significant questions remain regarding how sound reaches the ear and the nature of the coupling between the ear and various accessory structures. In this research, experimental measurements and theoretical modeling were used to examine the mechanical behavior of the peripheral auditory system of the goldfish (Carassius auratus). The experiments consisted of measuring the in vivo motion of the swimbladder, Weberian ossicles, and otoliths of an anesthetized and tethered fish, in response to an acoustic stimulus, using a noninvasive ultrasonic measurement system. The experimental results show strong coupling between the swimbladders, tripus, and saccule. At low frequencies, the swimbladders, Weberian ossicles, and otoliths move with the same amplitude and phase as the fish's body. At higher frequencies, multiple resonances occur in most swimbladder responses. The swimbladder resonance also appears in the sagitta response; the sagitta displacement ranges from 1 to 10 nm/Pa. The results of only a few tests indicate motion of the lagenar otolith, while no data show movement of the utricular otolith. The mathematical model of the dynamics of the goldfish peripheral auditory system is the first such model to include the swimbladder, Weberian apparatus, and saccule (including the hair cell ciliary bundles). The saccule model features only translation of the otolith in the direction of hair cell orientation. The model predicts the correct amplitude and phase relationships between the two swimbladder chambers and shows the coupling observed between the anterior swimbladder and the tripus. The model also predicts a high-pass filter effect due to the tunica externa compliance; however, the model low frequency cut-off seems insufficient to prevent a change in depth from overstimulating the Weberian apparatus. The model predicts a sagitta displacement on the order of 10

  20. The Essential Complexity of Auditory Receptive Fields.

    PubMed

    Thorson, Ivar L; Liénard, Jean; David, Stephen V

    2015-12-01

    Encoding properties of sensory neurons are commonly modeled using linear finite impulse response (FIR) filters. For the auditory system, the FIR filter is instantiated in the spectro-temporal receptive field (STRF), often in the framework of the generalized linear model. Despite widespread use of the FIR STRF, numerous formulations for linear filters are possible that require many fewer parameters, potentially permitting more efficient and accurate model estimates. To explore these alternative STRF architectures, we recorded single-unit neural activity from auditory cortex of awake ferrets during presentation of natural sound stimuli. We compared performance of > 1000 linear STRF architectures, evaluating their ability to predict neural responses to a novel natural stimulus. Many were able to outperform the FIR filter. Two basic constraints on the architecture lead to the improved performance: (1) factorization of the STRF matrix into a small number of spectral and temporal filters and (2) low-dimensional parameterization of the factorized filters. The best parameterized model was able to outperform the full FIR filter in both primary and secondary auditory cortex, despite requiring fewer than 30 parameters, about 10% of the number required by the FIR filter. After accounting for noise from finite data sampling, these STRFs were able to explain an average of 40% of A1 response variance. The simpler models permitted more straightforward interpretation of sensory tuning properties. They also showed greater benefit from incorporating nonlinear terms, such as short term plasticity, that provide theoretical advances over the linear model. Architectures that minimize parameter count while maintaining maximum predictive power provide insight into the essential degrees of freedom governing auditory cortical function. They also maximize statistical power available for characterizing additional nonlinear properties that limit current auditory models. PMID:26683490

  1. The Essential Complexity of Auditory Receptive Fields

    PubMed Central

    Thorson, Ivar L.; Liénard, Jean; David, Stephen V.

    2015-01-01

    Encoding properties of sensory neurons are commonly modeled using linear finite impulse response (FIR) filters. For the auditory system, the FIR filter is instantiated in the spectro-temporal receptive field (STRF), often in the framework of the generalized linear model. Despite widespread use of the FIR STRF, numerous formulations for linear filters are possible that require many fewer parameters, potentially permitting more efficient and accurate model estimates. To explore these alternative STRF architectures, we recorded single-unit neural activity from auditory cortex of awake ferrets during presentation of natural sound stimuli. We compared performance of > 1000 linear STRF architectures, evaluating their ability to predict neural responses to a novel natural stimulus. Many were able to outperform the FIR filter. Two basic constraints on the architecture lead to the improved performance: (1) factorization of the STRF matrix into a small number of spectral and temporal filters and (2) low-dimensional parameterization of the factorized filters. The best parameterized model was able to outperform the full FIR filter in both primary and secondary auditory cortex, despite requiring fewer than 30 parameters, about 10% of the number required by the FIR filter. After accounting for noise from finite data sampling, these STRFs were able to explain an average of 40% of A1 response variance. The simpler models permitted more straightforward interpretation of sensory tuning properties. They also showed greater benefit from incorporating nonlinear terms, such as short term plasticity, that provide theoretical advances over the linear model. Architectures that minimize parameter count while maintaining maximum predictive power provide insight into the essential degrees of freedom governing auditory cortical function. They also maximize statistical power available for characterizing additional nonlinear properties that limit current auditory models. PMID:26683490

  2. Defining the cortical visual systems: "what", "where", and "how"

    NASA Technical Reports Server (NTRS)

    Creem, S. H.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    2001-01-01

    The visual system historically has been defined as consisting of at least two broad subsystems subserving object and spatial vision. These visual processing streams have been organized both structurally as two distinct pathways in the brain, and functionally for the types of tasks that they mediate. The classic definition by Ungerleider and Mishkin labeled a ventral "what" stream to process object information and a dorsal "where" stream to process spatial information. More recently, Goodale and Milner redefined the two visual systems with a focus on the different ways in which visual information is transformed for different goals. They relabeled the dorsal stream as a "how" system for transforming visual information using an egocentric frame of reference in preparation for direct action. This paper reviews recent research from psychophysics, neurophysiology, neuropsychology and neuroimaging to define the roles of the ventral and dorsal visual processing streams. We discuss a possible solution that allows for both "where" and "how" systems that are functionally and structurally organized within the posterior parietal lobe.

  3. Maps of the Auditory Cortex.

    PubMed

    Brewer, Alyssa A; Barton, Brian

    2016-07-01

    One of the fundamental properties of the mammalian brain is that sensory regions of cortex are formed of multiple, functionally specialized cortical field maps (CFMs). Each CFM comprises two orthogonal topographical representations, reflecting two essential aspects of sensory space. In auditory cortex, auditory field maps (AFMs) are defined by the combination of tonotopic gradients, representing the spectral aspects of sound (i.e., tones), with orthogonal periodotopic gradients, representing the temporal aspects of sound (i.e., period or temporal envelope). Converging evidence from cytoarchitectural and neuroimaging measurements underlies the definition of 11 AFMs across core and belt regions of human auditory cortex, with likely homology to those of macaque. On a macrostructural level, AFMs are grouped into cloverleaf clusters, an organizational structure also seen in visual cortex. Future research can now use these AFMs to investigate specific stages of auditory processing, key for understanding behaviors such as speech perception and multimodal sensory integration. PMID:27145914

  4. Human cortical responses to slow and fast binaural beats reveal multiple mechanisms of binaural hearing.

    PubMed

    Ross, Bernhard; Miyazaki, Takahiro; Thompson, Jessica; Jamali, Shahab; Fujioka, Takako

    2014-10-15

    When two tones with slightly different frequencies are presented to both ears, they interact in the central auditory system and induce the sensation of a beating sound. At low difference frequencies, we perceive a single sound, which is moving across the head between the left and right ears. The percept changes to loudness fluctuation, roughness, and pitch with increasing beat rate. To examine the neural representations underlying these different perceptions, we recorded neuromagnetic cortical responses while participants listened to binaural beats at a continuously varying rate between 3 Hz and 60 Hz. Binaural beat responses were analyzed as neuromagnetic oscillations following the trajectory of the stimulus rate. Responses were largest in the 40-Hz gamma range and at low frequencies. Binaural beat responses at 3 Hz showed opposite polarity in the left and right auditory cortices. We suggest that this difference in polarity reflects the opponent neural population code for representing sound location. Binaural beats at any rate induced gamma oscillations. However, the responses were largest at 40-Hz stimulation. We propose that the neuromagnetic gamma oscillations reflect postsynaptic modulation that allows for precise timing of cortical neural firing. Systematic phase differences between bilateral responses suggest that separate sound representations of a sound object exist in the left and right auditory cortices. We conclude that binaural processing at the cortical level occurs with the same temporal acuity as monaural processing whereas the identification of sound location requires further interpretation and is limited by the rate of object representations. PMID:25008412

  5. Paradoxical lateral suppression in the dolphin's auditory system: weak sounds suppress response to strong sounds.

    PubMed

    Popov, V V; Supin AYa; Klishin, V O

    1997-09-26

    A paradoxical phenomenon was found in the auditory system of dolphins: weak sounds suppressed the brain responses to much stronger sounds. This occurred when the brain evoked potentials to rhythmic sound amplitude modulations were recorded. The response was markedly suppressed by addition of another sound of higher frequency and down to 40 dB lower intensity than the amplitude-modulated signal. Only the sustained rhythmic response was suppressed while transient on-response was not, thus indicating that the suppression influenced the ability of evoked potentials to follow rapid amplitude modulations. This prevents weak sounds from being masked by stronger ones. It may help a dolphin to perceive weaker echo-signals in the background of stronger emitted pulses. PMID:9347944

  6. Lateral suppression of rhythmic evoked responses in the dolphin's auditory system.

    PubMed

    Popov, V V; Supin AYa; Klishin, V O

    1998-12-01

    In the auditory system of bottlenose dolphins (Tursiops truncatus), a brain-evoked response to rhythmic sound amplitude modulations (the envelope-following response) was markedly suppressed by addition of another sound with a frequency 5-20 kHz higher and an intensity down to 40 dB lower than that of the amplitude-modulated signal. This effect was called paradoxical lateral suppression. This phenomenon was primarily observed when the amplitude-modulated stimulus had a carrier frequency above 30 kHz and modulation rates above 500 Hz. Only the sustained rhythmic response was suppressed, while the transient on-response was not. This indicates that the suppression influenced the ability of evoked potentials to follow rapid amplitude modulations. This prevents weak sounds from being masked by stronger ones. PMID:9872141

  7. Physical Limits to Auditory Transduction of Hair-Cell Bundles probed by a Biomimetic System

    PubMed Central

    Song, Taegeun; Lee, Woo Seok; Ahn, Kang-Hun

    2015-01-01

    Inspired by auditory hair cells of lower vertebrates, we design and fabricate an opto-electro-mechanical sensor at the border of its spontaneous activity, called Hopf bifurcation critical point. As proposed for biological hair cells, we observe that, as the system approaches the critical point, the frequency selectivity and the force sensitivity are enhanced. However, we find that the enhancement has limits because of its intrinsic nonlinearity, even at the critical point. We also find that the minimally detectable force is not influenced by the active feedback force despite its enhanced sensitivity. This is due to the inevitable heating of the hair bundle, which implies that the active amplification of the hair cell bundle might not lower the threshold level of detectable sound. PMID:26074375

  8. Physical Limits to Auditory Transduction of Hair-Cell Bundles probed by a Biomimetic System.

    PubMed

    Song, Taegeun; Lee, Woo Seok; Ahn, Kang-Hun

    2015-01-01

    Inspired by auditory hair cells of lower vertebrates, we design and fabricate an opto-electro-mechanical sensor at the border of its spontaneous activity, called Hopf bifurcation critical point. As proposed for biological hair cells, we observe that, as the system approaches the critical point, the frequency selectivity and the force sensitivity are enhanced. However, we find that the enhancement has limits because of its intrinsic nonlinearity, even at the critical point. We also find that the minimally detectable force is not influenced by the active feedback force despite its enhanced sensitivity. This is due to the inevitable heating of the hair bundle, which implies that the active amplification of the hair cell bundle might not lower the threshold level of detectable sound. PMID:26074375

  9. The role of biological system other than auditory air-conduction in the emergence of the hypersonic effect.

    PubMed

    Oohashi, Tsutomu; Kawai, Norie; Nishina, Emi; Honda, Manabu; Yagi, Reiko; Nakamura, Satoshi; Morimoto, Masako; Maekawa, Tadao; Yonekura, Yoshiharu; Shibasaki, Hiroshi

    2006-02-16

    Although human beings cannot perceive elastic vibrations in the frequency range above 20 kHz, nonstationary sounds containing a wealth of inaudible high-frequency components (HFC) above the human audible range activate deep-lying brain structures, including the brainstem and thalamus and evoke various physiological, psychological, and behavioral responses. In the previous reports, we have called these phenomena collectively "the hypersonic effect." It remains unclear, however, if vibratory stimuli above the audible range are transduced and perceived solely via the conventional air-conducting auditory system or if other mechanisms also contribute to mediate transduction and perception. In the present study, we have examined the emergence of the hypersonic effect when inaudible HFC and audible low-frequency components (LFC) were presented selectively to the ears, the entrance of an air-conducting auditory system, or to the body surface including the head which might contain some unknown vibratory sensing mechanisms. We used two independent measurements based on differing principles; one physiological (alpha 2 frequency of spontaneous electroencephalogram [alpha-EEG]) and the other behavioral (the comfortable listening level [CLL]). Only when the listener's entire body surface was exposed to HFC, but not when HFC was presented exclusively to the air-conducting auditory system, did both the alpha-EEG and the CLL significantly increase compared to the presentation of LFC alone, that is to say, there was an evident emergence of the hypersonic effect. The present findings suggest that the conventional air-conducting auditory system alone does not bring about the hypersonic effect. We may need to consider the possible involvement of a biological system distinct from the conventional air-conducting auditory nervous system in sensing and transducing high-frequency elastic vibration above the human audible range. PMID:16458271

  10. An Auditory BCI System for Assisting CRS-R Behavioral Assessment in Patients with Disorders of Consciousness.

    PubMed

    Xiao, Jun; Xie, Qiuyou; He, Yanbin; Yu, Tianyou; Lu, Shenglin; Huang, Ningmeng; Yu, Ronghao; Li, Yuanqing

    2016-01-01

    The Coma Recovery Scale-Revised (CRS-R) is a consistent and sensitive behavioral assessment standard for disorders of consciousness (DOC) patients. However, the CRS-R has limitations due to its dependence on behavioral markers, which has led to a high rate of misdiagnosis. Brain-computer interfaces (BCIs), which directly detect brain activities without any behavioral expression, can be used to evaluate a patient's state. In this study, we explored the application of BCIs in assisting CRS-R assessments of DOC patients. Specifically, an auditory passive EEG-based BCI system with an oddball paradigm was proposed to facilitate the evaluation of one item of the auditory function scale in the CRS-R - the auditory startle. The results obtained from five healthy subjects validated the efficacy of the BCI system. Nineteen DOC patients participated in the CRS-R and BCI assessments, of which three patients exhibited no responses in the CRS-R assessment but were responsive to auditory startle in the BCI assessment. These results revealed that a proportion of DOC patients who have no behavioral responses in the CRS-R assessment can generate neural responses, which can be detected by our BCI system. Therefore, the proposed BCI may provide more sensitive results than the CRS-R and thus assist CRS-R behavioral assessments. PMID:27620348

  11. Neural mechanisms underlying auditory feedback control of speech

    PubMed Central

    Reilly, Kevin J.; Guenther, Frank H.

    2013-01-01

    The neural substrates underlying auditory feedback control of speech were investigated using a combination of functional magnetic resonance imaging (fMRI) and computational modeling. Neural responses were measured while subjects spoke monosyllabic words under two conditions: (i) normal auditory feedback of their speech, and (ii) auditory feedback in which the first formant frequency of their speech was unexpectedly shifted in real time. Acoustic measurements showed compensation to the shift within approximately 135 ms of onset. Neuroimaging revealed increased activity in bilateral superior temporal cortex during shifted feedback, indicative of neurons coding mismatches between expected and actual auditory signals, as well as right prefrontal and Rolandic cortical activity. Structural equation modeling revealed increased influence of bilateral auditory cortical areas on right frontal areas during shifted speech, indicating that projections from auditory error cells in posterior superior temporal cortex to motor correction cells in right frontal cortex mediate auditory feedback control of speech. PMID:18035557

  12. Convergent dysregulation of frontal cortical cognitive and reward systems in eating disorders.

    PubMed

    Stefano, George B; Ptáček, Radek; Kuželová, Hana; Mantione, Kirk J; Raboch, Jiří; Papezova, Hana; Kream, Richard M

    2013-01-01

    A substantive literature has drawn a compelling case for the functional involvement of mesolimbic/prefrontal cortical neural reward systems in normative control of eating and in the etiology and persistence of severe eating disorders that affect diverse human populations. Presently, we provide a short review that develops an equally compelling case for the importance of dysregulated frontal cortical cognitive neural networks acting in concert with regional reward systems in the regulation of complex eating behaviors and in the presentation of complex pathophysiological symptoms associated with major eating disorders. Our goal is to highlight working models of major eating disorders that incorporate complementary approaches to elucidate functionally interactive neural circuits defined by their regulatory neurochemical phenotypes. Importantly, we also review evidence-based linkages between widely studied psychiatric and neurodegenerative syndromes (e.g., autism spectrum disorders and Parkinson's disease) and co-morbid eating disorders to elucidate basic mechanisms involving dopaminergic transmission and its regulation by endogenously expressed morphine in these same cortical regions. PMID:23660852

  13. Evoked response study tool: a portable, rugged system for single and multiple auditory evoked potential measurements.

    PubMed

    Finneran, James J

    2009-07-01

    Although the potential of using portable auditory evoked potential systems for field testing of stranded cetaceans has been long recognized, commercial systems for evoked potential measurements generally do not possess the bandwidth required for testing odontocete cetaceans and are not suitable for field use. As a result, there have been a number of efforts to develop portable evoked potential systems for field testing of cetaceans. This paper presents another such system, called the evoked response study tool (EVREST). EVREST is a Windows-based hardware/software system designed for calibrating sound stimuli and recording and analyzing transient and steady-state evoked potentials. The EVREST software features a graphical user interface, real-time analysis and visualization of recorded data, a variety of stimulus options, and a high level of automation. The system hardware is portable, rugged, battery-powered, and possesses a bandwidth that encompasses the audible range of echolocating odontocetes, making the system suitable for field testing of stranded or rehabilitating cetaceans. PMID:19603907

  14. Auditory spatial attention representations in the human cerebral cortex.

    PubMed

    Kong, Lingqiang; Michalka, Samantha W; Rosen, Maya L; Sheremata, Summer L; Swisher, Jascha D; Shinn-Cunningham, Barbara G; Somers, David C

    2014-03-01

    Auditory spatial attention serves important functions in auditory source separation and selection. Although auditory spatial attention mechanisms have been generally investigated, the neural substrates encoding spatial information acted on by attention have not been identified in the human neocortex. We performed functional magnetic resonance imaging experiments to identify cortical regions that support auditory spatial attention and to test 2 hypotheses regarding the coding of auditory spatial attention: 1) auditory spatial attention might recruit the visuospatial maps of the intraparietal sulcus (IPS) to create multimodal spatial attention maps; 2) auditory spatial information might be encoded without explicit cortical maps. We mapped visuotopic IPS regions in individual subjects and measured auditory spatial attention effects within these regions of interest. Contrary to the multimodal map hypothesis, we observed that auditory spatial attentional modulations spared the visuotopic maps of IPS; the parietal regions activated by auditory attention lacked map structure. However, multivoxel pattern analysis revealed that the superior temporal gyrus and the supramarginal gyrus contained significant information about the direction of spatial attention. These findings support the hypothesis that auditory spatial information is coded without a cortical map representation. Our findings suggest that audiospatial and visuospatial attention utilize distinctly different spatial coding schemes. PMID:23180753

  15. Beta-band activity in auditory pathways reflects speech localization and recognition in bilateral cochlear implant users.

    PubMed

    Senkowski, Daniel; Pomper, Ulrich; Fitzner, Inga; Engel, Andreas Karl; Kral, Andrej

    2014-07-01

    In normal-hearing listeners, localization of auditory speech involves stimulus processing in the postero-dorsal pathway of the auditory system. In quiet environments, bilateral cochlear implant (CI) users show high speech recognition performance, but localization of auditory speech is poor, especially when discriminating stimuli from the same hemifield. Whether this difficulty relates to the inability of the auditory system to translate binaural electrical cues into neural signals, or to a functional reorganization of auditory cortical pathways following long periods of binaural deprivation is unknown. In this electroencephalography study, we examined the processing of auditory syllables in postlingually deaf adults with bilateral CIs and in normal-hearing adults. Participants were instructed to either recognize ("recognition" task) or localize ("localization" task) the syllables. The analysis focused on event-related potentials and oscillatory brain responses. N1 amplitudes in CI users were larger in the localization compared with recognition task, suggesting an enhanced stimulus processing effort in the localization task. Linear beamforming of oscillatory activity in CI users revealed stronger suppression of beta-band activity after 200 ms in the postero-dorsal auditory pathway for the localization compared with the recognition task. In normal-hearing adults, effects for longer latency event-related potentials were found, but no effects were observed for N1 amplitudes or beta-band responses. Our study suggests that difficulties in speech localization in bilateral CI users are not reflected in a functional reorganization of cortical auditory pathways. New signal processing strategies of cochlear devices preserving unambiguous binaural cues may improve auditory localization performance in bilateral CI users. PMID:24123535

  16. Benefits and detriments of unilateral cochlear implant use on bilateral auditory development in children who are deaf

    PubMed Central

    Gordon, Karen A.; Jiwani, Salima; Papsin, Blake C.

    2013-01-01

    We have explored both the benefits and detriments of providing electrical input through a cochlear implant in one ear to the auditory system of young children. A cochlear implant delivers electrical pulses to stimulate the auditory nerve, providing children who are deaf with access to sound. The goals of implantation are to restrict reorganization of the deprived immature auditory brain and promote development of hearing and spoken language. It is clear that limiting the duration of deprivation is a key factor. Additional considerations are the onset, etiology, and use of residual hearing as each of these can have unique effects on auditory development in the pre-implant period. New findings show that many children receiving unilateral cochlear implants are developing mature-like brainstem and thalamo-cortical responses to sound with long term use despite these sources of variability; however, there remain considerable abnormalities in cortical function. The most apparent, determined by implanting the other ear and measuring responses to acute stimulation, is a loss of normal cortical response from the deprived ear. Recent data reveal that this can be avoided in children by early implantation of both ears simultaneously or with limited delay. We conclude that auditory development requires input early in development and from both ears. PMID:24137143

  17. Spatial processing in the auditory cortex of the macaque monkey

    NASA Astrophysics Data System (ADS)

    Recanzone, Gregg H.

    2000-10-01

    The patterns of cortico-cortical and cortico-thalamic connections of auditory cortical areas in the rhesus monkey have led to the hypothesis that acoustic information is processed in series and in parallel in the primate auditory cortex. Recent physiological experiments in the behaving monkey indicate that the response properties of neurons in different cortical areas are both functionally distinct from each other, which is indicative of parallel processing, and functionally similar to each other, which is indicative of serial processing. Thus, auditory cortical processing may be similar to the serial and parallel "what" and "where" processing by the primate visual cortex. If "where" information is serially processed in the primate auditory cortex, neurons in cortical areas along this pathway should have progressively better spatial tuning properties. This prediction is supported by recent experiments that have shown that neurons in the caudomedial field have better spatial tuning properties than neurons in the primary auditory cortex. Neurons in the caudomedial field are also better than primary auditory cortex neurons at predicting the sound localization ability across different stimulus frequencies and bandwidths in both azimuth and elevation. These data support the hypothesis that the primate auditory cortex processes acoustic information in a serial and parallel manner and suggest that this may be a general cortical mechanism for sensory perception.

  18. A quantitative comparison of the hemispheric, areal, and laminar origins of sensory and motor cortical projections to the superior colliculus of the cat.

    PubMed

    Butler, Blake E; Chabot, Nicole; Lomber, Stephen G

    2016-09-01

    The superior colliculus (SC) is a midbrain structure central to orienting behaviors. The organization of descending projections from sensory cortices to the SC has garnered much attention; however, rarely have projections from multiple modalities been quantified and contrasted, allowing for meaningful conclusions within a single species. Here, we examine corticotectal projections from visual, auditory, somatosensory, motor, and limbic cortices via retrograde pathway tracers injected throughout the superficial and deep layers of the cat SC. As anticipated, the majority of cortical inputs to the SC originate in the visual cortex. In fact, each field implicated in visual orienting behavior makes a substantial projection. Conversely, only one area of the auditory orienting system, the auditory field of the anterior ectosylvian sulcus (fAES), and no area involved in somatosensory orienting, shows significant corticotectal inputs. Although small relative to visual inputs, the projection from the fAES is of particular interest, as it represents the only bilateral cortical input to the SC. This detailed, quantitative study allows for comparison across modalities in an animal that serves as a useful model for both auditory and visual perception. Moreover, the differences in patterns of corticotectal projections between modalities inform the ways in which orienting systems are modulated by cortical feedback. J. Comp. Neurol. 524:2623-2642, 2016. © 2016 Wiley Periodicals, Inc. PMID:26850989

  19. Evidence for a role of the reticulospinal system in recovery of skilled reaching after cortical stroke: initial results from a model of ischemic cortical injury.

    PubMed

    Herbert, Wendy J; Powell, Kimerly; Buford, John A

    2015-11-01

    The purposes of this pilot study were to create a model of focal cortical ischemia in Macaca fascicularis and to explore contributions of the reticulospinal system in recovery of reaching. Endothelin-1 was used to create a focal lesion in the shoulder/elbow representation of left primary motor cortex (M1) of two adult female macaques. Repetitive microstimulation was used to map upper limb motor outputs from right and left cortical motor areas and from the pontomedullary reticular formation (PMRF). In subject 1 with a small lesion and spontaneous recovery, reaching was mildly impaired. Changes were evident in the shoulder/elbow representations of both the lesioned and contralesional M1, and there appeared to be fewer than expected upper limb responses from the left (ipsilesional) PMRF. In subject 2 with a substantial lesion, reaching was severely impaired immediately after the lesion. After 12 weeks of intensive rehabilitative training, reach performance recovered to near-baseline levels, but movement times remained about 50% slower. Surprisingly, the shoulder/elbow representation in the lesioned M1 remained completely absent after recovery, and there was a little change in the contralesional M1. There was a definite difference in motor output patterns for left versus right PMRF for this subject, with an increase in right arm responses from right PMRF and a paucity of left arm responses from left PMRF. The results are consistent with increased reliance on PMRF motor outputs for recovery of voluntary upper limb motor control after significant cortical ischemic injury. PMID:26231990

  20. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution.

    PubMed

    Hertz, Uri; Amedi, Amir

    2015-08-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756

  1. Music perception and cognition following bilateral lesions of auditory cortex.

    PubMed

    Tramo, M J; Bharucha, J J; Musiek, F E

    1990-01-01

    We present experimental and anatomical data from a case study of impaired auditory perception following bilateral hemispheric strokes. To consider the cortical representation of sensory, perceptual, and cognitive functions mediating tonal information processing in music, pure tone sensation thresholds, spectral intonation judgments, and the associative priming of spectral intonation judgments by harmonic context were examined, and lesion localization was analyzed quantitatively using straight-line two-dimensional maps of the cortical surface reconstructed from magnetic resonance images. Despite normal pure tone sensation thresholds at 250-8000 Hz, the perception of tonal spectra was severely impaired, such that harmonic structures (major triads) were almost uniformly judged to sound dissonant; yet, the associative priming of spectral intonation judgments by harmonic context was preserved, indicating that cognitive representations of tonal hierarchies in music remained intact and accessible. Brainprints demonstrated complete bilateral lesions of the transverse gyri of Heschl and partial lesions of the right and left superior temporal gyri involving 98 and 20% of their surface areas, respectively. In the right hemisphere, there was partial sparing of the planum temporale, temporoparietal junction, and inferior parietal cortex. In the left hemisphere, all of the superior temporal region anterior to the transverse gyrus and parts of the planum temporale, temporoparietal junction, inferior parietal cortex, and insula were spared. These observations suggest that (1) sensory, perceptual, and cognitive functions mediating tonal information processing in music are neurologically dissociable; (2) complete bilateral lesions of primary auditory cortex combined with partial bilateral lesions of auditory association cortex chronically impair tonal consonance perception; (3) cognitive functions that hierarchically structure pitch information and generate harmonic expectancies

  2. Neural circuits in auditory and audiovisual memory.

    PubMed

    Plakke, B; Romanski, L M

    2016-06-01

    Working memory is the ability to employ recently seen or heard stimuli and apply them to changing cognitive context. Although much is known about language processing and visual working memory, the neurobiological basis of auditory working memory is less clear. Historically, part of the problem has been the difficulty in obtaining a robust animal model to study auditory short-term memory. In recent years there has been neurophysiological and lesion studies indicating a cortical network involving both temporal and frontal cortices. Studies specifically targeting the role of the prefrontal cortex (PFC) in auditory working memory have suggested that dorsal and ventral prefrontal regions perform different roles during the processing of auditory mnemonic information, with the dorsolateral PFC performing similar functions for both auditory and visual working memory. In contrast, the ventrolateral PFC (VLPFC), which contains cells that respond robustly to auditory stimuli and that process both face and vocal stimuli may be an essential locus for both auditory and audiovisual working memory. These findings suggest a critical role for the VLPFC in the processing, integrating, and retaining of communication information. This article is part of a Special Issue entitled SI: Auditory working memory. PMID:26656069

  3. Modeling deformation-induced fluid flow in cortical bone's canalicular-lacunar system.

    PubMed

    Gururaja, S; Kim, H J; Swan, C C; Brand, R A; Lakes, R S

    2005-01-01

    To explore the potential role that load-induced fluid flow plays as a mechano-transduction mechanism in bone adaptation, a lacunar-canalicular scale bone poroelasticity model is developed and implemented. The model uses micromechanics to homogenize the pericanalicular bone matrix, a system of straight circular cylinders in the bone matrix through which bone fluids can flow, as a locally anisotropic poroelastic medium. In this work, a simplified two-dimensional model of a periodic array of lacunae and their surrounding systems of canaliculi is used to quantify local fluid flow characteristics in the vicinity of a single lacuna. When the cortical bone model is loaded, microscale stress, and strain concentrations occur in the vicinity of individual lacunae and give rise to microscale spatial variations in the pore fluid pressure field. Furthermore, loading of the bone matrix containing canaliculi generates fluid pressures in the contained fluids. Consequently, loading of cortical bone induces fluid flow in the canaliculi and exchange of fluid between canaliculi and lacunae. For realistic bone morphology parameters, and a range of loading frequencies, fluid pressures and fluid-solid drag forces in the canalicular bone are computed and the associated energy dissipation in the models compared to that measured in physical in vitro experiments on human cortical bone. The proposed model indicates that deformation-induced fluid pressures in the lacunar-canalicular system have relaxation times on the order of milliseconds as opposed to the much shorter times (hundredths of milliseconds) associated with deformation-induced pressures in the Haversian system. PMID:15709702

  4. Constructing Noise-Invariant Representations of Sound in the Auditory Pathway

    PubMed Central

    Rabinowitz, Neil C.; Willmore, Ben D. B.; King, Andrew J.; Schnupp, Jan W. H.

    2013-01-01

    Identifying behaviorally relevant sounds in the presence of background noise is one of the most important and poorly understood challenges faced by the auditory system. An elegant solution to this problem would be for the auditory system to represent sounds in a noise-invariant fashion. Since a major effect of background noise is to alter the statistics of the sounds reaching the ear, noise-invariant representations could be promoted by neurons adapting to stimulus statistics. Here we investigated the extent of neuronal adaptation to the mean and contrast of auditory stimulation as one ascends the auditory pathway. We measured these forms of adaptation by presenting complex synthetic and natural sounds, recording neuronal responses in the inferior colliculus and primary fields of the auditory cortex of anaesthetized ferrets, and comparing these responses with a sophisticated model of the auditory nerve. We find that the strength of both forms of adaptation increases as one ascends the auditory pathway. To investigate whether this adaptation to stimulus statistics contributes to the construction of noise-invariant sound representations, we also presented complex, natural sounds embedded in stationary noise, and used a decoding approach to assess the noise tolerance of the neuronal population code. We find that the code for complex sounds in the periphery is affected more by the addition of noise than the cortical code. We also find that noise tolerance is correlated with adaptation to stimulus statistics, so that populations that show the strongest adaptation to stimulus statistics are also the most noise-tolerant. This suggests that the increase in adaptation to sound statistics from auditory nerve to midbrain to cortex is an important stage in the construction of noise-invariant sound representations in the higher auditory brain. PMID:24265596

  5. Electrophysiological study of auditory development.

    PubMed

    Lippé, S; Martinez-Montes, E; Arcand, C; Lassonde, M

    2009-12-15

    Cortical auditory evoked potential (CAEP) testing, a non-invasive technique, is widely employed to study auditory brain development. The aim of this study was to investigate the development of the auditory electrophysiological signal without addressing specific abilities such as speech or music discrimination. We were interested in the temporal and spectral domains of conventional auditory evoked potentials. We analyzed cerebral responses to auditory stimulation (broadband noises) in 40 infants and children (1 month to 5 years 6 months) and 10 adults using high-density electrophysiological recording. We hypothesized that the adult auditory response has precursors that can be identified in infant and child responses. Results confirm that complex adult CAEP responses and spectral activity patterns appear after 5 years, showing decreased involvement of lower frequencies and increased involvement of higher frequencies. In addition, time-locked response to stimulus and event-related spectral pertubation across frequencies revealed alpha and beta band contributions to the CAEP of infants and toddlers before mutation to the beta and gamma band activity of the adult response. A detailed analysis of electrophysiological responses to a perceptual stimulation revealed general development patterns and developmental precursors of the adult response. PMID:19665050

  6. Auditory interfaces: The human perceiver

    NASA Technical Reports Server (NTRS)

    Colburn, H. Steven

    1991-01-01

    A brief introduction to the basic auditory abilities of the human perceiver with particular attention toward issues that may be important for the design of auditory interfaces is presented. The importance of appropriate auditory inputs to observers with normal hearing is probably related to the role of hearing as an omnidirectional, early warning system and to its role as the primary vehicle for communication of strong personal feelings.

  7. Descending projections from auditory cortex to excitatory and inhibitory cells in the nucleus of the brachium of the inferior colliculus

    PubMed Central

    Mellott, Jeffrey G.; Bickford, Martha E.; Schofield, Brett R.

    2014-01-01

    Descending projections from the auditory cortex (AC) terminate in subcortical auditory centers from the medial geniculate nucleus (MG) to the cochlear nucleus, allowing the AC to modulate the processing of acoustic information at many levels of the auditory system. The nucleus of the brachium of the inferior colliculus (NBIC) is a large midbrain auditory nucleus that is a target of these descending cortical projections. The NBIC is a source of several auditory projections, including an ascending projection to the MG. This ascending projection appears to originate from both excitatory and inhibitory NBIC cells, but whether the cortical projections contact either of these cell groups is unknown. In this study, we first combined retrograde tracing and immunochemistry for glutamic acid decarboxylase (GAD, a marker of GABAergic cells) to identify GABAergic and non-GABAergic NBIC projections to the MG. Our first result is that GAD-immunopositive cells constitute ~17% of the NBIC to MG projection. We then used anterograde labeling and electron microscopy to examine the AC projection to the NBIC. Our second result is that cortical boutons in the NBIC form synapses with round vesicles and asymmetric synapses, consistent with excitatory effects. Finally, we combined fluorescent anterograde labeling of corticofugal axons with immunochemistry and retrograde labeling of NBIC cells that project to the MG. These final results suggest first that AC axons contact both GAD-negative and GAD-positive NBIC cells and, second, that some of cortically-contacted cells project to the MG. Overall, the results imply that corticofugal projections can modulate both excitatory and inhibitory ascending projections from the NBIC to the auditory thalamus. PMID:25339870

  8. Biased relevance filtering in the auditory system: A test of confidence-weighted first-impressions.

    PubMed

    Mullens, D; Winkler, I; Damaso, K; Heathcote, A; Whitson, L; Provost, A; Todd, J

    2016-03-01

    Although first-impressions are known to impact decision-making and to have prolonged effects on reasoning, it is less well known that the same type of rapidly formed assumptions can explain biases in automatic relevance filtering outside of deliberate behavior. This paper features two studies in which participants have been asked to ignore sequences of sound while focusing attention on a silent movie. The sequences consisted of blocks, each with a high-probability repetition interrupted by rare acoustic deviations (i.e., a sound of different pitch or duration). The probabilities of the two different sounds alternated across the concatenated blocks within the sequence (i.e., short-to-long and long-to-short). The sound probabilities are rapidly and automatically learned for each block and a perceptual inference is formed predicting the most likely characteristics of the upcoming sound. Deviations elicit a prediction-error signal known as mismatch negativity (MMN). Computational models of MMN generally assume that its elicitation is governed by transition statistics that define what sound attributes are most likely to follow the current sound. MMN amplitude reflects prediction confidence, which is derived from the stability of the current transition statistics. However, our prior research showed that MMN amplitude is modulated by a strong first-impression bias that outweighs transition statistics. Here we test the hypothesis that this bias can be attributed to assumptions about predictable vs. unpredictable nature of each tone within the first encountered context, which is weighted by the stability of that context. The results of Study 1 show that this bias is initially prevented if there is no 1:1 mapping between sound attributes and probability, but it returns once the auditory system determines which properties provide the highest predictive value. The results of Study 2 show that confidence in the first-impression bias drops if assumptions about the temporal

  9. Cochlear Injury and Adaptive Plasticity of the Auditory Cortex

    PubMed Central

    Fetoni, Anna Rita; Troiani, Diana; Petrosini, Laura; Paludetti, Gaetano

    2015-01-01

    Growing evidence suggests that cochlear stressors as noise exposure and aging can induce homeostatic/maladaptive changes in the central auditory system from the brainstem to the cortex. Studies centered on such changes have revealed several mechanisms that operate in the context of sensory disruption after insult (noise trauma, drug-, or age-related injury). The oxidative stress is central to current theories of induced sensory-neural hearing loss and aging, and interventions to attenuate the hearing loss are based on antioxidant agent. The present review addresses the recent literature on the alterations in hair cells and spiral ganglion neurons due to noise-induced oxidative stress in the cochlea, as well on the impact of cochlear damage on the auditory cortex neurons. The emerging image emphasizes that noise-induced deafferentation and upward spread of cochlear damage is associated with the altered dendritic architecture of auditory pyramidal neurons. The cortical modifications may be reversed by treatment with antioxidants counteracting the cochlear redox imbalance. These findings open new therapeutic approaches to treat the functional consequences of the cortical reorganization following cochlear damage. PMID:25698966

  10. Auditory Spatial Layout

    NASA Technical Reports Server (NTRS)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  11. Formation of temporal-feature maps in the barn owl's auditory system

    NASA Astrophysics Data System (ADS)

    Kempter, Richard

    2000-03-01

    Computational maps are of central importance to the brain's representation of the outside world. The question of how maps are formed during ontogenetic development is a subject of intense research (Hubel & Wiesel, Proc R Soc B 198:1, 1977; Buonomano & Merzenich, Annu Rev Neurosci 21:149, 1998). The development in the primary visual cortex is in principle well explained compared to that in the auditory system, partly because the mechanisms underlying the formation of temporal-feature maps are hardly understood (Carr, Annu Rev Neurosci 16:223, 1993). Through a modelling study based on computer simulations in a system of spiking neurons a solution is offered to the problem of how a map of interaural time differences is set up in the nucleus laminaris of the barn owl, as a typical example. An array of neurons is able to represent interaural time differences in an orderly manner, viz., a map, if homosynaptic spike-based Hebbian learning (Gerstner et al, Nature 383:76, 1996; Kempter et al, Phys Rev E 59:4498, 1999) is combined with a presynaptic propagation of synaptic modifications (Fitzsimonds & Poo, Physiol Rev 78:143, 1998). The latter may be orders of magnitude weaker than the former. The algorithm is a key mechanism to the formation of temporal-feature maps on a submillisecond time scale.

  12. Jet Fuel, Noise, and the Central Auditory Nervous System: A Literature Review.

    PubMed

    Warner, Rachelle; Fuente, Adrian; Hickson, Louise

    2015-09-01

    Prompted by the continued prevalence of hearing related disabilities accepted as eligible for compensation and treatment under Australian Department of Veterans' Affairs legislation, a review of recent literature regarding possible causation mechanisms and thus, possible prevention strategies, is timely. The emerging thoughts on the effects of a combination of jet fuel and noise exposure on the central auditory nervous system (CANS) have relevance in the military aviation context because of the high exposures to solvents (including fuels) and unique noise hazards related to weapons systems and military aircraft. This literature review aimed to identify and analyze the current knowledge base of the effects of combined exposure to JP-8 jet fuel (or its aromatic solvent components) and noise on the CANS in human populations. We reviewed articles examining electrophysiological and behavioral measurement of the CANS following combined exposures to jet fuel (or its aromatic constituents) and noise. A total of 6 articles met the inclusion criteria for the review and their results are summarized. The articles considered in this review indicate that assessment of the CANS should be undertaken as part of a comprehensive test battery for military members exposed to both noise and solvents in the workplace. PMID:26327546

  13. Pairing broadband noise with cortical stimulation induces extensive suppression of ascending sensory activity

    NASA Astrophysics Data System (ADS)

    Markovitz, Craig D.; Hogan, Patrick S.; Wesen, Kyle A.; Lim, Hubert H.

    2015-04-01

    Objective. The corticofugal system can alter coding along the ascending sensory pathway. Within the auditory system, electrical stimulation of the auditory cortex (AC) paired with a pure tone can cause egocentric shifts in the tuning of auditory neurons, making them more sensitive to the pure tone frequency. Since tinnitus has been linked with hyperactivity across auditory neurons, we sought to develop a new neuromodulation approach that could suppress a wide range of neurons rather than enhance specific frequency-tuned neurons. Approach. We performed experiments in the guinea pig to assess the effects of cortical stimulation paired with broadband noise (PN-Stim) on ascending auditory activity within the central nucleus of the inferior colliculus (CNIC), a widely studied region for AC stimulation paradigms. Main results. All eight stimulated AC subregions induced extensive suppression of activity across the CNIC that was not possible with noise stimulation alone. This suppression built up over time and remained after the PN-Stim paradigm. Significance. We propose that the corticofugal system is designed to decrease the brain’s input gain to irrelevant stimuli and PN-Stim is able to artificially amplify this effect to suppress neural firing across the auditory system. The PN-Stim concept may have potential for treating tinnitus and other neurological disorders.

  14. Pairing broadband noise with cortical stimulation induces extensive suppression of ascending sensory activity

    PubMed Central

    Markovitz, Craig D.; Hogan, Patrick S.; Wesen, Kyle A.; Lim, Hubert H.

    2015-01-01

    Objective The corticofugal system can alter coding along the ascending sensory pathway. Within the auditory system, electrical stimulation of the auditory cortex (AC) paired with a pure tone can cause egocentric shifts in the tuning of auditory neurons, making them more sensitive to the pure tone frequency. Since tinnitus has been linked with hyperactivity across auditory neurons, we sought to develop a new neuromodulation approach that could suppress a wide range of neurons rather than enhance specific frequency-tuned neurons. Approach We performed experiments in the guinea pig to assess the effects of cortical stimulation paired with broadband noise (PN-Stim) on ascending auditory activity within the central nucleus of the inferior colliculus (CNIC), a widely studied region for AC stimulation paradigms. Main results All eight stimulated AC regions induced extensive suppression of activity across the CNIC that was not possible with noise stimulation alone. This suppression built up over time and remained after the PN-Stim paradigm. Significance We propose that the corticofugal system is designed to decrease the brain’s input gain to irrelevant stimuli and PN-Stim is able to artificially amplify this effect to suppress neural firing across the auditory system. The PN-Stim concept may have potential for treating tinnitus and other neurological disorders. PMID:25686163

  15. Noise Trauma Induced Neural Plasticity Throughout the Auditory System of Mongolian Gerbils: Differences between Tinnitus Developing and Non-Developing Animals.

    PubMed

    Tziridis, Konstantin; Ahlf, Sönke; Jeschke, Marcus; Happel, Max F K; Ohl, Frank W; Schulze, Holger

    2015-01-01

    In this study, we describe differences between neural plasticity in auditory cortex (AC) of animals that developed subjective tinnitus (group T) after noise-induced hearing loss (NIHL) compared to those that did not [group non-tinnitus (NT)]. To this end, our analysis focuses on the input activity of cortical neurons based on the temporal and spectral analysis of local field potential (LFP) recordings and an in-depth analysis of auditory brainstem responses (ABR) in the same animals. In response to NIHL in NT animals we find a significant general reduction in overall cortical activity and spectral power as well as changes in all ABR wave amplitudes as a function of loudness. In contrast, T-animals show no significant change in overall cortical activity as assessed by root mean square analysis of LFP amplitudes, but a specific increase in LFP spectral power and in the amplitude of ABR wave V reflecting activity in the inferior colliculus (IC). Based on these results, we put forward a refined model of tinnitus prevention after NIHL that acts via a top-down global (i.e., frequency-unspecific) inhibition reducing overall neuronal activity in AC and IC, thereby counteracting NIHL-induced bottom-up frequency-specific neuroplasticity suggested in current models of tinnitus development. PMID:25713557

  16. [Verbal auditory agnosia: SPECT study of the brain].

    PubMed

    Carmona, C; Casado, I; Fernández-Rojas, J; Garín, J; Rayo, J I

    1995-01-01

    Verbal auditory agnosia are rare in clinical practice. Clinically, it characterized by impairment of comprehension and repetition of speech but reading, writing, and spontaneous speech are preserved. So it is distinguished from generalized auditory agnosia by the preserved ability to recognize non verbal sounds. We present the clinical picture of a forty-years-old, right handed woman who developed verbal auditory agnosic after an bilateral temporal ischemic infarcts due to atrial fibrillation by dilated cardiomyopathie. Neurophysiological studies by pure tone threshold audiometry: brainstem auditory evoked potentials and cortical auditory evoked potentials showed sparing of peripheral hearing and intact auditory pathway in brainstem but impaired cortical responses. Cranial CT-SCAN revealed two large hypodenses area involving both cortico-subcortical temporal lobes. Cerebral SPECT using 99mTc-HMPAO as radiotracer showed hypoperfusion just posterior in both frontal lobes nect to Roland's fissure and at level of bitemporal lobes just anterior to Sylvian's fissure. PMID:8556589

  17. Viewing a forelimb induces widespread cortical activations.

    PubMed

    Raos, Vassilis; Kilintari, Marina; Savaki, Helen E

    2014-04-01

    Given that prerequisite of activating the mirror neuron system is the preshaping of the hand and its interaction with the object during observation of a reaching-to-grasp-an-object action, the effects of viewing the object, the reaching forelimb and the static hand may obscure the effects of observing the grasping action per se. To disentangle these effects, we employed the (14)C-deoxyglucose quantitative autoradiographic method to map the functional activity in the entire cortex of monkeys (Macaca mulatta) which observed the experimenter performing non-goal-directed (purposeless) forelimb movements towards an object that was previously presented but no longer visible. Thus, our monkeys were exposed to the view of an object, a moving arm and a static hand with extended wrist and fingers. The distribution of metabolic activity was analyzed in 20μm thick brain sections, and two dimensional maps were reconstructed in the occipital operculum, the temporal, the lateral and medial parietal, the lateral and medial frontal, the lateral prefrontal and orbitofrontal cortices, including the cortex within the lunate, superior temporal, lateral, parietoccipital, intraparietal, central, arcuate and principal sulci. Increased metabolic activity, as compared to fixation-control monkeys, was measured in the forelimb representation of the primary motor and somatosensory cortices, the premotor cortices F2 and F5, cingulate motor areas, the secondary somatosensory cortex SII, the posterior intraparietal area 5 and areas TPOc and FST, in the hemisphere contralateral to the moving arm. Moreover, bilateral activations were elicited in areas pre-SMA, 8m, SSA and the somatorecipient area VS, the retroinsula, the auditory belt area CM, motion areas MT, MST, LOP/CIP, area 31, visual areas TEO, V6, V6Av and the parafoveal and peripheral visual representations of areas V1 and V2, respectively. Few parietal, auditory and visual areas were bilaterally depressed. In brief, a surprisingly wide

  18. The calyx of Held in the auditory system: Structure, function, and development.

    PubMed

    Baydyuk, Maryna; Xu, Jianhua; Wu, Ling-Gang

    2016-08-01

    The calyx of Held synapse plays an important role in the auditory system, relaying information about sound localization via fast and precise synaptic transmission, which is achieved by its specialized structure and giant size. During development, the calyx of Held undergoes anatomical, morphological, and physiological changes necessary for performing its functions. The large dimensions of the calyx of Held nerve terminal are well suited for direct electrophysiological recording of many presynaptic events that are difficult, if not impossible to record at small conventional synapses. This unique accessibility has been used to investigate presynaptic ion channels, transmitter release, and short-term plasticity, providing invaluable information about basic presynaptic mechanisms of transmission at a central synapse. Here, we review anatomical and physiological specializations of the calyx of Held, summarize recent studies that provide new mechanisms important for calyx development and reliable synaptic transmission, and examine fundamental presynaptic mechanisms learned from studies using calyx as a model nerve terminal. This article is part of a Special Issue entitled . PMID:27018297

  19. Processing and representation of social communication sounds in the brainstem auditory system of bats

    NASA Astrophysics Data System (ADS)

    Pollak, George D.

    2003-10-01

    While bats are best known for their abilities to orient and capture prey via echolocation, they are also highly social animals who use a rich repertoire of species-specific sounds for social communication. This talk explores how communication signals are progressively transformed and represented in the ascending auditory system. One principal transformation that distinguishes the inferior colliculus from lower nuclei is a change from processing that emphasizes response homogeneity among the neuronal population in each lower nucleus, to one that emphasizes heterogeneity and selectivity in the inferior colliculus. Collicular neurons are selective in that each neuron fails to respond to some, or even all calls, even though those calls have energy that encroaches upon their excitatory response regions, and are heterogeneous since each collicular neuron responds to a different subset of calls. The transformation from homogeneity to heterogeneity may largely be a consequence of the difference in the ways that the various excitatory and inhibitory inputs distribute along frequency contours in lower nuclei compared to the inferior colliculus. One important consequence is that those features endow the population in the inferior colliculus with the ability to respond to any signal with a unique and pronounced spatiotemporal pattern of activity. [Work supported by NIH Grant No. DC 00268.

  20. Keeping returns optimal: gain control exerted through sensitivity adjustments in the harbour porpoise auditory system

    PubMed Central

    Linnenschmidt, Meike; Beedholm, Kristian; Wahlberg, Magnus; Højer-Kristensen, Jakob; Nachtigall, Paul E.

    2012-01-01

    Animals that use echolocation (biosonar) listen to acoustic signals with a large range of intensities, because echo levels vary with the fourth power of the animal's distance to the target. In man-made sonar, engineers apply automatic gain control to stabilize the echo energy levels, thereby rendering them independent of distance to the target. Both toothed whales and bats vary the level of their echolocation clicks to compensate for the distance-related energy loss. By monitoring the auditory brainstem response (ABR) during a psychophysical task, we found that a harbour porpoise (Phocoena phocoena), in addition to adjusting the sound level of the outgoing signals up to 5.4 dB, also reduces its ABR threshold by 6 dB when the target distance doubles. This self-induced threshold shift increases the dynamic range of the biosonar system and compensates for half of the variation of energy that is caused by changes in the distance to the target. In combination with an increased source level as a function of target range, this helps the porpoise to maintain a stable echo-evoked ABR amplitude irrespective of target range, and is therefore probably an important tool enabling porpoises to efficiently analyse and classify received echoes. PMID:22279169

  1. Sensitivity of unanesthetized chinchilla auditory system to noise burst onset, and the effects of carboplatin.

    PubMed

    Phillips, D P; Hall, S E; Guo, Y; Burkard, R

    2001-05-01

    The gross near-field responses of the auditory nerve and inferior colliculus to noise burst stimuli were recorded through intracranially implanted electrodes in six unanesthetized chinchillas. Responses were studied as a function of stimulus plateau amplitude and rise time, both before and after a systemic dose of 75 mg/kg of carboplatin. Both recording sites showed sensitivity to stimulus level and rise time. Increases in stimulus level and decreases in stimulus rise time each produced increases in the response magnitude, and decreases in response latency. When the stimuli were re-specified as rate of pressure change at sound onset (Pa/s), the amplitude and latency of responses at each site were found to be a direct function of rate of sound pressure change. These data provide the first confirmation in unanesthetized animals of previous single unit observations in barbiturate-anesthetized cats. Carboplatin treatment resulted in a 20-80% loss of inner hair cells, a modest threshold elevation, and a 50-75% reduction in peak response amplitudes. The general patterns of sensitivity to stimulus level and rise time were not markedly affected by carboplatin, nor was the fashion in which response parameters (amplitude and latency) were ruled by rate of pressure change at sound onset. PMID:11335083

  2. Burst Firing is a Neural Code in an Insect Auditory System

    PubMed Central

    Eyherabide, Hugo G.; Rokem, Ariel; Herz, Andreas V. M.; Samengo, Inés

    2008-01-01

    Various classes of neurons alternate between high-frequency discharges and silent intervals. This phenomenon is called burst firing. To analyze burst activity in an insect system, grasshopper auditory receptor neurons were recorded in vivo for several distinct stimulus types. The experimental data show that both burst probability and burst characteristics are strongly influenced by temporal modulations of the acoustic stimulus. The tendency to burst, hence, is not only determined by cell-intrinsic processes, but also by their interaction with the stimulus time course. We study this interaction quantitatively and observe that bursts containing a certain number of spikes occur shortly after stimulus deflections of specific intensity and duration. Our findings suggest a sparse neural code where information about the stimulus is represented by the number of spikes per burst, irrespective of the detailed interspike-interval structure within a burst. This compact representation cannot be interpreted as a firing-rate code. An information-theoretical analysis reveals that the number of spikes per burst reliably conveys information about the amplitude and duration of sound transients, whereas their time of occurrence is reflected by the burst onset time. The investigated neurons encode almost half of the total transmitted information in burst activity. PMID:18946533

  3. Keeping returns optimal: gain control exerted through sensitivity adjustments in the harbour porpoise auditory system.

    PubMed

    Linnenschmidt, Meike; Beedholm, Kristian; Wahlberg, Magnus; Højer-Kristensen, Jakob; Nachtigall, Paul E

    2012-06-01

    Animals that use echolocation (biosonar) listen to acoustic signals with a large range of intensities, because echo levels vary with the fourth power of the animal's distance to the target. In man-made sonar, engineers apply automatic gain control to stabilize the echo energy levels, thereby rendering them independent of distance to the target. Both toothed whales and bats vary the level of their echolocation clicks to compensate for the distance-related energy loss. By monitoring the auditory brainstem response (ABR) during a psychophysical task, we found that a harbour porpoise (Phocoena phocoena), in addition to adjusting the sound level of the outgoing signals up to 5.4 dB, also reduces its ABR threshold by 6 dB when the target distance doubles. This self-induced threshold shift increases the dynamic range of the biosonar system and compensates for half of the variation of energy that is caused by changes in the distance to the target. In combination with an increased source level as a function of target range, this helps the porpoise to maintain a stable echo-evoked ABR amplitude irrespective of target range, and is therefore probably an important tool enabling porpoises to efficiently analyse and classify received echoes. PMID:22279169

  4. Mapping Longitudinal Development of Local Cortical Gyrification in Infants from Birth to 2 Years of Age

    PubMed Central

    Li, Gang; Wang, Li; Shi, Feng; Lyall, Amanda E.; Lin, Weili; Gilmore, John H.

    2014-01-01

    Human cortical folding is believed to correlate with cognitive functions. This likely correlation may have something to do with why abnormalities of cortical folding have been found in many neurodevelopmental disorders. However, little is known about how cortical gyrification, the cortical folding process, develops in the first 2 years of life, a period of dynamic and regionally heterogeneous cortex growth. In this article, we show how we developed a novel infant-specific method for mapping longitudinal development of local cortical gyrification in infants. By using this method, via 219 longitudinal 3T magnetic resonance imaging scans from 73 healthy infants, we systemically and quantitatively characterized for the first time the longitudinal cortical global gyrification index (GI) and local GI (LGI) development in the first 2 years of life. We found that the cortical GI had age-related and marked development, with 16.1% increase in the first year and 6.6% increase in the second year. We also found marked and regionally heterogeneous cortical LGI development in the first 2 years of life, with the high-growth regions located in the association cortex, whereas the low-growth regions located in sensorimotor, auditory, and visual cortices. Meanwhile, we also showed that LGI growth in most cortical regions was positively correlated with the brain volume growth, which is particularly significant in the prefrontal cortex in the first year. In addition, we observed gender differences in both cortical GIs and LGIs in the first 2 years, with the males having larger GIs than females at 2 years of age. This study provides valuable information on normal cortical folding development in infancy and early childhood. PMID:24647943

  5. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    NASA Technical Reports Server (NTRS)

    Noohi, F.; Kinnaird, C.; Wood, S.; Bloomberg, J.; Mulavara, A.; Seidler, R.

    2016-01-01

    The current study characterizes brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either the vestibulo-spinal reflex (saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)), or the ocular muscle response (utricle-mediated ocular VEMP (oVEMP)). Some researchers have reported that air-conducted skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for the subjects. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying otolith-specific deficits, including gait and balance problems that astronauts experience upon returning to earth. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that skull taps elicit similar patterns of cortical activity as the auditory tone bursts, and previous vestibular imaging studies. Subjects wore bilateral MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in the supine position, with eyes closed. Subjects received both forms of the stimulation in a counterbalanced fashion. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular system, resulting in the vestibular cortical response. Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory

  6. Auditory-motor interaction revealed by fMRI: speech, music, and working memory in area Spt.

    PubMed

    Hickok, Gregory; Buchsbaum, Bradley; Humphries, Colin; Muftuler, Tugan

    2003-07-01

    The concept of auditory-motor interaction pervades speech science research, yet the cortical systems supporting this interface have not been elucidated. Drawing on experimental designs used in recent work in sensory-motor integration in the cortical visual system, we used fMRI in an effort to identify human auditory regions with both sensory and motor response properties, analogous to single-unit responses in known visuomotor integration areas. The sensory phase of the task involved listening to speech (nonsense sentences) or music (novel piano melodies); the "motor" phase of the task involved covert rehearsal/humming of the auditory stimuli. A small set of areas in the superior temporal and temporal-parietal cortex responded both during the listening phase and the rehearsal/humming phase. A left lateralized region in the posterior Sylvian fissure at the parietal-temporal boundary, area Spt, showed particularly robust responses to both phases of the task. Frontal areas also showed combined auditory + rehearsal responsivity consistent with the claim that the posterior activations are part of a larger auditory-motor integration circuit. We hypothesize that this circuit plays an important role in speech development as part of the network that enables acoustic-phonetic input to guide the acquisition of language-specific articulatory-phonetic gestures; this circuit may play a role in analogous musical abilities. In the adult, this system continues to support aspects of speech production, and, we suggest, supports verbal working memory. PMID:12965041

  7. How phonetically selective is the human auditory cortex?

    PubMed

    Shamma, Shihab

    2014-08-01

    Responses in the human auditory cortex to natural speech reveal a dual character. Often they are categorically selective to phonetic elements, serving as a gateway to abstract linguistic representations. But at other times they reflect a distributed generalized spectrotemporal analysis of the acoustic features, as seen in early mammalian auditory cortices. PMID:24751358

  8. Auditory information systems in military aircraft: Current configurations versus the state of the art

    NASA Astrophysics Data System (ADS)

    Doll, T. J.; Folds, D. J.; Leiker, L. A.

    1984-06-01

    The complete ensembles of auditory signals in selected USAF aircraft (the F-4D, F-15, two models of the F-16, the C-5, and the C-141) are described and evaluated. Human factors research related to the design of speech and non-speech and non-speech auditory signals is reviewed and the fundamentals of speech synthesis technology are described. Major findings are: that auditory signals are not well standardized among the aircraft, even between those with similar combat roles that a relatively large number of non-speech auditory signals are used, which may make it difficult for the aircrew to recall the meanings of all the signals; that some non-speech signals are sufficiently similar that they may be confused, particularly in high workload and stressful conditions; and that the criticality of the warnings is not reliably indicated by any characteristic of the signals. Five problem areas requiring further research are discussed: reduction of signal loudness, annoyance, and disruption of other functions; enhancement of the distinctiveness and masking resistance of non-speech signals; effects of concurrent warning signals on aircrew performance in critical operational contexts; additional uses of auditory information in order to relieve visual workload; the need for guidelines for deciding which information should be provided aurally, which should be speech versus non-speech, and for designing speech messages; and optimization of synthesized speech for cockpit applications, including its attention-getting capability, distinctiveness, intelligibility, and ease of comprehension.

  9. Diffusion tensor imaging and MR morphometry of the central auditory pathway and auditory cortex in aging.

    PubMed

    Profant, O; Škoch, A; Balogová, Z; Tintěra, J; Hlinka, J; Syka, J

    2014-02-28

    Age-related hearing loss (presbycusis) is caused mainly by the hypofunction of the inner ear, but recent findings point also toward a central component of presbycusis. We used MR morphometry and diffusion tensor imaging (DTI) with a 3T MR system with the aim to study the state of the central auditory system in a group of elderly subjects (>65years) with mild presbycusis, in a group of elderly subjects with expressed presbycusis and in young controls. Cortical reconstruction, volumetric segmentation and auditory pathway tractography were performed. Three parameters were evaluated by morphometry: the volume of the gray matter, the surface area of the gyrus and the thickness of the cortex. In all experimental groups the surface area and gray matter volume were larger on the left side in Heschl's gyrus and planum temporale and slightly larger in the gyrus frontalis superior, whereas they were larger on the right side in the primary visual cortex. Almost all of the measured parameters were significantly smaller in the elderly subjects in Heschl's gyrus, planum temporale and gyrus frontalis superior. Aging did not change the side asymmetry (laterality) of the gyri. In the central part of the auditory pathway above the inferior colliculus, a trend toward an effect of aging was present in the axial vector of the diffusion (L1) variable of DTI, with increased values observed in elderly subjects. A trend toward a decrease of L1 on the left side, which was more pronounced in the elderly groups, was observed. The effect of hearing loss was present in subjects with expressed presbycusis as a trend toward an increase of the radial vectors (L2L3) in the white matter under Heschl's gyrus. These results suggest that in addition to peripheral changes, changes in the central part of the auditory system in elderly subjects are also present; however, the extent of hearing loss does not play a significant role in the central changes. PMID:24333969

  10. Age-related changes in neural gap detection thresholds in the rat auditory cortex.

    PubMed

    Zhao, Yin; Xu, Xiaoxiao; He, Juan; Xu, Jinghong; Zhang, Jiping

    2015-02-01

    The ability of the auditory system to resolve sound temporal information is crucial for the understanding of human speech and other species-specific communications. Gap detection threshold, i.e. the ability to detect the shortest duration of a silent interval in a sound, is commonly used to study the auditory temporal resolution. Behavioral studies in humans and rats have shown that normal developing infants have higher gap detection thresholds than adults; however, the underlying neural mechanism is not fully understood. In the present study, we determined and compared the neural gap detection thresholds in the primary auditory cortex of three age groups of rats: the juvenile group (postnatal day 20-30), adult group I (8-10 weeks), and adult group II (28-30 weeks). We found age-related changes in auditory temporal acuity in the auditory cortex, i.e. the proportion of cortical units with short neural gap detection thresholds (< 5 ms) was much lower in juvenile groups compared with that in both adult groups at a constant sound level, and no significant differences in neural gap detection thresholds were found between the two adult groups. In addition, units in the auditory cortex of each group generally showed better gap detection thresholds at higher sound levels than at lower sound levels, exhibiting a level-dependent temporal acuity. These results provided evidence for neural correlates of age-related changes in behavioral gap detection ability during postnatal hearing development. PMID:25388865

  11. Auditory analysis for speech recognition based on physiological models

    NASA Astrophysics Data System (ADS)

    Jeon, Woojay; Juang, Biing-Hwang

    2001-05-01

    To address the limitations of traditional cepstrum or LPC based front-end processing methods for automatic speech recognition, more elaborate methods based on physiological models of the human auditory system may be used to achieve more robust speech recognition in adverse environments. For this purpose, a modified version of a model of the primary auditory cortex featuring a three dimensional mapping of auditory spectra [Wang and Shamma, IEEE Trans. Speech Audio Process. 3, 382-395 (1995)] is adopted and investigated for its use as an improved front-end processing method. The study is conducted in two ways: first, by relating the model's redundant representation to traditional spectral representations and showing that the former not only encompasses information provided by the latter, but also reveals more relevant information that makes it superior in describing the identifying features of speech signals; and second, by observing the statistical features of the representation for various classes of sound to show how different identifying features manifest themselves as specific patterns on the cortical map, thereby becoming a place-coded data set on which detection theory could be applied to simulate auditory perception and cognition.

  12. Neural Representation of Concurrent Vowels in Macaque Primary Auditory Cortex.

    PubMed

    Fishman, Yonatan I; Micheyl, Christophe; Steinschneider, Mitchell

    2016-01-01

    Successful speech perception in real-world environments requires that the auditory system segregate competing voices that overlap in frequency and time into separate streams. Vowels are major constituents of speech and are comprised of frequencies (harmonics) that are integer multiples of a common fundamental frequency (F0). The pitch and identity of a vowel are determined by its F0 and spectral envelope (formant structure), respectively. When two spectrally overlapping vowels differing in F0 are presented concurrently, they can be readily perceived as two separate "auditory objects" with pitches at their respective F0s. A difference in pitch between two simultaneous vowels provides a powerful cue for their segregation, which in turn, facilitates their individual identification. The neural mechanisms underlying the segregation of concurrent vowels based on pitch differences are poorly understood. Here, we examine neural population responses in macaque primary auditory cortex (A1) to single and double concurrent vowels (/a/ and /i/) that differ in F0 such that they are heard as two separate auditory objects with distinct pitches. We find that neural population responses in A1 can resolve, via a rate-place code, lower harmonics of both single and double concurrent vowels. Furthermore, we show that the formant structures, and hence the identities, of single vowels can be reliably recovered from the neural representation of double concurrent vowels. We conclude that A1 contains sufficient spectral information to enable concurrent vowel segregation and identification by downstream cortical areas. PMID:27294198

  13. [Cortical responses evoked by vibrotactile sensations in deaf children].

    PubMed

    Quaranta, A; Cipriani, D; Mininni, F

    1980-05-30

    Vibrotactile evoked responses (VER) to 250 and 500 Hz presented respectively at 50 and 70 dB HL by BC vibrator placed on right thumb, were recorded in 20 children (10 with pathological EEG) with severe sensorineural hearing loss, or deaf since birth, both to control accuracy of cortical responses to high intensity auditory stimuli and to diagnose central non auditory pathways lesions. The results have shown that: VER are present in subjects with severe sensorineural hearing loss or deaf; in children with auditory lesions VER have parameters different from auditory evoked response (AER); VER recording is not related both to the presence of auditory lesions and to neurological pathology. PMID:7448007

  14. Auditory spatial processing in Alzheimer’s disease

    PubMed Central

    Golden, Hannah L.; Nicholas, Jennifer M.; Yong, Keir X. X.; Downey, Laura E.; Schott, Jonathan M.; Mummery, Catherine J.; Crutch, Sebastian J.

    2015-01-01

    The location and motion of sounds in space are important cues for encoding the auditory world. Spatial processing is a core component of auditory scene analysis, a cognitively demanding function that is vulnerable in Alzheimer’s disease. Here we designed a novel neuropsychological battery based on a virtual space paradigm to assess auditory spatial processing in patient cohorts with clinically typical Alzheimer’s disease (n = 20) and its major variant syndrome, posterior cortical atrophy (n = 12) in relation to healthy older controls (n = 26). We assessed three dimensions of auditory spatial function: externalized versus non-externalized sound discrimination, moving versus stationary sound discrimination and stationary auditory spatial position discrimination, together with non-spatial auditory and visual spatial control tasks. Neuroanatomical correlates of auditory spatial processing were assessed using voxel-based morphometry. Relative to healthy older controls, both patient groups exhibited impairments in detection of auditory motion, and stationary sound position discrimination. The posterior cortical atrophy group showed greater impairment for auditory motion processing and the processing of a non-spatial control complex auditory property (timbre) than the typical Alzheimer’s disease group. Voxel-based morphometry in the patient cohort revealed grey matter correlates of auditory motion detection and spatial position discrimination in right inferior parietal cortex and precuneus, respectively. These findings delineate auditory spatial processing deficits in typical and posterior Alzheimer’s disease phenotypes that are related to posterior cortical regions involved in both syndromic variants and modulated by the syndromic profile of brain degeneration. Auditory spatial deficits contribute to impaired spatial awareness in Alzheimer’s disease and may constitute a novel perceptual model for probing brain network disintegration across the Alzheimer

  15. Changes in auditory perceptions and cortex resulting from hearing recovery after extended congenital unilateral hearing loss

    PubMed Central

    Firszt, Jill B.; Reeder, Ruth M.; Holden, Timothy A.; Burton, Harold; Chole, Richard A.

    2013-01-01

    Monaural hearing induces auditory system reorganization. Imbalanced input also degrades time-intensity cues for sound localization and signal segregation for listening in noise. While there have been studies of bilateral auditory deprivation and later hearing restoration (e.g., cochlear implants), less is known about unilateral auditory deprivation and subsequent hearing improvement. We investigated effects of long-term congenital unilateral hearing loss on localization, speech understanding, and cortical organization following hearing recovery. Hearing in the congenitally affected ear of a 41 year old female improved significantly after stapedotomy and reconstruction. Pre-operative hearing threshold levels showed unilateral, mixed, moderately-severe to profound hearing loss. The contralateral ear had hearing threshold levels within normal limits. Testing was completed prior to, and 3 and 9 months after surgery. Measurements were of sound localization with intensity-roved stimuli and speech recognition in various noise conditions. We also evoked magnetic resonance signals with monaural stimulation to the unaffected ear. Activation magnitudes were determined in core, belt, and parabelt auditory cortex regions via an interrupted single event design. Hearing improvement following 40 years of congenital unilateral hearing loss resulted in substantially improved sound localization and speech recognition in noise. Auditory cortex also reorganized. Contralateral auditory cortex responses were increased after hearing recovery and the extent of activated cortex was bilateral, including a greater portion of the posterior superior temporal plane. Thus, prolonged predominant monaural stimulation did not prevent auditory system changes consequent to restored binaural hearing. Results support future research of unilateral auditory deprivation effects and plasticity, with consideration for length of deprivation, age at hearing correction and degree and type of hearing loss. PMID

  16. On the temporal window of auditory-brain system in connection with subjective responses

    NASA Astrophysics Data System (ADS)

    Mouri, Kiminori

    2003-08-01

    The human auditory-brain system processes information extracted from autocorrelation function (ACF) of the source signal and interaural cross correlation function (IACF) of binaural sound signals which are associated with the left and right cerebral hemispheres, respectively. The purpose of this dissertation is to determine the desirable temporal window (2T: integration interval) for ACF and IACF mechanisms. For the ACF mechanism, the visual change of Φ(0), i.e., the power of ACF, was associated with the change of loudness, and it is shown that the recommended temporal window is given as about 30(τe)min [s]. The value of (τe)min is the minimum value of effective duration of the running ACF of the source signal. It is worth noticing from the experiment of EEG that the most preferred delay time of the first reflection sound is determined by the piece indicating (τe)min in the source signal. For the IACF mechanism, the temporal window is determined as below: The measured range of τIACC corresponding to subjective angle for the moving image sound depends on the temporal window. Here, the moving image was simulated by the use of two loudspeakers located at +/-20° in the horizontal plane, reproducing amplitude modulated band-limited noise alternatively. It is found that the temporal window has a wide range of values from 0.03 to 1 [s] for the modulation frequency below 0.2 Hz. Thesis advisor: Yoichi Ando Copies of this thesis written in English can be obtained from Kiminori Mouri, 5-3-3-1110 Harayama-dai, Sakai city, Osaka 590-0132, Japan. E-mail address: km529756@aol.com

  17. Effects of Patterned Sound Deprivation on Short- and Long-Term Plasticity in the Rat Thalamocortical Auditory System In Vivo

    PubMed Central

    Soutar, Chloe N.; Rosen, Laura G.; Rodier, Simon G.; Dringenberg, Hans C.

    2016-01-01

    Postnatal sensory experience plays a significant role in the maturation and synaptic stabilization of sensory cortices, such as the primary auditory cortex (A1). Here, we examined the effects of patterned sound deprivation (by rearing in continuous white noise, WN) during early postnatal life on short- and long-term plasticity of adult male rats using an in vivo preparation (urethane anesthesia). Relative to age-matched control animals reared under unaltered sound conditions, rats raised in WN (from postnatal day 5 to 50–60) showed greater levels of long-term potentiation (LTP) of field potentials in A1 induced by theta-burst stimulation (TBS) of the medial geniculate nucleus (MGN). In contrast, analyses of short-term plasticity using paired-pulse stimulation (interstimulus intervals of 25–1000 ms) did not reveal any significant effects of WN rearing. However, LTP induction resulted in a significant enhancement of paired-pulse depression (PPD) for both rearing conditions. We conclude that patterned sound deprivation during early postnatal life results in the maintenance of heightened, juvenile-like long-term plasticity (LTP) into adulthood. Further, the enhanced PPD following LTP induction provides novel evidence that presynaptic mechanisms contribute to thalamocortical LTP in A1 under in vivo conditions. PMID:26881106

  18. Facilitating Task Acquisition through the Use of a Self-Operated Auditory Prompting System.

    ERIC Educational Resources Information Center

    Alberto, Paul A.; And Others

    1986-01-01

    Four moderately to severely mentally retarded adolescents used a cassette player to self-administer auditory prompts in two of three task areas: vocational assembly, use of a washing machine, and food preparation. The procedure included acquisition, faded assistance, and maintenance phases. All four students learned and maintained performance of…

  19. Fatigue Modeling via Mammalian Auditory System for Prediction of Noise Induced Hearing Loss

    PubMed Central

    Sun, Pengfei; Qin, Jun; Campbell, Kathleen

    2015-01-01

    Noise induced hearing loss (NIHL) remains as a severe health problem worldwide. Existing noise metrics and modeling for evaluation of NIHL are limited on prediction of gradually developing NIHL (GDHL) caused by high-level occupational noise. In this study, we proposed two auditory fatigue based models, including equal velocity level (EVL) and complex velocity level (CVL), which combine the high-cycle fatigue theory with the mammalian auditory model, to predict GDHL. The mammalian auditory model is introduced by combining the transfer function of the external-middle ear and the triple-path nonlinear (TRNL) filter to obtain velocities of basilar membrane (BM) in cochlea. The high-cycle fatigue theory is based on the assumption that GDHL can be considered as a process of long-cycle mechanical fatigue failure of organ of Corti. Furthermore, a series of chinchilla experimental data are used to validate the effectiveness of the proposed fatigue models. The regression analysis results show that both proposed fatigue models have high corrections with four hearing loss indices. It indicates that the proposed models can accurately predict hearing loss in chinchilla. Results suggest that the CVL model is more accurate compared to the EVL model on prediction of the auditory risk of exposure to hazardous occupational noise. PMID:26691685

  20. Auditory map plasticity: Diversity in causes and consequences

    PubMed Central

    Schreiner, Christoph E.; Polley, Daniel B.

    2014-01-01

    Auditory cortical maps have been a long-standing focus of studies that assess the expression, mechanisms, and consequences of sensory plasticity. Here we discuss recent progress in understanding how auditory experience transforms spatially organized sound representations at higher levels of the central auditory pathways. New insights into the mechanisms underlying map changes have been achieved and more refined interpretations of various map plasticity effects and their consequences in terms of behavioral corollaries and learning as well as other cognitive aspects have been offered. The systematic organizational principles of cortical sound processing remains a key-aspect in studying and interpreting the role of plasticity in hearing. PMID:24492090

  1. Auditory map plasticity: diversity in causes and consequences.

    PubMed

    Schreiner, Christoph E; Polley, Daniel B

    2014-02-01

    Auditory cortical maps have been a long-standing focus of studies that assess the expression, mechanisms, and consequences of sensory plasticity. Here we discuss recent progress in understanding how auditory experience transforms spatially organized sound representations at higher levels of the central auditory pathways. New insights into the mechanisms underlying map changes have been achieved and more refined interpretations of various map plasticity effects and their consequences in terms of behavioral corollaries and learning as well as other cognitive aspects have been offered. The systematic organizational principles of cortical sound processing remain a key aspect in studying and interpreting the role of plasticity in hearing. PMID:24492090

  2. Psycho-physiological assessment of a prosthetic hand sensory feedback system based on an auditory display: a preliminary study

    PubMed Central

    2012-01-01

    Background Prosthetic hand users have to rely extensively on visual feedback, which seems to lead to a high conscious burden for the users, in order to manipulate their prosthetic devices. Indirect methods (electro-cutaneous, vibrotactile, auditory cues) have been used to convey information from the artificial limb to the amputee, but the usability and advantages of these feedback methods were explored mainly by looking at the performance results, not taking into account measurements of the user’s mental effort, attention, and emotions. The main objective of this study was to explore the feasibility of using psycho-physiological measurements to assess cognitive effort when manipulating a robot hand with and without the usage of a sensory substitution system based on auditory feedback, and how these psycho-physiological recordings relate to temporal and grasping performance in a static setting. Methods 10 male subjects (26+/-years old), participated in this study and were asked to come for 2 consecutive days. On the first day the experiment objective, tasks, and experiment setting was explained. Then, they completed a 30 minutes guided training. On the second day each subject was tested in 3 different modalities: Auditory Feedback only control (AF), Visual Feedback only control (VF), and Audiovisual Feedback control (AVF). For each modality they were asked to perform 10 trials. At the end of each test, the subject had to answer the NASA TLX questionnaire. Also, during the test the subject’s EEG, ECG, electro-dermal activity (EDA), and respiration rate were measured. Results The results show that a higher mental effort is needed when the subjects rely only on their vision, and that this effort seems to be reduced when auditory feedback is added to the human-machine interaction (multimodal feedback). Furthermore, better temporal performance and better grasping performance was obtained in the audiovisual modality. Conclusions The performance improvements when using

  3. Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children.

    PubMed

    Badcock, Nicholas A; Preece, Kathryn A; de Wit, Bianca; Glenn, Katharine; Fieder, Nora; Thie, Johnson; McArthur, Genevieve

    2015-01-01

    Background. Previous work has demonstrated that a commercial gaming electroencephalography (EEG) system, Emotiv EPOC, can be adjusted to provide valid auditory event-related potentials (ERPs) in adults that are comparable to ERPs recorded by a research-grade EEG system, Neuroscan. The aim of the current study was to determine if the same was true for children. Method. An adapted Emotiv EPOC system and Neuroscan system were used to make simultaneous EEG recordings in nineteen 6- to 12-year-old children under "passive" and "active" listening conditions. In the passive condition, children were instructed to watch a silent DVD and ignore 566 standard (1,000 Hz) and 100 deviant (1,200 Hz) tones. In the active condition, they listened to the same stimuli, and were asked to count the number of 'high' (i.e., deviant) tones. Results. Intraclass correlations (ICCs) indicated that the ERP morphology recorded with the two systems was very similar for the P1, N1, P2, N2, and P3 ERP peaks (r = .82 to .95) in both passive and active conditions, and less so, though still strong, for mismatch negativity ERP component (MMN; r = .67 to .74). There were few differences between peak amplitude and latency estimates for the two systems. Conclusions. An adapted EPOC EEG system can be used to index children's late auditory ERP peaks (i.e., P1, N1, P2, N2, P3) and their MMN ERP component. PMID:25922794

  4. Overriding auditory attentional capture.

    PubMed

    Dalton, Polly; Lavie, Nilli

    2007-02-01

    Attentional capture by color singletons during shape search can be eliminated when the target is not a feature singleton (Bacon & Egeth, 1994). This suggests that a "singleton detection" search strategy must be adopted for attentional capture to occur. Here we find similar effects on auditory attentional capture. Irrelevant high-intensity singletons interfered with an auditory search task when the target itself was also a feature singleton. However, singleton interference was eliminated when the target was not a singleton (i.e., when nontargets were made heterogeneous, or when more than one target sound was presented). These results suggest that auditory attentional capture depends on the observer's attentional set, as does visual attentional capture. The suggestion that hearing might act as an early warning system that would always be tuned to unexpected unique stimuli must therefore be modified to accommodate these strategy-dependent capture effects. PMID:17557587

  5. Tonotopic Organization of the Human Auditory Cortex

    NASA Astrophysics Data System (ADS)

    Luca Romani, Gian; Williamson, Samuel J.; Kaufman, Lloyd

    1982-06-01

    Neuromagnetic measurements of responses to auditory stimuli consisting of pure tones amplitude-modulated at a low frequency have been used to deduce the location of cortical activity. The evoked field source systematically increased in depth beneath the scalp with increasing frequency of the tone. The tonotopic progression can be described as a logarithmic mapping.

  6. Areas activated during naturalistic reading comprehension overlap topological visual, auditory, and somatotomotor maps.

    PubMed

    Sood, Mariam R; Sereno, Martin I

    2016-08-01

    Cortical mapping techniques using fMRI have been instrumental in identifying the boundaries of topological (neighbor-preserving) maps in early sensory areas. The presence of topological maps beyond early sensory areas raises the possibility that they might play a significant role in other cognitive systems, and that topological mapping might help to delineate areas involved in higher cognitive processes. In this study, we combine surface-based visual, auditory, and somatomotor mapping methods with a naturalistic reading comprehension task in the same group of subjects to provide a qualitative and quantitative assessment of the cortical overlap between sensory-motor maps in all major sensory modalities, and reading processing regions. Our results suggest that cortical activation during naturalistic reading comprehension overlaps more extensively with topological sensory-motor maps than has been heretofore appreciated. Reading activation in regions adjacent to occipital lobe and inferior parietal lobe almost completely overlaps visual maps, whereas a significant portion of frontal activation for reading in dorsolateral and ventral prefrontal cortex overlaps both visual and auditory maps. Even classical language regions in superior temporal cortex are partially overlapped by topological visual and auditory maps. By contrast, the main overlap with somatomotor maps is restricted to a small region on the anterior bank of the central sulcus near the border between the face and hand representations of M-I. Hum Brain Mapp 37:2784-2810, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27061771

  7. Areas activated during naturalistic reading comprehension overlap topological visual, auditory, and somatotomotor maps

    PubMed Central

    2016-01-01

    Abstract Cortical mapping techniques using fMRI have been instrumental in identifying the boundaries of topological (neighbor‐preserving) maps in early sensory areas. The presence of topological maps beyond early sensory areas raises the possibility that they might play a significant role in other cognitive systems, and that topological mapping might help to delineate areas involved in higher cognitive processes. In this study, we combine surface‐based visual, auditory, and somatomotor mapping methods with a naturalistic reading comprehension task in the same group of subjects to provide a qualitative and quantitative assessment of the cortical overlap between sensory‐motor maps in all major sensory modalities, and reading processing regions. Our results suggest that cortical activation during naturalistic reading comprehension overlaps more extensively with topological sensory‐motor maps than has been heretofore appreciated. Reading activation in regions adjacent to occipital lobe and inferior parietal lobe almost completely overlaps visual maps, whereas a significant portion of frontal activation for reading in dorsolateral and ventral prefrontal cortex overlaps both visual and auditory maps. Even classical language regions in superior temporal cortex are partially overlapped by topological visual and auditory maps. By contrast, the main overlap with somatomotor maps is restricted to a small region on the anterior bank of the central sulcus near the border between the face and hand representations of M‐I. Hum Brain Mapp 37:2784–2810, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27061771

  8. Auditory distraction transmitted by a cochlear implant alters allocation of attentional resources

    PubMed Central

    Finke, Mareike; Sandmann, Pascale; Kopp, Bruno; Lenarz, Thomas; Büchner, Andreas

    2015-01-01

    Cochlear implants (CIs) are auditory prostheses which restore hearing via electrical stimulation of the auditory nerve. The successful adaptation of auditory cognition to the CI input depends to a substantial degree on individual factors. We pursued an electrophysiological approach toward an analysis of cortical responses that reflect perceptual processing stages and higher-level responses to CI input. Performance and event-related potentials on two cross-modal discrimination-following-distraction (DFD) tasks from CI users and normal-hearing (NH) individuals were compared. The visual-auditory distraction task combined visual distraction with following auditory discrimination performance. Here, we observed similar cortical responses to visual distractors (Novelty-N2) and slowed, less accurate auditory discrimination performance in CI users when compared to NH individuals. Conversely, the auditory-visual distraction task was used to combine auditory distraction with visual discrimination performance. In this task we found attenuated cortical responses to auditory distractors (Novelty-P3), slowed visual discrimination performance, and attenuated cortical P3-responses to visual targets in CI users compared to NH individuals. These results suggest that CI users process auditory distractors differently than NH individuals and that the presence of auditory CI input has an adverse effect on the processing of visual targets and the visual discrimination ability in implanted individuals. We propose that this attenuation of the visual modality occurs through the allocation of neural resources to the CI input. PMID:25798083

  9. Auditory distraction transmitted by a cochlear implant alters allocation of attentional resources.

    PubMed

    Finke, Mareike; Sandmann, Pascale; Kopp, Bruno; Lenarz, Thomas; Büchner, Andreas

    2015-01-01

    Cochlear implants (CIs) are auditory prostheses which restore hearing via electrical stimulation of the auditory nerve. The successful adaptation of auditory cognition to the CI input depends to a substantial degree on individual factors. We pursued an electrophysiological approach toward an analysis of cortical responses that reflect perceptual processing stages and higher-level responses to CI input. Performance and event-related potentials on two cross-modal discrimination-following-distraction (DFD) tasks from CI users and normal-hearing (NH) individuals were compared. The visual-auditory distraction task combined visual distraction with following auditory discrimination performance. Here, we observed similar cortical responses to visual distractors (Novelty-N2) and slowed, less accurate auditory discrimination performance in CI users when compared to NH individuals. Conversely, the auditory-visual distraction task was used to combine auditory distraction with visual discrimination performance. In this task we found attenuated cortical responses to auditory distractors (Novelty-P3), slowed visual discrimination performance, and attenuated cortical P3-responses to visual targets in CI users compared to NH individuals. These results suggest that CI users process auditory distractors differently than NH individuals and that the presence of auditory CI input has an adverse effect on the processing of visual targets and the visual discrimination ability in implanted individuals. We propose that this attenuation of the visual modality occurs through the allocation of neural resources to the CI input. PMID:25798083

  10. The effects of speech motor preparation on auditory perception

    NASA Astrophysics Data System (ADS)

    Myers, John

    Perception and action are coupled via bidirectional relationships between sensory and motor systems. Motor systems influence sensory areas by imparting a feedforward influence on sensory processing termed "motor efference copy" (MEC). MEC is suggested to occur in humans because speech preparation and production modulate neural measures of auditory cortical activity. However, it is not known if MEC can affect auditory perception. We tested the hypothesis that during speech preparation auditory thresholds will increase relative to a control condition, and that the increase would be most evident for frequencies that match the upcoming vocal response. Participants performed trials in a speech condition that contained a visual cue indicating a vocal response to prepare (one of two frequencies), followed by a go signal to speak. To determine threshold shifts, voice-matched or -mismatched pure tones were presented at one of three time points between the cue and target. The control condition was the same except the visual cues did not specify a response and subjects did not speak. For each participant, we measured f0 thresholds in isolation from the task in order to establish baselines. Results indicated that auditory thresholds were highest during speech preparation, relative to baselines and a non-speech control condition, especially at suprathreshold levels. Thresholds for tones that matched the frequency of planned responses gradually increased over time, but sharply declined for the mismatched tones shortly before targets. Findings support the hypothesis that MEC influences auditory perception by modulating thresholds during speech preparation, with some specificity relative to the planned response. The threshold increase in tasks vs. baseline may reflect attentional demands of the tasks.

  11. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex

    PubMed Central

    Scott, Gregory D.; Karns, Christina M.; Dow, Mark W.; Stevens, Courtney; Neville, Helen J.

    2014-01-01

    Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl's gyrus. In addition to reorganized auditory cortex (cross-modal plasticity), a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case), as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral vs. perifoveal visual stimulation (11–15° vs. 2–7°) in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl's gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl's gyrus) indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral vs. perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory, and multisensory and/or supramodal regions, such as posterior parietal cortex (PPC), frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal, and multisensory regions, to altered visual processing in congenitally deaf

  12. The autophagy pathway maintained signaling crosstalk with the Keap1-Nrf2 system through p62 in auditory cells under oxidative stress.

    PubMed

    Hayashi, Ken; Dan, Katsuaki; Goto, Fumiyuki; Tshuchihashi, Nana; Nomura, Yasuyuki; Fujioka, Masato; Kanzaki, Sho; Ogawa, Kaoru

    2015-02-01

    The main purposes of our study were to consider the effect of autophagy on auditory cells under oxidative stress, and the function of possible crosstalk among p62, Keap1 and Nrf2 in autophagy-deficient auditory cells. First, we described how cell death was induced in auditory cell line (HEI-OC1) exposed to H2O2. We found that the decision for the cell death of auditory cells under oxidative stress depends on the balance between autophagy and necrosis due to ATP depletion, and autophagy plays a cytoprotective function in oxidative stress-induced necrosis. Our data clearly suggested that autophagy was a cell survival mechanism in H2O2-induced cell death, based on the observation that suppression of autophagy by knockdown of Atg7 sensitized, whereas activation of autophagy by rapamycin protected against H2O2-induced cell death. Next, our results regarding the relationship among p62, Nrf2 and Keap1 by siRNA paradoxically showed that p62 creates a positive feedback loop in the Keap1/Nrf2 pathway. Autophagy impaired by Atg7 knockdown degrades Keap1 in a p62-dependent manner, whereas Nrf2 is activated. As a result, the cell death induced by H2O2 was promoted in auditory cells. Taken together, these results suggested that the autophagy pathway maintained signaling crosstalk with the Keap1-Nrf2 system through p62 in auditory cells under oxidative stress. PMID:25435427

  13. Sensory-motor interactions for vocal pitch monitoring in non-primary human auditory cortex.

    PubMed

    Greenlee, Jeremy D W; Behroozmand, Roozbeh; Larson, Charles R; Jackson, Adam W; Chen, Fangxiang; Hansen, Daniel R; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A

    2013-01-01

    The neural mechanisms underlying processing of auditory feedback during self-vocalization are poorly understood. One technique used to study the role of auditory feedback involves shifting the pitch of the feedback that a speaker receives, known as pitch-shifted feedback. We utilized a pitch shift self-vocalization and playback paradigm to investigate the underlying neural mechanisms of audio-vocal interaction. High-resolution electrocorticography (ECoG) signals were recorded directly from auditory cortex of 10 human subjects while they vocalized and received brief downward (-100 cents) pitch perturbations in their voice auditory feedback (speaking task). ECoG was also recorded when subjects passively listened to playback of their own pitch-shifted vocalizations. Feedback pitch perturbations elicited average evoked potential (AEP) and event-related band power (ERBP) responses, primarily in the high gamma (70-150 Hz) range, in focal areas of non-primary auditory cortex on superior temporal gyrus (STG). The AEPs and high gamma responses were both modulated by speaking compared with playback in a subset of STG contacts. From these contacts, a majority showed significant enhancement of high gamma power and AEP responses during speaking while the remaining contacts showed attenuated response amplitudes. The speaking-induced enhancement effect suggests that engaging the vocal motor system can modulate auditory cortical processing of self-produced sounds in such a way as to increase neural sensitivity for feedback pitch error detection. It is likely that mechanisms such as efference copies may be involved in this process, and modulation of AEP and high gamma responses imply that such modulatory effects may affect different cortical generators within distinctive functional networks that drive voice production and control. PMID:23577157

  14. Sensory-Motor Interactions for Vocal Pitch Monitoring in Non-Primary Human Auditory Cortex

    PubMed Central

    Larson, Charles R.; Jackson, Adam W.; Chen, Fangxiang; Hansen, Daniel R.; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A.

    2013-01-01

    The neural mechanisms underlying processing of auditory feedback during self-vocalization are poorly understood. One technique used to study the role of auditory feedback involves shifting the pitch of the feedback that a speaker receives, known as pitch-shifted feedback. We utilized a pitch shift self-vocalization and playback paradigm to investigate the underlying neural mechanisms of audio-vocal interaction. High-resolution electrocorticography (ECoG) signals were recorded directly from auditory cortex of 10 human subjects while they vocalized and received brief downward (−100 cents) pitch perturbations in their voice auditory feedback (speaking task). ECoG was also recorded when subjects passively listened to playback of their own pitch-shifted vocalizations. Feedback pitch perturbations elicited average evoked potential (AEP) and event-related band power (ERBP) responses, primarily in the high gamma (70–150 Hz) range, in focal areas of non-primary auditory cortex on superior temporal gyrus (STG). The AEPs and high gamma responses were both modulated by speaking compared with playback in a subset of STG contacts. From these contacts, a majority showed significant enhancement of high gamma power and AEP responses during speaking while the remaining contacts showed attenuated response amplitudes. The speaking-induced enhancement effect suggests that engaging the vocal motor system can modulate auditory cortical processing of self-produced sounds in such a way as to increase neural sensitivity for feedback pitch error detection. It is likely that mechanisms such as efference copies may be involved in this process, and modulation of AEP and high gamma responses imply that such modulatory effects may affect different cortical generators within distinctive functional networks that drive voice production and control. PMID:23577157

  15. Anatomical imbalance between cortical networks in autism

    PubMed Central

    Watanabe, Takamitsu; Rees, Geraint

    2016-01-01

    Influential psychological models of autism spectrum disorder (ASD) have proposed that this prevalent developmental disorder results from impairment of global (integrative) information processing and overload of local (sensory) information. However, little neuroanatomical evidence consistent with this account has been reported. Here, we examined relative grey matter volumes (rGMVs) between three cortical networks, how they changed with age, and their relationship with core symptomatology. Using public neuroimaging data of high-functioning ASD males and age-/sex-/IQ-matched controls, we first identified age-associated atypical increases in rGMVs of the regions of two sensory systems (auditory and visual networks), and an age-related aberrant decrease in rGMV of a task-control system (fronto-parietal network, FPN) in ASD children. While the enlarged rGMV of the auditory network in ASD adults was associated with the severity of autistic socio-communicational core symptom, that of the visual network was instead correlated with the severity of restricted and repetitive behaviours in ASD. Notably, the atypically decreased rGMV of FPN predicted both of the two core symptoms. These findings suggest that disproportionate undergrowth of a task-control system (FPN) may be a common anatomical basis for the two ASD core symptoms, and relative overgrowth of the two different sensory systems selectively compounds the distinct symptoms. PMID:27484308

  16. Anatomical imbalance between cortical networks in autism.

    PubMed

    Watanabe, Takamitsu; Rees, Geraint

    2016-01-01

    Influential psychological models of autism spectrum disorder (ASD) have proposed that this prevalent developmental disorder results from impairment of global (integrative) information processing and overload of local (sensory) information. However, little neuroanatomical evidence consistent with this account has been reported. Here, we examined relative grey matter volumes (rGMVs) between three cortical networks, how they changed with age, and their relationship with core symptomatology. Using public neuroimaging data of high-functioning ASD males and age-/sex-/IQ-matched controls, we first identified age-associated atypical increases in rGMVs of the regions of two sensory systems (auditory and visual networks), and an age-related aberrant decrease in rGMV of a task-control system (fronto-parietal network, FPN) in ASD children. While the enlarged rGMV of the auditory network in ASD adults was associated with the severity of autistic socio-communicational core symptom, that of the visual network was instead correlated with the severity of restricted and repetitive behaviours in ASD. Notably, the atypically decreased rGMV of FPN predicted both of the two core symptoms. These findings suggest that disproportionate undergrowth of a task-control system (FPN) may be a common anatomical basis for the two ASD core symptoms, and relative overgrowth of the two different sensory systems selectively compounds the distinct symptoms. PMID:27484308

  17. Interactions across Multiple Stimulus Dimensions in Primary Auditory Cortex.

    PubMed

    Sloas, David C; Zhuo, Ran; Xue, Hongbo; Chambers, Anna R; Kolaczyk, Eric; Polley, Daniel B; Sen, Kamal

    2016-01-01

    Although sensory cortex is thought to be important for the perception of complex objects, its specific role in representing complex stimuli remains unknown. Complex objects are rich in information along multiple stimulus dimensions. The position of cortex in the sensory hierarchy suggests that cortical neurons may integrate across these dimensions to form a more gestalt representation of auditory objects. Yet, studies of cortical neurons typically explore single or few dimensions due to the difficulty of determining optimal stimuli in a high dimensional stimulus space. Evolutionary algorithms (EAs) provide a potentially powerful approach for exploring multidimensional stimulus spaces based on real-time spike feedback, but two important issues arise in their application. First, it is unclear whether it is necessary to characterize cortical responses to multidimensional stimuli or whether it suffices to characterize cortical responses to a single dimension at a time. Second, quantitative methods for analyzing complex multidimensional data from an EA are lacking. Here, we apply a statistical method for nonlinear regression, the generalized additive model (GAM), to address these issues. The GAM quantitatively describes the dependence between neural response and all stimulus dimensions. We find that auditory cortical neurons in mice are sensitive to interactions across dimensions. These interactions are diverse across the population, indicating significant integration across stimulus dimensions in auditory cortex. This result strongly motivates using multidimensional stimuli in auditory cortex. Together, the EA and the GAM provide a novel quantitative paradigm for investigating neural coding of complex multidimensional stimuli in auditory and other sensory cortices. PMID:27622211

  18. Interactions across Multiple Stimulus Dimensions in Primary Auditory Cortex

    PubMed Central

    Zhuo, Ran; Xue, Hongbo; Chambers, Anna R.; Kolaczyk, Eric; Polley, Daniel B.

    2016-01-01

    Although sensory cortex is thought to be important for the perception of complex objects, its specific role in representing complex stimuli remains unknown. Complex objects are rich in information along multiple stimulus dimensions. The position of cortex in the sensory hierarchy suggests that cortical neurons may integrate across these dimensions to form a more gestalt representation of auditory objects. Yet, studies of cortical neurons typically explore single or few dimensions due to the difficulty of determining optimal stimuli in a high dimensional stimulus space. Evolutionary algorithms (EAs) provide a potentially powerful approach for exploring multidimensional stimulus spaces based on real-time spike feedback, but two important issues arise in their application. First, it is unclear whether it is necessary to characterize cortical responses to multidimensional stimuli or whether it suffices to characterize cortical responses to a single dimension at a time. Second, quantitative methods for analyzing complex multidimensional data from an EA are lacking. Here, we apply a statistical method for nonlinear regression, the generalized additive model (GAM), to address these issues. The GAM quantitatively describes the dependence between neural response and all stimulus dimensions. We find that auditory cortical neurons in mice are sensitive to interactions across dimensions. These interactions are diverse across the population, indicating significant integration across stimulus dimensions in auditory cortex. This result strongly motivates using multidimensional stimuli in auditory cortex. Together, the EA and the GAM provide a novel quantitative paradigm for investigating neural coding of complex multidimensional stimuli in auditory and other sensory cortices. PMID:27622211

  19. Quantification of dendritic and axonal growth after injury to the auditory system of the adult cricket Gryllus bimaculatus

    PubMed Central

    Pfister, Alexandra; Johnson, Amy; Ellers, Olaf; Horch, Hadley W.

    2013-01-01

    Dendrite and axon growth and branching during development are regulated by a complex set of intracellular and external signals. However, the cues that maintain or influence adult neuronal morphology are less well understood. Injury and deafferentation tend to have negative effects on adult nervous systems. An interesting example of injury-induced compensatory growth is seen in the cricket, Gryllus bimaculatus. After unilateral loss of an ear in the adult cricket, auditory neurons within the central nervous system (CNS) sprout to compensate for the injury. Specifically, after being deafferented, ascending neurons (AN-1 and AN-2) send dendrites across the midline of the prothoracic ganglion where they receive input from auditory afferents that project through the contralateral auditory nerve (N5). Deafferentation also triggers contralateral N5 axonal growth. In this study, we quantified AN dendritic and N5 axonal growth at 30 h, as well as at 3, 5, 7, 14, and 20 days after deafferentation in adult crickets. Significant differences in the rates of dendritic growth between males and females were noted. In females, dendritic growth rates were non-linear; a rapid burst of dendritic extension in the first few days was followed by a plateau reached at 3 days after deafferentation. In males, however, dendritic growth rates were linear, with dendrites growing steadily over time and reaching lengths, on average, twice as long as in females. On the other hand, rates of N5 axonal growth showed no significant sexual dimorphism and were linear. Within each animal, the growth rates of dendrites and axons were not correlated, indicating that independent factors likely influence dendritic and axonal growth in response to injury in this system. Our findings provide a basis for future study of the cellular features that allow differing dendrite and axon growth patterns as well as sexually dimorphic dendritic growth in response to deafferentation. PMID:23986706

  20. Brain systems for encoding and retrieval of auditory-verbal memory. An in vivo study in humans.

    PubMed

    Fletcher, P C; Frith, C D; Grasby, P M; Shallice, T; Frackowiak, R S; Dolan, R J

    1995-04-01

    Long-term auditory-verbal memory comprises, at a neuropsychological level, a number of distinct cognitive processes. In the present study we determined the brain systems engaged during encoding (experiment 1) and retrieval (experiment 2) of episodic auditory-verbal material. In the separate experiments, PET measurements of regional cerebral blood flow (rCBF), an index of neural activity, were performed in normal volunteers during either the encoding or the retrieval of paired word associates. In experiment 1, a dual task interference paradigm was used to isolate areas involved in episodic encoding from those which would be concurrently activated by other cognitive processes associated with the presentation of paired associates, notably priming. In experiment 2, we used the cued retrieval of paired associates from episodic or from semantic memory in order to isolate the neural correlates of episodic memories. Encoding of episodic memory was associated with activation of the left prefrontal cortex and the retrosplenial area of the cingulate cortex, while retrieval from episodic memory was associated with activation of the precuneus bilaterally and of the right prefrontal cortex. These results are compatible with the patterns of activation reported in a previous PET memory experiment in which encoding and retrieval were studied concurrently. They also indicate that separate brain systems are engaged during the encoding and retrieval phases of episodic auditory-verbal memory. Retrieval from episodic memory engages a different, but overlapping, system to that engaged by retrieval from semantic memory, a finding that lends functional anatomical support to this neuropsychological distinction. PMID:7735882

  1. Visual task enhances spatial selectivity in the human auditory cortex.

    PubMed

    Salminen, Nelli H; Aho, Joanna; Sams, Mikko

    2013-01-01

    The auditory cortex represents spatial locations differently from other sensory modalities. While visual and tactile cortices utilize topographical space maps, for audition no such cortical map has been found. Instead, auditory cortical neurons have wide spatial receptive fields and together they form a population rate code of sound source location. Recent studies have shown that this code is modulated by task conditions so that during auditory tasks it provides better selectivity to sound source location than during idle listening. The goal of this study was to establish whether the neural representation of auditory space can also be influenced by task conditions involving other sensory modalities than hearing. Therefore, we conducted magnetoencephalography (MEG) recordings in which auditory spatial selectivity of the human cortex was probed with an adaptation paradigm while subjects performed a visual task. Engaging in the task led to an increase in neural selectivity to sound source location compared to when no task was performed. This suggests that an enhancement in the population rate code of auditory space took place during task performance. This enhancement in auditory spatial selectivity was independent of the direction of visual orientation. Together with previous studies, these findings suggest that performing any demanding task, even one in which sounds and their source locations are irrelevant, can lead to enhancements in the neural representation of auditory space. Such mechanisms may have great survival value as sounds are capable of producing location information on potentially relevant events in all directions and over long distances. PMID:23543781

  2. Central recruitment in individual with auditory neuropathy.

    PubMed

    Sahu, Preeti; Mishra, Rajkishor; Mahallik, Debadatta; Ansari, Imran; Mungutwar, Varsha

    2014-12-01

    Auditory neuropathy (AN) describes patients with dysfunction of the auditory nerve in the presence of preserved cochlear outer hair-cell receptor functions in presence of normal otoacoustic emissions and/or cochlear microphonics. In individuals with auditory neuropathy speech are disproportionate to their hearing sensitivity and reported to be dependent on cortical evoked potentials. In individuals with AN, who have normal cortical potentials have better speech identification scores when compared to those with abnormal cortical potentials reflect relation between the cortical potentials and the speech identification scores. One group comparison research design was used for present study. The purpose of the study was to compare shift in latency of LLR peaks at different sensation level in subjects with auditory neuropathy and age matched normal individuals. 6 subjects (11 ears) diagnosed as having auditory neuropathy and 6 subjects (12 ears) with normal hearing Sensitivity participated for the study. Pure tone audiometry, immittance, reflexometry and otoacoustic emissions were administered. ABR was recorded for all the subjects at a repetition rate of 11.1 at an intensity of 90 dB nHL. LLR was carried out at different intensity levels for/da/speech stimulus at an intensity of 90 dB nHL. Latency of N1 and P2 of LLR was calculated at different sensation levels for both the groups. Descriptive analysis was carried out to find out the mean and standard deviation for latency of N1 and P2 for both, AN and normal hearing group. There was delay in latency of N1 and P2 for individuals with auditory neuropathy. PMID:26396961

  3. Electrophysiological correlates of auditory change detection and change deafness in complex auditory scenes.

    PubMed

    Puschmann, Sebastian; Sandmann, Pascale; Ahrens, Janina; Thorne, Jeremy; Weerda, Riklef; Klump, Georg; Debener, Stefan; Thiel, Christiane M

    2013-07-15

    Change deafness describes the failure to perceive even intense changes within complex auditory input, if the listener does not attend to the changing sound. Remarkably, previous psychophysical data provide evidence that this effect occurs independently of successful stimulus encoding, indicating that undetected changes are processed to some extent in auditory cortex. Here we investigated cortical representations of detected and undetected auditory changes using electroencephalographic (EEG) recordings and a change deafness paradigm. We applied a one-shot change detection task, in which participants listened successively to three complex auditory scenes, each of them consisting of six simultaneously presented auditory streams. Listeners had to decide whether all scenes were identical or whether the pitch of one stream was changed between the last two presentations. Our data show significantly increased middle-latency Nb responses for both detected and undetected changes as compared to no-change trials. In contrast, only successfully detected changes were associated with a later mismatch response in auditory cortex, followed by increased N2, P3a and P3b responses, originating from hierarchically higher non-sensory brain regions. These results strengthen the view that undetected changes are successfully encoded at sensory level in auditory cortex, but fail to trigger later change-related cortical responses that lead to conscious perception of change. PMID:23466938

  4. Local versus global scales of organization in auditory cortex.

    PubMed

    Kanold, Patrick O; Nelken, Israel; Polley, Daniel B

    2014-09-01

    Topographic organization is a hallmark of sensory cortical organization. Topography is robust at spatial scales ranging from hundreds of microns to centimeters, but can dissolve at the level of neighboring neurons or subcellular compartments within a neuron. This dichotomous spatial organization is especially pronounced in the mouse auditory cortex, where an orderly tonotopic map can arise from heterogeneous frequency tuning between local neurons. Here, we address a debate surrounding the robustness of tonotopic organization in the auditory cortex that has persisted in some form for over 40 years. Drawing from various cortical areas, cortical layers, recording methodologies, and species, we describe how auditory cortical circuitry can simultaneously support a globally systematic, yet locally heterogeneous representation of this fundamental sound property. PMID:25002236

  5. Local versus global scales of organization in auditory cortex

    PubMed Central

    Kanold, Patrick O.; Nelken, Israel; Polley, Daniel B.

    2014-01-01

    Topographic organization is a hallmark of sensory cortical organization. Topography is robust at spatial scales ranging from hundreds of microns to centimeters, but can dissolve at the level of neighboring neurons or subcellular compartments within a neuron. This dichotomous spatial organization is especially pronounced in the mouse auditory cortex, where an orderly tonotopic map can arise from heterogeneous frequency tuning between local neurons. Here, we address a debate surrounding the robustness of tonotopic organization in the auditory cortex that has persisted in some form for over forty years. Drawing from various cortical areas, cortical layers, recording methodologies, and species, we describe how auditory cortical circuitry can simultaneously support a globally systematic, yet locally heterogeneous representation of this fundamental sound property. PMID:25002236

  6. The Hyperactivity of Efferent Auditory System in Patients with Schizophrenia: A Transient Evoked Otoacoustic Emissions Study

    PubMed Central

    Wahab, Suzaily; Abdul Rahman, Abdul Hamid; Sidek, Dinsuhaimi; Zakaria, Mohd. Normani

    2016-01-01

    Objective Electrophysiological studies, which are mostly focused on afferent pathway, have proven that auditory processing deficits exist in patients with schizophrenia. Nevertheless, reports on the suppressive effect of efferent auditory pathway on cochlear outer hair cells among schizophrenia patients are limited. The present, case-control, study examined the contralateral suppression of transient evoked otoacoustic emissions (TEOAEs) in patients with schizophrenia. Methods Participants were twenty-three healthy controls and sixteen schizophrenia patients with normal hearing, middle ear and cochlear outer hair cells function. Absolute non-linear and linear TEOAEs were measured in both ears by delivering clicks stimuli at 80 dB SPL and 60 dB SPL respectively. Subsequently, contralateral suppression was determined by subtracting the absolute TEOAEs response obtained at 60 dBpe SPL during the absence and presence of contralateral white noise delivered at 65 dB HL. No attention tasks were conducted during measurements. Results We found no significant difference in absolute TEOAEs responses at 80 dB SPL, in either diagnosis or ear groups (p>0.05). However, the overall contralateral suppression was significantly larger in schizophrenia patients (p<0.05). Specifically, patients with schizophrenia demonstrated significantly increased right ear contralateral suppression compared to healthy control (p<0.05). Conclusion The present findings suggest increased inhibitory effect of efferent auditory pathway especially on the right cochlear outer hair cells. Further studies to investigate increased suppressive effects are crucial to expand the current understanding of auditory hallucination mechanisms in schizophrenia patients. PMID:26766950

  7. Echo detection and target-ranging neurons in the auditory system of the bat Eptesicus fuscus.

    PubMed

    Feng, A S; Simmons, J A; Kick, S A

    1978-11-10

    Some of the neurons in the nucleus intercollicularis and auditory cortex of the echolocating bat Eptesicus fuscus respond selectively to sonar echoes occurring with specific echo delays or pulse-echo intervals. They do not respond for a wide range of other types of sounds or for sonar echoes at longer or shorter pulse-echo intervals; they may, therefore, be specialized for detection and ranging of sonar targets. PMID:705350

  8. How can the auditory efferent system protect our ears from noise-induced hearing loss? Let us count the ways

    NASA Astrophysics Data System (ADS)

    Marshall, Lynne; Miller, Judi A. Lapsley

    2015-12-01

    It is a cause for some debate as to how the auditory olivocochlear (OC) efferent system could protect hearing from noise trauma. In this review, we examined physiological research to find mechanisms that could effectively attenuate the response to sound. For each purported mechanism, we indicate which part of the OC-efferent system is responsible for the function and the site of action. These mechanisms include basilar-membrane phase shifts at high stimulus levels; changes in outer-hair-cell stiffness and phase lag associated with efferent slow effects; small decreases in endocochlear potentials causing small decreases in outer- and inner-hair-cell output; low-spontaneous-rate and medium-spontaneous-rate fibers showing OC-induced decrements at high levels; auditory-nerve initial-peak reduction; OC effect increasing over minutes; cholinergic activation of anti-apoptotic pathways; and anti-excitotoxicity. There are clearly multiple opportunities for the OC-efferent system to protect the inner ear from noise trauma. From further exploration into the mechanisms outlined here, as well as to-be-discovered mechanisms, we will gain a greater understanding of the protective nature of the OC-efferent system. These findings could aid our ability to design better predictive tests for people at risk for noise-induced hearing loss.

  9. Seasonal plasticity of precise spike timing in the avian auditory system.

    PubMed

    Caras, Melissa L; Sen, Kamal; Rubel, Edwin W; Brenowitz, Eliot A

    2015-02-25

    Vertebrate audition is a dynamic process, capable of exhibiting both short- and long-term adaptations to varying listening conditions. Precise spike timing has long been known to play an important role in auditory encoding, but its role in sensory plasticity remains largely unexplored. We addressed this issue in Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii), a songbird that shows pronounced seasonal fluctuations in circulating levels of sex-steroid hormones, which are known to be potent neuromodulators of auditory function. We recorded extracellular single-unit activity in the auditory forebrain of males and females under different breeding conditions and used a computational approach to explore two potential strategies for the neural discrimination of sound level: one based on spike counts and one based on spike timing reliability. We report that breeding condition has robust sex-specific effects on spike timing. Specifically, in females, breeding condition increases the proportion of cells that rely solely on spike timing information and increases the temporal resolution required for optimal intensity encoding. Furthermore, in a functionally distinct subset of cells that are particularly well suited for amplitude encoding, female breeding condition enhances spike timing-based discrimination accuracy. No effects of breeding condition were observed in males. Our results suggest that high-resolution temporal discharge patterns may provide a plastic neural substrate for sensory coding. PMID:25716843

  10. Seasonal Plasticity of Precise Spike Timing in the Avian Auditory System

    PubMed Central

    Sen, Kamal; Rubel, Edwin W; Brenowitz, Eliot A.

    2015-01-01

    Vertebrate audition is a dynamic process, capable of exhibiting both short- and long-term adaptations to varying listening conditions. Precise spike timing has long been known to play an important role in auditory encoding, but its role in sensory plasticity remains largely unexplored. We addressed this issue in Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii), a songbird that shows pronounced seasonal fluctuations in circulating levels of sex-steroid hormones, which are known to be potent neuromodulators of auditory function. We recorded extracellular single-unit activity in the auditory forebrain of males and females under different breeding conditions and used a computational approach to explore two potential strategies for the neural discrimination of sound level: one based on spike counts and one based on spike timing reliability. We report that breeding condition has robust sex-specific effects on spike timing. Specifically, in females, breeding condition increases the proportion of cells that rely solely on spike timing information and increases the temporal resolution required for optimal intensity encoding. Furthermore, in a functionally distinct subset of cells that are particularly well suited for amplitude encoding, female breeding condition enhances spike timing-based discrimination accuracy. No effects of breeding condition were observed in males. Our results suggest that high-resolution temporal discharge patterns may provide a plastic neural substrate for sensory coding. PMID:25716843

  11. Auditory-prefrontal axonal connectivity in the macaque cortex: quantitative assessment of processing streams.

    PubMed

    Bezgin, Gleb; Rybacki, Konrad; van Opstal, A John; Bakker, Rembrandt; Shen, Kelly; Vakorin, Vasily A; McIntosh, Anthony R; Kötter, Rolf

    2014-08-01

    Primate sensory systems subserve complex neurocomputational functions. Consequently, these systems are organised anatomically in a distributed fashion, commonly linking areas to form specialised processing streams. Each stream is related to a specific function, as evidenced from studies of the visual cortex, which features rather prominent segregation into spatial and non-spatial domains. It has been hypothesised that other sensory systems, including auditory, are organised in a similar way on the cortical level. Recent studies offer rich qualitative evidence for the dual stream hypothesis. Here we provide a new paradigm to quantitatively uncover these patterns in the auditory system, based on an analysis of multiple anatomical studies using multivariate techniques. As a test case, we also apply our assessment techniques to more ubiquitously-explored visual system. Importantly, the introduced framework opens the possibility for these techniques to be applied to other neural systems featuring a dichotomised organisation, such as language or music perception. PMID:24980416

  12. [Influence of cortical neurotrophic factors on the neurocytokine production system in acute hemorrhagic stroke].

    PubMed

    Kul'chikov, A E; Kositsyn, N S; Svinov, M M; Vasil'eva, I G; Makarenko, A N

    2009-01-01

    The mechanism of therapeutic action of cortical neurotropic factors (CNTF) was studied in hemorrhagic stroke. In intracerebral hemorrhage, CNTFs were shown to elevate the level of nerve growth factor mRNA and at the same time, produce no effect on its level in intact animals. The neuroactivating action of CNTF in the acute phase of hemorrhagic stroke was achieved by intranasal administration due to the retrograde axon transport of CNTF molecules along the olfactory nerve fibers to the brain, by passing the blood-brain barrier. It was ascertained that the molecules of tritium-labeled CHTF accumulated in the central nervous system following 20 minutes and the level of label accumulation is proportionally increased after 120 minutes. The pattern of accumulation of the intranasally administered label in the olfactory tract and olfactory bulb proves CNTF transportation along these structures of the nervous system. Therefore, when intranasally administered, CNTFs are able to transport to the central nervous system along the olfactory tract and to enhance the expression of nerve growth factor mRNA in hemorrhagic stroke. PMID:19919011

  13. Strain differences of the effect of enucleation and anophthalmia on the size and growth of sensory cortices in mice.

    PubMed

    Massé, Ian O; Guillemette, Sonia; Laramée, Marie-Eve; Bronchti, Gilles; Boire, Denis

    2014-11-01

    Anophthalmia is a condition in which the eye does not develop from the early embryonic period. Early blindness induces cross-modal plastic modifications in the brain such as auditory and haptic activations of the visual cortex and also leads to a greater solicitation of the somatosensory and auditory cortices. The visual cortex is activated by auditory stimuli in anophthalmic mice and activity is known to alter the growth pattern of the cerebral cortex. The size of the primary visual, auditory and somatosensory cortices and of the corresponding specific sensory thalamic nuclei were measured in intact and enucleated C57Bl/6J mice and in ZRDCT anophthalmic mice (ZRDCT/An) to evaluate the contribution of cross-modal activity on the growth of the cerebral cortex. In addition, the size of these structures were compared in intact, enucleated and anophthalmic fourth generation backcrossed hybrid C57Bl/6J×ZRDCT/An mice to parse out the effects of mouse strains and of the different visual deprivations. The visual cortex was smaller in the anophthalmic ZRDCT/An than in the intact and enucleated C57Bl/6J mice. Also the auditory cortex was larger and the somatosensory cortex smaller in the ZRDCT/An than in the intact and enucleated C57Bl/6J mice. The size differences of sensory cortices between the enucleated and anophthalmic mice were no longer present in the hybrid mice, showing specific genetic differences between C57Bl/6J and ZRDCT mice. The post natal size increase of the visual cortex was less in the enucleated than in the anophthalmic and intact hybrid mice. This suggests differences in the activity of the visual cortex between enucleated and anophthalmic mice and that early in-utero spontaneous neural activity in the visual system contributes to the shaping of functional properties of cortical networks. PMID:25242615

  14. Long-term modification of cortical synapses improves sensory perception

    PubMed Central

    Froemke, Robert C.; Carcea, Ioana; Barker, Alison J.; Yuan, Kexin; Seybold, Bryan; Martins, Ana Raquel O.; Zaika, Natalya; Bernstein, Hannah; Wachs, Megan; Levis, Philip A.; Polley, Daniel B.; Merzenich, Michael M.; Schreiner, Christoph E.

    2013-01-01

    Synapses and receptive fields of the cerebral cortex are plastic. However, changes to specific inputs must be coordinated within neural networks to ensure that excitability and feature selectivity are appropriately configured for perception of the sensory environment. Long-lasting enhancements and decrements to rat primary auditory cortical excitatory synaptic strength were induced by pairing acoustic stimuli with activation of the nucleus basalis neuromodulatory system. Here we report that these synaptic modifications were approximately balanced across individual receptive fields, conserving mean excitation while reducing overall response variability. Decreased response variability should increase detection and recognition of near-threshold or previously imperceptible stimuli, as we found in behaving animals. Thus, modification of cortical inputs leads to wide-scale synaptic changes, which are related to improved sensory perception and enhanced behavioral performance. PMID:23178974

  15. Acute systemic LPS-mediated inflammation induces lasting changes in mouse cortical neuromodulation and behavior.

    PubMed

    Ming, Z; Sawicki, G; Bekar, L K

    2015-03-17

    Systemic lipopolysaccharide (LPS) is widely used to induce a neuroinflammatory response that is associated with short-term 'sickness'-behavior that can include fever, loss of activity, loss of appetite, impaired cognition, anxiety and depression. If large enough or left unchecked, this neuroinflammatory response can become self-perpetuating and lead to long-term neurodegenerative processes. In this study, we assess the longer-term effects of a single systemic LPS injection on electrophysiological neuromodulator effects and basic behavioral analysis in mice. Five months after LPS injection, we find a mild reduction in cortical inhibition and altered temporal dynamics of acetylcholine but not norepinephrine or serotonin neuromodulator effects. Consistent with electrophysiological findings, LPS treated mice showed a deficit in memory performance in the novel object recognition test with no effect on measures of anxiety or despair as measured in the open field test and tail suspension test, respectively. Furthermore, LPS-treated mice showed an increase in acetylcholinesterase activity. As increased acetylcholinesterase activity is associated with reduced acetylcholine signaling and impaired cognitive ability, these studies demonstrate the potential for a single inflammatory event to initiate processes that may lead to long-term neurodegeneration. PMID:25650524

  16. A system for recording neural activity chronically and simultaneously from multiple cortical and subcortical regions in nonhuman primates.

    PubMed

    Feingold, Joseph; Desrochers, Theresa M; Fujii, Naotaka; Harlan, Ray; Tierney, Patrick L; Shimazu, Hideki; Amemori, Ken-Ichi; Graybiel, Ann M

    2012-04-01

    A major goal of neuroscience is to understand the functions of networks of neurons in cognition and behavior. Recent work has focused on implanting arrays of ∼100 immovable electrodes or smaller numbers of individually adjustable electrodes, designed to target a few cortical areas. We have developed a recording system that allows the independent movement of hundreds of electrodes chronically implanted in several cortical and subcortical structures. We have tested this system in macaque monkeys, recording simultaneously from up to 127 electrodes in 14 brain regions for up to one year at a time. A key advantage of the system is that it can be used to sample different combinations of sites over prolonged periods, generating multiple snapshots of network activity from a single implant. Used in conjunction with microstimulation and injection methods, this versatile system represents a powerful tool for studying neural network activity in the primate brain. PMID:22170970

  17. A system for recording neural activity chronically and simultaneously from multiple cortical and subcortical regions in nonhuman primates

    PubMed Central

    Feingold, Joseph; Desrochers, Theresa M.; Fujii, Naotaka; Harlan, Ray; Tierney, Patrick L.; Shimazu, Hideki; Amemori, Ken-ichi

    2012-01-01

    A major goal of neuroscience is to understand the functions of networks of neurons in cognition and behavior. Recent work has focused on implanting arrays of ∼100 immovable electrodes or smaller numbers of individually adjustable electrodes, designed to target a few cortical areas. We have developed a recording system that allows the independent movement of hundreds of electrodes chronically implanted in several cortical and subcortical structures. We have tested this system in macaque monkeys, recording simultaneously from up to 127 electrodes in 14 brain regions for up to one year at a time. A key advantage of the system is that it can be used to sample different combinations of sites over prolonged periods, generating multiple snapshots of network activity from a single implant. Used in conjunction with microstimulation and injection methods, this versatile system represents a powerful tool for studying neural network activity in the primate brain. PMID:22170970

  18. Early auditory enrichment with music enhances auditory discrimination learning and alters NR2B protein expression in rat auditory cortex.

    PubMed

    Xu, Jinghong; Yu, Liping; Cai, Rui; Zhang, Jiping; Sun, Xinde

    2009-01-01

    Previous studies have shown that the functional development of auditory system is substantially influenced by the structure of environmental acoustic inputs in early life. In our present study, we investigated the effects of early auditory enrichment with music on rat auditory discrimination learning. We found that early auditory enrichment with music from postnatal day (PND) 14 enhanced learning ability in auditory signal-detection task and in sound duration-discrimination task. In parallel, a significant increase was noted in NMDA receptor subunit NR2B protein expression in the auditory cortex. Furthermore, we found that auditory enrichment with music starting from PND 28 or 56 did not influence NR2B expression in the auditory cortex. No difference was found in the NR2B expression in the inferior colliculus (IC) between music-exposed and normal rats, regardless of when the auditory enrichment with music was initiated. Our findings suggest that early auditory enrichment with music influences NMDA-mediated neural plasticity, which results in enhanced auditory discrimination learning. PMID:18706452

  19. A software module for implementing auditory and visual feedback on a video-based eye tracking system

    NASA Astrophysics Data System (ADS)

    Rosanlall, Bharat; Gertner, Izidor; Geri, George A.; Arrington, Karl F.

    2016-05-01

    We describe here the design and implementation of a software module that provides both auditory and visual feedback of the eye position measured by a commercially available eye tracking system. The present audio-visual feedback module (AVFM) serves as an extension to the Arrington Research ViewPoint EyeTracker, but it can be easily modified for use with other similar systems. Two modes of audio feedback and one mode of visual feedback are provided in reference to a circular area-of-interest (AOI). Auditory feedback can be either a click tone emitted when the user's gaze point enters or leaves the AOI, or a sinusoidal waveform with frequency inversely proportional to the distance from the gaze point to the center of the AOI. Visual feedback is in the form of a small circular light patch that is presented whenever the gaze-point is within the AOI. The AVFM processes data that are sent to a dynamic-link library by the EyeTracker. The AVFM's multithreaded implementation also allows real-time data collection (1 kHz sampling rate) and graphics processing that allow display of the current/past gaze-points as well as the AOI. The feedback provided by the AVFM described here has applications in military target acquisition and personnel training, as well as in visual experimentation, clinical research, marketing research, and sports training.

  20. Temporal Lobe Epilepsy Alters Auditory-motor Integration For Voice Control

    PubMed Central

    Li, Weifeng; Chen, Ziyi; Yan, Nan; Jones, Jeffery A.; Guo, Zhiqiang; Huang, Xiyan; Chen, Shaozhen; Liu, Peng; Liu, Hanjun

    2016-01-01

    Temporal lobe epilepsy (TLE) is the most common drug-refractory focal epilepsy in adults. Previous research has shown that patients with TLE exhibit decreased performance in listening to speech sounds and deficits in the cortical processing of auditory information. Whether TLE compromises auditory-motor integration for voice control, however, remains largely unknown. To address this question, event-related potentials (ERPs) and vocal responses to vocal pitch errors (1/2 or 2 semitones upward) heard in auditory feedback were compared across 28 patients with TLE and 28 healthy controls. Patients with TLE produced significantly larger vocal responses but smaller P2 responses than healthy controls. Moreover, patients with TLE exhibited a positive correlation between vocal response magnitude and baseline voice variability and a negative correlation between P2 amplitude and disease duration. Graphical network analyses revealed a disrupted neuronal network for patients with TLE with a significant increase of clustering coefficients and path lengths as compared to healthy controls. These findings provide strong evidence that TLE is associated with an atypical integration of the auditory and motor systems for vocal pitch regulation, and that the functional networks that support the auditory-motor processing of pitch feedback errors differ between patients with TLE and healthy controls. PMID:27356768

  1. Temporal Lobe Epilepsy Alters Auditory-motor Integration For Voice Control.

    PubMed

    Li, Weifeng; Chen, Ziyi; Yan, Nan; Jones, Jeffery A; Guo, Zhiqiang; Huang, Xiyan; Chen, Shaozhen; Liu, Peng; Liu, Hanjun

    2016-01-01

    Temporal lobe epilepsy (TLE) is the most common drug-refractory focal epilepsy in adults. Previous research has shown that patients with TLE exhibit decreased performance in listening to speech sounds and deficits in the cortical processing of auditory information. Whether TLE compromises auditory-motor integration for voice control, however, remains largely unknown. To address this question, event-related potentials (ERPs) and vocal responses to vocal pitch errors (1/2 or 2 semitones upward) heard in auditory feedback were compared across 28 patients with TLE and 28 healthy controls. Patients with TLE produced significantly larger vocal responses but smaller P2 responses than healthy controls. Moreover, patients with TLE exhibited a positive correlation between vocal response magnitude and baseline voice variability and a negative correlation between P2 amplitude and disease duration. Graphical network analyses revealed a disrupted neuronal network for patients with TLE with a significant increase of clustering coefficients and path lengths as compared to healthy controls. These findings provide strong evidence that TLE is associated with an atypical integration of the auditory and motor systems for vocal pitch regulation, and that the functional networks that support the auditory-motor processing of pitch feedback errors differ between patients with TLE and healthy controls. PMID:27356768

  2. Feature- and object-based attentional modulation in the human auditory "where" pathway.

    PubMed

    Krumbholz, Katrin; Eickhoff, Simon B; Fink, Gereon R

    2007-10-01

    Attending to a visual stimulus feature, such as color or motion, enhances the processing of that feature in the visual cortex. Moreover, the processing of the attended object's other, unattended, features is also enhanced. Here, we used functional magnetic resonance imaging to show that attentional modulation in the auditory system may also exhibit such feature- and object-specific effects. Specifically, we found that attending to auditory motion increases activity in nonprimary motion-sensitive areas of the auditory cortical "where" pathway. Moreover, activity in these motion-sensitive areas was also increased when attention was directed to a moving rather than a stationary sound object, even when motion was not the attended feature. An analysis of effective connectivity revealed that the motion-specific attentional modulation was brought about by an increase in connectivity between the primary auditory cortex and nonprimary motion-sensitive areas, which, in turn, may have been mediated by the paracingulate cortex in the frontal lobe. The current results indicate that auditory attention can select both objects and features. The finding of feature-based attentional modulation implies that attending to one feature of a sound object does not necessarily entail an exhaustive processing of the object's unattended features. PMID:18271742

  3. McGurk illusion recalibrates subsequent auditory perception.

    PubMed

    Lüttke, Claudia S; Ekman, Matthias; van Gerven, Marcel A J; de Lange, Floris P

    2016-01-01

    Visual information can alter auditory perception. This is clearly illustrated by the well-known McGurk illusion, where an auditory/aba/ and a visual /aga/ are merged to the percept of 'ada'. It is less clear however whether such a change in perception may recalibrate subsequent perception. Here we asked whether the altered auditory perception due to the McGurk illusion affects subsequent auditory perception, i.e. whether this process of fusion may cause a recalibration of the auditory boundaries between phonemes. Participants categorized auditory and audiovisual speech stimuli as /aba/, /ada/ or /aga/ while activity patterns in their auditory cortices were recorded using fMRI. Interestingly, following a McGurk illusion, an auditory /aba/ was more often misperceived as 'ada'. Furthermore, we observed a neural counterpart of this recalibration in the early auditory cortex. When the auditory input /aba/ was perceived as 'ada', activity patterns bore stronger resemblance to activity patterns elicited by /ada/ sounds than when they were correctly perceived as /aba/. Our results suggest that upon experiencing the McGurk illusion, the brain shifts the neural representation of an /aba/ sound towards /ada/, culminating in a recalibration in perception of subsequent auditory input. PMID:27611960

  4. McGurk illusion recalibrates subsequent auditory perception

    PubMed Central

    Lüttke, Claudia S.; Ekman, Matthias; van Gerven, Marcel A. J.; de Lange, Floris P.

    2016-01-01

    Visual information can alter auditory perception. This is clearly illustrated by the well-known McGurk illusion, where an auditory/aba/ and a visual /aga/ are merged to the percept of ‘ada’. It is less clear however whether such a change in perception may recalibrate subsequent perception. Here we asked whether the altered auditory perception due to the McGurk illusion affects subsequent auditory perception, i.e. whether this process of fusion may cause a recalibration of the auditory boundaries between phonemes. Participants categorized auditory and audiovisual speech stimuli as /aba/, /ada/ or /aga/ while activity patterns in their auditory cortices were recorded using fMRI. Interestingly, following a McGurk illusion, an auditory /aba/ was more often misperceived as ‘ada’. Furthermore, we observed a neural counterpart of this recalibration in the early auditory cortex. When the auditory input /aba/ was perceived as ‘ada’, activity patterns bore stronger resemblance to activity patterns elicited by /ada/ sounds than when they were correctly perceived as /aba/. Our results suggest that upon experiencing the McGurk illusion, the brain shifts the neural representation of an /aba/ sound towards /ada/, culminating in a recalibration in perception of subsequent auditory input. PMID:27611960

  5. Cortical Memory Mechanisms and Language Origins

    ERIC Educational Resources Information Center

    Aboitiz, Francisco; Garcia, Ricardo R.; Bosman, Conrado; Brunetti, Enzo

    2006-01-01

    We have previously proposed that cortical auditory-vocal networks of the monkey brain can be partly homologized with language networks that participate in the phonological loop. In this paper, we suggest that other linguistic phenomena like semantic and syntactic processing also rely on the activation of transient memory networks, which can be…

  6. Cortical correlates of acquired deafness to dissonance.

    PubMed

    Brattico, Elvira; Tervaniemi, Mari; Valimaki, Vesa; Van Zuijen, Titia; Peretz, Isabelle

    2003-11-01

    Patient I.R., who had bilateral lesions in the auditory cortex but intact hearing, did not distinguish dissonant from consonant musical excerpts in behavioral testing. We additionally found that the electrical brain responses did not differentiate musical intervals in terms of their dissonance/consonance, consistent with the idea that this phenomenon depends on the integrity of cortical functions. PMID:14681131

  7. Incidental Auditory Category Learning

    PubMed Central

    Gabay, Yafit; Dick, Frederic K.; Zevin, Jason D.; Holt, Lori L.

    2015-01-01

    Very little is known about how auditory categories are learned incidentally, without instructions to search for category-diagnostic dimensions, overt category decisions, or experimenter-provided feedback. This is an important gap because learning in the natural environment does not arise from explicit feedback and there is evidence that the learning systems engaged by traditional tasks are distinct from those recruited by incidental category learning. We examined incidental auditory category learning with a novel paradigm, the Systematic Multimodal Associations Reaction Time (SMART) task, in which participants rapidly detect and report the appearance of a visual target in one of four possible screen locations. Although the overt task is rapid visual detection, a brief sequence of sounds precedes each visual target. These sounds are drawn from one of four distinct sound categories that predict the location of the upcoming visual target. These many-to-one auditory-to-visuomotor correspondences support incidental auditory category learning. Participants incidentally learn categories of complex acoustic exemplars and generalize this learning to novel exemplars and tasks. Further, learning is facilitated when category exemplar variability is more tightly coupled to the visuomotor associations than when the same stimulus variability is experienced across trials. We relate these findings to phonetic category learning. PMID:26010588

  8. Temporal resolution in the dolphin's auditory system revealed by double-click evoked potential study.

    PubMed

    Supin AYa; Popov, V V

    1995-04-01

    Temporal resolution of hearing in two bottlenosed dolphins was estimated by measuring auditory brain-stem response (ABR) recovery in conditions of double-click stimuli. From these data, temporal transfer function of the supposed integrator was derived assuming nonlinear transform of the integrator output to ABR amplitude. The obtained temporal transfer function showed a nearly constant level up to 200 microseconds. then decay to approximately -3 dB at 300 microseconds (as presented in the sound intensity domain), and subsequent decay of 10-11 dB per time doubling (about 35 dB/decade). PMID:7598764

  9. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex

    PubMed Central

    Kostopoulos, Penelope; Petrides, Michael

    2016-01-01

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top–down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience. PMID:26831102

  10. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    PubMed

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience. PMID:26831102

  11. Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children

    PubMed Central

    Preece, Kathryn A.; de Wit, Bianca; Glenn, Katharine; Fieder, Nora; Thie, Johnson; McArthur, Genevieve

    2015-01-01

    Background. Previous work has demonstrated that a commercial gaming electroencephalography (EEG) system, Emotiv EPOC, can be adjusted to provide valid auditory event-related potentials (ERPs) in adults that are comparable to ERPs recorded by a research-grade EEG system, Neuroscan. The aim of the current study was to determine if the same was true for children. Method. An adapted Emotiv EPOC system and Neuroscan system were used to make simultaneous EEG recordings in nineteen 6- to 12-year-old children under “passive” and “active” listening conditions. In the passive condition, children were instructed to watch a silent DVD and ignore 566 standard (1,000 Hz) and 100 deviant (1,200 Hz) tones. In the active condition, they listened to the same stimuli, and were asked to count the number of ‘high’ (i.e., deviant) tones. Results. Intraclass correlations (ICCs) indicated that the ERP morphology recorded with the two systems was very similar for the P1, N1, P2, N2, and P3 ERP peaks (r = .82 to .95) in both passive and active conditions, and less so, though still strong, for mismatch negativity ERP component (MMN; r = .67 to .74). There were few differences between peak amplitude and latency estimates for the two systems. Conclusions. An adapted EPOC EEG system can be used to index children’s late auditory ERP peaks (i.e., P1, N1, P2, N2, P3) and their MMN ERP component. PMID:25922794

  12. Early Blindness Results in Developmental Plasticity for Auditory Motion Processing within Auditory and Occipital Cortex

    PubMed Central

    Jiang, Fang; Stecker, G. Christopher; Boynton, Geoffrey M.; Fine, Ione

    2016-01-01

    Early blind subjects exhibit superior abilities for processing auditory motion, which are accompanied by enhanced BOLD responses to auditory motion within hMT+ and reduced responses within right planum temporale (rPT). Here, by comparing BOLD responses to auditory motion in hMT+ and rPT within sighted controls, early blind, late blind, and sight-recovery individuals, we were able to separately examine the effects of developmental and adult visual deprivation on cortical plasticity within these two areas. We find that both the enhanced auditory motion responses in hMT+ and the reduced functionality in rPT are driven by the absence of visual experience early in life; neither loss nor recovery of vision later in life had a discernable influence on plasticity within these areas. Cortical plasticity as a result of blindness has generally be presumed to be mediated by competition across modalities within a given cortical region. The reduced functionality within rPT as a result of early visual loss implicates an additional mechanism for cross modal plasticity as a result of early blindness—competition across different cortical areas for functional role. PMID:27458357

  13. Early Blindness Results in Developmental Plasticity for Auditory Motion Processing within Auditory and Occipital Cortex.

    PubMed

    Jiang, Fang; Stecker, G Christopher; Boynton, Geoffrey M; Fine, Ione

    2016-01-01

    Early blind subjects exhibit superior abilities for processing auditory motion, which are accompanied by enhanced BOLD responses to auditory motion within hMT+ and reduced responses within right planum temporale (rPT). Here, by comparing BOLD responses to auditory motion in hMT+ and rPT within sighted controls, early blind, late blind, and sight-recovery individuals, we were able to separately examine the effects of developmental and adult visual deprivation on cortical plasticity within these two areas. We find that both the enhanced auditory motion responses in hMT+ and the reduced functionality in rPT are driven by the absence of visual experience early in life; neither loss nor recovery of vision later in life had a discernable influence on plasticity within these areas. Cortical plasticity as a result of blindness has generally be presumed to be mediated by competition across modalities within a given cortical region. The reduced functionality within rPT as a result of early visual loss implicates an additional mechanism for cross modal plasticity as a result of early blindness-competition across different cortical areas for functional role. PMID:27458357

  14. Oxytocin enables maternal behaviour by balancing cortical inhibition.

    PubMed

    Marlin, Bianca J; Mitre, Mariela; D'amour, James A; Chao, Moses V; Froemke, Robert C

    2015-04-23

    Oxytocin is important for social interactions and maternal behaviour. However, little is known about when, where and how oxytocin modulates neural circuits to improve social cognition. Here we show how oxytocin enables pup retrieval behaviour in female mice by enhancing auditory cortical pup call responses. Retrieval behaviour required the left but not right auditory cortex, was accelerated by oxytocin in the left auditory cortex, and oxytocin receptors were preferentially expressed in the left auditory cortex. Neural responses to pup calls were lateralized, with co-tuned and temporally precise excitatory and inhibitory responses in the left cortex of maternal but not pup-naive adults. Finally, pairing calls with oxytocin enhanced responses by balancing the magnitude and timing of inhibition with excitation. Our results describe fundamental synaptic mechanisms by which oxytocin increases the salience of acoustic social stimuli. Furthermore, oxytocin-induced plasticity provides a biological basis for lateralization of auditory cortical processing. PMID:25874674

  15. Oxytocin Enables Maternal Behavior by Balancing Cortical Inhibition

    PubMed Central

    Marlin, Bianca J.; Mitre, Mariela; D’amour, James A.; Chao, Moses V.; Froemke, Robert C.

    2015-01-01

    Oxytocin is important for social interactions and maternal behavior. However, little is known about when, where, and how oxytocin modulates neural circuits to improve social cognition. Here we show how oxytocin enables pup retrieval behavior in female mice by enhancing auditory cortical pup call responses. Retrieval behavior required left but not right auditory cortex, was accelerated by oxytocin in left auditory cortex, and oxytocin receptors were preferentially expressed in left auditory cortex. Neural responses to pup calls were lateralized, with co-tuned and temporally-precise excitatory and inhibitory responses in left cortex of maternal but not pup-naive adults. Finally, pairing calls with oxytocin enhanced responses by balancing the magnitude and timing of inhibition with excitation. Our results describe fundamental synaptic mechanisms by which oxytocin increases the salience of acoustic social stimuli. Furthermore, oxytocin-induced plasticity provides a biological basis for lateralization of auditory cortical processing. PMID:25874674

  16. Optogenetic Patterning of Whisker-Barrel Cortical System in Transgenic Rat Expressing Channelrhodopsin-2

    PubMed Central

    Yokoyama, Yukinobu; Sumiyoshi, Akira; Shibuya, Yuma; Matsuzaka, Yoshiya; Kawashima, Ryuta; Mushiake, Hajime; Ishizuka, Toru; Yawo, Hiromu

    2014-01-01

    The rodent whisker-barrel system has been an ideal model for studying somatosensory representations in the cortex. However, it remains a challenge to experimentally stimulate whiskers with a given pattern under spatiotemporal precision. Recently the optogenetic manipulation of neuronal activity has made possible the analysis of the neuronal network with precise spatiotemporal resolution. Here we identified the selective expression of channelrhodopsin-2 (ChR2), an algal light-driven cation channel, in the large mechanoreceptive neurons in the trigeminal ganglion (TG) as well as their peripheral nerve endings innervating the whisker follicles of a transgenic rat. The spatiotemporal pattern of whisker irradiation thus produced a barrel-cortical response with a specific spatiotemporal pattern as evidenced by electrophysiological and functional MRI (fMRI) studies. Our methods of generating an optogenetic tactile pattern (OTP) can be expected to facilitate studies on how the spatiotemporal pattern of touch is represented in the somatosensory cortex, as Hubel and Wiesel did in the visual cortex. PMID:24695456

  17. The plasticity of the mirror system: how reward learning modulates cortical motor simulation of others.

    PubMed

    Trilla Gros, Irene; Panasiti, Maria Serena; Chakrabarti, Bhismadev

    2015-04-01

    Cortical motor simulation supports the understanding of others' actions and intentions. This mechanism is thought to rely on the mirror neuron system (MNS), a brain network that is active both during action execution and observation. Indirect evidence suggests that (alpha/beta) mu suppression, an electroencephalographic (EEG) index of MNS activity, is modulated by reward. In this study we aimed to test the plasticity of the MNS by directly investigating the link between (alpha/beta) mu suppression and reward. 40 individuals from a general population sample took part in an evaluative conditioning experiment, where different neutral faces were associated with high or low reward values. In the test phase, EEG was recorded while participants viewed videoclips of happy expressions made by the conditioned faces. Alpha/beta mu suppression (identified using event-related desynchronisation of specific independent components) in response to rewarding faces was found to be greater than for non-rewarding faces. This result provides a mechanistic insight into the plasticity of the MNS and, more generally, into the role of reward in modulating physiological responses linked to empathy. PMID:25744871

  18. The plasticity of the mirror system: How reward learning modulates cortical motor simulation of others

    PubMed Central

    Trilla Gros, Irene; Panasiti, Maria Serena; Chakrabarti, Bhismadev

    2015-01-01

    Cortical motor simulation supports the understanding of others' actions and intentions. This mechanism is thought to rely on the mirror neuron system (MNS), a brain network that is active both during action execution and observation. Indirect evidence suggests that (alpha/beta) mu suppression, an electroencephalographic (EEG) index of MNS activity, is modulated by reward. In this study we aimed to test the plasticity of the MNS by directly investigating the link between (alpha/beta) mu suppression and reward. 40 individuals from a general population sample took part in an evaluative conditioning experiment, where different neutral faces were associated with high or low reward values. In the test phase, EEG was recorded while participants viewed videoclips of happy expressions made by the conditioned faces. Alpha/beta mu suppression (identified using event-related desynchronisation of specific independent components) in response to rewarding faces was found to be greater than for non-rewarding faces. This result provides a mechanistic insight into the plasticity of the MNS and, more generally, into the role of reward in modulating physiological responses linked to empathy. PMID:25744871

  19. Long-Term Citalopram Treatment Alters the Stress Responses of the Cortical Dopamine and Noradrenaline Systems: the Role of Cortical 5-HT1A Receptors

    PubMed Central

    Kaneko, Fumi; Kishikawa, Yuki; Hanada, Yuuki; Yamada, Makiko; Kakuma, Tatsuyuki; Kawahara, Hiroshi; Nishi, Akinori

    2016-01-01

    Background: Cortical dopamine and noradrenaline are involved in the stress response. Citalopram, a selective serotonin reuptake inhibitor, has direct and indirect effects on the serotonergic system. Furthermore, long-term treatment with citalopram affects the dopamine and noradrenaline systems, which could contribute to the therapeutic action of antidepressants. Methods: The effects of long-term treatment with citalopram on the responses of the dopamine and noradrenaline systems in the rat prefrontal cortex to acute handling stress were evaluated using in vivo microdialysis. Results: Acute handling stress increased dopamine and noradrenaline levels in the prefrontal cortex. The dopamine and noradrenaline responses were suppressed by local infusion of a 5-HT1A receptor agonist, 7-(Dipropylamino)-5,6,7,8-tetrahydronaphthalen-1-ol;hydrobromide, into the prefrontal cortex. The dopamine response was abolished by long-term treatment with citalopram, and the abolished dopamine response was reversed by local infusion of a 5-HT1A receptor antagonist, (Z)-but-2-enedioic acid;N-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-pyridin-2-ylcyclohexanecarboxamide into the prefrontal cortex. On the other hand, long-term treatment with citalopram reduced the basal noradrenaline levels (approximately 40% of the controls), but not the basal dopamine levels. The noradrenaline response was maintained despite the low basal noradrenaline levels. Signaling from the 5-HT1A receptors and α2-adrenoceptors was not involved in the decrease in the basal noradrenaline levels but partially affected the noradrenaline response. Conclusions: Chronic citalopram treatment differentially suppresses the dopamine and noradrenaline systems in the prefrontal cortex, and the dopamine stress response was preferentially controlled by upregulating 5-HT1A receptor signaling. Our findings provide insight into how antidepressants modulate the dopamine and noradrenaline systems to overcome acute stress. PMID

  20. Identifying the threshold of iron deficiency in the central nervous system of the rat by the auditory brainstem response.

    PubMed

    Greminger, Allison R; Mayer-Pröschel, Margot

    2015-01-01

    The deleterious effects of anemia on auditory nerve (AN) development have been well investigated; however, we have previously reported that significant functional consequences in the auditory brainstem response (ABR) can also occur as a consequence of marginal iron deficiency (ID). As the ABR has widespread clinical use, we evaluated the ability of this electrophysiological method to characterize the threshold of tissue ID in rats by examining the relationship between markers of tissue ID and severity of ABR latency defects. To generate various levels of ID, female Long-Evans r