Sample records for coseismic stress change

  1. Coseismic and postseismic stress changes in a subducting plate: Possible stress interactions between large interplate thrust and intraplate normal-faulting earthquakes

    NASA Astrophysics Data System (ADS)

    Mikumo, Takeshi; Yagi, Yuji; Singh, Shri Krishna; Santoyo, Miguel A.

    2002-01-01

    A large intraplate, normal-faulting earthquake (Mw = 7.5) occurred in 1999 in the subducting Cocos plate below the downdip edge of the ruptured thrust fault of the 1978 Oaxaca, Mexico, earthquake (Mw = 7.8). This situation is similar to the previous case of the 1997 normal-faulting event (Mw = 7.1) that occurred beneath the rupture area of the 1985 Michoacan, Mexico, earthquake (Mw = 8.1). We investigate the possibility of any stress interactions between the preceding 1978 thrust and the following 1999 normal-faulting earthquakes. For this purpose, we estimate the temporal change of the stress state in the subducting Cocos plate by calculating the slip distribution during the 1978 earthquake through teleseismic waveform inversion, the dynamic rupture process, and the resultant coseismic stress change, together with the postseismic stress variations due to plate convergence and the viscoelastic relaxation process. To do this, we calculate the coseismic and postseismic changes of all stress components in a three-dimensional space, incorporating the subducting slab, the overlying crust and uppermost mantle, and the asthenosphere. For the coseismic stress change we solve elastodynamic equations, incorporating the kinematic fault slip as an observational constraint under appropriate boundary conditions. To estimate postseismic stress accumulations due to plate convergence, a virtual backward slip is imposed to lock the main thrust zone. The effects of viscoelastic stress relaxations of the coseismic change and the back slip are also included. The maximum coseismic increase in the shear stress and the Coulomb failure stress below the downdip edge of the 1978 thrust fault is estimated to be in the range between 0.5 and 1.5 MPa, and the 1999 normal-faulting earthquake was found to take place in this zone of stress increase. The postseismic variations during the 21 years after the 1978 event modify the magnitude and patterns of the coseismic stress change to some extent but

  2. Influence of pore pressure change on coseismic volumetric strain

    USGS Publications Warehouse

    Wang, Chi-Yuen; Barbour, Andrew J.

    2017-01-01

    Coseismic strain is fundamentally important for understanding crustal response to changes of stress after earthquakes. The elastic dislocation model has been widely applied to interpreting observed shear deformation caused by earthquakes. The application of the same theory to interpreting volumetric strain, however, has met with difficulty, especially in the far field of earthquakes. Predicted volumetric strain with dislocation model often differs substantially, and sometimes of opposite signs, from observed coseismic volumetric strains. The disagreement suggests that some processes unaccounted for by the dislocation model may occur during earthquakes. Several hypotheses have been suggested, but none have been tested quantitatively. In this paper we first examine published data to highlight the difference between the measured and calculated static coseismic volumetric strains; we then use these data to provide quantitative test of the model that the disagreement may be explained by the change of pore pressure in the shallow crust. The test allows us to conclude that coseismic change of pore pressure may be an important mechanism for coseismic crustal strain and, in the far field, may even be the dominant mechanism. Thus in the interpretation of observed coseismic crustal strain, one needs to account not only for the elastic strain due to fault rupture but also for the strain due to coseismic change of pore pressure.

  3. A 667 year record of coseismic and interseismic Coulomb stress changes in central Italy reveals the role of fault interaction in controlling irregular earthquake recurrence intervals

    NASA Astrophysics Data System (ADS)

    Wedmore, L. N. J.; Faure Walker, J. P.; Roberts, G. P.; Sammonds, P. R.; McCaffrey, K. J. W.; Cowie, P. A.

    2017-07-01

    Current studies of fault interaction lack sufficiently long earthquake records and measurements of fault slip rates over multiple seismic cycles to fully investigate the effects of interseismic loading and coseismic stress changes on the surrounding fault network. We model elastic interactions between 97 faults from 30 earthquakes since 1349 A.D. in central Italy to investigate the relative importance of co-seismic stress changes versus interseismic stress accumulation for earthquake occurrence and fault interaction. This region has an exceptionally long, 667 year record of historical earthquakes and detailed constraints on the locations and slip rates of its active normal faults. Of 21 earthquakes since 1654, 20 events occurred on faults where combined coseismic and interseismic loading stresses were positive even though 20% of all faults are in "stress shadows" at any one time. Furthermore, the Coulomb stress on the faults that experience earthquakes is statistically different from a random sequence of earthquakes in the region. We show how coseismic Coulomb stress changes can alter earthquake interevent times by 103 years, and fault length controls the intensity of this effect. Static Coulomb stress changes cause greater interevent perturbations on shorter faults in areas characterized by lower strain (or slip) rates. The exceptional duration and number of earthquakes we model enable us to demonstrate the importance of combining long earthquake records with detailed knowledge of fault geometries, slip rates, and kinematics to understand the impact of stress changes in complex networks of active faults.

  4. The Role of Coseismic Coulomb Stress Changes in Shaping the Hard Link Between Normal Fault Segments

    NASA Astrophysics Data System (ADS)

    Hodge, M.; Fagereng, Å.; Biggs, J.

    2018-01-01

    The mechanism and evolution of fault linkage is important in the growth and development of large faults. Here we investigate the role of coseismic stress changes in shaping the hard links between parallel normal fault segments (or faults), by comparing numerical models of the Coulomb stress change from simulated earthquakes on two en echelon fault segments to natural observations of hard-linked fault geometry. We consider three simplified linking fault geometries: (1) fault bend, (2) breached relay ramp, and (3) strike-slip transform fault. We consider scenarios where either one or both segments rupture and vary the distance between segment tips. Fault bends and breached relay ramps are favored where segments underlap or when the strike-perpendicular distance between overlapping segments is less than 20% of their total length, matching all 14 documented examples. Transform fault linkage geometries are preferred when overlapping segments are laterally offset at larger distances. Few transform faults exist in continental extensional settings, and our model suggests that propagating faults or fault segments may first link through fault bends or breached ramps before reaching sufficient overlap for a transform fault to develop. Our results suggest that Coulomb stresses arising from multisegment ruptures or repeated earthquakes are consistent with natural observations of the geometry of hard links between parallel normal fault segments.

  5. Coseismic temporal changes of slip direction: the effect of absolute stress on dynamic rupture

    USGS Publications Warehouse

    Guatteri, Mariagiovanna; Spudich, P.

    1998-01-01

    We investigate the dynamics of rupture at low-stress level. We show that one main difference between the dynamics of high- and low-stress events is the amount of coseismic temporal rake rotation occurring at given points on the fault. Curved striations on exposed fault surfaces and earthquake dislocation models derived from ground-motion inversion indicate that the slip direction may change with time at a point on the fault during dynamic rupture. We use a 3D boundary integral method to model temporal rake variations during dynamic rupture propagation assuming a slip-weakening friction law and isotropic friction. The points at which the slip rotates most are characterized by an initial shear stress direction substantially different from the average stress direction over the fault plane. We show that for a given value of stress drop, the level of initial shear stress (i.e., the fractional stress drop) determines the amount of rotation in slip direction. We infer that seismic events that show evidence of temporal rake rotations are characterized by a low initial shear-stress level with spatially variable direction on the fault (possibly due to changes in fault surface geometry) and an almost complete stress drop.Our models motivate a new interpretation of curved and cross-cutting striations and put new constraints on their analysis. The initial rake is in general collinear with the initial stress at the hypocentral zone, supporting the assumptions made in stress-tensor inversion from first-motion analysis. At other points on the fault, especially away from the hypocenter, the initial slip rake may not be collinear with the initial shear stress, contradicting a common assumption of structural geology. On the other hand, the later part of slip in our models is systematically more aligned with the average stress direction than the early slip. Our modeling suggests that the length of the straight part of curved striations is usually an upper bound of the slip

  6. Coseismic Stress Changes of the 2016 Mw 7.8 Kaikoura, New Zealand, Earthquake and Its Implication for Seismic Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Shan, B.; LIU, C.; Xiong, X.

    2017-12-01

    On 13 November 2016, an earthquake with moment magnitude Mw 7.8 stroke North Canterbury, New Zealand as result of shallow oblique-reverse faulting close to boundary between the Pacific and Australian plates in the South Island, collapsing buildings and resulting in significant economic losses. The distribution of early aftershocks extended about 150 km to the north-northeast of the mainshock, suggesting the potential of earthquake triggering in this complex fault system. Strong aftershocks following major earthquakes present significant challenges for locals' reconstruction and rehabilitation. The regions around the mainshock may also suffer from earthquakes triggered by the Kaikoura earthquake. Therefore, it is significantly important to outline the regions with potential aftershocks and high seismic hazard to mitigate future disasters. Moreover, this earthquake ruptured at least 13 separate faults, and provided an opportunity to test the theory of earthquake stress triggering for a complex fault system. In this study, we calculated the coseismic Coulomb Failure Stress changes (ΔCFS) caused by the Kaikoura earthquake on the hypocenters of both historical earthquakes and aftershocks of this event with focal mechanisms. Our results show that the percentage of earthquake with positive ΔCFS within the aftershocks is higher than that of historical earthquakes. It means that the Kaikoura earthquake effectively influence the seismicity in this region. The aftershocks of Mw 7.8 Kaikoura earthquake are mainly located in the regions with positive ΔCFS. The aftershock distributions can be well explained by the coseismic ΔCFS. Furthermore, earthquake-induced ΔCFS on the surrounding active faults was further discussed. The northeastern Alpine fault, the southwest part of North Canterbury Fault, parts of the Marlborough fault system and the southwest ends of the Kapiti-Manawatu faults are significantly stressed by the Kaikoura earthquake. The earthquake-induced stress

  7. Coseismic gravitational potential energy changes induced by global earthquakes during 1976 to 2016

    NASA Astrophysics Data System (ADS)

    Xu, C.; Chao, B. F.

    2017-12-01

    We compute the coseismic change in the gravitational potential energy Eg using the spherical-Earth elastic dislocation theory and either the fault model treated as a point source or the finite fault model. The rate of the accumulative coseismic Eg loss produced by historical earthquakes from 1976 to 2016 (about 4, 2000 events) using the GCMT catalogue are estimated to be on the order of -2.1×1020 J/a, or -6.7 TW (1 TW = 1012 watt), amounting to 15% in the total terrestrial heat flow. The energy loss is dominated by the thrust-faulting, especially the mega-thrust earthquakes such as the 2004 Sumatra earthquake (Mw 9.0) and the 2011 Tohoku-Oki earthquake (Mw 9.1). It's notable that the very deep-focus earthquakes, the 1994 Bolivia earthquake (Mw 8.2) and the 2013 Okhotsk earthquake (Mw 8.3), produced significant overall coseismic Eg gain according to our calculation. The accumulative coseismic Eg is mainly released in the mantle with a decrease tendency, and the core of the Earth also lost the coseismic Eg but with a relatively smaller magnitude. By contrast, the crust of the Earth gains Eg cumulatively because of the coseismic deformations. We further investigate the tectonic signature in these coseismic crustal gravitational potential energy changes in the complex tectonic zone, such as Taiwan region and the northeastern margin of Tibetan Plateau.

  8. Coseismic water level changes induced by two distant earthquakes in multiple wells of the Chinese mainland

    NASA Astrophysics Data System (ADS)

    Ma, Yuchuan; Huang, Fuqiong

    2017-01-01

    Coseismic water level oscillations, or step-like rises and step-like drops were recorded in 159 wells throughout the Chinese mainland due to the 2015 Nepal Mw 7.8 earthquake, and 184 wells for the 2011 Japan Mw 9.0 earthquake. The earthquake magnitude, and the associated dynamic stresses, has positive roles in both the sensitivity of water level to earthquake induced change, and the amplitude and duration of resulting coseismic water level changes. Wells whose water levels are sensitive to Earth tides have high potential to response to earthquakes. Polarities of step-like changes (rises or drops) are locally controlled and spatially variable, with artesian wells generally recording water-level rises. Permeability enhancement was assessed as a mechanism responsible for step-like changes by analyzing the tidal phase responses. Permeability variations are inferred for 17 out of 95 wells with step-like changes during the Nepal earthquake and for 32 out of 105 wells following the Japan earthquake; however, only 6 wells have permeability variations after both earthquakes.

  9. Coseismic and Early Post-Seismic Slip Distributions of the 2012 Emilia (Northern Italy) Seismic Sequence: New Insights in the Faults Activation and Resulting Stress Changes on Adjacent Faults

    NASA Astrophysics Data System (ADS)

    Cheloni, D.; Giuliani, R.; D'Agostino, N.; Mattone, M.; Bonano, M.; Fornaro, G.; Lanari, R.; Reale, D.

    2015-12-01

    The 2012 Emilia sequence (main shocks Mw 6.1 May 20 and Mw 5.9 May 29) ruptured two thrust segments of a ~E-W trending fault system of the buried Ferrara Arc, along a portion of the compressional system of the Apennines that had remained silent during past centuries. Here we use the rupture geometry constrained by the aftershocks and new geodetic data (levelling, InSAR and GPS measurements) to estimate an improved coseismic slip distribution of the two main events. In addition, we use post-seismic displacements, described and analyzed here for the first time, to infer a brand new post-seismic slip distribution of the May 29 event in terms of afterslip on the same coseismic plane. In particular, in this study we use a catalog of precisely relocated aftershocks to explore the different proposed geometries of the proposed thrust segments that have been published so far and estimate the coseismic and post-seismic slip distributions of the ruptured planes responsible for the two main seismic events from a joint inversion of the geodetic data.Joint inversion results revealed that the two earthquakes ruptured two distinct planar thrust faults, characterized by single main coseismic patches located around the centre of the rupture planes, in agreement with the seismological and geological information pointing out the Ferrara and the Mirandola thrust faults, as the causative structures of the May 20 and May 29 main shocks respectively.The preferred post-seismic slip distribution related to the 29 May event, yielded to a main patch of afterslip (equivalent to a Mw 5.6 event) located westward and up-dip of the main coseismic patch, suggesting that afterslip was triggered at the edges of the coseismic asperity. We then use these co- and post-seismic slip distribution models to calculate the stress changes on adjacent fault.

  10. Aftershock triggering by complete Coulomb stress changes

    USGS Publications Warehouse

    Kilb, Debi; Gomberg, J.; Bodin, P.

    2002-01-01

    We examine the correlation between seismicity rate change following the 1992, M7.3, Landers, California, earthquake and characteristics of the complete Coulomb failure stress (CFS) changes (??CFS(t)) that this earthquake generated. At close distances the time-varying "dynamic" portion of the stress change depends on how the rupture develops temporally and spatially and arises from radiated seismic waves and from permanent coseismic fault displacement. The permanent "static" portion (??CFS) depends only on the final coseismic displacement. ??CFS diminishes much more rapidly with distance than the transient, dynamic stress changes. A common interpretation of the strong correlation between ??CFS and aftershocks is that load changes can advance or delay failure. Stress changes may also promote failure by physically altering properties of the fault or its environs. Because it is transient, ??CFS(t) can alter the failure rate only by the latter means. We calculate both ??CFS and the maximum positive value of ??CFS(t) (peak ??CFS(t)) using a reflectivity program. Input parameters are constrained by modeling Landers displacement seismograms. We quantify the correlation between maps of seismicity rate changes and maps of modeled ??CFS and peak ??CFS(t) and find agreement for both models. However, rupture directivity, which does not affect ??CFS, creates larger peak ??CFS(t) values northwest of the main shock. This asymmetry is also observed in seismicity rate changes but not in ??CFS. This result implies that dynamic stress changes are as effective as static stress changes in triggering aftershocks and may trigger earthquakes long after the waves have passed.

  11. Coseismic changes of gravitational potential energy induced by global earthquakes based on spherical-Earth elastic dislocation theory

    NASA Astrophysics Data System (ADS)

    Xu, Changyi; Chao, B. Fong

    2017-05-01

    We compute the coseismic gravitational potential energy Eg change using the spherical-Earth elastic dislocation theory and either the fault model treated as a point source or the finite fault model. The rate of the accumulative Eg loss produced by historical earthquakes from 1976 to 2016 (about 42,000 events) using the Global Centroid Moment Tensor Solution catalogue is estimated to be on the order of -2.1 × 1020 J/a, or -6.7 TW (1 TW = 1012 W), amounting to 15% in the total terrestrial heat flow. The energy loss is dominated by the thrust faulting, especially the megathrust earthquakes such as the 2004 Sumatra earthquake (Mw 9.0) and the 2011 Tohoku-Oki earthquake (Mw 9.1). It is notable that the very deep focus events, the 1994 Bolivia earthquake (Mw 8.2) and the 2013 Okhotsk earthquake (Mw 8.3), produced significant overall coseismic Eg gain according to our calculation. The accumulative coseismic Eg is mainly lost in the mantle of the Earth and also lost in the core of the Earth but with a relatively smaller magnitude. By contrast, the crust of the Earth gains gravitational potential energy cumulatively because of the coseismic deformations. We further investigate the tectonic signature in the coseismic crustal Eg changes in some complex tectonic zone, such as Taiwan region and the northeastern margin of the Tibetan Plateau. We found that the coseismic Eg change is consistent with the regional tectonic character.

  12. Coseismic and Postseismic Deformation Following the 2011 Mw 9.0 Tohoku Earthquake and its Mw 7.9 Aftershock: Searching for Fault-localized Relaxation of Coseismic Stress Increments

    NASA Astrophysics Data System (ADS)

    Wang, F.; Bevis, M. G.; Blewitt, G.; Gomez, D.

    2017-12-01

    We study the postseismic transient displacements following the 2011 Mw 9.0 Tohoku earthquake using the Nevada Geodetic Laboratory's daily and 5-minute interval PPP solutions for 1,272 continuous GPS stations in Japan, with particular emphasis on the early transient displacements of these stations. One significant complication is the Mw 7.9 aftershock that occurred just 29.3 minutes after the main shock, since the coseismic (and postseismic) displacements driven by the aftershock are superimposed on the postseismic transients driven by the main shock. We address the question of whether or not the stresses induced by the Mw 9.0 main shock were relaxed by any major faults within Japan. The notion is that significant stress relaxation which is localized on a fault system should be manifested in the spatial pattern of the postseismic transient displacement field in the vicinity of that system. This would provide a basis for distinguishing between faults that engage in stick-slip behavior and those that creep instead. The distinction is important in that it has implications for the seismic risk associated with upper plate faulting. We will make the case that we do detect localized fault creeping in response to the coseismic stress field produced by the Mw 9 event.

  13. Coseismic Slip Deficit of the 2017 Mw 6.5 Ormoc Earthquake That Occurred Along a Creeping Segment and Geothermal Field of the Philippine Fault

    NASA Astrophysics Data System (ADS)

    Yang, Ying-Hui; Tsai, Min-Chien; Hu, Jyr-Ching; Aurelio, Mario A.; Hashimoto, Manabu; Escudero, John Agustin P.; Su, Zhe; Chen, Qiang

    2018-03-01

    Coseismic surface deformation imaged through interferometric synthetic aperture radar (InSAR) measurements was used to estimate the fault geometry and slip distribution of the 2017 Mw 6.5 Ormoc earthquake along a creeping segment of the Philippine Fault on Leyte Island. Our best fitting faulting model suggests that the coseismic rupture occurred on a fault plane with high dip angle of 78.5° and strike angle of 325.8°, and the estimated maximum fault slip of 2.3 m is located at 6.5 km east-northeast of the town of Kananga. The recognized insignificant slip in the Tongonan geothermal field zone implies that the plastic behavior caused by high geothermal gradient underneath the Tongonan geothermal field could prevent the coseismic failure in heated rock mass in this zone. The predicted Coulomb failure stress change shows that a significant positive Coulomb failure stress change occurred along the SE segment of central Philippine Fault with insignificant coseismic slip and infrequent aftershocks, which suggests an increasing risk for future seismic hazard.

  14. Necessity of using heterogeneous ellipsoidal Earth model with terrain to calculate co-seismic effect

    NASA Astrophysics Data System (ADS)

    Cheng, Huihong; Zhang, Bei; Zhang, Huai; Huang, Luyuan; Qu, Wulin; Shi, Yaolin

    2016-04-01

    Co-seismic deformation and stress changes, which reflect the elasticity of the earth, are very important in the earthquake dynamics, and also to other issues, such as the evaluation of the seismic risk, fracture process and triggering of earthquake. Lots of scholars have researched the dislocation theory and co-seismic deformation and obtained the half-space homogeneous model, half-space stratified model, spherical stratified model, and so on. Especially, models of Okada (1992) and Wang (2003, 2006) are widely applied in the research of calculating co-seismic and post-seismic effects. However, since both semi-infinite space model and layered model do not take the role of the earth curvature or heterogeneity or topography into consideration, there are large errors in calculating the co-seismic displacement of a great earthquake in its impacted area. Meanwhile, the computational methods of calculating the co-seismic strain and stress are different between spherical model and plane model. Here, we adopted the finite element method which could well deal with the complex characteristics (such as anisotropy, discontinuities) of rock and different conditions. We use the mash adaptive technique to automatically encrypt the mesh at the fault and adopt the equivalent volume force replace the dislocation source, which can avoid the difficulty in handling discontinuity surface with conventional (Zhang et al., 2015). We constructed an earth model that included earth's layered structure and curvature, the upper boundary was set as a free surface and the core-mantle boundary was set under buoyancy forces. Firstly, based on the precision requirement, we take a testing model - - a strike-slip fault (the length of fault is 500km and the width is 50km, and the slippage is 10m) for example. Because of the curvature of the Earth, some errors certainly occur in plane coordinates just as previous studies (Dong et al., 2014; Sun et al., 2012). However, we also found that: 1) the co-seismic

  15. Is the co-seismic slip distribution fractal?

    NASA Astrophysics Data System (ADS)

    Milliner, Christopher; Sammis, Charles; Allam, Amir; Dolan, James

    2015-04-01

    Co-seismic along-strike slip heterogeneity is widely observed for many surface-rupturing earthquakes as revealed by field and high-resolution geodetic methods. However, this co-seismic slip variability is currently a poorly understood phenomenon. Key unanswered questions include: What are the characteristics and underlying causes of along-strike slip variability? Do the properties of slip variability change from fault-to-fault, along-strike or at different scales? We cross-correlate optical, pre- and post-event air photos using the program COSI-Corr to measure the near-field, surface deformation pattern of the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine earthquakes in high-resolution. We produce the co-seismic slip profiles of both events from over 1,000 displacement measurements and observe consistent along-strike slip variability. Although the observed slip heterogeneity seems apparently complex and disordered, a spectral analysis reveals that the slip distributions are indeed self-affine fractal i.e., slip exhibits a consistent degree of irregularity at all observable length scales, with a 'short-memory' and is not random. We find a fractal dimension of 1.58 and 1.75 for the Landers and Hector Mine earthquakes, respectively, indicating that slip is more heterogeneous for the Hector Mine event. Fractal slip is consistent with both dynamic and quasi-static numerical simulations that use non-planar faults, which in turn causes heterogeneous along-strike stress, and we attribute the observed fractal slip to fault surfaces of fractal roughness. As fault surfaces are known to smooth over geologic time due to abrasional wear and fracturing, we also test whether the fractal properties of slip distributions alters between earthquakes from immature to mature fault systems. We will present results that test this hypothesis by using the optical image correlation technique to measure historic, co-seismic slip distributions of earthquakes from structurally mature, large

  16. 23 October 2011 (Mw=7.2) Van Earthquake (Turkey): Revised Coseismic and Postseismic Models from New GPS Observations

    NASA Astrophysics Data System (ADS)

    Dogan, U.; Demir, D. O.; Cakir, Z.; Ergintav, S.; Cetin, S.; Ozdemir, A.; Reilinger, R. E.

    2017-12-01

    the surface break observed after the earthquake was caused by coseismic stress changes rather than representing the coseismic fault. (This study is supported by TUBITAK no: 112Y109 project). Keywords: Van earthquake, GPS, coseismic, postseismic, deformation, elastic modeling

  17. The spatial distribution of earthquake stress rotations following large subduction zone earthquakes

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2017-01-01

    Rotations of the principal stress axes due to great subduction zone earthquakes have been used to infer low differential stress and near-complete stress drop. The spatial distribution of coseismic and postseismic stress rotation as a function of depth and along-strike distance is explored for three recent M ≥ 8.8 subduction megathrust earthquakes. In the down-dip direction, the largest coseismic stress rotations are found just above the Moho depth of the overriding plate. This zone has been identified as hosting large patches of large slip in great earthquakes, based on the lack of high-frequency radiated energy. The large continuous slip patches may facilitate near-complete stress drop. There is seismological evidence for high fluid pressures in the subducted slab around the Moho depth of the overriding plate, suggesting low differential stress levels in this zone due to high fluid pressure, also facilitating stress rotations. The coseismic stress rotations have similar along-strike extent as the mainshock rupture. Postseismic stress rotations tend to occur in the same locations as the coseismic stress rotations, probably due to the very low remaining differential stress following the near-complete coseismic stress drop. The spatial complexity of the observed stress changes suggests that an analytical solution for finding the differential stress from the coseismic stress rotation may be overly simplistic, and that modeling of the full spatial distribution of the mainshock static stress changes is necessary.

  18. Linking interseismic deformation with coseismic slip using dynamic rupture simulations

    NASA Astrophysics Data System (ADS)

    Yang, H.; He, B.; Weng, H.

    2017-12-01

    The largest earthquakes on earth occur at subduction zones, sometimes accompanied by devastating tsunamis. Reducing losses from megathrust earthquakes and tsunami demands accurate estimate of rupture scenarios for future earthquakes. Interseismic locking distribution derived from geodetic observations is often used to qualitatively evaluate future earthquake potential. However, how to quantitatively estimate the coseismic slip from the locking distribution remains challenging. Here we derive the coseismic rupture process of the 2012 Mw 7.6 Nicoya, Costa Rica, earthquake from interseismic locking distribution using spontaneous rupture simulation. We construct a three-dimensional elastic medium with a curved fault, which is governed by the linear slip-weakening law. The initial stress on the fault is set based on the build-up stress inferred from locking and the dynamic friction coefficient from fast-speed sliding experiments. Our numerical results of coseismic slip distribution, moment rate function and final earthquake moment are well consistent with those derived from seismic and geodetic observations. Furthermore, we find that the epicentral locations affect rupture scenarios and may lead to various sizes of earthquakes given the heterogeneous stress distribution. In the Nicoya region, less than half of rupture initiation regions where the locking degree is greater than 0.6 can develop into large earthquakes (Mw > 7.2). The results of location-dependent earthquake magnitudes underscore the necessity of conducting a large number of simulations to quantitatively evaluate seismic hazard from the interseismic locking models.

  19. Source model and Coulomb stress change of 2017 Mw 6.5 Philippine (Ormoc) Earthquake revealed by SAR interferometry

    NASA Astrophysics Data System (ADS)

    Tsai, M. C.; Hu, J. C.; Yang, Y. H.; Hashimoto, M.; Aurelio, M.; Su, Z.; Escudero, J. A.

    2017-12-01

    Multi-sight and high spatial resolution interferometric SAR data enhances our ability for mapping detailed coseismic deformation to estimate fault rupture model and to infer the Coulomb stress change associated with a big earthquake. Here, we use multi-sight coseismic interferograms acquired by ALOS-2 and Sentinel-1A satellites to estimate the fault geometry and slip distribution on the fault plane of the 2017 Mw 6.5 Ormoc Earthquake in Leyte island of Philippine. The best fitting model predicts that the coseismic rupture occurs along a fault plane with strike of 325.8º and dip of 78.5ºE. This model infers that the rupture of 2017 Ormoc earthquake is dominated by left-lateral slip with minor dip-slip motion, consistent with the left-lateral strike-slip Philippine fault system. The fault tip has propagated to the ground surface, and the predicted coseismic slip on the surface is about 1 m located at 6.5 km Northeast of Kananga city. Significant slip is concentrated on the fault patches at depth of 0-8 km and an along-strike distance of 20 km with varying slip magnitude from 0.3 m to 2.3 m along the southwest segment of this seismogenic fault. Two minor coseismic fault patches are predicted underneath of the Tononan geothermal field and the creeping segment of the northwest portion of this seismogenic fault. This implies that the high geothermal gradient underneath of the Tongonan geothermal filed could prevent heated rock mass from the coseismic failure. The seismic moment release of our preferred fault model is 7.78×1018 Nm, equivalent to Mw 6.6 event. The Coulomb failure stress (CFS) calculated by the preferred fault model predicts significant positive CFS change on the northwest segment of the Philippine fault in Leyte Island which has coseismic slip deficit and is absent from aftershocks. Consequently, this segment should be considered to have increasing of risk for future seismic hazard.

  20. Coseismic stresses indicated by pseudotachylytes in the Outer Hebrides Fault Zone, UK.

    NASA Astrophysics Data System (ADS)

    Campbell, Lucy; Lloyd, Geoffrey; Phillips, Richard; Holdsworth, Robert; Walcott, Rachel

    2015-04-01

    During the few seconds of earthquake slip, dynamic behaviour is predicted for stress, slip velocity, friction and temperature, amongst other properties. Fault-derived pseudotachylyte is a coseismic frictional melt and provides a unique snapshot of the rupture environment. Exhumation of ancient fault zones to seismogenic depths can reveal the structure and distribution of seismic slip as pseudotachylyte bearing fault planes. An example lies in NW Scotland along the Outer Hebrides Fault Zone (OHFZ) - this long-lived fault zone displays a suite of fault rocks developed under evolving kinematic regimes, including widespread pseudotachylyte veining which is distributed both on and away from the major faults. This study adds data derived from the OHFZ pseudotachylytes to published datasets from well-constrained fault zones, in order to explore the use of existing methodologies on more complex faults and to compare the calculated results. Temperature, stress and pressure are calculated from individual fault veins and added to existing datasets. The results pose questions on the physical meaning of the derived trends, the distribution of seismic energy release across scattered cm-scale faults and the range of earthquake magnitudes calculated from faults across any given fault zone.

  1. Coseismic and postseismic slip of the 2006 Kiholo Bay earthquake in Hawaii from GPS data

    NASA Astrophysics Data System (ADS)

    Aryal, A.; Smith-Konter, B. R.; Foster, J. H.

    2014-12-01

    On October 15th 2006, two large earthquakes (Kiholo Bay, M­­w = 6.7 and Mahukona, M­­w = 6.0) occurred below the northwest coast of the Big Island of Hawaii in a region that has not been typically associated with large earthquakes. While the 2006 earthquakes occurred only ~28 km and six minutes apart in space and time, their distinct focal mechanisms and source depths (~40 km and 20 km, respectively) suggest an interesting main shock-aftershock association. These two mantle (non-volcanic) earthquakes in Hawaii provide a rare opportunity to investigate lithospheric stresses associated with long-term flexural loading. Here, we use GPS observations and a semi-analytic dislocation model to estimate the co-seismic and post-seismic slip of these two events. For the Kiholo Bay event, we find that 0.5 m of net slip, occurring between 39 - 51 km depth on a nearly 30 km east-west striking fault that dips south at 45°, fits the data well with an RMS residual of 0.87 mm (~10 % of the observed maximum surface displacement). This geodetically estimated fault attitude matches with one of the nodal planes in the Global CMT catalog. Furthermore, positive Coulomb stress changes are predicted in the Mahukona source region due to the Kiholo Bay mainshock, suggesting an elastic stress triggering relationship. GPS time-series data will be used to investigate possible postseismic viscoelastic relaxation by mantle flow in response to these coseismic stress changes.

  2. Active source monitoring at the Wenchuan fault zone: coseismic velocity change associated with aftershock event and its implication

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Ge, Hongkui; Wang, Baoshan; Hu, Jiupeng; Yuan, Songyong; Qiao, Sen

    2014-12-01

    With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation remains a controversial issue. Recent active source monitoring carried out adjacent to Wenchuan Fault Scientific Drilling (WFSD) revealed unambiguous coseismic velocity change associated with a local M s5.5 earthquake. Here, we carry out forward modeling using two-dimensional spectral element method to further investigate the amplitude and spatial distribution of observed velocity change. The model is well constrained by results from seismic reflection and WFSD coring. Our model strongly suggests that the observed coseismic velocity change is localized within the fault zone with width of ~120 m rather than dynamic strong ground shaking. And a velocity decrease of ~2.0 % within the fault zone is required to fit the observed travel time delay distribution, which coincides with rock mechanical experiment and theoretical modeling.

  3. Co-seismic Static Stress Drops for Earthquake Ruptures Nucleated on Faults After Progressive Strain Localization

    NASA Astrophysics Data System (ADS)

    Griffith, W. A.; Nielsen, S.; di Toro, G.; Pollard, D. D.; Pennacchioni, G.

    2007-12-01

    We estimate the coseismic static stress drop on small exhumed strike-slip faults in the Mt. Abbot quadrangle of the central Sierra Nevada (California). The sub-vertical strike-slip faults cut ~85 Ma granodiorite, were exhumed from 7-10 km depth, and were chosen because they are exposed along their entire lengths, ranging from 8 to 13 m. Net slip is estimated using offset aplite dikes and shallowly plunging slickenlines on the fault surfaces. The faults show a record of progressive strain localization: slip initially nucleated on joints and accumulated from ductile shearing (quartz-bearing mylonites) to brittle slipping (epidote-bearing cataclasites). Thin (< 1 mm) pseudotachylytes associated with the cataclasites have been identified along some faults, suggesting that brittle slip may have been seismic. The brittle contribution to slip may be distinguished from the ductile shearing because epidote-filled, rhombohedral dilational jogs opened at bends and step-overs during brittle slip, are distributed periodically along the length of the faults. We argue that brittle slip occurred along the measured fault lengths in single slip events based on several pieces of evidence. 1) Epidote crystals are randomly oriented and undeformed within dilational jogs, indicating they did not grow during aseismic slip and were not broken after initial opening and precipitation. 2) Opening-mode splay cracks are concentrated near fault tips rather than the fault center, suggesting that the reactivated faults ruptured all at once rather than in smaller slip patches. 3) The fact that the opening lengths of the dilational jogs vary systematically along the fault traces suggests that brittle reactivation occurred in a single slip event along the entire fault rather than in multiple slip events. This unique combination of factors distinguishes this study from previous attempts to estimate stress drop from exhumed faults because we can constrain the coseismic rupture length and slip. The

  4. Experimental results of temperature response to stress change: An indication of the physics of earthquake rupture propagation

    NASA Astrophysics Data System (ADS)

    Lin, W.; Yang, X.; Tadai, O.; Zeng, X.; Yeh, E. C.; Yu, C.; Hatakeda, K.; Xu, H.; Xu, Z.

    2016-12-01

    As a result of the earthquake rupture propagation, stress on the earthquake fault and in the hanging wall and in the footwall coseismically drops. Based on the thermo-elasticity theory, the temperature of rocks may change associated with coseismic stress change at the same time as their elastic deformation. This coseismic temperature change is one of the physics of earthquake rupture propagation, however has not been noted and expressly addressed before. To understand this temperature issue, we conducted laboratory experiments to quantitatively investigate temperatures response of rocks to rapid stress change of various typical rocks. Consequently, we developed a hydrostatic compression experimental equipment for rock samples with a high resolution temperature measuring system. This enable us to rapidly load and/or unload the confining pressure. As experimental rock samples, we collected 15 representative rocks from various scientific drilling projects and outcrops of earthquake faults, and quarries in the world. The rock types include sandstone, siltstone, limestone, granite, basalt, tuff etc. Based on the classical thermo-elastic theory, a conventional relationship between the temperature change (dT) of rock samples and the confining pressure change (dP) in the hydrostatic compression system under adiabatic condition can be expressed as a linear function. Therefore, we can measure the adiabatic pressure derivative of temperature (dT/dP) directly by monitoring changes of rock sample temperature and confining pressure during the rapidly loading and unloading processes. As preliminary results of the experiments, the data of 15 rock samples showed that i) the adiabatic pressure derivative of temperature (dT/dP) of most rocks are about 1.5 6.2 mK/MPa; ii) the dT/dP of sedimentary rocks is larger than igneous and metamorphic rocks; iii) a good linear correlation between dT/dP and the rock's bulk modulus was recognized.

  5. Factors that affect coseismic folds in an overburden layer

    NASA Astrophysics Data System (ADS)

    Zeng, Shaogang; Cai, Yongen

    2018-03-01

    Coseismic folds induced by blind thrust faults have been observed in many earthquake zones, and they have received widespread attention from geologists and geophysicists. Numerous studies have been conducted regarding fold kinematics; however, few have studied fold dynamics quantitatively. In this paper, we establish a conceptual model with a thrust fault zone and tectonic stress load to study the factors that affect coseismic folds and their formation mechanisms using the finite element method. The numerical results show that the fault dip angle is a key factor that controls folding. The greater the dip angle is, the steeper the fold slope. The second most important factor is the overburden thickness. The thicker the overburden is, the more gradual the fold. In this case, folds are difficult to identify in field surveys. Therefore, if a fold can be easily identified with the naked eye, the overburden is likely shallow. The least important factors are the mechanical parameters of the overburden. The larger the Young's modulus of the overburden is, the smaller the displacement of the fold and the fold slope. Strong horizontal compression and vertical extension in the overburden near the fault zone are the main mechanisms that form coseismic folds.

  6. Renewal models and coseismic stress transfer in the Corinth Gulf, Greece, fault system

    NASA Astrophysics Data System (ADS)

    Console, Rodolfo; Falcone, Giuseppe; Karakostas, Vassilis; Murru, Maura; Papadimitriou, Eleftheria; Rhoades, David

    2013-07-01

    model interevent times and Coulomb static stress transfer on the rupture segments along the Corinth Gulf extension zone, a region with a wealth of observations on strong-earthquake recurrence behavior. From the available information on past seismic activity, we have identified eight segments without significant overlapping that are aligned along the southern boundary of the Corinth rift. We aim to test if strong earthquakes on these segments are characterized by some kind of time-predictable behavior, rather than by complete randomness. The rationale for time-predictable behavior is based on the characteristic earthquake hypothesis, the necessary ingredients of which are a known faulting geometry and slip rate. The tectonic loading rate is characterized by slip of 6 mm/yr on the westernmost fault segment, diminishing to 4 mm/yr on the easternmost segment, based on the most reliable geodetic data. In this study, we employ statistical and physical modeling to account for stress transfer among these fault segments. The statistical modeling is based on the definition of a probability density distribution of the interevent times for each segment. Both the Brownian Passage-Time (BPT) and Weibull distributions are tested. The time-dependent hazard rate thus obtained is then modified by the inclusion of a permanent physical effect due to the Coulomb static stress change caused by failure of neighboring faults since the latest characteristic earthquake on the fault of interest. The validity of the renewal model is assessed retrospectively, using the data of the last 300 years, by comparison with a plain time-independent Poisson model, by means of statistical tools including the Relative Operating Characteristic diagram, the R-score, the probability gain and the log-likelihood ratio. We treat the uncertainties in the parameters of each examined fault source, such as linear dimensions, depth of the fault center, focal mechanism, recurrence time, coseismic slip, and

  7. Coseismic and postseismic deformation associated with the 2016 Mw 7.8 Kaikoura earthquake, New Zealand: fault movement investigation and seismic hazard analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Zhongshan; Huang, Dingfa; Yuan, Linguo; Hassan, Abubakr; Zhang, Lupeng; Yang, Zhongrong

    2018-04-01

    The 2016 moment magnitude (Mw) 7.8 Kaikoura earthquake demonstrated that multiple fault segments can undergo rupture during a single seismic event. Here, we employ Global Positioning System (GPS) observations and geodetic modeling methods to create detailed images of coseismic slip and postseismic afterslip associated with the Kaikoura earthquake. Our optimal geodetic coseismic model suggests that rupture not only occurred on shallow crustal faults but also to some extent at the Hikurangi subduction interface. The GPS-inverted moment release during the earthquake is equivalent to a Mw 7.9 event. The near-field postseismic deformation is mainly derived from right-lateral strike-slip motions on shallow crustal faults. The afterslip did not only significantly extend northeastward on the Needles fault but also appeared at the plate interface, slowly releasing energy over the past 6 months, equivalent to a Mw 7.3 earthquake. Coulomb stress changes induced by coseismic deformation exhibit complex patterns and diversity at different depths, undoubtedly reflecting multi-fault rupture complexity associated with the earthquake. The Coulomb stress can reach several MPa during coseismic deformation, which can explain the trigger mechanisms of afterslip in two high-slip regions and the majority of aftershocks. Based on the deformation characteristics of the Kaikoura earthquake, interseismic plate coverage, and historical earthquakes, we conclude that Wellington is under higher seismic threat after the earthquake and great attention should be paid to potential large earthquake disasters in the near future.[Figure not available: see fulltext.

  8. Stress changes along the Sunda trench following the 26 December 2004 Sumatra-Andaman and 28 March 2005 Nias earthquakes

    USGS Publications Warehouse

    Pollitz, F.F.; Banerjee, P.; Burgmann, R.; Hashimoto, M.; Choosakul, N.

    2006-01-01

    The 26 December 2004 Mw = 9.2 and 28 March 2005 Mw = 8.7 earthquakes on the Sumatra megathrust altered the state of stress over a large region surrounding the earthquakes. We evaluate the stress changes associated with coseismic and postseismic deformation following these two large events, focusing on postseismic deformation that is driven by viscoelastic relaxation of a low-viscosity asthenosphere. Under Coulomb failure stress (CFS) theory, the December 2004 event increased CFS on the future hypocentral zone of the March 2005 event by about 0.25 bar, with little or no contribution from viscous relaxation. Coseismic stresses around the rupture zones of the 1797 and 1833 Sunda trench events are negligible, but postseismic stress perturbations since December 2004 are predicted to result in CFS increases of 0.1 to 0.2 bar around these rupture zones between 2 and 8 years after the December 2004 event. These are considerable stress perturbations given that the 1797 and 1833 rupture zones are likely approaching the end of a complete seismic cycle. Copyright 2006 by the American Geophysical Union.

  9. Co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake

    NASA Astrophysics Data System (ADS)

    Yagi, Yuji; Kikuchi, Masayuki; Nishimura, Takuya

    2003-11-01

    We analyzed continuous GPS data to investigate the spatio-temporal distribution of co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake (Mw = 7.7). To get better resolution for co-seismic and post-seismic slip distribution, we imposed a weak constraint as a priori information of the co-seismic slip determined by seismic wave analyses. We found that the post-seismic slip during 100 days following the main-shock amount to as much moment release as the main-shock, and that the sites of co-seismic slip and post-seismic slip are partitioning on a plate boundary region in complimentary fashion. The major post-seismic slip was triggered by the mainshock in western side of the co-seismic slip, and the extent of the post-seismic slip is almost unchanged with time. It rapidly developed a shear stress concentration ahead of the slip area, and triggered the largest aftershock.

  10. Frictional power dissipation on plate boundary faults: Implications for coseismic slip propagation at near-surface depths

    NASA Astrophysics Data System (ADS)

    Ikari, M.; Kopf, A.; Saffer, D. M.; Marone, C.; Carpenter, B. M.

    2013-12-01

    The general lack of earthquake slip at shallow (< ~4 km) depths on plate-boundary faults suggests that they creep stably, a behavior associated with laboratory observations that disaggregated fault gouges commonly strengthen with increasing sliding velocity (i.e. velocity-strengthening friction), which precludes strain energy release via stress drops. However, the 2011 Tohoku earthquake demonstrated that coseismic rupture and slip can sometimes propagate to the surface in subduction zones. Surface rupture is also known to occur on other plate boundary faults, such as the Alpine Fault in New Zealand. It is uncertain how the extent of coseismic slip propagation from depth is controlled by the frictional properties of the near-surface portion of major faults. In these situations, it is common for slip to localize within gouge having a significant component of clay minerals, which laboratory experiments have shown are generally weak and velocity strengthening. However, low overall fault strength should facilitate coseismic slip, while velocity-strengthening behavior would resist it. In order to investigate how frictional properties may control the extent of coseismic slip propagation at shallow depths, we compare frictional strength and velocity-dependence measurements using samples from three subduction zones known for hosting large magnitude earthquakes. We focus on samples recovered during scientific drilling projects from the Nankai Trough, Japan, the Japan Trench in the region of the Tohoku earthquake, and the Middle America Trench, offshore Costa Rica; however we also include comparisons with other major fault zones sampled by drilling. In order to incorporate the combined effects of overall frictional strength and friction velocity-dependence, we estimate shear strength as a function of slip velocity (at constant effective normal stress), and integrate this function to obtain the areal power density, or frictional power dissipation capability of the fault zone

  11. Fault model of the 2017 Jiuzhaigou Mw 6.5 earthquake estimated from coseismic deformation observed using Global Positioning System and Interferometric Synthetic Aperture Radar data

    NASA Astrophysics Data System (ADS)

    Nie, Zhaosheng; Wang, Di-Jin; Jia, Zhige; Yu, Pengfei; Li, Liangfa

    2018-04-01

    On August 8, 2017, the Jiuzhaigou Mw 6.5 earthquake occurred in Sichuan province, southwestern China, along the eastern margin of the Tibetan Plateau. The epicenter is surrounded by the Minjiang, Huya, and Tazang Faults. As the seismic activity and tectonics are very complicated, there is controversy regarding the accurate location of the epicenter and the seismic fault of the Jiuzhaigou earthquake. To investigate these aspects, first, the coseismic deformation field was derived from Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) measurements. Second, the fault geometry, coseismic slip model, and Coulomb stress changes around the seismic region were calculated using a homogeneous elastic half-space model. The coseismic deformation field derived from InSAR measurements shows that this event was mainly dominated by a left-lateral strike-slip fault. The maximal and minimal displacements were approximately 0.15 m and - 0.21 m, respectively, along line-of-sight observation. The whole deformation field follows a northwest-trending direction and is mainly concentrated west of the fault. The coseismic slip is 28 km along the strike and 18 km along the dip. It is dominated by a left-lateral strike-slip fault. The average and maximal fault slip is 0.18 and 0.85 m, respectively. The rupture did not fully reach the ground surface. The focal mechanism derived from GPS and InSAR data is consistent with the kinematics and geometry of the Huya Fault. Therefore, we conclude that the northern section or the Shuzheng segment of the Huya Fault is the seismogenic fault. The maximal fault slip is located at 33.25°N and 103.82°E at a depth of 11 km, and the release moment is approximately 6.635 × 1018 Nm, corresponding to a magnitude of Mw 6.49, which is consistent with results reported by the US Geological Survey, Global Centroid Moment Tensor, and other researchers. The coseismic Coulomb stress changes enhanced the stress on the northwest and

  12. Estimation of Static Coulomb Stress Change and Strong Motion Simulation for Jiuzhaigou 7.0 Earthquake Base on SENTINEL-1 Insar Data Inversion

    NASA Astrophysics Data System (ADS)

    Shen, W. H.; Luo, Y.; Jiao, Q. S.

    2018-04-01

    On August 8, 2017, an earthquake of M 7.0 occurred at Jiuzhaigou. Based on the Sentinel-1 satellite InSAR data, we obtained coseismic deformation field and inverted the source slip model. Results show that this event is dominated by strike slip, and the total released seismic moment is 8.06 × 1018 Nm, equivalent to an earthquake of Mw 6.57. We calculated static stress changes along strike and dip direction, and the static stress analysis show that the average stress drop are at low level, which may be responsible for the low level of ground motion during Jiuzhaigou earthquake. The coseismic Coulomb stress changes are calculated base on the inverted slip model, which revealed that 82.59 % of aftershocks are located in the Coulomb stress increasing area, 78.42 % of total aftershocks may be triggered by the mainshock aftershock, indicating that the mainshock has a significant triggering effect on the subsequent aftershocks. Based on stochastic finite fault model, we simulated regional peak ground acceleration (PGA), peak ground velocity (PGV) and the intensity, and results could capture basic features associated with the ground motion patterns. Moreover, the simulated results reflect the obvious rupture directivity effect.

  13. Coseismic slip and early afterslip of the 2015 Illapel, Chile, earthquake: Implications for frictional heterogeneity and coastal uplift

    USGS Publications Warehouse

    Barnhart, William D.; Murray, Jessica R.; Briggs, Richard W.; Gomez, Francisco; Miles, Charles P. J.; Svarc, Jerry L.; Riquelme, Sebástian; Stressler, Bryan J.

    2016-01-01

    Great subduction earthquakes are thought to rupture portions of the megathrust, where interseismic coupling is high and velocity-weakening frictional behavior is dominant, releasing elastic deformation accrued over a seismic cycle. Conversely, postseismic afterslip is assumed to occur primarily in regions of velocity-strengthening frictional characteristics that may correlate with lower interseismic coupling. However, it remains unclear if fixed frictional properties of the subduction interface, coseismic or aftershock-induced stress redistribution, or other factors control the spatial distribution of afterslip. Here we use interferometric synthetic aperture radar and Global Position System observations to map the distribution of coseismic slip of the 2015 Mw 8.3 Illapel, Chile, earthquake and afterslip within the first 38 days following the earthquake. We find that afterslip overlaps the coseismic slip area and propagates along-strike into regions of both high and moderate interseismic coupling. The significance of these observations, however, is tempered by the limited resolution of geodetic inversions for both slip and coupling. Additional afterslip imaged deeper on the fault surface bounds a discrete region of deep coseismic slip, and both contribute to net uplift of the Chilean Coastal Cordillera. A simple partitioning of the subduction interface into regions of fixed frictional properties cannot reconcile our geodetic observations. Instead, stress heterogeneities, either preexisting or induced by the earthquake, likely provide the primary control on the afterslip distribution for this subduction zone earthquake. We also explore the occurrence of coseismic and postseismic coastal uplift in this sequence and its implications for recent hypotheses concerning the source of permanent coastal uplift along subduction zones.

  14. Systematic deficiency of aftershocks in areas of high coseismic slip for large subduction zone earthquakes

    PubMed Central

    Wetzler, Nadav; Lay, Thorne; Brodsky, Emily E.; Kanamori, Hiroo

    2018-01-01

    Fault slip during plate boundary earthquakes releases a portion of the shear stress accumulated due to frictional resistance to relative plate motions. Investigation of 101 large [moment magnitude (Mw) ≥ 7] subduction zone plate boundary mainshocks with consistently determined coseismic slip distributions establishes that 15 to 55% of all master event–relocated aftershocks with Mw ≥ 5.2 are located within the slip regions of the mainshock ruptures and few are located in peak slip regions, allowing for uncertainty in the slip models. For the preferred models, cumulative deficiency of aftershocks within the central three-quarters of the scaled slip regions ranges from 15 to 45%, increasing with the total number of observed aftershocks. The spatial gradients of the mainshock coseismic slip concentrate residual shear stress near the slip zone margins and increase stress outside the slip zone, driving both interplate and intraplate aftershock occurrence near the periphery of the mainshock slip. The shear stress reduction in large-slip regions during the mainshock is generally sufficient to preclude further significant rupture during the aftershock sequence, consistent with large-slip areas relocking and not rupturing again for a substantial time. PMID:29487902

  15. Lithospheric Structure and Active Deformation in the Salton Trough from Coseismic and Postseismic Models of the 2010 Mw 7.2 El Mayor-Cucapah Earthquake

    NASA Astrophysics Data System (ADS)

    Fielding, E. J.; Huang, M. H.; Dickinson, H.; Freed, A. M.; Burgmann, R.; Gonzalez-Ortega, J. A.; Andronicos, C.

    2016-12-01

    The 4 April 2010 Mw 7.2 El Mayor-Cucapah (EMC) Earthquake ruptured about 120 km along several NW-striking faults to the west of the Cerro Prieto Fault in the Salton Trough of Baja California, Mexico. We analyzed interferometric synthetic aperture radar (SAR), SAR and optical pixel offsets, and continuous and campaign GPS data to optimize an EMC coseismic rupture model with 9 fault segments, which fits the complex structure of the faults. Coseismic slip inversion with a layered elastic model shows that largely right-lateral slip is confined to upper 10 km with strong variations along strike. Near-field GPS measures slip on a north-striking normal fault that ruptured at the beginning of the earthquake, previously inferred from seismic waveforms. EMC Earthquake postseismic deformation shows the Earth's response to the large coseismic stress changes. InSAR shows rapid shallow afterslip at the north and south ends of the main ruptures. Continuous GPS from the Plate Boundary Observatory operated by UNAVCO measures the first six years of postseismic deformation, extremely rapid near the rupture. Afterslip on faults beneath the coseismic rupture cannot explain far-field displacements that are best explained by viscoelastic relaxation of the lower crust and upper mantle. We built a viscoelastic 3D finite element model of the lithosphere and asthenosphere based on available data for the region with the EMC coseismic faults embedded inside. Coseismic slip was imposed on the model, allowed to relax for 5 years, and then compared to the observed surface deformation. Systematic exploration of the viscoelastic parameters shows that horizontal and vertical heterogeneity is required to fit the postseismic deformation. Our preferred viscoelastic model has weaker viscosity layers beneath the Salton Trough than adjacent blocks that are consistent with the inferred differences in the geotherms. Defining mechanical lithosphere as rocks that have viscosities greater than 10^19 Pa s (able

  16. Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin

    USGS Publications Warehouse

    Parsons, T.; Ji, C.; Kirby, E.

    2008-01-01

    On 12 May 2008, the devastating magnitude 7.9 (Wenchuan) earthquake struck the eastern edge of the Tibetan plateau, collapsing buildings and killing thousands in major cities aligned along the western Sichuan basin in China. After such a large-magnitude earthquake, rearrangement of stresses in the crust commonly leads to subsequent damaging earthquakes. The mainshock of the 12 May earthquake ruptured with as much as 9 m of slip along the boundary between the Longmen Shan and Sichuan basin, and demonstrated the complex strike-slip and thrust motion that characterizes the region. The Sichuan basin and surroundings are also crossed by other active strike-slip and thrust faults. Here we present calculations of the coseismic stress changes that resulted from the 12 May event using models of those faults, and show that many indicate significant stress increases. Rapid mapping of such stress changes can help to locate fault sections with relatively higher odds of producing large aftershocks. ??2008 Macmillan Publishers Limited. All rights reserved.

  17. Mechanical properties of conjugate faults in the Makran accretionary prism estimated from InSAR observations of coseismic deformation due to the 2013 Baluchistan (Mw 7.7) earthquake

    NASA Astrophysics Data System (ADS)

    Dutta, R.; Harrington, J.; Wang, T.; Feng, G.; Vasyura-Bathke, H.; Jonsson, S.

    2017-12-01

    Interferometric Synthetic Aperture Radar (InSAR) measurements allow us to study various mechanical and rheological properties around faults. For example, strain localizations along faults induced by nearby earthquakes observed by InSAR have been explained by the elastic response of compliant fault zones (CFZ) where the elastic moduli is reduced with respect to that of the surrounding rock. We observed similar strain localizations (up to 1-3 cm displacements in the line-of-sight direction of InSAR) along several conjugate faults near the rupture of the 2013 Mw7.7 Baluchistan (Pakistan) earthquake in the accretionary prism of the Makran subduction zone. These conjugate compliant faults, which have strikes of N30°E and N45°W, are located 15-30 km from the mainshock fault rupture in a N-S compressional stress regime. The long-term geologic slip direction of these faults is left-lateral for the N30°E striking faults and right-lateral for the N45°W striking faults. The 2013 Baluchistan earthquake caused WSW-ENE extensional coseismic stress changes across the conjugate fault system and the observed strain localizations shows opposite sense of motion to that of the geologic long-term slip. We use 3D Finite Element modeling (FEM) to study the effects extensional coseismic stresses have on the conjugate CFZs that is otherwise loaded in a compressional regional stress. We use coseismic static displacements due to the earthquake along the FEM domain boundaries to simulate the extensional coseismic stress change acting across the fault system. Around 0.5-2 km wide CFZs with reduction in shear modulus by a factor of 3 to 4 can explain the observed InSAR strain localizations and the opposite sense of motion. The InSAR measurements were also used to constrain the ranges of the length, width and rigidity variations of the CFZs. The FEM solution shows that the N45°W striking faults localize mostly extensional strain and a small amount of left-lateral shear (opposite sense to

  18. Earthquake cycle deformation in Mexico and Central America constrained by GPS: Implications for coseismic, postseismic, and slow slip

    NASA Astrophysics Data System (ADS)

    Graham, Shannon E.

    Using surface deformation measured by GPS stations within Mexico and Central America, I model coseismic slip, Coulomb stress changes, postseismic afterslip, and slow slip events in order to increase our knowledge of the earthquake deformation cycle in seismically hazardous regions. In Chapter 1, I use GPS data to estimate coseismic slip due to the May 28, 2009 Swan Islands fault earthquake off the coast of Honduras and then use the slip distribution to calculate Coulomb stress changes for the earthquake. Coulomb stress change calculations resolve stress transfer to the seismically hazardous Motagua fault and further show an unclamping of normal faults in northern Honduras. In Chapter 2, the focus shifts to southern Mexico, where continuous GPS measurements since the mid-1990s are revolutionizing our understanding of the flatly subducting Cocos plate. I perform a time-dependent inversion of continuous GPS observations of the 2011-2012 slow slip event (SSE) to estimate the location and magnitude of slow slip preceding the March 20, 2012 Ometepec earthquake. Coulomb stress changes as a result of slip during the SSE are consistent with the hypothesis that the SSE triggered the Ometepec earthquake. Chapter 3 describes inversions for slip both during and after the Ometepec earthquake. Time-dependent modeling of the first six months of postseismic deformation reveals that fault afterslip extended ˜250 km inland to depths of ˜50 km along the Cocos plate subduction. The postseismic afterslip and previous SSEs in southern Mexico occur at similar depths down-dip from the seismogenic zone, indicating that transitional areas of the subduction interface underlie much of southern Mexico. Finally, I perform the first time-dependent modeling of SSEs below Mexico and the first to exploit all available continuous GPS stations in southern and central Mexico. The results provide a more complete and consistent catalog of modeled SSE for the Mexico subduction zone (MSZ) than is

  19. Coseismic deformation of the 2001 El Salvador and 2002 Denali fault earthquakes from GPS geodetic measurements

    NASA Astrophysics Data System (ADS)

    Hreinsdottir, Sigrun

    2005-07-01

    GPS geodetic measurements are used to study two major earthquakes, the 2001 MW 7.7 El Salvador and 2002 MW 7.9 Denali Fault earthquakes. The 2001 MW 7.7 earthquake was a normal fault event in the subducting Cocos plate offshore El Salvador. Coseismic displacements of up to 15 mm were measured at permanent GPS stations in Central America. The GPS data were used to constrain the location of and slip on the normal fault. One month later a MW 6.6 strike-slip earthquake occurred in the overriding Caribbean plate. Coulomb stress changes estimated from the M W 7.7 earthquake suggest that it triggered the MW 6.6 earthquake. Coseismic displacement from the MW 6.6 earthquake, about 40 mm at a GPS station in El Salvador, indicates that the earthquake triggered additional slip on a fault close to the GPS station. The MW 6.6 earthquake further changed the stress field in the overriding Caribbean plate, with triggered seismic activity occurring west and possibly also to the east of the rupture in the days to months following the earthquake. The MW 7.9 Denali Fault earthquake ruptured three faults in the interior of Alaska. It initiated with a thrust motion on the Susitna Glacier fault but then ruptured the Denali and Totschunda faults with predominantly right-lateral strike-slip motion unilaterally from west to east. GPS data measured in the two weeks following the earthquake suggest a complex coseismic rupture along the faults with two main regions of moment release along the Denali fault. A large amount of additional data were collected in the year following the earthquake which greatly improved the resolution on the fault, revealing more details of the slip distribution. We estimate a total moment release of 6.81 x 1020 Nm in the earthquake with a M W 7.2 thrust subevent on Susitna Glacier fault. The slip on the Denali fault is highly variable, with 4 main pulses of moment release. The largest moment pulse corresponds to a MW 7.5 subevent, about 40 km west of the Denali

  20. Modeling frictional melt injection to constrain coseismic physical conditions

    NASA Astrophysics Data System (ADS)

    Sawyer, William J.; Resor, Phillip G.

    2017-07-01

    Pseudotachylyte, a fault rock formed through coseismic frictional melting, provides an important record of coseismic mechanics. In particular, injection veins formed at a high angle to the fault surface have been used to estimate rupture directivity, velocity, pulse length, stress drop, as well as slip weakening distance and wall rock stiffness. These studies have generally treated injection vein formation as a purely elastic process and have assumed that processes of melt generation, transport, and solidification have little influence on the final vein geometry. Using a pressurized crack model, an analytical approximation of injection vein formation based on dike intrusion, we find that the timescales of quenching and flow propagation may be similar for a subset of injection veins compiled from the Asbestos Mountain Fault, USA, Gole Larghe Fault Zone, Italy, and the Fort Foster Brittle Zone, USA under minimum melt temperature conditions. 34% of the veins are found to be flow limited, with a final geometry that may reflect cooling of the vein before it reaches an elastic equilibrium with the wall rock. Formation of these veins is a dynamic process whose behavior is not fully captured by the analytical approach. To assess the applicability of simplifying assumptions of the pressurized crack we employ a time-dependent finite-element model of injection vein formation that couples elastic deformation of the wall rock with the fluid dynamics and heat transfer of the frictional melt. This finite element model reveals that two basic assumptions of the pressurized crack model, self-similar growth and a uniform pressure gradient, are false. The pressurized crack model thus underestimates flow propagation time by 2-3 orders of magnitude. Flow limiting may therefore occur under a wider range of conditions than previously thought. Flow-limited veins may be recognizable in the field where veins have tapered profiles or smaller aspect ratios than expected. The occurrence and

  1. Stress Field Variation after the 2001 Skyros Earthquake, Greece, Derived from Seismicity Rate Changes

    NASA Astrophysics Data System (ADS)

    Leptokaropoulos, K.; Papadimitriou, E.; Orlecka-Sikora, B.; Karakostas, V.

    2012-04-01

    The spatial variation of the stress field (ΔCFF) after the 2001 strong (Mw=6.4) Skyros earthquake in North Aegean Sea, Greece, is investigated in association with the changes of earthquake production rates. A detailed slip model is considered in which the causative fault is consisted of several sub-faults with different coseismic slip onto each one of them. First the spatial distribution of aftershock productivity is compared with the static stress changes due to the coseismic slip. Calculations of ΔCFF are performed at different depths inside the seismogenic layer, defined from the vertical distribution of the aftershocks. Seismicity rates of the smaller magnitude events with M≥Mc for different time increments before and after the main shock are then derived from the application of a Probability Density Function (PDF). These rates are computed by spatially smoothing the seismicity and for this purpose a normal grid of rectangular cells is superimposed onto the area and the PDF determines seismicity rate values at the center of each cell. The differences between the earthquake occurrence rates before and after the main shock are compared and used as input data in a stress inversion algorithm based upon the Rate/State dependent friction concept in order to provide an independent estimation of stress changes. This model incorporates the physical properties of the fault zones (characteristic relaxation time, fault constitutive parameters, effective friction coefficient) with a probabilistic estimation of the spatial distribution of seismicity rates, derived from the application of the PDF. The stress patterns derived from the previously mentioned approaches are compared and the quantitative correlation between the respective results is accomplished by the evaluation of Pearson linear correlation coefficient and its confidence intervals to quantify their significance. Different assumptions and combinations of the physical and statistical parameters are tested for

  2. Static stress changes associated with normal faulting earthquakes in South Balkan area

    NASA Astrophysics Data System (ADS)

    Papadimitriou, E.; Karakostas, V.; Tranos, M.; Ranguelov, B.; Gospodinov, D.

    2007-10-01

    Activation of major faults in Bulgaria and northern Greece presents significant seismic hazard because of their proximity to populated centers. The long recurrence intervals, of the order of several hundred years as suggested by previous investigations, imply that the twentieth century activation along the southern boundary of the sub-Balkan graben system, is probably associated with stress transfer among neighbouring faults or fault segments. Fault interaction is investigated through elastic stress transfer among strong main shocks ( M ≥ 6.0), and in three cases their foreshocks, which ruptured distinct or adjacent normal fault segments. We compute stress perturbations caused by earthquake dislocations in a homogeneous half-space. The stress change calculations were performed for faults of strike, dip, and rake appropriate to the strong events. We explore the interaction between normal faults in the study area by resolving changes of Coulomb failure function ( ΔCFF) since 1904 and hence the evolution of the stress field in the area during the last 100 years. Coulomb stress changes were calculated assuming that earthquakes can be modeled as static dislocations in an elastic half-space, and taking into account both the coseismic slip in strong earthquakes and the slow tectonic stress buildup associated with major fault segments. We evaluate if these stress changes brought a given strong earthquake closer to, or sent it farther from, failure. Our modeling results show that the generation of each strong event enhanced the Coulomb stress on along-strike neighbors and reduced the stress on parallel normal faults. We extend the stress calculations up to present and provide an assessment for future seismic hazard by identifying possible sites of impending strong earthquakes.

  3. Coseismic Gravity and Displacement Signatures Induced by the 2013 Okhotsk Mw8.3 Earthquake

    PubMed Central

    Zhang, Guoqing; Shen, Wenbin; Xu, Changyi; Zhu, Yiqing

    2016-01-01

    In this study, Gravity Recovery and Climate Experiment (GRACE) RL05 data from January 2003 to October 2014 were used to extract the coseismic gravity changes induced by the 24 May 2013 Okhotsk Mw8.3 deep-focus earthquake using the difference and least square fitting methods. The gravity changes obtained from GRACE data agreed well with those from dislocation theory in both magnitude and spatial pattern. Positive and negative gravity changes appeared on both sides of the epicenter. The positive signature appeared on the western side, and the peak value was approximately 0.4 microgal (1 microgal = 10−8 m/s2), whereas on the eastern side, the gravity signature was negative, and the peak value was approximately −1.1 microgal. It demonstrates that deep-focus earthquakes Mw ≤ 8.5 are detectable by GRACE observations. Moreover, the coseismic displacements of 20 Global Positioning System (GPS) stations on the Earth’s surface were simulated using an elastic dislocation theory in a spherical earth model, and the results are consistent with the GPS results, especially the near-field results. We also estimated the gravity contributions from the coseismic vertical displacements and density changes, analyzed the proportion of these two gravity change factors (based on an elastic dislocation theory in a spherical earth model) in this deep-focus earthquake. The gravity effect from vertical displacement is four times larger than that caused by density redistribution. PMID:27598158

  4. Coseismic Gravity and Displacement Signatures Induced by the 2013 Okhotsk Mw8.3 Earthquake.

    PubMed

    Zhang, Guoqing; Shen, Wenbin; Xu, Changyi; Zhu, Yiqing

    2016-09-01

    In this study, Gravity Recovery and Climate Experiment (GRACE) RL05 data from January 2003 to October 2014 were used to extract the coseismic gravity changes induced by the 24 May 2013 Okhotsk Mw8.3 deep-focus earthquake using the difference and least square fitting methods. The gravity changes obtained from GRACE data agreed well with those from dislocation theory in both magnitude and spatial pattern. Positive and negative gravity changes appeared on both sides of the epicenter. The positive signature appeared on the western side, and the peak value was approximately 0.4 microgal (1 microgal = 10(-8) m/s²), whereas on the eastern side, the gravity signature was negative, and the peak value was approximately -1.1 microgal. It demonstrates that deep-focus earthquakes Mw ≤ 8.5 are detectable by GRACE observations. Moreover, the coseismic displacements of 20 Global Positioning System (GPS) stations on the Earth's surface were simulated using an elastic dislocation theory in a spherical earth model, and the results are consistent with the GPS results, especially the near-field results. We also estimated the gravity contributions from the coseismic vertical displacements and density changes, analyzed the proportion of these two gravity change factors (based on an elastic dislocation theory in a spherical earth model) in this deep-focus earthquake. The gravity effect from vertical displacement is four times larger than that caused by density redistribution.

  5. InSAR and GPS derived coseismic deformation and fault model of the 2017 Ms7.0 Jiuzhaigou earthquake in the Northeast Bayanhar block

    NASA Astrophysics Data System (ADS)

    Zhao, Dezheng; Qu, Chunyan; Shan, Xinjian; Gong, Wenyu; Zhang, Yingfeng; Zhang, Guohong

    2018-02-01

    On 8 August 2017, a Ms7.0 earthquake stroke the city of Jiuzhaigou, Sichuan, China. The Jiuzhaigou earthquake occurred on a buried fault in the vicinity of three well-known active faults and this event offers a unique opportunity to study tectonic structures in the epicentral region and stress transferring. Here we present coseismic displacement field maps for this earthquake using descending and ascending Sentinel-1A Interferometric Synthetic Aperture Radar (InSAR) data. Deformation covered an area of approximately 50 × 50 km, with a maximum line-of-sight (LOS) displacement of 22 cm in ascending and 14 cm in descending observations on the west side of the source fault. Based on InSAR and Global Positioning System (GPS) measurements, both separately and jointly, we constructed a one-segment model to invert the coseismic slip distribution and dip angle of this event. Our final fault slip model suggests that slip was concentrated at an upper depth of 15 km; there was a maximum slip of 1.3 m and the rupture was dominated by a left-lateral strike-slip motion. The inverted geodetic moment was approximately 6.75 × 1018 Nm, corresponding to a moment magnitude of Mw6.5, consistent with seismological results. The calculated static Coulomb stress changes indicate that most aftershocks occurred in stress increasing zones caused by the mainshock rupture; the Jiuzhaigou earthquake has brought the western part of the Tazang fault 0.1-0.4 MPa closer to failure, indicating an increasing seismic hazard in this region. The Coulomb stress changes caused by the 2008 Mw7.8 Wenchuan earthquake suggest that stress loading from this event acted as a trigger for the Jiuzhaigou earthquake.

  6. Co-seismic deformation following the 2007 Bengkulu earthquake constrained by GRACE and GPS observations

    NASA Astrophysics Data System (ADS)

    Zheng, Zengji; Jin, Shuanggen; Fan, Lihong

    2018-07-01

    Gravity changes caused by giant earthquakes can be detected by Gravity Recovery and Climate Experiment (GRACE), which provide new constraints on earthquake ruptures. However, detailed rupture, seismic moment and density/displacement-induced gravity changes are not clear for less than Mw = 8.5 earthquakes. In this paper, the fault parameters of the 2007 Mw = 8.4 Bengkulu earthquake are retrieved from GRACE and GPS data, and the fault slip distribution is inverted using GPS data. Furthermore, the theoretical coseismic displacements and coseismic gravity changes from different slip models are compared with GPS and GRACE data. The results show that the significant positive and negative gravity anomalies with a peak magnitude of -2.0 to 1.3 μgal are extracted from GRACE data. The GRACE-inverted and joint-inverted seismic moment of the Bengkulu earthquake are 3.27 ×1021 Nm and 3.30 ×1021 Nm with the rake angle of 108° and 114°, respectively. The GPS-inverted Mw = 8.4 earthquake is mainly dominated by the thrusting with slight right-lateral strike-slip, which is consistent with the focal mechanism. GRACE-observed coseismic gravity changes agree well with the results from the fault models based on the spherically dislocation theories in spatial pattern, but are larger than model-estimated results in magnitude. The coseismic gravity changes caused by the density change are basically same as those caused by the vertical displacement in the magnitude of order, which are -0.8 to 0.2 μgal and -0.2 to 1.4 μgal for the Caltech model, -0.9 to 0.2 μgal and -0.5 to 1.3 μgal for the USGS model, and -0.9 to 0.2 μgal and -0.3 to 1.3 μgal for the GPS-inverted layered model. In addition, both the near-field and the far-field displacements calculated from the Caltech model and GPS-inverted layered model are in good agreement with the GPS observations, whereas the USGS model has good agreement in the far-field and poor agreement in the near-field with the GPS observations

  7. A Coupled Model of Stress-Driven Frictional Afterslip and Viscoelastic Relaxation Following the 2011 Tohoku-oki Earthquake

    NASA Astrophysics Data System (ADS)

    Fukuda, J.; Johnson, K. M.

    2017-12-01

    Postseismic deformation following the 2011 Mw9.0 Tohoku-oki earthquake has been captured by both on-land GNSS and seafloor GPS/Acoustic networks. Previous studies have shown that the observed postseismic displacements can be reproduced as the sum of contributions from viscoelastic relaxation of coseismic stress changes in the upper mantle and afterslip on the plate interface surrounding the coseismic rupture. In most previous studies, viscoelastic relaxation and afterslip were modeled separately and afterslip was estimated kinematically. In this study, we develop a mechanical model of postseismic deformation in which afterslip and viscoelastic relaxation are driven by coseismic stress perturbations and are mechanically coupled. We assume that afterslip is governed by a rate-strengthening friction law that is characterized with a friction parameter (a-b)*sigma, where a-b represents the rate dependence of steady-state friction and sigma is the effective normal stress. Viscoelastic relaxation of the upper mantle is modeled with a biviscous Burgers rheology that is characterized with the steady-state and transient viscosities. We calculate the evolution of afterslip and viscoelastic relaxation using stress changes computed from an assumed coseismic slip model as the initial condition. We examine the effects of the friction parameters, mantle viscosities, elastic thickness of the slab and upper plate, and coseismic slip distribution on the model prediction and explore the range of the parameters that can fit the observed postseismic displacements. We find that the vertical postseismic displacements are particularly sensitive to these parameters. Our modeling results indicate that the on-land postseismic deformation is dominated by afterslip, whereas the seafloor postseismic deformation is dominated by viscoelastic relaxation. We also examine if afterslip overlaps regions that ruptured seismically during M6.3-7.2 earthquakes between 2003 and 2010. We find that

  8. Rupture Propagation of the 2013 Mw7.7 Balochistan, Pakistan, Earthquake Affected by Poroelastic Stress Changes

    NASA Astrophysics Data System (ADS)

    He, J.; Wang, W.; Xiao, J.

    2015-12-01

    The 2013 Mw7.7 Balochistan, Pakistan, earthquake occurred on the curved Hoshab fault. This fault connects with the north-south trending Chaman strike-slip fault to northeast, and with the west-east trending Makran thrust fault system to southwest. Teleseismic waveform inversion, incorporated with coseismic ground surface deformation data, show that the rupture of this earthquake nucleated around northeast segment of the fault, and then propagated southwestward along the northwest dipping Hoshab fault about 200 km, with the maximum coseismic displacement, featured mainly by purely left-lateral strike-slip motion, about 10 meters. In context of the India-Asia collision frame, associating with the fault geometry around this region, the rupture propagation of this earthquake seems to not follow an optimal path along the fault segment, because after nucleation of this event the Hoshab fault on the southwest of hypocenter of this earthquake is clamped by elastic stress change. Here, we build a three-dimensional finite-element model to explore the evolution of both stress and pore-pressure during the rupturing process of this earthquake. In the model, the crustal deformation is treated as undrained poroelastic media as described by Biot's theory, and the instantaneous rupture process is specified with split-node technique. By testing a reasonable range of parameters, including the coefficient of friction, the undrained Poisson's ratio, the permeability of the fault zone and the bulk crust, numerical results have shown that after the nucleation of rupture of this earthquake around the northeast of the Hoshab fault, the positive change of normal stress (clamping the fault) on the fault plane is greatly reduced by the instantaneous increase of pore pressure (unclamping the fault). This process could result in the change of Coulomb failure stress resolved on the Hoshab fault to be hastened, explaining the possible mechanism for southwestward propagation of rupture of the Mw7

  9. Co-Seismic Gravity Gradient Changes of the 2006-2007 Great Earthquakes in the Central Kuril Islands from GRACE Observations

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Shahrisvand, M.

    2017-09-01

    GRACE satellites (the Gravity Recovery And climate Experiment) are very useful sensors to extract gravity anomalies after earthquakes. In this study, we reveal co-seismic signals of the two combined earthquakes, the 2006 Mw8.3 thrust and 2007 Mw8.1 normal fault earthquakes of the central Kuril Islands from GRACE observations. We compute monthly full gravitational gradient tensor in the local north-east-down frame for Kuril Islands earthquakes without spatial averaging and de-striping filters. Some of gravitational gradient components (e.g. ΔVxx, ΔVxz) enhance high frequency components of the earth gravity field and reveal more details in spatial and temporal domain. Therefore, co-seismic activity can be better illustrated. For the first time, we show that the positive-negative-positive co-seismic ΔVxx due to the Kuril Islands earthquakes ranges from - 0.13 to + 0.11 milli Eötvös, and ΔVxz shows a positive-negative-positive pattern ranges from - 0.16 to + 0.13 milli Eötvös, agree well with seismic model predictions.

  10. Coseismic source model of the 2003 Mw 6.8 Chengkung earthquake, Taiwan, determined from GPS measurements

    USGS Publications Warehouse

    Ching, K.-E.; Rau, R.-J.; Zeng, Y.

    2007-01-01

    A coseismic source model of the 2003 Mw 6.8 Chengkung, Taiwan, earthquake was well determined with 213 GPS stations, providing a unique opportunity to study the characteristics of coseismic displacements of a high-angle buried reverse fault. Horizontal coseismic displacements show fault-normal shortening across the fault trace. Displacements on the hanging wall reveal fault-parallel and fault-normal lengthening. The largest horizontal and vertical GPS displacements reached 153 and 302 mm, respectively, in the middle part of the network. Fault geometry and slip distribution were determined by inverting GPS data using a three-dimensional (3-D) layered-elastic dislocation model. The slip is mainly concentrated within a 44 ?? 14 km slip patch centered at 15 km depth with peak amplitude of 126.6 cm. Results from 3-D forward-elastic model tests indicate that the dome-shaped folding on the hanging wall is reproduced with fault dips greater than 40??. Compared with the rupture area and average slip from slow slip earthquakes and a compilation of finite source models of 18 earthquakes, the Chengkung earthquake generated a larger rupture area and a lower stress drop, suggesting lower than average friction. Hence the Chengkung earthquake seems to be a transitional example between regular and slow slip earthquakes. The coseismic source model of this event indicates that the Chihshang fault is divided into a creeping segment in the north and the locked segment in the south. An average recurrence interval of 50 years for a magnitude 6.8 earthquake was estimated for the southern fault segment. Copyright 2007 by the American Geophysical Union.

  11. Stress coupling in the seismic cycle indicated from geodetic measurements

    NASA Astrophysics Data System (ADS)

    Wang, L.; Hainzl, S.; Zoeller, G.; Holschneider, M.

    2012-12-01

    The seismic cycle includes several phases, the interseismic, coseismic and postseismic phase. In the interseismic phase, strain gradually builds up around the overall locked fault in tens to thousands of years, while it is coseismically released in seconds. In the postseismic interval, stress relaxation lasts months to years, indicated by evident aseismic deformations which have been indicated to release comparable or even higher strain energy than the main shocks themselves. Benefiting from the development of geodetic observatory, e.g., Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) in the last two decades, the measurements of surface deformation have been significantly improved and become valuable information for understanding the stress evolution on the large fault plane. In this study, we utilize the GPS/InSAR data to investigate the slip deficit during the interseismic phase, the coseismic slip and the early postseismic creep on the fault plane. However, it is already well-known that slip inversions based only on the surface measurements are typically non-unique and subject to large uncertainties. To reduce the ambiguity, we utilize the assumption of stress coupling between interseismic and coseismic phases, and between coseismic and postseismic phases. We use a stress constrained joint inversion in Bayesian approach (Wang et al., 2012) to invert simultaneously for (1) interseismic slip deficit and coseismic slip, and (2) coseismic slip and postseismic creep. As case studies, we analyze earthquakes occurred in well-instrumented regions such as the 2004 M6.0 Parkfield earthquake, the 2010 M8.7 earthquake and the 2011 M9.1 Tohoku-Oki earthquake. We show that the inversion with the stress-coupling constraint leads to better constrained slip distributions. Meanwhile, the results also indicate that the assumed stress coupling is reasonable and can be well reflected from the available geodetic measurements. Reference: Lifeng

  12. Numerical Modeling on Co-seismic Influence of Wenchuan 8.0 Earthquake in Sichuan-Yunnan Area, China

    NASA Astrophysics Data System (ADS)

    Chen, L.; Li, H.; Lu, Y.; Li, Y.; Ye, J.

    2009-12-01

    In this paper, a three dimensional finite element model for active faults which are handled by contact friction elements in Sichuan-Yunnan area is built. Applying the boundary conditions determined through GPS data, a numerical simulations on spatial patterns of stress-strain changes induced by Wenchuan Ms8.0 earthquake are performed. Some primary results are: a) the co-seismic displacements in Longmen shan fault zone by the initial cracking event benefit not only the NE-direction expanding of subsequent fracture process but also the focal mechanism conversions from thrust to right lateral strike for the most of following sub-cracking events. b) tectonic movements induced by the Wenchuan earthquake are stronger in the upper wall of Longmen shan fault belt than in the lower wall and are influenced remarkably by the northeast boundary faults of the rhombic block. c) the extrema of stress changes induced by the main shock are 106Pa and its spatial size is about 400km long and 100km wide. The total stress level is reduced in the most regions in Longmen shan fault zone, whereas stress change is rather weak in its southwest segment and possibly result in fewer aftershocks in there. d) effects induced by the Wenchuan earthquake to the major active faults are obviously different from each other. e) triggering effect of the Wenchuan earthquake to the following Huili 6.1 earthquake is very weak.

  13. Coseismic and aseismic deformations of the rock mass around deep level mining in South Africa - Joint South African and Japanese study

    NASA Astrophysics Data System (ADS)

    Milev, A. M.; Yabe, Y.; Naoi, M. M.; Nakatani, M.; Durrheim, R. J.; Ogasawara, H.; Scholz, C. H.

    2010-12-01

    Two underground sites in a deep level gold mine in South Africa were instrumented by the Council for Scientific and Industrial Research (CSIR) with tilt meters and seismic monitors. One of the sites was also instrumented by JApanese-German Underground Acoustic emission Research in South Africa (JAGUARS) with a small network, approx. 40 m span, of eight Acoustic Emission (AE) sensors. The rate of tilt, defined as quasi-static deformations, and the seismic ground motion, defined as dynamic deformations, were analysed in order to understand the rock mass behavior around deep level mining. In addition the high frequency AE events recorded at hypocentral distances of about 50m were analysed. This was the first implementation of high frequency AE events at such a great depth (3300m below the surface). A good correspondence between the dynamic and quasi-static deformations was found. The rate of coseismic and aseismic tilt, as well as seismicity recorded by the mine seismic network, are approximately constant until the daily blasting time, which takes place from about 19:30 until shortly before 21:00. During the blasting time and the subsequent seismic events the coseismic and aseismic tilt shows a rapid increase indicated by a rapid change of the tilt during the seismic event. Much of the quasi-static deformation, however, occurs independently of the seismic events and was described as ‘slow’ or aseismic events. During the monitoring period a seismic event with MW 1.9 (2.1) occurred in the vicinity of the instrumented site. This event was recorded by both the CSIR integrated monitoring system and JAGUARS acoustic emotion network. The tilt changes associated with this event showed a well pronounced after-tilt. More than 21,000 AE aftershocks were located in the first 150 hours after the main event. Using the distribution of the AE events the position of the fault in the source area was successfully delineated. The distribution of the AE events following the main shock

  14. Regional coseismic landslide hazard assessment without historical landslide inventories: A new approach

    NASA Astrophysics Data System (ADS)

    Kritikos, Theodosios; Robinson, Tom R.; Davies, Tim R. H.

    2015-04-01

    Currently, regional coseismic landslide hazard analyses require comprehensive historical landslide inventories as well as detailed geotechnical data. Consequently, such analyses have not been possible where these data are not available. A new approach is proposed herein to assess coseismic landslide hazard at regional scale for specific earthquake scenarios in areas without historical landslide inventories. The proposed model employs fuzzy logic and geographic information systems to establish relationships between causative factors and coseismic slope failures in regions with well-documented and substantially complete coseismic landslide inventories. These relationships are then utilized to estimate the relative probability of landslide occurrence in regions with neither historical landslide inventories nor detailed geotechnical data. Statistical analyses of inventories from the 1994 Northridge and 2008 Wenchuan earthquakes reveal that shaking intensity, topography, and distance from active faults and streams are the main controls on the spatial distribution of coseismic landslides. Average fuzzy memberships for each factor are developed and aggregated to model the relative coseismic landslide hazard for both earthquakes. The predictive capabilities of the models are assessed and show good-to-excellent model performance for both events. These memberships are then applied to the 1999 Chi-Chi earthquake, using only a digital elevation model, active fault map, and isoseismal data, replicating prediction of a future event in a region lacking historic inventories and/or geotechnical data. This similarly results in excellent model performance, demonstrating the model's predictive potential and confirming it can be meaningfully applied in regions where previous methods could not. For such regions, this method may enable a greater ability to analyze coseismic landslide hazard from specific earthquake scenarios, allowing for mitigation measures and emergency response plans

  15. Co-Seismic Energy Changes Induced by Earthquakes on a Rotating, Gravitating Earth

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Gross, Richard S.

    2003-01-01

    Besides operating its own energy budget, an earthquake acts as an agent transferring a much greater amount of energy among the Earth's rotation, elastic field, gravitational field and internal heat. We compute the co-seismic, globally integrated gravitational and rotation changes induced by some 20,000 large earthquakes that occurred in the last quarter century, according to Chao et al. (1995, GJI, 122,776- 783,784-789) and using the Harvard CMT catalog. The result confirms an extremely strong tendency for the earthquakes to decrease the global gravitational energy and to increase the spin energy. It is found that energy is being extracted from the Earth's gravitational field by the action of earthquakes at an average rate of about approx. 2 TeraW during the studied period, larger by far than the approx. 7 GigaW for the average rate of the earthquake-induced rotational energy increase and the approx. 5 GigaW for the seismic energy release. Based on energetics considerations and assuming the inability of the Earth to build up elastic energy continuously over time, it is argued that earthquakes, by converting gravitational energy, may make a significant contribution to the global hedflow.

  16. Investigating coseismic fracture damage using a new high speed triaxial apparatus

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Aben, F. M.; Pricci, R.; Brantut, N.; Rockwell, T. K.; Boon, S.

    2017-12-01

    The occurence of pulverized rocks, a type of intensely damaged fault rock which has undergone minimal shear strain, has been linked to damage induced by transient high strain-rate stress perturbations during earthquake rupture. Damage induced by such transient stresses, whether compressional or tensional, likely constitute heterogeneous modulations of the remote stresses that will impart significant changes on the strength, elastic and fluid flow properties of a fault zone immediately after rupture propagation, at the early stage of fault slip. While the physical mechanisms for pulverized rock generation are still not yet fully understood, it is likely that they are in some way related to a combination of the dynamic compressive and tensional stresses imparted on the rock surrounding a fault at the tip of a propagating earthquake rupture. Typical triaxial rock deformation apparatuses are limited by their loading systems to strain rates on the order of 10-4 s-1, which in terms of the seismic cycle, is only applicable to processes operating within the inter-seismic period. In order to achieve strain rates in excess of 100 s-1 under confined conditions with pore fluids (currently unachievable with conventional deformation apparatus such as split bar Hopkinson), we have designed, manufactured and constructed a new high strain rate triaxial rock deformation apparatus, with a unique innovative hydraulic loading system that allows samples to be deformed in compression and tension at strain rates from 10-7 up to 200 s-1 . We present preliminary data demonstrating the unique capability of this apparatus to produce co-seismic experimental conditions not previously acheived.

  17. Evidence for coseismic subsidence events in a southern California coastal saltmarsh

    USGS Publications Warehouse

    Leeper, Robert; Rhodes, Brady P.; Kirby, Matthew E.; Scharer, Katherine M.; Carlin, Joseph A.; Hemphill-Haley, Eileen; Avnaim-Katav, Simona; MacDonald, Glen M.; Starratt, Scott W.; Aranda, Angela

    2017-01-01

    Paleoenvironmental records from a southern California coastal saltmarsh reveal evidence for repeated late Holocene coseismic subsidence events. Field analysis of sediment gouge cores established discrete lithostratigraphic units extend across the wetland. Detailed sediment analyses reveal abrupt changes in lithology, percent total organic matter, grain size, and magnetic susceptibility. Microfossil analyses indicate that predominantly freshwater deposits bury relic intertidal deposits at three distinct depths. Radiocarbon dating indicates that the three burial events occurred in the last 2000 calendar years. Two of the three events are contemporaneous with large-magnitude paleoearthquakes along the Newport-Inglewood/Rose Canyon fault system. From these data, we infer that during large magnitude earthquakes a step-over along the fault zone results in the vertical displacement of an approximately 5-km2 area that is consistent with the footprint of an estuary identified in pre-development maps. These findings provide insight on the evolution of the saltmarsh, coseismic deformation and earthquake recurrence in a wide area of southern California, and sensitive habitat already threatened by eustatic sea level rise.

  18. Can compliant fault zones be used to measure absolute stresses in the upper crust?

    NASA Astrophysics Data System (ADS)

    Hearn, E. H.; Fialko, Y.

    2009-04-01

    Geodetic and seismic observations reveal long-lived zones with reduced elastic moduli along active crustal faults. These fault zones localize strain from nearby earthquakes, consistent with the response of a compliant, elastic layer. Fault zone trapped wave studies documented a small reduction in P and S wave velocities along the Johnson Valley Fault caused by the 1999 Hector Mine earthquake. This reduction presumably perturbed a permanent compliant structure associated with the fault. The inferred changes in the fault zone compliance may produce a measurable deformation in response to background (tectonic) stresses. This deformation should have the same sense as the background stress, rather than the coseismic stress change. Here we investigate how the observed deformation of compliant zones in the Mojave Desert can be used to constrain the fault zone structure and stresses in the upper crust. We find that gravitational contraction of the coseismically softened zones should cause centimeters of coseismic subsidence of both the compliant zones and the surrounding region, unless the compliant fault zones are shallow and narrow, or essentially incompressible. We prefer the latter interpretation because profiles of line of sight displacements across compliant zones cannot be fit by a narrow, shallow compliant zone. Strain of the Camp Rock and Pinto Mountain fault zones during the Hector Mine and Landers earthquakes suggests that background deviatoric stresses are broadly consistent with Mohr-Coulomb theory in the Mojave upper crust (with μ ≥ 0.7). Large uncertainties in Mojave compliant zone properties and geometry preclude more precise estimates of crustal stresses in this region. With improved imaging of the geometry and elastic properties of compliant zones, and with precise measurements of their strain in response to future earthquakes, the modeling approach we describe here may eventually provide robust estimates of absolute crustal stress.

  19. Coseismic deformation observed with radar interferometry: Great earthquakes and atmospheric noise

    NASA Astrophysics Data System (ADS)

    Scott, Chelsea Phipps

    Spatially dense maps of coseismic deformation derived from Interferometric Synthetic Aperture Radar (InSAR) datasets result in valuable constraints on earthquake processes. The recent increase in the quantity of observations of coseismic deformation facilitates the examination of signals in many tectonic environments associated with earthquakes of varying magnitude. Efforts to place robust constraints on the evolution of the crustal stress field following great earthquakes often rely on knowledge of the earthquake location, the fault geometry, and the distribution of slip along the fault plane. Well-characterized uncertainties and biases strengthen the quality of inferred earthquake source parameters, particularly when the associated ground displacement signals are near the detection limit. Well-preserved geomorphic records of earthquakes offer additional insight into the mechanical behavior of the shallow crust and the kinematics of plate boundary systems. Together, geodetic and geologic observations of crustal deformation offer insight into the processes that drive seismic cycle deformation over a range of timescales. In this thesis, I examine several challenges associated with the inversion of earthquake source parameters from SAR data. Variations in atmospheric humidity, temperature, and pressure at the timing of SAR acquisitions result in spatially correlated phase delays that are challenging to distinguish from signals of real ground deformation. I characterize the impact of atmospheric noise on inferred earthquake source parameters following elevation-dependent atmospheric corrections. I analyze the spatial and temporal variations in the statistics of atmospheric noise from both reanalysis weather models and InSAR data itself. Using statistics that reflect the spatial heterogeneity of atmospheric characteristics, I examine parameter errors for several synthetic cases of fault slip on a basin-bounding normal fault. I show a decrease in uncertainty in fault

  20. Simulation of Co-Seismic Off-Fault Stress Effects: Influence of Fault Roughness and Pore Pressure Coupling

    NASA Astrophysics Data System (ADS)

    Fälth, B.; Lund, B.; Hökmark, H.

    2017-12-01

    Aiming at improved safety assessment of geological nuclear waste repositories, we use dynamic 3D earthquake simulations to estimate the potential for co-seismic off-fault distributed fracture slip. Our model comprises a 12.5 x 8.5 km strike-slip fault embedded in a full space continuum where we apply a homogeneous initial stress field. In the reference case (Case 1) the fault is planar and oriented optimally for slip, given the assumed stress field. To examine the potential impact of fault roughness, we also study cases where the fault surface has undulations with self-similar fractal properties. In both the planar and the undulated cases the fault has homogeneous frictional properties. In a set of ten rough fault models (Case 2), the fault friction is equal to that of Case 1, meaning that these models generate lower seismic moments than Case 1. In another set of ten rough fault models (Case 3), the fault dynamic friction is adjusted such that seismic moments on par with that of Case 1 are generated. For the propagation of the earthquake rupture we adopt the linear slip-weakening law and obtain Mw 6.4 in Case 1 and Case 3, and Mw 6.3 in Case 2 (35 % lower moment than Case 1). During rupture we monitor the off-fault stress evolution along the fault plane at 250 m distance and calculate the corresponding evolution of the Coulomb Failure Stress (CFS) on optimally oriented hypothetical fracture planes. For the stress-pore pressure coupling, we assume Skempton's coefficient B = 0.5 as a base case value, but also examine the sensitivity to variations of B. We observe the following: (I) The CFS values, and thus the potential for fracture slip, tend to increase with the distance from the hypocenter. This is in accordance with results by other authors. (II) The highest CFS values are generated by quasi-static stress concentrations around fault edges and around large scale fault bends, where we obtain values of the order of 10 MPa. (III) Locally, fault roughness may have a

  1. Probing the mechanical properties of seismically active crust with space geodesy: Study of the coseismic deformation due to the 1992 Mw7.3 Landers (southern California) earthquake

    NASA Astrophysics Data System (ADS)

    Fialko, Yuri

    2004-03-01

    The coseismic deformation due to the 1992 Mw7.3 Landers earthquake, southern California, is investigated using synthetic aperture radar (SAR) and Global Positioning System (GPS) measurements. The ERS-1 satellite data from the ascending and descending orbits are used to generate contiguous maps of three orthogonal components (east, north, up) of the coseismic surface displacement field. The coseismic displacement field exhibits symmetries with respect to the rupture plane that are suggestive of a linear relationship between stress and strain in the crust. Interferometric synthetic aperture radar (InSAR) data show small-scale deformation on nearby faults of the Eastern California Shear Zone. Some of these faults (in particular, the Calico, Rodman, and Pinto Mountain faults) were also subsequently strained by the 1999 Mw7.1 Hector Mine earthquake. I test the hypothesis that the anomalous fault strain represents essentially an elastic response of kilometer-scale compliant fault zones to stressing by nearby earthquakes [, 2002]. The coseismic stress perturbations due to the Landers earthquake are computed using a slip model derived from inversions of the InSAR and GPS data. Calculations are performed for both homogeneous and transversely isotropic half-space models. The compliant zone model that best explains the deformation on the Calico and Pinto Mountain faults due to the Hector Mine earthquake successfully predicts the coseismic displacements on these faults induced by the Landers earthquake. Deformation on the Calico and Pinto Mountain faults implies about a factor of 2 reduction in the effective shear modulus within the ˜2 km wide fault zones. The depth extent of the low-rigidity zones is poorly constrained but is likely in excess of a few kilometers. The same type of structure is able to explain high gradients in the radar line of sight displacements observed on other faults adjacent to the Landers rupture. In particular, the Lenwood fault north of the Soggy

  2. Coseismic displacement caused by the Mw 6.1 Mashhad earthquake in NE Iran from Sentinel-1A TOPS radar images

    NASA Astrophysics Data System (ADS)

    Su, Z.; Hu, J. C.; Talebian, M.

    2017-12-01

    Determining the relationship between crustal movement and associated slip partitioning is essential for understanding earthquake source and addressing the proposed models of a potential earthquake hazard. An Mw 6.1 earthquake struck the southeastern margin of the Mashhad valley in the northeast of Iran on 5 April 2017. In this study, we use both the ascending and descending mode of Sentinel-1A TOPS satellite data to characterize coseismic deformation pattern and to inverse the coseismic slip distribution on the fault patches. The best fitting model predicts that the coseismic rupture occurs along a fault plane with strike of 324.4º and dip of 28.1ºE. Our results show the fault tip does not propagate to the ground surface, and the predicted coseismic slip on the surface is about 0.11 m located on the hanging wall of the fault. Significant slip is concentrated on the fault patches at depth of 4-8 km and an along-strike distance of 10 km with varying slip magnitude from 0.1 m to 0.9 m. The fault slip is composed by thrusting with right-lateral strike slip, which is consistent with the focal mechanism solution. The over-thrusting was occurred from the depth of 14 km and terminated at the 4 km depth. While the right-lateral strike slip was only concentrated at a shallower depth of 4 to 8 km depth with the maximum slip of 0.9 m. The seismic moment release of our preferred fault model is 1.71×1018 Nm, equivalent to Mw 6.16 event. The Coulomb failure stress (CFS) calculated by the preferred fault model predicts significant positive CFS change on the three paralleled subsidiary faults of the southernmost Mashhad and Kashafrud fault, the Tus, Sorkhdeh and Natu faults. Consequently, these segments should be considered to have increasing of risk for future seismic hazard. Although most of the northward motion of the Lut and Central Iranian Blocks have been absorbed by the crustal shortening (e.g. thrusting and folding along the Binalud and Kopeh Dagh), simple strike

  3. Holocene coseismic and aseismic uplift of Isla Mocha, south-central Chile

    USGS Publications Warehouse

    Nelson, A.R.; Manley, W.F.

    1992-01-01

    During the past 6000 years Isla Mocha, a 12 km-long island 30 km off the coast of south-central Chile, experienced a 38 m fall of relative sea level caused primarily by rapid tectonic uplift of the island. As many as 18 raised shorelines (strandlines) record this uplift. Historic accounts of uplift during the great earthquakes (M > 8) of 1835 and 1960 suggest some of the more prominent prehistoric strandlines also emerged during great earthquakes on the interface between the Nazca and South America plates. But the close elevational spacing of strandlines, subdued morphology of strandline beaches, scarcity of exposed bedrock wave-cut platforms, and the extremely high rates of aseismic uplift (ca. 70 mm/yr) of the island since the last great earthquake suggest that many strandlines were raised by aseismic rather than coseismic uplift. Strandline heights and 14 new radiocarbon ages on marine shells show that the present-day uplift rate is more than three times the net rate (ca. 20 mm/yr) of the past 1000 years. The recent high rate probably reflects increased aseismic slip on an inferred thrust fault in the overriding South America plate. Isla Mocha overlies an area of high stress concentration between two major segments of the Chilean subduction zone. The inferred high rate of slip on the thrust fault may be a response to stress changes on the plate interface near the boundary between the segments. ?? 1992.

  4. Co-seismic landslide topographic analysis based on multi-temporal DEM-A case study of the Wenchuan earthquake.

    PubMed

    Ren, Zhikun; Zhang, Zhuqi; Dai, Fuchu; Yin, Jinhui; Zhang, Huiping

    2013-01-01

    Hillslope instability has been thought to be one of the most important factors for landslide susceptibility. In this study, we apply geomorphic analysis using multi-temporal DEM data and shake intensity analysis to evaluate the topographic characteristics of the landslide areas. There are many geomorphologic analysis methods such as roughness, slope aspect, which are also as useful as slope analysis. The analyses indicate that most of the co-seismic landslides occurred in regions with roughness, hillslope and slope aspect of >1.2, >30, and between 90 and 270, respectively. However, the intersection regions from the above three methods are more accurate than that derived by applying single topographic analysis method. The ground motion data indicates that the co-seismic landslides mainly occurred on the hanging wall side of Longmen Shan Thrust Belt within the up-down and horizontal peak ground acceleration (PGA) contour of 150 PGA and 200 gal, respectively. The comparisons of pre- and post-earthquake DEM data indicate that the medium roughness and slope increased, the roughest and steepest regions decreased after the Wenchuan earthquake. However, slope aspects did not even change. Our results indicate that co-seismic landslides mainly occurred at specific regions of high roughness, southward and steep sloping areas under strong ground motion. Co-seismic landslides significantly modified the local topography, especially the hillslope and roughness. The roughest relief and steepest slope are significantly smoothed; however, the medium relief and slope become rougher and steeper, respectively.

  5. Coseismic Compression/Dilatation and Viscoelastic Uplift/Subsidence Following the 2012 Indian Ocean Earthquakes Quantified from Satellite Gravity Observations

    NASA Technical Reports Server (NTRS)

    Han, Shin-Chan; Sauber, Jeanne; Pollitz, Fred

    2015-01-01

    The 2012 Indian Ocean earthquake sequence (M(sub w) 8.6, 8.2) is a rare example of great strike slip earthquakes in an intra-oceanic setting. With over a decade of GRACE data, we were able to measure and model the unanticipated large co-, and post-seismic gravity changes of these events. Using the approach of normal mode decomposition and spatial localization, we computed the gravity changes corresponding to five moment tensor components. Our analysis revealed that the gravity changes are produced predominantly by coseismic compression and dilatation within the oceanic crust and upper mantle and by post-seismic vertical motion. Our results suggest that the post-seismic positive gravity and the post-seismic uplift measured with GPS within the coseismic compressional quadrant are best fit by ongoing uplift associated with viscoelastic mantle relaxation. Our study demonstrates that the GRACE data are suitable for analyzing strike-slip earthquakes as small as M(sub w) 8.2 with the noise characteristics of this region.

  6. Co-seismic response of water level in the Jingle well (China) associated with the Gorkha Nepal (Mw 7.8) earthquake

    NASA Astrophysics Data System (ADS)

    He, Anhua; Fan, Xuefang; Zhao, Gang; Liu, Yang; Singh, Ramesh P.; Hu, Yuliang

    2017-09-01

    Changes in co-seismic water levels associated with the Gorkha Nepal earthquake (25 April 2015, Mw 7.8) were recorded in the Jingle well in Shanxi Province China (longitude E112.03°, latitude N38.35°, about 2769 km from epicenter). Based on the observed water levels, we clearly identified signals relating to P, S and surface waves. However, the water temperature recorded at a depth of 350 m shows no co-seismic changes. A spectrum analysis of co-seismic variations of water level shows that the oscillation frequency and amplitude of water level in the borehole are determined by the natural frequency of the borehole, which is not associated with the propagation of seismic waves. The borehole-aquifer system shows a large amplification associated with ground vibrations generated by earthquakes. Considering the local hydro-geological map and the temperature gradient of the Jingle well, a large volume ;groundwater reservoir; model can be used to explain these processes. Due to seismic wave propagation, the volume of a well-confined aquifer expands and contracts forming fractures that change the water flow. In the well-confined aquifer, water levels oscillate simultaneously with high amplitude ground shaking during earthquakes. However, the water in the center of the ;underground reservoir; remains relatively stationary, without any changes in the water temperature. In addition, a possible precursor wave is recorded in the water level at the Jingle well prior to the Gorkha earthquake.

  7. Coseismic and postseismic motion of a landslide: Observations, modeling, and analogy with tectonic faults

    NASA Astrophysics Data System (ADS)

    Lacroix, P.; Perfettini, H.; Taipe, E.; Guillier, B.

    2014-10-01

    We document the first time series of a landslide reactivation by an earthquake using continuous GPS measurements over the Maca landslide (Peru). Our survey shows a coseismic response of the landslide of about 2 cm, followed by a relaxation period of 5 weeks during which postseismic slip is 3 times greater than the coseismic displacement itself. Our results confirm the coseismic activation of landslides and provide the first observation of a postseismic displacement. These observations are consistent with a mechanical model where slip on the landslide basal interface is governed by rate and state friction, analogous to the mechanics of creeping tectonic faults, opening new perspectives to study the mechanics of landslides and active faults.

  8. Stress shadows - a controversial topic

    NASA Astrophysics Data System (ADS)

    Lasocki, Stanislaw; Karakostas, Vassilis G.; Papadimitriou, Eletheria E.; Orlecka-Sikora, Beata

    2010-05-01

    The spatial correlation between the positive Coulomb stress changes and the subsequent seismic activity has been firmly confirmed in many recent studies. If, however, the static stress transfer is a consistent expression of interaction between earthquakes one should also observe a decrease of the activity in the zones of negative stress changes. Instead, the existence of stress shadows is poorly evidenced and may be questioned. We tested the influence of the static stress changes associated with the coseismic slip of the 1995 Mw6.5 Kozani-Grevena (Greece) earthquake on locations of its aftershocks. The study was based on a detailed slip model for the main shock and accurate locations and reliable fault plane solutions of an adequate number of the aftershocks. We developed a statistical testing method, which tested whether the proportions of aftershocks located inside areas determined by a selected criterion on the static stress change could be attained if there were no effect of the stress change due to the main shock on aftershock locations. The areas of stress change were determined at the focus of every aftershock. The distribution of test statistic was constructed with the use of a two-dimensional nonparametric, kernel density estimator of the reference epicenter distribution. The tests highly confidently indicated a rise in probability to locate aftershocks inside areas of positive static stress change, which supported the hypothesis on the triggering effect in these areas. Furthermore, it was evidenced that a larger stress increase caused a stronger triggering effect. The analysis, however, did not evidence the existence of stress shadows inside areas of negative stress change. Contrary to expectations, the tests indicated a significant increase of the probability of event location in the areas of a stress decrease of more than or equal to 5.0 and 10.0 bar. It turned out that for areas of larger absolute stress change this probability increased regardless of

  9. Postseismic Gravity Change After the 2006-2007 Great Earthquake Doublet and Constraints on the Asthenosphere Structure in the Central Kuril Islands

    NASA Technical Reports Server (NTRS)

    Shin-Chan, Han; Sauber, Jeanne; Pollitz, Fred

    2016-01-01

    Large earthquakes often trigger viscoelastic adjustment for years to decades depending on the rheological properties and the nature and spatial extent of coseismic stress. The 2006 Mw8.3 thrust and 2007 Mw8.1 normal fault earthquakes of the central Kuril Islands resulted in significant postseismic gravity change in GRACE but without a discernible coseismic gravity change. The gravity increase of approximately 4 micro-Gal, observed consistently from various GRACE solutions around the epicentral area during 2007-2015, is interpreted as resulting from gradual seafloor uplift by (is) approximately 6 cm produced by postseismic relaxation. The GRACE data are best fit with a model of 25-35 km for the elastic thickness and approximately 10(exp 18) Pa s for the Maxwell viscosity of the asthenosphere. The large measurable postseismic gravity change (greater than coseismic change) emphasizes the importance of viscoelastic relaxation in understanding tectonic deformation and fault-locking scenarios in the Kuril subduction zone.

  10. Postseismic gravity change after the 2006-2007 great earthquake doublet and constraints on the asthenosphere structure in the central Kuril Islands.

    PubMed

    Han, Shin-Chan; Sauber, Jeanne; Pollitz, Fred

    2016-04-16

    Large earthquakes often trigger viscoelastic adjustment for years to decades depending on the rheological properties and the nature and spatial extent of coseismic stress. The 2006 M w 8.3 thrust and 2007 M w 8.1 normal fault earthquakes of the central Kuril Islands resulted in significant postseismic gravity change in GRACE but without a discernible coseismic gravity change. The gravity increase of ~4 µGal, observed consistently from various GRACE solutions around the epicentral area during 2007-2015, is interpreted as resulting from gradual seafloor uplift by ~6 cm produced by postseismic relaxation. The GRACE data are best fit with a model of 25-35 km for the elastic thickness and ~10 18 Pa s for the Maxwell viscosity of the asthenosphere. The large measurable postseismic gravity change (greater than coseismic change) emphasizes the importance of viscoelastic relaxation in understanding tectonic deformation and fault-locking scenarios in the Kuril subduction zone.

  11. Tsunamis along the Peru-Chile Trench: analysing the effect of co-seismic deformation on tsunami inundation

    NASA Astrophysics Data System (ADS)

    Omira, R.; Baptista, M. A.; Miranda, J. M. A.

    2016-12-01

    Large earthquakes occurring along the near-shore subduction zones have the potential of causing noticeable onshore co-seismic deformations. The onshore uplift and subsidence caused by the earthquake rupture can change the coastal land morphology and, therefore, control the tsunami impact. Along the Peru-Chile trench, where the occurrence of massive tsunamigenic earthquakes is quite frequent, the earthquake faults have important extent beneath the continent which results in significant seismic-induced deformation of the coastal zones as testified by the 2010 Mw8.8 Maule event. In this study, we investigate the effects of the seismic-induced onshore coastal deformation on the tsunami inundation for the Mw8.3 Illapel and the Mw8.8 Maule Chilean earthquakes that happened on September 16th, 2015 and February 27th, 2010, respectively. The study involves the relation between the co-seismic deformation and the tsunami impact in the near-field. For both studied tsunami events, we numerically simulate the near-field tsunami inundation with and without taking into account the earthquake rupture-induced changes on the coastal land morphology. We compare the simulated tsunami inundation extent and run-up with the field-survey data collected in previous works for both the 2015 Illapel and the 2010 Maule tsunamis. We find that the onshore component of the co-seismic deformations of the two Chilean subduction earthquakes lead to significant changes in coastal land morphology that mainly affect the inundation close to the source, which, therefore, explain the concentrated tsunami impact observed. This work received funding from project ASTARTE - Assessment Strategy and Risk Reduction for Tsunamis in Europe, Grant 603839, FP7-ENV2013 6.4-3, and project TSUMAPS - NEAM, agreement number ECHO/SUB/2015/718568/PREV26.

  12. Estimates of stress drop and crustal tectonic stress from the 27 February 2010 Maule, Chile, earthquake: Implications for fault strength

    USGS Publications Warehouse

    Luttrell, K.M.; Tong, X.; Sandwell, D.T.; Brooks, B.A.; Bevis, M.G.

    2011-01-01

    The great 27 February 2010 Mw 8.8 earthquake off the coast of southern Chile ruptured a ???600 km length of subduction zone. In this paper, we make two independent estimates of shear stress in the crust in the region of the Chile earthquake. First, we use a coseismic slip model constrained by geodetic observations from interferometric synthetic aperture radar (InSAR) and GPS to derive a spatially variable estimate of the change in static shear stress along the ruptured fault. Second, we use a static force balance model to constrain the crustal shear stress required to simultaneously support observed fore-arc topography and the stress orientation indicated by the earthquake focal mechanism. This includes the derivation of a semianalytic solution for the stress field exerted by surface and Moho topography loading the crust. We find that the deviatoric stress exerted by topography is minimized in the limit when the crust is considered an incompressible elastic solid, with a Poisson ratio of 0.5, and is independent of Young's modulus. This places a strict lower bound on the critical stress state maintained by the crust supporting plastically deformed accretionary wedge topography. We estimate the coseismic shear stress change from the Maule event ranged from-6 MPa (stress increase) to 17 MPa (stress drop), with a maximum depth-averaged crustal shear-stress drop of 4 MPa. We separately estimate that the plate-driving forces acting in the region, regardless of their exact mechanism, must contribute at least 27 MPa trench-perpendicular compression and 15 MPa trench-parallel compression. This corresponds to a depth-averaged shear stress of at least 7 MPa. The comparable magnitude of these two independent shear stress estimates is consistent with the interpretation that the section of the megathrust fault ruptured in the Maule earthquake is weak, with the seismic cycle relieving much of the total sustained shear stress in the crust. Copyright 2011 by the American

  13. Postseismic gravity change after the 2006–2007 great earthquake doublet and constraints on the asthenosphere structure in the central Kuril Islands

    PubMed Central

    Han, Shin-Chan; Sauber, Jeanne; Pollitz, Fred

    2016-01-01

    Large earthquakes often trigger viscoelastic adjustment for years to decades depending on the rheological properties and the nature and spatial extent of coseismic stress. The 2006 Mw8.3 thrust and 2007 Mw8.1 normal fault earthquakes of the central Kuril Islands resulted in significant postseismic gravity change in GRACE but without a discernible coseismic gravity change. The gravity increase of ~4 µGal, observed consistently from various GRACE solutions around the epicentral area during 2007–2015, is interpreted as resulting from gradual seafloor uplift by ~6 cm produced by postseismic relaxation. The GRACE data are best fit with a model of 25–35 km for the elastic thickness and ~1018 Pa s for the Maxwell viscosity of the asthenosphere. The large measurable postseismic gravity change (greater than coseismic change) emphasizes the importance of viscoelastic relaxation in understanding tectonic deformation and fault-locking scenarios in the Kuril subduction zone. PMID:27642200

  14. Postseismic gravity change after the 2006–2007 great earthquake doublet and constraints on the asthenosphere structure in the central Kuril Islands

    USGS Publications Warehouse

    Han, Shin-Chan; Sauber, Jeanne; Pollitz, Fred

    2016-01-01

    Large earthquakes often trigger viscoelastic adjustment for years to decades depending on the rheological properties and the nature and spatial extent of coseismic stress. The 2006 Mw8.3 thrust and 2007 Mw8.1 normal fault earthquakes of the central Kuril Islands resulted in significant postseismic gravity change in Gravity Recovery and Climate Experiment (GRACE) but without a discernible coseismic gravity change. The gravity increase of ~4 μGal, observed consistently from various GRACE solutions around the epicentral area during 2007–2015, is interpreted as resulting from gradual seafloor uplift by ~6 cm produced by postseismic relaxation. The GRACE data are best fit with a model of 25–35 km for the elastic thickness and ~1018 Pa s for the Maxwell viscosity of the asthenosphere. The large measurable postseismic gravity change (greater than coseismic change) emphasizes the importance of viscoelastic relaxation in understanding tectonic deformation and fault-locking scenarios in the Kuril subduction zone.

  15. Effects of crustal layering on source parameter inversion from coseismic geodetic data

    NASA Astrophysics Data System (ADS)

    Amoruso, A.; Crescentini, L.; Fidani, C.

    2004-10-01

    We study the effect of a superficial layer overlying a half-space on the surface displacements caused by uniform slipping of a dip-slip normal rectangular fault. We compute static coseismic displacements using a 3-D analytical code for different characteristics of the layered medium, different fault geometries and different configurations of bench marks to simulate different kinds of geodetic data (GPS, Synthetic Aperture Radar, and levellings). We perform both joint and separate inversions of the three components of synthetic displacement without constraining fault parameters, apart from strike and rake, and using a non-linear global inversion technique under the assumption of homogeneous half-space. Differences between synthetic displacements computed in the presence of the superficial soft layer and in a homogeneous half-space do not show a simple regular behaviour, even if a few features can be identified. Consequently, also retrieved parameters of the homogeneous equivalent fault obtained by unconstrained inversion of surface displacements do not show a simple regular behaviour. We point out that the presence of a superficial layer may lead to misestimating several fault parameters both using joint and separate inversions of the three components of synthetic displacement and that the effects of the presence of the superficial layer can change whether all fault parameters are left free in the inversions or not. In the inversion of any kind of coseismic geodetic data, fault size and slip can be largely misestimated, but the product (fault length) × (fault width) × slip, which is proportional to the seismic moment for a given rigidity modulus, is often well determined (within a few per cent). Because inversion of coseismic geodetic data assuming a layered medium is impracticable, we suggest that only a case-to-case study involving some kind of recursive determination of fault parameters through data correction seems to give the proper approach when layering is

  16. Sensitivity of Coulomb stress changes to slip models of source faults: A case study for the 2011 Mw 9.0 Tohoku-oki earthquake

    NASA Astrophysics Data System (ADS)

    Wang, J.; Xu, C.; Furlong, K.; Zhong, B.; Xiao, Z.; Yi, L.; Chen, T.

    2017-12-01

    Although Coulomb stress changes induced by earthquake events have been used to quantify stress transfers and to retrospectively explain stress triggering among earthquake sequences, realistic reliable prospective earthquake forecasting remains scarce. To generate a robust Coulomb stress map for earthquake forecasting, uncertainties in Coulomb stress changes associated with the source fault, receiver fault and friction coefficient and Skempton's coefficient need to be exhaustively considered. In this paper, we specifically explore the uncertainty in slip models of the source fault of the 2011 Mw 9.0 Tohoku-oki earthquake as a case study. This earthquake was chosen because of its wealth of finite-fault slip models. Based on the wealth of those slip models, we compute the coseismic Coulomb stress changes induced by this mainshock. Our results indicate that nearby Coulomb stress changes for each slip model can be quite different, both for the Coulomb stress map at a given depth and on the Pacific subducting slab. The triggering rates for three months of aftershocks of the mainshock, with and without considering the uncertainty in slip models, differ significantly, decreasing from 70% to 18%. Reliable Coulomb stress changes in the three seismogenic zones of Nanki, Tonankai and Tokai are insignificant, approximately only 0.04 bar. By contrast, the portions of the Pacific subducting slab at a depth of 80 km and beneath Tokyo received a positive Coulomb stress change of approximately 0.2 bar. The standard errors of the seismicity rate and earthquake probability based on the Coulomb rate-and-state model (CRS) decay much faster with elapsed time in stress triggering zones than in stress shadows, meaning that the uncertainties in Coulomb stress changes in stress triggering zones would not drastically affect assessments of the seismicity rate and earthquake probability based on the CRS in the intermediate to long term.

  17. GPS and seismic constraints on the M = 7.3 2009 Swan Islands earthquake: implications for stress changes along the Motagua fault and other nearby faults

    NASA Astrophysics Data System (ADS)

    Graham, Shannon E.; DeMets, Charles; DeShon, Heather R.; Rogers, Robert; Maradiaga, Manuel Rodriguez; Strauch, Wilfried; Wiese, Klaus; Hernandez, Douglas

    2012-09-01

    We use measurements at 35 GPS stations in northern Central America and 25 seismometers at teleseismic distances to estimate the distribution of slip, source time function and Coulomb stress changes of the Mw = 7.3 2009 May 28, Swan Islands fault earthquake. This event, the largest in the region for several decades, ruptured the offshore continuation of the seismically hazardous Motagua fault of Guatemala, the site of the destructive Ms = 7.5 earthquake in 1976. Measured GPS offsets range from 308 millimetres at a campaign site in northern Honduras to 6 millimetres at five continuous sites in El Salvador. Separate inversions of geodetic and seismic data both indicate that up to ˜1 m of coseismic slip occurred along a ˜250-km-long rupture zone between the island of Roatan and the eastern limit of the 1976 M = 7.5 Motagua fault earthquake in Guatemala. Evidence for slip ˜250 km west of the epicentre is corroborated independently by aftershocks recorded by a local seismic network and by the high concentration of damage to structures in areas of northern Honduras adjacent to the western limit of the rupture zone. Coulomb stresses determined from the coseismic slip distribution resolve a maximum of 1 bar of stress transferred to the seismically hazardous Motagua fault and further indicate unclamping of normal faults along the northern shore of Honduras, where two M > 5 normal-faulting earthquakes and numerous small earthquakes were triggered by the main shock.

  18. Low-Stress Upper Plate Near Subduction Zones and Implications for Temporal Changes in Loading Forces

    NASA Astrophysics Data System (ADS)

    Wang, K.; Hu, Y.; Yoshida, K.

    2016-12-01

    Subduction megathrusts are weak, often with effective friction coefficients as low as 0.03. Consequently, differential stress (S1 - S3) in the nearby upper plate is low. Compression due to plate coupling and tension due to gravity are in a subtle balance that can be tipped by small perturbations. For example, the 2011 M=9 Tohoku-oki earthquake, which has a rupture-zone-average stress drop of only a few MPa, switched offshore margin-normal stress from compression to tension and affected seismicity pattern and stress directions of various parts of the land area. The low differential stress is also reflected in spatial variations of stresses, such as with changes in topography. In the Andes, crustal earthquake focal mechanisms change from thrust-faulting in low-elevation areas to normal-faulting in high-elevation areas. Given the lack of evidence for a pervasively weak crust, the low differential stress may indicate that in general the crust near subduction zones is not critically stressed. If so, crustal earthquakes do not represent pervasive failure but only local failure due to stress, material, and fluid pressure heterogeneity. If distributed permanent deformation that creates topography is not the norm, it either happens in brief episodes or took place in the past. The outer wedge may enter a compressively or extensionally critical state due to coseismic strengthening or weakening, respectively, of the shallow megathrust in largest interplate earthquakes. Temporal changes in loading forces must occur also at much larger temporal and spatial scales in response to changes in the nature of the subducting plate and other tectonic conditions. We propose that submarine wedges and high topography in the upper plate attain their geometry in geologically brief episodes of high differential stress. They normally stay in a low-stress stable state, but their geometry often reflects high-stress episodes of critical states in the past. In other words, rocks have a sustained

  19. Evidence for Coseismic Rupture Beyond the Base of the Seismogenic Layer

    NASA Astrophysics Data System (ADS)

    Zielke, O.; Wesnousky, S.

    2010-12-01

    For scientific reasons and hazard assessment it is important to better understand the physics and rupture characteristics of large, destructive earthquakes. However, those events occur infrequently, severely obstructing their analysis. Smaller but more frequent earthquakes are usually studied and their characteristics are extrapolated to assess large earthquake behavior, assuming that small and large events are associated with the same physical processes and parameters. For small and moderate size earthquakes it was observed and independently derived from elastic models that coseismic stress drop is independent of earthquake size and that slip is proportional to the smallest rupture dimension. It is therefore assumed that large earthquake stress drops are essentially equal to the stress drop of their smaller size siblings. It is further assumed that the slip amount of large events does not further increase once it ruptures the full seismogenic layer--the base of the seismogenic layer is commonly thought to limit the earthquake down-dip rupture extend and thus defines the smallest rupture dimension. However, slip observations for many large strike-slip events show how offset gradually increases with rupture length. Two explanations have been formulated: If the rupture width of those events were indeed limited by the base of the seismogenic layer, the observations would imply larger stress drops and possibly other processes involved in large earthquake rupture, questioning the validity of the aforementioned extrapolation from small to large earthquakes. On the other hand, if rupture width of large earthquakes were not limited by the base of the seismogenic layer but were allowed to extend further down (as suggested by recent studies), the increased slip amount may be explained without an increase in stress drop or additional rupture mechanisms for large earthquakes. For the study we present here, we analyzed seismic data constraining the depth extent of large

  20. From coseismic offsets to fault-block mountains

    USGS Publications Warehouse

    Thompson, George A.; Parsons, Thomas E.

    2017-01-01

    In the Basin and Range extensional province of the western United States, coseismic offsets, under the influence of gravity, display predominantly subsidence of the basin side (fault hanging wall), with comparatively little or no uplift of the mountainside (fault footwall). A few decades later, geodetic measurements [GPS and interferometric synthetic aperture radar (InSAR)] show broad (∼100 km) aseismic uplift symmetrically spanning the fault zone. Finally, after millions of years and hundreds of fault offsets, the mountain blocks display large uplift and tilting over a breadth of only about 10 km. These sparse but robust observations pose a problem in that the coesismic uplifts of the footwall are small and inadequate to raise the mountain blocks. To address this paradox we develop finite-element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift, which is predicted to take place within one to two decades after each large earthquake. Thus, the best-preserved topographic signature of earthquakes is expected to occur early in the postseismic period.

  1. From coseismic offsets to fault-block mountains

    PubMed Central

    Thompson, George A.

    2017-01-01

    In the Basin and Range extensional province of the western United States, coseismic offsets, under the influence of gravity, display predominantly subsidence of the basin side (fault hanging wall), with comparatively little or no uplift of the mountainside (fault footwall). A few decades later, geodetic measurements [GPS and interferometric synthetic aperture radar (InSAR)] show broad (∼100 km) aseismic uplift symmetrically spanning the fault zone. Finally, after millions of years and hundreds of fault offsets, the mountain blocks display large uplift and tilting over a breadth of only about 10 km. These sparse but robust observations pose a problem in that the coesismic uplifts of the footwall are small and inadequate to raise the mountain blocks. To address this paradox we develop finite-element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift, which is predicted to take place within one to two decades after each large earthquake. Thus, the best-preserved topographic signature of earthquakes is expected to occur early in the postseismic period. PMID:28847962

  2. From coseismic offsets to fault-block mountains.

    PubMed

    Thompson, George A; Parsons, Tom

    2017-09-12

    In the Basin and Range extensional province of the western United States, coseismic offsets, under the influence of gravity, display predominantly subsidence of the basin side (fault hanging wall), with comparatively little or no uplift of the mountainside (fault footwall). A few decades later, geodetic measurements [GPS and interferometric synthetic aperture radar (InSAR)] show broad (∼100 km) aseismic uplift symmetrically spanning the fault zone. Finally, after millions of years and hundreds of fault offsets, the mountain blocks display large uplift and tilting over a breadth of only about 10 km. These sparse but robust observations pose a problem in that the coesismic uplifts of the footwall are small and inadequate to raise the mountain blocks. To address this paradox we develop finite-element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift, which is predicted to take place within one to two decades after each large earthquake. Thus, the best-preserved topographic signature of earthquakes is expected to occur early in the postseismic period.

  3. From coseismic offsets to fault-block mountains

    NASA Astrophysics Data System (ADS)

    Thompson, George A.; Parsons, Tom

    2017-09-01

    In the Basin and Range extensional province of the western United States, coseismic offsets, under the influence of gravity, display predominantly subsidence of the basin side (fault hanging wall), with comparatively little or no uplift of the mountainside (fault footwall). A few decades later, geodetic measurements [GPS and interferometric synthetic aperture radar (InSAR)] show broad (˜100 km) aseismic uplift symmetrically spanning the fault zone. Finally, after millions of years and hundreds of fault offsets, the mountain blocks display large uplift and tilting over a breadth of only about 10 km. These sparse but robust observations pose a problem in that the coesismic uplifts of the footwall are small and inadequate to raise the mountain blocks. To address this paradox we develop finite-element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift, which is predicted to take place within one to two decades after each large earthquake. Thus, the best-preserved topographic signature of earthquakes is expected to occur early in the postseismic period.

  4. Sensitivity analysis of earthquake-induced static stress changes on volcanoes: the 2010 Mw 8.8 Chile earthquake

    NASA Astrophysics Data System (ADS)

    Bonali, F. L.; Tibaldi, A.; Corazzato, C.

    2015-06-01

    In this work, we analyse in detail how a large earthquake could cause stress changes on volcano plumbing systems and produce possible positive feedbacks in promoting new eruptions. We develop a sensitivity analysis that considers several possible parameters, providing also new constraints on the methodological approach. The work is focus on the Mw 8.8 2010 earthquake that occurred along the Chile subduction zone near 24 historic/Holocene volcanoes, located in the Southern Volcanic Zone. We use six different finite fault-slip models to calculate the static stress change, induced by the coseismic slip, in a direction normal to several theoretical feeder dykes with various orientations. Results indicate different magnitudes of stress change due to the heterogeneity of magma pathway geometry and orientation. In particular, the N-S and NE-SW-striking magma pathways suffer a decrease in stress normal to the feeder dyke (unclamping, up to 0.85 MPa) in comparison to those striking NW-SE and E-W, and in some cases there is even a clamping effect depending on the magma path strike. The diverse fault-slip models have also an effect (up to 0.4 MPa) on the results. As a consequence, we reconstruct the geometry and orientation of the most reliable magma pathways below the 24 volcanoes by studying structural and morphometric data, and we resolve the stress changes on each of them. Results indicate that: (i) volcanoes where post-earthquake eruptions took place experienced earthquake-induced unclamping or very small clamping effects, (ii) several volcanoes that did not erupt yet are more prone to experience future unrest, from the point of view of the host rock stress state, because of earthquake-induced unclamping. Our findings also suggest that pathway orientation plays a more relevant role in inducing stress changes, whereas the depth of calculation (e.g. 2, 5 or 10 km) used in the analysis, is not key a parameter. Earthquake-induced magma-pathway unclamping might contribute to

  5. Stress change and fault interaction from a two century-long earthquake sequence in the central Tell Atlas (Algeria)

    NASA Astrophysics Data System (ADS)

    Kariche, Jughurta; Meghraoui, Mustapha; Ayadi, Abdelhakim; Salah Boughacha, Mohamed

    2017-04-01

    We study the role and distribution of stress transfer that may trigger destructive earthquakes in the Central Tell Atlas (Algeria). A sequence of historical events reaching Ms 7.3 and related stress tensors with thrust faulting mechanisms allows the modeling of the Coulomb Failure Function (deltaCFF). We explore here the physical parameters for a stress transfer along the Tell thrust-and-fold belt taking into account an eastward trending earthquake migration from 1891 to 2003. The Computation integrated the seismicity rate in the deltaCFF computation, which is in good agreement with the migration seismicity. The stress transfer progression and increase of 0.1 to 0.8 bar are obtained on fault planes at 7-km-depth with a friction coefficient µ' 0.4 showing stress loading lobes on targeted coseismic fault zone and location of stress shadow across other thrust-and-fold regions. The Coulomb modeling suggests a distinction in earthquake triggering between zones with moderate-sized and large earthquake ruptures. Recent InSAR and levelling studies and aftershocks that document postseismic deformation of major earthquakes are integrated into the static stress change calculations. The presence of fluid and related poroelastic deformation can be considered as an open question with regards to their contribution to major earthquakes and their implications in the seismic hazard assessment of northern Algeria.

  6. Spatial variations of earthquake occurrence and coseismic deformation in the Upper Rhine Graben, Central Europe

    NASA Astrophysics Data System (ADS)

    Barth, A.; Ritter, J. R. R.; Wenzel, F.

    2015-05-01

    Seismic activity in the densely populated Upper Rhine Graben (URG) is an aspect in the public, political, and industrial decision making process. The spatial analysis of magnitude-frequency distributions provides valuable information about local seismicity patterns and regional seismic hazard assessment and can be used also as a proxy for coseismic deformation to explore the seismo-tectonic setting of the URG. We combine five instrumental and one historic earthquake bulletins to obtain for the first time a consistent database for events with local magnitudes ML ≥ 2.0 in the whole URG and use it for the determination of magnitude frequencies. The data processing results in a dataset with 274 Poisson distributed instrumentally recorded earthquakes within the URG between 01/1971 and 02/2012 and 34 historic events since the year 1250. Our analysis reveals significant b-value variations along the URG that allow us to differentiate four distinct sections (I-IV) with significant differences in earthquake magnitude distributions: I: Basel region in the Swiss-France-German border region (b = 0.83), II: region between Mulhouse and Freiburg in the southern URG (b = 1.42), III: central URG (b = 0.93), and IV: northern URG (b = 1.06). High b-values and thus a relatively low amount of high magnitude events in the Freiburg section are possibly a consequence of strongly segmented, small-scale structures that are not able to accumulate high stresses. We use the obtained magnitude-frequency distributions and representative source mechanisms for each section to determine coseismic displacement rates. A maximum horizontal displacement rate of 41 μm/a around Basel is found whereas only 8 μm/a are derived for the central and northern URG. A comparison with geodetic and geological constraints implies that the coseismic displacement rates cover less than 10% of the overall displacement rates, suggesting a high amount of aseismic deformation in the URG.

  7. Dynamic permeability in fault damage zones induced by repeated coseismic fracturing events

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Doan, M. L.; Mitchell, T. M.

    2017-12-01

    Off-fault fracture damage in upper crustal fault zones change the fault zone properties and affect various co- and interseismic processes. One of these properties is the permeability of the fault damage zone rocks, which is generally higher than the surrounding host rock. This allows large-scale fluid flow through the fault zone that affects fault healing and promotes mineral transformation processes. Moreover, it might play an important role in thermal fluid pressurization during an earthquake rupture. The damage zone permeability is dynamic due to coseismic damaging. It is crucial for earthquake mechanics and for longer-term processes to understand how the dynamic permeability structure of a fault looks like and how it evolves with repeated earthquakes. To better detail coseismically induced permeability, we have performed uniaxial split Hopkinson pressure bar experiments on quartz-monzonite rock samples. Two sample sets were created and analyzed: single-loaded samples subjected to varying loading intensities - with damage varying from apparently intact to pulverized - and samples loaded at a constant intensity but with a varying number of repeated loadings. The first set resembles a dynamic permeability structure created by a single large earthquake. The second set resembles a permeability structure created by several earthquakes. After, the permeability and acoustic velocities were measured as a function of confining pressure. The permeability in both datasets shows a large and non-linear increase over several orders of magnitude (from 10-20 up to 10-14 m2) with an increasing amount of fracture damage. This, combined with microstructural analyses of the varying degrees of damage, suggests a percolation threshold. The percolation threshold does not coincide with the pulverization threshold. With increasing confining pressure, the permeability might drop up to two orders of magnitude, which supports the possibility of large coseismic fluid pulses over relatively

  8. Correlation of Coseismic Velocity and Static Volumetric Strain Changes Induced by the 2010 Mw6.3 Jiasian Earthquake under the Southern Taiwan Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Wu, S. M.; Hung, S. H.

    2015-12-01

    Earthquake-induced temporal changes in seismic velocity of the earth's crust have been demonstrated to be monitored effectively by the time-lapse shifts of coda waves recently. Velocity drop during the coseismic rupture has been explicitly observed in proximity to the epicenters of large earthquakes with different styles of faulting. The origin of such sudden perturbation in crustal properties is closely related to the damage and/or volumetric strain change influenced by seismic slip distribution. In this study, we apply a coda wave interferometry method to investigate potential velocity change in both space and time related to the moderate-sized (Mw6.3) 2010 Jiasian earthquake, which nucleated deeply in the crust (~23 km), ruptured and terminated around the depth of 10 km along a previously unidentified blind thrust fault near the lithotectonic boundary of the southern Taiwan orogenic belt. To decipher the surface and crustal response to this relatively deep rupture, we first measure relative time-lapse changes of coda between different short-term time frames spanning one year covering the pre- and post-seismic stages by using the Moving Window Cross Spectral Method. Rather than determining temporal velocity variations based on a long-term reference stack, we conduct a Bayesian least-squares inversion to obtain the optimal estimates by minimizing the inconsistency between the relative time-lapse shifts of individual short-term stacks. The results show the statistically significant velocity reduction immediately after the mainshock, which is most pronounced at the pairs with the interstation paths traversing through the hanging-wall block of the ruptured fault. The sensitivity of surface wave coda arrivals mainly in the periods of 3-5 s to shear wave speed perturbation is confined within the depth of 10 km, where the crust mostly experienced extensional strain changes induced by the slip distribution from the finite-fault model. Compared with coseismic slip

  9. Mojave Compliant Zone Structure and Properties: Constraints from InSAR and Mechanical Models

    NASA Astrophysics Data System (ADS)

    Hearn, E. H.; Fialko, Y.; Finzi, Y.

    2007-12-01

    Long-lived zones with significantly lower elastic strength than their surroundings are associated with active Mojave faults (e.g., Li et al., 1999; Fialko et al., 2002, 2004). In an earthquake these weak features concentrate strain, causing them to show up as anomalous, short length-scale features in SAR interferograms (Fialko et al., 2002). Fault-zone trapped wave studies indicate that the 1999 Hector Mine earthquake caused a small reduction in P- and S-wave velocities in a compliant zone along the Landers earthquake rupture (Vidale and Li, 2003). This suggests that coseismic strain concentration, and the resulting damage, in the compliant zone caused a further reduction in its elastic strength. Even a small coseismic strength drop should make a compliant zone (CZ) deform, in response to the total (not just the coseismic) stress. The strain should be in the sense which is compatible with the orientations and values of the region's principal stresses. However, as indicated by Fialko and co-workers (2002, 2004), the sense of coseismic strain of Mojave compliant zones was consistent with coseismic stress change, not the regional (background) stress. Here we use finite-element models to investigate how InSAR measurements of Mojave compliant zone coseismic strain places limits on their dimensions and on upper crustal stresses. We find that unless the CZ is shallow, narrow, and has a high Poisson's ratio (e.g., 0.4), CZ contraction under lithostatic stress overshadows deformation due to deviatoric background stress or coseismic stress change. We present ranges of CZ dimensions which are compatible with the observed surface deformation and address how these dimensions compare with new results from damage-controlled fault evolution models.

  10. Identifying coseismic subsidence in tidal-wetland stratigraphic sequences at the Cascadia subduction zone of western North America

    USGS Publications Warehouse

    Nelson, Alan R.; Shennan, Ian; Long, Antony J.

    1996-01-01

    Tidal-wetland stratigraphy reveals that great plate boundary earthquakes have caused hundreds of kilometers of coast to subside at the Cascadia subduction zone. However, determining earthquake recurrence intervals and mapping the coastal extent of past great earthquake ruptures in this region are complicated by the effects of many sedimentologic, hydrographic, and oceanographic processes that occur on the coasts of tectonically passive as well as active continental margins. Tidal-wetland stratigraphy at many Cascadia estuaries differs little from that at similar sites on passive-margin coasts where stratigraphic sequences form through nonseismic processes unrelated to coseismic land level changes. Methods developed through study of similar stratigraphic sequences in Europe provide a framework for investigating the Cascadia estuarine record. Five kinds of criteria must be evaluated when inferring regional coastal subsidence due to great plate boundary earthquakes: the suddenness and amount of submergence, the lateral extent of submerged tidal-wetland soils, the coincidence of submergence with tsunami deposits, and the degree of synchroneity of submergence events at widely spaced sites. Evaluation of such criteria at the Cascadia subduction zone indicates regional coastal subsidence during at least two great earthquakes. Evidence for a coseismic origin remains equivocal, however, for the many peat-mud contacts in Cascadia stratigraphic sequences that lack (1) contrasts in lithology or fossils indicative of more than half a meter of submergence, (2) well-studied tsunami deposits, or (3) precise ages needed for regional correlation. Paleoecologic studies of fossil assemblages are particularly important in estimating the size of sudden sea level changes recorded by abrupt peat-mud contacts and in helping to distinguish erosional and gradually formed contacts from coseismic contacts. Reconstruction of a history of great earthquakes for the Cascadia subduction zone will

  11. Coseismic slip distribution of the 1923 Kanto earthquake, Japan

    USGS Publications Warehouse

    Pollitz, F.F.; Nyst, M.; Nishimura, T.; Thatcher, W.

    2005-01-01

    The slip distribution associated with the 1923 M = 7.9 Kanto, Japan, earthquake is reexamined in light of new data and modeling. We utilize a combination of first-order triangulation, second-order triangulation, and leveling data in order to constrain the coseismic deformation. The second-order triangulation data, which have not been utilized in previous studies of 1923 coseismic deformation, are associated with only slightly smaller errors than the first-order triangulation data and expand the available triangulation data set by about a factor of 10. Interpretation of these data in terms of uniform-slip models in a companion study by Nyst et al. shows that a model involving uniform coseismic slip on two distinct rupture planes explains the data very well and matches or exceeds the fit obtained by previous studies, even one which involved distributed slip. Using the geometry of the Nyst et al. two-plane slip model, we perform inversions of the same geodetic data set for distributed slip. Our preferred model of distributed slip on the Philippine Sea plate interface has a moment magnitude of 7.86. We find slip maxima of ???8-9 m beneath Odawara and ???7-8 m beneath the Miura peninsula, with a roughly 2:1 ratio of strike-slip to dip-slip motion, in agreement with a previous study. However, the Miura slip maximum is imaged as a more broadly extended feature in our study, with the high-slip region continuing from the Miura peninsula to the southern Boso peninsula region. The second-order triangulation data provide good evidence for ???3 m right-lateral strike slip on a 35-km-long splay structure occupying the volume between the upper surface of the descending Philippine Sea plate and the southern Boso peninsula. Copyright 2005 by the American Geophysical Union.

  12. The impact of static stress change, dynamic stress change, and the background stress on aftershock focal mechanisms

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2014-01-01

    The focal mechanisms of earthquakes in Southern California before and after four M ≥ 6.7 main shocks provide insight into how fault systems respond to stress and changes in stress. The main shock static stress changes have two observed impacts on the seismicity: changing the focal mechanisms in a given location to favor those aligned with the static stress change and changing the spatial distribution of seismicity to favor locations where the static stress change aligns with the background stress. The aftershock focal mechanisms are significantly aligned with the static stress changes for absolute stress changes of ≥ 0.02 MPa, for up to ~20 years following the main shock. The dynamic stress changes have similar, although smaller, effects on the local focal mechanisms and the spatial seismicity distribution. Dynamic stress effects are best observed at long periods (30–60 s) and for metrics based on repeated stress cycling in the same direction. This implies that dynamic triggering operates, at least in part, through cyclic shear stress loading in the direction of fault slip. The background stress also strongly controls both the preshock and aftershock mechanisms. While most aftershock mechanisms are well oriented in the background stress field, 10% of aftershocks are identified as poorly oriented outliers, which may indicate limited heterogeneity in the postmain shock stress field. The fault plane orientations of the outliers are well oriented in the background stress, while their slip directions are not, implying that the background stress restricts the distribution of available fault planes.

  13. Coseismic Contortion and Coupled Nocturnal Ionospheric Perturbations During 2016 Kaikoura, Mw 7.8 New Zealand Earthquake

    NASA Astrophysics Data System (ADS)

    Bagiya, Mala S.; Sunil, P. S.; Sunil, A. S.; Ramesh, D. S.

    2018-02-01

    The oblique-thrust Kaikoura earthquake of Mw 7.8 that struck New Zealand on 13 November 2016 at 11:02:56 UTC (local time at 00:02:56 a.m. on 14 November 2016) was one of the most geometrically and tectonically complex earthquakes recorded onshore in modern seismology. The event ruptured in the region of multisegmented faults and propagated unilaterally northeastward for more than 170 km from the epicenter. The GPS derived coseismic surface displacements reveal a larger widespread horizontal and vertical coseismic surface offsets of 6 m and 2 m, respectively, with two distinct tectonic thrust zones. We study the characteristics of coseismic ionospheric perturbations based on tectonic and nontectonic forcing mechanisms and demonstrate that these perturbations are linked to two distinct surface thrust zones with rotating horizontal reinforcement trending the rupture, rather than merely to the displacements oriented along the rupture propagation direction.

  14. Characteristics of a Sensitive Well Showing Pre-Earthquake Water-Level Changes

    NASA Astrophysics Data System (ADS)

    King, Chi-Yu

    2018-04-01

    Water-level data recorded at a sensitive well next to a fault in central Japan between 1989 and 1998 showed many coseismic water-level drops and a large (60 cm) and long (6-month) pre-earthquake drop before a rare local earthquake of magnitude 5.8 on 17 March 1997, as well as 5 smaller pre-earthquake drops during a 7-year period prior to this earthquake. The pre-earthquake changes were previously attributed to leakage through the fault-gouge zone caused by small but broad-scaled crustal-stress increments. These increments now seem to be induced by some large slow-slip events. The coseismic changes are attributed to seismic shaking-induced fissures in the adjacent aquitards, in addition to leakage through the fault. The well's high-sensitivity is attributed to its tapping a highly permeable aquifer, which is connected to the fractured side of the fault, and its near-critical condition for leakage, especially during the 7 years before the magnitude 5.8 earthquake.

  15. Preseismic Velocity Changes Observed from Active Source Monitoringat the Parkfield SAFOD Drill Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daley, Thomas; Niu, Fenglin; Silver, Paul G.

    2008-06-10

    Measuring stress changes within seismically active fault zones has been a long-sought goal of seismology. Here we show that such stress changes are measurable by exploiting the stress dependence of seismic wave speed from an active source cross-well experiment conducted at the SAFOD drill site. Over a two-month period we observed an excellent anti-correlation between changes in the time required for an S wave to travel through the rock along a fixed pathway--a few microseconds--and variations in barometric pressure. We also observed two large excursions in the traveltime data that are coincident with two earthquakes that are among those predictedmore » to produce the largest coseismic stress changes at SAFOD. Interestingly, the two excursions started approximately 10 and 2 hours before the events, respectively, suggesting that they may be related to pre-rupture stress induced changes in crack properties, as observed in early laboratory studies.« less

  16. GPS coseismic and postseismic surface displacements of the El Mayor-Cucapah earthquake

    NASA Astrophysics Data System (ADS)

    Gonzalez, A.; Gonzalez-Garcia, J. J.; Sandwell, D. T.; Fialko, Y.; Agnew, D. C.; Lipovsky, B.; Fletcher, J. M.; Nava Pichardo, F. A.

    2010-12-01

    GPS surveys were performed after the El Mayor Cucapah earthquake Mw 7.2 in northern Baja California by scientists from CICESE, UCSD, and UCR. Six of the sites were occupied for several weeks to capture the postseismic deformation within a day of the earthquake. We calculated the coseismic displacement for 22 sites with previous secular velocity in ITRF2005 reference frame and found 1.160±0.016 m of maximum horizontal displacement near the epicentral area at La Puerta location, and 0.636±0.036 m of vertical offset near Ejido Durango. Most of the GPS sites are located East of the main rupture in Mexicali Valley, 5 are located West at Sierra Juarez and South near San Felipe. We present a velocity field before, along with coseismic displacements and early postseismic features related to the El Mayor-Cucapah earthquake.

  17. Coseismic and Afterslip Model Related to 25 April 2015, Mw7.8 Gorkha, Nepal Earthquake and its Potential Future Risk Regions

    NASA Astrophysics Data System (ADS)

    Wang, S.; Xu, C.; Jiang, G.

    2016-12-01

    Evidences from geologic, geophysical and geomorphic prove that 2015 Mw 7.8 Gorkha(Nepal) earthquake happened on the two ramp-flats fault structure of Main Himalayan Thrust(MHT). We approximated this more realistic fault model by a smooth curved fault surface, which was derived by the method of hybrid iterative inversion algorithm(HIIA) with additional constraints from coseismic geodetic data. Then the coseismic slip distribution of 2015 Gorkha earthquake was imaged based on this curved variably triangular sized fault model. The inverted maximum thrust and right-lateral slip components are 6 and 1.5 m, respectively, with the maximum slip magnitude 6.2 m located at a depth of 15 km. The released seismic moment derived from our best slip model is 8.58×1020 Nm, equivalent to a moment magnitude of Mw 7.89. We find two interesting tongue-shape slip areas, the maximum slip is about 1.5 m, along the up-dip of fault plane, which tappers off at the depth of 7 km, the up-dip propagation of ruptures may be impeded by the complicated geometry structures on the MHT interface. Coulomb Failure Stress(CFS), triggered by our optimal slip model, indicating a potential shallower rupture in the future. Considering historical earthquakes distribution and the calculated strain and strain gradient before this earthquake, earthquakes are expected to occur in the northwest areas of the epicenter. The spatio-temporal afterslip model over the first 180 days following the Mw 7.8 main shock was infered from the post-seismic GPS time series. One significant afterslip region can be observed in the downdip of the regions that ruptured by coseismic slip. Another afterslip region arresting our attention, is located around 40 km depth, with about 180 mm slip amplitude, but tappers off at the depth of 50 km. What's more, afterslip mainly occurs within 100 days after the 2015 Gorkha earthquake. Under the assumption of rigidity modulus u = 30 GPa, the released seismic moment by afterslip corresponding

  18. Long-term changes to river regimes prior to late Holocene coseismic faulting, Canterbury, New Zealand

    NASA Astrophysics Data System (ADS)

    Campbell, Jocelyn K.; Nicol, Andrew; Howard, Matthew E.

    2003-09-01

    Two sites are described from range front faults along the foothills of the Southern Alps of New Zealand, where apparently a period of 200-300 years of accelerated river incision preceded late Holocene coseismic ruptures, each probably in excess of M w 7.5. They relate to separate fault segments and seismic events on a transpressive system associated with fault-driven folding, but both show similar evidence of off-plane aseismic deformation during the downcutting phase. The incision history is documented by the ages, relative elevations and profiles of degradation terraces. The surface dating is largely based on the weathering rind technique of McSaveney (McSaveney, M.J., 1992. A Manual for Weathering-rind Dating of Grey Sandstones of the Torlesse Supergroup, New Zealand. 92/4, Institute of Geological and Nuclear Sciences), supported by some consistent radiocarbon ages. On the Porters Pass Fault, drainage from Red Lakes has incised up to 12 m into late Pleistocene recessional outwash, but the oldest degradation terrace surface T I is dated at only 690±50 years BP. The upper terraces T I and T II converge uniformly downstream right across the fault trace, but by T III the terrace has a reversed gradient upstream. T II and T III break into multiple small terraces on the hanging wall only, close to the fault trace. Continued backtilting during incision caused T IV to diverge downstream relative to the older surfaces. Coseismic faulting displaced T V and all the older terraces by a metre high reverse scarp and an uncertain right lateral component. This event cannot be younger than a nearby ca. 500 year old rock avalanche covering the trace. The second site in the middle reaches of the Waipara River valley involves the interaction of four faults associated with the Doctors Anticline. The main river and tributaries have incised steeply into a 2000 year old mid-Holocene, broad, degradation surface downcutting as much as 55 m. Beginning approximately 600 years ago

  19. Structural context of the 2015 pair of Nepal earthquakes (Mw 7.8 and Mw 7.3): an analysis based on slip distribution, aftershock growth, and static stress changes

    NASA Astrophysics Data System (ADS)

    Parameswaran, Revathy M.; Rajendran, Kusala

    2017-04-01

    The Great Himalayan earthquakes are believed to originate on the Main Himalayan Thrust, and their ruptures lead to deformation along the Main Frontal Thrust (MFT). The rupture of the April 25, 2015 (Mw 7.8), earthquake was east-directed, with no part relayed to the MFT. The aftershock distribution, coseismic elevation change of 1 m inferred from the InSAR image, and the spatial correspondence of the subtle surface deformations with PT2, a previously mapped out-of-sequence thrust, lead us to explore the role of structural heterogeneities in constraining the rupture progression. We used teleseismic moment inversion of P- and SH-waves, and Coulomb static stress changes to map the slip distribution, and growth of aftershock area, to understand their relation to the thrust systems. Most of the aftershocks were sourced outside the stress shadows (slip >1.65 m) of the April 25 earthquake. The May 12 (Mw 7.3) earthquake that sourced on a contiguous patch coincides with regions of increased stress change and therefore is the first known post-instrumentation example of a late, distant, and large triggered aftershock associated with any large earthquake in the Nepal Himalaya. The present study relates the slip, aftershock productivity, and triggering of unbroken stress barriers, to potential out-of-sequence thrusts, and suggests the role of stress transfer in generating large/great earthquakes.

  20. Change in stress with seismic cycles identified at an out of sequence thrust in an on-land accretionary complex: The Nobeoka thrust, Shimanto Belt, Kyusyu, SW Japan

    NASA Astrophysics Data System (ADS)

    Yamaguchi, M.; Hashimoto, Y.; Yamaguchi, A.; Kimura, G.

    2011-12-01

    Seismic surveys along accretionary prisms have revealed that the out-of sequence thrusts (OSTs) are commonly developed within accretionary wedges branching from seismogenic subduction plate boundaries. The OSTs are also recognized in on-land accretionary complexes as large thrust faults cutting paleo-thermal structures. The OSTs are thought to play a role in tsunami genesis at a coseismic event. Stress history on OSTs is significant to understand the OSTs' role in seismic cycles. We estimated, thus palaeostresses from micro-faults along an OST in an on-land accretionary complexes. We focused on the Nobeoka fault which is an OST in an on-land accretionary complex, the Shimato Belt, Kyusyu, SW Japan. A gap in paleothermal temperature (up to 70 degree C) is observed at the fault. The Nobeoka thrust strikes almost EW at coastline. The Cretaceous Makimine formation and Paleogene Kitagawa formation are located at the hanging wall of the fault, comprising mainly of pelitic schist. The footwall of the fault is the Paleogene Hyuga formation composed mainly of shale. A lot of micro-faults are well developed just below the thrust for a few hundred meters to the south. Those micro faults are considered to be related to the Nobeoka thurst because slip direction and sense of the micro-faults are consistent with that of the Nobeoka thrust. The micro-faults are commonly accompanied by mineral veins of quartz and ankerite. Yamaguchi et al. (2010) suggested that the differences of mineral veins are possibly related to the seismic cycle. In this study, we conducted stress inversion analysis for the micro-faults to examine the change in stress between them, which might be related to the seismic cycle. We divided the micro-fault into two as a micro-fault with quartz veins and that with ankerite veins. Slip direction from slicken fibers and slip sense by slicken steps were obtained. HIM (hough inversion method) by Yamaji et al. (2006) was used to estimate the stress. Two stress states

  1. Inverting Coseismic TEC Disturbances for Neutral Atmosphere Pressure Wave

    NASA Astrophysics Data System (ADS)

    Lee, R. F.; Mikesell, D.; Rolland, L.

    2017-12-01

    Research from the past 20 years has shown that we can detect coseismic disturbances in the total electron content (TEC) using global navigation space systems (GNSS). In the near field, TEC disturbances are created by the direct wave from rupture on the surface. This pressure wave travels through the neutral atmosphere to the ionosphere within about 10 minutes. This provides the opportunity to almost immediately characterize the source of the acoustic disturbance on the surface using methods from seismology. In populated areas, this could provide valuable information to first responders. To retrieve the surface motion amplitude information we must account for changes in the waveform caused by the geomagnetic field, motion of the satellites and the geometry of the satellites and receivers. One method is to use a transfer function to invert for the neutral atmosphere pressure wave. Gómez et al (2015) first employed an analytical model to invert for acoustic waves produced by Rayleigh waves propagating along the Earth's surface. Here, we examine the same model in the near field using the TEC disturbances from the direct wave produced by rupture at the surface. We compare results from the forward model against a numerical model that has been shown to be in good agreement with observations from the 2011 Van (Turkey) earthquake. We show the forward model predictions using both methods for the Van earthquake. We then analyze results for hypothetical events at different latitudes and discuss the reliability of the analytical model in each scenario. Gómez, D., R. Jr. Smalley, C. A. Langston, T. J. Wilson, M. Bevis, I. W. D. Dalziel, E. C. Kendrick, S. A. Konfal, M. J. Willis, D. A. Piñón, et al. (2015), Virtual array beamforming of GPS TEC observations of coseismic ionospheric disturbances near the Geomagnetic South Pole triggered by teleseismic megathrusts, J. Geophys. Res. Space Physics, 120, 9087-9101, doi:10.1002/2015JA021725.

  2. Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes

    NASA Astrophysics Data System (ADS)

    Roeloffs, Evelyn A.

    1998-01-01

    Coseismic water level rises in the 30-m deep Bourdieu Valley (BV) well near Parkfield, California, have occurred in response to three local and five distant earthquakes. Coseismic changes in static strain cannot explain these water level rises because (1) the well is insensitive to strain at tidal periods; (2) for the distant earthquakes, the expected coseismic static strain is extremely small; and (3) the water level response is of the incorrect sign for the local earthquakes. These water level changes must therefore be caused by seismic waves, but unlike seismic water level oscillations, they are monotonic, persist for days or weeks, and seem to be caused by waves with periods of several seconds rather than long-period surface waves. Other investigators have reported a similar phenomenon in Japan. Certain wells consistently exhibit this type of coseismic water level change, which is always in the same direction, regardless of the earthquake's azimuth or focal mechanism, and approximately proportional to the inverse square of hypocentral distance. To date, the coseismic water level rises in the B V well have never exceeded the seasonal water level maximum, although their sizes are relatively well correlated with earthquake magnitude and distance. The frequency independence of the well's response to barometric pressure in the frequency band 0.1 to 0.7 cpd implies that the aquifer is fairly well confined. High aquifer compressibility, probably due to a gas phase in the pore space, is the most likely reason why the well does not respond to Earth tides. The phase and amplitude relationships between the seasonal water level and precipitation cycles constrain the horizontal hydraulic diffusivity to within a factor of 4.5, bounding hypothetical earthquake-induced changes in aquifer hydraulic properties. Moreover, changes of hydraulic conductivity and/or diffusivity throughout the aquifer would not be expected to change the water level in the same direction at every time

  3. Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes

    USGS Publications Warehouse

    Roeloffs, E.A.

    1998-01-01

    Coseismic water level rises in the 30-m deep Bourdieu Valley (BV) well near Parkfield, California, have occurred in response to three local and five distant earthquakes. Coseismic changes in static strain cannot explain these water level rises because (1) the well is insensitive to strain at tidal periods; (2) for the distant earthquakes, the expected coseismic static strain is extremely small; and (3) the water level response is of the incorrect sign for the local earthquakes. These water level changes must therefore be caused by seismic waves, but unlike seismic water level oscillations, they are monotonic, persist for days or weeks, and seem to be caused by waves with periods of several seconds rather than long-period surface waves. Other investigators have reported a similar phenomenon in Japan. Certain wells consistently exhibit this type of coseismic water level change, which is always in the same direction, regardless of the earthquake's azimuth or focal mechanism, and approximately proportional to the inverse square of hypocentral distance. To date, the coseismic water level rises in the BV well have never exceeded the seasonal water level maximum, although their sizes are relatively well correlated with earthquake magnitude and distance. The frequency independence of the well's response to barometric pressure in the frequency band 0.1 to 0.7 cpd implies that the aquifer is fairly well confined. High aquifer compressibility, probably due to a gas phase in the pore space, is the most likely reason why the well does not respond to Earth tides. The phase and amplitude relationships between the seasonal water level and precipitation cycles constrain the horizontal hydraulic diffusivity to within a factor of 4.5, bounding hypothetical earthquake-induced changes in aquifer hydraulic properties. Moreover, changes of hydraulic conductivity and/or diffusivity throughout the aquifer would not be expected to change the water level in the same direction at every time

  4. High-precision coseismic displacement estimation with a single-frequency GPS receiver

    NASA Astrophysics Data System (ADS)

    Guo, Bofeng; Zhang, Xiaohong; Ren, Xiaodong; Li, Xingxing

    2015-07-01

    To improve the performance of Global Positioning System (GPS) in the earthquake/tsunami early warning and rapid response applications, minimizing the blind zone and increasing the stability and accuracy of both the rapid source and rupture inversion, the density of existing GPS networks must be increased in the areas at risk. For economic reasons, low-cost single-frequency receivers would be preferable to make the sparse dual-frequency GPS networks denser. When using single-frequency GPS receivers, the main problem that must be solved is the ionospheric delay, which is a critical factor when determining accurate coseismic displacements. In this study, we introduce a modified Satellite-specific Epoch-differenced Ionospheric Delay (MSEID) model to compensate for the effect of ionospheric error on single-frequency GPS receivers. In the MSEID model, the time-differenced ionospheric delays observed from a regional dual-frequency GPS network to a common satellite are fitted to a plane rather than part of a sphere, and the parameters of this plane are determined by using the coordinates of the stations. When the parameters are known, time-differenced ionospheric delays for a single-frequency GPS receiver could be derived from the observations of those dual-frequency receivers. Using these ionospheric delay corrections, coseismic displacements of a single-frequency GPS receiver can be accurately calculated based on time-differenced carrier-phase measurements in real time. The performance of the proposed approach is validated using 5 Hz GPS data collected during the 2012 Nicoya Peninsula Earthquake (Mw 7.6, 2012 September 5) in Costa Rica. This shows that the proposed approach improves the accuracy of the displacement of a single-frequency GPS station, and coseismic displacements with an accuracy of a few centimetres are achieved over a 10-min interval.

  5. Using gravity as a proxy for stress accumulation in complex fault systems

    NASA Astrophysics Data System (ADS)

    Hayes, Tyler Joseph

    The gravity signal contains information regarding changes in density at all depths and can be used as a proxy for the strain accumulation in fault networks. A general method for calculating the total, dilatational, and free-air gravity for fault systems with arbitrary geometry, slip motion, and number of fault segments is presented. The technique uses a Green's function approach for a fault buried within an elastic half-space with an underlying driver plate forcing the system. A stress-evolution time-dependent earthquake fault model was used to create simulated slip histories over the San Andreas Fault network in California. Using a sum of the gravity signals from each fault segment in the model, via coseismic gravity Green's functions, a time-dependent gravity model was created. The steady-state gravity from the long term plate motion generates a signal over five years with magnitudes of +/- ˜2 muGal; the current limit of portable instrument observations. Moderate to large events generate signal magnitudes in the range of ˜10 muGal to ˜80 muGal, well within the range of ground based observations. The complex fault network geometry of California significantly affects the spatial extent of the gravity signal from the three events studied. Statistical analysis of 55 000 years of simulated slip histories were used to investigate the use of the dilatational gravity signal as a proxy for precursory stress and strain changes. Results indicate that the precursory dilatational gravity signal is dependent upon the fault orientation with respect the tectonic loading plate velocity. This effect is interpreted as a consequence of preferential amplification of the shear stress or reduction of the normal stress, depending on the steady-state regime investigated. Finally, solutions for the corresponding gravity gradients of the coseismic dilatational gravity signals are developed for a vertical strike-slip fault. Gravity gradient solutions exhibit similar spatial distributions

  6. Characterizing subaqueous co-seismic scarps using coeval specific sedimentary events; a case study in Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Beck, C.; Reyss, J.; Feuillet, N.; Leclerc, F.; Moreno, E.

    2012-12-01

    Improvements of active fault surveying have shown that creep, or alternating creep and co-seismic displacements, are not rare. Nevertheless, either on land (trenching), or in subaqueous setting (seismic imaging and coring), active fault offsets, investigated for paleoseismic purpose, are sometimes assumed as co-seismic without direct evidences. At the opposite, within adequate sedimentary archives, some gravity reworking events may be attributed to earthquake triggering, but often do not permit to locate the responsible fault and the co-seismic rupture. In the here-discussed example, both types of observations could be associated: faulting offsets and specific sedimentary events "sealing" them. Several very high resolution (VHR) seismic profiles obtained during The GWADASEIS cruise (Lesser Antilles volcanic arc, February-March 2009) evidenced frequent "ponding" of reworked sediments in the deepest areas. These bodies are acoustically transparent (few ms t.w.t. thick) and often deposited on the hanging walls of dominantly normal faults, at the base of scarps, as previously observed along the North Anatolian Fault (Beck et al., 2007, doi:10.1016/j.sedgeo.2005.12.031). Their thicknesses appear sufficient to compensate (i.e. bury) successive offsets, resulting in a flat and horizontal sea floor through time. Offshore Montserrat and Nevis islands, piston coring (4 to 7 m long) was dedicated to characterize the most recent of these particular layers. An up to 2m-thick "homogenite" appears capping the RedOx water/sediment interface. 210Pb and 137Cs activities lack in the homogenite, while a normal unsupported 210Pb decrease profile and a 137Cs peak, corresponding to the Atmospheric Nuclear Experiments (1962), are present below (Beck et al. 2012, doi:10.5194/nhess-12-1-2012). This sedimentary event and the coeval scarp are post-1970 AD, and attributed either to the March 16th 1985 earthquake or to the October 8th 1974 one (respectively Mw6.3 and Mw7.4). Based on the

  7. Frictional melting experiments investigate coseismic behaviour of pseudotachylyte-bearing faults in the Outer Hebrides Fault Zone, UK.

    NASA Astrophysics Data System (ADS)

    Campbell, L.; De Paola, N.; Nielsen, S. B.; Holdsworth, R.; Lloyd, G. E. E.; Phillips, R. J.; Walcott, R.

    2015-12-01

    Recent experimental studies, performed at seismic slip rates (≥ 1 m/s), suggest that the friction coefficient of seismic faults is significantly lower than at sub-seismic (< 1 mm/s) speeds. Microstructural observations, integrated with theoretical studies, suggest that the weakening of seismic faults could be due to a range of thermally-activated mechanisms (e.g. gel, nanopowder and melt lubrication, thermal pressurization, viscous flow), triggered by frictional heating in the slip zone. The presence of pseudotachylyte within both exhumed fault zones and experimental slip zones in crystalline rocks suggests that lubrication plays a key role in controlling dynamic weakening during rupture propagation. The Outer Hebrides Fault Zone (OHFZ), UK contains abundant pseudotachylyte along faults cutting varying gneissic lithologies. Our field observations suggest that the mineralogy of the protolith determines volume, composition and viscosity of the frictional melt, which then affects the coseismic weakening behaviour of the fault and has important implications for the magnitudes and distribution of stress drops during slip episodes. High velocity friction experiments at 18 MPa axial load, 1.3 ms-1 and up to 10 m slip were run on quartzo-feldspathic, metabasic and mylonitic samples, taken from the OHFZ in an attempt to replicate its coseismic frictional behaviour. These were configured in cores of a single lithology, or in mixed cores with two rock types juxtaposed. All lithologies produce a general trend of frictional evolution, where an initial peak followed by transient weakening precedes a second peak which then decays to a steady state. Metabasic and felsic single-lithology samples both produce sharper frictional peaks, at values of μ = 0.19 and μ= 0.37 respectively, than the broader and smaller (μ= 0.15) peak produced by a mixed basic-felsic sample. In addition, both single-lithology peaks occur within 0.2 m slip, whereas the combined-lithology sample displays a

  8. Effects on Chilean Vertical Reference Frame due to the Maule Earthquake co-seismic and post-seismic effects

    NASA Astrophysics Data System (ADS)

    Montecino, Henry D.; de Freitas, Silvio R. C.; Báez, Juan C.; Ferreira, Vagner G.

    2017-12-01

    The Maule Earthquake (Mw = 8.8) of February 27, 2010 is among the strongest earthquakes that occurred in recent years throughout the world. The crustal deformation caused by this earthquake has been widely studied using GNSS, InSAR and gravity observations. However, there is currently no estimation of the possible vertical deformations produced by co-seismic and post-seismic effects in segments of the Chilean Vertical Reference Frame (CHVRF). In this paper, we present an estimation of co-seismic and post-seismic deformations on the CHVRF using an indirect approach based on GNSS and Gravity Recovery and Climate Experiment (GRACE) data as well as by applying a trajectory model. GNSS time series were used from 10 continuous GNSS stations in the period from 2007 to 2015, as well as 28 GNSS temporary stations realized before and after the earthquake, and 34 vertical deformation vectors in the region most affected by the earthquake. We considered a set of 147 monthly solutions of spherical harmonic gravity field that were expanded up to degree, as well as order 96 of the GRACE mission provided by Center for Space Research, University of Texas at Austin (UT-CSR) process center. The magnitude of vertical deformation was estimated in part of the Chilean vertical network due to the co-seismic and post-seismic effects. Once we evaluated the hydrological effect, natural and artificial jumps, and the effect of glacial isostatic adjustment in GNSS and GRACE time series, the maximum values associated to co- and post-seismic deformations on orthometric height were found to be ∼-34 cm and 5 cm, respectively. Overall, the deformation caused by the Maule earthquake in orthometric heights is almost entirely explained by the variation in the ellipsoidal heights (over 85% in co-seismic jump); however, coseismic jump in the geoid reached -3.3 mm, and could influence the maintenance of a modern vertical reference network in a medium to long term. We evaluated the consistency for a

  9. Measuring the Coseismic Displacements of 2010 Ms7.1 Yushu Earthquake by Using SAR and High Resolution Optical Satellite Images

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wu, J.; Shi, F.

    2017-09-01

    After the 2010, Mw7.1, Yushu earthquake, many researchers have conducted detail investigations of the surface rupture zone by optical image interpretation, field surveying and inversion of seismic waves. However, how larger of the crustal deformation area caused by the earthquake and the quantitative co-seismic displacements are still not available. In this paper, we first take advantage of D-InSAR, MAI, and optical image matching methods to determine the whole co-seismic displacement fields. Two PALSAR images and two SPOT5 images before and after the earthquake are processed and the co-seismic displacements at the surface rupture zone and far field are obtained. The results are consistent with the field investigations, which illustrates the rationality of the application of optical image matching technology in the earthquake.

  10. Improving Models for Coseismic And Postseismic Deformation from the 2002 Denali, Alaska Earthquake

    NASA Astrophysics Data System (ADS)

    Harper, H.; Freymueller, J. T.

    2016-12-01

    Given the multi-decadal temporal scale of postseismic deformation, predictions of previous models for postseismic deformation resulting from the 2002 Denali Fault earthquake (M 7.9) do not agree with longer-term observations. In revising the past postseismic models with what is now over a decade of data, the first step is revisiting coseismic displacements and slip distribution of the earthquake. Advances in processing allow us to better constrain coseismic displacement estimates, which affect slip distribution predictions in modeling. Additionally, an updated slip model structure from a homogeneous model to a layered model rectifies previous inconsistencies between coseismic and postseismic models. Previous studies have shown that two primary processes contribute to postseismic deformation: afterslip, which decays with a short time constant; and viscoelastic relaxation, which decays with a longer time constant. We fit continuous postseismic GPS time series with three different relaxation models: 1) logarithmic decay + exponential decay, 2) log + exp + exp, and 3) log + log + exp. A grid search is used to minimize total model WRSS, and we find optimal relaxation times of: 1) 0.125 years (log) and 21.67 years (exp); 2) 0.14 years (log), 0.68 years (exp), and 28.33 years (exp); 3) 0.055 years (log), 14.44 years (log), and 22.22 years (exp). While there is not a one-to-one correspondence between a particular decay constant and a mechanism, the optimization of these constants allows us to model the future timeseries and constrain the contribution of different postseismic processes.

  11. Coseismic and initial postseismic deformation from the 2004 Parkfield, California, earthquake, observed by global positioning system, electronic distance meter, creepmeters, and borehole strainmeters

    USGS Publications Warehouse

    Langbein, J.; Murray, J.R.; Snyder, H.A.

    2006-01-01

    Global Positioning System (GPS), electronic distance meter, creepmeter, and strainmeter measurements spanning the M 6.0 Parkfield, California, earthquake are examined. Using these data from 100 sec through 9 months following the main-shock, the Omori's law, with rate inversely related to time, l/t p and p ranging between 0.7 and 1.3, characterizes the time-dependent deformation during the post-seismic period; these results are consistent with creep models for elastic solids. With an accurate function of postseismic response, the coseismic displacements can be estimated from the high-rate, 1-min sampling GPS; and the coseismic displacements are approximately 75% of those estimated from the daily solutions. Consequently, fault-slip models using daily solutions overestimate coseismic slip. In addition, at 2 months and at 8 months following the mainshock, postseismic displacements are modeled as slip on the San Andreas fault with a lower bound on the moment exceeding that of the coseismic moment.

  12. The 2014, MW6.9 North Aegean earthquake: seismic and geodetic evidence for coseismic slip on persistent asperities

    NASA Astrophysics Data System (ADS)

    Konca, Ali Ozgun; Cetin, Seda; Karabulut, Hayrullah; Reilinger, Robert; Dogan, Ugur; Ergintav, Semih; Cakir, Ziyadin; Tari, Ergin

    2018-05-01

    We report that asperities with the highest coseismic slip in the 2014 MW6.9 North Aegean earthquake persisted through the interseismic, coseismic and immediate post-seismic periods. We use GPS and seismic data to obtain the source model of the 2014 earthquake, which is located on the western extension of the North Anatolian Fault (NAF). The earthquake ruptured a bilateral, 90 km strike-slip fault with three slip patches: one asperity located west of the hypocentre and two to the east with a rupture duration of 40 s. Relocated pre-earthquake seismicity and aftershocks show that zones with significant coseismic slip were relatively quiet during both the 7 yr of interseismic and the 3-month aftershock periods, while the surrounding regions generated significant seismicity during both the interseismic and post-seismic periods. We interpret the unusually long fault length and source duration, and distribution of pre- and post-main-shock seismicity as evidence for a rupture of asperities that persisted through strain accumulation and coseismic strain release in a partially coupled fault zone. We further suggest that the association of seismicity with fault creep may characterize the adjacent Izmit, Marmara Sea and Saros segments of the NAF. Similar behaviour has been reported for sections of the San Andreas Fault, and some large subduction zones, suggesting that the association of seismicity with creeping fault segments and rapid relocking of asperities may characterize many large earthquake faults.

  13. Coseismic rupturing stopped by Aso volcano during the 2016 Mw 7.1 Kumamoto earthquake, Japan.

    PubMed

    Lin, A; Satsukawa, T; Wang, M; Mohammadi Asl, Z; Fueta, R; Nakajima, F

    2016-11-18

    Field investigations and seismic data show that the 16 April 2016 moment magnitude (M w ) 7.1 Kumamoto earthquake produced a ~40-kilometer-long surface rupture zone along the northeast-southwest-striking Hinagu-Futagawa strike-slip fault zone and newly identified faults on the western side of Aso caldera, Kyushu Island, Japan. The coseismic surface ruptures cut Aso caldera, including two volcanic cones inside it, but terminate therein. The data show that northeastward propagation of coseismic rupturing terminated in Aso caldera because of the presence of magma beneath the Aso volcanic cluster. The seismogenic faults of the 2016 Kumamoto earthquake may require reassessment of the volcanic hazard in the vicinity of Aso volcano. Copyright © 2016, American Association for the Advancement of Science.

  14. Linking megathrust earthquakes to brittle deformation in a fossil accretionary complex

    PubMed Central

    Dielforder, Armin; Vollstaedt, Hauke; Vennemann, Torsten; Berger, Alfons; Herwegh, Marco

    2015-01-01

    Seismological data from recent subduction earthquakes suggest that megathrust earthquakes induce transient stress changes in the upper plate that shift accretionary wedges into an unstable state. These stress changes have, however, never been linked to geological structures preserved in fossil accretionary complexes. The importance of coseismically induced wedge failure has therefore remained largely elusive. Here we show that brittle faulting and vein formation in the palaeo-accretionary complex of the European Alps record stress changes generated by subduction-related earthquakes. Early veins formed at shallow levels by bedding-parallel shear during coseismic compression of the outer wedge. In contrast, subsequent vein formation occurred by normal faulting and extensional fracturing at deeper levels in response to coseismic extension of the inner wedge. Our study demonstrates how mineral veins can be used to reveal the dynamics of outer and inner wedges, which respond in opposite ways to megathrust earthquakes by compressional and extensional faulting, respectively. PMID:26105966

  15. What Is Better Than Coulomb Failure Stress? A Ranking of Scalar Static Stress Triggering Mechanisms from 105 Mainshock-Aftershock Pairs

    NASA Astrophysics Data System (ADS)

    Meade, Brendan J.; DeVries, Phoebe M. R.; Faller, Jeremy; Viegas, Fernanda; Wattenberg, Martin

    2017-11-01

    Aftershocks may be triggered by the stresses generated by preceding mainshocks. The temporal frequency and maximum size of aftershocks are well described by the empirical Omori and Bath laws, but spatial patterns are more difficult to forecast. Coulomb failure stress is perhaps the most common criterion invoked to explain spatial distributions of aftershocks. Here we consider the spatial relationship between patterns of aftershocks and a comprehensive list of 38 static elastic scalar metrics of stress (including stress tensor invariants, maximum shear stress, and Coulomb failure stress) from 213 coseismic slip distributions worldwide. The rates of true-positive and false-positive classification of regions with and without aftershocks are assessed with receiver operating characteristic analysis. We infer that the stress metrics that are most consistent with observed aftershock locations are maximum shear stress and the magnitude of the second and third invariants of the stress tensor. These metrics are significantly better than random assignment at a significance level of 0.005 in over 80% of the slip distributions. In contrast, the widely used Coulomb failure stress criterion is distinguishable from random assignment in only 51-64% of the slip distributions. These results suggest that a number of alternative scalar metrics are better predictors of aftershock locations than classic Coulomb failure stress change.

  16. Co-seismic and cumulative slip along the Kokoxili Mw 7.9 earthquake rupture (Kunlun Fault, northeastern Tibet)

    NASA Astrophysics Data System (ADS)

    van der Woerd, J.; Klinger, Y.; Xu, X.; Ledortz, K.; Tapponnier, P.; Li, H.; King, G.; Ma, W.; Chen, W.

    2009-04-01

    Co-seismic slip values along a strike-slip rupture are found to be very irregular with variations up to one order of magnitude. Data usually scattered and sparse, are more dense and continuous with slip functions derived from InSAR or image correlations. Whether the fast variations in slip along strike reveals long-lived structures of the fault plane at depth, only incomplete slip at the surface or inelastic accommodation of slip remains debated. In addition, how these slip disparities are accommodated with time is unclear. The surface breaks of the Kokoxili Mw 7.9 event sytematically follow the geomorphic trace of the fault, which bears evidence for cumulative displacements. In the epicentral area, the rupture steps along the highest ice-capped summit of the region, the Buka Daban Feng. Evidence for normal fault breaks, left-lateral ruptures and steep triangular facets indicate that the Buka Daban Feng, a 40 km-long range reaching about 6800 m a.s.l. formed as a result of continuous oblique left-normal faulting. Normal faulting is attested by hanging glaciers, a steep southeastern flank and hot springs along coseismic and cumulative surface ruptures. Left-lateral movement along the main oblique normal fault has displaced the distal frontal moraines of almost all glacial valleys. West of the Buka Daban Feng, the western most ruptured strand is continuous between Kushiwan and Tayang lakes (about 60 km long) with coseismic left-lateral offsets reaching 4-5 m. To the east, at one site, the rupture splays into 4 main, N90°E-striking strands across a 1200x300m pull-apart. Three strands show right-stepping scarps with maximum throws of 1 m. The northern strand shows 3 m of purely normal throw. On NS profiles, the coseismic subsidence of the pull-apart floor was about 2 m, 1/10th of its 20 m depth, consistent with the repetition of 10 comparable earthquakes. East of the pull-apart 5 +/- 0.2 m sinistral slip are measured on the single stranded rupture. A similar coseismic

  17. Coseismic fault slip associated with the 1992 M(sub w) 6.1 Joshua Tree, California, earthquake: Implications for the Joshua Tree-Landers earthquake sequence

    NASA Technical Reports Server (NTRS)

    Bennett, Richard A.; Reilinger, Robert E.; Rodi, William; Li, Yingping; Toksoz, M. Nafi; Hudnut, Ken

    1995-01-01

    Coseismic surface deformation associated with the M(sub w) 6.1, April 23, 1992, Joshua Tree earthquake is well represented by estimates of geodetic monument displacements at 20 locations independently derived from Global Positioning System and trilateration measurements. The rms signal to noise ratio for these inferred displacements is 1.8 with near-fault displacement estimates exceeding 40 mm. In order to determine the long-wavelength distribution of slip over the plane of rupture, a Tikhonov regularization operator is applied to these estimates which minimizes stress variability subject to purely right-lateral slip and zero surface slip constraints. The resulting slip distribution yields a geodetic moment estimate of 1.7 x 10(exp 18) N m with corresponding maximum slip around 0.8 m and compares well with independent and complementary information including seismic moment and source time function estimates and main shock and aftershock locations. From empirical Green's functions analyses, a rupture duration of 5 s is obtained which implies a rupture radius of 6-8 km. Most of the inferred slip lies to the north of the hypocenter, consistent with northward rupture propagation. Stress drop estimates are in the range of 2-4 MPa. In addition, predicted Coulomb stress increases correlate remarkably well with the distribution of aftershock hypocenters; most of the aftershocks occur in areas for which the mainshock rupture produced stress increases larger than about 0.1 MPa. In contrast, predicted stress changes are near zero at the hypocenter of the M(sub w) 7.3, June 28, 1992, Landers earthquake which nucleated about 20 km beyond the northernmost edge of the Joshua Tree rupture. Based on aftershock migrations and the predicted static stress field, we speculate that redistribution of Joshua Tree-induced stress perturbations played a role in the spatio-temporal development of the earth sequence culminating in the Landers event.

  18. Geodetically inferred coseismic and postseismic slip due to the M 5.4 31 October 2007 Alum Rock earthquake

    USGS Publications Warehouse

    Murray-Moraleda, J. R.; Simpson, R.W.

    2009-01-01

    On 31 October 2007 the M 5.4 Alum Rock earthquake occurred near the junction between the Hayward and Calaveras faults in the San Francisco Bay Area, producing coseismic and postseismic displacements recorded by 10 continuously operating Global Positioning System (GPS) instruments. The cumulative postseismic displacements over the four months following the earthquake are linearly related to the cumulative number of aftershocks and are comparable in magnitude to the coseis mic displacements. The postseismic signal suggests that, in addition to afterslip at seismogenic depths, localized right-lateral/reverse slip occurred on dipping shallow fault surfaces southwest of the Calaveras. The spatial distribution of slip inferred by inverting the GPS data is compatible with a model in which moderate Calaveras fault earthquakes rupture locked patches surrounded by areas of creep, afterslip, and microseismicity (Oppenheimer et al., 1990). If this model and existing Calaveras fault slip rate estimates are correct, a slip deficit remains on the 2007 Alum Rock rupture patch that may be made up by aseismic slip or slip in larger earthquakes. Recent studies (e.g., Manaker et al., 2005) suggest that at depth the Hayward and central Calaveras faults connect via a simple continuous surface illuminated by the Mission Seismic Trend (MST), implying that a damaging earthquake rupture could involve both faults (Graymer et al., 2008). If this geometry is correct, the combined coseismic and postseismic slip we infer for the 2007 Alum Rock event predicts static Coulomb stress increases of ???0:6 bar on the MST surface and on the northern Calaveras fault ???5 km northwest of the Alum Rock hypocenter.

  19. Stream response to repeated coseismic folding, Tiptonville dome, New Madrid seismic zone

    NASA Astrophysics Data System (ADS)

    Guccione, M. J.; Mueller, K.; Champion, J.; Shepherd, S.; Carlson, S. D.; Odhiambo, B.; Tate, A.

    2002-03-01

    Fluvial response to tectonic deformation is dependent on the amount and style of surface deformation and the relative size of the stream. Active folding in the New Madrid seismic zone (NMSZ) forms the Tiptonville dome, a 15-km long and 5-km wide surface fold with up to 11 m of late Holocene structural relief. The fold is crossed by streams of varying size, from the Mississippi River to small flood-plain streams. Fluvial response of these streams to repeated coseismic folding has only been preserved for the past 2.3 ka, since the Tiptonville meander of the Mississippi River migrated across the area forming the present flood plain. This surface comprises a sandy point-bar deposit locally overlain by clayey overbank and silty sand crevasse-splay deposits, an abandoned chute channel infilled with laminated sandy silt and silty clay, and an abandoned neck cutoff filled with a sandy cutoff bar and silty clay oxbow lake deposits. Dating various stream responses to coseismic folding has more tightly constrained the timing of earthquake events in the central NMSZ and provides a means of partitioning the deformation amount into individual seismic events. Three earthquakes have been dated in the Reelfoot Lake area, ca. A.D. 900, 1470, and 1812. The latter two earthquakes had large local coseismic deformation. Both of these events were responsible for numerous stream responses such as shifting depocenters, modification of Mississippi River channel geometry, and derangement of small streams. Overbank sedimentation ceased on the dome as it was uplifted above the normal flood stage, and sedimentation of crevasse-splay deposits from the Mississippi River, colluvium from the scarp, and lacustrine sediment accumulated in the adjacent Reelfoot basin. The much larger Mississippi River channel responded to uplift by increasing its sinuosity across the uplift relative to both upstream and downstream, increasing its width/depth ratio across and downstream of the uplift, and decreasing

  20. Coseismic and postseismic deformation due to the 2007 M5.5 Ghazaband fault earthquake, Balochistan, Pakistan

    NASA Astrophysics Data System (ADS)

    Fattahi, H.; Amelung, F.; Chaussard, E.; Wdowinski, S.

    2015-05-01

    Time series analysis of interferometric synthetic aperture radar data reveals coseismic and postseismic surface displacements associated with the 2007 M5.5 earthquake along the southern Ghazaband fault, a major but little studied fault in Pakistan. Modeling indicates that the coseismic surface deformation was caused by ~9 cm of strike-slip displacement along a shallow subvertical fault. The earthquake was followed by at least 1 year of afterslip, releasing ~70% of the moment of the main event, equivalent to a M5.4 earthquake. This high aseismic relative to the seismic moment release is consistent with previous observations for moderate earthquakes (M < 6) and suggests that smaller earthquakes are associated with a higher aseismic relative to seismic moment release than larger earthquakes.

  1. Cumulative co-seismic displacement and comparison with GPS observations in Taiwan

    NASA Astrophysics Data System (ADS)

    Xu, C.; Chao, B. F.; Sun, W.

    2013-12-01

    The island of Taiwan owes its existence to the collision of the Eurasian plate and the Philippine Sea plate. The strong seismicity can produce permanent displacement field which can be observed by GPS. Both seismological and GPS networks have been fully established in Taiwan for years. In this paper, we will study the earthquake-induced relative movements, including the amplitude and pattern, and determine how much cumulative co-seismic displacement can contribute to the observed GPS signals as long-term 'trends', by comparing the two sets of data. The co-seismic displacement is calculated by adopting the elastic dislocation theory on a spherical Earth as derived by Sun and Okubo. For the GPS observations, we will remove the seasonal and tidal effects by the least square method and the common-mode errors by the empirical orthogonal function technique. The comparison results show that the earthquake-induced displacements account only for a tiny fraction of the GPS signals, implying that the majority of the displacements in Taiwan during the studied period of 1995-2013 (which includes the largest 1999 Chi-Chi earthquake), both horizontal and vertical, are caused aseismically. The comparison also reveals some interesting details about the pattern and behavior of the displacement fields.

  2. Coupling of Sentinel-1, Sentinel-2 and ALOS-2 to assess coseismic deformation and earthquake-induced landslides following 26 June, 2016 earthquake in Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Vajedian, Sanaz; Motagh, Mahdi; Wetzel, Hans-Ulrich; Teshebaeva, Kanayim

    2017-04-01

    The active deformation in Kyrgyzstan results from the collision between Indian and Asia tectonic plates at a rate of 29 ± 1 mm/yr. This collision is accommodated by deformation on prominent faults, which can be ruptured coseismically and trigger other hazards like landslides. Many earthquake and earthquake-induced landslides in Kyrgyzstan occur in mountainous areas, where limited accessibility makes ground-based measurements for the assessment of their impact a challenging task. In this context, remote sensing measurements are extraordinary useful as they improve our knowledge about coseismic rupture process and provide information on other types of hazards that are triggered during and/or after the earthquakes. This investigation aims to use L-band ALOS/PALSAR, C-band Sentinel-1, Sentinel-2 data to evaluate fault slip model and coseismic-induced landslides related to 26 June 2016 Sary-Tash earthquake, southwest Kyrgyzstan. First we implement three methods to measure coseismic surface motion using radar data including Interferometric SAR (InSAR) analysis, SAR tracking technique and multiple aperture InSAR (MAI), followed by using Genetic Algorithm (GA) to invert the final displacement field to infer combination of orientation, location and slip on rectangular uniform slip fault plane. Slip distribution analysis is done by applying Tikhonov regularization to solve the constrained least-square method with Laplacian smoothing approach. The estimated coseismic slip model suggests a nearly W-E thrusting fault ruptured during the earthquake event in which the main rupture occurred at a depth between 11 and 14 km. Second, the local phase shifts related to landslides are inferred by detailed analysis pre-seismic, coseismic and postseismic C-band and L-band interferograms and the results are compared with the interpretations derived from Sentinel-2 data acquired before and after the earthquake.

  3. Reconciling Pre- and Co-Seismic Deformation at Megathrusts: Tohoku Informing Cascadia

    NASA Astrophysics Data System (ADS)

    Furlong, K. P.; Govers, R. M.

    2013-12-01

    One of the outstanding goals of earthquake science is to effectively anticipate the earthquake characteristics of a future event - magnitude, rupture area, slip history - through the judicious application of models that use observations of inter-earthquake deformation and the history of earthquakes along that plate boundary segment. The series of great earthquakes over the past decade since the 2004 Mw 9.2 Sumatra earthquake have demonstrated both the sobering reality that our current models of subduction zone earthquake genesis are insufficient but more positively have provided a wealth of data and observations that can be used to develop improved framework models of the lithospheric behavior through the earthquake cycle in subduction zones. Some of the issues that recent observations raise are straightforward, while others imply aspects of the subduction process that have not been previously considered important. Based on observations of a range of great earthquakes since 2004, and with a particular focus on the 2011 Mw 9.0 Tohoku event we can identify a suite of key issues that include: (1) Patterns of inter-seismic deformation (strain accumulation) are not simply the converse of the co-seismic elastic strain release. (2) Deformation of the slab during the earthquake cycle is a common occurrence and its role in buffering upper-plate deformation is a key consideration in the potential tsunamigenic character of a subduction system. (3) Rates of pre-earthquake deformation (e.g. observed upper-plate GPS displacements) and inferred slip deficit accumulation on the megathrust are inconsistent with co-seismic displacements/fault slip and recurrence intervals. (4) Patterns of megathrust locked patches, degrees of coupling and other parameterizations that are used to define earthquake potential have only a loose agreement with the actual patterns of slip and moment release seen in the ensuing great earthquake. Simple elastic models do provide a general agreement between

  4. Estimating Stresses, Fault Friction and Fluid Pressure from Topography and Coseismic Slip Models

    NASA Astrophysics Data System (ADS)

    Styron, R. H.; Hetland, E. A.

    2014-12-01

    Stress is a first-order control on the deformation state of the earth. However, stress is notoriously hard to measure, and researchers typically only estimate the directions and relative magnitudes of principal stresses, with little quantification of the uncertainties or absolute magnitude. To improve upon this, we have developed methods to constrain the full stress tensor field in a region surrounding a fault, including tectonic, topographic, and lithostatic components, as well as static friction and pore fluid pressure on the fault. Our methods are based on elastic halfspace techniques for estimating topographic stresses from a DEM, and we use a Bayesian approach to estimate accumulated tectonic stress, fluid pressure, and friction from fault geometry and slip rake, assuming Mohr-Coulomb fault mechanics. The nature of the tectonic stress inversion is such that either the stress maximum or minimum is better constrained, depending on the topography and fault deformation style. Our results from the 2008 Wenchuan event yield shear stresses from topography up to 20 MPa (normal-sinistral shear sense) and topographic normal stresses up to 80 MPa on the faults; tectonic stress had to be large enough to overcome topography to produce the observed reverse-dextral slip. Maximum tectonic stress is constrained to be >0.3 * lithostatic stress (depth-increasing), with a most likely value around 0.8, trending 90-110°E. Minimum tectonic stress is about half of maximum. Static fault friction is constrained at 0.1-0.4, and fluid pressure at 0-0.6 * total pressure on the fault. Additionally, the patterns of topographic stress and slip suggest that topographic normal stress may limit fault slip once failure has occurred. Preliminary results from the 2013 Balochistan earthquake are similar, but yield stronger constraints on the upper limits of maximum tectonic stress, as well as tight constraints on the magnitude of minimum tectonic stress and stress orientation. Work in progress on

  5. Detailed imaging of the 2007 Pisco co-seismic and post-seismic deformation - implications on the seismogenic behavior of subduction megathrusts

    NASA Astrophysics Data System (ADS)

    Perfettini, H.; Sladen, A.; Avouac, J.; Simons, M.; Nocquet, J.; Bondoux, F.; Kositsky, A.; Chlieh, M.; Tavera, H.; Audin, L.; Konca, A.; Fielding, E. J.; Farber, D.; Ortega, F. H.

    2009-12-01

    In the last couple of decades, advances in the analysis techniques and instrumentation have improved significantly our capability to document the different stages of the seismic cycle, namely the co-, post- and inter-seismic phases. To this respect, the Mw8.0 Pisco, Peru, earthquake of August 2007 is exemplary, with numerous data sets allowing to explore the details of each phase and study their relationship. We derive a kinematic model of the coseismic rupture from the joint non-linear inversion of teleseismic and six Interferometric Synthetic Aperture Radar (InSAR) images. Our preferred model indicates a remarkable anti-correlation between the co-seismic slip distribution and the aftershock distribution determined from the Peruvian seismic network. The proposed source model is compatible with regional run-up measurements and open-ocean tsunami records. In particular, the tsunami observations validate that the rupture did not extend to the trench, and confirm that the Pisco event is not a tsunami earthquake despite its low apparent rupture velocity (< 1.5 km/s). We favor the interpretation that the earthquake consists of 2 subevents, each with a conventional rupture velocity (2-4 km/s). The delay between the 2 subevents might reflect the time for the second shock to nucleate or, alternatively, the time it took for afterslip to increase the stress level on the second asperity to a level necessary for static triggering. The source model predicts uplift offshore and subsidence onland with the pivot line following the changes in curvature of the coastline. This observation set the Pisco earthquake as one of the best examples of a link between the geomorphology of the coastline and the pattern of surface deformation induced by large interplate ruptures. The post-seismic deformation following the mainshock is studied using a local network of continuous GPS stations and the PCAIM inversion method. The inversion indicates that the two patches of co-seismic slip triggered

  6. Impacts of hydrogeological characteristics on groundwater-level changes induced by earthquakes

    NASA Astrophysics Data System (ADS)

    Liu, Ching-Yi; Chia, Yeeping; Chuang, Po-Yu; Chiu, Yung-Chia; Tseng, Tai-Lin

    2018-03-01

    Changes in groundwater level during earthquakes have been reported worldwide. In this study, field observations of co-seismic groundwater-level changes in wells under different aquifer conditions and sampling intervals due to near-field earthquake events in Taiwan are presented. Sustained changes, usually observed immediately after earthquakes, are found in the confined aquifer. Oscillatory changes due to the dynamic strain triggered by passing earthquake waves can only be recorded by a high-frequency data logger. While co-seismic changes recover rapidly in an unconfined aquifer, they can sustain for months or longer in a confined aquifer. Three monitoring wells with long-term groundwater-level data were examined to understand the association of co-seismic changes with local hydrogeological conditions. The finite element software ABAQUS is used to simulate the pore-pressure changes induced by the displacements due to fault rupture. The calculated co-seismic change in pore pressure is related to the compressibility of the formation. The recovery rate of the change is rapid in the unconfined aquifer due to the hydrostatic condition at the water table, but slow in the confined aquifer due to the less permeable confining layer. Fracturing of the confining layer during earthquakes may enhance the dissipation of pore pressure and induce the discharge of the confined aquifer. The study results indicated that aquifer characteristics play an important role in determining groundwater-level changes during and after earthquakes.

  7. Stress evolution following the 1999 Chi-Chi, Taiwan, earthquake: Consequences for afterslip, relaxation, aftershocks and departures from Omori decay

    USGS Publications Warehouse

    Chan, C.-H.; Stein, R.S.

    2009-01-01

    We explore how Coulomb stress transfer and viscoelastic relaxation control afterslip and aftershocks in a continental thrust fault system. The 1999 September 21 Mw = 7.6 Chi-Chi shock is typical of continental ramp-d??collement systems throughout the world, and so inferences drawn from this uniquely well-recorded event may be widely applicable. First, we find that the spatial and depth distribution of aftershocks and their focal mechanisms are consistent with the calculated Coulomb stress changes imparted by the coseismic rupture. Some 61 per cent of the M ??? 2 aftershocks and 83 per cent of the M ??? 4 aftershocks lie in regions for which the Coulomb stress increased by ???0.1 bars, and there is a 11-12 per cent gain in the percentage of aftershocks nodal planes on which the shear stress increased over the pre-Chi Chi control period. Second, we find that afterslip occurred where the calculated coseismic stress increased on the fault ramp and d??collement, subject to the condition that friction is high on the ramp and low on the d??collement. Third, viscoelastic relaxation is evident from the fit of the post-seismic GPS data on the footwall. Fourth, we find that the rate of seismicity began to increase during the post-seismic period in an annulus extending east of the main rupture. The spatial extent of the seismicity annulus resembles the calculated ???0.05-bar Coulomb stress increase caused by viscoelastic relaxation and afterslip, and we find a 9-12 per cent gain in the percentage of focal mechanisms with >0.01-bar shear stress increases imparted by the post-seismic afterslip and relaxation in comparison to the control period. Thus, we argue that post-seismic stress changes can for the first time be shown to alter the production of aftershocks, as judged by their rate, spatial distribution, and focal mechanisms. ?? Journal compilation ?? 2009 RAS.

  8. Identification of deep subaqueous co-seismic scarps through specific coeval sedimentation in Lesser Antilles: implication for seismic hazard

    NASA Astrophysics Data System (ADS)

    Beck, C.; Reyss, J.-L.; Leclerc, F.; Moreno, E.; Feuillet, N.; Barrier, L.; Beauducel, F.; Boudon, G.; Clément, V.; Deplus, C.; Gallou, N.; Lebrun, J.-F.; Le Friant, A.; Nercessian, A.; Paterne, M.; Pichot, T.; Vidal, C.

    2012-05-01

    During the GWADASEIS cruise (Lesser Antilles volcanic arc, February-March 2009) a very high resolution (VHR) seismic-reflection survey was performed in order to constrain Late Quaternary to Present faulting. The profiles we obtained evidence frequent "ponding" of reworked sediments in the deepest areas, similar to the deposition of Mediterranean "homogenites". These bodies are acoustically transparent (few ms t.w.t. thick) and are often deposited on the hanging walls of dominantly normal faults, at the base of scarps. Their thickness appears sufficient to compensate (i.e. bury) co-seismic scarps between successive earthquakes, resulting in a flat and horizontal sea floor through time. In a selected area (offshore Montserrat and Nevis islands), piston coring (4 to 7 m long) was dedicated to a sedimentological analysis of the most recent of these particular layers. It corresponds to non-stratified homogenous calcareous silty sand (reworked calcareous plankton and minor volcanoclastics). This layer can be up to 2 m thick, and overlies fine-grained hemipelagites. The upper centimeters of the latter represent the normal RedOx water/sediment interface. 210Pb and 137Cs activities lack in the massive sands, while a normal profile of unsupported 210Pb decrease is observed in the hemipelagite below, together with a 137Cs peak corresponding to the Atmospheric Nuclear Experiments (1962). The RedOx level was thus capped by a recent instantaneous major sedimentary event considered as post-1970 AD; candidate seismic events to explain this sedimentary deposits are either the 16 March 1985 earthquake or the 8 October 1974 one (Mw = 6.3 and Mw = 7.4, respectively). This leads to consider that the syntectonic sedimentation in this area is not continuous but results from accumulation of thick homogenites deposited after the earthquakes (as observed in the following weeks after Haiti January 2010 event, McHugh et al., 2011). The existence of such deposits suggests that, in the area of

  9. Observations and Modeling of Coseismic and Postseismic Deformation Due To the 2015 Mw 7.8 Gorkha (Nepal) Earthquake

    NASA Astrophysics Data System (ADS)

    Wang, Kang; Fialko, Yuri

    2018-01-01

    We use space geodetic data to investigate coseismic and postseismic deformation due to the 2015 Mw 7.8 Gorkha earthquake that occurred along the central Himalayan arc. Because the earthquake area is characterized by strong variations in surface relief and material properties, we developed finite element models that explicitly account for topography and 3-D elastic structure. We computed the line-of-sight displacement histories from three tracks of the Sentinel-1A/B Interferometric Synthetic Aperture Radar (InSAR) satellites, using persistent scatter method. InSAR observations reveal an uplift of up to ˜70 mm over ˜20 months after the main shock, concentrated primarily at the downdip edge of the ruptured asperity. GPS observations also show uplift, as well as southward movement in the epicentral area, qualitatively similar to the coseismic deformation pattern. Kinematic inversions of GPS and InSAR data and forward models of stress-driven creep suggest that the observed postseismic transient is dominated by afterslip on a downdip extension of the seismic rupture. A poroelastic rebound may have contributed to the observed uplift and southward motion, but the predicted surface displacements are small. We also tested a wide range of viscoelastic relaxation models, including 1-D and 3-D variations in the viscosity structure. Models of a low-viscosity channel previously invoked to explain the long-term uplift and variations in topography at the plateau margins predict opposite signs of horizontal and vertical displacements compared to those observed. Our results do not preclude a possibility of deep-seated viscoelastic response beneath southern Tibet with a characteristic relaxation time greater than the observation period (2 years).

  10. Rate/state Coulomb stress transfer model for the CSEP Japan seismicity forecast

    NASA Astrophysics Data System (ADS)

    Toda, Shinji; Enescu, Bogdan

    2011-03-01

    Numerous studies retrospectively found that seismicity rate jumps (drops) by coseismic Coulomb stress increase (decrease). The Collaboratory for the Study of Earthquake Prediction (CSEP) instead provides us an opportunity for prospective testing of the Coulomb hypothesis. Here we adapt our stress transfer model incorporating rate and state dependent friction law to the CSEP Japan seismicity forecast. We demonstrate how to compute the forecast rates of large shocks in 2009 using the large earthquakes during the past 120 years. The time dependent impact of the coseismic stress perturbations explains qualitatively well the occurrence of the recent moderate size shocks. Such ability is partly similar to that of statistical earthquake clustering models. However, our model differs from them as follows: the off-fault aftershock zones can be simulated using finite fault sources; the regional areal patterns of triggered seismicity are modified by the dominant mechanisms of the potential sources; the imparted stresses due to large earthquakes produce stress shadows that lead to a reduction of the forecasted number of earthquakes. Although the model relies on several unknown parameters, it is the first physics based model submitted to the CSEP Japan test center and has the potential to be tuned for short-term earthquake forecasts.

  11. A case of rapid rock riverbed incision in a coseismic uplift reach and its implications

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Wan; Pan, Yii-Wen; Liao, Jyh-Jong

    2013-02-01

    During the 1999 Chi-Chi earthquake (Mw = 7.6) in Taiwan, the coseismic displacement induced fault scarps and a pop-up structure in the Taan River. The fault scarps across the river experienced maximum vertical slip of 10 m, which disturbed the dynamic equilibrium of the fluvial system. As a result, rapid incision in the weak bedrock, with a maximum depth of 20 m, was activated within a decade after its armor layer was removed. This case provides an excellent opportunity for closely tracking and recording the progressive evolution of river morphology that is subjected to coseismic uplift. Based on multistaged orthophotographs and digital elevation model (DEM) data, the process of morphology evolution in the uplift reach was divided into four consecutive stages. Plucking is the dominant mechanism of bedrock erosion associated with channel incision and knickpoint migration. The astonishingly high rate of knickpoint retreat (KPR), as rapid as a few hundred meters per year, may be responsible for the rapid incision in the main channel. The reasons for the high rate of KPR are discussed in depth. The total length of the river affected by the coseismic uplift is 5 km: 1 km in the uplift reach and 4 km in the downstream reach. The downstream reach was affected by a reduction in sediment supply and increase in stream power. The KPR cut through the uplift reach within roughly a decade; further significant flooding in the future will mainly cause widening instead of deepening of the channel.

  12. Coseismic and post-seismic activity associated with the 2008 Mw 6.3 Damxung earthquake, Tibet, constrained by InSAR

    NASA Astrophysics Data System (ADS)

    Bie, Lidong; Ryder, Isabelle; Nippress, Stuart E. J.; Bürgmann, Roland

    2014-02-01

    The 2008 Mw 6.3 Damxung earthquake on the Tibetan Plateau is investigated to (i) derive a coseismic slip model in a layered elastic Earth; (ii) reveal the relationship between coseismic slip, afterslip and aftershocks and (iii) place a lower bound on mid/lower crustal viscosity. The fault parameters and coseismic slip model were derived by inversion of Envisat InSAR data. We developed an improved non-linear inversion scheme to find an optimal rupture geometry and slip distribution on a fault in a layered elastic crust. Although the InSAR data for this event cannot distinguish between homogeneous and layered crustal models, the maximum slip of the latter model is smaller and deeper, while the moment release calculated from both models are similar. A ˜1.6 yr post-seismic deformation time-series starting 20 d after the main shock reveals localized deformation at the southern part of the fault. Inversions for afterslip indicate three localized slip patches, and the cumulative afterslip moment after 615 d is at least ˜11 per cent of the coseismic moment. The afterslip patches are distributed at different depths along the fault, showing no obvious systematic depth-dependence. The deeper of the three patches, however, shows a slight tendency to migrate to greater depth over time. No linear correlation is found for the temporal evolution of afterslip and aftershocks. Finally, modelling of viscoelastic relaxation in a Maxwell half-space yields a lower bound of 1 × 1018 Pa s on the viscosity of the mid/lower crust. This is consistent with viscosity estimates in other studies of post-seismic deformation across the Tibetan Plateau.

  13. Aftershock distribution as a constraint on the geodetic model of coseismic slip for the 2004 Parkfield earthquake

    USGS Publications Warehouse

    Bennington, Ninfa; Thurber, Clifford; Feigl, Kurt; ,

    2011-01-01

    Several studies of the 2004 Parkfield earthquake have linked the spatial distribution of the event’s aftershocks to the mainshock slip distribution on the fault. Using geodetic data, we find a model of coseismic slip for the 2004 Parkfield earthquake with the constraint that the edges of coseismic slip patches align with aftershocks. The constraint is applied by encouraging the curvature of coseismic slip in each model cell to be equal to the negative of the curvature of seismicity density. The large patch of peak slip about 15 km northwest of the 2004 hypocenter found in the curvature-constrained model is in good agreement in location and amplitude with previous geodetic studies and the majority of strong motion studies. The curvature-constrained solution shows slip primarily between aftershock “streaks” with the continuation of moderate levels of slip to the southeast. These observations are in good agreement with strong motion studies, but inconsistent with the majority of published geodetic slip models. Southeast of the 2004 hypocenter, a patch of peak slip observed in strong motion studies is absent from our curvature-constrained model, but the available GPS data do not resolve slip in this region. We conclude that the geodetic slip model constrained by the aftershock distribution fits the geodetic data quite well and that inconsistencies between models derived from seismic and geodetic data can be attributed largely to resolution issues.

  14. Coseismic flow of frictional melts: insights from mini-AMS measurements on pseudotachylyte

    NASA Astrophysics Data System (ADS)

    Geissman, J. W.; Leibovitz, N.; Meado, A.; Campbell, L.; Ferre, E. C.

    2017-12-01

    Fault pseudotachylytes, widely regarded as earthquake fossils, are fascinating rocks that may hold important clues on the physics of seismic rupture and the lubrication of fault planes. Forceful injection of rapidly produced melts along a friction zone typically forms a complex network of veins along the slip zone and at a high angle to the generation plane. The flow patterns of these pseudotachylyte melts remain, however, poorly constrained except in rare cases when billow-like folds or other flow structures are preserved. Recent modifications to the anisotropy of magnetic susceptibility (AMS) method allow new directions of investigations of melt kinematics in pseudotachylyte veins, regardless of whether they are generation or injection veins. Here we present new mini-AMS results based on series of 3.5 mm cubes (≈200 times smaller than classic sample size) of pseudotachylyte veins from the Val Gilba (Italian Alps), the Cima di Gratera (Corsica) and Santa Rosa (California) classic localities. These preliminary analyses demonstrate the potential of this new mini-AMS method in tracking the complex coseismic movement of a low viscosity magma through dynamically deformed conduits. The lack of plastic deformation in pseudotachylyte clasts and along the pseudotachylyte margins supports the hypothesis that the coseismic melt flow pattern is frozen in situ without significant subsolidus deformation.

  15. Seafloor observations indicate spatial separation of coseismic and postseismic slips in the 2011 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Iinuma, Takeshi; Hino, Ryota; Uchida, Naoki; Nakamura, Wataru; Kido, Motoyuki; Osada, Yukihito; Miura, Satoshi

    2016-11-01

    Large interplate earthquakes are often followed by postseismic slip that is considered to occur in areas surrounding the coseismic ruptures. Such spatial separation is expected from the difference in frictional and material properties in and around the faults. However, even though the 2011 Tohoku Earthquake ruptured a vast area on the plate interface, the estimation of high-resolution slip is usually difficult because of the lack of seafloor geodetic data. Here using the seafloor and terrestrial geodetic data, we investigated the postseismic slip to examine whether it was spatially separated with the coseismic slip by applying a comprehensive finite-element method model to subtract the viscoelastic components from the observed postseismic displacements. The high-resolution co- and postseismic slip distributions clarified the spatial separation, which also agreed with the activities of interplate and repeating earthquakes. These findings suggest that the conventional frictional property model is valid for the source region of gigantic earthquakes.

  16. Seafloor observations indicate spatial separation of coseismic and postseismic slips in the 2011 Tohoku earthquake

    PubMed Central

    Iinuma, Takeshi; Hino, Ryota; Uchida, Naoki; Nakamura, Wataru; Kido, Motoyuki; Osada, Yukihito; Miura, Satoshi

    2016-01-01

    Large interplate earthquakes are often followed by postseismic slip that is considered to occur in areas surrounding the coseismic ruptures. Such spatial separation is expected from the difference in frictional and material properties in and around the faults. However, even though the 2011 Tohoku Earthquake ruptured a vast area on the plate interface, the estimation of high-resolution slip is usually difficult because of the lack of seafloor geodetic data. Here using the seafloor and terrestrial geodetic data, we investigated the postseismic slip to examine whether it was spatially separated with the coseismic slip by applying a comprehensive finite-element method model to subtract the viscoelastic components from the observed postseismic displacements. The high-resolution co- and postseismic slip distributions clarified the spatial separation, which also agreed with the activities of interplate and repeating earthquakes. These findings suggest that the conventional frictional property model is valid for the source region of gigantic earthquakes. PMID:27853138

  17. Coseismic Origin of Foliated Cataclasites and Preservation Potential During the Seismic Cycle

    NASA Astrophysics Data System (ADS)

    Demurtas, M.; Smith, S. A. F.; Spagnuolo, E.; Fondriest, M.; Di Toro, G.

    2016-12-01

    Foliated gouges and cataclasites are most commonly interpreted as the result of aseismic faulting in the brittle upper crust. However, the occurrence of foliated cataclasites associated with possible indicators of earthquake ruptures (mirror-like slip surfaces with truncated clasts, in-situ pulverized rocks, etc.) suggests that some examples may have a coseismic origin. Here we present the results of friction experiments and microstructural analysis performed on mixtures (50/50wt%) of calcite-dolomite gouges to ascertain the conditions of foliation formation. The gouges were sheared for 40 cm in a rotary shear apparatus (SHIVA, INGV-Rome) under constant normal stress of 17.5 MPa and slip rates of 30 µm/s to 1 m/s. In room-humidity conditions, a striking foliated fabric was formed only at V = 1 m/s, associated with strain localization and evidence of thermal decomposition and crystal-plastic deformation in a slipping zone less than a few micrometres-thick. Instead, in water-dampened conditions, no foliation was formed at any slip rate and strain localized within an ultrafine (grain size << 1 µm) fluidized layer whose thickness decreased with increasing velocity. To investigate the preservation potential of these microstructures during the seismic cycle, we also conducted experiments that stepped from slow (30 µm/s for 10 cm slip) to high (1 m/s for 30 cm slip) velocity and vice-versa. In the 30 µm/s to 1 m/s experiment, in room-humidity conditions, characteristic microstructures of both slip velocities were preserved and the overall fabric strongly resembles that found in natural foliated cataclasites from the active Vado di Corno Fault Zone, Italian Central Apennines. In the 1 m/s to 30 µm/s experiment, performed under water-dampened conditions, evenly spaced gouge injection veins departing from the localized slip surface formed during the 30 µm/s slip event. Our experiments suggest that foliations defined by compositional banding and/or grain size variations

  18. Postseismic deformation and stress changes following the 1819 Rann of Kachchh, India earthquake: Was the 2001 Bhuj earthquake a triggered event?

    USGS Publications Warehouse

    To, A.; Burgmann, R.; Pollitz, F.

    2004-01-01

    The 2001 Mw 7.6 Bhuj earthquake occurred in an intraplate region with rather unusual active seismicity, including an earlier major earthquake, the 1819 Rann of Kachchh earthquake (M7.7). We examine if static coseismic and transient postseismic deformation following the 1819 earthquake contributed to the enhanced seismicity in the region and the occurrence of the 2001 Bhuj earthquake, ???100 km away and almost two centuries later. Based on the Indian shield setting, great rupture depth of the 2001 event and lack of significant early postseismic deformation measured following the 2001 event, we infer that little viscous relaxation occurs in the lower crust and choose an upper mantle effective viscosity of 1019 Pas. The predicted Coulomb failure stress (DCFS) on the rupture plane of the 2001 event increased by more than 0.1 bar at 20 km depth, which is a small but possibly significant amount. Stress change from the 1819 event may have also affected the occurrence of other historic earthquakes in this region. We also evaluate the postseismic deformation and ??CFS in this region due to the 2001 event. Positive ??CFS from the 2001 event occur to the NW and SE of the Bhuj earthquake rupture. Copyright 2004 by the American Geophysical Union.

  19. Two-dimensional Co-Seismic Surface Displacements Field of the Chi-Chi Earthquake Inferred from SAR Image Matching.

    PubMed

    Hu, Jun; Li, Zhi-Wei; Ding, Xiao-Li; Zhu, Jian-Jun

    2008-10-21

    The M w =7.6 Chi-Chi earthquake in Taiwan occurred in 1999 over the Chelungpu fault and caused a great surface rupture and severe damage. Differential Synthetic Aperture Radar Interferometry (DInSAR) has been applied previously to study the co-seismic ground displacements. There have however been significant limitations in the studies. First, only one-dimensional displacements along the Line-of-Sight (LOS) direction have been measured. The large horizontal displacements along the Chelungpu fault are largely missing from the measurements as the fault is nearly perpendicular to the LOS direction. Second, due to severe signal decorrelation on the hangling wall of the fault, the displacements in that area are un-measurable by differential InSAR method. We estimate the co-seismic displacements in both the azimuth and range directions with the method of SAR amplitude image matching. GPS observations at the 10 GPS stations are used to correct for the orbital ramp in the amplitude matching and to create the two-dimensional (2D) co-seismic surface displacements field using the descending ERS-2 SAR image pair. The results show that the co-seismic displacements range from about -2.0 m to 0.7 m in the azimuth direction (with the positive direction pointing to the flight direction), with the footwall side of the fault moving mainly southwards and the hanging wall side northwards. The displacements in the LOS direction range from about -0.5 m to 1.0 m, with the largest displacement occuring in the northeastern part of the hanging wall (the positive direction points to the satellite from ground). Comparing the results from amplitude matching with those from DInSAR, we can see that while only a very small fraction of the LOS displacement has been recovered by the DInSAR mehtod, the azimuth displacements cannot be well detected with the DInSAR measurements as they are almost perpendicular to the LOS. Therefore, the amplitude matching method is obviously more advantageous than the

  20. Geomodels of coseismic landslides environments in Central Chile.

    NASA Astrophysics Data System (ADS)

    Serey, A.; Sepulveda, S. A.; Murphy, W.; Petley, D. N.

    2017-12-01

    Landslides are a major source of fatalities and damage during strong earthquakes in mountain areas. Detailed geomodels of coseismic landslides environments are essential parts of seismic landslide hazard analyses. The development of a site specific geological model is required, based on consideration of the regional and local geological and geomorphological history and the current ground surface conditions. An engineering geological model is any approximation of the geological conditions, at varying scales, created for the purpose of solving an engineering problem. In our case, the objective is the development of a methodology for earthquake-induced landslide hazard assessment applicable to urban/territorial planning and disaster prevention strategies assessment at a regional scale adapted for the Chilean tectonic conditions. We have developed the only 2 complete inventories of landslides triggered by earthquakes in Chile. The first from the Mw 6.2, shallow crustal Aysén earthquake in 2007. Second one from the Mw 8.8, megathrust subduction Maule earthquake in 2010. From the comparison of these 2 inventories with others from abroad, as well as analysis of large, prehistoric landslide inventories proposed as likely induced by seismic activity we have determined topographic, geomorphological, geological and seismic controlling factors in the occurrence of earthquake-triggered landslides. With the information collected we have defined different environments for generation of coseismic landslides based on the construction of geomodels. As a result we have built several geomodels in the Santiago Cordillera in central Chile (33°S), based upon the San Ramón Fault, a west-vergent reverse fault that outcrops at the edge of Santiago basin recently found to be active and a likely source of seismic activity in the future, with potential of triggering landslides in the Santiago mountain front as well as inland into the Mapocho and Maipo Cordilleran valleys. In conclusion

  1. Sediment geochemistry as potential sea-level indicators to assess coseismic vertical displacements above the Alaska-Aleutian megathrust

    NASA Astrophysics Data System (ADS)

    Bender, A. M.; Witter, R. C.; Munk, L. A.

    2012-12-01

    Nearly the entire 4000-km-long Alaska-Aleutian megathrust has ruptured in large or great (Mw ≥8) earthquakes in the past 100 years, yet paleoseismic records of earlier events are only documented east of Kodiak Is. in the region of the 1964 Alaska earthquake. The Mw 9.2 1964 earthquake dropped the coast along Cook Inlet and Turnagain Arm by ≤1.8 m and raised shore platforms around Prince William Sound by ≤3 m. Evidence of sudden (coseismic) vertical displacements during megathrust earthquakes are archived in coastal sediments as sharp stratigraphic contacts that record rapid relative sea-level (RSL) changes. We use geochemical analyses of coastal sediments to detect sudden RSL changes at 2 sites above the Alaska-Aleutian megathrust. One site on Knik Arm near Anchorage subsided ~0.6 m during the 1964 earthquake. The other site overlies the Shumagin Islands segment of the megathrust, without rupture since before 1903. Relative to terrestrial sources of sediment, marine sources should be enriched in δ13C, δ15N, and have higher C:N, and Cl- concentrations. Our analyses will test whether these geochemical proxies can provide evidence for sudden RSL change across stratigraphic contacts that record coseismic uplift or subsidence. Coseismic subsidence should be represented by contacts that place sediment with enriched δ13C, δ15N signatures, elevated C:N and Cl- concentrations over sediment with lower values of these geochemical proxies and the reverse for coseismic uplift. A 1-2 m tall, ~0.5-km-long bluff along Knik Arm exposes three buried wetland soils overlain by gray mud. The soils become faint and pinch out to the northeast near a large tidal channel. Other studies of similar buried soils at adjacent sites suggest the youngest soil at Knik Arm subsided in 1964. 14C analyses of plant fossils in two older soils will provide age estimates for earlier events. We will apply the proposed geochemical methods to 20 samples collected along a forested upland to tidal

  2. Poroelastic stress-triggering of the 2005 M8.7 Nias earthquake by the 2004 M9.2 Sumatra-Andaman earthquake

    USGS Publications Warehouse

    Hughes, K.L.H.; Masterlark, Timothy; Mooney, W.D.

    2010-01-01

    The M9.2 Sumatra-Andaman earthquake (SAE) occurred three months prior to the M8.7 Nias earthquake (NE). We propose that the NE was mechanically triggered by the SAE, and that poroelastic effects were a major component of this triggering. This study uses 3D finite element models (FEMs) of the Sumatra-Andaman subduction zone (SASZ) to predict the deformation, stress, and pore pressure fields of the SAE. The coseismic slip distribution for the SAE is calibrated to near-field GPS data using FEM-generated Green's Functions and linear inverse methods. The calibrated FEM is then used to predict the postseismic poroelastic contribution to stress-triggering along the rupture surface of the NE, which is adjacent to the southern margin of the SAE. The coseismic deformation of the SAE, combined with the rheologic configuration of the SASZ produces two transient fluid flow regimes having separate time constants. SAE coseismic pore pressures in the relatively shallow forearc and volcanic arc regions (within a few km depth) dissipate within one month after the SAE. However, pore pressures in the oceanic crust of the down-going slab persist several months after the SAE. Predictions suggest that the SAE initially induced MPa-scale negative pore pressure near the hypocenter of the NE. This pore pressure slowly recovered (increased) during the three-month interval separating the SAE and NE due to lateral migration of pore fluids, driven by coseismic pressure gradients, within the subducting oceanic crust. Because pore pressure is a fundamental component of Coulomb stress, the MPa-scale increase in pore pressure significantly decreased stability of the NE fault during the three-month interval after the SAE and prior to rupture of the NE. A complete analysis of stress-triggering due to the SAE must include a poroelastic component. Failure to include poroelastic mechanics will lead to an incomplete model that cannot account for the time interval between the SAE and NE. Our transient

  3. Dynamic stress changes during earthquake rupture

    USGS Publications Warehouse

    Day, S.M.; Yu, G.; Wald, D.J.

    1998-01-01

    We assess two competing dynamic interpretations that have been proposed for the short slip durations characteristic of kinematic earthquake models derived by inversion of earthquake waveform and geodetic data. The first interpretation would require a fault constitutive relationship in which rapid dynamic restrengthening of the fault surface occurs after passage of the rupture front, a hypothesized mechanical behavior that has been referred to as "self-healing." The second interpretation would require sufficient spatial heterogeneity of stress drop to permit rapid equilibration of elastic stresses with the residual dynamic friction level, a condition we refer to as "geometrical constraint." These interpretations imply contrasting predictions for the time dependence of the fault-plane shear stresses. We compare these predictions with dynamic shear stress changes for the 1992 Landers (M 7.3), 1994 Northridge (M 6.7), and 1995 Kobe (M 6.9) earthquakes. Stress changes are computed from kinematic slip models of these earthquakes, using a finite-difference method. For each event, static stress drop is highly variable spatially, with high stress-drop patches embedded in a background of low, and largely negative, stress drop. The time histories of stress change show predominantly monotonic stress change after passage of the rupture front, settling to a residual level, without significant evidence for dynamic restrengthening. The stress change at the rupture front is usually gradual rather than abrupt, probably reflecting the limited resolution inherent in the underlying kinematic inversions. On the basis of this analysis, as well as recent similar results obtained independently for the Kobe and Morgan Hill earthquakes, we conclude that, at the present time, the self-healing hypothesis is unnecessary to explain earthquake kinematics.

  4. Using a microfossil-based approach to constrain megathrust-induced coseismic land displacement in coastal Oregon, USA

    NASA Astrophysics Data System (ADS)

    Hawkes, A. D.; Horton, B. P.

    2007-05-01

    Paleoseismologists infer the amount of coseismic subsidence during plate-boundary earthquakes from stratigraphic changes in microfossils across sharp peat-mud and peat-sand contacts. However, the use of lithostratigraphic-based reconstructions is associated with a number of limitations, and these become particularly significant when examining low amplitude, short period variations that occur during a plate-boundary earthquake. To address this, paleoecologists working in the coastal zone have recently adopted a transfer- function approach to environmental reconstruction. Continuing subduction of the Juan de Fuca plate beneath the North America plate constitutes a major seismic hazard in the Pacific Northwest. The subduction zone interface presently lacks seismicity. The timing of the last great earthquake along the Cascadia subduction zone (1700AD) is now well refined by Japanese records of an orphan tsunami (no causal earthquake was felt in Japan) that was generated from an earthquake off the Pacific Northwest on the evening of January 26th 1700AD. I will apply the transfer function to modern foraminiferal datasets along coastal Oregon to analyze the fossil record and quantitatively determine the amount of vertical land movement associated with the 1700AD earthquake event. To date, we have collected 7 modern transects totaling 132 samples from the intertidal zone to the upland. We have also collected 9 cores recording the 1700AD earthquake. Furthermore, a 4m vibracore was collected and contains between 3 and 5 potential earthquake horizons. The 1700AD earthquake in the vibracore shows a distinct litho- and biostratigraphical change representing an instantaneous episode of subsidence of approximately 1m. However, development and application of the transfer function to such events will provide quantitative constrained estimates of coseismic land movement. Measurements that are more accurate are necessary to help modelers develop simulations that are more realistic in

  5. Aftershock Analysis of the 2016 Mw7.8 Pedernales (Ecuador) Earthquake: Seismotectonics, Seismicity Distribution and Relationship with Coseismic Slip Distribution

    NASA Astrophysics Data System (ADS)

    Agurto-Detzel, H.; Font, Y.; Charvis, P.; Ambrois, D.; Cheze, J.; Courboulex, F.; De Barros, L.; Deschamps, A.; Galve, A.; Godano, M.; Laigle, M.; Maron, C.; Martin, X.; Monfret, T.; Oregioni, D.; Peix, F., Sr.; Regnier, M. M.; Yates, B.; Mercerat, D.; Leon Rios, S.; Rietbrock, A.; Acero, W.; Alvarado, A. P.; Gabriela, P.; Ramos, C.; Ruiz, M. C.; Singaucho, J. C.; Vasconez, F.; Viracucha, C.; Beck, S. L.; Lynner, C.; Hoskins, M.; Meltzer, A.; Soto-Cordero, L.; Stachnik, J.

    2017-12-01

    0n April 2016, a Mw 7.8 megathrust earthquake struck the coast of Ecuador causing vast human and material losses. The earthquake ruptured a 100 km-long segment of the subduction interface between Nazca and South America, spatially coinciding with the 1942 M 7.8 earthquake rupture area. Shortly after the mainshock, an international effort made by institutions from Ecuador, France, UK and USA, deployed a temporary network of +60 land and ocean-bottom seismometers to capture the aftershock sequence for the subsequent year. These stations came to join the local Ecuadorian national network already monitoring in place. Here we benefit from this dataset to produce a suite of automatic locations and a subset of regional moment tensors for high quality events. Over 2900 events were detected for the first month of postseismic activity alone, and a subset of 600 events were manually re-picked and located. Similarly, thousands of aftershocks were detected using the temporary deployment over the following months, with magnitudes ranging between 1 to 7. As expected, moment tensors show mostly thrust faulting at the interface, but we also observe sparse normal and strike-slip faulting at shallow depths in the forearc. The spatial distribution of seismicity delineates the coseismic rupture area, but extends well beyond it over a 300 km long segment. Main features include three seismicity alignments perpendicular to the trench, at the north, center and south of the mainshock rupture. Preliminary results comparing quantitatively the distribution of aftershocks to the distribution of the coseismic rupture show that the bulk of the aftershock seismicity occurs at intermediate levels of coseismic slip, while areas of maximum coseismic slip are mostly devoid of events M>3. Our results shed light on the interface processes occurring mainly during the early post-seismic period of large megathrust earthquakes, and implications on the earthquake cycle.

  6. Interpretation of Offshore Crustal Movements Following the 2011 Tohoku-Oki Earthquake by the Combined Effect of Afterslip and Viscoelastic Stress Relaxation

    NASA Astrophysics Data System (ADS)

    Noda, Akemi; Takahama, Tsutomu; Kawasato, Takeshi; Matsu'ura, Mitsuhiro

    2018-02-01

    On the 11th March 2011, a megathrust event, called the Tohoku-oki earthquake, occurred at the North American-Pacific plate interface off northeast Japan. Transient crustal movements following this earthquake were clearly observed by a dense GPS network (GEONET) on land and a sparse GPS/Acoustic positioning network on seafloor. The observed crustal movements are in accordance with ordinary expectations on land, but not on seafloor; that is, slowly decaying landward movements above the main rupture area and rapidly decaying trench-ward movements in its southern extension. To reveal the cause of such curious offshore crustal movements, we analyzed the coseismic and postseismic GPS array data on land with a sequential stepwise inversion method considering viscoelastic stress relaxation in the asthenosphere, and obtained the following results: The afterslip of the Tohoku-oki earthquake rapidly proceeds for the first 1 year on a high-angle downdip extension of the main rupture, which occurred on the low-angle offshore plate interface. The theoretical patterns of seafloor horizontal movements due to the afterslip and the viscoelastic relaxation of coseismic stress changes in the asthenosphere are essentially different both in space and time; inshore trench-ward movements and offshore landward movements for the afterslip, while overall landward movements for the viscoelastic stress relaxation. General agreement between the computed horizontal movements and the GPS/Acoustic observations demonstrates that the postseismic curious offshore crustal movements can be ascribed to the combined effect of afterslip on a high-angle downdip extension of the main rupture and viscoelastic stress relaxation in the asthenosphere.

  7. The determination of interseismic, coseismic and postseismic deformations caused by the Gökçeada-Samothraki earthquake (2014, Mw: 6.9) based on GNSS data

    NASA Astrophysics Data System (ADS)

    Tiryakioglu, Ibrahim; Yigit, Cemal Ozer; Yavasoglu, Hakan; Saka, Mehmet Halis; Alkan, Reha Metin

    2017-09-01

    Since the 1990s, seismic deformations have been commonly determined using the Global Navigation Satellite System (GNSS). Recently, the GNSS systems have become even more powerful with the use of new technologies in innovative studies. In this study, the GNSS data was used to investigate interseismic, coseismic and postseismic deformation and velocity of the Gökçeada-Samothraki earthquake (Mw = 6.9) that occurred on May 24, 2014. The data was obtained at 30 s (0.033 Hz) and 1 s (1 Hz) intervals from the GNSS receivers in the network of Continuously Operating Reference Stations, Turkey (CORS-TR). For the interseismic period, the daily coordinate time series of 12 stations located within 90-250 km of the earthquake epicenter was evaluated for the displacement of stations over a period of approximately 2000 days prior to the day of the earthquakes, from October 1, 2008 to May 23, 2014. In order to analyze the ground motion displacement during the Gökçeada-Samothraki earthquake, 1 Hz data from 8 continuous GNSS stations was processed using precise point positioning (PPP) and relative positioning methods to estimate the epoch-by-epoch positions of the stations. During the earthquake, coseismic displacements of approximately 7 and 30 mm were detected in the NW direction at the YENC and CANA stations, respectively. However, at the IPSA station, a coseismic deformation of 20 mm was observed in the NE direction. There were no significant changes at the other stations during the earthquake. For the postseismic period, the daily coordinate time series of the 12 stations were evaluated for station displacements for 570 days after the day of the earthquakes, from May 24, 2014 to January 1, 2016. The results demonstrated that no significant postseismic deformation with the exception of the EDIR station. An abnormal deformation caused by local factors was determined at the EDIR station. In this study, the PPP and the relative solution were also compared in terms of capturing

  8. The 2016-2017 central Italy coseismic surface ruptures and their meaning with respect to foreseen active fault systems segmentation

    NASA Astrophysics Data System (ADS)

    De Martini, P. M.; Pucci, S.; Villani, F.; Civico, R.; Del Rio, L.; Cinti, F. R.; Pantosti, D.

    2017-12-01

    In 2016-2017 a series of moderate to large normal faulting earthquakes struck central Italy producing severe damage in many towns including Amatrice, Norcia and Visso and resulting in 299 casualties and >20,000 homeless. The complex seismic sequence depicts a multiple activation of the Mt. Vettore-Mt. Bove (VBFS) and the Laga Mts. fault systems, which were considered in literature as independent segments characterizing a recent seismic gap in the region comprised between two modern seismic sequences: the 1997-1998 Colfiorito and the 2009 L'Aquila. We mapped in detail the coseismic surface ruptures following three mainshocks (Mw 6.0 on 24th August, Mw 5.9 and Mw 6.5 on 26th and 30th October, 2016, respectively). Primary surface ruptures were observed and recorded for a total length of 5.2 km, ≅10 km and ≅25 km, respectively, along closely-spaced, parallel or subparallel, overlapping or step-like synthetic and antithetic fault splays of the activated fault systems, in some cases rupturing repeatedly the same location. Some coseismic ruptures were mapped also along the Norcia Fault System, paralleling the VBFS about 10 km westward. We recorded geometric and kinematic characteristics of the normal faulting ruptures with an unprecedented detail thanks to almost 11,000 oblique photographs taken from helicopter flights soon after the mainshocks, verified and integrated with field data (more than 7000 measurements). We analyze the along-strike coseismic slip and slip vectors distribution to be observed in the context of the geomorphic expression of the disrupted slopes and their depositional and erosive processes. Moreover, we constructed 1:10.000 scale geologic cross-sections based on updated maps, and we reconstructed the net offset distribution of the activated fault system to be compared with the morphologic throws and to test a cause-effect relationship between faulting and first-order landforms. We provide a reconstruction of the 2016 coseismic rupture pattern as

  9. Stress transfer among en echelon and opposing thrusts and tear faults: Triggering caused by the 2003 Mw = 6.9 Zemmouri, Algeria, earthquake

    USGS Publications Warehouse

    Lin, J.; Stein, R.S.; Meghraoui, M.; Toda, S.; Ayadi, A.; Dorbath, C.; Belabbes, S.

    2011-01-01

    The essential features of stress interaction among earthquakes on en echelon thrusts and tear faults were investigated, first through idealized examples and then by study of thrust faulting in Algeria. We calculated coseismic stress changes caused by the 2003 Mw = 6.9 Zemmouri earthquake, finding that a large majority of the Zemmouri afterslip sites were brought several bars closer to Coulomb failure by the coseismic stresses, while the majority of aftershock nodal planes were brought closer to failure by an average of ~2 bars. Further, we calculated that the shallow portions of the adjacent Thenia tear fault, which sustained ~0.25 m slip, were brought >2 bars closer to failure. We calculated that the Coulomb stress increased by 1.5 bars on the deeper portions of the adjacent Boumerdes thrust, which lies just 10–20 km from the city of Algiers; both the Boumerdes and Thenia faults were illuminated by aftershocks. Over the next 6 years, the entire south dipping thrust system extending 80 km to the southwest experienced an increased rate of seismicity. The stress also increased by 0.4 bar on the east Sahel thrust fault west of the Zemmouri rupture. Algiers suffered large damaging earthquakes in A.D. 1365 and 1716 and is today home to 3 million people. If these shocks occurred on the east Sahel fault and if it has a ~2 mm/yr tectonic loading rate, then enough loading has accumulated to produce a Mw = 6.6–6.9 shock today. Thus, these potentially lethal faults need better understanding of their slip rate and earthquake history.

  10. An unified numerical simulation of seismic ground motion, ocean acoustics, coseismic deformations and tsunamis of 2011 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Maeda, T.; Furumura, T.; Noguchi, S.; Takemura, S.; Iwai, K.; Lee, S.; Sakai, S.; Shinohara, M.

    2011-12-01

    The fault rupture of the 2011 Tohoku (Mw9.0) earthquake spread approximately 550 km by 260 km with a long source rupture duration of ~200 s. For such large earthquake with a complicated source rupture process the radiation of seismic wave from the source rupture and initiation of tsunami due to the coseismic deformation is considered to be very complicated. In order to understand such a complicated process of seismic wave, coseismic deformation and tsunami, we proposed a unified approach for total modeling of earthquake induced phenomena in a single numerical scheme based on a finite-difference method simulation (Maeda and Furumura, 2011). This simulation model solves the equation of motion of based on the linear elastic theory with equilibrium between quasi-static pressure and gravity in the water column. The height of tsunami is obtained from this simulation as a vertical displacement of ocean surface. In order to simulate seismic waves, ocean acoustics, coseismic deformations, and tsunami from the 2011 Tohoku earthquake, we assembled a high-resolution 3D heterogeneous subsurface structural model of northern Japan. The area of simulation is 1200 km x 800 km and 120 km in depth, which have been discretized with grid interval of 1 km in horizontal directions and 0.25 km in vertical direction, respectively. We adopt a source-rupture model proposed by Lee et al. (2011) which is obtained by the joint inversion of teleseismic, near-field strong motion, and coseismic deformation. For conducting such a large-scale simulation, we fully parallelized our simulation code based on a domain-partitioning procedure which achieved a good speed-up by parallel computing up to 8192 core processors with parallel efficiency of 99.839%. The simulation result demonstrates clearly the process in which the seismic wave radiates from the complicated source rupture over the fault plane and propagating in heterogeneous structure of northern Japan. Then, generation of tsunami from coseismic

  11. Coseismic and post-seismic signatures of the Sumatra 2004 December and 2005 March earthquakes in GRACE satellite gravity

    USGS Publications Warehouse

    Panet, I.; Mikhailov, V.; Diament, M.; Pollitz, F.; King, G.; de Viron, O.; Holschneider, M.; Biancale, R.; Lemoine, J.-M.

    2007-01-01

    The GRACE satellite mission has been measuring the Earth's gravity field and its temporal variations since 2002 April. Although these variations are mainly due to mass transfer within the geofluid envelops, they also result from mass displacements associated with phenomena including glacial isostatic adjustment and earthquakes. However, these last contributions are difficult to isolate because of the presence of noise and of geofluid signals, and because of GRACE's coarse spatial resolution (>400 km half-wavelength). In this paper, we show that a wavelet analysis on the sphere helps to retrieve earthquake signatures from GRACE geoid products. Using a wavelet analysis of GRACE geoids products, we show that the geoid variations caused by the 2004 December (Mw = 9.2) and 2005 March (Mw = 8.7) Sumatra earthquakes can be detected. At GRACE resolution, the 2004 December earthquake produced a strong coseismic decrease of the gravity field in the Andaman Sea, followed by relaxation in the area affected by both the Andaman 2004 and the Nias 2005 earthquakes. We find two characteristic timescales for the relaxation, with a fast variation occurring in the vicinity of the Central Andaman ridge. We discuss our coseismic observations in terms of density changes of crustal and upper-mantle rocks, and of the vertical displacements in the Andaman Sea. We interpret the post-seismic signal in terms of the viscoelastic response of the Earth's mantle. The transient component of the relaxation may indicate the presence of hot, viscous material beneath the active Central Andaman Basin. ?? 2007 The Authors Journal compilation ?? 2007 RAS.

  12. Coseismic and post-seismic signatures of the Sumatra 2004 December and 2005 March earthquakes in GRACE satellite gravity

    NASA Astrophysics Data System (ADS)

    Panet, Isabelle; Mikhailov, Valentin; Diament, Michel; Pollitz, Fred; King, Geoffrey; de Viron, Olivier; Holschneider, Matthias; Biancale, Richard; Lemoine, Jean-Michel

    2007-10-01

    The GRACE satellite mission has been measuring the Earth's gravity field and its temporal variations since 2002 April. Although these variations are mainly due to mass transfer within the geofluid envelops, they also result from mass displacements associated with phenomena including glacial isostatic adjustment and earthquakes. However, these last contributions are difficult to isolate because of the presence of noise and of geofluid signals, and because of GRACE's coarse spatial resolution (>400 km half-wavelength). In this paper, we show that a wavelet analysis on the sphere helps to retrieve earthquake signatures from GRACE geoid products. Using a wavelet analysis of GRACE geoids products, we show that the geoid variations caused by the 2004 December (Mw = 9.2) and 2005 March (Mw = 8.7) Sumatra earthquakes can be detected. At GRACE resolution, the 2004 December earthquake produced a strong coseismic decrease of the gravity field in the Andaman Sea, followed by relaxation in the area affected by both the Andaman 2004 and the Nias 2005 earthquakes. We find two characteristic timescales for the relaxation, with a fast variation occurring in the vicinity of the Central Andaman ridge. We discuss our coseismic observations in terms of density changes of crustal and upper-mantle rocks, and of the vertical displacements in the Andaman Sea. We interpret the post-seismic signal in terms of the viscoelastic response of the Earth's mantle. The transient component of the relaxation may indicate the presence of hot, viscous material beneath the active Central Andaman Basin.

  13. Implications for stress changes along the Motagua fault and other nearby faults using GPS and seismic constraints on the M=7.3 2009 Swan Islands earthquake

    NASA Astrophysics Data System (ADS)

    Graham, S. E.; Rodriguez, M.; Rogers, R. D.; Strauch, W.; Hernandez, D.; Demets, C.

    2010-12-01

    The May 28, 2009 M=7.3 Swan Islands earthquake off the north coast of Honduras caused significant damage in the northern part of the country, including seven deaths. This event, the largest in the region for several decades, ruptured the offshore continuation of the Motagua-Polochic fault system, whose 1976 earthquake (located several hundred kilometers to the southwest of the 2009 epicenter) caused more than 23,000 deaths in Central America and left homeless 20% of Guatemala’s population. We use elastic half-space modeling of coseismic offsets measured at 39 GPS stations in Honduras, El Salvador, and Guatemala to better understand the slip source of the recent Swan Islands earthquake. Measured offsets range from .32 meters at a campaign site near the Motagua fault in northern Honduras to 4 millimeters at five continuous sites in El Salvador. Coulomb stress calculations based on the estimated distribution of coseismic slip will be presented and compared to earthquake focal mechanisms and aftershock locations determined from a portable seismic network that was installed in northern Honduras after the main shock. Implications of the Swan Islands rupture for the seismically hazardous Motagua-Polochic fault system will be described.

  14. A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy

    PubMed Central

    Villani, Fabio; Civico, Riccardo; Pucci, Stefano; Pizzimenti, Luca; Nappi, Rosa; De Martini, Paolo Marco; Villani, Fabio; Civico, Riccardo; Pucci, Stefano; Pizzimenti, Luca; Nappi, Rosa; De Martini, Paolo Marco; Agosta, F.; Alessio, G.; Alfonsi, L.; Amanti, M.; Amoroso, S.; Aringoli, D.; Auciello, E.; Azzaro, R.; Baize, S.; Bello, S.; Benedetti, L.; Bertagnini, A.; Binda, G.; Bisson, M.; Blumetti, A.M.; Bonadeo, L.; Boncio, P.; Bornemann, P.; Branca, S.; Braun, T.; Brozzetti, F.; Brunori, C.A.; Burrato, P.; Caciagli, M.; Campobasso, C.; Carafa, M.; Cinti, F.R.; Cirillo, D.; Comerci, V.; Cucci, L.; De Ritis, R.; Deiana, G.; Del Carlo, P.; Del Rio, L.; Delorme, A.; Di Manna, P.; Di Naccio, D.; Falconi, L.; Falcucci, E.; Farabollini, P.; Faure Walker, J.P.; Ferrarini, F.; Ferrario, M.F.; Ferry, M.; Feuillet, N.; Fleury, J.; Fracassi, U.; Frigerio, C.; Galluzzo, F.; Gambillara, R.; Gaudiosi, G.; Goodall, H.; Gori, S.; Gregory, L.C.; Guerrieri, L.; Hailemikael, S.; Hollingsworth, J.; Iezzi, F.; Invernizzi, C.; Jablonská, D.; Jacques, E.; Jomard, H.; Kastelic, V.; Klinger, Y.; Lavecchia, G.; Leclerc, F.; Liberi, F.; Lisi, A.; Livio, F.; Lo Sardo, L.; Malet, J.P.; Mariucci, M.T.; Materazzi, M.; Maubant, L.; Mazzarini, F.; McCaffrey, K.J.W.; Michetti, A.M.; Mildon, Z.K.; Montone, P.; Moro, M.; Nave, R.; Odin, M.; Pace, B.; Paggi, S.; Pagliuca, N.; Pambianchi, G.; Pantosti, D.; Patera, A.; Pérouse, E.; Pezzo, G.; Piccardi, L.; Pierantoni, P.P.; Pignone, M.; Pinzi, S.; Pistolesi, E.; Point, J.; Pousse, L.; Pozzi, A.; Proposito, M.; Puglisi, C.; Puliti, I.; Ricci, T.; Ripamonti, L.; Rizza, M.; Roberts, G.P.; Roncoroni, M.; Sapia, V.; Saroli, M.; Sciarra, A.; Scotti, O.; Skupinski, G.; Smedile, A.; Soquet, A.; Tarabusi, G.; Tarquini, S.; Terrana, S.; Tesson, J.; Tondi, E.; Valentini, A.; Vallone, R.; Van der Woerd, J.; Vannoli, P.; Venuti, A.; Vittori, E.; Volatili, T.; Wedmore, L.N.J.; Wilkinson, M.; Zambrano, M.

    2018-01-01

    We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km2. The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting. PMID:29583143

  15. A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy.

    PubMed

    Villani, Fabio; Civico, Riccardo; Pucci, Stefano; Pizzimenti, Luca; Nappi, Rosa; De Martini, Paolo Marco

    2018-03-27

    We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km 2 . The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting.

  16. A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy

    NASA Astrophysics Data System (ADS)

    Villani, Fabio; Civico, Riccardo; Pucci, Stefano; Pizzimenti, Luca; Nappi, Rosa; de Martini, Paolo Marco; Villani, Fabio; Civico, Riccardo; Pucci, Stefano; Pizzimenti, Luca; Nappi, Rosa; de Martini, Paolo Marco; Agosta, F.; Alessio, G.; Alfonsi, L.; Amanti, M.; Amoroso, S.; Aringoli, D.; Auciello, E.; Azzaro, R.; Baize, S.; Bello, S.; Benedetti, L.; Bertagnini, A.; Binda, G.; Bisson, M.; Blumetti, A. M.; Bonadeo, L.; Boncio, P.; Bornemann, P.; Branca, S.; Braun, T.; Brozzetti, F.; Brunori, C. A.; Burrato, P.; Caciagli, M.; Campobasso, C.; Carafa, M.; Cinti, F. R.; Cirillo, D.; Comerci, V.; Cucci, L.; de Ritis, R.; Deiana, G.; Del Carlo, P.; Del Rio, L.; Delorme, A.; di Manna, P.; di Naccio, D.; Falconi, L.; Falcucci, E.; Farabollini, P.; Faure Walker, J. P.; Ferrarini, F.; Ferrario, M. F.; Ferry, M.; Feuillet, N.; Fleury, J.; Fracassi, U.; Frigerio, C.; Galluzzo, F.; Gambillara, R.; Gaudiosi, G.; Goodall, H.; Gori, S.; Gregory, L. C.; Guerrieri, L.; Hailemikael, S.; Hollingsworth, J.; Iezzi, F.; Invernizzi, C.; Jablonská, D.; Jacques, E.; Jomard, H.; Kastelic, V.; Klinger, Y.; Lavecchia, G.; Leclerc, F.; Liberi, F.; Lisi, A.; Livio, F.; Lo Sardo, L.; Malet, J. P.; Mariucci, M. T.; Materazzi, M.; Maubant, L.; Mazzarini, F.; McCaffrey, K. J. W.; Michetti, A. M.; Mildon, Z. K.; Montone, P.; Moro, M.; Nave, R.; Odin, M.; Pace, B.; Paggi, S.; Pagliuca, N.; Pambianchi, G.; Pantosti, D.; Patera, A.; Pérouse, E.; Pezzo, G.; Piccardi, L.; Pierantoni, P. P.; Pignone, M.; Pinzi, S.; Pistolesi, E.; Point, J.; Pousse, L.; Pozzi, A.; Proposito, M.; Puglisi, C.; Puliti, I.; Ricci, T.; Ripamonti, L.; Rizza, M.; Roberts, G. P.; Roncoroni, M.; Sapia, V.; Saroli, M.; Sciarra, A.; Scotti, O.; Skupinski, G.; Smedile, A.; Soquet, A.; Tarabusi, G.; Tarquini, S.; Terrana, S.; Tesson, J.; Tondi, E.; Valentini, A.; Vallone, R.; van der Woerd, J.; Vannoli, P.; Venuti, A.; Vittori, E.; Volatili, T.; Wedmore, L. N. J.; Wilkinson, M.; Zambrano, M.

    2018-03-01

    We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km2. The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting.

  17. Temporal stress changes caused by earthquakes: A review

    USGS Publications Warehouse

    Hardebeck, Jeanne L.; Okada, Tomomi

    2018-01-01

    Earthquakes can change the stress field in the Earth’s lithosphere as they relieve and redistribute stress. Earthquake-induced stress changes have been observed as temporal rotations of the principal stress axes following major earthquakes in a variety of tectonic settings. The stress changes due to the 2011 Mw9.0 Tohoku-Oki, Japan, earthquake were particularly well documented. Earthquake stress rotations can inform our understanding of earthquake physics, most notably addressing the long-standing problem of whether the Earth’s crust at plate boundaries is “strong” or “weak.” Many of the observed stress rotations, including that due to the Tohoku-Oki earthquake, indicate near-complete stress drop in the mainshock. This implies low background differential stress, on the order of earthquake stress drop, supporting the weak crust model. Earthquake stress rotations can also be used to address other important geophysical questions, such as the level of crustal stress heterogeneity and the mechanisms of postseismic stress reloading. The quantitative interpretation of stress rotations is evolving from those based on simple analytical methods to those based on more sophisticated numerical modeling that can capture the spatial-temporal complexity of the earthquake stress changes.

  18. Temporal Stress Changes Caused by Earthquakes: A Review

    NASA Astrophysics Data System (ADS)

    Hardebeck, Jeanne L.; Okada, Tomomi

    2018-02-01

    Earthquakes can change the stress field in the Earth's lithosphere as they relieve and redistribute stress. Earthquake-induced stress changes have been observed as temporal rotations of the principal stress axes following major earthquakes in a variety of tectonic settings. The stress changes due to the 2011 Mw9.0 Tohoku-Oki, Japan, earthquake were particularly well documented. Earthquake stress rotations can inform our understanding of earthquake physics, most notably addressing the long-standing problem of whether the Earth's crust at plate boundaries is "strong" or "weak." Many of the observed stress rotations, including that due to the Tohoku-Oki earthquake, indicate near-complete stress drop in the mainshock. This implies low background differential stress, on the order of earthquake stress drop, supporting the weak crust model. Earthquake stress rotations can also be used to address other important geophysical questions, such as the level of crustal stress heterogeneity and the mechanisms of postseismic stress reloading. The quantitative interpretation of stress rotations is evolving from those based on simple analytical methods to those based on more sophisticated numerical modeling that can capture the spatial-temporal complexity of the earthquake stress changes.

  19. Classification of climate-change-induced stresses on biological diversity.

    PubMed

    Geyer, Juliane; Kiefer, Iris; Kreft, Stefan; Chavez, Veronica; Salafsky, Nick; Jeltsch, Florian; Ibisch, Pierre L

    2011-08-01

    Conservation actions need to account for and be adapted to address changes that will occur under global climate change. The identification of stresses on biological diversity (as defined in the Convention on Biological Diversity) is key in the process of adaptive conservation management. We considered any impact of climate change on biological diversity a stress because such an effect represents a change (negative or positive) in key ecological attributes of an ecosystem or parts of it. We applied a systemic approach and a hierarchical framework in a comprehensive classification of stresses to biological diversity that are caused directly by global climate change. Through analyses of 20 conservation sites in 7 countries and a review of the literature, we identified climate-change-induced stresses. We grouped the identified stresses according to 3 levels of biological diversity: stresses that affect individuals and populations, stresses that affect biological communities, and stresses that affect ecosystem structure and function. For each stress category, we differentiated 3 hierarchical levels of stress: stress class (thematic grouping with the coarsest resolution, 8); general stresses (thematic groups of specific stresses, 21); and specific stresses (most detailed definition of stresses, 90). We also compiled an overview of effects of climate change on ecosystem services using the categories of the Millennium Ecosystem Assessment and 2 additional categories. Our classification may be used to identify key climate-change-related stresses to biological diversity and may assist in the development of appropriate conservation strategies. The classification is in list format, but it accounts for relations among climate-change-induced stresses. © 2011 Society for Conservation Biology.

  20. Stress changes ahead of an advancing tunnel

    USGS Publications Warehouse

    Abel, J.F.; Lee, F.T.

    1973-01-01

    Instrumentation placed ahead of three model tunnels in the laboratory and ahead of a crosscut driven in a metamorphic rock mass detected stress changes several tunnel diameters ahead of the tunnel face. Stress changes were detected 4 diameters ahead of a model tunnel drilled into nearly elastic acrylic, 2??50 diameters ahead of a model tunnel drilled into concrete, and 2 diameters ahead of a model tunnel drilled into Silver Plume Granite. Stress changes were detected 7??50 diameters ahead of a crosscut driven in jointed, closely foliated gneisses and gneissic granites in an experimental mine at Idaho Springs, Colorado. These results contrast markedly with a theoretical elastic estimate of the onset of detectable stress changes at 1 tunnel diameter ahead of the tunnel face. A small compressive stress concentration was detected 2 diameters ahead of the model tunnel in acrylic, 1.25 diameters ahead of the model tunnel in concrete, and 1 diameter ahead of the model tunnel in granite. A similar stress peak was detected about 6 diameters ahead of the crosscut. No such stress peak is predicted from elastic theory. The 3-dimensional in situ stress determined in the field demonstrate that geologic structure controls stress orientations in the metamorphic rock mass. Two of the computed principal stresses are parallel to the foliation and the other principal stress is normal to it. The principal stress orientations vary approximately as the foliation attitude varies. The average horizontal stress components and the average vertical stress component are three times and twice as large, respectively, as those predicted from the overburden load. An understanding of the measured stress field appears to require the application of either tectonic or residual stress components, or both. Laboratory studies indicate the presence of proportionately large residual stresses. Mining may have triggered the release of strain energy, which is controlled by geologic structure. ?? 1973.

  1. Comparison of the Structurally Controlled Landslides Numerical Model Results to the M 7.2 2013 Bohol Earthquake Co-seismic Landslides

    NASA Astrophysics Data System (ADS)

    Macario Galang, Jan Albert; Narod Eco, Rodrigo; Mahar Francisco Lagmay, Alfredo

    2015-04-01

    The M 7.2 October 15, 2013 Bohol earthquake is the most destructive earthquake to hit the Philippines since 2012. The epicenter was located in Sagbayan municipality, central Bohol and was generated by a previously unmapped reverse fault called the "Inabanga Fault". Its name, taken after the barangay (village) where the fault is best exposed and was first seen. The earthquake resulted in 209 fatalities and over 57 billion USD worth of damages. The earthquake generated co-seismic landslides most of which were related to fault structures. Unlike rainfall induced landslides, the trigger for co-seismic landslides happen without warning. Preparedness against this type of landslide therefore, relies heavily on the identification of fracture-related unstable slopes. To mitigate the impacts of co-seismic landslide hazards, morpho-structural orientations or discontinuity sets were mapped in the field with the aid of a 2012 IFSAR Digital Terrain Model (DTM) with 5-meter pixel resolution and < 0.5 meter vertical accuracy. Coltop 3D software was then used to identify similar structures including measurement of their dip and dip directions. The chosen discontinuity sets were then keyed into Matterocking software to identify potential rock slide zones due to planar or wedged discontinuities. After identifying the structurally-controlled unstable slopes, the rock mass propagation extent of the possible rock slides was simulated using Conefall. The results were compared to a post-earthquake landslide inventory of 456 landslides. Out the total number of landslides identified from post-earthquake high-resolution imagery, 366 or 80% intersect the structural-controlled hazard areas of Bohol. The results show the potential of this method to identify co-seismic landslide hazard areas for disaster mitigation. Along with computer methods to simulate shallow landslides, and debris flow paths, located structurally-controlled unstable zones can be used to mark unsafe areas for settlement. The

  2. Openness to experience and adapting to change: Cardiovascular stress habituation to change in acute stress exposure.

    PubMed

    Ó Súilleabháin, Páraic S; Howard, Siobhán; Hughes, Brian M

    2018-05-01

    Underlying psychophysiological mechanisms of effect linking openness to experience to health outcomes, and particularly cardiovascular well-being, are unknown. This study examined the role of openness in the context of cardiovascular responsivity to acute psychological stress. Continuous cardiovascular response data were collected for 74 healthy young female adults across an experimental protocol, including differing counterbalanced acute stressors. Openness was measured via self-report questionnaire. Analysis of covariance revealed openness was associated with systolic blood pressure (SBP; p = .016), and diastolic blood pressure (DBP; p = .036) responsivity across the protocol. Openness was also associated with heart rate (HR) responding to the initial stress exposure (p = .044). Examination of cardiovascular adaptation revealed that higher openness was associated with significant SBP (p = .001), DBP (p = .009), and HR (p = .002) habituation in response to the second differing acute stress exposure. Taken together, the findings suggest persons higher in openness are characterized by an adaptive cardiovascular stress response profile within the context of changing acute stress exposures. This study is also the first to demonstrate individual differences in cardiovascular adaptation across a protocol consisting of differing stress exposures. More broadly, this research also suggests that future research may benefit from conceptualizing an adaptive fitness of openness within the context of change. In summary, the present study provides evidence that higher openness stimulates short-term stress responsivity, while ensuring cardiovascular habituation to change in stress across time. © 2017 Society for Psychophysiological Research.

  3. Effects of layered crust on the coseismic slip inversion and related CFF variations: Hints from the 2012 Emilia Romagna earthquake

    NASA Astrophysics Data System (ADS)

    Nespoli, Massimo; Belardinelli, Maria E.; Anderlini, Letizia; Bonafede, Maurizio; Pezzo, Giuseppe; Todesco, Micol; Rinaldi, Antonio P.

    2017-12-01

    The 2012 Emilia Romagna (Italy) seismic sequence has been extensively studied given the occurrence of two mainshocks, both temporally and spatially close to each other. The recent literature accounts for several fault models, obtained with different inversion methods and different datasets. Several authors investigated the possibility that the second event was triggered by the first mainshock with elusive results. In this work, we consider all the available InSAR and GPS datasets and two planar fault geometries, which are based on both seismological and geological constraints. We account for a layered, elastic half-space hosting the dislocation and compare the slip distribution resulting from the inversion and the related changes in Coulomb Failure Function (CFF) obtained with both a homogeneous and layered half-space. Finally, we focus on the interaction between the two main events, discriminating the contributions of coseismic and early postseismic slip of the mainshock on the generation of the second event and discuss the spatio-temporal distribution of the seismic sequence. When accounting for both InSAR and GPS geodetic data we are able to reproduce a detailed coseismic slip distribution for the two mainshocks that is in accordance with the overall aftershock seismicity distribution. Furthermore, we see that an elastic medium with depth dependent rigidity better accounts for the lack of the shallow seismicity, amplifying, with respect to the homogeneous case, the mechanical interaction of the two mainshocks.

  4. Causes of unusual distribution of coseismic landslides triggered by the Mw 6.1 2014 Ludian, Yunnan, China earthquake

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-li; Liu, Chun-guo; Wang, Ming-ming; Zhou, Qing

    2018-06-01

    The Mw 6.1 2014 Ludian, Yunnan, China earthquake triggered numerous coseismic landslides that do not appear to be associated with any previously known seismogenic fault. Traditional models of triggering for seismically generated landslides do not provide a reasonable explanation for the landslide pattern observed here. Here the Newmark method is applied to a grid to calculate the minimum accelerations required for slope failures throughout the affected region. The results demonstrate that for much of the study area, the distribution of failure prone slopes is similar to the actual pattern of coseismic landslides, however there are some areas where the model predicts considerably fewer failures than occurred. We suggest that this is a result of the complex source faults that generated the Ludian earthquake, which produced a half-conjugate rupture on nearly EW- and NNW trending faults at depth. The rupture directed much of its seismic moment southeast of the epicenter, increasing ground shaking and the number of resulting landslides.

  5. Stress on the seismogenic and deep creep plate interface during the earthquake cycle in subduction zones

    NASA Astrophysics Data System (ADS)

    Ruff, Larry J.

    2001-04-01

    the earthquake cycle ranges from 0.1 MPa (Nankai) to 1.7 MPa (Chile). These absolute stress values for the deep creep zone are slightly smaller than the great earthquake stress drops. Since the great earthquake recurrence time ( T recur) is much larger than τ for Nankai, Alaska, and Chile, the model predicts that rapid post-seismic creep should re-load the seismogenic zone to about (1/3) of the co-seismic change; geodetically observed values range from about (1/10) to more than (1/2). Also, for the case of (Trecur/τ) ≫1, the model predicts that the slip velocity across the deep creep interface during the inter-seismic phase should be about (2/3) the plate tectonic velocity (R). Thus the deep creep velocity used in Savage-type models should be less than R. Even complex 3-D models with non-linear creep laws should make a similar prediction for inter-seismic deep creep rates. At present, it seems that geodetic observations at Nankai and other subduction zones are more consistent with a deep creep rate of R rather than (2/3) R. This discrepancy is quite puzzling and is difficult to explain in the context of a 2-D steady-state earthquake cycle model. Future observational and modeling studies should examine this apparent discrepancy to gain more understanding of the earthquake cycle in subduction zones.

  6. Estimating fluid-induced stress change from observed deformation

    DOE PAGES

    Vasco, D. W.; Harness, Paul; Pride, Steve; ...

    2016-12-19

    Observed deformation is sensitive to a changing stress field within the Earth. There are, however, several impediments to a direct inversion of geodetic measurements for changes in stress. Estimating six independent components of stress change from a smaller number of displacement or strain components is inherently non-unique. The reliance upon surface measurements leads to a loss of resolution, due to the attenuation of higher spatial frequencies in the displacement field with distance from a source. Here, we adopt a technique suited to the estimation of stress changes due to the injection and/or withdrawal of fluids at depth. In this approachmore » the surface displacement data provides an estimate of the volume change responsible for the deformation, rather than stress changes themselves. The inversion for volume change is constrained by the fluid fluxes into and out of the reservoir. The distribution of volume change is used to calculate the displacements in the region above the reservoir. Estimates of stress change follow from differentiating the displacement field in conjunction with a geomechanical model of the o verburden. We also apply the technique to Interferometric Synthetic Aperture Radar (InSAR) observations gathered over a petroleum reservoir in the San Joaquin Valley of California. An analysis of the InSAR range changes reveals that the stress field in the overburden varies rapidly both in space and in time. The inferred stress variations are found to be compatible with the documented failure of a well in the field.« less

  7. Estimating fluid-induced stress change from observed deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasco, D. W.; Harness, Paul; Pride, Steve

    Observed deformation is sensitive to a changing stress field within the Earth. There are, however, several impediments to a direct inversion of geodetic measurements for changes in stress. Estimating six independent components of stress change from a smaller number of displacement or strain components is inherently non-unique. The reliance upon surface measurements leads to a loss of resolution, due to the attenuation of higher spatial frequencies in the displacement field with distance from a source. Here, we adopt a technique suited to the estimation of stress changes due to the injection and/or withdrawal of fluids at depth. In this approachmore » the surface displacement data provides an estimate of the volume change responsible for the deformation, rather than stress changes themselves. The inversion for volume change is constrained by the fluid fluxes into and out of the reservoir. The distribution of volume change is used to calculate the displacements in the region above the reservoir. Estimates of stress change follow from differentiating the displacement field in conjunction with a geomechanical model of the o verburden. We also apply the technique to Interferometric Synthetic Aperture Radar (InSAR) observations gathered over a petroleum reservoir in the San Joaquin Valley of California. An analysis of the InSAR range changes reveals that the stress field in the overburden varies rapidly both in space and in time. The inferred stress variations are found to be compatible with the documented failure of a well in the field.« less

  8. Testing the accelerating moment release (AMR) hypothesis in areas of high stress

    NASA Astrophysics Data System (ADS)

    Guilhem, Aurélie; Bürgmann, Roland; Freed, Andrew M.; Ali, Syed Tabrez

    2013-11-01

    Several retrospective analyses have proposed that significant increases in moment release occurred prior to many large earthquakes of recent times. However, the finding of accelerating moment release (AMR) strongly depends on the choice of three parameters: (1) magnitude range, (2) area being considered surrounding the events and (3) the time period prior to the large earthquakes. Consequently, the AMR analysis has been criticized as being a posteriori data-fitting exercise with no new predictive power. As AMR has been hypothesized to relate to changes in the state of stress around the eventual epicentre, we compare here AMR results to models of stress accumulation in California. Instead of assuming a complete stress drop on all surrounding fault segments implied by a back-slip stress lobe method, we consider that stress evolves dynamically, punctuated by the occurrence of earthquakes, and governed by the elastic and viscous properties of the lithosphere. We study the seismicity of southern California and extract events for AMR calculations following the systematic approach employed in previous studies. We present several sensitivity tests of the method, as well as grid-search analyses over the region between 1955 and 2005 using fixed magnitude range, radius of the search area and period of time. The results are compared to the occurrence of large events and to maps of Coulomb stress changes. The Coulomb stress maps are compiled using the coseismic stress from all M > 7.0 earthquakes since 1812, their subsequent post-seismic relaxation, and the interseismic strain accumulation. We find no convincing correlation of seismicity rate changes in recent decades with areas of high stress that would support the AMR hypothesis. Furthermore, this indicates limited utility for practical earthquake hazard analysis in southern California, and possibly other regions.

  9. Discovering Coseismic Traveling Ionospheric Disturbances Generated by the 2016 Kaikoura Earthquake

    NASA Astrophysics Data System (ADS)

    Li, J. D.; Rude, C. M.; Gowanlock, M.; Pankratius, V.

    2017-12-01

    Geophysical events and hazards, such as earthquakes, tsunamis, and volcanoes, have been shown to generate traveling ionospheric disturbances (TIDs). These disturbances can be measured by means of Total Electron Content fluctuations obtained from a network of multifrequency GPS receivers in the MIT Haystack Observatory Madrigal database. Analyzing the response of the ionosphere to such hazards enhances our understanding of natural phenomena and augments our large-scale monitoring capabilities in conjunction with other ground-based sensors. However, it is currently challenging for human investigators to spot and characterize such signatures, or whether a geophysical event has actually occurred, because the ionosphere can be noisy with multiple simultaneous phenomena taking place at the same time. This work therefore explores a systematic pipeline for the ex-post discovery and characterization of TIDs. Our technique starts by geolocating the event and gathering the corresponding data, then checks for potentially conflicting TID sources, and processes the raw total electron content data to generate differential measurements. A Kolmogorov-Smirnov test is applied to evaluate the statistical significance of detected deviations in the differential measurements. We present results from our successful application of this pipeline to the 2016 7.8 Mw Kaikoura earthquake occurring in New Zealand on November 13th. We detect a coseismic TID occurring 8 minutes after the earthquake and propagating towards the equator at 1050 m/s, with a 0.22 peak-to-peak TECu amplitude. Furthermore, the observed waveform exhibits more complex behavior than the expected N-wave for a coseismic TID, which potentially results from the complex multi-fault structure of the earthquake. We acknowledge support from NSF ACI1442997 (PI Pankratius), NASA AISTNNX15AG84G (PI Pankratius), and NSF AGS-1343967 (PI Pankratius), and NSF AGS-1242204 (PI Erickson).

  10. Dynamic modeling of stress evolution and crustal deformation associated with the seismogenic process of the 2008 Mw7.9 Wenchuan, China earthquake

    NASA Astrophysics Data System (ADS)

    Tao, W.; Wan, Y.; Wang, K.; Zeng, Y.; Shen, Z.

    2009-12-01

    We model stress evolution and crustal deformation associated with the seismogenic process of the 2008 Mw7.9 Wenchuan, China earthquake. This earthquake ruptured a section of the Longmen Shan fault, which is a listric fault separating the eastern Tibetan plateau at northwest from the Sichuan basin at southeast, with a predominantly thrust component for the southwest section of the fault. Different driving mechanisms have been proposed for the fault system: either by channel flow in the lower crust, or lateral push from the eastern Tibetan plateau on the entire crust. A 2-D finite element model is devised to simulate the tectonic process and test validities of the models. A layered viscoelastic media is prescribed, and constrained from seismological and other geophysical investigation results, characterized with a weak lower crust in the western Tibetan plateau and a strong lower crust in the Sichuan basin. The interseismic, coseismic, and postseismic deformation processes are modeled, under constraints of GPS observed deformation fields during these time periods. Our preliminary result shows concentration of elastic strain energy accumulated mainly surrounding the lower part of the locking section of the seismogenic fault during the interseismic time period, implying larger stress drop at the lower part than at the upper part of the locking section of the fault, assuming a total release of the elastic stress accumulation during an earthquake. The coseismic stress change is the largest at the near field in the hanging-wall, offering explanation of extensive aftershock activities occurred in the region after the Wenchuan mainshock. A more complete picture of stress evolution and interaction between the upper and lower crust in the process during an earthquake cycle will be presented at the meeting.

  11. Postseismic viscoelastic surface deformation and stress. Part 1: Theoretical considerations, displacement and strain calculations

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1979-01-01

    A model of viscoelastic deformations associated with earthquakes is presented. A strike-slip fault is represented by a rectangular dislocation in a viscoelastic layer (lithosphere) lying over a viscoelastic half-space (asthenosphere). Deformations occur on three time scales. The initial response is governed by the instantaneous elastic properties of the earth. A slower response is associated with viscoelastic relaxation of the lithosphere and a yet slower response is due to viscoelastic relaxation of the asthenosphere. The major conceptual contribution is the inclusion of lithospheric viscoelastic properties into a dislocation model of earthquake related deformations and stresses. Numerical calculations using typical fault parameters reveal that the postseismic displacements and strains are small compared to the coseismic ones near the fault, but become significant further away. Moreover, the directional sense of the deformations attributable to the elastic response, the lithospheric viscoelastic softening, and the asthenospheric viscoelastic flow may differ and depend on location and model details. The results and theoretical arguments suggest that the stress changes accompanying lithospheric relaxation may also be in a different sense than and be larger than the strain changes.

  12. Fault zones ruptured during the early 2014 Cephalonia Island (Ionian Sea, Western Greece) earthquakes (January 26 and February 3, Mw 6.0) based on the associated co-seismic surface ruptures

    NASA Astrophysics Data System (ADS)

    Lekkas, Efthymios L.; Mavroulis, Spyridon D.

    2016-01-01

    The early 2014 Cephalonia Island (Ionian Sea, Western Greece) earthquake sequence comprised two main shocks with almost the same magnitude (moment magnitude (Mw) 6.0) occurring successively within a short time (January 26 and February 3) and space (Paliki peninsula in Western Cephalonia) interval. Εach earthquake was induced by the rupture of a different pre-existing onshore active fault zone and produced different co-seismic surface rupture zones. Co-seismic surface rupture structures were predominantly strike-slip-related structures including V-shaped conjugate surface ruptures, dextral and sinistral strike-slip surface ruptures, restraining and releasing bends, Riedel structures ( R, R', P, T), small-scale bookshelf faulting, and flower structures. An extensional component was present across surface rupture zones resulting in ground openings (sinkholes), small-scale grabens, and co-seismic dip-slip (normal) displacements. A compressional component was also present across surface rupture zones resulting in co-seismic dip-slip (reverse) displacements. From the comparison of our field geological observations with already published surface deformation measurements by DInSAR Interferometry, it is concluded that there is a strong correlation among the surface rupture zones, the ruptured active fault zones, and the detected displacement discontinuities in Paliki peninsula.

  13. New Insights on co-seismic landslide clustering

    NASA Astrophysics Data System (ADS)

    Meunier, Patrick; Marc, Odin; Hovius, Niels

    2015-04-01

    Earthquake-triggered landslides tend to cluster along topographic crests while rainfall-induced landslides should occur downslope preferentially, where pore pressure induced by groundwater flows is the highest [1]. Past studies on landslide clustering are all based on the analysis of complete dataset or subdataset of landslides associated with a given event (seismic or climatic) as a whole. In this work, we document the spatial and temporal variations of the landslide position (on hillslopes) within the epicentral area of the 1994 Northridge, the 1999 Chichi, the 2004 Niigata, the 2008 Iwate and the 2008 Wenchuan earthquakes. We show that crest clustering is not systematic, non uniform in space and exhibit patterns that vary a lot from one case to another. These patterns are not easy to interpret as they don't seem to be controlled by a single governing parameter but result from a complex interaction between local (hillslope length and gradient, lithology) and seismic (distance to source, slope aspect, radiation pattern, coseismic uplift) parameters. [1] Meunier, P., Hovius, N., & Haines, J. A. (2008). Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters, 275(3), 221-232

  14. Into the complexity of coseismic landslide clustering

    NASA Astrophysics Data System (ADS)

    Meunier, Patrick; Marc, Odin; Uchida, Taro; Hovius, Niels

    2014-05-01

    Earthquake-triggered landslides tend to cluster along topographic crests while rainfall-induced landslides are more uniformly distributed on hillslopes [1]. In theory, rainfall induced landslides should even occur downslope preferentially, where pore pressure induced by groundwater flows is the highest. Past studies on landslide clustering are all based on the analysis of complete dataset or subdataset of landslides associated with a given event (seismic or climatic) as a whole. In this work, we document the spatial variation of the landslide position (on hillslopes) within the epicentral area for the cases of the 1999 Chichi, the 2004 Niigata and the 2008 Iwate earthquakes. We show that landslide clustering is not uniform in space and exhibit patterns that vary a lot from one case to another. These patterns are not easy to interpret as they don't seem to be controlled by a single governing parameter but result from a complex interaction between local (hillslope length and gradient, lithology) and seismic (distance to source, slope aspect, radiation pattern, coseismic uplift) parameters. [1] Meunier, P., Hovius, N., & Haines, J. A. (2008). Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters, 275(3), 221-232.

  15. The 1992 M=7 Cape Mendocino, California, earthquake: Coseismic deformation at the south end of the Cascadia megathrust

    USGS Publications Warehouse

    Murray, M.H.; Marshall, G.A.; Lisowski, M.; Stein, R.S.

    1996-01-01

    We invert geodetic measurements of coseismic surface displacements to determine a dislocation model for the April 25, 1992, M=7 Cape Mendocino, California, earthquake. The orientation of the model slip vector, which nearly parallels North America-Juan de Fuca relative plate convergence, and the location and orientation of the model fault relative to the offshore Cascadia megathrust, suggest that the 1992 Cape Mendocino earthquake is the first well-recorded event to relieve strain associated with the Cascadia subduction zone. We use data from three geodetic techniques: (1) the horizontal and vertical displacements of 13 monuments surveyed with the Global Positioning System, corrected for observed horizontal interseismic strain accumulation, (2) 88 section-elevation differences between leveling monuments, and (3) the uplift of 12 coastal sites observed from the die-off of intertidal marine organisms. Maximum observed displacements are 0.4 m of horizontal movement and 1.5 m of uplift along the coast. We use Monte Carlo techniques to estimate an optimal uniform slip rectangular fault geometry and its uncertainties. The optimal model using all the data resolves 4.9 m of slip on a 14 by 15 km fault that dips 28?? SE. The fault extends from 1.5 to 8.7 km in depth and the main-shock hypocenter is close to the downdip projection of the fault. The shallowly dipping fault plane is consistent with the observed aftershock locations, and the estimated geodetic moment is 3.1??1019 N m, 70% of the seismic moment. Other models that exclude leveling data collected in 1935 and 1942 are more consistent with seismological estimates of the fault geometry. If the earthquake is characteristic for this segment, the estimated horizontal slip vector compared with plate convergence rates suggests a recurrence interval of 140 years, with a 95% confidence range of 100-670 years. The coseismic uplift occurred in a region that also has high Quaternary uplift rates determined from marine terrace

  16. Co-seismic deformation of the August 27, 2012 Mw 7.3 El Salvador and September 5, 2012 Mw 7.6 Costa Rica earthquakes

    NASA Astrophysics Data System (ADS)

    Geirsson, H.; La Femina, P. C.; DeMets, C.; Mattioli, G. S.; Hernández, D.

    2013-05-01

    We investigate the co-seismic deformation of two significant earthquakes that occurred along the Middle America trench in 2012. The August 27 Mw 7.3 El Salvador and September 5 Mw 7.6 Nicoya Peninsula, Costa Rica earthquakes, were examined using a combination of episodic and continuous Global Positioning System (GPS) data. USGS finite fault models based on seismic data predict fundamentally different characteristics for the two ruptures. The El Salvador event occurred in a historical seismic gap and on the shallow segment of the Middle America Trench main thrust, rupturing a large area, but with a low magnitude of slip. A small tsunami was observed along the coast in Nicaragua and El Salvador, additionally indicating near-trench rupture. Conversely, the Nicoya, Costa Rica earthquake was predicted to have an order of magnitude higher slip on a spatially smaller patch deeper on the main thrust. We present results from episodic and continuous geodetic GPS measurements made in conjunction with the two earthquakes, including data from newly installed COCONet (Continuously Operating Caribbean GPS Observational Network) sites. Episodic GPS measurements made in El Salvador, Honduras, and Nicaragua following the earthquakes, allow us to estimate the co-seismic deformation field from both earthquakes. Because of the small magnitude of the El Salvador earthquake and its shallow rupture the observed co-seismic deformation is small (<2 cm). Conversely, the Costa Rica earthquake occurred directly beneath a seismic and geodetic network specifically designed to capture such events. The observed displacements exceeded 0.5 m and there is a significant post-seismic transient following the earthquake. We use our estimated co-seismic offsets for both earthquakes to model the magnitude and spatial variability of slip for these two events.

  17. The influence of topographic stresses on faulting, emphasizing the 2008 Wenchuan, China earthquake rupture

    NASA Astrophysics Data System (ADS)

    Styron, R. H.; Hetland, E. A.; Zhang, G.

    2013-12-01

    The weight of large mountains produces stresses in the crust that locally may be on the order of tectonic stresses (10-100 MPa). These stresses have a significant and spatially-variable deviatoric component that may be resolved as strong normal and shear stresses on range-bounding faults. In areas of high relief, the shear stress on faults can be comparable to inferred stress drops in earthquakes, and fault-normal stresses may be greater than 50 MPa, and thus may potentially influence fault rupture. Additionally, these stresses may be used to make inferences about the orientation and magnitude of tectonic stresses, for example by indicating a minimum stress needed to be overcome by tectonic stress. We are studying these effects in several tectonic environments, such as the Longmen Shan (China), the Denali fault (Alaska, USA) and the Wasatch Fault Zone (Utah, USA). We calculate the full topographic stress tensor field in the crust in a study region by convolution of topography with Green's functions approximating stresses from a point load on the surface of an elastic halfspace, using the solution proposed by Liu and Zoback [1992]. The Green's functions are constructed from Boussinesq's solutions for a vertical point load on an elastic halfspace, as well as Cerruti's solutions for a horizontal surface point load, accounting for irregular surface boundary and topographic spreading forces. The stress tensor field is then projected onto points embedded in the halfspace representing the faults, and the fault normal and shear stresses at each point are calculated. Our primary focus has been on the 2008 Wenchuan earthquake, as this event occurred at the base of one of Earth's highest and steepest topographic fronts and had a complex and well-studied coseismic slip distribution, making it an ideal case study to evaluate topographic influence on faulting. We calculate the topographic stresses on the Beichuan and Pengguan faults, and compare the results to the coseismic slip

  18. Coseismic slip on the southern Cascadia megathrust implied by tsunami deposits in an Oregon lake and earthquake-triggered marine turbidites

    NASA Astrophysics Data System (ADS)

    Witter, Robert C.; Zhang, Yinglong; Wang, Kelin; Goldfinger, Chris; Priest, George R.; Allan, Jonathan C.

    2012-10-01

    We test hypothetical tsunami scenarios against a 4,600-year record of sandy deposits in a southern Oregon coastal lake that offer minimum inundation limits for prehistoric Cascadia tsunamis. Tsunami simulations constrain coseismic slip estimates for the southern Cascadia megathrust and contrast with slip deficits implied by earthquake recurrence intervals from turbidite paleoseismology. We model the tsunamigenic seafloor deformation using a three-dimensional elastic dislocation model and test three Cascadia earthquake rupture scenarios: slip partitioned to a splay fault; slip distributed symmetrically on the megathrust; and slip skewed seaward. Numerical tsunami simulations use the hydrodynamic finite element model, SELFE, that solves nonlinear shallow-water wave equations on unstructured grids. Our simulations of the 1700 Cascadia tsunami require >12-13 m of peak slip on the southern Cascadia megathrust offshore southern Oregon. The simulations account for tidal and shoreline variability and must crest the ˜6-m-high lake outlet to satisfy geological evidence of inundation. Accumulating this slip deficit requires ≥360-400 years at the plate convergence rate, exceeding the 330-year span of two earthquake cycles preceding 1700. Predecessors of the 1700 earthquake likely involved >8-9 m of coseismic slip accrued over >260 years. Simple slip budgets constrained by tsunami simulations allow an average of 5.2 m of slip per event for 11 additional earthquakes inferred from the southern Cascadia turbidite record. By comparison, slip deficits inferred from time intervals separating earthquake-triggered turbidites are poor predictors of coseismic slip because they meet geological constraints for only 4 out of 12 (˜33%) Cascadia tsunamis.

  19. Coseismic slip distribution of the February 27, 2010 Mw 8.9 Maule, Chile earthquake

    USGS Publications Warehouse

    Pollitz, Fred F.; Brooks, Ben; Tong, Xiaopeng; Bevis, Michael G.; Foster, James H.; Burgmann, Roland

    2011-01-01

    [1] Static offsets produced by the February 27, 2010 Mw = 8.8 Maule, Chile earthquake as measured by GPS and InSAR constrain coseismic slip along a section of the Andean megathrust of dimensions 650 km (in length) × 180 km (in width). GPS data have been collected from both campaign and continuous sites sampling both the near-field and far field. ALOS/PALSAR data from several ascending and descending tracks constrain the near-field crustal deformation. Inversions of the geodetic data for distributed slip on the megathrust reveal a pronounced slip maximum of order 15 m at ∼15–25 km depth on the megathrust offshore Lloca, indicating that seismic slip was greatest north of the epicenter of the bilaterally propagating rupture. A secondary slip maximum appears at depth ∼25 km on the megathrust just west of Concepción. Coseismic slip is negligible below 35 km depth. Estimates of the seismic moment based on different datasets and modeling approaches vary from 1.8 to 2.6 × 1022 N m. Our study is the first to model the static displacement field using a layered spherical Earth model, allowing us to incorporate both near-field and far-field static displacements in a consistent manner. The obtained seismic moment of 1.97 × 1022 N m, corresponding to a moment magnitude of 8.8, is similar to that obtained by previous seismic and geodetic inversions.

  20. Inherited structures impact on co-seismic surface deformation pattern during the 2013 Balochistan, Pakistan, earthquake

    NASA Astrophysics Data System (ADS)

    Vallage, Amaury; Klinger, Yann; Grandin, Raphael; Delorme, Arthur; Pierrot-Deseilligny, Marc

    2016-04-01

    The understanding of earthquake processes and the interaction of earthquake rupture with Earth's free surface relies on the resolution of the observations. Recent and detailed post-earthquake measurements bring new insights on shallow mechanical behavior of rupture processes as it becomes possible to measure and locate surficial deformation distribution. The 2013 Mw 7.7 Balochistan earthquake, Pakistan, offers a nice opportunity to comprehend where and why surficial deformation might differs from at-depth localized slip. This earthquake ruptured the Hoshab fault over 200 km; the motion was mainly left lateral with a small and discontinuous vertical component in the southern part of the rupture. Using images with the finest resolution currently available, we measured the surface displacement amplitude and its orientation at the ground surface (including the numerous tensile cracks). We combined these measurements with the 1:500 scale ground rupture map to focus on the behavior of the frontal rupture in the area where deformation distributes. Comparison with orientations of inherited tectonic structures, visible in older rocks formation surrounding the actual 2013 rupture, shows the control exercised by such structures on co-seismic rupture distribution. Such observation raises the question on how pre-existing tectonic structures in a medium, mapped in several seismically active places around the globe; can control the co-seismic distribution of the deformation during earthquakes.

  1. Comparison of Structurally Controlled Landslide Hazard Simulation to the Co-seismic Landslides Caused by the M 7.2 2013 Bohol Earthquake.

    NASA Astrophysics Data System (ADS)

    Galang, J. A. M. B.; Eco, R. C.; Lagmay, A. M. A.

    2014-12-01

    The M_w 7.2 October 15, 2013 Bohol earthquake is one of the more destructive earthquake to hit the Philippines in the 21st century. The epicenter was located in Sagbayan municipality, central Bohol and was generated by a previously unmapped reverse fault called the "Inabanga Fault". The earthquake resulted in 209 fatalities and over 57 million USD worth of damages. The earthquake generated co-seismic landslides most of which were related to fault structures. Unlike rainfall induced landslides, the trigger for co-seismic landslides happen without warning. Preparations for this type of landslides rely heavily on the identification of fracture-related slope instability. To mitigate the impacts of co-seismic landslide hazards, morpho-structural orientations of discontinuity sets were mapped using remote sensing techniques with the aid of a Digital Terrain Model (DTM) obtained in 2012. The DTM used is an IFSAR derived image with a 5-meter pixel resolution and approximately 0.5 meter vertical accuracy. Coltop 3D software was then used to identify similar structures including measurement of their dip and dip directions. The chosen discontinuity sets were then keyed into Matterocking software to identify potential rock slide zones due to planar or wedged discontinuities. After identifying the structurally-controlled unstable slopes, the rock mass propagation extent of the possible rock slides was simulated using Conefall. Separately, a manually derived landslide inventory has been performed using post-earthquake satellite images and LIDAR. The results were compared to the landslide inventory which identified at least 873 landslides. Out of the 873 landslides identified through the inventory, 786 or 90% intersect the simulated structural-controlled landslide hazard areas of Bohol. The results show the potential of this method to identify co-seismic landslide hazard areas for disaster mitigation. Along with computer methods to simulate shallow landslides, and debris flow

  2. Complex Channel Avulsion in the Meghna River Foodplain During the Mid to Late Holocene: The Potential Effect of Tectonic and Co-Seismic Uplift

    NASA Astrophysics Data System (ADS)

    Dunham, A.; Grall, C.; Mondal, D. R.; Steckler, M. S.; Rajapara, H.; Kumar, B.; Philibosian, B.; Akhter, S. H.; Singhvi, A. K.

    2016-12-01

    Channel migrations and river avulsions in deltaic river systems are mainly driven by differential changes of surface topography, such as the superelevation of channels due to sedimentation. In addition to such autocyclic processes, tectonic events, such as earthquakes, may also lead to avulsions from sudden uplift. The eastern part of the Ganges-Brahmaputra-Meghna Delta (GBMD) is underlain by the blind megathrust of the IndoBurma subduction zone. In this region we investigate a 100 km long sinuous abandoned channel of the Meghna River. Immediately south of the channel, it has been previously shown that the topography is slightly higher than on the rest of the Delta and there is an oxidized Holocene exposure surface. Part of the Titas River flows northward from this area into the abandoned channel belt, opposite of the southward flowing rivers of the delta. We provide results from a detailed investigation of this abandoned channel of the Meghna River using stratigraphic logs of hand-drilled wells, resistivity profiles, sediment analyses and OSL and C14 dating, The OSL ages to be presented constrain the possible date of the event. We employ numerical modeling to evaluate the hypothesis that the co-seismic uplift associated to an earthquake can trigger the channel migration. Our modeling approach aims to estimate the co-seismic uplift associated with potential seismic events using an elastic Coulomb's dislocation model. The geometry fault in our model is estimated using geologic and GPS constraints with standard elastic parameters (Young's modulus = 80 GPa; Poisson's ratio = 0.3). We explored different potential earthquakes geometries that involve the megathrust, a splay fault, or the megathrust terminating in the splay. The magnitude and distribution of co-seismic slip are also varied between a rupture length of 112.5km and 180km along a 225km long fault. We show that any class of models can produce the amount of uplift (1-2 m) necessary for triggering the river

  3. Coseismic and postseismic slip distribution of the 2003 Mw = 6.5 Chengkung earthquake in eastern Taiwan: Elastic modeling from inversion of GPS data

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Wei; Lee, Jian-Cheng; Hu, Jyr-Ching; Chen, Horng-Yue

    2009-03-01

    The Chengkung earthquake with ML = 6.6 occurred in eastern Taiwan at 12:38 local time on December 10th 2003. Based on the main shock relocation and aftershock distribution, the Chengkung earthquake occurred along the previously recognized N20°E trending Chihshang fault. This event did not cause human loss, but significant cracks developed at the ground surface and damaged some buildings. After 1951 Taitung earthquake, there was no larger ML > 6 earthquake occurred in this region until the Chengkung earthquake. As a result, the Chengkung earthquake is a good opportunity to study the seismogenic structure of the Chihshang fault. The coseismic displacements recorded by GPS show a fan-shaped distribution with maximal displacement of about 30 cm near the epicenter. The aftershocks of the Chengkung earthquake revealing an apparent linear distribution helps us to construct the clear fault geometry of the Chihshang fault. In this study, we employ a half-space angular elastic dislocation model with GPS observations to figure out the slip distribution and seismological behavior of the Chengkung earthquake on the Chihshang fault. The elastic half-space dislocation model reveals that the Chengkung earthquake is a thrust event with minor left-lateral strike-slip component. The maximum coseismic slip is located around the depth of 20 km and up to 1.1 m. The slips are gradually decreased to less than 10 cm near the surface part of the Chihshang fault. The seismogenic fault plane, which is constructed by the delineation of the aftershocks, demonstrates that the Chihshang fault is a high-angle fault. However the fault plane changes to a flat plane at depth of 20 km. In addition, a significant part of the measured deformation across the surface fault zone for this earthquake can be attributed to postseismic creep. The postseismic elastic dislocation model shows that most afterslips are distributed to the upper level of the Chihshang fault. And most afterslips consist of both of dip

  4. Co-seismic strike-slip surface rupture and displacement produced by the 2010 Mw 6.9 Yushu earthquake, China, and implications for Tibetan tectonics

    NASA Astrophysics Data System (ADS)

    Lin, A.; Rao, G.; Jia, D.; Wu, X.; Yan, B.; Ren, Z.

    2010-12-01

    The magnitude (Mw) 6.9 (Ms 7.1) Yushu earthquake occurred on 14 April 2010 in the Yushu area, central Tibetan Plateau, killing approximately 3000 people (including 270 missing) and causing widespread damage in the high mountain regions of the central Tibetan Plateau. The Yushu earthquake is comparable with the 1997 Mw 7.6 Manyi earthquake, the 2001 Mw 7.8 Kunlun earthquake, and the 2008 Mw 7.9 Wenchuan earthquake, which all occurred in the northern and eastern Tibetan Plateau, in terms of their magnitude and seismotectonic environment, related to the eastward extrusion of the Tibetan Plateau in response to continental collision between the Indian and Eurasian plates. Although some prompt reports related to ground deformation and the focal mechanism were published in the Chinese literature soon after the Yushu earthquake, there are scarce data related to the nature of co-seismic strike-slip rupturing structures and displacement distributions because the co-seismic surface ruptures were produced mainly in remote, high mountain regions of the Tibetan Plateau (average elevation >4000 m) and roads to the epicentral area were damaged, which made it difficult to gain access to the area and to undertake fieldwork immediately after the earthquake. Field investigations reveal that the earthquake produced a 33-km-long surface rupture zone, with dominantly left-lateral strike-slip along the Yushu Fault of the pre-existing strike-slip Ganzi-Yushu Fault Zone. The co-seismic surface ruptures are characterized by discontinuous shear faults, right-stepping en echelon tensional cracks, and left-stepping mole track structures that indicate a left-lateral strike-slip shear sense for the seismic fault. Field measurements indicate co-seismic left-lateral strike-slip displacements of approximately 0.3-3.2 m (typically 1-2 m), accompanied by a minor vertical component of <0.6 m. The present results show that (i) the Yushu earthquake occurred upon the pre-existing active Ganzi-Yushu Fault

  5. Static stress changes and the triggering of earthquakes

    USGS Publications Warehouse

    King, Geoffrey C.P.; Stein, Ross S.; Lin, Jian

    1994-01-01

    To understand whether the 1992 M = 7.4 Landers earthquake changed the proximity to failure on the San Andreas fault system, we examine the general problem of how one earthquake might trigger another. The tendency of rocks to fail in a brittle manner is thought to be a function of both shear and confining stresses, commonly formulated as the Coulomb failure criterion. Here we explore how changes in Coulomb conditions associated with one or more earthquakes may trigger subsequent events. We first consider a Coulomb criterion appropriate for the production of aftershocks, where faults most likely to slip are those optimally orientated for failure as a result of the prevailing regional stress field and the stress change caused by the mainshock. We find that the distribution of aftershocks for the Landers earthquake, as well as for several other moderate events in its vicinity, can be explained by the Coulomb criterion as follows: aftershocks are abundant where the Coulomb stress on optimally orientated faults rose by more than one-half bar, and aftershocks are sparse where the Coulomb stress dropped by a similar amount. Further, we find that several moderate shocks raised the stress at the future Landers epicenter and along much of the Landers rupture zone by about a bar, advancing the Landers shock by 1 to 3 centuries. The Landers rupture, in turn, raised the stress at site of the future M = 6.5 Big Bear aftershock site by 3 bars. The Coulomb stress change on a specified fault is independent of regional stress but depends on the fault geometry, sense of slip, and the coefficient of friction. We use this method to resolve stress changes on the San Andreas and San Jacinto faults imposed by the Landers sequence. Together the Landers and Big Bear earthquakes raised the stress along the San Bernardino segment of the southern San Andreas fault by 2 to 6 bars, hastening the next great earthquake there by about a decade.

  6. Quantifying Coseismic Normal Fault Rupture at the Seafloor: The 2004 Les Saintes Earthquake Along the Roseau Fault (French Antilles)

    NASA Astrophysics Data System (ADS)

    Olive, J. A. L.; Escartin, J.; Leclerc, F.; Garcia, R.; Gracias, N.; Odemar Science Party, T.

    2016-12-01

    While >70% of Earth's seismicity is submarine, almost all observations of earthquake-related ruptures and surface deformation are restricted to subaerial environments. Such observations are critical for understanding fault behavior and associated hazards (including tsunamis), but are not routinely conducted at the seafloor due to obvious constraints. During the 2013 ODEMAR cruise we used autonomous and remotely operated vehicles to map the Roseau normal Fault (Lesser Antilles), source of the 2004 Mw6.3 earthquake and associated tsunami (<3.5m run-up). These vehicles acquired acoustic (multibeam bathymetry) and optical data (video and electronic images) spanning from regional (>1 km) to outcrop (<1 m) scales. These high-resolution submarine observations, analogous to those routinely conducted subaerially, rely on advanced image and video processing techniques, such as mosaicking and structure-from-motion (SFM). We identify sub-vertical fault slip planes along the Roseau scarp, displaying coseismic deformation structures undoubtedly due to the 2004 event. First, video mosaicking allows us to identify the freshly exposed fault plane at the base of one of these scarps. A maximum vertical coseismic displacement of 0.9 m can be measured from the video-derived terrain models and the texture-mapped imagery, which have better resolution than any available acoustic systems (<10 cm). Second, seafloor photomosaics allow us to identify and map both additional sub-vertical fault scarps, and cracks and fissures at their base, recording hangingwall damage from the same event. These observations provide critical parameters to understand the seismic cycle and long-term seismic behavior of this submarine fault. Our work demonstrates the feasibility of extensive, high-resolution underwater surveys using underwater vehicles and novel imaging techniques, thereby opening new possibilities to study recent seafloor changes associated with tectonic, volcanic, or hydrothermal activity.

  7. A combined method to calculate co-seismic displacements through strong motion acceleration baseline correction

    NASA Astrophysics Data System (ADS)

    Zhan, W.; Sun, Y.

    2015-12-01

    High frequency strong motion data, especially near field acceleration data, have been recorded widely through different observation station systems among the world. Due to tilting and a lot other reasons, recordings from these seismometers usually have baseline drift problems when big earthquake happens. It is hard to obtain a reasonable and precision co-seismic displacement through simply double integration. Here presents a combined method using wavelet transform and several simple liner procedures. Owning to the lack of dense high rate GNSS data in most of region of the world, we did not contain GNSS data in this method first but consider it as an evaluating mark of our results. This semi-automatic method unpacks a raw signal into two portions, a summation of high ranks and a low ranks summation using a cubic B-spline wavelet decomposition procedure. Independent liner treatments are processed against these two summations, which are then composed together to recover useable and reasonable result. We use data of 2008 Wenchuan earthquake and choose stations with a near GPS recording to validate this method. Nearly all of them have compatible co-seismic displacements when compared with GPS stations or field survey. Since seismometer stations and GNSS stations from observation systems in China are sometimes quite far from each other, we also test this method with some other earthquakes (1999 Chi-Chi earthquake and 2011 Tohoku earthquake). And for 2011 Tohoku earthquake, we will introduce GPS recordings to this combined method since the existence of a dense GNSS systems in Japan.

  8. Coulomb Failure Stress Accumulation in Nepal After the 2015 Mw 7.8 Gorkha Earthquake: Testing Earthquake Triggering Hypothesis and Evaluating Seismic Hazards

    NASA Astrophysics Data System (ADS)

    Xiong, N.; Niu, F.

    2017-12-01

    A Mw 7.8 earthquake struck Gorkha, Nepal, on April 5, 2015, resulting in more than 8000 deaths and 3.5 million homeless. The earthquake initiated 70km west of Kathmandu and propagated eastward, rupturing an area of approximately 150km by 60km in size. However, the earthquake failed to fully rupture the locked fault beneath the Himalaya, suggesting that the region south of Kathmandu and west of the current rupture are still locked and a much more powerful earthquake might occur in future. Therefore, the seismic hazard of the unruptured region is of great concern. In this study, we investigated the Coulomb failure stress (CFS) accumulation on the unruptured fault transferred by the Gorkha earthquake and some nearby historical great earthquakes. First, we calculated the co-seismic CFS changes of the Gorkha earthquake on the nodal planes of 16 large aftershocks to quantitatively examine whether they were brought closer to failure by the mainshock. It is shown that at least 12 of the 16 aftershocks were encouraged by an increase of CFS of 0.1-3 MPa. The correspondence between the distribution of off-fault aftershocks and the increased CFS pattern also validates the applicability of the earthquake triggering hypothesis in the thrust regime of Nepal. With the validation as confidence, we calculated the co-seismic CFS change on the locked region imparted by the Gorkha earthquake and historical great earthquakes. A newly proposed ramp-flat-ramp-flat fault geometry model was employed, and the source parameters of historical earthquakes were computed with the empirical scaling relationship. A broad region south of the Kathmandu and west of the current rupture were shown to be positively stressed with CFS change roughly ranging between 0.01 and 0.5 MPa. The maximum of CFS increase (>1MPa) was found in the updip segment south of the current rupture, implying a high seismic hazard. Since the locked region may be additionally stressed by the post-seismic relaxation of the lower

  9. Coseismic landsliding associated with the 2015 April 25th Gorkha earthquake, Nepal

    NASA Astrophysics Data System (ADS)

    Clark, Marin; Zekkos, Dimitrios; West, A. Joshua; Gallen, Sean; Roback, Kevin; Chamlagain, Deepak; Athanasopoulos-Zekkos, Adda; Greenwood, William; Bateman, Julie; Partenio, Michael; Li, Gen; Cook, Kristen; Godt, Jonathan; Howat, Ian; Morin, Paul

    2016-04-01

    The characteristics of earthquake-triggered landslides have the potential to inform us about the ground motions during large earthquakes and the rock properties of the near surface environment. From the recent Mw7.8 2015 Gorkha earthquake in Nepal, we use satellite imagery to identify over 20,000 landslides that are associated with the main shock. While most landslides are located on steep hillslopes, we also present field measurements of alluvial terraces that have either failed or remained stable during the earthquake. We show how both hillslope and terrace failures can be used to better understand the earthquake. These local, site-specific surveys and analyses of alluvial terraces can be used to constrain co-seismic peak ground acceleration (PGA) and large landslide inventories can be used to gain insight into regional patterns of strong ground motion. Our regional landslide mapping reveals two principal patterns: (1) landslides are concentrated in the steep Greater Himalaya in the north, with conspicuously fewer landslides in the moderately-steep Lesser Himalaya in the south, and (2) within the Greater Himalaya, landslide density increases from west to east across the rupture area. We have compared our observed map of landslide occurrence to predictions from forward models using hillslope angles, average rock strength, and PGA estimated from ground motion prediction equations (GMPE). The higher concentration of landslides in the Greater Himalaya compared to the Lesser Himalaya can be predicted by the models and explained by the steeper topography of the Greater Himalaya. However, these forward models do not reproduce the east to west variation in observed landslide density, which is lower than model predictions near the epicenter, and greater than model predictions toward the eastern limit of the rupture. From limit equilibrium stability analysis of both failed and stable fluvial terraces, we constrain local PGA values in the eastern region of dense landsliding

  10. GPS-derived Coseismic deformations of the 2016 Aktao Ms6.7 earthquake and source modelling

    NASA Astrophysics Data System (ADS)

    Li, J.; Zhao, B.; Xiaoqiang, W.; Daiqing, L.; Yushan, A.

    2017-12-01

    On 25th November 2016, a Ms6.7 earthquake occurred on Aktao, a county of Xinjiang, China. This earthquake was the largest earthquake occurred in the northeastern margin of the Pamir Plateau in the last 30 years. By GPS observation, we get the coseismic displacement of this earthquake. The maximum displacement site is located in the Muji Basin, 15km from south of the causative fault. The maximum deformation is down to 0.12m, and 0.10m for coseismic displacement, our results indicate that the earthquake has the characteristics of dextral strike-slip and normal-fault rupture. Based on the GPS results, we inverse the rupture distribution of the earthquake. The source model is consisted of two approximate independent zones with a depth of less than 20km, the maximum displacement of one zone is 0.6m, the other is 0.4m. The total seismic moment is Mw6.6.1 which is calculated by the geodetic inversion. The source model of GPS-derived is basically consistent with that of seismic waveform inversion, and is consistent with the surface rupture distribution obtained from field investigation. According to our inversion calculation, the recurrence period of strong earthquakes similar to this earthquake should be 30 60 years, and the seismic risk of the eastern segment of Muji fault is worthy of attention. This research is financially supported by National Natural Science Foundation of China (Grant No.41374030)

  11. Identifying a large landslide with small displacements in a zone of coseismic tectonic deformation; the Villa Del Monte landslide triggered by the 1989 Loma Prieta, California, earthquake

    USGS Publications Warehouse

    Keefer, David K.; Harp, Edwin L.; Griggs, Gary B.; Evans, Stephen G.; DeGraff, Jerome V.

    2002-01-01

    The Villa Del Monte landslide was one of 20 large and complex landslides triggered by the 1989 LomaPrieta, California, earthquake in a zone of pervasive coseismicground cracking near the fault rupture. The landslide was approximately 980 m long, 870 m wide, and encompassed an area of approximately 68 ha. Drilling data suggested that movement may have extended to depths as great as 85 m below the ground surface. Even though the landslide moved <1 m, it caused substantial damage to numerous dwellings and other structures, primarily as a result of differential displacements and internal Assuring. Surface cracks, scarps, and compression features delineating the Villa Del Monte landslide were discontinuous, probably because coseismic displacements were small; such discontinuous features were also characteristic of the other large, coseismic landslides in the area, which also moved only short distances during the earthquake. Because features marking landslide boundaries were discontinuous and because other types of coseismic ground cracks were widespread in the area, identification of the landslides required detailed mapping and analysis. Recognition that landslides such as that at Villa Del Monte may occur near earthquake-generating fault ruptures should aid in future hazard evaluations of areas along active faults.

  12. First Observation of Coseismic Seafloor Crustal Deformation due to M7 Class Earthquakes in the Philippine Sea Plate

    NASA Astrophysics Data System (ADS)

    Tadokoro, K.; Ikuta, R.; Ando, M.; Okuda, T.; Sugimoto, S.; Besana, G. M.; Kuno, M.

    2005-12-01

    The Mw7.3 and 7.5 earthquakes (Off Kii-Peninsula Earthquakes) occurred close to the source region of the anticipated Tonankai Trough in September 5, 2004. The focal mechanisms of the two earthquakes have no low angle nodal planes, which shows that the earthquakes are intraplate earthquakes in the Philippine Sea Plate. We observed coseismic horizontal displacement due to the Off Kii-Peninsula Earthquakes by means of a system for observing seafloor crustal deformation, which is the first observation of coseismic seafloor displacement in the world. We have developed a system for observing seafloor crustal deformation. The observation system is composed of 1) acoustic measurement between a ship transducer and sea-bottom transponders, and 2) kinematic GPS positioning of the observation vessel. We have installed a seafloor benchmark close to the epicenters of the Off Kii-Peninsula Earthquakes. The benchmark is composed of three sea-bottom transponders. The location of benchmark is defined as the weight center of the three transponders. We can determine the location of benchmark with an accuracy of about 5 cm at each observation. We have repeatedly measured the seafloor benchmark six times up to now: 1) July 12-16 and 21-22, 2004, 2) November 9-10, 3) January 19, 2005, 4) May 18-20, 5) July 19-20, and 6) August 18-19 and 29-30. The Off Kii-Peninsula Earthquakes occurred during the above monitoring period. The coseismic horizontal displacement of about 21 cm toward SSE was observed at our seafloor benchmark. The displacement is 3.5 times as large as the maximum displacement observed by on land GPS network in Japan, GEONET. The monitoring of seafloor crustal deformation is effective to detect the deformations associated with earthquakes occurring in ocean areas. This study is promoted by "Research Revolution 2002" of Ministry of Education, Culture, Sports, Science and Technology, Japan. We are grateful to the captain and crews of Research Vessel, Asama, of Mie Prefectural

  13. A mechanism for sustained groundwater pressure changes induced by distant earthquakes

    USGS Publications Warehouse

    Brodsky, E.E.; Roeloffs, E.; Woodcock, D.; Gall, I.; Manga, M.

    2003-01-01

    Large sustained well water level changes (>10 cm) in response to distant (more than hundreds of kilometers) earthquakes have proven enigmatic for over 30 years. Here we use high sampling rates at a well near Grants Pass, Oregon, to perform the first simultaneous analysis of both the dynamic response of water level and sustained changes, or steps. We observe a factor of 40 increase in the ratio of water level amplitude to seismic wave ground velocity during a sudden coseismic step. On the basis of this observation we propose a new model for coseismic pore pressure steps in which a temporary barrier deposited by groundwater flow is entrained and removed by the more rapid flow induced by the seismic waves. In hydrothermal areas, this mechanism could lead to 4 ?? 10-2 MPa pressure changes and triggered seismicity.

  14. Coseismic fault-related fold model, growth structure, and the historic multisegment blind thrust earthquake on the basement-involved Yoro thrust, central Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Mueller, Karl; Sato, Hiroshi; Togo, Masami

    2007-03-01

    We use high-resolution seismic reflection profiles, boring transects, and mapping of fold scarps that deform late Quaternary and Holocene sediments to define the kinematic evolution, subsurface geometry, coseismic behavior, and fault slip rates for an active, basement-involved blind thrust system in central Japan. Coseismic fold scarps on the Yoro basement-involved fold are defined by narrow fold limbs and angular hinges on seismic profiles, suggesting that at least 3.9 km of fault slip is consumed by wedge thrust folding in the upper 10 km of the crust. The close coincidence and kinematic link between folded horizons and the underlying thrust geometry indicate that the Yoro basement-involved fold has accommodated slip at an average rate of 3.2 ± 0.1 mm/yr on a shallowly west dipping thrust fault since early Pleistocene time. Past large-magnitude earthquakes, including an historic M˜7.7 event in A.D. 1586 that occurred on the Yoro blind thrust, are shown to have produced discrete folding by curved hinge kink band migration above the eastward propagating tip of the wedge thrust. Coseismic fold scarps formed during the A.D. 1586 earthquake can be traced along the en echelon active folds that extend for at least 60 km, in spite of different styles of folding along the apparently hard-linked Nobi-Ise blind thrust system. We thus emphasize the importance of this multisegment earthquake rupture across these structures and the potential risk for similar future events in en echelon active fold and thrust belts.

  15. Coseismic displacements of the 14 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake using the Planet optical cubesat constellation

    NASA Astrophysics Data System (ADS)

    Kääb, Andreas; Altena, Bas; Mascaro, Joseph

    2017-05-01

    Satellite measurements of coseismic displacements are typically based on synthetic aperture radar (SAR) interferometry or amplitude tracking, or based on optical data such as from Landsat, Sentinel-2, SPOT, ASTER, very high-resolution satellites, or air photos. Here, we evaluate a new class of optical satellite images for this purpose - data from cubesats. More specific, we investigate the PlanetScope cubesat constellation for horizontal surface displacements by the 14 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake. Single PlanetScope scenes are 2-4 m-resolution visible and near-infrared frame images of approximately 20-30 km × 9-15 km in size, acquired in continuous sequence along an orbit of approximately 375-475 km height. From single scenes or mosaics from before and after the earthquake, we observe surface displacements of up to almost 10 m and estimate matching accuracies from PlanetScope data between ±0.25 and ±0.7 pixels (˜ ±0.75 to ±2.0 m), depending on time interval and image product type. Thereby, the most optimistic accuracy estimate of ±0.25 pixels might actually be typical for the final, sun-synchronous, and near-polar-orbit PlanetScope constellation when unrectified data are used for matching. This accuracy, the daily revisit anticipated for the PlanetScope constellation for the entire land surface of Earth, and a number of other features, together offer new possibilities for investigating coseismic and other Earth surface displacements and managing related hazards and disasters, and complement existing SAR and optical methods. For comparison and for a better regional overview we also match the coseismic displacements by the 2016 Kaikoura earthquake using Landsat 8 and Sentinel-2 data.

  16. Inference of postseismic deformation mechanisms of the 1923 Kanto earthquake

    USGS Publications Warehouse

    Pollitz, F.F.; Nyst, M.; Nishimura, T.; Thatcher, W.

    2006-01-01

    Coseismic slip associated with the M7.9, 1923 Kanto earthquake is fairly well understood, involving slip of up to 8 m along the Philippine Sea-Honshu interplate boundary under Sagami Bay and its onland extension. Postseismic deformation after the 1923 earthquake, however, is relatively poorly understood. We revisit the available deformation data in order to constrain possible mechanisms of postseismic deformation and to examine the consequences for associated stress changes in the surrounding crust. Data from two leveling lines and one tide gage station over the first 7-8 years postseismic period are of much greater amplitude than the corresponding expected interseismic deformation during the same period, making these data suitable for isolating the signal from postseismic deformation. We consider both viscoelastic models of asthenosphere relaxation and afterslip models. A distributed coseismic slip model presented by Pollitz et al. (2005), combined with prescribed parameters of a viscoelastic Earth model, yields predicted postseismic deformation that agrees with observed deformation on mainland Honshu from Tokyo to the Izu peninsula. Elsewhere (southern Miura peninsula; Boso peninsula), the considered viscoelastic models fail to predict observed deformation, and a model of ???1 in shallow afterslip in the offshore region south of the Boso peninsula, with equivalent moment magnitude Mw = 7.0, adequately accounts for the observed deformation. Using the distributed coseismic slip model, layered viscoelastic structure, and a model of interseismic strain accumulation, we evaluate the post-1923 stress evolution, including both the coseismic and accumulated postseismic stress changes and those stresses contributed by interseismic loading. We find that if account is made for the varying tectonic regime in the region, the occurrence of both immediate (first month) post-1923 crustal aftershocks as well as recent regional crustal seismicity is consistent with the predicted

  17. Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults

    USGS Publications Warehouse

    Parsons, T.; Stein, R.S.; Simpson, R.W.; Reasenberg, P.A.

    1999-01-01

    We present a new three-dimensional inventory of the southern San Francisco Bay area faults and use it to calculate stress applied principally by the 1989 M = 7.1 Loma Prieta earthquake and to compare fault seismicity rates before and after 1989. The major high-angle right-lateral faults exhibit a different response to the stress change than do minor oblique (right-lateral/thrust) faults. Seismicity on oblique-slip faults in the southern Santa Clara Valley thrust belt increased where the faults were unclamped. The strong dependence of seismicity change on normal stress change implies a high coefficient of static friction. In contrast, we observe that faults with significant offset (>50-100 km) behave differently; microseismicity on the Hayward fault diminished where right-lateral shear stress was reduced and where it was unclamped by the Loma Prieta earthquake. We observe a similar response on the San Andreas fault zone in southern California after the Landers earthquake sequence. Additionally, the offshore San Gregorio fault shows a seismicity rate increase where right-lateral/oblique shear stress was increased by the Loma Prieta earthquake despite also being clamped by it. These responses are consistent with either a low coefficient of static friction or high pore fluid pressures within the fault zones. We can explain the different behavior of the two styles of faults if those with large cumulative offset become impermeable through gouge buildup; coseismically pressurized pore fluids could be trapped and negate imposed normal stress changes, whereas in more limited offset faults, fluids could rapidly escape. The difference in behavior between minor and major faults may explain why frictional failure criteria that apply intermediate coefficients of static friction can be effective in describing the broad distributions of aftershocks that follow large earthquakes, since many of these events occur both inside and outside major fault zones.

  18. Changing stress while stressing change: the role of interprofessional education in mediating stress in the introduction of a transformative technology.

    PubMed

    Gillan, Caitlin; Wiljer, David; Harnett, Nicole; Briggs, Kaleigh; Catton, Pamela

    2010-11-01

    The introduction of a transformative technology into practice settings can affect the functioning of interprofessional teams, placing stress on interprofessional relationships, thus slowing adoption and change. This study explored the potential of an interprofessional education (IPE) approach to mediate this stress and facilitate the adoption of a transformative technology- Image Guided Radiation Therapy (IGRT). Oncologists, physicists, and therapists in radiation medicine who attended an interprofessional IGRT Education Course were interviewed about perceived benefits and stressors to IPE and to interprofessional practice (IPP) in the IGRT context. A modified grounded theory approach was used to conduct 14 interviews, with 200 minutes of interview time recorded. In introducing IGRT, participants noted interprofessional stress in understanding and adopting new technology. IPE offered common terminology, appreciation for others' knowledge, and a holistic framework for practice. Outcomes were thought to foster collaboration, efficiency, and improved professional role definition. Time constraints and power relations were noted to be residual stressors exacerbated by IPE, but were thought to be transient. IPE can thus be of benefit in the implementation of transformative technologies such as IGRT, through mediation of interprofessional stress inherent in change. Interprofessional knowledge, collaboration, and efficiency in practice facilitate the development and adoption of a new practice model.

  19. Coseismic Deformations Associated with the M=7.2, April 04, 2010, El Mayor-Cucapah Earthquake, Observed from Leveling Survey, Geotechnical Instruments and Water Level Changes in the Mexicali Valley

    NASA Astrophysics Data System (ADS)

    Glowacka, E.; Robles, B.; Vázquez, R.; Sarychikhina, O.; Suárez-Vidal, F.; Ramirez, J.; Nava Pichardo, F. A.; Farfan, F.; Diaz de Cossio, G.

    2010-12-01

    A first order, second class leveling survey in the Mexicali Valley had been just finished in February 2010, for a project carried out by CICESE (Center for Scientific Research and Higher Education of Ensenada), IMTA (Mexican Institute of Water Technology) and CONAGUA (National Water Comission). Immediately after the M=7.2 earthquake the survey was repeated along 240 km of the profiles in the area of the Cerro Prieto pull-apart basin. The leveling started at the LN00 GPS monument in La Puerta. Overall, an uplift of about 30 cm towards the NE, along the 38 km line, in direction SW-NE is observed with larger gradient to the South of the area. Three subsidence bowls differ from this general pattern. One, south from Ejido Saltillo, with the relative subsidence of 19 cm (considering the displacement at LN00 as zero subsidence), probably reflects subsidence of the Saltillo-Guerrero graben; the second, with a subsidence of 23 cm, is situated south from Ejido Nuevo Leon and can be related to the subsidence triggered by the earthquake in the production area of Cerro Prieto IV. For the third one, with relative depth of 36 cm, situated close to Zacamoto, the southeastern limit cannot be determined, so only a comparison with other methods can explain the origin of this anomaly. All the subsidence bowls are associated with liquefaction observed in the area, with more liquefaction observed close to Zacamoto. Since 1996, CICESE has been operating a network of geotechnical instruments (REDECVAM) for continuous recording of deformation related to tectonic (seismic and interseismic) phenomena, as well as anthropogenic deformation caused by the deep fluid extraction at the Cerro Prieto Geothermal Field. The instruments are installed along the faults which limit the Cerro Prieto pull-apart basin at a distance from 8 to 15 km from the epicenter. Coseismic step-like groundwater level changes ranging from 0.4 to 5.0 meters were recorded at 4 wells in the Cerro Prieto Pull apart

  20. The Stress Transfer and Seismic Interaction Revealed by the Aftershocks of the 2011 Van Earthquake

    NASA Astrophysics Data System (ADS)

    Konca, A. O.; Işık, S. E.; Karabulut, H.

    2016-12-01

    We studied the aftershocks of the 2011 Mw7.2 Van, Eastern Turkey, earthquake. This earthquake ruptured an E-W striking blind thrust fault in a region where N-S convergence of the Arabian and Anatolian Plates dominate the tectonic regime. The double-difference relocation of the aftershocks reveal a Z pattern, where in addition to the E-W lineated aftershocks, perpendicular N-S lineated acitivities at each end of the co-seismic rupture are observed. The depths of the aftershocks associated with these two clusters get shallower as their location gets further away from the main fault. Both of the clusters inititated during the first 6 hours following the mainshock and spread away from the mainshock zone in the following days. The focal mechanisms of these aftershocks show that these two clusters are associated with left lateral faults with N-S strikes. These two left-lateral faults seem to cut the Van Fault and possibly determined the co-seismic rupture extent during the 2011 earthquake. This suggested geometry where two off-set left-lateral faults which are connected by a thrust fault is consistent with N-S convergence in the region and also helps explain the post-seismic GPS motion which is not consistent with a single thrust fault. In addition, a third strike-slip cluster to the south of the mainshock has initiated 17 days following the mainshock. This third cluster is associated with an E-W trending right-lateral fault. All of the three activated clusters are on faults which experienced Coulomb stress increase due to the co-seismic slip. Moreover, most seismic activity in the vicinity of the mainshock is on regions where there is Coulomb stress increase.

  1. Use of fault striations and dislocation models to infer tectonic shear stress during the 1995 Hyogo-Ken Nanbu (Kobe) earthquake

    USGS Publications Warehouse

    Spudich, P.; Guatteri, Mariagiovanna; Otsuki, K.; Minagawa, J.

    1998-01-01

    Dislocation models of the 1995 Hyogo-ken Nanbu (Kobe) earthquake derived by Yoshida et al. (1996) show substantial changes in direction of slip with time at specific points on the Nojima and Rokko fault systems, as do striations we observed on exposures of the Nojima fault surface on Awaji Island. Spudich (1992) showed that the initial stress, that is, the shear traction on the fault before the earthquake origin time, can be derived at points on the fault where the slip rake rotates with time if slip velocity and stress change are known at these points. From Yoshida's slip model, we calculated dynamic stress changes on the ruptured fault surfaces. To estimate errors, we compared the slip velocities and dynamic stress changes of several published models of the earthquake. The differences between these models had an exponential distribution, not gaussian. We developed a Bayesian method to estimate the probability density function (PDF) of initial stress from the striations and from Yoshida's slip model. Striations near Toshima and Hirabayashi give initial stresses of about 13 and 7 MPa, respectively. We obtained initial stresses of about 7 to 17 MPa at depths of 2 to 10 km on a subset of points on the Nojima and Rokko fault systems. Our initial stresses and coseismic stress changes agree well with postearthquake stresses measured by hydrofracturing in deep boreholes near Hirabayashi and Ogura on Awaji Island. Our results indicate that the Nojima fault slipped at very low shear stress, and fractional stress drop was complete near the surface and about 32% below depths of 2 km. Our results at depth depend on the accuracy of the rake rotations in Yoshida's model, which are probably correct on the Nojima fault but debatable on the Rokko fault. Our results imply that curved or cross-cutting fault striations can be formed in a single earthquake, contradicting a common assumption of structural geology.

  2. Implications of postseismic gravity change following the great 2004 Sumatra-Andaman earthquake from the regional harmonic analysis of GRACE intersatellite tracking data

    USGS Publications Warehouse

    Han, S.-C.; Sauber, J.; Luthcke, S.B.; Ji, C.; Pollitz., F. F.

    2008-01-01

    We report Gravity Recovery and Climate Experiment (GRACE) satellite observations of coseismic displacements and postseismic transients from the great Sumatra-Andaman Islands (thrust event; Mw ???9.2) earthquake in December 2004. Instead of using global spherical harmonic solutions of monthly gravity fields, we estimated the gravity changes directly using intersatellite range-rate data with regionally concentrated spherical Slepian basis functions every 15-day interval. We found significant step-like (coseismic) and exponential-like (postseismic) behavior in the time series of estimated coefficients (from May 2003 to April 2007) for the spherical Slepian function's. After deriving coseismic slip estimates from seismic and geodetic data that spanned different time intervals, we estimated and evaluated postseismic relaxation mechanisms with alternate asthenosphere viscosity models. The large spatial coverage and uniform accuracy of our GRACE solution enabled us to clearly delineate a postseismic transient signal in the first 2 years of postearthquake GRACE data. Our preferred interpretation of the long-wavelength components of the postseismic avity change is biviscous viscoelastic flow. We estimated a transient viscosity of 5 ??17 Pa s and a steady state viscosity of 5 ?? 1018 - 1019 Pa s. Additional years of the GRACE observations should provide improved steady state viscosity estimates. In contrast to our interpretation of coseismic gravity change, the prominent postearthquake positive gravity change around the Nicobar Islands is accounted for by seafloor uplift with less postseismic perturbation in intrinsic density in the region surrounding the earthquake. Copyright 2008 by the American Geophysical Union.

  3. The July 12, 1993, Hokkaido-Nansei-Oki, Japan, earthquake: Coseismic slip pattern from strong-motion and teleseismic recordings

    USGS Publications Warehouse

    Mendoza, C.; Fukuyama, E.

    1996-01-01

    We employ a finite fault inversion scheme to infer the distribution of coseismic slip for the July 12, 1993, Hokkaido-Nansei-Oki earthquake using strong ground motions recorded by the Japan Meteorological Agency within 400 km of the epicenter and vertical P waveforms recorded by the Global Digital Seismograph Network at teleseismic distances. The assumed fault geometry is based on the location of the aftershock zone and comprises two fault segments with different orientations: a northern segment striking at N20??E with a 30?? dip to the west and a southern segment with a N20??W strike. For the southern segment we use both westerly and easterly dip directions to test thrust orientations previously proposed for this portion of the fault. The variance reduction is greater using a shallow west dipping segment, suggesting that the direction of dip did not change as the rupture propagated south from the hypocenter. This indicates that the earthquake resulted from the shallow underthrusting of Hokkaido beneath the Sea of Japan. Static vertical movements predicted by the corresponding distribution of fault slip are consistent with the general pattern of surface deformation observed following the earthquake. Fault rupture in the northern segment accounts for about 60% of the total P wave seismic moment of 3.4 ?? 1020 N m and includes a large circular slip zone (4-m peak) near the earthquake hypocenter at depths between 10 and 25 km. Slip in the southern segment is also predominantly shallower than 25 km, but the maximum coseismic displacements (2.0-2.5 m) are observed at a depth of about 5 km. This significant shallow slip in the southern portion of the rupture zone may have been responsible for the large tsunami that devastated the small offshore island of Okushiri. Localized shallow faulting near the island, however, may require a steep westerly dip to reconcile the measured values of ground subsidence.

  4. Bootheel lineament: A possible coseismic fault of the great New Madrid earthquakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schweig, E.S. III; Marple, R.T.

    1991-10-01

    A remote sensing examination of the New Madrid seismic zone has revealed a feature, the Bootheel lineament, that may be the surface expression of one of the coseismic faults of the great New Madrid earthquakes of 1811 and 1812. The lineament extends about 135 km in a north-northeast direction through northeastern Arkansas and southeastern Missouri. The morphology and pattern of the lineament suggest that it reflects a fault with strike-slip displacement. Field data indicate that liquefied sand was injected along the lineament, probably in 1811 and 1812. The Bootheel lineament does not coincide with any of the major arms ofmore » New Madrid seismicity, possibly indicating that the current seismicity does not precisely reflect the faults that ruptured in 1811 and 1812.« less

  5. Intertidal biological indicators of coseismic subsidence during the Mw 7.8 Haida Gwaii, Canada, earthquake

    USGS Publications Warehouse

    Haeussler, Peter J.; Witter, Robert C.; Wang, Kelin

    2015-01-01

    The 28 October 2012 Mw 7.8 Haida Gwaii earthquake was a megathrust earthquake along the very obliquely convergent Queen Charlotte margin of British Columbia, Canada. Coseismic deformation is not well constrained by geodesy, with only six Global Positioning System (GPS) sites and two tide gauge stations within 250 km of the rupture area. To better constrain vertical coseismic deformation, we measured the upper growth limits of two sessile intertidal organisms, which are controlled by physical conditions, relative to sea level at 25 sites 5 months after the earthquake. We measured the positions of rockweed (Fucus distichus, 617 observations) and the common acorn barnacle (Balanus balanoides, 686 observations). The study focused on the western side of the islands where rupture models indicated that the greatest amount of vertical displacement, but we also investigated sites well away from the inferred rupture area to provide a control on the upper limit of the organisms unaffected by vertical displacement. We also made 322 measurements of sea level to relate the growth limits to a tidal datum using the TPXO7.2 tidal model, rather than ellipsoid heights determined by GPS. Three methods of examining the data all indicate 0.4–0.6 m subsidence along the western coast of Moresby Island as a result of the 28 October 2012 Haida Gwaii earthquake. Our data are, within the errors, consistent with data from two campaign GPS sites along the west coast of Haida Gwaii and with rupture models that indicate megathrust rupture offshore, but not beneath, the islands.

  6. Stress Variation Caused by the Terrestrial Water Storage Inferred from GRACE Data

    NASA Astrophysics Data System (ADS)

    Yi, H.; Wen, L.

    2014-12-01

    We estimate stress variation caused by the terrestrial water storage (TWS) change from 2003 to 2013. We first infer the TWS change from the monthly gravity field change in the Gravity Recovery and Climate Experiment (GRACE). We then estimate the stress change at the Earth's surface caused by elastic loading of mass change associated with the inferred TWS change.The monthly spherical harmonics of the GRACE gravity solutions are processed using a decorrelation filter and Gaussian smoothing, to suppress the noise in high degree and order, following the approach of Swenson and Wahr [2006] and Chen et al. [2007]. The gravity variation associated with the glacial isostatic adjustment (GIA) is further removed from the GRACE solutions based on a geodynamical model by Paulson et al. [2007]. The inferred TWS changes exhibit a trend of increase from 2003 to 2013 in Amazon basin, southern Africa, the northern United State America (USA) and Queen Maud Land of Antarctica, and a trend of decrease in the same period in central Argentina, southern Chile, northern India, northern Iran, Alaska of the USA, Greenland and Marie Byrd Land of Antarctica.Surface stress variation due to the TWS loading is calculated, assuming an incompressible and self-gravitating Earth, with an elastic crust and a viscoelastic mantle overlying an inviscid core based on PREM model. We will present the geographical distribution of the stress variation caused by the TWS loading and discuss its possible implications. Chen, J. L., C. R. Wilson, B. D. Tapley, and S. Grand (2007), GRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake, Geophys Res Lett, 34(13), doi:10.1029/2007GL030356. Paulson, A., S. J. Zhong, and J. Wahr (2007), Inference of mantle viscosity from GRACE and relative sea level data, Geophys J Int, 171(2), 497-508, doi:10.1111/j.1365-246X.2007.03556.x. Swenson, S., and J. Wahr (2006), Post-processing removal of correlated errors in GRACE data, Geophys Res Lett, 33

  7. Temporal change in shallow subsurface P- and S-wave velocities and S-wave anisotropy inferred from coda wave interferometry

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.; Nishida, K.; Takeda, T.

    2012-12-01

    Recent progresses in theoretical and observational researches on seismic interferometry reveal the possibility to detect subtle change in subsurface seismic structure. This high sensitivity of seismic interferometry to the medium properties may thus one of the most important ways to directly observe the time-lapse behavior of shallow crustal structure. Here, using the coda wave interferometry, we show the co-seismic and post-seismic changes in P- and S-wave velocities and S-wave anisotropy associated with the 2011 off the Pacific coast of Tohoku earthquake (M9.0). In this study, we use the acceleration data recorded at KiK-net stations operated by NIED, Japan. Each KiK-net station has a borehole whose typical depth is about 100m, and two three-component accelerometers are installed at the top and bottom of the borehole. To estimate the shallow subsurface P- and S-wave velocities and S-wave anisotropy between two sensors and their temporal change, we select about 1000 earthquakes that occurred between 2004 and 2012, and extract body waves propagating between borehole sensors by computing the cross-correlation functions (CCFs) of 3 x 3 component pairs. We use frequency bands of 2-4, 4-8, 8-16 Hz in our analysis. Each averaged CCF shows clear wave packets traveling between borehole sensors, and their travel times are almost consistent with those of P- and S-waves calculated from the borehole log data. Until the occurrence of the 2011 Tohoku earthquake, the estimated travel time at each station is rather stable with time except for weak seasonal/annual variation. On the other hand, the 2011 Tohoku earthquake and its aftershocks cause sudden decrease in the S-wave velocity at most of the KiK-net stations in eastern Japan. The typical value of S-wave velocity changes, which are measured by the time-stretching method, is about 5-15%. After this co-seismic change, the S-wave velocity gradually recovers with time, and the recovery continues for over one year following the

  8. Stressing out: Handling Change in a Digital World

    ERIC Educational Resources Information Center

    Fiehn, Barbara

    2010-01-01

    Living in a world of rapid change and increased use of technologies can lead to an increase in personal levels of stress. Each person needs to find their own stress management systems. This article makes a few suggestions about recognizing stress sources and potential coping strategies.

  9. Coseismic slip of two large Mexican earthquakes from teleseismic body waveforms - Implications for asperity interaction in the Michoacan plate boundary segment

    NASA Astrophysics Data System (ADS)

    Mendoza, Carlos

    1993-05-01

    The distributions and depths of coseismic slip are derived for the October 25, 1981 Playa Azul and September 21, 1985 Zihuatanejo earthquakes in western Mexico by inverting the recorded teleseismic body waves. Rupture during the Playa Azul earthquake appears to have occurred in two separate zones both updip and downdip of the point of initial nucleation, with most of the slip concentrated in a circular region of 15-km radius downdip from the hypocenter. Coseismic slip occurred entirely within the area of reduced slip between the two primary shallow sources of the Michoacan earthquake that occurred on September 19, 1985, almost 4 years later. The slip of the Zihuatanejo earthquake was concentrated in an area adjacent to one of the main sources of the Michoacan earthquake and appears to be the southeastern continuation of rupture along the Cocos-North America plate boundary. The zones of maximum slip for the Playa Azul, Zihuatanejo, and Michoacan earthquakes may be considered asperity regions that control the occurrence of large earthquakes along the Michoacan segment of the plate boundary.

  10. Co-Seismic Mass Displacement and its Effect on Earth's Rotation and Gravity

    NASA Technical Reports Server (NTRS)

    Chao, B. F.; Gross, R. S.

    2004-01-01

    Mantle processes often involve large-scale mass transport, ranging from mantle convection, tectonic motions, glacial isostatic adjustment, to tides, atmospheric and oceanic loadings, volcanism and seismicity. On very short time scale of less than an hour, co-seismic event, apart from the "shaking" that is the earthquake, leaves behind permanent (step-function-like) displacements in the crust and mantle. This redistribution of mass changes the Earth's inertia tensor (and hence Earth's rotation in both length-of-day and polar motion), and the gravity field. The question is whether these effects are large enough to be of any significance. In this paper we report updated calculation results based on Chao & Gross. The calculation uses the normal mode summation scheme, applied to over twenty thousand major earthquakes that occurred during 1976-2002, according to source mechanism solutions given by the Harvard Centroid Moment Tensor catalog. Compared to the truly large ones earlier in the century, the earthquakes we study are individually all too small to have left any discernible signature in geodetic records of Earth rotation or global gravity field. However, their collective effects continue to exhibit an extremely strong statistical tendencies, conspiring to decrease J2 and J22 while shortening LOD, resulting in a rounder and more compact Earth. Strong tendency is also seen in the earthquakes trying to "nudge" the Earth rotation pole towards approx. 140 deg.E, roughly opposite to the observed polar drift direction. Currently, the Gravity Recovery And Climate Experiment (GRACE) is measuring the time-variable gravity to high degree and order with unprecedented accuracy. Our results show that great earthquakes such as the 1960 Chilean or 1964 Alaskan events cause gravitational field changes that are large enough to be detected by GRACE.

  11. Fault Mechanics and Post-seismic Deformation at Bam, SE Iran

    NASA Astrophysics Data System (ADS)

    Wimpenny, S. E.; Copley, A.

    2017-12-01

    The extent to which aseismic deformation relaxes co-seismic stress changes on a fault zone is fundamental to assessing the future seismic hazard following any earthquake, and in understanding the mechanical behaviour of faults. We used models of stress-driven afterslip and visco-elastic relaxation, in conjunction with a dense time series of post-seismic InSAR measurements, to show that there has been minimal release of co-seismic stress changes through post-seismic deformation following the 2003 Mw 6.6 Bam earthquake. Our modelling indicates that the faults at Bam may remain predominantly locked, and that the co- plus inter-seismically accumulated elastic strain stored down-dip of the 2003 rupture patch may be released in a future Mw 6 earthquake. Modelling also suggests parts of the fault that experienced post-seismic creep between 2003-2009 overlapped with areas that also slipped co-seismically. Our observations and models also provide an opportunity to probe how aseismic fault slip leads to the growth of topography at Bam. We find that, for our modelled afterslip distribution to be consistent with forming the sharp step in the local topography at Bam over repeated earthquake cycles, and also to be consistent with the geodetic observations, requires either (1) far-field tectonic loading equivalent to a 2-10 MPa deviatoric stress acting across the fault system, which suggests it supports stresses 60-100 times less than classical views of static fault strength, or (2) that the fault surface has some form of mechanical anisotropy, potentially related to corrugations on the fault plane, that controls the sense of slip.

  12. Re-evaluating occupational heat stress in a changing climate.

    PubMed

    Spector, June T; Sheffield, Perry E

    2014-10-01

    The potential consequences of occupational heat stress in a changing climate on workers, workplaces, and global economies are substantial. Occupational heat stress risk is projected to become particularly high in middle- and low-income tropical and subtropical regions, where optimal controls may not be readily available. This commentary presents occupational heat stress in the context of climate change, reviews its impacts, and reflects on implications for heat stress assessment and control. Future efforts should address limitations of existing heat stress assessment methods and generate economical, practical, and universal approaches that can incorporate data of varying levels of detail, depending on resources. Validation of these methods should be performed in a wider variety of environments, and data should be collected and analyzed centrally for both local and large-scale hazard assessments and to guide heat stress adaptation planning. Heat stress standards should take into account variability in worker acclimatization, other vulnerabilities, and workplace resources. The effectiveness of controls that are feasible and acceptable should be evaluated. Exposure scientists are needed, in collaboration with experts in other areas, to effectively prevent and control occupational heat stress in a changing climate. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  13. On- and off-fault coseismic surface deformation associated with the September 2013 M7.7 Balochistan, Pakistan earthquake measured from mapping and automated pixel correlation

    NASA Astrophysics Data System (ADS)

    Gold, R. D.; Reitman, N. G.; Briggs, R. W.; Barnhart, W. D.; Hayes, G. P.

    2014-12-01

    The 24 September 2013 Mw7.7 Balochistan, Pakistan earthquake ruptured a ~200 km-long stretch of the Hoshab fault in southern Pakistan. We remotely measured the coseismic surface deformation field using high-resolution (0.5 m) pre- and post-event satellite imagery. We measured ~300 near-field (0-10 m from fault) laterally offset piercing points (streams, terrace risers, roads, etc.) and find peak left-lateral offsets of ~12-15 m. We characterized the far-field (0-10 km from fault) displacement field using manual (~250 measurements) and automated image cross-correlation methods (e.g., pixel tracking) and find peak displacement values of ~16 m, which commonly exceed the on-fault displacement magnitudes. Our preliminary observations suggest the following: (1) coseismic surface displacement typically increases with distance away from the surface trace of the fault (e.g., highest displacement values in the far field), (2) for certain locations along the fault rupture, as little as 50% of the coseismic displacement field occurred in the near-field; and (3) the magnitudes of individual displacements are inversely correlated to the width of the surface rupture zone (e.g., largest displacements where the fault zone is narrowest). This analysis highlights the importance of identifying field study sites spanning fault sections with narrow deformation zones in order to capture the entire deformation field. For regions of distributed deformation, these results would predict that geologic slip rate studies underestimate a fault's complete slip rate.

  14. A network of superconducting gravimeters detects submicrogal coseismic gravity changes.

    PubMed

    Imanishi, Yuichi; Sato, Tadahiro; Higashi, Toshihiro; Sun, Wenke; Okubo, Shuhei

    2004-10-15

    With high-resolution continuous gravity recordings from a regional network of superconducting gravimeters, we have detected permanent changes in gravity acceleration associated with a recent large earthquake. Detected changes in gravity acceleration are smaller than 10(-8) meters seconds(-2) (1 micro-Galileo, about 10(-9) times the surface gravity acceleration) and agree with theoretical values calculated from a dislocation model. Superconducting gravimetry can contribute to the studies of secular gravity changes associated with tectonic processes.

  15. Stress-induced changes in human decision-making are reversible.

    PubMed

    Soares, J M; Sampaio, A; Ferreira, L M; Santos, N C; Marques, F; Palha, J A; Cerqueira, J J; Sousa, N

    2012-07-03

    Appropriate decision-making relies on the ability to shift between different behavioral strategies according to the context in which decisions are made. A cohort of subjects exposed to prolonged stress, and respective gender- and age-matched controls, performed an instrumental behavioral task to assess their decision-making strategies. The stressed cohort was reevaluated after a 6-week stress-free period. The behavioral analysis was complemented by a functional magnetic resonance imaging (fMRI) study to detect the patterns of activation in corticostriatal networks ruling goal-directed and habitual actions. Using structural MRI, the volumes of the main cortical and subcortical regions implicated in instrumental behavior were determined. Here we show that chronic stress biases decision-making strategies in humans toward habits, as choices of stressed subjects become insensitive to changes in outcome value. Using functional imaging techniques, we demonstrate that prolonged exposure to stress in humans causes an imbalanced activation of the networks that govern decision processes, shifting activation from the associative to the sensorimotor circuits. These functional changes are paralleled by atrophy of the medial prefrontal cortex and the caudate, and by an increase in the volume of the putamina. Importantly, a longitudinal assessment of the stressed individuals showed that both the structural and functional changes triggered by stress are reversible and that decisions become again goal-directed.

  16. Co-Seismic Mass Dislocation and its Effect on Earth's Rotation and Gravity

    NASA Technical Reports Server (NTRS)

    Chao, B. F.; Gross, R. S.

    2002-01-01

    Mantle processes often involve large-scale mass transport, ranging from mantle convection, tectonic motions, glacial isostatic adjustment, to tides, atmospheric and oceanic loadings, volcanism and seismicity. On very short time scale of less than an hour, co-seismic event, apart from the shaking that is the earthquake, leaves behind permanent (step-function-like) dislocations in the crust and mantle. This redistribution of mass changes the Earth's inertia tensor (and hence Earth's rotation in both length-of-day and polar motion), and the gravity field (in terms of spherical harmonic Stokes coefficients). The question is whether these effects are large enough to be of any significance. In this paper we report updated calculation results based on Chao & Gross (1987). The calculation uses the normal mode summation scheme, applied to nearly twenty thousand major earthquakes that occurred during 1976-2002, according to source mechanism solutions given by the Harvard Central Moment Tensor catalog. Compared to the truly large ones earlier in the century, the earthquakes we study are individually all too small to have left any discernible signature in geodetic records of Earth rotation or global gravity field. However, their collective effects continue to exhibit an extremely strong statistical tendencies. For example, earthquakes conspire to decrease J2 and J22 while shortening LOD, resulting in a rounder and more compact Earth. Strong tendency is also seen in the earthquakes trying to nudge the Earth rotation pole towards approximately 140 degrees E, roughly opposite to the observed polar drift direction. The geophysical significance and implications will be further studied.

  17. Co-Seismic Mass Dislocation and Its Effect on Earth's Rotation and Gravity

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    1999-01-01

    Mantle processes often involve large-scale mass transport, ranging from mantle convection, tectonic motions, glacial isostatic adjustment, to tides, atmospheric and oceanic loadings, volcanism and seismicity. On very short time scale of less than an hour, co-seismic event, apart from the "shaking" that is the earthquake, leaves behind permanent (step-function-like) dislocations in the crust and mantle. This redistribution of mass changes the Earth's inertia tensor (and hence Earth's rotation in both length-of-day and polar motion), and the gravity field (in terms of spherical harmonic Stokes coefficients). The question is whether these effects are large enough to be of any significance. In this paper we report updated calculation results. The calculation uses the normal mode summation scheme, applied to 15,814 major earthquakes that occurred during 1976-1998, according to source mechanism solutions given by the Harvard Central Moment Tensor catalog. Compared to the truly large ones earlier in the century, the earthquakes we study are individually all too small to have left any discernible signature in geodetic records of Earth rotation or global gravity field. However, their collective effects continue to exhibit an extremely strong statistical tendencies. For example, earthquakes conspire to decrease J(sub 2) and J(sub 22) while shortening LOD, resulting in a rounder and more compact Earth. Strong tendency is also seen in the earthquakes trying to "nudge" the Earth rotation pole towards about 140 degree E, roughly opposite to the observed polar drift direction. The geophysical significance and implications will be further studied.

  18. Numerical Modeling of Initial Slip and Poroelastic Effects of the 2012 Costa Rica Earthquake Using GPS Data

    NASA Astrophysics Data System (ADS)

    McCormack, K. A.; Hesse, M. A.; Stadler, G.

    2015-12-01

    Remote sensing and geodetic measurements are providing a new wealth of spatially distributed, time-series data that have the ability to improve our understanding of co-seismic rupture and post-seismic processes in subduction zones. We formulate a Bayesian inverse problem to infer the slip distribution on the plate interface using an elastic finite element model and GPS surface deformation measurements. We present an application to the co-seismic displacement during the 2012 earthquake on the Nicoya Peninsula in Costa Rica, which is uniquely positioned close to the Middle America Trench and directly over the seismogenic zone of the plate interface. The results of our inversion are then used as an initial condition in a coupled poroelastic forward model to investigate the role of poroelastic effects on post-seismic deformation and stress transfer. From this study we identify a horseshoe-shaped rupture area with a maximum slip of approximately 2.5 meters surrounding a locked patch that is likely to release stress in the future. We model the co-seismic pore pressure change as well as the pressure evolution and resulting deformation in the months after the earthquake. The results of the forward model indicate that earthquake-induced pore pressure changes dissipate quickly near the surface, resulting in relaxation of the surface in the seven to ten days following the earthquake. Near the subducting slab interface, pore pressure changes are an order of magnitude larger and may persist for many months after the earthquake.

  19. Shared identity in organizational stress and change.

    PubMed

    van Dick, Rolf; Ciampa, Valeria; Liang, Shuang

    2017-11-17

    The social identity approach has been found very useful for the understanding of a range of phenomena within and across organizations. It has been applied in particular to analyze employees' stress and well-being at work and their reactions to organizational change. In this paper, we argue that there is a mismatch between the theoretical notion of shared identities in teams and organizations and empirical research, which largely focuses on the individual employee's identification with his or her social categories at work. We briefly review the literature in the two areas of stress and change and conclude with an agenda for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Hydrogen generation along simulated faults at coseismic slip conditions

    NASA Astrophysics Data System (ADS)

    Hirose, T.; Suzuki, K.

    2009-12-01

    Since the discovery of deep-sea hydrothermal vents in the late 1970s, the most ancient microbial ecosystems are considered to evolve at habitable environments in the vicinity of H2-rich hydrothermal fluids (e.g., Russell & Hall, 1997). In the modern ocean, the H2-rich hydrothermal fluids that are often observed along the slow-spreading Mid Ocean Ridges (MOR) are most likely to be provided by the ultramafic rock-water reaction (serpentinization) (e.g., Seyfried et al., 1979). However, such H2-rich fluids can be also found at the East Pacific Rise (EPR) where ultramafic rocks are not exposed. In this study, we hypothesized that the H2-rich fluids at the EPR are produced during the seismic events in basaltic rocks, and that the H2 generation associated with seismic faulting could contribute to sustaining the subsurface biological communities. In order to confirm above hypotheses, we performed laboratory friction experiments on gabbro, dunite and granite at a constant normal stress of 1.0 MPa, slip velocities, V, of 0.09~1.6 m/s (nearly coseismic slip rates) and displacements of more than 10 m using a rotary-shear apparatus. Slip on the simulated fault was conducted within a small pressure vessel that was filled with air. H2 gas released during experiments was measured by a micro gas chromatograph which was directly connected to the pressure vessel. The main findings of our preliminary experimental work are: (1) H2 gas could not be detected at V < 0.09 m/s, while it was detected and increased with slip velocities over 0.3 m/s for all rock types. The amount of H2 generation in granite samples at 0.6 m/s is more than 20 times higher than that of dunite and gabbro. (2) When a few drops of distilled water were added to the sliding surfaces, the H2 production was enhanced for all rock types. (3) When the wet dunite specimen was sheared at V of 1.3 m/s corresponding to a total mechanical work energy of ~4.5 kJ (calculated as shear stress multiplied by displacement), the H2

  1. Static Stress Changes Inverted from Microseismicity in Eastern Aegean Sea

    NASA Astrophysics Data System (ADS)

    Leptokaropoulos, Konstantinos; Papadimitriou, Eleftheria; Orlecka-Sikora, Beata; Karakostas, Vassilios

    2014-05-01

    In this study we attempted to derive static stress field variations from the changes of earthquake production rates in Kusadasi bay and Samos island (eastern Aegean), by applying the Dieterich et al. (2000) Rate/State formulation. The calculation of stress changes from earthquake occurrence rates fluctuations should be obtained from catalogues which achieve adequate spatial and temporal resolution and well determined hypocenter coordinates. For this reason we took advantage of the data from a regional network operating since July of 2007, providing continuous monitoring of microseismicity, along with data available from seismological stations of the permanent Hellenic Unified Seismological Network (HUSN). The high accuracy and large sized regional catalogue is utilized for inverting seismicity rate changes into stress variation through a Rate/State dependent friction model. After explicitly determining the physical parameters incorporating in the modeling (reference seismicity rates, characteristic relaxation time, constitutive properties of fault zones) we investigated stress changes in both space and time regime and their possible connection with earthquake clustering and fault interactions. The main interest is focused on the June 2009 Samos Mw=5.1 event, which was followed by an intense seismic activity for several days. We attempt to reproduce and interpret stress changes both before and after the initiation of this seismic burst. The differences between the earthquake occurrence rates before and after the main shock are used as input data in a stress inversion algorithm based upon the Rate/State dependent friction concept in order to provide an estimation of stress changes. Diverse assumptions and combinations of the parameters values are tested for the model performance and sensitivity to be evaluated. The approach followed here could provide evidence of the robustness of the seismicity rate changes usage as a stress meter for both positive and negative

  2. Temporal versus spatial variation in leaf reflectance under changing water stress conditions

    NASA Technical Reports Server (NTRS)

    Cohen, Warren B.

    1991-01-01

    Leaf reflectance changes associated with changes in water stress were analyzed in two separate experiments. Results indicate that the variation in reflectance among collections of leaves of a given species all at the same level of water stress is at least as great as the variation in reflectance associated with changes in water stress for a given leaf collection of that species. The implications is that results from leaf reflectance-water stress studies have only limited applicability to the remote sensing of plant canopy water stress.

  3. Repeated folding stress-induced morphological changes in the dermal equivalent.

    PubMed

    Arai, Koji Y; Sugimoto, Mami; Ito, Kanako; Ogura, Yuki; Akutsu, Nobuko; Amano, Satoshi; Adachi, Eijiro; Nishiyama, Toshio

    2014-11-01

    Repeated mechanical stresses applied to the same region of the skin are thought to induce morphological changes known as wrinkle. However, the underlying mechanisms are not fully understood. To study the mechanisms, we examined effects of repeated mechanical stress on the dermal equivalent. We developed a novel device to apply repeated folding stress to the dermal equivalent. After applying the mechanical stress, morphological changes of the dermal equivalent and expression of several genes related to extracellular matrix turn over and cell contraction were examined. The repeated folding stress induced a noticeable decrease in the width of the dermal equivalent. The mechanical stress altered orientations of collagen fibrils. Hydroxyproline contents, dry weights and cell viability of the dermal equivalents were not affected by the mechanical stress. On the other hand, Rho-associated coiled-coil-containing kinase (ROCK) specific inhibitor Y27632 completely suppressed the decrease in the width of the dermal equivalent. The present results revealed that either degradation of collagen or changes in the number of cells were not responsible for the decrease in the width of the dermal equivalent and indicate that the repeated mechanical stress induces unidirectional contraction in the dermal equivalent through the RhoA-ROCK signaling pathway. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Shallow Lunar Seismic Activity and the Current Stress State of the Moon

    NASA Technical Reports Server (NTRS)

    Watters, T. R.; Weber, R. C.; Collins, G. C.; Johnson, C. L.

    2017-01-01

    A vast, global network of more than 3200 lobate thrust fault scarps has been revealed in high resolution Lunar Reconnaissance Orbiter Camera (LROC) images. The fault scarps very young, less than 50 Ma, based on their small scale and crisp appearance, crosscutting relations with small-diameter impact craters, and rates of infilling of associated small, shallow graben and may be actively forming today. The population of young thrust fault scarps provides a window into the recent stress state of the Moon and offers insight into the origin of global lunar stresses. The distribution of orientations of the fault scarps is non-random, inconsistent with isotropic stresses from late-stage global contraction as the sole source of stress Modeling shows that tidal stresses contribute significantly to the current stress state of the lunar crust. Tidal stresses (orbital recession and diurnal tides) superimposed on stresses from global contraction result in non-isotropic compressional stress and thrust faults consistent with lobate scarp orientations. Stresses due to orbital recession do not change with orbital position, thus it is with the addition of diurnal stresses that peak stresses are reached. At apogee, diurnal and recession stresses are most compressive near the tidal axis, while at perigee they are most compressive 90 degrees away from the tidal axis. Coseismic slip events on currently active thrust faults are expected to be triggered when peak stresses are reached. Analysis of the timing of the 28 the shallow moonquakes recorded by the Apollo seismic network shows that 19 indeed occur when the Moon is closer to apogee, while only 9 shallow events occur when the Moon is closer to perigee. Here we show the results of relocating the shallow moonquake using an algorithm designed for sparse networks to better constrain their epicentral locations in order to compare them with stress models. The model for the current stress state of the Moon is refined by investigating the

  5. Global Perceived Stress Predicts Cognitive Change among Older Adults

    PubMed Central

    Munoz, Elizabeth; Sliwinski, Martin J.; Scott, Stacey B.; Hofer, Scott

    2015-01-01

    Research on stress and cognitive aging has primarily focused on examining the effects of biological and psychosocial indicators of stress with little attention provided to examining the association between perceived stress and cognitive aging. We examined the longitudinal association between global perceived stress (GPS) and cognitive change among 116 older adults (Mage = 80, SD = 6.40, range: 67–96) in a repeated measurement burst design. Bursts of six daily cognitive assessments were repeated every six months over a two-year period with self-reported GPS assessed at the start of every burst. Using a double-exponential learning model, two parameters were estimated: 1) asymptotic level (peak performance), and 2) asymptotic change (the rate in which peak performance changed across bursts). We hypothesized that greater GPS would predict slowed performance in tasks of attention, working memory, and speed of processing and that increases in GPS across time would predict cognitive slowing. Results from latent growth curve analyses were consistent with our first hypothesis and indicated that level of GPS predicted cognitive slowing across time. Changes in GPS did not predict cognitive slowing. This study extends previous findings by demonstrating a prospective association between level of GPS and cognitive slowing across a two-year period highlighting the role of psychological stress as a risk factor for poor cognitive function. PMID:26121285

  6. Stress-induced core temperature changes in pigeons (Columba livia).

    PubMed

    Bittencourt, Myla de Aguiar; Melleu, Fernando Falkenburger; Marino-Neto, José

    2015-02-01

    Changes in body temperature are significant physiological consequences of stressful stimuli in mammals and birds. Pigeons (Columba livia) prosper in (potentially) stressful urban environments and are common subjects in neurobehavioral studies; however, the thermal responses to stress stimuli by pigeons are poorly known. Here, we describe acute changes in the telemetrically recorded celomatic (core) temperature (Tc) in pigeons given a variety of potentially stressful stimuli, including transfer to a novel cage (ExC) leading to visual isolation from conspecifics, the presence of the experimenter (ExpR), gentle handling (H), sham intracelomatic injections (SI), and the induction of the tonic immobility (TI) response. Transfer to the ExC cage provoked short-lived hyperthermia (10-20 min) followed by a long-lasting and substantial decrease in Tc, which returned to baseline levels 2 h after the start of the test. After a 2-hour stay in the ExC, the other potentially stressful stimuli evoked only weak, marginally significant hyperthermic (ExpR, IT) or hypothermic (SI) responses. Stimuli delivered 26 h after transfer to the ExC induced definite and intense increases in Tc (ExpR, H) or hypothermic responses (SI). These Tc changes appear to be unrelated to modifications in general activity (as measured via telemetrically recorded actimetric data). Repeated testing failed to affect the hypothermic responses to the transference to the ExC, even after nine trials and at 1- or 8-day intervals, suggesting that the social (visual) isolation from conspecifics may be a strong and poorly controllable stimulus in this species. The present data indicated that stress-induced changes in Tc may be a consistent and reliable physiological parameter of stress but that they may also show stressor type-, direction- and species-specific attributes. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Delayed seismicity rate changes controlled by static stress transfer

    USGS Publications Warehouse

    Kroll, Kayla A.; Richards-Dinger, Keith B.; Dieterich, James H.; Cochran, Elizabeth S.

    2017-01-01

    On 15 June 2010, a Mw5.7 earthquake occurred near Ocotillo, California, in the Yuha Desert. This event was the largest aftershock of the 4 April 2010 Mw7.2 El Mayor-Cucapah (EMC) earthquake in this region. The EMC mainshock and subsequent Ocotillo aftershock provide an opportunity to test the Coulomb failure hypothesis (CFS). We explore the spatiotemporal correlation between seismicity rate changes and regions of positive and negative CFS change imparted by the Ocotillo event. Based on simple CFS calculations we divide the Yuha Desert into three subregions, one triggering zone and two stress shadow zones. We find the nominal triggering zone displays immediate triggering, one stress shadowed region experiences immediate quiescence, and the other nominal stress shadow undergoes an immediate rate increase followed by a delayed shutdown. We quantitatively model the spatiotemporal variation of earthquake rates by combining calculations of CFS change with the rate-state earthquake rate formulation of Dieterich (1994), assuming that each subregion contains a mixture of nucleation sources that experienced a CFS change of differing signs. Our modeling reproduces the observations, including the observed delay in the stress shadow effect in the third region following the Ocotillo aftershock. The delayed shadow effect occurs because of intrinsic differences in the amplitude of the rate response to positive and negative stress changes and the time constants for return to background rates for the two populations. We find that rate-state models of time-dependent earthquake rates are in good agreement with the observed rates and thus explain the complex spatiotemporal patterns of seismicity.

  8. Delayed Seismicity Rate Changes Controlled by Static Stress Transfer

    NASA Astrophysics Data System (ADS)

    Kroll, Kayla A.; Richards-Dinger, Keith B.; Dieterich, James H.; Cochran, Elizabeth S.

    2017-10-01

    On 15 June 2010, a Mw5.7 earthquake occurred near Ocotillo, California, in the Yuha Desert. This event was the largest aftershock of the 4 April 2010 Mw7.2 El Mayor-Cucapah (EMC) earthquake in this region. The EMC mainshock and subsequent Ocotillo aftershock provide an opportunity to test the Coulomb failure hypothesis (CFS). We explore the spatiotemporal correlation between seismicity rate changes and regions of positive and negative CFS change imparted by the Ocotillo event. Based on simple CFS calculations we divide the Yuha Desert into three subregions, one triggering zone and two stress shadow zones. We find the nominal triggering zone displays immediate triggering, one stress shadowed region experiences immediate quiescence, and the other nominal stress shadow undergoes an immediate rate increase followed by a delayed shutdown. We quantitatively model the spatiotemporal variation of earthquake rates by combining calculations of CFS change with the rate-state earthquake rate formulation of Dieterich (1994), assuming that each subregion contains a mixture of nucleation sources that experienced a CFS change of differing signs. Our modeling reproduces the observations, including the observed delay in the stress shadow effect in the third region following the Ocotillo aftershock. The delayed shadow effect occurs because of intrinsic differences in the amplitude of the rate response to positive and negative stress changes and the time constants for return to background rates for the two populations. We find that rate-state models of time-dependent earthquake rates are in good agreement with the observed rates and thus explain the complex spatiotemporal patterns of seismicity.

  9. Historical coseismic surface deformation of fluvial gravel deposits, Schafberg fault, Lower Rhine Graben, Germany

    NASA Astrophysics Data System (ADS)

    Kübler, Simon; Friedrich, Anke M.; Gold, Ryan D.; Strecker, Manfred R.

    2018-03-01

    Intraplate earthquakes pose a significant seismic hazard in densely populated rift systems like the Lower Rhine Graben in Central Europe. While the locations of most faults in this region are well known, constraints on their seismogenic potential and earthquake recurrence are limited. In particular, the Holocene deformation history of active faults remains enigmatic. In an exposure excavated across the Schafberg fault in the southwestern Lower Rhine Graben, south of Untermaubach, in the epicentral region of the 1756 Düren earthquake ( M L 6.2), we mapped a complex deformation zone in Holocene fluvial sediments. We document evidence for at least one paleoearthquake that resulted in vertical surface displacement of 1.2 ± 0.2 m. The most recent earthquake is constrained to have occurred after 815 AD, and we have modeled three possible earthquake scenarios constraining the timing of the latest event. Coseismic deformation is characterized by vertical offset of sedimentary contacts distributed over a 10-m-wide central damage zone. Faults were identified where they fracture and offset pebbles in the vertically displaced gravel layers and fracture orientation is consistent with the orientation of the Schafberg fault. This study provides the first constraint on the most recent surface-rupturing earthquake on the Schafberg fault. We cannot rule out that this fault acted as the source of the 1756 Düren earthquake. Our study emphasizes the importance of, and the need for, paleoseismic studies in this and other intracontinental regions, in particular on faults with subtle geomorphic expression that would not typically be recognized as being potentially seismically active. Our study documents textural features in unconsolidated sediment that formed in response to coseismic rupturing of the underlying bedrock fault. We suggest that these features, e.g., abundant oriented transgranular fractures in their context, should be added to the list of criteria used to identify a fault

  10. Coseismic and Postseismic Deformation Due to the 2010 El Mayor-Cucapah Earthquake Detected by ALOS/PALSAR Data

    NASA Astrophysics Data System (ADS)

    Okamoto, J.; Hashimoto, M.; Fukushima, Y.

    2011-12-01

    On April 4th, 2010, the Mw 7.2 El Mayor-Cucapah earthquake occurred in northeast Baja California, near the US-Mexico border. Since then, ALOS/PALSAR observed this region twenty times, which provides a rich data set to study the co- and post-seismic deformation. We first estimated the slip distribution and dip angle of the fault plane by inverting InSAR data with the method developed by Fukahata and Wright (2008). With this method, we can obtain the slip distribution on a plane fault and its dip angle simultaneously by minimizing the ABIC (Akaike's Bayesian Information Criterion). In southeastern area near the Gulf of California, we could recognize effects of liquefaction, so we did not use the data in such areas in the inversion. We assumed one sufficiently large rectangular plane fault and the strike is assumed to be 313 degrees from the north. After trials and errors, we restricted the search of the dip angle in a range of 30-90 degrees, dipping northeastward. The optimal dip angle was estimated 68 degrees, which is smaller than 82 degrees of the CMT solution (USGS). Right lateral strike slips with slight normal component were estimated, and the maximum slip of about 3m was obtained in the northwestern vicinity of the hypocenter. The total geodetic moment of our best-fitting model was in a good agreement with the seismic moment. In the postseismic period, we detected signals at two locations that can be attributed to postseismic deformation. First, we recognize some signals near the northwestern edge of the source fault in all the early postseismic interferograms (46 days after the earthquake) of both ascending and descending directions. In this area, the coseismic slip was estimated to be about 2m. We performed some forward calculations to confirm that this signal is not likely to be due to aftershocks. We computed the poroelastic deformation based on our coseismic slip model and found that the observed signal has the opposite sense. Moreover, a 2.5 dimensional

  11. Structure of pseudotachylyte vein systems as a key to co-seismic rupture dynamics: the case of Gavilgarh-Tan Shear Zone, central India

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, A.; Bhattacharjee, D.; Mukherjee, S.

    2014-04-01

    The secondary fractures associated with a major pseudotachylyte-bearing fault vein in the sheared aplitic granitoid of the Proterozoic Gavilgarh-Tan Shear Zone in central India are mapped at the outcrop scale. The fracture maps help to identify at least three different types of co-seismic ruptures, e.g., X-X', T1 and T2, which characterize sinistral-sense shearing of rocks, confined between two sinistral strike-slip faults slipping at seismic rate. From the asymmetric distribution of tensile fractures around the sinistral-sense fault vein, the direction of seismic rupture propagation is predicted to have occurred from west-southwest to east-northeast, during an ancient (Ordovician?) earthquake. Calculations of approximate co-seismic displacement on the faults and seismic moment ( M 0) of the earthquake are attempted, following the methods proposed by earlier workers. These estimates broadly agree to the findings from other studied fault zones (e.g., Gole Larghe Fault zone, Italian Alps). This study supports the proposition by some researchers that important seismological information can be extracted from tectonic pseudotachylytes of all ages, provided they are not reworked by subsequent tectonic activity.

  12. Fracturing and Transformation Into Veins Beneath the Crustal Scale Brittle Ductile Transition - a Record of Co-seismic Loading and Post-seismic Relaxation

    NASA Astrophysics Data System (ADS)

    Nüchter, J. A.; Stöckhert, B.

    2005-12-01

    Metamorphic rocks approaching the crustal scale brittle-ductile transition (BDT) during exhumation are expected to become increasingly affected by short term stress fluctuations related to seismic activity in the overlying seismogenic layer (schizosphere), while still residing in a long-term viscous environment (plastosphere). The structural and microstructural record of quartz veins in low grade - high pressure metamorphic rocks from southern Evia, Greece, yields insight into the processes and conditions just beneath the long-term BDT at temperatures of about 300 to 350°C, which switches between brittle failure and viscous flow as a function of imposed stress or strain rate. The following features are characteristic: (1) The veins have formed from tensile fractures, with a typical length on the order of 10-1 to 101 m; (2) The veins are discordant with respect to foliation and all pre-existing structures, with a uniform orientation over more than 500 km2; (3) The veins show a low aspect ratio of about 10 to 100 and an irregular or characteristic flame shape, which requires distributed ductile deformation of the host rock; (4) Fabrics of the sealing vein quartz indicate that - at a time - the veins were wide open cavities; (5) The sealing quartz crystals reveal a broad spectrum of microstructural features indicative of crystal plastic deformation at high stress and temperatures of about 300 to 350°C. These features indicate that opening and sealing of the fractures commenced immediately after brittle failure, controlled by ductile deformation of the host rock. Vein-parallel shortening was generally less than about 2%. Crystals formed early during sealing were plastically deformed upon progressive deformation and opening of the vein. The structural and microstructural record is interpreted as follows: Brittle failure is proposed to be a consequence of short term co-seismic loading. Subsequent opening of the fracture and sealing to become a vein is interpreted to

  13. Motion of the Bird's Head Block and co-seismic deformation from GPS data

    NASA Astrophysics Data System (ADS)

    Tikku, A. A.; Subarya, C.; N/A, M.; McCaffrey, R.; Genrich, J.

    2006-05-01

    The Bird's Head region of Eastern Indonesia, comprising the western end of New Guinea, behaves as an independent block at a juncture of subduction zones. It is bound on the north by the Manokwari and New Guinea Trenches, on the west by the Sorong fault, on the southwest by the Seram Trough, and on the east and southeast by the Lowland fault. Previous analysis of regional campaign global positioning system [GPS] data collected between 1991 and 1997 revealed rotation of the Bird's Head Block and high shear rates between the Pacific and Australian plates accommodated within the block. We have collected and analyzed additional regional campaign GPS data collected between 1998 and 2005, which includes data from newly established stations in the vicinity of the Cenderwasih Bay and Lowlands fault. During this span of time there were four large (Mw greater than 7.0) earthquakes in the region: a magnitude Mw=7.5 on a historically inactive NW-SE trending strike-slip fault bounding the western end of the Cenderwasih Bay on October 10th, 2002, two events, with magnitudes Mw=7.0 and 7.3, separated by a time span of two days (February 5th and 7th 2004) and a distance of ~100 km on the NE-SW trending Lowlands fault, and a third event (Mw=7.1) on November 26th 2004, coincident with the location of the February 5th 2004 event on the Lowlands fault. Destruction and fatalities were associated with all these large earthquakes. The Lowlands fault is a known seismically active fault. The historically inactive fault active that ruptured in 2002 is in the middle of the Bird's Head Block and disrupted the collection of a long seismically quiescent time-series of deformation within the block, but we have been able to constrain the co-seismic slip on this fault with the GPS data and modeling, and here present these results. We have also estimated the corruption of the co-seismic deformation from the 2002 and 2004 earthquakes and removed these from the campaign data to here present estimates

  14. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster.

    PubMed

    Landis, Gary; Shen, Jie; Tower, John

    2012-11-01

    Gene expression changes in response to aging, heat stress, hyperoxia, hydrogen peroxide, and ionizing radiation were compared using microarrays. A set of 18 genes were up-regulated across all conditions, indicating a general stress response shared with aging, including the heat shock protein (Hsp) genes Hsp70, Hsp83 and l(2)efl, the glutathione-S-transferase gene GstD2, and the mitochondrial unfolded protein response (mUPR) gene ref(2)P. Selected gene expression changes were confirmed using quantitative PCR, Northern analysis and GstD-GFP reporter constructs. Certain genes were altered in only a subset of the conditions, for example, up-regulation of numerous developmental pathway and signaling genes in response to hydrogen peroxide. While aging shared features with each stress, aging was more similar to the stresses most associated with oxidative stress (hyperoxia, hydrogen peroxide, ionizing radiation) than to heat stress. Aging is associated with down-regulation of numerous mitochondrial genes, including electron-transport-chain (ETC) genes and mitochondrial metabolism genes, and a sub-set of these changes was also observed upon hydrogen peroxide stress and ionizing radiation stress. Aging shared the largest number of gene expression changes with hyperoxia. The extensive down-regulation of mitochondrial and ETC genes during aging is consistent with an aging-associated failure in mitochondrial maintenance, which may underlie the oxidative stress-like and proteotoxic stress-like responses observed during aging.

  15. On the relationship between structure, morphology and large coseismic slip: A case study of the Mw 8.8 Maule, Chile 2010 earthquake

    NASA Astrophysics Data System (ADS)

    Contreras-Reyes, Eduardo; Maksymowicz, Andrei; Lange, Dietrich; Grevemeyer, Ingo; Muñoz-Linford, Pamela; Moscoso, Eduardo

    2017-11-01

    Subduction megathrust earthquakes show complex rupture behaviour and large lateral variations of slip. However, the factors controlling seismic slip are still under debate. Here, we present 2-D velocity-depth tomographic models across four trench-perpendicular wide angle seismic profiles complemented with high resolution bathymetric data in the area of maximum coseismic slip of the Mw 8.8 Maule 2010 megathrust earthquake (central Chile, 34°-36°S). Results show an abrupt lateral velocity gradient in the trench-perpendicular direction (from 5.0 to 6.0 km/s) interpreted as the contact between the accretionary prism and continental framework rock whose superficial expression spatially correlates with the slope-shelf break. The accretionary prism is composed of two bodies: (1) an outer accretionary wedge (5-10 km wide) characterized by low seismic velocities of 1.8-3.0 km/s interpreted as an outer frontal prism of poorly compacted and hydrated sediment, and (2) the middle wedge (∼50 km wide) with velocities of 3.0-5.0 km/s interpreted as a middle prism composed by compacted and lithified sediment. In addition, the maximum average coseismic slip of the 2010 megathrust event is fairly coincident with the region where the accretionary prism and continental slope are widest (50-60 km wide), and the continental slope angle is low (<5°). We observe a similar relation along the rupture area of the largest instrumentally recorded Valdivia 1960 Mw 9.5 megathrust earthquake. For the case of the Maule event, published differential multibeam bathymetric data confirms that coseismic slip must have propagated up to ∼6 km landwards of the deformation front and hence practically the entire base of the middle prism. Sediment dewatering and compaction processes might explain the competent rheology of the middle prism allowing shallow earthquake rupture. In contrast, the outer frontal prism made of poorly consolidated sediment has impeded the rupture up to the deformation front as

  16. The use of earthquake rate changes as a stress meter at Kilauea volcano.

    PubMed

    Dieterich, J; Cayol, V; Okubo, P

    2000-11-23

    Stress changes in the Earth's crust are generally estimated from model calculations that use near-surface deformation as an observational constraint. But the widespread correlation of changes of earthquake activity with stress has led to suggestions that stress changes might be calculated from earthquake occurrence rates obtained from seismicity catalogues. Although this possibility has considerable appeal, because seismicity data are routinely collected and have good spatial and temporal resolution, the method has not yet proven successful, owing to the non-linearity of earthquake rate changes with respect to both stress and time. Here, however, we present two methods for inverting earthquake rate data to infer stress changes, using a formulation for the stress- and time-dependence of earthquake rates. Application of these methods at Kilauea volcano, in Hawaii, yields good agreement with independent estimates, indicating that earthquake rates can provide a practical remote-sensing stress meter.

  17. Climate change hampers endangered species through intensified moisture-related plant stresses (Invited)

    NASA Astrophysics Data System (ADS)

    Bartholomeus, R.; Witte, J.; van Bodegom, P.; Dam, J. V.; Aerts, R.

    2010-12-01

    With recent climate change, extremes in meteorological conditions are forecast and observed to increase globally, and to affect vegetation composition. More prolonged dry periods will alternate with more intensive rainfall events, both within and between years, which will change soil moisture dynamics. In temperate climates, soil moisture, in concert with nutrient availability and soil acidity, is the most important environmental filter in determining local plant species composition, as it determines the availability of both oxygen and water to plant roots. These resources are indispensable for meeting the physiological demands of plants. The consequences of climate change for our natural environment are among the most pressing issues of our time. The international research community is beginning to realise that climate extremes may be more powerful drivers of vegetation change and species extinctions than slow-and-steady climatic changes, but the causal mechanisms of such changes are presently unknown. The roles of amplitudes in water availability as drivers of vegetation change have been particularly elusive owing to the lack of integration of the key variables involved. Here we show that the combined effect of increased rainfall variability, temperature and atmospheric CO2-concentration will lead to an increased variability in both wet and dry extremes in stresses faced by plants (oxygen and water stress, respectively). We simulated these plant stresses with a novel, process-based approach, incorporating in detail the interacting processes in the soil-plant-atmosphere interface. In order to quantify oxygen and water stress with causal measures, we focused on interacting meteorological, soil physical, microbial, and plant physiological processes in the soil-plant-atmosphere system. As both the supply and demand of oxygen and water depend strongly on the prevailing meteorological conditions, both oxygen and water stress were calculated dynamically in time to

  18. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster

    PubMed Central

    Landis, Gary; Shen, Jie; Tower, John

    2012-01-01

    Gene expression changes in response to aging, heat stress, hyperoxia, hydrogen peroxide, and ionizing radiation were compared using microarrays. A set of 18 genes were up-regulated across all conditions, indicating a general stress response shared with aging, including the heat shock protein (Hsp) genes Hsp70, Hsp83 and l(2)efl, the glutathione-S-transferase gene GstD2, and the mitochondrial unfolded protein response (mUPR) gene ref(2)P. Selected gene expression changes were confirmed using quantitative PCR, Northern analysis and GstD-GFP reporter constructs. Certain genes were altered in only a subset of the conditions, for example, up-regulation of numerous developmental pathway and signaling genes in response to hydrogen peroxide. While aging shared features with each stress, aging was more similar to the stresses most associated with oxidative stress (hyperoxia, hydrogen peroxide, ionizing radiation) than to heat stress. Aging is associated with down-regulation of numerous mitochondrial genes, including electron-transport-chain (ETC) genes and mitochondrial metabolism genes, and a sub-set of these changes was also observed upon hydrogen peroxide stress and ionizing radiation stress. Aging shared the largest number of gene expression changes with hyperoxia. The extensive down-regulation of mitochondrial and ETC genes during aging is consistent with an aging-associated failure in mitochondrial maintenance, which may underlie the oxidative stress-like and proteotoxic stress-like responses observed during aging. PMID:23211361

  19. Environmental Heat and Salt Stress Induce Transgenerational Phenotypic Changes in Arabidopsis thaliana

    PubMed Central

    Suter, Léonie; Widmer, Alex

    2013-01-01

    Plants that can adapt their phenotype may be more likely to survive changing environmental conditions. Heritable epigenetic variation could provide a way to rapidly adapt to such changes. Here we tested whether environmental stress induces heritable, potentially adaptive phenotypic changes independent of genetic variation over few generations in Arabidopsis thaliana. We grew two accessions (Col-0, Sha-0) of A. thaliana for three generations under salt, heat and control conditions and tested for induced heritable phenotypic changes in the fourth generation (G4) and in reciprocal F1 hybrids generated in generation three. Using these crosses we further tested whether phenotypic changes were maternally or paternally transmitted. In generation five (G5), we assessed whether phenotypic effects persisted over two generations in the absence of stress. We found that exposure to heat stress in previous generations accelerated flowering under G4 control conditions in Sha-0, but heritable effects disappeared in G5 after two generations without stress exposure. Previous exposure to salt stress increased salt tolerance in one of two reciprocal F1 hybrids. Transgenerational effects were maternally and paternally inherited. Lacking genetic variability, maternal and paternal inheritance and reversibility of transgenerational effects together indicate that stress can induce heritable, potentially adaptive phenotypic changes, probably through epigenetic mechanisms. These effects were strongly dependent on plant genotype and may not be a general response to stress in A. thaliana. PMID:23585834

  20. Co-seismic thermal dissociation of carbonate fault rocks: Naukluft Thrust, central Namibia

    NASA Astrophysics Data System (ADS)

    Rowe, C. D.; Miller, J. A.; Sylvester, F.; Backeberg, N.; Faber, C.; Mapani, B.

    2009-12-01

    the coatings is never observed as pore-fill between grains or other geometries typical of cement precipitates. Smoothness and radial symmetry of the coatings suggest that the grains were coated in suspension by very fine material, potentially analogous to the frictionally-generated CaO developed on the base of some landslides in carbonate rocks (Hewitt, 1988). The very thick layers of cataclasite without internal crosscutting suggest free particle paths associated with fluidization at high fluid pressure and low effective normal stress. We suggest that co-seismic frictional heating along the Naukluft Thrust caused dissociation of dolomite fault rock, producing in-situ spikes in fluid pressure (CO2) and very fine caustic CaO which chemically attacked the carbonate grains in suspension causing the smoothing and rounding. These residues then coated individual grains prior to loss of fluid pressure and settling in the fault zone. Such an event would have been associated with near total strength drop along the Naukluft Thrust. Hewitt, K., 1988 Science, v. 242, no. 4875, p. 64-67.

  1. Climate change hampers endangered species through intensified moisture-related plant stresses

    NASA Astrophysics Data System (ADS)

    (Ruud) Bartholomeus, R. P.; (Flip) Witte, J. P. M.; (Peter) van Bodegom, P. M.; (Jos) van Dam, J. C.; (Rien) Aerts, R.

    2010-05-01

    With recent climate change, extremes in meteorological conditions are forecast and observed to increase globally, and to affect vegetation composition. More prolonged dry periods will alternate with more intensive rainfall events, both within and between years, which will change soil moisture dynamics. In temperate climates, soil moisture, in concert with nutrient availability and soil acidity, is the most important environmental filter in determining local plant species composition, as it determines the availability of both oxygen and water to plant roots. These resources are indispensable for meeting the physiological demands of plants. The consequences of climate change for our natural environment are among the most pressing issues of our time. The international research community is beginning to realise that climate extremes may be more powerful drivers of vegetation change and species extinctions than slow-and-steady climatic changes, but the causal mechanisms of such changes are presently unknown. The roles of amplitudes in water availability as drivers of vegetation change have been particularly elusive owing to the lack of integration of the key variables involved. Here we show that the combined effect of increased rainfall variability, temperature and atmospheric CO2-concentration will lead to an increased variability in both wet and dry extremes in stresses faced by plants (oxygen and water stress, respectively). We simulated these plant stresses with a novel, process-based approach, incorporating in detail the interacting processes in the soil-plant-atmosphere interface. In order to quantify oxygen and water stress with causal measures, we focused on interacting meteorological, soil physical, microbial, and plant physiological processes in the soil-plant-atmosphere system. The first physiological process inhibited at high soil moisture contents is plant root respiration, i.e. oxygen consumption in the roots, which responds to increased temperatures. High

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Dongsheng; Wang Hongcai; Ma Yinsheng

    In-situ stress change near the fault before and after a great earthquake is a key issue in the geosciences field. In this work, based on the 2008 Great Wenchuan earthquake fault slip dislocation model, the co-seismic stress tensor change due to the Wenchuan earthquake and the distribution functions around the Longmen Shan fault are given. Our calculated results are almost consistent with the before and after great Wenchuan earthquake in-situ measuring results. The quantitative assessment results provide a reference for the study of the mechanism of earthquakes.

  3. The impact of organizational changes on work stress, sleep, recovery and health.

    PubMed

    Greubel, Jana; Kecklund, Göran

    2011-01-01

    The study objective was to investigate the impact of different kinds of organizational changes, as well as anticipation of such changes, on work-related stress, sleep, recovery and health. It was hypothesized that impaired sleep and recovery increase the adverse health consequences of organizational changes. The data consisted of cross sectional questionnaire data from a random sample of 1,523 employees in the Swedish police force. It could be shown that extensive organizational changes including downsizing or a change in job tasks were associated with a small increase in work stress, disturbed sleep, incomplete recovery and health complaints. However, less extensive organizational changes like relocation did not affect these outcome variables. Anticipation of extensive organizational changes had almost the same effect as actual changes. Furthermore a moderating effect of sleep and work stress on gastrointestinal complaints and depressive symptoms was found. Thus, like former studies already suggested, extensive organizational changes resulted in increased stress levels, poorer health and impaired sleep and recovery. Furthermore, organizational instability due to anticipation of changes was as negative as actual changes. There was also some evidence that disturbed sleep increased these adverse health effects, in particular with respect to anticipation of organizational changes.

  4. How Do Regional Stress Changes Following Megathrust Events Affect Active Retroarc Tectonics? A Case Study of the 27 February 2010 Mw 6.1 Salta Earthquake

    NASA Astrophysics Data System (ADS)

    McFarland, P. K.; Bennett, R. A.

    2017-12-01

    The 27 February 2010 M­­w 6.1 Salta earthquake occurred in the active retroarc fold-thrust belt of northwest Argentina approximately 9 hours after and 1500 km away from the Mw 8.8 Maule earthquake that occurred off the coast of central Chile. It has been proposed that the Salta earthquake occurred on a fault that was already at or near failure at the time of the Maule event, and the Maule earthquake simply advanced the seismic cycle of the fault. In this study, we examine a transient signal in the east component of the position time series for the continuously operating GPS (cGPS) station UNSA, which lies approximately 32 km northeast of the Salta earthquake epicenter. The transient signal is observed in the roughly 2.3 years prior to the Salta earthquake. It begins immediately following the 11 November 2007 Mw 7.7 Tocopilla megathrust event that occurred about 550 km due west of Salta on the Nazca-South America subduction interface and terminates abruptly after the Salta earthquake. We use the published relocated main shock and aftershock hypocenters determined using data from a local seismic network (INPRES) along with the published main shock focal mechanism to demonstrate that the Salta earthquake likely occurred on the Golgota Fault, a N-S striking and steeply-east-dipping reverse fault. Further, we use elastic dislocation modeling to show that rupture on the Golgota Fault is consistent with the co-seismic offsets observed at the surrounding cGPS stations. We propose that the transient signal observed at station UNSA may be due to initiation or acceleration of interseismic strain accumulation on the Golgota Fault at mid-crustal depths following a change in the regional stress field associated with the Tocopilla megathrust earthquake. Finally, we use published rupture models for both the Tocopilla and Maule events to demonstrate that the regional static Coulomb stress change following each of these megathrusts is consistent with our proposed model.

  5. Microstructural and mineral analysis on the fault gouge in the coseismic shear zone of the 2008 M w 7.9 Wenchuan earthquake

    NASA Astrophysics Data System (ADS)

    Yuan, Ren-mao; Zhang, Bing-liang; Xu, Xi-wei; Lin, Chuan-yong; Han, Zhu-jun

    2015-07-01

    The 2008 M w 7.9 Wenchuan earthquake formed two coseismic surface rupture zones with the trend of N35°E, known as the Beichuan-Yingxiu rupture and the Pengguan rupture. The Beichuan-Yingxiu rupture is the principle one with abundant fault gouge development along its length. In the exploratory trench at the Saba village along the Beichuan-Yingxiu rupture, the new fault gouge zone is only ~3 mm wide, which suggests that fault slip was constrained in a very narrow zone. In this study, we thus carried out detailed microstructural and mineral component analysis on the oriented fault gouge samples from the Saba exploratory trench to understand their features and geological implication. The results show that different microstructures of localized brittle deformation can be observed in the fault gouges, including Y-shear, R1-shear, R2-shear, P-shear as well as tension fracture, bookshelf glided structure and so on. These microstructures are commonly recognized as the product of seismic fault slipping. Furthermore, within the area between two parallel Y-shears of the fault gouge, a few of microstructures of distributed ductile deformations were developed, such as P-foliation, elongation and asymmetrical trailing structure of detrital particles. The microstructure features of fault gouges implicate the thrust movement of the fault during the Wenchuan earthquake. In addition, the fault gouge has less quartz and feldspar and more clay than the surrounding rocks, which indicates that some quartz and feldspar in the surrounding rocks were transformed into clay, whereas the fault gouge has more illite and less illite/montmorillonite mixed layers than the surrounding rocks, which shows that the illite/montmorillonite mixed layer was partly converted into illite due to temperature increasing induced by coseismic fault slipping friction (also being affected partly by the chemical action of solutions). Such microstructures features and mineral component changes recorded the

  6. Effects of City Expansion on Heat Stress under Climate Change Conditions

    PubMed Central

    Argüeso, Daniel; Evans, Jason P.; Pitman, Andrew J.; Di Luca, Alejandro

    2015-01-01

    We examine the joint contribution of urban expansion and climate change on heat stress over the Sydney region. A Regional Climate Model was used to downscale present (1990–2009) and future (2040–2059) simulations from a Global Climate Model. The effects of urban surfaces on local temperature and vapor pressure were included. The role of urban expansion in modulating the climate change signal at local scales was investigated using a human heat-stress index combining temperature and vapor pressure. Urban expansion and climate change leads to increased risk of heat-stress conditions in the Sydney region, with substantially more frequent adverse conditions in urban areas. Impacts are particularly obvious in extreme values; daytime heat-stress impacts are more noticeable in the higher percentiles than in the mean values and the impact at night is more obvious in the lower percentiles than in the mean. Urban expansion enhances heat-stress increases due to climate change at night, but partly compensates its effects during the day. These differences are due to a stronger contribution from vapor pressure deficit during the day and from temperature increases during the night induced by urban surfaces. Our results highlight the inappropriateness of assessing human comfort determined using temperature changes alone and point to the likelihood that impacts of climate change assessed using models that lack urban surfaces probably underestimate future changes in terms of human comfort. PMID:25668390

  7. The co-seismic slip distribution of the Landers earthquake

    USGS Publications Warehouse

    Freymueller, J.; King, N.E.; Segall, P.

    1994-01-01

    We derived a model for the co-seismic slip distribution on the faults which ruptured during the Landers earthquake sequence of 28 June 1992. The model is based on the inversion of surface geodetic measurements, primarily vector displacements measured using the Global Positioning System (GPS). The inversion procedure assumes that the slip distribution is to some extent smooth and purely right-lateral strike slip. For a given fault geometry, a family of solutions of varying smoothness can be generated.We choose the optimal model from this family based on cross-validation, which measures the predictive power of the data, and the trade-off of misfit and roughness. Solutions which give roughly equal weight to misfit and smoothness are preferred and have certain features in common: (1) there are two main patches of slip, on the Johnson Valley fault, and on the Homestead Valley, Emerson, and Camp Rock faults; (2) virtually all slip is in the upper 10 to 12 km; and (3) the model reproduces the general features of the geologically measured surface displacements, without prior constraints on the surface slip. In all models, regardless of smoothing, very little slip is required on the fault that represents the Big Bear event, and the total moment of the Landers event is 9 · 1019 N-m. The nearly simultaneous rupture of multiple distinct faults suggests that much of the crust in this region must have been close to failure prior to the earthquake.

  8. Microstructural and petrophysical characterization of a "structurally oversimplified" fault zone in poorly lithified sands: evidence for a coseismic rupture?

    NASA Astrophysics Data System (ADS)

    Balsamo, Fabrizio; Storti, Fabrizio

    2010-05-01

    We studied an extensional fault zone developed in poorly lithified, quartz-rich high porosity sandy sediments of the seismically active Crotone basin (southern Italy). The fault zone cuts across interlayered fine- to coarse-grained sands and consists of a cm-thick, discrete fault core embedded in virtually undeformed wall sediments. Consequently, it can be described as "structurally oversimplified" due to the lack of footwall and hanging wall damage zones. We acquired microstructural, grain size, grain shape, porosity, mineralogical and permeability data to investigate the influence of initial sedimentological characteristics of sands on the final faulted granular products and related hydrologic properties. Faulting evolves by a general grain size and porosity reduction with a combination of intragranular fracturing, spalling, and flaking of grain edges, irrespective of grain mineralogy. The dominance of cataclasis, also confirmed by fractal dimensions >2.6, is generally not expected at a deformation depth <1 km. Coarse-grained sand shows a much higher comminution intensity, grain shape variations and permeability drop than fine-grained sands. This is because coarser aggregates have (i) fewer grain-to-grain contacts for a given area, which results in higher stress concentration at contact points, and (ii) a higher probability of pre-existing intragranular microstructural defects that result in a lower grain strength. The peculiar structural architecture, the dominance of cataclasis over non-destructive particulate flow, and the compositional variations of clay minerals in the fault core, strongly suggest that the studied fault zone developed by a coseismic rupture.

  9. Transient stress-coupling between the 1992 Landers and 1999 Hector Mine, California, earthquakes

    USGS Publications Warehouse

    Masterlark, Timothy; Wang, H.F.

    2002-01-01

    A three-dimensional finite-element model (FEM) of the Mojave block region in southern California is constructed to investigate transient stress-coupling between the 1992 Landers and 1999 Hector Mine earthquakes. The FEM simulates a poroelastic upper-crust layer coupled to a viscoelastic lower-crust layer, which is decoupled from the upper mantle. FEM predictions of the transient mechanical behavior of the crust are constrained by global positioning system (GPS) data, interferometric synthetic aperture radar (InSAR) images, fluid-pressure data from water wells, and the dislocation source of the 1999 Hector Mine earthquake. Two time-dependent parameters, hydraulic diffusivity of the upper crust and viscosity of the lower crust, are calibrated to 10–2 m2·sec–1 and 5 × 1018 Pa·sec respectively. The hydraulic diffusivity is relatively insensitive to heterogeneous fault-zone permeability specifications and fluid-flow boundary conditions along the elastic free-surface at the top of the problem domain. The calibrated FEM is used to predict the evolution of Coulomb stress during the interval separating the 1992 Landers and 1999 Hector Mine earthquakes. The predicted change in Coulomb stress near the hypocenter of the Hector Mine earthquake increases from 0.02 to 0.05 MPa during the 7-yr interval separating the two events. This increase is primarily attributed to the recovery of decreased excess fluid pressure from the 1992 Landers coseismic (undrained) strain field. Coulomb stress predictions are insensitive to small variations of fault-plane dip and hypocentral depth estimations of the Hector Mine rupture.

  10. Seismotectonic framework of the 2010 February 27 Mw 8.8 Maule, Chile earthquake sequence

    USGS Publications Warehouse

    Hayes, Gavin P.; Bergman, Eric; Johnson, Kendra J.; Benz, Harley M.; Brown, Lucy; Meltzer, Anne S.

    2013-01-01

    After the 2010 Mw 8.8 Maule earthquake, an international collaboration involving teams and instruments from Chile, the US, the UK, France and Germany established the International Maule Aftershock Deployment temporary network over the source region of the event to facilitate detailed, open-access studies of the aftershock sequence. Using data from the first 9-months of this deployment, we have analyzed the detailed spatial distribution of over 2500 well-recorded aftershocks. All earthquakes have been relocated using a hypocentral decomposition algorithm to study the details of and uncertainties in both their relative and absolute locations. We have computed regional moment tensor solutions for the largest of these events to produce a catalogue of 465 mechanisms, and have used all of these data to study the spatial distribution of the aftershock sequence with respect to the Chilean megathrust. We refine models of co-seismic slip distribution of the Maule earthquake, and show how small changes in fault geometries assumed in teleseismic finite fault modelling significantly improve fits to regional GPS data, implying that the accuracy of rapid teleseismic fault models can be substantially improved by consideration of existing fault geometry model databases. We interpret all of these data in an integrated seismotectonic framework for the Maule earthquake rupture and its aftershock sequence, and discuss the relationships between co-seismic rupture and aftershock distributions. While the majority of aftershocks are interplate thrust events located away from regions of maximum co-seismic slip, interesting clusters of aftershocks are identified in the lower plate at both ends of the main shock rupture, implying internal deformation of the slab in response to large slip on the plate boundary interface. We also perform Coulomb stress transfer calculations to compare aftershock locations and mechanisms to static stress changes following the Maule rupture. Without the

  11. Changes in job stress and coping skills among caregivers after dementia care practitioner training.

    PubMed

    Takizawa, Takeya; Takahashi, Megumi; Takai, Michiko; Ikeda, Taichiro; Miyaoka, Hitoshi

    2017-01-01

    Dementia care practitioner training is essential for professional caregivers to acquire medical knowledge and care skills for dementia patients. We investigated the significance of training in stress management by evaluating caregivers' job stress and coping style before and after they have completed training. The subjects included 134 professional caregivers (41 men, 93 women) recruited from participants in training programmes held in Kanagawa Prefecture from August 2008 to March 2010. A survey using a brief job stress questionnaire and a coping scale was carried out before and after they completed their training. A t-test and multiple regression analysis were performed to evaluate the effects of the training. After the training, the scores of modifiers on the job stress scale and of the coping scale increased, whereas the scores of stress reactions on the job stress scale decreased. However, there were no changes in participants' subjective cognition concerning their workplace environment. Furthermore, the change in stress reaction score tended to correlate with the change in consultation score in all participants and with the change in problem-solving and consultation in male participants. Among female participants, the change in stress reaction score tended to correlate with change in support from superiors and colleagues as modifiers. The factors that correlated to the change in stress reaction score differed between genders. The findings suggest that training caregivers improves their stress reaction and coping skills. © 2016 The Authors. Psychogeriatrics © 2016 Japanese Psychogeriatric Society.

  12. Structural changes of the brain in relation to occupational stress.

    PubMed

    Savic, Ivanka

    2015-06-01

    Despite mounting reports about the negative effects of chronic occupational stress on cognitive functions, it is still uncertain whether and how this type of stress is associated with cerebral changes. This issue was addressed in the present MRI study, in which cortical thickness (Cth) and subcortical volumes were compared between 40 subjects reporting symptoms of chronic occupational stress (38 ± 6 years) and 40 matched controls (36 ± 6 years). The degree of perceived stress was measured with Maslach Burnout Inventory. In stressed subjects, there was a significant thinning of the mesial frontal cortex. When investigating the correlation between age and Cth, the thinning effect of age was more pronounced in the stressed group in the frontal cortex. Furthermore, their amygdala volumes were bilaterally increased (P = 0.020 and P = 0.003), whereas their caudate volumes were reduced (P = 0.040), and accompanied by impaired fine motor function. The perceived stress correlated positively with the amygdala volumes (r = 0.44, P = 0.04; r = 0.43, P = 04). Occupational stress was found to be associated with cortical thinning as well as with selective changes of subcortical volumes, with behavioral correlates. The findings support the hypothesis that stress-related excitotoxicity might be an underlying mechanism, and that the described condition is a stress related illness. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Vertical deformation associated with normal fault systems evolved over coseismic, postseismic, and multiseismic periods

    USGS Publications Warehouse

    Thompson, George A.; Parsons, Thomas E.

    2016-01-01

    Vertical deformation of extensional provinces varies significantly and in seemingly contradictory ways. Sparse but robust geodetic, seismic, and geologic observations in the Basin and Range province of the western United States indicate that immediately after an earthquake, vertical change primarily occurs as subsidence of the normal fault hanging wall. A few decades later, a ±100 km wide zone is symmetrically uplifted. The preserved topography of long-term rifting shows bent and tilted footwall flanks rising high above deep basins. We develop finite element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. We replicate observations with a model that has a weak upper mantle overlain by a stronger lower crust and a breakable elastic upper crust. A 60° dipping normal fault cuts through the upper crust and extends through the lower crust to simulate an underlying shear zone. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift under the footwall; the breakable upper crust is a necessary model feature to replicate footwall bending over the observed width ( < 10 km), which is predicted to take place within 1-2 decades after each large earthquake. Thus the best-preserved topographic signature of rifting is expected to occur early in the postseismic period. The relatively stronger lower crust in our models is necessary to replicate broader postseismic uplift that is observed geodetically in subsequent decades.

  14. Change of salivary stress marker concentrations during pregnancy: maternal depressive status suppress changes of those levels.

    PubMed

    Tsubouchi, Hiroaki; Nakai, Yuichiro; Toda, Masahiro; Morimoto, Kanehisa; Chang, Yang Sil; Ushioda, Norichika; Kaku, Shoji; Nakamura, Takafumi; Kimura, Tadashi; Shimoya, Koichiro

    2011-08-01

    The aim of the present study was to show changes in salivary cortisol and chromogranin A/protein concentrations as stress markers during pregnancy and to clarify the effect of chronic stress on stress markers. Salivary samples were collected from 69 pregnant women during pregnancy. Salivary cortisol levels and chromogranin A/protein titers were determined. We surveyed the women's chronic stress using the Zung self-rating depression scale and General Health Questionnaire-28. Cortisol levels in the saliva of pregnant women showed biphasic change during pregnancy. Chromogranin A/protein levels in the saliva of pregnant women increased in the second and the early third trimesters and decreased to the puerperal period. Salivary cortisol concentrations of the chronic high stress group were significantly lower compared with those of the normal group. Salivary chromogranin A/protein concentrations of the chronic high stress group were also significantly lower than those of the normal group. The titration of salivary cortisol concentrations and chromogranin A/protein levels is a useful tool to determine maternal stress levels. The elevation of cortisol and chromogranin A/protein in the saliva was suppressed in the chronic high stress group during pregnancy. © 2011 The Authors. Journal of Obstetrics and Gynaecology Research © 2011 Japan Society of Obstetrics and Gynecology.

  15. Association between changes in heart rate variability during the anticipation of a stressful situation and the stress-induced cortisol response.

    PubMed

    Pulopulos, Matias M; Vanderhasselt, Marie-Anne; De Raedt, Rudi

    2018-08-01

    Vagal activity - reflecting the activation of stress regulatory mechanisms and prefrontal cortex activation - is thought to play an inhibitory role in the regulation of the hypothalamus-pituitary-adrenal axis. However, most studies investigating the association between stress-induced changes in heart rate variability (HRV, an index of cardiac vagal tone) and cortisol have shown a non-significant relationship. It has been proposed that physiological changes observed during anticipation of a stressor allow individuals to make behavioral, cognitive, and physiological adjustments that are necessary to deal with the upcoming actual stressor. In this study, in a large sample of 171 healthy adults (96 men and 75 women; mean age = 29.98, SD = 11.07), we investigated whether the cortisol response to a laboratory-based stress task was related to anticipation-induced or stress task-induced changes in HRV. As expected, regression analyses showed that a larger decrease in HRV during the anticipation of a stress task was related to higher stress task-induced cortisol increase, but not cortisol recovery. In line with prior research, the stress task-induced change in HRV was not significantly related to cortisol increase or recovery. Our results show for the first time that anticipatory HRV (reflecting differences in stress regulation and prefrontal activity before the encounter with the stressor) is important to understand the stress-induced cortisol increase. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Modeling forest mortality caused by drought stress: implications for climate change

    Treesearch

    Eric J Gustafson; Brian R. Sturtevant

    2013-01-01

    Climate change is expected to affect forest landscape dynamics in many ways, but it is possible that the most important direct impact of climate change will be drought stress. We combined data from weather stations and forest inventory plots (FIA) across the upper Great Lakes region (USA) to study the relationship between measures of drought stress and mortality for...

  17. [The influence of meaning making following stressful life experiences on change of self-concept].

    PubMed

    Horita, Ryo; Sugie, Masashi

    2013-10-01

    As interest in meaning making following stressful life experiences continues to grow, it is important to clarify the features and functions of the meaning- making process. We examined the influence of meaning making following stressful life experiences on change of self-concept. In two studies, university students selected their most stressful life experience and completed the Assimilation and Accommodation of Meaning Making Scale. In Study 1, 235 university students also completed questionnaires regarding post-traumatic growth and positive change of the sense of identity following their stressful life experience. The results of covariance structure analysis indicated that accommodation promoted a positive change of self-concept. In Study 2, 199 university students completed questionnaires regarding change of self-concept and emotion as a positive or negative change following stressful life experiences. The results of covariance structure analysis indicated that accommodation promoted a positive change, similar to the results of Study 1. In addition, accommodation also promoted negative change. However, assimilation did not promote positive change but did restrain negative change.

  18. Spatial variations in fault friction related to lithology from rupture and afterslip of the 2014 South Napa, California, earthquake

    USGS Publications Warehouse

    Michael Floyd,; Richard Walters,; John Elliot,; Funning, Gareth J.; Svarc, Jerry L.; Murray, Jessica R.; Andy Hooper,; Yngvar Larsen,; Petar Marinkovic,; Bürgmann, Roland; Johanson, Ingrid; Tim Wright,

    2016-01-01

    Following earthquakes, faults are often observed to continue slipping aseismically. It has been proposed that this afterslip occurs on parts of the fault with rate-strengthening friction that are stressed by the mainshock, but our understanding has been limited by a lack of immediate, high-resolution observations. Here we show that the behavior of afterslip following the 2014 South Napa earthquake varied over distances of only a few kilometers. This variability cannot be explained by coseismic stress changes alone. We present daily positions from continuous and survey GPS sites that we re-measured within 12 hours of the mainshock, and surface displacements from the new Sentinel-1 radar mission. This unique geodetic data set constrains the distribution and evolution of coseismic and postseismic fault slip with exceptional resolution in space and time. We suggest that the observed heterogeneity in behavior is caused by lithological controls on the frictional properties of the fault plane.

  19. Replication Stress: A Lifetime of Epigenetic Change

    PubMed Central

    Khurana, Simran; Oberdoerffer, Philipp

    2015-01-01

    DNA replication is essential for cell division. Challenges to the progression of DNA polymerase can result in replication stress, promoting the stalling and ultimately collapse of replication forks. The latter involves the formation of DNA double-strand breaks (DSBs) and has been linked to both genome instability and irreversible cell cycle arrest (senescence). Recent technological advances have elucidated many of the factors that contribute to the sensing and repair of stalled or broken replication forks. In addition to bona fide repair factors, these efforts highlight a range of chromatin-associated changes at and near sites of replication stress, suggesting defects in epigenome maintenance as a potential outcome of aberrant DNA replication. Here, we will summarize recent insight into replication stress-induced chromatin-reorganization and will speculate on possible adverse effects for gene expression, nuclear integrity and, ultimately, cell function. PMID:26378584

  20. Psychosocial stress and 13-year BMI change among blacks: the Pitt County Study.

    PubMed

    Fowler-Brown, Angela G; Bennett, Gary G; Goodman, Melody S; Wee, Christina C; Corbie-Smith, Giselle M; James, Sherman A

    2009-11-01

    Adverse psychosocial exposures may partially drive the high rates of obesity among blacks. The objective of this study was to prospectively examine the relationship between perceived psychosocial stress and percent change in BMI among adult black men and women. We used data from 756 women and 416 men who were participants in the Pitt County Study, a community-based, prospective cohort study of blacks in eastern North Carolina. Participants were aged 25-50 years of age on entry into the study in 1988 and follow-up was obtained in 2001. Using multivariable linear regression, we calculated the adjusted mean percentage change in BMI over the follow-up period for each tertile of baseline measures of the Perceived Stress Scale (low, medium, and high), adjusted for potential confounders. For black women, higher levels of psychosocial stress at baseline predicted higher adjusted percentage increase in BMI over the 13-year follow-up: low stress 12.0% (95% CI 9.6-14.4), medium stress 16.3% (95% CI 13.7-18.9), and high stress 15.5% (95% CI 13.1-17.8). For black men, perceived stress was not associated with percent BMI change. These data suggest that interventions targeting obesity in black women should consider the potential impact of emotional stress on weight change.

  1. Coulomb Stress Change and Seismic Hazard of Rift Zones in Southern Tibet after the 2015 Mw7.8 Nepal Earthquake and Its Mw7.3 Aftershock

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Zha, X.; Lu, Z.

    2015-12-01

    In southern Tibet (30~34N, 80~95E), many north-trending rifts, such as Yadong-Gulu and Lunggar rifts, are characterized by internally drained graben or half-graben basins bounded by active normal faults. Some developed rifts have become a portion of important transportation lines in Tibet, China. Since 1976, eighty-seven >Mw5.0 earthquakes have happened in the rift regions, and fifty-five events have normal faulting focal mechanisms according to the GCMT catalog. These rifts and normal faults are associated with both the EW-trending extension of the southern Tibet and the convergence between Indian and Tibet. The 2015 Mw7.8 Nepal great earthquake and its Mw7.3 aftershock occurred at the main Himalayan Thrust zone and caused tremendous damages in Kathmandu region. Those earthquakes will lead to significant viscoelastic deformation and stress changes in the southern Tibet in the future. To evaluate the seismic hazard in the active rift regions in southern Tibet, we modeled the slip distribution of the 2015 Nepal great earthquakes using the InSAR displacement field from the ALOS-2 satellite SAR data, and calculated the Coulomb failure stress (CFS) on these active normal faults in the rift zones. Because the estimated CFS depends on the geometrical parameters of receiver faults, it is necessary to get the accurate fault parameters in the rift zones. Some historical earthquakes have been studied using the field data, teleseismic data and InSAR observations, but results are in not agreement with each other. In this study, we revaluated the geometrical parameters of seismogenic faults occurred in the rift zones using some high-quality coseismic InSAR observations and teleseismic body-wave data. Finally, we will evaluate the seismic hazard in the rift zones according to the value of the estimated CFS and aftershock distribution.

  2. The Scaling Law of The Near-Field Coseismic Ionospheric Disturbances

    NASA Astrophysics Data System (ADS)

    Cahyadi, M.; Heki, K.

    2013-12-01

    Coseismic ionospheric disturbances (CIDs) appear shortly after relatively large earthquakes as a result of ionospheric irregularity associated with passing atmospheric waves excited by the earthquakes. CIDs appearing approximately 10 minutes after earthquakes are caused by acoustic waves generated by coseismic vertical movements of the crust or the sea surface, and they propagate as fast as ~1 km/second over the distance of hundreds of kilometres. Here we collected past examples of CID detected in Total Electron Content (TEC) by GPS observations for 21 earthquakes 1994-2012 distributed worldwide. Their moment magnitudes (Mw) range from 6.6 to 9.2, and include two normal fault earthquakes that occurred in the outer rise region of the trenches (2007 January central Kuril earthquake, and 2012 December Tohoku-oki earthquake), and two strike-slip earthquakes (the main shock and the largest aftershock of the 2012 North Sumatra earthquakes). The rest are all reverse-fault earthquakes. We tried to select the pair of GPS satellite and station showing the largest CID amplitudes. Due to the directivity, the ionospheric piercing point (IPP) of line-of-sight (LOS) should be on the southern/northern side for earthquakes in the northern/southern hemisphere. We also selected GPS stations lying on the same side of IPP and located farther than IPP, to enable shallow-angle LOS penetration with the CID wavefront. We also selected CIDs with (1) appearance time not later than 15 minutes after earthquakes, and (2) sharp peaks. The first ensures that IPPs are close to the epicentres and geometric decays are insignificant. The second condition is the manifestation of the shallow angle penetration of LOS. The peak amplitudes were derived by (1) finding the peak TEC value, (2) going back in time from the peak by 90 seconds, and (3) calculating the TEC difference at the two epochs. We also obtained background vertical TEC from Global Ionospheric Maps (GIM), and expressed the CID amplitudes as

  3. [Stress in a changing society].

    PubMed

    Artazcoz, Lucía; Escribà-Agüir, Vicenta; Cortès, Imma

    2006-03-01

    The objective of this study is to describe the job stress models and non-work stressors, their influence on health and magnitude in Spain. Data come from scientific publications, reports and official statistics, primarily of the last decade. Moreover, original data are provided from the analysis of the 5th Spanish Working Conditions Survey. Job stress analysis is based on two complementary models, that based on psychological demands, control and social support (Karaseks model) and another based on the effort-reward unbalance (Siegrists model). In Spain 15% of men and 22% of women have had an excessive workload that have made them feel tired in the last three months. A quarter of workers have low autonomy and 48% of men and 32% of women work in occupations that do not require special abilities, just experience. Moreover, Spain has the highest unemployment and temporary contracts rates in the 15-European Union. The entrance of women into the labour market implies difficulties in reconciling job and family life. Moreover, paid work provides women with power and economic autonomy, therefore making possible the divorce that has significantly increased in Spain as well as the lonely parents families, these being difficult and stressing situations. Additionally the higher economic autonomy and power among women is considered as one of the causes of the gender violence as well. Response to stress-related problems derived from the globalisation, the increasing importance of the tertiary sector and other social changes is insufficient either because health professionals ignore the causes of the problem and treat pharmacologically the consequences or because health consequences of these new social and economic tendencies are not taken into account in other sectors.

  4. Gender, Stress in Childhood and Adulthood, and Trajectories of Change in Body Mass

    PubMed Central

    Liu, Hui; Umberson, Debra

    2015-01-01

    Despite substantial evidence of the linkage between stress and weight change, previous studies have not considered how stress trajectories that begin in childhood and fluctuate throughout adulthood may work together to have long-term consequences for weight change. Working from a stress and life course perspective, we investigate the linkages between childhood stress, adulthood stress and trajectories of change in body mass (i.e., Body Mass Index, BMI) over time, with attention to possible gender variation in these processes. Data are drawn from a national longitudinal survey of the Americans’ Changing Lives (N=3,617). Results from growth curve analyses suggest that both women and men who experienced higher levels of childhood stress also report higher levels of stress in adulthood. At the beginning of the study period, higher levels of adulthood stress are related to greater BMI for women but not men. Moreover, women who experienced higher levels of childhood stress gained weight more rapidly throughout the 15-year study period than did women who experienced less childhood stress, but neither childhood nor adulthood stress significantly modified men’s BMI trajectories. These findings add to our understanding of how childhood stress—a more important driver of long-term BMI increase than adult stress—reverberates throughout the life course to foster cumulative disadvantage in body mass, and how such processes differ for men and women. Results highlight the importance of considering sex-specific social contexts of early childhood in order to design effective clinical programs that prevent or treat overweight and obesity later in life. PMID:26151391

  5. Coulomb Stress Accumulation along the San Andreas Fault System

    NASA Technical Reports Server (NTRS)

    Smith, Bridget; Sandwell, David

    2003-01-01

    Stress accumulation rates along the primary segments of the San Andreas Fault system are computed using a three-dimensional (3-D) elastic half-space model with realistic fault geometry. The model is developed in the Fourier domain by solving for the response of an elastic half-space due to a point vector body force and analytically integrating the force from a locking depth to infinite depth. This approach is then applied to the San Andreas Fault system using published slip rates along 18 major fault strands of the fault zone. GPS-derived horizontal velocity measurements spanning the entire 1700 x 200 km region are then used to solve for apparent locking depth along each primary fault segment. This simple model fits remarkably well (2.43 mm/yr RMS misfit), although some discrepancies occur in the Eastern California Shear Zone. The model also predicts vertical uplift and subsidence rates that are in agreement with independent geologic and geodetic estimates. In addition, shear and normal stresses along the major fault strands are used to compute Coulomb stress accumulation rate. As a result, we find earthquake recurrence intervals along the San Andreas Fault system to be inversely proportional to Coulomb stress accumulation rate, in agreement with typical coseismic stress drops of 1 - 10 MPa. This 3-D deformation model can ultimately be extended to include both time-dependent forcing and viscoelastic response.

  6. Mid-Crustal Stress Magnitude and Rotation Transients Related to the Seismic Cycle

    NASA Astrophysics Data System (ADS)

    Nüchter, J. A.; Ellis, S.

    2008-12-01

    stress increase results mainly from a drop in the minimum principal stress, and the stress tensor rotates clockwise by 45-60°. A change in the magnitude of differential stress can be addressed by the addition of an incremental stress tensor resulting from elastic strain to the preexisting stress tensor. In an isotropic medium, the orientation of the maximum and the minimum principal stress changes are controlled by the directions of maximum compression and maximum extension, respectively. The magnitude and the orientation of the resulting stress tensor depend: 1) on the absolute magnitudes and on the ratio of the magnitudes of pre-existing stress and incremental change in the stress tensor; and 2) on the mis-orientation between existing stress and stress change principal directions. The zone of coseismic loading correlates to the interval in which seismic slip tapers off with depth. For a normal fault, the crust here is subjected to fault-parallel compression in the hanging wall, and to extension in the footwall. The resulting orientation of the seismic principal compressive stress change parallel to the fault in the hanging wall and normal to the fault in the footwall causes the particular deflection of the resulting stress tensor . During the interseismic period, the stress peak relaxes by thermally activated creep, while the deflection of the stress tensor is persistent. We show that significant mis- orientations of the stress tensor can be preserved over timescales typical for a seismic cycle, in dependence on the far field extension rate. We conclude that seismic activity causes 1) a non-steady state mid-crustal stress field, and 2) a persistent deflection of the stress tensor orientation from the predictions of the Anderson theory.

  7. Contrasting Changes Caused by Drought and Submergence Stresses in Bermudagrass (Cynodon dactylon)

    PubMed Central

    Ye, Tiantian; Shi, Haitao; Wang, Yanping; Chan, Zhulong

    2015-01-01

    In this study, we investigated the mechanisms by which bermudagrass withstands the drought and submergence stresses through physiological, proteomic and metabolomic approaches. The results showed that significant physiological changes were observed after drought treatment, while only slight changes after submergence treatment, including compatible solute contents, ROS levels and antioxidant enzyme activities. Proteomics results showed that 81 proteins regulated by drought or submergence treatment were identified by MALDI-TOF-MS. Among them, 76 proteins were modulated by drought stress with 46 increased abundance and 30 decreased abundance. Forty-five showed abundance changes after submergence treatment with 10 increased and 35 decreased. Pathway enrichment analysis revealed that pathways of amino acid metabolism and mitochondrial electron transport/ATP synthesis were only enriched by drought treatment, while other pathways including photosynthesis, biodegradation of xenobiotics, oxidative pentose phosphate, glycolysis and redox were commonly over-represented after both drought and submergence treatments. Metabolomic analysis indicated that most of the metabolites were up-regulated by drought stress, while 34 of 40 metabolites contents exhibited down-regulation or no significant changes when exposed to submergence stress, including sugars and sugar alcohols. These data indicated that drought stress extensively promoted photosynthesis and redox metabolisms while submergence stress caused declined metabolisms and dormancy in Cynodon dactylon. Taken together, the quiescence strategy with retarded growth might allow bermudagrass to be adaptive to long-term submerged environment, while activation of photosynthesis and redox, and accumulation of compatible solutes and molecular chaperones increased bermudagrass tolerance to drought stress. PMID:26617615

  8. Cumulative co-seismic fault damage and feedbacks on earthquake rupture

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Aben, F. M.; Ostermeijer, G.; Rockwell, T. K.; Doan, M. L.

    2017-12-01

    The importance of the damage zone in the faulting and earthquake process is widely recognized, but our understanding of how damage zones are created, what their properties are, and how they feed back into the seismic cycle, is remarkably poorly known. Firstly, damaged rocks have reduced elastic moduli, cohesion and yield strength, which can cause attenuation and potentially non-linear wave propagation effects during ruptures. Secondly, damaged fault rocks are generally more permeable than intact rocks, and hence play a key role in the migration of fluids in and around fault zones over the seismic cycle. Finally, the dynamic generation of damage as the earthquake propagates can itself influence the dynamics of rupture propagation, by increasing the amount of energy dissipation, decreasing the rupture velocity, modifying the size of the earthquake, changing the efficiency of weakening mechanisms such as thermal pressurisation of pore fluids, and even generating seismic waves itself . All of these effects imply that a feedback exists between the damage imparted immediately after rupture propagation, at the early stages of fault slip, and the effects of that damage on subsequent ruptures dynamics. In recent years, much debate has been sparked by the identification of so-called `pulverized rocks' described on various crustal-scale faults, a type of intensely damaged fault rock which has undergone minimal shear strain, and the occurrence of which has been linked to damage induced by transient high strain-rate stress perturbations during earthquake rupture. Damage induced by such transient stresses, whether compressional or tensional, likely constitute heterogeneous modulations of the remote stresses that will impart significant changes on the strength, elastic and fluid flow properties of a fault zone immediately after rupture propagation, at the early stage of fault slip. In this contribution, we will demonstrate laboratory and field examples of two dynamic mechanisms

  9. Streamflow Changes Induced by the 1999 MW 7.6 Chi-Chi Earthquake

    NASA Astrophysics Data System (ADS)

    Chia, Yeeping; Liu, Ching-Yi; Chuang, Po-Yu

    2016-04-01

    Anomalous streamflow changes have often been observed after strong earthquakes. These changes have been used to study crustal deformation induced by earthquakes. Previous studies indicated that co-seismic groundwater-level changes, ranging from a fall of 11.1 m to a rise of 7.42 m, were recorded in 152 monitoring wells near the seismogenic fault during the 1999 MW 7.6 Chi-Chi earthquake. Here we report anomalous streamflow changes due to the earthquake in central Taiwan. There are 32 stream gauges in the vicinity of the fault, mostly in the mountainous hanging wall area. Of those, 22 recorded anomalous streamflow increases, ranging from 60% to 732%, one to four days after the earthquake. Unlike a rapid decrease in discharge after heavy rainfall, the post-seismic increase is followed by a slow decline which may last for several months. Only one gauge recorded a sudden decrease in discharge immediately after the earthquake. Besides, the decrease was preceded by a large and abrupt streamflow increase over the four days before the earthquake. We attribute the post-seismic increase to fracturing in the mountainous area due to seismic shaking, while the decrease to co-seismic pore pressure drop induced by crustal extension. However, more evidence is needed to consider the pre-seismic streamflow changes as a potential precursory indicator of earthquakes.

  10. Residual shear strength variability as a primary control on movement of landslides reactivated by earthquake-induced ground motion: Implications for coastal Oregon, U.S.

    USGS Publications Warehouse

    Schulz, William H.; Wang, Gonghui

    2014-01-01

    Most large seismogenic landslides are reactivations of preexisting landslides with basal shear zones in the residual strength condition. Residual shear strength often varies during rapid displacement, but the response of residual shear zones to seismic loading is largely unknown. We used a ring shear apparatus to perform simulated seismic loading tests, constant displacement rate tests, and tests during which shear stress was gradually varied on specimens from two landslides to improve understanding of coseismic landslide reactivation and to identify shear strength models valid for slow gravitational failure through rapid coseismic failure. The landslides we studied represent many along the Oregon, U.S., coast. Seismic loading tests resulted in (1) catastrophic failure involving unbounded displacement when stresses represented those for the existing landslides and (2) limited to unbounded displacement when stresses represented those for hypothetical dormant landslides, suggesting that coseismic landslide reactivation may be significant during future great earthquakes occurring near the Oregon Coast. Constant displacement rate tests indicated that shear strength decreased exponentially during the first few decimeters of displacement but increased logarithmically with increasing displacement rate when sheared at 0.001 cm s−1 or greater. Dynamic shear resistance estimated from shear strength models correlated well with stresses observed during seismic loading tests, indicating that displacement rate and amount primarily controlled failure characteristics. We developed a stress-based approach to estimate coseismic landslide displacement that utilizes the variable shear strength model. The approach produced results that compared favorably to observations made during seismic loading tests, indicating its utility for application to landslides.

  11. New insights into fault activation and stress transfer between en echelon thrusts: The 2012 Emilia, Northern Italy, earthquake sequence

    NASA Astrophysics Data System (ADS)

    Cheloni, D.; Giuliani, R.; D'Agostino, N.; Mattone, M.; Bonano, M.; Fornaro, G.; Lanari, R.; Reale, D.; Atzori, S.

    2016-06-01

    Here we present the results of the inversion of a new geodetic data set covering the 2012 Emilia seismic sequence and the following 1 year of postseismic deformation. Modeling of the geodetic data together with the use of a catalog of 3-D relocated aftershocks allows us to constrain the rupture geometries and the coseismic and postseismic slip distributions for the two main events (Mw 6.1 and 6.0) of the sequence and to explore how these thrust events have interacted with each other. Dislocation modeling reveals that the first event ruptured a slip patch located in the center of the Middle Ferrara thrust with up to 1 m of reverse slip. The modeling of the second event, located about 15 km to the southwest, indicates a main patch with up to 60 cm of slip initiated in the deeper and flatter portion of the Mirandola thrust and progressively propagated postseismically toward the top section of the rupture plane, where most of the aftershocks and afterslip occurred. Our results also indicate that between the two main events, a third thrust segment was activated releasing a pulse of aseismic slip equivalent to a Mw 5.8 event. Coulomb stress changes suggest that the aseismic event was likely triggered by the preceding main shock and that the aseismic slip event probably brought the second fault closer to failure. Our findings show significant correlations between static stress changes and seismicity and suggest that stress interaction between earthquakes plays a significant role among continental en echelon thrusts.

  12. Effects of heat stress on working populations when facing climate change.

    PubMed

    Lundgren, Karin; Kuklane, Kalev; Gao, Chuansi; Holmér, Ingvar

    2013-01-01

    It is accepted that the earth's climate is changing in an accelerating pace, with already documented implications for human health and the environment. This literature review provides an overview of existing research findings about the effects of heat stress on the working population in relation to climate change. In the light of climate change adaptation, the purpose of the literature review was to explore recent and previous research into the impacts of heat stress on humans in an occupational setting. Heat stress in the workplace has been researched extensively in the past however, in the contemporary context of climate change, information is lacking on its extent and implications. The main factors found to exacerbate heat stress in the current and future workplace are the urban 'heat island effect', physical work, individual differences, and the developing country context where technological fixes are often not applicable. There is also a lack of information on the effects on vulnerable groups such as elderly people and pregnant women. As increasing temperatures reduce work productivity, world economic productivity could be condensed, affecting developing countries in the tropical climate zone disproportionately. Future research is needed taking an interdisciplinary approach, including social, economic, environmental and technical aspects.

  13. Change of Rin1 and Stathmin in the Animal Model of Traumatic Stresses

    PubMed Central

    Han, Fang; Jiang, Jingzhi; Ding, Jinlan; Liu, Hong; Xiao, Bing; Shi, Yuxiu

    2017-01-01

    The molecular mechanism of fear memory is poorly understood. Therefore, the pathogenesis of post-traumatic stress disorder (PTSD), whose symptom presentation can enhance fear memory, remains largely unclear. Recent studies with knockout animals have reported that Rin1 and stathmin regulate fear memory. Rin1 inhibits acquisition and promotes memory extinction, whereas stathmin regulates innate and basal fear. The aim of our study was to examine changes in the expression of Rin1 and stathmin in different animal models of stress, particluarly traumatic stress. We used three animal traumatic stresses: single prolonged stress (SPS, which is a rodent model of PTSD), an immobilization-stress (IM) and a Loud sound stress (LSS), to examine the change and uniqueness in Rin1/stathmin expression. Behavioral tests of SPS rats demonstrated increased anxiety and contextual fear-conditioning. They showed decreased long-term potentiation (LTP), as well as decreased stathmin and increased Rin1 expression in the hippocampus and the amygdala. Expression of the stathmin effector, tubulin, and downstream molecules Rin1, Rab5, and Abl, appeared to increase. Rin1 and EphA4 were endogenously coexpressed in primary neurons after SPS stimulation. IM rats exhibited increased anxiety behavior and enhanced fear-conditioning to contextual and auditory stimuli. Similar changes in expression of Rin1/stathmin were observed in IM rats whereas no changes were observed in rats exposed to a loud sound. These data suggest that changes in expression of the Rin1 and stathmin genes may be involved in rodents with SPS and IM stresses, which provide valuable insight into fear memories under abnormal conditions, particularly in PTSD. PMID:28491025

  14. Observations of static Coulomb stress triggering of the November 2011 M5.7 Oklahoma earthquake sequence

    USGS Publications Warehouse

    Sumy, Danielle F.; Cochran, Elizabeth S.; Keranen, Katie M.; Wei, Maya; Abers, Geoffrey A.

    2014-01-01

    In November 2011, a M5.0 earthquake occurred less than a day before a M5.7 earthquake near Prague, Oklahoma, which may have promoted failure of the mainshock and thousands of aftershocks along the Wilzetta fault, including a M5.0 aftershock. The M5.0 foreshock occurred in close proximity to active fluid injection wells; fluid injection can cause a buildup of pore fluid pressure, decrease the fault strength, and may induce earthquakes. Keranen et al. [2013] links the M5.0 foreshock with fluid injection, but the relationship between the foreshock and successive events has not been investigated. Here we examine the role of coseismic Coulomb stress transfer on earthquakes that follow the M5.0 foreshock, including the M5.7 mainshock. We resolve the static Coulomb stress change onto the focal mechanism nodal plane that is most consistent with the rupture geometry of the three M ≥ 5.0 earthquakes, as well as specified receiver fault planes that reflect the regional stress orientation. We find that Coulomb stress is increased, e.g., fault failure is promoted, on the nodal planes of ~60% of the events that have focal mechanism solutions, and more specifically, that the M5.0 foreshock promoted failure on the rupture plane of the M5.7 mainshock. We test our results over a range of effective coefficient of friction values. Hence, we argue that the M5.0 foreshock, induced by fluid injection, potentially triggered a cascading failure of earthquakes along the complex Wilzetta fault system.

  15. A micromechanical model of rate and state friction: 2. Effect of shear and normal stress changes

    NASA Astrophysics Data System (ADS)

    Molinari, A.; Perfettini, H.

    2017-04-01

    In this paper we analyze the influence of shear and normal stress changes on frictional properties. This problem is fundamental as, for instance, sudden stress changes are naturally induced on active faults by nearby earthquakes. As any stress changes can be seen as resulting from a succession of infinitesimal stress steps, the role of sudden stress changes is crucial to our understanding of fault dynamics. Laboratory experiments carried out by Linker and Dieterich (1992) and Nagata et al. (2012), considering steps in normal and shear stress, respectively, show an instantaneous response of the state variable (a proxy for the evolution of contact surface in our model) to a sudden stress change. We interpret this response as being due to an (instantaneous) elastic response of the plastic and elastic contacts. We assume that the anelastic response of the plastic contacts is frozen during sudden stress changes. The contacts, which were driven by plasticity before the stress change, are elastically accommodated during the sudden variation of the load. On the contrary, when the loading is slowly varying, elastic deformation of plastic contacts can be neglected. Our model is able to explain the evolution law for the state variable reported by Linker and Dieterich (1992).

  16. Stress Models of the Annual Hydrospheric, Atmospheric, Thermal, and Tidal Loading Cycles on California Faults: Perturbation of Background Stress and Changes in Seismicity

    NASA Astrophysics Data System (ADS)

    Johnson, Christopher W.; Fu, Yuning; Bürgmann, Roland

    2017-12-01

    Stresses in the lithosphere arise from multiple natural loading sources that include both surface and body forces. The largest surface loads include near-surface water storage, snow and ice, atmosphere pressure, ocean loading, and temperature changes. The solid Earth also deforms from celestial body interactions and variations in Earth's rotation. We model the seasonal stress changes in California from 2006 through 2014 for seven different loading sources with annual periods to produce an aggregate stressing history for faults in the study area. Our modeling shows that the annual water loading, atmosphere, temperature, and Earth pole tides are the largest loading sources and should each be evaluated to fully describe seasonal stress changes. In California we find that the hydrological loads are the largest source of seasonal stresses. We explore the seasonal stresses with respect to the background principal stress orientation constrained with regional focal mechanisms and analyze the modulation of seismicity. Our results do not suggest a resolvable seasonal variation for the ambient stress orientation in the shallow crust. When projecting the seasonal stresses into the background stress orientation we find that the timing of microseismicity modestly increases from an 8 kPa seasonal mean-normal-stress perturbation. The results suggest that faults in California are optimally oriented with the background stress field and respond to subsurface pressure changes, possibly due to processes we have not considered in this study. At any time a population of faults are near failure as evident from earthquakes triggered by these slight seasonal stress perturbations.

  17. Species as Stressors: Heterospecific Interactions and the Cellular Stress Response under Global Change.

    PubMed

    Gunderson, Alex R; King, Emily E; Boyer, Kirsten; Tsukimura, Brian; Stillman, Jonathon H

    2017-07-01

    Anthropogenic global change is predicted to increase the physiological stress of organisms through changes in abiotic conditions such as temperature, pH, and pollution. However, organisms can also experience physiological stress through interactions with other species, especially parasites, predators, and competitors. The stress of species interactions could be an important driver of species' responses to global change as the composition of biological communities change through factors such as distributional and phenological shifts. Interactions between biotic and abiotic stressors could also induce non-linear physiological stress responses under global change. One of the primary means by which organisms deal with physiological stress is through the cellular stress response (CSR), which is broadly the upregulation of a conserved set of genes that facilitate the removal and repair of damaged macromolecules. Here, we present data on behavioral interactions and CSR gene expression for two competing species of intertidal zone porcelain crab (Petrolisthes cinctipes and Petrolisthes manimaculis). We found that P. cinctipes and P. manimaculis engage in more agonistic behaviors when interacting with heterospecifics than conspecifics; however, we found no evidence that heterospecific interactions induced a CSR in these species. In addition to our new data, we review the literature with respect to CSR induction via species interactions, focusing on predator-prey systems and heterospecific competition. We find extensive evidence for predators to induce cellular stress and aspects of the CSR in prey, even in the absence of direct physical contact between species. Effects of heterospecific competition on the CSR have been studied far less, but we do find evidence that agonistic interactions with heterospecifics can induce components of the CSR. Across all published studies, there is clear evidence that species interactions can lead to cellular stress and induction of the CSR

  18. Laboratory observations of fault strength in response to changes in normal stress

    USGS Publications Warehouse

    Kilgore, Brian D.; Lozos, Julian; Beeler, Nicholas M.; Oglesby, David

    2012-01-01

    Changes in fault normal stress can either inhibit or promote rupture propagation, depending on the fault geometry and on how fault shear strength varies in response to the normal stress change. A better understanding of this dependence will lead to improved earthquake simulation techniques, and ultimately, improved earthquake hazard mitigation efforts. We present the results of new laboratory experiments investigating the effects of step changes in fault normal stress on the fault shear strength during sliding, using bare Westerly granite samples, with roughened sliding surfaces, in a double direct shear apparatus. Previous experimental studies examining the shear strength following a step change in the normal stress produce contradictory results: a set of double direct shear experiments indicates that the shear strength of a fault responds immediately, and then is followed by a prolonged slip-dependent response, while a set of shock loading experiments indicates that there is no immediate component, and the response is purely gradual and slip-dependent. In our new, high-resolution experiments, we observe that the acoustic transmissivity and dilatancy of simulated faults in our tests respond immediately to changes in the normal stress, consistent with the interpretations of previous investigations, and verify an immediate increase in the area of contact between the roughened sliding surfaces as normal stress increases. However, the shear strength of the fault does not immediately increase, indicating that the new area of contact between the rough fault surfaces does not appear preloaded with any shear resistance or strength. Additional slip is required for the fault to achieve a new shear strength appropriate for its new loading conditions, consistent with previous observations made during shock loading.

  19. Earthquake-induced gravitational potential energy change at convergent plate boundary near Taiwan

    NASA Astrophysics Data System (ADS)

    Lo, C.; Hsu, S.

    2004-12-01

    The coseismic displacement induced by earthquakes will change the gravitational potential energy (GPE). Okamoto and Tanimoto (2002) have shown that the gain of {Δ GPE} corresponds to the compressional stress regime while the loss of {Δ GPE} corresponds to the extensional stress regime. Here we show an example at a convergent plate boundary near Taiwan. The Philippine Sea Plate is converging against the Eurasian Plate with a velocity of 7-8 cm/yr near Taiwan, which has caused the active Taiwan orogeny and induced abundant earthquakes. We have examined the corresponding change of gravitational potential energy by using 757 earthquakes from the earthquake catalogue of the Broadband Array in Taiwan for Seismology (BATS) from July 1995 to December 2003. The results show that the variation of the crustal Δ GPE strongly correlates with the different stage of the orogenesis. Except for the western Okinawa Trough and the southern Taiwan, most of the Taiwan convergent region exhibits a gain of crustal Δ GPE. In contrast, the lithospheric Δ GPE in the Taiwan region exhibits a reverse pattern. For the whole Taiwan region, the earthquake-induced crustal Δ GPE and the lithospheric Δ GPE during the observation period are 1.03×1017 joules and -1.15×1017 joules, respectively. The average rate of the whole Δ GPE in the Taiwan region is very intense and equal to -2.07×1010 watts, corresponding to about one percent of the global Δ GPE loss induced by earthquakes.

  20. Coseismic Displacement Analysis of the 12 November 2017 MW 7.3 Sarpol-E Zahab (iran) Earthquake from SAR Interferometry, Burst Overlap Interferometry and Offset Tracking

    NASA Astrophysics Data System (ADS)

    Vajedian, Sanaz; Motagh, Mahdi

    2018-04-01

    Interferometric wide-swath mode of Sentinel-1, which is implemented by Terrain Observation by Progressive Scan (TOPS) technique, is the main mode of SAR data acquisition in this mission. It aims at global monitoring of large areas with enhanced revisit frequency of 6 days at the expense of reduced azimuth resolution, compared to classical ScanSAR mode. TOPS technique is equipped by steering the beam from backward to forward along the heading direction for each burst, in addition to the steering along the range direction, which is the only sweeping direction in standard ScanSAR mode. This leads to difficulty in measuring along-track displacement by applying the conventional method of multi-aperture interferometry (MAI), which exploits a double difference interferometry to estimate azimuth offset. There is a possibility to solve this issue by a technique called "Burst Overlap Interferometry" which focuses on the region of burst overlap. Taking advantage of large squint angle diversity of 1° in burst overlapped area leads to improve the accuracy of ground motion measurement especially in along-track direction. We investigate the advantage of SAR Interferometry (InSAR), burst overlap interferometry and offset tracking to investigate coseismic deformation and coseismic-induced landslide related to 12 November 2017 Mw 7.3 Sarpol-e Zahab earthquake in Iran.

  1. Effect of fault roughness on aftershock distribution and post co-seismic strain accumulation.

    NASA Astrophysics Data System (ADS)

    Aslam, K.; Daub, E. G.

    2017-12-01

    We perform physics-based simulations of earthquake rupture propagation on geometrically complex strike-slip faults. We consider many different realization of the fault roughness and obtain heterogeneous stress fields by performing dynamic rupture simulation of large earthquakes. We calculate the Coulomb failure function (CFF) for all these realizations so that we can quantify zones of stress increase/shadows surrounding the main fault and compare our results to seismic catalogs. To do this comparison, we use relocated earthquake catalogs from Northern and Southern California. We specify the range of fault roughness parameters based on past observational studies. The Hurst exponent (H) varies in range from 0.5 to 1 and RMS height to wavelength ratio ( RMS deviation of a fault profile from planarity) has values between 10-2 to 10-3. For any realization of fault roughness, the Probability density function (PDF) values relative to the mean CFF change show a wider spread near the fault and this spread squeezes into a narrow band as we move away from fault. For lower value of RMS ratio ( 10-3), we see bigger zones of stress change near the hypocenter and for higher value of RMS ratio ( 10-2), we see alternate zones of stress increase/decrease surrounding the fault to have comparable lengths. We also couple short-term dynamic rupture simulation with long-term tectonic modelling. We do this by giving the stress output from one of the dynamic rupture simulation (of a single realization of fault roughness) to long term tectonic model (LTM) as initial condition and then run LTM over duration of seismic cycle. This short term and long term coupling enables us to understand how heterogeneous stresses due to fault geometry influence the dynamics of strain accumulation in the post-seismic and inter-seismic phase of seismic cycle.

  2. Close temporal correspondence between geomagnetic anomalies and earthquakes during the 2002-2003 eruption of Etna volcano

    USGS Publications Warehouse

    Currenti, G.; Del, Negro C.; Johnston, M.; Sasai, Y.

    2007-01-01

    The early stages of the 2002-2003 lateral eruption at Mount Etna were accompanied by slow changes (over some hours) and some rapid step offsets in the local magnetic field. At five monitoring locations, the total magnetic field intensity has been measured using continuously operating Overhauser magnetometers at a sampling rate of 10 s. The very unique aspect of these observations is the close temporal correspondence between magnetic field offsets and earthquakes that occurred in the upper northern flank of the volcano on 27 October 2002 prior to a primary eruption. Rapid coseismic changes of the magnetic field were clearly identified for three of the most energetic earthquakes, which were concentrated along the Northeast Rift at a depth of about 1 km below sea level. Coseismic magnetic signals, with amplitudes from 0.5 to 2.5 nT, have been detected for three of the largest seismic events located roughly midway between the magnetic stations. We quantitatively examine possible geophysical mechanisms, which could cause the magnetic anomalies. The comparison between magnetic data, seismicity and surface phenomena implies that piezomagnetic effects are the primary physical mechanism responsible for the observed magnetic anomalies although the detailed cause of the rapid high stress change required is not clear. The modeling of the observed coseismic magnetic changes in terms of piezomagnetic mechanism provides further evidence of the complex interaction between volcanic and tectonic processes during dike propagation along the Northeast Rift. Copyright 2007 by the American Geophysical Union.

  3. Changes in ventricular function during emotional stress and cold exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiess, M.C.; Moore, R.A.; Dimsdale, J.

    1984-01-01

    Patients with cardiac disease frequently develop symptoms with emotional stress or cold exposure. To investigate the effects of these stresses in normal subjects, an ambulatory ventricular function monitor (VEST) (previously reported to measure EFs which correlate well with gamma camera measurements) was employed to record sequential 2 minute time activity curves from the left ventricles of 6 healthy men (ages 19-24) during a control period and during a 30 minute stress interview with a psychiatrist. Four of the subjects were also monitored in a cold room (1/sup 0/C) for 20 min. In addition to the left ventricular time-activity curve, heartmore » rate (HR), and BP (cuff) were recorded. All subjects had increases in HR, BP and EF during the stress interview. Cold, however, produced decreases in HR and EF and an increase in BP. The results (mean +- SD) are tabulated. End-systolic and end-diastolic counts and hence volume decreased during the interview and increased during cold exposure. The results suggest that (1) ambulatory changes in ventricular function can be measured with the VEST, and (2) significant changes in cardiovascular physiology are seen in normal subjects during a stress interview and exposure to cold.« less

  4. Deformation of conjugate compliant fault zones induced by the 2013 Mw7.7 Baluchistan (Pakistan) earthquake

    NASA Astrophysics Data System (ADS)

    Dutta, Rishabh; Wang, Teng; Feng, Guangcai; Harrington, Jonathan; Vasyura-Bathke, Hannes; Jónsson, Sigurjón

    2017-04-01

    Strain localizations in compliant fault zones (with elastic moduli lower than the surrounding rocks) induced by nearby earthquakes have been detected using geodetic observations in a few cases in the past. Here we observe small-scale changes in interferometric Synthetic Aperture Radar (InSAR) measurements along multiple conjugate faults near the rupture of the 2013 Mw7.7 Baluchistan (Pakistan) earthquake. After removing the main coseismic deformation signal in the interferograms and correcting them for topography-related phase, we observe 2-3 cm signal along several conjugate faults that are 15-30 km from the mainshock fault rupture. These conjugate compliant faults have strikes of N30°E and N45°W. The sense of motion indicates left-lateral deformation across the N30°E faults and right-lateral deformation across the N45°W faults, which suggests the conjugate faults were subjected to extensional coseismic stresses along the WSW-ENE direction. The spacing between the different sets of faults is around 5 to 8 km. We explain the observed strain localizations as an elastic response of the compliant conjugate faults induced by the Baluchistan earthquake. Using 3D Finite Element models (FEM), we impose coseismic static displacements due to the earthquake along the boundaries of the FEM domain to reproduce the coseismic stress changes acting across the compliant faults. The InSAR measurements are used to constrain the geometry and rigidity variations of the compliant faults with respect to the surrounding rocks. The best fitting models show the compliant fault zones to have a width of 0.5 km to 2 km and a reduction of the shear modulus by a factor of 3 to 4. Our study yields similar values as were found for compliant fault zones near the 1992 Landers and the 1999 Hector Mine earthquakes in California, although here the strain localization is occurring on more complex conjugate sets of faults.

  5. Tridimensional reconstruction of the Co-Seismic Ionospheric Disturbance around the time of 2015 Nepal earthquake

    NASA Astrophysics Data System (ADS)

    Kong, Jian; Yao, Yibin; Zhou, Chen; Liu, Yi; Zhai, Changzhi; Wang, Zemin; Liu, Lei

    2018-01-01

    The Co-Seismic Ionospheric Disturbance of the 2015 Nepal earthquake is analyzed in this paper. GNSS data are used to obtain the Satellite-Station TEC sequences. After removing the de-trended TEC variation, a clear ionospheric disturbance was observed 10 min after the earthquake, while the geomagnetic conditions, solar activity, and weather condition remained calm according to the Kp, Dst, F10.7 indices and meteorological records during the period of interest. Computerized ionosphere tomography (CIT) is then used to present the tridimensional ionosphere variation with a 10-min time resolution. The CIT results indicate that (1) the disturbance of the ionospheric electron density above the epicenter during the 2015 Nepal earthquake is confined at a relatively low altitude (approximately 150-300 km); (2) the ionospheric disturbances on the west side and east sides of the epicenter are precisely opposite. A newly established electric field penetration model of the lithosphere-atmosphere-ionosphere coupling is used to investigate the potential physical mechanism.

  6. Everyday stress response targets in the science of behavior change.

    PubMed

    Smyth, Joshua M; Sliwinski, Martin J; Zawadzki, Matthew J; Scott, Stacey B; Conroy, David E; Lanza, Stephanie T; Marcusson-Clavertz, David; Kim, Jinhyuk; Stawski, Robert S; Stoney, Catherine M; Buxton, Orfeu M; Sciamanna, Christopher N; Green, Paige M; Almeida, David M

    2018-02-01

    Stress is an established risk factor for negative health outcomes, and responses to everyday stress can interfere with health behaviors such as exercise and sleep. In accordance with the Science of Behavior Change (SOBC) program, we apply an experimental medicine approach to identifying stress response targets, developing stress response assays, intervening upon these targets, and testing intervention effectiveness. We evaluate an ecologically valid, within-person approach to measuring the deleterious effects of everyday stress on physical activity and sleep patterns, examining multiple stress response components (i.e., stress reactivity, stress recovery, and stress pile-up) as indexed by two key response indicators (negative affect and perseverative cognition). Our everyday stress response assay thus measures multiple malleable stress response targets that putatively shape daily health behaviors (physical activity and sleep). We hypothesize that larger reactivity, incomplete recovery, and more frequent stress responses (pile-up) will negatively impact health behavior enactment in daily life. We will identify stress-related reactivity, recovery, and response in the indicators using coordinated analyses across multiple naturalistic studies. These results are the basis for developing a new stress assay and replicating the initial findings in a new sample. This approach will advance our understanding of how specific aspects of everyday stress responses influence health behaviors, and can be used to develop and test an innovative ambulatory intervention for stress reduction in daily life to enhance health behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Static stress change from the 8 October, 2005 M = 7.6 Kashmir earthquake

    USGS Publications Warehouse

    Parsons, T.; Yeats, R.S.; Yagi, Y.; Hussain, A.

    2006-01-01

    We calculated static stress changes from the devastating M = 7.6 earthquake that shook Kashmir on 8 October, 2005. We mapped Coulomb stress change on target fault planes oriented by assuming a regional compressional stress regime with greatest principal stress directed orthogonally to the mainshock strike. We tested calculation sensitivity by varying assumed stress orientations, target-fault friction, and depth. Our results showed no impact on the active Salt Range thrust southwest of the rupture. Active faults north of the Main Boundary thrust near Peshawar fall in a calculated stress-decreased zone, as does the Raikot fault zone to the northeast. We calculated increased stress near the rupture where most aftershocks occurred. The greatest increase to seismic hazard is in the Indus-Kohistan seismic zone near the Indus River northwest of the rupture termination, and southeast of the rupture termination near the Kashmir basin.

  8. College Freshman Stress and Weight Change: Differences by Gender

    ERIC Educational Resources Information Center

    Economos, Christina D.; Hildebrandt, M. Lise; Hyatt, Raymond R.

    2008-01-01

    Objectives: To examine how stress and health-related behaviors affect freshman weight change by gender. Methods: Three hundred ninety-six freshmen completed a 40-item health behavior survey and height and weight were collected at baseline and follow-up. Results: Average weight change was 5.04 lbs for males, 5.49 lbs for females. Weight gain was…

  9. Social stress induces changes in urinary bladder function, bladder NGF content, and generalized bladder inflammation in mice

    PubMed Central

    Peterson, Abbey; Erickson, Cuixia Shi; Nelson, Mark T.; Vizzard, Margaret A.

    2014-01-01

    Social stress may play a role in urinary bladder dysfunction in humans, but the underlying mechanisms are unknown. In the present study, we explored changes in bladder function caused by social stress using mouse models of stress and increasing stress. In the stress paradigm, individual submissive FVB mice were exposed to C57BL/6 aggressor mice directly/indirectly for 1 h/day for 2 or 4 wk. Increased stress was induced by continuous, direct/indirect exposure of FVB mice to aggressor mice for 2 wk. Stressed FVB mice exhibited nonvoiding bladder contractions and a decrease in both micturition interval (increased voiding frequency) and bladder capacity compared with control animals. ELISAs demonstrated a significant increase in histamine protein expression with no change in nerve growth factor protein expression in the urinary bladder compared with controls. Unlike stressed mice, mice exposed to an increased stress paradigm exhibited increased bladder capacities and intermicturition intervals (decreased voiding frequency). Both histamine and nerve growth factor protein expression were significantly increased with increased stress compared with control bladders. The change in bladder function from increased voiding frequency to decreased voiding frequency with increased stress intensity suggests that changes in social stress-induced urinary bladder dysfunction are context and duration dependent. In addition, changes in the bladder inflammatory milieu with social stress may be important contributors to changes in urinary bladder function. PMID:25100077

  10. Prenatal stress changes courtship vocalizations and bone mineral density in mice.

    PubMed

    Schmidt, Michaela; Lapert, Florian; Brandwein, Christiane; Deuschle, Michael; Kasperk, Christian; Grimsley, Jasmine M; Gass, Peter

    2017-01-01

    Stress during the prenatal period has various effects on social and sexual behavior in both human and animal offspring. The present study examines the effects of chronic restraint stress in the second vs third trimester in pregnancy and glucocorticoid receptor (GR) heterozygous mutation on C57BL/6N male offspring's vocal courtship behavior in adulthood by applying a novel analyzing method. Finally, corticosterone and testosterone levels as well as bone mineral density were measured. Prenatal stress in the third, but not in the second trimester caused a significant qualitative change in males' courtship vocalizations, independent of their GR genotype. Bone mineral density was decreased also by prenatal stress exclusively in the third trimester in GR mutant and wildtype mice and - in contrast to corticosterone and testosterone - highly correlated with courtship vocalizations. In Gr +/- males corticosterone serum levels were significantly increased in animals that had experienced prenatal stress in the third trimester. Testosterone serum levels were overall increased in Gr +/- males in comparison to wildtypes as a tendency - whereas prenatal stress had no influence. Prenatal stress alters adult males' courtship vocalizations exclusively when applied in the third trimester, with closely related changes in bone mineral density. Bone mineral density seems to reflect best the complex neuroendocrine mechanisms underlying the production of courtship vocalizations. Besides, we demonstrated for the first time elevated basal corticosterone levels in Gr +/- males after prenatal stress which suggests that the Gr +/- mouse model of depression might also serve as a model of prenatal stress in male offspring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Biodiversity effects on ecosystem functioning change along environmental stress gradients.

    PubMed

    Steudel, Bastian; Hector, Andy; Friedl, Thomas; Löfke, Christian; Lorenz, Maike; Wesche, Moritz; Kessler, Michael; Gessner, Mark

    2012-12-01

    Positive relationship between biodiversity and ecosystem functioning has been observed in many studies, but how this relationship is affected by environmental stress is largely unknown. To explore this influence, we measured the biomass of microalgae grown in microcosms along two stress gradients, heat and salinity, and compared our results with 13 published case studies that measured biodiversity-ecosystem functioning relationships under varying environmental conditions. We found that positive effects of biodiversity on ecosystem functioning decreased with increasing stress intensity in absolute terms. However, in relative terms, increasing stress had a stronger negative effect on low-diversity communities. This shows that more diverse biotic communities are functionally less susceptible to environmental stress, emphasises the need to maintain high levels of biodiversity as an insurance against impacts of changing environmental conditions and sets the stage for exploring the mechanisms underlying biodiversity effects in stressed ecosystems. © 2012 Blackwell Publishing Ltd/CNRS.

  12. Sudden, probably coseismic submergence of Holocene trees and grass in coastal Washington State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atwater, B.F.; Yamaguchi, D.K.

    Growth-position plant fossils in coastal Washington State imply a suddenness of Holocene submergence that is better explained coseismic lowering of the land than be decade- or century-long rise of the sea. These fossils include western red cedar and Sitka spruce whose death probably resulted from estuarine submergence close to 300 years ago. Rings in eroded, bark-free trunks of the red cedar show that growth remained normal within decades of death. Rings in buried, bark-bearing stumps of the spruce further show normal growth continuing until the year of death. Other growth-position fossils implying sudden submergence include the stems and leaves ofmore » salt-marsh grass entombed in tide-flat mud close to 300 years ago and roughly 1,700 and 3,100 years ago. The preservation of these stems and leaves shows that submergence and initial burial outpaced decomposition, which appears to take just a few years in modern salt marshes. In some places the stems and leaves close to 300 year old are surrounded by sand left by an extraordinary, landward-directed surge-probably a tsunami from a great thrust earthquake on the Cascadia subduction zone.« less

  13. Minimal evidence for consistent changes in maize DNA methylation patterns following environmental stress.

    PubMed

    Eichten, Steven R; Springer, Nathan M

    2015-01-01

    DNA methylation is a chromatin modification that is sometimes associated with epigenetic regulation of gene expression. As DNA methylation can be reversible at some loci, it is possible that methylation patterns may change within an organism that is subjected to environmental stress. In order to assess the effects of abiotic stress on DNA methylation patterns in maize (Zea mays), seeding plants were subjected to heat, cold, and UV stress treatments. Tissue was later collected from individual adult plants that had been subjected to stress or control treatments and used to perform DNA methylation profiling to determine whether there were consistent changes in DNA methylation triggered by specific stress treatments. DNA methylation profiling was performed by immunoprecipitation of methylated DNA followed by microarray hybridization to allow for quantitative estimates of DNA methylation abundance throughout the low-copy portion of the maize genome. By comparing the DNA methylation profiles of each individual plant to the average of the control plants it was possible to identify regions of the genome with variable DNA methylation. However, we did not find evidence of consistent DNA methylation changes resulting from the stress treatments used in this study. Instead, the data suggest that there is a low-rate of stochastic variation that is present in both control and stressed plants.

  14. Climate change threatens endangered plant species by stronger and interacting water-related stresses

    NASA Astrophysics Data System (ADS)

    Bartholomeus, Ruud P.; Witte, Jan-Philip M.; van Bodegom, Peter M.; van Dam, Jos C.; Aerts, Rien

    2011-12-01

    Atmospheric CO2-concentration, temperature and rainfall variability are all expected to increase in the near future. The resulting increased dynamics of soil moisture contents, together with increased plant physiological demands for both oxygen and water, will lead to an increased occurrence of wet and dry extremes of plant stresses, i.e., of oxygen and drought stress, respectively, alone and in interaction. The use of indirect environmental variables in previous studies and a focus on individual stresses rather than their combined effects has hampered understanding of the causal impact of climate change on plant species composition through changes in abiotic site conditions. Here, we use process-based simulations of oxygen and drought stresses in conjunction with a downscaled national version of IPCC scenarios in order to show that these stresses will increase (on average by ˜20% at sites where both stresses occur) in a warmer and more variable future (2050) climate. These two types of stresses will increasingly coincide, i.e. both stresses will occur more often (but not at the same time) within a single vegetation plot. We further show that this increased coincidence of water-related stresses will negatively affect the future occurrence of currently endangered plant species (causing a reduction of ˜16%), while apparently no such decrease will occur among common species. Individual stresses did not appear to affect the occurrence of endangered plant species. Consequently, our study demonstrates that species that are already threatened under the current climate will suffer most from the effects of climate change.

  15. Fluid pathways from mantle wedge up to forearc seafloor in the coseismic slip area of the 2011 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Park, J. O.; Tsuru, T.; Fujie, G.; Kagoshima, T.; Sano, Y.

    2017-12-01

    A lot of fluids at subduction zones are exchanged between the solid Earth and ocean, affecting the earthquake and tsunami generation. New multi-channel seismic reflection and sub-bottom profiling data reveal normal and reverse faults as the fluid pathways in the coseismic slip area of the 2011 Tohoku earthquake (M9.0). Based on seismic reflection characteristics and helium isotope anomalies, we recognize variations in fluid pathways (i.e., faults) from the mantle wedge up to forearc seafloor in the Japan Trench margin. Some fluids are migrated from the mantle wedge along plate interface and then normal or reverse faults cutting through the overriding plate. Others from the mantle wedge are migrated directly up to seafloor along normal faults, without passing through the plate interface. Locations of the normal faults are roughly consistent with aftershocks of the 2011 Tohoku earthquake, which show focal mechanism of normal faulting. It is noticeable that landward-dipping normal faults developing down into Unit C (Cretaceous basement) from seafloor are dominant in the middle slope region where basal erosion is inferred to be most active. A high-amplitude, reverse-polarity reflection of the normal faults within Unit C suggests that the fluids are locally trapped along the faults in high pore pressures. The 2011 Tohoku mainshock and subsequent aftershocks could lead the pre-existing normal faults to be reactive and more porous so that the trapped fluids are easily transported up to seafloor through the faults. Elevated fluid pressures can decrease the effective normal stress for the fault plane, allowing easier slip of the landward-dipping normal fault and also enhancing its tsunamigenic potential.

  16. Recent changes of rice heat stress in Jiangxi province, southeast China.

    PubMed

    Huang, Jin; Zhang, Fangmin; Xue, Yan; Lin, Jie

    2017-04-01

    Around the intensity, frequency, duration, accumulated temperature, and even extremes of high-temperature events, nine selected temperature-related indices were used to explore the space and time changes of rice heat stress in Jiangxi province, southeast China. Several statistical methods including Mann-Kendall trend test (M-K test) and principal component analysis (PCA) were used in this study, and main results were listed as follows: (1) The changes in the intensity indices for high-temperature events were more significant, it was mainly embodied in that more than 80 % of stations had positive trends. (2) R-mode PCA was applied to the multiannual average values of nine selected indices of whole stations, and the results showed that the higher hazard for rice heat stress could be mainly detected in the middle and northeast area of Jiangxi. (3) S-mode PCA was applied to the integrated heat stress index series, and the results demonstrated that Jiangxi could be divided into four sub-regions with different variability in rice heat stress. However, all the sub-regions are dominated by increasing tendencies in rice heat stress since 1990. (4) Further analysis indicated that the western north Pacific sub-tropical high (WPSH) had the significant dominant influence on the rice heat stress in Jiangxi province.

  17. Overcommitment but not effort-reward imbalance relates to stress-induced coagulation changes in teachers.

    PubMed

    von Känel, Roland; Bellingrath, Silja; Kudielka, Brigitte M

    2009-02-01

    Stress-related hypercoagulability might link job stress with atherosclerosis. This paper aims to study whether overcommitment, effort-reward imbalance, and the overcommitment by effort-reward imbalance interaction relate to an exaggerated procoagulant stress response. We assessed job stress in 52 healthy teachers (49 +/- 8 years, 63% women) at study entry and, after a mean follow-up of 21 +/- 4 months, when they underwent an acute psychosocial stressor and had coagulation measures determined in plasma. In order to increase the reliability of job stress measures, entry and follow-up scores of overcommitment and of effort-reward imbalance were added up to total scores. During recovery from stress, elevated overcommitment correlated with D-dimer increase and with smaller fibrinogen decrease. In contrast, overcommitment was not associated with coagulation changes from pre-stress to immediately post-stress. Effort-reward imbalance and the interaction between overcommitment and effort-reward imbalance did not correlate with stress-induced changes in coagulation measures. Overcommitment predicted acute stress-induced hypercoagulability, particularly during the recovery period.

  18. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano.

    PubMed

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-02-19

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards.

  19. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano

    PubMed Central

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-01-01

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards. PMID:26892716

  20. Modeling changes in rill erodibility and critical shear stress on native surface roads

    Treesearch

    Randy B. Foltz; Hakjun Rhee; William J. Elliot

    2008-01-01

    This study investigated the effect of cumulative overland flow on rill erodibility and critical shear stress on native surface roads in central Idaho. Rill erodibility decreased exponentially with increasing cumulative overland flow depth; however, critical shear stress did not change. The study demonstrated that road erodibility on the studied road changes over the...

  1. Stress Management Apps With Regard to Emotion-Focused Coping and Behavior Change Techniques: A Content Analysis

    PubMed Central

    Hoffmann, Alexandra; Bleser, Gabriele

    2017-01-01

    Background Chronic stress has been shown to be associated with disease. This link is not only direct but also indirect through harmful health behavior such as smoking or changing eating habits. The recent mHealth trend offers a new and promising approach to support the adoption and maintenance of appropriate stress management techniques. However, only few studies have dealt with the inclusion of evidence-based content within stress management apps for mobile phones. Objective The aim of this study was to evaluate stress management apps on the basis of a new taxonomy of effective emotion-focused stress management techniques and an established taxonomy of behavior change techniques. Methods Two trained and independent raters evaluated 62 free apps found in Google Play with regard to 26 behavior change and 15 emotion-focused stress management techniques in October 2015. Results The apps included an average of 4.3 behavior change techniques (SD 4.2) and 2.8 emotion-focused stress management techniques (SD 2.6). The behavior change technique score and stress management technique score were highly correlated (r=.82, P=.01). Conclusions The broad variation of different stress management strategies found in this sample of apps goes in line with those found in conventional stress management interventions and self-help literature. Moreover, this study provided a first step toward more detailed and standardized taxonomies, which can be used to investigate evidence-based content in stress management interventions and enable greater comparability between different intervention types. PMID:28232299

  2. How material contrast around subduction faults may control coseismic slip and rupture dynamics: tsunami applications for the case study of Tohoku

    NASA Astrophysics Data System (ADS)

    Scala, Antonio; Murphy, Shane; Romano, Fabrizio; Lorito, Stefano; Festa, Gaetano; Volpe, Manuela; Piatanesi, Alessio

    2017-04-01

    intermediate depths: the compliant accretionary prism favours slip up to the free surface leading to larger events compared to the homogeneous case. These preliminary findings will be further investigated considering different material contrasts between the slab and the overriding accretionary prism to mimic the slowness of the sedimentary wedge. This will contribute to assess the influence of these contrasts in more realistic environment on the seismic source features and, in turn, on the conditional probability of exceedance for maximum tsunami wave height for a M9 event. Several source parameters, such as coseismic slip, rupture duration, rupture velocity and stress conditions, derived from the numerical simulations will be compared to those inferred from real events using existing finite fault catalogues (e.g. USGS, SRCMOD, etc.).

  3. Monitoring stress changes in a concrete bridge with coda wave interferometry.

    PubMed

    Stähler, Simon Christian; Sens-Schönfelder, Christoph; Niederleithinger, Ernst

    2011-04-01

    Coda wave interferometry is a recent analysis method now widely used in seismology. It uses the increased sensitivity of multiply scattered elastic waves with long travel-times for monitoring weak changes in a medium. While its application for structural monitoring has been shown to work under laboratory conditions, the usability on a real structure with known material changes had yet to be proven. This article presents experiments on a concrete bridge during construction. The results show that small velocity perturbations induced by a changing stress state in the structure can be determined even under adverse conditions. Theoretical estimations based on the stress calculations by the structural engineers are in good agreement with the measured velocity variations.

  4. Field and experimental evidence for coseismic ruptures along shallow creeping faults in forearc sediments of the Crotone Basin, South Italy

    NASA Astrophysics Data System (ADS)

    Balsamo, Fabrizio; Aldega, Luca; De Paola, Nicola; Faoro, Igor; Storti, Fabrizio

    2014-05-01

    Large seismic slip occurring along shallow creeping faults in tectonically active areas represents an unsolved paradox, which is largely due to our poor understanding of the mechanics governing creeping faults, and to the lack of documented geological evidence showing how coseismic rupturing overprints creep in near-surface conditions. In this contribution we integrate field, petrophysical, mineralogical and friction data to characterize the signature of coseismic ruptures propagating along shallow creeping faults affecting unconsolidated forearc sediments of the seismically active Crotone Basin, in South Italy. Field observations of fault zones show widespread foliated cataclasites in fault cores, locally overprinted by sharp slip surfaces decorated by thin (0.5-1.5 cm) black gouge layers. Compared to foliated cataclasites, black gouges have much lower grain size, porosity and permeability, which may have facilitated slip weakening by thermal fluid pressurization. Moreover, black gouges are characterized by distinct mineralogical assemblages compatible with high temperatures (180-200°C) due to frictional heating during seismic slip. Foliated cataclasites and black gouges were also produced by laboratory friction experiments performed on host sediments at sub-seismic (≤ 0.1 m/s) and seismic (1 m/s) slip rates, respectively. Black gouges display low friction coefficients (0.3) and velocity-weakening behaviours, as opposed to high friction coefficients (0.65) and velocity-strengthening behaviours shown by the foliated cataclasites. Our results show that narrow black gouges developed within foliated cataclasites represent a potential diagnostic marker for episodic seismic activity in shallow creeping faults. These findings can help understanding the time-space partitioning between aseismic and seismic slip of faults at shallow crustal levels, impacting on seismic hazard evaluation of subduction zones and forearc regions affected by destructive earthquakes and

  5. Changes in Posttraumatic Stress Disorder and Depressive Symptoms during Cognitive Processing Therapy: Evidence for Concurrent Change

    ERIC Educational Resources Information Center

    Liverant, Gabrielle I.; Suvak, Michael K.; Pineles, Suzanne L.; Resick, Patricia A.

    2012-01-01

    Objective: Trauma-focused psychotherapies reduce both posttraumatic stress disorder (PTSD) and co-occurring depression. However, little is known about the relationship between changes in PTSD and depression during treatment. This study examined the association between changes in PTSD and depression during the course of cognitive processing therapy…

  6. Effects of structural heterogeneity on frictional heating from biomarker thermal maturity analysis of the Muddy Mountain thrust, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Coffey, G. L.; Savage, H. M.; Polissar, P. J.; Rowe, C. D.

    2017-12-01

    Faults are generally heterogeneous along-strike, with changes in thickness and structural complexity that should influence coseismic slip. However, observational limitations (e.g. limited outcrop or borehole samples) can obscure this complexity. Here we investigate the heterogeneity of frictional heating determined from biomarker thermal maturity and microstructural observations along a well-exposed fault to understand whether coseismic stress and frictional heating are related to structural complexity. We focus on the Muddy Mountain thrust, Nevada, a Sevier-age structure that has continuous exposure of its fault core and considerable structural variability for up to 50 m, to explore the distribution of earthquake slip and temperature rise along strike. We present new biomarker thermal maturity results that capture the heating history of fault rocks. Biomarkers are organic molecules produced by living organisms and preserved in the rock record. During heating, their structure is altered systematically with increasing time and temperature. Preliminary results show significant variability in thermal maturity along-strike at the Muddy Mountain thrust, suggesting differences in coseismic temperature rise on the meter- scale. Temperatures upwards of 500°C were generated in the principal slip zone at some locations, while in others, no significant temperature rise occurred. These results demonstrate that stress or slip heterogeneity occurred along the Muddy Mountain thrust at the meter-scale and considerable along-strike complexity existed, highlighting the importance of careful interpretation of whole-fault behavior from observations at a single point on a fault.

  7. Investigation of an alternative generic model for predicting pharmacokinetic changes during physiological stress.

    PubMed

    Peng, Henry T; Edginton, Andrea N; Cheung, Bob

    2013-10-01

    Physiologically based pharmacokinetic models were developed using MATLAB Simulink® and PK-Sim®. We compared the capability and usefulness of these two models by simulating pharmacokinetic changes of midazolam under exercise and heat stress to verify the usefulness of MATLAB Simulink® as a generic PBPK modeling software. Although both models show good agreement with experimental data obtained under resting condition, their predictions of pharmacokinetics changes are less accurate in the stressful conditions. However, MATLAB Simulink® may be more flexible to include physiologically based processes such as oral absorption and simulate various stress parameters such as stress intensity, duration and timing of drug administration to improve model performance. Further work will be conducted to modify algorithms in our generic model developed using MATLAB Simulink® and to investigate pharmacokinetics under other physiological stress such as trauma. © The Author(s) 2013.

  8. Stress Management Apps With Regard to Emotion-Focused Coping and Behavior Change Techniques: A Content Analysis.

    PubMed

    Christmann, Corinna Anna; Hoffmann, Alexandra; Bleser, Gabriele

    2017-02-23

    Chronic stress has been shown to be associated with disease. This link is not only direct but also indirect through harmful health behavior such as smoking or changing eating habits. The recent mHealth trend offers a new and promising approach to support the adoption and maintenance of appropriate stress management techniques. However, only few studies have dealt with the inclusion of evidence-based content within stress management apps for mobile phones. The aim of this study was to evaluate stress management apps on the basis of a new taxonomy of effective emotion-focused stress management techniques and an established taxonomy of behavior change techniques. Two trained and independent raters evaluated 62 free apps found in Google Play with regard to 26 behavior change and 15 emotion-focused stress management techniques in October 2015. The apps included an average of 4.3 behavior change techniques (SD 4.2) and 2.8 emotion-focused stress management techniques (SD 2.6). The behavior change technique score and stress management technique score were highly correlated (r=.82, P=.01). The broad variation of different stress management strategies found in this sample of apps goes in line with those found in conventional stress management interventions and self-help literature. Moreover, this study provided a first step toward more detailed and standardized taxonomies, which can be used to investigate evidence-based content in stress management interventions and enable greater comparability between different intervention types. ©Corinna Anna Christmann, Alexandra Hoffmann, Gabriele Bleser. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 23.02.2017.

  9. Theoretical and experimental evaluation of effective stress-induced sorption capacity change and its influence on coal permeability

    NASA Astrophysics Data System (ADS)

    Li, Chengwu; Dong, Lihui; Xu, Xiaomeng; Hu, Po; Tian, Jianwei; Zhang, Yihuai; Yang, Leilei

    2017-06-01

    The gas sorption effect is an important factor affecting the gas permeability of a coal seam, which has been proved in many previous experimental measurements and analytical permeability studies. However, the sorption capacity of coal is usually not static due to the complexity of external stress variation and internal gas media features. The stress-induced sorption capacity variation and its effect on the coal permeability change have not been fully identified yet. Thus, in this paper we present a preliminary evaluation of the stress-induced sorption capacity change by introducing the adsorption capacity modified term, and an experiment is carried out to verify the influence of the altered effective stress on coal permeability. Langmuir-like adsorption deformation constant parameters were combined into the modified coal permeability model and were given values to fully estimate the influence on permeability caused by the modification term. We found that different change modes of effective stress would yield different change effects on the permeability, that is, with the same effective stress change amount, the altered external stress-induced change had less influence than the altered-pore pressure-induced change; however, both modes demonstrated that the model taking sorption capacity change into consideration is more consistent with the experimental data. The effect of sorption capacity change on coal permeability variation was also found to be tightly connected with the physical and mechanical properties of the coal itself. It is proved that considering stress-induced sorption ability change has a critical role in characterizing the permeability variation of coal.

  10. Tibial stress changes in new combat recruits for special forces: patterns and timing at MR imaging.

    PubMed

    Hadid, Amir; Moran, Daniel S; Evans, Rachel K; Fuks, Yael; Schweitzer, Mark E; Shabshin, Nogah

    2014-11-01

    To characterize the incidence, location, grade, and patterns of magnetic resonance (MR) imaging findings in the tibia in asymptomatic recruits before and after 4-month basic training and to investigate whether MR imaging parameters correlated with pretraining activity levels or with future symptomatic injury. This study was approved by three institutional review boards and was conducted in compliance with HIPAA requirements. Volunteers were included in the study after they signed informed consent forms. MR imaging of the tibia of 55 men entering the Israeli Special Forces was performed on recruitment day and after basic training. Ten recruits who did not perform vigorous self-training prior to and during service served as control subjects. MR imaging studies in all recruits were evaluated for presence, type, length, and location of bone stress changes in the tibia. Anthropometric measurements and activity history data were collected. Relationships between bone stress changes, physical activity, and clinical findings and between lesion size and progression were analyzed. Bone stress changes were seen in 35 of 55 recruits (in 26 recruits at time 0 and in nine recruits after basic training). Most bone stress changes consisted of endosteal marrow edema. Approximately 50% of bone stress changes occurred between the middle and distal thirds of the tibia. Lesion size at time 0 had significant correlation with progression. All endosteal findings smaller than 100 mm resolved or did not change, while most findings larger than 100 mm progressed. Of 10 control subjects, one had bone stress changes at time 0, and one had bone stress changes at 4 months. Most tibial bone stress changes occurred before basic training, were usually endosteal, occurred between the middle and distal thirds of the tibia, were smaller than 100 mm, and did not progress. These findings are presumed to represent normal bone remodeling.

  11. Temporal pore pressure induced stress changes during injection and depletion

    NASA Astrophysics Data System (ADS)

    Müller, Birgit; Heidbach, Oliver; Schilling, Frank; Fuchs, Karl; Röckel, Thomas

    2016-04-01

    Induced seismicity is observed during injection of fluids in oil, gas or geothermal wells as a rather immediate response close to the injection wells due to the often high-rate pressurization. It was recognized even earlier in connection with more moderate rate injection of fluid waste on a longer time frame but higher induced event magnitudes. Today, injection-related induced seismicity significantly increased the number of events with M>3 in the Mid U.S. However, induced seismicity is also observed during production of fluids and gas, even years after the onset of production. E.g. in the Groningen gas field production was required to be reduced due to the increase in felt and damaging seismicity after more than 50 years of exploitation of that field. Thus, injection and production induced seismicity can cause severe impact in terms of hazard but also on economic measures. In order to understand the different onset times of induced seismicity we built a generic model to quantify the role of poro-elasticity processes with special emphasis on the factors time, regional crustal stress conditions and fault parameters for three case studies (injection into a low permeable crystalline rock, hydrothermal circulation and production of fluids). With this approach we consider the spatial and temporal variation of reservoir stress paths, the "early" injection-related induced events during stimulation and the "late" production induced ones. Furthermore, in dependence of the undisturbed in situ stress field conditions the stress tensor can change significantly due to injection and long-term production with changes of the tectonic stress regime in which previously not critically stressed faults could turn to be optimally oriented for fault reactivation.

  12. An earthquake history derived from stratigraphic and microfossil evidence of relative sea-level change at Coos Bay, southern coastal Oregon

    USGS Publications Warehouse

    Nelson, A.R.; Jennings, A.E.; Kashima, K.

    1996-01-01

    Much of the uncertainty in determining the number and magnitude of past great earthquakes in the Cascadia subduction zone of western North America stems from difficulties in using estuarine stratigraphy to infer the size and rate of late Holocene relative sea-level changes. A sequence of interbedded peaty and muddy intertidal sediment beneath a small, protected tidal marsh in a narrow inlet of Coos Bay, Oregon, records ten rapid to instantaneous rises in relative sea level. Each rise is marked by a contact that records an upward transition from peaty to muddy sediment. But only two contacts, dating from about 1700 and 2300 yr ago, show the site-wide extent and abrupt changes in lithology and foraminiferal and diatom assemblages that can be used to infer at least half a meter of sudden coseismic subsidence. Although the characteristics of a third, gradual contact do not differ from those of some contacts produced by nonseismic processes, regional correlation with other similar sequences and high-precision 14C dating suggest that the third contact records a great plate-boundary earthquake about 300 yr ago. A fourth contact formed too slowly to have been caused by coseismic subsidence. Because lithologic and microfossil data are not sufficient to distinguish a coseismic from a nonseismic origin for the other six peatmud contacts, we cannot determine earthquake recurrence intervals at this site. Similar uncertainties in great earthquake recurrence and magnitude prevail at similar sites elsewhere in the Cascadia subduction zone, except those with sequences showing changes in fossils indicative of > 1 m of sudden subsidence, sand sheets deposited by tsunamis, or liquefaction features.

  13. Multi-instrument observation on co-seismic ionospheric effects after great Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Hao, Y. Q.; Xiao, Z.; Zhang, D. H.

    2012-02-01

    In this paper, evidence of quake-excited infrasonic waves is provided first by a multi-instrument observation of Japan's Tohoku earthquake. The observations of co-seismic infrasonic waves are as follows: 1, effects of surface oscillations are observed by local infrasonic detector, and it seems these effects are due to surface oscillation-excited infrasonic waves instead of direct influence of seismic vibration on the detector; 2, these local excited infrasonic waves propagate upwards and correspond to ionospheric disturbances observed by Doppler shift measurements and GPS/TEC; 3, interactions between electron density variation and currents in the ionosphere caused by infrasonic waves manifest as disturbances in the geomagnetic field observed via surface magnetogram; 4, within 4 hours after this strong earthquake, disturbances in the ionosphere related to arrivals of Rayleigh waves were observed by Doppler shift sounding three times over. Two of the arrivals were from epicenter along the minor arc of the great circle (with the second arrival due to a Rayleigh wave propagating completely around the planet) and the other one from the opposite direction. All of these seismo-ionospheric effects observed by HF Doppler shift appear after local arrivals of surface Rayleigh waves, with a time delay of 8-10 min. This is the time required for infrasonic wave to propagate upwards to the ionosphere.

  14. The effects of climate change associated abiotic stresses on maize phytochemical defenses

    USDA-ARS?s Scientific Manuscript database

    Reliable large-scale maize production is an essential component of global food security; however, sustained efforts are needed to ensure optimized resilience under diverse crop stress conditions. Climate changes are expected to increase the frequency and intensity of both abiotic and biotic stress. ...

  15. Great-earthquake paleogeodesy and tsunamis of the past 2000 years at Alsea Bay, central Oregon coast, USA

    USGS Publications Warehouse

    Nelson, A.R.; Sawai, Y.; Jennings, A.E.; Bradley, L.A.; Gerson, L.; Sherrod, B.L.; Sabean, J.; Horton, B.P.

    2008-01-01

    The width of plate-boundary fault rupture at the Cascadia subduction zone, a dimension related to earthquake magnitude, remains uncertain because of the lack of quantitative information about land-level movements during past great-earthquake deformation cycles. Beneath a marsh at Alsea Bay, on the central Oregon coast, four sheets of tsunami-deposited sand blanket contacts between tidal mud and peat. Radiocarbon ages for the sheets match ages for similar evidence of regional coseismic subsidence and tsunamis during four of Cascadia's great earthquakes. Barring rapid, unrecorded postseismic uplift, reconstruction of changes in land level from core samples using diatom and foraminiferal transfer functions includes modest coseismic subsidence (0.4??0.2 m) during the four earthquakes. Interpretation is complicated, however, by the 30-38% of potentially unreliable transfer function values from samples with poor analogs in modern diatom and foraminiferal assemblages. Reconstructions of coseismic subsidence using good-analog samples range from 0.46??0.12 to 0.09??0.20 m showing greater variability than implied by sample-specific errors. From apparent high rates of land uplift following subsidence and tsunamis, we infer that postseismic rebound caused by slip on deep parts of the plate boundary and (or) viscoelastic stress relaxation in the upper plate may be almost as large as coseismic subsidence. Modest coseismic subsidence 100 km landward of the deformation front implies that plate-boundary ruptures in central Oregon were largely offshore. Ruptures may have been long and narrow during earthquakes near magnitude 9, as suggested for the AD 1700 earthquake, or of smaller and more variable dimensions and magnitudes. ?? 2008 Elsevier Ltd. All rights reserved.

  16. Dynamic changes in DNA methylation of stress-associated genes (OXTR, BDNF ) after acute psychosocial stress.

    PubMed

    Unternaehrer, E; Luers, P; Mill, J; Dempster, E; Meyer, A H; Staehli, S; Lieb, R; Hellhammer, D H; Meinlschmidt, G

    2012-08-14

    Environmentally induced epigenetic alterations are related to mental health. We investigated quantitative DNA methylation status before and after an acute psychosocial stressor in two stress-related genes: oxytocin receptor (OXTR) and brain-derived neurotrophic factor (BDNF ). The cross sectional study took place at the Division of Theoretical and Clinical Psychobiology, University of Trier, Germany and was conducted from February to August 2009. We included 83 participants aged 61-67 years. Thereof, 76 participants completed the full study procedure consisting of blood sampling before (pre-stress), 10 min after (post-stress) and 90 min after (follow-up) the Trier social stress test. We assessed quantitative DNA methylation of whole-blood cells using Sequenom EpiTYPER. Methylation status differed between sampling times in one target sequence of OXTR (P<0.001): methylation increased from pre- to post-stress (P=0.009) and decreased from post-stress to follow-up (P<0.001). This decrease was also found in a second target sequence of OXTR (P=0.034), where it lost statistical significance when blood cell count was statistically controlled. We did not detect any time-associated differences in methylation status of the examined BDNF region. The results suggest a dynamic regulation of DNA methylation in OXTR-which may in part reflect changes in blood cell composition-but not BDNF after acute psychosocial stress. This may enhance the understanding of how psychosocial events alter DNA methylation and could provide new insights into the etiology of mental disorders.

  17. Controls of earthquake faulting style on near field landslide triggering: The role of coseismic slip

    NASA Astrophysics Data System (ADS)

    Tatard, L.; Grasso, J. R.

    2013-06-01

    compare the spatial distributions of seven databases of landslides triggered by Mw=5.6-7.9 earthquakes, using distances normalized by the earthquake fault length. We show that the normalized landslide distance distributions collapse, i.e., the normalized distance distributions overlap whatever the size of the earthquake, separately for the events associated with dip-slip, buried-faulting earthquakes, and surface-faulting earthquakes. The dip-slip earthquakes triggered landslides at larger normalized distances than the oblique-slip event of Loma Prieta. We further identify that the surface-faulting earthquakes of Wenchuan, Chi-Chi, and Kashmir triggered landslides at normalized distances smaller than the ones expected from their Mw ≥ 7.6 magnitudes. These results support a control of the seismic slip (through amplitude, rake, and surface versus buried slip) on the distances at which landslides are triggered. In terms of coseismic landslide management in mountainous areas, our results allow us to propose distances at which 95 and 75% of landslides will be triggered as a function of the earthquake focal mechanism.

  18. Stressful life transitions and wellbeing: A comparison of the stress buffering hypothesis and the social identity model of identity change.

    PubMed

    Praharso, Nurul F; Tear, Morgan J; Cruwys, Tegan

    2017-01-01

    The relationship between stressful life transitions and wellbeing is well established, however, the protective role of social connectedness has received mixed support. We test two theoretical models, the Stress Buffering Hypothesis and the Social Identity Model of Identity Change, to determine which best explains the relationship between social connectedness, stress, and wellbeing. Study 1 (N=165) was an experiment in which participants considered the impact of moving cities versus receiving a serious health diagnosis. Study 2 (N=79) was a longitudinal study that examined the adjustment of international students to university over the course of their first semester. Both studies found limited evidence for the buffering role of social support as predicted by the Stress Buffering Hypothesis; instead people who experienced a loss of social identities as a result of a stressor had a subsequent decline in wellbeing, consistent with the Social Identity Model of Identity Change. We conclude that stressful life events are best conceptualised as identity transitions. Such events are more likely to be perceived as stressful and compromise wellbeing when they entail identity loss. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Intraindividual change and variability in daily stress processes: Findings from two measurement-burst diary studies

    PubMed Central

    Sliwinski, Martin J.; Almeida, David M.; Smyth, Joshua; Stawski, Robert S.

    2010-01-01

    There is little longitudinal information on aging-related changes in emotional responses to negative events. The present manuscript examined intraindividual change and variability in the within-person coupling of daily stress and negative affect (NA) using data from two-measurement burst daily diary studies. Three main findings emerged. First, average reactivity to daily stress increased longitudinally, and this increase was evident across most the adult lifespan. Second, individual differences in emotional reactivity to daily stress exhibited long-term temporal stability, but this stability was greatest in midlife and decreased in old age. And third, reactivity to daily stress varied reliably within-persons (across-time), with individual exhibiting higher levels of reactivity during times when reporting high levels of global subject stress in previous month. Taken together, the present results emphasize the importance of modeling dynamic psychosocial and aging processes that operate across different time scales for understanding age-related changes in daily stress processes. PMID:20025399

  20. Coseismic landslides reveal near-surface rock strength in a high-relief tectonically active setting

    USGS Publications Warehouse

    Gallen, Sean F.; Clark, Marin K.; Godt, Jonathan W.

    2014-01-01

    We present quantitative estimates of near-surface rock strength relevant to landscape evolution and landslide hazard assessment for 15 geologic map units of the Longmen Shan, China. Strength estimates are derived from a novel method that inverts earthquake peak ground acceleration models and coseismic landslide inventories to obtain material proper- ties and landslide thickness. Aggregate rock strength is determined by prescribing a friction angle of 30° and solving for effective cohesion. Effective cohesion ranges are from 70 kPa to 107 kPa for 15 geologic map units, and are approximately an order of magnitude less than typical laboratory measurements, probably because laboratory tests on hand-sized specimens do not incorporate the effects of heterogeneity and fracturing that likely control near-surface strength at the hillslope scale. We find that strength among the geologic map units studied varies by less than a factor of two. However, increased weakening of units with proximity to the range front, where precipitation and active fault density are the greatest, suggests that cli- matic and tectonic factors overwhelm lithologic differences in rock strength in this high-relief tectonically active setting.

  1. How job and family demands impact change in perceived stress: A dyadic study.

    PubMed

    Smoktunowicz, Ewelina; Cieślak, Roman

    2018-01-07

    The aim of this two-wave study has been to test the spillover and crossover of job and family demands on changes in perceived stress at work and in the family. Specifically, we proposed that demands from one domain (work or family) spilled over to another domain through interrrole conflict (work-family/family-work conflict) and context-specific self-efficacy. Additionally, we hypothesized that changes in perceived stress were impacted not only by a person's own demands through interrole conflict but also by the demands of one's significant other, in the process of crossover. The study was of dyadic design and it was conducted online, among 130 heterosexual couples, at 2 time points separated by 3 months interval. Hypotheses were verified by means of the path analysis. No support was found for the spillover of job and family demands on changes in perceived stress through interrole conflict and self-efficacy, neither for women nor for men. With regard to the crossover, no support was found for the actor effects, i.e., a person's demands did not impact changes in one's own work- and family-related perceived stress but partial support was found for the partner effects, i.e., women's job demands were associated with men's changes in work and family-related stress through women's work-family conflict, and men's family demands were associated with women's change in family-related perceived stress through men's family-work conflict. The study is a longitudinal test of the Spillover-Crossover model and Work-Home Resources model demonstrating that job and family demands are transmitted across domains and across partners in the intimate relationships through the interrole conflict but the nature of this crossover is different for men and women. Int J Occup Med Environ Health 2018;31(2)199-215. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  2. Stress and Coping Styles of Middle-Aged Women Changing Jobs.

    ERIC Educational Resources Information Center

    Ackerman, Rosalie J.

    Middle aged women who have previously been occupied with family and community activities often experience increased role stress when they begin to invest more time and energy in their work roles. To compare coping styles women use to adjust to job changes, 71 women, aged 30-62, who had changed jobs within a 3-year interval were classified into…

  3. Fault Zone Permeability Decrease Following Large Earthquakes in a Hydrothermal System

    NASA Astrophysics Data System (ADS)

    Shi, Zheming; Zhang, Shouchuan; Yan, Rui; Wang, Guangcai

    2018-02-01

    Seismic wave shaking-induced permeability enhancement in the shallow crust has been widely observed. Permeability decrease, however, is seldom reported. In this study, we document coseismic discharge and temperature decrease in a hot spring following the 1996 Lijiang Mw 7.0 and the 2004 Mw 9.0 earthquakes in the Balazhang geothermal field. We use three different models to constrain the permeability change and the mechanism of coseismic discharge decrease, and we use an end-member mixing model for the coseismic temperature change. Our results show that the earthquake-induced permeability decrease in the fault zone reduced the recharge from deep hot water, which may be the mechanism that explains the coseismic discharge and temperature responses. The changes in the hot spring response reflect the dynamic changes in the hydrothermal system; in the future, the earthquake-induced permeability decrease should be considered when discussing controls on permeability.

  4. Seismological Field Observation of Mesoscopic Nonlinearity

    NASA Astrophysics Data System (ADS)

    Sens-Schönfelder, Christoph; Gassenmeier, Martina; Eulenfeld, Tom; Tilmann, Frederik; Korn, Michael; Niederleithinger, Ernst

    2016-04-01

    Noise based observations of seismic velocity changes have been made in various environments. We know of seasonal changes of velocities related to ground water or temperature changes, co-seismic changes originating from shaking or stress redistribution and changes related to volcanic activity. Is is often argued that a decrease of velocity is related to the opening of cracks while the closure of cracks leads to a velocity increase if permanent stress changes are invoked. In contrast shaking induced changes are often related to "damage" and subsequent "healing" of the material. The co-seismic decrease and transient recovery of seismic velocities can thus be explained with both - static stress changes or damage/healing processes. This results in ambiguous interpretations of the observations. Here we present the analysis of one particular seismic station in northern Chile that shows very strong and clear velocity changes associated with several earthquakes ranging from Mw=5.3 to Mw=8.1. The fact that we can observe the response to several events of various magnitudes from different directions offers the unique possibility to discern the two possible causative processes. We test the hypothesis, that the velocity changes are related to shaking rather than stress changes by developing an empirical model that is based on the local ground acceleration at the sensor site. The eight year of almost continuous observations of velocity changes are well modeled by a daily drop of the velocity followed by an exponential recovery. Both, the amplitude of the drop as well as the recovery time are proportional to the integrated acceleration at the seismic station. Effects of consecutive days are independent and superimposed resulting in strong changes after earthquakes and constantly increasing velocities during quiet days thereafter. This model describes the continuous observations of the velocity changes solely based on the acceleration time series without individually defined dates

  5. The Impact of Urban Growth and Climate Change on Heat Stress in an Australian City

    NASA Astrophysics Data System (ADS)

    Chapman, S.; Mcalpine, C. A.; Thatcher, M. J.; Salazar, A.; Watson, J. R.

    2017-12-01

    Over half of the world's population lives in urban areas. Most people will therefore be exposed to climate change in an urban environment. One of the climate risks facing urban residents is heat stress, which can lead to illness and death. Urban residents are at increased risk of heat stress due to the urban heat island effect. The urban heat island is a modification of the urban environment and increases temperatures on average by 2°C, though the increase can be much higher, up to 8°C when wind speeds and cloud cover are low. The urban heat island is also expected to increase in the future due to urban growth and intensification, further exacerbating urban heat stress. Climate change alters the urban heat island due to changes in weather (wind speed and cloudiness) and evapotranspiration. Future urban heat stress will therefore be affected by urban growth and climate change. The aim of this study was to examine the impact of urban growth and climate change on the urban heat island and heat stress in Brisbane, Australia. We used CCAM, the conformal cubic atmospheric model developed by the CSIRO, to examine temperatures in Brisbane using scenarios of urban growth and climate change. We downscaled the urban climate using CCAM, based on bias corrected Sea Surface Temperatures from the ACCESS1.0 projection of future climate. We used Representative Concentration Pathway (RCP) 8.5 for the periods 1990 - 2000, 2049 - 2060 and 2089 - 2090 with current land use and an urban growth scenario. The present day climatology was verified using weather station data from the Australian Bureau of Meteorology. We compared the urban heat island of the present day with the urban heat island with climate change to determine if climate change altered the heat island. We also calculated heat stress using wet-bulb globe temperature and apparent temperature for the climate change and base case scenarios. We found the urban growth scenario increased present day temperatures by 0.5°C in the

  6. Origin of MeV ion irradiation-induced stress changes in SiO2

    NASA Astrophysics Data System (ADS)

    Brongersma, M. L.; Snoeks, E.; van Dillen, T.; Polman, A.

    2000-07-01

    The 4 MeV Xe ion irradiation of a thin thermally grown SiO2 film on a Si substrate leads to four different effects in which each manifests itself by a characteristic change in the mechanical stress state of the film: densification, ascribed to a beam-induced structural change in the silica network; stress relaxation by radiation-enhanced plastic flow; anisotropic expansion and stress generation; and transient stress relaxation ascribed to the annealing of point defects. Using sensitive wafer-curvature measurements, in situ measurements of the in-plane mechanical stress were made during and after ion irradiation at various temperatures in the range from 95 to 575 K, in order to study the magnitude of these effects, the mechanism behind them, as well as their interplay. It is found that the structural transformation leads to a state with an equilibrium density that is 1.7%-3.2% higher than the initial state, depending on the irradiation temperature. Due to the constraint imposed by the substrate, this transformation causes a tensile in-plane stress in the oxide film. This stress is relaxed by plastic flow, leading to densification of the film. The anisotropic strain-generation rate decreases linearly with temperature from (2.5±0.4)×10-17cm2/ion at 95 K to (-0.9±0.7)×10-17 cm2/ion at 575 K. The spectrum of irradiation-induced point defects, measured from the stress change after the ion beam was switched off, peaks below 0.23 eV and extends up to 0.80 eV. All four irradiation-induced effects can be described using a thermal spike model.

  7. Thermo-Hydro-Micro-Mechanical 3D Modeling of a Fault Gouge During Co-seismic Slip

    NASA Astrophysics Data System (ADS)

    Papachristos, E.; Stefanou, I.; Sulem, J.; Donze, F. V.

    2017-12-01

    A coupled Thermo-Hydro-Micro-Mechanical (THMM) model based on the Discrete Elements method (DEM) is presented for studying the evolving fault gouge properties during pre- and co-seismic slip. Modeling the behavior of the fault gouge at the microscale is expected to improve our understanding on the various mechanisms that lead to slip weakening and finally control the transition from aseismic to seismic slip.The gouge is considered as a granular material of spherical particles [1]. Upon loading, the interactions between particles follow a frictional behavior and explicit dynamics. Using regular triangulation, a pore network is defined by the physical pore space between the particles. The network is saturated by a compressible fluid, and flow takes place following Stoke's equations. Particles' movement leads to pore deformation and thus to local pore pressure increase. Forces exerted from the fluid onto the particles are calculated using mid-step velocities. The fluid forces are then added to the contact forces resulting from the mechanical interactions before the next step.The same semi-implicit, two way iterative coupling is used for the heat-exchange through conduction.Simple tests have been performed to verify the model against analytical solutions and experimental results. Furthermore, the model was used to study the effect of temperature on the evolution of effective stress in the system and to highlight the role of thermal pressurization during seismic slip [2, 3].The analyses are expected to give grounds for enhancing the current state-of-the-art constitutive models regarding fault friction and shed light on the evolution of fault zone propertiesduring seismic slip.[1] Omid Dorostkar, Robert A Guyer, Paul A Johnson, Chris Marone, and Jan Carmeliet. On the role of fluids in stick-slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics-discrete element approach. Journal of Geophysical Research: Solid Earth, 122

  8. Changes of testicular phosphorylated proteins in response to restraint stress in male rats*

    PubMed Central

    Arun, Supatcharee; Burawat, Jaturon; Sukhorum, Wannisa; Sampannang, Apichakan; Uabundit, Nongnut; Iamsaard, Sitthichai

    2016-01-01

    Objective: To investigate male reproductive parameters via changes of potential testicular protein markers in restraint-stress rats. Methods: Male Sprague-Dawley rats were divided into two groups (non-immobilized control and restraint-immobilized/stress groups, n=8 each group). The stress animals were immobilized (12 h/d) by a restraint cage for 7 consecutive days. All reproductive parameters, morphology and histology were observed and compared between groups. In addition, the expression of steroidogenic acute regulatory (StAR) and phosphotyrosine proteins (previously localized in Sertoli and late spermatid cells) in testicular lysate was assayed by immuno-Western blotting. Results: Testosterone level, sperm concentration and sperm head normality of stress rats were significantly decreased while the corticosterone level was increased as compared with the control (P<0.05). Histologically, stress rats showed low sperm mass in epididymal lumen and some atrophy of seminiferous tubules. Although the expression of testicular StAR protein was not significantly different between groups, changed patterns of the 131, 95, and 75 kDa testicular phosphorylated proteins were observed in the stress group compared with the control group. The intensity of a testicular 95-kDa phosphorylated protein was significantly decreased in stress rats. Conclusions: This study has demonstrated the alteration of testicular phosphorylated protein patterns, associated with adverse male reproductive parameters in stress rats. It could be an explanation of some infertility in stress males. PMID:26739523

  9. Effects of fluoxetine on changes of pain sensitivity in chronic stress model rats.

    PubMed

    Lian, Yan-Na; Chang, Jin-Long; Lu, Qi; Wang, Yi; Zhang, Ying; Zhang, Feng-Min

    2017-06-09

    Exposure to stress could facilitate or inhibit pain responses (stress-induced hyperalgesia or hypoalgesia, respectively). Fluoxetine is a selective serotonin (5-HT) reuptake inhibitor antidepressant. There have been contradictory reports on whether fluoxetine produces antinociceptive effects. The purpose of this study was to elucidate changes in pain sensitivity after chronic stress exposure, and the effects of fluoxetine on these changes. We measured thermal, mechanical, and formalin-induced acute and inflammatory pain by using the tail-flick, von Frey, and formalin tests respectively. The results showed that rats exposed to chronic stress exhibited thermal and formalin-induced acute and inflammatory hypoalgesia and transient mechanical hyperalgesia. Furthermore, fluoxetine promoted hypoalgesia in thermal and inflammatory pain and induced mechanical hyperalgesia. Our results indicate that the 5-HT system could be involved in hypoalgesia of thermal and inflammatory pain and induce transient mechanical hyperalgesia after stress exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Proteomic changes in female rat hippocampus following exposure to a terrified sound stress.

    PubMed

    Yang, Juan; Hu, Lili; Song, Tusheng; Liu, Yong; Wu, Qiuhua; Zhao, Lingyu; Liu, Liying; Zhao, Xiaoge; Zhang, Dianzeng; Huang, Chen

    2014-06-01

    Stress plays a profound role in the onset of affective disorders, including an elevation in risk factors for depression and anxiety. Women are twice as vulnerable to stress as men because of greater sensitivity to a substance produced during times of anxiety. To better define the abnormal proteins implicated in cognitive deficits and other stress-induced dysfunction, female rats were exposed to terrified sound stress, and two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) were utilized to determine the differential protein expression in the hippocampus in sound-stressed female rats compared with controls. Quantitative differences were found in 44 protein spots which were differentially expressed between the stressed and control groups (fold change of >2; p < 0.01). Eighteen protein spots were downregulated, and 26 protein spots were upregulated in the stressed group. The seven most differentially expressed proteins were identified and validated as follows: dihydropyrimidinase-related protein 2 (DRP-2), creatine kinase B type, dynamin-1 protein, alpha-internexin, glial fibrillary acidic protein beta, gamma-enolase, and peptidyl-prolyl cis-trans isomerase A. Changes in protein levels were detected in the hippocampus of female rats subjected to terrified sound stress. The findings herein may open new opportunities for further investigations on the modulation induced in the hippocampus by stress at the molecular level, especially with respect to females stress.

  11. Climate change projections of heat stress in Europe: From meteorological variables to impacts on productivity

    NASA Astrophysics Data System (ADS)

    Casanueva, Ana; Kotlarski, Sven; Liniger, Mark A.

    2017-04-01

    Future climate change is likely to have important impacts in many socio-economic sectors. In particular, higher summer temperatures or more prolonged heat waves may be responsible for health problems and productivity losses related to heat stress, especially affecting people exposed to such situations (e.g. working under outside settings or in non-acclimatized workplaces). Heat stress on the body under work load and consequently their productivity loss can be described through heat stress indices that are based on multiple meteorological parameters such as temperature, humidity, wind and radiation. Exploring the changes of these variables under a warmer climate is of prime importance for the Impacts, Adaptation and Vulnerability communities. In particular, the H2020 project HEAT-SHIELD aims at analyzing the impact of climate change on heat stress in strategic industries in Europe (manufacturing, construction, transportation, tourism and agriculture) within an inter-sectoral framework (climate scientists, biometeorologists, physiologists and stakeholders). In the present work we explore present and future heat stress over Europe using an ensemble of the state-of-the-art RCMs from the EURO-CORDEX initiative. Since RCMs cannot be directly used in impact studies due to their partly substantial biases, a standard bias correction method (empirical quantile mapping) is applied to correct the individual variables that are then used to derive heat stress indices. The objectives of this study are twofold, 1) to test the ability of the separately bias corrected variables to reproduce the main characteristics of heat stress indices in present climate conditions and 2) to explore climate change projections of heat stress indices. We use the wet bulb globe temperature (WBGT) as primary heat stress index, considering two different versions for indoor (or in the shade, based on temperature and humidity conditions) and outdoor settings (including also wind and radiation). The WBGT

  12. [Finite element analysis of stress changes of posterior spinal pedicle screw infixation].

    PubMed

    Yan, Jia-Zhi; Wu, Zhi-Hong; Xu, Ri-Xin; Wang, Xue-Song; Xing, Ze-Jun; Zhao, Yu; Zhang, Jian-Guo; Shen, Jian-Xiong; Wang, Yi-Peng; Qiu, Gui-Xing

    2009-01-06

    To evaluate the mechanical response of L3-L4 segment after posterior interfixation with a transpedicle screw system. Spiral CT machine was used to conduct continuous parallel scan on the L3-L4 section of a 40-year-old healthy male Chinese. The image data thus obtained were introduced into MIMICS software to reconstruct the 2-D data into volume data and obtain 3-D models of every element.. Pro/3-D model construction software system was used to simulate the 3-D entity of L3-L4 fixed by screw robs through spinal pedicle via posterior approach that was introduced into the finite element software ABAQUS to construct a 3-D finite element model. The stress changes on the vertebrae and screw under the axial pressure of 0.5 mPa was analyzed. Under the evenly distributed pressure the displacement of the L4 model was 0.00125815 mm, with an error of only 0.8167% from the datum displacement. The convergence of the model was good. The stress of the fixed vertebral body, intervertebral disc, and internal fixators changed significantly. The stress concentration zone of the intervertebral disc turned from the posterolateral side to anterolateral side. The stress produced by the fixed vertebral bodies decreased significantly. Obvious stress concentration existed in the upper and lower sides of the base of screw and the fixed screw at the upper vertebral body bore greater stress than the lower vertebral body. Integration of computer aided device and finite element analysis can successfully stimulate the internal fixation of L3-IA visa posterior approach and observe the mechanic changes in the vertebral column more directly.

  13. Dietary change mediates relationships between stress during pregnancy and infant head circumference measures: the QF2011 study.

    PubMed

    Dancause, Kelsey N; Mutran, Dima; Elgbeili, Guillaume; Laplante, David P; Kildea, Sue; Stapleton, Helen; McIntyre, David; King, Suzanne

    2017-07-01

    Prenatal maternal stress can adversely affect birth outcomes, likely reflecting effects of maternal stress hormones on fetal development. Maternal stress might also induce behavioural changes, such as dietary change, that might influence fetal development. Few studies have documented relationships between stress and dietary change in pregnancy. We analysed stress and dietary change among 222 pregnant women exposed to the 2011 Queensland Floods. We assessed women's objective hardship, subjective distress and cognitive appraisal of the disaster; changes in their diets and their associations with infants' gestational age, weight, length and head circumference at birth, head circumference to birth length ratio (HC/BL) and ponderal index. Greater objective hardship was correlated with more negative dietary change, skipped meals and skipped multivitamins. There were no direct effects of stress or dietary change on birth outcomes. However, we observed an interactive effect of dietary change and exposure timing on head circumference for gestational age (HC for GA) (p = 0.010) and a similar trend for HC/BL (p = 0.064). HC for GA and HC/BL were larger among children whose mothers experienced negative changes to their diet in early pregnancy compared with later pregnancy, consistent with a 'head-sparing' response with early gestation exposure. Further analyses indicated that dietary change mediates the relationship between objective hardship because of the floods and these outcomes. This is the first report of relationships among an independent stressor, dietary change and birth outcomes. It highlights another possible mechanism in the relationship between prenatal maternal stress and child development that could guide future research and interventions. © 2016 John Wiley & Sons Ltd.

  14. The 2012 Emilia earthquake in northern Italy: coseismic geological effects within a compressive tectonic framework

    NASA Astrophysics Data System (ADS)

    Montone, P.; Alessio, G.; Alfonsi, L.; Brunori, C.; Burrato, P.; Casula, G.; Cinti, F. R.; Civico, R.; Colini, L.; Cucci, L.; De Martini, P. M.; Falcucci, E.; Galadini, F.; Gaudiosi, G.; Gori, S.; Mariucci, M.; Moro, M.; Nappi, R.; Nardi, A.; Nave, R.; Pantosti, D.; Patera, A.; Pesci, A.; Pignone, M.; Pinzi, S.; Pucci, S.; Vannoli, P.; Venuti, A.; Villani, F.

    2012-12-01

    On May 20 2012 a Ml 5.9 seismic event hit the Emilia Po Plain area (northern Italy) triggering an intense earthquake activity along a broad area of the Plain. Nine days later, on May 29 a Ml 5.8 event occurred roughly 10 km to the SW of the first main shock; these events caused 26 victims and several injured and damages. The aftershock area extended for more than 50 km, in WNW-ESE direction, including five major aftershocks with 5.1≤Ml≤5.3 and more than two thousands of minor events. In general, the seismic sequence was confined in the upper 10 km of depth (ISIDe, http://iside.rm.ingv.it/). The focal mechanisms calculated for the main events and also for several M>4.5 aftershocks are almost all consistent with a compression (P-axes) N-S oriented due to thrust fault mechanisms. The two nodal planes, both E-W oriented, show a 40° southward and 60-70° northward dipping plane (QRCMT, Quick Regional Moment Tensors, http://autorcmt.bo.ingv.it/quicks.html), connected with the compressional regime of the area. From a tectonic point of view, the active Apennine thrust fronts, buried under the Po Plain Plio-Quaternary sediments, locally consist of three N-verging arcs. The most external structures, the active Ferrara and Mirandola thrusts and folds are responsible for the Emilia Romagna 2012 earthquake sequence. Just after the 20th May seismic event, the EMERGEO Working Group was active in surveying the epicentral area searching for coseismic geological effects. The survey lasted one month, involving about thirty researchers and technicians of the INGV in field and aerial investigations. Simultaneously, a laboratory-working group gathered, organized and interpreted the observations, processing them in the EMERGEO Information System (siE), on a GIS environment. The most common coseismic effects are: 1) liquefactions related to overpressure of aquifers hosted in buried and confined sand layers, occurring both as single cones or through several aligned vents forming

  15. Changes in Mindfulness and Posttraumatic Stress Disorder Symptoms Among Veterans Enrolled in Mindfulness-Based Stress Reduction.

    PubMed

    Stephenson, Kyle R; Simpson, Tracy L; Martinez, Michelle E; Kearney, David J

    2017-03-01

    The current study assessed associations between changes in 5 facets of mindfulness (Acting With Awareness, Observing, Describing, Non-Reactivity, and Nonjudgment) and changes in 4 posttraumatic stress disorder (PTSD) symptom clusters (Re-Experiencing, Avoidance, Emotional Numbing, and Hyperarousal symptoms) among veterans participating in mindfulness-based stress reduction (MBSR). Secondary analyses were performed with a combined data set consisting of 2 published and 2 unpublished trials of MBSR conducted at a large Veterans Affairs hospital. The combined sample included 113 veterans enrolled in MBSR who screened positive for PTSD and completed measures of mindfulness and PTSD symptoms before and after the 8-week intervention. Increases in mindfulness were significantly associated with reduced PTSD symptoms. Increases in Acting With Awareness and Non-Reactivity were the facets of mindfulness most strongly and consistently associated with reduced PTSD symptoms. Increases in mindfulness were most strongly related to decreases in Hyperarousal and Emotional Numbing. These results extend previous research, provide preliminary support for changes in mindfulness as a viable mechanism of treatment, and have a number of potential practical and theoretical implications. © 2016 Wiley Periodicals, Inc.

  16. Changes in brain amino acid content induced by hyposmolar stress and energy deprivation.

    PubMed

    Haugstad, T S; Valø, E T; Langmoen, I A

    1995-12-01

    The changes in endogenous amino acids in brain extracellular and intracellular compartments evoked by hyposmotic stress and energy deprivation were compared. Tissue content and release of ten amino acids were measured simultaneously in rat hippocampal slices by means of high performance liquid chromatography. Hyposmotic stress induced a large release of taurine (25568 pmol mg-1 protein), and a smaller release of glutamate, accompanied by an inverse change in tissue content. Adding mannitol to correct osmolarity, blocked these changes. Energy deprivation caused an increase in the release of all amino acids except glutamine. The release was particularly large for glutamate and GABA (31141 and 13282 pmol mg-1, respectively). The intracellular concentrations were generally reduced, but the total amount of the released amino acids increased In contrast to the effect seen during hyposmolar stress, mannitol enhanced the changes due to energy deprivation. The results show that hyposmolar stress and energy deprivation cause different content and release profiles, suggesting that the mechanisms involved in the two situations are either different or modulated in different ways. The intracellular amino acid depletion seen during energy deprivation shows that increased outward transport is probably a primary event, and increased amino acid formation likely secondary to this release.

  17. Shallow Lunar Seismic Activity and the Current Stress State of the Moon

    NASA Technical Reports Server (NTRS)

    Watters, Thomas R.; Weber, Renee C.; Collins, Geoffrey C.; Johnson, Catherine L.

    2017-01-01

    A vast, global network of more than 3200 lobate thrust fault scarps has been revealed in high resolution Lunar Reconnaissance Orbiter Camera (LROC) images. The fault scarps are very young, less than 50 Ma, based on their small scale and crisp appearance, crosscutting relations with small-diameter impact craters, and rates of infilling of associated small, shallow graben and may be actively forming today. The population of young thrust fault scarps provides a window into the recent stress state of the Moon and offers insight into the origin of global lunar stresses. The distribution of orientations of the fault scarps is non-random, inconsistent with isotropic stresses from late-stage global contraction as the sole source of stress. Modeling shows that tidal stresses contribute significantly to the current stress state of the lunar crust. Tidal stresses (orbital recession and diurnal tides) superimposed on stresses from global contraction result in non-isotropic compressional stress and may produce thrust faults consistent with lobate scarp orientations. At any particular point on the lunar surface, peak compressive stress will be reached at a certain time in the diurnal cycle. Coseismic slip events on currently active thrust faults are expected to be triggered when peak stresses are reached. Analysis of the timing of the 28 the shallow moonquakes recorded by the Apollo seismic network shows that 19 indeed occur when the Moon is closer to apogee, while only 9 shallow events occur when the Moon is closer to perigee. Here we report efforts to refine the model for the current stress state of the Moon by investigating the contribution of polar wander. Progress on relocating the epicentral locations of the shallow moonquakes using an algorithm designed for sparse networks is also reported.

  18. Chronic stress and brain plasticity: mechanisms underlying adaptive and maladaptive changes and implications for stress-related CNS disorders

    PubMed Central

    Radley, Jason; Morilak, David; Viau, Victor; Campeau, Serge

    2015-01-01

    Stress responses entail neuroendocrine, autonomic, and behavioral changes to promote effective coping with real or perceived threats to one’s safety. While these responses are critical for the survival of the individual, adverse effects of repeated exposure to stress are widely known to have deleterious effects on health. Thus, a considerable effort in the search for treatments to stress-related CNS disorders necessitates unraveling the brain mechanisms responsible for adaptation under acute conditions and their perturbations following chronic stress exposure. This paper is based upon a symposium from the 2014 International Behavioral Neuroscience Meeting, summarizing some recent advances in understanding the effects of stress on adaptive and maladaptive responses subserved by limbic forebrain networks. An important theme highlighted in this review is that the same networks mediating neuroendocrine, autonomic, and behavioral processes during adaptive coping also comprise targets of the effects of repeated stress exposure in the development of maladaptive states. Where possible, reference is made to the similarity of neurobiological substrates and effects observed following repeated exposure to stress in laboratory animals and the clinical features of stress-related disorders in humans. PMID:26116544

  19. Gender differences in the impact of stressful life events on changes in body mass index.

    PubMed

    Udo, Tomoko; Grilo, Carlos M; McKee, Sherry A

    2014-12-01

    The positive association between stress and weight has been consistently demonstrated, particularly in women. The effect of stress on changes in weight, however, is less clear. A total of 33,425 participants in Wave 1 and Wave 2 surveys of the National Epidemiologic Survey on Alcohol and Related Condition (NESARC) were included in this study. The study examined the relationship between stressful life events during the 12months prior to the Wave 2 interview and changes in body mass index (BMI) between Wave 1 and Wave 2 interviews. Women reported significantly greater increases in BMI than men. Stressful life events, particularly job-related changes, legal problems, and death of family or friends, were associated significantly with increases in BMI among women but not men. In a nationally representative sample, stressful life events were associated with greater weight gain in women. Prevention of weight gain in women should focus on the behavioral and physiological mechanisms underlying female-specific effects of stressful life events on weight gain. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Changes in Stress Perception and Coping during Adolescence: The Role of Situational and Personal Factors

    ERIC Educational Resources Information Center

    Seiffge-Krenke, Inge; Aunola, Kaisa; Nurmi, Jari-Erik

    2009-01-01

    The present study investigated the interplay between developmental changes in stress and coping during early and late adolescence. Using a longitudinal design, stress perception and coping styles of 200 adolescents in 7 different stressful situations were investigated. Multilevel piecewise latent growth curve models showed that stress perception…

  1. Time-Varying Upper-Plate Deformation during the Megathrust Subduction Earthquake Cycle

    NASA Astrophysics Data System (ADS)

    Furlong, Kevin P.; Govers, Rob; Herman, Matthew

    2015-04-01

    -earthquake loading times and rates with a viscously relaxed regime at depths greater than 40 km. Analyses of our preliminary model results lead to the following: 1. Co-seismic stress transfer from the unloading elastic layer (shallow) into an elastically loading visco-elastic layer (deeper) - extends ~ 100 km inboard of locked zone. This stress transfer affects both coseismic and post-seismic surface displacements. 2. Post-seismic response of upper plate involves seaward motion for initial 10-20 years (~ 2 Maxwell times) after EQ. This occurs in spite of there being no slip on locked plate boundary - i.e. this is not plate boundary after-slip but rather is a consequence of stress relaxation in co-seismically loaded visco-elastic layer. However standard inversions of the surface displacement field would indicate significant after-slip along the locked plate interface. 3. By approximately 80 years (8 Maxwell times) system has returned to simple linear displacement pattern - the expected behavior for a shortening elastic beam. Prior to that time, the surface (observable) displacement pattern changes substantially over time and would result in an apparent temporal variation in coupling - from near-zero coupling to fully locked over ~ 80 years post-earthquake. These preliminary results indicate that care is needed in interpreting observed surface displacement fields from GPS, InSAR, etc. during the interseismic period. temporal variations in crustal deformation observed in regions such as the recent Tohoku, Maule, and Iquique megathrust events which are ascribed to fault plane after-slip may in fact reflect processes associated with re-equilibration of the visco-elastic subduction system.

  2. Rapid stress-induced transcriptomic changes in the brain depend on beta-adrenergic signaling.

    PubMed

    Roszkowski, Martin; Manuella, Francesca; von Ziegler, Lukas; Durán-Pacheco, Gonzalo; Moreau, Jean-Luc; Mansuy, Isabelle M; Bohacek, Johannes

    2016-08-01

    Acute exposure to stressful experiences can rapidly increase anxiety and cause neuropsychiatric disorders. The effects of stress result in part from the release of neurotransmitters and hormones, which regulate gene expression in different brain regions. The fast neuroendocrine response to stress is largely mediated by norepinephrine (NE) and corticotropin releasing hormone (CRH), followed by a slower and more sustained release of corticosterone. While corticosterone is an important regulator of gene expression, it is not clear which stress-signals contribute to the rapid regulation of gene expression observed immediately after stress exposure. Here, we demonstrate in mice that 45 min after an acute swim stress challenge, large changes in gene expression occur across the transcriptome in the hippocampus, a region sensitive to the effects of stress. We identify multiple candidate genes that are rapidly and transiently altered in both males and females. Using a pharmacological approach, we show that most of these rapidly induced genes are regulated by NE through β-adrenergic receptor signaling. We find that CRH and corticosterone can also contribute to rapid changes in gene expression, although these effects appear to be restricted to fewer genes. These results newly reveal a widespread impact of NE on the transcriptome and identify novel genes associated with stress and adrenergic signaling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Sodium chloride stress induced morphological and ultrastructural changes in Aspergillus repens.

    PubMed

    Kelavkar, U; Rao, K S; Ghhatpar, H S

    1993-06-01

    Halotolerant fungus, A. repens, showed a considerable difference in its growth rate, morphology, ultrastructural and molecular composition under NaCl stress as compared to control i.e. non-stressed condition. Light microscopic observations revealed significant differences in their mycelial thickness, their branching and septa. Transmission electron microscopic observations of both the conditions depicted significant differences in the qualitative and quantitative changes in mitochondria. Frequent pinocytotic vesiculation (vacuoles) of plasma membrane was observed in fungus under stress but no such vesiculation in control. The multivesiculate structures observed under stress with their origin from the cell membranes and subsequent release into vacuoles have not been reported in fungi under normal physiological conditions. The observations on pinocytosis are discussed in relation to ion compartmentation and salt tolerance in A. repens.

  4. Psychological stress-induced changes in salivary alpha-amylase and adrenergic activity.

    PubMed

    Kang, Younhee

    2010-12-01

    The aim of the study was to examine the relationships among salivary alpha-amylase, plasma catecholamines, blood pressure, and heart rate during psychological stress. This study used a pretest-post-test experimental design with a control group, using repeated measures. A total of 33 participants was divided into the experimental group (n = 16) that underwent a college academic final test as the psychological stress and the control group (n = 17) that did not undergo the test. The levels of salivary alpha-amylase and plasma catecholamines, blood pressure, and heart rate were measured seven times and stress and anxiety were measured once and twice, respectively, as subjective stress markers. Significant changes in the level of salivary alpha-amylase were found in response to psychological stress. However, the correlations of salivary alpha-amylase with the plasma catecholamines, blood pressure, and heart rate were only partially found to be statistically significant. In conclusion, it was shown that salivary alpha-amylase was sensitive to stress throughout this study. Thus, salivary alpha-amylase may be used to measure stress uninvasively in both clinical settings and nursing research where the effects of stress might be scrutinized. Furthermore, the mechanisms of illnesses that are induced by stress could be explored. © 2010 Blackwell Publishing Asia Pty Ltd.

  5. Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress.

    PubMed

    Mathieu, L; Bertrand, I; Abe, Y; Angel, E; Block, J C; Skali-Lami, S; Francius, G

    2014-05-15

    Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τw (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. When rapidly increasing the hydrodynamic constraint, biofilm removal was found to be dependent on a dual process of erosion and coalescence of the biofilm clusters. Indeed, 56% of the biofilm cells were removed with, concomitantly, a decrease in the number of the 50-300 μm(3) clusters and an increase in the number of the smaller (i.e., <50 μm(3)) and larger (i.e., >600 μm(3)) ones. Moreover, AFM evidenced the strengthening of the biofilm structure along with the doubling of the number of contact points, NC, per cluster volume unit following the hydrodynamic disturbance. This suggests that the compactness of the biofilm exopolymers increases with hydrodynamic stress. Shock chlorination removed cells (-75%) from the biofilm while reducing the volume of biofilm clusters. Oxidation stress resulted in a decrease in the cohesive strength profile of the remaining drinking water biofilms linked to a reduction in the number of contact points within the biofilm network structure in particular for the largest biofilm cluster volumes (>200

  6. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, P., E-mail: pkrishnan@iari.res.in; Singh, Ravender; Verma, A.P.S.

    Highlights: • In developing soybean seeds, moisture stress resulted in more proportion of water to bound state. • These changes are further corroborated by concomitant changes in seed metabolites. • Thus there exists a moisture stress and development stage dependence of seed tissue water status. - Abstract: Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin–spin relaxation time (T{sub 2}). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate ofmore » seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin–spin relaxation (T{sub 2}) component like bound water increased with seed maturation (40–50%) but decreased with moisture stress conditions (30–40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds.« less

  7. Coseismic deformation of the destructive April 6, 2009 L'Aquila earthquake (central Italy) from GPS data

    NASA Astrophysics Data System (ADS)

    Anzidei, M.; Boschi, E.; Cannelli, V.; Devoti, R.; Esposito, A.; Galvani, A.; Melini, D.; Pietrantonio, G.; Riguzzi, F.; Sepe, V.; Serpelloni, E.

    2009-09-01

    On April 6, 2009, 01:32:39 GMT, the city of L'Aquila was struck by a Mw 6.3 earthquake that killed 307 people, causing severe destruction and ground cracks in a wide area around the epicenter. Four days before the main shock we augmented the existing permanent GPS network with five GPS stations of the Central Apennine Geodetic Network (CaGeoNet) bordering the L'Aquila basin. The maximum horizontal and vertical coseismic surface displacements detected at these stations was 10.39 ± 0.45 cm and -15.64 ± 1.55 cm, respectively. Fixing the strike direction according to focal mechanism estimates, we estimated the source geometry with a non linear inversion of the geodetic data. Our best fitting fault model is a 13 × 15.7 km2 rectangular fault, SW-dipping at 55.3 ± 1.8°, consistent with the position of observed surface ruptures. The estimated slip (495 ± 29 mm) corresponds to a 6.3 moment magnitude, in excellent agreement with seismological data.

  8. Active stress from earthquake focal mechanisms along the Padan-Adriatic side of the Northern Apennines (Italy), with considerations on stress magnitudes and pore-fluid pressures

    NASA Astrophysics Data System (ADS)

    Boncio, Paolo; Bracone, Vito

    2009-10-01

    The active tectonic regime along the outer Northern Apennines (Padan-Adriatic area) is a matter of debate. We analyse the active tectonic regime by systematically inverting earthquake focal mechanisms in terms of their driving stress field, comparing two different stress inversion methods. Earthquakes within the area often deviate from Andersonian conditions, being characterized by reverse or transpressional slip on high-angle faults even if the regime is almost purely thrust faulting (e.g. Reggio Emilia 1996 and Faenza 2000 earthquakes). We analyse the stress conditions at faulting for the Reggio Emilia and Faenza earthquakes in order to infer the stress magnitudes and the possible role of fluid pressures. The stress analysis defines a consistent pattern of sub-horizontal active deviatoric compression arranged nearly perpendicular to the eastern front of the Padan-Adriatic fold-and-thrust system, independent of the stress inversion method used. The results are consistent with active compression operating within the Padan-Adriatic belt. The stress field is thrust faulting (sub-vertical σ3), except for the Cesena-Forlì and Ancona areas, where a strike-slip regime (sub-vertical or steeply-plunging σ2) operates. The strike-slip regimes are interpreted as being caused by the superposition of local tensional stresses due to oroclinal bending (i.e. rotations of the belt about vertical axes) on the regional compressional stress field. Kinematic complexities characterize the 1996 Reggio Emilia seismic sequence. The distribution of these complexities is not random, suggesting that they are due to local variations of the regional stress field within the unfaulted rocks surrounding the coseismic rupture. The stress conditions at faulting for the Reggio Emilia 1996 and Faenza 2000 earthquakes, coupled with the observation that seismicity in the Padan-Adriatic area often occurs in swarms, suggest that high pore-fluid pressures (Pf ≥ 70% of the lithostatic load) operate

  9. The Mw 7.9 Wenchuan (China) Earthquake: exploring the role of crustal heterogeneities from finite element analysis of DInSAR coseismic deformation

    NASA Astrophysics Data System (ADS)

    Kyriakopoulos, Christodoulos; Trasatti, Elisa; Atzori, Simone; Bignami, Christian; Chini, Marco; Stramondo, Salvatore; Tolomei, Christiano

    2010-05-01

    A destructive (Mw 7.9) earthquake struck the Sichuan province (China) on May 12, 2008. The seismic event, the largest in China in more than three decades and referred as the Wenchuan earthquake, ruptured approximately 280 km of the Yingxiu-Beichuan fault and about 70 km of the Guanxian-Anxian fault. Surface effects were suffered over a wide epicentral area (about 300 km E-W and 250 km N-S). The huge earthquake took place within the context of long term uplift of the Longmen Shan range in eastern Tibet. The Longmen Shan fault zone is the main tectonic boundary between the Sichuan basin and eastern Tibet and is characterized by a large topographic relief (from 500m a.s.l. to more than 4000m) and large variations in rheological properties. The coseismic deformation is imaged by a set of ALOS-PALSAR L-band SAR interferograms. We use an unprecedented high number of data (25 frames from 6 adjacent tracks) to encompass the entire coseismic area. The resulting mosaic of differential interferograms covers an overall area of about 340 km E-W and 240 km N-S. The complex geophysical context of Longmen Shan and the variations of the fault geometry along its length can be better handled by means of numerical methods. The fault geometry is constrained by inversions of geodetic data and by taking into account the geological features of eastern Tibet and Sichuan basin. As a result, we build a Finite Element (FE) model consisting of two non planar faults embedded in a non-homogeneous medium with real topography of the area. We develop a procedure to perform inversions of DInSAR data based on FE computed Green functions of the surface displacement field. We retrieve a complex slip distribution on the fault segments in a heterogeneous medium with realistic surface topography.

  10. Raised Holocene paleo-shorelines along the Capo Vaticano coast (western Calabria, Italy): Evidence of co-seismic and steady-state deformation

    NASA Astrophysics Data System (ADS)

    Spampinato, Cecilia Rita; Ferranti, Luigi; Monaco, Carmelo; Scicchitano, Giovanni; Antonioli, Fabrizio

    2014-12-01

    Detailed mapping of geomorphological and biological sea-level markers around the Capo Vaticano promontory (western Calabria, Italy), has documented the occurrence of four Holocene paleo-shorelines raised at different altitudes. The uppermost shoreline (PS1) is represented by a deeply eroded fossiliferous beach deposit, reaching an elevation of ∼2.2 m above the present sea-level, and by a notch whose roof is at ∼2.3 m. The subjacent shoreline PS2 is found at an elevation of ∼1.8 m and is represented by a Dendropoma rim, a barnacle band and by a wave-cut platform. Shoreline PS3 includes remnants of vermetid concretions, a barnacle band, a notch and a marine deposit, and reaches an elevation of ∼1.4 m. The lowermost paleo-shoreline (PS4) includes a wave-cut platform and a notch and reaches an elevation of ∼0.8 m. Radiocarbon dating of material from individual paleo-shorelines points to an average uplift rate of 1.2-1.4 mm/yr in the last ∼6 ka at Capo Vaticano. Our data suggest that Holocene uplift was asymmetric, with a greater magnitude in the south-west sector of the promontory, in a manner similar to the long-term deformation attested by Pleistocene terraces. The larger uplift in the south-western sector is possibly related to the additional contribution, onto a large-wavelength regional signal, of co-seismic deformation events, which are not registered to the north-east. We have recognized four co-seismic uplift events at 5.7-5.4 ka, 3.9-3.5 ka, ∼1.9 ka and <1.8 ka ago, superposed on a regional uplift that in the area, is occurring at a rate of ∼1 mm/yr. Our findings places new constrains on the recent activity of border faults south of the peninsula and on the location of the seismogenic source the 1905 destructive earthquake.

  11. Physiological changes induced in four bacterial strains following oxidative stress.

    PubMed

    Baatout, S; De Boever, P; Mergeay, M

    2006-01-01

    In order to study the behaviour and resistance of bacteria under extreme conditions, physiological changes associated with oxidative stress were monitored using flow cytometry. The study was conducted to assess the maintenance of membrane integrity and potential as well as the esterase activity, the intracellular pH and the production of superoxide anions in four bacterial strains (Ralstonia metallidurans, Escherichia coli, Shewanella oneidensis and Deinococcus radiodurans). The strains were chosen for their potential usefulness in bioremediation. Suspensions of R. metallidurans, E. coli, S. oneidensis and D. radiodurans were submitted to 1 h oxidative stress (H2O2 at various concentrations from 0 to 880 mM). Cell membrane permeability (propidium iodide) and potential (rhodamine-123, 3,3'-dihexyloxacarbocyanine iodide), intracellular esterase activity (fluorescein diacetate), intracellular reactive oxygen species concentration (hydroethidine) and intracellular pH (carboxyflurorescein diacetate succinimidyl ester (5(6)) were monitored to evaluate the physiological state and the overall fitness of individual bacterial cells under oxidative stress. The four bacterial strains exhibited varying sensitivities towards H2O2. However, for all bacterial strains, some physiological damage could already be observed from 13.25 mM H2O2 onwards, in particular with regard to their membrane permeability. Depending on the bacterial strains, moderate to high physiological damage could be observed between 13.25 mM and 220 mM H2O2. Membrane potential, esterase activity, intracellular pH and production of superoxide anion production were considerably modified at high H2O2 concentrations in all four strains. In conclusion, we show that a range of significant physiological alterations occurs when bacteria are challenged with H2O2 and fluorescent staining methods coupled with flow cytometry are useful for monitoring the changes induced not only by oxidative stress but also by other

  12. Effects of Changing Stress Amplitude on the Rate of Fatigue-Crack Propagation in Two Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Hudson, C. Michael; Hardrath, Herbert F.

    1961-01-01

    A series of fatigue tests with specimens subjected to constant amplitude and two-step axial loads were conducted on 12-inch-wide sheet specimens of 2024-T3 and 7075-T6 aluminum alloy to study the effects of a change in stress level on fatigue-crack propagation. Comparison of the results of the tests in which the specimens were tested at first a high and then a low stress level with those of the constant-stress- amplitude tests indicated that crack propagation was generally delayed after the transition to the lower stress level. In the tests in which the specimens were tested at first a low and then a high stress level, crack propagation continued at the expected rate after the change in stress levels.

  13. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe.

    PubMed

    Fraga, Helder; García de Cortázar Atauri, Iñaki; Malheiro, Aureliano C; Santos, João A

    2016-11-01

    Viticulture is a key socio-economic sector in Europe. Owing to the strong sensitivity of grapevines to atmospheric factors, climate change may represent an important challenge for this sector. This study analyses viticultural suitability, yield, phenology, and water and nitrogen stress indices in Europe, for present climates (1980-2005) and future (2041-2070) climate change scenarios (RCP4.5 and 8.5). The STICS crop model is coupled with climate, soil and terrain databases, also taking into account CO 2 physiological effects, and simulations are validated against observational data sets. A clear agreement between simulated and observed phenology, leaf area index, yield and water and nitrogen stress indices, including the spatial differences throughout Europe, is shown. The projected changes highlight an extension of the climatic suitability for grapevines up to 55°N, which may represent the emergence of new winemaking regions. Despite strong regional heterogeneity, mean phenological timings (budburst, flowering, veraison and harvest) are projected to undergo significant advancements (e.g. budburst/harvest can be >1 month earlier), with implications also in the corresponding phenophase intervals. Enhanced dryness throughout Europe is also projected, with severe water stress over several regions in southern regions (e.g. southern Iberia and Italy), locally reducing yield and leaf area. Increased atmospheric CO 2 partially offsets dryness effects, promoting yield and leaf area index increases in central/northern Europe. Future biomass changes may lead to modifications in nitrogen demands, with higher stress in northern/central Europe and weaker stress in southern Europe. These findings are critical decision support systems for stakeholders from the European winemaking sector. © 2016 John Wiley & Sons Ltd.

  14. Marrow changes in anorexia nervosa masking the presence of stress fractures on MR imaging.

    PubMed

    Tins, Bernhard; Cassar-Pullicino, Victor

    2006-11-01

    Patients with anorexia nervosa (AN) usually have abnormal bone and bone marrow metabolism resulting in osteopenia and serous bone marrow change. There is an increased risk of stress/insufficiency fractures and these can be the first presentation of AN. This case report describes a patient with previously undiagnosed AN who presented with foot pain. The serous bone marrow changes of AN were found to mask the MR imaging features of stress fractures, as both had low T1w and high T2w and STIR signal intensities. Contrast enhancement was not helpful but actually masked fractures. Scintigraphy was helpful. The radiologist might be the first clinician to raise the possibility of AN and should be aware of the difficulties in diagnosing stress fractures in bones with underlying serous bone marrow change. In this severe case of AN even the heel fat pad and the fat pad in Kager's triangle had undergone serous change.

  15. Psychological stress exposure to aged mice causes abnormal feeding patterns with changes in the bout number.

    PubMed

    Yamada, Chihiro; Mogami, Sachiko; Hattori, Tomohisa

    2017-11-09

    Stress responses are affected by aging. However, studies on stress-related changes in feeding patterns with aging subject are minimal. We investigated feeding patterns induced by two psychological stress models, revealing characteristics of stress-induced feeding patterns as "meal" and "bout" (defined as the minimum feeding behavior parameters) in aged mice. Feeding behaviors of C57BL/6J mice were monitored for 24 h by an automatic monitoring device. Novelty stress reduced the meal amount over the 24 h in both young and aged mice, but as a result of a time course study it was persistent in aged mice. In addition, the decreased bout number was more pronounced in aged mice than in young mice. The 24-h meal and bout parameters did not change in either the young or aged mice following water avoidance stress (WAS). However, the meal amount and bout number increased in aged mice for 0-6 h after WAS exposure but remained unchanged in young mice. Our findings suggest that changes in bout number may lead to abnormal stress-related feeding patterns and may be one tool for evaluating eating abnormality in aged mice.

  16. Geomechanical modelling of induced seismicity using Coulomb stress and pore pressure changes

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Shcherbakov, R.

    2016-12-01

    In recent years, there has been a dramatic increase in seismicity (earthquakes) due to anthropogenic activities related to the unconventional oil and gas exploration in the Western Canada Sedimentary Basin (WCSB). There are compelling evidences that hydraulic fracturing and wastewater injection operations play a key role in induced seismicity in the WCSB; however, their physical mechanisms are still not fully understood. Therefore, this study focuses on exploring the physical mechanisms of induced seismicity and developing a realistic geomechanical model by incorporating the past seismicity and well production data. In this work, we model the Coulomb stress changes due to past moderate (magnitude greater than 3 with known fault plane solutions) induced earthquakes and pore pressure changes due to wastewater injection in Alberta, specifically in Fox Creek and Fort St. John areas. Relationships between Coulombs stress changes, fault geometry and orientation and subsequent earthquake locations are tested. Subsurface flow due to injection well operations is studied to model the pore pressure changes in time and space, using known well production data, which include well types, well locations and water extraction and injection rates. By modelling the changes in pore pressure and Coulomb stress, we aim at constraining the time scale of occurrence of possible future earthquakes. The anticipating results can help to control the parameters of anthropogenic energy related operations such as hydraulic fracturing and wastewater injection in mitigating the risk due to induced seismicity.

  17. Quantitative modeling of reservoir-triggered seismicity

    NASA Astrophysics Data System (ADS)

    Hainzl, S.; Catalli, F.; Dahm, T.; Heinicke, J.; Woith, H.

    2017-12-01

    Reservoir-triggered seismicity might occur as the response to the crustal stress caused by the poroelastic response to the weight of the water volume and fluid diffusion. Several cases of high correlations have been found in the past decades. However, crustal stresses might be altered by many other processes such as continuous tectonic stressing and coseismic stress changes. Because reservoir-triggered stresses decay quickly with distance, even tidal or rainfall-triggered stresses might be of similar size at depth. To account for simultaneous stress sources in a physically meaningful way, we apply a seismicity model based on calculated stress changes in the crust and laboratory-derived friction laws. Based on the observed seismicity, the model parameters can be determined by maximum likelihood method. The model leads to quantitative predictions of the variations of seismicity rate in space and time which can be used for hypothesis testing and forecasting. For case studies in Talala (India), Val d'Agri (Italy) and Novy Kostel (Czech Republic), we show the comparison of predicted and observed seismicity, demonstrating the potential and limitations of the approach.

  18. Seismicity rate changes along the central California coast due to stress changes from the 2003 M 6.5 San Simeon and 2004 M 6.0 Parkfield earthquakes

    USGS Publications Warehouse

    Aron, A.; Hardebeck, J.L.

    2009-01-01

    We investigated the relationship between seismicity rate changes and modeled Coulomb static stress changes from the 2003 M 6.5 San Simeon and the 2004 M 6.0 Parkfield earthquakes in central California. Coulomb stress modeling indicates that the San Simeon mainshock loaded parts of the Rinconada, Hosgri, and San Andreas strike-slip faults, along with the reverse faults of the southern Los Osos domain. All of these loaded faults, except for the San Andreas, experienced a seismicity rate increase at the time of the San Simeon mainshock. The Parkfield earthquake occurred 9 months later on the loaded portion of the San Andreas fault. The Parkfield earthquake unloaded the Hosgri fault and the reverse faults of the southern Los Osos domain, which both experienced seismicity rate decreases at the time of the Parkfield event, although the decreases may be related to the decay of San Simeon-triggered seismicity. Coulomb stress unloading from the Parkfield earthquake appears to have altered the aftershock decay rate of the southern cluster of San Simeon after-shocks, which is deficient compared to the expected number of aftershocks from the Omori decay parameters based on the pre-Parkfield aftershocks. Dynamic stress changes cannot explain the deficiency of aftershocks, providing evidence that static stress changes affect earthquake occurrence. However, a burst of seismicity following the Parkfield earthquake at Ragged Point, where the static stress was decreased, provides evidence for dynamic stress triggering. It therefore appears that both Coulomb static stress changes and dynamic stress changes affect the seismicity rate.

  19. Environmental proteomics of the mussel Mytilus: implications for tolerance to stress and change in limits of biogeographic ranges in response to climate change.

    PubMed

    Tomanek, Lars

    2012-11-01

    Climate change will affect temperature extremes and averages, and hyposaline conditions in coastal areas due to extreme precipitation events and oceanic pH. How climate change will push species close to, or beyond, their physiological tolerance limits as well as change the limits of their biogeographic ranges can probably be investigated best in species that have already responded to climate change and whose distribution ranges are currently in flux. Blue mussels provide such a study system, with the invading warm-adapted Mediterranean Mytilus galloprovincialis having replaced the native more cold-adapted Mytilus trossulus from the southern part of its range in southern California over the past century, possibly due to climate change. However, freshwater input may prevent the latter species from expanding further north. We used a proteomics approach to characterize the responses of the two congeners to acute heat stress, chronic thermal acclimation, and hyposaline stress. In addition, we investigated the proteomic changes in response to decreasing seawater pH in another bivalve, the eastern oyster Crassostrea virginica. The results suggest that reactive oxygen species (ROS) are a common costressor during environmental stress, including oceanic acidification, and possibly cause modifications of cytoskeletal elements. All stressors disrupted protein homeostasis, indicated by the induction of molecular chaperones and, in the case of acute heat stress, proteasome isoforms, possibly due both to protein denaturation directly by the stressor and to the production of ROS. Acute stress by heat and hyposalinity changed several small G-proteins implicated in cytoskeletal modifications and vesicular transport, respectively. Changes in abundance of proteins involved in energy metabolism and ROS scavenging further suggest a possible trade-off during acute and chronic stress from heat and cold between ROS-generating NADH-producing pathways and ROS-scavenging NADPH

  20. Modeling stress/strain-dependent permeability changes for deep geoenergy applications

    NASA Astrophysics Data System (ADS)

    Rinaldi, Antonio Pio; Rutqvist, Jonny

    2016-04-01

    Rock permeability is a key parameter in deep geoenergy systems. Stress and strain changes induced at depth by fluid injection or extraction may substantially alter the rock permeability in an irreversible way. With regard to the geoenergies, some applications require the permeability to be enhanced to improve productivity. The rock permeability is generally enhanced by shearing process of faults and fractures (e.g. hydroshearing for Enhanced and Deep Geothermal Systems), or the creation of new fractures (e.g. hydrofracturing for shale gas). However, such processes may, at the same time, produce seismicity that can be felt by the local population. Moreover, the increased permeability due to fault reactivation may pose at risk the sealing capacity of a storage site (e.g. carbon sequestration or nuclear waste disposal), providing then a preferential pathway for the stored fluids to escape at shallow depth. In this work we present a review of some recent applications aimed at understanding the coupling between stress (or strain) and permeability. Examples of geoenergy applications include both EGS and CO2 sequestration. To investigate both "wanted" and "unwanted" effects, THM simulations have been carried out with the TOUGH-FLAC simulator. Our studies include constitutive equations relating the permeability to mean effective stress, effective normal stress, volumetric strain, as well as accounting for permeability variation as related to fault/fracture reactivation. Results show that the geomechanical effects have a large role in changing the permeability, hence affecting fluids leakage, reservoir enhancement, as well as the induced seismicity.

  1. Salton Trough Post-seismic Afterslip, Viscoelastic Response, and Contribution to Regional Hazard

    NASA Astrophysics Data System (ADS)

    Parker, J. W.; Donnellan, A.; Lyzenga, G. A.

    2012-12-01

    The El Mayor-Cucapah M7.2 April 4 2010 earthquake in Baja California may have affected accumulated hazard to Southern California cities due to loading of regional faults including the Elsinore, San Jacinto and southern San Andreas, faults which already have over a century of tectonic loading. We examine changes observed via multiple seismic and geodetic techniques, including micro seismicity and proposed seismicity-based indicators of hazard, high-quality fault models, the Plate Boundary Observatory GNSS array (with 174 stations showing post-seismic transients with greater than 1 mm amplitude), and interferometric radar maps from UAVSAR (aircraft) flights, showing a network of aseismic fault slip events at distances up to 60 km from the end of the surface rupture. Finite element modeling is used to compute the expected coseismic motions at GPS stations with general agreement, including coseismic uplift at sites ~200 km north of the rupture. Postseismic response is also compared, with GNSS and also with the CIG software "RELAX." An initial examination of hazard is made comparing micro seismicity-based metrics, fault models, and changes to coulomb stress on nearby faults using the finite element model. Comparison of seismicity with interferograms and historic earthquakes show aseismic slip occurs on fault segments that have had earthquakes in the last 70 years, while other segments show no slip at the surface but do show high triggered seismicity. UAVSAR-based estimates of fault slip can be incorporated into the finite element model to correct Coloumb stress change.

  2. Ocimum basilicum improve chronic stress-induced neurodegenerative changes in mice hippocampus.

    PubMed

    Ayuob, Nasra Naeim; El Wahab, Manal Galal Abd; Ali, Soad Shaker; Abdel-Tawab, Hanem Saad

    2018-06-01

    Alzheimer's disease (AD), one of the progressive neurodegenerative diseases might be associated with exposure to stress and altered living conditions. This study aimed to evaluate the effectiveness of Ocimum basilicum (OB) essential oils in improving the neurodegenerative-like changes induced in mice after exposed to chronic unpredictable mild stress (CUMS). Forty male Swiss albino mice divided into four groups (n = 10); the control, CUMS, CUMS + Fluoxetine, CUMS + OB were used. Behavioral tests, serum corticosterone level, hippocampus protein level of the glucocorticoid receptors (GRs) and brain-dreived neurotropic factor (BDNF) were determined after exposure to CUMS. Hippocampus was histopathologically examined. Data were analyzed using statistical package for the social sciences (SPSS) and P value of less than 0.05 was considered significant. OB diminished the depression manifestation as well as impaired short term memory observed in the mice after exposure to the CUMS as evidenced by the forced swimming and elevated plus maze test. OB also up-regulated the serum corticosterone level, hippocampal protein level of the glucocorticoid receptor and the brain-derived neurotropic factor and reduced the neurodegenerative and atrophic changes induced in the hippocampus after exposure to CUMS. Essential oils of OB alleviated the memory impairment and hippocampal neurodegenerative changes induced by exposure to the chronic unpredictable stress indicating that it is the time to test its effectiveness on patients suffering from Alzheimer disease.

  3. Microgravity changes at the Laguna del Maule volcanic field: Magma-induced stress changes facilitate mass addition

    NASA Astrophysics Data System (ADS)

    Miller, C. A.; Le Mével, H.; Currenti, G.; Williams-Jones, G.; Tikoff, B.

    2017-04-01

    Time-dependent, or 4-D, microgravity changes observed at the Laguna del Maule volcanic field, Chile, since 2013, indicate significant (1.5 × 1011 kg) ongoing mass injection. Mass injection is focused along the Troncoso fault, and subparallel structures beneath the lake at 1.5-2 km depth, and is best modeled by a vertical rectangular prism source. The low-density change (156 to 307 kg/m3) and limited depth extent suggest a mechanism of hydrothermal fluid intrusion into existing voids, or voids created by the substantial uplift, rather than deeper-sourced dike intrusion of rhyolite or basalt magma. Although the gravity changes are broadly spatially coincident with ongoing surface deformation, existing models that explain the deformation are deeper sourced and cannot explain the gravity changes. To account for this discrepancy and the correspondence in time of the deformation and gravity changes, we explore a coupled magmatectonic interaction mechanism that allows for shallow mass addition, facilitated by deeper magma injection. Computing the strain, and mean, normal, and Coulomb stress changes on northeast trending faults, caused by the opening of a sill at 5 km depth, shows an increase in strain and mean and normal stresses along these faults, coincident with the areas of mass addition. Seismic swarms in mid-2012 to the west and southwest of the mass intrusion area may be responsible for dynamically increasing permeability on the Troncoso fault, promoting influx of hydrothermal fluids, which in turn causes larger gravity changes in the 2013 to 2014 interval, compared to the subsequent intervals.

  4. Posttraumatic stress and change in lifestyle among the Hanshin-Awaji earthquake victims.

    PubMed

    Fukuda, S; Morimoto, K; Mure, K; Maruyama, S

    1999-09-01

    In 1995, Japan's Hanshin-Awaji area was severely damaged by a major earthquake. Lifestyle factors, sometimes associated with physical health and mortality, have also been known to be associated with mental health status. This report examines the relationship between the subsequent change in lifestyle and the psychological stress induced by the earth quake. An investigation was made of 108 male inhabitants of Awaji Island as to their individual lifestyle before and after the great earthquake, any posttraumatic stress disorder (PTSD) symptoms, and their demographic variables. The mean PTSD score was higher in the worse lifestyle group than in the no/better lifestyle change group. Category B or D of PTSD scores were higher in the worse lifestyle group than in the no/better lifestyle change group. The percentage of subjects who lived in temporary public housing was higher in the worse lifestyle group than in the no/better lifestyle change group. Worse change in lifestyle might be associated with high PTSD score in victims of Hanshin-Awaji earthquake. Copyright 1999 American Health Foundation and Academic Press.

  5. Interseismic, postseismic and co-seismic strain on the Sumatra megathrust and their relation to the megathrust frictional properties

    NASA Astrophysics Data System (ADS)

    Konca, A. O.; Avouac, J. P.; Sladen, A.; Meltzner, A. J.; Kositsky, A.; Sieh, K.; Galetzka, J.; Genrich, J.; Natawidjaja, D. H.

    2009-04-01

    The Sumatra Megathrust has recently produced a flurry of large interplate earthquakes starting with the giant Mw 9.15, Aceh earthquake of 2004. All of these earthquakes occurred within the area monitored by the Sumatra Geodetic Array (SuGAr), which provided exceptional records of near-field co-seismic and postseismic ground displacements. In addition, based on coral growth pattern, it has also been possible to estimate the pattern of interseismic strain in this area over the last few decades preceding 2004. This earthquake sequence provides an exceptional opportunity to understand the eventual relationship between large megathrust ruptures, interseismic coupling and the frictional properties of the megathrust. The emerging view is a megathrust with strong down-dip and lateral variations of frictional properties. The 2005, Mw 8.6 Nias earthquake ruptured nearly entirely a patch that had ruptured already during a similar earthquake in 1861 and that had remained well locked in the interseismic period allowing for stress to build up to an amount comparable to, or even larger than the stress released in 1861 or 2005. This patch is inferred to obey dominantly velocity-weakening friction and the pattern or interseismic coupling and afterslip suggests that it is surrounded by areas with velocity-strengthening friction. The 2007 Mw 8.4 and 7.9 earthquakes ruptured a fraction of a strongly coupled in the Mentawai area. They each consist of 2 sub-events which are 50 to 100 km apart from each other. On the other hand, the northernmost slip patch of 8.4 and southern slip patch of 7.9 earthquakes abut each other, but they ruptured 12 hours apart. They released a moment much smaller than the giant earthquakes known to have occurred in the Mentawai area in 1833 or in 1797. Also the moment released in 2007 amounts to only a fraction of the deficit of moment that had accumulated as a result of interseismic strain since these historical events, the potential for a large megathrust

  6. Interseismic, postseismic and co-seismic strain on the Sumatra megathrust and their relation to the megathrust frictional properties

    NASA Astrophysics Data System (ADS)

    Konca, A. O.; Avouac, J.-P.; Sladen, A.; Meltzner, A. J.; Kositsky, A.; Sieh, K.; Galetzka, J.; Genrich, J.; Natawidjaja, D. H.

    2009-04-01

    The Sumatra Megathrust has recently produced a flurry of large interplate earthquakes starting with the giant Mw 9.15, Aceh earthquake of 2004. All of these earthquakes occurred within the area monitored by the Sumatra Geodetic Array (SuGAr), which provided exceptional records of near-field co-seismic and postseismic ground displacements. In addition, based on coral growth pattern, it has also been possible to estimate the pattern of interseismic strain in this area over the last few decades preceding 2004. This earthquake sequence provides an exceptional opportunity to understand the eventual relationship between large megathrust ruptures, interseismic coupling and the frictional properties of the megathrust. The emerging view is a megathrust with strong down-dip and lateral variations of frictional properties. The 2005, Mw 8.6 Nias earthquake ruptured nearly entirely a patch that had ruptured already during a similar earthquake in 1861 and that had remained well locked in the interseismic period allowing for stress to build up to an amount comparable to, or even larger than the stress released in 1861 or 2005. This patch is inferred to obey dominantly velocity-weakening friction and the pattern or interseismic coupling and afterslip suggests that it is surrounded by areas with velocity-strengthening friction. The 2007 Mw 8.4 and 7.9 earthquakes ruptured a fraction of a strongly coupled in the Mentawai area. They each consist of 2 sub-events which are 50 to 100 km apart from each other. On the other hand, the northernmost slip patch of 8.4 and southern slip patch of 7.9 earthquakes abut each other, but they ruptured 12 hours apart. They released a moment much smaller than the giant earthquakes known to have occurred in the Mentawai area in 1833 or in 1797. Also the moment released in 2007 amounts to only a fraction of the deficit of moment that had accumulated as a result of interseismic strain since these historical events, the potential for a large megathrust

  7. Fault Parameters of the 1868 and 1877 earthquakes, inferred from historical records: Run-up measurements, Isoseismals and coseismic deformation

    NASA Astrophysics Data System (ADS)

    Riquelme, S.; Ruiz, S.; Yamazaki, Y.; Campos, J.

    2012-04-01

    The Mega-thrust zone of southern Peru and northern Chile is recognized as a tsunamigenic zone. In Southern Peru and Northern Chile, large earthquakes have not occurred in the last 130 years. The 1868 and 1877 were the last earthquakes with rupture larger than 400 km. The fault parameters and slip distribution of these earthquakes is not well understood, because only a few tide gauges recorded these events at far field distance. We studied simultaneously the near field effect, run-up, isoseismals, coseismic historical descriptions and far field tide gauges in the Pacific Ocean. We define several rupture scenerios which are numerically modeled using NEOWAVE program obtaining the tsunami propagation and coseismic deformation. New coupling models from are used to model scenarios. These results are compared with historical near field and far field observations, our preferred scenario fitted well these records and it agrees with the proposed isoseismals. For 1868 southern Peru earthquake our preferred scenario has a seismic rupture starting at the south part of 2001 Camaná Peru earthquake 16.8°S to 19.3°S through the Arica bending at 18°S, with a rupture of 350-400 km, maximum slip of 15 meters and seismic magnitude between M_w~8.7-8.9. For the 1877 earthquake our preferred scenario has a length of 400 kilometers from 23°S to 19.3°S, a maximum slip of 25 meters and seismic moderate magnitude of M_w~8.8. In both earthquakes the dip (10°-20°) is controlled by the geometry of subducting Nazca plate and larger slip distributions are located in the shallow part of the contact, from the trench to 30 km depth. Finally strong slip distribution in the shallow seismic contact for these historical mega-earthquakes could explain the apparent dual behavior between these mega-earthquakes Mw > 8.5 and moderate magnitude earthquakes Mw ~ 8.0 which apparently only have occurred in the depth zone of the contact i.e., the earthquakes of 1967 Mw 6.7 and 2007 Mw 7.7 in Tocopilla

  8. Variation in adult stress resistance does not explain vulnerability to climate change in copper butterflies.

    PubMed

    Klockmann, Michael; Wallmeyer, Leonard; Fischer, Klaus

    2017-03-15

    Ongoing climate change is a major threat to biodiversity. However, although many species clearly suffer from ongoing climate change, others benefit from it, for example, by showing range expansions. However, which specific features determine a species' vulnerability to climate change? Phenotypic plasticity, which has been described as the first line of defence against environmental change, may be of utmost importance here. Against this background, we here compare plasticity in stress tolerance in 3 copper butterfly species, which differ arguably in their vulnerability to climate change. Specifically, we investigated heat, cold and desiccation resistance after acclimatization to different temperatures in the adult stage. We demonstrate that acclimation at a higher temperature increased heat but decreased cold tolerance and desiccation resistance. Contrary to our predictions, species did not show pronounced variation in stress resistance, though plastic capacities in temperature stress resistance did vary across species. Overall, our results seemed to reflect population-rather than species-specific patterns. We conclude that the geographical origin of the populations used should be considered even in comparative studies. However, our results suggest that, in the 3 species studied here, vulnerability to climate change is not in the first place determined by stress resistance in the adult stage. As entomological studies focus all too often on adults only, we argue that more research effort should be dedicated to other developmental stages when trying to understand insect responses to environmental change. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  9. Fault Interaction and Stress Accumulation in Chaman Fault System, Balouchistan, Pakistan, Since 1892

    NASA Astrophysics Data System (ADS)

    Riaz, M. S.; Shan, B.; Xiong, X.; Xie, Z.

    2017-12-01

    The curved-shaped left-lateral Chaman fault is the Western boundary of the Indian plate, which is approximately 1000 km long. The Chaman fault is an active fault and also locus of many catastrophic earthquakes. Since the inception of strike-slip movement at 20-25Ma along the western collision boundary between Indian and Eurasian plates, the average geologically constrained slip rate of 24 to 35 mm/yr accounts for a total displacement of 460±10 km along the Chaman fault system (Beun et al., 1979; Lawrence et al., 1992). Based on earthquake triggering theory, the change in Coulomb Failure Stress (DCFS) either halted (shadow stress) or advances (positive stress) the occurrence of subsequent earthquakes. Several major earthquakes occurred in Chaman fault system, and this region is poorly studied to understand the earthquake/fault interaction and hazard assessment. In order to do so, we have analyzed the earthquakes catalog and collected significant earthquakes with M ≥6.2 since 1892. We then investigate the evolution of DCFS in the Chaman fault system is computed by integration of coseismic static and postseismic viscoelastic relaxation stress transfer since the 1892, using the codePSGRN/PSCMP (Wang et al., 2006). Moreover, for postseismic stress transfer simulation, we adopted linear Maxwell rheology to calculate the viscoelastic effects in this study. Our results elucidate that three out of four earthquakes are triggered by the preceding earthquakes. The 1892-earthquake with magnitude Mw6.8, which occurred on the North segment of Chaman fault has not influence the 1935-earthquake which occurred on Ghazaband fault, a parallel fault 20km east to Chaman fault. The 1935-earthquake with magnitude Mw7.7 significantly loaded the both ends of rupture with positive stress (CFS ≥0.01 Mpa), which later on triggered the 1975-earthquake with 23% of its rupture length where CFS ≥0.01 Mpa, on Chaman fault, and 1990-earthquke with 58% of its rupture length where CFS ≥0

  10. Spatio-temporal modelling of heat stress and climate change implications for the Murray dairy region, Australia.

    PubMed

    Nidumolu, Uday; Crimp, Steven; Gobbett, David; Laing, Alison; Howden, Mark; Little, Stephen

    2014-08-01

    The Murray dairy region produces approximately 1.85 billion litres of milk each year, representing about 20 % of Australia's total annual milk production. An ongoing production challenge in this region is the management of the impacts of heat stress during spring and summer. An increase in the frequency and severity of extreme temperature events due to climate change may result in additional heat stress and production losses. This paper assesses the changing nature of heat stress now, and into the future, using historical data and climate change projections for the region using the temperature humidity index (THI). Projected temperature and relative humidity changes from two global climate models (GCMs), CSIRO MK3.5 and CCR-MIROC-H, have been used to calculate THI values for 2025 and 2050, and summarized as mean occurrence of, and mean length of consecutive high heat stress periods. The future climate scenarios explored show that by 2025 an additional 12-15 days (compared to 1971 to 2000 baseline data) of moderate to severe heat stress are likely across much of the study region. By 2050, larger increases in severity and occurrence of heat stress are likely (i.e. an additional 31-42 moderate to severe heat stress days compared with baseline data). This increasing trend will have a negative impact on milk production among dairy cattle in the region. The results from this study provide useful insights on the trends in THI in the region. Dairy farmers and the dairy industry could use these results to devise and prioritise adaptation options to deal with projected increases in heat stress frequency and severity.

  11. Spatio-temporal modelling of heat stress and climate change implications for the Murray dairy region, Australia

    NASA Astrophysics Data System (ADS)

    Nidumolu, Uday; Crimp, Steven; Gobbett, David; Laing, Alison; Howden, Mark; Little, Stephen

    2014-08-01

    The Murray dairy region produces approximately 1.85 billion litres of milk each year, representing about 20 % of Australia's total annual milk production. An ongoing production challenge in this region is the management of the impacts of heat stress during spring and summer. An increase in the frequency and severity of extreme temperature events due to climate change may result in additional heat stress and production losses. This paper assesses the changing nature of heat stress now, and into the future, using historical data and climate change projections for the region using the temperature humidity index (THI). Projected temperature and relative humidity changes from two global climate models (GCMs), CSIRO MK3.5 and CCR-MIROC-H, have been used to calculate THI values for 2025 and 2050, and summarized as mean occurrence of, and mean length of consecutive high heat stress periods. The future climate scenarios explored show that by 2025 an additional 12-15 days (compared to 1971 to 2000 baseline data) of moderate to severe heat stress are likely across much of the study region. By 2050, larger increases in severity and occurrence of heat stress are likely (i.e. an additional 31-42 moderate to severe heat stress days compared with baseline data). This increasing trend will have a negative impact on milk production among dairy cattle in the region. The results from this study provide useful insights on the trends in THI in the region. Dairy farmers and the dairy industry could use these results to devise and prioritise adaptation options to deal with projected increases in heat stress frequency and severity.

  12. Explosion-induced stress changes estimated from vibrating-wire stressmeter measurements near the Mighty Epic event, Nevada Test Site

    USGS Publications Warehouse

    Ellis, William L.; Kibler, J.D.

    1983-01-01

    Explosion-induced compressive stress increases near an underground nuclear explosion are believed to contribute significantly to the containment of high-pressure gases within the explosion-produced cavity. These induced compressive stresses are predicted by computer calculations, but have never been adequately confirmed by field measurements, owing primarily to the unique difficulties of obtaining such field data. Vibrating-wire stressmeter measurements made near the Mighty Epic nuclear detonation, however, qualitatively indicate that within 150 meters of the working point, permanent compressive stress increases of several megapascals were present 15 weeks after the event. Additionally, stress-change magnitudes interpreted from the stressmeter data between the 75- and 260-meter range from the working point compare favorably with calculational predictions of the stress changes believed to be present shortly after detonation of the event. The measurements and calculations differ, however, with regard to the pattern of stress change radial and transverse to the explosion source. For the range of the field measurements from the working point, computer models predict the largest compressive-stress increase to be radial to the explosion source, while the field data indicate the transverse component of. stress change to be the most compressive. The significance of time-dependent modification of the initial explosion-induced stress distribution is, however, uncertain with regard to the comparison of the field measurements and theoretical predictions.

  13. Despite higher glucocorticoid levels and stress responses in female rats, both sexes exhibit similar stress-induced changes in hippocampal neurogenesis.

    PubMed

    Hulshof, Henriëtte J; Novati, Arianna; Luiten, Paul G M; den Boer, Johan A; Meerlo, Peter

    2012-10-01

    Sex differences in stress reactivity may be one of the factors underlying the increased sensitivity for the development of psychopathologies in women. Particularly, an increased hypothalamic-pituitary-adrenal (HPA) axis reactivity in females may exacerbate stress-induced changes in neuronal plasticity and neurogenesis, which in turn may contribute to an increased sensitivity to psychopathology. The main aim of the present study was to examine male-female differences in stress-induced changes in different aspects of hippocampal neurogenesis, i.e. cell proliferation, differentiation and survival. Both sexes were exposed to a wide variety of stressors, where after differences in HPA-axis reactivity and neurogenesis were assessed. To study the role of oestradiol in potential sex differences, ovariectomized females received low or high physiological oestradiol level replacement pellets. The results show that females in general have a higher basal and stress-induced HPA-axis activity than males, with minimal differences between the two female groups. Cell proliferation in the dorsal hippocampus was significantly higher in high oestradiol females compared to low oestradiol females and males, while doublecortin (DCX) expression as a marker of cell differentiation was significantly higher in males compared to females, independent of oestradiol level. Stress exposure did not significantly influence cell proliferation or survival of new cells, but did reduce DCX expression. In conclusion, despite the male-female differences in HPA-axis activity, the effect of repeated stress exposure on hippocampal cell differentiation was not significantly different between sexes. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. High resolution shallow co-seismic and post-seismic slip from the 2016 central Italy earthquake sequence captured using terrestrial laser scanning, structure from motion and low-cost near-field GNSS

    NASA Astrophysics Data System (ADS)

    Wedmore, L. N. J.; Gregory, L. C.; McCaffrey, K. J. W.; Wilkinson, M.; Walters, R. J.

    2017-12-01

    Coseismic fault slip in the shallow crust is poorly constrained by many of the conventional tools used to record deformation during earthquakes. GNSS stations are often distributed too far from faults and radar images tend to decorrelate across earthquake surface ruptures. As a result, our understanding of near-field fault slip, shallow slip deficits, and off-fault deformation is limited. We present evidence from the 2016 central Italy earthquake sequence, during which we captured shallow coseismic and post-seismic slip using a combination of terrestrial laser scanning (TLS), structure-from-motion (SfM), and near-field low-cost GNSS recording at 1Hz. Three Mw>6 earthquakes on the 24th August, 26th and 30th October all involved slip on the Mt Vettore-Mt Bove fault system. We collected TLS and SfM point clouds across three separate segments of this system. Each segment experienced a different record of slip during the earthquake sequence; all three ruptured in the largest event (Mw 6.6. on October 30th) but two segments also ruptured during either the 24th August or the 26th October earthquakes. Following the Mw 6.6 earthquake, the faults were repeatedly surveyed using TLS, with the first scan collected c. 5 hours following the earthquake. This represents the first known instance where shallow co-seismic slip has been recorded by pre- and post-event terrestrial laser scanning. Displacement continuously measured across GNSS pairs at 1 Hz demonstrates that permanent near field displacement developed across the fault in the immediate seconds following the initiation of the rupture. However, a discrepancy between on-fault field measurements of surface displacement and the GNSS recorded displacement over 1km long baselines hints at a more complex rupture processes and the possibility of high slip gradients in the shallow subsurface. Displacement measured by differential TLS confirms the presence of these shallow slip deficits but suggests that shallow slip gradient may be

  15. Genome wide association of changes in feeding behavior due to heat stress in pigs

    USDA-ARS?s Scientific Manuscript database

    Heat stress negatively impacts pork production, losses include decreased growth, reduced feed intake, and mortality. Therefore, the objective of this study was to identify genetic markers associated with changes in feeding behavior due to heat stress in grow-finish pigs. Data were collected on grow-...

  16. Sex Differences in Drug-Related Stress-System Changes: Implications for Treatment in Substance-Abusing Women

    PubMed Central

    Fox, Helen C.; Sinha, Rajita

    2009-01-01

    Extensive research indicates that chronic substance abuse disrupts stress and reward systems of the brain. Gender variation within these stress-system alterations, including the impact of sex hormones on these changes, may influence sex-specific differences in both the development of, and recovery from, dependency. As such, gender variations in stress-system function may also provide a viable explanation for why women are markedly more vulnerable than men to the negative consequences of drug use. This article therefore initially reviews studies that have examined gender differences in emotional and biophysiological changes to the stress and reward system following the acute administration of drugs, including cocaine, alcohol, and nicotine. The article then reviews studies that have examined gender differences in response to various types of stress in both healthy and drug-abusing populations. Studies examining the impact of sex hormones on these gender-related responses are also reported. The implications of these sex-specific variations in stress and reward system function are discussed in terms of both comorbid psychopathology and treatment outcome. PMID:19373619

  17. The Effect of Semi-Brittle Rheology on the Seismicity at the Subduction Interface: Coseismic and Aseismic Events

    NASA Astrophysics Data System (ADS)

    Tong, X.; Lavier, L.

    2017-12-01

    Cold and warm subduction zones usually have different seismicity and tectonic structure. Aseismic events like episodic tremor and slip (ETS) and slow slip event (SSE) are often observed in warm and young slabs which typically have less megathrust seismicity and smaller seismogenic area (e.g. southwest Japan). On the other hand, cold and old slabs (e.g. Northeast Japan) have more megathrust events and larger seismogenic area and few aseismic events. Recent studies have try to model the differences in seismic behaviors with different approaches, includes rheological heterogeneity (e.g. frictional vs. viscous), petrological heterogeneity (e.g. hydration-dehydration process and mineral phase changes), and the frictional heterogeneity (e.g. rate-and-state dependent friction). Following previous works, we proposed a new model in which the subduction channel has a temperature dependent material assembly which composed of an explicit mixture of basalt/eclogite and mantle peridotite. Our model also take into account rate and state dependent friction and pore fluid pressure. Depending on the temperature, the basalt and peridotite mixture can behave either as an elastoplastic frictional or a Maxwell viscoelastic material. To model the mixture numerically, we use DynEarthSol3D (DES3D). DES3D is a robust, adaptive, multi-dimensional, finite element method solver which has a composite Elasto-Visco-Plastic rheology. We vary the temperature profile, the ratio of basalt vs. peridotite, the rheology of the mantle peridotites and the loading rate of the subduction interface. Over multiple earthquake cycles, our two end member experiments show that megathrust earthquakes are dominate the seismicity for cold condition (e.g. Japan trench) while both coseismic and aseismic events account for the seismicity for warm condition (e.g. Nankai trench).

  18. The Contribution of Coseismic Displacements due to Splay Faults Into the Local Wavefield of the 1964 Alaska Tsunami

    NASA Astrophysics Data System (ADS)

    Suleimani, E.; Ruppert, N.; Fisher, M.; West, D.; Hansen, R.

    2008-12-01

    The Alaska Earthquake Information Center conducts tsunami inundation mapping for coastal communities in Alaska. For many locations in the Gulf of Alaska, the 1964 tsunami generated by the Mw9.2 Great Alaska earthquake may be the worst-case tsunami scenario. We use the 1964 tsunami observations to verify our numerical model of tsunami propagation and runup, therefore it is essential to use an adequate source function of the 1964 earthquake to reduce the level of uncertainty in the modeling results. It was shown that the 1964 co-seismic slip occurred both on the megathrust and crustal splay faults (Plafker, 1969). Plafker (2006) suggested that crustal faults were a major contributor to vertical displacements that generated local tsunami waves. Using eyewitness arrival times of the highest observed waves, he suggested that the initial tsunami wave was higher and closer to the shore, than if it was generated by slip on the megathrust. We conduct a numerical study of two different source functions of the 1964 tsunami to test whether the crustal splay faults had significant effects on local tsunami runup heights and arrival times. The first source function was developed by Johnson et al. (1996) through joint inversion of the far-field tsunami waveforms and geodetic data. The authors did not include crustal faults in the inversion, because the contribution of these faults to the far-field tsunami was negligible. The second is the new coseismic displacement model developed by Suito and Freymueller (2008, submitted). This model extends the Montague Island fault farther along the Kenai Peninsula coast and thus reduces slip on the megathrust in that region. We also use an improved geometry of the Patton Bay fault based on the deep crustal seismic reflection and earthquake data. We propagate tsunami waves generated by both source models across the Pacific Ocean and record wave amplitudes at the locations of the tide gages that recorded the 1964 tsunami. As expected, the two

  19. Dynamic body weight and body composition changes in response to subordination stress.

    PubMed

    Tamashiro, Kellie L K; Hegeman, Maria A; Nguyen, Mary M N; Melhorn, Susan J; Ma, Li Yun; Woods, Stephen C; Sakai, Randall R

    2007-07-24

    Social stress is prevalent in many facets of modern society. Epidemiological data suggest that stress is linked to the development of overweight, obesity and metabolic disease. Although there are strong associations between the incidence of obesity with stress and elevated levels of hormones such as cortisol, there are limited animal models to allow investigation of the etiology of increased adiposity resulting from exposure to stress. Perhaps more importantly, an animal model that mirrors the consequences of stress in humans will provide a vehicle to develop rational clinical therapy to treat or prevent adverse outcomes from exposure to chronic social stress. In the visible burrow system (VBS) model of chronic social stress mixed gender colonies are housed for 2 week periods during which male rats of the colony quickly develop a dominance hierarchy. We found that social stress has significant effects on body weight and body composition such that subordinate rats progressively develop characteristics of obesity that occurs, in part, through neuroendocrine alterations and changes in food intake amount. Although subordinate rats are hyperphagic following social stress they do not increase their intake of sucrose solution as control and dominants do suggesting that they are anhedonic. Consumption of a high fat diet does not appear to affect development of a social hierarchy and appears to enhance the effect that chronic stress has on body composition. The visible burrow system (VBS) model of social stress may be a potential laboratory model for studying stress-associated metabolic disease, including the metabolic syndrome.

  20. [Stress management in the workplace in the era of industrial and economic change].

    PubMed

    Nagata, S

    2000-11-01

    The globalization of the economy and the recent economic recession in Japan has accelerated down-sizing or restructuring of corporations and has resulted in the induction of a wage system according to achievement instead of the traditional seniority wage system, break-down of the life-long employment system, excess labor and increased unemployment. These rapid changes in the labor situation have increased job stress. It was reported in the survey conducted by the Ministry of Labor in 1997 that 62.8 percent of 16,000 workers had anxiety, worry and stress regarding their working life. The need for effective stress management at work has been increasing in this situation, but in the survey mentioned above only 26.5 percent of 12,000 companies replied that they had incorporated mental health measures. The characteristic features of the approaches for stress management in Japan are summarized as follows: 1) The most popular approaches are education and consultation for individual workers. 2) Systematic preventive approaches such as work control, working environment control, organizational change in the health management system, and systematic and continuous educational programs for managers are inadequate. 3) Systems to evaluation the effectiveness of these interventional approaches are also inadequate. Considering the current situation in which there is increasing job stress and a need for the occupational mental health promotion, we propose a series of mini-reviews regarding stress management at work and mention the composition of this series.

  1. Change in job stress and job satisfaction over a two-year interval using the Brief Job Stress Questionnaire.

    PubMed

    Kawada, Tomoyuki; Otsuka, Toshiaki

    2014-01-01

    The relationship between job stress and job satisfaction by the follow-up study should be more evaluated for workers' health support. Job stress is strongly affected by the content of the job and the personality of a worker. This study was focused on determining the changes of the job stress and job satisfaction levels over a two-year interval, using the Brief Job Stress Questionnaire (BJSQ). This self-administered questionnaire was distributed to the same 310 employees of a Japanese industrial company in 2009 and 2011. Sixty-one employees were lost from 371 responders in 2009. Data of 16 items from 57 items graded on a four-point Likert-type scale to measure the job stressors, psycho-physical complaints and support for workers, job overload (six items), job control (three items), support (six items) and job satisfaction score (one item) were selected for the analysis. The age-adjusted partial correlation coefficients for job overload, job control and support were 0.684 (p< 0.001), 0.474 (p< 0.001) and 0.612 (p< 0.001), respectively. The concordance correlation coefficient (and 95% confidence interval indicated within parentheses) for job overload, job control and support were 0.681 (0.616-0.736), 0.473 (0.382-0.555), and 0.623 (0.549-0.687), respectively. There were no significant differences in the mean score for job overload, job control or support, although significant decline in the job satisfaction level was apparent at the end of the two-year period (p< 0.05). There was also a significant decline in the job satisfaction in 2009 and in 2011 for subjects with keeping low job strain. No significant changes in the scores on the three elements of job stress were observed over the two-year study period, and the job satisfaction level deteriorated significantly during this period. There was a decline in the job satisfaction in the two-year period, although subjects did not suffer from job stress at the same period.

  2. Using management to address vegetation stress related to land-use and climate change

    USGS Publications Warehouse

    Middleton, Beth A.; Boudell, Jere; Fisichelli, Nicholas

    2017-01-01

    While disturbances such as fire, cutting, and grazing can be an important part of the conservation of natural lands, some adjustments to management designed to mimic natural disturbance may be necessary with ongoing and projected climate change. Stressed vegetation that is incapable of regeneration will be difficult to maintain if adults are experiencing mortality, and/or if their early life-history stages depend on disturbance. A variety of active management strategies employing disturbance are suggested, including resisting, accommodating, or directing vegetation change by manipulating management intensity and frequency. Particularly if land-use change is the main cause of vegetation stress, amelioration of these problems using management may help vegetation resist change (e.g. strategic timing of water release if a water control structure is available). Managers could direct succession by using management to push vegetation toward a new state. Despite the historical effects of management, some vegetation change will not be controllable as climates shift, and managers may have to accept some of these changes. Nevertheless, proactive measures may help managers achieve important conservation goals in the future.

  3. Cognitive Change Predicts Symptom Reduction with Cognitive Therapy for Posttraumatic Stress Disorder

    ERIC Educational Resources Information Center

    Kleim, Birgit; Grey, Nick; Wild, Jennifer; Nussbeck, Fridtjof W.; Stott, Richard; Hackmann, Ann; Clark, David M.; Ehlers, Anke

    2013-01-01

    Objective: There is a growing body of evidence for the effectiveness of trauma-focused cognitive behavior therapy (TF-CBT) for posttraumatic stress disorder (PTSD), but few studies to date have investigated the mechanisms by which TF-CBT leads to therapeutic change. Models of PTSD suggest that a core treatment mechanism is the change in…

  4. Salt stress induces changes in the proteomic profile of micropropagated sugarcane shoots

    PubMed Central

    Reis, Ricardo S.; Heringer, Angelo S.; Rangel, Patricia L.; Santa-Catarina, Claudete; Grativol, Clícia; Veiga, Carlos F. M.; Souza-Filho, Gonçalo A.

    2017-01-01

    Salt stress is one of the most common stresses in agricultural regions worldwide. In particular, sugarcane is affected by salt stress conditions, and no sugarcane cultivar presently show high productivity accompanied by a tolerance to salt stress. Proteomic analysis allows elucidation of the important pathways involved in responses to various abiotic stresses at the biochemical and molecular levels. Thus, this study aimed to analyse the proteomic effects of salt stress in micropropagated shoots of two sugarcane cultivars (CB38-22 and RB855536) using a label-free proteomic approach. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD006075. The RB855536 cultivar is more tolerant to salt stress than CB38-22. A quantitative label-free shotgun proteomic analysis identified 1172 non-redundant proteins, and 1160 of these were observed in both cultivars in the presence or absence of NaCl. Compared with CB38-22, the RB855536 cultivar showed a greater abundance of proteins involved in non-enzymatic antioxidant mechanisms, ion transport, and photosynthesis. Some proteins, such as calcium-dependent protein kinase, photosystem I, phospholipase D, and glyceraldehyde-3-phosphate dehydrogenase, were more abundant in the RB855536 cultivar under salt stress. Our results provide new insights into the response of sugarcane to salt stress, and the changes in the abundance of these proteins might be important for the acquisition of ionic and osmotic homeostasis during exposure to salt stress. PMID:28419154

  5. Proteomic changes in rice leaves grown under open field high temperature stress conditions.

    PubMed

    Das, Smruti; Krishnan, P; Mishra, Vagish; Kumar, Ritesh; Ramakrishnan, B; Singh, N K

    2015-11-01

    The interactive effect of temperature with other climatic and soil factors has profound influences on the growth and development of rice. The responses of rice to high temperatures under field conditions are more important than those under the controlled conditions. To understand the genes associated with high temperature stress response in general and tolerance in particular, the expression of all those genes associated with adaptation and tolerance in rice requires proteomic analysis. High temperature stress-tolerant cv. N22 was subjected to 28/18 °C (control) and 42/32 °C (high temperature stress) at flowering stage. The plants were grown in the field under the free air temperature increment condition. The proteomic changes in rice leaves due to high temperature stress were discussed. The proteomes of leaves had about 3000 protein spots, reproducibly detected on 2-dimensional electrophoretic gels with 573 proteins differentially expressed between the control and the high temperature treatments. Putative physiological functions suggested five categories such as growth (15.4%), heat shock proteins (7.7%), regulatory proteins (26.9%), redox homeostasis proteins (11.5%) and energy and metabolism (38.5%) related proteins. The results of the present study suggest that cv. N22, an agronomically recognized temperature tolerant rice cultivar copes with high temperature stress in a complex manner. Several functional proteins play important roles in its responses. The predicted climate change events necessitate more studies using this cultivar under different simulated ecological conditions to identify proteomic changes and the associated genes to be used as biomarkers and to gain a better understanding on the biochemical pathways involved in tolerance.

  6. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress.

    PubMed

    Karl, J Philip; Margolis, Lee M; Madslien, Elisabeth H; Murphy, Nancy E; Castellani, John W; Gundersen, Yngvar; Hoke, Allison V; Levangie, Michael W; Kumar, Raina; Chakraborty, Nabarun; Gautam, Aarti; Hammamieh, Rasha; Martini, Svein; Montain, Scott J; Pasiakos, Stefan M

    2017-06-01

    The magnitude, temporal dynamics, and physiological effects of intestinal microbiome responses to physiological stress are poorly characterized. This study used a systems biology approach and a multiple-stressor military training environment to determine the effects of physiological stress on intestinal microbiota composition and metabolic activity, as well as intestinal permeability (IP). Soldiers ( n = 73) were provided three rations per day with or without protein- or carbohydrate-based supplements during a 4-day cross-country ski-march (STRESS). IP was measured before and during STRESS. Blood and stool samples were collected before and after STRESS to measure inflammation, stool microbiota, and stool and plasma global metabolite profiles. IP increased 62 ± 57% (mean ± SD, P < 0.001) during STRESS independent of diet group and was associated with increased inflammation. Intestinal microbiota responses were characterized by increased α-diversity and changes in the relative abundance of >50% of identified genera, including increased abundance of less dominant taxa at the expense of more dominant taxa such as Bacteroides Changes in intestinal microbiota composition were linked to 23% of metabolites that were significantly altered in stool after STRESS. Together, pre-STRESS Actinobacteria relative abundance and changes in serum IL-6 and stool cysteine concentrations accounted for 84% of the variability in the change in IP. Findings demonstrate that a multiple-stressor military training environment induced increases in IP that were associated with alterations in markers of inflammation and with intestinal microbiota composition and metabolism. Associations between IP, the pre-STRESS microbiota, and microbiota metabolites suggest that targeting the intestinal microbiota could provide novel strategies for preserving IP during physiological stress. NEW & NOTEWORTHY Military training, a unique model for studying temporal dynamics of intestinal barrier and intestinal

  7. Genome-wide association of changes in swine feeding behaviour due to heat stress

    USDA-ARS?s Scientific Manuscript database

    Background: Heat stress has a negative impact on pork production, particularly during the grow-finish phase. As temperature increases, feeding behaviour changes in order for pigs to decrease heat production. The objective of this study was to identify genetic markers associated with changes in feedi...

  8. Early transcriptional changes in the reef-building coral Acropora aspera in response to thermal and nutrient stress.

    PubMed

    Rosic, Nedeljka; Kaniewska, Paulina; Chan, Chon-Kit Kenneth; Ling, Edmund Yew Siang; Edwards, David; Dove, Sophie; Hoegh-Guldberg, Ove

    2014-12-02

    Changes to the environment as a result of human activities can result in a range of impacts on reef building corals that include coral bleaching (reduced concentrations of algal symbionts), decreased coral growth and calcification, and increased incidence of diseases and mortality. Understanding how elevated temperatures and nutrient concentration affect early transcriptional changes in corals and their algal endosymbionts is critically important for evaluating the responses of coral reefs to global changes happening in the environment. Here, we investigated the expression of genes in colonies of the reef-building coral Acropora aspera exposed to short-term sub-lethal levels of thermal (+6°C) and nutrient stress (ammonium-enrichment: 20 μM). The RNA-Seq data provided hundreds of differentially expressed genes (DEGs) corresponding to various stress regimes, with 115 up- and 78 down-regulated genes common to all stress regimes. A list of DEGs included up-regulated coral genes like cytochrome c oxidase and NADH-ubiquinone oxidoreductase and up-regulated photosynthetic genes of algal origin, whereas coral GFP-like fluorescent chromoprotein and sodium/potassium-transporting ATPase showed reduced transcript levels. Taxonomic analyses of the coral holobiont disclosed the dominant presence of transcripts from coral (~70%) and Symbiodinium (~10-12%), as well as ~15-20% of unknown sequences which lacked sequence identity to known genes. Gene ontology analyses revealed enriched pathways, which led to changes in the dynamics of protein networks affecting growth, cellular processes, and energy requirement. In corals with preserved symbiont physiological performance (based on Fv/Fm, photo-pigment and symbiont density), transcriptomic changes and DEGs provided important insight into early stages of the stress response in the coral holobiont. Although there were no signs of coral bleaching after exposure to short-term thermal and nutrient stress conditions, we managed to detect

  9. Response to environmental change in rainbow trout selected for divergent stress coping styles.

    PubMed

    Ruiz-Gomez, Maria de Lourdes; Huntingford, Felicity A; Øverli, Øyvind; Thörnqvist, Per-Ove; Höglund, Erik

    2011-03-01

    An extensive literature has documented differences in the way individual animals cope with environmental challenges and stressors. Two broad patterns of individual variability in behavioural and physiological stress responses are described as the proactive and reactive stress coping styles. In addition to variability in the stress response, contrasting coping styles may encompass a general difference in behavioural flexibility as opposed to routine formation in response to more subtle environmental changes and non-threatening novelties. In the present study two different manipulations, relocating food from a previously learned location, and introducing a novel object yielded contrasting responses in rainbow trout selected for high (HR) and low (LR) post stress plasma cortisol levels. No difference was seen in the rate of learning the original food location; however, proactive LR fish were markedly slower than reactive HR fish in altering their food seeking behaviour in response to relocated food. In contrast, LR fish largely ignored a novel object which disrupted feeding in HR fish. Hence, it appears that the two lines appraise environmental cues differently. This observation suggests that differences in responsiveness to environmental change are an integral component of heritable stress coping styles, which in this particular case, had opposite effects on foraging efficiency in different situations. Context dependent fitness effects may thus explain the persistence of stable divergence of this evolutionary widespread trait complex. 2010 Elsevier Inc. All rights reserved.

  10. Myofibril Changes in the Copepod Pseudodiaptomus marinus Exposed to Haline and Thermal Stresses.

    PubMed

    Ibrahim, Ali; Souissi, Anissa; Leray, Aymeric; Héliot, Laurent; Vandenbunder, Bernard; Souissi, Sami

    2016-01-01

    Copepods are small crustaceans capable to survive in various aquatic environments. Their responses to changes in different external factors such as salinity and temperature can be observed at different integration levels from copepod genes to copepod communities. Until now, no thorough observation of the temperature or salinity effect stresses on copepods has been done by optical microscopy. In this study, we used autofluorescence to visualize these effects on the morphology of the calanoid copepod Pseudodiaptomus marinus maintained during several generations in the laboratory at favorable and stable conditions of salinity (30 psu) and temperature (18°C). Four different stress experiments were conducted: at a sharp decrease in temperature (18 to 4°C), a moderate decrease in salinity (from 30 to 15 psu), a major decrease in salinity (from 30 to 0 psu), and finally a combined stress with a decrease in both temperature and salinity (from 18°C and 30 psu to 4°C and 0 psu). After these stresses, images acquired by confocal laser scanning microscopy (CLSM) revealed changes in copepod cuticle and muscle structure. Low salinity and/or temperature stresses affected both the detection of fluorescence emitted by muscle sarcomeres and the distance between them. In the remaining paper we will use the term sarcomeres to describe the elements located within sarcomeres and emitted autofluorescence signals. Quantitative study showed an increase in the average distance between two consecutive sarcomeres from 2.06 +/- 0.11 μm to 2.44 +/- 0.42 μm and 2.88 +/- 0.45μm after the exposure to major haline stress (18°C, 0 psu) and the combined stress (4°C, 0 psu), respectively. These stresses also caused cuticle cracks which often occurred at the same location, suggesting the cuticle as a sensitive area for osmoregulation. Our results suggest the use of cuticular and muscle autofluorescence as new biomarkers of stress detectable in formalin-preserved P. marinus individuals. Our

  11. Sumatra Megathrust Earthquakes Trigger Intraplate Seismicity in the Indo-Australian Oceanic Lithosphere

    NASA Astrophysics Data System (ADS)

    Delescluse, M.; Chamot-Rooke, N.; Cattin, R.

    2009-05-01

    The present-day intraplate deformation between India and Australia started 9 Myrs ago. In the Central Indian Basin (CIB), this deformation is recorded in the thick sediments of the Bengal fan. The equatorial, dense E-W thrust fault network in this region is the result of a massive reverse reactivation of normal faults at the onset of deformation. The Wharton Basin (WB), separated from the CIB by the NinetyEast Ridge (NyR), shows a contrasting style of deformation with mainly left-lateral strike-slip seismicity. The WB finite deformation and seismicity also involve pre-existing faults, in this case the N-S paleo-transforms of the fossile Wharton spreading-ridge system. The oceanic plate seismicity after the December 2004 Aceh subduction earthquake shows strike-slip events with a clear intraplate P-axis. No thrust faults are detected. This indicates short-term reactivation of the transform faults near the trench. Spatial and temporal distribution of intraplate erthquakes, as well as their anomalous moment release suggests triggering by the Aceh megathrust earthquake, which appears to have acted as an "accelerator" for the oceanic intraplate deformation. In this study, we use Coulomb stress static variations to confirm our seismicity observations. We first assume that the reactivated transform and the neoformed thrust fault plane families are present in the oceanic lithosphere. We then compute the coseismic stresses in the vicinity of the trench from the Aceh and Nias earthquakes slip distributions. Finally, we derive the normal and shear stresses on the fault planes. The results show that the strike-slip events are all favored by the subduction earthquakes coseismic stresses. They also show that the normal fault earthquakes at oceanic bulges are supported by the modeled coseismic stresses, except offshore Myanmar. The particularly interesting result is that all the possible neoformed thrust faults perpendicular to the intraplate P-axis are inhibited by the same

  12. Hydrological response to earthquakes in the Haibara well, central Japan - II. Possible mechanism inferred from time-varying hydraulic properties

    USGS Publications Warehouse

    Matsumoto, N.; Roeloffs, E.A.

    2003-01-01

    28 coseismic groundwater level decreases have been observed at the Haibara well, Shizuoka prefecture, central Japan, from 1981 to 1997. These groundwater level changes cannot be explained as the poroelastic response to coseismic static strain. We use the atmospheric pressure and tidal responses of the well, rock properties measured on core samples from the same formation and pumping test results to characterize the hydraulic and mechanical properties of the aquifer. The responses of the Haibara well to the M2 Earth tide constituent and to atmospheric pressure have varied over time. In particular, increasing amplitude and decreasing phase lags were observed after the 1993 pumping test, as well as after earthquakes that caused coseismic water level changes. The tidal response, together with the surface load efficiency derived from the atmospheric pressure response, is used to estimate the mechanical properties of the aquifer. The largest amplitude of the M2 constituent, 2.2 mm, is small enough to imply that pore fluid in this system is approximately twice as compressible as water, possibly due to the presence of a small amount of exsolved gas. Diffusion of a coseismic pressure drop near the well could account for the observed time histories of the water level changes. The time histories of the water level drops are well matched by the decay of a coseismic pressure drop at least 80 m away from the well. Removal of a small amount of gas from the formation in that location might in turn explain the coseismic pressure drops.

  13. Perceived work-related stress and early atherosclerotic changes in healthy employees.

    PubMed

    Bugajska, Joanna; Widerszal-Bazyl, Maria; Radkiewicz, Piotr; Pasierski, Tomasz; Szulczyk, Grazyna Anna; Zabek, Jakub; Wojciechowska, Bozena; Jedryka-Góral, Anna

    2008-08-01

    This study was conducted to investigate the relationship between perceived work-related stress and preclinical atherosclerosis. A total of 100 managers and 50 office workers aged 35-65 participated in a questionnaire study. Individual, family and work-related stress risk factors and coping were evaluated in all the studied individuals. Serum levels of biochemical (total cholesterol, LDL, HDL, TG, glucose) and serological risk factors of atherosclerosis (anticardiolipin, anti-beta(2) GPI, anti-oxLDL, anti-HSP and anti-hsCRP antibodies) were evaluated. A computer analysis of B-mode ultrasound images was used to assess carotid artery intima-media thickness (IMT) and atherosclerotic plaque in carotid arteries. Statistical analysis was conducted with SPSS v. 11.5. The studied individuals showed average ranges of both the global stress level and of coping results. In 71% no changes were found in the ultrasound image and in 29% of individuals (43) the presence of plaque was shown. The mean value of the IMT measure was 0.0618 +/- 0.013 mm. IMT and plaque correlated negatively with the level of global work-related stress (r = -0.26; P < 0.01; and r = -0.28; P < 0.01; respectively). No correlation was found either between work-related stress and coping, or between coping and IMT (P > 0.05), or between work-related stress and healthy lifestyle (no smoking, no excessive use of alcohol, high physical activity), or between healthy lifestyle and IMT (P > 0.05). Positive correlation between IMT and LDL and smoking did not result from higher stress reaction in the studied individuals. The explanation of the negative correlation between perceived work-related stress and preclinical atherosclerosis was not confirmed either by the subjects under high stress undertaking healthy protective activities or by their escaping into unhealthy behaviour. The most probable interpretation of the results is that in individuals with a low level of perceived work-related stress, somatization of

  14. Changes in ST, QT and RR ECG intervals during acute stress in firefighters: a pilot study.

    PubMed

    Paiva, Joana S; Rodrigues, Susana; Cunha, Joao Paulo Silva

    2016-08-01

    Firefighting is a stressful occupation. The monitoring of psychophysiological measures in those professionals can be a way to prevent and early detect cardiac diseases and other stress-related problems. The current study aimed to assess morphological changes in the ECG signal induced by acute stress. A laboratory protocol was conducted among 6 firefighters, including a laboratory stress-inducer task - the Trier Social Stress Task (TSST) - and a 2-choice reaction time task (CRTT) that was performed before (CRTT1) and after (CRTT2) the stress condition. ECG signals were continuously acquired using the VitalJacket®, a wearable t-shirt that acts as a medical certified ECG monitor. Results showed that ECG morphological features such as QT and ST intervals are able to differentiate stressful from non stressful events in first responders. Group mean Visual Analogue Scale (VAS) for stress assessment significantly increased after the stress task (TSST), relatively to the end of CRTT2 (after TSST: 4.67±1.63; after CRTT2: 3.17±0.75), a change that was accompanied by a significant increase in group mean QT and ST segments corrected for heart rate during TSST. These encouraging results will be followed by larger studies in order to explore those measures and its physiological impact under realistic environments in a higher scalability.

  15. Perceived stress and anhedonia predict short-and long-term weight change, respectively, in healthy adults.

    PubMed

    Ibrahim, Mostafa; Thearle, Marie S; Krakoff, Jonathan; Gluck, Marci E

    2016-04-01

    Perceived stress; emotional eating; anhedonia; depression and dietary restraint, hunger, and disinhibition have been studied as risk factors for obesity. However, the majority of studies have been cross-sectional and the directionality of these relationships remains unclear. In this longitudinal study, we assess their impact on future weight change. Psychological predictors of weight change in short- (6month) and long-term (>1year) periods were studied in 65 lean and obese individuals in two cohorts. Subjects participated in studies of food intake and metabolism that did not include any type of medication or weight loss interventions. They completed psychological questionnaires at baseline and weight change was monitored at follow-up visits. At six months, perceived stress predicted weight gain (r(2)=0.23, P=0.02). There was a significant interaction (r(2)=.38, P=0.009) between perceived stress and positive emotional eating, such that higher scores in both predicted greater weight gain, while those with low stress but high emotional eating scores lost weight. For long-term, higher anhedonia scores predicted weight gain (r(2)=0.24, P=0.04). Depression moderated these effects such that higher scores in both predicted weight gain but higher depression and lower anhedonia scores predicted weight loss. There are different behavioral determinants for short- and long-term weight change. Targeting perceived stress may help with short-term weight loss while depression and anhedonia may be better targets for long-term weight regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Two components of postseismic gravity changes of megathrust earthquakes from satellite gravimetry

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Heki, K.

    2013-12-01

    There are several reports of the observations of gravity changes due to megathrust earthquakes with data set of Gravity Recovery And Climate Experiment (GRACE) satellite. We analyzed the co- and postseismic gravity changes of the three magnitude 9 class earthquakes, the 2004 Sumatra-Andaman, the 2010 Chile (Maule), and the 2011 Tohoku-Oki earthquakes, using the newly released data (Release 05 data) set. In addition to the coseismic steps, these earthquakes showed a common feature that the postseismic changes include two components with different polarity and time constants, i.e. rapid decreases over a few months, followed by slow increases lasting for years. This is shown in the auxiliary figure of this abstract. In this figure, the white circles are the data whose seasonal and secular changes were removed. The vertical translucent lines denote the earthquake occurrence times. All the three earthquakes suggest the existence of two postseismic gravity change components with two distinct time constants. The first (short-term) component showed geographical distribution similar to the coseismic changes, but the position of the largest gravity decrease shifted toward the trench. The short-term components can be related to afterslip, but their time constants and distributions showed significant deviation from gravity changes predicted by the afterslip models. The second (long-term) components are characterized by positive gravity changes with the peak close to the trench axis. The long-term components should be attributed to different or multiple mechanisms, e.g. viscous relaxation of rocks in the upper mantle [Han and Simons, 2008; Panet et al., 2007] and diffusion of supercritical water around the down-dip end of the ruptured fault [Ogawa and Heki, 2007]. Both of the two mechanisms can explain the postseismic gravity increase in this timescale to some extent, but there have been no decisive evidence to prove or disprove either one of these. But generally speaking

  17. Reactivity of seismicity rate to static Coulomb stress changes of two consecutive large earthquakes in the central Philippines

    NASA Astrophysics Data System (ADS)

    Dianala, J. D. B.; Aurelio, M.; Rimando, J. M.; Taguibao, K.

    2015-12-01

    In a region with little understanding in terms of active faults and seismicity, two large-magnitude reverse-fault related earthquakes occurred within 100km of each other in separate islands of the Central Philippines—the Mw=6.7 February 2012 Negros earthquake and the Mw=7.2 October 2013 Bohol earthquake. Based on source faults that were defined using onshore, offshore seismic reflection, and seismicity data, stress transfer models for both earthquakes were calculated using the software Coulomb. Coulomb stress triggering between the two main shocks is unlikely as the stress change caused by Negros earthquake on the Bohol fault was -0.03 bars. Correlating the stress changes on optimally-oriented reverse faults with seismicity rate changes shows that areas that decreased both in static stress and seismicity rate after the first earthquake were then areas with increased static stress and increased seismicity rate caused by the second earthquake. These areas with now increased stress, especially those with seismicity showing reactivity to static stress changes caused by the two earthquakes, indicate the presence of active structures in the island of Cebu. Comparing the history of instrumentally recorded seismicity and the recent large earthquakes of Negros and Bohol, these structures in Cebu have the potential to generate large earthquakes. Given that the Philippines' second largest metropolitan area (Metro Cebu) is in close proximity, detailed analysis of the earthquake potential and seismic hazards in these areas should be undertaken.

  18. Modulation of stress-induced neurobehavioral changes and brain oxidative injury by nitric oxide (NO) mimetics in rats.

    PubMed

    Gulati, Kavita; Chakraborti, Ayanabha; Ray, Arunabha

    2007-11-02

    The present study evaluated the effects of NO mimetics on stress-induced neurobehavioral changes and the possible involvement of ROS-RNS interactions in rats. Restraint stress (RS) suppressed both percent open arm entries and time spent in the open arms in the elevated plus maze (EPM) test. These RS-induced changes in EPM activity were attenuated by the NO mimetics, l-arginine, isosorbide dinitrate and molsidomine, in a differential manner. RS-exposed rats showed (a) increased lipid peroxidation (MDA) and (b) lowered reduced glutathione (GSH) and NO metabolites (NOx), in brain homogenates of these animals. Pretreatment with the NO mimetics also differentially influenced RS-induced changes in brain oxidative stress markers. The results suggest that NO may protect against stress-induced anxiogenic behavior and oxidative injury in the brain and highlight the significance of ROS-RNS interactions.

  19. Prevalence of ECG changes during adenosine stress and its association with perfusion defect on myocardial perfusion scintigraphy.

    PubMed

    Taywade, Sameer K; Ramaiah, Vijayaraghavan L; Basavaraja, Harish; Venkatasubramaniam, Parameswaran R; Selvakumar, Job

    2017-04-01

    Myocardial perfusion scintigraphy (MPS) is a valuable, noninvasive imaging modality in the evaluation of patients with coronary artery disease. Adenosine stress may occasionally be associated with ECG changes. This study evaluated the strength of association between adenosine stress-related ECG changes and perfusion defects on Tc-MPS. 117 (mean age: 61.25±9.27 years; sex: men 87, women 30) patients with known/suspected coronary artery disease underwent adenosine stress MPS. ECG was monitored continuously during adenosine stress for ST-depression. On the basis of the summed difference score, reversible perfusion defects were categorized as follows: normal: less than 4, mild: 4-8, moderate: 9-13, and severe: more than 13. ST-depression was observed in 27/117 (23.1%) and reversible perfusion defects were observed in 18/27 (66.66%) patients. 2/27, 6/27, and 10/27 patients had mild, moderate, and severe ischemia, respectively. 9/27 patients had normal perfusion. ECG changes and perfusion defects showed a moderate strength of association (correlation coefficient r=0.35, P=0.006). The sensitivity, specificity, positive predictive value, and negative predictive value of ECG findings for prediction of ischemia were 35.29, 86.36, 67.67, and 63.33%, respectively. ECG changes during adenosine stress are not uncommon. It shows a moderate strength of association with reversible perfusion defects. ECG changes during adenosine merit critical evaluation of MPS findings.

  20. P-CPA pretreatment reverses the changes in sleep and behavior following acute immobilization stress rats.

    PubMed

    Sinha, Rakesh Kumar

    2006-02-01

    The effects of p-CPA (para-chlorophenylalanine) pretreatment was studied on the sleep-wake parameters and patterns of behavioral activities in an animal model of acute immobilization stress. For the experiments, young male Charles Foster rats were divided into three groups, subjected to (i) acute immobilization stress for four hours on specially designed wooden boards, (ii) a similar model of acute immobilization stress after pretreatment of p-CPA (injected through i.p. route), and (iii) control rats (p-CPA untreated and unstressed). Three channels of electrographic signals, i.e., EEG (electroencephalogram), EOG (electrooculogram), and EMG (electromyogram) were recorded continuously for four hours for all three groups of rats to analyze the changes in sleep-wake stages. The assessment of behavior was performed just after the stress on separate groups of rats in Open-Field (OF) and Elevated Plus-Maze (EPM) apparatuses. The significant changes in total sleep time (P < 0.05), total time for rapid eye movement sleep (P < 0.01), and total time in wakefulness (P < 0.01) following acute immobilization stress were found reversed in the p-CPA (a serotonin inhibitor) pretreated group of rats. Simultaneously, the results of the present work also revealed that the changes in grooming behavior (P < 0.05) in OF and the total time spent on the center of EPM (P < 0.05) were observed altered in p-CPA pretreated group of rats.

  1. Affect systems, changes in body mass index, disordered eating and stress: an 18-month longitudinal study in women

    PubMed Central

    Kupeli, N.; Norton, S.; Chilcot, J.; Campbell, I. C.; Schmidt, U. H.; Troop, N. A.

    2017-01-01

    ABSTRACT Background: Evidence suggests that stress plays a role in changes in body weight and disordered eating. The present study examined the effect of mood, affect systems (attachment and social rank) and affect regulatory processes (self-criticism, self-reassurance) on the stress process and how this impacts on changes in weight and disordered eating. Methods: A large sample of women participated in a community-based prospective, longitudinal online study in which measures of body mass index (BMI), disordered eating, perceived stress, attachment, social rank, mood and self-criticism/reassurance were measured at 6-monthly intervals over an 18-month period. Results: Latent Growth Curve Modelling showed that BMI increased over 18 months while stress and disordered eating decreased and that these changes were predicted by high baseline levels of these constructs. Independently of this, however, increases in stress predicted a reduction in BMI which was, itself, predicted by baseline levels of self-hatred and unfavourable social comparison. Conclusions: This study adds support to the evidence that stress is important in weight change. In addition, this is the first study to show in a longitudinal design, that social rank and self-criticism (as opposed to self-reassurance) at times of difficulty predict increases in stress and, thus, suggests a role for these constructs in weight regulation. PMID:28553564

  2. Intraocular pressure changes: the influence of psychological stress and the Valsalva maneuver.

    PubMed

    Brody, S; Erb, C; Veit, R; Rau, H

    1999-10-01

    The effects of psychological stress and the Valsalva maneuver on short-term variations of intraocular pressure (IOP) were studied in 49 healthy adults. Psychological stress consisted of mental arithmetic tasks presented in counterbalanced order by computer and by the experimenter. Additionally, a standardized Valsalva maneuver was performed (in counterbalanced order with the psychological stressors). IOP was measured with a Goldmann tonometer before and after performance of each stressor. All three stressors transiently and highly significantly increased IOP, although the Valsalva maneuver produced changes of a greater magnitude (10.2 mmHg) than the psychological stressors (1.3 mmHg). Subjective stress ratings and heart rate increased in response to all stressors. There were no effects of task sequence, eye muscle tension, sex, smoking status (some smokers misreported their smoking status), or regular marijuana use, but regular physical exercise was associated with less IOP increase during psychological stress.

  3. Coulomb stress change of crustal faults in Japan for 21 years, estimated from GNSS displacement

    NASA Astrophysics Data System (ADS)

    Nishimura, T.

    2017-12-01

    Coulomb stress is one of the simplest index to show how the fault is close to a brittle failure (e.g., earthquake). Many previous studies used the Coulomb stress change (ΔCFS) to evaluate whether the fault approaches failure and successfully explained an earthquake triggered by previous earthquakes and volcanic sources. Most studies use a model of a half-space medium with given rheological properties, boundary conditions, dislocation, etc. to calculate ΔCFS. However, Ueda and Takahashi (2005) proposed to calculate DCFS directly from surface displacement observed by GNSS. There are 6 independent components of stress tensor in an isotropic elastic medium. On the surface of the half-space medium, 3 components should be zero because of no traction on the surface. This means the stress change on the surface is calculated from the surface strain change using Hooke's law. Although an earthquake does not occur on surface, the stress change on the surface may approximate that at a depth of a shallow crustal earthquake (e.g., 10 km) if the source is far from the point at which we calculate the stress change. We tested it by comparing ΔCFS from the surface displacement and that from elastic fault models for past earthquakes. We first estimate a strain change with a method of Shen et al.(1996 JGR) from surface displacement and then calculate ΔCFS for a targeted focal mechanism. Although ΔCFS in the vicinity of the source fault cannot be reproduced from the surface displacement, surface displacement gives a good approximation of ΔCFS in a region 50 km away from the source if the target mechanism is a vertical strike-slip fault. It suggests that GNSS observation can give useful information on a recent change of earthquake potential. We, therefore, calculate the temporal evolution of ΔCFS on active faults in southwest Japan from April 1996 using surface displacement at GNSS stations. We used parameters for the active faults used for evaluation of strong motion by the

  4. MONITORING CHANGES IN STRESSED ECOSYSTEMS USING SPATIAL PATTERNS OF ANT COMMUNITIES

    EPA Science Inventory

    We examined the feasibility of using changes in spatial patterns of ants-distribution on experimental plots as an indicator of response to environmental stress. We produced contour maps based on relative abundances of the three most common genera of ants based on pit-fall trap ca...

  5. Association between posttraumatic stress and acceptance of social changes: Findings from a general population study and proposal of a new concept.

    PubMed

    Kazlauskas, Evaldas; Zelviene, Paulina

    2017-03-01

    There is a growing understanding of the importance of the social factors of posttraumatic stress disorder. This study expands research on association between posttraumatic stress and social factors by introducing the measure of the acceptance of social changes and evaluating possible links between posttraumatic stress disorder symptoms and acceptance of social changes. A general population sample ( n = 778) aged from 18 to 89 years ( M = 40.2) from Lithuania participated in our study, of whom 68% reported exposure to traumatic events. Posttraumatic stress reactions were measured with the Impact of Event Scale - Revised (IES-R), and acceptance of social changes was measured with the Acceptance of Social Changes Instrument (SOCHI) developed by the authors of this study. About 8% of the participants had a potential posttraumatic stress disorder (PTSD) diagnosis. Acceptance of social changes was negatively associated with posttraumatic stress. PTSD was related to lower acceptance of social changes ( d = .61). Structural equation model (SEM) revealed the mediating role of PTSD for acceptance of social changes following trauma exposure. Findings of our study indicate that the acceptance of social changes might be an important psychosocial factor of PTSD.

  6. Seasonal Changes in Soil Moisture Content in Northern Chile and Southern California Inferred from SAR data

    NASA Astrophysics Data System (ADS)

    Scott, C. P.; Lohman, R. B.

    2015-12-01

    InSAR-based studies of the seismic cycle have focused primarily on the interferometric phase observations, which place constraints on the amount of uplift or subsidence of the ground surface. Recently, coseismic InSAR coherence has also been used to rapidly identify urban damage, surface ruptures, cracking, and soil liquefaction. Here we demonstrate that time-variable correlation and amplitude data contain additional information about surficial processes and material properties that may affect ground deformation and seismic hazard. In the use of correlation for hazard response, distinguishing the coseismic signal from other changes in surface properties associated with variations in soil moisture content, vegetation and snow cover, and wind is critical. Building SAR-based catalogues of ground properties will therefore improve the reliability of rapid response and aid in the designing of future SAR missions to better map surface ruptures, off-fault deformation, and coseismic damage. In this project, we characterize the seasonal variations in the soil moisture content in the Northern Chilean Coastal Cordillera and Southern California. The extreme climate of the Atacama Desert characterized by hyperaridity and coastal fog during the non-summer months creates an ideal landscape for exploring surface properties. We produce interferograms using L-band ALOS data (λ = 23.6 cm) that span 46 days to three years and have perpendicular baselines less than 1500 m. We observe a strong seasonal dependence on correlation that extends to the maximum elevation of the fog penetration. Interferograms with only austral summer acquisitions are more correlated than interferograms with one or both acquisitions in the autumn, winter or spring, even when the summer interferograms span multiple years. We propose that the seasonal dependence is due to small changes in the radar path length caused by variable soil moisture content in the very shallow subsurface. We further consider local

  7. EEG changes as heat stress reactions in rats irradiated by high intensity 35 GHz millimeter waves.

    PubMed

    Xie, Taorong; Pei, Jian; Cui, Yibin; Zhang, Jie; Qi, Hongxing; Chen, Shude; Qiao, Dengjiang

    2011-06-01

    As the application of millimeter waves for civilian and military use increases, the possibility of overexposure to millimeter waves will also increase. This paper attempts to evaluate stress reactions evoked by 35 GHz millimeter waves. The stress reactions in Sprague-Dawley (SD) rats were quantitatively studied by analyzing electroencephalogram (EEG) changes induced by overexposure to 35 GHz millimeter waves. The relative changes in average energy of the EEG and its wavelet decompositions were used for extracting the stress reaction indicators. Incident average power densities (IAPDs) of 35 GHz millimeter waves from 0.5 W cm(-2) to 7.5 W cm(-2) were employed to investigate the relation between irradiation dose and the stress reactions in the rats. Different stress reaction periods evoked by irradiation were quantitatively evaluated by EEG results. The results illustrate that stress reactions are more intense during the first part of the irradiation than during the later part. The skin temperature increase produced by millimeter wave irradiation is the principle reason for stress reactions and skin injuries. As expected, at the higher levels of irradiation, the reaction time decreases and the reaction intensity increases.

  8. Tectonic implications and seismicity triggering during the 2008 Baluchistan, Pakistan earthquake sequence

    NASA Astrophysics Data System (ADS)

    Yadav, R. B. S.; Gahalaut, V. K.; Chopra, Sumer; Shan, Bin

    2012-02-01

    A damaging and widely felt moderate earthquake (Mw 6.4) hit the rural, mountainous region of southwestern Pakistan on October 28, 2008. The main shock was followed by another earthquake of identical magnitude (Mw 6.4) on the next day. The spatial distribution of aftershocks and focal mechanism revealed a NW-SE striking rupture with right-lateral strike-slip motion which is sympathetic to the NNW-SSE striking active mapped Urghargai Fault. The occurrence of strike-slip earthquakes suggests that along with the thrust faults, strike slip faults too are present beneath the fold-and-thrust belt of Sulaiman-Kirthar ranges and accommodates some of the relative motion of the Indian and Eurasian plates. To assess the characteristics of this sequence, the statistical parameters like aftershocks temporal decay, b-value of G-R relationship, partitioning of radiated seismic energy due to aftershocks, and spatial fractal dimension (D-value) have been examined. The b-value is estimated as 1.03 ± 0.42 and suggests the tectonic genesis of the sequence and crustal heterogeneity within rock mass. The low p-value of 0.89 ± 0.07 implies slow decay of aftershocks activity which is probably an evidence for low surface heat flow. A value of spatial fractal dimension of 2.08 ± 0.02 indicates random spatial distribution and that the source is a two-dimensional plane filled-up by fractures. The static coseismic Coulomb stress changes due to the foreshock (Mw 5.3) were found to increase stress by more than 0.04 bars at the hypocenter of the main shock, thus promoting the failure. The cumulative coseismic Coulomb stress changes due to the foreshock and mainshocks suggest that most of the aftershocks occurred in the region of increased Coulomb stress, and to the SE to the mainshock rupture.

  9. Coulomb stress transfer and tectonic loading preceding the 2002 Denali fault earthquake

    USGS Publications Warehouse

    Bufe, Charles G.

    2006-01-01

    Pre-2002 tectonic loading and Coulomb stress transfer are modeled along the rupture zone of the M 7.9 Denali fault earthquake (DFE) and on adjacent segments of the right-lateral Denali–Totschunda fault system in central Alaska, using a three-dimensional boundary-element program. The segments modeled closely follow, for about 95°, the arc of a circle of radius 375 km centered on an inferred asperity near the northeastern end of the intersection of the Patton Bay fault with the Alaskan megathrust under Prince William Sound. The loading model includes slip of 6 mm/yr below 12 km along the fault system, consistent with rotation of the Wrangell block about the asperity at a rate of about 1°/m.y. as well as slip of the Pacific plate at 5 cm/yr at depth along the Fairweather–Queen Charlotte transform fault system and on the Alaska megathrust. The model is consistent with most available pre-2002 Global Positioning System (GPS) displacement rate data. Coulomb stresses induced on the Denali–Totschunda fault system (locked above 12 km) by slip at depth and by transfer from the M 9.2 Prince William Sound earthquake of 1964 dominated the changing Coulomb stress distribution along the fault. The combination of loading (∼70–85%) and coseismic stress transfer from the great 1964 earthquake (∼15–30%) were the principal post-1900 stress factors building toward strike-slip failure of the northern Denali and Totschunda segments in the M 7.9 earthquake of November 2002. Postseismic stresses transferred from the 1964 earthquake may also have been a significant factor. The M 7.2–7.4 Delta River earthquake of 1912 (Carver et al., 2004) may have delayed or advanced the timing of the DFE, depending on the details and location of its rupture. The initial subevent of the 2002 DFE earthquake was on the 40-km Susitna Glacier thrust fault at the western end of the Denali fault rupture. The Coulomb stress transferred from the 1964 earthquake moved the Susitna Glacier thrust

  10. TECHNICAL NOTE: Actuation displacement performance change of pre-stressed piezoelectric actuators attached to a flat surface

    NASA Astrophysics Data System (ADS)

    Goo, Nam Seo; Phuoc Phan, Van; Park, Hoon Cheol

    2009-03-01

    Pre-stressed piezoelectric actuators such as RAINBOW, THUNDER™, and LIPCA have a curvature due to a mismatch of the coefficient of thermal expansion, which inevitably exists during the manufacturing process. This technical note provides an answer to the question of how their actuation displacement performance changes when the curved pre-stressed piezoelectric actuators are attached to a flat surface. Finite element analysis with the ANSYS™ program was used to calculate the stress distribution inside a LIPCA, one of the pre-stressed piezoelectric actuators, after the LIPCA was cured and attached to the flat surface. The change of actuation displacement performance can be explained in terms of the relation between the piezoelectric strain constants and internal stress. As a result of the curing and attachment to a flat surface, the two-dimensional stress state inside the piezoceramic layer leads to an expected increase of around 51% for the longitudinal piezoelectric strain constant. To confirm this result, we reconsider the experimental results of the actuation moment measurement of the LIPCA and bare lead zirconium titanate.

  11. Streamflow responses in Chile to megathrust earthquakes in the 20th and 21st centuries

    NASA Astrophysics Data System (ADS)

    Mohr, Christian; Manga, Michael; Wang, Chi-yuen; Korup, Oliver

    2016-04-01

    Both coseismic static stress and dynamic stresses associated with seismic waves may cause responses in hydrological systems. Such responses include changes in the water level, hydrochemistry and streamflow discharge. Earthquake effects on hydrological systems provide a means to study the interaction between stress changes and regional hydrology, which is otherwise rarely possible. Chile is a country of frequent and large earthquakes and thus provides abundant opportunities to study such interactions and processes. We analyze streamflow responses in Chile to several megathrust earthquakes, including the 1943 Mw 8.1 Coquimbo, 1950 Mw 8.2 Antofagasta, 1960 Mw 9.5 Valdivia, 1985 Mw 8.0 Valparaiso, 1995 Mw 8.0 Antofagasta, 2010 Mw 8.8 Maule, and the 2014 Mw 8.2 Iquique earthquakes. We use data from 716 stream gauges distributed from the Altiplano in the North to Tierra del Fuego in the South. This network covers the Andes mountain ranges, the central valley, the Coastal Mountain ranges and (mainly in the more southern parts) the Coastal flats. We combine empirical magnitude-distance relationships, machine learning tools, and process-based modeling to characterize responses. We first assess the streamflow anomalies and relate these to topographical, hydro-climatic, geological and earthquake-related (volumetric and dynamic strain) factors using various classifiers. We then apply 1D-groundwater flow modeling to selected catchments in order to test competing hypotheses for the origin of streamflow changes. We show that the co-seismic responses of streamflow mostly involved increasing discharges. We conclude that enhanced vertical permeability can explain most streamflow responses at the regional scale. The total excess water released by a single earthquake, i.e. the Maule earthquake, yielded up to 1 km3. Against the background of megathrust earthquakes frequently hitting Chile, the amount of water released by earthquakes is substantial, particularly for the arid northern

  12. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles

    DOE PAGES

    Valdés-López, Oswaldo; Batek, Josef; Gomez-Hernandez, Nicolas; ...

    2016-04-25

    Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Heat stress significantly influences the functions of roots, which provide support, water, and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined their response to heat stress. Here in this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to stripped roots. On average, we identifiedmore » 1849 and 3091 genes differentially regulated in root hairs and stripped roots, respectively, in response to heat stress. Our gene regulatory module analysis identified 10 key modules that might control the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from root hairs and compared these responses to stripped roots. These experiments identified a variety of proteins whose expression changed within 3 h of application of heat stress. Most of these proteins were predicted to play a significant role in thermo-tolerance, as well as in chromatin remodeling and post-transcriptional regulation. In conclusion, the data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean.« less

  13. Stress in Marital Interaction and Change in Depression: A Longitudinal Analysis.

    ERIC Educational Resources Information Center

    Schafer, Robert B.; Wickrama, K. A. S.; Keith, Pat M.

    1998-01-01

    A model of the effects of two types of stress in everyday marital interaction on change in depressive symptoms is investigated. Mediating variables are unfavorable reflected appraisals, low competency, self-efficacy, and self-esteem. Participants (N=98 couples) were interviewed twice. The data supported the model. (Author/EMK)

  14. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake

    NASA Technical Reports Server (NTRS)

    Zebker, Howard A.; Rosen, Paul A.; Goldstein, Richard M.; Gabriel, Andrew; Werner, Charles L.

    1994-01-01

    We present a map of the coseimic displacement field resulting from the Landers, California, June 28, 1992, earthquake derived using data acquired from an orbiting high-resolution radar system. We achieve results more accurate than previous space studies and similar in accuracy to those obtained by conventional field survey techniques. Data from the ERS 1 synthetic aperture radar instrument acquired in April, July, and August 1992 are used to generate a high-resolution, wide area map of the displacements. The data represent the motion in the direction of the radar line of sight to centimeter level precision of each 30-m resolution element in a 113 km by 90 km image. Our coseismic displacement contour map gives a lobed pattern consistent with theoretical models of the displacement field from the earthquake. Fine structure observed as displacement tiling in regions several kilometers from the fault appears to be the result of local surface fracturing. Comparison of these data with Global Positioning System and electronic distance measurement survey data yield a correlation of 0.96; thus the radar measurements are a means to extend the point measurements acquired by traditional techniques to an area map format. The technique we use is (1) more automatic, (2) more precise, and (3) better validated than previous similar applications of differential radar interferometry. Since we require only remotely sensed satellite data with no additioanl requirements for ancillary information. the technique is well suited for global seismic monitoring and analysis.

  15. Changes in fatty acid composition in the giant clam Tridacna maxima in response to thermal stress

    PubMed Central

    Dubousquet, Vaimiti; Gros, Emmanuelle; Berteaux-Lecellier, Véronique; Viguier, Bruno; Raharivelomanana, Phila; Bertrand, Cédric; Lecellier, Gaël J.

    2016-01-01

    ABSTRACT Temperature can modify membrane fluidity and thus affects cellular functions and physiological activities. This study examines lipid remodelling in the marine symbiotic organism, Tridacna maxima, during a time series of induced thermal stress, with an emphasis on the morphology of their symbiont Symbiodinium. First, we show that the French Polynesian giant clams harbour an important proportion of saturated fatty acids (SFA), which reflects their tropical location. Second, in contrast to most marine organisms, the total lipid content in giant clams remained constant under stress, though some changes in their composition were shown. Third, the stress-induced changes in fatty acid (FA) diversity were accompanied by an upregulation of genes involved in lipids and ROS pathways. Finally, our microscopic analysis revealed that for the giant clam's symbiont, Symbiodinium, thermal stress led to two sequential cell death processes. Our data suggests that the degradation of Symbiodinium cells could provide an additional source of energy to T. maxima in response to heat stress. PMID:27543058

  16. Melatonin prevents retinal oxidative stress and vascular changes in diabetic rats

    PubMed Central

    Özdemir, G; Ergün, Y; Bakariş, S; Kılınç, M; Durdu, H; Ganiyusufoğlu, E

    2014-01-01

    Purpose To evaluate the role of melatonin, an antioxidant agent, in diabetic oxidative stress and vascular damage. Methods Diabetes was induced in 21 male Wistar rats by intraperitoneal (IP) administration of streptozotocin and then the rats were equally and randomly allocated to diabetic, melatonin, and vehicle groups. Seven healthy normal rats with similar features comprised the control group as the fourth group. All animals were followed for 12 weeks. The melatonin group received IP melatonin daily and the vehicle group received 2.5% ethanol IP at the last month. At the end of 12 weeks, the rats were killed and retinas were harvested. The retinas were investigated for the existence of hypoxia-inducible factor 1-α (HIF-1α), vascular endothelial growth factor A (VEGF-A), and pigment epithelium-derived factor (PEDF) by ELISA. Retinal oxidative stress is quantitated by measuring nitrotyrosine and malondialdehyde levels. Retinal immunohistochemistry with antibody against CD31 antigen was carried out on retinal cross-sections. For statistics, ANOVA test was used for multiple comparisons. Results Hyperglycemia increased retinal oxidation as measured through levels of nitrotyrosine and malondialdehyde. Diabetic retinas are also associated with abnormal vascular changes such as dilatation and deformation. HIF-1α, VEGF-A, and PEDF were all increased because of diabetic injury. Melatonin showed a potential beneficial effect on retinopathy in diabetic rats. It decreased retinal nitrotyrosine and malondialdehyde levels, showing an antioxidative support. The vasculomodulator cytokines are decreased accordingly by melatonin therapy. Melatonin normalized retinal vascular changes as well. Conclusion Melatonin may show some advantage on diabetic vascular changes through decreasing oxidative stress and vessel-related cytokines. PMID:24924441

  17. Postseismic deformation following the June 2000 earthquake sequence in the south Iceland seismic zone

    USGS Publications Warehouse

    Arnadottir, T.; Jonsson, Sigurjon; Pollitz, F.F.; Jiang, W.; Feigl, K.L.

    2005-01-01

    We observe postseismic deformation on two spatiotemporal scales following Mw = 6.5 earthquakes in the south Iceland seismic zone on 17 and 21 June 2000. We see a rapidly decaying deformation transient lasting no more than 2 months and extending about 5 km away from the two main shock ruptures. This local, month-scale transient is captured by several radar interferograms and is also observed at a few campaign GPS sites located near the faults. A slower transient with a characteristic timescale of about a year is detected only by GPS measurements. The month-scale deformation pattern has been explained by poroelastic rebound due to postearthquake pore pressure changes. In contrast, the year-scale deformation can be explained by either afterslip at 8-14 km depth or viscoelastic relaxation of the lower crust and upper mantle in response to the coseismic stress changes. The optimal viscoelastic models have lower crustal viscosities of 0.5-1 ?? 1019 Pa s and upper mantle viscosity of ???3 ?? 1018 Pa s. Because of the limitations of our GPS campaign data, we consider both afterslip and viscoelastic relaxation as plausible mechanisms explaining the deformation field. Both types of postseismic deformation models suggest that the areas of large coseismic stress increase east of the 17 June and west of the 21 June ruptures continue to be loaded by the postseismic deformation. Copyright 2005 by the American Geophysical Union.

  18. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdés-López, Oswaldo; Batek, Josef; Gomez-Hernandez, Nicolas

    2016-04-25

    Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Roots provide support, water and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined the response of these plant organs to heat stress. In this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to whole roots. We identified 2,013 genes differentially regulated in root hairsmore » in response to heat stress. Our gene regulatory module analysis identified ten, key modules that controlled the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from roots and root hairs. These experiments identified a variety of proteins whose expression changed within 3 hours of application of heat stress. Most of these proteins were predicted to play a role in thermotolerance, as well as in chromatin remodeling and post-transcriptional regulation. The data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean.« less

  19. Source model of an earthquake doublet that occurred in a pull-apart basin along the Sumatran fault, Indonesia

    NASA Astrophysics Data System (ADS)

    Nakano, M.; Kumagai, H.; Toda, S.; Ando, R.; Yamashina, T.; Inoue, H.; Sunarjo

    2010-04-01

    On 2007 March 6, an earthquake doublet occurred along the Sumatran fault, Indonesia. The epicentres were located near Padang Panjang, central Sumatra, Indonesia. The first earthquake, with a moment magnitude (Mw) of 6.4, occurred at 03:49 UTC and was followed two hours later (05:49 UTC) by an earthquake of similar size (Mw = 6.3). We studied the earthquake doublet by a waveform inversion analysis using data from a broadband seismograph network in Indonesia (JISNET). The focal mechanisms of the two earthquakes indicate almost identical right-lateral strike-slip faults, consistent with the geometry of the Sumatran fault. Both earthquakes nucleated below the northern end of Lake Singkarak, which is in a pull-apart basin between the Sumani and Sianok segments of the Sumatran fault system, but the earthquakes ruptured different fault segments. The first earthquake occurred along the southern Sumani segment and its rupture propagated southeastward, whereas the second one ruptured the northern Sianok segment northwestward. Along these fault segments, earthquake doublets, in which the two adjacent fault segments rupture one after the other, have occurred repeatedly. We investigated the state of stress at a segment boundary of a fault system based on the Coulomb stress changes. The stress on faults increases during interseismic periods and is released by faulting. At a segment boundary, on the other hand, the stress increases both interseismically and coseismically, and may not be released unless new fractures are created. Accordingly, ruptures may tend to initiate at a pull-apart basin. When an earthquake occurs on one of the fault segments, the stress increases coseismically around the basin. The stress changes caused by that earthquake may trigger a rupture on the other segment after a short time interval. We also examined the mechanism of the delayed rupture based on a theory of a fluid-saturated poroelastic medium and dynamic rupture simulations incorporating a

  20. Effect of Combined Stress on Morphological Changes and Expression of NO Synthases in Rat Ventral Hippocampus.

    PubMed

    Smirnov, A V; Tyurenkov, I N; Shmidt, M V; Ekova, M R; Mednikov, D S; Borodin, D D

    2015-11-01

    Adult rats were subjected to 7-day combined stress with stochastic changes of stressors of different modalities (noise, vibration, pulsating bright light) along with mobility restriction and elevated temperature in the chamber during stress exposures (daily 30-min sessions). Circulatory disorders, inhibition of endothelial NO-synthase expression in endothelial cells of the microcirculatory bed, perivascular edema, pronounced degenerative changes, and enhanced expression of inducible NO synthase in CA3 pyramidal neurons in the ventral hippocampus of stressed 12-month-old rats were observed. These findings can attest to the involvement NOdependent mechanisms and different contribution of NO synthase isoforms into the formation of hippocampal neuronal damage.

  1. Hypericum perforatum L. treatment restored bone mass changes in swimming stressed rats.

    PubMed

    Seferos, Nikos; Petrokokkinos, Loukas; Kotsiou, Antonia; Rallis, George; Tesseromatis, Christine

    2016-01-01

    Stress, via corticosteroids release, influences bone mass density. Hypericum perforatum (Hp) a traditional remedy possess antidepressive activity (serotonin reuptake inhibitor) and wound healing properties. Hp preparation contains mainly hypericin, hyperforin, hyperoside and flavonoids exerting oestrogen-mimetic effect. Cold swimming represents an experimental model of stress associating mental strain and corporal exhaustion. This study investigates the Hp effect on femur and mandible bone mass changes in rats under cold forced swimming procedure. 30 male Wistar rats were randomized into three groups. Group A was treated with Methanolic extract of Hp (Jarsin®) via gastroesophageal catheter, and was submitted to cold swimming stress for 10 min/daily. Group B was submitted to cold stress, since group C served as control. Experiment duration was 10 days. Haematocrite and serum free fatty acids (FFA) were estimated. Furthermore volume and specific weight of each bone as well as bone mass density via dual energy X-Ray absorptiometry (DEXA) were measured. Statistic analysis by t-test. Hp treatment restores the stress injuries. Adrenals and bone mass density regain their normal values. Injuries occurring by forced swimming stress in the rats are significantly improved by Hp treatment. Estrogen-like effects of Hp flavonoids eventually may act favorable in bone remodeling.

  2. Development and Implementation for Calculation Model of Measuring Co-Seismic Deformation Field by Using Ascending and Descending Orbit SAR Data

    NASA Astrophysics Data System (ADS)

    Xue, Tengfei; Chang, Zhanqiang; Zhang, Jingfa

    2016-08-01

    Interferometry Synthetic Aperture Radar (InSAR)can only measure one component of the surface deformation in the satellite's line of sight (LOS) instead of that in vertical and horizontal directions, i.e. LOS Amphibious. In view of this problem, we analyzed and summarized some methods that can measure the three-dimensional deformation of ground surface by using D-InSAR, developed the calculation model of measuring the three-dimensional co-seismic deformation filed by using the ascending and descending orbit SAR data. The Formula of left-looking (both ascending and descending orbit data), right-looking (both ascending and descending orbit data) and general expression were proposed. The model was applied on L'Aquila earthquake, and the results reveal that the earthquake has caused displacement in both vertical and horizontal directions, and the earthquake made the area down lift 16.8cm along the vertical direction. The characters of the surface reflected by the results are very consistent with the geological exploration.

  3. Work and family stress is associated with menstrual disorders but not with fibrocystic changes: cross-sectional findings in Chinese working women.

    PubMed

    Zhou, Mei; Wege, Natalia; Gu, Huakang; Shang, Li; Li, Jian; Siegrist, Johannes

    2010-01-01

    To explore the separate and combined effects of work and family stress on menstrual disorders and fibrocystic changes in Chinese working women. Data were obtained from a cross-sectional study of 1,642 female railway workers. The Effort-Reward Imbalance Questionnaire and Family Stress Scale were used to measure work stress and family stress, respectively; the menstrual and breast conditions were evaluated by gynecologic interview and a medical examination. Multivariate log-binomial regression was performed to analyze the associations. Menstrual disorders were found in 59.3% of female workers, and 54.8% had fibrocystic changes. The risk of menstrual disorders was significantly elevated with respect to work and family stress. The highest risk was found in the group with combined exposure to both work and family stress (RR with 95% CI 1.33 (1.18-1.49)). No significant association between stress and fibrocystic changes was observed. Menstrual disorders were associated with stress from work and family life, but not fibrocystic changes, in working women. Tailored intervention measures reducing the burden of stressful psychosocial work and family environment are needed to improve women's reproductive well-being.

  4. Stress response in honeybees is associated with changes in task-related physiology and energetic metabolism.

    PubMed

    Bordier, Célia; Suchail, Séverine; Pioz, Maryline; Devaud, Jean Marc; Collet, Claude; Charreton, Mercedes; Le Conte, Yves; Alaux, Cédric

    2017-04-01

    In a rapidly changing environment, honeybee colonies are increasingly exposed to diverse sources of stress (e.g., new parasites, pesticides, climate warming), which represent a challenge to individual and social homeostasis. However, bee physiological responses to stress remain poorly understood. We therefore exposed bees specialised in different tasks (nurses, guards and foragers) to ancient (immune and heat stress) or historically more recent sources of stress (pesticides), and we determined changes in the expression of genes linked to behavioural maturation (vitellogenin - vg and juvenile hormone esterase - jhe) as well as in energetic metabolism (glycogen level, expression level of the receptor to the adipokinetic hormone - akhr, and endothermic performance). While acute exposure to sublethal doses of two pesticides did not affect vg and jhe expression, immune and heat challenges caused a decrease and increase in both genes, respectively, suggesting that bees had responded to ecologically relevant stressors. Since vg and jhe are expressed to a higher level in nurses than in foragers, it is reasonable to assume that an immune challenge stimulated behavioural maturation to decrease potential contamination risk and that a heat challenge promoted a nurse profile for brood thermoregulation. All behavioural castes responded in the same way. Though endothermic performances did not change upon stress exposure, the akhr level dropped in immune and heat-challenged individuals. Similarly, the abdomen glycogen level tended to decline in immune-challenged bees. Altogether, these results suggest that bee responses are stress specific and adaptive but that they tend to entail a reduction of energetic metabolism that needs to be studied on a longer timescale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The contribution of changes in diet, exercise, and stress management to changes in coronary risk in women and men in the multisite cardiac lifestyle intervention program.

    PubMed

    Daubenmier, Jennifer J; Weidner, Gerdi; Sumner, Michael D; Mendell, Nancy; Merritt-Worden, Terri; Studley, Joli; Ornish, Dean

    2007-02-01

    The relative contribution of health behaviors to coronary risk factors in multicomponent secondary coronary heart disease (CHD) prevention programs is largely unknown. Our purpose is to evaluate the additive and interactive effects of 3-month changes in health behaviors (dietary fat intake, exercise, and stress management) on 3-month changes in coronary risk and psychosocial factors among 869 nonsmoking CHD patients (34% female) enrolled in the health insurance-based Multisite Cardiac Lifestyle Intervention Program. Analyses of variance for repeated measures were used to analyze health behaviors, coronary risk factors, and psychosocial factors at baseline and 3 months. Multiple regression analyses evaluated changes in dietary fat intake and hours per week of exercise and stress management as predictors of changes in coronary risk and psychosocial factors. Significant overall improvement in coronary risk was observed. Reductions in dietary fat intake predicted reductions in weight, total cholesterol, low-density lipoprotein cholesterol, and interacted with increased exercise to predict reductions in perceived stress. Increases in exercise predicted improvements in total cholesterol and exercise capacity (for women). Increased stress management was related to reductions in weight, total cholesterol/high-density lipoprotein cholesterol (for men), triglycerides, hemoglobin A1c (in patients with diabetes), and hostility. Improvements in dietary fat intake, exercise, and stress management were individually, additively and interactively related to coronary risk and psychosocial factors, suggesting that multicomponent programs focusing on diet, exercise, and stress management may benefit patients with CHD.

  6. Dental Resin Cements-The Influence of Water Sorption on Contraction Stress Changes and Hydroscopic Expansion.

    PubMed

    Sokolowski, Grzegorz; Szczesio, Agata; Bociong, Kinga; Kaluzinska, Karolina; Lapinska, Barbara; Sokolowski, Jerzy; Domarecka, Monika; Lukomska-Szymanska, Monika

    2018-06-08

    Resin matrix dental materials undergo contraction and expansion changes due to polymerization and water absorption. Both phenomena deform resin-dentin bonding and influence the stress state in restored tooth structure in two opposite directions. The study tested three composite resin cements (Cement-It, NX3, Variolink Esthetic DC), three adhesive resin cements (Estecem, Multilink Automix, Panavia 2.0), and seven self-adhesive resin cements (Breeze, Calibra Universal, MaxCem Elite Chroma, Panavia SA Cement Plus, RelyX U200, SmartCem 2, and SpeedCEM Plus). The stress generated at the restoration-tooth interface during water immersion was evaluated. The shrinkage stress was measured immediately after curing and after 0.5 h, 24 h, 72 h, 96 h, 168 h, 240 h, 336 h, 504 h, 672 h, and 1344 h by means of photoelastic study. Water sorption and solubility were also studied. All tested materials during polymerization generated shrinkage stress ranging from 4.8 MPa up to 15.1 MPa. The decrease in shrinkage strain (not less than 57%) was observed after water storage (56 days). Self-adhesive cements, i.e., MaxCem Elite Chroma, SpeedCem Plus, Panavia SA Plus, and Breeze exhibited high values of water expansion stress (from 0 up to almost 7 MPa). Among other tested materials only composite resin cement Cement It and adhesive resin cement Panavia 2.0 showed water expansion stress (1.6 and 4.8, respectively). The changes in stress value (decrease in contraction stress or built up of hydroscopic expansion) in time were material-dependent.

  7. Changes in Depression and Stress after Release from a Tobacco-Free Prison in the United States

    PubMed Central

    van den Berg, Jacob J.; Roberts, Mary B.; Bock, Beth C.; Martin, Rosemarie A.; Stein, L.A.R.; Parker, Donna R.; McGovern, Arthur R.; Shuford, Sarah Hart; Clarke, Jennifer G.

    2016-01-01

    Prior research has found high levels of depression and stress among persons who are incarcerated in the United States (U.S.). However, little is known about changes in depression and stress levels among inmates post-incarceration. The aim of this study was to examine changes in levels of depression and stress during and after incarceration in a tobacco-free facility. Questionnaires that included valid and reliable measures of depression and stress were completed by 208 male and female inmates approximately eight weeks before and three weeks after release from a northeastern U.S. prison. Although most inmates improved after prison, 30.8% had a worsening in levels of depression between baseline and the three-week follow-up. In addition, 29.8% had a worsening in levels of stress after release than during incarceration. While it is not surprising that the majority of inmates reported lower levels of depression and stress post-incarceration, a sizable minority had an increase in symptoms, suggesting that environmental stressors may be worse in the community than in prison for some inmates. Further research is needed to address depression and stress levels during and after incarceration in order for inmates to have a healthier transition back into the community and to prevent repeat incarcerations. PMID:26771622

  8. Fossil intermediate-depth earthquakes in subducting slabs linked to differential stress release

    NASA Astrophysics Data System (ADS)

    Scambelluri, Marco; Pennacchioni, Giorgio; Gilio, Mattia; Bestmann, Michel; Plümper, Oliver; Nestola, Fabrizio

    2017-12-01

    The cause of intermediate-depth (50-300 km) seismicity in subduction zones is uncertain. It is typically attributed either to rock embrittlement associated with fluid pressurization, or to thermal runaway instabilities. Here we document glassy pseudotachylyte fault rocks—the products of frictional melting during coseismic faulting—in the Lanzo Massif ophiolite in the Italian Western Alps. These pseudotachylytes formed at subduction-zone depths of 60-70 km in poorly hydrated to dry oceanic gabbro and mantle peridotite. This rock suite is a fossil analogue to an oceanic lithospheric mantle that undergoes present-day subduction. The pseudotachylytes locally preserve high-pressure minerals that indicate an intermediate-depth seismic environment. These pseudotachylytes are important because they are hosted in a near-anhydrous lithosphere free of coeval ductile deformation, which excludes an origin by dehydration embrittlement or thermal runaway processes. Instead, our observations indicate that seismicity in cold subducting slabs can be explained by the release of differential stresses accumulated in strong dry metastable rocks.

  9. Beyond Adapting to Climate Change: Embedding Adaptation in Responses to Multiple Threats and Stresses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilbanks, Thomas J; Kates, Dr. Robert W.

    2010-01-01

    Climate change impacts are already being experienced in every region of the United States and every part of the world most severely in Arctic regions and adaptation is needed now. Although climate change adaptation research is still in its infancy, significant adaptation planning in the United States has already begun in a number of localities. This article seeks to broaden the adaptation effort by integrating it with broader frameworks of hazards research, sustainability science, and community and regional resilience. To extend the range of experience, we draw from ongoing case studies in the Southeastern United States and the environmental historymore » of New Orleans to consider the multiple threats and stresses that all communities and regions experience. Embedding climate adaptation in responses to multiple threats and stresses helps us to understand climate change impacts, themselves often products of multiple stresses, to achieve community acceptance of needed adaptations as co-benefits of addressing multiple threats, and to mainstream the process of climate adaptation through the larger envelope of social relationships, communication channels, and broad-based awareness of needs for risk management that accompany community resilience.« less

  10. Stress Analyzer

    NASA Technical Reports Server (NTRS)

    1990-01-01

    SPATE 900 Dynamic Stress Analyzer is an acronym for Stress Pattern Analysis by Thermal Emission. It detects stress-induced temperature changes in a structure and indicates the degree of stress. Ometron, Inc.'s SPATE 9000 consists of a scan unit and a data display. The scan unit contains an infrared channel focused on the test structure to collect thermal radiation, and a visual channel used to set up the scan area and interrogate the stress display. Stress data is produced by detecting minute temperature changes, down to one-thousandth of a degree Centigrade, resulting from the application to the structure of dynamic loading. The electronic data processing system correlates the temperature changes with a reference signal to determine stress level.

  11. Monitoring Transcriptomic Changes in Soil-Grown Roots and Shoots of Arabidopsis thaliana Subjected to a Progressive Drought Stress.

    PubMed

    Bashir, Khurram; Rasheed, Sultana; Matsui, Akihiro; Iida, Kei; Tanaka, Maho; Seki, Motoaki

    2018-01-01

    Numerous experiments have been performed in Arabidopsis to monitor changes in gene expression that occur in response to a variety of abiotic and biotic stresses, different growth conditions, and at various developmental stages. In addition, gene expression patterns have also been characterized among wild-type and mutant genotypes. Despite these numerous reports, transcriptional changes occurring in roots of soil-grown plants subjected to a progressive drought stress have remained undocumented. To fill this gap, we established a system that allows one to establish water-deficit conditions and to collect root and shoot samples with minimal damage to the root system. Arabidopsis plants are grown in a ceramic-based granular soil and subjected to progressive drought stress by withholding water. Root and shoot samples were collected separately, RNA was purified, and a microarray analysis of drought-stressed roots and shoots was performed at 0, 1, 3, 5, 7, and 9 days after the onset of drought stress treatment. Here, we describe the detailed protocol used to analyze the transcriptomic changes occurring in roots and shoots of soil-grown Arabidopsis subjected to a progressive drought stress.

  12. Cytotoxicity and the induction of the stress protein Hsp 70 in Chang liver cells in response to zearalenone-induced oxidative stress.

    PubMed

    Lee, Hyungkyoung; Kang, Changgeun; Yoo, Yong-San; Hah, Do-Yun; Kim, Chung Hui; Kim, Euikyung; Kim, Jong Shu

    2013-09-01

    Zearalenone (ZEN) has been implicated in several cases of mycotoxicosis in farm animals and humans. The toxic effects of ZEN have been well characterized, but little is known regarding the mechanisms of ZEN toxicity, including the involvement of the oxidative stress pathway. Using Chang liver cells as a model, the aim of this study was to determine if ZEN could elevate the expression of the heat shock protein Hsp 70, induce cytotoxicity and modulate the levels of glutathione (GSH) and thiobarbituric acid reactive substance (TBARS). In addition, the cytoprotective effects of N-acetylcysteine amide (NACA) pre-treatment were assessed. Finally, the involvement of oxidative stress in ZEN-induced toxicity was confirmed. The results of this study demonstrated that ZEN-induced Hsp 70 expression in a dose- and time-dependent manners. This effect occurred at low-ZEN concentrations, and could therefore be considered a biomarker of ZEN-induced toxicity. The cytotoxicity was reduced when Chang liver cells were exposed to sub-lethal heat shock prior to ZEN treatment, demonstrating a cytoprotective effect of Hsp 70. This cytoprotective effect suggested that Hsp 70 might play a key role in the cellular defense mechanism. When cells were pre-treated with NACA prior to ZEN treatment, the cells were also protected from toxicity. This NACA cytoprotective effect suggested the involvement of oxidative stress in ZEN-induced toxicity, and this mechanism was supported by reduced Hsp 70 expression, inhibited cytolethality, increased GSH levels and decreased TBARS formation when cells were pre-treated with NACA prior to ZEN exposure. Our data clearly demonstrated that ZEN induced cytotoxicity in Chang liver cells by inhibiting cell proliferation, decreasing GSH levels and increasing TBARS formation in a dose-dependent manner. ZEN also, induced Hsp 70 expression, and the side effects of ZEN were significantly alleviated by pre-treatment with NACA. Oxidative stress is likely to be one of the

  13. Prenatal stress changes learning strategies in adulthood.

    PubMed

    Schwabe, Lars; Bohbot, Veronique D; Wolf, Oliver T

    2012-11-01

    It is well known that stressful experiences may shape hippocampus-dependent learning and memory processes. However, although most studies focused on the impact of stress at the time of learning or memory testing, very little is known about how stress during critical periods of brain development affects learning and memory later in life. In this study, we asked whether prenatal stress exposure may influence the engagement of hippocampus-dependent spatial learning strategies and caudate nucleus-dependent response learning strategies in later life. To this end, we tested healthy participants whose mothers had experienced major negative life events during their pregnancy in a virtual navigation task that can be solved by spatial and response strategies. We found that young adults with prenatal stress used rigid response learning strategies more often than flexible spatial learning strategies compared with participants whose mothers did not experience major negative life events during pregnancy. Individual differences in acute or chronic stress do not account for these findings. Our data suggest that the engagement of hippocampal and nonhippocampal learning strategies may be influenced by stress very early in life. Copyright © 2012 Wiley Periodicals, Inc.

  14. High environmental stress yields greater tocotrienol content while changing vitamin e profiles of wild emmer wheat seeds.

    PubMed

    Watts, Emily J; Shen, Yu; Lansky, Ephraim P; Nevo, Eviatar; Bobe, Gerd; Traber, Maret G

    2015-02-01

    Vitamin E is an essential human nutrient that was first isolated from wheat. Emmer wheat, the cereal of Old World agriculture and a precursor to durum wheat, grows wild in the Fertile Crescent. Evolution Canyon, Israel, provides a microsite that models effects of contrasting environments. The north-facing and south-facing slopes exhibit low and high stress environments, respectively. Wild emmer wheat seeds were collected from both slopes and seed tocochromanol contents measured to test the hypothesis that high stress alters emmer wheat seed tocol-omics. Seeds from high stress areas contained more total vitamin E (108±15 nmol/g) than seeds from low stress environments (80±17 nmol/g, P=.0004). Vitamin E profiles within samples from these different environments revealed significant differences in isoform concentrations. Within each region, β- plus γ-tocotrienols represented the highest concentration of wheat tocotrienols (high stress, P<.0001; low stress, P<.0001), while α-tocopherol represented the highest concentration of the tocopherols (high stress, P=.0002; low stress, P<.0001). Percentages of both δ-tocotrienol and δ-tocopherol increased in high stress conditions. Changes under higher stress apparently are due to increased pathway flux toward more tocotrienol production. The production of more δ-isoforms suggests increased flow through a divergent path controlled by the VTE1 gene. Hence, stress conditions alter plant responses such that vitamin E profiles are changed, likely an attempt to provide additional antioxidant activity to promote seed viability and longevity.

  15. Changes in fatty acid composition in the giant clam Tridacna maxima in response to thermal stress.

    PubMed

    Dubousquet, Vaimiti; Gros, Emmanuelle; Berteaux-Lecellier, Véronique; Viguier, Bruno; Raharivelomanana, Phila; Bertrand, Cédric; Lecellier, Gaël J

    2016-10-15

    Temperature can modify membrane fluidity and thus affects cellular functions and physiological activities. This study examines lipid remodelling in the marine symbiotic organism, Tridacna maxima, during a time series of induced thermal stress, with an emphasis on the morphology of their symbiont Symbiodinium First, we show that the French Polynesian giant clams harbour an important proportion of saturated fatty acids (SFA), which reflects their tropical location. Second, in contrast to most marine organisms, the total lipid content in giant clams remained constant under stress, though some changes in their composition were shown. Third, the stress-induced changes in fatty acid (FA) diversity were accompanied by an upregulation of genes involved in lipids and ROS pathways. Finally, our microscopic analysis revealed that for the giant clam's symbiont, Symbiodinium, thermal stress led to two sequential cell death processes. Our data suggests that the degradation of Symbiodinium cells could provide an additional source of energy to T maxima in response to heat stress. © 2016. Published by The Company of Biologists Ltd.

  16. Talofibular interval changes after acute ankle sprain: a stress ultrasonography study of ankle laxity.

    PubMed

    Croy, Theodore; Saliba, Susan; Saliba, Ethan; Anderson, Mark W; Hertel, Jay

    2013-11-01

    Quantifying talocrural joint laxity after ankle sprain is problematic. Stress ultrasonography (US) can image the lateral talocrural joint and allow the measurement of the talofibular interval, which may suggest injury to the anterior talofibular ligament (ATFL). The acute talofibular interval changes after lateral ankle sprain are unknown. Twenty-five participants (9 male, 16 female; age 21.8 ± 3.2 y, height 167.8 ± 34.1 cm, mass 72.7 ± 13.8 kg) with 27 acute, lateral ankle injuries underwent bilateral stress US imaging at baseline (<7 d) and on the affected ankle at 3 wk and 6 wk from injury in 3 ankle conditions: neutral, anterior drawer, and inversion. Talofibular interval (mm) was measured using imaging software and self-reported function (activities of daily living [ADL] and sports) by the Foot and Ankle Ability Measure (FAAM). The talofibular interval increased with anterior-drawer stress in the involved ankle (22.65 ± 3.75 mm; P = .017) over the uninvolved ankle (19.45 ± 2.35 mm; limb × position F1,26 = 4.9, P = .035) at baseline. Inversion stress also resulted in greater interval changes (23.41 ± 2.81 mm) than in the uninvolved ankles (21.13 ± 2.08 mm). A main effect for time was observed for inversion (F2,52 = 4.3, P = .019, 21.93 ± 2.24 mm) but not for anterior drawer (F2,52 = 3.1, P = .055, 21.18 ± 2.34 mm). A significant reduction in the talofibular interval took place between baseline and week 3 inversion measurements only (F1,26 = 5.6, P = .026). FAAM-ADL and sports results increased significantly from baseline to wk 3 (21.9 ± 16.2, P < .0001 and 23.8 ± 16.9, P < .0001) and from wk 3 to wk 6 (2.5 ± 4.4, P = .009 and 10.5 ± 13.2, P = .001). Stress US methods identified increased talofibular interval changes suggestive of talocrural laxity and ATFL injury using anterior drawer and inversion stress that, despite significant improvements in self-reported function, only marginally improved during the 6 wk after ankle sprain. Stress US

  17. Climatic and anthropogenic changes in Western Switzerland: Impacts on water stress.

    PubMed

    Milano, Marianne; Reynard, Emmanuel; Köplin, Nina; Weingartner, Rolf

    2015-12-01

    Recent observed hydro-climatic changes in mountainous areas are of concern as they may directly affect capacity to fulfill water needs. The canton of Vaud in Western Switzerland is an example of such a region as it has experienced water shortage episodes during the past decade. Based on an integrated modeling framework, this study explores how hydro-climatic conditions and water needs could evolve in mountain environments and assesses their potential impacts on water stress by the 2060 horizon. Flows were simulated based on a daily semi-distributed hydrological model. Future changes were derived from Swiss climate scenarios based on two regional climate models. Regarding water needs, the authorities of the canton of Vaud provided a population growth scenario while irrigation and livestock trends followed a business-as-usual scenario. Currently, the canton of Vaud experiences moderate water stress from June to August, except in its Alpine area where no stress is noted. In the 2060 horizon, water needs could exceed 80% of the rivers' available resources in low- to mid-altitude environments in mid-summer. This arises from the combination of drier and warmer climate that leads to longer and more severe low flows, and increasing urban (+40%) and irrigation (+25%) water needs. Highlighting regional differences supports the development of sustainable development pathways to reduce water tensions. Based on a quantitative assessment, this study also calls for broader impact studies including water quality issues. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Involvement of the cervical sympathetic nervous system in the changes of calcium homeostasis during turpentine oil-induced stress in rats.

    PubMed

    Stern, J E; Ladizesky, M G; Keller Sarmiento, M I; Cardinali, D P

    1993-03-01

    Hypocalcemia is a common finding during stress. The objective of this study was to examine: (a) the changes in circulating calcium, parathyroid hormone (PTH) and calcitonin (CT) concentration in rats stressed by being given a subcutaneous injection of turpentine oil, and (b) the involvement of the sympathetic cervical pathway in stress-induced changes of calcium homeostasis. Four hours after receiving turpentine oil or vehicle, rats were subjected either to hypocalcemia, by being given EDTA intraperitoneally, or to hypercalcemia, by being injected CaCl2 intraperitoneally. Significant changes in serum calcium (10% decrease), serum PTH (28% increase) and CT levels (40% decrease) were observed in stressed rats. EDTA administration brought about a significantly greater hypocalcemia, and a higher PTH secretory response in turpentine oil-stressed rats. During stress, the increase of serum calcium after CaCl2 was significantly smaller, and the rise of CT was greater than in controls. In the case of CT the changes were still observed in rats subjected to superior cervical ganglionectomy (SCGx) 14 days earlier. In the case of PTH, the increase found in stressed rats, but not the augmented response after EDTA, was blunted by SCGx. The potentiation of hypocalcemia brought about by turpentine oil was no longer observed in SCGx rats. In vehicle-treated controls, SCGx delayed PTH response to hypocalcemia, but did not affect the increased response of CT to CaCl2 challenge. The results indicate that a number of changes in calcium homeostasis arise during turpentine oil stress in rats. SCGx was effective to modify the set point for PTH release, but played a minor role in affecting the augmentation of CT release during stress.

  19. Differential correlations between changes to glutathione redox state, protein ubiquitination, and stress-inducible HSPA chaperone expression after different types of oxidative stress.

    PubMed

    Girard, Pierre-Marie; Peynot, Nathalie; Lelièvre, Jean-Marc

    2018-05-12

    In primary bovine fibroblasts with an hspa1b/luciferase transgene, we examined the intensity of heat-shock response (HSR) following four types of oxidative stress or heat stress (HS), and its putative relationship with changes to different cell parameters, including reactive oxygen species (ROS), the redox status of the key molecules glutathione (GSH), NADP(H) NAD(H), and the post-translational protein modifications carbonylation, S-glutathionylation, and ubiquitination. We determined the sub-lethal condition generating the maximal luciferase activity and inducible HSPA protein level for treatments with hydrogen peroxide (H 2 O 2 ), UVA-induced oxygen photo-activation, the superoxide-generating agent menadione (MN), and diamide (DA), an electrophilic and sulfhydryl reagent. The level of HSR induced by oxidative stress was the highest after DA and MN, followed by UVA and H 2 O 2 treatments, and was not correlated to the level of ROS production nor to the extent of protein S-glutathionylation or carbonylation observed immediately after stress. We found a correlation following oxidative treatments between HSR and the level of GSH/GSSG immediately after stress, and the increase in protein ubiquitination during the recovery period. Conversely, HS treatment, which led to the highest HSR level, did not generate ROS nor modified or depended on GSH redox state. Furthermore, the level of protein ubiquitination was maximum immediately after HS and lower than after MN and DA treatments thereafter. In these cells, heat-induced HSR was therefore clearly different from oxidative stress-induced HSR, in which conversely early redox changes of the major cellular thiol predicted the level of HSR and polyubiquinated proteins.

  20. The role of the 2008 Mw 7.9 Wenchuan earthquake in topographic evolution: seismically induced landslides and the associated isostatic response

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Zhang, Z.; Zhang, H.; Zheng, W.; Zhang, P. Z.

    2017-12-01

    The widely held understanding that reverse-faulting earthquakes play an important role in building mountains has been challenged by recent studies suggesting that co-seismic landslides of the 2008 Mw 7.9 Wenchuan earthquake led to a net co-seismic lowering of surface height. We use precise estimates of co-seismic landslide volumes to calculate the long-term isostatic response to landsliding during the 2008 Wenchuan earthquake. The total isostatic respond volume is 2.0 km3 which did not change much associated with thickness of Te, however, the distribution of the rebound changes associated with thickness of Te. The total co-seismic mass change could be 1.8 km3. The maximum isostatic response due to Wenchuan earthquake may have been as high as 0.9 meters in the highest Pengguan massif of the central Longmen Shan. We also find that the average net uplift is 0.16 meters within the total landslide region due to the Wenchuan earthquake. Our findings suggest that the local topographic evolution of the middle Longmen Shan region is closely related to repeated tectonic events such as the 2008 Wenchuan Earthquake.

  1. Cold and desiccation stress induced changes in the accumulation and utilization of proline and trehalose in seasonal populations of Drosophila immigrans.

    PubMed

    Tamang, Aditya Moktan; Kalra, Bhawna; Parkash, Ravi

    2017-01-01

    Changes in the levels of energy metabolites can limit survival ability of Drosophila species under stressful conditions but this aspect has received less attention in wild populations collected in different seasons. We tested cold or desiccation triggered changes in the accumulation or utilization of two energy metabolites (trehalose and proline) in Drosophila immigrans flies reared under season specific environmental conditions. Such D.immigrans populations were subjected to different durations of cold (0°C) or desiccation stress (5% RH) or dual stress. We found stress induced effects of cold vs desiccation on the levels of trehalose as well as for proline. Different durations of cold stress led to accumulation of trehalose while desiccation stress durations revealed utilization of trehalose. In contrast, there was accumulation of proline under desiccation and utilization of proline with cold stress. Since accumulation levels were higher than utilization of each energy metabolite, the effects of dual stress showed additive effect. However, there was no utilization of total body lipids under cold or desiccation stress. We observed significant season specific differences in the amount of energy metabolites but the rate of metabolism did not vary across seasons. Stress triggered changes in trehalose and proline suggest possible link between desiccation and cold tolerance. Finally, stress specific (cold or desiccation) compensatory changes in the levels of trehalose and proline suggest possible energetic homeostasis in D.immigrans living under harsh climatic conditions of montane localities. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Mindfulness Meditation Targets Transdiagnostic Symptoms Implicated in Stress-Related Disorders: Understanding Relationships between Changes in Mindfulness, Sleep Quality, and Physical Symptoms.

    PubMed

    Greeson, Jeffrey M; Zarrin, Haley; Smoski, Moria J; Brantley, Jeffrey G; Lynch, Thomas R; Webber, Daniel M; Hall, Martica H; Suarez, Edward C; Wolever, Ruth Q

    2018-01-01

    Mindfulness-Based Stress Reduction (MBSR) is an 8-week meditation program known to improve anxiety, depression, and psychological well-being. Other health-related effects, such as sleep quality, are less well established, as are the psychological processes associated with therapeutic change. This prospective, observational study ( n = 213) aimed to determine whether perseverative cognition, indicated by rumination and intrusive thoughts, and emotion regulation, measured by avoidance, thought suppression, emotion suppression, and cognitive reappraisal, partly accounted for the hypothesized relationship between changes in mindfulness and two health-related outcomes: sleep quality and stress-related physical symptoms. As expected, increased mindfulness following the MBSR program was directly correlated with decreased sleep disturbance ( r = -0.21, p = 0.004) and decreased stress-related physical symptoms ( r = -0.38, p < 0.001). Partial correlations revealed that pre-post changes in rumination, unwanted intrusive thoughts, thought suppression, experiential avoidance, emotion suppression, and cognitive reappraisal each uniquely accounted for up to 32% of the correlation between the change in mindfulness and change in sleep disturbance and up to 30% of the correlation between the change in mindfulness and change in stress-related physical symptoms. Results suggest that the stress-reducing effects of MBSR are due, in part, to improvements in perseverative cognition and emotion regulation, two "transdiagnostic" mental processes that cut across stress-related disorders.

  3. Changes in permeability caused by transient stresses: field observations, experiments, and mechanisms

    USGS Publications Warehouse

    Manga, Michael; Beresnev, Igor; Brodsky, Emily E.; Elkhoury, Jean E.; Elsworth, Derek; Ingebritsen, Steve E.; Mays, David C.; Wang, Chi-Yuen

    2012-01-01

    Oscillations in stress, such as those created by earthquakes, can increase permeability and fluid mobility in geologic media. In natural systems, strain amplitudes as small as 10–6 can increase discharge in streams and springs, change the water level in wells, and enhance production from petroleum reservoirs. Enhanced permeability typically recovers to prestimulated values over a period of months to years. Mechanisms that can change permeability at such small stresses include unblocking pores, either by breaking up permeability-limiting colloidal deposits or by mobilizing droplets and bubbles trapped in pores by capillary forces. The recovery time over which permeability returns to the prestimulated value is governed by the time to reblock pores, or for geochemical processes to seal pores. Monitoring permeability in geothermal systems where there is abundant seismicity, and the response of flow to local and regional earthquakes, would help test some of the proposed mechanisms and identify controls on permeability and its evolution.

  4. Emotions and eating. Self-reported and experimentally induced changes in food intake under stress.

    PubMed

    Wallis, D J; Hetherington, M M

    2009-04-01

    Two studies investigated the stress-eating relationship. The first examined self-reported changes in intake of snack foods, whilst the second investigated stress-induced overconsumption in a laboratory setting comparing high (HF) and low-fat (LF) snacks. Eighty-nine females completed the Dutch Eating Behaviour Questionnaire (DEBQ) [Van Strien, T., Fritjers, J. E. R., Bergers, G. P. A., & Defares, P. B. (1986). Dutch Eating Behaviour Questionnaire for assessment of restrained, emotional and external eating behaviour. International Journal of Eating Disorders, 5, 295-315] and a self-report measure designed to evaluate changes in eating in response to stress. Increased intake of HF snacks was associated with high emotional eating but not with restraint. A laboratory-based experiment compared intake of HF and LF snacks after ego-threatening and neutral Stroop colour-naming tasks. Intake was suppressed by 31.8% in restrained compared to unrestrained eaters across tasks. Restrained eaters consumed significantly less after ego-threat than after the neutral manipulation, but this was associated only with intake of the LF snack. Restrained eaters' intake of dried fruit was suppressed by 33.2% after ego-threat relative to the neutral task, despite a significant increase in hunger for this group following ego-threat. These results suggest that the type and variety of foods offered influences the link between stress and eating in laboratory settings. Further research should aim to replicate and extend these findings, with a view to informing potential interventions for stress-related eating.

  5. [Endoplasmic reticulum stress in INS-1-3 cell associated with the expression changes of MODY gene pathway].

    PubMed

    Liu, Y T; Li, S R; Wang, Z; Xiao, J Z

    2016-09-13

    Objective: To profile the gene expression changes associated with endoplasmic reticulum stress in INS-1-3 cells induced by thapsigargin (TG) and tunicamycin (TM). Methods: Normal cultured INS-1-3 cells were used as a control. TG and TM were used to induce endoplasmic reticulum stress in INS-1-3 cells. Digital gene expression profiling technique was used to detect differentially expressed gene. The changes of gene expression were detected by expression pattern clustering analysis, gene ontology (GO) function and pathway enrichment analysis. Real time polymerase chain reaction (RT-PCR) was used to verify the key changes of gene expression. Results: Compared with the control group, there were 57 (45 up-regulated, 12 down-regulated) and 135 (99 up-regulated, 36 down-regulated) differentially expressed genes in TG and TM group, respectively. GO function enrichment analyses indicated that the main enrichment was in the endoplasmic reticulum. In signaling pathway analysis, the identified pathways were related with endoplasmic reticulum stress, antigen processing and presentation, protein export, and most of all, the maturity onset diabetes of the young (MODY) pathway. Conclusion: Under the condition of endoplasmic reticulum stress, the related expression changes of transcriptional factors in MODY signaling pathway may be related with the impaired function in islet beta cells.

  6. Post-Traumatic Stress Disorder Predicts Future Weight Change in the Millennium Cohort Study

    DTIC Science & Technology

    2015-04-01

    weight changes in individuals with PTSD: (1) sleep deprivation caused by PTSD, as shorter sleep duration has been linked to higher obesity prevalence...eating and dieting behaviors (12), and (4) medications prescribed for PTSD that may affect body weight (13). Since obesity increases the risk of...traumatic stress disorder (exposure) and subsequent 3 year weight change (outcome). Original Article Obesity EPIDEMIOLOGY/GENETICS www.obesityjournal.org

  7. Coping with changing northern environments: the role of the stress axis in birds and mammals.

    PubMed

    Boonstra, Rudy

    2004-04-01

    Northern environments present ecological and physiological problems for homeotherms that require adaptations to cope with severe and less predictable physical factors while at the same time continuing to have to cope with the biological ones, such as competition and predation. The stress axis plays a central role in these adaptations and I discuss the range of solutions that birds and mammals have evolved. The stress response in these animals is not static when a challenge occurs, but may be modulated depending on the biological function during the annual cycle (breeding versus nonbreeding), either under-responding to permit reproduction (some song birds) or responding vigorously, yet not having this compromise reproduction (Arctic ground squirrels). Both may trade off survival for reproduction. In contrast, the snowshoe hare shows the expected stress response to chronic high predation risk over 2-3 years: body resources are geared to survival and reproduction is inhibited. Two long term, persistent, and pervasive changes will confront northern birds and mammals in the 21(st) century: global change and persistent organochlorine pollutants (POPs). These may result in either adaptations or shifts in distribution and abundance. For the former, latitudinal variation in the stress axis may help song birds respond rapidly; population variation in the stress axis response is unknown in northern mammals and relatively sedentary mammals may be unable to shift their distribution rapidly to adjust major climate shifts. For the latter, the few POPs studies that have examined the stress axis indicate marked negative effects.

  8. Stressing of the New Madrid seismic zone by a lower crust detachment fault

    USGS Publications Warehouse

    Stuart, W.D.; Hildenbrand, T.G.; Simpson, R.W.

    1997-01-01

    A new mechanical model for the cause of the New Madrid seismic zone in the central United States is analyzed. The model contains a subhorizontal detachment fault which is assumed to be near the domed top surface of locally thickened anomalous lower crust ("rift pillow"). Regional horizontal compression induces slip on the fault, and the slip creates a stress concentration in the upper crust above the rift pillow dome. In the coseismic stage of the model earthquake cycle, where the three largest magnitude 7-8 earthquakes in 1811-1812 are represented by a single model mainshock on a vertical northeast trending fault, the model mainshock has a moment equivalent to a magnitude 8 event. During the interseismic stage, corresponding to the present time, slip on the detachment fault exerts a right-lateral shear stress on the locked vertical fault whose failure produces the model mainshock. The sense of shear is generally consistent with the overall sense of slip of 1811-1812 and later earthquakes. Predicted rates of horizontal strain at the ground surface are about 10-7 year-1 and are comparable to some observed rates. The model implies that rift pillow geometry is a significant influence on the maximum possible earthquake magnitude.

  9. Systematic losses of outdoor production from heat stress and climate change

    NASA Astrophysics Data System (ADS)

    Buzan, J. R.; Huber, M.

    2017-12-01

    Heat stress impacts humans today with heat waves, worker reductions, and health issues. Here we show novel results in labor productivity for outdoor work due to global warming. We use the HumanIndexMod to calculate 4x daily values of Simplified Wet Bulb Globe Temperature index (sWBGT) from the CMIP5 archive normalized by global mean surface temperature changes. Previous work shows that scaling of sWBGT is robust across the CMIP5 archive. We calculate total annual outdoor labor capacity from our scaled sWBGT results. Our results show modern day losses due to heat stress impacting outdoor work for low latitudes (and parts of Eastern China and the Southern United States). At 2°C of climate change, up to 20% losses to total capacity impact Midwestern United States, while the Southern United States suffers >20% losses. Western Coastal Africa suffers annual losses at >80%, along with the Amazon Basin and the greater South East Asia region. India suffers losses >50% annually. At +5°C, the estimated mean global change by 2100, the Equatorial region (Northern Australia and Northern Bolivia to Western Coastal Africa and Southern India) has complete cessation of annual outdoor work. The Midwest United States suffers losses up to 30%, and the Gulf of Mexico suffers losses >50%. Our results imply that small changes in global mean surface temperature (2°C) will lead to crippling losses to outdoor work annually, and ≥5°C losses will lead to cessation of labor for more than half the world's population.

  10. Subduction zone slip variability during the last millennium, south-central Chile

    USGS Publications Warehouse

    Dura, Tina; Horton, Benjamin P.; Cisternas, Macro; Ely, Lisa L; Hong, Isabel; Nelson, Alan R.; Wesson, Robert L.; Pilarczyk, Jessica E.; Parnell, Andrew C.; Nikitina, Daria

    2017-01-01

    The Arauco Peninsula (37°-38°S) in south-central Chile has been proposed as a possible barrier to the along-strike propagation of megathrust ruptures, separating historical earthquakes to the south (1960 AD 1837, 1737, and 1575) and north (2010 AD, 1835, 1751, 1657, and 1570) of the peninsula. However, the 2010 (Mw 8.8) earthquake propagated into the Arauco Peninsula, re-rupturing part of the megathrust that had ruptured only 50 years earlier during the largest subduction zone earthquake in the instrumental record (Mw 9.5). To better understand long-term slip variability in the Arauco Peninsula region, we analyzed four coastal sedimentary sections from two sites (Tirúa, 38.3°S and Quidico, 38.1°S) located within the overlap of the 2010 and 1960 ruptures to reconstruct a ∼600-year record of coseismic land-level change and tsunami inundation. Stratigraphic, lithologic, and diatom results show variable coseismic land-level change coincident with tsunami inundation of the Tirúa and Quidico marshes that is consistent with regional historical accounts of coseismic subsidence during earthquakes along the Valdivia portion of the subduction zone (1960 AD and 1575) and coseismic uplift during earthquakes along the Maule portion of the subduction zone (2010 AD, 1835, 1751). In addition, we document variable coseismic land-level change associated with three new prehistoric earthquakes and accompanying tsunamis in 1470–1570 AD, 1425–1455, and 270–410. The mixed record of coseismic subsidence and uplift that we document illustrates the variability of down-dip and lateral slip distribution at the overlap of the 2010 and 1960 ruptures, showing that ruptures have repeatedly propagated into, but not through the Arauco Peninsula and suggesting the area has persisted as a long-term impediment to slip through at least seven of the last megathrust earthquakes (∼600 years).

  11. Subduction zone slip variability during the last millennium, south-central Chile

    NASA Astrophysics Data System (ADS)

    Dura, Tina; Horton, Benjamin P.; Cisternas, Marco; Ely, Lisa L.; Hong, Isabel; Nelson, Alan R.; Wesson, Robert L.; Pilarczyk, Jessica E.; Parnell, Andrew C.; Nikitina, Daria

    2017-11-01

    The Arauco Peninsula (37°-38°S) in south-central Chile has been proposed as a possible barrier to the along-strike propagation of megathrust ruptures, separating historical earthquakes to the south (1960 AD 1837, 1737, and 1575) and north (2010 AD, 1835, 1751, 1657, and 1570) of the peninsula. However, the 2010 (Mw 8.8) earthquake propagated into the Arauco Peninsula, re-rupturing part of the megathrust that had ruptured only 50 years earlier during the largest subduction zone earthquake in the instrumental record (Mw 9.5). To better understand long-term slip variability in the Arauco Peninsula region, we analyzed four coastal sedimentary sections from two sites (Tirúa, 38.3°S and Quidico, 38.1°S) located within the overlap of the 2010 and 1960 ruptures to reconstruct a ∼600-year record of coseismic land-level change and tsunami inundation. Stratigraphic, lithologic, and diatom results show variable coseismic land-level change coincident with tsunami inundation of the Tirúa and Quidico marshes that is consistent with regional historical accounts of coseismic subsidence during earthquakes along the Valdivia portion of the subduction zone (1960 AD and 1575) and coseismic uplift during earthquakes along the Maule portion of the subduction zone (2010 AD, 1835, 1751). In addition, we document variable coseismic land-level change associated with three new prehistoric earthquakes and accompanying tsunamis in 1470-1570 AD, 1425-1455, and 270-410. The mixed record of coseismic subsidence and uplift that we document illustrates the variability of down-dip and lateral slip distribution at the overlap of the 2010 and 1960 ruptures, showing that ruptures have repeatedly propagated into, but not through the Arauco Peninsula and suggesting the area has persisted as a long-term impediment to slip through at least seven of the last megathrust earthquakes (∼600 years).

  12. Workers' load and job-related stress after a reform and work system change in a hospital kitchen in Japan.

    PubMed

    Matsuzuki, Hiroe; Haruyama, Yasuo; Muto, Takashi; Aikawa, Kaoru; Ito, Akiyoshi; Katamoto, Shizuo

    2013-03-01

    Many kitchen work environments are considered to be severe; however, when kitchens are reformed or work systems are changed, the question of how this influences kitchen workers and environments arises. The purpose of this study is to examine whether there was a change in workload and job-related stress for workers after a workplace environment and work system change in a hospital kitchen. The study design is a pre-post comparison of a case, performed in 2006 and 2008. The air temperature and humidity in the workplace were measured. Regarding workload, work hours, fluid loss, heart rate, and amount of activity [metabolic equivalents of task (METs)] of 7 and 8 male subjects pre- and post-reform, respectively, were measured. Job-related stress was assessed using a self-reporting anonymous questionnaire for 53 and 45 workers pre- and post-system change, respectively. After the reform and work system change, the kitchen space had increased and air-conditioners had been installed. The workplace environment changes included the introduction of temperature-controlled wagons whose operators were limited to male workers. The kitchen air temperature decreased, so fluid loss in the subjects decreased significantly. However, heart rate and METs in the subjects increased significantly. As for job-related stress, although workplace environment scores improved, male workers' total job stress score increased. These results suggest that not only the workplace environment but also the work system influenced the workload and job stress on workers.

  13. Confronting Future Risks of Global Water Stress and Sustainability: Avoided Changes Versus Adaptive Actions

    NASA Astrophysics Data System (ADS)

    Schlosser, C. A.; Strzepek, K. M.; Gao, X.; Fant, C.; Paltsev, S.; Monier, E.; Sokolov, A. P.; Winchester, N.; Chen, H.; Kicklighter, D. W.; Ejaz, Q.

    2016-12-01

    We examine the fate of global water resources under a range of self-consistent socio-economic projections using the MIT Integrated Global System Model (IGSM) under a range of plausible mitigation and adaptation scenarios of development to the water-energy-land systems and against an assessment of the results from the UN COP-21 meeting. We assess the trends of an index of managed water stress as well as unmet water demands as simulated by the Water Resource System within the IGSM framework (IGSM-WRS). The WRS is forced by the simulations of the global climate response, variations in regional climate pattern changes, as well as the socio-economic drivers from the IGSM scenarios. We focus on the changes in water-stress metrics in the coming decades and going into the latter half of this century brought about by our projected climate and socio-economic changes, as well as the total (additional) populations affected by increased stress. We highlight selected basins to demonstrate sensitivities and interplay between supply and demand, the uncertainties in global climate sensitivity as well as regional climate change, and their implications to assessing and reducing water risks and the populations affected by water scarcity. We also evaluate the impact of explicitly representing irrigated land and water scarcity in an economy-wide model on food prices, bioenergy production and deforestation both with and without a global carbon policy. We highlight the importance of adaptive measures that will be required, worldwide, to meet surface-water shortfalls even under more aggressive and certainly under intermediate climate mitigation pathways - and further analyses is presented in this context quantifying risks averted and their associated costs. In addition, we also demonstrate that the explicit representation of irrigated land within this intergrated modeling frameowork has a small impact on food, bioenergy and deforestation outcomes within the scenarios considered

  14. Survival, physical and physiological changes of Taenia hydatigena eggs under different conditions of water stress.

    PubMed

    Sánchez Thevenet, Paula; Alvarez, Hector Manuel; Basualdo, Juan Angel

    2017-06-01

    Taenia hydatigena eggs were investigated for morphological and physiological changes under water stress conditions. Fresh eggs were exposed at 31%, 47% and 89% of relative humidity (RH), and survival, size and ultrastructural changes were accounted up to 365 days of exposition. The article shows how each RH environment affects the vitality of the eggs. Results of this study suggest that T. hydatigena eggs have mechanisms to withstand water stress, indicating that the eggs clustering improves protection against desiccation, and that endogenous metabolism using triacylglycerols play an important role in the maintenance of embryo vitality under low, medium and high relative humidity conditions. This contributes to understanding the water stress resistance mechanism in eggs belonging to Taeniidae family. The findings shown herein have provided a basis to better comprehend basic biology and epidemiology of the cysticercosis caused by T. hydatigena. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Seismicity around Parkfield correlates with static shear stress changes following the 2003 Mw6.5 San Simeon earthquake

    USGS Publications Warehouse

    Meng, Xiaoteng; Peng, Zhigang; Hardebeck, Jeanne L.

    2013-01-01

    Earthquakes trigger other earthquakes, but the physical mechanism of the triggering is currently debated. Most studies of earthquake triggering rely on earthquakes listed in catalogs, which are known to be incomplete around the origin times of large earthquakes and therefore missing potentially triggered events. Here we apply a waveform matched-filter technique to systematically detect earthquakes along the Parkfield section of the San Andreas Fault from 46 days before to 31 days after the nearby 2003 Mw6.5 San Simeon earthquake. After removing all possible false detections, we identify ~8 times more earthquakes than in the Northern California Seismic Network catalog. The newly identified events along the creeping section of the San Andreas Fault show a statistically significant decrease following the San Simeon main shock, which correlates well with the negative static stress changes (i.e., stress shadow) cast by the main shock. In comparison, the seismicity rate around Parkfield increased moderately where the static stress changes are positive. The seismicity rate changes correlate well with the static shear stress changes induced by the San Simeon main shock, suggesting a low friction in the seismogenic zone along the Parkfield section of the San Andreas Fault.

  16. Inversion analysis of slip distribution of the 2008 Iwate-Miyagi Nairiku earthquake: Very high stress-drop or a conjugate fault slip?

    NASA Astrophysics Data System (ADS)

    Fukahata, Y.; Fukushima, Y.

    2009-05-01

    On 14 June 2008, the Iwate-Miyagi Nairiku earthquake struck northeast Japan, where active seismicity has been observed under east-west compressional stress fields. The magnitude and hypocenter depth of the earthquake are reported as Mj 7.2 and 8 km, respectively. The earthquake is considered to have occurred on a west-dipping reverse fault with a roughly north-south strike. The earthquake caused significant surface displacements, which were detected by PALSAR, a Synthetic Aperture Radar (SAR) onboard the Japanese ALOS satellite. Several pairs of PALSAR images from six different paths are available to measure the coseismic displacements. Interferometric SAR (InSAR) is useful to obtain crustal displacements in the region where coseismic displacement is not so large (less than 1 m), whereas range and azimuth offsets provide displacement measurements up to a few meters on the whole processed area. We inverted the obtained displacement data to estimate slip distribution on the fault. Since the precise location and direction of the fault are not well known, the inverse problem is nonlinear. Following the method of Fukahata and Wright (2008), we resolved the weak non-linearity based on Akaike's Bayesian Information Criterion. We first estimated slip distribution by assuming a pure dip slip. The optimal fault geometry was estimated at dip 26 and strike 203 degrees. The maximum slip is more than 8 m and most slips concentrate at shallow depths (less than 4 km). The azimuth offset data suggest non-negligible right lateral slip components, so we next estimated slip distribution without fixing the rake angle. Again, a large slip area with the maximum slip of about 8 m in the shallow depth was obtained. Such slip models contradict with our existing common sense; our results indicate that the released strain is more than 10 to the power of -3. Range and azimuth offsets computed from SAR images obtained from both ascending and descending orbits appear to be more consistent with a

  17. Effects of changing stress states on the development of caldera-bounding faults: Geological evidence from Kumano caldera, Japan

    NASA Astrophysics Data System (ADS)

    Miura, Daisuke

    2005-06-01

    Collapse of a large caldera can cause spatial and temporal perturbations of stress, and formation of "caldera faults." The stress variations influence the direction of slip vectors on the fault planes; hence, stress estimation is important for the study of caldera-forming processes. In our paleostress estimation, the stress variations in the collapse of the ca. 14 Ma Kumano caldera in Japan have been revealed. A stress inversion method based on the Wallace-Bott hypothesis was used to compute the orientation of the principal stress axes ( σ1≥ σ2≥ σ3) and the stress ratio ϕ=( σ2- σ3)/( σ1- σ3), where 0≤ ϕ≤1. The caldera faults formed simultaneously with the caldera-forming ash-flow tuff eruption. Therefore, paleostress solutions obtained from slip data measured on such faults show the spatial and temporal changes of the stress at the time of the caldera collapse. The computed stress ratio ϕ characterizes a pair of stress fields. In the early stage, the stress field with ϕ˜1.0 shows a semi-radial trajectory of stress σ2 and an eastern concentric trajectory of stress σ3. This stress regime, resulting from pre-collapse tumescence, counteracts the gravitational force and thus produces smaller net vertical stress. The regional tumescence above an inflated magma chamber is the most plausible source of the stress field, and it is consistent with the timing of the caldera formation. In the late stage, the stress field with ϕ˜0.5 shows the semi-radial trajectory of stress σ2 and the west-convex and concentric trajectory of stress σ3. Change of the stress ratio ϕ from 1.0 to 0.5 implies that increase in the relative magnitude of the stress σ1 caused the deeper subsidence of the caldera floor. Stress variations may be of significant value for reconstructing the structural history of the caldera.

  18. Dynamic changes in saliva after acute mental stress

    PubMed Central

    Naumova, Ella A.; Sandulescu, Tudor; Bochnig, Clemens; Khatib, Philipp Al; Lee, Wing-Kee; Zimmer, Stefan; Arnold, Wolfgang H.

    2014-01-01

    Stress-related variations of fluoride concentration in supernatant saliva and salivary sediment, salivary cortisol, total protein and pH after acute mental stress were assessed. The hypothesis was that stress reactions have no influence on these parameters. Thirty-four male students were distributed into two groups: first received the stress exposure followed by the same protocol two weeks later but without stress exposure, second underwent the protocol without stress exposure followed by the stress exposure two weeks later. The stressor was a public speech followed by tooth brushing. Saliva was collected before, immediately after stress induction and immediately, at 10, 30 and 120 min. after tooth brushing. Cortisol concentrations, total protein, intraoral pH, and fluoride content in saliva were measured. The data were analyzed statistically. Salivary sediment was ca 4.33% by weight of whole unstimulated saliva. Fluoride bioavailability was higher in salivary sediment than in supernatant saliva. The weight and fluoride concentration was not altered during 2 hours after stress exposure. After a public speech, the salivary cortisol concentration significantly increased after 20 minutes compared to the baseline. The salivary protein concentration and pH also increased. Public speaking influences protein concentration and salivary pH but does not alter the fluoride concentration of saliva. PMID:24811301

  19. Earthquake dynamics. Mapping pressurized volcanic fluids from induced crustal seismic velocity drops.

    PubMed

    Brenguier, F; Campillo, M; Takeda, T; Aoki, Y; Shapiro, N M; Briand, X; Emoto, K; Miyake, H

    2014-07-04

    Volcanic eruptions are caused by the release of pressure that has accumulated due to hot volcanic fluids at depth. Here, we show that the extent of the regions affected by pressurized fluids can be imaged through the measurement of their response to transient stress perturbations. We used records of seismic noise from the Japanese Hi-net seismic network to measure the crustal seismic velocity changes below volcanic regions caused by the 2011 moment magnitude (M(w)) 9.0 Tohoku-Oki earthquake. We interpret coseismic crustal seismic velocity reductions as related to the mechanical weakening of the pressurized crust by the dynamic stress associated with the seismic waves. We suggest, therefore, that mapping seismic velocity susceptibility to dynamic stress perturbations can be used for the imaging and characterization of volcanic systems. Copyright © 2014, American Association for the Advancement of Science.

  20. Temporal evolution of surface rupture deduced from coseismic multi-mode secondary fractures: Insights from the October 8, 2005 (Mw 7.6) Kashmir earthquake, NW Himalaya

    NASA Astrophysics Data System (ADS)

    Sayab, Mohammad; Khan, Muhammad Asif

    2010-10-01

    Detailed rupture-fracture analyses of some of the well-studied earthquakes have revealed that the geometrical arrangement of secondary faults and fractures can be used as a geological tool to understand the temporal evolution of slip produced during the mainshock. The October 8, 2005 Mw 7.6 Kashmir earthquake, NW Himalaya, surface rupture provides an opportunity to study a complex network of secondary fractures developed on the hanging wall of the fault scarp. The main fault scarp is clearly thrust-type, rupture length is ~ 75 ± 5 km and the overall trend of the rupture is NW-SE. We present the results of our detailed structural mapping of secondary faults and fractures at 1:100 scale, on the hanging wall of the southern end of the rupture in the vicinity of the Sar Pain. Secondary ruptures can be broadly classified as two main types, 1) normal faults and, (2) right-lateral strike-slip 'Riedel' fractures. The secondary normal faults are NW-SE striking, with a maximum 3.3 meter vertical displacement and 2.5 meter horizontal displacement. Estimated total horizontal extension across the secondary normal faults is 3.1-3.5%. We propose that the bending-moment and coseismic stress relaxation can explain the formation of secondary normal faults on the hanging wall of the thrust fault. The strike-slip 'Riedel' fractures form distinct sets of tension (T) and shear fractures (R', R, Y) with right-lateral displacement. Field observations revealed that the 'Riedel' fractures (T) cut the secondary normal faults. In addition, there is kinematic incompatibility and magnitude mismatch between the secondary normal faults and strike-slip 'Riedel' fractures. The cross-cutting relationship, geometric and magnitude incoherence implies a temporal evolution of slip from dip- to strike-slip during the mainshock faulting. The interpretation is consistent with the thrust fault plane solution with minor right-lateral strike-slip component.

  1. Chronic stress and peripheral pain: Evidence for distinct, region-specific changes in visceral and somatosensory pain regulatory pathways.

    PubMed

    Zheng, Gen; Hong, Shuangsong; Hayes, John M; Wiley, John W

    2015-11-01

    Chronic stress alters the hypothalamic-pituitary-adrenal (HPA) axis and enhances visceral and somatosensory pain perception. It is unresolved whether chronic stress has distinct effects on visceral and somatosensory pain regulatory pathways. Previous studies reported that stress-induced visceral hyperalgesia is associated with reciprocal alterations of endovanilloid and endocannabinoid pain pathways in DRG neurons innervating the pelvic viscera. In this study, we compared somatosensory and visceral hyperalgesia with respect to differential responses of peripheral pain regulatory pathways in a rat model of chronic, intermittent stress. We found that chronic stress induced reciprocal changes in the endocannabinoid 2-AG (increased) and endocannabinoid degradation enzymes COX-2 and FAAH (decreased), associated with down-regulation of CB1 and up-regulation of TRPV1 receptors in L6-S2 DRG but not L4-L5 DRG neurons. In contrast, sodium channels Nav1.7 and Nav1.8 were up-regulated in L4-L5 but not L6-S2 DRGs in stressed rats, which was reproduced in control DRGs treated with corticosterone in vitro. The reciprocal changes of CB1, TRPV1 and sodium channels were cell-specific and observed in the sub-population of nociceptive neurons. Behavioral assessment showed that visceral hyperalgesia persisted, whereas somatosensory hyperalgesia and enhanced expression of Nav1.7 and Nav1.8 sodium channels in L4-L5 DRGs normalized 3 days after completion of the stress phase. These data indicate that chronic stress induces visceral and somatosensory hyperalgesia that involves differential changes in endovanilloid and endocannabinoid pathways, and sodium channels in DRGs innervating the pelvic viscera and lower extremities. These results suggest that chronic stress-induced visceral and lower extremity somatosensory hyperalgesia can be treated selectively at different levels of the spinal cord. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. [Comparative pathology of early stress-induced changes in the duodenal mucosa in laboratory rats and in humans].

    PubMed

    Peychl, L; Brejcha, A

    2003-01-01

    Our presentation comprises results of two studies: The first was an experimental investigation of 60 Wistar-strain rats used in a toxicological study. The other part analysed stress changes in the duodenal mucosa in the human autopsy material. Both humans and rats had been exposed to stress and showed similar histological changes. In the rats the same duodenal lesions were present both in the test group and the control animals in the toxicological study. Lesions consisted of oedema of the duodenal villi and erosions in the tips of the villi. We believe that in the experimental group the stress was caused by restraining the animals by daily introduction of the gastric metallic tube, by taking blood from the retrobulbar plexus, and by anaesthesia. The autopsy study comprised 35 cases displaying congestion and macroscopically recognizable multifocal bleeding into the duodenal mucosal folds. The microscopic investigation revealed bleeding into the mucosal villi and small erosions. In some cases there were cuneiform mucosal infarcts extending into the submucosa. In the humans, severe cardiovascular diseases and circulatory disturbances represented the main causes of the stress. Local hypoxia and gastric juice acidity were involved in the pathogenesis of the duodenal mucosal changes.

  3. A three-step maximum a posteriori probability method for InSAR data inversion of coseismic rupture with application to the 14 April 2010 Mw 6.9 Yushu, China, earthquake

    NASA Astrophysics Data System (ADS)

    Sun, Jianbao; Shen, Zheng-Kang; Bürgmann, Roland; Wang, Min; Chen, Lichun; Xu, Xiwei

    2013-08-01

    develop a three-step maximum a posteriori probability method for coseismic rupture inversion, which aims at maximizing the a posterior probability density function (PDF) of elastic deformation solutions of earthquake rupture. The method originates from the fully Bayesian inversion and mixed linear-nonlinear Bayesian inversion methods and shares the same posterior PDF with them, while overcoming difficulties with convergence when large numbers of low-quality data are used and greatly improving the convergence rate using optimization procedures. A highly efficient global optimization algorithm, adaptive simulated annealing, is used to search for the maximum of a posterior PDF ("mode" in statistics) in the first step. The second step inversion approaches the "true" solution further using the Monte Carlo inversion technique with positivity constraints, with all parameters obtained from the first step as the initial solution. Then slip artifacts are eliminated from slip models in the third step using the same procedure of the second step, with fixed fault geometry parameters. We first design a fault model with 45° dip angle and oblique slip, and produce corresponding synthetic interferometric synthetic aperture radar (InSAR) data sets to validate the reliability and efficiency of the new method. We then apply this method to InSAR data inversion for the coseismic slip distribution of the 14 April 2010 Mw 6.9 Yushu, China earthquake. Our preferred slip model is composed of three segments with most of the slip occurring within 15 km depth and the maximum slip reaches 1.38 m at the surface. The seismic moment released is estimated to be 2.32e+19 Nm, consistent with the seismic estimate of 2.50e+19 Nm.

  4. Stress predicts brain changes in children: a pilot longitudinal study on youth stress, posttraumatic stress disorder, and the hippocampus.

    PubMed

    Carrion, Victor G; Weems, Carl F; Reiss, Allan L

    2007-03-01

    Does stress damage the brain? Studies of adults with posttraumatic stress disorder have demonstrated smaller hippocampal volumes when compared with the volumes of adults with no posttraumatic stress disorder. Studies of children with posttraumatic stress disorder have not replicated the smaller hippocampal findings in adults, which suggests that smaller hippocampal volume may be caused by neurodevelopmental experiences with stress. Animal research has demonstrated that the glucocorticoids secreted during stress can be neurotoxic to the hippocampus, but this has not been empirically demonstrated in human samples. We hypothesized that cortisol volumes would predict hippocampal volume reduction in patients with posttraumatic symptoms. We report data from a pilot longitudinal study of children (n = 15) with history of maltreatment who underwent clinical evaluation for posttraumatic stress disorder, cortisol, and neuroimaging. Posttraumatic stress disorder symptoms and cortisol at baseline predicted hippocampal reduction over an ensuing 12- to 18-month interval. Results from this pilot study suggest that stress is associated with hippocampal reduction in children with posttraumatic stress disorder symptoms and provide preliminary human evidence that stress may indeed damage the hippocampus. Additional studies seem to be warranted.

  5. Transgenerational changes in plant physiology and in transposon expression in response to UV-C stress in Arabidopsis thaliana

    PubMed Central

    Migicovsky, Zoe; Kovalchuk, Igor

    2014-01-01

    Stress has a negative impact on crop yield by altering a gain in biomass and affecting seed set. Recent reports suggest that exposure to stress also influences the response of the progeny. In this paper, we analyzed seed size, leaf size, bolting time and transposon expression in 2 consecutive generations of Arabidopsis thaliana plants exposed to moderate UV-C stress. Since previous reports suggested a potential role of Dicer-like (DCL) proteins in the establishment of transgenerational response, we used dcl2, dcl3 and dcl4 mutants in parallel with wild-type plants. These studies revealed that leaf number decreased in the progeny of UV-C stressed plants, and bolting occurred later. Transposons were also re-activated in the progeny of stressed plants. Changes in the dcl mutants were less prominent than in wild-type plants. DCL2 and DCL3 appeared to be more important in the transgenerational stress memory than DCL4 because transgenerational changes were less profound in the dcl2 and dcl3 mutants. PMID:25482751

  6. Transgenerational changes in plant physiology and in transposon expression in response to UV-C stress in Arabidopsis thaliana.

    PubMed

    Migicovsky, Zoe; Kovalchuk, Igor

    2014-01-01

    Stress has a negative impact on crop yield by altering a gain in biomass and affecting seed set. Recent reports suggest that exposure to stress also influences the response of the progeny. In this paper, we analyzed seed size, leaf size, bolting time and transposon expression in 2 consecutive generations of Arabidopsis thaliana plants exposed to moderate UV-C stress. Since previous reports suggested a potential role of Dicer-like (DCL) proteins in the establishment of transgenerational response, we used dcl2, dcl3 and dcl4 mutants in parallel with wild-type plants. These studies revealed that leaf number decreased in the progeny of UV-C stressed plants, and bolting occurred later. Transposons were also re-activated in the progeny of stressed plants. Changes in the dcl mutants were less prominent than in wild-type plants. DCL2 and DCL3 appeared to be more important in the transgenerational stress memory than DCL4 because transgenerational changes were less profound in the dcl2 and dcl3 mutants.

  7. Physiological changes induced in bacteria following pH stress as a model for space research

    NASA Astrophysics Data System (ADS)

    Baatout, Sarah; Leys, Natalie; Hendrickx, Larissa; Dams, Annik; Mergeay, Max

    2007-02-01

    The physiology of the environmental bacterium Cupriavidus metallidurans CH34 (previously Ralstonia metallidurans) is being studied in comparison to the clinical model bacterium Escherichia coli in order to understand its behaviour and resistance under extreme conditions (pH, temperature, etc.). This knowledge is of importance in the light of the potential use and interest of this strain for space biology and bioremediation. Flow cytometry provides powerful means to measure a wide range of cell characteristics in microbiological research. In order to estimate physiological changes associated with pH stress, flow cytometry was employed to estimate the extent of damage on cell size, membrane integrity and potential, and production of superoxides in the two bacterial strains. Suspensions of C. metallidurans and E. coli were submitted to a 1-h pH stress (2 to 12). For flow cytometry, fluorochromes, including propidium iodide, 3, 3'-dihexyloxacarbocyanine iodide and hydroethidine were chosen as analytical parameters for identifying the physiological state and the overall fitness of individual cells. A physiologic state of the bacterial population was assessed with a Coulter EPICS XL analyser based on the differential uptakes of these fluorescent stains. C. metallidurans cells exhibited a different staining intensity than E. coli cells. For both bacterial strains, the physiological status was only slightly affected between pH 6 and 8 in comparison with pH 7 which represents the reference pH. Moderate physiological damage could be observed at pH 4 and 5 as well as at pH 9 in both strains. At pH 2, 10 and 12, membrane permeability and potential and superoxide anion production were increased to high levels showing dramatic physiological changes. It is apparent that a range of significant physiological alterations occurs after pH stress. Fluorescent staining methods coupled with flow cytometry are useful and complementary for monitoring physiological changes induced not only

  8. Simulations of tremor-related creep reveal a weak crustal root of the San Andreas Fault

    USGS Publications Warehouse

    Shelly, David R.; Bradley, Andrew M.; Johnson, Kaj M.

    2013-01-01

    Deep aseismic roots of faults play a critical role in transferring tectonic loads to shallower, brittle crustal faults that rupture in large earthquakes. Yet, until the recent discovery of deep tremor and creep, direct inference of the physical properties of lower-crustal fault roots has remained elusive. Observations of tremor near Parkfield, CA provide the first evidence for present-day localized slip on the deep extension of the San Andreas Fault and triggered transient creep events. We develop numerical simulations of fault slip to show that the spatiotemporal evolution of triggered tremor near Parkfield is consistent with triggered fault creep governed by laboratory-derived friction laws between depths of 20–35 km on the fault. Simulated creep and observed tremor northwest of Parkfield nearly ceased for 20–30 days in response to small coseismic stress changes of order 104 Pa from the 2003 M6.5 San Simeon Earthquake. Simulated afterslip and observed tremor following the 2004 M6.0 Parkfield earthquake show a coseismically induced pulse of rapid creep and tremor lasting for 1 day followed by a longer 30 day period of sustained accelerated rates due to propagation of shallow afterslip into the lower crust. These creep responses require very low effective normal stress of ~1 MPa on the deep San Andreas Fault and near-neutral-stability frictional properties expected for gabbroic lower-crustal rock.

  9. Perceived stress and change in cognitive function among adults 65 years and older.

    PubMed

    Aggarwal, Neelum T; Wilson, Robert S; Beck, Todd L; Rajan, Kumar B; Mendes de Leon, Carlos F; Evans, Denis A; Everson-Rose, Susan A

    2014-01-01

    Exposure to acute and chronic stress can affect learning and memory, but most evidence comes from animal studies or clinical observations. Almost no population-based studies have investigated the relation of stress to cognition or changes in cognition over time. We examined whether higher levels of perceived stress were associated with accelerated decline in cognitive function in older blacks and whites from a community-based population sample. Participants included 6207 black and white adults (65.7% black, 63.3% women) from the Chicago Health and Aging Project. Two to five in-home assessments were completed over an average of 6.8 years of follow-up and included sociodemographics, health behaviors, psychosocial measures, cognitive function tests, and health history. Perceived stress was measured by a six-item scale, and a composite measure of four tests of cognition was used to determine cognitive function at each assessment. Mixed-effects regression models showed that increasing levels of perceived stress were related to lower initial cognitive scores (B = -0.0379, standard error = 0.0025, p < .001) and a faster rate of cognitive decline (stress × time interaction: B = -0.0015, standard error = 0.0004, p < .001). Results were similar after adjusting for demographic variables, smoking, systolic blood pressure, body mass index, chronic medical conditions, and psychosocial factors and did not vary by race, sex, age, or education. Increasing levels of stress are independently associated with accelerated declines in cognitive function in black and white adults 65 years and older.

  10. Bruxism affects stress responses in stressed rats.

    PubMed

    Sato, Chikatoshi; Sato, Sadao; Takashina, Hirofumi; Ishii, Hidenori; Onozuka, Minoru; Sasaguri, Kenichi

    2010-04-01

    It has been proposed that suppression of stress-related emotional responses leads to the simultaneous activation of both sympathetic and parasympathetic divisions of the autonomic nervous system (ANS) and that the expression of these emotional states has a protective effect against ulcerogenesis. In the present study, we investigated whether stress-induced bruxism activity (SBA) has a physiological effect of on the stress-induced changes of the stomach, thymus, and spleen as well as blood leukocytes, cortisol, and adrenaline. This study demonstrated that SBA attenuated the stress-induced ulcer genesis as well as degenerative changes of thymus and spleen. SBA also attenuated increases of adrenaline, cortisol, and neutrophils in the blood. In conclusion, expression of aggression through SBA during stress exposure attenuates both stress-induced ANS response, including gastric ulcer formation.

  11. MRI Shows that Exhaustion Syndrome Due to Chronic Occupational Stress is Associated with Partially Reversible Cerebral Changes.

    PubMed

    Savic, I; Perski, A; Osika, W

    2018-03-01

    The present study investigates the cerebral effects of chronic occupational stress and its possible reversibility. Forty-eight patients with occupational exhaustion syndrome (29 women) and 80 controls (47 women) underwent structural magnetic resonance imaging (MRI) and neuropsychological testing. Forty-four participants (25 patients, 19 controls) also completed a second MRI scan after 1-2 years. Only patients received cognitive therapy. The stressed group at intake had reduced thickness in the right prefrontal cortex (PFC) and left superior temporal gyrus (STG), enlarged amygdala volumes, and reduced caudate volumes. Except for the caudate volume, these abnormalities were more pronounced in females. They were all related to perceived stress, which was similar for both genders. Thickness of the PFC also correlated with an impaired ability to down-modulate negative emotions. Thinning of PFC and reduction of caudate volume normalized in the follow-up. The amygdala enlargement and the left STG thinning remained. Longitudinal changes were not detected among controls. Chronic occupational stress was associated with partially reversible structural abnormalities in key regions for stress processing. These changes were dynamically correlated with the degree of perceived stress, highlighting a possible causal link. They seem more pronounced in women, and could be a substrate for an increased cerebral vulnerability to stress-related psychiatric disorders. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Technological change and the medical technologist: a stress survey of four biomedical laboratories in a large tertiary care hospital.

    PubMed

    Yassi, A; Miller, B

    1990-01-01

    Medical technologists from four clinical laboratories in a large teaching hospital were surveyed for their perceptions of occupational stress or job dissatisfaction concomitant with the advent of major technological and procedural change. Overall the data support the interpretation of excessive stress and job dissatisfaction. More than one-third (37.7%) of the laboratory personnel experienced psychological symptoms of occupational stress; 46.4% had experienced physical symptoms of stress. There was a marked and significant increase in reports of adverse effects among the group of laboratory workers subjected to the most extensive technological changes. Main components of the stress difference related to work overload, feelings of uncertainty in the face of new technology, lack of direction from supervisors and lack of influence on management. Age, type of shift worked and years of employment were associated with physical and psychological manifestations of stress. Implications and recommendations for laboratory workers, hospital administrators and educators are discussed.

  13. Age-Related Changes in Physiological Reactivity to a Stress Task: A Near-Infrared Spectroscopy Study.

    PubMed

    Brugnera, A; Zarbo, C; Adorni, R; Gatti, A; Compare, A; Sakatani, K

    2017-01-01

    Aging is associated with changes in biological functions, such as reduced cardiovascular responses to stressful tasks. However, less is known about the influence of age on the reactivity of the prefrontal cortex (PFC) to acute stressors. Therefore, this study aimed to investigate the effects of a computerized-controlled stress task on the PFC and autonomic system activity in a sample of older and younger adults. We recruited a total of 55 healthy, right-handed persons (26 older adults with mean age 69.5, SD 5.8 years; and 29 younger adults with mean age 23.8, SD 3.3 years); groups were balanced for sex. Tasks included a control and an experimental condition: during both tasks individuals had to solve simple mental arithmetic problems. For the experimental condition, all participants were faced with a time limit that induced significant stress. Physiological indexes were collected continuously during the entire procedure using a 2-channel near infrared spectroscopy (NIRS) and an ECG monitoring system. Repeated measures ANOVA were used to assess changes in hemoglobin concentrations, and changes in both heart rate and performance outcomes. NIRS, ECG and performance data showed a significant interaction between the group and condition. Post-hoc analyses evidenced a significant increase in heart rate and Oxy-Hb concentration in the bilateral PFC between the control and experimental condition only in the younger group. Post-hoc analyses of behavioral data showed lower percentages of correct responses and higher response times in the older group. In summary, these results suggested that cardiovascular and cortical reactivity to stress tasks are a function of age. Older individuals seem to be characterized by blunted physiological reactivity, suggestive of impaired adaptive responses to acute stressors. Therefore, future studies should investigate the underlying physiological mechanisms of prefrontal and cardiovascular changes related to aging.

  14. Linking medical faculty stress/burnout to willingness to implement medical school curriculum change: a preliminary investigation.

    PubMed

    Arvandi, Zeinab; Emami, Amirhossein; Zarghi, Nazila; Alavinia, Seyed Mohammad; Shirazi, Mandana; Parikh, Sagar V

    2016-02-01

    Balancing administrative demands from the medical school while providing patient support and seeking academic advancement can cause personal hardship that ranges from high stress to clinically recognizable conditions such as burnout. Regarding the importance of clinical faculties' burnout and its effects on different aspects of their professional career, this study was conducted and aimed to evaluate the relationship between willingness to change teaching approaches as characterized by a modified stage-of-change model and measures of stress and burnout. This descriptive analytic study was conducted on 143 clinical faculty members of Tehran University of Medical Sciences in Iran. Participants were asked to complete three questionnaires: a modified stages of change questionnaire the Maslach Burnout Inventory and the General Health Questionnaire. Data were analysed by SPSS: 16 using non-parametric statistical tests such as multiple regression and ICC (intra-class coefficient) and Spearman correlation coefficient test. A significant relationship was found between faculty members' readiness to change teaching approaches and the subscales of occupational burnout. Specifically, participants with low occupational burnout were more likely to be in the action stage, while those with high burnout were in the attitude or intention stage, which could be understood as not being ready to implement change. There was no significant correlation between general health scores and stage of change. We found it feasible to measure stages of change as well as stress/burnout in academic doctors. Occupational burnout directly reduces the readiness to change. To have successful academic reform in medical schools, it therefore would be beneficial to assess and manage occupational burnout among clinical faculty members. © 2015 John Wiley & Sons, Ltd.

  15. Pre-pubertal stress exposure affects adult behavioral response in association with changes in circulating corticosterone and brain-derived neurotrophic factor.

    PubMed

    Bazak, Noam; Kozlovsky, Nitsan; Kaplan, Zeev; Matar, Michael; Golan, Hava; Zohar, Joseph; Richter-Levin, Gal; Cohen, Hagit

    2009-07-01

    Early-life stress produces a cascade of neurobiological events that cause enduring changes in neural plasticity and synaptic efficacy that appear to play pivotal roles in the pathophysiology of post-traumatic stress disorder (PTSD). Brain-derived neurotrophic factor (BDNF) has been implicated in the neurobiological mechanisms of these changes, in interaction with components of the stress response, such as corticosterone. This study examined the consequences of juvenile stress for behavior during adulthood in association with circulating corticosterone levels and BDNF expression. The experiments examined single exposure to predator scent stress (soiled cat litter for 10 min) as compared to repeated exposure, early in life and later on. Behavioral responses were assessed in the elevated plus maze and the acoustic startle response paradigms at 28, 60 and 90 days of age. Plasma corticosterone was measured and brain areas analyzed for BDNF levels. The results show that juvenile stress exposure increased anxiety-like behavior and startle amplitude and decreased plasma corticosterone. This response was seen immediately after exposure and also long term. Adult stress exposure increased anxiety-like behavior, startle amplitude and plasma corticosterone. Exposure to both early and later life trauma elicited reduced levels of corticosterone following the initial exposure, which were not raised by re-exposure, and elicited significant downregulation of BDNF mRNA and protein levels in the hippocampus CA1 subregion. The consequences of adult stress exposure were more severe in rats were exposed to the same stressor as juveniles, indicated increased vulnerability. The results suggest that juvenile stress has resounding effects in adulthood reflected in behavioral responses. The concomitant changes in BDNF and corticosterone levels may mediate the changes in neural plasticity and synaptic functioning underlying clinical manifestations of PTSD.

  16. Stress-sensitive arterial hypertension, haemodynamic changes and brain metabolites in hypertensive ISIAH rats: MRI investigation.

    PubMed

    Seryapina, A A; Shevelev, O B; Moshkin, M P; Markel, A L; Akulov, A E

    2017-05-01

    What is the central question of this study? Stress-sensitive arterial hypertension is considered to be controlled by changes in central and peripheral sympathetic regulating mechanisms, which eventually result in haemodynamic alterations and blood pressure elevation. Therefore, study of the early stages of development of hypertension is of particular interest, because it helps in understanding the aetiology of the disease. What is the main finding and its importance? Non-invasive in vivo investigation in ISIAH rats demonstrated that establishment of sustainable stress-sensitive hypertension is accompanied by a decrease in prefrontal cortex activity and mobilization of hypothalamic processes, with considerable correlations between haemodynamic parameters and individual metabolite ratios. The study of early development of arterial hypertension in association with emotional stress is of great importance for better understanding of the aetiology and pathogenesis of the hypertensive disease. Magnetic resonance imaging (MRI) was applied to evaluate the changes in haemodynamics and brain metabolites in 1- and 3-month-old inherited stress-induced arterial hypertension (ISIAH) rats (10 male rats) with stress-sensitive arterial hypertension and in control normotensive Wistar Albino Glaxo (WAG) rats (eight male rats). In the 3-month-old ISIAH rats, the age-dependent increase in blood pressure was associated with increased blood flow through the renal arteries and decreased blood flow in the lower part of the abdominal aorta. The renal vascular resistance in the ISIAH rats decreased during ageing, although at both ages it remained higher than the renal vascular resistance in WAG rats. An integral metabolome portrait demonstrated that development of hypertension in the ISIAH rats was associated with an attenuation of the excitatory and energetic activity in the prefrontal cortex, whereas in the WAG rats the opposite age-dependent changes were observed. In contrast, in the

  17. Posttraumatic Stress Disorder in the DSM-5: Controversy, Change, and Conceptual Considerations.

    PubMed

    Pai, Anushka; Suris, Alina M; North, Carol S

    2017-02-13

    The criteria for posttraumatic stress disorder PTSD have changed considerably with the newest edition of the American Psychiatric Association's (APA) Diagnostic and Statistical Manual of Mental Disorders ( DSM-5 ). Changes to the diagnostic criteria from the DSM-IV to DSM-5 include: the relocation of PTSD from the anxiety disorders category to a new diagnostic category named "Trauma and Stressor-related Disorders", the elimination of the subjective component to the definition of trauma, the explication and tightening of the definitions of trauma and exposure to it, the increase and rearrangement of the symptoms criteria, and changes in additional criteria and specifiers. This article will explore the nosology of the current diagnosis of PTSD by reviewing the changes made to the diagnostic criteria for PTSD in the DSM-5 and discuss how these changes influence the conceptualization of PTSD.

  18. Water level and strain changes preceding and following the August 4, 1985 Kettleman Hills, California, earthquake

    USGS Publications Warehouse

    Roeloffs, E.; Quilty, E.

    1997-01-01

    Two of the four wells monitored near Parkfield, California, during 1985 showed water level rises beginning three days before the M4 6.1 Kettleman Hills earthquake. In one of these wells, the 3.0 cm rise was nearly unique in five years of water level data. However, in the other well, which showed a 3.8 cm rise, many other changes of comparable size have been observed. Both wells that did not display pre-earthquake rises tap partially confined aquifers that cannot sustain pressure changes due to tectonic strain having periods longer than several days. We evaluate the effect of partial aquifer confinement on the ability of these four wells to display water level changes in response to aquifer strain. Although the vertical hydraulic diffusivities cannot be determined uniquely, we can find a value of diffusivity for each site that is consistent with the site's tidal and barometric responses as well as with the rate of partial recovery of the coseismic water level drops. Furthermore, the diffusivity for one well is high enough to explain why the preseismic rise could not have been detected there. For the fourth well, the diffusivity is high enough to have reduced the size of the preseismic signal as much as 50%, although it should still have been detectable. Imperfect confinement cannot explain the persistent water level changes in the two partially confined aquifers, but it does show that they were not due to volume strain. The pre-earthquake water level rises may have been precursors to the Kettleman Hills earthquake. If so, they probably were not caused by accelerating slip over the part of the fault plane that ruptured in that earthquake because they are of opposite sign to the observed coseismic water level drops.

  19. Induced stress changes and associated fracture development as a result of deglaciation on the Zugspitzplatt, SE Germany

    NASA Astrophysics Data System (ADS)

    Leith, Kerry; Kupp, Jan; Geisenhof, Benedikt; Krautblatter, Michael

    2015-04-01

    Bedrock stresses in alpine regions result from the combined effects of exhumation, tectonics, topography, inelastic strain (e.g. fault displacement and fracture formation), and external loading. Gravitational loading by glacial ice can significantly affect near-surface stress magnitudes, although the nature of this effect and it's impact on stress distributions and bedrock fracturing is strongly dependent on the stress history of the bedrock landscape. We assess the effects of recent (post-Little Ice Age , ~1850 AD) and future deglaciation on bedrock stresses in the region of the Zugspitzplatt, a glaciated plateau surrounded by 1500 m high bedrock walls in SE Germany. We address this by undertaking a 2-D elasto-plastic finite element method analysis of stress changes and fracture propagation due to repeated glacial - interglacial cycles. Our model is initialised with upper crustal stresses in equilibrium with bedrock strength and regional tectonics, and we then simulate two cycles of major Pleistocene glaciation and deglaciation in order to dissipate stress concentrations and incorporate path-dependent effects of glacial loading on the landscape. We then simulate a final glacial cycle, and remove 1 m of bedrock to approximate glacial erosion across the topography. Finally, ice levels are reduced in accordance with known late-glacial and recent ice retreat, allowing us to compare relative stress changes and predicted patterns of fracture propagation to observed fracture distributions on the Zugspitzplatt. Model results compare favourably to observed fracture patterns, and indicate the plateau is likely to be undergoing N-S extension as a result of deglaciation, with a strong reduction of horizontal stress magnitudes beneath the present-day Schneeferner glacier. As each glacial cycle has a similar effect on the plateau, it is likely that surficial stresses are slightly tensile, and each cycle of deglaciation produces additional sub-vertical tensile fractures, which

  20. 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating.

    PubMed

    Hejazi, Mohamad I; Voisin, Nathalie; Liu, Lu; Bramer, Lisa M; Fortin, Daniel C; Hathaway, John E; Huang, Maoyi; Kyle, Page; Leung, L Ruby; Li, Hong-Yi; Liu, Ying; Patel, Pralit L; Pulsipher, Trenton C; Rice, Jennie S; Tesfa, Teklu K; Vernon, Chris R; Zhou, Yuyu

    2015-08-25

    There is evidence that warming leads to greater evapotranspiration and surface drying, thus contributing to increasing intensity and duration of drought and implying that mitigation would reduce water stresses. However, understanding the overall impact of climate change mitigation on water resources requires accounting for the second part of the equation, i.e., the impact of mitigation-induced changes in water demands from human activities. By using integrated, high-resolution models of human and natural system processes to understand potential synergies and/or constraints within the climate-energy-water nexus, we show that in the United States, over the course of the 21st century and under one set of consistent socioeconomics, the reductions in water stress from slower rates of climate change resulting from emission mitigation are overwhelmed by the increased water stress from the emissions mitigation itself. The finding that the human dimension outpaces the benefits from mitigating climate change is contradictory to the general perception that climate change mitigation improves water conditions. This research shows the potential for unintended and negative consequences of climate change mitigation.

  1. Model approach for stress induced steroidal hormone cascade changes in severe mental diseases.

    PubMed

    Volko, Claus D; Regidor, Pedro A; Rohr, Uwe D

    2016-03-01

    Stress was described by Cushing and Selye as an adaptation to a foreign stressor by the anterior pituitary increasing ACTH, which stimulates the release of glucocorticoid and mineralocorticoid hormones. The question is raised whether stress can induce additional steroidal hormone cascade changes in severe mental diseases (SMD), since stress is the common denominator. A systematic literature review was conducted in PubMed, where the steroidal hormone cascade of patients with SMD was compared to the impact of increasing stress on the steroidal hormone cascade (a) in healthy amateur marathon runners with no overtraining; (b) in healthy well-trained elite soldiers of a ranger training unit in North Norway, who were under extreme physical and mental stress, sleep deprivation, and insufficient calories for 1 week; and, (c) in soldiers suffering from post traumatic stress disorder (PTSD), schizophrenia (SI), and bipolar disorders (BD). (a) When physical stress is exposed moderately to healthy men and women for 3-5 days, as in the case of amateur marathon runners, only few steroidal hormones are altered. A mild reduction in testosterone, cholesterol and triglycerides is detected in blood and in saliva, but there was no decrease in estradiol. Conversely, there is an increase of the glucocorticoids, aldosterone and cortisol. Cellular immunity, but not specific immunity, is reduced for a short time in these subjects. (b) These changes are also seen in healthy elite soldiers exposed to extreme physical and mental stress but to a somewhat greater extent. For instance, the aldosterone is increased by a factor of three. (c) In SMD, an irreversible effect on the entire steroidal hormone cascade is detected. Hormones at the top of the cascade, such as cholesterol, dehydroepiandrosterone (DHEA), aldosterone and other glucocorticoids, are increased. However, testosterone and estradiol and their metabolites, and other hormones at the lower end of the cascade, seem to be reduced. 1

  2. Monitoring transient changes within overpressured regions of subduction zones using ambient seismic noise.

    PubMed

    Chaves, Esteban J; Schwartz, Susan Y

    2016-01-01

    In subduction zones, elevated pore fluid pressure, generally linked to metamorphic dehydration reactions, has a profound influence on the mechanical behavior of the plate interface and forearc crust through its control on effective stress. We use seismic noise-based monitoring to characterize seismic velocity variations following the 2012 Nicoya Peninsula, Costa Rica earthquake [M w (moment magnitude) 7.6] that we attribute to the presence of pressurized pore fluids. Our study reveals a strong velocity reduction (~0.6%) in a region where previous work identified high forearc pore fluid pressure. The depth of this velocity reduction is constrained to be below 5 km and therefore not the result of near-surface damage due to strong ground motions; rather, we posit that it is caused by fracturing of the fluid-pressurized weakened crust due to dynamic stresses. Although pressurized fluids have been implicated in causing coseismic velocity reductions beneath the Japanese volcanic arc, this is the first report of a similar phenomenon in a subduction zone setting. It demonstrates the potential to identify pressurized fluids in subduction zones using temporal variations of seismic velocity inferred from ambient seismic noise correlations.

  3. Chronic stress associated with hypercaloric diet changes the hippocampal BDNF levels in male Wistar rats.

    PubMed

    Macedo, I C; Rozisky, J R; Oliveira, C; Oliveira, C M; Laste, G; Nonose, Y; Santos, V S; Marques, P R; Ribeiro, M F M; Caumo, W; Torres, I L S

    2015-06-01

    Chronic stress, whether associated with obesity or not, leads to different neuroendocrine and psychological changes. Obesity or being overweight has become one of the most serious worldwide public health problems. Additionally, it is related to a substantial increase in daily energy intake, which results in substituting nutritionally adequate meals for snacks. This metabolic disorder can lead to morbidity, mortality, and reduced quality of life. On the other hand, brain-derived neurotrophic factor (BDNF) is widely expressed in all brain regions, particularly in the hypothalamus, where it has important effects on neuroprotection, synaptic plasticity, mammalian food intake-behavior, and energy metabolism. BDNF is involved in many activities modulated by the hypothalamic-pituitary-adrenal (HPA) axis. Therefore, this study aims to evaluate the effect of obesity associated with chronic stress on the BDNF central levels of rats. Obesity was controlled by analyzing the animals' caloric intake and changes in body weight. As a stress parameter, we analyzed the relative adrenal gland weight. We found that exposure to chronic restraint stress during 12 weeks increases the adrenal gland weight, decreases the BDNF levels in the hippocampus and is associated with a decrease in the calorie and sucrose intake, characterizing anhedonia. These effects can be related stress, a phenomenon that induces depression-like behavior. On the other hand, the rats that received the hypercaloric diet had an increase in calorie intake and became obese, which was associated with a decrease in hypothalamus BDNF levels. Copyright © 2015. Published by Elsevier Ltd.

  4. Stress and sex: does cortisol mediate sex change in fish?

    PubMed

    Goikoetxea, Alexander; Todd, Erica V; Gemmell, Neil J

    2017-12-01

    Cortisol is the main glucocorticoid (GC) in fish and the hormone most directly associated with stress. Recent research suggests that this hormone may act as a key factor linking social environmental stimuli and the onset of sex change by initiating a shift in steroidogenesis from estrogens to androgens. For many teleost fish, sex change occurs as a usual part of the life cycle. Changing sex is known to enhance the lifetime reproductive success of these fish and the modifications involved (behavioral, gonadal and morphological) are well studied. However, the exact mechanism behind the transduction of the environmental signals into the molecular cascade that underlies this singular process remains largely unknown. We here synthesize current knowledge regarding the role of cortisol in teleost sex change with a focus on two well-described transformations: temperature-induced masculinization and socially regulated sex change. Three non-mutually exclusive pathways are considered when describing the potential role of cortisol in mediating teleost sex change: cross-talk between GC and androgen pathways, inhibition of aromatase expression and upregulation of amh (the gene encoding anti-Müllerian hormone). We anticipate that understanding the role of cortisol in the initial stages of sex change will further improve our understanding of sex determination and differentiation across vertebrates, and may lead to new tools to control fish sex ratios in aquaculture. © 2017 Society for Reproduction and Fertility.

  5. Coseismic fold scarp associated with historic earthquakes upon the Yoro active blind thrust, the Nobi-Ise fault zone, central Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, T.; Mueller, K.; Togo, M.

    2004-12-01

    We present structural models constrained by tectonic geomorphology, surface geologic mapping, shallow borehole transects and a high-resolution S-wave seismic reflection profile to define the kinematic evolution of a coseismic fold scarp along the Nobi-Ise fault zone (NIFZ). The NIFZ is an active intraplate fault system in central Japan, and consists of a 110-km-long array of active, east-verging reverse faults. Fold scarps along the Yoro fault are interpreted as produced during a large historic blind-thrust earthquake. The Yoro Mountains form the stripped core of the largest structure in the NIFZ and expose Triassic-Jurassic basement that are thrust eastward over a 2-km-thick sequence of Pliocene-Pleistocene strata deposited in the Nobi basin. This basement-cored fold is underlain by an active blind thrust that is expressed as late Holocene fold scarps along its eastern flank. Drilling investigations across the fold scarp at a site near Shizu identified at least three episodes of active folding associated with large earthquakes on the Yoro fault. Radiocarbon ages constrain the latest event as having occurred in a period that contains historical evidence for a large earthquake in A.D. 1586. A high resolution, S-wave seismic reflection profile at the same site shows that the topographic fold scarp coincides with the projected surface trace of the synclinal axis, across which the buried, early Holocene to historic sedimentary units are folded. This is interpreted to indicate that the structure accommodated coseismic fault-propagation folding during the A.D. 1586 blind thrust earthquake. Flexural-slip folding associated with secondary bedding-parallel thrusts may also deform late Holocene strata and act to consume slip on the primary blind thrust across the synclinal axial surfaces. The best-fitting trishear model for folded ca. 13 ka gravels deposited across the forelimb requires a 28\\deg east-dipping thrust fault. This solution suggests that a 4.2 mm/yr of slip rate

  6. Water stress as a trigger of demand change: exploring the implications for drought planning

    NASA Astrophysics Data System (ADS)

    Garcia, M. E.; Islam, S.; Portney, K. E.

    2015-12-01

    Drought in the Anthropocene is a function of both supply and demand. Despite its importance, demand is typically incorporated into planning models exogenously using a single scenario of demand change over time. Alternatively, demand is incorporated endogenously in hydro-economic models based on the assumption of rationality. However, actors are constrained by limited information and information processing capabilities, casting doubt on the rationality assumption. Though the risk of water shortage changes incrementally with demand growth and hydrologic change, significant shifts in management are punctuated and often linked to periods of stress. The observation of lasting decreases in per capita demands in a number of cities during periods of water stress prompts an alternate hypothesis: the occurrence of water stress increases the tendency of cities to promote and enforce efficient technologies and behaviors and the tendency of users to adopt them. We show the relevance of this hypothesis by building a model of a hypothetical surface water system to answer the following question: what is the impact of reservoir operation policy on the reliability of water supply for a growing city? The model links the rate of demand decreases to the past reliability to compare standard operating policy (SOP) with hedging policy (HP). Under SOP, demand is fulfilled unless available supply drops below demand; under HP, water releases are reduced in anticipation of a deficit to decrease the risk of a large shortfall. The model shows that reservoir storage acts both as a buffer for variability and as a delay triggering oscillations around a sustainable level of demand. HP reduces the threshold for action thereby decreasing the delay and the oscillation effect. As a result per capita demand decrease during periods of water stress are more frequent but less drastic and the additive effect of small adjustments decreases the tendency of the system to overshoot available supplies.

  7. Long-term changes in cognitive bias and coping response as a result of chronic unpredictable stress during adolescence.

    PubMed

    Chaby, Lauren E; Cavigelli, Sonia A; White, Amanda; Wang, Kayllie; Braithwaite, Victoria A

    2013-01-01

    Animals that experience adverse events in early life often have life-long changes to their physiology and behavior. Long-term effects of stress during early life have been studied extensively, but less attention has been given to the consequences of negative experiences solely during the adolescent phase. Adolescence is a particularly sensitive period of life when regulation of the glucocorticoid "stress" hormone response matures and specific regions in the brain undergo considerable change. Aversive experiences during this time might, therefore, be expected to generate long-term consequences for the adult phenotype. Here we investigated the long-term effects of exposure to chronic unpredictable stress during adolescence on adult decision-making, coping response, cognitive bias, and exploratory behavior in rats. Rats exposed to chronic unpredictable stress (e.g., isolation, crowding, cage tilt) were compared to control animals that were maintained in standard, predictable conditions throughout development. Unpredictable stress during adolescence resulted in a suite of long-term behavioral and cognitive changes including a negative cognitive bias [F (1, 12) = 5.000, P < 0.05], altered coping response [T (1, 14) = 2.216, P = 0.04], and accelerated decision-making [T (1, 14) = 3.245, P = 0.01]. Exposure to chronic stress during adolescence also caused a short-term increase in boldness behaviors; in a novel object test 15 days after the last stressor, animals exposed to chronic unpredictable stress had decreased latencies to leave a familiar shelter and approach a novel object [T (1, 14) = 2.240, P = 0.04; T (1, 14) = 2.419, P = 0.03, respectively]. The results showed that stress during adolescence has long-term impacts on behavior and cognition that affect the interpretation of ambiguous stimuli, behavioral response to adverse events, and how animals make decisions.

  8. The Role of Musk in Relieving the Neurodegenerative Changes Induced After Exposure to Chronic Stress.

    PubMed

    Abd El Wahab, Manal Galal; Ali, Soad Shaker; Ayuob, Nasra Naeim

    2018-06-01

    This study aimed to evaluate the effect induced by musk on Alzheimer's disease-such as neurodegenerative changes in mice exposed to chronic unpredictable mild stress (CUMS). Forty male Swiss albino mice were divided into 4 groups (n = 10); control, CUMS, CUMS + fluoxetine, CUMS + musk. At the end of the experiment, behavior of the mice was assessed. Serum corticosterone level, hippocampal protein level of the glucocorticoid receptors, and brain-derived neurotropic factor were also assessed. Hippocampus was histopathologically examined. Musk improved depressive status induced after exposure to CUMS as evidenced by the forced swimming and open field tests and improved the short-term memory as evidenced by the elevated plus maze test. Musk reduced both corticosterone levels and the hippocampal neurodegenerative changes observed after exposure to CUMS. These improvements were comparable to those induced by fluoxetine. Musk alleviated the memory impairment and neurodegenerative changes induced after exposure to the chronic stress.

  9. Geodetic Insights into the Earthquake Cycle in a Fold and Thrust Belt

    NASA Astrophysics Data System (ADS)

    Ingleby, T. F.; Wright, T. J.; Butterworth, V.; Weiss, J. R.; Elliott, J.

    2017-12-01

    surrounding the coseismic rupture in both the down- and up-dip directions. We examine how coseismic stress changes may be driving the postseismic deformation by jointly inverting the InSAR-derived displacements for the rupture and fault friction parameters using a rate-strengthening friction model.

  10. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress.

    PubMed

    Ortega-Galisteo, Ana P; Rodríguez-Serrano, María; Pazmiño, Diana M; Gupta, Dharmendra K; Sandalio, Luisa M; Romero-Puertas, María C

    2012-03-01

    Peroxisomes, single-membrane-bounded organelles with essentially oxidative metabolism, are key in plant responses to abiotic and biotic stresses. Recently, the presence of nitric oxide (NO) described in peroxisomes opened the possibility of new cellular functions, as NO regulates diverse biological processes by directly modifying proteins. However, this mechanism has not yet been analysed in peroxisomes. This study assessed the presence of S-nitrosylation in pea-leaf peroxisomes, purified S-nitrosylated peroxisome proteins by immunoprecipitation, and identified the purified proteins by two different mass-spectrometry techniques (matrix-assisted laser desorption/ionization tandem time-of-flight and two-dimensional nano-liquid chromatography coupled to ion-trap tandem mass spectrometry). Six peroxisomal proteins were identified as putative targets of S-nitrosylation involved in photorespiration, β-oxidation, and reactive oxygen species detoxification. The activity of three of these proteins (catalase, glycolate oxidase, and malate dehydrogenase) is inhibited by NO donors. NO metabolism/S-nitrosylation and peroxisomes were analysed under two different types of abiotic stress, i.e. cadmium and 2,4-dichlorophenoxy acetic acid (2,4-D). Both types of stress reduced NO production in pea plants, and an increase in S-nitrosylation was observed in pea extracts under 2,4-D treatment while no total changes were observed in peroxisomes. However, the S-nitrosylation levels of catalase and glycolate oxidase changed under cadmium and 2,4-D treatments, suggesting that this post-translational modification could be involved in the regulation of H(2)O(2) level under abiotic stress.

  11. Analysis the Source model of the 2009 Mw 7.6 Padang Earthquake in Sumatra Region using continuous GPS data

    NASA Astrophysics Data System (ADS)

    Amertha Sanjiwani, I. D. M.; En, C. K.; Anjasmara, I. M.

    2017-12-01

    A seismic gap on the interface along the Sunda subduction zone has been proposed among the 2000, 2004, 2005 and 2007 great earthquakes. This seismic gap therefore plays an important role in the earthquake risk on the Sunda trench. The Mw 7.6 Padang earthquake, an intraslab event, was occurred on September 30, 2009 located at ± 250 km east of the Sunda trench, close to the seismic gap on the interface. To understand the interaction between the seismic gap and the Padang earthquake, twelves continuous GPS data from SUGAR are adopted in this study to estimate the source model of this event. The daily GPS coordinates one month before and after the earthquake were calculated by the GAMIT software. The coseismic displacements were evaluated based on the analysis of coordinate time series in Padang region. This geodetic network provides a rather good spatial coverage for examining the seismic source along the Padang region in detail. The general pattern of coseismic horizontal displacements is moving toward epicenter and also the trench. The coseismic vertical displacement pattern is uplift. The highest coseismic displacement derived from the MSAI station are 35.0 mm for horizontal component toward S32.1°W and 21.7 mm for vertical component. The second largest one derived from the LNNG station are 26.6 mm for horizontal component toward N68.6°W and 3.4 mm for vertical component. Next, we will use uniform stress drop inversion to invert the coseismic displacement field for estimating the source model. Then the relationship between the seismic gap on the interface and the intraslab Padang earthquake will be discussed in the next step. Keyword: seismic gap, Padang earthquake, coseismic displacement.

  12. Changes in phasic coronary blood flow velocity profile in relation to changes in hemodynamic parameters during stress in patients with aortic valve stenosis.

    PubMed

    Petropoulakis, P N; Kyriakidis, M K; Tentolouris, C A; Kourouclis, C V; Toutouzas, P K

    1995-09-15

    Alterations in phasic coronary flow profile have been demonstrated at rest in patients with aortic valve stenosis (AVS) but have never been studied under conditions of hemodynamic stress. Thirty-four patients with significant pure AVS (21 with exertional symptoms [group 1], 13 asymptomatic [group 2]) and 9 control subjects (group 3), all with normal coronary arteries, were studied successively at rest, during rapid atrial pacing, and after dobutamine infusion (5 to 30 micrograms.kg-1.min-1 i.v.) by proximal left anterior descending (LAD) intracoronary Doppler flow velocimetry concomitant with hemodynamic measurements. Systolic retrograde coronary flow velocity (CFV) was recorded only in patients with AVS, and its resting peak value was positively correlated with peak aortic pressure gradient (APG) (r = .63, P < .001). In group 1, there was lower aortic valve area (0.58 +/- 0.10 versus 0.75 +/- 0.08 cm2, P < .001) and higher resting APG and peak systolic retrograde CFV than in group 2, and also higher resting peak diastolic and mean CFV than in groups 2 and 3. In the two AVS groups, there were no changes from rest in APG and retrograde CFV at peak pacing rate; however, these parameters increased concomitantly and significantly at peak dobutamine stress. The ratio of the resting systolic to diastolic CFV curve area was inversely correlated with mean APG (r = -.54, P < .001); it was significantly lower in group 1 than in groups 2 and 3 (0.19 +/- 0.07 versus 0.29 +/- 0.10 and 0.30 +/- 0.04, respectively, both P < .005) and increased at peak pacing (group 1, to 0.29 +/- 0.14; group 2, to 0.39 +/- 0.12; group 3, to 0.38 +/- 0.07; all P < .001). At peak dobutamine stress, it decreased in patients with AVS (group 1, to 0.05 +/- 0.05; group 2, to 0.08 +/- 0.03; both P < .001) but did not change in group 3 (0.25 +/- 0.05). From rest to peak dobutamine stress, in both AVS groups there was increased retrograde systolic (group 1, 441 +/- 483%; group 2, 681 +/- 356%; both P

  13. Changes in the transcriptomic profiles of maize roots in response to iron-deficiency stress.

    PubMed

    Li, Yan; Wang, Nian; Zhao, Fengtao; Song, Xuejiao; Yin, Zhaohua; Huang, Rong; Zhang, Chunqing

    2014-07-01

    Plants are often subjected to iron (Fe)-deficiency stress because of its low solubility. Plants have evolved two distinct strategies to solubilize and transport Fe to acclimate to this abiotic stress condition. Transcriptomic profiling analysis was performed using Illumina digital gene expression to understand the mechanism underlying resistance responses of roots to Fe starvation in maize, an important Strategy II plant. A total of 3,427, 4,069, 4,881, and 2,610 genes had significantly changed expression levels after Fe-deficiency treatments of 1, 2, 4 or 7 days, respectively. Genes involved in 2'-deoxymugineic acid (DMA) synthesis, secretion, and Fe(III)-DMA uptake were significantly induced. Many genes related to plant hormones, protein kinases, and protein phosphatases responded to Fe-deficiency stress, suggesting their regulatory roles in response to the Fe-deficiency stress. Functional annotation clustering analysis, using the Database for Annotation, Visualization and Integrated Discovery, revealed maize root responses to Fe starvation. This resulted in 38 functional annotation clusters: 25 for up-regulated genes, and 13 for down-regulated ones. These included genes encoding enzymes involved in the metabolism of carboxylic acids, isoprenoids and aromatic compounds, transporters, and stress response proteins. Our work provides integrated information for understanding maize response to Fe-deficiency stress.

  14. Stresses and deformations in cross-ply composite tubes subjected to a uniform temperature change

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Cooper, D. E.; Cohen, D.

    1986-01-01

    This study investigates the effects of a uniform temperature change on the stresses and deformations of composite tubes and determines the accuracy of an approximate solution based on the principle of complementary virtual work. Interest centers on tube response away from the ends and so a planar elasticity approach is used. For the approximate solution a piecewise linear variation of stresses with the radial coordinate is assumed. The results from the approximate solution are compared with the elasticity solution. The stress predictions agree well, particularly peak interlaminar stresses. Surprisingly, the axial deformations also agree well, despite the fact that the deformations predicted by the approximate solution do not satisfy the interface displacement continuity conditions required by the elasticity solution. The study shows that the axial thermal expansion coefficient of tubes with a specific number of axial and circumferential layers depends on the stacking sequence. This is in contrast to classical lamination theory, which predicts that the expansion will be independent of the stacking arrangement. As expected, the sign and magnitude of the peak interlaminar stresses depend on stacking sequence. For tubes with a specific number of axial and circumferential layers, thermally induced interlaminar stresses can be controlled by altering stacking arrangement.

  15. Restraint stress-induced central monoaminergic & oxidative changes in rats & their prevention by novel Ocimum sanctum compounds

    PubMed Central

    Ahmad, Ausaf; Rasheed, Naila; Chand, Kailash; Maurya, Rakesh; Banu, Naheed; Palit, Gautam

    2012-01-01

    Background & objectives: Ocimum sanctum (OS) is known to possess various therapeutic properties. We have earlier isolated and characterized three OS compounds; Ocimarin, Ocimumoside A and Ocimumoside B. However, their role in modulating stress-induced central changes is unexplored. Thus, the present study was aimed to investigate the effect of these OS compounds on restraint stress (RS)-induced changes in the monoaminergic and antioxidant systems in the frontal cortex, striatum and hippocampus of rats. Methods: RS was produced by immobilizing (restraining) the Sprague Dawley rats for a period of 2.5 h inside cylindrical steel tubes. The monoamine levels and the in vivo antioxidant status in brain regions were evaluated by HPLC-EC and spectrophotometric assays, respectively. Results: RS significantly increased the dopamine levels in the frontal cortex and decreased in the striatum and hippocampus, and accompanied with selective increase of dopamine metabolites compared to the NS control group. The serotonin and its metabolite levels were significantly increased, while noradrenaline levels were decreased by RS in the three brain regions studied. The activities of superoxide dismutase and glutathione peroxidase in the frontal cortex and striatum were significantly increased by RS with decreased glutathione levels and increased lipid peroxidation. Pre-treatment with Ocimumoside A and B (40 mg/kg po) for a period of 3 days prevented the RS-induced changes with an efficacy similar to that of standard anti-stress (Panax quinquefolium; 100 mg/kg po) and antioxidant (Melatonin; 20 mg/kg ip) drugs, while, Ocimarin failed to modulate these changes. OS compounds per se had no effect on these parameters. Interpretation & conclusions: The present findings showed the anti-stress potential of Ocimumoside A and B in relation to their simultaneous modulatory effects on the central monoaminergic and antioxidant systems implicating their therapeutic importance in stress

  16. Neuropathic pain promotes adaptive changes in gene expression in brain networks involved in stress and depression.

    PubMed

    Descalzi, Giannina; Mitsi, Vasiliki; Purushothaman, Immanuel; Gaspari, Sevasti; Avrampou, Kleopatra; Loh, Yong-Hwee Eddie; Shen, Li; Zachariou, Venetia

    2017-03-21

    Neuropathic pain is a complex chronic condition characterized by various sensory, cognitive, and affective symptoms. A large percentage of patients with neuropathic pain are also afflicted with depression and anxiety disorders, a pattern that is also seen in animal models. Furthermore, clinical and preclinical studies indicate that chronic pain corresponds with adaptations in several brain networks involved in mood, motivation, and reward. Chronic stress is also a major risk factor for depression. We investigated whether chronic pain and stress affect similar molecular mechanisms and whether chronic pain can affect gene expression patterns that are involved in depression. Using two mouse models of neuropathic pain and depression [spared nerve injury (SNI) and chronic unpredictable stress (CUS)], we performed next-generation RNA sequencing and pathway analysis to monitor changes in gene expression in the nucleus accumbens (NAc), the medial prefrontal cortex (mPFC), and the periaqueductal gray (PAG). In addition to finding unique transcriptome profiles across these regions, we identified a substantial number of signaling pathway-associated genes with similar changes in expression in both SNI and CUS mice. Many of these genes have been implicated in depression, anxiety, and chronic pain in patients. Our study provides a resource of the changes in gene expression induced by long-term neuropathic pain in three distinct brain regions and reveals molecular connections between pain and chronic stress. Copyright © 2017, American Association for the Advancement of Science.

  17. Laboratory experiments simulating poroelastic stress changes associated with depletion and injection in low-porosity sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Ma, Xiaodong; Zoback, Mark D.

    2017-04-01

    We characterized the poroelastic deformation of six cores from three formations associated with the Bakken play in the Williston Basin (the Lodgepole, Middle Bakken, and Three Forks formations). All are low-porosity, low-permeability formations, but vary considerably in clay, kerogen, and carbonate content. The experimental program simulated reservoir stress changes associated with depletion and injection via cycling both the confining pressure (Pc) and pore pressure (Pp). We measured volumetric strain, derived the corresponding bulk modulus, and calculated the Biot coefficient (α). We found α, which generally ranges between 0.3 and 0.9, to vary systematically with Pc and Pp for each of the specimens tested. The effect of pore pressure on α is much larger at low simple effective stress (σ = Pc-Pp) during depletion than injection. The α decreases with σ for all pore pressures. For the same Pc and Pp, the Biot coefficient is consistently higher during injection than during depletion. Given the observed variations of α with Pc and Pp, the modeling of reservoir stress changes using a constant α could be problematic as poroelastic stress changes during depletion and injection are not likely to follow the same path. Scanning electron microscope examination of microstructures suggests that the variations of the bulk modulus and the Biot coefficient can be attributed to the abundance of compliant components (pores, microcracks, clays, and organic matter) and how they are distributed throughout the rock matrix.

  18. Regulation of photochemical energy transfer accompanied by structural changes in thylakoid membranes of heat-stressed wheat.

    PubMed

    Marutani, Yoko; Yamauchi, Yasuo; Miyoshi, Akihito; Inoue, Kanako; Ikeda, Ken-ichi; Mizutani, Masaharu; Sugimoto, Yukihiro

    2014-12-11

    Photosystems of higher plants alleviate heat-induced damage in the presence of light under moderate stressed conditions; however, in the absence of light (i.e., in the dark), the same plants are damaged more easily. (Yamauchi and Kimura, 2011) We demonstrate that regulating photochemical energy transfer in heat-treated wheat at 40 °C with light contributed to heat tolerance of the photosystem. Chlorophyll fluorescence analysis using heat-stressed wheat seedlings in light showed increased non-photochemical quenching (NPQ) of chlorophyll fluorescence, which was due to thermal dissipation that was increased by state 1 to state 2 transition. Transmission electron microscopy revealed structural changes in thylakoid membranes, including unstacking of grana regions under heat stress in light. It was accompanied by the phosphorylation of thylakoid proteins such as D1 and D2 proteins and the light harvesting complex II proteins Lhcb1 and Lhcb2. These results suggest that heat stress at 40 °C in light induces state 1 to state 2 transition for the preferential excitation of photosystem I (PSI) by phosphorylating thylakoid proteins more strongly. Structural changes of thylakoid membrane also assist the remodeling of photosystems and regulation of energy distribution by transition toward state 2 probably contributes to plastoquione oxidation; thus, light-driven electrons flowing through PSI play a protective role against PSII damage under heat stress.

  19. Evaluation of stress changes in the mandible with a fixed functional appliance: a finite element study.

    PubMed

    Chaudhry, Anshul; Sidhu, Maninder S; Chaudhary, Girish; Grover, Seema; Chaudhry, Nimisha; Kaushik, Ashutosh

    2015-02-01

    The aim of this study was to evaluate the effects of a fixed functional appliance (Forsus Fatigue Resistant Device; 3M Unitek, Monrovia, Calif) on the mandible with 3-dimensional finite element stress analysis. A 3-dimensional finite element model of the mandible was constructed from the images generated by cone-beam computed tomography of a patient undergoing fixed orthodontic treatment. The changes were studied with the finite element method, in the form of highest von Mises stress and maximum principal stress regions. More areas of stress were seen in the model of the mandible with the Forsus compared with the model of the mandible in the resting stage. This fixed functional appliance studied by finite element model analysis caused increases in the maximum principal stress and the von Mises stress in both the cortical bone and the condylar region of the mandible by more than 2 times. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  20. Magnetic Field Disturbances Associated with changes in Lithologic Stress

    NASA Astrophysics Data System (ADS)

    Johnston, J. M.; Budker, D.; Johnson, R. M.; Tchernychev, M.; Craig, M. S.

    2013-12-01

    In August 2013 demolition by implosion of a multistory building on the campus of California State University East Bay (CSUEB) provided a strong seismic wave source. Anticipating that this event might provide an opportunity to acquire measurements of magnetic phenomena that could be associated with temporal changes in the lithologic stress regime, we placed several total-field magnetometers in the vicinity of CSUEB. The proximity of the implosion site to the active trace of the Hayward Fault provided additional incentive to measure any magnetic response to the propagation of seismic waves. The instruments used at the implosion site included three total-field cesium vapor magnetometers. These were distributed so as to acquire measurements within 200 m of the implosion site and to straddle the Hayward fault. This experiment also used the total magnetic field measurements acquired at the Jasper Ridge Biological Preserve (JRBP) cesium vapor magnetometer in the foothills behind Stanford University, some 20 km from the implosion site, as a distant reference. All magnetometers were configured to sample at a rate of 10 Hz and were synchronized to better that 1 mSec relative to GPS time. The Magnetic field measurements were coordinated with seismic motion measurements recorded at approximately 600 residential seismic stations and several multichannel seismographs located around the demolition site. Magnetic phenomena that may be associated with lithologic stress phenomena are compared to the seismic measurements in an effort to the observe correlations between lithologic stress and the generation of an anomalous magnetic field. The coherence of the magnetic and seismic events should provide insight into the character of possible earthquake precursor magnetic signals.