Science.gov

Sample records for cosmic discordance detection

  1. Cosmic discordance: Detection of a modulation in the primordial fluctuation spectrum

    NASA Astrophysics Data System (ADS)

    Ichiki, Kiyotomo; Nagata, Ryo; Yokoyama, Jun'Ichi

    2010-04-01

    As a test of the standard inflationary cosmology, which generically predicts a nearly scale-invariant spectrum of primordial curvature fluctuations, we perform a Markov-Chain Monte-Carlo analysis to search for possible modulations in the power spectrum and determine its shape together with the cosmological parameters using cosmic microwave background radiation data. By incorporating various three-parameter features on the simple power-law spectrum, we find an oscillatory modulation localized around the comoving wave number k≃0.009Mpc-1 at 99.995% confidence level which improves the log-likelihood as much as -Δ2ln⁡L≡Δχeff2=-22. This feature can be detected even if we use only the cross correlation between the temperature and the E-mode polarization anisotropies.

  2. Discordance

    NASA Astrophysics Data System (ADS)

    Villa, I. M.; Hanchar, J. M.

    2013-12-01

    Half a century ago, discordant U-Pb ages of metamorphic zircon were viewed as Pb loss by diffusion. Various diffusionist schools of thought debated vigorously whether diffusion was episodic or continuous [1], but nobody questioned the reality of diffusive Pb loss. Only imaging by cathodoluminescence (CL) [2] and back-scattered electrons (BSE) [3] brought a paradigm change in U-Pb geochronology. In situ dating shows routinely accretion of young zircon rims onto older cores that never display Pb diffusion gradients across the interface. Other minerals (monazite, xenotime, etc.) show the same pattern: irregular patches of uniform age separated by sharp age gradients coinciding with petrologic boundaries. As U-Pb discordance is caused by diachronous, heterochemical mineral generations, zircon and monazite closure temperatures, and strict diffusionism, are irrelevant [4]. Knowing what to pay attention to, analytical protocols for U-Pb dating include both of the following: (i) CL/BSE characterization of phase mixtures; (ii) mass spectrometric analysis including U/Th ratios (and ideally trace element fingerprinting on the same fraction [5]). It is clear that the petrologic context is just as essential as mass spectrometry for accurate geochronology. The K-Ar community rarely uses imaging, and the tight context between microstructures, mineral chemistry, petrology and geochronology is missed. Yet the data would be clear if one looked for it. CL and/or BSE imaging and X-ray mapping of K-feldspar and micas is finding ubiquitous evidence of discrete patches of juxtaposed mineral generations. The Ca/Cl/K ratios in 39Ar-40Ar dating fulfill the same role as U/Th ratios in U-Pb dating for fingerprinting successive heterochemical mineral generations. Any linear correlation in a common-denominator three-isotope correlation diagram is certain evidence of binary mixing between heterochemical end-members. A correlation in a Ca/K vs Ar/K diagram requires two minerals having different

  3. Quantum discord of cosmic inflation: Can we show that CMB anisotropies are of quantum-mechanical origin?

    NASA Astrophysics Data System (ADS)

    Martin, Jérôme; Vennin, Vincent

    2016-01-01

    We investigate the quantumness of primordial cosmological fluctuations and its detectability. The quantum discord of inflationary perturbations is calculated for an arbitrary splitting of the system, and shown to be very large on super-Hubble scales. This entails the presence of large quantum correlations, due to the entangled production of particles with opposite momentums during inflation. To determine how this is reflected at the observational level, we study whether quantum correlators can be reproduced by a nondiscordant state, i.e. a state with vanishing discord that contains classical correlations only. We demonstrate that this can be done for the power spectrum, the price to pay being twofold: first, large errors in other two-point correlation functions that cannot however be detected since they are hidden in the decaying mode; second, the presence of intrinsic non-Gaussianity, the detectability of which remains to be determined but which could possibly rule out a nondiscordant description of the cosmic microwave background. If one abandons the idea that perturbations should be modeled by quantum mechanics and wants to use a classical stochastic formalism instead, we show that any two-point correlators on super-Hubble scales can be exactly reproduced regardless of the squeezing of the system. The latter becomes important only for higher order correlation functions that can be accurately reproduced only in the strong squeezing regime.

  4. Radar Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Myers, Isaac

    2012-03-01

    Progress in the study of high energy cosmic ray physics is limited by low flux. In order to collect substantial statistics above 10^19 eV, the two largest ground arrays currently in operation cover 800 km^2 (Telescope Array, Utah) and 3000 km^2 (Auger Observatory, Argentina). The logistics and cost of an order-of-magnitude increase in ground array aperture is prohibitive. In the literature, radar detection experiments have been proposed but substantial results have not been reported. We have deployed a low-power (1500 W) bistatic radar facility overlapping the Telescope Array (TA) in Delta, Utah. Data acquisition systems for the radar receivers were developed in parallel. This system has taught us a great deal, but our current focus is building and deploying a 40 kW transmitter and new high-gain transmitting antenna. Theoretical simulations of CR air shower scattering of radar show that coincidences with the ground array should be detected with this new system. An FCC license for the new transmitter/antenna has been obtained. Systems monitoring and data logging systems, as well as a new, intelligent self-triggered DAQ continue to be developed. We hope to deploy the self-triggered DAQ during the first few months of 2012 and complete the transmitte

  5. Cosmic discordance: are Planck CMB and CFHTLenS weak lensing measurements out of tune?

    NASA Astrophysics Data System (ADS)

    MacCrann, Niall; Zuntz, Joe; Bridle, Sarah; Jain, Bhuvnesh; Becker, Matthew R.

    2015-08-01

    We examine the level of agreement between low-redshift weak lensing data and the cosmic microwave background using measurements from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) and Planck+Wilkinson Microwave Anisotropy Probe (WMAP) polarization. We perform an independent analysis of the CFHTLenS six bin tomography results of Heymans et al. We extend their systematics treatment and find the cosmological constraints to be relatively robust to the choice of non-linear modelling, extension to the intrinsic alignment model and inclusion of baryons. We find that when marginalized in the Ωm-σ8 plane, the 95 per cent confidence contours of CFHTLenS and Planck+WMAP only just touch, but the discrepancy is less significant in the full six-dimensional parameter space of Λ cold dark matter (ΛCDM). Allowing a massive active neutrino or tensor modes does not significantly resolve the tension in the full n-dimensional parameter space. Our results differ from some in the literature because we use the full tomographic information in the weak lensing data and marginalize over systematics. We note that adding a sterile neutrino to ΛCDM brings the 2D marginalized contours into greater overlap, mainly due to the extra effective number of neutrino species, which we find to be 0.88 ± 0.43 (68 per cent) greater than standard on combining the data sets. We discuss why this is not a completely satisfactory resolution, leaving open the possibility of other new physics or observational systematics as contributing factors. We provide updated cosmology fitting functions for the CFHTLenS constraints and discuss the differences from ones used in the literature.

  6. Student Projects in Cosmic Ray Detection

    NASA Astrophysics Data System (ADS)

    Brouwer, W.; Pinfold, J.; Soluk, R.; McDonough, B.; Pasek, V.; Bao-shan, Zheng

    2009-11-01

    The Alberta Large-area Time-coincidence Array (ALTA) study has been in existence for about 10 years under the direction of Jim Pinfold of the Centre for Particle Physics at the University of Alberta. The purpose of the ALTA project is to involve Alberta high schools, and primarily their physics classes, to assist in the detection of the presence of cosmic ray bursts in different Alberta locations. These cosmic rays involve highspeed elementary particles, many from far outside our solar system and even from outside our galaxy. These particles collide with the particles in our atmosphere, break up these molecules into rather exotic elementary particles which often reach the surface of the Earth and can be detected by fairly simple equipment. One of the objectives of ALTA is to determine the nature of some of the most energetic cosmic ray particles whose origin is still not known. Recently 2the Pierre Auger Collaboration has confirmed that the highest energy cosmic rays appear to be coming from nearby galaxies. The mechanism for their production is still not well understood.

  7. Detection prospects of the cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Li, Yu-Feng

    2015-04-01

    The existence of the cosmic neutrino background (CνB) is a fundamental prediction of the standard Big Bang cosmology. Although current cosmological probes provide indirect observational evidence, the direct detection of the CνB in a laboratory experiment is a great challenge to the present experimental techniques. We discuss the future prospects for the direct detection of the CνB, with the emphasis on the method of captures on beta-decaying nuclei and the PTOLEMY project. Other possibilities using the electron-capture (EC) decaying nuclei, the annihilation of extremely high-energy cosmic neutrinos (EHECνs) at the Z-resonance, and the atomic de-excitation method are also discussed in this review (talk given at the International Conference on Massive Neutrinos, Singapore, 9-13 February 2015).

  8. Detection Prospects of the Cosmic Neutrino Background

    NASA Astrophysics Data System (ADS)

    Li, Yu-Feng

    The existence of the cosmic neutrino background (CνB) is a fundamental prediction of the standard Big Bang cosmology. Although current cosmological probes provide indirect observational evidence, the direct detection of the CνB in a laboratory experiment is a great challenge to the present experimental techniques. We discuss the future prospects for the direct detection of the CνB, with the emphasis on the method of captures on beta-decaying nuclei and the PTOLEMY project. Other possibilities using the electron-capture (EC) decaying nuclei, the annihilation of extremely high-energy cosmic neutrinos (EHECνs) at the Z-resonance, and the atomic de-excitation method are also discussed in this review.

  9. Copy number detection in discordant monozygotic twins of Congenital Diaphragmatic Hernia (CDH) and Esophageal Atresia (EA) cohorts.

    PubMed

    Veenma, Danielle; Brosens, Erwin; de Jong, Elisabeth; van de Ven, Cees; Meeussen, Connie; Cohen-Overbeek, Titia; Boter, Marjan; Eussen, Hubertus; Douben, Hannie; Tibboel, Dick; de Klein, Annelies

    2012-03-01

    The occurrence of phenotypic differences between monozygotic (MZ) twins is commonly attributed to environmental factors, assuming that MZ twins have a complete identical genetic make-up. Yet, recently several lines of evidence showed that both genetic and epigenetic factors could have a role in phenotypic discordance after all. A high occurrence of copy number variation (CNV) differences was observed within MZ twin pairs discordant for Parkinson's disease, thereby stressing on the importance of post-zygotic mutations as disease-predisposing events. In this study, the prevalence of discrepant CNVs was analyzed in discordant MZ twins of the Esophageal Atresia (EA) and Congenital Diaphragmatic Hernia (CDH) cohort in the Netherlands. Blood-derived DNA from 11 pairs (7 EA and 4 CDH) was screened using high-resolution SNP arrays. Results showed an identical copy number profile in each twin pair. Mosaic chromosome gain or losses could not be detected either with a detection threshold of 20%. Some of the germ-line structural events demonstrated in five out of eleven twin pairs could function as a susceptible genetic background. For example, the 177-Kb loss of chromosome 10q26 in CDH pair-3 harbors the TCF7L2 gene (Tcf4 protein), which is implicated in the regulation of muscle fiber type development and maturation. In conclusion, discrepant CNVs are not a common cause of twin discordancy in these investigated congenital anomaly cohorts. PMID:22071887

  10. Copy number detection in discordant monozygotic twins of Congenital Diaphragmatic Hernia (CDH) and Esophageal Atresia (EA) cohorts

    PubMed Central

    Veenma, Danielle; Brosens, Erwin; de Jong, Elisabeth; van de Ven, Cees; Meeussen, Connie; Cohen-Overbeek, Titia; Boter, Marjan; Eussen, Hubertus; Douben, Hannie; Tibboel, Dick; de Klein, Annelies

    2012-01-01

    The occurrence of phenotypic differences between monozygotic (MZ) twins is commonly attributed to environmental factors, assuming that MZ twins have a complete identical genetic make-up. Yet, recently several lines of evidence showed that both genetic and epigenetic factors could have a role in phenotypic discordance after all. A high occurrence of copy number variation (CNV) differences was observed within MZ twin pairs discordant for Parkinson's disease, thereby stressing on the importance of post-zygotic mutations as disease-predisposing events. In this study, the prevalence of discrepant CNVs was analyzed in discordant MZ twins of the Esophageal Atresia (EA) and Congenital Diaphragmatic Hernia (CDH) cohort in the Netherlands. Blood-derived DNA from 11 pairs (7 EA and 4 CDH) was screened using high-resolution SNP arrays. Results showed an identical copy number profile in each twin pair. Mosaic chromosome gain or losses could not be detected either with a detection threshold of 20%. Some of the germ-line structural events demonstrated in five out of eleven twin pairs could function as a susceptible genetic background. For example, the 177-Kb loss of chromosome 10q26 in CDH pair-3 harbors the TCF7L2 gene (Tcf4 protein), which is implicated in the regulation of muscle fiber type development and maturation. In conclusion, discrepant CNVs are not a common cause of twin discordancy in these investigated congenital anomaly cohorts. PMID:22071887

  11. Detecting cosmic strings in the CMB with the Canny algorithm

    SciTech Connect

    Amsel, Stephen; Brandenberger, Robert H; Berger, Joshua E-mail: jb454@cornell.edu

    2008-04-15

    Line discontinuities in cosmic microwave background anisotropy maps are a distinctive prediction of models with cosmic strings. These signatures are visible in anisotropy maps with good angular resolution and should be identifiable using edge-detection algorithms. One such algorithm is the Canny algorithm. We study the potential of this algorithm to pick out the line discontinuities generated by cosmic strings. By applying the algorithm to small-scale microwave anisotropy maps generated from theoretical models with and without cosmic strings, we find that, given an angular resolution of several minutes of arc, cosmic strings can be detected down to a limit of the mass per unit length of the string which is one order of magnitude lower than the current upper bounds.

  12. Level crossing analysis of cosmic microwave background radiation: a method for detecting cosmic strings

    SciTech Connect

    Movahed, M. Sadegh; Khosravi, Shahram E-mail: khosravi@ipm.ir

    2011-03-01

    In this paper we study the footprint of cosmic string as the topological defects in the very early universe on the cosmic microwave background radiation. We develop the method of level crossing analysis in the context of the well-known Kaiser-Stebbins phenomenon for exploring the signature of cosmic strings. We simulate a Gaussian map by using the best fit parameter given by WMAP-7 and then superimpose cosmic strings effects on it as an incoherent and active fluctuations. In order to investigate the capability of our method to detect the cosmic strings for the various values of tension, Gμ, a simulated pure Gaussian map is compared with that of including cosmic strings. Based on the level crossing analysis, the superimposed cosmic string with Gμ∼>4 × 10{sup −9} in the simulated map without instrumental noise and the resolution R = 1' could be detected. In the presence of anticipated instrumental noise the lower bound increases just up to Gμ∼>5.8 × 10{sup −9}.

  13. Radar detection of ultra high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Myers, Isaac J.

    TARA (Telescope Array Radar) is a cosmic ray radar detection experiment co-located with Telescope Array, the conventional surface scintillation detector (SD) and fluorescence telescope detector (FD) near Delta, UT. The TARA detector combines a 40 kW transmitter and high gain transmitting antenna which broadcasts the radar carrier over the SD array and in the FD field of view to a 250 MS/s DAQ receiver. Data collection began in August, 2013. TARA stands apart from other cosmic ray radar experiments in that radar data is directly compared with conventional cosmic ray detector events. The transmitter is also directly controlled by TARA researchers. Waveforms from the FD-triggered data stream are time-matched with TA events and searched for signal using a novel signal search technique in which the expected (simulated) radar echo of a particular air shower is used as a matched filter template and compared to radio waveforms. This technique is used to calculate the radar cross-section (RCS) upper-limit on all triggers that correspond to well-reconstructed TA FD monocular events. Our lowest cosmic ray RCS upper-limit is 42 cm2 for an 11 EeV event. An introduction to cosmic rays is presented with the evolution of detection and the necessity of new detection techniques, of which radar detection is a candidate. The software simulation of radar scattering from cosmic rays follows. The TARA detector, including transmitter and receiver systems, are discussed in detail. Our search algorithm and methodology for calculating RCS is presented for the purpose of being repeatable. Search results are explained in context of the usefulness and future of cosmic ray radar detection.

  14. Edge detection, cosmic strings and the south pole telescope

    SciTech Connect

    Stewart, Andrew; Brandenberger, Robert E-mail: rhb@physics.mcgill.ca

    2009-02-15

    We develop a method of constraining the cosmic string tension G{mu} which uses the Canny edge detection algorithm as a means of searching CMB temperature maps for the signature of the Kaiser-Stebbins effect. We test the potential of this method using high resolution, simulated CMB temperature maps. By modeling the future output from the South Pole Telescope project (including anticipated instrumental noise), we find that cosmic strings with G{mu} > 5.5 Multiplication-Sign 10{sup -8} could be detected.

  15. Student Projects in Cosmic Ray Detection

    ERIC Educational Resources Information Center

    Brouwer, W.; Pinfold, J.; Soluk, R.; McDonough, B.; Pasek, V.; Bao-shan, Zheng

    2009-01-01

    The Alberta Large-area Time-coincidence Array (ALTA) study has been in existence for about 10 years under the direction of Jim Pinfold of the Centre for Particle Physics at the University of Alberta. The purpose of the ALTA project is to involve Alberta high schools, and primarily their physics classes, to assist in the detection of the presence…

  16. Fibre laser hydrophones for cosmic ray particle detection

    NASA Astrophysics Data System (ADS)

    Buis, E. J.; Doppenberg, E. J. J.; Nieuwland, R. A.; Toet, P. M.

    2014-03-01

    The detection of ultra high energetic cosmic neutrinos provides a unique means to search for extragalactic sources that accelerate particles to extreme energies. It allows to study the neutrino component of the GZK cut-off in the cosmic ray energy spectrum and the search for neutrinos beyond this limit. Due to low expected flux and small interaction cross-section of neutrinos with matter large experimental set-ups are needed to conduct this type of research. Acoustic detection of cosmic rays may provide a means for the detection of ultra-high energetic neutrinos. Using relative low absorption of sound in water, large experimental set-ups in the deep sea are possible that are able to detect these most rare events, but it requires highly sensitive hydrophones as the thermo-acoustic pulse originating from a particle shower in water has a typical amplitude as low as a mPa. It has been shown in characterisation measurements that the fibre optic hydrophone technology as designed and realised at TNO provides the required sensitivity. Noise measurements and pulse reconstruction have been conducted that show that the hydrophone is suited as a particle detector.

  17. Periodic signatures for the detection of cosmic axions

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1990-01-01

    In a Sikivie-type cosmic-axion detector, both the width and position of the microwave signal due to axion-photon conversion depend upon the motions of the earth. Due to the orbital and rotational motions of the earth they will be modulated with periods of 1 sidereal day and 1 sidereal year, with amplitudes of about 0.1 percent and 5 percent respectively. Because of the intrinsically-high energy resolution of Sikivie-type detectors such periodic variations should be detectable. Such modulations would not only aid in confirming the detection of cosmic axions, but, if found, would also provide important information about the distribution of axions in the halo.

  18. Cosmic dust detection with large surface piezoceramics

    NASA Technical Reports Server (NTRS)

    Weishaupt, U.

    1986-01-01

    Piezoelectric transducers mounted on targets made out of metal plates or plastic foils have been used in many former space missions to detect impacting dust particles and to determine some of their parameters (e.g., momentum). The proposed detector is based on a large disc made out of piezoceramic material. Dust particles impacting on the detector will cause electrical charge pulses due to the piezoelectric nature of the target material. These charge pulses are measured on the electrodes of the disc and transformed with a charge sensitive amplifier (CSA) to voltage pulses. Counting the number of pulses leads to the dust-flux impacting on the detector. Additionally the amplitude and the rise time of the pulse slopes are determinated to evaluate the momentum and the size of the dust particles. Due to the high charge production rate per force unit of piezoceramics and momentum transfer without loss the sensivity of this acoustic sensor is very high. A method to derive size and momentum from the rising slope of an acoustic signal is described.

  19. Detecting cosmic rays with the LOFAR radio telescope

    NASA Astrophysics Data System (ADS)

    Schellart, P.; Nelles, A.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Frieswijk, W.; Hörandel, J. R.; Horneffer, A.; James, C. W.; Krause, M.; Mevius, M.; Scholten, O.; ter Veen, S.; Thoudam, S.; van den Akker, M.; Alexov, A.; Anderson, J.; Avruch, I. M.; Bähren, L.; Beck, R.; Bell, M. E.; Bennema, P.; Bentum, M. J.; Bernardi, G.; Best, P.; Bregman, J.; Breitling, F.; Brentjens, M.; Broderick, J.; Brüggen, M.; Ciardi, B.; Coolen, A.; de Gasperin, F.; de Geus, E.; de Jong, A.; de Vos, M.; Duscha, S.; Eislöffel, J.; Fallows, R. A.; Ferrari, C.; Garrett, M. A.; Grießmeier, J.; Grit, T.; Hamaker, J. P.; Hassall, T. E.; Heald, G.; Hessels, J. W. T.; Hoeft, M.; Holties, H. A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Klijn, W.; Kohler, J.; Kondratiev, V. I.; Kramer, M.; Kuniyoshi, M.; Kuper, G.; Maat, P.; Macario, G.; Mann, G.; Markoff, S.; McKay-Bukowski, D.; McKean, J. P.; Miller-Jones, J. C. A.; Mol, J. D.; Mulcahy, D. D.; Munk, H.; Nijboer, R.; Norden, M. J.; Orru, E.; Overeem, R.; Paas, H.; Pandey-Pommier, M.; Pizzo, R.; Polatidis, A. G.; Renting, A.; Romein, J. W.; Röttgering, H.; Schoenmakers, A.; Schwarz, D.; Sluman, J.; Smirnov, O.; Sobey, C.; Stappers, B. W.; Steinmetz, M.; Swinbank, J.; Tang, Y.; Tasse, C.; Toribio, C.; van Leeuwen, J.; van Nieuwpoort, R.; van Weeren, R. J.; Vermaas, N.; Vermeulen, R.; Vocks, C.; Vogt, C.; Wijers, R. A. M. J.; Wijnholds, S. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.; Zensus, A.

    2013-12-01

    The low frequency array (LOFAR), is the first radio telescope designed with the capability to measure radio emission from cosmic-ray induced air showers in parallel with interferometric observations. In the first ~2 years of observing, 405 cosmic-ray events in the energy range of 1016-1018 eV have been detected in the band from 30-80 MHz. Each of these air showers is registered with up to ~1000 independent antennas resulting in measurements of the radio emission with unprecedented detail. This article describes the dataset, as well as the analysis pipeline, and serves as a reference for future papers based on these data. All steps necessary to achieve a full reconstruction of the electric field at every antenna position are explained, including removal of radio frequency interference, correcting for the antenna response and identification of the pulsed signal.

  20. Detecting phylogenetic breakpoints and discordance from genome-wide alignments for species tree reconstruction.

    PubMed

    Ané, Cécile

    2011-01-01

    With the easy acquisition of sequence data, it is now possible to obtain and align whole genomes across multiple related species or populations. In this work, I assess the performance of a statistical method to reconstruct the whole distribution of phylogenetic trees along the genome, estimate the proportion of the genome for which a given clade is true, and infer a concordance tree that summarizes the dominant vertical inheritance pattern. There are two main issues when dealing with whole-genome alignments, as opposed to multiple genes: the size of the data and the detection of recombination breakpoints. These breakpoints partition the genomic alignment into phylogenetically homogeneous loci, where sites within a given locus all share the same phylogenetic tree topology. To delimitate these loci, I describe here a method based on the minimum description length (MDL) principle, implemented with dynamic programming for computational efficiency. Simulations show that combining MDL partitioning with Bayesian concordance analysis provides an efficient and robust way to estimate both the vertical inheritance signal and the horizontal phylogenetic signal. The method performed well both in the presence of incomplete lineage sorting and in the presence of horizontal gene transfer. A high level of systematic bias was found here, highlighting the need for good individual tree building methods, which form the basis for more elaborate gene tree/species tree reconciliation methods. PMID:21362638

  1. Radio detection of ultra-high energy cosmic neutrinos

    SciTech Connect

    Vieregg, Abigail G.

    2015-07-15

    Ultra-high energy (UHE) neutrino astronomy constitutes a new window of observation onto the UHE universe. The detection and characterization of astrophysical neutrinos at the highest energies (E> 10{sup 18} eV) would reveal the sources of high-energy cosmic rays, the highest energy particles ever seen, and would constrain the evolution of such sources over time. UHE neutrino astrophysics also allows us to probe weak interaction couplings at energies much greater than those available at particle colliders. One promising way of detecting the highest energy neutrinos is through the radio emission created when they interact in a large volume of dielectric, such as ice. Here I discuss current results and future efforts to instrument large volumes of detector material with radio antennas to detect, point back, and characterize the energy of UHE astrophysical neutrinos.

  2. Cosmic Ray Inspection and Passive Tomography for SNM Detection

    SciTech Connect

    Armitage, John; Oakham, Gerald; Bryman, Douglas; Cousins, Thomas; Noeel, Scott; Gallant, Grant; Jason, Andrew; Jonkmans, Guy; Stocki, Trevor J.; Waller, David

    2009-12-02

    The Cosmic Ray Inspection and Passive Tomography (CRIPT) project has recently started investigating the detection of illicit Special Nuclear Material in cargo using cosmic ray muon tomography and complementary neutron detectors. We are currently performing simulation studies to help with the design of small scale prototypes. Based on the prototype tests and refined simulations, we will determine whether the muon tracking system for the full scale prototype will be based on drift chambers or extruded scintillator trackers. An analysis of the operations of the Port of Montreal has determined how long muon scan times should take if all or a subset of the cargo is to be screened. As long as the throughput of the muon system(s) is equal to the rate at which containers are unloaded from ships, the impact on port operations would not be great if a muon scanning stage were required for all cargo. We also show preliminary simulation results indicating that excellent separation between Al, Fe and Pb is possible under ideal conditions. The discrimination power is reduced but still significant when realistic momentum resolution measurements are considered.

  3. Detection of cosmic ray tracks using scintillating fibers and position sensitive multi-anode photomultipliers

    SciTech Connect

    Atac, M.; Streets, J.; Wilcer, N.

    1998-02-01

    This experiment demonstrates detection of cosmic ray tracks by using Scintillating fiber planes and multi-anode photomultipliers (MA-PMTs). In a laboratory like this, cosmic rays provide a natural source of high-energy charged particles which can be detected with high efficiency and with nanosecond time resolution.

  4. Field Programmable Gate Arrays—Detecting Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Dasgupta, S.; Cussans, D.

    2015-07-01

    Field Programmable Gate Arrays (FPGAs) are finding extensive application in instrumentation for particle physics experiments. A table-top framework is developed using FPGA-based hardware to detect the coincidence of signals produced by cosmic rays in multiple detectors. The rates of the detector signals and coincidence output are also measured. The logic is programmed inside an FPGA mounted on a Xilinx evaluation board. Control and data readout are carried out using IPbus, a gigabit Ethernet-based protocol developed as part of upgrading the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) . The framework is appropriate for introducing students to FPGA-based instrumentation and providing them with a practical experience of working with such hardware.

  5. Detection of cosmic superstrings by geodesic test particle motion

    SciTech Connect

    Hartmann, Betti; Sirimachan, Parinya; Laemmerzahl, Claus

    2011-02-15

    (p,q)-strings are bound states of p F-strings and q D-strings and are predicted to form at the end of brane inflation. As such, these cosmic superstrings should be detectable in the Universe. In this paper we argue that they can be detected by the way that massive and massless test particles move in the space-time of these cosmic superstrings. In particular, we study solutions to the geodesic equation in the space-time of field theoretical (p,q)-strings. The geodesics can be classified according to the test particles' energy, angular momentum and momentum in the direction of the string axis. We discuss how the change of the magnetic fluxes, the ratio between the symmetry-breaking scale and the Planck mass, the Higgs-to-gauge-boson mass ratios and the binding between the F- and D-strings, respectively, influence the motion of the test particles. While massless test particles can move only on escape orbits, a new feature as compared to the infinitely thin string limit is the existence of bound orbits for massive test particles. In particular, we observe that--in contrast to the space-time of a single Abelian-Higgs string--bound orbits for massive test particles in (p,q)-string space-times are possible if the Higgs boson mass is larger than the gauge boson mass. We also compute the effect of the binding between the p- and the q-string on observables such as the light deflection and the perihelion shift. While light deflection can also be caused by other matter distributions, the possibility of a negative perihelion shift seems to be a feature of finite width cosmic strings that could lead to the unmistakable identification of such objects. In Melvin space-times, which are asymptotically nonconical, massive test particles have to move on bound orbits, while massless test particles can escape to infinity only if their angular momentum vanishes.

  6. Scientists Detect Radio Emission from Rapidly Rotating Cosmic Dust Grains

    NASA Astrophysics Data System (ADS)

    2001-11-01

    Astronomers have made the first tentative observations of a long-speculated, but never before detected, source of natural radio waves in interstellar space. Data from the National Science Foundation's 140 Foot Radio Telescope at the National Radio Astronomy Observatory in Green Bank, W.Va., show the faint, tell-tale signals of what appear to be dust grains spinning billions of times each second. This discovery eventually could yield a powerful new tool for understanding the interstellar medium - the immense clouds of gas and dust that populate interstellar space. The NRAO 140 Foot Radio Telescope The NRAO 140-Foot Radio Telescope "What we believe we have found," said Douglas P. Finkbeiner of Princeton University's Department of Astrophysics, "is the first hard evidence for electric dipole emission from rapidly rotating dust grains. If our studies are confirmed, it will be the first new source of continuum emission to be conclusively identified in the interstellar medium in nearly the past 20 years." Finkbeiner believes that these emissions have the potential in the future of revealing new and exciting information about the interstellar medium; they also may help to refine future studies of the Cosmic Microwave Background Radiation. The results from this study, which took place in spring 1999, were accepted for publication in Astrophysical Journal. Other contributors to this paper include David J. Schlegel, department of astrophysics, Princeton University; Curtis Frank, department of astronomy, University of Maryland; and Carl Heiles, department of astronomy, University of California at Berkeley. "The idea of dust grains emitting radiation by rotating is not new," comments Finkbeiner, "but to date it has been somewhat speculative." Scientists first proposed in 1957 that dust grains could emit radio signals, if they were caused to rotate rapidly enough. It was believed, however, that these radio emissions would be negligibly small - too weak to be of any impact to

  7. Weak lensing generated by vector perturbations and detectability of cosmic strings

    SciTech Connect

    Yamauchi, Daisuke; Namikawa, Toshiya; Taruya, Atsushi E-mail: namikawa@utap.phys.s.u-tokyo.ac.jp

    2012-10-01

    We study the observational signature of vector metric perturbations through the effect of weak gravitational lensing. In the presence of vector perturbations, the non-vanishing signals for B-mode cosmic shear and curl-mode deflection angle, which have never appeared in the case of scalar metric perturbations, naturally arise. Solving the geodesic and geodesic deviation equations, we drive the full-sky formulas for angular power spectra of weak lensing signals, and give the explicit expressions for E-/B-mode cosmic shear and gradient-/curl-mode deflection angle. As a possible source for seeding vector perturbations, we then consider a cosmic string network, and discuss its detectability from upcoming weak lensing and CMB measurements. Based on the formulas and a simple model for cosmic string network, we calculate the angular power spectra and expected signal-to-noise ratios for the B-mode cosmic shear and curl-mode deflection angle. We find that the weak lensing signals are enhanced for a smaller intercommuting probability of the string network, P, and they are potentially detectable from the upcoming cosmic shear and CMB lensing observations. For P ∼ 10{sup −1}, the minimum detectable tension of the cosmic string will be down to Gμ ∼ 5 × 10{sup −8}. With a theoretically inferred smallest value P ∼ 10{sup −3}, we could even detect the string with Gμ ∼ 5 × 10{sup −10}.

  8. ESA's Integral detects closest cosmic gamma-ray burst

    NASA Astrophysics Data System (ADS)

    2004-08-01

    5 August 2004 A gamma-ray burst detected by ESA's Integral gamma-ray observatory on 3 December 2003 has been thoroughly studied for months by an armada of space and ground-based observatories. Astronomers have now concluded that this event, called GRB 031203, is the closest cosmic gamma-ray burst on record, but also the faintest. This also suggests that an entire population of sub-energetic gamma-ray bursts has so far gone unnoticed... Gamma ray burst model hi-res Size hi-res: 22 KB Credits: CXC/M. Weiss Artist impression of a low-energy gamma-ray burst This illustration describes a model for a gamma-ray burst, like the one detected by Integral on 3 December 2003 (GRB 031203). A jet of high-energy particles from a rapidly rotating black hole interacts with surrounding matter. Observations with Integral on 3 December 2003 and data on its afterglow, collected afterwards with XMM-Newton, Chandra and the Very Large Array telescope, show that GRB 031203 radiated only a fraction of the energy of normal gamma-ray bursts. Like supernovae, gamma-ray bursts are thought to be produced by the collapse of the core of a massive star. However, while the process leading to supernovae is relatively well understood, astronomers still do not know what happens when a core collapses to form a black hole. The discovery of 'under-energetic' gamma-ray bursts, like GRB 031203, should provide valuable clues as to links between supernovae, black holes and gamma-ray bursts. Lo-res JPG (22 Kb) Hi-res TIFF (5800 Kb) Cosmic gamma-ray bursts (GRBs) are flashes of gamma rays that can last from less than a second to a few minutes and occur at random positions in the sky. A large fraction of them is thought to result when a black hole is created from a dying star in a distant galaxy. Astronomers believe that a hot disc surrounding the black hole, made of gas and matter falling onto it, somehow emits an energetic beam parallel to the axis of rotation. According to the simplest picture, all GRBs

  9. ESA's Integral detects closest cosmic gamma-ray burst

    NASA Astrophysics Data System (ADS)

    2004-08-01

    5 August 2004 A gamma-ray burst detected by ESA's Integral gamma-ray observatory on 3 December 2003 has been thoroughly studied for months by an armada of space and ground-based observatories. Astronomers have now concluded that this event, called GRB 031203, is the closest cosmic gamma-ray burst on record, but also the faintest. This also suggests that an entire population of sub-energetic gamma-ray bursts has so far gone unnoticed... Gamma ray burst model hi-res Size hi-res: 22 KB Credits: CXC/M. Weiss Artist impression of a low-energy gamma-ray burst This illustration describes a model for a gamma-ray burst, like the one detected by Integral on 3 December 2003 (GRB 031203). A jet of high-energy particles from a rapidly rotating black hole interacts with surrounding matter. Observations with Integral on 3 December 2003 and data on its afterglow, collected afterwards with XMM-Newton, Chandra and the Very Large Array telescope, show that GRB 031203 radiated only a fraction of the energy of normal gamma-ray bursts. Like supernovae, gamma-ray bursts are thought to be produced by the collapse of the core of a massive star. However, while the process leading to supernovae is relatively well understood, astronomers still do not know what happens when a core collapses to form a black hole. The discovery of 'under-energetic' gamma-ray bursts, like GRB 031203, should provide valuable clues as to links between supernovae, black holes and gamma-ray bursts. Lo-res JPG (22 Kb) Hi-res TIFF (5800 Kb) Cosmic gamma-ray bursts (GRBs) are flashes of gamma rays that can last from less than a second to a few minutes and occur at random positions in the sky. A large fraction of them is thought to result when a black hole is created from a dying star in a distant galaxy. Astronomers believe that a hot disc surrounding the black hole, made of gas and matter falling onto it, somehow emits an energetic beam parallel to the axis of rotation. According to the simplest picture, all GRBs

  10. Method for detecting moisture in soils using secondary cosmic radiation

    DOEpatents

    Condreva, Kenneth

    2003-12-16

    Water content in a soil is determined by measuring the attenuation of secondary background cosmic radiation as this radiation propagates through a layer of soil and water. By measuring the attenuation of secondary cosmic radiation in the range of 5 MeV-15 MeV it is possible to obtain a relative measure of the water content in a soil layer above a suitable radiation detector and thus establish when and how much irrigation is needed. The electronic circuitry is designed so that a battery pack can be used to supply power.

  11. Very low probability of detection of TiH2 molecule in a cosmic object

    NASA Astrophysics Data System (ADS)

    Sharma, M. K.; Sharma, M.; Chandra, S.

    2016-10-01

    In the year 1979, identification of TiH and TiO in the atmosphere of cool M-type stars has been historical, as the Titanium was first time discovered in a cosmic object. Third Titanium-bearing molecule, TiO2, also is identified in the red supergiant VY CMa. Thus, there is a natural question about the detection of TiH2 molecule, as the cosmic abundance of hydrogen is approximately 2000 times larger than that of the oxygen. The large abundance of H as compared to O may not suffice as, for example, the probability of formation of CO is much larger than that of CH. Without going into the details of Chemistry, we have discussed that the probability of detection of TiH2 in a cosmic object is very low, though it has a large electric dipole moment.

  12. FPGA Based Wavelet Trigger in Radio Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew; Szadkowska, Anna

    2014-12-01

    Experiments which show coherent radio emission from extensive air showers induced by ultra-high-energy cosmic rays are designed for a detailed study of the development of the electromagnetic part of air showers. Radio detectors can operate with 100 % up time as, e.g., surface detectors based on water-Cherenkov tanks. They are being developed for ground-based experiments (e.g., the Pierre Auger Observatory) as another type of air-shower detector in addition to fluorescence detectors, which operate with only ˜10 % of duty on dark nights. The radio signals from air showers are caused by coherent emission from geomagnetic radiation and charge-excess processes. The self-triggers in radio detectors currently in use often generate a dense stream of data, which is analyzed afterwards. Huge amounts of registered data require significant manpower for off-line analysis. Improvement of trigger efficiency is a relevant factor. The wavelet trigger, which investigates on-line the power of radio signals (˜ V2/ R), is promising; however, it requires some improvements with respect to current designs. In this work, Morlet wavelets with various scaling factors were used for an analysis of real data from the Auger Engineering Radio Array and for optimization of the utilization of the resources in an FPGA. The wavelet analysis showed that the power of events is concentrated mostly in a limited range of the frequency spectrum (consistent with a range imposed by the input analog band-pass filter). However, we found several events with suspicious spectral characteristics, where the signal power is spread over the full band-width sampled by a 200 MHz digitizer with significant contribution of very high and very low frequencies. These events may not originate from cosmic ray showers but could be the result of human contamination. The engine of the wavelet analysis can be implemented in the modern powerful FPGAs and can remove suspicious events on-line to reduce the trigger rate.

  13. FPGA Based Wavelet Trigger in Radio Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew; Szadkowska, Anna

    2014-09-01

    Experiments which show coherent radio emission from extensive air showers induced by ultra-high-energy cosmic rays are designed for a detailed study of the development of the electromagnetic part of air showers. Radio detectors can operate with 100 % up time as, e.g., surface detectors based on water-Cherenkov tanks. They are being developed for ground-based experiments (e.g., the Pierre Auger Observatory) as another type of air-shower detector in addition to fluorescence detectors, which operate with only ˜10 % of duty on dark nights. The radio signals from air showers are caused by coherent emission from geomagnetic radiation and charge-excess processes. The self-triggers in radio detectors currently in use often generate a dense stream of data, which is analyzed afterwards. Huge amounts of registered data require significant manpower for off-line analysis. Improvement of trigger efficiency is a relevant factor. The wavelet trigger, which investigates on-line the power of radio signals (˜V2/R), is promising; however, it requires some improvements with respect to current designs. In this work, Morlet wavelets with various scaling factors were used for an analysis of real data from the Auger Engineering Radio Array and for optimization of the utilization of the resources in an FPGA. The wavelet analysis showed that the power of events is concentrated mostly in a limited range of the frequency spectrum (consistent with a range imposed by the input analog band-pass filter). However, we found several events with suspicious spectral characteristics, where the signal power is spread over the full band-width sampled by a 200 MHz digitizer with significant contribution of very high and very low frequencies. These events may not originate from cosmic ray showers but could be the result of human contamination. The engine of the wavelet analysis can be implemented in the modern powerful FPGAs and can remove suspicious events on-line to reduce the trigger rate.

  14. Application of thermoluminescence for detection of cascade shower 2: Detection of cosmic ray cascade shower at Mount Fuji

    NASA Technical Reports Server (NTRS)

    Akashi, M.; Kawaguchi, S.; Watanabe, Z.; Misaki, A.; Niwa, M.; Okamoto, Y.; Fujinaga, T.; Ichimura, M.; Shibata, T.; Dake, S.

    1985-01-01

    The results of a thermoluminescence (TL) chamber exposed at Mt. Fuji during Aug. '83 - Aug. '84 are reported. The TL signal induced by cosmic ray shower is detected and compared with the spot darkness of X-ray film exposed at the same time.

  15. Detection techniques of radio emission from ultra high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Morris, Chad M.

    We discuss recent and future efforts to detect radio signals from extended air showers at the Pierre Auger Observatory in Malargue, Argentina. With the advent of low-cost, high-performance digitizers and robust digital signal processing software techniques, radio detection of cosmic rays has resurfaced as a promising measurement system. The inexpensive nature of the detector media (metallic wires, rods or parabolic dishes) and economies of scale working in our favor (inexpensive high-quality C-band amplifiers and receivers) make an array of radio antennas an appealing alternative to the expense of deploying an array of Cherenkov detector water tanks or 'fly's eye' optical telescopes for fluorescence detection. The calorimetric nature of the detection and the near 100% duty cycle gives the best of both traditional detection techniques. The history of cosmic ray detection detection will be discussed. A short review on the astrophysical properties of cosmic rays and atmospheric interactions will lead into a discussion of two radio emission channels that are currently being investigated.

  16. Radio detection of cosmic ray air showers in the digital era

    NASA Astrophysics Data System (ADS)

    Huege, Tim

    2016-03-01

    In 1965 it was discovered that cosmic ray air showers emit impulsive radio signals at frequencies below 100 MHz. After a period of intense research in the 1960s and 1970s, however, interest in the detection technique faded almost completely. With the availability of powerful digital signal processing techniques, new attempts at measuring cosmic ray air showers via their radio emission were started at the beginning of the new millennium. Starting with modest, small-scale digital prototype setups, the field has evolved, matured and grown very significantly in the past decade. Today's second-generation digital radio detection experiments consist of up to hundreds of radio antennas or cover areas of up to 17 km2. We understand the physics of the radio emission in extensive air showers in detail and have developed analysis strategies to accurately derive from radio signals parameters which are related to the astrophysics of the primary cosmic ray particles, in particular their energy, arrival direction and estimators for their mass. In parallel to these successes, limitations inherent in the physics of the radio signals have also become increasingly clear. In this article, we review the progress of the past decade and the current state of the field, discuss the current paradigm of the radio emission physics and present the experimental evidence supporting it. Finally, we discuss the potential for future applications of the radio detection technique to advance the field of cosmic ray physics.

  17. Detectability and Parameter Estimation of Gravitational Waves from Cosmic String with Ground-Based Detectors

    NASA Astrophysics Data System (ADS)

    Yuzurihara, Hirotaka; Kanda, Nobuyuki

    Cosmic string is one dimensional topological defects which might be formed at the phase transition in the early universe. Gravitational Wave (GW) waveform and its power spectrum from structure in closed cosmic string loop that is called as "cusp" are theoretically predicted. Cosmic string is thought to be described with two characteristic parameters: string tension μ and initial loop size α. We demonstrate numerical simulation for GWs from closed comic string loops to study detectability and parameter decision with ground-based detectors, such as KAGRA, advanced LIGO, advanced Virgo and LIGO-India. We employ characteristic parameters 10 - 13 < Gμ < 10 - 7 and 10 - 16 < α < 10 - 1, assuming uniform distribution of cosmic string in isotropic direction, at time epochs of loop forming and GW emission according to the universe model. We calculate waveform numerically in time domain of each GW from these distributed cosmic strings, and superpose waveforms to generate continuously observational signal on the ground-based GW detectors, including detector responses. We consider data analysis for stochastic background type gravitational wave signatures in the observation.

  18. Purified discord and multipartite entanglement

    SciTech Connect

    Brown, Eric G.; Webster, Eric J.; Martín-Martínez, Eduardo; Kempf, Achim

    2013-10-15

    We study bipartite quantum discord as a manifestation of a multipartite entanglement structure in the tripartite purified system. In particular, we find that bipartite quantum discord requires the presence of both bipartite and tripartite entanglement in the purification. This allows one to understand the asymmetry of quantum discord, D(A,B)≠D(B,A) in terms of entanglement monogamy. As instructive special cases, we study discord for qubits and Gaussian states in detail. As a result of this we shed new light on a counterintuitive property of Gaussian states: the presence of classical correlations necessarily requires the presence of quantum correlations. Finally, our results also shed new light on a protocol for remote activation of entanglement by a third party. -- Highlights: •Bipartite quantum discord as a manifestation of multipartite entanglement. •Relevance of quantum discord as a utilizable resource for quantum info. tasks. •Quantum discord manifests itself in entanglement in the purified state. •Relation between asymmetry of discord and entanglement monogamy. •Protocol for remote activation of entanglement by a third party.

  19. Quantum discord with weak measurements

    SciTech Connect

    Singh, Uttam Pati, Arun Kumar

    2014-04-15

    Weak measurements cause small change to quantum states, thereby opening up the possibility of new ways of manipulating and controlling quantum systems. We ask, can weak measurements reveal more quantum correlation in a composite quantum state? We prove that the weak measurement induced quantum discord, called as the “super quantum discord”, is always larger than the quantum discord captured by the strong measurement. Moreover, we prove the monotonicity of the super quantum discord as a function of the measurement strength and in the limit of strong projective measurement the super quantum discord becomes the normal quantum discord. We find that unlike the normal discord, for pure entangled states, the super quantum discord can exceed the quantum entanglement. Our results provide new insights on the nature of quantum correlation and suggest that the notion of quantum correlation is not only observer dependent but also depends on how weakly one perturbs the composite system. We illustrate the key results for pure as well as mixed entangled states. -- Highlights: •Introduced the role of weak measurements in quantifying quantum correlation. •We have introduced the notion of the super quantum discord (SQD). •For pure entangled state, we show that the SQD exceeds the entanglement entropy. •This shows that quantum correlation depends not only on observer but also on measurement strength.

  20. Quantum discord and Maxwell's demons

    SciTech Connect

    Zurek, Wojciech Hubert

    2003-01-01

    Quantum discord was proposed as an information-theoretic measure of the 'quantumness' of correlations. I show that discord determines the difference between the efficiency of quantum and classical Maxwell's demons - that is, entities that can or cannot measure nonlocal observables or carry out conditional quantum operations - in extracting work from collections of correlated quantum systems.

  1. LAT Perspectives in Detection of High Energy Cosmic Ray Electrons

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Ormes, J. F.; Funk, Stefan

    2007-01-01

    The GLAST Large Area Telescope (LAT) science objectives and capabilities in the detection of high energy electrons in the energy range from 20 GeV to approx. 1 TeV are presented. LAT simulations are used to establish the event selections. It is found that maintaining the efficiency of electron detection at the level of 30% the residual hadron contamination does not exceed 2-3% of the electron flux. LAT should collect approx. ten million of electrons with the energy above 20 GeV for each year of observation. Precise spectral reconstruction with high statistics presents us with a unique opportunity to investigate several important problems such as studying galactic models of IC radiation, revealing the signatures of nearby sources such as high energy cutoff in the electron spectrum, testing the propagation model, and searching for KKDM particles decay through their contribution to the electron spectrum.

  2. Detection of high energy cosmic rays with the resonant gravitational wave detectors NAUTILUS and EXPLORER

    NASA Astrophysics Data System (ADS)

    Astone, P.; Babusci, D.; Bassan, M.; Bonifazi, P.; Cavallari, G.; Coccia, E.; D'Antonio, S.; Fafone, V.; Giordano, G.; Ligi, C.; Marini, A.; Mazzitelli, G.; Minenkov, Y.; Modena, I.; Modestino, G.; Moleti, A.; Pallottino, G. V.; Pizzella, G.; Quintieri, L.; Rocchi, A.; Ronga, F.; Terenzi, R.; Visco, M.

    2008-11-01

    The cryogenic resonant gravitational wave detectors NAUTILUS and EXPLORER, made of an aluminum alloy bar, can detect cosmic ray showers. At temperatures above 1 K, when the material is in the normal-conducting state, the measured signals are in good agreement with the expected values based on the cosmic rays data and on the thermo-acoustic model. When NAUTILUS was operated at the temperature of 0.14 K, in superconductive state, large signals produced by cosmic ray interactions, more energetic than expected, were recorded. The NAUTILUS data in this case are in agreement with the measurements done by a dedicated experiment on a particle beam. The biggest recorded event was in EXPLORER and excited the first longitudinal mode to a vibrational energy of ˜670 K, corresponding to ˜360 TeV absorbed in the bar. Cosmic rays can be an important background in future acoustic detectors of improved sensitivity. At present, they represent a useful tool to verify the gravitational wave antenna performance.

  3. The High Energy cosmic-Radiation Detection (HERD) Facility onboard China's Future Space Station

    NASA Astrophysics Data System (ADS)

    Wu, Bobing

    2015-08-01

    The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads of the cosmic lighthouse program onboard China's Space Station, which is planned for operation starting around 2020 for about 10 years. The main scientific objectives of HERD are indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs)from five sides except the bottom. CALO is made of about 10^4 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. HERD can achieve the following performance: energy resolution of 1% for electrons and gamma-rays beyond 100 GeV, 20% for protons from 100 GeV to 1 PeV; 2) electron/proton separation power better than 10^5 ; effective geometrical factors of > 3 m^2 sr for electron and diffuse gamma-rays, > 2 m^2 sr for cosmic ray nuclei. The prototype of about 1/40 of HERD calorimeter is under construction. A beam test in CERN with the prototype is approved and will be carried out in Nov. 2015.

  4. PROJECTED CONSTRAINTS ON THE COSMIC (SUPER)STRING TENSION WITH FUTURE GRAVITATIONAL WAVE DETECTION EXPERIMENTS

    SciTech Connect

    Sanidas, Sotirios A.; Battye, Richard A.; Stappers, Benjamin W. E-mail: rbattye@jb.man.ac.uk

    2013-02-10

    We present projected constraints on the cosmic string tension, G{mu}/c {sup 2}, that could be achieved by future gravitational wave detection experiments and express our results as semi-analytic relations of the form G{mu}({Omega}{sub gw} h {sup 2})/c {sup 2}, to allow for direct computation of the tension constraints for future experiments. These results can be applied to new constraints on {Omega}{sub gw} h {sup 2} as they are imposed. Experiments operating in different frequency bands probe different parts of the gravitational wave spectrum of a cosmic string network and are sensitive to different uncertainties in the underlying cosmic string model parameters. We compute the gravitational wave spectra of cosmic string networks based on the one-scale model, covering all the parameter space accessed by each experiment that is strongly dependent on the birth scale of loops relative to the horizon, {alpha}. The upper limits on the string tension avoid any assumptions on the model parameters. We perform this investigation for Pulsar Timing Array experiments of different durations, as well as ground-based and space-borne interferometric detectors.

  5. First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background.

    PubMed

    Follin, Brent; Knox, Lloyd; Millea, Marius; Pan, Zhen

    2015-08-28

    The unimpeded relativistic propagation of cosmological neutrinos prior to recombination of the baryon-photon plasma alters gravitational potentials and therefore the details of the time-dependent gravitational driving of acoustic oscillations. We report here a first detection of the resulting shifts in the temporal phase of the oscillations, which we infer from their signature in the cosmic microwave background temperature power spectrum. PMID:26371637

  6. Detection and imaging of atmospheric radio flashes from cosmic ray air showers.

    PubMed

    Falcke, H; Apel, W D; Badea, A F; Bähren, L; Bekk, K; Bercuci, A; Bertaina, M; Biermann, P L; Blümer, J; Bozdog, H; Brancus, I M; Buitink, S; Brüggemann, M; Buchholz, P; Butcher, H; Chiavassa, A; Daumiller, K; de Bruyn, A G; de Vos, C M; Di Pierro, F; Doll, P; Engel, R; Gemmeke, H; Ghia, P L; Glasstetter, R; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huege, T; Kampert, K-H; Kant, G W; Klein, U; Kolotaev, Y; Koopman, Y; Krömer, O; Kuijpers, J; Lafebre, S; Maier, G; Mathes, H J; Mayer, H J; Milke, J; Mitrica, B; Morello, C; Navarra, G; Nehls, S; Nigl, A; Obenland, R; Oehlschläger, J; Ostapchenko, S; Over, S; Pepping, H J; Petcu, M; Petrovic, J; Plewnia, S; Rebel, H; Risse, A; Roth, M; Schieler, H; Schoonderbeek, G; Sima, O; Stümpert, M; Toma, G; Trinchero, G C; Ulrich, H; Valchierotti, S; van Buren, J; van Cappellen, W; Walkowiak, W; Weindl, A; Wijnholds, S; Wochele, J; Zabierowski, J; Zensus, J A; Zimmermann, D

    2005-05-19

    The nature of ultrahigh-energy cosmic rays (UHECRs) at energies >10(20) eV remains a mystery. They are likely to be of extragalactic origin, but should be absorbed within approximately 50 Mpc through interactions with the cosmic microwave background. As there are no sufficiently powerful accelerators within this distance from the Galaxy, explanations for UHECRs range from unusual astrophysical sources to exotic string physics. Also unclear is whether UHECRs consist of protons, heavy nuclei, neutrinos or gamma-rays. To resolve these questions, larger detectors with higher duty cycles and which combine multiple detection techniques are needed. Radio emission from UHECRs, on the other hand, is unaffected by attenuation, has a high duty cycle, gives calorimetric measurements and provides high directional accuracy. Here we report the detection of radio flashes from cosmic-ray air showers using low-cost digital radio receivers. We show that the radiation can be understood in terms of the geosynchrotron effect. Our results show that it should be possible to determine the nature and composition of UHECRs with combined radio and particle detectors, and to detect the ultrahigh-energy neutrinos expected from flavour mixing. PMID:15902250

  7. Radio detection of high-energy cosmic rays with the Auger Engineering Radio Array

    NASA Astrophysics Data System (ADS)

    Schröder, Frank G.

    2016-07-01

    The Auger Engineering Radio Array (AERA) is an enhancement of the Pierre Auger Observatory in Argentina. Covering about 17km2, AERA is the world-largest antenna array for cosmic-ray observation. It consists of more than 150 antenna stations detecting the radio signal emitted by air showers, i.e., cascades of secondary particles caused by primary cosmic rays hitting the atmosphere. At the beginning, technical goals had been in focus: first of all, the successful demonstration that a large-scale antenna array consisting of autonomous stations is feasible. Moreover, techniques for calibration of the antennas and time calibration of the array have been developed, as well as special software for the data analysis. Meanwhile physics goals come into focus. At the Pierre Auger Observatory air showers are simultaneously detected by several detector systems, in particular water-Cherenkov detectors at the surface, underground muon detectors, and fluorescence telescopes, which enables cross-calibration of different detection techniques. For the direction and energy of air showers, the precision achieved by AERA is already competitive; for the type of primary particle, several methods are tested and optimized. By combining AERA with the particle detectors we aim for a better understanding of cosmic rays in the energy range from approximately 0.3 to 10 EeV, i.e., significantly higher energies than preceding radio arrays.

  8. The high energy cosmic-radiation detection (HERD) facility onboard China's Space Station

    NASA Astrophysics Data System (ADS)

    Zhang, S. N.; Adriani, O.; Albergo, S.; Ambrosi, G.; An, Q.; Bao, T. W.; Battiston, R.; Bi, X. J.; Cao, Z.; Chai, J. Y.; Chang, J.; Chen, G. M.; Chen, Y.; Cui, X. H.; Dai, Z. G.; D'Alessandro, R.; Dong, Y. W.; Fan, Y. Z.; Feng, C. Q.; Feng, H.; Feng, Z. Y.; Gao, X. H.; Gargano, F.; Giglietto, N.; Gou, Q. B.; Guo, Y. Q.; Hu, B. L.; Hu, H. B.; He, H. H.; Huang, G. S.; Huang, J.; Huang, Y. F.; Li, H.; Li, L.; Li, Y. G.; Li, Z.; Liang, E. W.; Liu, H.; Liu, J. B.; Liu, J. T.; Liu, S. B.; Liu, S. M.; Liu, X.; Lu, J. G.; Mazziotta, M. N.; Mori, N.; Orsi, S.; Pearce, M.; Pohl, M.; Quan, Z.; Ryde, F.; Shi, H. L.; Spillantini, P.; Su, M.; Sun, J. C.; Sun, X. L.; Tang, Z. C.; Walter, R.; Wang, J. C.; Wang, J. M.; Wang, L.; Wang, R. J.; Wang, X. L.; Wang, X. Y.; Wang, Z. G.; Wei, D. M.; Wu, B. B.; Wu, J.; Wu, X.; Wu, X. F.; Xia, J. Q.; Xiao, H. L.; Xu, H. H.; Xu, M.; Xu, Z. Z.; Yan, H. R.; Yin, P. F.; Yu, Y. W.; Yuan, Q.; Zha, M.; Zhang, L.; Zhang, L.; Zhang, L. Y.; Zhang, Y.; Zhang, Y. J.; Zhang, Y. L.; Zhao, Z. G.

    2014-07-01

    The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads of the cosmic lighthouse program onboard China's Space Station, which is planned for operation starting around 2020 for about 10 years. The main scientific objectives of HERD are indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs) from five sides except the bottom. CALO is made of about 104 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. The top STK microstrips of seven X-Y layers are sandwiched with tungsten converters to make precise directional measurements of incoming electrons and gamma-rays. In the baseline design, each of the four side SKTs is made of only three layers microstrips. All STKs will also be used for measuring the charge and incoming directions of cosmic rays, as well as identifying back scattered tracks. With this design, HERD can achieve the following performance: energy resolution of 1% for electrons and gamma-rays beyond 100 GeV, 20% for protons from 100 GeV to 1 PeV; electron/proton separation power better than 10-5; effective geometrical factors of >3 m2sr for electron and diffuse gamma-rays, >2 m2sr for cosmic ray nuclei. R and D is under way for reading out the LYSO signals with optical fiber coupled to image intensified CCD and the prototype of one layer of CALO.

  9. Cosmic gamma-ray burst detected with an instrument on board the OGO-5 satellite

    NASA Technical Reports Server (NTRS)

    Lheureux, J.

    1974-01-01

    Gamma-ray bursts of cosmic origin have recently been detected by instruments on the Vela satellites. We now confirm the detection of the June 30, 1971 event with an instrument on board the OGO-5 satellite. The intensity of this burst is calculated to be approximately 100-200 photons per sq cm/sec for photons of energy greater than 150 keV with an upper limit of 50 photons per sq cm/sec for the intensity above 5 MeV. An upper limit of one-third of the intensity of the June 30, 1971 event is set for 10 other events studied.

  10. Cosmic Ray Experiments and the Implications for Indirect Detection of Dark Matter

    NASA Technical Reports Server (NTRS)

    Mitchell, John W.; Ormes, Jonathan F.; Streitmatter, Robert E.

    2013-01-01

    Detection of cosmic-ray antiprotons was first reported by Golden et al. in 1979 and their existence was firmly established by the BESS and IMAX collaborations in the early 1990s. Increasingly precise measurements of the antiproton spectrum, most recently from BESS-Polar and PAMELA, have made it an important tool for investigating cosmic-ray transport in the galaxy and heliosphere and for constraining dark-matter models. The history of antiproton measurements will be briefly reviewed. The current status will be discussed, focusing on the results of BESS-Polar II and their implications for the possibility of antiprotons from primordial black hole evaporation. The current results of the BESS-Polar II antihelium search are also presented.

  11. Deciphering inflation with gravitational waves: Cosmic microwave background polarization vs direct detection with laser interferometers

    SciTech Connect

    Smith, Tristan L.; Peiris, Hiranya V.; Cooray, Asantha

    2006-06-15

    A detection of the primordial gravitational wave background is considered to be the 'smoking-gun' evidence for inflation. While superhorizon waves are probed with cosmic microwave background (CMB) polarization, the relic background will be studied with laser interferometers. The long lever arm spanned by the two techniques improves constraints on the inflationary potential and validation of consistency relations expected under inflation. If gravitational waves with a tensor-to-scalar amplitude ratio greater than 0.01 are detected by the CMB, then a direct-detection experiment with a sensitivity consistent with current concept studies should be pursued vigorously. If no primordial tensors are detected by the CMB, a direct-detection experiment to understand the simplest form of inflation must have a sensitivity improved by two to 3 orders of magnitude over current plans.

  12. New detection technologies for ultra-high energy cosmic rays and neutrinos

    NASA Astrophysics Data System (ADS)

    Böser, Sebastian

    2013-06-01

    Even with an accumulated data set from an integrated six years of lifetime from the Auger experiment, no point sources of charged cosmic rays have be identified at the highest energies. Significantly increased apertures such as promised by the JEMEUSO mission will be required to identify these sources from the cosmic ray signatures themselves. However, in employing water-cherenkov surface detectors as well as fluorescence telescopes, Auger has demonstrated the power provided by the hybrid technology approach. New detection technologies thus provide a valuable tool, in particular for the study of systematic effects. Over the past decade, in particular radio detection of cosmic ray air-showers has become a viable future detection technology to enhance and complement existing air-shower experiments. Following the proof-of-principle provided by the Lopes experiment, this technology is now being pursued in all major air-shower detectors. In the MHz regime, the radio signal is dominated by geomagnetic emission from the electrons deflected in the earth magnetic field, with secondary contributions from a global charge excess. As the majority of the energy in the shower is carried by these electron and the radio signal traverses the atmosphere basically unattenuated, this approach not only promises superior energy resolution but may also provide an independent handle on the longitudinal shower development and hence the primary composition. Theoretical signal predictions provided by detailed Monte-Carlo simulations as well as analytic shower parametrizations are in good agreement with measurements provided by the AERA and Codalema experiments. Recent efforts also include studies of the radio emission in the GHz regime, where the ambient noise is significantly reduced, yet the emission mechanism in this regime has not been firmly established yet. As neutrinos are not deflected in the intergalactic magnetic fields, the detection of neutrino-induced cascades in dense media

  13. The MIDAS telescope for microwave detection of ultra-high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, J.; Amaral Soares, E.; Berlin, A.; Bogdan, M.; Boháčová, M.; Bonifazi, C.; Carvalho, W. R.; de Mello Neto, J. R. T.; Facal San Luis, P.; Genat, J. F.; Hollon, N.; Mills, E.; Monasor, M.; Privitera, P.; Ramos de Castro, A.; Reyes, L. C.; Richardson, M.; Rouille d'Orfeuil, B.; Santos, E. M.; Wayne, S.; Williams, C.; Zas, E.; Zhou, J.

    2013-08-01

    We present the design, implementation and data taking performance of the MIcrowave Detection of Air Showers (MIDAS) experiment, a large field of view imaging telescope designed to detect microwave radiation from extensive air showers induced by ultra-high energy cosmic rays. This novel technique may bring a tenfold increase in detector duty cycle when compared to the standard fluorescence technique based on detection of ultraviolet photons. The MIDAS telescope consists of a 4.5 m diameter dish with a 53-pixel receiver camera, instrumented with feed horns operating in the commercial extended C-Band (3.4-4.2 GHz). A self-trigger capability is implemented in the digital electronics. The main objectives of this first prototype of the MIDAS telescope - to validate the telescope design, and to demonstrate a large detector duty cycle - were successfully accomplished in a dedicated data taking run at the University of Chicago campus prior to installation at the Pierre Auger Observatory.

  14. Comparison of AMPLICOR and Hybrid Capture II assays for high risk HPV detection in normal and abnormal liquid-based cytology: use of INNO-LiPA Genotyping assay to screen the discordant results.

    PubMed

    Mo, L Z; Monnier-Benoit, S; Kantelip, B; Petitjean, A; Riethmuller, D; Prétet, J L; Mougin, C

    2008-02-01

    The study was aimed to evaluate the feasibility of detecting human papillomavirus (HPV) in women with normal or abnormal cervical smears using the Roche Amplicor MWP HPV Test. We compared by AMPLICOR Test and Hybrid Capture II (HCII) Test, the prevalence of HR-HPV in 470 cervical samples including 55 samples with WNL cytology, 208 ASC-US, 193 LGSIL and 14 HGSIL. Samples with discordant results were retested with INNO-LiPA Genotyping HPV Test v2. The HR-HPV positivity in WNL cytology samples was similar (21.8%) by AMPLICOR and HCII. In ASC-US, the HPV positivity was 42.3% by both tests. In LGSIL, HPV positivity was 66.3% and 66.8% by AMPLICOR and HCII, respectively. In HGSIL, 92.8% of samples were positive by AMPLICOR and 85.7% by HCII. The agreement of both tests was 96.2% with a Kappa value of 0.92. Eighteen cases were discordant: 9 HCII positive/AMPLICOR negative and 9 HCII negative/AMPLICOR positive. The INNO-LiPA test revealed HPV positivity in every case. Interestingly, all HCII+/AMPLICOR- samples were found to harbour HPV53. As for the HCII-/AMPLICOR+ samples, 8 demonstrated a multiple infection with HR 16- and/or 18- and/or 56-phylogenetically related HPV types. Moreover, two of these samples were co-infected with HPV6 and two other with HPV54. By using consensus HR-HPV as our reference HPV positivity, the sensitivity (96.6%) and specificity (100%) of AMPLICOR was similar to that of HCII Test. The AMPLICOR HPV Test is sensitive, specific, feasible and appropriate for routine HPV detection. PMID:18036888

  15. Prospects for cosmic neutrino detection in tritium experiments in the case of hierarchical neutrino masses

    SciTech Connect

    Blennow, Mattias

    2008-06-01

    We discuss the effects of neutrino mixing and the neutrino mass hierarchy when considering the capture of the cosmic neutrino background (CNB) on radioactive nuclei. The implications of mixing and hierarchy at future generations of tritium decay experiments are considered. We find that the CNB should be detectable at these experiments provided that the resolution for the kinetic energy of the outgoing electron can be pushed to a few 0.01 eV for the scenario with inverted neutrino mass hierarchy, about an order of magnitude better than that of the upcoming KATRIN experiment. Another order of magnitude improvement is needed in the case of normal neutrino mass hierarchy. We also note that mixing effects generally make the prospects for CNB detection worse due to an increased maximum energy of the normal beta decay background.

  16. Detection of ultra-high energy cosmic ray showers with a single-pixel fluorescence telescope

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Malacari, M.; Bertaina, M.; Casolino, M.; Dawson, B.; Horvath, P.; Hrabovsky, M.; Jiang, J.; Mandat, D.; Matalon, A.; Matthews, J. N.; Motloch, P.; Palatka, M.; Pech, M.; Privitera, P.; Schovanek, P.; Takizawa, Y.; Thomas, S. B.; Travnicek, P.; Yamazaki, K.

    2016-02-01

    We present a concept for large-area, low-cost detection of ultra-high energy cosmic rays (UHECRs) with a Fluorescence detector Array of Single-pixel Telescopes (FAST), addressing the requirements for the next generation of UHECR experiments. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. We report first results of a FAST prototype installed at the Telescope Array site, consisting of a single 200 mm photomultiplier tube at the focal plane of a 1 m2 Fresnel lens system taken from the prototype of the JEM-EUSO experiment. The FAST prototype took data for 19 nights, demonstrating remarkable operational stability. We detected laser shots at distances of several kilometers as well as 16 highly significant UHECR shower candidates.

  17. Quantum discord, local operations, and Maxwell's demons

    SciTech Connect

    Brodutch, Aharon; Terno, Daniel R.

    2010-06-15

    Quantum discord was proposed as a measure of the quantumness of correlations. There are at least three different discordlike quantities, two of which determine the difference between the efficiencies of a Szilard's engine under different sets of restrictions. The three discord measures vanish simultaneously. We introduce an easy way to test for zero discord, relate it to the Cerf-Adami conditional entropy and show that there is no simple relation between the discord and the local distinguishability.

  18. DETECTING THE RISE AND FALL OF THE FIRST STARS BY THEIR IMPACT ON COSMIC REIONIZATION

    SciTech Connect

    Ahn, Kyungjin; Iliev, Ilian T.; Shapiro, Paul R.; Mao, Yi; Mellema, Garrelt; Koda, Jun

    2012-09-01

    The intergalactic medium was reionized before redshift z {approx} 6, most likely by starlight which escaped from early galaxies. The very first stars formed when hydrogen molecules (H{sub 2}) cooled gas inside the smallest galaxies, minihalos (MHs) of mass between 10{sup 5} and 10{sup 8} M{sub Sun }. Although the very first stars began forming inside these MHs before redshift z {approx} 40, their contribution has, to date, been ignored in large-scale simulations of this cosmic reionization. Here we report results from the first reionization simulations to include these first stars and the radiative feedback that limited their formation, in a volume large enough to follow the crucial spatial variations that influenced the process and its observability. We show that, while MH stars stopped far short of fully ionizing the universe, reionization began much earlier with MH sources than without, and was greatly extended, which boosts the intergalactic electron-scattering optical depth and the large-angle polarization fluctuations of the cosmic microwave background significantly. This boost should be readily detectable by Planck, although within current Wilkinson Microwave Anisotropy Probe uncertainties. If reionization ended as late as z{sub ov} {approx}< 7, as suggested by other observations, Planck will thereby see the signature of the first stars at high redshift, currently undetectable by other probes.

  19. Relic right-handed Dirac neutrinos and implications for detection of cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Zhang, Jue; Zhou, Shun

    2016-02-01

    It remains to be determined experimentally if massive neutrinos are Majorana or Dirac particles. In this connection, it has been recently suggested that the detection of cosmic neutrino background of left-handed neutrinos νL and right-handed antineutrinos ν‾R in future experiments of neutrino capture on beta-decaying nuclei (e.g., νe +3H →3He +e- for the PTOLEMY experiment) is likely to distinguish between Majorana and Dirac neutrinos, since the capture rate is twice larger in the former case. In this paper, we investigate the possible impact of right-handed neutrinos on the capture rate, assuming that massive neutrinos are Dirac particles and both right-handed neutrinos νR and left-handed antineutrinos ν‾L can be efficiently produced in the early Universe. It turns out that the capture rate can be enhanced at most by 28% due to the presence of relic νR and ν‾L with a total number density of 95 cm-3, which should be compared to the number density 336 cm-3 of cosmic neutrino background. The enhancement has actually been limited by the latest cosmological and astrophysical bounds on the effective number of neutrino generations Neff =3.14-0.43+0.44 at the 95% confidence level. For illustration, two possible scenarios have been proposed for thermal production of right-handed neutrinos in the early Universe.

  20. How discord underlies the noise resilience of quantum illumination

    NASA Astrophysics Data System (ADS)

    Weedbrook, Christian; Pirandola, Stefano; Thompson, Jayne; Vedral, Vlatko; Gu, Mile

    2016-04-01

    The benefits of entanglement can outlast entanglement itself. In quantum illumination, entanglement is employed to better detect reflecting objects in environments so noisy that all entanglement is destroyed. Here, we show that quantum discord—a more resilient form of quantum correlations—explains the resilience of quantum illumination. We introduce a quantitative relation between the performance gain in quantum illumination and the amount of discord used to encode information about the presence or absence of a reflecting object. This highlights discords role preserving the benefits of entanglement in entanglement breaking noise.

  1. Detection of the isotopes of heavy cosmic ray nuclei. [by particle counter telescope

    NASA Technical Reports Server (NTRS)

    Gilman, C. M.; Waddington, C. J.

    1975-01-01

    A counter telescope designed to detect and resolve the isotopic composition of cosmic ray nuclei heavier than neon is being prepared. The telescope consists of a rather conventional charge measuring array using two scintillator elements and two solid Cerenkov radiators of differing refractive index. The mass measurement is obtained by combining the velocity information from one or both of the Cerenkov radiators operating near their threshold with residual range measured in a block of nuclear emulsion. Path length corrections and particle location in the emulsions is provided by a spark chamber fired in coincidence with potentially suitable particles. The telescope has a geometry factor of 530 sq cm sr roughly. It should be able to resolve the isotopes of iron over the energy range of 300 to 720 Mev/n and those of neon over 300 to 400 MeV/n. The expected response and characteristics of the telescope are described in detail and the sensitivity to rare isotopes discussed.

  2. The Auger Engineering Radio Array and multi-hybrid cosmic ray detection

    NASA Astrophysics Data System (ADS)

    Holt, E. M.; Pierre Auger Collaboration

    2016-05-01

    The Auger Engineering Radio Array (AERA) aims at the detection of air showers induced by high-energy cosmic rays. As an extension of the Pierre Auger Observatory, it measures complementary information to the particle detectors, fluorescence telescopes and to the muon scintillators of the Auger Muons and Infill for the Ground Array (AMIGA). AERA is sensitive to all fundamental parameters of an extensive air shower such as the arrival direction, energy and depth of shower maximum. Since the radio emission is induced purely by the electromagnetic component of the shower, in combination with the AMIGA muon counters, AERA is perfect for separate measurements of the electrons and muons in the shower, if combined with a muon counting detector like AMIGA. In addition to the depth of the shower maximum, the ratio of the electron and muon number serves as a measure of the primary particle mass.

  3. Radio emission from extensive air showers as a method for cosmic-ray detection

    SciTech Connect

    Kalmykov, N. N.; Konstantinov, A. A.; Engel, R.

    2010-07-15

    At the present time, radio emission from extensive air showers (EASs) is being considered as a new promising method for detecting cosmic rays of energy in the region E{sub 0} > 5 x 10{sup 16} eV. Radio emission from an EAS whose development is simulated by the Monte Carlo method is calculated here. The field of radio emission from an EAS is calculated on the basis of two representations of a shower: that as a set of individual particles and that as a continuous set of currents. The sensitivity of radio emission to EAS parameters in the frequency range 10-100 MHz is investigated. The results can be used to analyze experiments that being presently performed (CODALEMA and LOPES) and those that are being planned for the future.

  4. Direct detection of the cosmic neutrino background including light sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Xing, Zhi-Zhong; Luo, Shu

    2010-09-01

    Current cosmological data drop an interesting hint about the existence of sub-eV sterile neutrinos, which should be a part of the cosmic neutrino background (CνB). We point out that such light sterile neutrinos may leave a distinct imprint on the electron energy spectrum in the capture of relic electron neutrinos by means of radioactive beta-decaying nuclei. We examine possible signals of sterile neutrinos relative to active neutrinos, characterized by their masses and sensitive to their number densities, in the reaction ν+H3→He3+e- against the corresponding tritium beta decay. We stress that this kind of direct laboratory detection of the CνB and its sterile component might not be hopeless in the long term.

  5. Radio detection of high-energy cosmic rays at the Pierre Auger Observatory

    SciTech Connect

    Berg, A.M.van den; Collaboration, for the Pierre Auger

    2007-08-01

    The southern Auger Observatory provides an excellent test bed to study the radio detection of extensive air showers as an alternative, cost-effective, and accurate tool for cosmic-ray physics. The data from the radio setup can be correlated with those from the well-calibrated baseline detectors of the Pierre Auger Observatory. Furthermore, human-induced radio noise levels at the southern Auger site are relatively low. We have started an R&D program to test various radio-detection concepts. Our studies will reveal Radio Frequency Interferences (RFI) caused by natural effects such as day-night variations, thunderstorms, and by human-made disturbances. These RFI studies are conducted to optimize detection parameters such as antenna design, frequency interval, antenna spacing and signal processing. The data from our initial setups, which presently consist of typically 3 - 4 antennas, will be used to characterize the shower from radio signals and to optimize the initial concepts. Furthermore, the operation of a large detection array requires autonomous detector stations. The current design is aiming at stations with antennas for two polarizations, solar power, wireless communication, and local trigger logic. The results of this initial phase will provide an important stepping stone for the design of a few tens kilometers square engineering array.

  6. Non-Markovian dynamics of quantum discord

    SciTech Connect

    Fanchini, F. F.; Caldeira, A. O.; Werlang, T.; Brasil, C. A.; Arruda, L. G. E.

    2010-05-15

    We evaluate the quantum discord dynamics of two qubits in independent and common non-Markovian environments. We compare the dynamics of entanglement with that of quantum discord. For independent reservoirs the quantum discord vanishes only at discrete instants whereas the entanglement can disappear during a finite time interval. For a common reservoir, quantum discord and entanglement can behave very differently with sudden birth of the former but not of the latter. Furthermore, in this case the quantum discord dynamics presents sudden changes in the derivative of its time evolution which is evidenced by the presence of kinks in its behavior at discrete instants of time.

  7. On the Possibility of Radar Detection of Ultra-high Energy Cosmic Ray- and Neutrino-induced Air Showers

    NASA Technical Reports Server (NTRS)

    Gorham, P.

    1999-01-01

    We show that cosmic rays air showers resulting from primaries with energies above 10(sup 19) eV should be straightforward to detect with radar ranging techniques, where the radar echoes are produced by scattering from the column of ionized air produced by the shower.

  8. Future use of silicon photomultipliers for the fluorescence detection of ultra-high-energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Stephan, Maurice; Hebbeker, Thomas; Lauscher, Markus; Meurer, Christine; Niggemann, Tim; Schumacher, Johannes

    2011-10-01

    A sophisticated technique to measure extensive air showers initiated by ultra-high-energy cosmic rays is by means of fluorescence telescopes. Secondary particles of the air shower excite nitrogen molecules of the atmosphere, which emit fluorescence light when they de-excite. Due to their high photon detection efficiency (PDE) silicon photomultipliers (SiPMs) promise to increase the sensitivity of todays fluorescence telescopes which use photomultiplier tubes - for example the fluorescence detector of the Pierre Auger Observatory. On the other hand drawbacks like a small sensitive area, a strong temperature dependency and a high noise rate have to be managed. We present plans for a prototype fluorescence telescope using SiPMs and a special light collecting optical system of Winston cones to increase the sensitive area. In this context we made measurements of the relative PDE of SiPMs depending on the incident angle of light. The results agree with calculations based on the Fresnel equations. Furthermore, measurements of the brightness of the night sky are presented since this photon flux is the main background to the fluorescence signals of the extensive air showers. To compensate the temperature dependency of the SiPM, frontend electronics make use of temperature sensors and microcontrollers to directly adjust the bias-voltage according to the thermal conditions. To reduce the noise rate we study the coincidence of several SiPMs signals triggered by cosmic ray events. By summing up these signals the SiPMs will constitute a single pixel of the fluorescence telescope.

  9. Gene Tree Discordance Causes Apparent Substitution Rate Variation.

    PubMed

    Mendes, Fábio K; Hahn, Matthew W

    2016-07-01

    Substitution rates are known to be variable among genes, chromosomes, species, and lineages due to multifarious biological processes. Here, we consider another source of substitution rate variation due to a technical bias associated with gene tree discordance. Discordance has been found to be rampant in genome-wide data sets, often due to incomplete lineage sorting (ILS). This apparent substitution rate variation is caused when substitutions that occur on discordant gene trees are analyzed in the context of a single, fixed species tree. Such substitutions have to be resolved by proposing multiple substitutions on the species tree, and we therefore refer to this phenomenon as Substitutions Produced by ILS (SPILS). We use simulations to demonstrate that SPILS has a larger effect with increasing levels of ILS, and on trees with larger numbers of taxa. Specific branches of the species trees are consistently, but erroneously, inferred to be longer or shorter, and we show that these branches can be predicted based on discordant tree topologies. Moreover, we observe that fixing a species tree topology when performing tests of positive selection increases the false positive rate, particularly for genes whose discordant topologies are most affected by SPILS. Finally, we use data from multiple Drosophila species to show that SPILS can be detected in nature. Although the effects of SPILS are modest per gene, it has the potential to affect substitution rate variation whenever high levels of ILS are present, particularly in rapid radiations. The problems outlined here have implications for character mapping of any type of trait, and for any biological process that causes discordance. We discuss possible solutions to these problems, and areas in which they are likely to have caused faulty inferences of convergence and accelerated evolution. PMID:26927960

  10. Primordial Gravitational Wave Detectability with Deep Small-sky Cosmic Microwave Background Experiments

    NASA Astrophysics Data System (ADS)

    Farhang, M.; Bond, J. R.; Doré, O.; Netterfield, C. B.

    2013-07-01

    We use the Bayesian estimation on direct T - Q - U cosmic microwave background (CMB) polarization maps to forecast errors on the tensor-to-scalar power ratio r, and hence on primordial gravitational waves, as a function of sky coverage f sky. This map-based likelihood filters the information in the pixel-pixel space into the optimal combinations needed for r detection for cut skies, providing enhanced information over a first-step linear separation into a combination of E, B, and mixed modes, and ignoring the latter. With current computational power and for typical resolutions appropriate for r detection, the large matrix inversions required are accurate and fast. Our simulations explore two classes of experiments, with differing bolometric detector numbers, sensitivities, and observational strategies. One is motivated by a long duration balloon experiment like Spider, with pixel noise \\propto \\sqrt{f_{sky}} for a specified observing period. This analysis also applies to ground-based array experiments. We find that, in the absence of systematic effects and foregrounds, an experiment with Spider-like noise concentrating on f sky ~ 0.02-0.2 could place a 2σ r ≈ 0.014 boundary (~95% confidence level), which rises to 0.02 with an l-dependent foreground residual left over from an assumed efficient component separation. We contrast this with a Planck-like fixed instrumental noise as f sky varies, which gives a Galaxy-masked (f sky = 0.75) 2σ r ≈ 0.015, rising to ≈0.05 with the foreground residuals. Using as the figure of merit the (marginalized) one-dimensional Shannon entropy of r, taken relative to the first 2003 WMAP CMB-only constraint, gives -2.7 bits from the 2012 WMAP9+ACT+SPT+LSS data, and forecasts of -6 bits from Spider (+ Planck); this compares with up to -11 bits for CMBPol, COrE, and PIXIE post-Planck satellites and -13 bits for a perfectly noiseless cosmic variance limited experiment. We thus confirm the wisdom of the current strategy for r

  11. PRIMORDIAL GRAVITATIONAL WAVE DETECTABILITY WITH DEEP SMALL-SKY COSMIC MICROWAVE BACKGROUND EXPERIMENTS

    SciTech Connect

    Farhang, M.; Bond, J. R.; Netterfield, C. B.; Dore, O.

    2013-07-01

    We use the Bayesian estimation on direct T - Q - U cosmic microwave background (CMB) polarization maps to forecast errors on the tensor-to-scalar power ratio r, and hence on primordial gravitational waves, as a function of sky coverage f{sub sky}. This map-based likelihood filters the information in the pixel-pixel space into the optimal combinations needed for r detection for cut skies, providing enhanced information over a first-step linear separation into a combination of E, B, and mixed modes, and ignoring the latter. With current computational power and for typical resolutions appropriate for r detection, the large matrix inversions required are accurate and fast. Our simulations explore two classes of experiments, with differing bolometric detector numbers, sensitivities, and observational strategies. One is motivated by a long duration balloon experiment like Spider, with pixel noise {proportional_to}{radical}(f{sub sky}) for a specified observing period. This analysis also applies to ground-based array experiments. We find that, in the absence of systematic effects and foregrounds, an experiment with Spider-like noise concentrating on f{sub sky} {approx} 0.02-0.2 could place a 2{sigma}{sub r} Almost-Equal-To 0.014 boundary ({approx}95% confidence level), which rises to 0.02 with an l-dependent foreground residual left over from an assumed efficient component separation. We contrast this with a Planck-like fixed instrumental noise as f{sub sky} varies, which gives a Galaxy-masked (f{sub sky} = 0.75) 2{sigma}{sub r} Almost-Equal-To 0.015, rising to Almost-Equal-To 0.05 with the foreground residuals. Using as the figure of merit the (marginalized) one-dimensional Shannon entropy of r, taken relative to the first 2003 WMAP CMB-only constraint, gives -2.7 bits from the 2012 WMAP9+ACT+SPT+LSS data, and forecasts of -6 bits from Spider (+ Planck); this compares with up to -11 bits for CMBPol, COrE, and PIXIE post-Planck satellites and -13 bits for a perfectly

  12. A Bayesian analysis of the 69 highest energy cosmic rays detected by the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Khanin, Alexander; Mortlock, Daniel J.

    2016-08-01

    The origins of ultra-high energy cosmic rays (UHECRs) remain an open question. Several attempts have been made to cross-correlate the arrival directions of the UHECRs with catalogs of potential sources, but no definite conclusion has been reached. We report a Bayesian analysis of the 69 events from the Pierre Auger Observatory (PAO), that aims to determine the fraction of the UHECRs that originate from known AGNs in the Veron-Cety & Veron (VCV) catalog, as well as AGNs detected with the Swift Burst Alert Telescope (Swift-BAT), galaxies from the 2MASS Redshift Survey (2MRS), and an additional volume-limited sample of 17 nearby AGNs. The study makes use of a multi-level Bayesian model of UHECR injection, propagation and detection. We find that for reasonable ranges of prior parameters, the Bayes factors disfavour a purely isotropic model. For fiducial values of the model parameters, we report 68% credible intervals for the fraction of source originating UHECRs of 0.09+0.05-0.04, 0.25+0.09-0.08, 0.24+0.12-0.10, and 0.08+0.04-0.03 for the VCV, Swift-BAT and 2MRS catalogs, and the sample of 17 AGNs, respectively.

  13. A Bayesian analysis of the 69 highest energy cosmic rays detected by the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Khanin, Alexander; Mortlock, Daniel J.

    2016-08-01

    The origins of ultrahigh energy cosmic rays (UHECRs) remain an open question. Several attempts have been made to cross-correlate the arrival directions of the UHECRs with catalogues of potential sources, but no definite conclusion has been reached. We report a Bayesian analysis of the 69 events, from the Pierre Auger Observatory (PAO), that aims to determine the fraction of the UHECRs that originate from known AGNs in the Veron-Cety & Verson (VCV) catalogue, as well as AGNs detected with the Swift Burst Alert Telescope (Swift-BAT), galaxies from the 2MASS Redshift Survey (2MRS), and an additional volume-limited sample of 17 nearby AGNs. The study makes use of a multilevel Bayesian model of UHECR injection, propagation and detection. We find that for reasonable ranges of prior parameters the Bayes factors disfavour a purely isotropic model. For fiducial values of the model parameters, we report 68 per cent credible intervals for the fraction of source originating UHECRs of 0.09^{+0.05}_{-0.04}, 0.25^{+0.09}_{-0.08}, 0.24^{+0.12}_{-0.10}, and 0.08^{+0.04}_{-0.03} for the VCV, Swift-BAT and 2MRS catalogues, and the sample of 17 AGNs, respectively.

  14. Detection of trans-Planckian effects in the cosmic microwave background

    SciTech Connect

    Groeneboom, Nicolaas E.; Elgaroey, Oystein

    2008-02-15

    Quantum gravity effects are expected to modify the primordial density fluctuations produced during inflation and leave their imprint on the cosmic microwave background observed today. We present a new analysis discussing whether these effects are detectable, considering both currently available data and simulated results from an optimal CMB experiment. We find that the WMAP (Wilkinson Microwave Anisotropy Probe) data show no evidence for the particular signature considered in this work but give an upper bound on the parameters of the model. However, a hypothetical experiment shows that with proper data, the trans-Planckian effects should be detectable through alternate sampling methods. This fuzzy conclusion is a result of the nature of the oscillations, since they give rise to a likelihood hypersurface riddled with local maxima. A simple Bayesian analysis shows no significant evidence for the simulated data to prefer a trans-Planckian model. Conventional Markov chain Monte Carlo (MCMC) methods are not suitable for exploring this complicated landscape, but alternative methods are required to solve the problem. This, however, requires extremely high-precision data.

  15. Using Wavelet Transforms to Detect Dust in Cosmic Microwave Background Maps

    NASA Astrophysics Data System (ADS)

    Rybolt, Ben; Guest, S.; Larson, G.; Bunn, E.

    2008-05-01

    A major question regarding temperature fluctuations in the cosmic microwave background (CMB) is whether or not they obey Gaussian statistics (i.e., whether they contain any additional information beyond that contained in the power spectrum). Inflation predicts that the CMB is Gaussian; future experiments will test this prediction. Dust contamination will likely be a problem for these tests, and could bias the results, as dust is known to be highly non-Gaussian. We are developing statistical test to detect dust contamination. It has previously been shown that wavelet transforms efficiently represent dust, so we compare the power of a variety of statistical tests to maps with and without wavelet transforms. Some statistics we have looked at are the skewness, linear correlations between a simulated map and a dust template, and a comparison of the mean-square signal in high-dust and low-dust regions. We have found that using a wavelet transform does not help detect dust for the skewness test, but it significantly increases the power of the mean-square test. This research is supported by grants from the National Science Foundation and the Research Corporation.

  16. Detecting signatures of cosmological recombination and reionization in the cosmic radio background

    NASA Astrophysics Data System (ADS)

    Subrahmanyan, Ravi; Shankar Narayana Rao, Udaya; Sathyanarayana Rao, Mayuri; Singh, Saurabh

    2015-08-01

    Evolution of the baryons during the Epochs of cosmological Recombination and Reionization has left traces in the cosmic radio background in the form of spectral distortions (Sunyaev & Chluba 2008 Astron. Nachrichten, 330, 657; Pritchard & Loeb 2012 Rep Prog Phys 75(8):086901). The spectral signature depends on the evolution in the ionization state in hydrogen and helium and on the spin temperature of hydrogen. These probe the physics of energy release beyond the last scattering surface at redshifts exceeding 1090 and the nature of the first sources and gas evolution down to redshift about 6. The spectral distortions are sensitive to the nature of the first stars, ultra-dwarf galaxies, accreting compact objects, and the evolving ambient radiation field: X-rays and UV from the first sources. Detection of the all-sky or global spectral distortions in the radio background is hence a probe of cosmological recombination and reionization.We present new spectral radiometers that we have purpose designed for precision measurements of spectral distortions at radio wavelengths. New antenna elements include frequency independent and electrically small fat-dipole (Raghunathan et al. 2013 IEEE TAP, 61, 3411) and monopole designs. Receiver configurations have been devised that are self-calibratable (Patra et al. 2013 Expt Astron, 36, 319) so that switching of signal paths and of calibration noise sources provide real time calibration for systematics and receiver noise. Observing strategies (Patra et al. arXiv:1412.7762) and analysis methods (Satyanarayana Rao et al. arXiv:1501.07191) have been evolved that are capable of discriminating between the cosmological signals and the substantially brighter foregrounds. We have also demonstrated the value of system designs that exploit advantages of interferometer detection (Mahesh et al. arXiv:1406.2585) of global spectral distortions.Finally we discuss how the Square Kilometer Array stations may be outfitted with precision spectral

  17. Observing the operational significance of discord consumption

    NASA Astrophysics Data System (ADS)

    Gu, Mile; Chrzanowski, Helen M.; Assad, Syed M.; Symul, Thomas; Modi, Kavan; Ralph, Timothy C.; Vedral, Vlatko; Lam, Ping Koy

    2012-09-01

    Coherent interactions that generate negligible entanglement can still exhibit unique quantum behaviour. This observation has motivated a search beyond entanglement for a complete description of all quantum correlations. Quantum discord is a promising candidate. Here, we demonstrate that under certain measurement constraints, discord between bipartite systems can be consumed to encode information that can only be accessed by coherent quantum interactions. The inability to access this information by any other means allows us to use discord to directly quantify this `quantum advantage'. We experimentally encode information within the discordant correlations of two separable Gaussian states. The amount of extra information recovered by coherent interaction is quantified and directly linked with the discord consumed during encoding. No entanglement exists at any point of this experiment. Thus we introduce and demonstrate an operational method to use discord as a physical resource.

  18. Application of two tests of multivariate discordancy to fisheries data sets

    USGS Publications Warehouse

    Stapanian, M.A.; Kocovsky, P.M.; Garner, F.C.

    2008-01-01

    The generalized (Mahalanobis) distance and multivariate kurtosis are two powerful tests of multivariate discordancies (outliers). Unlike the generalized distance test, the multivariate kurtosis test has not been applied as a test of discordancy to fisheries data heretofore. We applied both tests, along with published algorithms for identifying suspected causal variable(s) of discordant observations, to two fisheries data sets from Lake Erie: total length, mass, and age from 1,234 burbot, Lota lota; and 22 combinations of unique subsets of 10 morphometrics taken from 119 yellow perch, Perca flavescens. For the burbot data set, the generalized distance test identified six discordant observations and the multivariate kurtosis test identified 24 discordant observations. In contrast with the multivariate tests, the univariate generalized distance test identified no discordancies when applied separately to each variable. Removing discordancies had a substantial effect on length-versus-mass regression equations. For 500-mm burbot, the percent difference in estimated mass after removing discordancies in our study was greater than the percent difference in masses estimated for burbot of the same length in lakes that differed substantially in productivity. The number of discordant yellow perch detected ranged from 0 to 2 with the multivariate generalized distance test and from 6 to 11 with the multivariate kurtosis test. With the kurtosis test, 108 yellow perch (90.7%) were identified as discordant in zero to two combinations, and five (4.2%) were identified as discordant in either all or 21 of the 22 combinations. The relationship among the variables included in each combination determined which variables were identified as causal. The generalized distance test identified between zero and six discordancies when applied separately to each variable. Removing the discordancies found in at least one-half of the combinations (k=5) had a marked effect on a principal components

  19. Non-commutativity measure of quantum discord

    PubMed Central

    Guo, Yu

    2016-01-01

    Quantum discord is a manifestation of quantum correlations due to non-commutativity rather than entanglement. Two measures of quantum discord by the amount of non-commutativity via the trace norm and the Hilbert-Schmidt norm respectively are proposed in this paper. These two measures can be calculated easily for any state with arbitrary dimension. It is shown by several examples that these measures can reflect the amount of the original quantum discord. PMID:27122226

  20. Non-commutativity measure of quantum discord.

    PubMed

    Guo, Yu

    2016-01-01

    Quantum discord is a manifestation of quantum correlations due to non-commutativity rather than entanglement. Two measures of quantum discord by the amount of non-commutativity via the trace norm and the Hilbert-Schmidt norm respectively are proposed in this paper. These two measures can be calculated easily for any state with arbitrary dimension. It is shown by several examples that these measures can reflect the amount of the original quantum discord. PMID:27122226

  1. Detecting the Cosmic Microwave Background at the Frontier of Cosmology and in the Classroom

    NASA Astrophysics Data System (ADS)

    Kovac, John

    2012-02-01

    The 3K blackbody Cosmic Microwave Background (CMB), while exceedingly faint, is the most abundant light in the Universe, permeating all of space as a relic of the hot, dense, primordial fireball. Its detection in 1965 established the Big Bang as the standard model of cosmology and earned its co-discoverers Penzias and Wilson a Nobel Prize. Over the past two decades, advances in detector technology driven by CMB research have produced telescopes with ever-increasing numbers of photon background-limited microwave detectors, capable of mapping fine structure of the CMB to micro-Kelvin precision. These have had enormous impact, determining the geometry of the universe, quantifying the dark matter and dark energy that dominate it, and detecting the faint polarization arising from the primordial seeds of structure. The current frontier is defined by new arrays of thousands of superconducting, polarized detectors producing maps approaching nano-Kelvin precision. In this decade, these measurements will answer questions about the physics driving the earliest moments of the Big Bang and will survey the large-scale structure of the universe, determining neutrino masses and constraining the nature of dark energy. The advanced detector technology fueling this frontier provides superb device-physics training for graduate students and postdocs working on current-generation CMB telescopes. At the same time, careful experimental techniques developed for CMB observations can now be combined with inexpensive high-quality satellite TV detectors to allow even undergraduates to detect the CMB, reproducing Penzias and Wilson's famous discovery. I describe one such undergraduate class at Harvard, which builds CMB telescopes from scratch in a few weeks with a modest budget, teaching students about microwave techniques and detectors and allowing them to find their own evidence for the Big Bang.

  2. Geometric quantum discord under noisy environment

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming; Qiu, Daowen

    2016-05-01

    In this work, we mainly analyze the dynamics of geometric quantum discord under a common dissipating environment. Our results indicate that geometric quantum discord is generated when the initial state is a product state. The geometric quantum discord increases from zero to a stable value with the increasing time, and the variations of stable values depend on the system size. For different initial product states, geometric quantum discord has some different behaviors in contrast with entanglement. For initial maximally entangled state, it is shown that geometric quantum discord decays with the increasing dissipated time. It is found that for EPR state, entanglement is more robust than geometric quantum discord, which is a sharp contrast to the existing result that quantum discord is more robust than entanglement in noisy environments. However, for GHZ state and W state, geometric quantum discord is more stable than entanglement. By the comparison of quantum discord and entanglement, we find that a common dissipating environment brings complicated effects on quantum correlation, which may deepen our understanding of physical impacts of decohering environment on quantum correlation. In the end, we analyze the effects of collective dephasing noise and rotating noise to a class of two-qubit X states, and we find that quantum correlation is not altered by the collective noises.

  3. Detection of polarization in the cosmic microwave background using DASI. Degree Angular Scale Interferometer.

    PubMed

    Kovac, J M; Leitch, E M; Pryke, C; Carlstrom, J E; Halverson, N W; Holzapfel, W L

    The past several years have seen the emergence of a standard cosmological model, in which small temperature differences in the cosmic microwave background (CMB) radiation on angular scales of the order of a degree are understood to arise from acoustic oscillations in the hot plasma of the early Universe, arising from primordial density fluctuations. Within the context of this model, recent measurements of the temperature fluctuations have led to profound conclusions about the origin, evolution and composition of the Universe. Using the measured temperature fluctuations, the theoretical framework predicts the level of polarization of the CMB with essentially no free parameters. Therefore, a measurement of the polarization is a critical test of the theory and thus of the validity of the cosmological parameters derived from the CMB measurements. Here we report the detection of polarization of the CMB with the Degree Angular Scale Interferometer (DASI). The polarization is deteced with high confidence, and its level and spatial distribution are in excellent agreement with the predictions of the standard theory. PMID:12490941

  4. A new way of air shower detection: measuring the properties of cosmic rays with LOFAR

    NASA Astrophysics Data System (ADS)

    Nelles, A.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Rachen, J. P.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T. N. G.

    2015-08-01

    High-energy cosmic rays impinging onto the atmosphere of the Earth initiate cascades of secondary particles: extensive air showers. Many of the particles in a shower are electrons and positrons. During the development of the air shower and by interacting with the geomagnetic field, the electromagnetic cascade creates radiation, which we detect at frequencies of tens of MHz with the LOFAR radio telescope in the Netherlands. After many years of struggling to understand the emission mechanisms, the radio community has achieved the breakthrough. We are now able to determine direction, energy, and type of the shower- inducing primary particle from the radio measurements. The large number of antennas at LOFAR allows us to have a high precision and very detailed measurements. We will elaborate on the shower reconstruction, a precise description of the intensity of the radio signal at ground level (at frequencies from 10 to 240 MHz), a precise measurement of the shape of the radio wavefront, and on the reconstruction of the shower energy.

  5. Detecting Gravitational Lensing of the Cosmic Microwave Background by Galaxy Clusters

    SciTech Connect

    Baxter, Eric Jones

    2014-08-01

    Clusters of galaxies gravitationally lens the Cosmic Microwave Background (CMB) leading to a distinct signal in the CMB on arcminute scales. Measurement of the cluster lensing effect offers the exciting possibility of constraining the masses of galaxy clusters using CMB data alone. Improved constraints on cluster masses are in turn essential to the use of clusters as cosmological probes: uncertainties in cluster masses are currently the dominant systematic affecting cluster abundance constraints on cosmology. To date, however, the CMB cluster lensing signal remains undetected because of its small magnitude and angular size. In this thesis, we develop a maximum likelihood approach to extracting the signal from CMB temperature data. We validate the technique by applying it to mock data designed to replicate as closely as possible real data from the South Pole Telescope’s (SPT) Sunyaev-Zel’dovich (SZ) survey: the effects of the SPT beam, transfer function, instrumental noise and cluster selection are incorporated. We consider the effects of foreground emission on the analysis and show that uncertainty in amount of foreground lensing results in a small systematic error on the lensing constraints. Additionally, we show that if unaccounted for, the SZ effect leads to unacceptably large biases on the lensing constraints and develop an approach for removing SZ contamination. The results of the mock analysis presented here suggest that a 4σ first detection of the cluster lensing effect can be achieved with current SPT-SZ data.

  6. Concept and Analysis of a Satellite for Space-Based Radio Detection of Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Romero-Wolf, Andrew; Gorham, P.; Booth, J.; Chen, P.; Duren, R. M.; Liewer, K.; Nam, J.; Saltzberg, D.; Schoorlemmer, H.; Wissel, S.; Zairfian, P.

    2014-01-01

    We present a concept for on-orbit radio detection of ultra-high energy cosmic rays (UHECRs) that has the potential to provide collection rates of ~100 events per year for energies above 10^20 eV. The synoptic wideband orbiting radio detector (SWORD) mission's high event statistics at these energies combined with the pointing capabilities of a space-borne antenna array could enable charged particle astronomy. The detector concept is based on ANITA's successful detection UHECRs where the geosynchrotron radio signal produced by the extended air shower is reflected off the Earth's surface and detected in flight.

  7. Direct Detection of Lyman Continuum Escape from Local Starburst Galaxies with the Cosmic Origins Spectrograph

    NASA Astrophysics Data System (ADS)

    Leitherer, Claus; Hernandez, Svea; Lee, Janice C.; Oey, M. S.

    2016-05-01

    We report on the detection of Lyman continuum radiation in two nearby starburst galaxies. Tol 0440-381, Tol 1247-232, and Mrk 54 were observed with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. The three galaxies have radial velocities of ˜13,000 km s‑1, permitting a ˜35 Å window on the restframe Lyman continuum shortward of the Milky Way Lyman edge at 912 Å. The chosen instrument configuration using the G140L grating covers the spectral range from 912 to 2000 Å. We developed a dedicated background subtraction method to account for the temporal and spatial background variations of the detector, which is crucial at the low flux levels around 912 Å. This modified pipeline allowed us to significantly improve the statistical and systematic detector noise and will be made available to the community. We detect Lyman continuum in all three galaxies. However, we conservatively interpret the emission in Tol 0440-381 as an upper limit due to possible contamination by geocoronal Lyman series lines. We determined the current star formation properties from the far-ultraviolet continuum and spectral lines and used synthesis models to predict the Lyman continuum radiation emitted by the current population of hot stars. We discuss various model uncertainties such as, among others, atmospheres and evolution models. Lyman continuum escape fractions were derived from a comparison between the observed and predicted Lyman continuum fluxes. Tol 1247-232, Mrk 54, and Tol 0440-381 have absolute escape fractions of (4.5 ± 1.2)%, (2.5 ± 0.72)%, and <(7.1 ± 1.1)%, respectively.

  8. Direct Detection of Lyman Continuum Escape from Local Starburst Galaxies with the Cosmic Origins Spectrograph

    NASA Astrophysics Data System (ADS)

    Leitherer, Claus; Hernandez, Svea; Lee, Janice C.; Oey, M. S.

    2016-05-01

    We report on the detection of Lyman continuum radiation in two nearby starburst galaxies. Tol 0440-381, Tol 1247-232, and Mrk 54 were observed with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. The three galaxies have radial velocities of ∼13,000 km s‑1, permitting a ∼35 Å window on the restframe Lyman continuum shortward of the Milky Way Lyman edge at 912 Å. The chosen instrument configuration using the G140L grating covers the spectral range from 912 to 2000 Å. We developed a dedicated background subtraction method to account for the temporal and spatial background variations of the detector, which is crucial at the low flux levels around 912 Å. This modified pipeline allowed us to significantly improve the statistical and systematic detector noise and will be made available to the community. We detect Lyman continuum in all three galaxies. However, we conservatively interpret the emission in Tol 0440-381 as an upper limit due to possible contamination by geocoronal Lyman series lines. We determined the current star formation properties from the far-ultraviolet continuum and spectral lines and used synthesis models to predict the Lyman continuum radiation emitted by the current population of hot stars. We discuss various model uncertainties such as, among others, atmospheres and evolution models. Lyman continuum escape fractions were derived from a comparison between the observed and predicted Lyman continuum fluxes. Tol 1247-232, Mrk 54, and Tol 0440-381 have absolute escape fractions of (4.5 ± 1.2)%, (2.5 ± 0.72)%, and <(7.1 ± 1.1)%, respectively.

  9. Detecting non-relativistic cosmic neutrinos by capture on tritium: phenomenology and physics potential

    NASA Astrophysics Data System (ADS)

    Long, Andrew J.; Lunardini, Cecilia; Sabancilar, Eray

    2014-08-01

    We study the physics potential of the detection of the Cosmic Neutrino Background via neutrino capture on tritium, taking the proposed PTOLEMY experiment as a case study. With the projected energy resolution of Δ ~ 0.15 eV, the experiment will be sensitive to neutrino masses with degenerate spectrum, m1 simeq m2 simeq m3 = mν gtrsim 0.1 eV. These neutrinos are non-relativistic today; detecting them would be a unique opportunity to probe this unexplored kinematical regime. The signature of neutrino capture is a peak in the electron spectrum that is displaced by 2 mν above the beta decay endpoint. The signal would exceed the background from beta decay if the energy resolution is Δ lesssim 0.7 mν . Interestingly, the total capture rate depends on the origin of the neutrino mass, being ΓD simeq 4 and ΓM simeq 8 events per year (for a 100 g tritium target) for unclustered Dirac and Majorana neutrinos, respectively. An enhancement of the rate of up to Script O(1) is expected due to gravitational clustering, with the unique potential to probe the local overdensity of neutrinos. Turning to more exotic neutrino physics, PTOLEMY could be sensitive to a lepton asymmetry, and reveal the eV-scale sterile neutrino that is favored by short baseline oscillation searches. The experiment would also be sensitive to a neutrino lifetime on the order of the age of the universe and break the degeneracy between neutrino mass and lifetime which affects existing bounds.

  10. Detecting non-relativistic cosmic neutrinos by capture on tritium: phenomenology and physics potential

    SciTech Connect

    Long, Andrew J.; Lunardini, Cecilia; Sabancilar, Eray E-mail: Cecilia.Lunardini@asu.edu

    2014-08-01

    We study the physics potential of the detection of the Cosmic Neutrino Background via neutrino capture on tritium, taking the proposed PTOLEMY experiment as a case study. With the projected energy resolution of Δ ∼ 0.15 eV, the experiment will be sensitive to neutrino masses with degenerate spectrum, m{sub 1} ≅ m{sub 2} ≅ m{sub 3} = m{sub ν} ∼> 0.1 eV. These neutrinos are non-relativistic today; detecting them would be a unique opportunity to probe this unexplored kinematical regime. The signature of neutrino capture is a peak in the electron spectrum that is displaced by 2 m{sub ν} above the beta decay endpoint. The signal would exceed the background from beta decay if the energy resolution is Δ ∼< 0.7 m{sub ν} . Interestingly, the total capture rate depends on the origin of the neutrino mass, being Γ{sup D} ≅ 4 and Γ{sup M} ≅ 8 events per year (for a 100 g tritium target) for unclustered Dirac and Majorana neutrinos, respectively. An enhancement of the rate of up to O(1) is expected due to gravitational clustering, with the unique potential to probe the local overdensity of neutrinos. Turning to more exotic neutrino physics, PTOLEMY could be sensitive to a lepton asymmetry, and reveal the eV-scale sterile neutrino that is favored by short baseline oscillation searches. The experiment would also be sensitive to a neutrino lifetime on the order of the age of the universe and break the degeneracy between neutrino mass and lifetime which affects existing bounds.

  11. A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble

    NASA Astrophysics Data System (ADS)

    Grenier, Isabelle A.; Tibaldo, Luigi; Fermi-LAT Collaboration

    2013-02-01

    Conspicuous stellar clusters, with high densities of massive stars, powerful stellar winds, and intense UV flux, have formed over the past few million years in the large molecular clouds of the Cygnus X region, 1.4 kpc away from the Sun. By capturing the gamma-ray signal of young cosmic rays spreading in the interstellar medium surrounding the clusters, the Fermi Large Area Telescope (LAT) has confirmed the long-standing hypothesis that massive-star forming regions host cosmic-ray factories. The 50-pc wide cocoon of energetic particles appears to fill the interstellar cavities carved by the stellar activity. The cocoon provides a first test case to study the impact of wind-powered turbulence on the early phases of cosmic-ray diffusion (between the sources and the Galaxy at large) and to study the acceleration potential of this type of superbubble environment for in-situ cosmic-ray production or to energize Galactic cosmic rays passing by.

  12. Detection of 10 (10) GeV Cosmic Neutrinos with a Space Station

    NASA Technical Reports Server (NTRS)

    Linsley, J.

    1985-01-01

    The potential value of SOCRAS (Space Observatory of Cosmic Ray Air Showers) for studying the highest energy cosmic rays, including the neutrinos produced in collisions of cosmic ray protons with photons of the 3 deg background radiation is examined. This instrument would look down at the atmosphere from a space station orbiting the Earth at an altitude of 500 to 600 km. During the night portion of each orbit, air showers would be imaged in the fluorescent light they produce. Progress toward the eventual realization of this scheme is described, including a suggestion by Torii for improving the vertical resolution, measurements of the terrestrial background light by Halverson, and especially an application of the LPM effect, expected to increase the sensitivity for upward moving neutrinos by several orders of magnitude.

  13. A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble.

    PubMed

    Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Belfiore, A; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bottacini, E; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; de Angelis, A; de Palma, F; Dermer, C D; do Couto E Silva, E; Drell, P S; Dumora, D; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Fukazawa, Y; Fusco, P; Gargano, F; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Guillemot, L; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hayashi, K; Hays, E; Jóhannesson, G; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Martin, P; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pohl, M; Prokhorov, D; Rainò, S; Rando, R; Razzano, M; Reposeur, T; Ritz, S; Parkinson, P M Saz; Sgrò, C; Siskind, E J; Smith, P D; Spinelli, P; Strong, A W; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Yang, Z; Zimmer, S; Bontemps, S

    2011-11-25

    The origin of Galactic cosmic rays is a century-long puzzle. Indirect evidence points to their acceleration by supernova shockwaves, but we know little of their escape from the shock and their evolution through the turbulent medium surrounding massive stars. Gamma rays can probe their spreading through the ambient gas and radiation fields. The Fermi Large Area Telescope (LAT) has observed the star-forming region of Cygnus X. The 1- to 100-gigaelectronvolt images reveal a 50-parsec-wide cocoon of freshly accelerated cosmic rays that flood the cavities carved by the stellar winds and ionization fronts from young stellar clusters. It provides an example to study the youth of cosmic rays in a superbubble environment before they merge into the older Galactic population. PMID:22116880

  14. Cosmic 21 cm delensing of microwave background polarization and the minimum detectable energy scale of inflation.

    PubMed

    Sigurdson, Kris; Cooray, Asantha

    2005-11-18

    We propose a new method for removing gravitational lensing from maps of cosmic microwave background (CMB) polarization anisotropies. Using observations of anisotropies or structures in the cosmic 21 cm radiation, emitted or absorbed by neutral hydrogen atoms at redshifts 10 to 200, the CMB can be delensed. We find this method could allow CMB experiments to have increased sensitivity to a background of inflationary gravitational waves (IGWs) compared to methods relying on the CMB alone and may constrain models of inflation which were heretofore considered to have undetectable IGW amplitudes. PMID:16384131

  15. Advanced LIGO's ability to detect apparent violations of the cosmic censorship conjecture and the no-hair theorem through compact binary coalescence detections

    NASA Astrophysics Data System (ADS)

    Wade, Madeline; Creighton, Jolien D. E.; Ochsner, Evan; Nielsen, Alex B.

    2013-10-01

    We study the ability of the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) to detect apparent violations of the cosmic censorship conjecture and the no-hair theorem. The cosmic censorship conjecture, which is believed to be true in the theory of general relativity, limits the spin-to-mass-squared ratio of a Kerr black hole, χ≡j/m2≤1. The no-hair theorem, which is also believed to be true in the theory of general relativity, suggests a particular value for the tidal Love number of a nonrotating black hole (k2=0). Using the Fisher matrix formalism, we examine the measurability of the spin and tidal deformability of compact binary systems involving at least one putative black hole. Using parameter measurement errors and correlations obtained from the Fisher matrix, we determine the smallest detectable violation of bounds implied by the cosmic censorship conjecture and the no-hair theorem. We examine the effect of excluding unphysical areas of parameter space when determining the smallest detectable apparent violations, and we examine the effect of different post-Newtonian corrections to the amplitude of the compact binary coalescence gravitational waveform, as given in Arun et al. [Phys. Rev. D 79, 104023 (2009)]. In addition, we perform a brief study of how the recently calculated 3.0 pN and 3.5 pN spin-orbit corrections to the phase [Marsat et al., Classical Quantum Gravity 30, 055007 (2013)] affect spin and mass parameter measurability. We find that physical priors on the symmetric mass ratio and higher harmonics in the gravitational waveform could significantly affect the ability of aLIGO to investigate cosmic censorship and the no-hair theorem for certain systems.

  16. Global quantum discord in multipartite systems

    SciTech Connect

    Rulli, C. C.; Sarandy, M. S.

    2011-10-15

    We propose a global measure for quantum correlations in multipartite systems, which is obtained by suitably recasting the quantum discord in terms of relative entropy and local von Neumann measurements. The measure is symmetric with respect to subsystem exchange and is shown to be nonnegative for an arbitrary state. As an illustration, we consider tripartite correlations in the Werner-GHZ (Greenberger-Horne-Zeilinger) state and multipartite correlations at quantum criticality. In particular, in contrast with the pairwise quantum discord, we show that the global quantum discord is able to characterize the infinite-order quantum phase transition in the Ashkin-Teller spin chain.

  17. One-way unlocalizable quantum discord

    NASA Astrophysics Data System (ADS)

    Xi, Zhengjun; Fan, Heng; Li, Yongming

    2012-05-01

    In this paper, we present the concept of the one-way unlocalizable quantum discord and investigate its properties. We provide a polygamy inequality for it in a tripartite pure quantum system of arbitrary dimension. Several tradeoff relations between the one-way unlocalizable quantum discord and other correlations are given. If the von Neumann measurement is made on a part of the system, we give two expressions of the one-way unlocalizable quantum discord in terms of partial distillable entanglement and quantum disturbance. Finally, we also provide a lower bound for bipartite shareability of quantum correlation beyond entanglement in a tripartite system.

  18. Detection of Extensive Cosmic Air Showers by Small Scintillation Detectors with Wavelength-Shifting Fibres

    ERIC Educational Resources Information Center

    Aiola, Salvatore; La Rocca, Paola; Riggi, Francesco; Riggi, Simone

    2012-01-01

    A set of three small scintillation detectors was employed to measure correlated events due to the passage of cosmic muons originating from extensive air showers. The coincidence rate between (any) two detectors was extracted as a function of their relative distance. The difference between the arrival times in three non-aligned detectors was used…

  19. Special Relativity in the School Laboratory: A Simple Apparatus for Cosmic-Ray Muon Detection

    ERIC Educational Resources Information Center

    Singh, P.; Hedgeland, H.

    2015-01-01

    We use apparatus based on two Geiger-Müller tubes, a simple electronic circuit and a Raspberry Pi computer to illustrate relativistic time dilation affecting cosmic-ray muons travelling through the atmosphere to the Earth's surface. The experiment we describe lends itself to both classroom demonstration to accompany the topic of special relativity…

  20. Entanglement and quantum discord dynamics of two atoms under practical feedback control

    SciTech Connect

    Li Yang; Luo Bin; Guo Hong

    2011-07-15

    We study the dynamics of two identical atoms resonantly coupled to a single-mode cavity under practical feedback control, and focus on the detection inefficiency. The entanglement is induced to vanish in finite time by the inefficiency of detection. Counterintuitively, the asymptotic entanglement and quantum discord can be increased by the inefficiency of detection. The noise of detection triggers the control field to create entanglement and discord when no photons are emitted from the atoms. Furthermore, sudden change happens to the dynamics of entanglement.

  1. REIONIZATION ON LARGE SCALES. II. DETECTING PATCHY REIONIZATION THROUGH CROSS-CORRELATION OF THE COSMIC MICROWAVE BACKGROUND

    SciTech Connect

    Natarajan, A.; Battaglia, N.; Trac, H.; Pen, U.-L.; Loeb, A.

    2013-10-20

    We investigate the effect of patchy reionization on the cosmic microwave background (CMB) temperature. An anisotropic optical depth τ( n-hat ) alters the TT power spectrum on small scales l > 2000. We make use of the correlation between the matter density and the reionization redshift fields to construct full sky maps of τ( n-hat ). Patchy reionization transfers CMB power from large scales to small scales, resulting in a non-zero cross correlation between large and small angular scales. We show that the patchy τ correlator is sensitive to small root mean square (rms) values τ{sub rms} ∼ 0.003 seen in our maps. We include frequency-independent secondaries such as CMB lensing and kinetic Sunyaev-Zel'dovich (kSZ) terms, and show that patchy τ may still be detected at high significance. Reionization models that predict different values of τ{sub rms} may be distinguished even for the same mean value (τ). It is more difficult to detect patchy τ in the presence of larger secondaries such as the thermal Sunyaev-Zel'dovich, radio background, and the cosmic infrared background. In this case, we show that patchy τ may be detected if these frequency-dependent secondaries are minimized to ∼< 5 μK (rms) by means of a multi-frequency analysis. We show that the patchy τ correlator provides information that is complementary to what may be obtained from the polarization and the kSZ power spectra.

  2. Detection of High Energy Cosmic Rays with Advanced Thin Ionization Calorimeter, ATIC

    NASA Technical Reports Server (NTRS)

    Adams, J. H.; Ahn, E. J.; Ahn, H. S.; Bashindzhagyan, G.; Case, G.; Chang, J.; Christl, M.; Ellison, S.; Fazely, A. R.; Ganel, O.

    2002-01-01

    The author presents preliminary results of the first flight of the Advanced Thin Ionization Calorimeter (ATIC). ATIC is a multiple, long duration balloon flight, investigation for the study of cosmic ray spectra from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Germanate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pads capable of charge identification of cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction 'target'.

  3. Detection of High Energy Cosmic Ray with the Advanced Thin Ionization Calorimeter (ATIC)

    NASA Technical Reports Server (NTRS)

    Fazely, Ali R.

    2003-01-01

    ATIC is a balloon-borne investigation of cosmic ray spectra, from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Gemmate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pixels capable of charge identification in cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction 'target'. Very high energy gamma-rays and their energy spectrum may provide insight to the flux of extremely high energy neutrinos which will be investigated in detail with several proposed cubic kilometer scale neutrino observatories in the next decade.

  4. Quantum Discord Cannot Be Shared

    NASA Astrophysics Data System (ADS)

    Streltsov, Alexander; Zurek, Wojciech H.

    2013-07-01

    Bohr proposed that the outcome of a measurement becomes objective and real, and, hence, classical, when its results can be communicated by classical means. In this work we revisit Bohr’s postulate using modern tools from quantum information theory. We find a full confirmation of Bohr’s idea: if a measurement device is in a nonclassical state, the measurement results cannot be communicated perfectly by classical means. In this case some part of the information in the measurement apparatus is lost in the process of communication: the amount of this lost information turns out to be the quantum discord. The information loss occurs even when the apparatus is not entangled with the system of interest. The tools presented in this work allow us to generalize Bohr’s postulate: we show that for pure system-apparatus states quantum communication does not provide any advantage when measurement results are communicated to more than one recipient. We further demonstrate the superiority of quantum communication to two recipients on a mixed system-apparatus state and show that this effect is fundamentally different from quantum state cloning.

  5. Detecting Low-Contrast Features in the Cosmic Ray Albedo Proton Map of the Moon

    NASA Technical Reports Server (NTRS)

    Wilson, J. K.; Schwadron, N.; Spence, H. E.; Golightly, M. J.; Case, A. W.; Smith, S.; Blake, J. B.; Kasper, J.; Looper, M. D.; Mazur, J. E.; Townsend, L. W.; Zeitlin, C.; Stubbs, T. J.

    2014-01-01

    High energy cosmic rays constantly bombard the lunar regolith, producing (via nuclear evaporation) secondary 'albedo' or 'splash' particles like protons and neutrons, some of which escape back to space. Lunar Prospector and the Lunar Reconnaissance Orbiter (LRO), have shown that the energy distribution of albedo neutrons is modulated by the elemental composition of the lunar regolith, and by ice deposits in permanently shadowed polar craters. Here we investigate an analogous phenomenon with high energy ((is) approximately 100 MeV) lunar albedo protons.

  6. Special relativity in the school laboratory: a simple apparatus for cosmic-ray muon detection

    NASA Astrophysics Data System (ADS)

    Singh, P.; Hedgeland, H.

    2015-05-01

    We use apparatus based on two Geiger-Müller tubes, a simple electronic circuit and a Raspberry Pi computer to illustrate relativistic time dilation affecting cosmic-ray muons travelling through the atmosphere to the Earth’s surface. The experiment we describe lends itself to both classroom demonstration to accompany the topic of special relativity and to extended investigations for more inquisitive students.

  7. Cherenkov detection of cosmic rays in Hanoi: Response to low signals

    NASA Astrophysics Data System (ADS)

    Thao, N. T.; Anh, P. T.; Darriulat, P.; Diep, P. N.; Dong, P. N.; Hiep, N. V.; Hoai, D. T.; Nhung, P. T. T.

    2013-05-01

    A replica of one of the 1660 Cherenkov detectors used in the ground array of the Pierre Auger Cosmic Ray Observatory in Argentina has been constructed on the roof of the VATLY astrophysics laboratory in Ha Noi (Viet Nam). We report on measurements of low amplitude signals using the detector to study event pairs occurring within a small time window. The data include time autocorrelation and charge distributions.

  8. Whole-Exome Sequencing in Nine Monozygotic Discordant Twins.

    PubMed

    Zhang, Rong; Thiele, Holger; Bartmann, Peter; Hilger, Alina C; Berg, Christoph; Herberg, Ulrike; Klingmüller, Dietrich; Nürnberg, Peter; Ludwig, Michael; Reutter, Heiko

    2016-02-01

    By definition, monozygotic (MZ) twins carry an identical set of genetic information. The observation of early post-twinning mutational events was shown to cause phenotypic discordance among MZ twin pairs. These mutational events comprise genomic alterations at different scales, ranging from single nucleotide changes to larger copy-number variations (CNVs) of varying sizes, as well as epigenetic changes. Here, we performed whole-exome sequencing (WES) in nine discordant MZ twins to identify somatic mutational events in the affected twin that might exert a dominant negative effect. Five of these MZ twin pairs were discordant for congenital heart defects (CHD), two for endocrine disorders, one for omphalocele, and one for congenital diaphragmatic hernia (CDH). Analysis of WES data from all nine MZ twin pairs using the de novo probability tool DeNovoGear detected only one apparent de novo variation in TMPRSS13 in one of the CHD-affected twins. Analysis of WES data from all nine MZ twin pairs by using standard filter criteria without the de novo probability tool DeNovoGear revealed a total of 6,657 variations in which both the twin pairs differed. After filtering for variations only present in the affected twins and absent in in-house controls, 722 variations remained. Visual inspection for read quality decreased this number to 12, present only in the affected twin. However, Sanger sequencing of the overall 13 variations failed to confirm the variation in the affected twin. These results suggest that somatic mutational events in coding regions do not seem to play a major role in the phenotypic expression of MZ discordant twin pairs. PMID:26681452

  9. A Bayesian self-clustering analysis of the highest energy cosmic rays detected by the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Khanin, Alexander; Mortlock, Daniel J.

    2014-10-01

    Cosmic rays are protons and atomic nuclei that flow into our Solar system and reach the Earth with energies of up to ˜1021 eV. The sources of ultrahigh energy cosmic rays (UHECRs) with E ≳ 1019 eV remain unknown, although there are theoretical reasons to think that at least some come from active galactic nuclei (AGNs). One way to assess the different hypotheses is by analysing the arrival directions of UHECRs, in particular their self-clustering. We have developed a fully Bayesian approach to analysing the self-clustering of points on the sphere, which we apply to the UHECR arrival directions. The analysis is based on a multistep approach that enables the application of Bayesian model comparison to cases with weak prior information. We have applied this approach to the 69 highest energy events recorded by the Pierre Auger Observatory, which is the largest current UHECR data set. We do not detect self-clustering, but simulations show that this is consistent with the AGN-sourced model for a data set of this size. Data sets of several hundred UHECRs would be sufficient to detect clustering in the AGN model. Samples of this magnitude are expected to be produced by future experiments, such as the Japanese Experiment Module Extreme Universe Space Observatory.

  10. Perspective of monochromatic gamma-ray line detection with the High Energy cosmic-Radiation Detection (HERD) facility onboard China's space station

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoyuan; Lamperstorfer, Anna S.; Tsai, Yue-Lin Sming; Xu, Ming; Yuan, Qiang; Chang, Jin; Dong, Yong-Wei; Hu, Bing-Liang; Lü, Jun-Guang; Wang, Le; Wu, Bo-Bing; Zhang, Shuang-Nan

    2016-05-01

    HERD is the High Energy cosmic-Radiation Detection instrument proposed to operate onboard China's space station in the 2020s. It is designed to detect energetic cosmic ray nuclei, leptons and photons with a high energy resolution (∼1% for electrons and photons and 20% for nuclei) and a large geometry factor (>3 m2 sr for electrons and diffuse photons and > [2]m2 sr for nuclei). In this work we discuss the capability of HERD to detect monochromatic γ-ray lines, based on simulations of the detector performance. It is shown that HERD will be one of the most sensitive instruments for monochromatic γ-ray searches at energies between ∼ 10 to a few hundred GeV. Above hundreds of GeV, Cherenkov telescopes will be more sensitive due to their large effective area. As a specific example, we show that a good portion of the parameter space of a supersymmetric dark matter model can be probed with HERD.

  11. Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory

    DOE PAGESBeta

    Aab, Alexander

    2015-05-01

    We analyze the distribution of arrival directions of ultra-high-energy cosmic rays recorded at the Pierre Auger Observatory in 10 years of operation. The data set, about three times larger than that used in earlier studies, includes arrival directions with zenith angles up to 80°, thus covering from -90° to +45° in declination. After updating the fraction of events correlating with the active galactic nuclei (AGNs) in the Véron-Cetty and Véron catalog, we subject the arrival directions of the data with energies in excess of 40 EeV to different tests for anisotropy. We search for localized excess fluxes, self-clustering of event directions at angular scales up to 30°, and different threshold energies between 40 and 80 EeV. We then look for correlations of cosmic rays with celestial structures both in the Galaxy (the Galactic Center and Galactic Plane) and in the local universe (the Super-Galactic Plane). We also examine their correlation with different populations of nearby extragalactic objects: galaxies in the 2MRS catalog, AGNs detected by Swift-BAT, radio galaxies with jets, and the Centaurus A (Cen A) galaxy. None of the tests show statistically significant evidence of anisotropy. As a result, the strongest departures from isotropy (post-trial probabilitymore » $$\\sim 1.4$$%) are obtained for cosmic rays with $$E\\gt 58$$ EeV in rather large windows around Swift AGNs closer than 130 Mpc and brighter than 1044 erg s-1 (18° radius), and around the direction of Cen A (15° radius).« less

  12. Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory

    SciTech Connect

    Aab, Alexander

    2015-05-01

    We analyze the distribution of arrival directions of ultra-high-energy cosmic rays recorded at the Pierre Auger Observatory in 10 years of operation. The data set, about three times larger than that used in earlier studies, includes arrival directions with zenith angles up to 80°, thus covering from -90° to +45° in declination. After updating the fraction of events correlating with the active galactic nuclei (AGNs) in the Véron-Cetty and Véron catalog, we subject the arrival directions of the data with energies in excess of 40 EeV to different tests for anisotropy. We search for localized excess fluxes, self-clustering of event directions at angular scales up to 30°, and different threshold energies between 40 and 80 EeV. We then look for correlations of cosmic rays with celestial structures both in the Galaxy (the Galactic Center and Galactic Plane) and in the local universe (the Super-Galactic Plane). We also examine their correlation with different populations of nearby extragalactic objects: galaxies in the 2MRS catalog, AGNs detected by Swift-BAT, radio galaxies with jets, and the Centaurus A (Cen A) galaxy. None of the tests show statistically significant evidence of anisotropy. As a result, the strongest departures from isotropy (post-trial probability $\\sim 1.4$%) are obtained for cosmic rays with $E\\gt 58$ EeV in rather large windows around Swift AGNs closer than 130 Mpc and brighter than 1044 erg s-1 (18° radius), and around the direction of Cen A (15° radius).

  13. Searches for Anisotropies in the Arrival Directions of the Highest Energy Cosmic Rays Detected by the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Freire, M. M.; Fröhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; García, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villase ñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration

    2015-05-01

    We analyze the distribution of arrival directions of ultra-high-energy cosmic rays recorded at the Pierre Auger Observatory in 10 years of operation. The data set, about three times larger than that used in earlier studies, includes arrival directions with zenith angles up to 80°, thus covering from -90{}^\\circ to +45{}^\\circ in declination. After updating the fraction of events correlating with the active galactic nuclei (AGNs) in the Véron-Cetty and Véron catalog, we subject the arrival directions of the data with energies in excess of 40 EeV to different tests for anisotropy. We search for localized excess fluxes, self-clustering of event directions at angular scales up to 30°, and different threshold energies between 40 and 80 EeV. We then look for correlations of cosmic rays with celestial structures both in the Galaxy (the Galactic Center and Galactic Plane) and in the local universe (the Super-Galactic Plane). We also examine their correlation with different populations of nearby extragalactic objects: galaxies in the 2MRS catalog, AGNs detected by Swift-BAT, radio galaxies with jets, and the Centaurus A (Cen A) galaxy. None of the tests show statistically significant evidence of anisotropy. The strongest departures from isotropy (post-trial probability ˜ 1.4%) are obtained for cosmic rays with E\\gt 58 EeV in rather large windows around Swift AGNs closer than 130 Mpc and brighter than 1044 erg s-1 (18° radius), and around the direction of Cen A (15° radius).

  14. Method for detecting water equivalent of snow using secondary cosmic gamma radiation

    DOEpatents

    Condreva, Kenneth J.

    1997-01-01

    Water equivalent of accumulated snow determination by measurement of secondary background cosmic radiation attenuation by the snowpack. By measuring the attentuation of 3-10 MeV secondary gamma radiation it is possible to determine the water equivalent of snowpack. The apparatus is designed to operate remotely to determine the water equivalent of snow in areas which are difficult or hazardous to access during winter, accumulate the data as a function of time and transmit, by means of an associated telemetry system, the accumulated data back to a central data collection point for analysis. The electronic circuitry is designed so that a battery pack can be used to supply power.

  15. Method for detecting water equivalent of snow using secondary cosmic gamma radiation

    DOEpatents

    Condreva, K.J.

    1997-01-14

    Water equivalent of accumulated snow determination by measurement of secondary background cosmic radiation attenuation by the snowpack. By measuring the attenuation of 3-10 MeV secondary gamma radiation it is possible to determine the water equivalent of snowpack. The apparatus is designed to operate remotely to determine the water equivalent of snow in areas which are difficult or hazardous to access during winter, accumulate the data as a function of time and transmit, by means of an associated telemetry system, the accumulated data back to a central data collection point for analysis. The electronic circuitry is designed so that a battery pack can be used to supply power. 4 figs.

  16. Discordant Treatment Responses to Combination Antiretroviral Therapy in Rwanda: A Prospective Cohort Study

    PubMed Central

    Kayigamba, Felix R.; Franke, Molly F.; Bakker, Mirjam I.; Rodriguez, Carly A.; Bagiruwigize, Emmanuel; Wit, Ferdinand WNM; Rich, Michael L.; Schim van der Loeff, Maarten F.

    2016-01-01

    Introduction Some antiretroviral therapy naïve patients starting combination antiretroviral therapy (cART) experience a limited CD4 count rise despite virological suppression, or vice versa. We assessed the prevalence and determinants of discordant treatment responses in a Rwandan cohort. Methods A discordant immunological cART response was defined as an increase of <100 CD4 cells/mm3 at 12 months compared to baseline despite virological suppression (viral load [VL] <40 copies/mL). A discordant virological cART response was defined as detectable VL at 12 months with an increase in CD4 count ≥100 cells/mm3. The prevalence of, and independent predictors for these two types of discordant responses were analysed in two cohorts nested in a 12-month prospective study of cART-naïve HIV patients treated at nine rural health facilities in two regions in Rwanda. Results Among 382 patients with an undetectable VL at 12 months, 112 (29%) had a CD4 rise of <100 cells/mm3. Age ≥35 years and longer travel to the clinic were independent determinants of an immunological discordant response, but sex, baseline CD4 count, body mass index and WHO HIV clinical stage were not. Among 326 patients with a CD4 rise of ≥100 cells/mm3, 56 (17%) had a detectable viral load at 12 months. Male sex was associated with a virological discordant treatment response (P = 0.05), but age, baseline CD4 count, BMI, WHO HIV clinical stage, and travel time to the clinic were not. Conclusions Discordant treatment responses were common in cART-naïve HIV patients in Rwanda. Small CD4 increases could be misinterpreted as a (virological) treatment failure and lead to unnecessary treatment changes. PMID:27438000

  17. Probing quantum entanglement, quantum discord, classical correlation, and the quantum state without disturbing them

    SciTech Connect

    Li Zhenni; Jin Jiasen; Yu Changshui

    2011-01-15

    We present schemes for a type of one-parameter bipartite quantum state to probe quantum entanglement, quantum discord, the classical correlation, and the quantum state based on cavity QED. It is shown that our detection does not influence all these measured quantities. We also discuss how the spontaneous emission introduced by our probe atom influences our detection.

  18. Effects and detectability of quasi-single field inflation in the large-scale structure and cosmic microwave background

    SciTech Connect

    Sefusatti, Emiliano; Fergusson, James R.; Chen, Xingang; Shellard, E.P.S. E-mail: jf334@damtp.cam.ac.uk E-mail: E.P.S.Shellard@damtp.cam.ac.uk

    2012-08-01

    Quasi-single field inflation predicts a peculiar momentum dependence in the squeezed limit of the primordial bispectrum which smoothly interpolates between the local and equilateral models. This dependence is directly related to the mass of the isocurvatons in the theory which is determined by the supersymmetry. Therefore, in the event of detection of a non-zero primordial bispectrum, additional constraints on the parameter controlling the momentum-dependence in the squeezed limit becomes an important question. We explore the effects of these non-Gaussian initial conditions on large-scale structure and the cosmic microwave background, with particular attention to the galaxy power spectrum at large scales and scale-dependence corrections to galaxy bias. We determine the simultaneous constraints on the two parameters describing the QSF bispectrum that we can expect from upcoming large-scale structure and cosmic microwave background observations. We find that for relatively large values of the non-Gaussian amplitude parameters, but still well within current uncertainties, galaxy power spectrum measurements will be able to distinguish the QSF scenario from the predictions of the local model. A CMB likelihood analysis, as well as Fisher matrix analysis, shows that there is also a range of parameter values for which Planck data may be able distinguish between QSF models and the related local and equilateral shapes. Given the different observational weightings of the CMB and LSS results, degeneracies can be significantly reduced in a joint analysis.

  19. The cosmic neutrino background

    NASA Technical Reports Server (NTRS)

    Dar, Arnon

    1991-01-01

    The cosmic neutrino background is expected to consist of relic neutrinos from the big bang, of neutrinos produced during nuclear burning in stars, of neutrinos released by gravitational stellar collapse, and of neutrinos produced by cosmic ray interactions with matter and radiation in the interstellar and intergalactic medium. Formation of baryonic dark matter in the early universe, matter-antimatter annihilation in a baryonic symmetric universe, and dark matter annihilation could have also contributed significantly to the cosmic neutrino background. The purpose of this paper is to review the properties of these cosmic neutrino backgrounds, the indirect evidence for their existence, and the prospects for their detection.

  20. Quantum Discord for d⊗2 Systems

    PubMed Central

    Ma, Zhihao; Chen, Zhihua; Fanchini, Felipe Fernandes; Fei, Shao-Ming

    2015-01-01

    We present an analytical solution for classical correlation, defined in terms of linear entropy, in an arbitrary system when the second subsystem is measured. We show that the optimal measurements used in the maximization of the classical correlation in terms of linear entropy, when used to calculate the quantum discord in terms of von Neumann entropy, result in a tight upper bound for arbitrary systems. This bound agrees with all known analytical results about quantum discord in terms of von Neumann entropy and, when comparing it with the numerical results for 106 two-qubit random density matrices, we obtain an average deviation of order 10−4. Furthermore, our results give a way to calculate the quantum discord for arbitrary n-qubit GHZ and W states evolving under the action of the amplitude damping noisy channel. PMID:26036771

  1. Quantum Discord for d⊗2 Systems.

    PubMed

    Ma, Zhihao; Chen, Zhihua; Fanchini, Felipe Fernandes; Fei, Shao-Ming

    2015-01-01

    We present an analytical solution for classical correlation, defined in terms of linear entropy, in an arbitrary system when the second subsystem is measured. We show that the optimal measurements used in the maximization of the classical correlation in terms of linear entropy, when used to calculate the quantum discord in terms of von Neumann entropy, result in a tight upper bound for arbitrary d⊗2 systems. This bound agrees with all known analytical results about quantum discord in terms of von Neumann entropy and, when comparing it with the numerical results for 10(6) two-qubit random density matrices, we obtain an average deviation of order 10(-4). Furthermore, our results give a way to calculate the quantum discord for arbitrary n-qubit GHZ and W states evolving under the action of the amplitude damping noisy channel. PMID:26036771

  2. Discordant evaluations of Blacks affect nonverbal behavior.

    PubMed

    Olson, Michael A; Fazio, Russell H

    2007-09-01

    Previous research suggests that automatic prejudice directly manifests in nonverbal behavior. The authors offer a more complex picture of the relation between automatic processes and nonverbal behavior by suggesting that any discomfort that appears in nonverbal behavior stems not from negative attitudes per se but from discordance between automatically activated attitudes toward Blacks and the specific evaluations being expressed. White participants for whom estimates of automatic prejudice were available provided videotaped evaluations of several individuals, including two matched Black and White males. Discordance between general racial attitudes and evaluations of specific targets manifested in discomfort-related nonverbal behavior. Moreover, naïve Black judges, but not White judges, doubted the sincerity of individuals characterized by discordance. The nature of the nonverbal "leakage" that automatic prejudice produces is discussed. PMID:17545414

  3. Genesis and propagation of cosmic rays

    SciTech Connect

    Shapiro, M.M.; Wefel, J.P.

    1988-01-01

    This book presents a panorama of contemporary state-of-the-art knowledge on the origin of cosmic rays and how they propagate through space. Twenty-eight articles cover such topics as objects which generate cosmic rays, processes which accelerate particles to cosmic ray energies, the interaction of cosmic rays with their environment, elementary particles in cosmic rays, how to detect cosmic rays and future experiments to measure highly energetic particles.

  4. Detecting Low-Contrast Features in the Cosmic Ray Albedo Proton Yield Map of the Moon

    NASA Astrophysics Data System (ADS)

    Wilson, J. K.; Schwadron, N.; Spence, H.; Smith, S. S.; Golightly, M. J.; Case, A. W.; Stubbs, T. J.; Blake, J. B.; Kasper, J. C.; Looper, M. D.; Mazur, J. E.; Townsend, L. W.; Zeitlin, C. J.

    2013-12-01

    High energy cosmic rays constantly bombard the lunar regolith, producing (via nuclear evaporation[1]) secondary 'albedo' or 'splash' particles like protons and neutrons, some of which escape back to space. Lunar Prospector and the Lunar Reconnaissance Orbiter (LRO), have shown that the energy distribution of albedo neutrons is modulated by the elemental composition of the lunar regolith[2-5], and by ice deposits[6] in permanently shadowed polar craters. Here we investigate an analogous phenomenon with high energy lunar albedo protons. Using the CRaTER instrument (Cosmic Ray Telescope for the Effects of Radiation) on LRO, we measure albedo protons (60 to 150 MeV) to construct a cosmic ray albedo proton map of the Moon. Our current map is a significant improvement over the proof-of-concept map of Wilson et al.[7]. In addition to using more numerous minimum ionizing GCR protons for normalization, we filter out all solar particle enhancement periods and make use of all six of CRaTER's detectors to reduce contamination from spurious non-proton events in the data stream. The average yield of albedo protons from the maria is 0.8% × 0.4% higher than the yield from the highlands. In addition there appear to be localized peaks in the albedo proton yield that are co-located with peaks in trace elemental abundances as measured by the Lunar Prospector Gamma Ray Spectrometer. More data may reveal subtler proton yield variations correlated with latitude, time of day, or the locations of permanently shadowed craters, due to the presence of water frost. Given that the most obvious features in the map have a proton yield only 2σ above average, the search for more subtle regions of enhancement or reduction in proton yield will require precise corrections for small but systematic effects of time and spacecraft altitude on the apparent proton yield. We will show the effects of these trends as well as the latest version of the albedo proton map. References: [1] Bethe (1937) Rev. Mod

  5. Quantum discord as a resource for quantum cryptography.

    PubMed

    Pirandola, Stefano

    2014-01-01

    Quantum discord is the minimal bipartite resource which is needed for a secure quantum key distribution, being a cryptographic primitive equivalent to non-orthogonality. Its role becomes crucial in device-dependent quantum cryptography, where the presence of preparation and detection noise (inaccessible to all parties) may be so strong to prevent the distribution and distillation of entanglement. The necessity of entanglement is re-affirmed in the stronger scenario of device-independent quantum cryptography, where all sources of noise are ascribed to the eavesdropper. PMID:25378231

  6. The Cosmic Microwave Background: Detection and Interpretation of the First Light

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.

    2016-01-01

    A host of astrophysical observations suggest the early Universe was incredibly hot, dense, and homogeneous. A powerful and useful probe of this epoch is provided by the relic radiation, which we refer to today as the Cosmic Microwave Background (CMB). Precision maps of this light contain the earliest glimpse of the Universe after the Big Bang and signatures of the evolution of its contents. By exploiting these clues, constraints on the age, mass density, detailed composition, and geometry of the Universe can be made. A brief survey of the evolution of the radiometric and polarimetric imaging systems used in advancing our understanding of the early Universe will be reviewed. A survey of detector technologies, instrumentation techniques, and experimental challenges encountered in these efforts will be presented.

  7. Interpreting quantum discord through quantum state merging

    SciTech Connect

    Madhok, Vaibhav; Datta, Animesh

    2011-03-15

    We present an operational interpretation of quantum discord based on the quantum state merging protocol. Quantum discord is the markup in the cost of quantum communication in the process of quantum state merging, if one discards relevant prior information. Our interpretation has an intuitive explanation based on the strong subadditivity of von Neumann entropy. We use our result to provide operational interpretations of other quantities like the local purity and quantum deficit. Finally, we discuss in brief some instances where our interpretation is valid in the single-copy scenario.

  8. A CORRELATION BETWEEN THE HIGHEST ENERGY COSMIC RAYS AND NEARBY ACTIVE GALACTIC NUCLEI DETECTED BY FERMI

    SciTech Connect

    Nemmen, Rodrigo S.; Bonatto, Charles; Storchi-Bergmann, Thaisa

    2010-10-10

    We analyze the correlation of the positions of {gamma}-ray sources in the Fermi Large Area Telescope (LAT) First Source Catalog (1FGL) and the First LAT Active Galactic Nuclei (AGNs) Catalog (1LAC) with the arrival directions of ultra-high-energy cosmic rays (UHECRs) observed with the Pierre Auger Observatory, in order to investigate the origin of UHECRs. We find that Galactic sources and blazars identified in the 1FGL are not significantly correlated with UHECRs, while the 1LAC sources display a mild correlation (2.6{sigma} level) on an {approx}2.{sup 0}4 angular scale. When selecting only the 1LAC AGNs closer than 200 Mpc, we find a strong association (5.4{sigma}) between their positions and the directions of UHECRs on an {approx}17{sup 0} angular scale; the probability of the observed configuration being due to an isotropic flux of cosmic rays is 5 x 10{sup -8}. There is also a 5{sigma} correlation with nearby 1LAC sources on a 6.{sup 0}5 scale. We identify seven '{gamma}-ray loud' AGNs which are associated with UHECRs within {approx}17{sup 0} and are likely candidates for the production sites of UHECRs: Centaurus A, NGC 4945, ESO 323-G77, 4C+04.77, NGC 1218, RX J0008.0+1450, and NGC 253. We interpret these results as providing additional support to the hypothesis of the origin of UHECRs in nearby extragalactic objects. As the angular scales of the correlations are large, we discuss the possibility that intervening magnetic fields might be considerably deflecting the trajectories of the particles on their way to Earth.

  9. LIGO Gravitational Wave Detection, Primordial Black Holes, and the Near-IR Cosmic Infrared Background Anisotropies

    NASA Astrophysics Data System (ADS)

    Kashlinsky, A.

    2016-06-01

    LIGO's discovery of a gravitational wave from two merging black holes (BHs) of similar masses rekindled suggestions that primordial BHs (PBHs) make up the dark matter (DM). If so, PBHs would add a Poissonian isocurvature density fluctuation component to the inflation-produced adiabatic density fluctuations. For LIGO's BH parameters, this extra component would dominate the small-scale power responsible for collapse of early DM halos at z ≳ 10, where first luminous sources formed. We quantify the resultant increase in high-z abundances of collapsed halos that are suitable for producing the first generation of stars and luminous sources. The significantly increased abundance of the early halos would naturally explain the observed source-subtracted near-IR cosmic infrared background (CIB) fluctuations, which cannot be accounted for by known galaxy populations. For LIGO's BH parameters, this increase is such that the observed CIB fluctuation levels at 2–5 μm can be produced if only a tiny fraction of baryons in the collapsed DM halos forms luminous sources. Gas accretion onto these PBHs in collapsed halos, where first stars should also form, would straightforwardly account for the observed high coherence between the CIB and unresolved cosmic X-ray background in soft X-rays. We discuss modifications possibly required in the processes of first star formation if LIGO-type BHs indeed make up the bulk or all of DM. The arguments are valid only if the PBHs make up all, or at least most, of DM, but at the same time the mechanism appears inevitable if DM is made of PBHs.

  10. Parental Marital Discord and Treatment Response in Depressed Adolescents

    ERIC Educational Resources Information Center

    Amaya, Meredith M.; Reinecke, Mark A.; Silva, Susan G.; March, John S.

    2011-01-01

    Evidence suggests that parental marital discord contributes to the development of internalizing and externalizing symptoms in children and adolescents. Few studies, however, have examined the association between parental marital discord and youth's response to treatment. The present study examined the impact of interparental discord on treatment…

  11. Nano-JASMINE: cosmic radiation degradation of CCD performance and centroid detection

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yukiyasu; Shimura, Yuki; Niwa, Yoshito; Yano, Taihei; Gouda, Naoteru; Yamada, Yoshiyuki

    2012-09-01

    Nano-JASMINE (NJ) is a very small astrometry satellite project led by the National Astronomical Observatory of Japan. The satellite is ready for launch, and the launch is currently scheduled for late 2013 or early 2014. The satellite is equipped with a fully depleted CCD and is expected to perform astrometry observations for stars brighter than 9 mag in the zw-band (0.6 µm-1.0 µm). Distances of stars located within 100 pc of the Sun can be determined by using annual parallax measurements. The targeted accuracy for the position determination of stars brighter than 7.5 mag is 3 mas, which is equivalent to measuring the positions of stars with an accuracy of less than one five-hundredth of the CCD pixel size. The position measurements of stars are performed by centroiding the stellar images taken by the CCD that operates in the time and delay integration mode. The degradation of charge transfer performance due to cosmic radiation damage in orbit is proved experimentally. A method is then required to compensate for the effects of performance degradation. One of the most effective ways of achieving this is to simulate observed stellar outputs, including the effect of CCD degradation, and then formulate our centroiding algorithm and evaluate the accuracies of the measurements. We report here the planned procedure to simulate the outputs of the NJ observations. We also developed a CCD performance-measuring system and present preliminary results obtained using the system.

  12. The CALET mission for detection of cosmic ray sources and dark matter

    NASA Astrophysics Data System (ADS)

    Torii, S.; CALET Collaboration

    2008-07-01

    We are developing the CALorimetric Electron Telescope, CALET, mission for the Japanese Experiment Module Exposed Facility, JEM-EF, of the International Space Station. Major scientific objectives are to search for nearby cosmic ray sources and dark matter by carrying out a precise measurement of the electrons in 1 GeV - 10 TeV and the γ rays in 20 MeV - several TeV. CALET has a unique capability to observe electrons and γ rays over 1 TeV since the hadron rejection power is more than 105 and the energy resolution better than a few % over 100 GeV. The detector consists of an imaging calorimeter by SciFi and W, and a total absorption calorimeter by BGO. CALET has also a capability to measure protons and nuclei up to 1000 TeV, and will have a function to monitor solar activity and γ ray bursts with additional instruments. The phase A study has started on a schedule of launch in 2013 by H-II Transfer Vehicle (HTV) for 5 years observation.

  13. Detection of primary and secondary cosmic ray particles aboard the ISS using SSNTD stacks.

    PubMed

    Pálfalvi, J K; Akatov, Yu; Szabó, J; Sajó-Bohus, L; Eördögh, I

    2006-01-01

    To study the radiation environment inside the International Space Station, solid state nuclear track detector stacks were used. Within the BRADOS experiments, Phase 1, seven stacks were exposed at different locations of the Russian segment 'Zvezda' for 248 days in 2001. It was supposed that the radiation field inside the ISS was composed from primary cosmic ray particles penetrating the wall of the ISS and secondaries, mainly neutrons induced by primaries in the wall and other structural materials surrounding the detectors. Based on the calibration made by utilising the high energy neutron reference field CERF at CERN (Geneva, Switzerland), the tracks induced by neutrons were separated from those induced by primary particles. Thus, the stacks, on one hand, provided the secondary neutron ambient dose equivalent. On the other hand, from the analysis of the rest of the tracks, the linear energy transfer spectra were computed and the flux and the dose of the primary particles were determined as shown in this paper. PMID:16735560

  14. Detectability of torsion gravity via galaxy clustering and cosmic shear measurements

    NASA Astrophysics Data System (ADS)

    Camera, Stefano; Cardone, Vincenzo F.; Radicella, Ninfa

    2014-04-01

    Alterations of the gravity Lagrangian introduced in modified torsion gravity theories—also referred to as f(T) gravity—allows for an accelerated expansion in a matter-dominated Universe. In this framework, the cosmic speed-up is driven by an effective "torsion fluid." Besides the background evolution of the Universe, structure formation is also modified because of a time-dependent effective gravitational constant. Here, we investigate the imprints of f(T) gravity on galaxy clustering and weak gravitational lensing to the aim of understanding whether future galaxy surveys could constrain torsion gravity and discriminate between it and standard general relativity. Specifically, we compute Fisher matrix forecasts for two viable f(T) models to both infer the accuracy on the measurement of the model parameters and evaluate the power that a combined clustering and shear analysis will have as a tool for model selection. We find that with such a combination of probes it will indeed be possible to tightly constrain f(T) model parameters. Moreover, the Occam's razor provided by the Bayes factor will allow us to confirm an f(T) power-law extension of the concordance ΛCDM model, if a value larger than 0.02 of its power-law slope were measured, whereas in ΛCDM it is exactly 0.

  15. LARGE-SCALE DISTRIBUTION OF ARRIVAL DIRECTIONS OF COSMIC RAYS DETECTED ABOVE 10{sup 18} eV AT THE PIERRE AUGER OBSERVATORY

    SciTech Connect

    Abreu, P.; Andringa, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Antici'c, T.; Arganda, E.; Collaboration: Pierre Auger Collaboration; and others

    2012-12-15

    A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10{sup 18} eV at the Pierre Auger Observatory is presented. This search is performed as a function of both declination and right ascension in several energy ranges above 10{sup 18} eV, and reported in terms of dipolar and quadrupolar coefficients. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Assuming that any cosmic-ray anisotropy is dominated by dipole and quadrupole moments in this energy range, upper limits on their amplitudes are derived. These upper limits allow us to test the origin of cosmic rays above 10{sup 18} eV from stationary Galactic sources densely distributed in the Galactic disk and predominantly emitting light particles in all directions.

  16. Detecting relic gravitational waves by pulsar timing arrays: Effects of cosmic phase transitions and relativistic free-streaming gases

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Jin; Zhao, Wen; Zhang, Yang; Zhu, Zong-Hong

    2016-01-01

    Relic gravitational waves (RGWs) generated in the early universe form a stochastic GW background, which can be directly probed by measuring the timing residuals of millisecond pulsars. In this paper, we investigate the constraints on the RGWs and on the inflationary parameters by the observations of current and potential future pulsar timing arrays. In particular, we focus on effects of various cosmic phase transitions (e.g., e+e- annihilation, QCD transition, and supersymmetry breaking) and relativistic free-streaming gases (neutrinos and dark fluids) in the general scenario of the early universe, which have been neglected in the previous works. We find that the phase transitions can significantly damp the RGWs in the sensitive frequency range of pulsar timing arrays, and the upper limits of the tensor-to-scalar ratio r increase by a factor ˜2 for both current and future observations. However, the effects of free-steaming neutrinos and dark fluids are all too small to be detected. Meanwhile, we find that, if the effective equation of state w in the early universe is larger than 1 /3 , i.e., deviating from the standard hot big bang scenario, the detection of RGWs by pulsar timing arrays becomes much more promising.

  17. Cosmic ray antiprotons from nearby cosmic accelerators

    NASA Astrophysics Data System (ADS)

    Joshi, Jagdish C.; Gupta, Nayantara

    2015-05-01

    The antiproton flux measured by PAMELA experiment might have originated from Galactic sources of cosmic rays. These antiprotons are expected to be produced in the interactions of cosmic ray protons and nuclei with cold protons. Gamma rays are also produced in similar interactions inside some of the cosmic accelerators. We consider a few nearby supernova remnants observed by Fermi LAT. Many of them are associated with molecular clouds. Gamma rays have been detected from these sources which most likely originate in decay of neutral pions produced in hadronic interactions. The observed gamma ray fluxes from these SNRs are used to find out their contributions to the observed diffuse cosmic ray antiproton flux near the earth.

  18. Differential expression of proteins in monozygotic twins with discordance of infantile esotropic phenotypes

    PubMed Central

    Bai, Haiqing; Yan, Zhiyong; Ma, Yuna; Li, Hui

    2011-01-01

    Purpose To identify strabismus-related proteins, we performed proteome analysis in monozygotic twins with discordance of congenital esotropic phenotypes and in normal children. Methods Surface-enhanced laser desorption/ ionization time-of-flight mass spectrometry (SELDI-TOF-MS) technology was used to detect changes in protein expression in a pair of twins with discordant esotropic phenotypes (twin A is orthotropic and twin B is esotropic). In addition, two non-twin esotropic children and two orthotropic children of the same age were chosen. The differentially expressed proteome obtained was validated in twelve non-twin esotropic children and eighteen orthotropic children and compared to the protein database. Results We detected four differentially expressed proteins in monozygotic twins with discordance of congenital esotropic phenotypes. The corresponding molecular weights were 4,146 Da, 4,801 Da, 7,786 Da, and 5,859 Da, respectively. Among these 4 proteins, the first three proteins were down-regulated and the last was upregulated. The initial characterization of these detected proteins via protein library revealed that their characteristics were similar to those of the glucagon precursor, pituitary adenylate cyclase-activating polypeptide (PACAP), camp-dependent protein kinase inhibitor α, and anti-metastasis gene (antigen), respectively. Conclusions There were differentially expressed proteins between monozygotic twins with discordance of congenital esotropic phenotypes and normal children. These differentially expressed proteins were mainly down-regulated in the strabismus patients and may be involved in the occurrence and development of congenital esotropia. PMID:21738391

  19. A Generalized Geometric Measurement of Quantum Discord: Exact Treatment

    NASA Astrophysics Data System (ADS)

    Cui, Hai-Tao; Tian, Jun-Long; Yang, Gui

    2016-02-01

    A generalization of the geometric measure of quantum discord is introduced in this article, based on Hellinger distance. Our definition has virtues of computability and independence of local measurement. In addition it also does not suffer from the recently raised critiques about quantum discord. The exact result can be obtained for bipartite pure states with arbitrary levels, which is completely determined by the Schmidt decomposition. For bipartite mixed states the exact result can also be found for a special case. Furthermore the generalization into multipartite case is direct. It is shown that it can be evaluated exactly when the measured state is invariant under permutation or translation. In addition the detection of quantum phase transition is also discussed for Lipkin-Meshkov-Glick and Dicke model. Supported by National Natural Science Foundation of China under Grant No. 11005002 and 11475004, New Century Excellent Talent of M.O.E (NCET-11-0937), and Sponsoring Program of Excellent Younger Teachers in universities in Henan Province under Grant No. 2010GGJS-181

  20. A Generalized Geometric Measurement of Quantum Discord: Exact Treatment

    NASA Astrophysics Data System (ADS)

    Cui, Hai-Tao; Tian, Jun-Long; Yang, Gui

    2016-02-01

    A generalization of the geometric measure of quantum discord is introduced in this article, based on Hellinger distance. Our definition has virtues of computability and independence of local measurement. In addition it also does not suffer from the recently raised critiques about quantum discord. The exact result can be obtained for bipartite pure states with arbitrary levels, which is completely determined by the Schmidt decomposition. For bipartite mixed states the exact result can also be found for a special case. Furthermore the generalization into multipartite case is direct. It is shown that it can be evaluated exactly when the measured state is invariant under permutation or translation. In addition the detection of quantum phase transition is also discussed for Lipkin–Meshkov–Glick and Dicke model. Supported by National Natural Science Foundation of China under Grant No. 11005002 and 11475004, New Century Excellent Talent of M.O.E (NCET-11-0937), and Sponsoring Program of Excellent Younger Teachers in universities in Henan Province under Grant No. 2010GGJS-181

  1. Monozygotic twin sisters discordant for familial hemiplegic migraine

    PubMed Central

    2013-01-01

    Background The high concordance rate of migraine in monozygotic twin pairs has long been recognised. In the current study, we present a monozygotic twin pair discordant for familial hemiplegic migraine (FHM). Case presentations We evaluated 12 adult family members in 2012. The twin pair was separately examined by neurologists at different time points. Mutation screening was performed for known FHM-related genes. The monozygosity of the twins was verified. Eleven individuals had a history of migraine or paroxysmal neurological symptoms, including four patients with motor aura. No mutations were detected in the CACNA1A, ATP1A2, SCN1A, PRRT2 or NOTCH3 genes. The monozygotic twin sisters, aged 52, were discordant for age of onset, motor aura and neuropsychological aura (forced thinking). Overall, the family members presented a wide range of phenotypical features. Conclusions Familial hemiplegic migraine is a monogenic disorder that is distinct from migraine with typical aura. However, in certain families with motor aura, such as this one, it is possible that the most severe phenotype is caused by an unlikely combination of polygenic traits and non-genetic factors. In these kindreds, we propose that hemiplegic aura is only a severe and complex form of typical aura. PMID:24041236

  2. Monochorionic twins discordant for mosaic trisomy 14.

    PubMed

    He, Mai; Pepperell, John R; Gundogan, Fusun; De Paepe, Monique E; Maggio, Lindsay; Lu, Shaolei; Kostadinov, Stefan; O'Brien, Barbara; Delamonte, Suzanne; Pinar, Halit; Tantravahi, Umadevi

    2014-05-01

    Monochorionic-diamniotic twins are usually monozygotic twins and known to be associated with adverse obstetric and perinatal outcomes. Cases of discordant karyotype of monozygotic twins are rare and most involves sex chromosomes. We present the first case of monochorionic twins with discordant karyotype manifested as mosaic trisomy 14 in one twin (B) and a normal karyotype in the other (A). We describe the postmortem pathological and imaging findings of the trisomic twin and for the first time neuropathological findings of this entity. Metaphase chromosome analysis of twin B using fetal tissue showed a 47,XX, +14 karyotype. Chromosomal microarray analysis (CMA) using fetal tissue revealed 38% mosaicism. CMA with placental tissue from both sides demonstrated normal karyotype and confirmed monozygosity, highlighting the value of array based testing on diagnosing mosaicism and zygosity. PMID:24458767

  3. Detectability of Cosmic Dark Flow in the Type Ia Supernova Redshift‒Distance Relation

    NASA Astrophysics Data System (ADS)

    Mathews, G. J.; Rose, B. M.; Garnavich, P. M.; Yamazaki, D. G.; Kajino, T.

    2016-08-01

    We reanalyze the detectability of large-scale dark flow (or local bulk flow) with respect to the CMB background based upon the redshift–distance relation for SN Ia. We made two independent analyses: one based upon identifying the three Cartesian velocity components; and the other based upon the cosine dependence of the deviation from Hubble flow on the sky. We apply these analyses to the Union2.1 SN Ia data and to the SDSS-II supernova survey. For both methods, results for low redshift, z\\lt 0.05, are consistent with previous searches. We find a local bulk flow of v bf ˜ 300 km s‑1 in the direction of (l, b) ˜ (270, 35)°. However, the search for a dark flow at z\\gt 0.05 is inconclusive. Based upon simulated data sets, we deduce that the difficulty in detecting a dark flow at high redshifts arises mostly from the observational error in the distance modulus. Thus, even if it exists, a dark flow is not detectable at large redshift with current SN Ia data sets. We estimate that a detection would require both significant sky coverage of SN Ia out to z = 0.3 and a reduction in the effective distance modulus error from 0.2 mag to ≲0.02 mag. We estimate that a greatly expanded data sample of ˜104 SN Ia might detect a dark flow as small as 300 km s‑1 out to z = 0.3 even with a distance modulus error of 0.2 mag. This may be achievable in a next generation large survey like LSST.

  4. Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Zaldarriaga, Matias

    The following sections are included: * Rapporteur Talk by R. Ellis: Massive Black Holes: Evidence, Demographics and Cosmic Evolution * Rapporteur Talk by S. Furlanetto: The Cosmic Dawn: Theoretical Models and the Future

  5. Towards the statistical detection of the warm-hot intergalactic medium in intercluster filaments of the cosmic web

    NASA Astrophysics Data System (ADS)

    Tejos, Nicolas; Prochaska, J. Xavier; Crighton, Neil H. M.; Morris, Simon L.; Werk, Jessica K.; Theuns, Tom; Padilla, Nelson; Bielby, Rich M.; Finn, Charles W.

    2016-01-01

    Modern analyses of structure formation predict a universe tangled in a `cosmic web' of dark matter and diffuse baryons. These theories further predict that at low z, a significant fraction of the baryons will be shock-heated to T ˜ 105-107 K yielding a warm-hot intergalactic medium (WHIM), but whose actual existence has eluded a firm observational confirmation. We present a novel experiment to detect the WHIM, by targeting the putative filaments connecting galaxy clusters. We use HST/COS to observe a remarkable quasi-stellar object (QSO) sightline that passes within Δd = 3 Mpc from the seven intercluster axes connecting seven independent cluster pairs at redshifts 0.1 ≤ z ≤ 0.5. We find tentative excesses of total H I, narrow H I (NLA; Doppler parameters b < 50 km s-1), broad H I (BLA; b ≥ 50 km s-1) and O VI absorption lines within rest-frame velocities of Δv ≲ 1000 km s-1 from the cluster-pairs redshifts, corresponding to ˜2, ˜1.7, ˜6 and ˜4 times their field expectations, respectively. Although the excess of O VI likely comes from gas close to individual galaxies, we conclude that most of the excesses of NLAs and BLAs are truly intergalactic. We find the covering fractions, fc, of BLAs close to cluster pairs are ˜4-7 times higher than the random expectation (at the ˜2σ c.l.), whereas the fc of NLAs and O VI are not significantly enhanced. We argue that a larger relative excess of BLAs compared to those of NLAs close to cluster pairs may be a signature of the WHIM in intercluster filaments. By extending this analysis to tens of sightlines, our experiment offers a promising route to detect the WHIM.

  6. A novel technique to detect special nuclear material using cosmic rays

    NASA Astrophysics Data System (ADS)

    Thomay, C.; Baesso, P.; Cussans, D.; Davies, J.; Glaysher, P.; Quillin, S.; Robertson, S.; Steer, C.; Vassallo, C.; Velthuis, J.

    2012-12-01

    Resistive plate chambers (RPCs) are widely used in high energy physics for both tracking and triggering purposes, due to their excellent time resolution, rate capability, and good spatial resolution. RPCs can be produced cost-effectively on large scales, are of rugged build, and have excellent detection efficiency for charged particles. Our group has successfully built a muon scattering tomography (MST) prototype, using 12 RPCs to obtain tracking information of muons going through a target volume of ∼ 50 cm × 50 cm × 70 cm, reconstructing both the incoming and outgoing muon tracks. The required spatial granularity is achieved by using 330 readout strips per RPC with 1.5 mm pitch. The RPCs have shown an efficiency above 99% and an estimated intrinsic resolution below 1.1 mm. Due to these qualities, RPCs serve as excellent candidates for usage in volcano radiography.

  7. Sudden change of geometric quantum discord in finite temperature reservoirs

    SciTech Connect

    Hu, Ming-Liang Sun, Jian

    2015-03-15

    We investigate sudden change (SC) behaviors of the distance-based measures of geometric quantum discords (GQDs) for two non-interacting qubits subject to the two-sided and the one-sided thermal reservoirs. We found that the GQDs defined by different distances exhibit different SCs, and thus the SCs are the combined result of the chosen discord measure and the property of a state. We also found that the thermal reservoir may generate states having different orderings related to different GQDs. These inherent differences of the GQDs reveal that they are incompatible in characterizing quantum correlations both quantitatively and qualitatively. - Highlights: • Comparable study of different distance-based geometric quantum discords. • Evolution of the geometric quantum discords in finite temperature reservoirs. • Different geometric quantum discords exhibit distinct sudden changes. • Nonunique states ordering imposed by different geometric quantum discords.

  8. Quantum Discord as a Resource in Quantum Communication

    NASA Astrophysics Data System (ADS)

    Madhok, Vaibhav; Datta, Animesh

    2013-01-01

    As quantum technologies move from the issues of principle to those of practice, it is important to understand the limitations on attaining tangible quantum advantages. In the realm of quantum communication, quantum discord captures the damaging effects of a decoherent environment. This is a consequence of quantum discord quantifying the advantage of quantum coherence in quantum communication. This establishes quantum discord as a resource for quantum communication processes. We discuss this progress, which derives a quantitative relation between the yield of the fully quantum Slepian-Wolf (FQSW) protocol in the presence of noise and the quantum discord of the state involved. The significance of quantum discord in noisy versions of teleportation, super-dense coding, entanglement distillation and quantum state merging are discussed. These results lead to open questions regarding the tradeoff between quantum entanglement and discord in choosing the optimal quantum states for attaining palpable quantum advantages in noisy quantum protocols.

  9. Quantum Discord as a Resource in Quantum Communication

    NASA Astrophysics Data System (ADS)

    Madhok, Vaibhav; Datta, Animesh

    2012-06-01

    As quantum technologies move from the issues of principle to those of practice, it is important to understand the limitations on attaining tangible quantum advantages. In the realm of quantum communication, quantum discord captures the damaging effects of a decoherent environment. This is a consequence of quantum discord quantifying the advantage of quantum coherence in quantum communication. This establishes quantum discord as a resource for quantum communication processes. We discuss this progress, which derives a quantitative relation between the yield of the fully quantum Slepian-Wolf (FQSW) protocol in the presence of noise and the quantum discord of the state involved. The significance of quantum discord in noisy versions of teleportation, super-dense coding, entanglement distillation and quantum state merging are discussed. These results lead to open questions regarding the tradeoff between quantum entanglement and discord in choosing the optimal quantum states for attaining palpable quantum advantages in noisy quantum protocols.

  10. Discord as a quantum resource for bi-partite communication

    NASA Astrophysics Data System (ADS)

    Chrzanowski, Helen M.; Gu, Mile; Assad, Syed M.; Symul, Thomas; Modi, Kavan; Ralph, Timothy C.; Vedral, Vlatko; Lam, Ping Koy

    2014-12-01

    Coherent interactions that generate negligible entanglement can still exhibit unique quantum behaviour. This observation has motivated a search beyond entanglement for a complete description of all quantum correlations. Quantum discord is a promising candidate. Here, we experimentally demonstrate that under certain measurement constraints, discord between bipartite systems can be consumed to encode information that can only be accessed by coherent quantum interactions. The inability to access this information by any other means allows us to use discord to directly quantify this `quantum advantage'.

  11. Relating quantum discord with the quantum dense coding capacity

    SciTech Connect

    Wang, Xin; Qiu, Liang Li, Song; Zhang, Chi; Ye, Bin

    2015-01-15

    We establish the relations between quantum discord and the quantum dense coding capacity in (n + 1)-particle quantum states. A necessary condition for the vanishing discord monogamy score is given. We also find that the loss of quantum dense coding capacity due to decoherence is bounded below by the sum of quantum discord. When these results are restricted to three-particle quantum states, some complementarity relations are obtained.

  12. Relating quantum discord with the quantum dense coding capacity

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Qiu, Liang; Li, Song; Zhang, Chi; Ye, Bin

    2015-01-01

    We establish the relations between quantum discord and the quantum dense coding capacity in ( n + 1)-particle quantum states. A necessary condition for the vanishing discord monogamy score is given. We also find that the loss of quantum dense coding capacity due to decoherence is bounded below by the sum of quantum discord. When these results are restricted to three-particle quantum states, some complementarity relations are obtained.

  13. Geometry and dynamics of one-norm geometric quantum discord

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming; Qiu, Daowen; Mateus, Paulo

    2016-01-01

    We investigate the geometry of one-norm geometric quantum discord and present a geometric interpretation of one-norm geometric quantum discord for a class of two-qubit states. It is found that one-norm geometric quantum discord has geometric behavior different from that described in Lang and Caves (Phys Rev Lett 105:150501, 2010), Li et al. (Phys Rev A 83:022321, 2011) and Yao et al. (Phys Lett A 376:358-364, 2012). We also compare the dynamics of the one-norm geometric quantum discord and other measures of quantum correlations under correlated noise. It is shown that different decoherent channels bring different influences to quantum correlations measured by concurrence, entropic quantum discord and geometric quantum discord, which depend on the memory parameter and decoherence parameter. We lay emphasis on the behaviors such as entanglement sudden death and sudden transition of quantum discord. Finally, we study the dynamical behavior of one-norm geometric quantum discord in one-dimensional anisotropic XXZ model by utilizing the quantum renormalization group method. It is shown that the one-norm geometric quantum discord demonstrates quantum phase transition through renormalization group approach.

  14. A Lower Bound of Quantum Discord for 2-Qutrit Systems

    NASA Astrophysics Data System (ADS)

    Zhang, Qianhui; Wang, Jing; Shen, Shuqian; Li, Ming

    2016-04-01

    We study the lower bound of quantum discord for 2-qutrit systems. By computing the mutual information and the classical correlations of a class of states for 2-qutrit system, an analytical and computable lower bound of discord has been derived. By selecting different coefficients as examples, we can compute the lower bound of discord for 2-qutrit systems directly. The result can be generalized to the case of high-dimensional quantum state and will help us understand and explore the discord of the high-dimensional state.

  15. Interaction of cosmic ray muons with spent nuclear fuel dry casks and determination of lower detection limit

    NASA Astrophysics Data System (ADS)

    Chatzidakis, S.; Choi, C. K.; Tsoukalas, L. H.

    2016-08-01

    The potential non-proliferation monitoring of spent nuclear fuel sealed in dry casks interacting continuously with the naturally generated cosmic ray muons is investigated. Treatments on the muon RMS scattering angle by Moliere, Rossi-Greisen, Highland and, Lynch-Dahl were analyzed and compared with simplified Monte Carlo simulations. The Lynch-Dahl expression has the lowest error and appears to be appropriate when performing conceptual calculations for high-Z, thick targets such as dry casks. The GEANT4 Monte Carlo code was used to simulate dry casks with various fuel loadings and scattering variance estimates for each case were obtained. The scattering variance estimation was shown to be unbiased and using Chebyshev's inequality, it was found that 106 muons will provide estimates of the scattering variances that are within 1% of the true value at a 99% confidence level. These estimates were used as reference values to calculate scattering distributions and evaluate the asymptotic behavior for small variations on fuel loading. It is shown that the scattering distributions between a fully loaded dry cask and one with a fuel assembly missing initially overlap significantly but their distance eventually increases with increasing number of muons. One missing fuel assembly can be distinguished from a fully loaded cask with a small overlapping between the distributions which is the case of 100,000 muons. This indicates that the removal of a standard fuel assembly can be identified using muons providing that enough muons are collected. A Bayesian algorithm was developed to classify dry casks and provide a decision rule that minimizes the risk of making an incorrect decision. The algorithm performance was evaluated and the lower detection limit was determined.

  16. Predicting discordant HER2 results in ipsilateral synchronous invasive breast carcinomas: experience from a single institution.

    PubMed

    Chou, Shaun; Khan, Tayyaba; Mahajan, Hema; Pathmanathan, Nirmala

    2015-12-01

    With the emergence of multiple lines of highly effective Human Epidermal Growth Factor Receptor 2 (HER2) directed therapy, accurate identification of HER2 positive tumour has become a critical aspect in the histopathological analysis of breast cancers. Multifocal invasive breast carcinomas are relatively common, and given the aggressive inherent biology of HER2 positive disease, identification of even small tumours with HER2 positive status may be of importance for treatment planning. There are currently no clear guidelines as to whether all of these foci should be tested for HER2 status. We reviewed the results of 172 patients in whom HER2 in situ hybridisation (ISH) testing was performed on at least two ipsilateral synchronous invasive carcinomas. Discordant results in different invasive foci were relatively uncommon and occurred in only eight (5%) of the 172 patients. This showed a statistically significant correlation with similarly discordant oestrogen receptor (ER) results. In addition HER2 discordance was more likely amongst different tumour foci if these arose in distinct and separate areas of DCIS. An algorithm based on a combination of College of American Pathologists (CAP) recommendation for HER2 testing, differing ER status and background DCIS profile may be useful in detecting these discordant cases. PMID:26517643

  17. Resistance of lichens to simulated galactic cosmic radiation: limits of survival capacity and biosignature detection

    NASA Astrophysics Data System (ADS)

    de la Torre Noetzel, Rosa; Miller, Ana Z.; Cubero, Beatriz; Raguse, Marina; Meessen, Joachim

    2016-04-01

    Space constitutes an extremely harmful environment for survival of terrestrial organisms. Amongst extremophiles on Earth, lichens are one of the most resistant organisms to harsh terrestrial environments, as well as some species of microorganisms, such as bacteria (Moeller et al., 2010), criptoendolithic cyanobacteria and lithic fungi (de los Ríos et al. 2004). To study the survival capacity of lichens to the harmful radiation environment of space, we have selected the lichen Circinaria gyrosa, an astrobiological model defined by its high capacity of resistance to space conditions (De la Torre et al. 2010) and to a simulated Mars environment (Sanchez et al., 2012). Samples were irradiated with four types of space-relevant ionizing radiation in the STARLIFE campaign: helium and iron ion doses (up to 2,000 Gy), X-ray doses (up to 5,000 Gy) and ultra-high γ-ray doses (from 6 to 113 kGy). Results on resistance of C. gyrosa to space-relevant ionizing radiation and its post-irradiation viability were obtained by: (i) chlorophyll a fluorescence of photosystem II (PS II); (ii) epifluorescence microscopy; (iii) confocal laser-scanning microscopy (CLSM), and (iv) field emission scanning electron microscopy (FESEM). Results of photosynthetic activity and epifluorescence showed no significant changes on the viability of C. gyrosa with increasing doses of helium and iron ions as well as X-rays. In contrast, γ-irradiation elicited significant dose-correlated effects as revealed by all applied techniques. Relevant is the presence of whewellite-like crystals, detected by FESEM on C. gyrosa thalli after high irradiation doses, which has been also identified in previous Mars simulation studies (Böttcher et al., 2014). These studies contribute to the better understanding of the adaptability of extremophile organisms to harsh environments, as well as to estimate the habitability of a planet's surface, like Mars; they will be important for planning experiments on the search of life

  18. K-alpha X-rays from cosmic ray oxygen. [Detection and calculation of equilibrium charge fractions

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Boldt, E. A.

    1975-01-01

    Equilibrium charge fractions are calculated for subrelativistic cosmic ray oxygen ions in the interstellar medium. These are used to determine the expected flux of K-alpha rays arising from atomic processes for a number of different postulated interstellar oxygen spectra. Relating these results to the diffuse X-ray background measured at the appropriate energy level suggests an observable line feature. If the flux of low energy cosmic ray oxygen is sufficiently large, K-alpha X-ray line emission from these nuclei will comprise a significant fraction of the total diffuse flux at approximately 0.6 keV. A satellite borne detector with a resolution greater than 30 percent could observe this feature if the subrelativistic interstellar cosmic ray oxygen spectrum is as large as certain theoretical estimates expressed in the text.

  19. Searching for Cosmic Strings in the Cosmic Microwave Background:

    NASA Astrophysics Data System (ADS)

    Wu, Jiun-Huei Proty

    The role of cosmic defects in cosmology is entering its new phase—as a test for several fundamental physics, including unification theories and inflation. We discuss how to use the Cosmic Microwave Background (CMB) to detect cosmic strings, a type of cosmic defects, and how to use this result to constrain the underlying physics. In particular, we use the simulations for the Array for Microwave Background Anisotropy (AMiBA) to demonstrate the power of this approach. The required resolution and sensitivity in such a method are discussed, and so is the possible scientific impact.

  20. Detecting Particle Dark Matter Signatures via Cross-Correlation of Gamma-Ray Anisotropies and Cosmic Shear

    NASA Astrophysics Data System (ADS)

    Camera, Stefano

    2014-05-01

    Similarly to gravitational lensing effects like cosmic shear, cosmological γ-ray emission too is to some extent a tracer of the distribution of dark matter (DM) in the Universe. Intervening DM structures source gravitational lensing distortions of distant galaxy images, and those same galaxies can emit γ rays, either because they host astrophysical sources, or directly by particle DM annihilations or decays occurring in the galactic halo. If such γ rays exhibit correlation with the cosmic shear signal, this will provide novel information on the composition of the extragalactic γ-ray background.

  1. Sources of gene tree discordance on oryza (poaceae) chromosome 3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We describe new methods for characterizing gene tree discordance in phylogenomic datasets, which screen for deviations from neutral expectations, summarize variation in statistical support among gene trees, and allow comparison of the patterns of discordance induced by various analysis choices. Usin...

  2. Exploring Knowing/Being through Discordant Professional Practice

    ERIC Educational Resources Information Center

    Dall'Alba, Gloria; Barnacle, Robyn

    2015-01-01

    Despite an increasing array of "quality indicators" and substantial investments in educating professionals, there continues to be clear evidence of discordant, or even negligent, practice by accredited professionals. We refer to discordant professional practice as being "out of tune" with what is accepted as good practice. In a…

  3. Monozygotic twins with trisomy 18: a report of discordant phenotype.

    PubMed Central

    Schlessel, J S; Brown, W T; Lysikiewicz, A; Schiff, R; Zaslav, A L

    1990-01-01

    The predicted incidence of liveborn monozygotic trisomy 18 twins is one per million births. The first case of liveborn monozygotic trisomy 18 twins was reported in 1989 and we report a second case in which striking phenotypic discordance existed. The probability of monozygotic trisomy 18 twinning and the mechanisms for phenotypic discordance in trisomic twins is discussed. Images PMID:2246775

  4. Oxygen isotopic composition and U-Pb discordance in zircon

    USGS Publications Warehouse

    Booth, A.L.; Kolodny, Y.; Chamberlain, C.P.; McWilliams, M.; Schmitt, A.K.; Wooden, J.

    2005-01-01

    We have investigated U-Pb discordance and oxygen isotopic composition of zircon using high-spatial resolution ??18O measurement by ion microprobe. ??18O in both concordant and discordant zircon grains provides an indication of the relationship between fluid interaction and discordance. Our results suggest that three characteristics of zircon are interrelated: (1) U-Pb systematics and concomitant age discordance, (2) ??18O and the water-rock interactions implied therein, and (3) zircon texture, as revealed by cathodoluminescence and BSE imaging. A key observation is that U-Pb-disturbed zircons are often also variably depleted in 18O, but the relationship between discordance and ??18O is not systematic. ??18O values of discordant zircons are generally lighter but irregular in their distribution. Textural differences between zircon grains can be correlated with both U-Pb discordance and ??18O. Discordant grains exhibit either a recrystallized, fractured, or strongly zoned CL texture, and are characteristic of 18O depletion. We interpret this to be a result of metamictization, leading to destruction of the zircon lattice and an increased susceptibility to lead loss. Conversely, grains that are concordant have less-expressed zoning and a smoother CL texture and are enriched in 18O. From this it is apparent that various stages of water-rock interaction, as evidenced by systematic variations in ??18O, leave their imprint on both the texture and U-Pb systematics of zircon. Copyright ?? 2005 Elsevier Ltd.

  5. The inheritance of neuropsychological dysfunction in twins discordant for schizophrenia.

    PubMed

    Cannon, T D; Huttunen, M O; Lonnqvist, J; Tuulio-Henriksson, A; Pirkola, T; Glahn, D; Finkelstein, J; Hietanen, M; Kaprio, J; Koskenvuo, M

    2000-08-01

    While genetic influences in schizophrenia are substantial, the disorder's molecular genetic basis remains elusive. Progress has been hindered by lack of means to detect nonpenetrant carriers of the predisposing genes and by uncertainties concerning the extent of locus heterogeneity. One approach to solving this complexity is to examine the inheritance of pathophysiological processes mediating between genotype and disease phenotype. Here we evaluate whether deficits in neurocognitive functioning covary with degree of genetic relationship with a proband in the unaffected MZ and DZ co-twins of patients with schizophrenia. Twin pairs discordant for schizophrenia were recruited from a total population cohort and were compared with a demographically balanced sample of control twin pairs, on a comprehensive neuropsychological test battery. The following four neuropsychological functions contributed uniquely to the discrimination of degree of genetic loading for schizophrenia and, when combined, were more highly correlated within MZ pairs than within DZ pairs, in both discordant and control twins: spatial working memory (i.e., remembering a sequence of spatial locations over a brief delay), divided attention (i.e., simultaneous performance of a counting and visual-search task), intrusions during recall of a word list (i.e., "remembering" nonlist items), and choice reaction time to visual targets. Together with evidence from human and animal studies of mediation of these functions by partially distinct brain systems, our findings suggest that there are multiple independently inherited dimensions of neural deficit in schizophrenia and encourage a search for genes contributing to quantitative variation in discrete aspects of disease liability. On tests of verbal and visual episodic memory, but not on the liability-related measures, patients were more impaired than their own MZ co-twins, suggesting a preferential impact of nongenetic influences on long-term memory systems

  6. Multipartite distribution property of one way discord beyond measurement

    NASA Astrophysics Data System (ADS)

    Liu, Si-Yuan; Zhang, Yu-Ran; Yang, Wen-Li; Fan, Heng

    2015-03-01

    We investigate the distribution property of one way discord in the multipartite system by introducing the concept of polygamy deficit for one way discord. The difference between one way discord and quantum discord is analogue to the one between entanglement of assistance and entanglement of formation. For tripartite pure states, two kinds of polygamy deficits are presented with the equivalent expressions and physical interpretations regardless of measurement. For four-partite pure states, we provide a condition which makes one way discord polygamy satisfied. In addition, we generalize these results to the case for N-partite pure states. Those results can be applicable to multipartite quantum systems and are complementary to our understanding of the shareability of quantum correlations.

  7. Detection of degree-scale B-mode polarization and studying cosmic polarization rotation with the BICEP1 and BICEP2 telescopes

    NASA Astrophysics Data System (ADS)

    Kaufman, Jonathan Philip

    The BICEP1 and BICEP2 telescopes studied the temperature and polarization of the Cosmic Microwave Background (CMB) from 2006 -- 2008 and 2010 -- 2012, respectively, producing the deepest maps of polarization created to date. From BICEP2 three-year data, we detect B-mode polarization at the degree-scale above the expectation from lensed-ΛCDM to greater than 5sigma significance, consistent with that expected from gravitational waves created during Inflation. Instrumental systematic effects have been characterized and ruled out, and galactic foreground contamination is disfavored by the data. Additionally, correlations between temperature and B-mode polarization and between E-mode and B-mode polarization show evidence of polarization rotation of --1° to 5sigma significance; however, adding systematic uncertainty reduces this significance to ˜ 2sigma. These measurements, combined with other CMB and astrophysical measurements, point to possible parity violating physics like cosmic birefringence, but more precise calibration techniques are required to break the degeneracy between cosmic polarization rotation and systematic effects. Improved calibration is possible with current generation technology and may be achieved within the next few years. In this work, I present experimental and analysis techniques employed for BICEP1 and BICEP2 to measure B-mode polarization and temperature and polarization correlations, as well as the scientific motivation, results, and a path forward for future measurements.

  8. Cosmic Rays and Experiment CZELTA

    SciTech Connect

    Smolek, Karel; Nyklicek, Michal

    2007-11-26

    This paper gives a review of the physics of cosmic rays with emphasis on the methods of detection and study. A summary is given of the Czech project CZELTA which is part of a multinational program to study cosmic rays with energies above 10{sup 14} eV.

  9. Discordant and chameleon sequences: their distribution and implications for amyloidogenicity.

    PubMed

    Gendoo, Deena M A; Harrison, Paul M

    2011-03-01

    Identification of ambiguous encoding in protein secondary structure is paramount to develop an understanding of key protein segments underlying amyloid diseases. We investigate two types of structurally ambivalent peptides, which were hypothesized in the literature as indicators of amyloidogenic proteins: discordant α-helices and chameleon sequences. Chameleon sequences are peptides discovered experimentally in different secondary-structure types. Discordant α-helices are α-helical stretches with strong β-strand propensity or prediction. To assess the distribution of these features in known protein structures, and their potential role in amyloidogenesis, we analyzed the occurrence of discordant α-helices and chameleon sequences in nonredundant sets of protein domains (n = 4263) and amyloidogenic proteins extracted from the literature (n = 77). Discordant α-helices were identified if discordance was observed between known secondary structures and secondary-structure predictions from the GOR-IV and PSIPRED algorithms. Chameleon sequences were extracted by searching for identical sequence words in α-helices and β-strands. We defined frustrated chameleons and very frustrated chameleons based on varying degrees of total β propensity ≥α propensity. To our knowledge, this is the first study to discern statistical relationships between discordance, chameleons, and amyloidogenicity. We observed varying enrichment levels for some categories of discordant and chameleon sequences in amyloidogenic sequences. Chameleon sequences are also significantly enriched in proteins that have discordant helices, indicating a clear link between both phenomena. We identified the first set of discordant-chameleonic protein segments we predict may be involved in amyloidosis. We present a detailed analysis of discordant and chameleons segments in the family of one of the amyloidogenic proteins, the Prion Protein. PMID:21432934

  10. Cosmic Ray Observatories for Space Weather Studies.

    NASA Astrophysics Data System (ADS)

    González, Xavier

    2016-07-01

    The Mexican Space Weather Service (SCiESMEX) was created in October 2014. Some observatories measure data for the service at different frequencies and particles. Two cosmic ray observatories detect the particle variations attributed to solar emissions, and are an important source of information for the SCiESMEX. The Mexico City Cosmic Ray Observatory consists of a neutron monitor (6-NM-64) and a muon telescope, that detect the hadronic and hard component of the secondary cosmic rays in the atmosphere. It has been in continous operation since 1990. The Sierra Negra Cosmic Ray Observatory consists of a solar neutron telescope and the scintillator cosmic ray telescope. These telescopes can detect the neutrons, generated in solar flares and the hadronic and hard components of the secondary cosmic rays. It has been in continous operation since 2004. We present the two observatories and the capability to detect variations in the cosmic rays, generated by the emissions of the solar activity.

  11. Detection of the Near-IR Cosmic Infrared Background Using Alternative Models of Near-IR Galactic Emission in the DIRBE Data

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Dwek, Eli; Oliversen, Ronald J. (Technical Monitor)

    2000-01-01

    The analysis portion of this task has been completed. New models were developed for the removal of the near-infrared emission of Galactic stars in the DIRBE data. Subtraction of these models from the observed emission attempted to achieve a better detection of the Cosmic Infrared Background at near-infrared wavelengths. The new models were found to provide a large improvement in the isotropy of the residual emission, however constraints on the intensity of the emission are not significantly improved. A paper detailing the procedures and results has been drafted, and will be completed next year. The draft of this paper is included as the final report on the contract.

  12. Cosmic impacts, cosmic catastrophes. I

    NASA Technical Reports Server (NTRS)

    Chapman, Clark R.; Morrison, David

    1989-01-01

    The discovery of cosmic impacts and their effects on the earth's surface are discussed. The manner in which the object impacts with the earth is described. The formation of crytovolcanic structures by craters is examined. Examples of cosmic debris collisions with earth, in particular the Tunguska explosion of 1908 and the Meteor Crater in Arizona, are provided.

  13. Detection of reflected Cherenkov light from extensive air showers in the SPHERE experiment as a method of studying superhigh energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Antonov, R. A.; Aulova, T. V.; Bonvech, E. A.; Galkin, V. I.; Dzhatdoev, T. A.; Podgrudkov, D. A.; Roganova, T. M.; Chernov, D. V.

    2015-01-01

    Although a large number of experiments were carried out during the last few decades, the uncertainty in the spectrum of all nuclei of primary cosmic rays (PCRs) with superhigh energies is still high, and the results of many experiments on nuclear composition of PCRs are contradictory. An overview of the SPHERE experiment on detecting Vavilov-Cherenkov radiation from extensive air shower (EAS) reflected from a ground snow surface is given. A number of experimental studies implementing this method are presented and their results are analyzed. Some other popular methods of studying PCRs with superhigh energies ( E 0 > 1015 eV) and their main advantages and drawbacks are briefly considered. The detecting equipment of the SPHERE-2 experiment and the technique of its calibration are considered. The optical properties of snow, which are important for experiments on reflected Cherenkov light (CL) from EAS, are discussed and the history of observing reflected EAS CL is described. The algorithm of simulating the detector response and calculating the fiducial acceptance of shower detection is described. The procedure of processing the experimental data with a subsequent reconstruction of the spectrum of all PCR nuclei and analysis of the mass composition is shown. The first results of reconstructing the spectrum and separating groups of cosmic-ray nuclei with high energies in the SPHERE-2 experiment are presented. Main sources of systematic errors are considered. The prospects of developing the technique of observation of reflected EAS CL in future experiments are discussed.

  14. Improved dark energy detection through the polarization-assisted cross correlation of the cosmic microwave background with radio sources

    SciTech Connect

    Liu, Guo-Chin; Ng, Kin-Wang; Pen, Ue-Li

    2011-03-15

    Integrated Sachs-Wolfe (ISW) effect can be estimated by cross-correlating the cosmic microwave background (CMB) sky with tracers of the local matter distribution. At late cosmic time, the dark energy-induced decay of gravitation potential generates a cross correlation signal on large angular scales. The dominant noise is the intrinsic CMB anisotropies from the inflationary epoch. In this paper we use CMB polarization to reduce this intrinsic noise. We cross-correlate the microwave sky observed by Wilkinson Microwave Anisotropy Probe (WMAP) with the radio source catalog compiled by NRAO VLA Sky Survey (NVSS) to study the efficiency of the noise suppression. We find that the error bars are reduced by about 4 to 14% and the statistical power in the signal is improved.

  15. Discord as a quantum resource for bi-partite communication

    SciTech Connect

    Chrzanowski, Helen M.; Assad, Syed M.; Symul, Thomas; Lam, Ping Koy; Gu, Mile; Modi, Kavan; Vedral, Vlatko; Ralph, Timothy C.

    2014-12-04

    Coherent interactions that generate negligible entanglement can still exhibit unique quantum behaviour. This observation has motivated a search beyond entanglement for a complete description of all quantum correlations. Quantum discord is a promising candidate. Here, we experimentally demonstrate that under certain measurement constraints, discord between bipartite systems can be consumed to encode information that can only be accessed by coherent quantum interactions. The inability to access this information by any other means allows us to use discord to directly quantify this ‘quantum advantage’.

  16. Experimental verification of quantum discord in continuous-variable states

    NASA Astrophysics Data System (ADS)

    Hosseini, S.; Rahimi-Keshari, S.; Haw, J. Y.; Assad, S. M.; Chrzanowski, H. M.; Janousek, J.; Symul, T.; Ralph, T. C.; Lam, P. K.

    2014-01-01

    We introduce a simple and efficient technique to verify quantum discord in unknown Gaussian states and a certain class of non-Gaussian states. We show that any separation in the peaks of the marginal distributions of one subsystem conditioned on two different outcomes of homodyne measurements performed on the other subsystem indicates correlation between the corresponding quadratures, and hence nonzero discord. We also apply this method to non-Gaussian states that are prepared by overlapping a statistical mixture of coherent and vacuum states on a beam splitter. We experimentally demonstrate this technique by verifying nonzero quantum discord in a bipartite Gaussian and certain non-Gaussian states.

  17. Witnessing quantum discord in 2xN systems

    SciTech Connect

    Bylicka, Bogna; Chruscinski, Dariusz

    2010-06-15

    Bipartite states with vanishing quantum discord are necessarily separable and hence positive partial transpose (PPT). We show that 2xN states satisfy additional property: the positivity of their partial transposition is recognized with respect to the canonical factorization of the original density operator. We call such states strong PPT (SPPT). Therefore, we provide a natural witness for a quantum discord: if a 2xN state is not SPPT it must contain nonclassical correlations measured by quantum discord. It is an analog of the celebrated Peres-Horodecki criterion: if a state is not PPT it must be entangled.

  18. Entanglement and discord: Accelerated observations of local and global modes

    NASA Astrophysics Data System (ADS)

    Doukas, Jason; Brown, Eric G.; Dragan, Andrzej; Mann, Robert B.

    2013-01-01

    We investigate the amount of entanglement and quantum discord extractable from a two-mode squeezed state as considered from the viewpoint of two observers, Alice (inertial) and Rob (accelerated). We find that using localized modes produces qualitatively different correlation properties for large accelerations than do Unruh modes. Specifically, the entanglement undergoes a sudden death as a function of acceleration, and the discord asymptotes to zero in the limit of infinite acceleration. We conclude that the previous Unruh mode analyses do not determine the acceleration-dependent entanglement and discord degradation of a given quantum state.

  19. Non-Markovian effect on the quantum discord

    SciTech Connect

    Wang Bo; Xu Zhenyu; Chen Zeqian; Feng Mang

    2010-01-15

    We study the non-Markovian effect on the dynamics of the quantum discord by exactly solving a model consisting of two independent qubits subject to two zero-temperature non-Markovian reservoirs, respectively. Considering the two qubits initially prepared in Bell-like or extended Werner-like states, we show that there is no occurrence of the sudden death, but only instantaneous disappearance of the quantum discord at some time points, in comparison to the entanglement sudden death in the same range of the parameters of interest. This implies that the quantum discord is more useful than the entanglement to describe the quantum correlation involved in quantum systems.

  20. Cosmic superstrings.

    PubMed

    Sakellariadou, Mairi

    2008-08-28

    Cosmic superstrings are expected to be formed at the end of brane inflation, within the context of brane-world cosmological models inspired from string theory. By studying the properties of cosmic superstring networks and comparing their phenomenological consequences against observational data, we aim to pin down the successful and natural inflationary model and get an insight into the stringy description of our Universe. PMID:18534932

  1. [Discordant pattern, visual identification of myocardial viability with PET].

    PubMed

    Alexánderson, E; Ricalde, A; Zerón, J; Talayero, J A; Cruz, P; Adame, G; Mendoza, G; Meave, A

    2006-01-01

    PET (positron emission tomography) as a non-invasive imaging method for studying cardiac perfusion and metabolism has turned into the gold standard for detecting myocardial viability. The utilization of 18 FDG as a tracer for its identification permits to spot the use of exogenous glucose by the myocardium segments. By studying and comparing viability and perfusion results, for which the latter uses tracers such as 13N-ammonia, three different patterns for myocardial viability evaluation arise:. transmural concordant pattern, non-transmural concordant pattern, and the discordant pattern; the last one exemplifies the hibernating myocardium and proves the presence of myocardial viability. The importance of its detection is fundamental for the study of an ischemic patient, since it permits the establishment of and exact diagnosis, prognosis, and the best treatment option. It also allows foreseeing functional recovery of the affected region as well as the ejection fraction rate after revascularization treatment if this is determined as necessary. All these elements regarding viability are determinant in order to reduce adverse events and help improving patients' prognosis. PMID:17315610

  2. Past present: Relationship dynamics may differ among discordant gay male couples depending on HIV infection history

    PubMed Central

    Beougher, Sean C.; Mandic, Carmen Gómez; Darbes, Lynae A.; Chakravarty, Deepalika; Neilands, Torsten B.; Garcia, Carla C.; Hoff, Colleen C.

    2013-01-01

    Discordant couples are unique because neither partner shares the same serostatus. Yet research overlooks how they became discordant, mistakenly assuming that they have always been that way and, by extension, that being discordant impacts the relationship in a similar manner. This study examines HIV infection history and its impact on relationship dynamics using qualitative data from 35 discordant gay male couples. Most couples met discordant (69%); however, many did not (31%). Those couples that met discordant felt being discordant had a lesser impact on their sexual and relational satisfaction, while those that did not meet discordant felt it had a greater impact, reporting sexual frustration and anxiety over seroconverting. This suggests that relationship dynamics may differ for discordant couples depending on HIV infection history. HIV prevention and counseling services for discordant couples can be better tailored and more effective when differences in HIV infection history are recognized. PMID:24244082

  3. Past present: Relationship dynamics may differ among discordant gay male couples depending on HIV infection history.

    PubMed

    Beougher, Sean C; Mandic, Carmen Gómez; Darbes, Lynae A; Chakravarty, Deepalika; Neilands, Torsten B; Garcia, Carla C; Hoff, Colleen C

    2013-10-01

    Discordant couples are unique because neither partner shares the same serostatus. Yet research overlooks how they became discordant, mistakenly assuming that they have always been that way and, by extension, that being discordant impacts the relationship in a similar manner. This study examines HIV infection history and its impact on relationship dynamics using qualitative data from 35 discordant gay male couples. Most couples met discordant (69%); however, many did not (31%). Those couples that met discordant felt being discordant had a lesser impact on their sexual and relational satisfaction, while those that did not meet discordant felt it had a greater impact, reporting sexual frustration and anxiety over seroconverting. This suggests that relationship dynamics may differ for discordant couples depending on HIV infection history. HIV prevention and counseling services for discordant couples can be better tailored and more effective when differences in HIV infection history are recognized. PMID:24244082

  4. Parental marital discord and treatment response in depressed adolescents.

    PubMed

    Amaya, Meredith M; Reinecke, Mark A; Silva, Susan G; March, John S

    2011-04-01

    Evidence suggests that parental marital discord contributes to the development of internalizing and externalizing symptoms in children and adolescents. Few studies, however, have examined the association between parental marital discord and youth's response to treatment. The present study examined the impact of interparental discord on treatment response in a randomized control trial of adolescents with major depression enrolled in the Treatment for Adolescents with Depression Study (TADS). Participants were 260 adolescents from two-parent households randomly assigned to one of four treatment groups: fluoxetine (FLX), cognitive behavior therapy (CBT), their combination (COMB), or placebo (PBO). Logistic regressions revealed that parental marital discord interacted with youth gender and co-morbid oppositionality symptoms to predict group differences in treatment response. PMID:20957515

  5. Quantum Entanglement and Quantum Discord in Gaussian Open Systems

    SciTech Connect

    Isar, Aurelian

    2011-10-03

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable quantum entanglement and quantum discord for a system consisting of two noninteracting modes embedded in a thermal environment. Entanglement and discord are used to quantify the quantum correlations of the system. For all values of the temperature of the thermal reservoir, an initial separable Gaussian state remains separable for all times. In the case of an entangled initial Gaussian state, entanglement suppression (entanglement sudden death) takes place for non-zero temperatures of the environment. Only for a zero temperature of the thermal bath the initial entangled state remains entangled for finite times. We analyze the time evolution of the Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite state, including entanglement, and show that quantum discord decays asymptotically in time under the effect of the thermal bath.

  6. The potential value of discordant studies

    PubMed Central

    2014-01-01

    Many aspects of the clinical application of gated-single photon emission computed tomography (SPECT) have been well established by multiple trials and studies. However, its utility in the elderly (i.e., the Medicare population in the USA) remains unclear. This is an important population due to its rapid growth, coupled with the increasing prevalence of coronary artery disease with age. A paper in this issue, Predictive value of exercise myocardial perfusion imaging in the Medicare population: the impact of the ability to exercise, indicates that while gated-SPECT clearly directs the performance of interventions at the level of the coronary arteries in the elderly, outcomes are worse for those receiving an intervention vs. those receiving medical therapy. While some literature supports this observation, there are also well documented studies that indicate that the opposite is the case. As consumers of discordant studies, we find ourselves in the unenviable position of having to pull at the threads of evidence and follow them through in an attempt to reconcile the conflicting literature. This is reminiscent of the mythical Gregorian knot, a knot that was impossible to unravel by conventional means. However, it was “solved” by cutting it with a sword. In our case, the sword that we have is the removal of bias. It has been said that there are no unbiased studies, since we only measure what we believe and we tend to believe what we measure. This is further compounded in clinical practice since the Hippocratic Oath requires that the physician above all do no harm. Therefore it follows that whatever action is done is at least not detrimental to the patient. These are powerful belief systems that on the one hand allow us to rapidly discard “irrelevant” information and quickly get to the important point, but on the other hand they may inhibit us from seeing what is truly of value. Discordant and negative studies are important disruptors along the path to easy data

  7. Physical properties of z≥1 IR-detected galaxies in blank and lensed fields and evolution of star formation histories with cosmic time

    NASA Astrophysics Data System (ADS)

    Sklias, Panos; Schaerer, Daniel; Elbaz, David

    2015-08-01

    Understanding and constraining the early cosmic star formation history of the Universe is a key question of galaxy evolution. A large fraction of star formation is dust obscured, so it's crucial to have access to the IR emission of galaxies to properly study them.Utilizing the multi-wavelength photometry from GOODS-Herschel and the Herschel Lensing Survey, we perform SED fitting with different variable star formation histories (SFHs), on a large sample of bright IR star-forming galaxies (SFGs) from z~1 to 4, and a small sample of strongly lensed IR-detected fainter SFGs at z~1.5-3, respectively. Although in general SED modeling of dust obscured galaxies is affected by degeneracies (eg., in age-extinction), we reduce them by imposing energy conservation, i.e. by constraining the dust attenuation thanks to the observed IR luminosities. We explore how this affects the physical parameters, their position on the SFR-mass diagram, and the dispersion around the SF main sequence.Regarding star formation histories we find a change in SFH preferences with cosmic time, with galaxies at z~3-4 being preferably fit by rising SFR models, whereas those at z~1 are better described by declining models. In a fraction of sources (~20%) we find instantaneous SFRs lower than inferred from IR+UV using standard calibrations. This indicates that they are potentially undergoing quenching while still being IR-bright.The lensed sample allows us to probe lower luminosity regimes and to derive the stellar and dust properties of moderately star-forming galaxies in that epoch. We show how in certain cases the knowledge of the IR-luminosity and spectral emission lines, converges towards a well constrained SFH, like for the well known galaxy nicknamed the «Cosmic Eye».

  8. Looking at the sub-TeV sky with cosmic muons detected in the EEE MRPC telescopes

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; Avanzini, C.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Bencivenni, G.; Bossini, E.; Bressan, E.; Chiavassa, A.; Cicalo, C.; Cifarelli, L.; Coccia, E.; Corvaglia, A.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Fattibene, E.; Ferraro, A.; Forster, R.; Frolov, V.; Galeotti, P.; Garbini, M.; Gemme, G.; Gnesi, I.; Grazzi, S.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Maggiora, A.; Maron, G.; Mazziotta, M. N.; Miozzi, S.; Nozzoli, F.; Panareo, M.; Panetta, M. P.; Paoletti, R.; Perasso, L.; Pilo, F.; Piragino, G.; Riggi, F.; Righini, G. C.; Rodriguez Rodriguez, A.; Sartorelli, G.; Scapparone, E.; Schioppa, M.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Squarcia, S.; Taiuti, M.; Terreni, G.; Vistoli, M. C.; Votano, L.; Williams, M. C. S.; Zani, S.; Zichichi, A.; Zuyeuski, R.

    2015-09-01

    Distributions of secondary cosmic muons were measured by the Multigap Resistive Plate Chambers (MRPC) telescopes of the Extreme Energy Events (EEE) Project, spanning a large angular and temporal acceptance through its sparse sites, to test the possibility to search for any anomaly over long runs. After correcting for the time exposure and geometrical acceptance of the telescopes, data were transformed into equatorial coordinates, and equatorial sky maps were obtained from different sites on a preliminary dataset of 110M events in the energy range at sub-TeV scale.

  9. A balloon-borne ionization spectrometer with very large aperture for the detection of high energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Atallah, K.; Modlinger, A.; Schmidt, W. K. H.; Cleghorn, T. F.

    1975-01-01

    A balloon experiment which was used to determine the chemical composition of very high-energy cosmic rays up to and beyond 100 GeV/nucleon is described. The detector had a geometric factor of 1 sq m sr and a total weight on the balloon of 2100 kg. The apparatus consisted of an ionization spectrometer, spark chambers, and plastic scintillation and Cherenkov counters. It was calibrated at CERN up to 24 GeV/c protons and at DESY up to 7 GeV/c electrons. In October 1972 it was flown successfully on a stratospheric balloon.

  10. Collapse–revival of quantum discord and entanglement

    SciTech Connect

    Yan, Xue-Qun Zhang, Bo-Ying

    2014-10-15

    In this paper the correlations dynamics of two atoms in the case of a micromaser-type system is investigated. Our results predict certain quasi-periodic collapse and revival phenomena for quantum discord and entanglement when the field is in Fock state and the two atoms are initially in maximally mixed state, which is a special separable state. Our calculations also show that the oscillations of the time evolution of both quantum discord and entanglement are almost in phase and they both have similar evolution behavior in some time range. The fact reveals the consistency of quantum discord and entanglement in some dynamical aspects. - Highlights: • The correlations dynamics of two atoms in the case of a micromaser-type system is investigated. • A quasi-periodic collapse and revival phenomenon for quantum discord and entanglement is reported. • A phenomenon of correlations revivals different from that of non-Markovian dynamics is revealed. • The oscillations of time evolution of both quantum discord and entanglement are almost in phase in our system. • Quantum discord and entanglement have similar evolution behavior in some time range.

  11. Monoamniotic monochorionic twins discordant for noncompaction cardiomyopathy.

    PubMed

    Ng, Dianna; Bouhlal, Yosr; Ursell, Philip C; Shieh, Joseph T C

    2013-06-01

    Occasionally "identical twins" are phenotypically different, raising the question of zygosity and the issue of genetic versus environmental influences during development. We recently noted monochorionic-monoamniotic twins, one of which had an isolated cardiac abnormality, noncompaction cardiomyopathy, a condition characterized by cardiac ventricular hypertrabeculation. We examined the prenatal course and subsequent pathologic correlation since ventricular morphogenesis may depend on early muscular contraction and blood flow. The monochorionic-monoamniotic female twin pair was initially identified since one fetus presented with increased nuchal translucency. Complete heart block was later identified in the fetus with nuchal translucency who did not survive after delivery. In contrast, the unaffected twin had normal cardiac studies both prenatally and postnatally. Pathologic analysis of the affected twin demonstrated noncompaction of the left ventricle with dysplasia of the aortic and pulmonary valves. Dissection of the cardiac conduction system disclosed atrioventricular bundle fibrosis. Maternal lupus studies, amniocentesis with karyotype, and studies for 22q11.2 were normal. To test for zygosity, we performed multiple STR marker analysis and found that all markers were shared even using nonblood tissues from the affected twin. These studies demonstrate that monozygotic twins that are monochorionic monoamniotic can be discordant for cardiac noncompaction. The results suggest further investigation into the potential roles of pathologic fibrosis, contractility, and blood flow in cardiac ventricle development. PMID:23636980

  12. Total lymphoid irradiation and discordant cardiac xenografts

    SciTech Connect

    Kaplan, E.; Dresdale, A.R.; Diehl, J.T.; Katzen, N.A.; Aronovitz, M.J.; Konstam, M.A.; Payne, D.D.; Cleveland, R.J. )

    1990-01-01

    Total lymphoid irradiation can prolong concordant cardiac xenografts. The effects of total lymphoid irradiation in a discordant xenograft model (guinea pig to rat) were studied with and without adjuvant pharmacologic immunosuppression. Inbred Lewis rats were randomly allocated to one of four groups. Group 1 (n = 6) served as a control group and rats received no immunosuppression. Group 2 (n = 5) received triple-drug therapy that consisted of intraperitoneal azathioprine (2 mg/kg), cyclosporine (20 mg/kg), and methylprednisolone (1 mg/kg) for 1 week before transplantation. Group 3 animals (n = 5) received 15 Gy of total lymphoid irradiation in 12 divided doses over a 3-week period. Group 4 (n = 6) received both triple-drug therapy and total lymphoid irradiation as described for groups 2 and 3. Complement-dependent cytotoxicity assay was performed to determine if a correlation between complement-dependent cytotoxicity and rejection-free interval existed. Rejection was defined as cessation of graft pulsation and was confirmed by histologic test results. Only groups 1 and 2 showed a difference in survival (group 1, 6.9 +/- 1.0 minutes; group 2, 14.2 +/- 2.7 minutes, p = 0.02). Although total lymphoid irradiation did decrease complement-dependent cytotoxicity, linear regression revealed no correlation between complement-dependent cytotoxicity and graft survival (coefficient of correlation, 0.30). Unlike concordant cardiac xenografts, total lymphoid irradiation with or without triple-drug therapy does not prolong graft survival.

  13. Determination of HIV status in African adults with discordant HIV rapid tests

    PubMed Central

    Fogel, Jessica M.; Piwowar-Manning, Estelle; Donohue, Kelsey; Cummings, Vanessa; Marzinke, Mark A.; Clarke, William; Breaud, Autumn; Fiamma, Agnès; Donnell, Deborah; Kulich, Michal; Mbwambo, Jessie K. K.; Richter, Linda; Gray, Glenda; Sweat, Michael; Coates, Thomas J.; Eshleman, Susan H.

    2015-01-01

    Background In resource-limited settings, HIV infection is often diagnosed using two rapid tests. If the results are discordant, a third tie-breaker test is often used to determine HIV status. This study characterized samples with discordant rapid tests and compared different testing strategies for determining HIV status in these cases. Methods Samples were previously collected from 173 African adults in a population-based survey who had discordant rapid test results. Samples were classified as HIV positive or HIV negative using a rigorous testing algorithm that included two fourth-generation tests, a discriminatory test, and two HIV RNA tests. Tie-breaker tests were evaluated, including: rapid tests (one performed in-country), a third-generation enzyme immunoassay (EIA), and two fourth-generation tests. Selected samples were further characterized using additional assays. Results Twenty-nine (16.8%) samples were classified as HIV positive; 24 (82.8%) of those samples had undetectable HIV RNA. Antiretroviral drugs were detected in one sample. Sensitivity was 8.3%–43% for the rapid tests; 24.1% for the third-generation EIA; 95.8% and 96.6% for the fourth-generation tests. Specificity was lower for the fourth-generation tests than the other tests. Accuracy ranged from 79.5–91.3%. Conclusions In this population-based survey, most HIV-infected adults with discordant rapid tests were virally suppressed without antiretroviral drugs. Use of individual assays as tie-breaker tests was not a reliable method for determining HIV status in these individuals. More extensive testing algorithms that use a fourth-generation screening test with a discriminatory test and HIV RNA test are preferable for determining HIV status in these cases. PMID:25835607

  14. Discordance between ambulatory versus clinic blood pressure according to global cardiovascular risk group

    PubMed Central

    Shin, Jinho; Park, Sung Ha; Kim, Ju Han; Ihm, Sang Hyun; Kim, Kwang-il; Kim, Woo Shik; Pyun, Wook Bum; Kim, Yu-Mi; Choi, Sung-il; Kim, Soon Kil

    2015-01-01

    Background/Aims: The detection of white coat hypertension (WCH), treated normalized hypertension, and masked hypertension (MH) is important to improve the effectiveness of hypertension management. However, whether global cardiovascular risk (GCR) profile has any effect on the discordance between ambulatory blood pressure (ABP) and clinic blood pressure (CBP) is unknown. Methods: Data from 1,916 subjects, taken from the Korean Multicenter Registry for ABP monitoring, were grouped according to diagnostic and therapeutic thresholds for CBP and ABP (140/90 and 135/85 mmHg, respectively). GCR was assessed using European Society of Hypertension 2007 guidelines. Results: The mean subject age was 54.1 ± 14.9 years, and 48.9% of patients were female. The discordancy rate between ABP and CBP in the untreated and treated patients was 32.5% and 26.5%, respectively (p = 0.02). The prevalence of WCH or treated normalized hypertension and MH was 14.4% and 16.0%, respectively. Discordance between ABP and CBP was lower in the very high added-risk group compared to the moderate added-risk group (odds ratio [OR], 0.649; 95% confidence interval [CI], 0.487 to 0.863; p = 0.003). The prevalence of WCH or treated normalized hypertension was also lower in the very high added-risk group (OR, 0.451; 95% CI, 0.311 to 0.655). Conclusions: Discordance between ABP and CBP was observed more frequently in untreated subjects than in treated subjects, and less frequently in the very high added-risk group, which was due mainly to the lower prevalence of WCH or treated normalized hypertension. PMID:26354055

  15. [Discordant growth in twin pregnancy--value of Doppler ultrasound].

    PubMed

    Grab, D; Hütter, W; Haller, T; Sterzik, K; Terinde, R

    1993-01-01

    A 4 MHz continuous-wave Doppler device was used to study uterine and umbilical arterial wave forms in 91 pairs of twins between 18th and 40th week of gestation. Biometry and cord localisation were effected by real-time ultrasound. The results of 182 Doppler flow examinations showed that umbilical flow velocimetry may prove relevant for early identification of twin pregnancies with discordant growth. Depending on the interval between examination and delivery, sensitivity and specificity values between 44% and 66%, and 66% and 73%, respectively, were obtained. A high resistance index in umbilical arteries was indicative of intrauterine growth retardation, at a specificity of 69% and a sensitivity of 44%. For uteroplacental as well as foetoplacental flow velocity waveform assessment, singleton reference values may be used, whereas, by reason of its low sensitivity, Doppler flow velocimetry does not lend itself as a primary diagnostic tool for intrauterine growth retardation. It can signal pathologic blood flow profiles, which are often associated with added risks, such as pregnancy-induced hypertension, foetal acidosis and stillbirth and can contribute to early detection of twin pregnancies that require close clinical and cardiotocographic surveillance. PMID:8440457

  16. Underground measurements on secondary cosmic rays

    NASA Technical Reports Server (NTRS)

    Fenton, A. G.; Wilson, C. W.; Fenton, K. B.

    1985-01-01

    Measurements made at the Poatina cosmic ray station (41.8 S 149.9 E, 347 m.w.e.) from August 1983 to July 1984 are summarized. The cosmic ray primary particles responsible for events detected at the station have a median primary energy of 1.2 TeV. The motivation for part of this work came from the reported detection of narrow angle anisotropies in the arrival direction of cosmic rays.

  17. Cosmic strings

    NASA Technical Reports Server (NTRS)

    Bennett, David P.

    1988-01-01

    Cosmic strings are linear topological defects which are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characterisitc microwave background anisotropy. It was recently discovered that details of cosmic string evolution are very differnt from the so-called standard model that was assumed in most of the string-induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain.

  18. Cosmic strings

    SciTech Connect

    Bennett, D.P.

    1988-07-01

    Cosmic strings are linear topological defects that are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation that are based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characteristic microwave background anistropy. It has recently been discovered by F. Bouchet and myself that details of cosmic string evolution are very different from the so-called ''standard model'' that has been assumed in most of the string induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain. 29 refs., 9 figs.

  19. Measurement of the cosmic ray spectrum above 4×1018 eV using inclined events detected with the Pierre Auger Observatory

    DOE PAGESBeta

    Aab, Alexander

    2015-08-26

    A measurement of the cosmic-ray spectrum for energies exceeding 4×1018 eV is presented, which is based on the analysis of showers with zenith angles greater than 60° detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×1018 eV, the ``ankle'', the flux can be described by a power law E–γ with index γ=2.70 ± 0.02 (stat) ± 0.1 (sys) followed by a smooth suppression region. For the energy (Es) at which the spectral flux has fallen to one-half of its extrapolated value inmore » the absence of suppression, we find Es=(5.12±0.25 (stat)+1.0–1.2 (sys))×1019 eV.« less

  20. Large scale distribution of ultra high energy cosmic rays detected at the Pierre Auger Observatory with zenith angles up to 80°

    SciTech Connect

    Aab, Alexander

    2015-03-30

    In this study, we present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60° and 80°. We perform two Rayleigh analyses, one in the right ascension and one in the azimuth angle distributions, that are sensitive to modulations in right ascension and declination, respectively. The largest departure from isotropy appears in the $E\\gt 8$ EeV energy bin, with an amplitude for the first harmonic in right ascension $r_{1}^{\\alpha }=(4.4\\pm 1.0)\\times {{10}^{-2}}$, that has a chance probability $P(\\geqslant r_{1}^{\\alpha })=6.4\\times {{10}^{-5}}$, reinforcing the hint previously reported with vertical events alone.

  1. Large scale distribution of ultra high energy cosmic rays detected at the Pierre Auger Observatory with zenith angles up to 80°

    DOE PAGESBeta

    Aab, Alexander

    2015-03-30

    In this study, we present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60° and 80°. We perform two Rayleigh analyses, one in the right ascension and one in the azimuth angle distributions, that are sensitive to modulations in right ascension and declination, respectively. The largest departure from isotropy appears in themore » $$E\\gt 8$$ EeV energy bin, with an amplitude for the first harmonic in right ascension $$r_{1}^{\\alpha }=(4.4\\pm 1.0)\\times {{10}^{-2}}$$, that has a chance probability $$P(\\geqslant r_{1}^{\\alpha })=6.4\\times {{10}^{-5}}$$, reinforcing the hint previously reported with vertical events alone.« less

  2. Measurement of the cosmic ray spectrum above 4 × 1018 eV using inclined events detected with the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration

    2015-08-01

    A measurement of the cosmic-ray spectrum for energies exceeding 4×1018 eV is presented, which is based on the analysis of showers with zenith angles greater than 60° detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×1018 eV, the ``ankle'', the flux can be described by a power law E-γ with index γ=2.70 ± 0.02 (stat) ± 0.1 (sys) followed by a smooth suppression region. For the energy (Es) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)+1.0-1.2 (sys))×1019 eV.

  3. Tomographic-spectral approach for dark matter detection in the cross-correlation between cosmic shear and diffuse γ-ray emission

    NASA Astrophysics Data System (ADS)

    Camera, S.; Fornasa, M.; Fornengo, N.; Regis, M.

    2015-06-01

    We recently proposed to cross-correlate the diffuse extragalactic γ-ray background with the gravitational lensing signal of cosmic shear. This represents a novel and promising strategy to search for annihilating or decaying particle dark matter (DM) candidates. In the present work, we demonstrate the potential of a tomographic-spectral approach: measuring the cross-correlation in separate bins of redshift and energy significantly improves the sensitivity to a DM signal. Indeed, the technique proposed here takes advantage of the different scaling of the astrophysical and DM components with redshift and, simultaneously of their different energy spectra and different angular extensions. The sensitivity to a particle DM signal is extremely promising even when the DM-induced emission is quite faint. We first quantify the prospects of detecting DM by cross-correlating the Fermi Large Area Telescope (LAT) diffuse γ-ray background with the cosmic shear expected from the Dark Energy Survey. Under the hypothesis of a significant subhalo boost, such a measurement can deliver a 5σ detection of DM, if the DM particle is lighter than 300 GeV and has a thermal annihilation rate. We then forecast the capability of the European Space Agency Euclid satellite (whose launch is planned for 2020), in combination with an hypothetical future γ-ray detector with slightly improved specifications compared to current telescopes. We predict that the cross-correlation of their data will allow a measurement of the DM mass with an uncertainty of a factor of 1.5-2, even for moderate subhalo boosts, for DM masses up to few hundreds of GeV and thermal annihilation rates.

  4. Cosmic Balloons

    ERIC Educational Resources Information Center

    El Abed, Mohamed

    2014-01-01

    A team of French high-school students sent a weather balloon into the upper atmosphere to recreate Viktor Hess's historical experiment that demonstrated the existence of ionizing radiation from the sky--later called cosmic radiation. This discovery earned him the Nobel Prize for Physics in 1936.

  5. Cosmic balloons

    NASA Astrophysics Data System (ADS)

    El Abed, Mohamed

    2014-11-01

    A team of French high-school students sent a weather balloon into the upper atmosphere to recreate Viktor Hess’s historical experiment that demonstrated the existence of ionizing radiation from the sky—later called cosmic radiation. This discovery earned him the Nobel Prize for Physics in 1936.

  6. Coherent scattering of cosmic neutrinos

    NASA Technical Reports Server (NTRS)

    Opher, R.

    1974-01-01

    It is shown that cosmic neutrino scattering can be non-negligible when coherence effects previously neglected are taken into account. The coherent neutrino scattering cross section is derived and the neutrino index of refraction evaluated. As an example of coherent neutrino scattering, a detector using critical reflection is described which in principle can detect the low energy cosmic neutrino background allowed by the measured cosmological red shift.

  7. On the quantum discord of general X states

    NASA Astrophysics Data System (ADS)

    Yurischev, M. A.

    2015-09-01

    Quantum discord Q is a function of density matrix elements. The domain of such a function in the case of two-qubit system with X density matrix may consist of three subdomains at most: two ones where the quantum discord is expressed in closed analytical forms ( and ) and an intermediate subdomain for which, to extract the quantum discord , it is required to solve numerically a one-dimensional minimization problem to find the optimal measurement angle . Hence, the quantum discord is given by a piecewise analytical-numerical formula . It is shown that the boundaries between the subdomains consist of bifurcation points. The subdomains are discovered in the dynamical phase flip channel model, in the anisotropic spin systems at thermal equilibrium, and in the heteronuclear dimers in an external magnetic field. We found that the transitions between subdomain and and ones occur suddenly, but continuously and smoothly, i.e., nonanalyticity is hidden and can be observed in higher order derivatives of discord function.

  8. Steady state quantum discord for circularly accelerated atoms

    NASA Astrophysics Data System (ADS)

    Hu, Jiawei; Yu, Hongwei

    2015-12-01

    We study, in the framework of open quantum systems, the dynamics of quantum entanglement and quantum discord of two mutually independent circularly accelerated two-level atoms in interaction with a bath of fluctuating massless scalar fields in the Minkowski vacuum. We assume that the two atoms rotate synchronically with their separation perpendicular to the rotating plane. The time evolution of the quantum entanglement and quantum discord of the two-atom system is investigated. For a maximally entangled initial state, the entanglement measured by concurrence diminishes to zero within a finite time, while the quantum discord can either decrease monotonically to an asymptotic value or diminish to zero at first and then followed by a revival depending on whether the initial state is antisymmetric or symmetric. When both of the two atoms are initially excited, the generation of quantum entanglement shows a delayed feature, while quantum discord is created immediately. Remarkably, the quantum discord for such a circularly accelerated two-atom system takes a nonvanishing value in the steady state, and this is distinct from what happens in both the linear acceleration case and the case of static atoms immersed in a thermal bath.

  9. PREDICTORS OF DISCORDANCE BETWEEN PERCEIVED AND OBJECTIVE NEIGHBORHOOD DATA

    PubMed Central

    Bailey, Erin J.; Malecki, Kristen C.; Engelman, Corinne D.; Walsh, Matthew C.; Bersch, Andrew J.; Martinez-Donate, Ana P.; Peppard, Paul E.; Nieto, F. Javier

    2014-01-01

    Purpose Pathways by which the social and built environments affect health can be influenced by differences between perception and reality. This discordance is an important for understanding health impacts of the built environment. This study examines associations between perceived and objective measures of 12 non-residential destinations, as well as previously unexplored sociodemographic, lifestyle, neighborhood and urbanicity predictors of discordance. Methods Perceived neighborhood data were collected from participants of the Survey of the Health of Wisconsin (SHOW), using a self-administered questionnaire. Objective data were collected using the Wisconsin Assessment of the Social and Built Environment, an audit-based instrument assessing built environment features around each participant’s residence. Results Overall, there was relatively high agreement, ranging from 50% for proximity to parks to >90% for golf courses. Education, positive neighborhood perceptions, and rurality were negatively associated with discordance. Associations between discordance and depression, disease status, and lifestyle factors appeared to be modified by urbanicity level. Conclusions These data show perceived and objective neighborhood environment data are not interchangeable and the level of discordance is associated with or modified by individual and neighborhood factors, including level of urbanicity. These results suggest that consideration should be given to including both types of measures in future studies. PMID:24467991

  10. Genetic association mapping based on discordant sib pairs: the discordant-alleles test.

    PubMed

    Boehnke, M; Langefeld, C D

    1998-04-01

    Family-based tests of association provide the opportunity to test for an association between a disease and a genetic marker. Such tests avoid false-positive results produced by population stratification, so that evidence for association may be interpreted as evidence for linkage or causation. Several methods that use family-based controls have been proposed, including the haplotype relative risk, the transmission-disequilibrium test, and affected family-based controls. However, because these methods require genotypes on affected individuals and their parents, they are not ideally suited to the study of late-onset diseases. In this paper, we develop several family-based tests of association that use discordant sib pairs (DSPs) in which one sib is affected with a disease and the other sib is not. These tests are based on statistics that compare counts of alleles or genotypes or that test for symmetry in tables of alleles or genotypes. We describe the use of a permutation framework to assess the significance of these statistics. These DSP-based tests provide the same general advantages as parent-offspring trio-based tests, while being applicable to essentially any disease; they may also be tailored to particular hypotheses regarding the genetic model. We compare the statistical properties of our DSP-based tests by computer simulation and illustrate their use with an application to Alzheimer disease and the apolipoprotein E polymorphism. Our results suggest that the discordant-alleles test, which compares the numbers of nonmatching alleles in DSPs, is the most powerful of the tests we considered, for a wide class of disease models and marker types. Finally, we discuss advantages and disadvantages of the DSP design for genetic association mapping. PMID:9529345

  11. Discordant diagnostic results due to a hepatitis B virus T123A HBsAg mutant.

    PubMed

    Osiowy, Carla; Kowalec, Kaarina; Giles, Elizabeth

    2016-07-01

    HBsAg immunoassay results are occasionally discordant among primary and confirmatory assays or with respect to other markers of HBV infection. Such discordance has been observed repeatedly in Canada with samples having a mutation at HBsAg codon 123 (sT123A). Detection of recombinant expressed HBsAg protein having either sT123 or sA123 was evaluated with one manual and six automated HBsAg immunoassays. The recombinant mutant HBsAg was non-reactive by Abbott AxSYM, while the Abbott ARCHITECT Quantitative and Qualitative II, ADVIA Centaur, and VITROS ECi detection signal was reduced compared with the wild-type protein, approaching the assay cut-off for certain assays, dependent upon the level of protein. The Roche Elecsys and manual immunoassays detected both wild-type and mutant proteins comparatively. The sT123A mutation leads to loss of detection by immunoassays commonly used in Canadian diagnostic laboratories, which may produce misleading results and diagnoses. PMID:27133305

  12. CARS: The CFHTLS-Archive-Research Survey. III. First detection of cosmic magnification in samples of normal high-z galaxies

    NASA Astrophysics Data System (ADS)

    Hildebrandt, H.; van Waerbeke, L.; Erben, T.

    2009-11-01

    Context: Weak gravitational lensing (WL) has been established as one of the most promising probes of cosmology. So far, most studies have exploited the shear effect of WL leading to coherent distortions of galaxy shapes. WL also introduces coherent magnifications. Aims: We want to detect this cosmic magnification effect (coherent magnification by the large-scale structure of the Universe) in large samples of high-redshift galaxies selected from the Deep part of the Canada-France-Hawaii-Telescope Legacy Survey (CFHTLS). Methods: Lyman-break galaxies (LBGs) selected by their colours to be at z= 2.5-5, are used as a background sample and are cross-correlated to foreground lens galaxies, which are selected by accurate photometric redshifts (photo-z's). The signals of LBGs in different magnitude bins are compared to predictions from WL theory. An optimally weighted correlation function is estimated by taking into account the slope of external LBG luminosity functions. Results: For the first time, we detect cosmic magnification in a sample of normal galaxies. These background sources are also the ones with the highest redshifts so far used for WL measurements. The amplitude and angular dependence of the cross-correlation functions agree well with theoretical expectations and the lensing signal is detected with high significance. Avoiding low-redshift ranges in the foreground samples which might contaminate the LBG samples we can make a measurement that is virtually free of systematics. In particular, we detect an anti-correlation between faint LBGs and foreground galaxies which cannot be caused by redshift overlap. Conclusions: Cross-correlating LBGs (and in future also photo-z selected galaxies) as background sources to well understood foreground samples based on accurate photo-z's will become a powerful cosmological probe in future large imaging surveys. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada

  13. Nineteenth International Cosmic Ray Conference. OG Sessions, Volume 3

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume addresses cosmic ray sources and acceleration, interstellar propagation and nuclear interactions, and detection techniques and instrumentation.

  14. Cosmic Dawn Science Interest Group

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; Cosmic Origins Program Analysis Group

    2016-01-01

    Cosmic Dawn was identified as one of the three science objectives for this decade in the _New Worlds, New Horizons_ Decadal report, and it will likely continue to be a research focus well into the next decade. Cosmic Dawn refers to the interval during which the Universe transitioned from a nearly completely neutral state back to a nearly fully ionized state and includes the time during which the first stars formed and the first galaxies assembled.The Cosmic Dawn Science Interest Group (SIG) was formed recently under the auspices of the Cosmic Origins Program Analysis Group (COPAG). The Cosmic Dawn SIG focusses on the science cases, observations, and technology development needed to address the "great mystery" of Cosmic Origins. The reach of this SIG is broad, involving the nature of the first stars and the detectability of gamma-ray bursts at high redshifts, the extent to which the first galaxies and first supermassive black holes grew together, and the technology required to pursue these questions.For further information, consult the Cosmic Dawn SIG Web site http://cd-sig.jpl.nasa.gov/ and join the mailing list (by contacting the author).Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  15. Autocorrelation Analysis Combined with a Wavelet Transform Method to Detect and Remove Cosmic Rays in a Single Raman Spectrum.

    PubMed

    Maury, Augusto; Revilla, Reynier I

    2015-08-01

    Cosmic rays (CRs) occasionally affect charge-coupled device (CCD) detectors, introducing large spikes with very narrow bandwidth in the spectrum. These CR features can distort the chemical information expressed by the spectra. Consequently, we propose here an algorithm to identify and remove significant spikes in a single Raman spectrum. An autocorrelation analysis is first carried out to accentuate the CRs feature as outliers. Subsequently, with an adequate selection of the threshold, a discrete wavelet transform filter is used to identify CR spikes. Identified data points are then replaced by interpolated values using the weighted-average interpolation technique. This approach only modifies the data in a close vicinity of the CRs. Additionally, robust wavelet transform parameters are proposed (a desirable property for automation) after optimizing them with the application of the method in a great number of spectra. However, this algorithm, as well as all the single-spectrum analysis procedures, is limited to the cases in which CRs have much narrower bandwidth than the Raman bands. This might not be the case when low-resolution Raman instruments are used. PMID:26163458

  16. The Lateral Trigger Probability function for the ultra-high energy cosmic ray showers detected by the Pierre Auger Observatory

    SciTech Connect

    Abreu, P.; Aglietta, M.; Ahn, E.J.; Albuquerque, I.F.M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; /INFN, Naples /Naples U. /Nijmegen U., IMAPP

    2011-01-01

    In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 10{sup 17} and 10{sup 19} eV and zenith angles up to 65{sup o}. A parametrization combining a step function with an exponential is found to reproduce them very well in the considered range of energies and zenith angles. The LTP functions can also be obtained from data using events simultaneously observed by the fluorescence and the surface detector of the Pierre Auger Observatory (hybrid events). We validate the Monte Carlo results showing how LTP functions from data are in good agreement with simulations.

  17. [Discordance analysis of monozygotic twin pairs. Case study on psychogenesis].

    PubMed

    Schepank, H

    1975-01-01

    We performed a discordance-analysis on six pairs of identical twins. They were selected from a large series of neurotic patients who came to visit one of two psychoanalytic outpatient departments. The results of this elaborate case studies are discussed here. The classical twin methods usually will help to clear the question of naturenurture-relation. Contrary to this the aim of discordance-analysis is to proof specific environmental factors which influence development of neurotic illness. The application of this method is rarely possible, because several conditions have to be fullfilled: The patients have to be identical twins; they must be available and willing to undergo psychoanalytic interview; apart from this they must present discordant neurotic complaints.--By a very exact analysis of the early childhood influences we can draw conclusions about psychogenesis of neutotic illness in later life. This method owns extraordinary advantages because of the existence of a control person with identical genetic outfit. PMID:1231414

  18. Quantum discord and entanglement in grover search algorithm

    NASA Astrophysics Data System (ADS)

    Ye, Bin; Zhang, Tingzhong; Qiu, Liang; Wang, Xuesong

    2016-06-01

    Imperfections and noise in realistic quantum computers may seriously affect the accuracy of quantum algorithms. In this article we explore the impact of static imperfections on quantum entanglement as well as non-entangled quantum correlations in Grover's search algorithm. Using the metrics of concurrence and geometric quantum discord, we show that both the evolution of entanglement and quantum discord in Grover algorithm can be restrained with the increasing strength of static imperfections. For very weak imperfections, the quantum entanglement and discord exhibit periodic behavior, while the periodicity will most certainly be destroyed with stronger imperfections. Moreover, entanglement sudden death may occur when the strength of static imperfections is greater than a certain threshold.

  19. Height discordance in monozygotic females is not attributable to discordant inactivation of X-linked stature determining genes.

    PubMed

    Healey, S C; Kirk, K M; Hyland, V J; Munns, C F; Henders, A K; Batch, J A; Heath, A C; Martin, N G; Glass, I A

    2001-02-01

    We tested the hypothesis that X-linked genes determining stature which are subject to skewed or non-random X-inactivation can account for discordance in height in monozygotic female twins. Height discordant female monozygotic adult twins (20 pairs) were identified from the Australian Twin Registry, employing the selection criteria of proven monozygosity and a measured height discordance of at least 5 cm. Differential X-inactivation was examined in genomic DNA extracted from peripheral lymphocytes by estimating differential methylation of alleles at the polymorphic CAG triplet repeat of the Androgen receptor gene (XAR). There were 17/20 MZ pairs heterozygous at this locus and informative for analysis. Of these, 10/17 both had random X-inactivation, 5/17 showed identical X-inactivation patterns of non random inactivation and 2/17 (12%) showed discordant X-inactivation. There was no relationship between inactivation patterns and self-report chorionicity. We conclude that non-random X-inactivation does not appear to be a major contributor to intra-pair height discordance in female MZ twins. PMID:11665320

  20. Efficacy of Stochastic Vestibular Stimulation to Improve Locomotor Performance in a Discordant Sensory Environment

    NASA Technical Reports Server (NTRS)

    Temple, D. R.; De Dios, Y. E.; Layne, C. S.; Bloomberg, J. J.; Mulavara, A. P.

    2016-01-01

    Astronauts exposed to microgravity face sensorimotor challenges incurred when readapting to a gravitational environment. Sensorimotor Adaptability (SA) training has been proposed as a countermeasure to improve locomotor performance during re-adaptation, and it is suggested that the benefits of SA training may be further enhanced by improving detection of weak sensory signals via mechanisms such as stochastic resonance when a non-zero level of stochastic white noise based electrical stimulation is applied to the vestibular system (stochastic vestibular stimulation, SVS). The purpose of this study was to test the efficacy of using SVS to improve short-term adaptation in a sensory discordant environment during performance of a locomotor task.

  1. A cosmic microwave background feature consistent with a cosmic texture.

    PubMed

    Cruz, M; Turok, N; Vielva, P; Martínez-González, E; Hobson, M

    2007-12-01

    The Cosmic Microwave Background provides our most ancient image of the universe and our best tool for studying its early evolution. Theories of high-energy physics predict the formation of various types of topological defects in the very early universe, including cosmic texture, which would generate hot and cold spots in the Cosmic Microwave Background. We show through a Bayesian statistical analysis that the most prominent 5 degrees -radius cold spot observed in all-sky images, which is otherwise hard to explain, is compatible with having being caused by a texture. From this model, we constrain the fundamental symmetry-breaking energy scale to be (0) approximately 8.7 x 10(15) gigaelectron volts. If confirmed, this detection of a cosmic defect will probe physics at energies exceeding any conceivable terrestrial experiment. PMID:17962521

  2. Sexual discordance and sexual partnering among heterosexual women.

    PubMed

    Nield, Jennifer; Magnusson, Brianna; Brooks, Christopher; Chapman, Derek; Lapane, Kate L

    2015-05-01

    This study examined characteristics of self-identified heterosexual women who were concordant or discordant in their sexual behavior and the association of discordance and sexual partnering among those aged 15-44 years from the 2006-2010 National Survey of Family Growth (n = 7,353). Sexual concordance was defined as reporting a heterosexual identity and no female partners in the past year; discordance was reporting a heterosexual identity and having at least one female partner in the past year. Sexual partnering was defined as being concurrent, serially monogamous or monogamous with a male partner in the previous year. Polytomous logistic regression models evaluated the association between sexual discordance and sexual partnering. Among self-identified heterosexual, sexually active women, 11.2 % reported ever having had a same sex partner. Heterosexually discordant women who had both male and female partners in the previous year were 5.5 times as likely to report having a concurrent relationship (95 % CI 2.77-11.09) and 2.4 times as likely to report engaging in serially monogamous relationships (95 % CI 1.19-4.97) with male partners. Discordance between heterosexual identity and same sex behavior is a factor in risky behaviors. Women who have sex with women and men may act as bridges for the transmission of STDs, particularly to their female partners. Sexual education should include information inclusive of non-heteronormative behaviors and identities to provide sexual minorities with the tools and information they need. Clinical guidelines should ensure that all women are offered counseling and screening for reproductive and sexual health. PMID:24718674

  3. Cosmic jets

    NASA Technical Reports Server (NTRS)

    Rees, M. J.

    1986-01-01

    The evidence that active galactic nuclei produce collimated plasma jets is summarised. The strongest radio galaxies are probably energised by relativistic plasma jets generated by spinning black holes interacting with magnetic fields attached to infalling matter. Such objects can produce e(+)-e(-) plasma, and may be relevant to the acceleration of the highest-energy cosmic ray primaries. Small-scale counterparts of the jet phenomenon within our own galaxy are briefly reviewed.

  4. Cosmic Topology

    NASA Astrophysics Data System (ADS)

    Luminet, Jean-Pierre

    2015-08-01

    Cosmic Topology is the name given to the study of the overall shape of the universe, which involves both global topological features and more local geometrical properties such as curvature. Whether space is finite or infinite, simply-connected or multi-connected like a torus, smaller or greater than the portion of the universe that we can directly observe, are questions that refer to topology rather than curvature. A striking feature of some relativistic, multi-connected "small" universe models is to create multiples images of faraway cosmic sources. While the most recent cosmological data fit the simplest model of a zero-curvature, infinite space model, they are also consistent with compact topologies of the three homogeneous and isotropic geometries of constant curvature, such as, for instance, the spherical Poincaré Dodecahedral Space, the flat hypertorus or the hyperbolic Picard horn. After a "dark age" period, the field of Cosmic Topology has recently become one of the major concerns in cosmology, not only for theorists but also for observational astronomers, leaving open a number of unsolved issues.

  5. Quantification of quantum discord in a antiferromagnetic Heisenberg compound

    SciTech Connect

    Singh, H. Chakraborty, T. Mitra, C.

    2014-04-24

    An experimental quantification of concurrence and quantum discord from heat capacity (C{sub p}) measurement performed over a solid state system has been reported. In this work, thermodynamic measurements were performed on copper nitrate (CN, Cu(NO{sub 3}){sub 2}⋅2.5H{sub 2}O) single crystals which is an alternating antiferromagnet Heisenberg spin 1/2 system. CN being a weak dimerized antiferromagnet is an ideal system to investigate correlations between spins. The theoretical expressions were used to obtain concurrence and quantum discord curves as a function of temperature from heat capacity data of a real macroscopic system, CN.

  6. Marital Discord and Subsequent Marital Dissolution: Perceptions of Nepalese Wives and Husbands

    PubMed Central

    Jennings, Elyse

    2014-01-01

    This study examines the influence of marital discord on separation and divorce in a rural South Asian setting. We know little about how marital discord influences marital outcomes in settings with low personal freedom and limited access to independence. Using a sample of 674 couples from the Chitwan Valley Family Study in Nepal, this paper investigates the impact of marital discord on the rate of marital dissolution, and the extent to which wives’ and husbands’ perceptions of discord influence dissolution. Results reveal that (a) spouses’ perceptions of marital discord increase the rate of marital dissolution, (b) both husbands’ and wives’ perceptions of discord have an important influence, and (c) the influence of wives’ perceptions of discord is independent of their husbands’ perceptions. Overall, these findings suggest that both spouses’ perceptions of discord are important for marital outcomes, even in settings where the costs of marital dissolution are relatively high. PMID:25484450

  7. Proton MRS in twin pairs discordant for schizophrenia.

    PubMed

    Lutkenhoff, E S; van Erp, T G; Thomas, M A; Therman, S; Manninen, M; Huttunen, M O; Kaprio, J; Lönnqvist, J; O'Neill, J; Cannon, T D

    2010-03-01

    Proton magnetic resonance spectroscopy ((1)H MRS) neurometabolite abnormalities have been detected widely in subjects with and at risk for schizophrenia. We hypothesized that such abnormalities would be present both in patients with schizophrenia and in their unaffected twin siblings. We acquired magnetic resonance spectra (TR/TE=3000/30 ms) at voxels in the mesial prefrontal gray matter, left prefrontal white matter and left hippocampus in 14 twin pairs discordant for schizophrenia (2 monozygotic, 12 dizygotic), 13 healthy twin pairs (4 monozygotic, 9 dizygotic) and 1 additional unaffected co-twin of a schizophrenia proband. In the mesial prefrontal gray matter voxel, N-acetylaspartate (NAA), creatine+phosphocreatine (Cr), glycerophosphocholine+phosphocholine (Cho) and myo-inositol (mI) did not differ significantly between patients with schizophrenia, their unaffected co-twins or healthy controls. However, glutamate (Glu) was significantly lower in patients with schizophrenia (31%, percent difference) and unaffected co-twins (21%) than in healthy controls (collapsed across twin pairs). In the left hippocampus voxel, levels of NAA (23%), Cr (22%) and Cho (36%) were higher in schizophrenia patients compared with controls. Hippocampal NAA (25%), Cr (22%) and Cho (37%) were also significantly higher in patients than in their unaffected co-twins. Region-to-region differences in metabolite levels were also notable within all three diagnosis groups. These findings suggest that (1)H MRS neurometabolite abnormalities are present not only in patients with schizophrenia, but also in their unaffected co-twins. Thus, reduced mesial prefrontal cortical Glu and elevated hippocampal NAA, Cr and Cho may represent trait markers of schizophrenia risk and, when exacerbated, state markers of schizophrenia itself. PMID:18645571

  8. Comparison of Genomic and Epigenomic Expression in Monozygotic Twins Discordant for Rett Syndrome

    PubMed Central

    Kunio, Miyake; Yang, Chunshu; Minakuchi, Yohei; Ohori, Kenta; Soutome, Masaki; Hirasawa, Takae; Kazuki, Yasuhiro; Adachi, Noboru; Suzuki, Seiko; Itoh, Masayuki; Goto, Yu-ichi; Andoh, Tomoko; Kurosawa, Hiroshi; Akamatsu, Wado; Ohyama, Manabu; Okano, Hideyuki; Oshimura, Mitsuo; Sasaki, Masayuki; Toyoda, Atsushi; Kubota, Takeo

    2013-01-01

    Monozygotic (identical) twins have been widely used in genetic studies to determine the relative contributions of heredity and the environment in human diseases. Discordance in disease manifestation between affected monozygotic twins has been attributed to either environmental factors or different patterns of X chromosome inactivation (XCI). However, recent studies have identified genetic and epigenetic differences between monozygotic twins, thereby challenging the accepted experimental model for distinguishing the effects of nature and nurture. Here, we report the genomic and epigenomic sequences in skin fibroblasts of a discordant monozygotic twin pair with Rett syndrome, an X-linked neurodevelopmental disorder characterized by autistic features, epileptic seizures, gait ataxia and stereotypical hand movements. The twins shared the same de novo mutation in exon 4 of the MECP2 gene (G269AfsX288), which was paternal in origin and occurred during spermatogenesis. The XCI patterns in the twins did not differ in lymphocytes, skin fibroblasts, and hair cells (which originate from ectoderm as does neuronal tissue). No reproducible differences were detected between the twins in single nucleotide polymorphisms (SNPs), insertion-deletion polymorphisms (indels), or copy number variations. Differences in DNA methylation between the twins were detected in fibroblasts in the upstream regions of genes involved in brain function and skeletal tissues such as Mohawk Homeobox (MKX), Brain-type Creatine Kinase (CKB), and FYN Tyrosine Kinase Protooncogene (FYN). The level of methylation in these upstream regions was inversely correlated with the level of gene expression. Thus, differences in DNA methylation patterns likely underlie the discordance in Rett phenotypes between the twins. PMID:23805272

  9. Comparison of Genomic and Epigenomic Expression in Monozygotic Twins Discordant for Rett Syndrome.

    PubMed

    Miyake, Kunio; Yang, Chunshu; Minakuchi, Yohei; Ohori, Kenta; Soutome, Masaki; Hirasawa, Takae; Kazuki, Yasuhiro; Adachi, Noboru; Suzuki, Seiko; Itoh, Masayuki; Goto, Yu-Ichi; Andoh, Tomoko; Kurosawa, Hiroshi; Oshimura, Mitsuo; Sasaki, Masayuki; Toyoda, Atsushi; Kubota, Takeo

    2013-01-01

    Monozygotic (identical) twins have been widely used in genetic studies to determine the relative contributions of heredity and the environment in human diseases. Discordance in disease manifestation between affected monozygotic twins has been attributed to either environmental factors or different patterns of X chromosome inactivation (XCI). However, recent studies have identified genetic and epigenetic differences between monozygotic twins, thereby challenging the accepted experimental model for distinguishing the effects of nature and nurture. Here, we report the genomic and epigenomic sequences in skin fibroblasts of a discordant monozygotic twin pair with Rett syndrome, an X-linked neurodevelopmental disorder characterized by autistic features, epileptic seizures, gait ataxia and stereotypical hand movements. The twins shared the same de novo mutation in exon 4 of the MECP2 gene (G269AfsX288), which was paternal in origin and occurred during spermatogenesis. The XCI patterns in the twins did not differ in lymphocytes, skin fibroblasts, and hair cells (which originate from ectoderm as does neuronal tissue). No reproducible differences were detected between the twins in single nucleotide polymorphisms (SNPs), insertion-deletion polymorphisms (indels), or copy number variations. Differences in DNA methylation between the twins were detected in fibroblasts in the upstream regions of genes involved in brain function and skeletal tissues such as Mohawk Homeobox (MKX), Brain-type Creatine Kinase (CKB), and FYN Tyrosine Kinase Protooncogene (FYN). The level of methylation in these upstream regions was inversely correlated with the level of gene expression. Thus, differences in DNA methylation patterns likely underlie the discordance in Rett phenotypes between the twins. PMID:23805272

  10. High-Energy X-Ray Detection of G359.89-0.08 (SGR A-E): Magnetic Flux Tube Emission Powered by Cosmic Rays?

    NASA Technical Reports Server (NTRS)

    Zhang, Shuo; Hailey, Charles J.; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Gotthelf, Eric V.; Harrison, Fiona A.; Mori, Kaya; Nynka, Melania; Stern, Daniel; Tomsick, John A; Zhang, Will

    2014-01-01

    We report the first detection of high-energy X-ray (E (is) greater than 10 keV) emission from the Galactic center non-thermal filament G359.89-0.08 (Sgr A-E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to approximately 50 keV during a NuSTAR Galactic center monitoring campaign. The featureless power-law spectrum with a photon index gamma approximately equals 2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is F(sub X) = (2.0 +/- 0.1) × 10(exp -12)erg cm(-2) s(-1) , corresponding to an unabsorbed X-ray luminosity L(sub X) = (2.6+/-0.8)×10(exp 34) erg s(-1) assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A-E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to (is) approximately 100 kyr) with low surface brightness and radii up to (is) approximately 30 pc or MCs illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.

  11. Cosmic impacts, cosmic catastrophes. II

    SciTech Connect

    Chapman, C.R.; Morrison, D. NASA, Ames Research Center, Moffett Field, CA )

    1990-02-01

    The role of extraterrestrial impacts in shaping the earth's history is discussed, arguing that cosmic impacts represent just one example of a general shift in thinking that has made the idea of catastrophes respectable in science. The origins of this view are presented and current catastrophic theory is discussed in the context of modern debate on the geological formation of the earth. Various conflicting theories are reviewed and prominent participants in the ongoing scientific controversy concerning catastrophism are introduced.

  12. Cosmic impacts, cosmic catastrophes. II

    NASA Technical Reports Server (NTRS)

    Chapman, Clark R.; Morrison, David

    1990-01-01

    The role of extraterrestrial impacts in shaping the earth's history is discussed, arguing that cosmic impacts represent just one example of a general shift in thinking that has made the idea of catastrophes respectable in science. The origins of this view are presented and current catastrophic theory is discussed in the context of modern debate on the geological formation of the earth. Various conflicting theories are reviewed and prominent participants in the ongoing scientific controversy concerning catastrophism are introduced.

  13. Carl Sagan's Cosmic Connection

    NASA Astrophysics Data System (ADS)

    Sagan, Carl; Agel, Jerome

    2000-08-01

    Foreword Freeman Dyson; Personal reflections Ann Druyan; Preface; Part I. Cosmic Perspective: 1. A transitional animal; 2. The Unicorn of Cetus; 3. A message from earth; 4. A message to earth; 5. Experiments in utopias; 6. Chauvinism; 7. Space exploration as a human enterprise I. The scientific interest; 8. Space exploration as a human enterprise II. The public interest; 9. Space exploration as a human enterprise III. The historical interest; Part II. The Solar System: 10. On teaching the first grade; 11. 'The ancient and legendary Gods of old'; 12. The Venus detective story; 13. Venus is hell; 14. Science and 'intelligence'; 15. The moons of Barsoom; 16. The mountains of Mars I. Observations from earth; 17. The mountains of Mars II. Observations from space; 18. The canals of Mars; 19. The lost pictures of Mars; 20. The Ice Age and the cauldron; 21. Beginnings and ends of the Earth; 22. Terraforming the plants; 23. The exploration and utlization of the solar system; Part III. Beyond the Solar System: 24. Some of my best friends are dolphins; 25. 'Hello, central casting? Send me twenty extraterrestrials'; 26. The cosmic connection; 27. Extraterrestrial life: an idea whose time has come; 28. Has the Earth been visited?; 29. A search strategy for detecting extraterrestrial intelligence; 30. If we succeed 31. Cables, drums, and seashells; 32. The night freight to the stars; 33. Astroengineering; 34. Twenty questions: a classification of cosmic civilisations; 35. Galactic cultural exchanges; 36. A passage to elsewhere; 37. Starfolk I. A Fable; 38. Starfolk II. A future; 39. Starfolk III. The cosmic Cheshire cats; Epilog David Morrison; Index.

  14. Interparental Conflict and the Children of Discord and Divorce.

    ERIC Educational Resources Information Center

    Emery, Robert E.

    1982-01-01

    Data on the relation between marital turmoil (i.e., discord and divorce) and behavior problems in children are reviewed. Several parameters of this relation are outlined, including type of marital turmoil, form of the child's behavioral response, sex differences, age effects, parental buffering, and effects of parental psychopathology. (Author/MP)

  15. Diffuse fluxes of cosmic high energy neutrinos

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    Production spectra of high-energy neutrinos from galactic cosmic ray interactions with interstellar gas and extragalactic ultrahigh energy cosmic-ray interactions with microwave black-body photons are presented and discussed. These production processes involve the decay of charged pions and are thus related to the production of cosmic gamma-rays from the decay of neutral pions. Estimates of the neutrino fluxes from various diffuse cosmic sources are then made and the reasons fro significant differences with previous estimates are discussed. Predicted event rates for a DUMAND type detection system are significantly lower than early estimates indicated.

  16. Ionisation as indicator for cosmic ray acceleration

    NASA Astrophysics Data System (ADS)

    Schuppan, F.; Röken, C.; Fedrau, N.; Becker Tjus, J.

    2014-06-01

    Astrospheres and wind bubbles of massive stars are believed to be sources of cosmic rays with energies E ≲ 1 TeV. These particles are not directly detectable, but their impact on surrounding matter, in particular ionisation of atomic and molecular hydrogen, can lead to observable signatures. A correlation study of both gamma ray emission, induced by proton-proton interactions of cosmic ray protons with kinetic energies Ep ≥ 280 MeV with ambient hydrogen, and ionisation induced by cosmic ray protons of kinetic energies Ep < 280 MeV can be performed in order to study potential sources of (sub)TeV cosmic rays.

  17. Discordant sex in monozygotic XXY/XX twins: a case report.

    PubMed

    Tachon, G; Lefort, G; Puechberty, J; Schneider, A; Jeandel, C; Boulot, P; Prodhomme, O; Meyer, P; Taviaux, S; Touitou, I; Pellestor, F; Geneviève, D; Gatinois, V

    2014-12-01

    We report a case of discordant phenotypic sex in monozygotic twins mosaic 47,XXY/46,XX: monozygotic heterokaryotypic twins. The twins presented with cognitive and comprehension delay, behavioural and language disorders, all symptoms frequently reported in Klinefelter syndrome. Molecular zygosity analysis with several markers confirmed that the twins are in effect monozygotic (MZ). Array comparative genomic hybridization found no evidence for the implication of copy number variation in the phenotypes. Ultrasound scans of the reproductive organs revealed no abnormalities. Endocrine tests showed a low testosterone level in Twin 1 (male phenotype) and a low gonadotrophin level in Twin 2 (female phenotype) which, combined with the results from ultrasound examination, provided useful information for potentially predicting the future fertility potential of the twins. Blood karyotypes revealed the presence of a normal 46,XX cell line and an aneuploïd 47,XXY cell line in both patients. Examination of the chromosome constitutions of various tissues such as blood, buccal smear and urinary sediment not surprisingly showed different proportions for the 46,XX and 47,XXY cell lines, which most likely explains the discordant phenotypic sex and mild Klinefelter features. The most plausible underlying biological mechanism is a post-zygotic loss of the Y chromosome in an initially 47,XXY zygote. This would result in an embryo with both 46,XX and 47,XXY cells lines which could subsequently divide into two monozygotic embryos through a twinning process. The two cell lines would then be distributed differently between tissues which could result in phenotypic discordances in the twins. These observations emphasize the importance of regular paediatric evaluations to determine the optimal timing for fertility preservation measures and to detect new Klinefelter features which could appear throughout childhood in the two subjects. PMID:25336706

  18. Cosmic strings and superconducting cosmic strings

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund

    1988-01-01

    The possible consequences of forming cosmic strings and superconducting cosmic strings in the early universe are discussed. Lecture 1 describes the group theoretic reasons for and the field theoretic reasons why cosmic strings can form in spontaneously broken gauge theories. Lecture 2 discusses the accretion of matter onto string loops, emphasizing the scenario with a cold dark matter dominated universe. In lecture 3 superconducting cosmic strings are discussed, as is a mechanism which leads to the formation of structure from such strings.

  19. FAMOUS - A prototype silicon photomultiplier telescope for the fluorescence detection of ultra-high-energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Stephan, Maurice; Assis, Pedro; Brogueira, Pedro; Ferreira, Miguel; Hebbeker, Thomas; Lauscher, Markus; Mendes, Luís; Meurer, Christine; Middendorf, Lukas; Pimenta, Mário; Schumacher, Johannes

    2013-06-01

    Due to their high photon detection efficiency, silicon photomultipliers (SiPMs) promise to increase the sensitivity of today's fluorescence telescopes which use photomultiplier tubes to detect light originating from extensive air showers. On the other hand, drawbacks like a small sensitive area, a strong temperature dependence, a high noise rate and a reduced dynamic range have to be managed. We present plans for FAMOUS, a prototype fluorescence telescope using SiPMs and a special light collecting optical system of Winston cones to increase the sensitive area. The prototype will make use of a Fresnel lens. For several different types of SiPMs we measured their characteristics. Moreover, we will present the R&D in compact modular electronics using photon counting techniques. An evaluation of the performance of the optical telescope design is performed by means of a full detector simulation.

  20. Measurement of the cosmic ray spectrum above 4×1018 eV using inclined events detected with the Pierre Auger Observatory

    SciTech Connect

    Aab, Alexander

    2015-08-26

    A measurement of the cosmic-ray spectrum for energies exceeding 4×1018 eV is presented, which is based on the analysis of showers with zenith angles greater than 60° detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×1018 eV, the ``ankle'', the flux can be described by a power law E–γ with index γ=2.70 ± 0.02 (stat) ± 0.1 (sys) followed by a smooth suppression region. For the energy (Es) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)+1.0–1.2 (sys))×1019 eV.

  1. Cosmic Rays in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  2. Comparison of the attempts of quantum discord and quantum entanglement to capture quantum correlations

    SciTech Connect

    Qasimi, Asma Al-; James, Daniel F. V.

    2011-03-15

    Measurements of quantum systems disturb their states. To quantify this nonclassical characteristic, Zurek and Ollivier [Phys. Rev. Lett. 88, 017901 (2001)] introduced the quantum discord, a quantum correlation that can be nonzero even when entanglement in the system is zero. Discord has aroused great interest as a resource that is more robust against the effects of decoherence and offers the exponential speed-up of certain computational algorithms. Here, we study general two-level bipartite systems and give general results on the relationship between discord, entanglement, and linear entropy. We also identify the states for which discord takes a maximal value for a given entropy or entanglement, thus placing strong bounds on entanglement-discord and entropy-discord relations. We find out that although discord and entanglement are identical for pure states, they differ when generalized to mixed states as a result of the difference in the method of generalization.

  3. High-energy X-ray detection of G359.89–0.08 (SGR A–E): Magnetic flux tube emission powered by cosmic rays?

    SciTech Connect

    Zhang, Shuo; Hailey, Charles J.; Gotthelf, Eric V.; Mori, Kaya; Nynka, Melania; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Tomsick, John A.; Christensen, Finn E.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.

    2014-03-20

    We report the first detection of high-energy X-ray (E > 10 keV) emission from the Galactic center non-thermal filament G359.89–0.08 (Sgr A–E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to ∼50 keV during a NuSTAR Galactic center monitoring campaign. The featureless power-law spectrum with a photon index Γ ≈ 2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is F{sub X} = (2.0 ± 0.1) × 10{sup –12} erg cm{sup –2} s{sup –1}, corresponding to an unabsorbed X-ray luminosity L{sub X} = (2.6 ± 0.8) × 10{sup 34} erg s{sup –1} assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A–E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to ∼100 kyr) with low surface brightness and radii up to ∼30 pc or MCs illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.

  4. Mitochondrial DNA Variation and Heteroplasmy in Monozygotic Twins Clinically Discordant for Multiple Sclerosis.

    PubMed

    Souren, Nicole Y P; Gerdes, Lisa A; Kümpfel, Tania; Lutsik, Pavlo; Klopstock, Thomas; Hohlfeld, Reinhard; Walter, Jörn

    2016-08-01

    We examined the debated link between mitochondrial DNA (mtDNA) variation and multiple sclerosis (MS) using 49 monozygotic (MZ) twin pairs clinically discordant for MS, which enables to associate de novo mtDNA variants, skewed heteroplasmy, and mtDNA copy number with MS manifestation. Ultra-deep sequencing of blood-derived mtDNA revealed 25 heteroplasmic variants with potentially pathogenic features in 18 pairs. All variants were pair-specific and had low and/or similar heteroplasmy levels in both cotwins. In one pair, a confirmed pathogenic variant (m.11778G>A, heteroplasmy ∼50%) associated with Leber hereditary optic neuropathy was detected. Detailed diagnostic investigation revealed subclinical MS signs in the prior nondiseased cotwin. Moreover, neither mtDNA deletions nor copy-number variations were involved. Furthermore, the majority of heteroplasmic variants were shared among MZ twins and exhibited more similar heteroplasmy levels in the same tissue of MZ twins as compared with different tissues of the same individual. Heteroplasmy levels were also more similar within MZ twins compared with nonidentical siblings. Our analysis excludes mtDNA variation as a major driver of the discordant clinical manifestation of MS in MZ twins, and provides valuable insights into the occurrence and distribution of heteroplasmic variants within MZ twins and nonidentical siblings, and across different tissues. PMID:27119776

  5. [Prenatal diagnosis of five cases of monochorionic-diamniotic twins discordant for karyotype analysis].

    PubMed

    Wu, Jianzhu; Zhou, Yi; Lin, Shaobin; Chen, Baojiang; Xie, Yingjun

    2015-10-01

    OBJECTIVE To explore the mechanism and diagnostic method for monochorionic-diamniotic twins discordant for karyotype analysis. METHODS Dual amniocentesis was performed on five pairs of monochorionic-diamniotic twins, which all consisted of a normal twin and one with multiple malformations revealed by ultrasound. Karyotype analysis was performed on amniocytes derived from each of the twins. Zygosity was also determined with DNA extracted from amniocytes with 16 polymorphic microsatellite markers. RESULTS Three cases of 45,X, one case of 47,XX,+9 and one case of 47,XY,+18 were detected among the abnormal twins, while the normal fetuses all had a normal karyotype. DNA analysis suggested that, in all cases, the twins have shared the 16 polymorphic microsatellite markers, which confirmed their monozygosity. CONCLUSION Monochorionic-diamniotic twins may be discordant for karyotyping, for which anaphase lagging, chromosomal non-disjunction and trisomy rescue may be the underlying reasons. As a simple method, dual amniocentesis can be used to obtain amniotic fluid samples for karyotype analysis and determination of zygosity for such twins. PMID:26418994

  6. Monochorionic dizygous twins presenting with blood chimerism and discordant sex.

    PubMed

    Smeets, Dominique; van Vugt, John M G; Gomes, Ingrid; van den Heuvel, Simone; van Heijst, Arno; Reuss, Annette; Claahsen-van der Grinten, Hedi L

    2013-08-01

    Monochorionic dizygous twins are probably more frequent than considered previously as many cases remain unrecognized, especially when the children have the same sex. Here we present a pair of dizygous, sex-discordant monochorionic twins who were conceived after artificial insemination. Histological examination of the placenta and extensive genetic studies of the healthy boy and girl clearly proved that they indeed were monochorionic dizygous twins with a fully joined blood circulation. We conclude that when counseling parents expecting monochorionic twins of discordant sex, not only a disorder of sexual differentiation in one of the twins should be addressed but also the possibility of dizygosity with a completely normal (sexual) development of both children. PMID:23769301

  7. Complementarity of quantum discord and classically accessible information

    DOE PAGESBeta

    Zwolak, Michael P.; Zurek, Wojciech H.

    2013-05-20

    The sum of the Holevo quantity (that bounds the capacity of quantum channels to transmit classical information about an observable) and the quantum discord (a measure of the quantumness of correlations of that observable) yields an observable-independent total given by the quantum mutual information. This split naturally delineates information about quantum systems accessible to observers – information that is redundantly transmitted by the environment – while showing that it is maximized for the quasi-classical pointer observable. Other observables are accessible only via correlations with the pointer observable. In addition, we prove an anti-symmetry property relating accessible information and discord. Itmore » shows that information becomes objective – accessible to many observers – only as quantum information is relegated to correlations with the global environment, and, therefore, locally inaccessible. Lastly, the resulting complementarity explains why, in a quantum Universe, we perceive objective classical reality while flagrantly quantum superpositions are out of reach.« less

  8. Complementarity of quantum discord and classically accessible information

    SciTech Connect

    Zwolak, Michael P.; Zurek, Wojciech H.

    2013-05-20

    The sum of the Holevo quantity (that bounds the capacity of quantum channels to transmit classical information about an observable) and the quantum discord (a measure of the quantumness of correlations of that observable) yields an observable-independent total given by the quantum mutual information. This split naturally delineates information about quantum systems accessible to observers – information that is redundantly transmitted by the environment – while showing that it is maximized for the quasi-classical pointer observable. Other observables are accessible only via correlations with the pointer observable. In addition, we prove an anti-symmetry property relating accessible information and discord. It shows that information becomes objective – accessible to many observers – only as quantum information is relegated to correlations with the global environment, and, therefore, locally inaccessible. Lastly, the resulting complementarity explains why, in a quantum Universe, we perceive objective classical reality while flagrantly quantum superpositions are out of reach.

  9. Gaussian geometric discord in terms of Hellinger distance

    SciTech Connect

    Suciu, Serban Isar, Aurelian

    2015-12-07

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we address the quantification of general non-classical correlations in Gaussian states of continuous variable systems from a geometric perspective. We give a description of the Gaussian geometric discord by using the Hellinger distance as a measure for quantum correlations between two non-interacting non-resonant bosonic modes embedded in a thermal environment. We evaluate the Gaussian geometric discord by taking two-mode squeezed thermal states as initial states of the system and show that it has finite values between 0 and 1 and that it decays asymptotically to zero in time under the effect of the thermal bath.

  10. General monogamy property of global quantum discord and the application

    SciTech Connect

    Liu, Si-Yuan; Zhang, Yu-Ran; Zhao, Li-Ming; Yang, Wen-Li; Fan, Heng

    2014-09-15

    We provide a family of general monogamy inequalities for global quantum discord (GQD), which can be considered as an extension of the usual discord monogamy inequality. It can be shown that those inequalities are satisfied under the similar condition for the holding of usual monogamy relation. We find that there is an intrinsic connection among them. Furthermore, we present a different type of monogamy inequality and prove that it holds under the condition that the bipartite GQDs do not increase when tracing out some subsystems. We also study the residual GQD based on the second type of monogamy inequality. As applications of those quantities, we investigate the GQDs and residual GQD in characterizing the quantum phase transition in the transverse field Ising model.