Science.gov

Sample records for cosmic domain effective

  1. Anisotropies of the cosmic background radiation by domain wall networks

    SciTech Connect

    Nambu, Yasusada; Ishihara, Hideki; Gouda, Naoteru; Sugiyama, Naoshi )

    1991-06-01

    This paper discusses cosmological effects by domain wall formation associated with a late time phase transition after decoupling. Assuming the existence of rigid domain wall networks, a simple one-dimensional model is constructed and the quadrupole anisotropy of the cosmic background radiation (CBR) is calculated. Contrary to expectation, the gravitational potential of a domain wall itself does not disturb the isotropy of CBR. Estimating the quadrupole anisotropy of CBR induced by the wall-driven growth of matter density perturbations, a 100/h Mpc periodic wall structure is found to be consistent with the observed upper bound. 12 refs.

  2. Cosmic microwave background anisotropies generated by domain wall networks

    NASA Astrophysics Data System (ADS)

    Sousa, L.; Avelino, P. P.

    2015-10-01

    We develop a numerical tool for the fast computation of the temperature and polarization power spectra generated by domain wall networks, by extending the publicly available cmbact code—which calculates the cosmic microwave background signatures generated by active sources—to also describe domain wall networks. In order to achieve this, we adapt the unconnected segment model for cosmic strings to also describe domain wall networks, and use it to model the energy-momentum contribution of domain wall networks throughout their cosmological history. We use this new tool to compute and study the TT, EE, TE and BB power spectra generated by standard domain wall networks, and derive a conservative constraint on the energy scale of the domain wall-forming phase transition of η <0.92 MeV (which is a slight improvement over the original Zel'dovich bound of 1 MeV).

  3. Effects of cosmic strings on free streaming

    SciTech Connect

    Takahashi, Tomo; Yamaguchi, Masahide

    2006-09-15

    We study the effect of free streaming in a universe with cosmic strings with time-varying tension as well as with constant tension. Although current cosmological observations suggest that fluctuation seeded by cosmic strings cannot be the primary source of cosmic density fluctuation, some contributions from them are still allowed. Since cosmic strings actively produce isocurvature fluctuation, the damping of small scale structure via free streaming by dark matter particles with large velocity dispersion at the epoch of radiation-matter equality is less efficient than that in models with conventional adiabatic fluctuation. We discuss its implications to the constraints on the properties of particles such as massive neutrinos and warm dark matter.

  4. Study of gravitational radiation from cosmic domain walls

    SciTech Connect

    Kawasaki, Masahiro; Saikawa, Ken'ichi E-mail: saikawa@icrr.u-tokyo.ac.jp

    2011-09-01

    In this paper, following the previous study, we evaluate the spectrum of gravitational wave background generated by domain walls which are produced if some discrete symmetry is spontaneously broken in the early universe. We apply two methods to calculate the gravitational wave spectrum: One is to calculate the gravitational wave spectrum directly from numerical simulations, and another is to calculate it indirectly by estimating the unequal time anisotropic stress power spectrum of the scalar field. Both analysises indicate that the slope of the spectrum changes at two characteristic frequencies corresponding to the Hubble radius at the decay of domain walls and the width of domain walls, and that the spectrum between these two characteristic frequencies becomes flat or slightly red tilted. The second method enables us to evaluate the GW spectrum for the frequencies which cannot be resolved in the finite box lattice simulations, but relies on the assumptions for the unequal time correlations of the source.

  5. Goldstone bosons versus domain walls bounded by cosmic strings

    NASA Astrophysics Data System (ADS)

    Dvali, G. R.

    1991-08-01

    It is shown that two possible schemes of string bounded domain wall formation are closely related. Walls can be avoided if a certain type of couplings between scalars, responsible for string and wall formation, is excluded from the potential. This enlarges the continous global symmetry of the model which, being broken, instead of domain walls gives rise to global strings and Gold-stone bosons. A realistic example of spontaneously broken family symmetry is considered. It is shown that the existence of the axion in the model with local chiral flavour symmetry SU(3)H can solve the domain wall problem. I would very much like to thank Z. Berezhiani, T. Bibilashvili, J. Chkareuli, E. Gurvich, O. Kancheli and S.M. Mahajan for very useful discussions.

  6. Effects of anisotropic dynamics on cosmic strings

    SciTech Connect

    Kunze, Kerstin E.

    2011-08-01

    The dynamics of cosmic strings is considered in anisotropic backgrounds. In particular, the behaviour of infinitely long straight cosmic strings and of cosmic string loops is determined. Small perturbations of a straight cosmic string are calculated. The relevance of these results is discussed with respect to the possible observational imprints of an anisotropic phase on the behaviour of a cosmic string network.

  7. Terrestrial effects of high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra

    On geological timescales, the Earth is likely to be exposed to higher than the usual flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. These high-energy particles strike the Earth's atmosphere, initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles and photons. Increased ionization leads to changes in atmospheric chemistry, resulting in ozone depletion. This increases the flux of solar UVB radiation at the surface, which is potentially harmful to living organisms. Increased ionization affects the global electrical circuit, which could enhance the low-altitude cloud formation rate. Secondary particles such as muons and thermal neutrons produced as a result of hadronic interactions of the primary cosmic rays with the atmosphere are able to reach the ground, enhancing the biological radiation dose. The muon flux dominates the radiation dose from cosmic rays causing damage to DNA and an increase in mutation rates and cancer, which can have serious biological implications for surface and sub-surface life. Using CORSIKA, we perform massive computer simulations and construct lookup tables for 10 GeV - 1 PeV primaries, which can be used to quantify these effects from enhanced cosmic ray exposure to any astrophysical source. These tables are freely available to the community and can be used for other studies. We use these tables to study the terrestrial implications of galactic shock generated by the infall of our galaxy toward the Virgo cluster. Increased radiation dose from muons could be a possible mechanism explaining the observed periodicity in biodiversity in paleobiology databases.

  8. Cosmic fluctuations from a quantum effective action

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2015-10-01

    Does the observable spectrum of cosmic fluctuations depend on detailed initial conditions? This addresses the question if the general inflationary paradigm is sufficient to predict within a given model the spectrum and amplitude of cosmic fluctuations, or if additional particular assumptions about the initial conditions are needed. The answer depends on the number of e -foldings Nin between the beginning of inflation and horizon crossing of the observable fluctuations. We discuss an interacting inflaton field in an arbitrary homogeneous and isotropic geometry, employing the quantum effective action Γ . An exact time evolution equation for the correlation function involves the second functional derivative Γ(2 ) . The operator formalism and quantum vacua for interacting fields are not needed. Use of the effective action also allows one to address the change of frames by field transformations (field relativity). Within the approximation of a derivative expansion for the effective action we find the most general solution for the correlation function, including mixed quantum states. For not too large Nin the memory of the initial conditions is preserved. In this case the cosmic microwave background cannot disentangle between the initial spectrum and its processing at horizon crossing. The inflaton potential cannot be reconstructed without assumptions about the initial state of the universe. We argue that for very large Nin a universal scaling form of the correlation function is reached for the range of observable modes. This can be due to symmetrization and equilibration effects, not yet contained in our approximation, which drive the short distance tail of the correlation function toward the Lorentz invariant propagator in flat space.

  9. Plasma effects on extragalactic ultra-high-energy cosmic ray hadron beams in cosmic voids

    SciTech Connect

    Krakau, S.; Schlickeiser, R. E-mail: rsch@tp4.rub.de

    2014-07-01

    The linear instability of an ultrarelativistic hadron beam (Γ {sub b} ≈ 10{sup 6}) in the unmagnetized intergalactic medium (IGM) is investigated with respect to the excitation of collective electrostatic and aperiodic electromagnetic fluctuations. This analysis is important for the propagation of extragalactic ultrarelativistic cosmic rays (E > 10{sup 15} eV) from their distant sources to Earth. We calculate minimum instability growth times that are orders of magnitude shorter than the cosmic ray propagation time in the IGM. Due to nonlinear effects, especially the modulation instability, the cosmic ray beam stabilizes and can propagate with nearly no energy loss through the IGM.

  10. A hysteresis effect in cosmic ray modulation

    NASA Technical Reports Server (NTRS)

    Verschell, H. J.; Mendell, R. B.; Korff, S. A.

    1974-01-01

    The rigidity dependence is investigated in the modulation of cosmic ray protons and alphas at intermediate (2-13 Gv) rigidities during the declines and recoveries of the cosmic ray flux near cosmic ray minimum. The results include the finding that sudden changes in the modulation of the primary cosmic rays are initiated by large solar particle outflow and begin as type I Forbush decreases. Typically, the modulation spectrum becomes flatter at intermediate rigidity below 13 Gv and steeper at rigidities above 13 Gv during early recovery.

  11. Terrestrial Effects of High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra

    2011-01-01

    On geological timescales, the Earth is likely to be exposed to an increased flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. These high-energy particles strike the Earth's atmosphere initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles. Increased ionization could lead to changes in atmospheric chemistry, resulting in ozone depletion. This could increase the flux of solar UVB radiation at the surface, which is potentially harmful to living organisms. Increased ionization affects the global electrical circuit can could possibly enhance the low-altitude cloud formation rate. Secondary particles such as muons and thermal neutrons produced as a result of nuclear interactions are able to reach the ground, enhancing the biological radiation dose. The muon flux dominates radiation dose from cosmic rays causing DNA damage and increase in the mutation rates, which can have serious biological implications for terrestrial and sub-terrestrial life. This radiation dose is an important constraint on the habitability of a planet. Using CORSIKA, we perform massive computer simulations and construct lookup tables from 10 GeV - 1 PeV primaries (1 PeV - 0.1 ZeV in progress), which can be used to quantify these effects. These tables are freely available to the community and can be used for other studies, not necessarily relevant to Astrobiology. We use these tables to study the terrestrial implications of galactic shock generated by the infall of our galaxy toward the Virgo cluster. This could be a possible mechanism explaining the observed periodicity in biodiversity in paleobiology databases.

  12. Effects of inflation on a cosmic string loop population

    SciTech Connect

    Avelino, P. P.; Martins, C. J. A. P.; Shellard, E. P. S.

    2007-10-15

    We study the evolution of simple cosmic string loop solutions in an inflationary universe. We show, for the particular case of circular loops, that periodic solutions do exist in a de Sitter universe, below a critical loop radius R{sub c}H=1/2. On the other hand, larger loops freeze in comoving coordinates, and we explicitly show that they can survive more e-foldings of inflation than pointlike objects. We discuss the implications of these findings for the survival of realistic cosmic string loops during inflation and for the general characteristics of post-inflationary cosmic string networks. We also consider the analogous solutions for domain walls, in which case the critical radius is R{sub c}H=2/3.

  13. A class of effective field theory models of cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Bloomfield, Jolyon K.; Flanagan, Éanna É.

    2012-10-01

    We explore a class of effective field theory models of cosmic acceleration involving a metric and a single scalar field. These models can be obtained by starting with a set of ultralight pseudo-Nambu-Goldstone bosons whose couplings to matter satisfy the weak equivalence principle, assuming that one boson is lighter than all the others, and integrating out the heavier fields. The result is a quintessence model with matter coupling, together with a series of correction terms in the action in a covariant derivative expansion, with specific scalings for the coefficients. After eliminating higher derivative terms and exploiting the field redefinition freedom, we show that the resulting theory contains nine independent free functions of the scalar field when truncated at four derivatives. This is in contrast to the four free functions found in similar theories of single-field inflation, where matter is not present. We discuss several different representations of the theory that can be obtained using the field redefinition freedom. For perturbations to the quintessence field today on subhorizon lengthscales larger than the Compton wavelength of the heavy fields, the theory is weakly coupled and natural in the sense of t'Hooft. The theory admits a regime where the perturbations become modestly nonlinear, but very strong nonlinearities lie outside its domain of validity.

  14. Effects of solar magnetic field on cosmic rays

    NASA Technical Reports Server (NTRS)

    Goncher, G. A.; Kolomeets, E. V.; Lyakhova, A. K.; Slyunyaeva, N. V.; Stekolnikov, N. V.

    1985-01-01

    Aspects of the problem of galactic cosmic ray propagation, including inversion of the solar total magnetic field and an analysis of data related to the heliomagnetic cycle are discussed. It is noted that the global structure of the solar magnetic field results in an additional flux of galactic cosmic rays generated by curvature and gradient drifts. An analysis of heliomagnetic cycle data shows that the latitudinal gradient results in a N-S asymmetry, with the amplitude of the effect growing with depth in the atmosphere. The inversion of the solar total magnetic field, drift effects, and other space distributions are found to contribute to a 22-year cycle of solar activity.

  15. Ion implantation effects in 'cosmic' dust grains

    NASA Technical Reports Server (NTRS)

    Bibring, J. P.; Langevin, Y.; Maurette, M.; Meunier, R.; Jouffrey, B.; Jouret, C.

    1974-01-01

    Cosmic dust grains, whatever their origin may be, have probably suffered a complex sequence of events including exposure to high doses of low-energy nuclear particles and cycles of turbulent motions. High-voltage electron microscope observations of micron-sized grains either naturally exposed to space environmental parameters on the lunar surface or artificially subjected to space simulated conditions strongly suggest that such events could drastically modify the mineralogical composition of the grains and considerably ease their aggregation during collisions at low speeds. Furthermore, combined mass spectrometer and ionic analyzer studies show that small carbon compounds can be both synthesized during the implantation of a mixture of low-energy D, C, N ions in various solids and released in space by ion sputtering.

  16. The origins of cosmic rays and quantum effects on gravity

    NASA Technical Reports Server (NTRS)

    Tomozawa, Y.

    1985-01-01

    The energy spectrum of primary cosmic rays is explained by particles emitted during a thermal expansion of explosive objects inside and near the galaxy, remnants of which may be supernova and/or active talaxies, or even stars or galaxies that disappeared from our sight after the explosion. A power law energy spectrum for cosmic rays, E to the (-alpha -1, is obtained from an expansion rate T is proportional to R to the alpha. Using the solution of the Einstein equation, we obtain a spectrum which agrees very well with experimental data. The implication of an inflationary early universe on the cosmic ray spectrum is also discussed. It is also suggested that the conflict between this model and the singularity theorem in classical general relativity may be eliminated by quantum effects.

  17. The Ground Temperature Effect on Cosmic-Ray Muons at Mid latitude City

    NASA Astrophysics Data System (ADS)

    Maghrabi, A.; Alotaibi, R.; Almutayri, M.; Garawi, M.; Baig, M.

    2015-08-01

    The investigation of meteorological effects is of a great importance to the analysis of the cosmic ray variations. In this paper, we study the effect of the ground temperature on the cosmic ray recorded by KACST detector. This detector has monitored secondary cosmic ray muon since 2002 at Riyadh, Saudi Arabia; (lat 24 43; long. 46 40; alt. 613 m; Rc ∼14 GV).

  18. Cosmic bubble and domain wall instabilities II: fracturing of colliding walls

    SciTech Connect

    Braden, Jonathan; Bond, J. Richard; Mersini-Houghton, Laura

    2015-08-26

    We study collisions between nearly planar domain walls including the effects of small initial nonplanar fluctuations. These perturbations represent the small fluctuations that must exist in a quantum treatment of the problem. In a previous paper, we demonstrated that at the linear level a subset of these fluctuations experience parametric amplification as a result of their coupling to the planar symmetric background. Here we study the full three-dimensional nonlinear dynamics using lattice simulations, including both the early time regime when the fluctuations are well described by linear perturbation theory as well as the subsequent stage of fully nonlinear evolution. We find that the nonplanar fluctuations have a dramatic effect on the overall evolution of the system. Specifically, once these fluctuations begin to interact nonlinearly the split into a planar symmetric part of the field and the nonplanar fluctuations loses its utility. At this point the colliding domain walls dissolve, with the endpoint of this being the creation of a population of oscillons in the collision region. The original (nearly) planar symmetry has been completely destroyed at this point and an accurate study of the system requires the full three-dimensional simulation.

  19. Effect of Extra Dimensions on Gravitational Waves from Cosmic Strings

    SciTech Connect

    O'Callaghan, Eimear; Chadburn, Sarah; Geshnizjani, Ghazal; Gregory, Ruth; Zavala, Ivonne

    2010-08-20

    We show how the motion of cosmic superstrings in extra dimensions can modify the gravitational wave signal from cusps. Additional dimensions both round off cusps, as well as reducing the probability of their formation, and thus give a significant dimension dependent damping of the gravitational waves. We look at the implication of this effect for LIGO and LISA, as well as commenting on more general frequency bands.

  20. Effect of extra dimensions on gravitational waves from cosmic strings.

    PubMed

    O'Callaghan, Eimear; Chadburn, Sarah; Geshnizjani, Ghazal; Gregory, Ruth; Zavala, Ivonne

    2010-08-20

    We show how the motion of cosmic superstrings in extra dimensions can modify the gravitational wave signal from cusps. Additional dimensions both round off cusps, as well as reducing the probability of their formation, and thus give a significant dimension dependent damping of the gravitational waves. We look at the implication of this effect for LIGO and LISA, as well as commenting on more general frequency bands. PMID:20868089

  1. Axion-like particle effects on the polarization of cosmic high-energy gamma sources

    SciTech Connect

    Bassan, Nicola; Mirizzi, Alessandro; Roncadelli, Marco E-mail: alessandro.mirizzi@desy.de

    2010-05-01

    Various satellite-borne missions are being planned to measure the polarization of a large number of gamma-ray bursts (GRBs). We show that the polarization pattern resulting from the current models of GRB emission can be drastically modified by the existence of very light axion-like particles (ALPs), which are predicted by many extensions of the Standard Model of particle physics. Basically, the propagation of photons emitted by a GRB through cosmic magnetic fields with a domain-like structure induces photon-ALP mixing, which is expected to produce a strong modification of the initial photon polarization. Because of the random orientation of the magnetic field in each domain, this effect strongly depends on the orientation of the line of sight. As a consequence, photon-ALP conversion considerably broadens the initial polarization distribution. Searching for such a peculiar feature through future high-statistics polarimetric measurements therefore offers a new opportunity to discover very light ALPs.

  2. The effect of a scanning flat fold mirror on a cosmic microwave background B-mode experiment.

    PubMed

    Grainger, William F; North, Chris E; Ade, Peter A R

    2011-06-01

    We investigate the possibility of using a flat-fold beam steering mirror for a cosmic microwave background B-mode experiment. An aluminium flat-fold mirror is found to add ∼0.075% polarization, which varies in a scan synchronous way. Time-domain simulations of a realistic scanning pattern are performed, and the effect on the power-spectrum illustrated, and a possible method of correction applied. PMID:21721713

  3. On the effect of cosmic rays in bolometric cosmic microwave background measurements from the stratosphere

    NASA Astrophysics Data System (ADS)

    Masi, S.; Battistelli, E.; de Bernardis, P.; Lamagna, L.; Nati, F.; Nati, L.; Natoli, P.; Polenta, G.; Schillaci, A.

    2010-09-01

    Context. Precision measurements of the anisotropy of the cosmic microwave background (CMB) are able to detect low-level non-Gaussian features caused by either topological defects or the inflation process. These measurements are becoming feasable with the development of large arrays of ultra-sensitive bolometric detectors and their use in balloon-borne or satellite missions. However, the space environment includes a population of cosmic rays (CRs), which produce spurious spikes in bolometric signals. Aims: We analyze the effect of CRs on the measurement of CMB anisotropy maps and the estimate of cosmological non-Gaussianity and angular power spectra of the CMB. Methods: Using accurate simulations of noise and CR events in bolometric detectors, and de-spiking techniques, we produce simulated measured maps and analyze the Gaussianity and power spectrum of the maps for different levels and rates of CR events. Results: We find that a de-spiking technique based on outlier removal in the detector signals contributing to the same sky pixel is effective in removing CR events larger than the noise. However, low level events hidden in the noise produce a positive shift of the average power signal measured by a bolometer, and increase its variance. If the number of hits per pixel is large enough, the data distribution for each sky pixel is approximately Gaussian, but the skewness and the kurtosis of the temperatures of the pixels indicate the presence of some low-level non-Gaussianity. The standard noise estimation pipeline produces a positive bias in the power spectrum at high multipoles. Conclusions: In the case of a typical balloon-borne survey, the CR-induced non-Gaussianity will be marginally detectable in the membrane bolometer channels, but be negligible in the spider-web bolometer channels. In experiments with detector sensitivity better than 100 μK/√{Hz}, in an environment less favorable than the earth stratosphere, the CR-induced non-Gaussianity is likely to

  4. Modelling Cosmic-Ray Effects in the Protosolar Disk

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.

    2010-01-01

    The role that Galactic cosmic rays (GCRs) and solar energetic particles (SEPs) play in the dynamic evolution of protosolar disks and the origin of our Solar System is a fundamental one. The GCRs are an important component of the interstellar medium (ISM), and even play a role in correcting the age determinations of some irons versus CAIs (calcium-aluminum inclusions) in meteoroids . Because CRs also are one of the energy transport mechanisms in a planetary nebula, the question of modelling their effect upon this broad subject is a serious topic for planetary science. The problem is addressed here.

  5. Adaptation of frequency-domain readout for Transition Edge Sensor bolometers for the POLARBEAR-2 Cosmic Microwave Background experiment

    NASA Astrophysics Data System (ADS)

    Hattori, Kaori; Arnold, Kam; Barron, Darcy; Dobbs, Matt; de Haan, Tijmen; Harrington, Nicholas; Hasegawa, Masaya; Hazumi, Masashi; Holzapfel, William L.; Keating, Brian; Lee, Adrian T.; Morii, Hideki; Myers, Michael J.; Smecher, Graeme; Suzuki, Aritoki; Tomaru, Takayuki

    2013-12-01

    The POLARBEAR-2 Cosmic Microwave Background (CMB) experiment aims to observe B-mode polarization with high sensitivity to explore gravitational lensing of CMB and inflationary gravitational waves. POLARBEAR-2 is an upgraded experiment based on POLARBEAR-1, which had first light in January 2012. For POLARBEAR-2, we will build a receiver that has 7588 Transition Edge Sensor (TES) bolometers coupled to two-band (95 and 150 GHz) polarization-sensitive antennas. For the large array's readout, we employ digital frequency-domain multiplexing and multiplex 32 bolometers through a single superconducting quantum interference device (SQUID). An 8-bolometer frequency-domain multiplexing readout has been deployed with the POLARBEAR-1 experiment. Extending that architecture to 32 bolometers requires an increase in the bandwidth of the SQUID electronics to 3 MHz. To achieve this increase in bandwidth, we use Digital Active Nulling (DAN) on the digital frequency multiplexing platform. In this paper, we present requirements and improvements on parasitic inductance and resistance of cryogenic wiring and capacitors used for modulating bolometers. These components are problematic above 1 MHz. We also show that our system is able to bias a bolometer in its superconducting transition at 3 MHz.

  6. On the estimation of gravitational wave spectrum from cosmic domain walls

    SciTech Connect

    Hiramatsu, Takashi; Kawasaki, Masahiro; Saikawa, Ken'ichi E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2014-02-01

    We revisit the production of gravitational waves from unstable domain walls analyzing their spectrum by the use of field theoretic lattice simulations with grid size 1024{sup 3}, which is larger than the previous study. We have recognized that there exists an error in the code used in the previous study, and the correction of the error leads to the suppression of the spectrum of gravitational waves at high frequencies. The peak of the spectrum is located at the scale corresponding to the Hubble radius at the time of the decay of domain walls, and its amplitude is consistent with the naive estimation based on the quadrupole formula. Using the numerical results, the magnitude and the peak frequency of gravitational waves at the present time are estimated. It is shown that for some choices of parameters the signal of gravitational waves is strong enough to be probed in the future gravitational wave experiments.

  7. Percolation effects in very-high-energy cosmic rays.

    PubMed

    Dias de Deus, J; Santo, M C Espírito; Pimenta, M; Pajares, C

    2006-04-28

    Cosmic ray data at high energies present a number of well-known puzzles. At very high energies (E approximately 10(20) eV) there are indications of a discrepancy between ground array experiments and fluorescence detectors. On the other hand, the dependence of the depth of the shower maximum Xmax with the primary energy shows a change in slope (E approximately 10(17) eV) which is usually explained assuming a composition change. Both effects could be accounted for in models predicting that above a certain energy showers would develop deeper in the atmosphere. In this Letter we argue that this can be done naturally by including percolation effects in the description of the shower development, which cause a change in the behavior of the inelasticity K above E approximately 10(17) eV. PMID:16712214

  8. Percolation Effects in Very-High-Energy Cosmic Rays

    SciTech Connect

    Dias de Deus, J.; Santo, M.C. Espirito; Pimenta, M.; Pajares, C.

    2006-04-28

    Cosmic ray data at high energies present a number of well-known puzzles. At very high energies (E{approx}10{sup 20} eV) there are indications of a discrepancy between ground array experiments and fluorescence detectors. On the other hand, the dependence of the depth of the shower maximum X{sub max} with the primary energy shows a change in slope (E{approx}10{sup 17} eV) which is usually explained assuming a composition change. Both effects could be accounted for in models predicting that above a certain energy showers would develop deeper in the atmosphere. In this Letter we argue that this can be done naturally by including percolation effects in the description of the shower development, which cause a change in the behavior of the inelasticity K above E{approx_equal}10{sup 17} eV.

  9. Effects of Cosmic Rays on the Structure of the Heliosphere

    NASA Astrophysics Data System (ADS)

    Guo, Xiaocheng; Florinski, Vladimir

    2016-07-01

    The heliopause is a pressure balanced structure that separates the inner and outer heliosheaths. The total pressure of the solar wind particles, including pickup ions and anomalous cosmic rays (ACRs), is approximately equal to the pressure of the interstellar gas and its magnetic field on the outer side. Should one of the pressures change, the heliosphere will shrink or expand in response, to compensate for the imbalance and reach a new equilibrium state. Based on Voyager 1 observations, some ACRs may have crossed the heliopause and escaped into the interstellar medium, providing a mechanism of energy transfer between the inner and outer heliosheaths that is not included in conventional MHD models. Here we evaluate the effect of ACR escape on the size and shape of the heliosphere using a simple model that includes an additional energy flux term across the heliopause. We show that this effect could be a possible explanation for the unexpectedly early heliopause encounter by Voyager 1.

  10. Effect of a positive cosmological constant on cosmic strings

    SciTech Connect

    Bhattacharya, Sourav; Lahiri, Amitabha

    2008-09-15

    We study cosmic Nielsen-Olesen strings in space-times with a positive cosmological constant. For the free cosmic string in a cylindrically symmetric space-time, we calculate the contribution of the cosmological constant to the angle deficit, and to the bending of null geodesics. For a cosmic string in a Schwarzschild-de Sitter space-time, we use Kruskal patches around the inner and outer horizons to show that a thin string can pierce them.

  11. Density tomography using cosmic ray muons: feasibility domain and field applications

    NASA Astrophysics Data System (ADS)

    Lesparre, N.; Gibert, D.; Marteau, J.; Déclais, Y.; Carbone, D.; Galichet, E.

    2010-12-01

    Muons are continuously produced when the protons forming the primary cosmic rays decay during their interactions with the molecules of the upper atmosphere. Both their short cross-section and their long life-time make the muons able to cross hectometers and even kilometers of rock before disintegrating. The flux of muons crossing a geological volume strongly depends on the quantity of matter encountered along their trajectories and, depending on both its size and its density, the geological object appears more or less opaque to muons. By measuring the muon flux emerging from the studied object and correcting for its geometry, the density structure can be deduced. The primary information obtained is the density averaged along muons trajectories and, to recover the 3D density distribution. The detector has to be moved around the target to acquire multi-angle images of the density structure. The inverse problem to be solved shares common features with seismic travel-time tomography and X-ray medical scans, but it also has specificities like Poissonian statistics, low signal-to-noise ratio and scattering which are discussed. Muon telescopes have been designed to sustain installations in harsh conditions such as might be encountered on volcanoes. Data acquired in open sky at various latitude and altitude allow to adjust the incoming muon flux model and to observe its temporal variations. The muon interactions with matter and the underground flux are constrained with data sets acquired inside the underground laboratory of the Mont Terri. The data analysis and the telescope model development are detailed. A model of the muon flux across a volcano is confronted to first measurements on La Soufrière de Guadeloupe volcano. The model takes into account a priori informations and solving kernels are computed to deduce the spatial resolution in order to define the elements size of the model heterogeneities. The spatio-temporal resolution of the method is in relation with the

  12. Brane Inflation: From Superstring to Cosmic Strings

    SciTech Connect

    Tye, S.-H. Henry

    2004-12-10

    Brane inflation, where branes move towards each other in the brane world, has been shown to be quite natural in superstring theory. Inflation ends when branes collide and heat the universe, initiating the hot big bang. Cosmic strings (but not domain walls or monopoles) are copiously produced during the brane collision. Using the COBE data on the temperature anisotropy in the cosmic microwave background, the cosmic string tension {mu} is estimated to be around 10 -6 > G{mu} > 10-11, while the present observational bound is 7 x 10 -7 > G{mu}. This implies that the anisotropy that seeds structure formation comes mostly from inflation, but with a small component (< 10%) from cosmic string effects. This cosmic string effect should be testable in the near future via gravitational lensing, the cosmic microwave background radiation, and/or gravitational wave detectors like LIGO II/VIRGO.

  13. An Educational Study of the Barometric Effect of Cosmic Rays with a Geiger Counter

    ERIC Educational Resources Information Center

    Famoso, Barbara; La Rocca, Paola; Riggi, Francesco

    2005-01-01

    An educational study of the barometric effect of cosmic rays was carried out using an inexpensive experimental set-up that allowed for long-term monitoring of atmospheric pressure and cosmic ray flux as measured in a Geiger counter. The investigation was intended as a pilot study in view of ongoing involvements of high-school teams operating…

  14. Simulation of atmospheric temperature effects on cosmic ray muon flux

    NASA Astrophysics Data System (ADS)

    Tognini, Stefano Castro; Gomes, Ricardo Avelino

    2015-05-01

    The collision between a cosmic ray and an atmosphere nucleus produces a set of secondary particles, which will decay or interact with other atmosphere elements. This set of events produced a primary particle is known as an extensive air shower (EAS) and is composed by a muonic, a hadronic and an electromagnetic component. The muonic flux, produced mainly by pions and kaons decays, has a dependency with the atmosphere's effective temperature: an increase in the effective temperature results in a lower density profile, which decreases the probability of pions and kaons to interact with the atmosphere and, consequently, resulting in a major number of meson decays. Such correlation between the muon flux and the atmosphere's effective temperature was measured by a set of experiments, such as AMANDA, Borexino, MACRO and MINOS. This phenomena can be investigated by simulating the final muon flux produced by two different parameterizations of the isothermal atmospheric model in CORSIKA, where each parameterization is described by a depth function which can be related to the muon flux in the same way that the muon flux is related to the temperature. This research checks the agreement among different high energy hadronic interactions models and the physical expected behavior of the atmosphere temperature effect by analyzing a set of variables, such as the height of the primary interaction and the difference in the muon flux.

  15. On scale-dependent cosmic shear systematic effects

    NASA Astrophysics Data System (ADS)

    Kitching, T. D.; Taylor, A. N.; Cropper, M.; Hoekstra, H.; Hood, R. K. E.; Massey, R.; Niemi, S.

    2016-01-01

    In this paper, we investigate the impact that realistic scale-dependent systematic effects may have on cosmic shear tomography. We model spatially varying residual galaxy ellipticity and galaxy size variations in weak lensing measurements and propagate these through to predicted changes in the uncertainty and bias of cosmological parameters. We show that the survey strategy - whether it is regular or randomized - is an important factor in determining the impact of a systematic effect: a purely randomized survey strategy produces the smallest biases, at the expense of larger parameter uncertainties, and a very regularized survey strategy produces large biases, but unaffected uncertainties. However, by removing, or modelling, the affected scales (ℓ-modes) in the regular cases the biases are reduced to negligible levels. We find that the integral of the systematic power spectrum is not a good metric for dark energy performance, and we advocate that systematic effects should be modelled accurately in real space, where they enter the measurement process, and their effect subsequently propagated into power spectrum contributions.

  16. Simulation of atmospheric temperature effects on cosmic ray muon flux

    SciTech Connect

    Tognini, Stefano Castro; Gomes, Ricardo Avelino

    2015-05-15

    The collision between a cosmic ray and an atmosphere nucleus produces a set of secondary particles, which will decay or interact with other atmosphere elements. This set of events produced a primary particle is known as an extensive air shower (EAS) and is composed by a muonic, a hadronic and an electromagnetic component. The muonic flux, produced mainly by pions and kaons decays, has a dependency with the atmosphere’s effective temperature: an increase in the effective temperature results in a lower density profile, which decreases the probability of pions and kaons to interact with the atmosphere and, consequently, resulting in a major number of meson decays. Such correlation between the muon flux and the atmosphere’s effective temperature was measured by a set of experiments, such as AMANDA, Borexino, MACRO and MINOS. This phenomena can be investigated by simulating the final muon flux produced by two different parameterizations of the isothermal atmospheric model in CORSIKA, where each parameterization is described by a depth function which can be related to the muon flux in the same way that the muon flux is related to the temperature. This research checks the agreement among different high energy hadronic interactions models and the physical expected behavior of the atmosphere temperature effect by analyzing a set of variables, such as the height of the primary interaction and the difference in the muon flux.

  17. Cosmic-Ray Effects of Propagating Shocks Including the Heliosheath

    NASA Astrophysics Data System (ADS)

    Jokipii, J. R.; Kota, J.

    2001-08-01

    It has been known for a long time (Jokipii, et al, 1993) that the e~@ects of tt he heliosphere on cosmic rays extends beyond the termination shock and into the heliosheath. The inclusion of the region beyond the termination shock into models of modulation is still relatively recent. The previously-published model resultshave all been for a stationary system. We have modi~Aed our two-dimensional heliosperic cosmic-ray simulation code to be time dependent and to include a propagating shock wave which propagates out from the Sun and into the Heliosheath. The code follows the time variation of the intensity of both galacticand anomalous cosmic rays as the shock propagates past the point of observation and beyond. The results from the model simulations will be compared with recent observational results suggesting e~@ects of the heliosheath on galacticc and anomalous cosmic rays.

  18. The effect of cosmic rays on thunderstorm electricity

    NASA Technical Reports Server (NTRS)

    Bragin, Y. A.

    1975-01-01

    The inflow of charges of small ions, formed by cosmic rays, into thunderstorm cells is estimated on the basis of rocket measurements of ionic concentrations below 90 km. Out of the two processes that form the thunderstorm charge (generation and separation of charges), the former is supposed to be caused by cosmic rays, and the nature of separation is assumed to be the same as in other thunderstorm theories.

  19. Cosmic bubble and domain wall instabilities I: parametric amplification of linear fluctuations

    NASA Astrophysics Data System (ADS)

    Braden, Jonathan; Bond, J. Richard; Mersini-Houghton, Laura

    2015-03-01

    This is the first paper in a series where we study collisions of nucleated bubbles taking into account the effects of small initial (quantum) fluctuations in a fully 3+1-dimensional setting. In this paper, we consider the evolution of linear fluctuations around highly symmetric though inhomogeneous backgrounds. In particular, we demonstrate that a large degree of asymmetry develops over time from tiny initial fluctuations superposed upon planar and SO(2,1) symmetric backgrounds. These fluctuations are inevitable consequences of zero-point vacuum oscillations, so excluding them by enforcing a high degree of spatial symmetry is inconsistent in a quantum treatment. To simplify the analysis we consider the limit of two colliding planar walls, with mode functions for the fluctuations characterized by the wavenumber transverse to the collision direction and a longitudinal shape along the collision direction x, which we solve for. In the linear regime, the fluctuations obey a linear wave equation with a time- and space-dependent mass meff(x,t). In situations where the walls collide multiple times, meff oscillates in time. We use Floquet theory to study the evolution of the fluctuations and generalize the calculations familiar from the preheating literature to the case with many coupled degrees of freedom. The inhomogeneous case has bands of unstable transverse wavenumbers k⊥ whose corresponding mode functions grow exponentially. By examining the detailed spatial structure of the mode functions in x, we identify both broad and narrow parametric resonance generalizations of the homogeneous meff(t) case of preheating. The unstable k⊥ modes are longitudinally localized, yet can be described as quasiparticles in the Bogoliubov sense. We define an effective occupation number and show they are created in bursts for the case of well-defined collisions in the background. The transverse-longitudinal coupling accompanying nonlinearity radically breaks this localized particle

  20. The effects of solar wind on galactic cosmic ray flux at Earth

    NASA Astrophysics Data System (ADS)

    Ihongo, G. D.; Wang, C. H.-T.

    2016-01-01

    The amount of solar wind produced continuously by the sun is not constant due to changes in solar activity. This unsteady nature of the solar wind seems to be responsible for galactic cosmic ray flux modulation, hence the flux of incoming galactic cosmic rays observed at the top of the Earth's atmosphere varies with the solar wind reflecting the solar activity. The aforementioned reasons have lead to attempts by several researchers to study correlations between galactic cosmic rays and the solar wind. However, most of the correlation studies carried out by authors earlier are based on the analyses of observational data from neutron monitors. In this context, we study the effects of solar wind on galactic cosmic ray flux observed at r ≈ 1 AU, using a theoretical approach and found that the solar wind causes significant decreases in galactic cosmic ray flux at r ≈1 AU. A short time variation of the calculated flux is also checked and the result is reflected by exposing a negative correlation of the solar wind with the corresponding galactic cosmic ray flux. This means that the higher the solar wind the lower the galactic cosmic rays flux and vice-versa. To obtain a better understanding, the calculated flux and its short time variation at 1 AU are compared to data that shows a good fit to the model making it possible to establish a statistically significant negative correlation of -0.988±0.001 between solar wind variation and galactic cosmic rays flux variation theoretically.

  1. Nucleation of reversed domain and pinning effect on domain wall motion in nanocomposite magnets

    NASA Astrophysics Data System (ADS)

    Li, Z. B.; Shen, B. G.; Niu, E.; Sun, J. R.

    2013-08-01

    The magnetization behaviors show a strong pinning effect on domain wall motion in optimally melt-spun Pr8Fe87B5 ribbons at room temperature. According to analysis, the coercivity is determined by the nucleation field of reversed domain, and the pinning effect, which results from the weak exchange coupling at interface, makes domain nucleation processes independent and leads to non-uniform magnetization reversals. At a temperature of 60 K, owing to the weak exchange coupling between soft-hard grains, magnetization reversal undergoes processes of spring domain nucleation in soft grains and irreversible domain nucleation in hard grains, and the pinning effect remains strong among hard grains.

  2. Effects of Rayleigh scattering on the CMB and cosmic structure

    NASA Astrophysics Data System (ADS)

    Alipour, Elham; Sigurdson, Kris; Hirata, Christopher M.

    2015-04-01

    During and after recombination, in addition to Thomson scattering with free electrons, photons also couple to neutral hydrogen and helium atoms through Rayleigh scattering. This coupling influences both cosmic microwave background (CMB) anisotropies and the distribution of matter in the Universe. The frequency dependence of the Rayleigh cross section breaks the thermal nature of CMB temperature and polarization anisotropies and effectively doubles the number of variables needed to describe CMB intensity and polarization statistics, while the additional atomic coupling changes the matter distribution and the lensing of the CMB. We introduce a new method to capture the effects of Rayleigh scattering on cosmological power spectra. Rayleigh scattering modifies CMB temperature and polarization anisotropies at the ˜1 % level at 35 GHz (scaling ∝ν4 ), and modifies matter correlations by as much as ˜0.3 %. We show the Rayleigh signal, especially the cross-spectra between the thermal (Rayleigh) E -polarization and Rayleigh (thermal) intensity signal, may be detectable with future CMB missions even in the presence of foregrounds, and how this new information might help to better constrain the cosmological parameters.

  3. Effective Area of the Cosmic Origins Spectrograph below 1150 Å

    NASA Astrophysics Data System (ADS)

    McCandliss, Stephan R.; France, K.; Osterman, S.; Green, J. C.; McPhate, J. B.; Wilkinson, E.; COS

    2010-01-01

    The G140L segment B channel (R 2,000) of the Cosmic Origins Spectrograph (COS) recently installed on the Hubble Space Telescope (HST) has an effective area consistent with 10 cm2 in the bandpass between the Lyman edge at 912 Å and Lyβ. It has a slight plateau of 20 cm2 near 1050 Å and rises to a peak in excess of 1100 cm2 longward of 1140 Å. Up until now the general astronomical community has had only limited access to a low resolving power R 2,000 far-UV spectrograph, extending down to the Lyman limit, in the form of the shuttle carried instruments; the Hopkins Ultraviolet Telescope and the Berkeley Extreme and Far-UV Spectrograph. The low resolving power provides a unique capability to reach extremely faint flux limits and will enable new science investigations, such as those seeking to quantify the escape fraction of Lyman continuum photons from galaxies at low redshift, study the He II Gunn-Peterson effect in the redshift range 2 < z < 2.8, measure CO/H2 in dense interstellar environments, or make observations of the O VI λλ 1032, 1038 doublet. Observations of point sources will have the highest spectral resolution, since the small 2."5 diameter entrance aperture of COS is not optimized for extended source observations.

  4. Solar cosmic ray effects in the lower ionosphere

    NASA Technical Reports Server (NTRS)

    Shirochkov, A. V.

    1989-01-01

    The polar cap absorption (PCA) events are the most remarkable geophysical phenomena in the high latitude ionosphere. Their effects are extended on the whole polar region in both hemispheres. The PCA events are caused by the intense fluxes of the solar cosmic rays (SCR) which are generated by the solar proton flares. Entering into the Earth's magnetosphere and ionosphere the SCR fluxes create excessive anomal ionization at the ionospheric heights of 50 to 100 km which exceeds usual undisturbed level of ionization in several orders of magnitude. The PCA events can be considered as catastrophic in relation to the polar ionosphere because all radio systems using ionospheric radio channels ceased to operate during these events. On the other hand the abnormally high level of ionization in the ionospheric D region during the PCA events create excellent opportunities to conduct fruitful aeronomical research for the lower ionosphere. Obvious scientific and practical importance of the PCA events leads to publishing of special PCA catalogues. The ionospheric effects caused by the SCR fluxes were profoundly described in the classical paper (Bailey, 1964). Nevertheless several aspects of this problem were not studied properly. An attempt is made to clarify these questions.

  5. Cosmic bubble and domain wall instabilities I: parametric amplification of linear fluctuations

    SciTech Connect

    Braden, Jonathan; Bond, J. Richard; Mersini-Houghton, Laura

    2015-03-03

    This is the first paper in a series where we study collisions of nucleated bubbles taking into account the effects of small initial (quantum) fluctuations in a fully 3+1-dimensional setting. In this paper, we consider the evolution of linear fluctuations around highly symmetric though inhomogeneous backgrounds. In particular, we demonstrate that a large degree of asymmetry develops over time from tiny initial fluctuations superposed upon planar and SO(2,1) symmetric backgrounds. These fluctuations are inevitable consequences of zero-point vacuum oscillations, so excluding them by enforcing a high degree of spatial symmetry is inconsistent in a quantum treatment. To simplify the analysis we consider the limit of two colliding planar walls, with mode functions for the fluctuations characterized by the wavenumber transverse to the collision direction and a longitudinal shape along the collision direction x, which we solve for. In the linear regime, the fluctuations obey a linear wave equation with a time- and space-dependent mass m{sub eff}(x,t). In situations where the walls collide multiple times, m{sub eff} oscillates in time. We use Floquet theory to study the evolution of the fluctuations and generalize the calculations familiar from the preheating literature to the case with many coupled degrees of freedom. The inhomogeneous case has bands of unstable transverse wavenumbers k{sub ⊥} whose corresponding mode functions grow exponentially. By examining the detailed spatial structure of the mode functions in x, we identify both broad and narrow parametric resonance generalizations of the homogeneous m{sub eff}(t) case of preheating. The unstable k{sub ⊥} modes are longitudinally localized, yet can be described as quasiparticles in the Bogoliubov sense. We define an effective occupation number and show they are created in bursts for the case of well-defined collisions in the background. The transverse-longitudinal coupling accompanying nonlinearity radically

  6. Cosmic impacts, cosmic catastrophes. I

    NASA Technical Reports Server (NTRS)

    Chapman, Clark R.; Morrison, David

    1989-01-01

    The discovery of cosmic impacts and their effects on the earth's surface are discussed. The manner in which the object impacts with the earth is described. The formation of crytovolcanic structures by craters is examined. Examples of cosmic debris collisions with earth, in particular the Tunguska explosion of 1908 and the Meteor Crater in Arizona, are provided.

  7. Alfven wave transport effects in the time evolution of parallel cosmic-ray modified shocks

    NASA Technical Reports Server (NTRS)

    Jones, T. W.

    1993-01-01

    Some of the issues associated with a more complete treatment of Alfven transport in cosmic ray shocks are explored qualitatively. The treatment is simplified in some important respects, but some new issues are examined and for the first time a nonlinear, time dependent study of plane cosmic ray mediated shocks with both the entropy producing effects of wave dissipation and effects due to the Alfven wave advection of the cosmic ray relative to the gas is included. Examination of the direct consequences of including the pressure and energy of the Alfven waves in the formalism began.

  8. High-precision simulations of the weak lensing effect on cosmic microwave background polarization

    NASA Astrophysics Data System (ADS)

    Fabbian, Giulio; Stompor, Radek

    2013-08-01

    We studied the accuracy, robustness, and self-consistency of pixel-domain simulations of the gravitational lensing effect on the primordial cosmic microwave background (CMB) anisotropies due to the large-scale structure of the Universe. In particular, we investigated the dependence of the precision of the results precision on some crucial parameters of these techniques and propose a semi-analytic framework to determine their values so that the required precision is a priori assured and the numerical workload simultaneously optimized. Our focus was on the B-mode signal, but we also discuss other CMB observables, such as the total intensity, T, and E-mode polarization, emphasizing differences and similarities between all these cases. Our semi-analytic considerations are backed up by extensive numerical results. Those are obtained using a code, nicknamed lenS2HAT - for lensing using scalable spherical harmonic transforms (S2HAT) - which we have developed in the course of this work. The code implements a version of the previously described pixel-domain approach and permits performing the simulations at very high resolutions and data volumes, thanks to its efficient parallelization provided by the S2HAT library - a parallel library for calculating of the spherical harmonic transforms. The code is made publicly available.

  9. Interstellar Dust Charging in Dense Molecular Clouds: Cosmic Ray Effects

    NASA Astrophysics Data System (ADS)

    Ivlev, A. V.; Padovani, M.; Galli, D.; Caselli, P.

    2015-10-01

    The local cosmic-ray (CR) spectra are calculated for typical characteristic regions of a cold, dense molecular cloud to investigate two mechanisms of dust charging that have, thus far, been neglected: the collection of suprathermal CR electrons and protons by grains and photoelectric emission from grains due to the UV radiation generated by CRs. These two mechanisms add to the conventional charging by ambient plasma, produced in the cloud by CRs. We show that the CR-induced photoemission can dramatically modify the charge distribution function for submicron grains. We demonstrate the importance of the obtained results for dust coagulation: while the charging by ambient plasma alone leads to a strong Coulomb repulsion between grains and inhibits their further coagulation, the combination with the photoemission provides optimum conditions for the growth of large dust aggregates in a certain region of the cloud, corresponding to the densities n({{{H}}}2) between ˜104 and ˜106 cm-3. The charging effect of CRs is of a generic nature, and is therefore expected to operate not only in dense molecular clouds but also in the upper layers and the outer parts of protoplanetary disks.

  10. Atmospheric Effects on Cosmic Ray Air Showers Observed with HAWC

    NASA Astrophysics Data System (ADS)

    Young, Steven

    2014-01-01

    The High Altitude Water Cherenkov Gamma Ray detector (HAWC), currently under construction on the Sierra Negra volcano near Puebla, Mexico, can be used to study solar physics with its scaler data acquisition system. Increases in the scaler rates are used to observe GeV cosmic rays from solar flares while decreases in the rates show the heliospheric disturbances associated with coronal mass ejections. However, weather conditions and height-dependent state variables such as pressure and temperature affect the production of extensive particle air showers that can be detected by the scaler system. To see if these atmospheric effects can be removed, we obtained local weather data from the Global Data Assimilation System (GDAS) and the local weather station at HAWC. The scaler pulse rates were then correlated to the pressure and temperature. We present data from a Forbush decrease observed by HAWC following a significant coronal mass ejection in April 2013, and describe our efforts to remove atmospheric variations from the scaler counts. This work was partially supported by the National Science Foundation’s REU program through NSF Award AST-1004881 to the University of Wisconsin-Madison.

  11. A gamma-ray testing technique for spacecraft. [considering cosmic radiation effects

    NASA Technical Reports Server (NTRS)

    Gribov, B. S.; Repin, N. N.; Sakovich, V. A.; Sakharov, V. M.

    1977-01-01

    The simulated cosmic radiation effect on a spacecraft structure is evaluated by gamma ray testing in relation to structural thickness. A drawing of the test set-up is provided and measurement errors are discussed.

  12. Quantification of seasonal biomass effects on cosmic-ray soil water content determination

    NASA Astrophysics Data System (ADS)

    Baatz, Roland; Bogena, Heye; Hendriks-Franssen, Harrie-Jan; Huisman, Johan Alexander; Montzka, Carsten; Vereecken, Harry

    2014-05-01

    Cosmic-ray soil moisture probes (CRS) utilize the fact that high-energy cosmic-ray neutrons are moderated (slowed to lower energies) as they most effective collide with terrestrial hydrogen atoms contained in water molecules. Low-energy cosmic-ray neutron intensity near the ground is therefore a measure of the water content of nearby soils and any water on the ground. In this study we present calibration results of a cosmic-ray soil moisture network in the Rur catchment, Germany. We propose a method to correct for above ground biomass vegetation effects on neutron flux density to improve soil water content estimates from cosmic-ray measurements. The correction for above ground water equivalents aims to remove biases in soil water content measurements on sites with high seasonal vegetation dynamics such as agricultural fields. Above ground biomass is estimated as function of the normalized difference vegetation index using regression equations. The regression equations were obtained from literature information, ground-based control measurements, a crop growth model and globally available data from the Moderate Resolution Imaging Spectrometer (MODIS). The results show that above ground biomass could be well estimated during the first half of the year. Seasonal changes in vegetation water content yielded biases in soil water content of ~0.05 cm³/cm³ that could be corrected for with the vegetation correction. The vegetation correction has particularly high potential when applied at long term cosmic-ray monitoring sites and the cosmic-ray rover.

  13. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. IV. THE EFFECT OF COSMIC RAYS

    SciTech Connect

    Rimmer, P. B.; Helling, Ch.

    2013-09-10

    Cosmic rays provide an important source for free electrons in Earth's atmosphere and also in dense interstellar regions where they produce a prevailing background ionization. We utilize a Monte Carlo cosmic ray transport model for particle energies of 10{sup 6} eV cosmic ray transport model for particle energies of 10{sup 9} eV cosmic ray enhancement of free electrons in substellar atmospheres of free-floating objects. The cosmic ray calculations are applied to DRIFT-PHOENIX model atmospheres of an example brown dwarf with effective temperature T{sub eff} = 1500 K, and two example giant gas planets (T{sub eff} = 1000 K, 1500 K). For the model brown dwarf atmosphere, the electron fraction is enhanced significantly by cosmic rays when the pressure p{sub gas} < 10{sup -2} bar. Our example giant gas planet atmosphere suggests that the cosmic ray enhancement extends to 10{sup -4}-10{sup -2} bar, depending on the effective temperature. For the model atmosphere of the example giant gas planet considered here (T{sub eff} = 1000 K), cosmic rays bring the degree of ionization to f{sub e} {approx}> 10{sup -8} when p{sub gas} < 10{sup -8} bar, suggesting that this part of the atmosphere may behave as a weakly ionized plasma. Although cosmic rays enhance the degree of ionization by over three orders of magnitude in the upper atmosphere, the effect is not likely to be significant enough for sustained coupling of the magnetic field to the gas.

  14. A lookup table to compute high energy cosmic ray effects on terrestrial atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra

    A variety of events such as gamma-ray bursts and supernovae may expose the Earth to an increased flux of high-energy cosmic rays, with potentially important effects on the biosphere. Existing atmospheric chemistry software does not have the capability of incorporating the effects of substantial cosmic ray flux above 10 GeV . An atmospheric code, the NASA-Goddard Space Flight Center two-dimensional (latitude, altitude) time-dependent atmospheric model (NGSFC), is used to study atmospheric chemistry changes. We have created a table that, with the use of the NGSFC code, can be used to simulate the effects of high energy cosmic rays (10 GeV - 1 PeV ) ionizing the atmosphere. By interpolation, the table can be used to generate values for other uses which depend upon atmospheric energy deposition by ensembles of high-energy cosmic rays. We discuss the table, its use, weaknesses, and strengths.

  15. Birth order effects on autism symptom domains.

    PubMed

    Reichenberg, Abraham; Smith, Christopher; Schmeidler, James; Silverman, Jeremy M

    2007-03-30

    Autism is predominantly genetically determined. Evidence supports familiality of the main sets of behavioral characteristics that define the syndrome of autism; however, possible non-genetic effects have also been suggested. The present study compared levels of autism symptom domains, as measured by the Autism Diagnostic Interview, and useful phrase speech scores between 106 pairs of first- and second-born siblings from multiply affected families. In addition, the intercorrelations between the measures were compared between siblings. The overall mean repetitive behavior total score was significantly higher (worse) in first-born than in second-born siblings. In contrast, first-born siblings had significantly lower (better) useful phrase speech than their younger siblings. Autism social and non-verbal communication scores were significantly correlated in first- and in second-born siblings. However, there was a significant difference in the coefficients between first- and second-born siblings. Performance on the non-verbal communication domain was also significantly and positively correlated with useful phrase speech score in both first- and second-born siblings. It is unclear at this time whether these results are of biologic origin. Nevertheless, the findings suggest that genetic studies in autism using specific levels of familial autism traits as phenotypes should take into account their intercorrelations and birth order effects embedded in the instrument. PMID:17289158

  16. Domain effects and financial risk attitudes.

    PubMed

    Vlaev, Ivo; Kusev, Petko; Stewart, Neil; Aldrovandi, Silvio; Chater, Nick

    2010-09-01

    We investigated whether financial risk preferences are dependent on the financial domain (i.e., the context) in which the risky choice options are presented. Previous studies have demonstrated that risk attitudes change when gambles are framed as gains, losses, or as insurance. Our study explores this directly by offering choices between identical gambles, framed in terms of seven financial domains. Three factors were extracted, explaining 68.6% of the variance: Factor 1 (Positive)-opportunity to win, pension provision, and job salary change; Factor 2 (Positive-Complex)-investments and mortgage buying; Factor 3 (Negative)-possibility of loss and insurance. Inspection of the solution revealed context effects on risk perceptions across the seven scenarios. We also found that the commonly accepted assumption that women are more risk averse cannot be confirmed with the context structure suggested in this research; however, it is acknowledged that in the students' population the variance across genders might be considerably less. These results suggest that our financial risk attitude measures may be tapping into a stable aspect of "context dependence" of relevance to real-world decision making. PMID:20840489

  17. Atmospheric effects of stellar cosmic rays on Earth-like exoplanets orbiting M-dwarfs

    NASA Astrophysics Data System (ADS)

    Tabataba-Vakili, F.; Grenfell, J. L.; Grießmeier, J.-M.; Rauer, H.

    2016-01-01

    M-dwarf stars are generally considered favourable for rocky planet detection. However, such planets may be subject to extreme conditions due to possible high stellar activity. The goal of this work is to determine the potential effect of stellar cosmic rays on key atmospheric species of Earth-like planets orbiting in the habitable zone of M-dwarf stars and show corresponding changes in the planetary spectra. We build upon the cosmic rays model scheme of previous works, who considered cosmic ray induced NOx production, by adding further cosmic ray induced production mechanisms (e.g. for HOx) and introducing primary protons of a wider energy range (16 MeV-0.5 TeV). Previous studies suggested that planets in the habitable zone that are subject to strong flaring conditions have high atmospheric methane concentrations, while their ozone biosignature is completely destroyed. Our current study shows, however, that adding cosmic ray induced HOx production can cause a decrease in atmospheric methane abundance of up to 80%. Furthermore, the cosmic ray induced HOx molecules react with NOx to produce HNO3, which produces strong HNO3 signals in the theoretical spectra and reduces NOx-induced catalytic destruction of ozone so that more than 25% of the ozone column remains. Hence, an ozone signal remains visible in the theoretical spectrum (albeit with a weaker intensity) when incorporating the new cosmic ray induced NOx and HOx schemes, even for a constantly flaring M-star case. We also find that HNO3 levels may be high enough to be potentially detectable. Since ozone concentrations, which act as the key shield against harmful UV radiation, are affected by cosmic rays via NOx-induced catalytic destruction of ozone, the impact of stellar cosmic rays on surface UV fluxes is also studied.

  18. Biotropic Effect of Radiation Conditions on Orbital Cosmic Stations

    NASA Astrophysics Data System (ADS)

    Tsetlin, Vladimir; Ushakov, Igor; Gurieva, Tamar; Moisa, Svetlana; Zotin, Alexei; Lobanov, Alexei

    On the orbit of pilot orbital stations the crews undergo to low doses of chronic irradiation of cosmic radiation. The studying of radiobiological effects in different living systems were carried out in the ship’s side (OC “MIR” and ICS) and model surface experiments (power dose 200 mGy/day, density of neutron flow 30 particles/sm2 sec). It was shown that ionized radiation effects on embryonal development of Japanese quail embryo, inducing morphological disturbances in 12% of embryos. Many years ontogenesis (more 15 years of life in OC “MIR”) of microbial association evoked replacement of dominant types of micromycetes and bacterium and increasing of colony-formed units (CFU) in four orders. In laboratory low doses of γ-radiation induced the increasing of flight strain biomass of Aspergillus niger that corresponds to a radiation hormezis and also the increasing of radio-sensitivity. Moreover, under γ-neutron radiation were marked some deviations in morphology of supporting cell and numerous head falls of Aspergillus niger. The irradiation of Protozoa by low doses led to that spontaneous motion activity of spirostoms (Spirostomum ambiguum Ehbg.) accommodated in water processing by mixed γ-neutron radiation decreased twice that testified the fact that the definite factor of γ-neutron radiation effect is the changing of water medium state. In dry seeds of the highest plants wetting in water of preliminary low doses α-and γ-irradiation <10 cGy (increasing natural radiation background in 100-500 times) and accommodating in hypo-magnetic camera (induction of magnetic field in 100-300 times lower than geomagnetic one) the germination of seeds was higher approximately twice under γ-radiation. Low doses of γ-radiation decreased and α-radiation increased a negative influence of hypo-magnetic field on these processes. It was shown that hypomagnetic field occurred, in general, beneficial effect on the development of Planorbarius corneus: the portion of

  19. Geometric relativistic phase from Lorentz symmetry breaking effects in the cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Belich, H.; Bakke, K.

    2016-04-01

    In this paper, we have investigated the arising of geometric quantum phases in a relativistic quantum dynamics of a Dirac neutral particle from the spontaneous Lorentz symmetry violation effects in the cosmic string spacetime. We started by the Dirac equation in an effective metric, and we have observed a relativistic geometric phase which stems from the topology of the cosmic string spacetime and an intrinsic Lorentz symmetry breaking effects. It is shown that both Lorentz symmetry breaking effects and the topology of the defect yields a phase shift in the wave function of the nonrelativistic spin-1/2 particle.

  20. Biological effects of cosmic radiation: deterministic and stochastic

    NASA Technical Reports Server (NTRS)

    Blakely, E. A.

    2000-01-01

    Our basic understanding of the biological responses to cosmic radiations comes in large part from an international series of ground-based laboratory studies, where accelerators have provided the source of representative charged particle radiations. Most of the experimental studies have been performed using acute exposures to a single radiation type at relatively high doses and dose rates. However, most exposures in flight occur from low doses of mixed radiation fields at low-dose rates. This paper provides a brief overview of existing pertinent clinical and biological radiation data and the limitations associated with data available from specific components of the radiation fields in airflight and space travel.

  1. Biotropic Effect of Radiation Conditions on Orbital Cosmic Stations

    NASA Astrophysics Data System (ADS)

    Tsetlin, Vladimir; Ushakov, Igor; Gurieva, Tamar; Moisa, Svetlana; Zotin, Alexei; Lobanov, Alexei

    On the orbit of pilot orbital stations the crews undergo to low doses of chronic irradiation of cosmic radiation. The studying of radiobiological effects in different living systems were carried out in the ship’s side (OC “MIR” and ICS) and model surface experiments (power dose 200 mGy/day, density of neutron flow 30 particles/sm2 sec). It was shown that ionized radiation effects on embryonal development of Japanese quail embryo, inducing morphological disturbances in 12% of embryos. Many years ontogenesis (more 15 years of life in OC “MIR”) of microbial association evoked replacement of dominant types of micromycetes and bacterium and increasing of colony-formed units (CFU) in four orders. In laboratory low doses of γ-radiation induced the increasing of flight strain biomass of Aspergillus niger that corresponds to a radiation hormezis and also the increasing of radio-sensitivity. Moreover, under γ-neutron radiation were marked some deviations in morphology of supporting cell and numerous head falls of Aspergillus niger. The irradiation of Protozoa by low doses led to that spontaneous motion activity of spirostoms (Spirostomum ambiguum Ehbg.) accommodated in water processing by mixed γ-neutron radiation decreased twice that testified the fact that the definite factor of γ-neutron radiation effect is the changing of water medium state. In dry seeds of the highest plants wetting in water of preliminary low doses α-and γ-irradiation <10 cGy (increasing natural radiation background in 100-500 times) and accommodating in hypo-magnetic camera (induction of magnetic field in 100-300 times lower than geomagnetic one) the germination of seeds was higher approximately twice under γ-radiation. Low doses of γ-radiation decreased and α-radiation increased a negative influence of hypo-magnetic field on these processes. It was shown that hypomagnetic field occurred, in general, beneficial effect on the development of Planorbarius corneus: the portion of

  2. Ultrahigh energy cosmic ray nuclei from extragalactic pulsars and the effect of their Galactic counterparts

    NASA Astrophysics Data System (ADS)

    Fang, Ke; Kotera, Kumiko; Olinto, Angela V.

    2013-03-01

    The acceleration of ultrahigh energy nuclei in fast spinning newborn pulsars can explain the observed spectrum of ultrahigh energy cosmic rays and the trend towards heavier nuclei for energies above 1019 eV as reported by the Auger Observatory. Pulsar acceleration implies a hard injection spectrum ( ~ E-1) due to pulsar spin down and a maximum energy Emax ~ Z 1019 eV due to the limit on the spin rate of neutron stars. We have previously shown that the escape through the young supernova remnant softens the spectrum, decreases slightly the maximum energy, and generates secondary nuclei. Here we show that the distribution of pulsar birth periods and the effect of propagation in the interstellar and intergalactic media modifies the combined spectrum of all pulsars. By assuming a normal distribution of pulsar birth periods centered at 300 ms, we show that the contribution of extragalactic pulsar births to the ultrahigh energy cosmic ray spectrum naturally gives rise to a contribution to very high energy cosmic rays (VHECRs, between 1016 and 1018 eV) by Galactic pulsar births. The required injected composition to fit the observed spectrum depends on the absolute energy scale, which is uncertain, differing between Auger Observatory and Telescope Array. The contribution of Galactic pulsar births can also bridge the gap between predictions for cosmic ray acceleration in supernova remnants and the observed spectrum just below the ankle, depending on the composition of the cosmic rays that escape the supernova remnant and the diffusion behavior of VHECRs in the Galaxy.

  3. Effects of ordinary and superconducting cosmic strings on primordial nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Hodges, Hardy M.; Turner, Michael S.

    1988-01-01

    A precise calculation is done of the primordial nucleosynthesis constraint on the energy per length of ordinary and superconducting cosmic strings. A general formula is provided for the constraint on the string tension for ordinary strings. Using the current values for the various parameters that describe the evolution of loops, the constraint for ordinary strings is G mu less than 2.2 x 10 to the minus 5 power. Our constraint is weaker than previously quoted limits by a factor of approximately 5. For superconducting loops, with currents generated by primordial magnetic fields, the constraint can be less or more stringent than this limit, depending on the strength of the magnetic field. It is also found in this case that there is a negligible amount of entropy production if the electromagnetic radiation from strings thermalizes with the radiation background.

  4. The effect of extra dimensions on gravity wave bursts from cosmic string cusps

    SciTech Connect

    O'Callaghan, Eimear; Gregory, Ruth; Chadburn, Sarah; Geshnizjani, Ghazal; Zavala, Ivonne E-mail: ggeshnizjani@perimeterinstitute.ca E-mail: zavala@th.physik.uni-bonn.de

    2010-09-01

    We explore the kinematical effect of having extra dimensions on the gravitational wave emission from cosmic strings. Additional dimensions both round off cusps, and reduce the probability of their formation. We recompute the gravitational wave burst, taking into account these two factors, and find a potentially significant damping on the gravitational waves of the strings.

  5. Quantification of seasonal biomass effects on cosmic-ray soil water content determination

    NASA Astrophysics Data System (ADS)

    Baatz, R.; Bogena, H. R.; Hendricks Franssen, H.; Huisman, J. A.; Qu, W.; Montzka, C.; Korres, W.; Vereecken, H.

    2013-12-01

    The novel cosmic-ray soil moisture probes (CRPs) measure neutron flux density close to the earth surface. High energy cosmic-rays penetrate the Earth's atmosphere from the cosmos and become moderated by terrestrial nuclei. Hydrogen is the most effective neutron moderator out of all chemical elements. Therefore, neutron flux density measured with a CRP at the earth surface correlates inversely with the hydrogen content in the CRP's footprint. A major contributor to the amount of hydrogen in the sensor's footprint is soil water content. The ability to measure changes in soil water content within the CRP footprint at a larger-than-point scale (~30 ha) and at high temporal resolution (hourly) make these sensors an appealing measurement instrument for hydrologic modeling purposes. Recent developments focus on the identification and quantification of major uncertainties inherent in CRP soil moisture measurements. In this study, a cosmic-ray soil moisture network for the Rur catchment in Western Germany is presented. It is proposed to correct the measured neutron flux density for above ground biomass yielding vegetation corrected soil water content from cosmic-ray measurements. The correction for above ground water equivalents aims to remove biases in soil water content measurements on sites with high seasonal vegetation dynamics such as agricultural fields. Above ground biomass is estimated as function of indices like NDVI and NDWI using regression equations. The regression equations were obtained with help of literature information, ground-based control measurements, a crop growth model and globally available data from the Moderate Resolution Imaging Spectrometer (MODIS). The results show that above ground biomass could be well estimated during the first half of the year. Seasonal changes in vegetation water content yielded biases in soil water content of ~0.05 cm3/cm3 that could be corrected for with the vegetation correction. The vegetation correction has particularly

  6. Alfven wave transport effects in the time evolution of parallel cosmic-ray-modified shocks

    NASA Technical Reports Server (NTRS)

    Jones, T. W.

    1993-01-01

    This paper presents a numerical study of the time evolution of plane, cosmic-ray modified shocks with magnetic field parallel to the shock normal, based on the diffusive shock acceleration formalism and including the effects from the finite propagation speed and energy of Alfven waves responsible for controlling the transport of the cosmic rays. The simulations discussed are based on a three-fluid model for the dynamics, but a more complete formalism is laid out for future work. The results of the simulations confirm earlier steady state analyses that found these Alfven transport effects to be potentially important when the upstream Alfven speed and the gas sound speed are comparable, i.e., when the plasma and magnetic pressures are similar. It is also clear, however, that the impact of Alfven transport effects, which tend to slow shock evolution and reduce the time asymptotic cosmic-ray pressure in the shock, is strongly dependent upon uncertain details in the transport models. Both cosmic-ray advection tied to streaming Alfven waves and dissipation of wave energy are important to include in the models. Further, Alfven transport properties on both sides of the shock are also influential.

  7. Evaluation of viscera and other tissues. [cosmic radiation effects

    NASA Technical Reports Server (NTRS)

    Ellis, J. T.; Kraft, L. M.; Lushbaugh, C. C.; Humason, G. L.; Hartroft, W. S.; Porta, E. A.; Bailey, O. T.; Greep, R. O.; Leach, C. S.; Laird, T.

    1975-01-01

    Histopathological findings in the lungs, livers, bone marrows, small intestines, gonads, kidneys, and other tissues of the four pocket mice (Perognathus longimembris) that survived the Apollo XVII flight were evaluated in the light of their immediate environment and as targets of HZE cosmic ray particles. Results of this study failed to disclose changes that could be ascribed to the HZE particle radiation. Decreased numbers of erythropoietic cells in the bone marrow of the flight mice were probably related to the increased oxygen pressure. The small intestine showed no changes. Ovaries and testes appeared normal. Two of the three surviving male flight mice displayed early stages of spermatogenesis, just as ground-based controls did at the same season. Abnormalities were also not found in the thyroid, parathyroids, adrenals, or kidneys. The status of the juxtaglomerular apparatus could not be evaluated. The lungs exhibited nonspecific slight reactions. A variety of incidental lesions were noted in the livers of both the flight mice and their controls. The heart muscle showed nothing that could be regarded as pathological. Sections of skeletal muscle examined were free from significant change.

  8. THE EFFECT OF A COSMIC RAY PRECURSOR IN SN 1006?

    SciTech Connect

    Rakowski, Cara E.; Laming, J. Martin; Hwang, Una; Eriksen, Kristoffer A.; Hughes, John P.; Ghavamian, Parviz

    2011-07-01

    Like many young supernova remnants, SN 1006 exhibits what appear to be clumps of ejecta close to or protruding beyond the main blast wave. In this Letter, we examine three such protrusions along the east rim. They are semi-aligned with ejecta fingers behind the shock-front and exhibit emission lines from O VII and O VIII. We first interpret them in the context of an upstream medium modified by the saturated non-resonant Bell instability which enhances the growth of Rayleigh-Taylor instabilities when advected post-shock. We discuss their apparent periodicity if the spacing is determined by properties of the remnant or by a preferred size scale in the cosmic ray precursor. We also briefly discuss the alternative that these structures have an origin in the ejecta structure of the explosion itself. In this case, the young evolutionary age of SN 1006 would imply density structure within the outermost layers of the explosion with potentially important implications for deflagration and detonation in thermonuclear supernova explosion models.

  9. PLASMA EFFECTS ON FAST PAIR BEAMS IN COSMIC VOIDS

    SciTech Connect

    Schlickeiser, R.; Ibscher, D.; Supsar, M. E-mail: ibscher@tp4.rub.de

    2012-10-20

    The interaction of TeV gamma rays from distant blazars with the extragalactic background light produces relativistic electron-positron pair beams by the photon- photon annihilation process. The created pair beam distribution is unstable to linear two-stream instabilities of both electrostatic and electromagnetic nature in the unmagnetized intergalactic medium (IGM). The maximum electrostatic growth rate occurs at angles of 39.{sup 0}2 with respect to the pair beam direction, and is more than three orders of magnitude greater than the maximum Weibel growth rate, indicating that the linear oblique electrostatic instability operates much faster than the Weibel instability. The dissipation of the generated electrostatic turbulence is different for intense and weak gamma-ray blazars. For intense blazars, the normalized number of generated pairs n {sub 22} = n{sub b} /[10{sup -22} cm{sup -3}] exceeds the critical density n{sub c} (T) = 4.8 Multiplication-Sign 10{sup -3} T {sub 4} for given normalized IGM temperature T {sub 4} = T/[10{sup 4} K] necessary for the onset of the modulation instability, so that all free kinetic pair energy is dissipated in heating the IGM in cosmic voids. For weak blazars, half of the initial energy density of the beam particles is transferred to the electrostatic and electromagnetic fluctuations on timescales smaller than the inverse Compton energy loss timescale of the pairs. In both cases, this prevents the development of a full electromagnetic pair cascade as in vacuum. For weak blazars, the superluminal electrostatic fluctuations are dissipated by the inverse Compton scattering into transverse electromagnetic waves by the relaxed relativistic pair particles to optical frequencies, implying the occurrence of optical electrostatic bremsstrahlung pair halos from weak blazars with spectral flux densities below 50 {mu}Jy.

  10. Casimir effect for parallel metallic plates in cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Bezerra de Mello, E. R.; Saharian, A. A.; Grigoryan, A. Kh

    2012-09-01

    We evaluate the renormalized vacuum expectation values (VEVs) of electric and magnetic field squared and the energy-momentum tensor for the electromagnetic field in the geometry of two parallel conducting plates on the background of cosmic string spacetime. On the basis of these results, the Casimir-Polder force acting on a polarizable particle and the Casimir forces acting on the plates are investigated. The VEVs are decomposed into the pure string and plate-induced parts. The VEV of the electric field squared is negative for points with the radial distance to the string smaller than the distance to the plates, and positive for the opposite situation. On the other hand, the VEV for the magnetic field squared is negative everywhere. The boundary-induced part in the VEV of the energy-momentum tensor is different from zero in the region between the plates only. Moreover, this part only depends on the distance from the string. The boundary-induced part in the vacuum energy density is positive for points with a distance to the string smaller than the distance to the plates and negative in the opposite situation. The Casimir stresses on the plates depend non-monotonically on the distance from the string. We show that the Casimir forces acting on the plates are always attractive. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.

  11. Effects of cosmic acceleration on black hole thermodynamics

    NASA Astrophysics Data System (ADS)

    Mandal, Abhijit

    2016-07-01

    Direct local impacts of cosmic acceleration upon a black hole are matters of interest. Babichev et. al. had published before that the Friedmann equations which are prevailing the part of fluid filled up in the universe to lead (or to be very specific, `dominate') the other constituents of universe and are forcing the universe to undergo present-day accelerating phase (or to lead to violate the strong energy condition and latter the week energy condition), will themselves tell that the rate of change of mass of the central black hole due to such exotic fluid's accretion will essentially shrink the mass of the black hole. But this is a global impact indeed. The local changes in the space time geometry next to the black hole can be analysed from a modified metric governing the surrounding space time of a black hole. A charged deSitter black hole solution encircled by quintessence field is chosen for this purpose. Different thermodynamic parameters are analysed for different values of quintessence equation of state parameter, ω_q. Specific jumps in the nature of the thermodynamic space near to the quintessence or phantom barrier are noted and physically interpreted as far as possible. Nature of phase transitions and the situations at which these transitions are taking place are also explored. It is determined that before quintessence starts to work (ω_q=-0.33>-1/3) it was preferable to have a small unstable black hole followed by a large stable one. But in quintessence (-1/3>ω_q>-1), black holes are destined to be unstable large ones pre-quelled by stable/ unstable small/ intermediate mass black holes.

  12. Measurement and simulation of cosmic rays effects on neutron multiplicity counting

    NASA Astrophysics Data System (ADS)

    Weinmann-Smith, R.; Swinhoe, M. T.; Hendricks, J.

    2016-04-01

    Neutron coincidence and multiplicity counting is a standard technique used to measure uranium and plutonium masses in unknown samples for nuclear safeguards purposes, but background sources of radiation can obscure the results. In particular, high energy cosmic rays can produce large coincidence count contributions. Since some of the events occur in the sample itself, it is impossible to measure the background separately. This effect greatly increases the limit of detection of some low level neutron coincidence counting applications. The cosmic ray capability of MCNP6 was used to calculate the expected coincidence rates from cosmic rays for different sample configurations and experimental measurements were conducted for comparison. Uranium enriched to 66%, lead bricks, and an empty detector were measured in the mini Epithermal Neutron Multiplicity Counter, and MCNP6 simulations were made of the same measurements. The results show that the capability is adequate for predicting the expected background rates. Additional verification of MCNP6 was given by comparison of particle production rates to other publications, increasing confidence in MCNP6's use as a tool to lower the limit of detection. MCNP6 was then used to find particle and source information that would be difficult to detect experimentally. The coincidence count contribution was broken down by particle type for singles, doubles, and triples rates. The coincidence count contribution was broken down by source, from(a , n) , spontaneous fission, and cosmic rays, for each multiplicity.

  13. Effects of the galactic magnetic field upon large scale anisotropies of extragalactic cosmic rays

    SciTech Connect

    Harari, D.; Mollerach, S.; Roulet, E. E-mail: mollerach@cab.cnea.gov.ar

    2010-11-01

    The large scale pattern in the arrival directions of extragalactic cosmic rays that reach the Earth is different from that of the flux arriving to the halo of the Galaxy as a result of the propagation through the galactic magnetic field. Two different effects are relevant in this process: deflections of trajectories and (de)acceleration by the electric field component due to the galactic rotation. The deflection of the cosmic ray trajectories makes the flux intensity arriving to the halo from some direction to appear reaching the Earth from another direction. This applies to any intrinsic anisotropy in the extragalactic distribution or, even in the absence of intrinsic anisotropies, to the dipolar Compton-Getting anisotropy induced when the observer is moving with respect to the cosmic rays rest frame. For an observer moving with the solar system, cosmic rays traveling through far away regions of the Galaxy also experience an electric force coming from the relative motion (due to the rotation of the Galaxy) of the local system in which the field can be considered as being purely magnetic. This produces small changes in the particles momentum that can originate large scale anisotropies even for an isotropic extragalactic flux.

  14. Effective Moment Feature Vectors for Protein Domain Structures

    PubMed Central

    Shi, Jian-Yu; Yiu, Siu-Ming; Zhang, Yan-Ning; Chin, Francis Yuk-Lun

    2013-01-01

    Imaging processing techniques have been shown to be useful in studying protein domain structures. The idea is to represent the pairwise distances of any two residues of the structure in a 2D distance matrix (DM). Features and/or submatrices are extracted from this DM to represent a domain. Existing approaches, however, may involve a large number of features (100–400) or complicated mathematical operations. Finding fewer but more effective features is always desirable. In this paper, based on some key observations on DMs, we are able to decompose a DM image into four basic binary images, each representing the structural characteristics of a fundamental secondary structure element (SSE) or a motif in the domain. Using the concept of moments in image processing, we further derive 45 structural features based on the four binary images. Together with 4 features extracted from the basic images, we represent the structure of a domain using 49 features. We show that our feature vectors can represent domain structures effectively in terms of the following. (1) We show a higher accuracy for domain classification. (2) We show a clear and consistent distribution of domains using our proposed structural vector space. (3) We are able to cluster the domains according to our moment features and demonstrate a relationship between structural variation and functional diversity. PMID:24391828

  15. THE EFFECT OF A DYNAMIC INNER HELIOSHEATH THICKNESS ON COSMIC-RAY MODULATION

    SciTech Connect

    Manuel, R.; Ferreira, S. E. S.; Potgieter, M. S.

    2015-02-01

    The time-dependent modulation of galactic cosmic rays in the heliosphere is studied over different polarity cycles by computing 2.5 GV proton intensities using a two-dimensional, time-dependent modulation model. By incorporating recent theoretical advances in the relevant transport parameters in the model, we showed in previous work that this approach gave realistic computed intensities over a solar cycle. New in this work is that a time dependence of the solar wind termination shock (TS) position is implemented in our model to study the effect of a dynamic inner heliosheath thickness (the region between the TS and heliopause) on the solar modulation of galactic cosmic rays. The study reveals that changes in the inner heliosheath thickness, arising from a time-dependent shock position, does affect cosmic-ray intensities everywhere in the heliosphere over a solar cycle, with the smallest effect in the innermost heliosphere. A time-dependent TS position causes a phase difference between the solar activity periods and the corresponding intensity periods. The maximum intensities in response to a solar minimum activity period are found to be dependent on the time-dependent TS profile. It is found that changing the width of the inner heliosheath with time over a solar cycle can shift the time of when the maximum or minimum cosmic-ray intensities occur at various distances throughout the heliosphere, but more significantly in the outer heliosphere. The time-dependent extent of the inner heliosheath, as affected by solar activity conditions, is thus an additional time-dependent factor to be considered in the long-term modulation of cosmic rays.

  16. The Radiation Dose at Commercial Aircraft Altitudes During the January 2005 High-Energy Solar Cosmic ray Event and the Effects of the Solar Cosmic ray Anisotropy

    NASA Astrophysics Data System (ADS)

    Smart, D. F.; Shea, M. A.; Friedberg, W.; Copeland, K.; Sauer, H. H.

    2005-12-01

    The radiation dose to aircrews and passengers is a phenomenon of societal interest. There is a requirement to provide alerts whenever the radiation dose exceeds 20 micro-sieverts per hour at flight altitudes. The possibility that this might occur during a large high-energy solar cosmic ray event has resulted in much speculation. During the 20 January 2005 ground-level event the FAA Solar Radiation Alert System would have issued such an alert for aircraft at high latitudes for flight altitudes above 40,000 feet. Analysis of the GOES high-energy proton data results in a predicted dose rate of 23 micro Sv per hour at 60,000 feet for the first hour of the event. We also predict that the maximum peak dose rate would have been higher at the geographical position corresponding to the peak anisotropic flux intensity and would be correspondingly lower at geographical positions receiving a lower high energy solar cosmic ray flux. The solar high-energy flux anisotropy is extremely variable among the observed solar cosmic ray ground-level events. The 20 January 2005 event had one of the most extreme anisotropies yet observed by ground-level cosmic ray neutron monitors. We discuss the effects of this anisotropy with respect to aircraft radiation dose.

  17. Thermal effects on transverse domain wall dynamics in magnetic nanowires

    SciTech Connect

    Leliaert, J.; Van de Wiele, B.; Vandermeulen, J.; Coene, A.; Dupré, L.; Vansteenkiste, A.; Waeyenberge, B. Van; Laurson, L.; Durin, G.

    2015-05-18

    Magnetic domain walls are proposed as data carriers in future spintronic devices, whose reliability depends on a complete understanding of the domain wall motion. Applications based on an accurate positioning of domain walls are inevitably influenced by thermal fluctuations. In this letter, we present a micromagnetic study of the thermal effects on this motion. As spin-polarized currents are the most used driving mechanism for domain walls, we have included this in our analysis. Our results show that at finite temperatures, the domain wall velocity has a drift and diffusion component, which are in excellent agreement with the theoretical values obtained from a generalized 1D model. The drift and diffusion component are independent of each other in perfect nanowires, and the mean square displacement scales linearly with time and temperature.

  18. Ultrahigh energy cosmic ray nuclei from extragalactic pulsars and the effect of their Galactic counterparts

    SciTech Connect

    Fang, Ke; Olinto, Angela V.; Kotera, Kumiko E-mail: kotera@iap.fr

    2013-03-01

    The acceleration of ultrahigh energy nuclei in fast spinning newborn pulsars can explain the observed spectrum of ultrahigh energy cosmic rays and the trend towards heavier nuclei for energies above 10{sup 19} eV as reported by the Auger Observatory. Pulsar acceleration implies a hard injection spectrum ( ∼ E{sup −1}) due to pulsar spin down and a maximum energy E{sub max} ∼ Z 10{sup 19} eV due to the limit on the spin rate of neutron stars. We have previously shown that the escape through the young supernova remnant softens the spectrum, decreases slightly the maximum energy, and generates secondary nuclei. Here we show that the distribution of pulsar birth periods and the effect of propagation in the interstellar and intergalactic media modifies the combined spectrum of all pulsars. By assuming a normal distribution of pulsar birth periods centered at 300 ms, we show that the contribution of extragalactic pulsar births to the ultrahigh energy cosmic ray spectrum naturally gives rise to a contribution to very high energy cosmic rays (VHECRs, between 10{sup 16} and 10{sup 18} eV) by Galactic pulsar births. The required injected composition to fit the observed spectrum depends on the absolute energy scale, which is uncertain, differing between Auger Observatory and Telescope Array. The contribution of Galactic pulsar births can also bridge the gap between predictions for cosmic ray acceleration in supernova remnants and the observed spectrum just below the ankle, depending on the composition of the cosmic rays that escape the supernova remnant and the diffusion behavior of VHECRs in the Galaxy.

  19. Atmospheric Effects of Second Order on Cosmic Rays Intensity Measured at the South Hemisphere

    NASA Astrophysics Data System (ADS)

    Alvarez-Castillo, Jesús; Francisco Valdes-Galicia, Jose

    In this work, we show atmospheric effects of second order on the cosmic rays intensity observed in the South Hemisphere; analysis is using meteorologic data of the TRMM satelite and others of the NOAA, and free data of the surface detectors from Pierre Auger Observatory with a resolution of 15 minutes. The time period analized was from 2006-2011. The methodology consisted in analize the anomalies in atmospheric pressure and in the corrected cosmic rays data for barometric effects considering a sigma level >|2|, the results reflecting a second order variation in the atmospheric pressure, applying digital filters and the spectrum of the data showed a trend that correspond to periodicities of the rain and electric field.

  20. Modeling of heat transfer effects in ferroelectric domain switching

    NASA Astrophysics Data System (ADS)

    Kim, Sang J.

    1999-06-01

    In this paper we study on the effects of heat generated from a moving domain boundary during polarization reversals in ferroelectrics. According to the one-dimensional model of ferroelectrics proposed by Kim (1999), there are two heat sources associated with a moving domain boundary: one is from dissipation mechanism on the domain boundary and the other from the entropy difference between two variants across the domain boundary. In order to investigate the effects of heat generation and transfer during polarization reversals we utilize the finite difference algorithm shown in Kim and Abeyaratne (1995). The results of calculation show that it is possible for the specimen temperature to reach as high temperatures as observed in experiments.

  1. Large-scale imprint of relativistic effects in the cosmic magnification

    NASA Astrophysics Data System (ADS)

    Duniya, Didam G. A.

    2016-05-01

    Apart from the known weak gravitational lensing effect, the cosmic magnification acquires relativistic corrections owing to Doppler, integrated Sachs-Wolfe, time-delay and other (local) gravitational potential effects, respectively. These corrections grow on very large scales and high redshifts z , which will be the reach of forthcoming surveys. In this work, these relativistic corrections are investigated in the magnification angular power spectrum, using both (standard) noninteracting dark energy (DE), and interacting DE (IDE). It is found that for noninteracting DE, the relativistic corrections can boost the magnification large-scale power by ˜40 % at z =3 , and increases at lower z . It is also found that the IDE effect is sensitive to the relativistic corrections in the magnification power spectrum, particularly at low z —which will be crucial for constraints on IDE. Moreover, the results show that if relativistic corrections are not taken into account, this may lead to an incorrect estimate of the large-scale imprint of IDE in the cosmic magnification; including the relativistic corrections can enhance the true potential of the cosmic magnification as a cosmological probe.

  2. Virtual impact: visualizing the potential effects of cosmic impact in human history

    SciTech Connect

    Masse, W Bruce; Janecky, David R; Forte, Maurizio; Barrientos, Gustavo

    2009-01-01

    Current models indicate that catastrophic impacts by asteroids and comets capable of killing more than one quarter of Earth's human population have occurred on average once every million years; smaller impacts, such the 1908 Tunguska impact that leveled more than 2,000 square km of Siberian forest, occur every 200-300 years. Therefore, cosmic impact likely significantly affected hominine evolution and conceivably played a role in Holocene period human culture history. Regrettably, few archaeologists are trained to appreciate the nature and potential effects of cosmic impact. We have developed a conceptual model for an extensible set of educational and research tools based on virtual reality collaborative environments to engage archaeologists and the general public on the topic of the role of cosmic impact in human history. Our initial focus is on two documented asteroid impacts in Argentina during the period of 4000 to 1000 B.C. Campo del Cicio resulted in an energy release of around 2-3 megatons (100-150 times the Hiroshima atomic weapon), and left several craters and a strewn field covering 493 km{sup 2} in northeastern Argentina. Rio Cuarto was likely more than 1000 megatons and may have devastated an area greater than 50,000 km{sup 2} in central Argentina. We are focusing on reconstructions of these events and their potential effects on contemporary hunter and gatherers. Our vinual reality tools also introduce interactive variables (e.g., impactor physical properties, climate, vegetation, topography, and social complexity) to allow researchers and students to better investigate and evaluate the factors that significantly influence cosmic impact effects.

  3. Domain-General and Domain-Specific Creative-Thinking Tests: Effects of Gender and Item Content on Test Performance

    ERIC Educational Resources Information Center

    Hong, Eunsook; Peng, Yun; O'Neil, Harold F., Jr.; Wu, Junbin

    2013-01-01

    The study examined the effects of gender and item content of domain-general and domain-specific creative-thinking tests on four subscale scores of creative-thinking (fluency, flexibility, originality, and elaboration). Chinese tenth-grade students (234 males and 244 females) participated in the study. Domain-general creative thinking was measured…

  4. Frequency domain effects of low resolution digitization

    NASA Astrophysics Data System (ADS)

    Law, Eugene L.

    Some effects of minimizing the transmitted bandwidth by quantizing to a small number of bits are discussed. Measured performance is presented for four different input signals and one-,three-, and eight-bit quantization. The signals are amplitude modulation, angle modulation, sum of sine waves, and frequency sweep. The analysis are performed using either fast Fourier transforms or a Kay DSP sonograph. The effective dynamic ranges of one- and three-bit quantization are shown to be a function of the input signal characteristics. One- and three-bit quantizations perform best for angle modulated signals and worst for amplitude modulated signals.

  5. Domain wall assisted GMR head with spin-Hall effect

    NASA Astrophysics Data System (ADS)

    Arun, R.; Sabareesan, P.; Daniel, M.

    2016-05-01

    We theoretically study the dynamics of a field induced domain wall in the Py/Pt bi-layer structure in the presence of spin-Hall effect (SHE) by solving the Landau-Lifshitz-Gilbert (LLG) equation along with the adiabatic, nonadiabatic and SHE spin-transfer torques (STTs). It is observed that a weak magnetic field moves the domain wall with high velocity in the presence of SHE and the direction of the velocity is changed by changing the direction of the weak field. The numerical results show that the magnetization of the ferromagnetic layer can be reversed quickly through domain wall motion by changing the direction of a weak external field in the presence of SHE while the direction of current is fixed. The SHE reduces the magnetization reversal time of 1000 nm length strip by 14.7 ns. This study is extended to model a domain wall based GMR (Giant Magnetoresistance) read head with SHE.

  6. Turbulence excited frequency domain damping measurement and truncation effects

    NASA Technical Reports Server (NTRS)

    Soovere, J.

    1976-01-01

    Existing frequency domain modal frequency and damping analysis methods are discussed. The effects of truncation in the Laplace and Fourier transform data analysis methods are described. Methods for eliminating truncation errors from measured damping are presented. Implications of truncation effects in fast Fourier transform analysis are discussed. Limited comparison with test data is presented.

  7. Effects of cosmic rays on single event upsets

    NASA Technical Reports Server (NTRS)

    Lowe, Calvin W.; Oladipupo, Adebisi O.; Venable, Demetrius D.

    1988-01-01

    The efforts at establishing a research program in space radiation effects are discussed. The research program has served as the basis for training several graduate students in an area of research that is of importance to NASA. In addition, technical support was provided for the Single Event Facility Group at Brookhaven National Laboratory.

  8. The cross-correlation between 3D cosmic shear and the integrated Sachs-Wolfe effect

    NASA Astrophysics Data System (ADS)

    Zieser, Britta; Merkel, Philipp M.

    2016-06-01

    We present the first calculation of the cross-correlation between 3D cosmic shear and the integrated Sachs-Wolfe (iSW) effect. Both signals are combined in a single formalism, which permits the computation of the full covariance matrix. In order to avoid the uncertainties presented by the non-linear evolution of the matter power spectrum and intrinsic alignments of galaxies, our analysis is restricted to large scales, i.e. multipoles below ℓ = 1000. We demonstrate in a Fisher analysis that this reduction compared to other studies of 3D weak lensing extending to smaller scales is compensated by the information that is gained if the additional iSW signal and in particular its cross-correlation with lensing data are considered. Given the observational standards of upcoming weak-lensing surveys like Euclid, marginal errors on cosmological parameters decrease by 10 per cent compared to a cosmic shear experiment if both types of information are combined without a cosmic wave background (CMB) prior. Once the constraining power of CMB data is added, the improvement becomes marginal.

  9. The effect of the solar field reversal on the modulation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Thomas, B. T.; Goldstein, B. E.

    1983-01-01

    There is now a growing awareness that solar cycle related changes in the large-scale structure of the interplanetary magnetic field (IMF) may play an important role in the modulation of galactic cosmic rays. To date, attention focussed on two aspects of the magnetic field structure: large scale compression regions produced by fast solar wind streams and solar flares, both of which are known to vary in intensity and number over the solar cycle, and the variable warp of the heliospheric current sheet. It is suggested that another feature of the solar cycle is worthy of consideration: the field reversal itself. If the Sun reverses its polarity by simply overturning the heliospheric current sheet (northern fields migrating southward and vice-versa) then there may well be an effect on cosmic ray intensity. However, such a simple picture of solar reversal seems improbable. Observations of the solar corona suggest the existence of not one but several current sheets in the heliosphere at solar maximum. The results of a simple calculation to demonstrate that the variation in cosmic ray intensities that will result can be as large as is actually observed over the solar cycle are given.

  10. Effects of cosmic rays on single event upsets

    NASA Technical Reports Server (NTRS)

    Venable, D. D.; Zajic, V.; Lowe, C. W.; Olidapupo, A.; Fogarty, T. N.

    1989-01-01

    Assistance was provided to the Brookhaven Single Event Upset (SEU) Test Facility. Computer codes were developed for fragmentation and secondary radiation affecting Very Large Scale Integration (VLSI) in space. A computer controlled CV (HP4192) test was developed for Terman analysis. Also developed were high speed parametric tests which are independent of operator judgment and a charge pumping technique for measurement of D(sub it) (E). The X-ray secondary effects, and parametric degradation as a function of dose rate were simulated. The SPICE simulation of static RAMs with various resistor filters was tested.

  11. Cosmological Implications of the Effects of X-Ray Clusters on the Cosmic Microwave Background

    NASA Technical Reports Server (NTRS)

    Forman, William R.

    1996-01-01

    We have been carrying forward a program to confront X-ray observations of clusters and their evolution as derived from X-ray observatories with observations of the cosmic microwave background radiation (CMBR). In addition to the material covered in our previous reports (including three published papers), most recently we have explored the effects of a cosmological constant on the predicted Sunyaev-Zel'dovich effect from the ensemble of clusters. In this report we summarize that work from which a paper will be prepared.

  12. A wind effect of neutron component of cosmic rays at Antarctic station "Mirny"

    NASA Astrophysics Data System (ADS)

    Kobelev, Pavel; Abunin, Artem; Abunina, Mariya; Preobragenskiy, Maksim; Smirnov, Dmitriy; Lukovnikova, Anna

    2016-03-01

    The barometric effect of cosmic ray neutron component was estimated on the example of Antarctic station "Mirny". We used hourly data of continuous monitoring of neutron component and data of the local weather station for 2007-2014. Wind velocity at the Station "Mirny" reaches 20-40 m/s in winter that corresponds to the dynamic pressure of 5-6 mbar and leads to 5 % error in variations of neutron component because of dynamic effects in the atmosphere. The results are of interest for detectors located in high latitude and high mountain regions where the wind velocity can be significant.

  13. 21 cm signal from cosmic dawn - II. Imprints of the light-cone effects

    NASA Astrophysics Data System (ADS)

    Ghara, Raghunath; Datta, Kanan K.; Choudhury, T. Roy

    2015-11-01

    Details of various unknown physical processes during the cosmic dawn and the epoch of reionization can be extracted from observations of the redshifted 21 cm signal. These observations, however, will be affected by the evolution of the signal along the line of sight which is known as the `light-cone effect'. We model this effect by post-processing a dark matter N-body simulation with an 1D radiative transfer code. We find that the effect is much stronger and dramatic in presence of inhomogeneous heating and Ly α coupling compared to the case where these processes are not accounted for. One finds increase (decrease) in the spherically averaged power spectrum up to a factor of 3 (0.6) at large scales (k ˜ 0.05 Mpc- 1) when the light-cone effect is included, though these numbers are highly dependent on the source model. The effect is particularly significant near the peak and dip-like features seen in the power spectrum. The peaks and dips are suppressed and thus the power spectrum can be smoothed out to a large extent if the width of the frequency band used in the experiment is large. We argue that it is important to account for the light-cone effect for any 21-cm signal prediction during cosmic dawn.

  14. Effects of Turbulence on Cosmic Ray Propagation in Protostars and Young Star/Disk Systems

    NASA Astrophysics Data System (ADS)

    Fatuzzo, Marco; Adams, Fred C.

    2014-05-01

    The magnetic fields associated with young stellar objects are expected to have an hour-glass geometry, i.e., the magnetic field lines are pinched as they thread the equatorial plane surrounding the forming star but merge smoothly onto a background field at large distances. With this field configuration, incoming cosmic rays experience both a funneling effect that acts to enhance the flux impinging on the circumstellar disk and a magnetic mirroring effect that acts to reduce that flux. To leading order, these effects nearly cancel out for simple underlying magnetic field structures. However, the environments surrounding young stellar objects are expected to be highly turbulent. This paper shows how the presence of magnetic field fluctuations affects the process of magnetic mirroring, and thereby changes the flux of cosmic rays striking circumstellar disks. Turbulence has two principle effects: (1) the (single) location of the magnetic mirror point found in the absence of turbulence is replaced with a wide distribution of values. (2) The median of the mirror point distribution moves outward for sufficiently large fluctuation amplitudes (roughly when δB/B 0 > 0.2 at the location of the turbulence-free mirror point); the distribution becomes significantly non-Gaussian in this regime as well. These results may have significant consequences for the ionization fraction of the disk, which in turn dictates the efficiency with which disk material can accrete onto the central object. A similar reduction in cosmic ray flux can occur during the earlier protostellar stages; the decrease in ionization can help alleviate the magnetic braking problem that inhibits disk formation.

  15. Effects of turbulence on cosmic ray propagation in protostars and young star/disk systems

    SciTech Connect

    Fatuzzo, Marco; Adams, Fred C. E-mail: fca@umich.edu

    2014-05-20

    The magnetic fields associated with young stellar objects are expected to have an hour-glass geometry, i.e., the magnetic field lines are pinched as they thread the equatorial plane surrounding the forming star but merge smoothly onto a background field at large distances. With this field configuration, incoming cosmic rays experience both a funneling effect that acts to enhance the flux impinging on the circumstellar disk and a magnetic mirroring effect that acts to reduce that flux. To leading order, these effects nearly cancel out for simple underlying magnetic field structures. However, the environments surrounding young stellar objects are expected to be highly turbulent. This paper shows how the presence of magnetic field fluctuations affects the process of magnetic mirroring, and thereby changes the flux of cosmic rays striking circumstellar disks. Turbulence has two principle effects: (1) the (single) location of the magnetic mirror point found in the absence of turbulence is replaced with a wide distribution of values. (2) The median of the mirror point distribution moves outward for sufficiently large fluctuation amplitudes (roughly when δB/B {sub 0} > 0.2 at the location of the turbulence-free mirror point); the distribution becomes significantly non-Gaussian in this regime as well. These results may have significant consequences for the ionization fraction of the disk, which in turn dictates the efficiency with which disk material can accrete onto the central object. A similar reduction in cosmic ray flux can occur during the earlier protostellar stages; the decrease in ionization can help alleviate the magnetic braking problem that inhibits disk formation.

  16. Effects of Intramolecular Distance between Amyloidogenic Domains on Amyloid Aggregation

    PubMed Central

    Ko, Ahra; Kim, Jin Ryoun

    2012-01-01

    Peptide/protein aggregation is implicated in many amyloid diseases. Some amyloidogenic peptides/proteins, such as those implicated in Alzheimer’s and Parkinson’s diseases, contain multiple amyloidogenic domains connected by “linker” sequences displaying high propensities to form turn structures. Recent studies have demonstrated the importance of physicochemical properties of each amino acid contained in the polypeptide sequences in amyloid aggregation. However, effects on aggregation related to the intramolecular distance between amyloidogenic domains, which may be determined by a linker length, have yet to be examined. In the study presented here, we created peptides containing two copies of KFFE, a simple four-residue amyloidogenic domain, connected by GS-rich linker sequences with different lengths yet similar physicochemical properties. Our experimental results indicate that aggregation occurred most rapidly when KFFE domains were connected by a linker of an intermediate length. Our experimental findings were consistent with estimated entropic contribution of a linker length toward formation of (partially) structured intermediates on the aggregation pathway. Moreover, inclusion of a relatively short linker was found to inhibit formation of aggregates with mature fibril morphology. When the results are assimilated, our study demonstrates that intramolecular distance between amyloidogenic domains is an important yet overlooked factor affecting amyloid aggregation. PMID:23202890

  17. Effects of viscous pressure on warm inflationary generalized cosmic Chaplygin gas model

    SciTech Connect

    Sharif, M.; Saleem, Rabia E-mail: rabiasaleem1988@yahoo.com

    2014-12-01

    This paper is devoted to study the effects of bulk viscous pressure on an inflationary generalized cosmic Chaplygin gas model using FRW background. The matter contents of the universe are assumed to be inflaton and imperfect fluid. We evaluate inflaton fields, potentials and entropy density for variable as well as constant dissipation and bulk viscous coefficients in weak as well as high dissipative regimes during intermediate era. In order to discuss inflationary perturbations, we evaluate entropy density, scalar (tensor) power spectra, their corresponding spectral indices, tensor-scalar ratio and running of spectral index in terms of inflaton which are constrained using recent Planck, WMAP7 and Bicep2 probes.

  18. An example of exceptional practice effects in the verbal domain.

    PubMed

    Stålhammar, Jacob; Nordlund, Arto; Wallin, Anders

    2015-01-01

    XY, a 20-year-old mnemonist (current world ranking within the top 50) was tested with standard neuropsychological tests. XY recalled all words on all trials on the Rey Auditory Verbal Learning Test (RAVLT, 15 words) and scored above the 99.9th percentile on the Wechsler Memory Scales R, Logical Memory (WLM, 2 short stories, 25 units per story, 50 units total). XY had not been previously tested with neuropsychological tests, but had trained memory techniques for approximately 8 years. We suggest that training on similar tasks resulted in substantial practice effects in the verbal memory domain, with no measurable transfer effects to the visual domain. In addition to previous findings, we present a practice effect on RAVLT and WLM exceeding previously documented test-retest effects by 2-3 standard deviations. PMID:24460464

  19. Cosmic bubble and domain wall instabilities III: the role of oscillons in three-dimensional bubble collisions

    NASA Astrophysics Data System (ADS)

    Bond, J. Richard; Braden, Jonathan; Mersini-Houghton, Laura

    2015-09-01

    We study collisions between pairs of bubbles nucleated in an ambient false vacuum. For the first time, we include the effects of small initial (quantum) fluctuations around the instanton profiles describing the most likely initial bubble profile. Past studies of this problem neglect these fluctuations and work under the assumption that the collisions posess an exact SO(2,1) symmetry. We use three-dimensional lattice simulations to demonstrate that for double-well potentials, small initial perturbations to this symmetry can be amplified as the system evolves. Initially the amplification is well-described by linear perturbation theory around the SO(2,1) background, but the onset of strong nonlinearities amongst the fluctuations quickly leads to a drastic breaking of the original SO(2,1) symmetry and the production of oscillons in the collision region. We explore several single-field models, and we find it is hard to both realize inflation inside of a bubble and produce oscillons in a collision. Finally, we extend our results to a simple two-field model. The additional freedom allowed by the second field allows us to construct viable inflationary models that allow oscillon production in collisions. The breaking of the SO(2,1) symmetry allows for a new class of observational signatures from bubble collisions that do not posess azimuthal symmetry, including the production of gravitational waves which cannot be supported by an SO(2,1) spacetime.

  20. Comparative Analysis of Ionization Effect during Major Gles Due to Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Mishev, Alexander; Velinov, Peter

    2016-07-01

    Several major ground level enhancements (GLEs) occurred during previous solar cycle 23. During the solar cycle 23, sixteen GLE events were observed with intensities ranging ~ 3 - 269% at the sea level. The first event occurred on 6 November 1997 (GLE 55) and the last event occurred on 13 December 2006 (GLE 70). Here we focus on major GLEs, namely on their ionization effect due to cosmic rays of galactic and solar origin and provide a comparative analysis. The solar energetic particles protons of MeV and greater energies cause an excess of ionization in the atmosphere. The ionization effect in the Earth atmosphere is obtained for various latitudes and altitudes in the atmosphere using solar proton energy spectra derived from ground based measurements with neutron monitors. The ion production is obtained using a numerical model for cosmic ray induced ionization, based on Monte Carlo simulations of atmospheric cascade ion the atmosphere of the Earth. Her we consider the GLE 70 on December of 13, 2006, which is among is among the strongest recorded events during solar cycle 23, even it occurred at quit solar activity conditions. We compare the ionization effect this event with Bastille day event (GLE 59). A quantitative comparison with the sequence of Halloween events (GLE 65-67) and the major event of 20 January 2005 (GLE 69) is carried out. We briefly discussed the results.

  1. Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Zaldarriaga, Matias

    The following sections are included: * Rapporteur Talk by R. Ellis: Massive Black Holes: Evidence, Demographics and Cosmic Evolution * Rapporteur Talk by S. Furlanetto: The Cosmic Dawn: Theoretical Models and the Future

  2. The effects of cosmic microwave background (CMB) temperature uncertainties on cosmological parameter estimation

    SciTech Connect

    Hamann, Jan; Wong, Yvonne Y Y E-mail: ywong@mppmu.mpg.de

    2008-03-15

    We estimate the effect of the experimental uncertainty in the measurement of the temperature of the cosmic microwave background (CMB) on the extraction of cosmological parameters from future CMB surveys. We find that even for an ideal experiment limited only by cosmic variance up to l=2500 for both the temperature and polarization measurements, the projected cosmological parameter errors are remarkably robust against the uncertainty of 1 mK in the firas CMB temperature monopole measurement. The maximum degradation in sensitivity is 20%, for the baryon density estimate, relative to the case in which the monopole is known infinitely well. While this degradation is acceptable, we note that reducing the uncertainty in the current temperature measurement by a factor of five will bring it down to {approx}1%. We also estimate the effect of the uncertainty in the dipole temperature measurement. Assuming the overall calibration of the data to be dominated by the dipole error of 0.2% from firas, the sensitivity degradation is insignificant and does not exceed 10% in any parameter direction.

  3. Systematic Effects in Polarizing Fourier Transform Spectrometers for Cosmic Microwave Background Observations

    NASA Astrophysics Data System (ADS)

    Nagler, Peter C.; Fixsen, Dale J.; Kogut, Alan; Tucker, Gregory S.

    2015-11-01

    The detection of the primordial B-mode polarization signal of the cosmic microwave background (CMB) would provide evidence for inflation. Yet as has become increasingly clear, the detection of a such a faint signal requires an instrument with both wide frequency coverage to reject foregrounds and excellent control over instrumental systematic effects. Using a polarizing Fourier transform spectrometer (FTS) for CMB observations meets both of these requirements. In this work, we present an analysis of instrumental systematic effects in polarizing FTSs, using the Primordial Inflation Explorer (PIXIE) as a worked example. We analytically solve for the most important systematic effects inherent to the FTS—emissive optical components, misaligned optical components, sampling and phase errors, and spin synchronous effects—and demonstrate that residual systematic error terms after corrections will all be at the sub-nK level, well below the predicted 100 nK B-mode signal.

  4. Effects of Nuclear Cross Sections at Different Energies on the Radiation Hazard from Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Lin, Z. W.; Adams, J. H., Jr.

    2006-01-01

    The radiation hazard for astronauts from galactic cosmic rays is a major obstacle in long duration human space explorations. Space radiation transport codes have been developed to calculate radiation environment on missions to the Moon, Mars or beyond. We have studied how uncertainties in fragmentation cross sections at different energies affect the accuracy of predictions from such radiation transport. We find that, in deep space, cross sections between 0.3 and 0.85 GeV/u usually have the largest effect on dose-equivalent behind shielding in solar minimum GCR environments, and cross sections between 0.85 and 1.2 GeV/u have the largest effect in solar maximum GCR environments. At the International Space Station, cross sections at higher energies have the largest effect due to the geomagnetic cutoff.

  5. Cytogenetic effects of heavy charged particles of galactic cosmic radiation in experiments aboard Cosmos-1129 biosatellite

    SciTech Connect

    Nevzgodina, L.V.; Maksimova, Y.N.

    1982-08-01

    An experiment was carried out on lettuce (Lactuca sativa) seeds flown in a biocontainer equipped with plastic detectors to record heavy charged particles (HCP). The purpose of the experiment was to determine the yield of aberrant cells as a result of irradiation, and to identify this effect as a function of HCP topography in the seed. The cytogenetic examination of flight seedlings revealed a significant difference between the seeds which were hit with HCP and those that remained intact. This indicates a significant contribution of the heavy component of galactic cosmic radiation into the radiobiological effect. The relationship between the radiobiological effect and the HCP topography in the seed was established: zones of the root and stem meristem proved to be the most sensitive targets.

  6. THE EFFECT OF INTERMITTENT GYRO-SCALE SLAB TURBULENCE ON PARALLEL AND PERPENDICULAR COSMIC-RAY TRANSPORT

    SciTech Connect

    Le Roux, J. A.

    2011-12-10

    Earlier work based on nonlinear guiding center (NLGC) theory suggested that perpendicular cosmic-ray transport is diffusive when cosmic rays encounter random three-dimensional magnetohydrodynamic turbulence dominated by uniform two-dimensional (2D) turbulence with a minor uniform slab turbulence component. In this approach large-scale perpendicular cosmic-ray transport is due to cosmic rays microscopically diffusing along the meandering magnetic field dominated by 2D turbulence because of gyroresonant interactions with slab turbulence. However, turbulence in the solar wind is intermittent and it has been suggested that intermittent turbulence might be responsible for the observation of 'dropout' events in solar energetic particle fluxes on small scales. In a previous paper le Roux et al. suggested, using NLGC theory as a basis, that if gyro-scale slab turbulence is intermittent, large-scale perpendicular cosmic-ray transport in weak uniform 2D turbulence will be superdiffusive or subdiffusive depending on the statistical characteristics of the intermittent slab turbulence. In this paper we expand and refine our previous work further by investigating how both parallel and perpendicular transport are affected by intermittent slab turbulence for weak as well as strong uniform 2D turbulence. The main new finding is that both parallel and perpendicular transport are the net effect of an interplay between diffusive and nondiffusive (superdiffusive or subdiffusive) transport effects as a consequence of this intermittency.

  7. Comparison of the effects of two models for perpendicular diffusion on cosmic-ray latitudinal gradients

    NASA Astrophysics Data System (ADS)

    Minnie, J.; Burger, R. A.; Parhi, S.; Matthaeus, W. H.; Bieber, J. W.

    We compare the effects of two different models for perpendicular diffusion on the latitudinal gradients of galactic cosmic ray protons during solar minimum conditions. These two models correspond to the newly developed non-linear guiding center theory [Matthaeus, W.H., Qin, G., Bieber, J.W., Zank, G.P. Nonlinear collisionless perpendicular diffusion of charged particles. Astrophys. J. Lett., 590 (1), L53 L56, 2003] and the theory based on a velocity correlation function approach [Bieber, J.W., Matthaeus, W.H. Perpendicular diffusion and drift at intermediate cosmic-ray energies. Astrophys. J., 485 (2) 655 659, 1997]. In this ab initio study a steady-state two-dimensional numerical modulation model is used which incorporates a state-of-the-art turbulence model. We show that the non-linear guiding center theory predicts a mean free path that has a rigidity dependence that better accounts for the latitudinal gradients measured by Ulysses during its first fast latitude scan in 1994/1995.

  8. Neutron yields and effective doses produced by Galactic Cosmic Ray interactions in shielded environments in space.

    PubMed

    Heilbronn, Lawrence H; Borak, Thomas B; Townsend, Lawrence W; Tsai, Pi-En; Burnham, Chelsea A; McBeth, Rafe A

    2015-11-01

    In order to define the ranges of relevant neutron energies for the purposes of measurement and dosimetry in space, we have performed a series of Monte Carlo transport model calculations that predict the neutron field created by Galactic Cosmic Ray interactions inside a variety of simple shielding configurations. These predictions indicate that a significant fraction of the neutron fluence and neutron effective dose lies in the region above 20 MeV up to several hundred MeV. These results are consistent over thicknesses of shielding that range from very thin (2.7 g/cm(2)) to thick (54 g/cm(2)), and over both shielding materials considered (aluminum and water). In addition to these results, we have also investigated whether simplified Galactic Cosmic Ray source terms can yield predictions that are equivalent to simulations run with a full GCR source term. We found that a source using a GCR proton and helium spectrum together with a scaled oxygen spectrum yielded nearly identical results to a full GCR spectrum, and that the scaling factor used for the oxygen spectrum was independent of shielding material and thickness. Good results were also obtained using a GCR proton spectrum together with a scaled helium spectrum, with the helium scaling factor also independent of shielding material and thickness. Using a proton spectrum alone was unable to reproduce the full GCR results. PMID:26553642

  9. Light from cosmic strings

    SciTech Connect

    Steer, Daniele A.; Vachaspati, Tanmay

    2011-02-15

    The time-dependent metric of a cosmic string leads to an effective interaction between the string and photons--the ''gravitational Aharonov-Bohm'' effect--and causes cosmic strings to emit light. We evaluate the radiation of pairs of photons from cosmic strings and find that the emission from cusps, kinks and kink-kink collisions occurs with a flat spectrum at all frequencies up to the string scale. Further, cusps emit a beam of photons, kinks emit along a curve, and the emission at a kink-kink collision is in all directions. The emission of light from cosmic strings could provide an important new observational signature of cosmic strings that is within reach of current experiments for a range of string tensions.

  10. Magnetic domains and surface effects in hollow maghemite nanoparticles

    SciTech Connect

    Cabot, Andreu; Alivisatos, A. Paul; Puntes, Victor; Balcells, Lluis; Iglesias, Oscar; Labarta, Amilcar

    2008-09-30

    In the present work, we investigate the magnetic properties of ferrimagnetic and non-interacting maghemite hollow nanoparticles obtained by the Kirkendall effect. From the experimental characterization of their magnetic behavior, we find that polycrystalline hollow maghemite nanoparticles exhibit low blocked-to-superparamagnetic transition temperatures, small magnetic moments, significant coercivities and irreversibility fields, and no magnetic saturation on external magnetic fields up to 5 T. These results are interpreted in terms of the microstructural parameters characterizing the maghemite shells by means of atomistic Monte Carlo simulations of an individual spherical shell. The model comprises strongly interacting crystallographic domains arranged in a spherical shell with random orientations and anisotropy axis. The Monte Carlo simulation allows discernment between the influence of the polycrystalline structure and its hollow geometry, while revealing the magnetic domain arranggement in the different temperataure regimes.

  11. Cosmic-Ray-Induced Ship-Effect Neutron Measurements and Implications for Cargo Scanning at Borders

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Seifert, Allen; Siciliano, Edward R.; Weier, Dennis R.; Windsor, Lindsay K.; Woodring, Mitchell L.; Borgardt, James D.; Buckley, Elise D.; Flumerfelt, Eric L.; Oliveri, Anna F.; Salvitti, Matthew

    2008-03-11

    Neutron measurements are used as part of the interdiction process for illicit nuclear materials at border crossings. Even though the natural neutron background is small, its variation can impact the sensitivity of detection systems. The natural background of neutrons that is observed in monitoring instruments arises almost entirely from cosmic ray induced cascades in the atmosphere and the surrounding environment. One significant source of variation in the observed neutron background is produced by the “ship effect” in large quantities of cargo that transit past detection instruments. This paper reports on results from measurements with typical monitoring equipment of ship effect neutrons in various materials. One new result is the “neutron shadow shielding” effect seen with some low neutron density materials.

  12. Probing the effective number of neutrino species with the cosmic microwave background

    SciTech Connect

    Ichikawa, Kazuhide; Sekiguchi, Toyokazu; Takahashi, Tomo

    2008-10-15

    We discuss how much we can probe the effective number of neutrino species N{sub {nu}} with the cosmic microwave background alone. Using the data of the WMAP, ACBAR, CBI, and BOOMERANG experiments, we obtain a constraint on the effective number of neutrino species as 0.96

  13. Solar modulation and nuclear fragmentation effects in galactic cosmic ray transport through shielding

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Cucinotta, C. F.; Wilson, J. W.; Shinn, J. L.; Badhwar, G.

    1994-01-01

    Crews of manned interplanetary missions may accumulate significant radiation exposures from the Galactic Cosmic Ray (GCR) environment in space. Estimates of how these dose levels are affected by the assumed temporal and spatial variations in the composition of the GCR environment, and by the effects of the spacecraft and body self-shielding on the transported fields are presented. In this work, the physical processes through which shielding alters the transported radiation fields are described. We then present estimates of the effects on model calculations of (1) nuclear fragmentation model uncertainties, (2) solar modulation, (3) variations between solar cycles, and (4) proposed changes to the quality factors which relate dose equivalent to absorbed dose.

  14. Effects of nuclear cross sections at different energies on the radiation hazard from galactic cosmic rays.

    PubMed

    Lin, Z W; Adams, J H

    2007-03-01

    The radiation hazard for astronauts from galactic cosmic rays (GCR) is a major obstacle to long-duration human space exploration. Space radiation transport codes have been developed to calculate the radiation environment on missions to the Moon, Mars, and beyond. We have studied how uncertainties in fragmentation cross sections at different energies affect the accuracy of predictions from such radiation transport calculations. We find that, in deep space, cross sections at energies between 0.3 and 0.85 GeV/nucleon have the largest effect in solar maximum GCR environments. At the International Space Station, cross sections at higher energies have the largest effect due to the geomagnetic cutoff. PMID:17316078

  15. Sensitivity of a search for cosmic ray sources including magnetic field effects

    NASA Astrophysics Data System (ADS)

    Erdmann, Martin; Müller, Gero; Urban, Martin

    2016-05-01

    We analyze the sensitivity of a new method investigating correlations between ultra-high energy cosmic rays and extragalactic sources taking into account deflections in the galactic magnetic field. In comparisons of expected and simulated arrival directions of cosmic rays we evaluate the directional characteristics and magnitude of the field. We show that our method is capable of detecting an anisotropy in data sets with a low signal fraction. It also reveals directions with increased probability for sources of cosmic rays, and therefore opens new possibilities for investigating cosmic particle origin and acceleration.

  16. Effective Dose Equivalent due to Cosmic Ray Particles and Their Secondary Particles on the Moon

    NASA Astrophysics Data System (ADS)

    Hayatsu, Kanako; Hareyama, Makoto; Kobayashi, Shingo; Karouji, Yuzuru; Sakurai, K.; Sihver, Lembit; Hasebe, N.

    Estimation of radiation dose on and under the lunar surface is quite important for human activity on the Moon and for the future lunar bases construction. Radiation environment on the Moon is much different from that on the Earth. Galactic cosmic rays (GCRs) and solar energetic particles (SEPs) directly penetrate the lunar surface because of no atmosphere and no magnetic field around the Moon. Then, they generate many secondary particles such as neutrons, gamma rays and other charged particles by nuclear interactions with soils and regolith breccias under the lunar surface. Therefore, the estimation of radiation dose from them on the surface and the underground of the Moon are essential for safety human activities. In this study, the effective dose equivalents at the surface and various depths of the Moon were estimated using by the latest cosmic rays observation and developed calculation code. The largest contribution to the dose on the surface is primary charged particles in GCRs and SEPs, while in the ground, secondary neutrons are the most dominant. In particular, the dose from neutrons becomes maximal at 70-80 g/cm2 in depth of lunar soil, because fast neutrons with about 1.0 MeV are mostly produced at this depth and give the largest dose. On the lunar surface, the doses originated from large SEPs are very hazardous. We estimated the effective dose equivalents due to such large SEPs and the effects of aluminum shield for the large flare on the human body. In the presentation, we summarize and discuss the improved calculation results of radiation doses due to GCR particles and their secondary particles in the lunar subsurface. These results will provide useful data for the future exploration of the Moon.

  17. The energy range of drift effects in the solar modulation of cosmic ray electrons

    NASA Astrophysics Data System (ADS)

    Nndanganeni, Rendani R.; Potgieter, Marius S.

    2016-08-01

    A comprehensive three-dimensional modulation model is used to study the energy range of drift effects in the solar modulation of cosmic ray (galactic) electrons. Drift effects are defined as the difference between modulated spectra at a given position in the heliosphere computed for the two solar magnetic polarity cycles. The process of curvature, gradient and current sheet drifts in the heliosphere, together with convection, adiabatic energy losses and diffusion have profound effects on electron modulation. However, several reports indicated that the so-called weak-scattering drifts caused an overestimation of drift effects. It is illustrated that drift effects can be reduced in two ways, explicitly and implicitly; both influence the energy range where these effects are present but the implicit approach is more subtle to recognize and understand. A new very local interstellar spectrum for electrons is used. Electrons are most suitable for this type of study because they experience far less adiabatic energy losses than protons so that they respond directly with changes of the diffusion coefficients down to very low kinetic energy, E ∼ 1 MeV. In general, taking several modulation considerations into account, drift effects for electrons at the Earth are getting increasingly larger from above ∼10 MeV, with a maximum effect around 100 MeV, then gradually subsides to become less significant above ∼10 GeV.

  18. The effects of magnetic field modifications on the solar modulation of cosmic rays with a SDE-based model

    NASA Astrophysics Data System (ADS)

    Raath, J. L.; Potgieter, M. S.; Strauss, R. D.; Kopp, A.

    2016-05-01

    A numerical model for the solar modulation of cosmic rays, based on the solution of a set of stochastic differential equations (SDEs), is used to illustrate the effects of modifying the heliospheric magnetic field, particularly in the polar regions of the heliosphere. SDE-based models are well suited for such studies so that new insights are gained. To this end, the differences in the modulation brought about by each of three choices for the heliospheric magnetic field, i.e. the unmodified Parker field, the Smith-Bieber modified field, and the Jokipii-Kóta modified field, are studied as typical well-known cases. It is illustrated that although both these modifications change the Parker field satisfactorily in the polar regions of the heliosphere, the Smith-Bieber modification is more effective in reducing cosmic ray drift effects in these regions. The features of these two modifications, as well as the effects on the solar modulation of cosmic rays, are illustrated qualitatively and quantitatively. In particular, it is shown how the Smith-Bieber modified field is applied in a cosmic ray modulation model to reproduce observational proton spectra from the PAMELA mission during the solar minimum of 2006-2009. These SDE-based results are compared with those obtained in previous studies of this unusual solar minimum activity period and found to be in good qualitative agreement.

  19. Cosmic-ray slowing down in molecular clouds: Effects of heavy nuclei

    NASA Astrophysics Data System (ADS)

    Chabot, Marin

    2016-01-01

    Context. A cosmic ray (CR) spectrum propagated through ISM contains very few low-energy (<100 MeV) particles. Recently, a local CR spectrum, with strong low energy components, has been proposed to be responsible for the over production of H3+ molecule in some molecular clouds. Aims: We aim to explore the effects of the chemical composition of low-energy cosmic rays (CRs) when they slow down in dense molecular clouds without magnetic fields. We considered both ionization and solid material processing rates. Methods: We used galatic CR chemical composition from proton to iron. We propagated two types of CR spectra through a cloud made of H2: those CR spectra with different contents of low energy CRs and those assumed to be initially identical for all CR species. The stopping and range of ions in matter (SRIM) package provided the necessary stopping powers. The ionization rates were computed with cross sections from recent semi-empirical laws, while effective cross sections were parametrized for solid processing rates using a power law of the stopping power (power 1 to 2). Results: The relative contribution to the cloud ionization of proton and heavy CRs was found identical everywhere in the irradiated cloud, no matter which CR spectrum we used. As compared to classical calculations, using protons and high-energy behaviour of ionization processes (Z2 scaling), we reduced absolute values of ionization rates by few a tens of percents but only in the case of spectrum with a high content of low-energy CRs. We found, using the same CR spectrum, the solid material processing rates to be reduced between the outer and inner part of thick cloud by a factor 10 (as in case of the ionization rates) or by a factor 100, depending on the type of process.

  20. Gravitational recoil: effects on massive black hole occupation fraction over cosmic time

    NASA Astrophysics Data System (ADS)

    Volonteri, Marta; Gültekin, Kayhan; Dotti, Massimo

    2010-06-01

    We assess the influence of massive black hole (MBH) ejections from galaxy centres due to gravitational radiation recoil, along the cosmic merger history of the MBH population. We discuss the `danger' of recoil for MBHs as a function of different MBH spin-orbit configurations and of the host halo cosmic bias, and on how that reflects on the occupation fraction of MBHs. We assess ejection probabilities for mergers occurring in a gas-poor environment, in which the MBH binary coalescence is driven by stellar dynamical processes and the spin-orbit configuration is expected to be isotropically distributed. We contrast this case with the `aligned' case. The latter is the more realistic situation for gas-rich, i.e. `wet', mergers, which are expected for high-redshift galaxies. We find that if all haloes at z > 5-7 host an MBH, the probability of the Milky Way (or similar size galaxy) to host an MBH today is less than 50 per cent, unless MBHs form continuously in galaxies. The occupation fraction of MBHs, intimately related to halo bias and MBH formation efficiency, plays a crucial role in increasing the retention fraction. Small haloes, with shallow potential wells and low escape velocities, have a high ejection probability, but the MBH merger rate is very low along their galaxy formation merger hierarchy: MBH formation processes are likely inefficient in such shallow potential wells. Recoils can decrease the overall frequency of MBHs in small galaxies to ~60 per cent, while they have little effect on the frequency of MBHs in large galaxies (at most a 20 per cent effect).

  1. Simplicity and Specificity in Language: Domain-General Biases Have Domain-Specific Effects

    PubMed Central

    Culbertson, Jennifer; Kirby, Simon

    2016-01-01

    The extent to which the linguistic system—its architecture, the representations it operates on, the constraints it is subject to—is specific to language has broad implications for cognitive science and its relation to evolutionary biology. Importantly, a given property of the linguistic system can be “specific” to the domain of language in several ways. For example, if the property evolved by natural selection under the pressure of the linguistic function it serves then the property is domain-specific in the sense that its design is tailored for language. Equally though, if that property evolved to serve a different function or if that property is domain-general, it may nevertheless interact with the linguistic system in a way that is unique. This gives a second sense in which a property can be thought of as specific to language. An evolutionary approach to the language faculty might at first blush appear to favor domain-specificity in the first sense, with individual properties of the language faculty being specifically linguistic adaptations. However, we argue that interactions between learning, culture, and biological evolution mean any domain-specific adaptations that evolve will take the form of weak biases rather than hard constraints. Turning to the latter sense of domain-specificity, we highlight a very general bias, simplicity, which operates widely in cognition and yet interacts with linguistic representations in domain-specific ways. PMID:26793132

  2. Simplicity and Specificity in Language: Domain-General Biases Have Domain-Specific Effects.

    PubMed

    Culbertson, Jennifer; Kirby, Simon

    2015-01-01

    The extent to which the linguistic system-its architecture, the representations it operates on, the constraints it is subject to-is specific to language has broad implications for cognitive science and its relation to evolutionary biology. Importantly, a given property of the linguistic system can be "specific" to the domain of language in several ways. For example, if the property evolved by natural selection under the pressure of the linguistic function it serves then the property is domain-specific in the sense that its design is tailored for language. Equally though, if that property evolved to serve a different function or if that property is domain-general, it may nevertheless interact with the linguistic system in a way that is unique. This gives a second sense in which a property can be thought of as specific to language. An evolutionary approach to the language faculty might at first blush appear to favor domain-specificity in the first sense, with individual properties of the language faculty being specifically linguistic adaptations. However, we argue that interactions between learning, culture, and biological evolution mean any domain-specific adaptations that evolve will take the form of weak biases rather than hard constraints. Turning to the latter sense of domain-specificity, we highlight a very general bias, simplicity, which operates widely in cognition and yet interacts with linguistic representations in domain-specific ways. PMID:26793132

  3. Nuclear Effects of Supernova-Accelerated Cosmic Rays on Early Solar System Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Meyer, B. S.; The, L.-S.; Johnson, J.

    2008-03-01

    The solar system apparently formed in the neighborhood of massive stars. Supernova explosions of these stars accelerate cosmic rays to 100s of TeVs. These cosmic rays could accelerate the beta decay of certain radioactive species in meteorite parent bodies.

  4. How does processing affect storage in working memory tasks? Evidence for both domain-general and domain-specific effects.

    PubMed

    Jarrold, Christopher; Tam, Helen; Baddeley, Alan D; Harvey, Caroline E

    2011-05-01

    Two studies that examine whether the forgetting caused by the processing demands of working memory tasks is domain-general or domain-specific are presented. In each, separate groups of adult participants were asked to carry out either verbal or nonverbal operations on exactly the same processing materials while maintaining verbal storage items. The imposition of verbal processing tended to produce greater forgetting even though verbal processing operations took no longer to complete than did nonverbal processing operations. However, nonverbal processing did cause forgetting relative to baseline control conditions, and evidence from the timing of individuals' processing responses suggests that individuals in both processing groups slowed their responses in order to "refresh" the memoranda. Taken together the data suggest that processing has a domain-general effect on working memory performance by impeding refreshment of memoranda but can also cause effects that appear domain-specific and that result from either blocking of rehearsal or interference. PMID:21319919

  5. Soil water content determination with cosmic-ray neutron sensor: Correcting aboveground hydrogen effects with thermal/fast neutron ratio

    NASA Astrophysics Data System (ADS)

    Tian, Zhengchao; Li, Zizhong; Liu, Gang; Li, Baoguo; Ren, Tusheng

    2016-09-01

    The cosmic-ray neutron sensor (CRNS), which estimates field scale soil water content, bridges the gap between point measurement and remote sensing. The accuracy of CRNS measurements, however, is affected by additional hydrogen pools (e.g., vegetation, snow, and rainfall interception). The objectives of this study are to: (i) evaluate the accuracy of CRNS estimates in a farmland system using depth and horizontal weighted point measurements, (ii) introduce a novel method for estimating the amounts of hydrogen from biomass and snow cover in CRNS data, and (iii) propose a simple approach for correcting the influences of aboveground hydrogen pool (expressed as aboveground water equivalent, AWE) on CRNS measurements. A field experiment was conducted in northeast China to compare soil water content results from CRNS to in-situ data with time domain reflectometry (TDR) and neutron probe (NP) in the 0-40 cm soil layers. The biomass water equivalent (BWE) and snow water equivalent (SWE) were observed to have separate linear relationships with the thermal/fast neutron ratio, and the dynamics of BWE and SWE were estimated correctly in the crop seasons and snow-covered seasons, respectively. A simple approach, which considered the AWE, AWE at calibration, and the effective measurement depth of CRNS, was introduced to correct the errors caused by BWE and SWE. After correction, the correlation coefficients between soil water contents determined by CRNS and TDR were 0.79 and 0.77 during the 2014 and 2015 crop seasons, respectively, and CRNS measurements had RMSEs of 0.028, 0.030, and 0.039 m3 m-3 in the 2014 and 2015 crop seasons and the snow-covered seasons, respectively. The experimental results also indicated that the accuracies of CRNS estimated BWE and SWE were affected by the distributions of aboveground hydrogen pools, which were related to the height of the CRNS device above ground surface.

  6. COSMIC ERROR CAUSED BY THE GRAVITATIONAL MICROLENSING EFFECT IN HIGH-PRECISION ASTROMETRY

    SciTech Connect

    Yano, Taihei

    2012-10-01

    We have investigated an expected deviation of the positions or the proper motions of stars as the cosmic error caused by the gravitational microlensing effect. In observing stars in the Galactic bulge region, we obtain an expected deviation of a star positions by the gravitational microlensing effect of about 7 {mu}as. We have also estimated the expected deviation of the proper motions of stars in the Galactic bulge caused by the gravitational microlensing effect. The expected deviation of the proper motions is mainly caused by the lens object located at the nearest angular distance from the source star. Each deviation of the proper motion has a value of less than 0.02 {mu}as yr{sup -1} for 99% of the sources. We have investigated the correlation of the deviation of Galactic bulge stars caused by the gravitational microlensing effect. The value of the correlation angle of the positional deviation is estimated to be about 1 arcmin. In the same way, we have estimated the correlation angle of the deviation of the proper motions. The angle is estimated to be about 1 arcsec. The following difference distinguishes the deviation of the position and that of the proper motion. The positional deviation is affected not only by lenses near the source but also by the lenses far from the source. On the other hand, the deviation of the proper motion by microlensing is mainly only caused by the nearest lens from the source. This difference causes that of the correlation angle.

  7. Viscosity and inertia in cosmic-ray transport - Effects of an average magnetic field

    NASA Technical Reports Server (NTRS)

    Williams, L. L.; Jokipii, J. R.

    1991-01-01

    A generalized transport equation is introduced which describes the transport and propagation of cosmic rays in a magnetized, collisionless medium. The equation is valid if the cosmic-ray distribution function is nearly isotropic in momentum, if the ratio of fluid speed to fluid-flow particle speed is small, and if the ratio of collision time to time for change in the macroscopic flow is small. Five independent cosmic-ray viscosity coefficients are found, and the ralationship of this viscosity to particle orbits in a magnetic field is presented.

  8. Effective domain-dependent reuse in medical knowledge bases.

    PubMed

    Dojat, M; Pachet, F

    1995-12-01

    Knowledge reuse is now a critical issue for most developers of medical knowledge-based systems. As a rule, reuse is addressed from an ambitious, knowledge-engineering perspective that focuses on reusable general purpose knowledge modules, concepts, and methods. However, such a general goal fails to take into account the specific aspects of medical practice. From the point of view of the knowledge engineer, whose goal is to capture the specific features and intricacies of a given domain, this approach addresses the wrong level of generality. In this paper, we adopt a more pragmatic viewpoint, introducing the less ambitious goal of "domain-dependent limited reuse" and suggesting effective means of achieving it in practice. In a knowledge representation framework combining objects and production rules, we propose three mechanisms emerging from the combination of object-oriented programming and rule-based programming. We show these mechanisms contribute to achieve limited reuse and to introduce useful limited variations in medical expertise. PMID:8770532

  9. Detection of trans-Planckian effects in the cosmic microwave background

    SciTech Connect

    Groeneboom, Nicolaas E.; Elgaroey, Oystein

    2008-02-15

    Quantum gravity effects are expected to modify the primordial density fluctuations produced during inflation and leave their imprint on the cosmic microwave background observed today. We present a new analysis discussing whether these effects are detectable, considering both currently available data and simulated results from an optimal CMB experiment. We find that the WMAP (Wilkinson Microwave Anisotropy Probe) data show no evidence for the particular signature considered in this work but give an upper bound on the parameters of the model. However, a hypothetical experiment shows that with proper data, the trans-Planckian effects should be detectable through alternate sampling methods. This fuzzy conclusion is a result of the nature of the oscillations, since they give rise to a likelihood hypersurface riddled with local maxima. A simple Bayesian analysis shows no significant evidence for the simulated data to prefer a trans-Planckian model. Conventional Markov chain Monte Carlo (MCMC) methods are not suitable for exploring this complicated landscape, but alternative methods are required to solve the problem. This, however, requires extremely high-precision data.

  10. Maximum Likelihood Foreground Cleaning for Cosmic Microwave Background Polarimeters in the Presence of Systematic Effects

    NASA Astrophysics Data System (ADS)

    Bao, C.; Baccigalupi, C.; Gold, B.; Hanany, S.; Jaffe, A.; Stompor, R.

    2016-03-01

    We extend a general maximum likelihood foreground estimation for cosmic microwave background (CMB) polarization data to include estimation of instrumental systematic effects. We focus on two particular effects: frequency band measurement uncertainty and instrumentally induced frequency dependent polarization rotation. We assess the bias induced on the estimation of the B-mode polarization signal by these two systematic effects in the presence of instrumental noise and uncertainties in the polarization and spectral index of Galactic dust. Degeneracies between uncertainties in the band and polarization angle calibration measurements and in the dust spectral index and polarization increase the uncertainty in the extracted CMB B-mode power, and may give rise to a biased estimate. We provide a quantitative assessment of the potential bias and increased uncertainty in an example experimental configuration. For example, we find that with 10% polarized dust, a tensor to scalar ratio of r = 0.05, and the instrumental configuration of the E and B experiment balloon payload, the estimated CMB B-mode power spectrum is recovered without bias when the frequency band measurement has 5% uncertainty or less, and the polarization angle calibration has an uncertainty of up to 4°.

  11. Effect of energy deposited by cosmic-ray particles on interferometric gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuhiro; Hayakawa, Hideaki; Okada, Atsushi; Uchiyama, Takashi; Miyoki, Shinji; Ohashi, Masatake; Kuroda, Kazuaki; Kanda, Nobuyuki; Tatsumi, Daisuke; Tsunesada, Yoshiki

    2008-07-01

    We investigated the noise of interferometric gravitational wave detectors due to heat energy deposited by cosmic-ray particles. We derived a general formula that describes the response of a mirror against a cosmic-ray passage. We found that there are differences in the comic-ray responses (the dependence of temperature and cosmic-ray track position) in cases of interferometric and resonant gravitational wave detectors. The power spectral density of vibrations caused by low-energy secondary muons is 100 times smaller than the goal sensitivity of future second-generation interferometer projects, such as LCGT and Advanced LIGO. The arrival frequency of high-energy cosmic-ray muons that generate enough large showers inside mirrors of LCGT and Advanced LIGO is one per a millennium. We also discuss the probability of exotic-particle detection with interferometers.

  12. Effect of energy deposited by cosmic-ray particles on interferometric gravitational wave detectors

    SciTech Connect

    Yamamoto, Kazuhiro; Hayakawa, Hideaki; Okada, Atsushi; Uchiyama, Takashi; Miyoki, Shinji; Ohashi, Masatake; Kuroda, Kazuaki; Kanda, Nobuyuki; Tatsumi, Daisuke; Tsunesada, Yoshiki

    2008-07-15

    We investigated the noise of interferometric gravitational wave detectors due to heat energy deposited by cosmic-ray particles. We derived a general formula that describes the response of a mirror against a cosmic-ray passage. We found that there are differences in the comic-ray responses (the dependence of temperature and cosmic-ray track position) in cases of interferometric and resonant gravitational wave detectors. The power spectral density of vibrations caused by low-energy secondary muons is 100 times smaller than the goal sensitivity of future second-generation interferometer projects, such as LCGT and Advanced LIGO. The arrival frequency of high-energy cosmic-ray muons that generate enough large showers inside mirrors of LCGT and Advanced LIGO is one per a millennium. We also discuss the probability of exotic-particle detection with interferometers.

  13. The energy range of drift effects in the solar modulation of cosmic ray electrons

    NASA Astrophysics Data System (ADS)

    Rejoyce Nndanganeni, Rendani; Potgieter, Marius

    2016-07-01

    A comprehensive modulation model is used to study the energy dependence of drift effects in the solar modulation of cosmic ray electrons. The fundamental process of curvature, gradient and current sheet drifts in the heliosphere has profound effects on electron modulation but it is still not fully understood, especially since there is general consensus that the so-called weak scattering drift is giving too large modulation effects as follows from the application of numerical drift models to observations from the Earth to the outer heliosphere. A straight forward approach is followed to illustrate how reducing drifts can affect the modulation of electrons on a global scale and to find the energy range over which drifts can affect the modulation of these electrons. It is established that reducing drifts explicitly and implicitly does influence the energy range where drift effects are present. It is found that reducing drifts implicitly through changing the two perpendicular diffusion coefficients is far more subtle a process than decreasing the drift coefficient directly. Enlarging the rigidity dependence of the drift coefficient at lower energies reduces very effectively the extent to which drifts dominate the modulation process. In general, these effects for electrons at the Earth become progressively larger with increasing kinetic energy for both HMF polarities, from above ~10 MeV, with a maximal effect around 100 MeV, then gradually subsides to become less significant above ~10 GeV. However, the issue pertaining to how drift reduction occurs from a fundamental theoretical point of view is a work in progress.

  14. Studies on the Effect of Cloud Coverage and Galactic Cosmic Ray on Stratospheric Moistening

    NASA Astrophysics Data System (ADS)

    Maitra, Animesh; Saha, Upal; Das, Saurabh

    2012-07-01

    Increased stratospheric water vapor is one of the significant causes of global warming as increased stratospheric water vapor acts to cool the stratosphere but it warms the underlying troposphere. The sun can influence the clouds by mediating through Galactic cosmic rays (GCR) which controls the nucleation of water droplets in the atmosphere. The role of primary GCR in generating low-level cloud condensation nuclei reflects solar energy back into space affecting the temperature on earth. In the present study, variations of different types of cloud coverage (low, mid and high) are correlated with the intensity of GCR flux and their effects on the stratospheric moistening in the equatorial, mid- latitude and polar region have been investigated for the years 2004 and 2005 using the Aura's Microwave Limb Sounder (MLS) water vapor data, ISCCP cloud data and GCR from neutron monitor observations at Calgary (51.080 N, 245.870 E). The relation between GCR and stratospheric moistening is also investigated in this paper. Additionally, the latitudinal variation of different types of cloud coverage is also studied for the same period. The southern mid-latitudinal region has the highest coverage of low-level cloud, followed by the equatorial region. Both the Polar Regions are highly covered with mid-level cloud. The mid-latitudinal region shows highest coverage of high-cloud, followed by the equatorial region. Lower level clouds exert a large net cooling effect on the climate indicating an inter-relationship between cosmic ray and cloud coverage. However, the mid and high cloud coverage have no significant correlation with GCR flux. The stratospheric moistening is controlled by transport of water vapour from troposphere to stratosphere through the tropopause region and the oxidation of methane within the stratosphere. Water vapour plays a major role in the chemistry and radiative budget of the stratosphere. One possible water vapor source in the stratosphere is the advection of

  15. Solar cosmic ray effects in atmospheric chemistry evidenced from ground- based measurements

    NASA Astrophysics Data System (ADS)

    Shumilov, O.; Kasatkina, E.; Turyansky, V.

    Solar protons with a relatively soft energy spectrum (E<100 MeV) deposit most of their energy in the middle atmosphere above 20 km. Their influence on the atmospheric ozone and odd nitrogen has been studied in details. However, high-energy solar proton events (E>450 MeV) of Ground Level Event (GLE) type can penetrate below 30 km and cause neutron flow enhancement detected by ground-based neutron monitors. Atmospheric effects of such high-energy particles seem to be more pronounced and appeared variations of total content of some atmospheric parameters that can be detected by ground-based devices. It was shown earlier that some GLEs cause considerable ozone total content decreases (up to 25%), or so-called ozone "miniholes" at high latitudes. This work presents ground-based measurements of nitrogen dioxide (NO2) total content made at Murmansk, Kola Peninsula (corrected geomagnetic latitude: 64.8) during and after GLE of 2 May 1998. Nitrogen dioxide was measured by zenith viewing spectrophotometer in wavelength region between 435-450 nm. An increase (about of 20%) in total column of NO2 has been recorded after 2 May 1998 GLE by this facility. Model calculations based on gas phase photochemical theory quantitatively agree with observations. In addition to satellite measurements the information obtained by ground-based devices will be helpful to study atmospheric effects of cosmic ray events. This work was supported by the RFBR grants 01-05-64850 and 01-05-26226).

  16. Effects of Nuclear Cross Sections at Different Energies on Space Radiation Exposure from Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Li, Zi-Wei; Adams, James H., Jr.

    2007-01-01

    Space radiation from galactic cosmic rays (GCR) is a major hazard to space crews, especially in long duration human space explorations. For this reason, they will be protected by radiation shielding that fragments the GCR heavy ions. Here we investigate how sensitive the crew's radiation exposure is to nuclear fragmentation cross sections at different energies. We find that in deep space cross sections between about 0.2 and 1.2 GeV/u have the strongest effect on dose equivalent behind shielding in solar minimum GCR environments, and cross sections between about 0.6 and 1.7 GeV/u are the most important at solar maximum'. On the other hand, at the location of the International Space Station, cross sections at_higher -energies, between about 0.6 and 1.7 GeV /u at solar minimum and between about 1.7 and 3.4 GeV/u'at,solar maximum, are the most important This is. due-to the average geomagnetic cutoff for the ISS orbit. We also show the effect of uncertainties in the fragmentation cross sections on the elemental energy spectra behind shielding. These results help to focus the studies of fragmentation cross sections on the proper energy range in order to improve our predictions of crew exposures.

  17. Foreground Cleaning for Cosmic Microwave Background Polarimeters in the Presence of Instrumental Effects

    NASA Astrophysics Data System (ADS)

    Bao, Chaoyun

    The Cosmic Microwave Background (CMB) B-mode polarization signal offers a direct probe of inflation, a period of exponential expansion in the extreme early universe. The inflationary CMB B-mode polarization signal, however, is subject to the contamination of polarized galactic thermal dust foreground emission. A robust foreground cleaning method is essential for CMB polarimeters targeting the inflationary B-mode signal. In this thesis I present my work on developing foreground cleaning algorithms particularly in the presence of instrumental effects. One of the instrumental effects I focus on in this work is the frequency dependent polarization rotation effect such as the one caused by an achromatic half-wave plate (AHWP). As an example, I use the AHWP of the E and B Experiment (EBEX) in this work and study the relation between the frequency dependent rotation effect and the characteristic parameters of the AHWP. To address the effect of an AHWP while removing galactic dust foreground contamination, I developed two foreground cleaning algorithms: a simple method that assumes perfect knowledge of the AHWP and a few simplifying assumptions, and a more sophisticated algorithm based on maximum likelihood method. Based on simulation results, the maximum likelihood foreground cleaning algorithm can recover CMB B-mode signal without any bias in the presence of band shape uncertainty, frequency dependent rotation effect and instrumental noise with realistic measurement accuracy of instrumental parameters. In this thesis I also present my work on calculating the atmospheric loading in the millimeter wave regime for sub-orbital CMB experiments such as EBEX. Having a proper prediction of the atmospheric loading is an important input to detector designs for CMB experiments.

  18. The effect of cosmic rays on biological systems - an investigation during GLE events

    NASA Astrophysics Data System (ADS)

    Belisheva, N. K.; Lammer, H.; Biernat, H. K.; Vashenuyk, E. V.

    2012-01-01

    In this study, first direct and circumstantial evidences of the effects of cosmic rays (CR) on biological systems are presented. A direct evidence of biological effects of CR is demonstrated in experiments with three cellular lines growing in culture during three events of Ground Level Enhancement (GLEs) in the neutron count rate detected by ground-based neutron monitor in October 1989. Various phenomena associated with DNA lesion on the cellular level demonstrate coherent dynamics of radiation effects in all cellular lines coincident with the time of arrival of high-energy solar particles to the near-Earth space and with the main peak in GLE. These results were obtained in the course of six separate experiments, with partial overlapping of the time of previous and subsequent experiments, which started and finished in the quiet period of solar activity (SA). A significant difference between the values of multinuclear cells in all cellular lines in the quiet period and during GLE events indicates that the cause of radiation effects in the cell cultures is an exposure of cells to the secondary solar CR near the Earth's surface. The circumstantial evidence was obtained by statistical analysis of cases of congenital malformations (CM) at two sites in the Murmansk region. The number of cases of all classes of CM reveals a significant correlation with the number of GLE events. The number of cases of CM with pronounced chromosomal abnormalities clearly correlates with the GLE events that occurred a year before the birth of a child. We have found a significant correlation between modulations of the water properties and daily background variations of CR intensity. We believe that the effects of CR on biological systems can be also mediated by fluctuations in water properties, considered as one of possible mechanisms controlling the effects of CRs on biological systems.

  19. The Mere Exposure Effect in the Domain of Haptics

    PubMed Central

    Jakesch, Martina; Carbon, Claus-Christian

    2012-01-01

    Background Zajonc showed that the attitude towards stimuli that one had been previously exposed to is more positive than towards novel stimuli. This mere exposure effect (MEE) has been tested extensively using various visual stimuli. Research on the MEE is sparse, however, for other sensory modalities. Methodology/Principal Findings We used objects of two material categories (stone and wood) and two complexity levels (simple and complex) to test the influence of exposure frequency (F0 = novel stimuli, F2 = stimuli exposed twice, F10 = stimuli exposed ten times) under two sensory modalities (haptics only and haptics & vision). Effects of exposure frequency were found for high complex stimuli with significantly increasing liking from F0 to F2 and F10, but only for the stone category. Analysis of “Need for Touch” data showed the MEE in participants with high need for touch, which suggests different sensitivity or saturation levels of MEE. Conclusions/Significance This different sensitivity or saturation levels might also reflect the effects of expertise on the haptic evaluation of objects. It seems that haptic and cross-modal MEEs are influenced by factors similar to those in the visual domain indicating a common cognitive basis. PMID:22347451

  20. Relativistic scalar particle subject to a confining potential and Lorentz symmetry breaking effects in the cosmic string space-time

    NASA Astrophysics Data System (ADS)

    Belich, H.; Bakke, K.

    2016-03-01

    The behavior of a relativistic scalar particle subject to a scalar potential under the effects of the violation of the Lorentz symmetry in the cosmic string space-time is discussed. It is considered two possible scenarios of the Lorentz symmetry breaking in the CPT-even gauge sector of the Standard Model Extension defined by a tensor (KF)μναβ. Then, by introducing a scalar potential as a modification of the mass term of the Klein-Gordon equation, it is shown that the Klein-Gordon equation in the cosmic string space-time is modified by the effects of the Lorentz symmetry violation backgrounds and bound state solution to the Klein-Gordon equation can be obtained.

  1. Modeling and Experimental Study of Forbush Effects of Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Alania, Michael V.; Szabelski, J.; Wawrzynczak, A.

    2003-07-01

    temporal changes of the rigidity spectrum of the sporadic and recurrent Forbush effects of galactic cosmic rays (GCR) have been studied using neutron monitors data. An attempt to find a relationship between the rigidity spectrum exponent γ of the Forbush effects (δD/D(R) ∝ R-γ , where R is the rigidity of GCR particles) and an exponent ν of the power spectral density (PSD) of the fluctuations of the strength of the interplanetary magnetic field (IMF) (PSD ∝ f-ν , where f is the frequency) has been made. EXPERIMENTAL DATA AND METHOD OF INVESTIGATION. An attempt to find a relationship between the rigidity spectrum exponent γ of the Forbush effects [1] (δ D/D(R) ∝ R-γ , where R is the rigidity of GCR particles) and an exponent ν of the PSD of the fluctuations of the strength of the IMF has been made. Data of neutron super monitors and the IMF's Bx , By , and Bz components have been used to study peculiarities of two great sporadic Forbush effects (9-23 July 1982 and 9-29 July 2000) and one recurrent Forbush effect of the 1-16 September 1996 (figures 1ab c). It is well known that one of the ma jor parameters for the characterizing of the Forbush effects of GCR is the rigidity spectrum of the GCR intensity variations, hereafter called the rigidity spectrum of Forbush effect (δ D(R)/D(R ) = A R-γ , where R is the rigidity of GCR particles and A is the power). The rigidity spectrum of the Forbush effects has been calculated using the data of neutron super monitors and the method presented, e.g. in [2,3]. There was assumed: δ D(R)/D(R) = A R-γ for R≤Rmax . And δ D(R)/D(R) = 0 for R>Rmax. Here Rmax is the upper limiting rigidity beyond which the Forbush effect of GCR intensity vanishes. Results of calculations of γ based on daily means of data for the sporadic Forbush effects, 9-23 July 1982 (14 stations), 9-29 July 2000 (11 stations) and for the recurrent Forbush effect of 1-16 September 1996 (7 stations) are presented in the figures 1def. RESULTS

  2. Effects of Cutoffs on Galactic Cosmic-Ray Interactions in Solar-System Matter

    NASA Technical Reports Server (NTRS)

    Kim, K. J.; Reedy, R. C.; Masarik, J.

    2005-01-01

    The energetic particles in the galactic cosmic rays (GCR) induce many interactions in a variety of solar-system matter. Cosmogenic nuclides are used to study the histories of meteorites and lunar samples. Gamma rays and neutrons are used to map the compositions of planetary surfaces, such as Mars, the Moon, and asteroids. In almost all of these cases, the spectra of incident GCR particles are fairly similar, with only some modulation by the Sun over an 11-year cycle. Strong magnetic fields can seriously affect the energy spectrum of GCR particles hitting the surface of objects inside the magnetic fields. The Earth s geomagnetic field is strong enough that only GCR particles with magnetic rigidities above approx. 17 GV (a proton energy of approx. 17 GeV) reach the atmosphere over certain regions near the equator. This effect of removing lower-energy GCR particles is called a cutoff. The jovian magnetic fields are so strong that the fluxes of GCR particles hitting the 4 large Galilean satellites are similarly affected. The cutoff at Europa is estimated to be similar to or a little higher than at the Earth s equator.

  3. ANALYSIS OF MAGNETOROTATIONAL INSTABILITY WITH THE EFFECT OF COSMIC-RAY DIFFUSION

    SciTech Connect

    Kuwabara, Takuhito; Ko, Chung-Ming E-mail: cmko@astro.ncu.edu.tw

    2015-01-10

    We present the results obtained from the linear stability analysis and 2.5 dimensional magnetohydrodynamic (MHD) simulations of magnetorotational instability (MRI), including the effects of cosmic rays (CRs). We took into account the CR diffusion along the magnetic field but neglected the cross-field-line diffusion. Two models are considered in this paper: the shearing box model and differentially rotating cylinder model. We studied how MRI is affected by the initial CR pressure (i.e., energy) distribution. In the shearing box model, the initial state is uniform distribution. Linear analysis shows that the growth rate of MRI does not depend on the value of the CR diffusion coefficient. In the differentially rotating cylinder model, the initial state is a constant angular momentum polytropic disk threaded by a weak uniform vertical magnetic field. Linear analysis shows that the growth rate of MRI becomes larger if the CR diffusion coefficient is larger. Both results are confirmed by MHD simulations. The MHD simulation results show that the outward movement of matter by the growth of MRI is not impeded by the CR pressure gradient, and the centrifugal force that acts on the concentrated matter becomes larger. Consequently, the growth rate of MRI is increased. On the other hand, if the initial CR pressure is uniform, then the growth rate of the MRI barely depends on the value of the CR diffusion coefficient.

  4. Cosmic strings and galaxy formation

    NASA Technical Reports Server (NTRS)

    Bertschinger, Edmund

    1989-01-01

    The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.

  5. Identification of galaxy clusters in cosmic microwave background maps using the Sunyaev-Zel'dovich effect

    NASA Astrophysics Data System (ADS)

    Novaes, C. P.; Wuensche, C. A.

    2012-09-01

    Context. The Planck satellite was launched in 2009 by the European Space Agency to study the properties of the cosmic microwave background (CMB). An expected result of the Planck data analysis is the distinction of the various contaminants of the CMB signal. Among these contaminants is the Sunyaev-Zel'dovich (SZ) effect, which is caused by the inverse Compton scattering of CMB photons by high energy electrons in the intracluster medium of galaxy clusters. Aims: We modify a public version of the JADE (Joint Approximate Diagonalization of Eigenmatrices) algorithm, to deal with noisy data, and then use this algorithm as a tool to search for SZ clusters in two simulated datasets. Methods: The first dataset is composed of simple "homemade" simulations and the second of full sky simulations of high angular resolution, available at the LAMBDA (Legacy Archive for Microwave Background Data Analysis) website. The process of component separation can be summarized in four main steps: (1) pre-processing based on wavelet analysis, which performs an initial cleaning (denoising) of data to minimize the noise level; (2) the separation of the components (emissions) by JADE; (3) the calibration of the recovered SZ map; and (4) the identification of the positions and intensities of the clusters using the SExtractor software. Results: The results show that our JADE-based algorithm is effective in identifying the position and intensity of the SZ clusters, with the purities being higher then 90% for the extracted "catalogues". This value changes slightly according to the characteristics of noise and the number of components included in the input maps. Conclusions: The main highlight of our developed work is the effective recovery rate of SZ sources from noisy data, with no a priori assumptions. This powerful algorithm can be easily implemented and become an interesting complementary option to the "matched filter" algorithm (hereafter MF) widely used in SZ data analysis.

  6. COSMIC-RAY CURRENT-DRIVEN TURBULENCE AND MEAN-FIELD DYNAMO EFFECT

    SciTech Connect

    Rogachevskii, Igor; Kleeorin, Nathan; Brandenburg, Axel; Eichler, David

    2012-07-01

    We show that an {alpha} effect is driven by the cosmic-ray (CR) Bell instability exciting left-right asymmetric turbulence. Alfven waves of a preferred polarization have maximally helical motion, because the transverse motion of each mode is parallel to its curl. We show how large-scale Alfven modes, when rendered unstable by CR streaming, can create new net flux over any finite region, in the direction of the original large-scale field. We perform direct numerical simulations (DNSs) of a magnetohydrodynamic fluid with a forced CR current and use the test-field method to determine the {alpha} effect and the turbulent magnetic diffusivity. As follows from DNS, the dynamics of the instability has the following stages: (1) in the early stage, the small-scale Bell instability that results in the production of small-scale turbulence is excited; (2) in the intermediate stage, there is formation of larger-scale magnetic structures; (3) finally, quasi-stationary large-scale turbulence is formed at a growth rate that is comparable to that expected from the dynamo instability, but its amplitude over much longer timescales remains unclear. The results of DNS are in good agreement with the theoretical estimates. It is suggested that this dynamo is what gives weakly magnetized relativistic shocks such as those from gamma-ray bursts (GRBs) a macroscopic correlation length. It may also be important for large-scale magnetic field amplification associated with CR production and diffusive shock acceleration in supernova remnants (SNRs) and blast waves from GRBs. Magnetic field amplification by Bell turbulence in SNRs is found to be significant, but it is limited owing to the finite time available to the super-Alfvenicly expanding remnant. The effectiveness of the mechanisms is shown to be dependent on the shock velocity. Limits on magnetic field growth in longer-lived systems, such as the Galaxy and unconfined intergalactic CRs, are also discussed.

  7. Cosmic superstrings.

    PubMed

    Sakellariadou, Mairi

    2008-08-28

    Cosmic superstrings are expected to be formed at the end of brane inflation, within the context of brane-world cosmological models inspired from string theory. By studying the properties of cosmic superstring networks and comparing their phenomenological consequences against observational data, we aim to pin down the successful and natural inflationary model and get an insight into the stringy description of our Universe. PMID:18534932

  8. Fermat Potentials of Embedded Lensing, the Integrated Sachs-Wolfe Effect, and Weak-Lensing of CMB by Cosmic Voids

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Kantowski, R.; Dai, X.

    2014-01-01

    We have developed an accurate gravitational lens theory for an inhomogeneity embedded in an otherwise homogeneous universe, which to the lowest order is applicable to any mass distribution. We derive the Fermat potential for a spherically symmetric lens embedded in a FLRW cosmology and use it to investigate the late-time integrated Sachs-Wolfe effect (ISW) caused by individual large scale inhomogeneities, in particular, cosmic voids. We present a simple analytical expression for the CMB temperature fluctuation across such a lens as the derivative of the lens Fermat potential. Our formalism is applicable to both linear and nonlinear density evolution scenarios, to arbitrarily large density contrasts, and to all open and closed background cosmologies. Our results are particularly useful for modeling ISW effects extracted through stacking large numbers of cosmic voids and clusters (that is, the aperture photometry method). For structures co-expanding with the background cosmology, i.e., for time-independent density contrasts, we find that the gravitational lensing time delay alone can produce fluctuations of the order of seen in recent observations by WMAP and Planck. We revisit the possibility of explaining the non-Gaussian cold spot on the south hemisphere via the Rees-Sciama effect of a large cosmic void using constraints obtained from the most recent void catalogs and our new void-lensing formalism, and compare it with other explanations such as a collapsing cosmic texture. We also study the remapping of primordial CMB anisotropies, the weak-lensing shear, and magnification caused by void lensing.

  9. Response of a metal-oxide-semiconductor field-effect transistor to a cosmic-ray ion track

    NASA Technical Reports Server (NTRS)

    Benumof, Reuben; Zoutendyk, John

    1987-01-01

    A cosmic-ray ion track passing perpendicularly through the oxide layer of an enhancement-mode metal-oxide-semiconductor field-effect transistor (MOSFET) forms a conducting path, the resistance of which is proportional to the stopping power of the cosmic ion and independent of the cross-sectional area of the ion track. The voltage across the oxide capacitance may drop below the threshold voltage if the gate bias is sufficiently low or if the external resistance in the gate-source circuit is sufficiently high. The first of a pair of MOSFETs forming a flip-flop circuit may thus be turned off, and the second transitor may turn on, providing it has a sufficiently short delay time, thereby completing a single-event upset.

  10. Effects of Cosmic Rays on Atmospheric Chlorofluorocarbon Dissociation and Ozone Depletion

    SciTech Connect

    Lu, Q.-B.; Sanche, L.

    2001-08-13

    Data from satellite, balloon, and ground-station measurements show that ozone loss is strongly correlated with cosmic-ray ionization-rate variations with altitude, latitude, and time. Moreover, our laboratory data indicate that the dissociation induced by cosmic rays for CF{sub 2}Cl {sub 2} and CFCl{sub 3} on ice surfaces in the polar stratosphere at an altitude of {approx}15 km is quite efficient, with estimated rates of 4.3 x 10{sup -5} and 3.6 x 10{sup -4} s{sup -1}, respectively. These findings suggest that dissociation of chlorofluorocarbons by capture of electrons produced by cosmic rays and localized in polar stratospheric cloud ice may play a significant role in causing the ozone hole.

  11. Light deflection with torsion effects caused by a spinning cosmic string

    NASA Astrophysics Data System (ADS)

    Jusufi, Kimet

    2016-06-01

    Using a new geometrical method introduced by Werner, we find the deflection angle in the weak limit approximation by a spinning cosmic string in the context of the Einstein-Cartan (EC) theory of gravity. We begin by adopting the String-Randers optical metric, then we apply the Gauss-Bonnet theorem to the optical geometry and derive the leading terms of the deflection angle in the equatorial plane. Calculation shows that light deflection is affected by the intrinsic spin of the cosmic string and torsion.

  12. Effect of cosmic-ray shielding on the ultraweak bioluminescence emitted by cultures of Escherichia coli

    SciTech Connect

    Tilbury, R.N.; Quickenden, T.I.

    1987-11-01

    Neither the growth of Escherichia coli nor its associated luminescence was significantly affected when cultures were shielded from the soft component of cosmic rays. The study included experiments in which the cultures were shielded intermittently during their two periods of luminescence emission and experiments in which the cultures were continuously shielded throughout their entire growth cycle. These results do not support previous suggestions that the ultraweak bioluminescences from living organisms might be cosmic-ray-excited fluorescences induced in certain biological molecules synthesized during the various stages of growth.

  13. A Hydrodynamic Approach to Cosmology: Nonlinear Effects on Cosmic Backgrounds in the Cold Dark Matter Model

    NASA Astrophysics Data System (ADS)

    Scaramella, Roberto; Cen, Renyue; Ostriker, Jeremiah P.

    1993-10-01

    Using the CDM model as a testbed, we produce and analyze sky maps of fluctuations in the cosmic background radiation field due to Sunyaev-Zel'dovich effect, as well as those seen in X-ray background at 1 keV and at 2 keV. These effects are due to the shock heating of baryons in the nonlinear phases of cosmic collapses. Comparing observations with computations provides a powerful tool to constrain cosmological models. We use a highly developed Eulerian mesh code with 1283 cells and 2 × 106 particles. Most of our information comes from simulations with box size 64 h-1 Mpc, but other calculations were made with L = 16 h-1 and L = 4 h-1 Mpc. A standard CDM input spectrum was used with amplitude defined by the requirement (ΔM/M)rms = 1/1.5 on 8 h-1 Mpc scales (lower than the COBE normalization by a factor of 1.6±0.4), with H0 = 50 km s-1 Mpc-1 and Ωb = 0.05. For statistical validity a large number of independent simulations must be run. In all, over 60 simulations were run from z = 20 to z = 0. We produce maps of 50' x 50' with 1' effective resolution by randomly stacking along the past light cone for 0.02 ≤ z ≤ 10 appropriate combinations of computational boxes of different comoving lengths, which are picked from among different realizations of initial conditions. We also compute time evolution, present intensity pixel distributions, and the autocorrelation function of sky fluctuations as a function of angular scale. Our most reliable results are obtained after deletion of bright sources having 1 keV intensity greater than 0.1 keV cm-2 sr-1 s-1 keV-1. Then for the Sunyaev-Zel'dovich parameter γ the mean and dispersion are [barγ, σ(γ)] = (4, 3) × 10-7 with a lognormal distribution providing a good fit for values of y greater than average. The angular correlation function (less secure) is roughly exponential with scale length ˜2'.5. For the X-ray intensity fluctuations, in units of keV s-1 sr-1 cm-2 keV-1 we find barIX1, X2 = (0.02, 0.006) and σX1, X2 = (0

  14. Cosmic ray driven Galactic winds

    NASA Astrophysics Data System (ADS)

    Recchia, S.; Blasi, P.; Morlino, G.

    2016-08-01

    The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind can be launched that removes gas from the Galaxy, thereby regulating several physical processes, including star formation. The dynamics of these cosmic ray driven winds is intrinsically non-linear in that the spectrum of cosmic rays determines the characteristics of the wind (velocity, pressure, magnetic field) and in turn the wind dynamics affects the cosmic ray spectrum. Moreover, the gradient of the cosmic ray distribution function causes excitation of Alfvén waves, that in turn determine the scattering properties of cosmic rays, namely their diffusive transport. These effects all feed into each other so that what we see at the Earth is the result of these non-linear effects. Here we investigate the launch and evolution of such winds, and we determine the implications for the spectrum of cosmic rays by solving together the hydrodynamical equations for the wind and the transport equation for cosmic rays under the action of self-generated diffusion and advection with the wind and the self-excited Alfvén waves.

  15. Multi-Scale Model of Galactic Cosmic Ray Effects on the Hippocampus

    NASA Astrophysics Data System (ADS)

    Cucinotta, Francis

    An important concern for risk assessment from galactic cosmic ray (GCR) exposures is impacts to the central nervous systems including changes in cognition, and associations with increased risk of Alzheimer’s disease (AD). AD, which affects about 50 percent of the population above age 80-yr, is a degenerative disease that worsens with time after initial onset leading to death, and has no known cure. AD is difficult to detect at early stages, and the small number of epidemiology studies that have considered the possibility have not identified an association with low dose radiation. However, experimental studies in transgenic mice suggest the possibility exits. We discuss modeling approaches to consider mechanisms whereby GCR would accelerate the occurrence of AD to earlier ages. Biomarkers of AD include Amyloid beta plaques, and neurofibrillary tangles (NFT) made up of aggregates of the hyper-phosphorylated form of the micro-tubule associated, tau protein. Related markers include synaptic degeneration, dendritic spine loss, and neuronal cell loss through apoptosis. GCR may affect these processes by causing oxidative stress, aberrant signaling following DNA damage, and chronic neuro-inflammation. Cell types considered in multi-scale models are neurons, astrocytes, and microglia. We developed biochemical and cell kinetics models of DNA damage signaling related to glycogen synthase kinase-3 beta and neuro-inflammation, and considered approaches to develop computer simulations of GCR induced cell interactions and their relationships to Amyloid beta plaques and NFTs. Comparison of model results to experimental data for the age specific development of plaques in transgenic mice and predictions of space radiation effects will be discussed.

  16. SYSTEMATIC EFFECTS IN INTERFEROMETRIC OBSERVATIONS OF THE COSMIC MICROWAVE BACKGROUND POLARIZATION

    SciTech Connect

    Karakci, Ata; Korotkov, Andrei; Tucker, Gregory S.; Zhang Le; Timbie, Peter; Sutter, P. M.; Wandelt, Benjamin D.; Bunn, Emory F.

    2013-07-15

    The detection of the primordial B-mode spectrum of the polarized cosmic microwave background (CMB) signal may provide a probe of inflation. However, observation of such a faint signal requires excellent control of systematic errors. Interferometry proves to be a promising approach for overcoming such a challenge. In this paper we present a complete simulation pipeline of interferometric observations of CMB polarization, including systematic errors. We employ two different methods for obtaining the power spectra from mock data produced by simulated observations: the maximum likelihood method and the method of Gibbs sampling. We show that the results from both methods are consistent with each other as well as, within a factor of six, with analytical estimates. Several categories of systematic errors are considered: instrumental errors, consisting of antenna gain and antenna coupling errors; and beam errors, consisting of antenna pointing errors, beam cross-polarization, and beam shape (and size) errors. In order to recover the tensor-to-scalar ratio, r, within a 10% tolerance level, which ensures the experiment is sensitive enough to detect the B-signal at r = 0.01 in the multipole range 28 < l < 384, we find that, for a QUBIC-like experiment, Gaussian-distributed systematic errors must be controlled with precisions of |g{sub rms}| = 0.1 for antenna gain, |{epsilon}{sub rms}| = 5 Multiplication-Sign 10{sup -4} for antenna coupling, {delta}{sub rms} Almost-Equal-To 0. Degree-Sign 7 for pointing, {zeta}{sub rms} Almost-Equal-To 0. Degree-Sign 7 for beam shape, and {mu}{sub rms} = 5 Multiplication-Sign 10{sup -4} for beam cross-polarization. Although the combined systematic effects produce a tolerance level on r twice as large for an experiment with linear polarizers, the resulting bias in r for a circular experiment is 15% which is still on the level of desirable sensitivity.

  17. Analytical approach to cosmic ray ionization by nuclei with charge Z in the middle atmosphere - Distribution of galactic CR effects

    NASA Astrophysics Data System (ADS)

    Velinov, P. I. Y.; Mateev, L.

    2008-11-01

    The effects of galactic and solar cosmic rays (CR) in the middle atmosphere are considered in this work. A new analytical approach for CR ionization by protons and nuclei with charge Z in the lower ionosphere and middle atmosphere is developed in this paper. For this purpose the ionization losses (d E/d h) according to the Bohr-Bethe-Bloch formula for the energetic charged particles are approximated in three different energy intervals. More accurate expressions for energy decrease E( h) and electron production rate profiles q( h) are derived. The obtained formulas allow comparatively easy computer programming. The integrand in q( h) gives the possibility for application of adequate numerical methods - such as Romberg method or Gauss quadrature, for the solution of the mathematical problem. On this way the process of interaction of cosmic ray particles with the upper, middle and lower atmosphere will be described much more realistically. Computations for cosmic ray ionization in the middle atmosphere are made. The full CR composition is taken into account: protons, Helium ( α-particles), light L, medium M, heavy H and very heavy VH group of nuclei.

  18. The Emergence of Cosmic Education. Spotlight: Cosmic Education.

    ERIC Educational Resources Information Center

    Trudeau, Sr. Christina Marie

    2002-01-01

    Discusses the influence of Hindu, Moslem, and Buddhist metaphysics on Maria Montessori's own pedagogical philosophy of Cosmic Education, which she regarded as the core of all learning experiences, after her visit to India. Considers the relationship between Montessori's ideas of child development and Cosmic Education, and the effect of Indian…

  19. The effects of newly measured cross sections in hydrogen on the production of secondary nuclei during the propagation of cosmic rays through interstellar H

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Gupta, M.; Koch-Miramond, L.; Masse, P.

    1985-01-01

    The cross sections of six important cosmic ray source nuclei in hydrogen at several energies between 300 and 1800 MeV/nuc were measured. Significant differences, sometimes exceeding 50%, exist between these new measurements and the earlier semiempirical predictions, and a new set of semiempirical formulae are being determined that better describe this fragmentation. New cross sections were obtained so that the systematics of their effects on cosmic ray propagation through interstellar hydrogen can be examined.

  20. Domain-wall depinning dominated by the Spin Hall effect

    NASA Astrophysics Data System (ADS)

    Swagten, Henk

    2013-03-01

    Current induced domain wall motion (CIDWM) in perpendicular materials is believed to be very efficient. We will show that the Spin Hall effect (SHE) provides a radically new mechanism for CIDWM in these systems. Using focused-ion-beam irradiation we are able to stabilize and pin two DWs in a Pt/Co/Pt nanowire. By depinning the DWs under the application of a perpendicular field as well as an injected charge current and in-plane magnetic field, we are able to disentangle the contributions to DW motion originating from (1) conventional spin transfer torques that act on magnetization gradients and (2) from the hitherto unexplored SHE torques. The fact the perpendicular depinning field H as a function of charge current J for the two DWs has equal slope dH/dJ, as well as a sign change of the slope when we change the polarity of the DWs, directly proves the dominance of the SHE contribution. To further proof that the SHE is governing the depinning process, we have tuned the internal spin structure of the DW from Bloch to Néel, by varying the in-plane field parallel to the current, and find that the influence of current on the depinning is highest when the DW has the Néel structure. This behavior is verified by macrospin simulations, which can quantitatively explain our data. As a final compelling evidence, we have varied the thickness of the bottom and top Pt, showing that we are able to tune the spin Hall currents originating from the nonmagnetic Pt layers. The work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO).

  1. Opposite Effects of KCTD Subunit Domains on GABAB Receptor-mediated Desensitization*

    PubMed Central

    Seddik, Riad; Jungblut, Stefan P.; Silander, Olin K.; Rajalu, Mathieu; Fritzius, Thorsten; Besseyrias, Valérie; Jacquier, Valérie; Fakler, Bernd; Gassmann, Martin; Bettler, Bernhard

    2012-01-01

    GABAB receptors assemble from principle and auxiliary subunits. The principle subunits GABAB1 and GABAB2 form functional heteromeric GABAB(1,2) receptors that associate with homotetramers of auxiliary KCTD8, -12, -12b, or -16 (named after their K+ channel tetramerization domain) subunits. These auxiliary subunits constitute receptor subtypes with distinct functional properties. KCTD12 and -12b generate desensitizing receptor responses while KCTD8 and -16 generate largely non-desensitizing receptor responses. The structural elements of the KCTDs underlying these differences in desensitization are unknown. KCTDs are modular proteins comprising a T1 tetramerization domain, which binds to GABAB2, and a H1 homology domain. KCTD8 and -16 contain an additional C-terminal H2 homology domain that is not sequence-related to the H1 domains. No functions are known for the H1 and H2 domains. Here we addressed which domains and sequence motifs in KCTD proteins regulate desensitization of the receptor response. We found that the H1 domains in KCTD12 and -12b mediate desensitization through a particular sequence motif, T/NFLEQ, which is not present in the H1 domains of KCTD8 and -16. In addition, the H2 domains in KCTD8 and -16 inhibit desensitization when expressed C-terminal to the H1 domains but not when expressed as a separate protein in trans. Intriguingly, the inhibitory effect of the H2 domain is sequence-independent, suggesting that the H2 domain sterically hinders desensitization by the H1 domain. Evolutionary analysis supports that KCTD12 and -12b evolved desensitizing properties by liberating their H1 domains from antagonistic H2 domains and acquisition of the T/NFLEQ motif. PMID:23035119

  2. Cosmic strings

    NASA Technical Reports Server (NTRS)

    Bennett, David P.

    1988-01-01

    Cosmic strings are linear topological defects which are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characterisitc microwave background anisotropy. It was recently discovered that details of cosmic string evolution are very differnt from the so-called standard model that was assumed in most of the string-induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain.

  3. Cosmic strings

    SciTech Connect

    Bennett, D.P.

    1988-07-01

    Cosmic strings are linear topological defects that are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation that are based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characteristic microwave background anistropy. It has recently been discovered by F. Bouchet and myself that details of cosmic string evolution are very different from the so-called ''standard model'' that has been assumed in most of the string induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain. 29 refs., 9 figs.

  4. Biological effects and physics of solar and galactic cosmic radiation, Part B; Proceedings of a NATO Advanced Study Institute on Biological Effects and Physics of Solar and Galactic Cosmic Radiation, Algarve, Portugal, Oct. 13-23, 1991

    NASA Technical Reports Server (NTRS)

    Swenberg, Charles E. (Editor); Horneck, Gerda (Editor); Stassinopoulos, E. G. (Editor)

    1993-01-01

    Since there is an increasing interest in establishing lunar bases and exploring Mars by manned missions, it is important to develop appropriate risk estimates and radiation protection guidelines. The biological effects and physics of solar and galactic cosmic radiation are examined with respect to the following: the radiation environment of interplanetary space, the biological responses to radiation in space, and the risk estimates for deep space missions. There is a need for a long-term program where ground-based studies can be augmented by flight experiments and an international standardization with respect to data collection, protocol comparison, and formulation of guidelines for future missions.

  5. Effect of local perturbations of the geomagnetic field on cosmic ray cutoff rigidities at Jungfraujoch and Kiel

    SciTech Connect

    Flueckiger, E.O.; Smart, D.F.; Shea, M.A.

    1983-09-01

    We have investigated the effect of local perturbations of the geomagnetic field on the vertical cosmic ray cutoff rigidities at Jungfraujoch and Kiel as representative mid-latitude neutron monitor stations. The main, effective, and Stoermer vertical cutoff rigidities and their changes were determined by utilizing the trajectory-tracing technique in a magnetic field which is modeled as a simple dipole field to which the disturbance field is superposed. It was found that the cosmic ray cutoff rigidities are most sensitive to variations of the z component of the geomagnetic field at geomagnetic latitudes -20/sup 0/<..lambda..<+30/sup 0/ and at longitudes within 90/sup 0/ to the east of these northern hemisphere stations. Furthermore, cutoff rigidity variations at Kiel are predominantly due to changes of the geomagnetic field within geocentric distances 2.5R/sub E/effective, and Stoermer vertical cutoff rigidities on the radial, latitudinal and longitudinal structure of the magnetic perturbations is given explicitly. The results are discussed with respect to the theory by Treiman (1953) describing the effect of a ring current on cosmic ray cutoff rigidities. It is also shown that for the analysis of the characteristic properties of the correlation between cutoff rigidity variations and specific geomagnetic perturbations the rigidity corresponding to the first ''discontinuity band'' of the rigidity spectrum is an extremely useful parameter.

  6. Galactic and solar cosmic rays - Variations and origin

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Blokh, Ia. L.; Gushchina, R. T.; Dorman, I. V.; Dorman, L. I.

    Past and current research efforts at IZMIRAN (the Soviet Institute for the Study of Terrestrial Magnetism, the Ionosphere, and the Propagation of Radio Waves) on galactic and solar cosmic rays is reviewed. Particular attention is given to investigations of penumbra effects manifested in cosmic rays, long-term cosmic-ray variations, cosmic-ray anisotropy, cosmic-ray fluctuations, the possible relationship between cosmic-ray variations and atmospheric ozone, the stellar anisotropy of cosmic rays, and cosmic-ray propagation in the interstellar medium.

  7. Effect on GLE Occurrence Distribution: Possible Action on Active Region by Earth and Jupiter Magnetospheres through Cosmic Ray Deflection

    NASA Astrophysics Data System (ADS)

    Del Pozo Garcia, Eduardo

    Eduardo del Pozo Garcia Geophysics and Astronomy Institute Havana, Cuba pozo@iga.cu Following Perez- Peraza and collaborators works on GLE prediction on basis to Cosmic Ray periodicities and cycles, in particular with 1,2 year cycle, effect prognosis of GLE occurrence was determine, I present here a possible interpretation of their results. Here I present the time distribution of the observed GLE in respect to each GLE nearly Sun-Earth-Jupiter alignment time. At the histogram the X axis cero is the alignment time. These alignments take place cyclically every 1,1 year. The histogram shows a modulation-like GLE distribution. The occurrence increments are near the alignment time and, about 125 days before and after the alignment time. Besides, a work hypothesis is proposed: “The Jupiter and Earth magnetospheres must deflect cosmic rays and, at some Jupiter and Earth positions according the current interplanetary magnetic field, may be favorable to increase the energetic particle flux over current Sun active regions, giving place to a modulation-like GLE distribution. Also, by the cosmic rays action some particle flux increase over active regions may come from radiation belts” This effect means that, during solar activity this is a factor that contributes to: - An accumulative activity increase of sunspot groups and their magnetic configuration complexity - Eventually, over complex active region some increase of high energy particle flux help to trigger GLE, or intensify solar proton events in progress, and become a GLE. This effect is taken into account for GLE prediction.

  8. Cosmic Balloons

    ERIC Educational Resources Information Center

    El Abed, Mohamed

    2014-01-01

    A team of French high-school students sent a weather balloon into the upper atmosphere to recreate Viktor Hess's historical experiment that demonstrated the existence of ionizing radiation from the sky--later called cosmic radiation. This discovery earned him the Nobel Prize for Physics in 1936.

  9. Cosmic balloons

    NASA Astrophysics Data System (ADS)

    El Abed, Mohamed

    2014-11-01

    A team of French high-school students sent a weather balloon into the upper atmosphere to recreate Viktor Hess’s historical experiment that demonstrated the existence of ionizing radiation from the sky—later called cosmic radiation. This discovery earned him the Nobel Prize for Physics in 1936.

  10. Curvature and torsion effects in spin-current driven domain wall motion

    NASA Astrophysics Data System (ADS)

    Yershov, Kostiantyn V.; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri

    2016-03-01

    The domain wall motion along a helix-shaped nanowire is studied for the case of spin-current driving via the Zhang-Li mechanism. The analysis is based on the collective variable approach. Two effects are ascertained: (i) the curvature results in the appearance of the Walker limit for a uniaxial wire, and (ii) the torsion results in effective shift of the nonadiabatic spin torque parameter β . The latter effect changes considerably the domain wall velocity and can result in negative domain wall mobility. This effect can be also used for an experimental determination of the nonadiabatic parameter β and damping coefficient α .

  11. Spanwise domain effects on the evolution of the plane turbulent mixing layer

    NASA Astrophysics Data System (ADS)

    McMullan, W. A.

    2015-07-01

    Large Eddy Simulation is used to simulate a series of plane mixing layers. The influence of the spanwise domain on the development of the mixing layer, and the evolution of the coherent structures, are considered. The mixing layers originate from laminar conditions, and an idealised inflow condition is found to produce accurate flow predictions when the spanwise computational domain extent is sufficient to avoid confinement effects. Spanwise domain confinement of the flow occurs when the ratio of spanwise domain extent to local momentum thickness reaches a value of ten. Flow confinement results in changes to both the growth mechanism of the turbulent coherent structures, and the nature of the interactions that occur between them. The results demonstrate that simulations of the two-dimensional mixing layer flow requires a three-dimensional computational domain in order that the flow will evolve in a manner that is free from restraints imposed by the spanwise domain.

  12. On the Rotating Effects and the Landau-Aharonov-Casher System Subject to a Hard-Wall Confining Potential in the Cosmic String Spacetime

    NASA Astrophysics Data System (ADS)

    Bakke, K.

    2015-07-01

    The behaviour of the Landau-Aharonov-Casher system is discussed by showing a case where the external electric field cannot yield the Landau-Aharonov-Casher quantization under the influence of rotating effects in the cosmic string spacetime, but it can yield bound states solutions to the Schrödinger-Pauli equation analogous to having the Landau-Aharonov-Casher system confined to a hard-wall confining potential under the influence of rotating effects and the topology of the cosmic string spacetime (by assuming ω ρ≪1 and neglecting the effects of a gravitational self-force on the particle).

  13. The Effects of Domain Knowledge and Instructional Manipulation on Creative Idea Generation

    ERIC Educational Resources Information Center

    Hao, Ning

    2010-01-01

    The experiment was designed to explore the effects of domain knowledge, instructional manipulation, and the interaction between them on creative idea generation. Three groups of participants who respectively possessed the domain knowledge of biology, sports, or neither were asked to finish two tasks: imagining an extraterrestrial animal and…

  14. The effects of magnetic field modifications on the solar modulation of cosmic rays with a SDE-based model

    NASA Astrophysics Data System (ADS)

    Raath, Jan-Louis; Toit Strauss, Du; Kopp, Andreas; Potgieter, Marius

    2016-07-01

    The effects of modifying the heliospheric magnetic field, particularly in the polar regions of the heliosphere, are illustrated by utilizing a numerical model based on the solution of a set of stochastic differential equations (SDEs). Because SDE-based models are especially well suited for such studies, we are able to gain new insights into this subject. The differences in the modulation brought about by each of three choices for the heliospheric magnetic field are studied as typical well-known cases; they are the unmodified Parker field, and the Smith-Bieber and Jokipii-Kóta modified fields. It is illustrated that both these modifications change the Parker field satisfactorily in the heliospheric polar regions, but that the modification of Smith and Bieber affects a larger reduction in cosmic ray drift effects in these regions. The general features of these two modifications are illustrated and the Smith-Bieber modified field is applied in a cosmic ray modulation model to reproduce observational proton spectra from the PAMELA mission during the solar minimum of 2006 - 2009. These SDE-based results are compared to the results from other studies and found to be in good qualitative agreement.

  15. Cosmic jets

    NASA Technical Reports Server (NTRS)

    Rees, M. J.

    1986-01-01

    The evidence that active galactic nuclei produce collimated plasma jets is summarised. The strongest radio galaxies are probably energised by relativistic plasma jets generated by spinning black holes interacting with magnetic fields attached to infalling matter. Such objects can produce e(+)-e(-) plasma, and may be relevant to the acceleration of the highest-energy cosmic ray primaries. Small-scale counterparts of the jet phenomenon within our own galaxy are briefly reviewed.

  16. Cosmic Interactions

    NASA Astrophysics Data System (ADS)

    2008-01-01

    An image based on data taken with ESO's Very Large Telescope reveals a triplet of galaxies intertwined in a cosmic dance. ESO PR Photo 02/08 ESO PR Photo 02/08 NGC 7173, 7174, and 7176 The three galaxies, catalogued as NGC 7173 (top), 7174 (bottom right) and 7176 (bottom left), are located 106 million light-years away towards the constellation of Piscis Austrinus (the 'Southern Fish'). NGC 7173 and 7176 are elliptical galaxies, while NGC 7174 is a spiral galaxy with quite disturbed dust lanes and a long, twisted tail. This seems to indicate that the two bottom galaxies - whose combined shape bears some resemblance to that of a sleeping baby - are currently interacting, with NGC 7176 providing fresh material to NGC 7174. Matter present in great quantity around the triplet's members also points to the fact that NGC 7176 and NGC 7173 have interacted in the past. Astronomers have suggested that the three galaxies will finally merge into a giant 'island universe', tens to hundreds of times as massive as our own Milky Way. ESO PR Photo 02/08 ESO PR Photo 02b/08 NGC 7173, 7174, and 7176 The triplet is part of a so-called 'Compact Group', as compiled by Canadian astronomer Paul Hickson in the early 1980s. The group, which is the 90th entry in the catalogue and is therefore known as HCG 90, actually contains four major members. One of them - NGC 7192 - lies above the trio, outside of this image, and is another peculiar spiral galaxy. Compact groups are small, relatively isolated, systems of typically four to ten galaxies in close proximity to one another. Another striking example is Robert's Quartet. Compact groups are excellent laboratories for the study of galaxy interactions and their effects, in particular the formation of stars. As the striking image reveals, there are many other galaxies in the field. Some are distant ones, while others seem to be part of the family. Studies made with other telescopes have indeed revealed that the HCG 90 group contains 16 members

  17. Cosmic Topology

    NASA Astrophysics Data System (ADS)

    Luminet, Jean-Pierre

    2015-08-01

    Cosmic Topology is the name given to the study of the overall shape of the universe, which involves both global topological features and more local geometrical properties such as curvature. Whether space is finite or infinite, simply-connected or multi-connected like a torus, smaller or greater than the portion of the universe that we can directly observe, are questions that refer to topology rather than curvature. A striking feature of some relativistic, multi-connected "small" universe models is to create multiples images of faraway cosmic sources. While the most recent cosmological data fit the simplest model of a zero-curvature, infinite space model, they are also consistent with compact topologies of the three homogeneous and isotropic geometries of constant curvature, such as, for instance, the spherical Poincaré Dodecahedral Space, the flat hypertorus or the hyperbolic Picard horn. After a "dark age" period, the field of Cosmic Topology has recently become one of the major concerns in cosmology, not only for theorists but also for observational astronomers, leaving open a number of unsolved issues.

  18. Mechanistic investigation of domain specific unfolding of human serum albumin and the effect of sucrose

    PubMed Central

    Yadav, Rajeev; Sen, Pratik

    2013-01-01

    This study is devoted to understand the unfolding mechanism of a multidomain protein, human serum albumin (HSA), in absence and presence of the sucrose by steady-state and time-resolved fluorescence spectroscopy with domain specific marker molecules and is further being substantiated by molecular dynamics (MD) simulation. In water, the domain III of HSA found to unfold first followed by domains I and II as the concentration of GnHCl is increased in the medium. The sequential unfolding behavior of different domains of HSA remains same in presence of sucrose; however, a higher GnHCl concentration is required for unfolding, suggesting stabilizing effect of sucrose on HSA. Domain I is found to be most stabilized by sucrose. The stabilization of domain II is somewhat similar to domain I, but the effect of sucrose on domain III is found to be very small. MD simulation also predicted a similar behavior of sucrose on HSA. The stabilizing effect of sucrose is explained in terms of the entrapment of water molecules in between HSA surface and sucrose layer as well as direct interaction between HSA and sucrose. PMID:24038622

  19. [Cytogenetic effects in experimental exposure to the heavy charged particles of galactic cosmic radiation on the Kosmos-1129 biosatellite].

    PubMed

    Nevzgodina, L V; Maksimova, E N

    1982-01-01

    The experiment was carried out on lattice (Lactuca sativa) seeds flown in a biocontainer equipped with plastic detectors to record heavy charged particles (HCP). The purpose of the experiment was to determine the yield of aberrant cells as a result of irradiation, and to identify this effect as a function of HCP topography in the seed. The cytogenetic examination of flight seedlings revealed a significant difference between the seeds which were hit with HCP and those that remained intact. This indicates a significant contribution of the heavy component of galactic cosmic rediation into the radiobiological effect. The relationship between the radiobiological effect and the HCP topography in the seed was established: zones of the root and stem meristema proved to be most sensitive targets. PMID:7120912

  20. The formation of a generalized categorization repertoire: effect of training with multiple domains, samples, and comparisons.

    PubMed Central

    Fields, Lanny; Reeve, Kenneth F; Matneja, Priya; Varelas, Antonios; Belanich, James; Fitzer, Adrienne; Shamoun, Kim

    2002-01-01

    The present experiment explored the effects of three variables on the spontaneous categorization of stimuli in perceptually distinct and novel domains. Each of six stimulus domains was created by morphing two images that were the domain endpoints. The endpoints of the domains were male and female faces, two abstract drawings, a car and a truck, two banded-elevation satellite land images, a tree and a cat, and two false-color satellite images. The stimulus variants at each end of a domain defined two potential perceptual classes. Training was conducted in a matching-to-sample format and used stimuli from one or two domains, one or three variants per class as samples, and one or three variants per class as comparisons. The spontaneous categorization of stimuli in the untrained stimulus domains showed the emergence of a generalized categorization repertoire. The proportion of spontaneously categorized stimuli in the new domains was positively related to the number of domains and samples used in training, and was inversely related to the number of comparisons used in training. Differential reaction times demonstrated the discriminability of the stimuli in the emergent classes. This study is among the first to provide an empirical basis for a behavior-analytic model of the development of generalized categorization repertoires in natural settings. PMID:12507005

  1. Comparison of CREME (Cosmic Ray Effects on Microelectronics) model LET (Linear Energy Transfer) spaceflight dosimetry data

    NASA Astrophysics Data System (ADS)

    Letaw, John R.; Adams, James H., Jr.

    1986-07-01

    The galactic cosmic radiation (GCR) component of space radiation is the dominant cause of single event phenomena in microelectronic circuits when Earth's magnetic shielding is low. Spaceflights outside the magnetosphere and in high inclination orbits are examples of such circumstances. In high inclination orbits, low energy (high LET) particles are transmitted through the field only at extreme latitudes, but can dominate the orbit-averaged dose. GCR is an important part of the radiation dose to astronauts under the same conditions. As a test of the CREME environmental model and particle transport codes used to estimate single event upsets, we have compiled existing measurements of HZE doses where GCR is expected to be important: Apollo 16 and 17, Skylab, Apollo Soyuz Test Project, and Kosmos 782. The LET spectra, due to direct ionization from GCR, for each of these missions has been estimated. The resulting comparisons with data validate the CREME model predictions of high LET galactic cosmic ray fluxes to within a factor of two. Some systematic differences between the model and data are identified.

  2. EFFECTS OF BIASES IN VIRIAL MASS ESTIMATION ON COSMIC SYNCHRONIZATION OF QUASAR ACCRETION

    SciTech Connect

    Steinhardt, Charles L.

    2011-09-01

    Recent work using virial mass estimates and the quasar mass-luminosity plane has yielded several new puzzles regarding quasar accretion, including a sub-Eddington boundary (SEB) on most quasar accretion, near-independence of the accretion rate from properties of the host galaxy, and a cosmic synchronization of accretion among black holes of a common mass. We consider how these puzzles might change if virial mass estimation turns out to have a systematic bias. As examples, we consider two recent claims of mass-dependent biases in Mg II masses. Under any such correction, the surprising cosmic synchronization of quasar accretion rates and independence from the host galaxy remain. The slope and location of the SEB are very sensitive to biases in virial mass estimation, and various mass calibrations appear to favor different possible physical explanations for feedback between the central black hole and its environment. The alternative mass estimators considered do not simply remove puzzling quasar behavior, but rather replace it with new puzzles that may be more difficult to solve than those using current virial mass estimators and the Shen et al. catalog.

  3. Precise Measurements of the Cosmic Ray Antiproton Spectrum with BESS Including the Effects of Solar Modulation

    NASA Technical Reports Server (NTRS)

    Mitchell, J. W.; Abe, K.; Anraku, K.; Asaoka, Y.; Fujikawa, M.; Fuke, H.; Haino, S.; Hams, T.; Ikeda, N.; Imori, M.

    2002-01-01

    The Balloon Borne Experiment with a Superconducting Spectrometer (BESS) has measured the energy spectrum of cosmic-ray antiprotons between 0.18 and 4.20 GeV in eight flights between 1993 and 2002. Above about 1 GeV, models in which antiprotons are secondary products of the interactions of primary cosmic rays with the interstellar gas agree with the BESS antiproton spectrum. Below 1 GeV, the data show a possible excess antiproton flux compared to secondary model predictions, suggesting the presence of an additional source of antiprotons. The antiproton/proton ratios measured between 1993 and 1999, during the Sun's positive-polarity phase, are consistent with simple models of solar modulation. However, results from the 2000 flight, following the solar magnetic field reversal, show a sudden increase in the antiproton/proton ratio and tend to favor a charge-sign-dependent drift model. To extend BESS measurements to lower energies, an evolutionary instrument, BESS-Polar, is under construction for polar flight in 2004.

  4. Influence of the superposition approximation on calculated effective dose rates from galactic cosmic rays at aerospace-related altitudes

    NASA Astrophysics Data System (ADS)

    Copeland, Kyle

    2015-07-01

    The superposition approximation was commonly employed in atmospheric nuclear transport modeling until recent years and is incorporated into flight dose calculation codes such as CARI-6 and EPCARD. The useful altitude range for this approximation is investigated using Monte Carlo transport techniques. CARI-7A simulates atmospheric radiation transport of elements H-Fe using a database of precalculated galactic cosmic radiation showers calculated with MCNPX 2.7.0 and is employed here to investigate the influence of the superposition approximation on effective dose rates, relative to full nuclear transport of galactic cosmic ray primary ions. Superposition is found to produce results less than 10% different from nuclear transport at current commercial and business aviation altitudes while underestimating dose rates at higher altitudes. The underestimate sometimes exceeds 20% at approximately 23 km and exceeds 40% at 50 km. Thus, programs employing this approximation should not be used to estimate doses or dose rates for high-altitude portions of the commercial space and near-space manned flights that are expected to begin soon.

  5. The effects of coronal mass ejection on galactic cosmic rays in the high latitude heliosphere: Observations from Ulysses` first orbit

    SciTech Connect

    Bothmer, V.; Heber, B.; Kunow, H.; Mueller-Mellin, R.; Wibberenz, G.; Gosling, J.T.; Balogh, A.; Raviart, A.; Paizis, C.

    1997-10-01

    During its first solar orbit the Ulysses spacecraft detected several coronal mass ejections (CMEs) at high heliographic latitudes. The authors present first observations on the effects of these high latitude CMEs on galactic cosmic rays (GCRs) using measurements from the Kiel Electron Telescope (KET) which is part of the Cosmic Ray and Solar Particle Investigation (COSPIN) experiment, the Los Alamos SWOOPS (Solar Wind Observations Over the Poles of the Sun) experiment and the magnetic field experiments. They find the passage of these CMEs over the spacecraft to be associated with short term decreases of GCR intensities The relatively weak shocks in these events, driven by the CMEs` over-expansion, had no strong influence on the GCRs. The intensity minimums of GCRs occurred on closed magnetic field lines inside the CMEs themselves as indicated by bidirectional fluxes of suprathermal electrons. Short episodes of intensity increases of GCRs inside CMEs at times when the bidirectional fluxes of suprathermal electrons disappeared, can be interpreted as evidence that GCRs can easily access the interior of those CMEs in which open magnetic field lines are embedded.

  6. Effects and detectability of quasi-single field inflation in the large-scale structure and cosmic microwave background

    SciTech Connect

    Sefusatti, Emiliano; Fergusson, James R.; Chen, Xingang; Shellard, E.P.S. E-mail: jf334@damtp.cam.ac.uk E-mail: E.P.S.Shellard@damtp.cam.ac.uk

    2012-08-01

    Quasi-single field inflation predicts a peculiar momentum dependence in the squeezed limit of the primordial bispectrum which smoothly interpolates between the local and equilateral models. This dependence is directly related to the mass of the isocurvatons in the theory which is determined by the supersymmetry. Therefore, in the event of detection of a non-zero primordial bispectrum, additional constraints on the parameter controlling the momentum-dependence in the squeezed limit becomes an important question. We explore the effects of these non-Gaussian initial conditions on large-scale structure and the cosmic microwave background, with particular attention to the galaxy power spectrum at large scales and scale-dependence corrections to galaxy bias. We determine the simultaneous constraints on the two parameters describing the QSF bispectrum that we can expect from upcoming large-scale structure and cosmic microwave background observations. We find that for relatively large values of the non-Gaussian amplitude parameters, but still well within current uncertainties, galaxy power spectrum measurements will be able to distinguish the QSF scenario from the predictions of the local model. A CMB likelihood analysis, as well as Fisher matrix analysis, shows that there is also a range of parameter values for which Planck data may be able distinguish between QSF models and the related local and equilateral shapes. Given the different observational weightings of the CMB and LSS results, degeneracies can be significantly reduced in a joint analysis.

  7. On magnetodynamic effects initiated by a high-speed impact of a large cosmic body upon the Earth's surface

    NASA Technical Reports Server (NTRS)

    Nemchinov, I. V.; Alexandrov, P. E.; Artemiev, V. I.; Bergelson, V. I.; Rybakov, V. A.

    1993-01-01

    The impact of a large cosmic body with typical size R approximately = 1 km (mass M approximately = 4-10 Gt for a stony or icy body) moving with velocity V approximately = 50-70 km/s (kinetic energy of the order of 10 exp 21 J or 10 exp 6 Mt of TMT) on the Earth's surface leads to a full vaporization of a body and of a significant part of substance of the upper layers of the Earth and even to the ionization of this vapor cloud. As a result, a hypersonic jet of air and erosion plasma is formed. The kinetic energy E sub J is far above the total energy of the geomagnetic field of the Earth (approximately equivalent to the energy of 100 Mt) and the total mass of a fast-moving part of the jet M sub j approximately = 10 exp 12 kg is far above the mass of atmosphere in the jet expansion cone. Thus, the jet will propagate practically inertially with the constant mean velocity U approximately = 10-20 km/s and even higher. The interaction of this plasma jet with the Earth's magnetic field causes magnetodynamic effects similar to those which are produced by cosmic nuclear explosions but of a larger scale. The preliminary results of experimental and numerical modeling of the plasma jet-magnetosphere interaction are presented.

  8. Domain engineering algorithm for practical and effective photon sources.

    PubMed

    Tambasco, J-L; Boes, A; Helt, L G; Steel, M J; Mitchell, A

    2016-08-22

    We introduce a method for shaping the spectral response of nonlinear light sources by tailoring the quasi-phase matching. Our algorithm relies on engineering the poling to accurately trace a generated target signal field amplitude to determine the desired nonlinearity profile. The proposed poling algorithm results in a poling pattern that is more robust to manufacture, as all domain inversions are of equal width. The poling pattern is verified using a nonlinear beam propagation method simulation. This approach is applied to achieve Gaussian-shaped phase matching along a potassium titanyl phosphate (KTP) crystal in order to generate pure heralded single photons of spectral purity ~0.996-this is highly desirable for heralded single photon quantum optics. PMID:27557240

  9. Stress Domain Effects in French Phonology and Phonological Development*

    PubMed Central

    Rose, Yvan; dos Santos, Christophe

    2016-01-01

    In this paper, we discuss two distinct data sets. The first relates to the so-called allophonic process of closed-syllable laxing in Québec French, which targets final (stressed) vowels even though these vowels are arguably syllabified in open syllables in lexical representations. The second is found in the forms produced by a first language learner of European French, who displays an asymmetry in her production of CVC versus CVCV target (adult) forms. The former display full preservation (with concomitant manner harmony) of both consonants. The latter undergoes deletion of the initial syllable if the consonants are not manner-harmonic in the input. We argue that both patterns can be explained through a phonological process of prosodic strengthening targeting the head of the prosodic domain which, in the contexts described above, yields the incorporation of final consonants into the coda of the stressed syllable. PMID:27227170

  10. Cosmic impacts, cosmic catastrophes. II

    SciTech Connect

    Chapman, C.R.; Morrison, D. NASA, Ames Research Center, Moffett Field, CA )

    1990-02-01

    The role of extraterrestrial impacts in shaping the earth's history is discussed, arguing that cosmic impacts represent just one example of a general shift in thinking that has made the idea of catastrophes respectable in science. The origins of this view are presented and current catastrophic theory is discussed in the context of modern debate on the geological formation of the earth. Various conflicting theories are reviewed and prominent participants in the ongoing scientific controversy concerning catastrophism are introduced.

  11. Cosmic impacts, cosmic catastrophes. II

    NASA Technical Reports Server (NTRS)

    Chapman, Clark R.; Morrison, David

    1990-01-01

    The role of extraterrestrial impacts in shaping the earth's history is discussed, arguing that cosmic impacts represent just one example of a general shift in thinking that has made the idea of catastrophes respectable in science. The origins of this view are presented and current catastrophic theory is discussed in the context of modern debate on the geological formation of the earth. Various conflicting theories are reviewed and prominent participants in the ongoing scientific controversy concerning catastrophism are introduced.

  12. Phase Transition in strongly-correlated VO2: Time-domainAssignment of Cause and Effect

    SciTech Connect

    Cavalleri, A.; Dekorsy, Th.; Chong, H.H.; Kieffer, J.C.; Schoenlein, R.W.

    2004-07-22

    We establish time-domain hierarchy between structural andelectronic effects in the strongly correlated system VO2. Theinsulator-to-metal transition is driven directly by structural changerather than by electron-electron correlations.

  13. Effect of the Mott cross section on the determination of the charge of ultraheavy cosmic rays from emulsion tracks

    NASA Technical Reports Server (NTRS)

    Eby, P. B.; Morgan, S. H.; Parnell, T. A.

    1978-01-01

    Energy deposition due to secondary electrons is calculated as a function of distance from the axis of the track of a heavy ion. The calculation incorporates the empirical formulas of Kobetich and Katz (1968) for delta-ray energy dissipation. Both the Mott and Born-approximation expressions for the delta-ray energy distributions are used, and the results are compared. The energy deposition projected along a line perpendicular to the track is also calculated. These results are used to estimate the effect that the use of the Mott cross section would have in the interpretation of photometric measurements on emulsion tracks of trans-iron cosmic-ray particles. It is shown that the use of 50 keV as a characteristic track-formation electron energy to estimate the effect of the Mott cross section systematically overestimates charge as derived from emulsions for Z greater than 20.

  14. Interplanetary radial cosmic-ray gradients and their implication for a possible large modulation effect at the heliospheric boundary

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Lockwood, J. A.

    1987-01-01

    It is proposed here that a large and time-variable part of the overall 11-year cosmic ray modulation in the heliosphere takes place near the heliosphere boundary itself. This conclusion is reached by examining interplanetary radial gradient measurements which show that out to 30-40 AU this gradient remains nearly independent of heliocentric distance throughout the solar cycle. Properties of the solar wind which suggest that the distance to the pressure balance boundary does not vary by more than + or - 25 percent over the solar cycle are also used in support of the proposal. The importance of the large modulation effect at the boundary could exceed that of interplanetary effects expected from present models.

  15. Vibration sensing in flexible structures using a distributed-effect modal domain optical fiber sensor

    NASA Technical Reports Server (NTRS)

    Reichard, Karl M.; Lindner, Douglas K.; Claus, Richard O.

    1991-01-01

    Modal domain optical fiber sensors have recently been employed in the implementation of system identification algorithms and the closed-loop control of vibrations in flexible structures. The mathematical model of the modal domain optical fiber sensor used in these applications, however, only accounted for the effects of strain in the direction of the fiber's longitudinal axis. In this paper, we extend this model to include the effects of arbitrary stress. Using this sensor model, we characterize the sensor's sensitivity and dynamic range.

  16. Effects of domains in phonon conduction through hybrid boron nitride and graphene sheets

    NASA Astrophysics Data System (ADS)

    Sevinçli, H.; Li, W.; Mingo, N.; Cuniberti, G.; Roche, S.

    2011-11-01

    We theoretically investigate the phonon propagation and thermal conductivity κ in hybrid boron nitride and graphene sheets. By using a real-space Kubo-computational transport scheme, large and disordered graphene structures are simulated, introducing disk-shaped domains with varying sizes of 2 to 8 nm and concentrations ranging from 0% to 100%. A strong influence of the domain size and concentration on the transport properties is obtained. The mean free paths are minimized at 50% domain concentration, and stronger suppression of κ is achieved with smaller domains. It is found to decrease by up to 65% at room temperature when the domain size is 2 nm. These results are beyond the scope of any effective medium approximation.

  17. Biological effects and physics of solar and galactic cosmic radiation, Part B; Proceedings of a NATO Advanced Study Institute on Biological Effects and Physics of Solar and Galactic Cosmic Radiation, Algarve, Portugal, Oct. 13-23, 1991

    SciTech Connect

    Swenberg, C.E.; Horneck, G.; Stassinopoulos, E.G.

    1993-12-31

    Since there is an increasing interest in establishing lunar bases and exploring Mars by manned missions, it is important to develop appropriate risk estimates and radiation protection guidelines. The biological effects and physics of solar and galactic cosmic radiation are examined with respect to the following: the radiation environment of interplanetary space, the biological responses to radiation in space, and the risk estimates for deep space missions. There is a need for a long-term program where ground-based studies can be augmented by flight experiments and an international standardization with respect to data collection, protocol comparison, and formulation of guidelines for future missions. For individual titles, see A95-81432 through A95-81454.

  18. Effects of cosmic string velocities and the origin of globular clusters

    NASA Astrophysics Data System (ADS)

    Lin, Ling; Yamanouchi, Shoma; Brandenberger, Robert

    2015-12-01

    With the hypothesis that cosmic string loops act as seeds for globular clusters in mind, we study the role that velocities of these strings will play in determining the mass distribution of globular clusters. Loops with high enough velocities will not form compact and roughly spherical objects and can hence not be the seeds for globular clusters. We compute the expected number density and mass function of globular clusters as a function of both the string tension and the peak loop velocity, and compare the results with the observational data on the mass distribution of globular clusters in our Milky Way. We determine the critical peak string loop velocity above which the agreement between the string loop model for the origin of globular clusters (neglecting loop velocities) and observational data is lost.

  19. Discrepancies between CFHTLenS cosmic shear and Planck: new physics or systematic effects?

    NASA Astrophysics Data System (ADS)

    Kitching, Thomas D.; Verde, Licia; Heavens, Alan F.; Jimenez, Raul

    2016-06-01

    There is currently a discrepancy in the measured value of the amplitude of matter clustering, parametrized using σ8, inferred from galaxy weak lensing, and cosmic microwave background (CMB) data, which could be an indication of new physics, such as massive neutrinos or a modification to the gravity law, or baryon feedback. In this paper we make the assumption that the cosmological parameters are well determined by Planck, and use weak lensing data to investigate the implications for baryon feedback and massive neutrinos, as well as possible contributions from intrinsic alignments and biases in photometric redshifts. We apply a non-parametric approach to model the baryonic feedback on the dark matter clustering, which is flexible enough to reproduce the OWLS (OverWhelmingly Large Simulations) and Illustris simulation results. The statistic we use, 3D cosmic shear, is a method that extracts cosmological information from weak lensing data using a spherical-Bessel function power spectrum approach. We analyse the CFHTLenS weak lensing data and, assuming best-fitting cosmological parameters from the Planck CMB experiment, find that there is no evidence for baryonic feedback on the dark matter power spectrum, but there is evidence for a bias in the photometric redshifts in the CFHTLenS data, consistent with a completely independent analysis by Choi et al., based on spectroscopic redshifts, and that these conclusions are robust to assumptions about the intrinsic alignment systematic. We also find an upper limit, of <0.28 eV (1σ), to the sum of neutrino masses conditional on other Λ-cold-dark-matter parameters being fixed.

  20. Chemical and physical effects induced by heavy cosmic ray analogues on frozen methanol and water ice mixtures

    NASA Astrophysics Data System (ADS)

    de Barros, A. L. F.; da Silveira, E. F.; Rothard, H.; Langlinay, T.; Boduch, P.

    2014-09-01

    The chemical and physical effects induced by fast heavy-ion irradiation on a frozen mixture of methanol (CH3OH) and water (H2O) at 15 K are analysed. The laboratory experiment described here simulates the energy transfer processes that occur when cosmic rays bombard this particular ice mixture and helps to elucidate the understanding of the radiolysis of ices occurring in interstellar medium grains, at the surfaces of comets, and on icy Solar system bodies. Infrared spectroscopy (FTIR) was used before and during irradiation with a 40 MeV 58Ni11+ ion beam to determine the variation of the main absorption bands of methanol, water and products. In particular, the radiolysis of CH3OH:H2O (1:1) mixture leads to the formation of H2CO, CH4, CO, CO2, HCO and HCOOCH3. Their formation and dissociation cross-sections are determined. H2CO, CH4 and HCOOCH3 molecules have relatively high destruction cross-sections of around 9 × 10-13 cm2. Furthermore, atomic carbon, oxygen and hydrogen budgets are determined and used to verify the stoichiometry of the most abundant molecular species formed. Temperature effects are compared with irradiation effects, and the spectra of samples warmed-up to different temperatures are compared with those of the irradiated CH3OH:H2O mixtures. As an astrophysical application, the CH3OH:H2O dissociation cross-sections due to other ion beam projectiles and energies are predicted assuming validity of the Se3/2 power law; calculation of the integrated dissociation rates confirms the importance of nickel and some other heavy-ion constituents of cosmic rays in astrochemistry.

  1. Cosmic strings and superconducting cosmic strings

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund

    1988-01-01

    The possible consequences of forming cosmic strings and superconducting cosmic strings in the early universe are discussed. Lecture 1 describes the group theoretic reasons for and the field theoretic reasons why cosmic strings can form in spontaneously broken gauge theories. Lecture 2 discusses the accretion of matter onto string loops, emphasizing the scenario with a cold dark matter dominated universe. In lecture 3 superconducting cosmic strings are discussed, as is a mechanism which leads to the formation of structure from such strings.

  2. Cosmic strings - A problem or a solution?

    NASA Technical Reports Server (NTRS)

    Bennett, David P.; Bouchet, Francois R.

    1988-01-01

    The most fundamental issue in the theory of cosmic strings is addressed by means of Numerical Simulations: the existence of a scaling solution. The resolution of this question will determine whether cosmic strings can form the basis of an attractive theory of galaxy formation or prove to be a cosmological disaster like magnetic monopoles or domain walls. After a brief discussion of our numerical technique, results are presented which, though still preliminary, offer the best support to date of this scaling hypothesis.

  3. Effects of thunderstorms in the electromagnetic component of the cosmic rays observed with the Pierre Auger Observatory, Argentina

    NASA Astrophysics Data System (ADS)

    Alvarez-Castillo, Jesús; Francisco Valdes-Galicia, Jose; Bertou, Xavier; Asorey, Hernan

    We studied the effects of thunderstorms (TS) in the intensity variations of the electromagnetic component of the secondary cosmic rays observed with the surface detector of the Southern Pierre Auger Observatory during the year 2008, a year of minimum solar activity. We analyzed the variations in the counting rates at times of reported TS and compared those with variations during quiet times. The data were filtered to eliminate long trends, then a wavelet spectrum was determined, looking for temporal evolution of diverse periods of high significance; frequency and total power distributions were obtained. The results obtained show variations of high frequency that may be associated to the TS and others of low frequency that could be due to other processes linked to rainstorms.

  4. Coherent scattering of cosmic neutrinos

    NASA Technical Reports Server (NTRS)

    Opher, R.

    1974-01-01

    It is shown that cosmic neutrino scattering can be non-negligible when coherence effects previously neglected are taken into account. The coherent neutrino scattering cross section is derived and the neutrino index of refraction evaluated. As an example of coherent neutrino scattering, a detector using critical reflection is described which in principle can detect the low energy cosmic neutrino background allowed by the measured cosmological red shift.

  5. Cosmic string induced CMB maps

    SciTech Connect

    Landriau, M.; Shellard, E. P. S.

    2011-02-15

    We compute maps of CMB temperature fluctuations seeded by cosmic strings using high resolution simulations of cosmic strings in a Friedmann-Robertson-Walker universe. We create full-sky, 18 deg. and 3 deg. CMB maps, including the relevant string contribution at each resolution from before recombination to today. We extract the angular power spectrum from these maps, demonstrating the importance of recombination effects. We briefly discuss the probability density function of the pixel temperatures, their skewness, and kurtosis.

  6. Magnetospheric modulation effects on solar cosmic rays from simultaneous OGO 1 and 3 ion chamber data in 1968 and 1969

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.

    1973-01-01

    Simultaneous observations by identical ionization chambers aboard the satellites OGO-1 and OGO-3 are utilized to investigate spatial variations in particle intensity near and inside the magnetosphere during the solar cosmic ray events of September 1966. Cross-correlation of the absolute proton flux computed from the chamber rate during three solar particle events shows good agreement with the measurements by the IMP-F Solar Proton Monitor during the same events. The chamber has a dynamic range of over six orders of magnitude. Before launch it was calibrated in the laboratory with radiation dosages in the range 1 R/hr-6000 R/hr. The OGO-1 and OGO-3 chambers, which were normalized in the laboratory prior to the launch, are found to maintain their normalization within approximately equal to 1 per cent during their flight. The high sensitivity and absolute inter-comparability of the instruments allow small intensity differences to be detected and it is established that the observed differences can be explained by a magnetospheric screening effect when an anisotropic beam of particles is present in space. Evidence is presented to show that the screening is at times complete for a duration of as much as 110 min in the tail of the magnetosphere so that during this period the solar cosmic rays (E approximately equal to 15 MeV) have virtually no access to that region of the magnetosphere. Small intensity fluctuations of a temporal nature observed and found to be subjected to a damping effect inside the magnetosphere.

  7. Relative age effect revisited: findings from the dance domain.

    PubMed

    van Rossum, Jacques H A

    2006-04-01

    The relative age effect is a worldwide phenomenon. While there is solid empirical evidence for the existence in sports like soccer and ice hockey, there are also some findings indicating the absence of the phenomenon. In an earlier study, no support was found with Dutch top-level athletes in table tennis and in volleyball. The explanation was that in athletic tasks which depend heavily on the technical ability (or motor skill) of the participant, a relative age effect will not be observed. In the present study this supposition was tested again with three samples of Dutch preprofessional dance students (overall number of subjects: 546). Again no support was obtained for the relative age effect. Therefore, a case is being built that the relative age effect is not an omnipresent phenomenon. PMID:16826648

  8. Effects of Working Memory Capacity and Domain Knowledge on Recall for Grocery Prices.

    PubMed

    Bermingham, Douglas; Gardner, Michael K; Woltz, Dan J

    2016-01-01

    Hambrick and Engle (2002) proposed 3 models of how domain knowledge and working memory capacity may work together to influence episodic memory: a "rich-get-richer" model, a "building blocks" model, and a "compensatory" model. Their results supported the rich-get-richer model, although later work by Hambrick and Oswald (2005) found support for a building blocks model. We investigated the effects of domain knowledge and working memory on recall of studied grocery prices. Working memory was measured with 3 simple span tasks. A contrast of realistic versus fictitious foods in the episodic memory task served as our manipulation of domain knowledge, because participants could not have domain knowledge of fictitious food prices. There was a strong effect for domain knowledge (realistic food-price pairs were easier to remember) and a moderate effect for working memory capacity (higher working memory capacity produced better recall). Furthermore, the interaction between domain knowledge and working memory produced a small but significant interaction in 1 measure of price recall. This supported the compensatory model and stands in contrast to previous research. PMID:27424417

  9. How Does Processing Affect Storage in Working Memory Tasks? Evidence for Both Domain-General and Domain-Specific Effects

    ERIC Educational Resources Information Center

    Jarrold, Christopher; Tam, Helen; Baddeley, Alan D.; Harvey, Caroline E.

    2011-01-01

    Two studies that examine whether the forgetting caused by the processing demands of working memory tasks is domain-general or domain-specific are presented. In each, separate groups of adult participants were asked to carry out either verbal or nonverbal operations on exactly the same processing materials while maintaining verbal storage items.…

  10. Numerical Cosmic-Ray Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Miniati, F.

    2009-04-01

    We present a numerical method for integrating the equations describing a system made of a fluid and cosmic-rays. We work out the modified characteristic equations that include the CR dynamical effects in smooth flows. We model the energy exchange between cosmic-rays and the fluid, due to diffusive processes in configuration and momentum space, with a flux conserving method. For a specified shock acceleration efficiency as a function of the upstream conditions and shock Mach number, we modify the Riemann solver to take into account the cosmic-ray mediation at shocks without resolving the cosmic-ray induced substructure. A self-consistent time-dependent shock solution is obtained by using our modified solver with Glimm's method. Godunov's method is applied in smooth parts of the flow.

  11. Dimensions and Domains of Organisational Effectiveness in Australian Higher Education.

    ERIC Educational Resources Information Center

    Lysons, Art

    1990-01-01

    Research in Australian higher education testing one theory of dimensions of organizational effectiveness is reviewed, and two theories are analyzed to develop a more comprehensive set of dimensions. The existing taxonomy is further defined, and the implications relating to recent structural adjustments in the higher education system are discussed.…

  12. Uniformity of cosmic microwave background as a non-inflationary geometrical effect

    NASA Astrophysics Data System (ADS)

    Vlahovic, Branislav; Eingorn, Maxim; Ilie, Cosmin

    2015-10-01

    The conventional ΛCDM cosmological model supplemented by the inflation concept describes the Universe very well. However, there are still a few concerns: new Planck data impose constraints on the shape of the inflaton potential, which exclude a lot of inflationary models; dark matter is not detected directly, and dark energy is not understood theoretically on a satisfactory level. In this brief sketch, we investigate an alternative cosmological model with spherical spatial geometry and an additional perfect fluid with the constant parameter ω = -1/3 in the linear equation of state. It is demonstrated explicitly that in the framework of such a model it is possible to satisfy the supernovae data at the same level of accuracy as within the ΛCDM model and at the same time suppose that the observed cosmic microwave background (CMB) radiation originates from a very limited space region. This is ensured by introducing an additional condition of light propagation between the antipodal points during the age of the Universe. Consequently, the CMB uniformity can be explained without the inflation scenario. The corresponding drawbacks of the model with respect to its comparison with the CMB data are also discussed.

  13. Cosmic ray pressure driven magnetic field amplification: dimensional, radiative and field orientation effects

    NASA Astrophysics Data System (ADS)

    Downes, T. P.; Drury, L. O'C.

    2014-10-01

    Observations of non-thermal emission from several supernova remnants suggest that magnetic fields close to the blastwave are much stronger than would be naively expected from simple shock compression of the field permeating the interstellar medium (ISM). We investigate in some detail a simple model based on turbulence generation by cosmic ray pressure gradients. Previously, this model was investigated using 2D magnetohydrodynamic simulations. Motivated by the well-known qualitative differences between 2D and 3D turbulence, we further our investigations of this model using both 2D and 3D simulations to study the influence of the dimensionality of the simulations on the field amplification achieved. Further, since the model implies the formation of shocks which can, in principle, be efficiently cooled by collisional cooling, we include such cooling in our simulations to ascertain whether it could increase the field amplification achieved. Finally, we examine the influence of different orientations of the magnetic field with respect to the normal of the blastwave. We find that dimensionality has a slight influence on the overall amplification achieved, but a significant impact on the morphology of the amplified field. Collisional cooling has surprisingly little impact, primarily due to the short time which any element of the ISM resides in the precursor region for supernova blastwaves. Even allowing for a wide range of orientations of the magnetic field, we find that the magnetic field can be expected to be amplified by, on average, at least an order of magnitude in the precursors of supernova blastwaves.

  14. EFFECTS OF NEUTRAL HYDROGEN ON COSMIC-RAY PRECURSORS IN SUPERNOVA REMNANT SHOCK WAVES

    SciTech Connect

    Raymond, John C.; Vink, J.; Helder, E. A.; De Laat, A.

    2011-04-10

    Many fast supernova remnant shocks show spectra dominated by Balmer lines. The H{alpha} profiles have a narrow component explained by direct excitations and a thermally Doppler broadened component due to atoms that undergo charge exchange in the post-shock region. However, the standard model does not take into account the cosmic-ray shock precursor, which compresses and accelerates plasma ahead of the shock. In strong precursors with sufficiently high densities, the processes of charge exchange, excitation, and ionization will affect the widths of both narrow and broad line components. Moreover, the difference in velocity between the neutrals and the precursor plasma gives rise to frictional heating due to charge exchange and ionization in the precursor. In extreme cases, all neutrals can be ionized by the precursor. In this Letter we compute the ion and electron heating for a wide range of shock parameters, along with the velocity distribution of the neutrals that reach the shock. Our calculations predict very large narrow component widths for some shocks with efficient acceleration, along with changes in the broad-to-narrow intensity ratio used as a diagnostic for the electron-ion temperature ratio. Balmer lines may therefore provide a unique diagnostic of precursor properties. We show that heating by neutrals in the precursor can account for the observed H{alpha} narrow component widths and that the acceleration efficiency is modest in most Balmer line shocks observed thus far.

  15. Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Masías-Meza, J. J.; Dasso, S.; Démoulin, P.; Rodriguez, L.; Janvier, M.

    2016-08-01

    Context. Interplanetary coronal mass ejections (ICMEs) are the interplanetary manifestations of solar eruptions. The overtaken solar wind forms a sheath of compressed plasma at the front of ICMEs. Magnetic clouds (MCs) are a subset of ICMEs with specific properties (e.g. the presence of a flux rope). When ICMEs pass near Earth, ground observations indicate that the flux of Galactic cosmic rays (GCRs) decreases. Aims: The main aims of this paper are to find common plasma and magnetic properties of different ICME sub-structures and which ICME properties affect the flux of GCRs near Earth. Methods: We used a superposed epoch method applied to a large set of ICMEs observed in situ by the spacecraft ACE, between 1998 and 2006. We also applied a superposed epoch analysis on GCRs time series observed with the McMurdo neutron monitors. Results: We find that slow MCs at 1 AU have on average more massive sheaths. We conclude that this is because they are more effectively slowed down by drag during their travel from the Sun. Slow MCs also have a more symmetric magnetic field and sheaths expanding similarly as their following MC, while in contrast, fast MCs have an asymmetric magnetic profile and a sheath in compression. In all types of MCs, we find that the proton density and the temperature and the magnetic fluctuations can diffuse within the front of the MC due to 3D reconnection. Finally, we derive a quantitative model that describes the decrease in cosmic rays as a function of the amount of magnetic fluctuations and field strength. Conclusions: The obtained typical profiles of sheath, MC and GCR properties corresponding to slow, middle, and fast ICMEs, can be used for forecasting or modelling these events, and to better understand the transport of energetic particles in ICMEs. They are also useful for improving future operative space weather activities.

  16. Lunar radiation environment and space weathering from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER)

    NASA Astrophysics Data System (ADS)

    Schwadron, N. A.; Baker, T.; Blake, B.; Case, A. W.; Cooper, J. F.; Golightly, M.; Jordan, A.; Joyce, C.; Kasper, J.; Kozarev, K.; Mislinski, J.; Mazur, J.; Posner, A.; Rother, O.; Smith, S.; Spence, H. E.; Townsend, L. W.; Wilson, J.; Zeitlin, C.

    2012-03-01

    The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) measures linear energy transfer by Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) on the Lunar Reconnaissance Orbiter (LRO) Mission in a circular, polar lunar orbit. GCR fluxes remain at the highest levels ever observed during the space age. One of the largest SEP events observed by CRaTER during the LRO mission occurred on June 7, 2011. We compare model predictions by the Earth-Moon-Mars Radiation Environment Module (EMMREM) for both dose rates from GCRs and SEPs during this event with results from CRaTER. We find agreement between these models and the CRaTER dose rates, which together demonstrate the accuracy of EMMREM, and its suitability for a real-time space weather system. We utilize CRaTER to test forecasts made by the Relativistic Electron Alert System for Exploration (REleASE), which successfully predicts the June 7th event. At the maximum CRaTER-observed GCR dose rate (˜11.7 cGy/yr where Gy is a unit indicating energy deposition per unit mass, 1 Gy = 1 J/kg), GCRs deposit ˜88 eV/molecule in water over 4 billion years, causing significant change in molecular composition and physical structure (e.g., density, color, crystallinity) of water ice, loss of molecular hydrogen, and production of more complex molecules linking carbon and other elements in the irradiated ice. This shows that space weathering by GCRs may be extremely important for chemical evolution of ice on the Moon. Thus, we show comprehensive observations from the CRaTER instrument on the Lunar Reconnaissance Orbiter that characterizes the radiation environment and space weathering on the Moon.

  17. Effect of Interdomain Linker Length on an Antagonistic Folding-Unfolding Equilibrium between Two Protein Domains

    PubMed Central

    Cutler, Thomas A.; Mills, Brandon M.; Lubin, David J.; Chong, Lillian T.; Loh, Stewart N.

    2009-01-01

    Fusion of one protein domain with another is a common event in both evolution and protein engineering experiments. When insertion is at an internal site (e.g., a surface loop or turn), as opposed to one of the termini, conformational strain can be introduced into both domains. Strain is manifested by an antagonistic folding-unfolding equilibrium between the two domains, which we previously showed can be parameterized by a coupling free-energy term (ΔGX). The extent of strain is predicted to depend primarily on the ratio of the N-to-C distance of the guest protein to the distance between ends of the surface loop in the host protein. Here, we test that hypothesis by inserting ubiquitin (Ub) into the bacterial ribonuclease barnase (Bn), using peptide linkers from zero to 10 amino acids each. ΔGX values are determined by measuring the extent to which Co2+ binding to an engineered site on the Ub domain destabilizes the Bn domain. All-atom, unforced Langevin dynamics simulations are employed to gain structural insight into the mechanism of mechanically induced unfolding. Experimental and computational results find that the two domains are structurally and energetically uncoupled when linkers are long and that ΔGX increases with decreasing linker length. When the linkers are fewer than two amino acids, strain is so great that one domain unfolds the other. However, the protein is able to refold as dimers and higher-order oligomers. The likely mechanism is a three-dimensional domain swap of the Bn domain, which relieves conformational strain. The simulations suggest that an effective route to mechanical unfolding begins with disruption of the hydrophobic core of Bn near the Ub insertion site. PMID:19038264

  18. The effects of multi-domain versus single-domain cognitive training in non-demented older people: a randomized controlled trial

    PubMed Central

    2012-01-01

    Background Whether healthy older people can benefit from cognitive training (CogTr) remains controversial. This study explored the benefits of CogTr in community dwelling, healthy, older adults and compared the effects of single-domain with multi-domain CogTr interventions. Methods A randomized, controlled, 3-month trial of CogTr with double-blind assessments at baseline and immediate, 6-month and 12-month follow-up after training completion was conducted. A total of 270 healthy Chinese older people, 65 to 75 years old, were recruited from the Ganquan-area community in Shanghai. Participants were randomly assigned to three groups: multi-domain CogTr, single-domain CogTr, and a wait-list control group. Twenty-four sessions of CogTr were administrated to the intervention groups over a three-month period. Six months later, three booster training sessions were offered to 60% of the initial training participants. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS, Form A), the Color Word Stroop test (CWST), the Visual Reasoning test and the Trail Making test (TMT) were used to assess cognitive function. Results Multi-domain CogTr produced statistically significant training effects on RBANS, visual reasoning, and immediate and delayed memory, while single-domain CogTr showed training effects on RBANS, visual reasoning, word interference, and visuospatial/constructional score (all P < 0.05). At the 12-month posttest, the multi-domain CogTr showed training effects on RBANS, delayed memory and visual reasoning, while single-domain CogTr only showed effects on word interference. Booster training resulted in effects on RBANS, visual reasoning, time of trail making test, and visuospatial/constructional index score. Conclusions Cognitive training can improve memory, visual reasoning, visuospatial construction, attention and neuropsychological status in community-living older people and can help maintain their functioning over time. Multi-domain Cog

  19. The effect of cholesterol domains on PEGylated liposomal gene delivery in vitro

    PubMed Central

    Xu, Long; Wempe, Michael F; Anchordoquy, Thomas J

    2011-01-01

    Aim PEGylated components have been widely used to reduce particle aggregation in serum and extend circulation lifetime for lipid- and polymer-based gene-delivery systems. However, PEGylation is known to interfere with cell interaction and intracellular trafficking, resulting in decreased biological activity. In the present study, the effect of cholesterol domains on PEGylated liposome-mediated gene delivery was evaluated by PEGylating formulations with and without a cholesterol domain, and also by altering the location of PEG on the particle surface (i.e., within or excluded from the domain). Materials and methods Lipoplexes formulated with PEG–cholesterol or PEG–diacyl lipid were used to transfect various cell lines, including human and mouse cancer cells. Cellular uptake of lipoplexes was also quantified and compared with the transfection results. Results Our findings are consistent with previous work demonstrating that PEGylation reduces transfection rates; however, formulations in which PEG was incorporated into the cholesterol domain did not exhibit this detrimental effect. In some cell lines, the incorporation of PEG into the domain actually increased transfection rates, despite no enhancement of cellular uptake. Discussion These results suggest that the adverse alterations in intracellular trafficking that are a consequence of PEGylation may be avoided by utilizing delivery vehicles that allow PEG to partition into a cholesterol domain. PMID:22428082

  20. Analytical Approach to Cosmic Ray Ionization by Nuclei with Charge Z in the Middle Atmosphere - Distribution of Galactic / Solar CR and SEP Effects

    NASA Astrophysics Data System (ADS)

    Velinov, P.; Ruder, H.; Mateev, L.

    The effects of galactic and solar cosmic rays CR in the middle atmosphere are considered in this work The solar energetic particles SEP effects are important in the upper stratosphere mesosphere and lower thermosphere In fact CR determine the electric conductivity in the middle atmosphere and influence on this way on the electric processes in it CR introduce the solar variability in the middle atmosphere - because they are modulated by solar wind A new analytical approach for CR ionization by protons and nuclei with charge Z in the lower ionosphere and middle atmosphere is developed in this paper For this purpose the ionization losses dE dh according to the Bohr-Bethe-Bloch formula for the energetic charged particles are approximated in five different energy intervals similarly to Dorman Cosmic Rays in the Earth s Atmosphere and Underground Kluwer Academic Publishers Dordrecht 2004 but a few precision corrections are involved More accurate expressions for energy decrease E h and electron production rate profiles q h are derived The obtained formulas allow comparatively easy computer programming The integrand in q h gives the possibility for application of adequate numerical methods - such as Romberg method or Gauss quadrature for the solution of the mathematical problem On this way the process of interaction of cosmic ray particles with the upper middle and lower atmosphere will be described much more realistically Computations for cosmic ray ionization in the middle atmosphere are made The full CR composition is taken into account protons

  1. The Vanderbilt Expertise Test Reveals Domain-General and Domain-Specific Sex Effects in Object Recognition

    PubMed Central

    McGugin, Rankin W.; Richler, Jennifer J.; Herzmann, Grit; Speegle, Magen; Gauthier, Isabel

    2012-01-01

    Individual differences in face recognition are often contrasted with differences in object recognition using a single object category. Likewise, individual differences in perceptual expertise for a given object domain have typically been measured relative to only a single category baseline. In Experiment 1, we present a new test of object recognition, the Vanderbilt Expertise Test (VET), which is comparable in methods to the Cambridge Face Memory Task (CFMT) but uses eight different object categories. Principal component analysis reveals that the underlying structure of the VET can be largely explained by two independent factors, which demonstrate good reliability and capture interesting sex differences inherent in the VET structure. In Experiment 2, we show how the VET can be used to separate domain-specific from domain-general contributions to a standard measure of perceptual expertise. While domain-specific contributions are found for car matching for both men and women and for plane matching in men, women in this sample appear to use more domain-general strategies to match planes. In Experiment 3, we use the VET to demonstrate that holistic processing of faces predicts face recognition independently of general object recognition ability, which has a sex-specific contribution to face recognition. Overall, the results suggest that the VET is a reliable and valid measure of object recognition abilities and can measure both domain-general skills and domain-specific expertise, which were both found to depend on the sex of observers. PMID:22877929

  2. Cosmic-Ray Reaction and Greenhouse Effect of Halogenated Molecules: Culprits for Atmospheric Ozone Depletion and Global Climate Change

    NASA Astrophysics Data System (ADS)

    Lu, Q.-B.

    2013-07-01

    This study is focused on the effects of cosmic rays (solar activity) and halogen-containing molecules (mainly chlorofluorocarbons — CFCs) on atmospheric ozone depletion and global climate change. Brief reviews are first given on the cosmic-ray-driven electron-induced-reaction (CRE) theory for O3 depletion and the warming theory of halogenated molecules for climate change. Then natural and anthropogenic contributions to these phenomena are examined in detail and separated well through in-depth statistical analyses of comprehensive measured datasets of quantities, including cosmic rays (CRs), total solar irradiance, sunspot number, halogenated gases (CFCs, CCl4 and HCFCs), CO2, total O3, lower stratospheric temperatures and global surface temperatures. For O3 depletion, it is shown that an analytical equation derived from the CRE theory reproduces well 11-year cyclic variations of both polar O3 loss and stratospheric cooling, and new statistical analyses of the CRE equation with observed data of total O3 and stratospheric temperature give high linear correlation coefficients ≥ 0.92. After the removal of the CR effect, a pronounced recovery by 20 25 % of the Antarctic O3 hole is found, while no recovery of O3 loss in mid-latitudes has been observed. These results show both the correctness and dominance of the CRE mechanism and the success of the Montreal Protocol. For global climate change, in-depth analyses of the observed data clearly show that the solar effect and human-made halogenated gases played the dominant role in Earth's climate change prior to and after 1970, respectively. Remarkably, a statistical analysis gives a nearly zero correlation coefficient (R = -0.05) between corrected global surface temperature data by removing the solar effect and CO2 concentration during 1850-1970. In striking contrast, a nearly perfect linear correlation with coefficients as high as 0.96-0.97 is found between corrected or uncorrected global surface temperature and total

  3. On Cosmic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Florido, E.; Battaner, E.

    2010-12-01

    Magnetic fields are present in all astrophysical media. However, many models and interpretations of observations often ignore them, because magnetic fields are difficult to handle and because they produce complicated morphological features. Here we will comment on the basic intuitive properties, which even if not completely true, provide a first guiding insight on the physics of a particular astrophysical problem. These magnetic properties are not mathematically demonstrated here. How magnetic fields evolve and how they introduce dynamical effects are considered, also including a short comment on General Relativity Magnetohydrodynamics. In a second part we consider some audacious and speculative matters. They are answers to three questions: a) How draw a cube without lifting the pencil from the paper so that when the pen passes through the same side do in the same direction? B) Are MILAGRO anisotropies miraculous? C) Do cosmic magnetic lenses exist?. The last two questions deal with issues related with the interplay between magnetic fields and cosmic ray propagation.

  4. Modeling of the recurrent Forbush effect of the galactic cosmic ray intensity and comparison with the experimental data

    NASA Astrophysics Data System (ADS)

    Wawrzynczak, A.; Alania, M. V.

    We developed a new three dimensional 3-D steady-state model of the recurrent Forbush effect of the galactic cosmic ray GCR intensity using Parker s transport equation New code for the solution of the transport equation is realized by C and needs less time for computations than the FORTRAN variant Convection diffusion drift and energy change of the GCR particles in the diverged solar wind are taken into account in the modeling Changes of the strength of the interplanetary magnetic field IMF and the power spectral density PSD of the IMF s turbulence in the range of frequencies sim 10 -6 -- 10 -5 Hz versus the radial distance heliolatitudes and heliolongitudes are the sources of the recurrent Forbush effect of the GCR intensity The state of this range of the frequencies sim 10 -6 -- 10 -5 Hz of the IMF s turbulence is responsible for the intensive diffusion of the GCR particles of the energy 5-50 GeV responding by neutron monitors and for a peculiarities of the rigidity spectrum of the Forbush effect Results of the modeling calculations time profile amplitude rigidity spectrum are compatible with the experimental data of the Forbush effects of the GCR intensity observed by neutron monitors in the positive A 0 and in the negative A 0 periods of solar magnetic cycle

  5. Fourier domain calculation of terrain effects in marine MT

    NASA Astrophysics Data System (ADS)

    Parker, Robert L.; Wheelock, Brent

    2012-04-01

    Magnetotelluric surveys on the seafloor have become an important part of marine geophysics in recent years. The distorting effects of topographic relief on the electromagnetic fields can be far-reaching, but local terrain is also important. Thus, computational techniques that can treat a large area containing fine-scale topography could find widespread application. We describe a new solution to the problem based on a well-established theory of electromagnetic induction in thin sheets. The procedure requires taking the Fourier transform of the integral equations derived by Dawson and Weaver in 1979, and by McKirdy, Weaver and Dawson in 1985. The equations in the transformed electric field are solved iteratively by a new technique. We prove the new iterative procedure is always convergent, whereas the original scheme diverges when the grid spacing of the discretization is small. We also give a means of correcting for distant features that need not be specified in as great detail. Preliminary tests confirm the new process is very efficient and that topographic data sets of several million points will be handled with ease.

  6. The human LINE-1 reverse transcriptase:effect of deletions outside the common reverse transcriptase domain.

    PubMed Central

    Clements, A P; Singer, M F

    1998-01-01

    Heterologous expression of human LINE-1 ORF2 in yeast yielded a single polypeptide (Mr145 000) which reacted with specific antibodies and co-purified with a reverse transcriptase activity not present in the host cells. Various deletion derivatives of the ORF2 polypeptide were also synthesized. Reverse transcriptase assays using synthetic polynucleotides as template and primer revealed that ORF2 protein missing a significant portion of the N-terminal endonuclease domain still retains some activity. Deletion of the C-terminal cysteine-rich motif reduces activity only a small amount. Three non-overlapping deletions spanning 144 amino acids just N-terminal to the common polymerase domain of the ORF2 protein were analyzed for their effect on reverse transcriptase activity; this region contains the previously-noted conserved Z motif. The two deletions most proximal to the polymerase domain eliminate activity while the third, most-distal deletion had no effect. An inactive enzyme was also produced by substitution of two different amino acids in a highly-conserved octapeptide sequence, Z8, located within the region removed to make the deletion most proximal to the polymerase domain; substitution of a third had no effect. We conclude that the octapeptide sequence and neighboring amino acids in the Z region are essential for reverse transcriptase activity, while the endonuclease and cysteine-rich domains are not absolutely required. PMID:9671814

  7. Detecting relic gravitational waves by pulsar timing arrays: Effects of cosmic phase transitions and relativistic free-streaming gases

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Jin; Zhao, Wen; Zhang, Yang; Zhu, Zong-Hong

    2016-01-01

    Relic gravitational waves (RGWs) generated in the early universe form a stochastic GW background, which can be directly probed by measuring the timing residuals of millisecond pulsars. In this paper, we investigate the constraints on the RGWs and on the inflationary parameters by the observations of current and potential future pulsar timing arrays. In particular, we focus on effects of various cosmic phase transitions (e.g., e+e- annihilation, QCD transition, and supersymmetry breaking) and relativistic free-streaming gases (neutrinos and dark fluids) in the general scenario of the early universe, which have been neglected in the previous works. We find that the phase transitions can significantly damp the RGWs in the sensitive frequency range of pulsar timing arrays, and the upper limits of the tensor-to-scalar ratio r increase by a factor ˜2 for both current and future observations. However, the effects of free-steaming neutrinos and dark fluids are all too small to be detected. Meanwhile, we find that, if the effective equation of state w in the early universe is larger than 1 /3 , i.e., deviating from the standard hot big bang scenario, the detection of RGWs by pulsar timing arrays becomes much more promising.

  8. Explaining TeV Cosmic-Ray Anisotropies with Non-diffusive Cosmic-Ray Propagation

    NASA Astrophysics Data System (ADS)

    Harding, J. Patrick; Fryer, Chris L.; Mendel, Susan

    2016-05-01

    Constraining the behavior of cosmic ray data observed at Earth requires a precise understanding of how the cosmic rays propagate in the interstellar medium. The interstellar medium is not homogeneous; although turbulent magnetic fields dominate over large scales, small coherent regions of magnetic field exist on scales relevant to particle propagation in the nearby Galaxy. Guided propagation through a coherent field is significantly different from random particle diffusion and could be the explanation of spatial anisotropies in the observed cosmic rays. We present a Monte Carlo code to propagate cosmic particle through realistic magnetic field structures. We discuss the details of the model as well as some preliminary studies which indicate that coherent magnetic structures are important effects in local cosmic-ray propagation, increasing the flux of cosmic rays by over two orders of magnitude at anisotropic locations on the sky. The features induced by coherent magnetic structure could be the cause of the observed TeV cosmic-ray anisotropy.

  9. Cosmic jets

    SciTech Connect

    Blandford, R.D.; Begelman, M.C.; Rees, M.J.

    1982-05-01

    Observations with radio telescopes have revealed that the center of many galaxies is a place of violent activity. This activity is often manifested in the production of cosmic jets. Each jet is a narrow stream of plasma that appears to squirt out of the center of a galaxy emitting radiowaves as it does so. New techniques in radio astronomy have shown how common jets are in the universe. These jets take on many different forms. The discovery of radio jets has helped in the understanding of the double structure of the majority of extragalactic radio sources. The morphology of some jets and explanations of how jets are fueled are discussed. There are many difficulties plaguing the investigation of jets. Some of these difficulties are (1) it is not known how much power the jets are radiating, (2) it is hard to tell whether a jet delieated by radio emission is identical to the region where ionized gas is flowing, and (3) what makes them. (SC)

  10. Efficacy of Cosmic Ray Shields

    NASA Astrophysics Data System (ADS)

    Rhodes, Nicholas

    2015-10-01

    This research involved testing various types of shielding with a self-constructed Berkeley style cosmic ray detector, in order to evaluate the materials of each type of shielding's effectiveness at blocking cosmic rays and the cost- and size-efficiency of the shields as well. The detector was constructed, then tested for functionality and reliability. Following confirmation, the detector was then used at three different locations to observe it altitude or atmospheric conditions had any effect on the effectiveness of certain shields. Multiple types of shielding were tested with the detector, including combinations of several shields, primarily aluminum, high-iron steel, polyethylene plastic, water, lead, and a lead-alternative radiation shield utilized in radiology. These tests regarding both the base effectiveness and the overall efficiency of shields is designed to support future space exploratory missions where the risk of exposure to possibly lethal amounts of cosmic rays for crew and the damage caused to unshielded electronics are of serious concern.

  11. Effects of domain, grain, and magnetic anisotropy distributions on magnetic permeability: Monte-Carlo approach

    SciTech Connect

    Chun, Jaehun; Jones, Anthony M.; McCloy, John S.

    2012-07-23

    Existing approaches for prediction of the tensor permeability of polycrystalline ferrites may not provide reasonable estimates of demagnetized permeability below the spin resonance (i.e., low-field loss region) or in cases of partial magnetization. We propose an approach which solves the coupled Landau-Lifshitz-Gilbert equation for the dynamic magnetic fields including the minimization of free energy to determine the equilibrium magnetization direction. Unlike previous models, we employ a Monte-Carlo approach to easily calculate the (ensemble) averages of permeability over various domain/grain structures and magnetic anisotropy conditions. Material differences, such as those resulting from different preparation methods, are expressed by using probability density functions (p.d.f.) for anisotropy angle (easy axis angle), grain demagnetization factor (ng), and domain demagnetization factor (nd). Effects on the permeability tensor of grain and domain demagnetization factors and anisotropy field relative to saturation magnetization are discussed for the partially magnetized states for polycrystalline ferrites. It is found that the grain structure (i.e., grain demagnetization distribution) has a smaller effect on the frequency dependent permeability than does the same distribution of domains (i.e., domain demagnetization distribution).

  12. Domain wall contribution to the nonlinear dielectric response: effective potential model

    NASA Astrophysics Data System (ADS)

    Placeres-Jiménez, R.; Rino, J. P.; Gonçalves, A. M.; Eiras, J. A.

    2015-11-01

    Domain wall displacement has an important contribution to the different nonlinear dielectric responses observed in ferroelectrics. For a moderated alternating electric field, domain walls perform a small displacement around their equilibrium positions. Such motion of the domain walls can be modelled as a body moving in a viscous medium under the action of an effective potential W(l). From this model the dispersion relationships are derived. The exact expression for the effective potential is found assuming that the dielectric permittivity depends on the electric field strength as \\varepsilon \\propto 1/(α +β {{E}2}) . The effect of multidomain structure and polarization hysteresis are introduced through the effective field approximation {{E}\\text{eff}}\\equiv E+κ P(E) . An important merit of the model is that it allows the simulation of transient polarization processes for the arbitrary input signal, predicting a power law for the polarization and depolarization currents. An analytic expression is found for the dependence of the permittivity on the electric field strength that correctly reproduces its hysteretic behaviour. The polarization loop and nonlinear dielectric response for subswitching the alternating electric field are simulated and compared with experimental data obtained from PZT thin films. It was observed that the simulated dielectric loss was lower than the experimental one, which can be explained as a result of the interaction of domain walls with defects. Point defects are introduced into the model as a perturbation of the effective potential, showing the dependence of the dielectric loss on the concentration of the defects.

  13. RED SUPERGIANT STARS AS COSMIC ABUNDANCE PROBES: NLTE EFFECTS IN J-BAND IRON AND TITANIUM LINES

    SciTech Connect

    Bergemann, Maria; Kudritzki, Rolf-Peter; Lind, Karin; Plez, Bertrand; Davies, Ben; Gazak, Zach E-mail: klind@mpa-garching.mpg.de E-mail: zgazak@ifa.hawaii.edu E-mail: bdavies@ast.cam.ac.uk

    2012-06-01

    Detailed non-LTE (NLTE) calculations for red supergiant (RSG) stars are presented to investigate the influence of NLTE on the formation of atomic iron and titanium lines in the J band. With their enormous brightness at J band RSG stars are ideal probes of cosmic abundances. Recent LTE studies have found that metallicities accurate to 0.15 dex can be determined from medium-resolution spectroscopy of individual RSGs in galaxies as distant as 10 Mpc. The NLTE results obtained in this investigation support these findings. NLTE abundance corrections for iron are smaller than 0.05 dex for effective temperatures between 3400 K and 4200 K and 0.1 dex at 4400 K. For titanium the NLTE abundance corrections vary smoothly between -0.4 dex and +0.2 dex as a function of effective temperature. For both elements, the corrections also depend on stellar gravity and metallicity. The physical reasons behind the NLTE corrections and the consequences for extragalactic J-band abundance studies are discussed.

  14. Alpha-amylase starch binding domains: cooperative effects of binding to starch granules of multiple tandemly arranged domains.

    PubMed

    Guillén, D; Santiago, M; Linares, L; Pérez, R; Morlon, J; Ruiz, B; Sánchez, S; Rodríguez-Sanoja, R

    2007-06-01

    The Lactobacillus amylovorus alpha-amylase starch binding domain (SBD) is a functional domain responsible for binding to insoluble starch. Structurally, this domain is dissimilar from other reported SBDs because it is composed of five identical tandem modules of 91 amino acids each. To understand adsorption phenomena specific to this SBD, the importance of their modular arrangement in relationship to binding ability was investigated. Peptides corresponding to one, two, three, four, or five modules were expressed as His-tagged proteins. Protein binding assays showed an increased capacity of adsorption as a function of the number of modules, suggesting that each unit of the SBD may act in an additive or synergic way to optimize binding to raw starch. PMID:17468268

  15. THE INTERACTION OF COSMIC RAYS WITH DIFFUSE CLOUDS

    SciTech Connect

    Everett, John E.; Zweibel, Ellen G.

    2011-10-01

    We study the change in cosmic-ray pressure, the change in cosmic-ray density, and the level of cosmic-ray-induced heating via Alfven-wave damping when cosmic rays move from a hot ionized plasma to a cool cloud embedded in that plasma. The general analysis method outlined here can apply to diffuse clouds in either the ionized interstellar medium or in galactic winds. We introduce a general-purpose model of cosmic-ray diffusion building upon the hydrodynamic approximation for cosmic rays (from McKenzie and Voelk and Breitschwerdt and collaborators). Our improved method self-consistently derives the cosmic-ray flux and diffusivity under the assumption that the streaming instability is the dominant mechanism for setting the cosmic-ray flux and diffusion. We find that, as expected, cosmic rays do not couple to gas within cool clouds (cosmic rays exert no forces inside of cool clouds), that the cosmic-ray density does not increase within clouds (it may decrease slightly in general, and decrease by an order of magnitude in some cases), and that cosmic-ray heating (via Alfven-wave damping and not collisional effects as for {approx}10 MeV cosmic rays) is only important under the conditions of relatively strong (10 {mu}G) magnetic fields or high cosmic-ray pressure ({approx}10{sup -11} erg cm{sup -3}).

  16. Calcium binding to calmodulin mutants having domain-specific effects on the regulation of ion channels.

    PubMed

    VanScyoc, Wendy S; Newman, Rhonda A; Sorensen, Brenda R; Shea, Madeline A

    2006-12-01

    Calmodulin (CaM) is an essential, eukaryotic protein comprised of two highly homologous domains (N and C). CaM binds four calcium ions cooperatively, regulating a wide array of target proteins. A genetic screen of Paramecia by Kung [Kung, C. et al. (1992) Cell Calcium 13, 413-425] demonstrated that the domains of CaM have separable physiological roles: "under-reactive" mutations affecting calcium-dependent sodium currents mapped to the N-domain, while "over-reactive" mutations affecting calcium-dependent potassium currents localized to the C-domain of CaM. To determine whether and how these mutations affected intrinsic calcium-binding properties of CaM domains, phenylalanine fluorescence was used to monitor calcium binding to sites I and II (N-domain) and tyrosine fluorescence was used to monitor sites III and IV (C-domain). To explore interdomain interactions, binding properties of each full-length mutant were compared to those of its corresponding domain fragments. The calcium-binding properties of six under-reactive mutants (V35I/D50N, G40E, G40E/D50N, D50G, E54K, and G59S) and one over-reactive mutant (M145V) were indistinguishable from those of wild-type CaM, despite their deleterious physiological effects on ion-channel regulation. Four over-reactive mutants (D95G, S101F, E104K, and H135R) significantly decreased the calcium affinity of the C-domain. Of these, one (E104K) also increased the calcium affinity of the N-domain, demonstrating that the magnitude and direction of wild-type interdomain coupling had been perturbed. This suggests that, while some of these mutations alter calcium-binding directly, others probably alter CaM-channel association or calcium-triggered conformational change in the context of a ternary complex with the affected ion channel. PMID:17128970

  17. Mass and radius of cosmic balloons

    NASA Technical Reports Server (NTRS)

    Wang, Yun

    1994-01-01

    Cosmic balloons are spherical domain walls with relativistic particles trapped inside. We derive the exact mass and radius relations for a static cosmic balloon using Gauss-Codazzi equations. The cosmic balloon mass as a function of its radius, M(R), is found to have a functional form similar to that of fermion soliton stars, with a fixed point at 2GM(R)/R approximately or equal to 0.486 which corresponds to the limit of infinite central density. We derive a simple analytical approximation for the mass density of a spherically symmetric relativistic gas star. When applied to the computation of the mass and radius of a cosmic balloon, the analytical approximation yields fairly good agreement with the exact numerical solutions.

  18. Differential Effects of Language Attrition in the Domains of Verb Placement and Object Expression

    ERIC Educational Resources Information Center

    Flores, Cristina

    2012-01-01

    This study investigates the differential effects of language attrition in two diverse linguistic domains: verb placement and object expression. Linguistic phenomena at the syntax--discourse interface, such as object expression, have been shown to be more vulnerable to attrition than narrow syntax properties, such as verb placement. This study aims…

  19. Alpha Particle Effects as a Test Domain for PAP, a Plasma Apprentice Program

    NASA Astrophysics Data System (ADS)

    Mynick, Harry E.

    1987-01-01

    A new type of computational tool under development, employing techniques of symbolic computation and artificial intelligence to automate as far as possible the research activities of a human plasma theorist, is described. Its present and potential uses are illustrated using the area of the theory of alpha particle effects in fusion plasmas as a sample domain.

  20. The Effect of Observational Learning on Students' Performance, Processes, and Motivation in Two Creative Domains

    ERIC Educational Resources Information Center

    Groenendijk, Talita; Janssen, Tanja; Rijlaarsdam, Gert; van den Bergh, Huub

    2013-01-01

    Background. Previous research has shown that observation can be effective for learning in various domains, for example, argumentative writing and mathematics. The question in this paper is whether observational learning can also be beneficial when learning to perform creative tasks in visual and verbal arts. Aims. We hypothesized that observation…

  1. When Should I Trust My Gut? Linking Domain Expertise to Intuitive Decision-Making Effectiveness

    ERIC Educational Resources Information Center

    Dane, Erik; Rockmann, Kevin W.; Pratt, Michael G.

    2012-01-01

    Despite a growing body of scholarship on the concept of intuition, there is a scarcity of empirical research spotlighting the circumstances in which intuitive decision making is effective relative to analytical decision making. Seeking to address this deficiency, we conducted two laboratory studies assessing the link between domain expertise (low…

  2. Barometric effect of the neutron component of cosmic rays with consideration for wind effect at the Antarctic station Mirny and station Mt. Hermon in Israel

    NASA Astrophysics Data System (ADS)

    Lev, Dorman

    2016-07-01

    Estimation of barometric coefficient for neutron component of cosmic rays was performed for Antarctic station Mirny and Mt. Hermon in Israel taking into account effect of dynamic pressure caused by wind in the atmosphere. Hourly data of continue monitoring of neutron component and data of the local meteo-station have been used for the period 2007-2014. Wind velocity at the observatory Mirny reaches 20-40 m/s in winter that corresponds to dynamic pressure of 5-6 mb and leads to the error of 5% in variations of neutron component because of dynamic effect in the atmosphere. The results are important for high latitude and high mountain detectors, where effect Bernoulli may be significant.

  3. Ionic field effect and memristive phenomena in single-point ferroelectric domain switching

    SciTech Connect

    Ievlev, Anton; Morozovska, A. N.; Eliseev, E. A.; Shur, Vladimir Ya.; Kalinin, Sergei V

    2014-01-01

    Electric field induced polarization switching underpins most functional applications of ferroelectric materials in information technology, materials science, and optoelectronics. In the last 20 years, much attention has been focused on the switching of individual domains using scanning probe microscopy, both as model of ferroelectric data storage and approach to explore fundamental physics of ferroelectric switching. The classical picture of tip induced switching includes formation of cylindrical domain oriented along the tip field, with the domain size is largely determined by the tip-induced field distribution and domain wall motion kinetics. The polarization screening is recognized as a necessary precondition to the stability of ferroelectric phase; however, screening processes are generally considered to be uniformly efficient and not leading to changes in switching behavior. Here, we demonstrate that single-point tip-induced polarization switching can give rise to a surprisingly broad range of domain morphologies, including radial and angular instabilities. These behaviors are traced to the surface screening charge dynamics, which in some cases can even give rise to anomalous switching against the electric field (ionic field effect). The implications of these behaviors for ferroelectric materials and devices are discussed.

  4. Time-domain simulation and waveform reconstruction for shielding effectiveness of materials against electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-feng; Chen, Xiang; Wei, Ming

    2013-03-01

    Shielding effectiveness (SE) of materials of current testing standards is often carried out by using continuous-wave measurement and amplitude-frequency characteristics curve is used to characterize the results. However, with in-depth study of high-power electromagnetic pulse (EMP) interference, it was discovered that only by frequency-domain SE of materials cannot be completely characterized by shielding performance of time-domain pulsed-field. And there is no uniform testing methods and standards of SE of materials against EMP. In this paper, the method of minimum phase transfer function is used to reconstruct shielded time-domain waveform based on the analysis of the waveform reconstruction method. Pulse of plane waves through an infinite planar material is simulated by using CST simulation software. The reconstructed waveform and simulation waveform is compared. The results show that the waveform reconstruction method based on the minimum phase can be well estimated EMP waveform through the infinite planar materials.

  5. Nearest Cosmic Mirage

    NASA Astrophysics Data System (ADS)

    2003-07-01

    lensed images. Somewhat unexpectedly, they found that the predicted brightnesses of the three brightest star-like images of the quasar are not in agreement with the observed ones - one of them turns out to be one magnitude (that is, a factor of 2.5) brighter than expected . This prediction does not call into question General Relativity but suggests that another effect is at work in this system. The hypothesis advanced by the team is that one of the images is subject to "microlensing" . This effect is of the same nature as the cosmic mirage - multiple amplified images of the object are formed - but in this case, additional light-ray deflection is caused by a single star (or several stars) within the lensing galaxy. The result is that there are additional (unresolved) images of the quasar within one of the macro-lensed images. The outcome is an "over-amplification" of this particular image. Whether this is really so will soon be tested by means of new observations of this gravitational lens system with the ESO Very Large Telescope (VLT) at Paranal (Chile) and also with the Very Large Array (VLA) radio observatory in New Mexico (USA). Outlook Until now, 62 multiple-imaged quasars have been discovered, in most cases showing 2 or 4 images of the same quasar. The presence of elongated images of the quasar and, in particular, of ring-like images is often observed at radio wavelengths. However, this remains a rare phenomenon in the optical domain - only four such systems have been imaged by optical/infrared telecopes until now. The complex and comparatively bright system RXS J1131-1231 now discovered is a unique astrophysical laboratory . Its rare characteristics (e.g., brightness, presence of a ring-shaped image, small redshift, X-ray and radio emission, visible lens,...) will now enable the astronomers to study the properties of the lensing galaxy, including its stellar content, structure and mass distribution in great detail, and to probe the source morphology. These studies

  6. Stratospheric Sudden Warming Effects on the Ionospheric Migrating Tides during 2008-2010 observed by FORMOSAT-3/COSMIC

    NASA Astrophysics Data System (ADS)

    Lin, J.; Lin, C.; Chang, L. C.; Liu, H.; Chen, W.; Chen, C.; Liu, J. G.

    2013-12-01

    In this paper, ionospheric electron densities obtained from radio occultation soundings of FORMOSAT-3/COSMIC are decomposed into their various constituent tidal components for studying the stratospheric sudden warming (SSW) effects on the ionosphere during 2008-2010. The tidal analysis indicates that the amplitudes of the zonal mean and major migrating tidal components (DW1, SW2 and TW3) decrease around the time of the SSW, with phase/time shifts in the daily time of maximum around EIA and middle latitudes. Meanwhile consistent enhancements of the SW2 and nonmigrating SW1 tides are seen after the stratospheric temperature increase. In addition to the amplitude changes of the tidal components, well matched phase shifts of the ionospheric migrating tides and the stratospheric temperatures are found for the three SSW events, suggesting a good indicator of the ionospheric response. Although the conditions of the planetary waves and the mean winds in the middle atmosphere region during the 2008-2010 SSW events may be different, similar variations of the ionospheric tidal components and their associated phase shifts are found. Futher, these ionospheric responses will be compared with realistic simulations of Thermosphere-Ionosphere-Mesophere-Electrodynamics General Circulation Model (TIME-GCM) by nudging Modern-Era Retrospective analysis for Research and Applications (MERRA) data.

  7. Accounting for baryonic effects in cosmic shear tomography: Determining a minimal set of nuisance parameters using PCA

    SciTech Connect

    Eifler, Tim; Krause, Elisabeth; Dodelson, Scott; Zentner, Andrew; Hearin, Andrew; Gnedin, Nickolay

    2014-05-28

    Systematic uncertainties that have been subdominant in past large-scale structure (LSS) surveys are likely to exceed statistical uncertainties of current and future LSS data sets, potentially limiting the extraction of cosmological information. Here we present a general framework (PCA marginalization) to consistently incorporate systematic effects into a likelihood analysis. This technique naturally accounts for degeneracies between nuisance parameters and can substantially reduce the dimension of the parameter space that needs to be sampled. As a practical application, we apply PCA marginalization to account for baryonic physics as an uncertainty in cosmic shear tomography. Specifically, we use CosmoLike to run simulated likelihood analyses on three independent sets of numerical simulations, each covering a wide range of baryonic scenarios differing in cooling, star formation, and feedback mechanisms. We simulate a Stage III (Dark Energy Survey) and Stage IV (Large Synoptic Survey Telescope/Euclid) survey and find a substantial bias in cosmological constraints if baryonic physics is not accounted for. We then show that PCA marginalization (employing at most 3 to 4 nuisance parameters) removes this bias. Our study demonstrates that it is possible to obtain robust, precise constraints on the dark energy equation of state even in the presence of large levels of systematic uncertainty in astrophysical processes. We conclude that the PCA marginalization technique is a powerful, general tool for addressing many of the challenges facing the precision cosmology program.

  8. Modelling injection and feedback of cosmic rays in grid-based cosmological simulations: effects on cluster outskirts

    NASA Astrophysics Data System (ADS)

    Vazza, F.; Brüggen, M.; Gheller, C.; Brunetti, G.

    2012-04-01

    We present a numerical scheme, implemented in the cosmological adaptive mesh refinement code ENZO, to model the injection of cosmic ray (CR) particles at shocks, their advection and their dynamical feedback on thermal baryonic gas. We give a description of the algorithms and show their tests against analytical and idealized one-dimensional problems. Our implementation is able to track the injection of CR energy, the spatial advection of CR energy and its feedback on the thermal gas in run-time. This method is applied to study CR acceleration and evolution in cosmological volumes, with both fixed and variable mesh resolution. We compare the properties of galaxy clusters with and without CRs for a sample of high-resolution clusters with different dynamical states. At variance with similar simulations based on smoothed particles hydrodynamics, we report that the inclusion of CR feedback in our method decreases the central gas density in clusters, thus reducing the X-ray and Sunyaev-Zeldovich effect from the clusters centre, while enhancing the gas density and its related observables near the virial radius.

  9. The Effect of Top-Level Domains and Advertisements on Health Web Site Credibility

    PubMed Central

    Wang, Zuoming; Loh, Tracy

    2004-01-01

    Background Concerns over health information on the Internet have generated efforts to enhance credibility markers; yet how users actually assess the credibility of online health information is largely unknown. Objective This study set out to (1) establish a parsimonious and valid questionnaire instrument to measure credibility of Internet health information by drawing on various previous measures of source, news, and other credibility scales; and (2) to identify the effects of Web-site domains and advertising on credibility perceptions. Methods Respondents (N = 156) examined one of 12 Web-site mock-ups and completed credibility scales in a 3 x 2 x 2 between-subjects experimental design. Factor analysis and validity checks were used for item reduction, and analysis of variance was employed for hypothesis testing of Web-site features' effects. Results In an attempt to construct a credibility instrument, three dimensions of credibility (safety, trustworthiness, and dynamism) were retained, reflecting traditional credibility sub-themes, but composed of items from disparate sources. When testing the effect of the presence or absence of advertising on a Web site on credibility, we found that this depends on the site's domain, with a trend for advertisements having deleterious effects on the credibility of sites with .org domain, but positive effects on sites with .com or .edu domains. Conclusions Health-information Web-site providers should select domains purposefully when they can, especially if they must accept on-site advertising. Credibility perceptions may not be invariant or stable, but rather are sensitive to topic and context. Future research may employ these findings in order to compare other forms of health-information delivery to optimal Web-site features. PMID:15471750

  10. COSMIC program documentation experience

    NASA Technical Reports Server (NTRS)

    Kalar, M. C.

    1970-01-01

    A brief history of COSMIC as it relates to the handling of program documentation is summarized; the items that are essential for computer program documentation are also discussed. COSMIC documentation and program standards handbook is appended.

  11. Is cosmic acceleration slowing down?

    SciTech Connect

    Shafieloo, Arman; Sahni, Varun; Starobinsky, Alexei A.

    2009-11-15

    We investigate the course of cosmic expansion in its recent past using the Constitution SN Ia sample, along with baryon acoustic oscillations (BAO) and cosmic microwave background (CMB) data. Allowing the equation of state of dark energy (DE) to vary, we find that a coasting model of the universe (q{sub 0}=0) fits the data about as well as Lambda cold dark matter. This effect, which is most clearly seen using the recently introduced Om diagnostic, corresponds to an increase of Om and q at redshifts z < or approx. 0.3. This suggests that cosmic acceleration may have already peaked and that we are currently witnessing its slowing down. The case for evolving DE strengthens if a subsample of the Constitution set consisting of SNLS+ESSENCE+CfA SN Ia data is analyzed in combination with BAO+CMB data. The effect we observe could correspond to DE decaying into dark matter (or something else)

  12. Scaling of domain size during spinodal decomposition : dislocation discreteness and mobility effects.

    SciTech Connect

    Provatas, Nikolas; Leonard, Francois Leonard; Mahon, Jennifer; Haataja, Mikko

    2005-06-01

    In this letter, we examine the effects of discrete mobile dislocations on spinodal decomposition kinetics in lattice mismatched binary alloys. By employing a novel continuum model, we demonstrate that the effects of dislocation mobility on domain coarsening kinetics can be expressed in a unified manner through a scaling function, describing a crossover from t{sup 1/2} to t{sup 1/3} behavior.

  13. Fe/O ratio variations during the disturbed stage in the development of the solar cosmic ray fluxes: Manifestations of the first ionization potential effect in the solar cosmic ray composition

    NASA Astrophysics Data System (ADS)

    Minasyants, G. S.; Minasyants, T. M.; Tomozov, V. M.

    2016-03-01

    The accelerated particle energy spectra in different energy intervals (from 0.06 to 75.69 MeV n-1) have been constructed for various powerful flare events (1997-2006) with the appearance of solar cosmic rays (SCRs) based on the processing of data from the Advanced Composition Explorer (ACE) and WIND spacecraft. Flares were as a rule accompanied by coronal mass ejections. Different specific features in the particle spectra behavior, possibly those related to different acceleration processes, were revealed when the events developed. The Fe/O abundance ratio in different energy intervals during the disturbed development of flareinduced fluxes has been qualitatively estimated. It has been established that ground level event (GLE) fluxes represent an individual subclass of gradual events according to the character of Fe/O variations. The manifestations of the first ionization potential (FIP) effect in the composition of SCRs during their propagation have been qualitatively described.

  14. Cosmological cosmic strings

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth

    1988-01-01

    The effect of an infinite cosmic string on a cosmological background is investigated. It is found that the metric is approximately a scaled version of the empty space string metric, i.e., conical in nature. Results are used to place bounds on the amount of cylindrical gravitational radiation currently emitted by such a string. The gravitational radiation equations are then analyzed explicitly and it is shown that even initially large disturbances are rapidly damped as the expansion proceeds. The implications of the gravitational radiation background and the limitations of the quadrupole formula are discussed.

  15. The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory

    SciTech Connect

    Abreu, P.; Aglietta, M.; Ahn, E.J.; Albuquerque, I.F.M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; /Naples U. /INFN, Naples /Nijmegen U., IMAPP

    2011-11-01

    We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60{sup o}, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the {approx} 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for. In this work, we have identified and quantified a systematic uncertainty affecting the energy determination of cosmic rays detected by the surface detector array of the Pierre Auger Observatory. This systematic uncertainty, induced by the influence of the geomagnetic field on the shower development, has a strength which depends on both the zenith and the azimuthal angles. Consequently, we have shown that it induces distortions of the estimated cosmic ray event rate at a given energy at the percent level in both the azimuthal and the declination distributions, the latter of which mimics an almost dipolar pattern. We have also shown that the induced distortions are already at the level of the statistical uncertainties for a number of events N {approx_equal} 32 000 (we note that the full Auger surface detector array collects about 6500 events per year with energies above 3 EeV). Accounting for these effects is thus essential with regard to the correct interpretation of large scale anisotropy measurements taking explicitly profit from the declination distribution.

  16. Cosmic rays from cosmic strings with condensates

    SciTech Connect

    Vachaspati, Tanmay

    2010-02-15

    We revisit the production of cosmic rays by cusps on cosmic strings. If a scalar field ('Higgs') has a linear interaction with the string world sheet, such as would occur if there is a bosonic condensate on the string, cusps on string loops emit narrow beams of very high energy Higgses which then decay to give a flux of ultrahigh energy cosmic rays. The ultrahigh energy flux and the gamma to proton ratio agree with observations if the string scale is {approx}10{sup 13} GeV. The diffuse gamma ray and proton fluxes are well below current bounds. Strings that are lighter and have linear interactions with scalars produce an excess of direct and diffuse cosmic rays and are ruled out by observations, while heavier strings ({approx}10{sup 15} GeV) are constrained by their gravitational signatures. This leaves a narrow window of parameter space for the existence of cosmic strings with bosonic condensates.

  17. RED SUPERGIANT STARS AS COSMIC ABUNDANCE PROBES. II. NLTE EFFECTS IN J-BAND SILICON LINES

    SciTech Connect

    Bergemann, Maria; Kudritzki, Rolf-Peter; Wuerl, Matthias; Plez, Bertrand; Davies, Ben; Gazak, Zach E-mail: Matthias.Wuerl@physik.uni-muenchen.de E-mail: zgazak@ifa.hawaii.edu E-mail: bdavies@ast.cam.ac.uk

    2013-02-20

    Medium-resolution J-band spectroscopy of individual red supergiant stars is a promising tool to investigate the chemical composition of the young stellar population in star-forming galaxies. As a continuation of recent work on iron and titanium, detailed non-LTE (NLTE) calculations are presented to investigate the influence of NLTE on the formation of silicon lines in the J-band spectra of red supergiants. Substantial effects are found resulting in significantly stronger absorption lines of neutral silicon in NLTE. As a consequence, silicon abundances determined in NLTE are significantly smaller than in local thermodynamic equilibrium (LTE) with the NLTE abundance corrections varying smoothly between -0.4 dex and -0.1 dex for effective temperatures between 3400 K and 4400 K. The effects are largest at low metallicity. The physical reasons behind the NLTE effects and the consequences for extragalactic J-band abundance studies are discussed.

  18. CREME: The 2011 Revision of the Cosmic Ray Effects on Micro-Electronics Code

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Barghouty, Abdulnasser F.; Reed, Robert A.; Sierawski, Brian D.; Watts, John W., Jr.

    2012-01-01

    We describe a tool suite, CREME, which combines existing capabilities of CREME96 and CREME86 with new radiation environment models and new Monte Carlo computational capabilities for single event effects and total ionizing dose.

  19. Footprint Characteristics of Cosmic-Ray Neutron Sensing for Soil Moisture Monitoring

    NASA Astrophysics Data System (ADS)

    Schrön, M.; Köhli, M.; Zreda, M. G.; Dietrich, P.; Zacharias, S.

    2014-12-01

    Cosmic-ray neutron sensing has become an increasingly accepted and unique method to monitor the effective soil water content at the field scale. The technology is famous for its low maintenance, non-invasiveness, continuous measurement, and most importantly, for its large footprint. Being more representative than point data and finer resolved than remote-sensing products, cosmic-ray neutron derived soil moisture products provide unrivaled advantage for mesoscale hydrologic and land surface models. The method takes advantage of neutrons induced by cosmic radiation which are extraordinarily sensitive to hydrogen and behave like a hot gas. Information about nearby water sources quickly mixes a domain of tens of hectares in air. Since experimental determination of the actual spatial extent is hardly possible, scientists have applied numerical models to address the footprint characteristics. We have revisited previous neutron transport simulations and present a modified conceptual design and refined physical assumptions. Our revised study reveals new insights to energy spectra, probing distance and water sensitivity of detected neutrons under various environmental conditions. These results sharpen the range of interpretation concerning the spatial extent of integral soil moisture products derived from cosmic-ray neutron counts. Our findings will have important impact calibration strategies, on scales for data assimilation and on the interpolation of soil moisture data derived from mobile cosmic-ray neutron surveys.

  20. Magnetic domain wall creep in the presence of an effective interlayer coupling field

    NASA Astrophysics Data System (ADS)

    Metaxas, P. J.; Jamet, J. P.; Ferré, J.; Rodmacq, B.; Dieny, B.; Stamps, R. L.

    We investigate thermally activated domain wall creep in a system consisting of two ultrathin Co layers with perpendicular anisotropy coupled antiferromagnetically through a 4 nm thick Pt spacer layer. The field driven dynamics of domain walls in the softer Co layer have been measured while keeping the harder Co layer negatively saturated. The effect of the interlayer interaction on the soft layer is interpreted in terms of an effective coupling field, HJ, which results in an asymmetry between the domain wall speeds measured under positive and negative driving fields. We show that creep theory remains valid to describe the observed wall motion when the effective coupling field is included in the creep velocity law as a component of the total field acting on the wall. Using the resultant modified creep expression, we determine a value for the effective coupling field which is consistent with that measured from the shift of the soft layer's minor hysteresis loop. The net antiferromagnetic coupling is attributed to a combination of RKKY and orange-peel coupling.

  1. Memory and comprehension for health information among older adults: distinguishing the effects of domain-general and domain-specific knowledge.

    PubMed

    Chin, Jessie; Payne, Brennan; Gao, Xuefei; Conner-Garcia, Thembi; Graumlich, James F; Murray, Michael D; Morrow, Daniel G; Stine-Morrow, Elizabeth A L

    2015-01-01

    While there is evidence that knowledge influences understanding of health information, less is known about the processing mechanisms underlying this effect and its impact on memory. We used the moving window paradigm to examine how older adults varying in domain-general crystallised ability (verbal ability) and health knowledge allocate attention to understand health and domain-general texts. Participants (n = 107, age: 60-88 years) read and recalled single sentences about hypertension and about non-health topics. Mixed-effects modelling of word-by-word reading times suggested that domain-general crystallised ability increased conceptual integration regardless of text domain, while health knowledge selectively increased resource allocation to conceptual integration at clause boundaries in health texts. These patterns of attentional allocation were related to subsequent recall performance. Although older adults with lower levels of crystallised ability were less likely to engage in integrative processing, when they did, this strategy had a compensatory effect in improving recall. These findings suggest that semantic integration during reading is an important comprehension process that supports the construction of the memory representation and is engendered by knowledge. Implications of the findings for theories of text processing and memory as well as for designing patient education materials are discussed. PMID:24787361

  2. Enhancement of spin Hall effect induced torques for current-driven magnetic domain wall motion: Inner interface effect

    NASA Astrophysics Data System (ADS)

    Bang, Do; Yu, Jiawei; Qiu, Xuepeng; Wang, Yi; Awano, Hiroyuki; Manchon, Aurelien; Yang, Hyunsoo

    2016-05-01

    We investigate the current-induced domain wall motion in perpendicular magnetized Tb/Co wires with structure inversion asymmetry and different layered structures. We find that the critical current density to drive domain wall motion strongly depends on the layered structure. The lowest critical current density ˜15 MA /c m2 and the highest slope of domain wall velocity curve are obtained for the wire having thin Co sublayers and more inner Tb/Co interfaces, while the largest critical current density ˜26 MA /c m2 required to drive domain walls is observed in the Tb-Co alloy magnetic wire. It is found that the Co/Tb interface contributes negligibly to Dzyaloshinskii-Moriya interaction, while the effective spin-orbit torque strongly depends on the number of Tb/Co inner interfaces (n ). An enhancement of the antidamping torques by extrinsic spin Hall effect due to Tb rare-earth impurity-induced skew scattering is suggested to explain the high efficiency of current-induced domain wall motion.

  3. The effect of domain-general inhibition-related training on language switching: An ERP study.

    PubMed

    Liu, Huanhuan; Liang, Lijuan; Dunlap, Susan; Fan, Ning; Chen, Baoguo

    2016-01-01

    Previous studies have demonstrated that inhibitory control ability could be improved by training, and the Inhibitory Control (IC) Model implies that enhanced domain-general inhibition may elicit certain changes in language switch costs. In the present study, we aimed to examine the effects of domain-general inhibition training on performance in a language switching task, including which phase of domain-general inhibitory control benefits from training during an overt picture naming task in L1 and L2, using the event-related brain potentials (ERPs). Results showed that the language switch costs of bilinguals with high inhibitory control (high-IC) were symmetrical in both pretest and posttest, and those of bilinguals with low inhibitory control (low-IC) were asymmetrical in the pretest, but symmetrical in the posttest. Moreover, the high-IC group showed a larger LPC (late positive component) for L2 switch trials than for L1 trials in both pretest and posttest. In contrast, the low-IC group only exhibited a similar pattern of LPC in the posttest, but not in the pretest. These results indicate that inhibition training could increase the efficiency of language switching, and inhibitory control may play a key role during the lexical selection response phase. Overall, the present study is the first one to provide electrophysiological evidence for individual differences in the domain-general inhibition impact on language switching performance in low-proficient bilinguals. PMID:26491833

  4. A selection effect boosting the contribution from rapidly spinning black holes to the cosmic X-ray background

    NASA Astrophysics Data System (ADS)

    Vasudevan, R. V.; Fabian, A. C.; Reynolds, C. S.; Aird, J.; Dauser, T.; Gallo, L. C.

    2016-05-01

    The cosmic X-ray background (CXB) is the total emission from past accretion activity on to supermassive black holes in active galactic nuclei (AGN) and peaks in the hard X-ray band (30 keV). In this paper, we identify a significant selection effect operating on the CXB and flux-limited AGN surveys, and outline how they must depend heavily on the spin distribution of black holes. We show that, due to the higher radiative efficiency of rapidly spinning black holes, they will be over-represented in the X-ray background, and therefore could be a dominant contributor to the CXB. Using a simple bimodal spin distribution, we demonstrate that only 15 per cent maximally spinning AGN can produce 50 per cent of the CXB. We also illustrate that invoking a small population of maximally spinning black holes in CXB synthesis models can reproduce the CXB peak without requiring large numbers of Compton-thick AGN. The spin bias is even more pronounced for flux-limited surveys: 7 per cent of sources with maximally spinning black holes can produce half of the source counts. The detectability for maximum spin black holes can be further boosted in hard (>10 keV) X-rays by up to ˜60 per cent due to pronounced ionized reflection, reducing the percentage of maximally spinning black holes required to produce half of the CXB or survey number counts further. A host of observations are consistent with an over-representation of high-spin black holes. Future NuSTAR and ASTRO-H hard X-ray surveys will provide the best constraints on the role of spin within the AGN population.

  5. Cosmic Complexity

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2012-01-01

    neutrons, liberating a little energy and creating complexity. Then, the expanding universe cooled some more, and neutrons and protons, no longer kept apart by immense temperatures, found themselves unstable and formed helium nuclei. Then, a little more cooling, and atomic nuclei and electrons were no longer kept apart, and the universe became transparent. Then a little more cooling, and the next instability began: gravitation pulled matter together across cosmic distances to form stars and galaxies. This instability is described as a "negative heat capadty" in which extracting energy from a gravitating system makes it hotter -- clearly the 2nd law of thermodynamics does not apply here! (This is the physicist's part of the answer to e e cummings' question: what is the wonder that's keeping the stars apart?) Then, the next instability is that hydrogen and helium nuclei can fuse together to release energy and make stars burn for billions of years. And then at the end of the fuel source, stars become unstable and explode and liberate the chemical elements back into space. And because of that, on planets like Earth, sustained energy flows support the development of additional instabilities and all kinds of complex patterns. Gravitational instability pulls the densest materials into the core of the Earth, leaving a thin skin of water and air, and makes the interior churn incessantly as heat flows outwards. And the heat from the sun, received mostly near the equator and flowing towards the poles, supports the complex atmospheric and oceanic circulations. And because or that, the physical Earth is full of natural chemical laboratories, concentrating elements here, mixing them there, raising and lowering temperatures, ceaselessly experimenting with uncountable events where new instabilities can arise. At least one of them was the new experiment called life. Now that we know that there are at least as many planets as there are stars, it is hard to imagine that nature's ceasess

  6. Cosmic Complexity

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2012-01-01

    neutrons, liberating a little energy and creating complexity. Then, the expanding universe cooled some more, and neutrons and protons, no longer kept apart by immense temperatures, found themselves unstable and formed helium nuclei. Then, a little more cooling, and atomic nuclei and electrons were no longer kept apart, and the universe became transparent. Then a little more cooling, and the next instability began: gravitation pulled matter together across cosmic distances to form stars and galaxies. This instability is described as a "negative heat capadty" in which extracting energy from a gravitating system makes it hotter -- clearly the 2nd law of thermodynamics does not apply here! (This is the physicist's part of the answer to e e cummings' question: what is the wonder that's keeping the stars apart?) Then, the next instability is that hydrogen and helium nuclei can fuse together to release energy and make stars burn for billions of years. And then at the end of the fuel source, stars become unstable and explode and liberate the chemical elements back into space. And because of that, on planets like Earth, sustained energy flows support the development of additional instabilities and all kinds of complex patterns. Gravitational instability pulls the densest materials into the core of the Earth, leaving a thin skin of water and air, and makes the interior churn incessantly as heat flows outwards. And the heat from the sun, received mostly near the equator and flowing towards the poles, supports the complex atmospheric and oceanic circulations. And because or that, the physical Earth is full of natural chemical laboratories, concentrating elements here, mixing them there, raising and lowering temperatures, ceaselessly experimenting with uncountable events where new instabilities can arise. At least one of them was the new experiment called life. Now that we know that there are at least as many planets as there are stars, it is hard to imagine that nature's ceasess

  7. Cosmic rays and other space weather effects influenced on satellite operation, technologies, biosphere and people health

    NASA Astrophysics Data System (ADS)

    Lev, Dorman

    2016-07-01

    Satellite anomalies (or malfunctions), including total distortion of electronics and loose of some satellites cost for Insurance Companies billions dollars per year. During especially active periods the probability of big satellite anomalies and their loosing increased very much. Now, when a great number of civil and military satellites are continuously worked for our practice life, the problem of satellite anomalies became very important. Many years ago about half of satellite anomalies were caused by technical reasons (for example, for Russian satellites Kosmos), but with time with increasing of production quality, this part became smaller and smaller. The other part, which now is dominated, caused by different space weather effects (energetic particles of CR and generated/trapped in the magnetosphere, and so on). We consider only satellite anomalies not caused by technical reasons: the total number of such anomalies about 6000 events, and separately for high and low altitude orbit satellites (5000 and about 800 events, correspondingly for high and low altitude satellites). No relation was found between low and high altitude satellite anomalies. Daily numbers of satellite anomalies, averaged by a superposed epoch method around sudden storm commencements and solar proton event onsets for high (>1500 km) and low (<1500 km) altitude orbits revealed a big difference in a behavior. Satellites were divided on several groups according to the orbital characteristics (altitude and inclination). The relation of satellite anomalies to the environmental parameters was found to be different for various orbits that should be taken into account under developing of the anomaly frequency models and forecasting. We consider also influence of CR on frequency of gene mutations and evolution of biosphere (we show that if it will be no CR, the Earth's civilization will be start only after milliards years later, what will be too late), CR role in thunderstorm phenomena and discharges

  8. Zipping and unzipping of cosmic string loops in collision

    SciTech Connect

    Firouzjahi, H.; Karouby, J.; Khosravi, S.; Brandenberger, R.

    2009-10-15

    In this paper the collision of two cosmic string loops is studied. After collision junctions are formed and the loops are entangled. We show that after their formation the junctions start to unzip and the loops disentangle. This analysis provides a theoretical understanding of the unzipping effect observed in numerical simulations of a network of cosmic strings with more than one type of cosmic strings. The unzipping phenomena have important effects in the evolution of cosmic string networks when junctions are formed upon collision, such as in a network of cosmic superstrings.

  9. Effects of twin boundary mobility on domain microstructure evolution in magnetic shape memory alloys: Phase field simulation

    SciTech Connect

    Jin, Yongmei M.

    2009-02-09

    Effects of twin boundary mobility on domain microstructure evolution during magnetic field-induced deformation in magnetic shape memory alloys are studied by phase field micromagnetic microelastic modeling. The simulations show that different twin boundary mobilities lead to drastically different domain microstructures and evolution pathways, yielding very different magnetization and strain responses, even with opposite signs. The study also reveals complex domain phenomena in magnetic shape memory alloys.

  10. Removal of two large-scale cosmic microwave background anomalies after subtraction of the integrated Sachs-Wolfe effect

    NASA Astrophysics Data System (ADS)

    Rassat, A.; Starck, J.-L.; Dupé, F.-X.

    2013-09-01

    Context. Although there is currently a debate over the significance of the claimed large-scale anomalies in the cosmic microwave background (CMB), their existence is not totally dismissed. In parallel to the debate over their statistical significance, recent work has also focussed on masks and secondary anisotropies as potential sources of these anomalies. Aims: In this work we investigate simultaneously the impact of the method used to account for masked regions as well as the impact of the integrated Sachs-Wolfe (ISW) effect, which is the large-scale secondary anisotropy most likely to affect the CMB anomalies. In this sense, our work is an update of previous works. Our aim is to identify trends in CMB data from different years and with different mask treatments. Methods: We reconstruct the ISW signal due to 2 Micron All-Sky Survey (2MASS) and NRAO VLA Sky Survey (NVSS) galaxies, effectively reconstructing the low-redshift ISW signal out to z ~ 1. We account for regions of missing data using the sparse inpainting technique. We test sparse inpainting of the CMB, large scale structure and ISW and find that it constitutes a bias-free reconstruction method suitable to study large-scale statistical isotropy and the ISW effect. Results: We focus on three large-scale CMB anomalies: the low quadrupole, the quadrupole/octopole alignment, and the octopole planarity. After sparse inpainting, the low quadrupole becomes more anomalous, whilst the quadrupole/octopole alignment becomes less anomalous. The significance of the low quadrupole is unchanged after subtraction of the ISW effect, while the trend amongst the CMB maps is that both the low quadrupole and the quadrupole/octopole alignment have reduced significance, yet other hypotheses remain possible as well (e.g. exotic physics). Our results also suggest that both of these anomalies may be due to the quadrupole alone. While the octopole planarity significance is reduced after inpainting and after ISW subtraction, however

  11. Investigation of Reacceleration on Cosmic Ray

    NASA Astrophysics Data System (ADS)

    Lu, Yuxi; Picot-Clemente, Nicolas; Seo, Eun-Suk

    2016-03-01

    Cosmic rays are high energy charged particles, originating from outer space, that travel at nearly the speed of light and strike the Earth from all directions. One century after the discovery of cosmic rays, their origin and propagation processes remain obscure. GALPROP is a numerical code for calculating the propagation of relativistic charged particles and the diffuse emissions produced during their propagation in the Galaxy. I performed a preliminary study using two different propagation models with the GALPROP code in order to reproduce latest cosmic-ray nuclei measurements. I analyzed multiple propagation parameters for each model, studied their effect on cosmic-ray spectra, optimized and tried a preliminary modification of the code to fit cosmic-ray data such as BESS-Polar, AMS, CREAM, etc.

  12. On finite density effects on cosmic reheating and moduli decay and implications for Dark Matter production

    SciTech Connect

    Drewes, Marco

    2014-11-01

    We study the damping of an oscillating scalar field in a Friedmann-Robertson-Walker spacetime by perturbative processes, taking into account the back-reaction of the plasma of decay products on the damping rate. The scalar field may be identified with the inflaton, in which case this process resembles the reheating of the universe after inflation. It can also model a modulus that dominates the energy density of the universe at later times. We find that the finite density corrections to the damping rate can have a drastic effect on the thermal history and considerably increase both, the maximal temperature in the early universe and the reheating temperature at the onset of the radiation dominated era. As a result the abundance of some Dark Matter candidates may be considerably larger than previously estimated. We give improved analytic estimates for the maximal and the reheating temperatures and confirm them numerically in a simple model.

  13. Solar cosmic ray effects in atmospheric chemistry evidenced from ground-based measurements

    NASA Astrophysics Data System (ADS)

    Shumilov, O. I.; Kasatkina, E. A.; Turyansky, V. A.; Kyro, E.; Kivi, R.

    2003-05-01

    Ground-based measurements of nitrogen dioxide (N02) total content and photochemical modeling have been used to investigate the response of high-latitude atmosphere to solar proton events of Ground Level Event (GLE) type. Measurements of NO 2 were made at Murmansk, Kola Peninsula (corrected geomagnetic latitude: 64.8°) during and after GLE of 2 May 1998. Nitrogen dioxide was measured by zenith viewing spectrophotometer in wavelength range between 435 and 450 nm. An increase (about of 20%) in total column of N02 has been detected after 2 May 1998 GLE by this facility. Model calculations based on gas phase photochemical theory quantitatively agree with observations. These results demonstrate that information obtained from ground-based measurements is usable to study the atmospheric effects of high-energy solar protons in addition to satellite data.

  14. Mutation of potential phosphorylation sites in the recombinant R domain of the cystic fibrosis transmembrane conductance regulator has significant effects on domain conformation.

    PubMed

    Dulhanty, A M; Chang, X B; Riordan, J R

    1995-01-01

    Mutation of potential cAMP dependent protein kinase sites in the R domain of the cystic fibrosis transmembrane conductance regulator has significant effects on protein function. Mutation of the potential phosphorylation sites from serine to alanine, to abolish the site, reduced sensitivity to activation, or to glutamic acid, to mimic phosphorylation, caused some constitutive activity. To explore the structural effects of these mutations, recombinant R domain peptides were studied: the wild type, a mutant with nine serine residues changed to alanine, and a mutant with eight serine residues changed to glutamic acid. As assessed by C.D. spectroscopy, the mutants have substantially different secondary structure than the wild type, in agreement with the predictive algorithm of Gascuel and Golmard. The results show that mutagenesis of residues alters the polypeptide structurally as well as preventing it from serving as a phosphorylation substrate. Hence, the functional consequences of the mutations may not be entirely due to effects on phosphorylation. PMID:7529497

  15. Pulsed Laser System to Simulate Effects of Cosmic Rays in Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Aveline, David C.; Adell, Philippe C.; Allen, Gregory R.; Guertin, Steven M.; McClure, Steven S.

    2011-01-01

    Spaceflight system electronic devices must survive a wide range of radiation environments with various particle types including energetic protons, electrons, gamma rays, x-rays, and heavy ions. High-energy charged particles such as heavy ions can pass straight through a semiconductor material and interact with a charge-sensitive region, generating a significant amount of charge (electron-hole pairs) along their tracks. These excess charges can damage the device, and the response can range from temporary perturbations to permanent changes in the state or performance. These phenomena are called single event effects (SEE). Before application in flight systems, electronic parts need to be qualified and tested for performance and radiation sensitivity. Typically, their susceptibility to SEE is tested by exposure to an ion beam from a particle accelerator. At such facilities, the device under test (DUT) is irradiated with large beams so there is no fine resolution to investigate particular regions of sensitivity on the parts. While it is the most reliable approach for radiation qualification, these evaluations are time consuming and costly. There is always a need for new cost-efficient strategies to complement accelerator testing: pulsed lasers provide such a solution. Pulsed laser light can be utilized to simulate heavy ion effects with the advantage of being able to localize the sensitive region of an integrated circuit. Generally, a focused laser beam of approximately picosecond pulse duration is used to generate carrier density in the semiconductor device. During irradiation, the laser pulse is absorbed by the electronic medium with a wavelength selected accordingly by the user, and the laser energy can ionize and simulate SEE as would occur in space. With a tightly focused near infrared (NIR) laser beam, the beam waist of about a micrometer can be achieved, and additional scanning techniques are able to yield submicron resolution. This feature allows mapping of all

  16. Giant photovoltaic effect of ferroelectric domain walls in perovskite single crystals

    PubMed Central

    Inoue, Ryotaro; Ishikawa, Shotaro; Imura, Ryota; Kitanaka, Yuuki; Oguchi, Takeshi; Noguchi, Yuji; Miyayama, Masaru

    2015-01-01

    The photovoltaic (PV) effect in polar materials offers great potential for light-energy conversion that generates a voltage beyond the bandgap limit of present semiconductor-based solar cells. Ferroelectrics have received renewed attention because of the ability to deliver a high voltage in the presence of ferroelastic domain walls (DWs). In recent years, there has been considerable debate over the impact of the DWs on the PV effects, owing to lack of information on the bulk PV tensor of host ferroelectrics. In this article, we provide the first direct evidence of an unusually large PV response induced by ferroelastic DWs—termed ‘DW’-PV effect. The precise estimation of the bulk PV tensor in single crystals of barium titanate enables us to quantify the giant PV effect driven by 90° DWs. We show that the DW-PV effect arises from an effective electric field consisting of a potential step and a local PV component in the 90° DW region. This work offers a starting point for further investigation into the DW-PV effect of alternative systems and opens a reliable route for enhancing the PV properties in ferroelectrics based on the engineering of domain structures in either bulk or thin-film form. PMID:26443381

  17. Giant photovoltaic effect of ferroelectric domain walls in perovskite single crystals

    NASA Astrophysics Data System (ADS)

    Inoue, Ryotaro; Ishikawa, Shotaro; Imura, Ryota; Kitanaka, Yuuki; Oguchi, Takeshi; Noguchi, Yuji; Miyayama, Masaru

    2015-10-01

    The photovoltaic (PV) effect in polar materials offers great potential for light-energy conversion that generates a voltage beyond the bandgap limit of present semiconductor-based solar cells. Ferroelectrics have received renewed attention because of the ability to deliver a high voltage in the presence of ferroelastic domain walls (DWs). In recent years, there has been considerable debate over the impact of the DWs on the PV effects, owing to lack of information on the bulk PV tensor of host ferroelectrics. In this article, we provide the first direct evidence of an unusually large PV response induced by ferroelastic DWs—termed ‘DW’-PV effect. The precise estimation of the bulk PV tensor in single crystals of barium titanate enables us to quantify the giant PV effect driven by 90° DWs. We show that the DW-PV effect arises from an effective electric field consisting of a potential step and a local PV component in the 90° DW region. This work offers a starting point for further investigation into the DW-PV effect of alternative systems and opens a reliable route for enhancing the PV properties in ferroelectrics based on the engineering of domain structures in either bulk or thin-film form.

  18. Giant photovoltaic effect of ferroelectric domain walls in perovskite single crystals.

    PubMed

    Inoue, Ryotaro; Ishikawa, Shotaro; Imura, Ryota; Kitanaka, Yuuki; Oguchi, Takeshi; Noguchi, Yuji; Miyayama, Masaru

    2015-01-01

    The photovoltaic (PV) effect in polar materials offers great potential for light-energy conversion that generates a voltage beyond the bandgap limit of present semiconductor-based solar cells. Ferroelectrics have received renewed attention because of the ability to deliver a high voltage in the presence of ferroelastic domain walls (DWs). In recent years, there has been considerable debate over the impact of the DWs on the PV effects, owing to lack of information on the bulk PV tensor of host ferroelectrics. In this article, we provide the first direct evidence of an unusually large PV response induced by ferroelastic DWs-termed 'DW'-PV effect. The precise estimation of the bulk PV tensor in single crystals of barium titanate enables us to quantify the giant PV effect driven by 90° DWs. We show that the DW-PV effect arises from an effective electric field consisting of a potential step and a local PV component in the 90° DW region. This work offers a starting point for further investigation into the DW-PV effect of alternative systems and opens a reliable route for enhancing the PV properties in ferroelectrics based on the engineering of domain structures in either bulk or thin-film form. PMID:26443381

  19. Cosmic ray antiprotons from nearby cosmic accelerators

    NASA Astrophysics Data System (ADS)

    Joshi, Jagdish C.; Gupta, Nayantara

    2015-05-01

    The antiproton flux measured by PAMELA experiment might have originated from Galactic sources of cosmic rays. These antiprotons are expected to be produced in the interactions of cosmic ray protons and nuclei with cold protons. Gamma rays are also produced in similar interactions inside some of the cosmic accelerators. We consider a few nearby supernova remnants observed by Fermi LAT. Many of them are associated with molecular clouds. Gamma rays have been detected from these sources which most likely originate in decay of neutral pions produced in hadronic interactions. The observed gamma ray fluxes from these SNRs are used to find out their contributions to the observed diffuse cosmic ray antiproton flux near the earth.

  20. Cosmic strings: A problem or a solution

    SciTech Connect

    Bennett, D.P.; Bouchet, F.R.

    1987-10-01

    The most fundamental issue in the theory of cosmic strings is addressed by means of Numerical Simulations: the existence of a scaling solution. The resolution of this question will determine whether cosmic strings can form the basis of an attractive theory of galaxy formation or prove to be a cosmological disaster like magnetic monopoles or domain walls. After a brief discussion of our numerical technique, results are presented which, though still preliminary, offer the best support to date of this scaling hypothesis. 6 refs., 2 figs.

  1. Gev-Tev Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Lavalle, Julien

    2015-03-01

    This short review aims at presenting the way we currently understand, model, and constrain the transport of cosmic rays in the GeV-TeV energy domain. This is a research field per se, but is also an important tool e.g. to improve our understanding of the cosmic-ray sources, of the diffuse non-thermal Galactic emissions (from radio wavelengths to gamma-rays), or in searches for dark matter annihilation signals. This review is mostly dedicated to particle physicists or more generally to non-experts.

  2. Cosmic Microwave Background Fluctuations from the Kinetic Sunyaev-Zeldovich Effect as a Cosmological Probe

    NASA Astrophysics Data System (ADS)

    Park, Hyunbae; Shapiro, P.; Komatsu, E.

    2012-01-01

    We present a calculation of the kinetic Sunyaev-Zel'dovich (kSZ) effect on of the Comic Microwave Background fluctuation. We focus on the scale at the multipole moment of l = 3000 10000 that is currently being probed by the South Pole Telescope (SPT) and the Atacama Cosmology Telescope. For the post-reionization contribution of the total signal, we use the 3rd order perturbation theory (3PT) to model non-linearity of post-reionization epoch. We evaluate a non-linear expression for momentum powerspectrum in Ma and Fry (2002) with the 3PT density and velocity powerspectrum. And, we use the 3PT momentum powerspectrum to calculate the kSZ signal. We show that the 3PT is a reasonable approximation by comparing our result with previous work by Zhang, Pen and Trac (2004). For reionization contribution, we use our N-body radiative transfer simulations to take patchiness of ionization of intergalactic medium in reionization epoch into account. Using ionized fraction field in the simulation, we calculate the momentum field of the ionized gas. And, we correct for the missing power in finite size boxes of simulations. Finally, we show the kSZ calculation for different simulations with reionization scenarios. With contributions from each epoch, we predict total kSZ signal for different reionization history and put constraint on reionization scenario using an upper bound of the signal from recent SPT measurement.

  3. EFFECT OF HALO BIAS AND LYMAN LIMIT SYSTEMS ON THE HISTORY OF COSMIC REIONIZATION

    SciTech Connect

    Kaurov, Alexander A.; Gnedin, Nickolay Y. E-mail: gnedin@fnal.gov

    2013-07-01

    We extend the existing analytical model of reionization by Furlanetto et al. to include the biasing of reionization sources and additional absorption by Lyman limit systems. Both effects enhance the original model in non-trivial ways, but do not change its qualitative features. Our model is, by construction, consistent with the observed evolution of the galaxy luminosity function at z {approx}< 8 and with the observed evolution of Ly{alpha} forest at z {approx}< 6. We find that the same model can match the Wilkinson Microwave Anisotropy Probe/Planck constraint on the Thompson optical depth and the South Pole Telescope and EDGES constraints on the duration of reionization for values of the relative escape fraction that are consistent with the observational measurements at lower redshifts. However, such a match is only possible if dwarf galaxies contribute substantially to the ionizing photon budget. The latter condition is inconsistent with simulations and observational upper limits on the escape fraction from dwarfs at z {approx} 3. Whether such a disagreement is due to the different nature of z > 6 galaxies, the inadequacy of simulations and/or some of the observational constraints, or indicates an additional source of ionizing radiation at z > 8 remains to be seen.

  4. Solar Effects on Global Climate Due to Cosmic Rays and Solar Energetic Particles

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Raeder, J.; DAuria, R.

    2005-01-01

    Although the work reported here does not directly connect solar variability with global climate change, this research establishes a plausible quantitative causative link between observed solar activity and apparently correlated variations in terrestrial climate parameters. Specifically, we have demonstrated that ion-mediated nucleation of atmospheric particles is a likely, and likely widespread, phenomenon that relates solar variability to changes in the microphysical properties of clouds. To investigate this relationship, we have constructed and applied a new model describing the formation and evolution of ionic clusters under a range of atmospheric conditions throughout the lower atmosphere. The activation of large ionic clusters into cloud nuclei is predicted to be favorable in the upper troposphere and mesosphere, and possibly in the lower stratosphere. The model developed under this grant needs to be extended to include additional cluster families, and should be incorporated into microphysical models to further test the cause-and-effect linkages that may ultimately explain key aspects of the connections between solar variability and climate.

  5. Hale cycle effects in cosmic ray east-west anisotropy and interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Ahluwalia, H. S.

    1993-01-01

    We have reanalyzed diurnal anisotropy data obtained with the shielded ion chamber (IC) at Cheltenham/Fredericksburg and the neutron monitor (NM) at Swarthmore/Newark. IC data are for the 1936-1977 period and NM data are for the 1965-1988 period. We have corrected IC data for the diurnal temperature effect. Application of this correction results in a better agreement between IC and other data sets, thereby making it possible to study the long-term changes in the diurnal anisotropy using IC data. The behavior of the annual mean east-west anisotropy is studied for 53 years of observations. The period encompasses more than two solar magnetic (Hale) cycles. Its amplitude undergoes the expected 11 and 22 year variations, with the largest changes occurring near solar activity minima. Moreover, the data indicate the presence of the subsidiary maxima for the entire 53-year period, following the solar polar field reversals, during the declining phases of activity cycles when high-speed solar wind streams are present in the heliosphere. The data suggest that the amplitude of the subsidiary maximum is large when the solar polar magnetic field points toward the sun in the Northern Hemisphere, and radial anisotropy is absent.

  6. Dose Effect of Cosmic Rays in Aircraft at SPE in Fall of 2003

    NASA Astrophysics Data System (ADS)

    Fujitaka, K.; Uchihori, Y.; Kitamura, H.; Nojima, K.; Takada, M.; Yasuda, N.; Okano, M.

    A large solar flare occurred in October 28, 2003, which caused a sensation around the world. Our group decided to measure the aviation dose promptly and started the survey within two days. Measurements have been conducted in Oct.30-Oct.30, Oct.30*-Nov.11*, Oct. 31-Oct.31, Oct.31*-Nov.3*, Nov.3-Nov.3, Nov.5-Nov.5, Nov.5*-Nov.7*, and Nov.6-Nov.6. Here, days with asterisks represent Tokyo to JFK (and vice versa) airport, while others represent Tokyo from/to Sapporo. Unfortunately, the measurement met the flare only once (Nov.3), but the dose was suppressed considerably in the nearby date, and a typical Forbush decrease is seen (Oct.31). While the dose measured in the Tokyo/JFK flight (Oct.31) varied largely, we cannot infer the net dose contribution from the flare. That is because any small variation of the dose tends to be masked by other large one. In short, we do not have to worry about effect of solar activity on board airplane in the present case.

  7. Are therapists uniformly effective across patient outcome domains? A study on therapist effectiveness in two different treatment contexts.

    PubMed

    Nissen-Lie, Helene A; Goldberg, Simon B; Hoyt, William T; Falkenström, Fredrik; Holmqvist, Rolf; Nielsen, Stevan Lars; Wampold, Bruce E

    2016-07-01

    As established in several studies, therapists differ in effectiveness. A vital research task now is to understand what characterizes more or less effective therapists, and investigate whether this differential effectiveness systematically depends on client factors, such as the type of mental health problem. The purpose of the current study was to examine whether therapists are universally effective across patient outcome domains reflecting different areas of mental health functioning. Data were obtained from 2 sites: the Research Consortium of Counseling and Psychological Services in Higher Education (N = 5,828) in the United States and from primary and secondary care units (N = 616) in Sweden. Outcome domains were assessed via the Outcome Questionnaire-45 (Lambert et al., 2004) and the CORE-OM (Evans et al., 2002). Multilevel models with observations nested within patients were used to derive a reliable estimate for each patient's change (which we call a multilevel growth d) based on all reported assessment points. Next, 2 multilevel confirmatory factor analytic models were fit in which these effect sizes (multilevel ds) for the 3 subscales of the OQ-45 (Study 1) and 6 subscales of CORE-OM (Study 2) were indicators of 1 common latent factor at the therapist level. In both data sets, such a model, reflecting a global therapist effectiveness factor, yielded large factor loadings and excellent model fit. Results suggest that therapists effective (or ineffective) within one outcome domain are also effective within another outcome domain. Tentatively, therapist effectiveness can thus be conceived of as a global construct. (PsycINFO Database Record PMID:27124549

  8. Can cosmic parallax distinguish between anisotropic cosmologies?

    SciTech Connect

    Fontanini, Michele; West, Eric J.; Trodden, Mark

    2009-12-15

    In an anisotropic universe, observers not positioned at a point of special symmetry should observe cosmic parallax--the relative angular motion of test galaxies over cosmic time. It was recently argued that the nonobservance of this effect in upcoming precision astrometry missions such as GAIA may be used to place strong bounds on the position of off-center observers in a void-model universe described by the Lemaitre-Tolman-Bondi metric. We consider the analogous effect in anisotropic cosmological models described by an axisymmetric homogeneous Bianchi type I metric and discuss whether any observation of cosmic parallax would distinguish between different anisotropic evolutions.

  9. Three-dimensional time domain model of lightning including corona effects

    NASA Technical Reports Server (NTRS)

    Podgorski, Andrew S.

    1991-01-01

    A new 3-D lightning model that incorporates the effect of corona is described for the first time. The new model is based on a Thin Wire Time Domain Lightning (TWTDL) Code developed previously. The TWTDL Code was verified during the 1985 and 1986 lightning seasons by the measurements conducted at the 553 m CN Tower in Toronto, Ontario. The inclusion of corona in the TWTDL code allowed study of the corona effects on the lightning current parameters and the associated electric field parameters.

  10. The effect of surface roughness on the hysteresis properties of single-domain and pseudo- single-domain grains of magnetite.

    NASA Astrophysics Data System (ADS)

    Williams, W.

    2007-12-01

    Numerical micromagnetic modelling has provided huge advances in our understanding of the stability of paleomagnetic remanences in both single domain (SD) and pseudo-single-domain (PSD) grains. In mineral magnetism, the numerical model has usually employed finite difference (FD) method, which allows simulation of magnetic domain structures in relatively large grains (up to one micron). The FD models are constructed from regularly shaped cubic cells, and so the efficiency of computation is made at the expense of the accuracy with which a grain's geometry can be represented. However, one of the most important factors that affect the domain state, and the stability of the paleomagnetic recording, is the internal demagnetizing field. The demagnetizing field is in turn determined by both the grain size and its geometry. By taking a finite element/boundary element (FEBE) approach where the grain geometry is represented by arbitrary shaped tetrahedral elements, a much better representation of the grain geometry can be achieved. Thus a much more accurate determination of the demagnetizing field is possible. The FEBE approach, therefore, allows us to examine, for the first time, the influence of irregular grains shapes and in particular the grain surface roughness, on the nucleation of domain states. This initial study will look at the effect of surface roughness on spherical grains of magnetite between 30nm to 100nm in diameter, covering the SD to PSD grain size range. Spherical grains are chosen in order to eliminate any influence of grain shape other than the surface roughness. In addition, the effects of magnetocrystalline anisotropy are ignored. The roughness is defined both in terms of the average amplitude of the surface peaks above the mean diameter of the sphere, as well as the mean angular frequency of surface the peaks and troughs. The results demonstrate that, as expected, rough surfaces act to encourage nucleation of domain reversals in the SD grain size range

  11. Cosmic Superstrings Revisited

    SciTech Connect

    Polchinski, Joseph

    2004-12-10

    It is possible that superstrings, as well as other one-dimensional branes, could have been produced in the early universe and then expanded to cosmic size today. I discuss the conditions under which this will occur, and the signatures of these strings. Such cosmic superstrings could be the brightest objects visible in gravitational wave astronomy, and might be distinguishable from gauge theory cosmic strings by their network properties.

  12. Cosmic Rays and Clouds, 2. Atmospheric Electric Field Effect In Different Neutron Multiplicities According To Emilio Segre' Observatory One Minute Data

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Dorman, I. V.; Iucci, N.; Ne'Eman, Yu.; Pustil'Nik, L. A.; Sternlieb, A.; Villoresi, G.; Zukerman, I. G.

    On the basis of cosmic ray and atmospheric electric field one minute data obtained by NM and EFS of Emilio Segre' Observatory (hight 2025 m above s.l., cut-off rigidity for vertical direction 10.8 GV) we determine the atmospheric electric field effect in CR for total neutron intensity and for multiplicities m=1, m=2, m=3, m=4, m=5, m=6, and m=7. For comparison and excluding primary CR variations we use also one minute data on neutron multiplicities obtained by NM of University "Roma Tre" (about sea level, cut-off rigidity 6.7 GV). In February 2000 were observed 14 periods of thun- derstorms with different durations (up to about 1000 min), the maximum strength of electric field was 110 kV/m. Thunderstorms were observed also in March 2000 (6 pe- riods with maximal field 112 kV/m), in April 2000 (9; 70 kV/m), in May 2000 (4; 10 kV/m), in October 2000 (10; 70 kV/m), in November 2000 (5; 50 kV/m), in De- cember 2000 (7; 88 kV/m), in January 2001 (12; 62 kV/m), in February 2001 (10; 88 kV/m). According to the theoretical calculations of Dorman and Dorman (1995) the electric field effect in the NM counting rate must be caused mainly by captchuring of slow negative muons by lead nucleus with escaping few neutrons. As it was shown in Dorman et al. (1999), the biggest electric field effect is expected in the multiplicity m=1, much smaller in m=2 and negligible effect is expected in higher multiplicities. We will control this conclusion on the basis of our experimental data. Obtained results give a possibility to estimate total acceleration and deceleration of CR particles by the atmospheric electric field. REFERENCES: Dorman L.I. and Dorman I.V., 1995. "Cosmic-ray atmospheric electric field effects". Canadian J. of Physics, Vol. 73, pp. 440-443. L.I. Dorman, I.V. Dorman, N. Iucci, M. Parisi, G. Villoresi, and I.G. Zuk- erman, 1999. "Emilio Segre' Observatory and Expected Time-Variations of Neutron Monitor Total and Multiplicities Counting Rates Caused by Cosmic Ray Particle

  13. Effects of Cosmic Infrared Background on High Energy Delayed Gamma-Rays From Gamma-Ray Bursts

    SciTech Connect

    Murase, Kohta; Asano, Katsuaki; Nagataki, Shigehiro; /Kyoto U., Yukawa Inst., Kyoto /KIPAC, Menlo Park

    2007-04-06

    Regenerated high energy emissions from gamma-ray bursts (GRBs) are studied in detail. If the primary emission spectrum extends to TeV range, these very high energy photons will be absorbed by the cosmic infrared background (CIB). The created high energy electron-positron pairs up-scatter not only cosmic microwave background (CMB) photons but also CIB photons, and secondary photons are generated in the GeV-TeV range. These secondary delayed photons may be observed in the near future, and useful for a consistency check for the primary spectra and GRB physical parameters. The up-scattered CIB photons cannot be neglected for low redshift bursts and/or GRBs with a relatively low maximum photon energy. The secondary gamma-rays also give us additional information on the CIB, which is uncertain in observations so far.

  14. Effect of surface domain structure on wall mobility in amorphous microwires

    NASA Astrophysics Data System (ADS)

    Chiriac, H.; Óvári, T.-A.; Ţibu, M.

    2009-04-01

    Recently reported results on domain wall propagation within the inner core of bistable Fe-based positive magnetostrictive amorphous microwires opened up the way for future spintronic applications of amorphous microwires. Domain wall propagation has also been investigated in Co-based nearly zero magnetostrictive microwires, which become bistable under certain conditions. Wall velocity and mobility values were found to be superior in the latter type of microwires due to their much smaller magnetoelastic anisotropy. In this paper, the key role played by the surface domain structure of microwires in determining the wall mobility is investigated. Wall velocity measurements have been performed on (Co0.94Fe0.06)72.5Si12.5B15 microwires in as-cast glass-coated state and after glass removal with a hydrofluoric acid solution. Surface magnetization has been studied employing magneto-optical Kerr effect. The results show that both as-cast glass-coated microwires and microwires with the glass coating removed, which are bistable, display a helical magnetization in the surface region. The direction of the magnetization in this region affects the mobility of the propagating wall due to the stray fields associated with the preponderant components of the magnetization.

  15. The cosmic neutrino background

    NASA Technical Reports Server (NTRS)

    Dar, Arnon

    1991-01-01

    The cosmic neutrino background is expected to consist of relic neutrinos from the big bang, of neutrinos produced during nuclear burning in stars, of neutrinos released by gravitational stellar collapse, and of neutrinos produced by cosmic ray interactions with matter and radiation in the interstellar and intergalactic medium. Formation of baryonic dark matter in the early universe, matter-antimatter annihilation in a baryonic symmetric universe, and dark matter annihilation could have also contributed significantly to the cosmic neutrino background. The purpose of this paper is to review the properties of these cosmic neutrino backgrounds, the indirect evidence for their existence, and the prospects for their detection.

  16. The Cosmic Background Explorer.

    ERIC Educational Resources Information Center

    Gulkis, Samuel; And Others

    1990-01-01

    Outlines the Cosmic Background Explorer (COBE) mission to measure celestial radiation. Describes the instruments used and experiments involving differential microwave radiometers, and a far infrared absolute spectrophotometer. (YP)

  17. Direct Observation of Cosmic Strings Via Their Strong Gravitational Lensing Effect. 1. Predictions for High Resolution Imaging Surveys

    SciTech Connect

    Gasparini, Maria Alice; Marshall, Phil; Treu, Tommaso; Morganson, Eric; Dubath, Florian; /Santa Barbara, KITP

    2007-11-14

    We use current theoretical estimates for the density of long cosmic strings to predict the number of strong gravitational lensing events in astronomical imaging surveys as a function of angular resolution and survey area. We show that angular resolution is the single most important factor, and that interesting limits on the dimensionless string tension G{mu}/c{sup 2} can be obtained by existing and planned surveys. At the resolution of the Hubble Space Telescope (0'.14), it is sufficient to survey of order a square degree -- well within reach of the current HST archive -- to probe the regime G{mu}/c{sup 2} {approx} 10{sup -8}. If lensing by cosmic strings is not detected, such a survey would improve the limit on the string tension by an order of magnitude on that available from the cosmic microwave background. At the resolution (0'.028) attainable with the next generation of large ground based instruments, both in the radio and the infra-red with adaptive optics, surveying a sky area of order ten square degrees will allow us to probe the G{mu}/c{sup 2} {approx} 10{sup -9} regime. These limits will not be improved significantly by increasing the solid angle of the survey.

  18. Reliability of trajectory identification for cosmic heavy ions and cytogenetic effects of their passage through plant seeds.

    PubMed

    Facius, R; Reitz, G; Bucker, H; Nevzgodina, L V; Maximova, E N; Kaminskaya, E V; Vikrov, A I; Marenny, A M; Akatov YuA

    1990-01-01

    The potentially specific importance of the study of heavy ions from galactic cosmic rays for the understanding of radiation protection in manned spaceflight continues to stimulate spaceflight experiments in order to investigate the radiobiological properties of these ions. Chromosome aberrations as an expression of a direct assault on the genome are of particular interest in view of carcinogenesis as the primary radiation risk for man in space. An essential technical ingredient of such spaceflight experiments is the visual nuclear track detector which permits identification of those biological test organisms which have been affected by cosmic heavy ions. We describe such a technique and report on an analysis of the qualitative and quantitative reliability of this identification of particle trajectories in layers of biological test organisms. The incidence of chromosome aberrations in cells of lettuce seeds, Lactuca sativa, exposed during the Kosmos 1887 mission, was determined for seeds hit by cosmic heavy ions. In those seeds the incidence of both single and multiple chromosome aberrations was enhanced. PMID:11537512

  19. The effect of the changing polarity and neutral sheet of the IMF on the cosmic ray diurnal anisotropy at neutron monitor energies

    NASA Technical Reports Server (NTRS)

    Van Staden, M. L.; Potgieter, M. S.

    1991-01-01

    A drift with a simulated wavy neutral sheet have been used to study the effects of the reversal of the solar magnetic field every 11 years and the changes in the waviness of the heliospheric neutral sheet, corresponding to changes in solar activity, on the diurnal anisotropy at an energy of 20 GeV. The results indicate that the long-term behavior of the diurnal anisotropy, especially the phase shift from one solar minimum period to another, which seems to depend on the polarity of the IMF, has a theoretical explanation in the drift picture of the modulation of cosmic rays in the heliosphere.

  20. A new calculation of the cosmic-ray antiproton spectrum in the Galaxy and heliospheric modulation effects on this spectrum using a drift plus wavy current sheet model

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Potgieter, M. S.

    1989-01-01

    The expected interstellar antiproton spectrum arising from cosmic-ray interactions in the Galaxy is recalculated, and the modulation of both antiprotons and protons is calculated using a two-dimensional modulation model incorporating gradient and curvature drifts and a wavy current sheet as well as the usual diffusion, convection, and energy-loss effects. Significant differences in the antiproton/proton ratio for different solar magnetic field polarities are predicted as well as a 'low-energy' component for antiprotons below about 1 GeV.

  1. Early Results from the LRO Cosmic Ray Telescope for the Effects of Radiation (CRaTER) During this Historic Solar Minimum (Invited)

    NASA Astrophysics Data System (ADS)

    Spence, H. E.; Kasper, J. C.; Golightly, M. J.; Blake, J. B.; Mazur, J. E.; Townsend, L. W.; Case, A. W.; Looper, M. D.; Larsen, B. A.; Stubbs, T. J.; Zeitlin, C. J.; Semones, E.; Onsager, T. G.; Huang, C.; Jordan, A.

    2009-12-01

    We describe early results from a new instrument, the Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which is providing measurements of energetic particles while in orbit around the Moon onboard the Lunar Reconnaissance Orbiter (LRO) mission. CRaTER measures the effects of ionizing energy loss in matter due to penetrating solar energetic protons (SEP) and galactic cosmic rays (GCR), specifically in six silicon solid-state detectors and after interactions with tissue-equivalent plastic (TEP), a synthetic analog of human tissue. The CRaTER investigation quantifies the linear energy transfer (LET) spectrum in these materials through direct measurements with the lunar space radiation environment, particularly the interactions of ions with energies above 10 MeV. Combined with models of radiation transport through materials, CRaTER LET measurements constrain models of the biological effects of ionizing radiation in the lunar environment as well as provide valuable information on radiation effects on electronic systems in deep space. In addition to these human exploration goals, CRaTER measurement capabilities provide new insights on the spatial and temporal variability of the SEP and GCR populations and their interactions with the lunar surface. We present an overview of the CRaTER instrument, its exploration and science goals, and early results from flight observations obtained since LRO’s launch in June 2009 until present, an interesting interval during this historic solar minimum accompanied by record high GCR intensity.

  2. Delayed recombination and cosmic parameters

    NASA Astrophysics Data System (ADS)

    Galli, Silvia; Bean, Rachel; Melchiorri, Alessandro; Silk, Joseph

    2008-09-01

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, ns, and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z*=1078±11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1σ to R=1.734±0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: γα<0.39 and γi<0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  3. Delayed recombination and cosmic parameters

    SciTech Connect

    Galli, Silvia; Melchiorri, Alessandro; Bean, Rachel; Silk, Joseph

    2008-09-15

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, n{sub s}, and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z{sub *}=1078{+-}11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1{sigma} to R=1.734{+-}0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: {epsilon}{sub {alpha}}<0.39 and {epsilon}{sub i}<0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  4. Maria Montessori's Cosmic Vision, Cosmic Plan, and Cosmic Education

    ERIC Educational Resources Information Center

    Grazzini, Camillo

    2013-01-01

    This classic position of the breadth of Cosmic Education begins with a way of seeing the human's interaction with the world, continues on to the grandeur in scale of time and space of that vision, then brings the interdependency of life where each growing human becomes a participating adult. Mr. Grazzini confronts the laws of human nature in…

  5. Gravitational scattering of photons off cosmic strings

    NASA Astrophysics Data System (ADS)

    Chu, Yi-Zen; Vachaspati, Tanmay

    2013-04-01

    Photons can gravitationally scatter off a cosmic string loop and gain or lose energy. We consider the spectral distortion induced by cosmic string loops placed in an ambient thermal bath of photons. The fractional deviation from a thermal spectrum caused by cosmic strings is estimated to scale as (GNμ)2z2, where GN is Newton’s constant, μ is the string tension, and z is the cosmological redshift after which spectral distortions can survive. This effect is large enough to potentially be of observational interest.

  6. D-term inflation without cosmic strings.

    PubMed

    Urrestilla, J; Achúcarro, A; Davis, A C

    2004-06-25

    We present a superstring-inspired version of D-term inflation that does not lead to cosmic string formation and appears to satisfy the current cosmic microwave background constraints. It differs from minimal D-term inflation by a second pair of charged superfields that makes the strings nontopological (semilocal). The strings are also Bogomol'nyi-Prasad-Sommerfield strings, so the scenario is expected to survive supergravity corrections. The second pair of charged superfields arises naturally in several brane and conifold scenarios, but its effect on cosmic string formation had not been noticed so far. PMID:15244993

  7. Cosmic secrets

    NASA Astrophysics Data System (ADS)

    Schommers, W.

    1. The absolute truth. 1.1. Final truth. 1.2. Two important questions. 1.3. Why does the cosmos exist? 1.4. Are the laws of nature independent of the observer's own nature? 1.5. Self0indulgence was dominant. 1.6. Newton's mechanics and its overestimation. 1.7. Scientific realism. 1.8. An important principle: as little outside world as possible. 1.9. Inside world and outside world. 1.10. Principal questions. 1.11. How does science progress? 1.12. Final remarks -- 2. The projection principle. 2.1. The elements of space and time. 2.2. Relationship between matter and space-time. 2.3. Two relevant features. 2.4. Two kinds of "objects". 2.5. Perception processes. 2.6. Inside world and outside world. 2.7. The influence of evolution. 2.8. Information in the picture versus information in basic reality (outside reality). 2.9. Other biological systems. 2.10. How many (geometrical) objects can be in space-time? 2.11. Two types of space-time? 2.12. Summary -- 3. Fictitious realities. 3.1. Conventional quantum theory: critical remarks. 3.2. The projection principle in connection with fictitious realities. 3.3. Distribution of information. 3.4. Basic transformation effects. 3.5. Pictures within projection theory. 3.6. Auxiliary construction. 3.7. Basic laws. 3.8. Extension of conventional quantum theory. 3.9. Only processes are relevant! 3.10. Interactions. 3.11. Distance-independent interactions. 3.12. Arbitrary jumps within (r, t)-space. 3.13.Mach's principle: preliminary remarks. 3.14. Can a lone, elementary object exist in the cosmos? 3.15. The meaning of the potential functions. 3.16. Time. 3.17. Time travel in physics. 3.18. Summary -- 4. Basic reality and levels of reality. 4.1. Hard objects. 4.2. General physical laws. 4.3. States of mind. 4.4. Outside world and basic reality. 4.5. Objective processes. 4.6. Observations. 4.7. No interactions within (r, t)-space. 4.8. The general cannot be deduced from the particular. 4.9. Remarks on the notion "world equation". 4.10. On

  8. Stages and Conformations of the Tau Repeat Domain during Aggregation and Its Effect on Neuronal Toxicity*

    PubMed Central

    Kumar, Satish; Tepper, Katharina; Kaniyappan, Senthilvelrajan; Biernat, Jacek; Wegmann, Susanne; Mandelkow, Eva-Maria; Müller, Daniel J.; Mandelkow, Eckhard

    2014-01-01

    Several neurodegenerative diseases are characterized by the aggregation and posttranslational modifications of Tau protein. Its “repeat domain” (TauRD) is mainly responsible for the aggregation properties, and oligomeric forms are thought to dominate the toxic effects of Tau. Here we investigated the conformational transitions of this domain during oligomerization and aggregation in different states of β-propensity and pseudo-phosphorylation, using several complementary imaging and spectroscopic methods. Although the repeat domain generally aggregates more readily than full-length Tau, its aggregation was greatly slowed down by phosphorylation or pseudo-phosphorylation at the KXGS motifs, concomitant with an extended phase of oligomerization. Analogous effects were observed with pro-aggregant variants of TauRD. Oligomers became most evident in the case of the pro-aggregant mutant TauRDΔK280, as monitored by atomic force microscopy, and the fluorescence lifetime of Alexa-labeled Tau (time-correlated single photon counting (TCSPC)), consistent with its pronounced toxicity in mouse models. In cell models or primary neurons, neither oligomers nor fibrils of TauRD or TauRDΔK280 had a toxic effect, as seen by assays with lactate dehydrogenase and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, respectively. However, oligomers of pro-aggregant TauRDΔK280 specifically caused a loss of spine density in differentiated neurons, indicating a locally restricted impairment of function. PMID:24825901

  9. In-medium effects for nuclear matter in the Fermi-energy domain

    NASA Astrophysics Data System (ADS)

    Lopez, O.; Durand, D.; Lehaut, G.; Borderie, B.; Frankland, J. D.; Rivet, M. F.; Bougault, R.; Chbihi, A.; Galichet, E.; Guinet, D.; La Commara, M.; Le Neindre, N.; Lombardo, I.; Manduci, L.; Marini, P.; Napolitani, P.; Pârlog, M.; Rosato, E.; Spadaccini, G.; Vient, E.; Vigilante, M.; Indra Collaboration

    2014-12-01

    Background: By looking specifically at free nucleons (here protons), we present for the first time a comprehensive body of experimental results concerning the mean free path, the nucleon-nucleon cross-section and in-medium effects in nuclear matter. Purpose: Using the large dataset of exclusive measurements provided by the 4 π array INDRA, we determine the relative degree of stopping as a function of system mass and bombarding energy. We show that the stopping can be directly related to the transport properties in the nuclear medium. Methods: We perform a systematic study of protons nuclear stopping in central collisions for heavy-ion induced reactions in the Fermi-energy domain, between 15 A and 100 A MeV. Results: It is found that the mean free path exhibits a maximum at λN N=9.5 ±2 fm, around Einc=35 A MeV incident energy and decreases toward an asymptotic value λN N=4.5 ±1 fm at Einc=100 A MeV. Conclusions: After accounting for Pauli blocking of elastic nucleon-nucleon collisions, it is shown that the effective in-medium N N cross section is further reduced compared to the free value in this energy range. Therefore, in-medium effects cannot be neglected in the Fermi-energy range. These results bring new fundamental inputs for microscopic descriptions of nuclear reactions in the Fermi-energy domain.

  10. The effects of acute aerobic activity on cognition and cross-domain transfer to eating behavior

    PubMed Central

    Lowe, Cassandra J.; Hall, Peter A.; Vincent, Corita M.; Luu, Kimberley

    2014-01-01

    Prior studies have demonstrated that a single session of aerobic exercise can enhance cognitive functioning; specifically, the inhibition facet of executive function (EF). Additionally, previous research has demonstrated that inhibitory abilities are essential for effective dietary self-control. However, it is currently unknown whether exercise induced enhancements in EF also facilitate self-control in the dietary domain. The present study sought to determine whether a single session of aerobic exercise enhances EF, and whether there is a transfer effect to dietary self-control. Thirty four undergraduate students were randomly assigned to one of three exercise conditions: (1) minimal exercise; (2) moderate intensity exercise (30% heart rate reserve); (3) vigorous intensity exercise (50% heart rate reserve). After the exercise bout, participants completed three standardized EF tasks followed by a bogus taste test for three appetitive snack foods (milk chocolate and potato chips) and two control foods (dark chocolate and crackers). The amount of food consumed during the taste test was covertly measured. The results revealed a significant main effect of treatment condition on the Stroop task performance, but not Go-NoGo (GNG) and Stop Signal task performance. Findings with respect to food consumption revealed that EF moderated the treatment effect, such that those with larger exercise effects on Stroop performance in the moderate intensity exercise condition consumed more control foods (but not less appetitive foods). These findings support the contention that a single bout of aerobic exercise enhances EF, and may have transfer effects to the dietary domain, but that such effects may be indirect in nature. PMID:24808850

  11. The effects of acute aerobic activity on cognition and cross-domain transfer to eating behavior.

    PubMed

    Lowe, Cassandra J; Hall, Peter A; Vincent, Corita M; Luu, Kimberley

    2014-01-01

    Prior studies have demonstrated that a single session of aerobic exercise can enhance cognitive functioning; specifically, the inhibition facet of executive function (EF). Additionally, previous research has demonstrated that inhibitory abilities are essential for effective dietary self-control. However, it is currently unknown whether exercise induced enhancements in EF also facilitate self-control in the dietary domain. The present study sought to determine whether a single session of aerobic exercise enhances EF, and whether there is a transfer effect to dietary self-control. Thirty four undergraduate students were randomly assigned to one of three exercise conditions: (1) minimal exercise; (2) moderate intensity exercise (30% heart rate reserve); (3) vigorous intensity exercise (50% heart rate reserve). After the exercise bout, participants completed three standardized EF tasks followed by a bogus taste test for three appetitive snack foods (milk chocolate and potato chips) and two control foods (dark chocolate and crackers). The amount of food consumed during the taste test was covertly measured. The results revealed a significant main effect of treatment condition on the Stroop task performance, but not Go-NoGo (GNG) and Stop Signal task performance. Findings with respect to food consumption revealed that EF moderated the treatment effect, such that those with larger exercise effects on Stroop performance in the moderate intensity exercise condition consumed more control foods (but not less appetitive foods). These findings support the contention that a single bout of aerobic exercise enhances EF, and may have transfer effects to the dietary domain, but that such effects may be indirect in nature. PMID:24808850

  12. Tip traveling and grain boundary effects in domain formation using piezoelectric force microscopy for probe storage applications

    NASA Astrophysics Data System (ADS)

    Kim, Yunseok; Cho, Youngsang; Hong, Seungbum; Bühlmann, Simon; Park, Hongsik; Min, Dong-Ki; Kim, Seung-Hyun; No, Kwangsoo

    2006-10-01

    Tip traveling and grain boundary effects have been investigated by varying the voltage pulse width on Pb(Zr0.25Ti0.75)O3 films using piezoelectric force microscopy. Depending on pulse width, the authors distinguish three regions of domain formation. It was found that grain boundaries act as electric shield, which prevents domain growth across grains. Domain growth across grains was mainly due to the tip traveling effect. Calculations based on the authors' model matched well with experimental data.

  13. Unveiling the Origin of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Olinto, Angela V.

    2015-04-01

    The origin of cosmic rays, relativistic particles that range from below GeVs to hundreds of EeVs, is a century old mystery. Extremely energetic phenomena occurring over a wide range of scales, from the Solar System to distant galaxies, are needed to explain the non-thermal particle spectrum that covers over 12 orders of magnitude. Space Missions are the most effective platforms to study the origin and history of these cosmic particles. Current missions probe particle acceleration and propagation in the Solar System and in our Galaxy. This year ISS-CREAM and CALET join AMS in establishing the International Space Station as the most active site for studying the origin of Galactic cosmic rays. These missions will study astrophysical cosmic ray accelerators as well as other possible sources of energetic particles such as dark matter annihilation or decay. In the future, the ISS may also be the site for studying extremely high-energy extragalactic cosmic rays with JEM-EUSO. We review recent results in the quest for unveiling the sources of energetic particles with balloons and space payloads and report on activities of the Cosmic ray Science Interest Group (CosmicSIG) under the Physics of the Cosmos Program Analysis Group (PhysPAG).

  14. EFFECT OF DIPHTHERIA TOXIN T-DOMAIN ON ENDOSOMAL pH.

    PubMed

    Labyntsev, A J; Korotkevych, N V; Kolybo, D V; Komisarenko, S V

    2015-01-01

    A key step in the mode of cytotoxic action of diphtheria toxin (DT) is the transfer of its catalytic domain (Cd) from endosomes into the cytosol. The main activity in this process is performed by the transport domain (Td), but the molecular mechanism of its action remains unknown. We have previously shown that Td can have some influence on the endosomal transport of DT The aim of this work was to study the effect of diphtheria toxin on the toxin compartmentalization in the intracellular transporting pathway and endosomal pH. We used recombinant fragments of DT which differed only by the presence of Td in their structure, fused with fluorescent proteins. It was shown that the toxin fragment with Td moved slower by the pathway early-late endosomes-lysosomes, and had a slightly different pattern of colocalization with endosomal markers than DT fragment without Td. In addition, endosomes containing DT fragments with Td had a constant pH of about 6.5 from the 10th to 50th minute of observation, for the same time endosomes containing DT fragments without Td demonstrated a decrease in pH from 6.3 to 5.5. These results indicate that Td inhibits acidification of endosomal medium. One of possible explanations for this may be the effect of the ion channel formed by the T-domain on the process of the endosomal acidification. This property of Td may not only inhibit maturation of endosomes but also inhibit activation of endosomal pH-dependent proteases, and this promotes successful transport of Cd into the cell cytosol. PMID:26547959

  15. Phosphatidyl alcohols: effect of head group size on domain forming properties and interactions with sterols.

    PubMed

    Jaikishan, Shishir; Björkbom, Anders; Slotte, J Peter

    2010-08-01

    In this study, we have examined the membrane properties and sterol interactions of phosphatidyl alcohols varying in the size of the alcohol head group coupled to the sn-3-linked phosphate. Phosphatidyl alcohols of interest were dipalmitoyl derivatives with methanol (DPPMe), ethanol (DPPEt), propanol (DPPPr), or butanol (DPPBu) head groups. The Phosphatidyl alcohols are biologically relevant, because they can be formed in membranes by the phospholipase D reaction in the presence of alcohol. The melting behavior of pure phosphatidyl alcohols and mixtures with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or cholesterol was assessed using high sensitivity differential scanning calorimetry (DSC). DPPMe had the highest melting temperature ( approximately 49 degrees C), whereas the other phosphatidyl alcohols had similar melting temperatures as DPPC ( approximately 40-41 degrees C). All phosphatidyl alcohols, except DPPMe, also showed good miscibility with DPPC. The effects of cholesterol on the melting behavior and membrane order in multilamellar bilayer vesicles were assessed using steady-state anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) and DSC. The ordering effect of cholesterol in the fluid phase was lower for all phosphatidyl alcohols as compared to DPPC and decreased with increasing head group size. The formation of ordered domains containing the phosphatidyl alcohols in complex bilayer membranes was determined using fluorescence quenching of DPH or the sterol analogue cholesta-5,7,(11)-trien-3-beta-ol (CTL). The phosphatidyl alcohols did not appear to form sterol-enriched ordered domains, whereas DPPMe, DPPEt appeared to form ordered domains in the temperature window examined (10-50 degrees C). The partitioning of CTL into bilayer membranes containing phosphatidyl alcohols was to a small extent increased for DPPMe and DPPEt, but in general, sterol interactions were weak or unfavorable for the phosphatidyl alcohols. Our results show that the biophysical

  16. IP effects on electromagnetic data of deep-sea hydrothermal deposits in time domain

    NASA Astrophysics Data System (ADS)

    KIM, H. J.; Jang, H.; Ha, W.

    2015-12-01

    A transient electromagnetic (TEM) system using a small loop source is advantageous to the development of compact, autonomous instruments which are well suited to submersible-based surveys. Since electrical conductivity of subseafloor materials can be frequency dependent, these induced polarization (IP) effects may affect the reliability of TEM data interpretation. In this study, we investigate IP effects on TEM responses of deep-sea hydrothermal mineral deposits with a thin sediment cover. Time-domain target signals are larger and appear earlier in horizontal magnetic fields than in vertical ones. IP effects cause transient magnetic fields to enhance initially, to decay rapidly and then to reverse the polarity. The DC conductivity and IP chargeability in Cole-Cole parameters influence the time of sign reversal and the enhancement of the target response, simultaneously. The reversal time is almost invariant with the time constant while the target signal is almost invariant with the frequency exponent.

  17. Role of domain walls in the abnormal photovoltaic effect in BiFeO3

    PubMed Central

    Bhatnagar, Akash; Roy Chaudhuri, Ayan; Heon Kim, Young; Hesse, Dietrich; Alexe, Marin

    2013-01-01

    Recently, the anomalous photovoltaic (PV) effect in BiFeO3 (BFO) thin films, which resulted in open circuit voltages (Voc) considerably larger than the band gap of the material, has generated a revival of the entire field of photoferroelectrics. Here, via temperature-dependent PV studies, we prove that the bulk photovoltaic (BPV) effect, which has been studied in the past for many non-centrosymmetric materials, is at the origin of the anomalous PV effect in BFO films. Moreover, we show that irrespective of the measurement geometry, Voc as high as 50 V can be achieved by controlling the conductivity of domain walls (DW). We also show that photoconductivity of the DW is markedly higher than in the bulk of BFO.

  18. Cosmic statistics of statistics

    NASA Astrophysics Data System (ADS)

    Szapudi, István; Colombi, Stéphane; Bernardeau, Francis

    1999-12-01

    The errors on statistics measured in finite galaxy catalogues are exhaustively investigated. The theory of errors on factorial moments by Szapudi & Colombi is applied to cumulants via a series expansion method. All results are subsequently extended to the weakly non-linear regime. Together with previous investigations this yields an analytic theory of the errors for moments and connected moments of counts in cells from highly non-linear to weakly non-linear scales. For non-linear functions of unbiased estimators, such as the cumulants, the phenomenon of cosmic bias is identified and computed. Since it is subdued by the cosmic errors in the range of applicability of the theory, correction for it is inconsequential. In addition, the method of Colombi, Szapudi & Szalay concerning sampling effects is generalized, adapting the theory for inhomogeneous galaxy catalogues. While previous work focused on the variance only, the present article calculates the cross-correlations between moments and connected moments as well for a statistically complete description. The final analytic formulae representing the full theory are explicit but somewhat complicated. Therefore we have made available a fortran program capable of calculating the described quantities numerically (for further details e-mail SC at colombi@iap.fr). An important special case is the evaluation of the errors on the two-point correlation function, for which this should be more accurate than any method put forward previously. This tool will be immensely useful in the future for assessing the precision of measurements from existing catalogues, as well as aiding the design of new galaxy surveys. To illustrate the applicability of the results and to explore the numerical aspects of the theory qualitatively and quantitatively, the errors and cross-correlations are predicted under a wide range of assumptions for the future Sloan Digital Sky Survey. The principal results concerning the cumulants ξ, Q3 and Q4 is that

  19. Cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1973-01-01

    The isotopic composition of cosmic rays is studied in order to develop the relationship between cosmic rays and stellar processes. Cross section and model calculations are reported on isotopes of H, He, Be, Al and Fe. Satellite instrument measuring techniques separate only the isotopes of the lighter elements.

  20. Interactions of cosmic superstrings

    SciTech Connect

    Jackson, Mark G.; /Fermilab

    2007-06-01

    We develop methods by which cosmic superstring interactions can be studied in detail. These include the reconnection probability and emission of radiation such as gravitons or small string loops. Loop corrections to these are discussed, as well as relationships to (p; q)-strings. These tools should allow a phenomenological study of string models in anticipation of upcoming experiments sensitive to cosmic string radiation.

  1. Deepening Cosmic Education

    ERIC Educational Resources Information Center

    Leonard, Gerard

    2013-01-01

    This article is a special blend of research, theory, and practice, with clear insight into the origins of Cosmic Education and cosmic task, while recalling memories of student explorations in botany, in particular, episodes from Mr. Leonard's teaching. Mr. Leonard speaks of a storytelling curriculum that eloquently puts perspective into dimensions…

  2. Low-Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Wiedenbeck, M. E.; ACE/CRIS Collaboration

    2002-12-01

    Cosmic rays with energies below about 10 GeV/nucleon have been measured with high precision as a result of experiments on the HEAO, Ulysses, and ACE spacecrafts. The observations provide energy spectra, elemental abundances, and isotopic composition for elements up through Z=30. They include both stable and radioactive nuclides that are synthesized in stars or are produced by nuclear fragmentation during diffusion at high energies through interstellar medium. From these data one obtains a rather detailed picture of the origin of low-energy cosmic rays. For refractory species, the cosmic-ray source composition closely resembles that of the Sun, suggesting that cosmic rays are accelerated from a well-mixed sample of interstellar matter. A chemical fractionation process has depleted the abundances of volatile elements relative to refractories. Using various radioactive clock isotopes it has been shown that particle acceleration occurs at least 105 years after supernova nucleosynthesis and that the accelerated particles diffuse in the Galaxy for approximately 15 Myr after acceleration. Energy spectra and secondary-to-primary ratios are reasonably well accounted for by models in which particles gain the bulk of their energy in a single encounter with a strong shock. Among the large number of species that have been measured, 22Ne stands out as the only nuclide with an abundance that is clearly much different than solar. To test models proposed to account for this anomaly, the data are being analyzed for predicted smaller effects on abundances of other nuclides. In addition to providing a detailed understanding of the origin and acceleration of low-energy cosmic rays, these data are providing constraints on the chemical evolution of interstellar matter. This work was supported by NASA at Caltech (under grant NAG5-6912), JPL, NASA/GSFC, and Washington U.

  3. Effect of the domain shape on noncollinear second-harmonic emission in disordered quadratic media.

    PubMed

    Ayoub, Mousa; Passlick, Markus; Koynov, Kaloian; Imbrock, Jörg; Denz, Cornelia

    2013-12-16

    We study the role of the individual ferroelectric domain shape on the second-harmonic emission in strontium barium niobate featuring a random quadratic nonlinearity. The noncollinearly emitted second-harmonic signal is scanned in the far-field at different incident angles for different domain size distributions. This offers the possibility to retrieve the Fourier spectrum, corresponding to the spatial domain distribution and domain shape. Based on images of the domain structures retrieved by Čerenkov-type second-harmonic microscopy, domain patterns are simulated, the second-harmonic intensities are calculated, and finally compared with the measurements. PMID:24514720

  4. Annealing effects on the microstructure and magnetic domain structures of duplex stainless steel studied by in situ technique

    NASA Astrophysics Data System (ADS)

    Guo, L. Q.; Zhao, X. M.; Li, M.; Zhang, W. J.; Bai, Y.; Qiao, L. J.

    2012-10-01

    The effects of annealing temperature on the microstructure and the magnetic domain structures of duplex stainless steel 2507 were investigated by the magnetic force microscopy (MFM), X-ray diffraction (XRD), and electron backscattered diffraction (EBSD). The MFM and XRD results indicated that the volume fraction of ferrite phase increased with increasing annealing temperature, but the lattice constants kept constant. Moreover, with the rise of annealing temperature, the magnetic domain structure in the ferrite phase varied gradually, where the magnetic domain became thinner and the distribution turned more homogeneous. These results gave a direct evidence for the changes of microstructure and magnetic domain structure induced by the annealing treatment. EBSD analysis showed that the orientation of ferrite grains changed after annealing treatments, which coincided with the changes of the microstructure and the magnetic domain structures.

  5. Possible cosmic ray signatures in clouds?

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Parsons, R. D.; Wolfendale, A. W.

    2009-11-01

    The role of cosmic rays in cloud formation, by cloud condensation nuclei, is still not fully understood. Although it has been claimed by a number of authors that cosmic ray effects should be small—or even non-existent—it is still argued by others that cosmic ray effects do occur. The present work draws attention to the fact that cosmic rays do not constitute a continuous stream of particles but are characterized by occasional near-simultaneous showers of particles. Under certain circumstances, such showers should leave a signature in clouds—near vertical 'cigar-shaped clouds'—and this work describes their properties. Our own observations have revealed no such structure, but it would be valuable to have a more careful search made.

  6. Our Cosmic Insignificance

    PubMed Central

    Kahane, Guy

    2014-01-01

    The universe that surrounds us is vast, and we are so very small. When we reflect on the vastness of the universe, our humdrum cosmic location, and the inevitable future demise of humanity, our lives can seem utterly insignificant. Many philosophers assume that such worries about our significance reflect a banal metaethical confusion. They dismiss the very idea of cosmic significance. This, I argue, is a mistake. Worries about cosmic insignificance do not express metaethical worries about objectivity or nihilism, and we can make good sense of the idea of cosmic significance and its absence. It is also possible to explain why the vastness of the universe can make us feel insignificant. This impression does turn out to be mistaken, but not for the reasons typically assumed. In fact, we might be of immense cosmic significance—though we cannot, at this point, tell whether this is the case. PMID:25729095

  7. Functional Analysis of a Bacterial Antifreeze Protein Indicates a Cooperative Effect between Its Two Ice-Binding Domains.

    PubMed

    Wang, Chen; Oliver, Erin E; Christner, Brent C; Luo, Bing-Hao

    2016-07-19

    Antifreeze proteins make up a class of ice-binding proteins (IBPs) that are possessed and expressed by certain cold-adapted organisms to enhance their freezing tolerance. Here we report the biophysical and functional characterization of an IBP discovered in a bacterium recovered from a deep glacial ice core drilled at Vostok Station, Antarctica (IBPv). Our study showed that the recombinant protein rIBPv exhibited a thermal hysteresis of 2 °C at concentrations of >50 μM, effectively inhibited ice recrystallization, and enhanced bacterial viability during freeze-thaw cycling. Circular dichroism scans indicated that rIBPv mainly consists of β strands, and its denaturing temperature was 53.5 °C. Multiple-sequence alignment of homologous IBPs predicted that IBPv contains two ice-binding domains, a feature unique among known IBPs. To examine functional differences between the IBPv domains, each domain was cloned, expressed, and purified. The second domain (domain B) expressed greater ice binding activity. Data from thermal hysteresis and gel filtration assays supported the idea that the two domains cooperate to achieve a higher ice binding effect by forming heterodimers. However, physical linkage of the domains was not required for this effect. PMID:27359086

  8. Neutron irradiation effects on domain wall mobility and reversibility in lead zirconate titanate thin films

    SciTech Connect

    Graham, Joseph T.; Brennecka, Geoff L.; Ihlefeld, Jon F.; Ferreira, Paulo; Small, Leo; Duquette, David; Apblett, Christopher; Landsberger, Sheldon

    2013-03-28

    The effects of neutron-induced damage on the ferroelectric properties of thin film lead zirconate titanate (PZT) were investigated. Two sets of PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} films of varying initial quality were irradiated in a research nuclear reactor up to a maximum 1 MeV equivalent neutron fluence of (5.16 {+-} 0.03) Multiplication-Sign 10{sup 15} cm{sup -2}. Changes in domain wall mobility and reversibility were characterized by polarization-electric field measurements, Rayleigh analysis, and analysis of first order reversal curves (FORC). With increasing fluence, extrinsic contributions to the small-signal permittivity diminished. Additionally, redistribution of irreversible hysterons towards higher coercive fields was observed accompanied by the formation of a secondary hysteron peak following exposure to high fluence levels. The changes are attributed to the radiation-induced formation of defect dipoles and other charged defects, which serve as effective domain wall pinning sites. Differences in damage accumulation rates with initial film quality were observed between the film sets suggesting a dominance of pre-irradiation microstructure on changes in macroscopic switching behavior.

  9. Effects of grain size and disorder on domain wall propagation in CoFeB thin films

    NASA Astrophysics Data System (ADS)

    Voto, Michele; Lopez-Diaz, Luis; Torres, Luis

    2016-05-01

    Micromagnetic simulations are used to investigate the effect of disorder on field-driven domain wall motion in perpendicularly magnetized CoFeB thin films. It is found that some degree of inhomogeneity in the form of an irregular grain structure needs to be introduced in the model in order to account for the domain wall velocities measured experimentally, even for applied fields much larger than the finite propagation field induced by weak disorder in the film. Moreover, the details of this grain structure have a large impact on domain wall motion in this flow regime. In particular, it is found that, for a fixed applied field, domain wall velocity rapidly increases with grain size up to a diameter of 40 nm, above which it slowly decreases. This is explained showing that the grain structure of the material introduces a new form of dissipation of energy via spin wave emission during domain wall propagation. We focus on the relation between grain size and domain wall velocity, finding that the frequency of emission of spin waves packets during domain wall motion depends on the grain size and affects directly the domain wall velocity of propagation.

  10. Calculations of temperature and barometric effects for cosmic ray flux on the Earth surface using the CORSIKA code

    NASA Astrophysics Data System (ADS)

    Kovylyaeva, A. A.; Dmitrieva, A. N.; Tolkacheva, N. V.; Yakovleva, E. I.

    2013-02-01

    Results of simulation of the spectra of cosmic rays (CR) on the Earth surface by means of the CORSIKA code are presented. For simulation, a standard model of the atmosphere and additional ones (with changed temperature profile and changed values of pressure at sea level) were used. Spectra of particles were obtained in the energy range 0.1 - 100 GeV for five values of zenith angle (0, 15, 30, 45 and 60 degrees) and, for the vertical direction, for several altitudes (0 m, 500 m, 1000 m and 1500 m above sea level). Barometric and temperature coefficients for various components of CR were estimated from the simulation data.

  11. The Kinetic Sunyaev-Zel'dovich Effect as a Probe of the Physics of Cosmic Reionization: The Effect of Self-regulated Reionization

    NASA Astrophysics Data System (ADS)

    Park, H.; Shapiro, P. R.; Komatsu, E.; Iliev, I. T.; Ahn, K.; Mellema, G.

    2013-10-01

    We calculate the angular power spectrum of the Cosmic Microwave Background (CMB) temperature fluctuations induced by the kinetic Sunyaev-Zel‘dovich (kSZ) effect from the epoch of reionization (EOR). We use detailed N-body simulation with radiative transfer to follow inhomogeneous reionization of the intergalactic medium (IGM). For the first time we take into account the “self-regulation” of reionization: star formation in low-mass atomic-cooling halos (LMACH; 10e8 M_solar1e9 M_solar) dominate. While inclusion of self-regulation affects the amplitude of the kSZ power spectrum only modestly (~10%), it can change the duration of reionization by a factor of more than two.

  12. Effects of domain-specific exercise load on speed and accuracy of a domain-specific perceptual-cognitive task.

    PubMed

    Schapschröer, M; Baker, J; Schorer, J

    2016-08-01

    In the context of perceptual-cognitive expertise it is important to know whether physiological loads influence perceptual-cognitive performance. This study examined whether a handball specific physical exercise load influenced participants' speed and accuracy in a flicker task. At rest and during a specific interval exercise of 86.5-90% HRmax, 35 participants (experts: n=8, advanced: n=13, novices, n=14) performed a handball specific flicker task with two types of patterns (structured and unstructured). For reaction time, results revealed moderate effect sizes for group, with experts reacting faster than advanced and advanced reacting faster than novices, and for structure, with structured videos being performed faster than unstructured ones. A significant interaction for structure×group was also found, with experts and advanced players faster for structured videos, and novices faster for unstructured videos. For accuracy, significant main effects were found for structure with structured videos solved more accurately. A significant interaction for structure×group was revealed, with experts and advanced more accurate for structured scenes and novices more accurate for unstructured scenes. A significant interaction was also found for condition×structure; at rest, unstructured and structured scenes were performed with the same accuracy while under physical exercise, structured scenes were solved more accurately. No other interactions were found. These results were somewhat surprising given previous work in this area, although the impact of a specific physical exercise on a specific perceptual-cognitive task may be different from those tested generally. PMID:27173640

  13. Comparison of CREME (cosmic-ray effects on microelectronics) model LET (linear energy transfer) spaceflight dosimetry data

    SciTech Connect

    Letaw, J.R.; Adams, J.H.

    1986-07-15

    The galactic cosmic radiation (GCR) component of space radiation is the dominant cause of single-event phenomena in microelectronic circuits when Earth's magnetic shielding is low. Spaceflights outside the magnetosphere and in high inclination orbits are examples of such circumstances. In high-inclination orbits, low-energy (high LET) particles are transmitted through the field only at extreme latitudes, but can dominate the orbit-averaged dose. GCR is an important part of the radiation dose to astronauts under the same conditions. As a test of the CREME environmental model and particle transport codes used to estimate single event upsets, we have compiled existing measurements of HZE doses were compiled where GCR is expected to be important: Apollo 16 and 17, Skylab, Apollo Soyuz Test Project, and Kosmos 782. The LET spectra, due to direct ionization from GCR, for each of these missions has been estimated. The resulting comparisons with data validate the CREME model predictions of high-LET galactic cosmic-ray fluxes to within a factor of two. Some systematic differences between the model and data are identified.

  14. A Unified Frequency Domain Model to Study the Effect of Demyelination on Axonal Conduction

    PubMed Central

    Chaubey, Saurabh; Goodwin, Shikha J.

    2016-01-01

    Multiple sclerosis is a disease caused by demyelination of nerve fibers. In order to determine the loss of signal with the percentage of demyelination, we need to develop models that can simulate this effect. Existing time-based models does not provide a method to determine the influences of demyelination based on simulation results. Our goal is to develop a system identification approach to generate a transfer function in the frequency domain. The idea is to create a unified modeling approach for neural action potential propagation along the length of an axon containing number of Nodes of Ranvier (N). A system identification approach has been used to identify a transfer function of the classical Hodgkin–Huxley equations for membrane voltage potential. Using this approach, we model cable properties and signal propagation along the length of the axon with N node myelination. MATLAB/Simulink platform is used to analyze an N node-myelinated neuronal axon. The ability to transfer function in the frequency domain will help reduce effort and will give a much more realistic feel when compared to the classical time-based approach. Once a transfer function is identified, the conduction as a cascade of each linear time invariant system-based transfer function can be modeled. Using this approach, future studies can model the loss of myelin in various parts of nervous system. PMID:27103847

  15. A Unified Frequency Domain Model to Study the Effect of Demyelination on Axonal Conduction.

    PubMed

    Chaubey, Saurabh; Goodwin, Shikha J

    2016-01-01

    Multiple sclerosis is a disease caused by demyelination of nerve fibers. In order to determine the loss of signal with the percentage of demyelination, we need to develop models that can simulate this effect. Existing time-based models does not provide a method to determine the influences of demyelination based on simulation results. Our goal is to develop a system identification approach to generate a transfer function in the frequency domain. The idea is to create a unified modeling approach for neural action potential propagation along the length of an axon containing number of Nodes of Ranvier (N). A system identification approach has been used to identify a transfer function of the classical Hodgkin-Huxley equations for membrane voltage potential. Using this approach, we model cable properties and signal propagation along the length of the axon with N node myelination. MATLAB/Simulink platform is used to analyze an N node-myelinated neuronal axon. The ability to transfer function in the frequency domain will help reduce effort and will give a much more realistic feel when compared to the classical time-based approach. Once a transfer function is identified, the conduction as a cascade of each linear time invariant system-based transfer function can be modeled. Using this approach, future studies can model the loss of myelin in various parts of nervous system. PMID:27103847

  16. Research in cosmic and gamma ray astrophysics: Cosmic physics portion

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Schindler, Stephen

    1993-01-01

    Research in particle astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology is supported under NASA Grant NAGW-1919. A three-year proposal for continuation of support was submitted a year ago and put into effect 1 October 1992. This report is the combined progress report and continuation application called for under the Federal Demonstration Project. Gamma-ray Astrophysics at SRL is separately supported under NAGW-1919 and will be separately summarized and proposed. This report will document progress and plans for our particle spectroscopy activities and for related data analysis, calibration, and community service activities. A bibliography and a budget will be attached as appendices. The Caltech SRL research program includes a heavy emphasis on elemental and isotopic spectroscopy of energetic particles in the cosmic radiation; in solar, interplanetary, and anomalous 'cosmic' radiation; and in planetary magnetospheres as discussed.

  17. Effects of mode-mode and isospin-isospin correlations on domain formation of disoriented chiral condensates

    SciTech Connect

    Ikezi, N.; Asakawa, M.; Tsue, Y.

    2006-04-15

    The effects of mode-mode and isospin-isospin correlations on nonequilibrium chiral dynamics are investigated by using the method of the time-dependent variational approach with squeezed states as trial states. Our numerical simulations show that large domains of the disoriented chiral condensate (DCC) are formed because of the combined effect of the mode-mode and isospin-isospin correlations. Moreover, it is found that, when the mode-mode correlation is included, the DCC domain formation is accompanied by the amplification of the quantum fluctuation, which implies the squeezing of the state. However, neither the DCC domain formation nor the amplification of the quantum fluctuation is observed if only the isospin-isospin correlation is included. This suggests that the mode-mode coupling plays a key role in the DCC domain formation.

  18. Cosmic ray transport near the heliopause

    NASA Astrophysics Data System (ADS)

    Strauss, R. D.; Fichtner, H.; Potgieter, M. S.; le Roux, J. A.; Luo, X.

    2015-09-01

    In this paper we summarize our modelling efforts for cosmic rays near the heliopause, and discuss whether galactic cosmic ray modulation beyond the heliopause is possible and present an explanation for the anisotropic nature of the observed cosmic ray intensities in the very local interstellar medium. We show that (i) modulation beyond the heliopause is possible, but highly dependent on the assumed parameters (most notable, the perpendicular diffusion coefficient). Treating the heliopause as a tangential discontinuity, significantly damps this modulation effect and leads to modelled results that are similar to Voyager 1 observations. (ii) By choosing an appropriate functional form of the perpendicular diffusion coefficient on the pitch-angle level, we are able to account for the anisotropic behaviour observed for both galactic and anomalous cosmic rays in the local interstellar medium.

  19. Development of the cosmic ray techniques

    NASA Technical Reports Server (NTRS)

    Rossi, B.

    1982-01-01

    It has been found that most advances of cosmic-ray physics have been directly related to the development of observational techniques. The history of observational techniques is discussed, taking into account ionization chambers, refinements applied to ionization chambers to make them suitable for an effective use in the study of cosmic radiation, the Wulf-type electrometer, the electrometer designed by Millikan and Neher, the Geiger-Mueller counter, the experiment of Bothe and Kolhoerster, the coincidence circuit, and a cosmic-ray 'telescope'. Attention is given to a magnetic lens for cosmic rays, a triangular arrangement of Geiger-Mueller counters used to demonstrate the production of a secondary radiation, a stereoscopic cloud-chamber photograph of showers, the cloud-chamber picture which provided the first evidence of the positive electron, and arrangements for studying photon components, mu-mesons, and air showers.

  20. Relativistic transport theory for cosmic-rays

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1985-01-01

    Various aspects of the transport of cosmic-rays in a relativistically moving magnetized plasma supporting a spectrum of hydromagnetic waves that scatter the cosmic-rays are presented. A local Lorentz frame moving with the waves or turbulence scattering the cosmic-rays is used to specify the individual particle momentum. The comoving frame is in general a noninertial frame in which the observer's volume element is expanding and shearing, geometric energy change terms appear in the cosmic-ray transport equation which consist of the relativistic generalization of the adiabatic deceleration term and a further term involving the acceleration vector of the scatterers. A relativistic version of the pitch angle evolution equation, including the effects of adiabatic focussing, pitch angle scattering, and energy changes is presented.

  1. Eleventh European Cosmic Ray Symposium

    NASA Astrophysics Data System (ADS)

    1988-08-01

    The biannual Symposium includes all aspects of cosmic ray research. The scientific program was organized under three main headings: cosmic rays in the heliosphere, cosmic rays in the interstellar and extragalactic space, and properties of high-energy interactions as studied by cosmic rays. Selected short communications out of 114 contributed papers were indexed separately for the INIS database.

  2. Very similar spacing-effect patterns in very different learning/practice domains.

    PubMed

    Kornmeier, Jürgen; Spitzer, Manfred; Sosic-Vasic, Zrinka

    2014-01-01

    Temporally distributed ("spaced") learning can be twice as efficient as massed learning. This "spacing effect" occurs with a broad spectrum of learning materials, with humans of different ages, with non-human vertebrates and also invertebrates. This indicates, that very basic learning mechanisms are at work ("generality"). Although most studies so far focused on very narrow spacing interval ranges, there is some evidence for a non-monotonic behavior of this "spacing effect" ("nonlinearity") with optimal spacing intervals at different time scales. In the current study we focused both the nonlinearity aspect by using a broad range of spacing intervals and the generality aspect by using very different learning/practice domains: Participants learned German-Japanese word pairs and performed visual acuity tests. For each of six groups we used a different spacing interval between learning/practice units from 7 min to 24 h in logarithmic steps. Memory retention was studied in three consecutive final tests, one, seven and 28 days after the final learning unit. For both the vocabulary learning and visual acuity performance we found a highly significant effect of the factor spacing interval on the final test performance. In the 12 h-spacing-group about 85% of the learned words stayed in memory and nearly all of the visual acuity gain was preserved. In the 24 h-spacing-group, in contrast, only about 33% of the learned words were retained and the visual acuity gain dropped to zero. The very similar patterns of results from the two very different learning/practice domains point to similar underlying mechanisms. Further, our results indicate spacing in the range of 12 hours as optimal. A second peak may be around a spacing interval of 20 min but here the data are less clear. We discuss relations between our results and basic learning at the neuronal level. PMID:24609081

  3. Cosmic-ray astrochemistry.

    PubMed

    Indriolo, Nick; McCall, Benjamin J

    2013-10-01

    Gas-phase chemistry in the interstellar medium is driven by fast ion-molecule reactions. This, of course, demands a mechanism for ionization, and cosmic rays are the ideal candidate as they can operate throughout the majority of both diffuse and dense interstellar clouds. Aside from driving interstellar chemistry via ionization, cosmic rays also interact with the interstellar medium in ways that heat the ambient gas, produce gamma rays, and produce light element isotopes. In this paper we review the observables generated by cosmic-ray interactions with the interstellar medium, focusing primarily on the relevance to astrochemistry. PMID:23812538

  4. Supermassive cosmic string compactifications

    SciTech Connect

    Blanco-Pillado, Jose J.; Reina, Borja; Sousa, Kepa; Urrestilla, Jon E-mail: borja.reina@ehu.es E-mail: jon.urrestilla@ehu.es

    2014-06-01

    The space-time dimensions transverse to a static straight cosmic string with a sufficiently large tension (supermassive cosmic strings) are compact and typically have a singularity at a finite distance form the core. In this paper, we discuss how the presence of multiple supermassive cosmic strings in the 4d Abelian-Higgs model can induce the spontaneous compactification of the transverse space and explicitly construct solutions where the gravitational background becomes regular everywhere. We discuss the embedding of this model in N = 1 supergravity and show that some of these solutions are half-BPS, in the sense that they leave unbroken half of the supersymmetries of the model.

  5. Effect of treatment temperature on the microstructure of asphalt binders: insights on the development of dispersed domains.

    PubMed

    Menapace, I; Masad, E; Bhasin, A

    2016-04-01

    This paper offers important insights on the development of the microstructure in asphalt binders as a function of the treatment temperature. Different treatment temperatures are useful to understand how dispersed domains form when different driving energies for the mobility of molecular species are provided. Small and flat dispersed domains, with average diameter between 0.02 and 0.70 μm, were detected on the surface of two binders at room temperature, and these domains were observed to grow with an increase in treatment temperature (up to over 2 μm). Bee-like structures started to appear after treatment at or above 100°C. Moreover, the effect of the binder thickness on its microstructure at room temperature and at higher treatment temperatures was investigated and is discussed in this paper. At room temperature, the average size of the dispersed domains increased as the binder thickness decreased. A hypothesis that conciliates current theories on the origin and development of dispersed domains is proposed. Small dispersed domains (average diameter around 0.02 μm) are present in the bulk of the binder, whereas larger domains and bee-like structures develop on the surface, following heat treatment or mechanical disturbance that reduces the film thickness. Molecular mobility and association are the key factors in the development of binder microstructure. PMID:26540203

  6. Generalizing the correlated chromophore domain model of reversible photodegradation to include the effects of an applied electric field

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin; Kuzyk, Mark G.

    2014-03-01

    All observations of photodegradation and self-healing follow the predictions of the correlated chromophore domain model [Ramini et al., Polym. Chem. 4, 4948 (2013), 10.1039/c3py00263b]. In the present work, we generalize the domain model to describe the effects of an electric field by including induced dipole interactions between molecules in a domain by means of a self-consistent field approach. This electric field correction is added to the statistical mechanical model to calculate the distribution of domains that are central to healing. Also included in the model are the dynamics due to the formation of an irreversibly damaged species, which we propose involves damage to the polymer mediated through energy transfer from a dopant molecule after absorbing a photon. As in previous studies, the model with one-dimensional domains best explains all experimental data of the population as a function of time, temperature, intensity, concentration, and now applied electric field. Though the precise nature of a domain is yet to be determined, the fact that only one-dimensional domain models are consistent with observations suggests that they might be made of correlated dye molecules along polymer chains. Furthermore, the voltage-dependent measurements suggest that the largest polarizability axis of the molecules are oriented perpendicular to the chain.

  7. Generalizing the correlated chromophore domain model of reversible photodegradation to include the effects of an applied electric field.

    PubMed

    Anderson, Benjamin; Kuzyk, Mark G

    2014-03-01

    All observations of photodegradation and self-healing follow the predictions of the correlated chromophore domain model [Ramini et al., Polym. Chem. 4, 4948 (2013)]. In the present work, we generalize the domain model to describe the effects of an electric field by including induced dipole interactions between molecules in a domain by means of a self-consistent field approach. This electric field correction is added to the statistical mechanical model to calculate the distribution of domains that are central to healing. Also included in the model are the dynamics due to the formation of an irreversibly damaged species, which we propose involves damage to the polymer mediated through energy transfer from a dopant molecule after absorbing a photon. As in previous studies, the model with one-dimensional domains best explains all experimental data of the population as a function of time, temperature, intensity, concentration, and now applied electric field. Though the precise nature of a domain is yet to be determined, the fact that only one-dimensional domain models are consistent with observations suggests that they might be made of correlated dye molecules along polymer chains. Furthermore, the voltage-dependent measurements suggest that the largest polarizability axis of the molecules are oriented perpendicular to the chain. PMID:24730866

  8. Cosmic physics data analysis program

    NASA Technical Reports Server (NTRS)

    Wilkes, R. Jeffrey

    1993-01-01

    A data analysis program was carried out to investigate the intensity, propagation, and origin of primary Cosmic Ray Galactic electrons. Scanning was carried out on two new balloon flight experiments as well as the border area of previous experiments. The identification and evaluation of the energies of the primary electrons were carried out. A new analysis of these data were incorporated into an overall evaluation of the roll of electrons in the problem of the origin of cosmic rays. Recent measurements indicate that the earth may be within the expanding Geminga supernova shock wave which is expected to have a major effect upon the propagation and the energy spectrum of galactic electrons. Calculations with the Geminga model indicate that the cut-off energy may be very close to the observed highest energy electrons in our analysis.

  9. Effect of substrate rotation on domain structure and magnetic relaxation in magnetic antidot lattice arrays

    SciTech Connect

    Mallick, Sougata; Mallik, Srijani; Bedanta, Subhankar

    2015-08-28

    Microdimensional triangular magnetic antidot lattice arrays were prepared by varying the speed of substrate rotation. The pre-deposition patterning has been performed using photolithography technique followed by a post-deposition lift-off. Surface morphology taken by atomic force microscopy depicted that the growth mechanism of the grains changes from chain like formation to island structures due to the substrate rotation. Study of magnetization reversal via magneto optic Kerr effect based microscopy revealed reduction of uniaxial anisotropy and increase in domain size with substrate rotation. The relaxation measured under constant magnetic field becomes faster with rotation of the substrate during deposition. The nature of relaxation for the non-rotating sample can be described by a double exponential decay. However, the relaxation for the sample with substrate rotation is well described either by a double exponential or a Fatuzzo-Labrune like single exponential decay, which increases in applied field.

  10. Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect

    PubMed Central

    Edrei, Eitan; Scarcelli, Giuliano

    2016-01-01

    Several phenomena have been recently exploited to circumvent scattering and have succeeded in imaging or focusing light through turbid layers. However, the requirement for the turbid medium to be steady during the imaging process remains a fundamental limitation of these methods. Here we introduce an optical imaging modality that overcomes this challenge by taking advantage of the so-called shower-curtain effect, adapted to the spatial-frequency domain via speckle correlography. We present high resolution imaging of objects hidden behind millimeter-thick tissue or dense lens cataracts. We demonstrate our imaging technique to be insensitive to rapid medium movements (> 5 m/s) beyond any biologically-relevant motion. Furthermore, we show this method can be extended to several contrast mechanisms and imaging configurations. PMID:27347498

  11. Biomarker response to galactic cosmic ray-induced NOx and the methane greenhouse effect in the atmosphere of an Earth-like planet orbiting an M dwarf star.

    PubMed

    Grenfell, John Lee; Griessmeier, Jean-Mathias; Patzer, Beate; Rauer, Heike; Segura, Antigona; Stadelmann, Anja; Stracke, Barbara; Titz, Ruth; Von Paris, Philip

    2007-02-01

    Planets orbiting in the habitable zone of M dwarf stars are subject to high levels of galactic cosmic rays (GCRs), which produce nitrogen oxides (NOx) in Earth-like atmospheres. We investigate to what extent these NO(Mx) species may modify biomarker compounds such as ozone (O3) and nitrous oxide (N2O), as well as related compounds such as water (H2O) (essential for life) and methane (CH4) (which has both abiotic and biotic sources). Our model results suggest that such signals are robust, changing in the M star world atmospheric column due to GCR NOx effects by up to 20% compared to an M star run without GCR effects, and can therefore survive at least the effects of GCRs. We have not, however, investigated stellar cosmic rays here. CH4 levels are about 10 times higher on M star worlds than on Earth because of a lowering in hydroxyl (OH) in response to changes in the ultraviolet. The higher levels of CH4 are less than reported in previous studies. This difference arose partly because we used different biogenic input. For example, we employed 23% lower CH4 fluxes compared to those studies. Unlike on Earth, relatively modest changes in these fluxes can lead to larger changes in the concentrations of biomarker and related species on the M star world. We calculate a CH4 greenhouse heating effect of up to 4K. O3 photochemistry in terms of the smog mechanism and the catalytic loss cycles on the M star world differs considerably compared with that of Earth. PMID:17407408

  12. Giant magnetoimpedance effect and domain wall dynamics in Co-rich amorphous microwires

    NASA Astrophysics Data System (ADS)

    Zhukov, A.; Chizhik, A.; Ipatov, M.; Talaat, A.; Blanco, J. M.; Stupakiewicz, A.; Zhukova, V.

    2015-01-01

    The giant magnetoimpedance (GMI) effect, as well as the magnetic and magneto-optical properties, of Co69.2Fe4.1B11.8Si13.8C1.1 and Fe73.8Cu1Nb3.1B9.1Si13 amorphous microwires is studied. It is observed that the magnetic properties and the GMI effect of the Co-rich microwire can be tuned by heat treatment. A high GMI effect has been observed in as-prepared Co-rich microwires. After appropriate annealing of the Co-rich microwires, fast domain wall propagation and a GMI effect can be simultaneously observed in the same sample, and annealing is seen to affect both the diagonal and off-diagonal GMI components. Using complementary studies of the bulk and surface magnetic properties, an attempt is made to explain the great difference observed in the GMI properties of Co- and Fe-based microwires exhibiting very similar bulk hysteresis loops.

  13. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  14. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  15. Getting around cosmic variance

    SciTech Connect

    Kamionkowski, M.; Loeb, A.

    1997-10-01

    Cosmic microwave background (CMB) anisotropies probe the primordial density field at the edge of the observable Universe. There is a limiting precision ({open_quotes}cosmic variance{close_quotes}) with which anisotropies can determine the amplitude of primordial mass fluctuations. This arises because the surface of last scatter (SLS) probes only a finite two-dimensional slice of the Universe. Probing other SLS{close_quote}s observed from different locations in the Universe would reduce the cosmic variance. In particular, the polarization of CMB photons scattered by the electron gas in a cluster of galaxies provides a measurement of the CMB quadrupole moment seen by the cluster. Therefore, CMB polarization measurements toward many clusters would probe the anisotropy on a variety of SLS{close_quote}s within the observable Universe, and hence reduce the cosmic-variance uncertainty. {copyright} {ital 1997} {ital The American Physical Society}

  16. Effects of extraordinary solar cosmic ray events on variations in the atmospheric electric field at high latitudes

    NASA Astrophysics Data System (ADS)

    Shumilov, O. I.; Kasatkina, E. A.; Frank-Kamenetsky, A. V.

    2015-09-01

    Studies of variations in the atmospheric electric field vertical component ( E z ) are illustrated based on data from the Apatity high-latitude observatory (geomagnetic latitude Φ' = 63.8°) for three solar cosmic ray (SCR) events that occurred on April 15, April 18, and November 4, 2001. For the SCR event of April 15, 2001, the observed E z variations have been compared with the corresponding data from the Voeykovo midlatitude observatory and the Vostok observatory on the polar cap. It has been indicated that solar coronal mass ejections and some powerful SCR events can result in variations in the global electric circuit. Disturbances in the atmospheric electric field can be used to diagnose the development of intense processes on the Sun.

  17. A COSMIC VARIANCE COOKBOOK

    SciTech Connect

    Moster, Benjamin P.; Rix, Hans-Walter; Somerville, Rachel S.; Newman, Jeffrey A. E-mail: rix@mpia.de E-mail: janewman@pitt.edu

    2011-04-20

    Deep pencil beam surveys (<1 deg{sup 2}) are of fundamental importance for studying the high-redshift universe. However, inferences about galaxy population properties (e.g., the abundance of objects) are in practice limited by 'cosmic variance'. This is the uncertainty in observational estimates of the number density of galaxies arising from the underlying large-scale density fluctuations. This source of uncertainty can be significant, especially for surveys which cover only small areas and for massive high-redshift galaxies. Cosmic variance for a given galaxy population can be determined using predictions from cold dark matter theory and the galaxy bias. In this paper, we provide tools for experiment design and interpretation. For a given survey geometry, we present the cosmic variance of dark matter as a function of mean redshift z-bar and redshift bin size {Delta}z. Using a halo occupation model to predict galaxy clustering, we derive the galaxy bias as a function of mean redshift for galaxy samples of a given stellar mass range. In the linear regime, the cosmic variance of these galaxy samples is the product of the galaxy bias and the dark matter cosmic variance. We present a simple recipe using a fitting function to compute cosmic variance as a function of the angular dimensions of the field, z-bar , {Delta}z, and stellar mass m{sub *}. We also provide tabulated values and a software tool. The accuracy of the resulting cosmic variance estimates ({delta}{sigma}{sub v}/{sigma}{sub v}) is shown to be better than 20%. We find that for GOODS at z-bar =2 and with {Delta}z = 0.5, the relative cosmic variance of galaxies with m{sub *}>10{sup 11} M{sub sun} is {approx}38%, while it is {approx}27% for GEMS and {approx}12% for COSMOS. For galaxies of m{sub *} {approx} 10{sup 10} M{sub sun}, the relative cosmic variance is {approx}19% for GOODS, {approx}13% for GEMS, and {approx}6% for COSMOS. This implies that cosmic variance is a significant source of uncertainty at z

  18. A Cosmic Variance Cookbook

    NASA Astrophysics Data System (ADS)

    Moster, Benjamin P.; Somerville, Rachel S.; Newman, Jeffrey A.; Rix, Hans-Walter

    2011-04-01

    Deep pencil beam surveys (<1 deg2) are of fundamental importance for studying the high-redshift universe. However, inferences about galaxy population properties (e.g., the abundance of objects) are in practice limited by "cosmic variance." This is the uncertainty in observational estimates of the number density of galaxies arising from the underlying large-scale density fluctuations. This source of uncertainty can be significant, especially for surveys which cover only small areas and for massive high-redshift galaxies. Cosmic variance for a given galaxy population can be determined using predictions from cold dark matter theory and the galaxy bias. In this paper, we provide tools for experiment design and interpretation. For a given survey geometry, we present the cosmic variance of dark matter as a function of mean redshift \\bar{z} and redshift bin size Δz. Using a halo occupation model to predict galaxy clustering, we derive the galaxy bias as a function of mean redshift for galaxy samples of a given stellar mass range. In the linear regime, the cosmic variance of these galaxy samples is the product of the galaxy bias and the dark matter cosmic variance. We present a simple recipe using a fitting function to compute cosmic variance as a function of the angular dimensions of the field, \\bar{z}, Δz, and stellar mass m *. We also provide tabulated values and a software tool. The accuracy of the resulting cosmic variance estimates (δσ v /σ v ) is shown to be better than 20%. We find that for GOODS at \\bar{z}=2 and with Δz = 0.5, the relative cosmic variance of galaxies with m *>1011 M sun is ~38%, while it is ~27% for GEMS and ~12% for COSMOS. For galaxies of m * ~ 1010 M sun, the relative cosmic variance is ~19% for GOODS, ~13% for GEMS, and ~6% for COSMOS. This implies that cosmic variance is a significant source of uncertainty at \\bar{z}=2 for small fields and massive galaxies, while for larger fields and intermediate mass galaxies, cosmic variance is

  19. The Cosmic Labyrinth

    NASA Astrophysics Data System (ADS)

    Atkinson, M.

    2011-06-01

    This paper discusses the intertwined relationship between the terrestrial and celestial using the labyrinth as a metaphor referencing sources from art, gardens and Australian Indigenous culture. Including the Morning Star with the labyrinthine mortuary ritual in Arnhem Land, the cosmic plan garden at Auschwitz and Marea Atkinson's art project undertaken at the Villa Garzoni garden in Italy to create The Cosmic Labyrinth installation exhibited at Palazzo Franchetti, Venice, during the sixth conference on the Inspiration of Astronomical Phenomena.

  20. Cosmic Ray Dosimetry

    NASA Astrophysics Data System (ADS)

    Si Belkhir, F.; Attallah, R.

    2010-10-01

    Radiation levels at aircraft cruising altitudes are twenty times higher than at sea level. Thus, on average, a typical airline pilot receives a larger annual radiation dose than some one working in nuclear industry. The main source of this radiation is from galactic cosmic radiation, high energy particles generated by exploding stars within our own galaxy. In this work we study cosmic rays dosimetry at various aviation altitudes using the PARMA model.

  1. COSMIC monthly progress report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of January 1994. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are discussed. Marketing and customer service activities in this period are presented as is the progress report of NASTRAN maintenance and support. Tables of disseminations and budget summary conclude the report.

  2. JUPITER AS A GIANT COSMIC RAY DETECTOR

    SciTech Connect

    Rimmer, P. B.; Stark, C. R.; Helling, Ch.

    2014-06-01

    We explore the feasibility of using the atmosphere of Jupiter to detect ultra-high-energy cosmic rays (UHECRs). The large surface area of Jupiter allows us to probe cosmic rays of higher energies than previously accessible. Cosmic ray extensive air showers in Jupiter's atmosphere could in principle be detected by the Large Area Telescope (LAT) on the Fermi observatory. In order to be observed, these air showers would need to be oriented toward the Earth, and would need to occur sufficiently high in the atmosphere that the gamma rays can penetrate. We demonstrate that, under these assumptions, Jupiter provides an effective cosmic ray ''detector'' area of 3.3 × 10{sup 7} km{sup 2}. We predict that Fermi-LAT should be able to detect events of energy >10{sup 21} eV with fluence 10{sup –7} erg cm{sup –2} at a rate of about one per month. The observed number of air showers may provide an indirect measure of the flux of cosmic rays ≳ 10{sup 20} eV. Extensive air showers also produce a synchrotron signature that may be measurable by Atacama Large Millimeter/submillimeter Array (ALMA). Simultaneous observations of Jupiter with ALMA and Fermi-LAT could be used to provide broad constraints on the energies of the initiating cosmic rays.

  3. Cosmic string wakes

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert; Veeraraghavan, Shoba; Silk, Joseph; Brandenberger, Robert; Turok, Neil

    1987-01-01

    Accretion of matter onto wakes left behind by horizon-sized pieces of cosmic string is investigated, and the effects of wakes on the large-scale structure of the universe are determined. Accretion of cold matter onto wakes, the effects of a long string on fluids with finite velocity dispersion or sound speeds, the interactions between loops and wakes, and the conditions for wakes to survive disruption by loops are discussed. It is concluded that the most important wakes are those which were formed at the time of equal matter and radiation density. This leads to sheetlike overdense regions of galaxies with a mean separation in agreement with the scale of the bubbles of de Lapparent, Geller, and Huchra (1986). However, for the value of G(mu) favored from galaxy formation considerations in a universe with cold dark matter, a wake accretes matter from a distance of only about 1.5 Mpc, which is much less than the distance between the wakes.

  4. Antithrombotic effects of synthetic peptides targeting various functional domains of thrombin.

    PubMed Central

    Kelly, A B; Maraganore, J M; Bourdon, P; Hanson, S R; Harker, L A

    1992-01-01

    To determine in vivo functional roles for thrombin's structural domains, we have compared the relative antithrombotic and antihemostatic effects of (i) catalytic-site antithrombin peptide, D-Phe-Pro-Arg; (ii) exosite antithrombin peptide, the C-terminal tyrosine-sulfated dodecapeptide of hirudin; and (iii) bifunctional antithrombin peptide, a 20-mer peptide combining catalytic-site antithrombin peptide and exosite antithrombin peptide with a polyglycyl linker. All three peptides inhibited thrombin-mediated platelet aggregation and fibrin formation in vitro. In vivo thrombus formation was measured in real time as 111In-labeled platelet deposition and 125I-labeled fibrin accumulation on thrombogenic segments incorporated into chronic exteriorized arteriovenous access shunts in baboons. Under low flow conditions, the continuous infusion of peptides reduced thrombus formation onto collagen-coated tubing by half at doses (ID50) and corresponding concentrations (IC50) of 800 nmol per kg per min and 400 nmol/ml for catalytic-site antithrombin peptide, greater than 1250 nmol per kg per min and greater than 1500 mumol/ml for exosite antithrombin peptide, and 50 nmol per kg per min and 25 nmol/ml for bifunctional antithrombin peptide. Under arterial flow conditions, systemically administered bifunctional antithrombin peptide decreased thrombus formation in a dose-dependent manner for segments of collagen-coated tubing or prosthetic vascular graft ID50 and IC50 values of 120 nmol per kg per min and 15 nmol/ml; this dose also produced intermediate inhibition of hemostatic function [bleeding time, 21 +/- 3 min vs. 4.5 +/- 0.5 min (baseline values); P less than 0.001; activated partial thromboplastin time, 285 +/- 13 sec vs. 31 +/- 3 sec (baseline), P less than 0.001]. In contrast, thrombus formation onto segments of endarterectomized aorta was potently decreased by bifunctional antithrombin peptide with an ID50 value of 2.4 nmol per kg per min and an IC50 value of 0.75 nmol

  5. Giant Effect of Uniaxial Pressure on Magnetic Domain Populations in Multiferroic Bismuth Ferrite

    NASA Astrophysics Data System (ADS)

    Ramazanoglu, M.; Ratcliff, W., II; Yi, H. T.; Sirenko, A. A.; Cheong, S.-W.; Kiryukhin, V.

    2011-08-01

    Neutron diffraction is used to show that small (˜7MPa, or 70 bar) uniaxial pressure produces significant changes in the populations of magnetic domains in a single crystal of 2% Nd-doped bismuth ferrite. The magnetic easy plane of the domains converted by the pressure is rotated 60° relative to its original position. These results demonstrate extreme sensitivity of the magnetic properties of multiferroic bismuth ferrite to tiny (less than 10-4) elastic strain, as well as weakness of the forces pinning the domain walls between the cycloidal magnetic domains in this material.

  6. Time-domain numerical simulations of multiple scattering to extract elastic effective wavenumbers

    NASA Astrophysics Data System (ADS)

    Chekroun, Mathieu; Le Marrec, Loïc; Lombard, Bruno; Piraux, Joël

    2012-08-01

    Elastic wave propagation is studied in a heterogeneous two-dimensional medium consisting of an elastic matrix containing randomly distributed circular elastic inclusions. The aim of this study is to determine the effective wavenumbers when the incident wavelength is similar to the radius of the inclusions. A purely numerical methodology is presented, with which the limitations usually associated with low scatterer concentrations can be avoided. The elastodynamic equations are integrated by a fourth-order time-domain numerical scheme. An immersed interface method is used to accurately discretize the interfaces on a Cartesian grid. The effective field is extracted from the simulated data, and signal-processing tools are used to obtain the complex effective wavenumbers. The numerical reference solution thus obtained can be used to check the validity of multiple scattering analytical models. The method is applied to the case of concrete. A parametric study is performed on longitudinal and transverse incident plane waves at various scatterer concentrations. The phase velocities and attenuations determined numerically are compared with predictions obtained with multiple scattering models, such as the Independent Scattering Approximation model, the Waterman-Truell model, and the more recent Conoir-Norris model.

  7. Effect of maghemization on the magnetic properties of nonstoichiometric pseudo-single-domain magnetite particles

    NASA Astrophysics Data System (ADS)

    Almeida, Trevor P.; Muxworthy, Adrian R.; Kasama, Takeshi; Williams, Wyn; Damsgaard, Christian; Frandsen, Cathrine; Pennycook, Timothy J.; Dunin-Borkowski, Rafal E.

    2015-09-01

    The effect of maghemization on the magnetic properties of magnetite (Fe3O4) grains in the pseudo-single-domain (PSD) size range is investigated as a function of annealing temperature. X-ray diffraction and transmission electron microscopy confirm the precursor grains as Fe3O4 ranging from ˜150 to ˜250 nm in diameter, whilst Mössbauer spectrometry suggests the grains are initially near-stoichiometric. The Fe3O4 grains are heated to increasing reaction temperatures of 120-220°C to investigate their oxidation to maghemite (γ-Fe2O3). High-angle annular dark field imaging and localized electron-energy loss spectroscopy reveal slightly oxidized Fe3O4 grains, heated to 140°C, exhibit higher oxygen content at the surface. Off-axis electron holography allows for construction of magnetic induction maps of individual Fe3O4 and γ-Fe2O3 grains, revealing their PSD (vortex) nature, which is supported by magnetic hysteresis measurements, including first-order reversal curve analysis. The coercivity of the grains is shown to increase with reaction temperature up to 180°C, but subsequently decreases after heating above 200°C; this magnetic behavior is attributed to the growth of a γ-Fe2O3 shell with magnetic properties distinct from the Fe3O4 core. It is suggested there is exchange coupling between these separate components that results in a vortex state with reduced vorticity. Once fully oxidized to γ-Fe2O3, the domain states revert back to vortices with slightly reduced coercivity. It is argued that due to a core/shell coupling mechanism during maghemization, the directional magnetic information will still be correct; however, the intensity information will not be retained.

  8. Very Similar Spacing-Effect Patterns in Very Different Learning/Practice Domains

    PubMed Central

    Kornmeier, Jürgen; Spitzer, Manfred; Sosic-Vasic, Zrinka

    2014-01-01

    Temporally distributed (“spaced”) learning can be twice as efficient as massed learning. This “spacing effect” occurs with a broad spectrum of learning materials, with humans of different ages, with non-human vertebrates and also invertebrates. This indicates, that very basic learning mechanisms are at work (“generality”). Although most studies so far focused on very narrow spacing interval ranges, there is some evidence for a non-monotonic behavior of this “spacing effect” (“nonlinearity”) with optimal spacing intervals at different time scales. In the current study we focused both the nonlinearity aspect by using a broad range of spacing intervals and the generality aspect by using very different learning/practice domains: Participants learned German-Japanese word pairs and performed visual acuity tests. For each of six groups we used a different spacing interval between learning/practice units from 7 min to 24 h in logarithmic steps. Memory retention was studied in three consecutive final tests, one, seven and 28 days after the final learning unit. For both the vocabulary learning and visual acuity performance we found a highly significant effect of the factor spacing interval on the final test performance. In the 12 h-spacing-group about 85% of the learned words stayed in memory and nearly all of the visual acuity gain was preserved. In the 24 h-spacing-group, in contrast, only about 33% of the learned words were retained and the visual acuity gain dropped to zero. The very similar patterns of results from the two very different learning/practice domains point to similar underlying mechanisms. Further, our results indicate spacing in the range of 12 hours as optimal. A second peak may be around a spacing interval of 20 min but here the data are less clear. We discuss relations between our results and basic learning at the neuronal level. PMID:24609081

  9. Neutrino mass without cosmic variance

    NASA Astrophysics Data System (ADS)

    LoVerde, Marilena

    2016-05-01

    Measuring the absolute scale of the neutrino masses is one of the most exciting opportunities available with near-term cosmological data sets. Two quantities that are sensitive to neutrino mass, scale-dependent halo bias b (k ) and the linear growth parameter f (k ) inferred from redshift-space distortions, can be measured without cosmic variance. Unlike the amplitude of the matter power spectrum, which always has a finite error, the error on b (k ) and f (k ) continues to decrease as the number density of tracers increases. This paper presents forecasts for statistics of galaxy and lensing fields that are sensitive to neutrino mass via b (k ) and f (k ). The constraints on neutrino mass from the auto- and cross-power spectra of spectroscopic and photometric galaxy samples are weakened by scale-dependent bias unless a very high density of tracers is available. In the high-density limit, using multiple tracers allows cosmic variance to be beaten, and the forecasted errors on neutrino mass shrink dramatically. In practice, beating the cosmic-variance errors on neutrino mass with b (k ) will be a challenge, but this signal is nevertheless a new probe of neutrino effects on structure formation that is interesting in its own right.

  10. Spiral arms as cosmic ray source distributions

    NASA Astrophysics Data System (ADS)

    Werner, M.; Kissmann, R.; Strong, A. W.; Reimer, O.

    2015-04-01

    The Milky Way is a spiral galaxy with (or without) a bar-like central structure. There is evidence that the distribution of suspected cosmic ray sources, such as supernova remnants, are associated with the spiral arm structure of galaxies. It is yet not clearly understood what effect such a cosmic ray source distribution has on the particle transport in our Galaxy. We investigate and measure how the propagation of Galactic cosmic rays is affected by a cosmic ray source distribution associated with spiral arm structures. We use the PICARD code to perform high-resolution 3D simulations of electrons and protons in galactic propagation scenarios that include four-arm and two-arm logarithmic spiral cosmic ray source distributions with and without a central bar structure as well as the spiral arm configuration of the NE2001 model for the distribution of free electrons in the Milky Way. Results of these simulation are compared to an axisymmetric radial source distribution. Also, effects on the cosmic ray flux and spectra due to different positions of the Earth relative to the spiral structure are studied. We find that high energy electrons are strongly confined to their sources and the obtained spectra largely depend on the Earth's position relative to the spiral arms. Similar finding have been obtained for low energy protons and electrons albeit at smaller magnitude. We find that even fractional contributions of a spiral arm component to the total cosmic ray source distribution influences the spectra on the Earth. This is apparent when compared to an axisymmetric radial source distribution as well as with respect to the Earth's position relative to the spiral arm structure. We demonstrate that the presence of a Galactic bar manifests itself as an overall excess of low energy electrons at the Earth. Using a spiral arm geometry as a cosmic ray source distributions offers a genuine new quality of modeling and is used to explain features in cosmic ray spectra at the Earth

  11. The TRIPLE LUX-A Experiment for BIOLAB/ISS- Combined Effects of Microgravity and Cosmic Radiation on the Oxidative Burst of Mammalian Macrophageal Cells

    NASA Astrophysics Data System (ADS)

    Huber, K.; Sromicki, J.; Hock, B.; Ullrich, O.

    2008-06-01

    Phagocytes, the prominent cells of innate immunity, are responsible for the removal of foreign invaders, apoptotic as well as cancer cells. In a flight experiment in the BIOLAB facility on the ISS we will investigate the combined effects of microgravity and cosmic radiation on the oxidative burst, the production of reactive oxygen species (ROS), of the macrophageal cell line NR8383. A chemiluminescence assay (luminol) is used to determine the amount of ROS during phagocytosis of zymosan in a kinetic approach. Ground control experiments for the TRIPLE LUX-A flight experiment on a fast rotating 2D clinostat showed that the selected cell line responds to simulated weightlessness by an increase of ROS production.

  12. CATHEDRAL: A Fast and Effective Algorithm to Predict Folds and Domain Boundaries from Multidomain Protein Structures

    PubMed Central

    Dallman, Tim; Pearl, Frances M. G; Orengo, Christine A

    2007-01-01

    We present CATHEDRAL, an iterative protocol for determining the location of previously observed protein folds in novel multidomain protein structures. CATHEDRAL builds on the features of a fast secondary-structure–based method (using graph theory) to locate known folds within a multidomain context and a residue-based, double-dynamic programming algorithm, which is used to align members of the target fold groups against the query protein structure to identify the closest relative and assign domain boundaries. To increase the fidelity of the assignments, a support vector machine is used to provide an optimal scoring scheme. Once a domain is verified, it is excised, and the search protocol is repeated in an iterative fashion until all recognisable domains have been identified. We have performed an initial benchmark of CATHEDRAL against other publicly available structure comparison methods using a consensus dataset of domains derived from the CATH and SCOP domain classifications. CATHEDRAL shows superior performance in fold recognition and alignment accuracy when compared with many equivalent methods. If a novel multidomain structure contains a known fold, CATHEDRAL will locate it in 90% of cases, with <1% false positives. For nearly 80% of assigned domains in a manually validated test set, the boundaries were correctly delineated within a tolerance of ten residues. For the remaining cases, previously classified domains were very remotely related to the query chain so that embellishments to the core of the fold caused significant differences in domain sizes and manual refinement of the boundaries was necessary. To put this performance in context, a well-established sequence method based on hidden Markov models was only able to detect 65% of domains, with 33% of the subsequent boundaries assigned within ten residues. Since, on average, 50% of newly determined protein structures contain more than one domain unit, and typically 90% or more of these domains are already

  13. Level crossing analysis of cosmic microwave background radiation: a method for detecting cosmic strings

    SciTech Connect

    Movahed, M. Sadegh; Khosravi, Shahram E-mail: khosravi@ipm.ir

    2011-03-01

    In this paper we study the footprint of cosmic string as the topological defects in the very early universe on the cosmic microwave background radiation. We develop the method of level crossing analysis in the context of the well-known Kaiser-Stebbins phenomenon for exploring the signature of cosmic strings. We simulate a Gaussian map by using the best fit parameter given by WMAP-7 and then superimpose cosmic strings effects on it as an incoherent and active fluctuations. In order to investigate the capability of our method to detect the cosmic strings for the various values of tension, Gμ, a simulated pure Gaussian map is compared with that of including cosmic strings. Based on the level crossing analysis, the superimposed cosmic string with Gμ∼>4 × 10{sup −9} in the simulated map without instrumental noise and the resolution R = 1' could be detected. In the presence of anticipated instrumental noise the lower bound increases just up to Gμ∼>5.8 × 10{sup −9}.

  14. THE KINETIC SUNYAEV-ZEL'DOVICH EFFECT AS A PROBE OF THE PHYSICS OF COSMIC REIONIZATION: THE EFFECT OF SELF-REGULATED REIONIZATION

    SciTech Connect

    Park, Hyunbae; Shapiro, Paul R.; Komatsu, Eiichiro; Iliev, Ilian T.; Ahn, Kyungjin; Mellema, Garrelt

    2013-06-01

    We calculate the angular power spectrum of the cosmic microwave background temperature fluctuations induced by the kinetic Sunyaev-Zel'dovich (kSZ) effect from the epoch of reionization (EOR). We use detailed N-body+radiative-transfer simulations to follow inhomogeneous reionization of the intergalactic medium. For the first time, we take into account the ''self-regulation'' of reionization: star formation in low-mass dwarf galaxies (10{sup 8} M{sub Sun} {approx}< M {approx}< 10{sup 9} M{sub Sun }) or minihalos (10{sup 5} M{sub Sun} {approx}< M {approx}< 10{sup 8} M{sub Sun }) is suppressed if these halos form in the regions that were already ionized or Lyman-Werner dissociated. Some previous work suggested that the amplitude of the kSZ power spectrum from the EOR can be described by a two-parameter family: the epoch of half-ionization and the duration of reionization. However, we argue that this picture applies only to simple forms of the reionization history which are roughly symmetric about the half-ionization epoch. In self-regulated reionization, the universe begins to be ionized early, maintains a low level of ionization for an extended period, and then finishes reionization as soon as high-mass atomically cooling halos dominate. While inclusion of self-regulation affects the amplitude of the kSZ power spectrum only modestly ({approx}10%), it can change the duration of reionization by a factor of more than two. We conclude that the simple two-parameter family does not capture the effect of a physical, yet complex, reionization history caused by self-regulation. When added to the post-reionization kSZ contribution, our prediction for the total kSZ power spectrum is below the current upper bound from the South Pole Telescope. Therefore, the current upper bound on the kSZ effect from the EOR is consistent with our understanding of the physics of reionization.

  15. Effects of a reduced disulfide bond on aggregation properties of the human IgG1 CH3 domain.

    PubMed

    Sakurai, Kazumasa; Nakahata, Ryosuke; Lee, Young-Ho; Kardos, József; Ikegami, Takahisa; Goto, Yuji

    2015-10-01

    Recombinant human monoclonal antibodies have become important protein-based therapeutics for the treatment of various diseases. An IgG1 molecule, which is now mainly used for antibody preparation, consists of a total of 12 immunoglobulin domains. Each domain has one disulfide bond. The CH3 domain is the C-terminal domain of the heavy chain of IgG1. The disulfide bonds of some of the CH3 domains are known to be reduced in recombinant human monoclonal antibodies. The lack of intramolecular disulfide bonds may decrease the stability and increase the aggregation propensity of an antibody molecule. To investigate the effects of a reduced disulfide bond in the CH3 domain on conformational stability and aggregation propensity, we performed several physicochemical measurements including circular dichroism, differential scanning calorimetry (DSC), and 2D NMR. DSC measurements showed that both the stability and reversibility of the reduced form were lower than those of the oxidized form. In addition, detailed analyses of the thermal denaturation data revealed that, although a dominant fraction of the reduced form retained a stable dimeric structure, some fractions assumed a less-specifically associated oligomeric state between monomers. The results of the present study revealed the characteristic aggregation properties of antibody molecules. PMID:25748879

  16. The influence of the electrical boundary condition on domain structures and electrocaloric effect of PbTiO3 nanostructures

    NASA Astrophysics Data System (ADS)

    Chen, Z. Y.; Su, Y. X.; Zhou, Z. D.; Lei, L. S.; Yang, C. P.

    2016-05-01

    The electrocaloric effect (ECE) induced by the domain switching of PbTiO3 (PTO) nanoparticles under the different electrical boundary conditions is carried out using the phase field model. The toroidal moment of polarization with vortex domain structures decreases to zero taking surface charge compensation into the electrical boundary condition, i.e. intermediate electrical boundary. There exists a critical parameter value 0.25, which decides the single domain and vortex domain structures of ferroelectric nanomaterial at the room temperature. The loops of toroidal moment as a function of the applied curled electric filed are obtained under the different electrical boundary conditions. The various domain structures in ferroelectric nanostructure are discussed in detail. Moreover negative and positive adiabatic temperature changes accompanying with vortex domain structure switching are obtained with the curled electric field under the intermediate electrical boundary. These results indicate that ferroelectric nanostructures can be practical used in field of cooling and heating technology through adjusting the surface electrical boundary.

  17. The Differential Effects of Task Complexity on Domain-Specific and Peer Assessment Skills

    ERIC Educational Resources Information Center

    van Zundert, Marjo J.; Sluijsmans, Dominique M. A.; Konings, Karen D.; van Merrienboer, Jeroen J. G.

    2012-01-01

    In this study the relationship between domain-specific skills and peer assessment skills as a function of task complexity is investigated. We hypothesised that peer assessment skills were superposed on domain-specific skills and will therefore suffer more when higher cognitive load is induced by increased task complexity. In a mixed factorial…

  18. Nonthermal cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Chen, Mu-Chun; Ratz, Michael; Trautner, Andreas

    2015-12-01

    We point out that, for Dirac neutrinos, in addition to the standard thermal cosmic neutrino background (C ν B ), there could also exist a nonthermal neutrino background with comparable number density. As the right-handed components are essentially decoupled from the thermal bath of standard model particles, relic neutrinos with a nonthermal distribution may exist until today. The relic density of the nonthermal (nt) background can be constrained by the usual observational bounds on the effective number of massless degrees of freedom Neff and can be as large as nν nt≲0.5 nγ. In particular, Neff can be larger than 3.046 in the absence of any exotic states. Nonthermal relic neutrinos constitute an irreducible contribution to the detection of the C ν B and, hence, may be discovered by future experiments such as PTOLEMY. We also present a scenario of chaotic inflation in which a nonthermal background can naturally be generated by inflationary preheating. The nonthermal relic neutrinos, thus, may constitute a novel window into the very early Universe.

  19. Investigating the position isomerism effect of dihydroxybenzoic acid compounds by terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Du, Yong; Hao, Guohui; Zhao, Rongjiao; Hong, Zhi

    2012-03-01

    Far-infrared vibrational absorption of a series of dihydroxybenzoic acid (DHBA) compounds with different substituted hydroxy group at different positions have been investigated using terahertz time-domain spectroscopy (THz-TDS) at room temperature. The experimental results show large difference among absorption spectra of different DHBA (2,3-DHBA, 2,4-DHBA, 2,5-DHBA, 2,6-DHBA) compounds in 0.2 ~ 2.0 THz region, which probably originated from the difference of intra-molecular and inter-molecular hydrogen bonds due to the presence of two hydroxyl group in different positions with respect to the carboxylic group in different DHBAs. All the experimental DHBAs vibrational modes showed distinct fingerprint absorption in THz region and theorectical calculation based on density functional theory (DFT) was carried out to assist the analysis and assignment of the vibrational modes. The results indicate that THz-TDS technology can not only give a new experimental method to identify and characterize the position isomerism effect of hydroxyl group between such different kinds of DHBAs from molecule-level, but also provide a useful suggestion for further assessing the possible relationships between the DHBAs vibrational properties and the effects of the substituted hydroxy group position to better know their biochemical activities in food, pharmaceutical and cosmetic fields.

  20. Investigating the position isomerism effect of dihydroxybenzoic acid compounds by terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Du, Yong; Hao, Guohui; Zhao, Rongjiao; Hong, Zhi

    2011-11-01

    Far-infrared vibrational absorption of a series of dihydroxybenzoic acid (DHBA) compounds with different substituted hydroxy group at different positions have been investigated using terahertz time-domain spectroscopy (THz-TDS) at room temperature. The experimental results show large difference among absorption spectra of different DHBA (2,3-DHBA, 2,4-DHBA, 2,5-DHBA, 2,6-DHBA) compounds in 0.2 ~ 2.0 THz region, which probably originated from the difference of intra-molecular and inter-molecular hydrogen bonds due to the presence of two hydroxyl group in different positions with respect to the carboxylic group in different DHBAs. All the experimental DHBAs vibrational modes showed distinct fingerprint absorption in THz region and theorectical calculation based on density functional theory (DFT) was carried out to assist the analysis and assignment of the vibrational modes. The results indicate that THz-TDS technology can not only give a new experimental method to identify and characterize the position isomerism effect of hydroxyl group between such different kinds of DHBAs from molecule-level, but also provide a useful suggestion for further assessing the possible relationships between the DHBAs vibrational properties and the effects of the substituted hydroxy group position to better know their biochemical activities in food, pharmaceutical and cosmetic fields.

  1. A Kind of Expertise Reversal Effect: Personalisation Effect Can Depend on Domain-Specific Prior Knowledge

    ERIC Educational Resources Information Center

    Stiller, Klaus D.; Jedlicka, Rosemarie

    2010-01-01

    In instructional multimedia design, it is often recommended that text accompanying pictures be presented in a personalised style to promote learning. The superiority of personalised over formal text is may be explained using social agency theory (Mayer, 2005b), but it has not been investigated empirically whether such effects are valid in…

  2. Study of cosmic ray motion in cosmic space near the earth

    NASA Technical Reports Server (NTRS)

    Budilov, V. K.; Ivanov, V. I.; Kozak, L. V.; Mirkin, L. A.; Tsukerman, I. G.

    1975-01-01

    Data are presented on experimental installations developed in the cosmic ray variations laboratory in Kazgu (Alma-Ata). Various experiments on modelling the interaction of plasma with the geomagnetic field as well as the plasma distribution in quiet and disturbed fields are described. The characteristics of the meson supertelescope using scintillators (effective area, 10 sq m) for vertical alignments designed to study microvariations of the cosmic rays and their interrelation with magnetospheric fluctuations and the study of solar wind parameters are given.

  3. Degeneracy between primordial tensor modes and cosmic strings in future CMB data from the Planck satellite

    SciTech Connect

    Urrestilla, Jon; Mukherjee, Pia; Liddle, Andrew R.; Hindmarsh, Mark; Kunz, Martin; Bevis, Neil

    2008-06-15

    While observations indicate that the predominant source of cosmic inhomogeneities are adiabatic perturbations, there are a variety of candidates to provide auxiliary trace effects, including inflation-generated primordial tensors and cosmic defects which both produce B-mode cosmic microwave background polarization. We investigate whether future experiments may suffer confusion as to the true origin of such effects, focusing on the ability of Planck to distinguish tensors from cosmic strings, and show that there is no significant degeneracy.

  4. Heliolatitude distribution of galactic cosmic rays

    SciTech Connect

    Antonucci, E.; Attolini, M.R.; Cecchini, S.; Galli, M.

    1985-08-01

    An analysis of the annual and semiannual variation of the galactic cosmic ray intensity has been performed for the period 1953-1979 by using the data from the Climax and Dourbes neutron monitors. This analysis, based on a method developed for searching periodicities and recurrences in the cosmic ray intensity, has confirmed the existence of such variations and their phase changes associated with the reversals of the solar magnetic dipole. Hence the importance in the cosmic ray transport of transverse diffusion arising from drift effects due to the curvature and gradient of the interplanetary magnetic field is confirmed, since this is the mechanism which can explain the dependence on the solar magnetic cycle. Such a mechanism is effective when the polarity configuration of the interplanetary magnetic field is well defined and stable. A phase advance of the semiannual variation is observed, which can be explained through the modulation of the heliolatitude distribution of cosmic rays by the activity of the solar magnetic regions migrating in both hemispheres toward the equator, during the 11-year cycle of solar activity. A residual annual variation, detectable when averaging out the effects of the magnetic cycle or when the polarity configuration of the interplanetary magnetic field is not well defined, probably indicates the existence of a preferential azimuthal direction for the access of low-energy galactic cosmic rays into the heliosphere, along the galactic magnetic field.

  5. The effects of cosmic particle radiation on pocket mice aboard Apollo XVII: X. Results of ear examination.

    PubMed

    Haymaker, W; Leon, H A; Barrows, W F; Suri, K; Kraft, L M; Turnbill, C E; Webster, D B; Ashley, W W; Look, B C; Simmonds, R C; Cooper, W; Platt, W T; Behnke, A R; Erway, L C; Cruty, M R; Benton, E V; Ellis, J T; Bailey, O T; Vogel, F S; Lloyd, B; Zeman, W; Billingham, J; Samorajski, T

    1975-04-01

    In the five pocket mice flown on Apollo XVII, no evidence was found that the inner ear had been damaged, though poor fixation precluded detailed study. On the other hand, the middle ear cavity was involved in all the mice, hemorrhage having occurrred in response to excursions in pressure within the canister that housed the mice during their flight. The same occurred in flight control mice which had been subjected to pressure excursions of much the same magnitude. A greater degree of exudation into air cells and greater leukotaxis were noted in the flight animals than in the control animals. There was no increase in leukocyte population along the paths of the 23 cosmic ray particles registered in the subscalp dosimeters that traversed the middle ear cavities of the flight mice. The increased exudation and the greater response by leukocytes in the flight mice may have been causally related to the lesions found in their olfactory mucosa but there were no data in support of this possibility. PMID:1156275

  6. Cosmic questions: an introduction.

    PubMed

    Primack, J R; Abrams, N E

    2001-12-01

    This introductory talk at the Cosmic Questions conference sponsored by the AAAS summarizes some earlier pictures of the universe and some pictures based on modern physics and cosmology. The uroboros (snake swallowing its tail) is an example of a traditional picture. The Biblical flat-earth picture was very different from the Greek spherical earth-centered picture, which was the standard view until the end of the Middle Ages. Many people incorrectly assume that the Newtonian picture of stars scattered through otherwise empty space is still the prevailing view. Seeing Earth from space shows the power of a new picture. The Hubble Space Telescope can see all the bright galaxies, all the way to the cosmic Dark Ages. We are at the center of cosmic spheres of time: looking outward is looking backward in time. All the matter and energy in the universe can be represented as a cosmic density pyramid. The laws of physics only allow the material objects in the universe to occupy a wedge-shaped region on a diagram of mass versus size. All sizes--from the smallest size scale, the Planck scale, to the entire visible universe--can be represented on the Cosmic Uroboros. There are interesting connections across this diagram, and the human scale lies in the middle. PMID:11797741

  7. Effects of tau domain-specific antibodies and intravenous immunoglobulin on tau aggregation and aggregate degradation.

    PubMed

    Esteves-Villanueva, Jose O; Trzeciakiewicz, Hanna; Loeffler, David A; Martić, Sanela

    2015-01-20

    Tau pathology, including neurofibrillary tangles, develops in Alzheimer's disease (AD). The aggregation and hyperphosphorylation of tau are potential therapeutic targets for AD. Administration of anti-tau antibodies reduces tau pathology in transgenic "tauopathy" mice; however, the optimal tau epitopes and conformations to target are unclear. Also unknown is whether intravenous immunoglobulin (IVIG) products, currently being evaluated in AD trials, exert effects on pathological tau. This study examined the effects of anti-tau antibodies targeting different tau epitopes and the IVIG Gammagard on tau aggregation and preformed tau aggregates. Tau aggregation was assessed by transmission electron microscopy and fluorescence spectroscopy, and the binding affinity of the anti-tau antibodies for tau was evaluated by enzyme-linked immunosorbent assays. Antibodies used were anti-tau 1-150 ("D-8"), anti-tau 259-266 ("Paired-262"), anti-tau 341-360 ("A-10"), and anti-tau 404-441 ("Tau-46"), which bind to tau's N-terminus, microtubule binding domain (MBD) repeat sequences R1 and R4, and the C-terminus, respectively. The antibodies Paired-262 and A-10, but not D-8 and Tau-46, reduced tau fibrillization and degraded preformed tau aggregates, whereas the IVIG reduced tau aggregation but did not alter preformed aggregates. The binding affinities of the antibodies for the epitope for which they were specific did not appear to be related to their effects on tau aggregation. These results confirm that antibody binding to tau's MBD repeat sequences may inhibit tau aggregation and indicate that such antibodies may also degrade preformed tau aggregates. In the presence of anti-tau antibodies, the resulting tau morphologies were antigen-dependent. The results also suggested the possibility of different pathways regulating antibody-mediated inhibition of tau aggregation and antibody-mediated degradation of preformed tau aggregates. PMID:25545358

  8. Cosmic radiation in commercial aviation.

    PubMed

    Bagshaw, Michael

    2008-05-01

    This paper reviews the current knowledge of cosmic radiation and its applicability to commercial aviation. Galactic cosmic radiation emanates from outside the solar system, while occasionally a disturbance in the suns' atmosphere leads to a surge in radiation particles. Protection is provided by the suns' magnetic field, the earths' magnetic field, and the earths' atmosphere. Dose rates are dependent on the altitude, the geomagnetic latitude and the solar cycle. For occupational exposure to ionising radiation, which includes aircrew, the International Commission on Radiological Protection recommends maximum mean body effective dose limits of 20mSv/yr (averaged over 5 years, with a maximum in any 1 year of 50mSv). Radiation doses can be measured during flight or may be calculated using a computer-modelling program such as CARI, EPCARD, SIEVERT or PCAIRE. Mean ambient equivalent dose rates are consistently reported in the region of 4-5microSv/h for long-haul pilots and 1-3microSv/h for short-haul, giving an annual mean effective exposure of the order 2-3mSv for long-haul and 1-2mSv for short-haul pilots. Epidemiological studies of flight crew have not shown conclusive evidence for any increase in cancer mortality or cancer incidence directly attributable to ionising radiation exposure. Whilst there is no level of radiation exposure below which effects do not occur, current evidence indicates that the probability of airline crew or passengers suffering adverse health effects as a result of exposure to cosmic radiation is very low. PMID:18486066

  9. Protective effects of genetic inhibition of Discoidin Domain Receptor 1 in experimental renal disease

    PubMed Central

    Kerroch, Monique; Alfieri, Carlo; Dorison, Aude; Boffa, Jean-Jacques; Chatziantoniou, Christos; Dussaule, Jean-Claude

    2016-01-01

    Chronic kidney disease is a progressive incurable pathology affecting millions of people. Intensive investigations aim to identify targets for therapy. We have previously demonstrated that abnormal expression of the Discoidin Domain Receptor 1 (DDR1) is a key factor of renal disease by promoting inflammation and fibrosis. The present study investigates whether blocking the expression of DDR1 after the initiation of renal disease can delay or arrest the progression of this pathology. Severe renal disease was induced by either injecting nephrotoxic serum (NTS) or performing unilateral ureteral obstruction in mice, and the expression of DDR1 was inhibited by administering antisense oligodeoxynucleotides either at 4 or 8 days after NTS (corresponding to early or more established phases of disease, respectively), or at day 2 after ligation. DDR1 antisense administration at day 4 stopped the increase of proteinuria and protected animals against the progression of glomeruloneprhitis, as evidenced by functional, structural and cellular indexes. Antisense administration at day 8 delayed progression –but to a smaller degree- of renal disease. Similar beneficial effects on renal structure and inflammation were observed with the antisense administration of DDR1 after ureteral ligation. Thus, targeting DDR1 can be a promising strategy in the treatment of chronic kidney disease. PMID:26880216

  10. Protective effects of genetic inhibition of Discoidin Domain Receptor 1 in experimental renal disease.

    PubMed

    Kerroch, Monique; Alfieri, Carlo; Dorison, Aude; Boffa, Jean-Jacques; Chatziantoniou, Christos; Dussaule, Jean-Claude

    2016-01-01

    Chronic kidney disease is a progressive incurable pathology affecting millions of people. Intensive investigations aim to identify targets for therapy. We have previously demonstrated that abnormal expression of the Discoidin Domain Receptor 1 (DDR1) is a key factor of renal disease by promoting inflammation and fibrosis. The present study investigates whether blocking the expression of DDR1 after the initiation of renal disease can delay or arrest the progression of this pathology. Severe renal disease was induced by either injecting nephrotoxic serum (NTS) or performing unilateral ureteral obstruction in mice, and the expression of DDR1 was inhibited by administering antisense oligodeoxynucleotides either at 4 or 8 days after NTS (corresponding to early or more established phases of disease, respectively), or at day 2 after ligation. DDR1 antisense administration at day 4 stopped the increase of proteinuria and protected animals against the progression of glomeruloneprhitis, as evidenced by functional, structural and cellular indexes. Antisense administration at day 8 delayed progression -but to a smaller degree- of renal disease. Similar beneficial effects on renal structure and inflammation were observed with the antisense administration of DDR1 after ureteral ligation. Thus, targeting DDR1 can be a promising strategy in the treatment of chronic kidney disease. PMID:26880216

  11. Stereoscopic displays in medical domains: a review of perception and performance effects

    NASA Astrophysics Data System (ADS)

    van Beurden, Maurice H. P. H.; van Hoey, Gert; Hatzakis, Haralambos; Ijsselsteijn, Wijnand A.

    2009-02-01

    In this paper we review empirical studies that investigate performance effects of stereoscopic displays for medical applications. We focus on four distinct application areas: diagnosis, pre-operative planning, minimally invasive surgery (MIS) and training/teaching. For diagnosis, stereoscopic displays can augment the understanding of complex spatial structures and increase the detection of abnormalities. Stereoscopic viewing of medical data has proven to increase the detection rate in breast imaging. A stereoscopic presentation of noisy and transparent images in 3D ultrasound results in better visualization of the internal structures, however more empirical studies are needed to confirm the clinical relevance. For MRI and CT, where images are frequently rendered in 3D perspective, the added value of binocular depth has not yet been convincingly demonstrated. For MIS, stereoscopic displays can decrease surgery time and increase accuracy of surgical procedures. Performance of surgical procedures is similar when high resolution 2D displays are compared with lower resolution stereoscopic displays, indicating an image quality improvement for stereoscopic displays. Training and surgical planning already use computer simulations in 2D, however more research is needed to the benefit of stereoscopic displays in those applications. Overall there is a clear need for more empirical evidence that quantifies the added value of stereoscopic displays in medical domains, such that the medical community will have ample basis to invest in stereoscopic displays in all or some of the described medical applications.

  12. Quantifying ionospheric effects on time-domain astrophysics with the Murchison Widefield Array

    NASA Astrophysics Data System (ADS)

    Loi, Shyeh Tjing; Murphy, Tara; Bell, Martin E.; Kaplan, David L.; Lenc, Emil; Offringa, André R.; Hurley-Walker, Natasha; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Emrich, D.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Johnston-Hollitt, M.; Kasper, J. C.; Kratzenberg, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.

    2015-11-01

    Refraction and diffraction of incoming radio waves by the ionosphere induce time variability in the angular positions, peak amplitudes and shapes of radio sources, potentially complicating the automated cross-matching and identification of transient and variable radio sources. In this work, we empirically assess the effects of the ionosphere on data taken by the Murchison Widefield Array (MWA) radio telescope. We directly examine 51 h of data observed over 10 nights under quiet geomagnetic conditions (global storm index Kp < 2), analysing the behaviour of short-time-scale angular position and peak flux density variations of around ten thousand unresolved sources. We find that while much of the variation in angular position can be attributed to ionospheric refraction, the characteristic displacements (10-20 arcsec) at 154 MHz are small enough that search radii of 1-2 arcmin should be sufficient for cross-matching under typical conditions. By examining bulk trends in amplitude variability, we place upper limits on the modulation index associated with ionospheric scintillation of 1-3 per cent for the various nights. For sources fainter than ˜1 Jy, this variation is below the image noise at typical MWA sensitivities. Our results demonstrate that the ionosphere is not a significant impediment to the goals of time-domain science with the MWA at 154 MHz.

  13. Discovery of cosmic rays

    NASA Astrophysics Data System (ADS)

    Carlson, Per

    2013-02-01

    The mysterious invisible radiation that ionized air was studied a century ago by many scientists. Finally, on 7 August 1912, Victor Hess in his seventh balloon flight that year, reached an altitude of about 5000 m. With his electroscopes on board the hydrogen-filled balloon he observed that the ionization instead of decreasing with altitude increased significantly. Hess had discovered cosmic rays, a discovery that gave him the 1936 Nobel Prize in physics. When research resumed after World War I focus was on understanding the nature of the cosmic radiation. Particles or radiation? Positive or negative? Electrons, positrons or protons? Progress came using new instruments like the Geiger-Muller tube and around 1940 it was clear that cosmic rays were mostly protons.

  14. Semilocal cosmic string networks

    SciTech Connect

    Achucarro, Ana; Salmi, Petja; Urrestilla, Jon

    2007-06-15

    We report on a large-scale numerical study of networks of semilocal cosmic strings in flat space in the parameter regime in which they are perturbatively stable. We find a population of segments with an exponential length distribution and indications of a scaling network without significant loop formation. Very deep in the stability regime strings of superhorizon size grow rapidly and ''percolate'' through the box. We believe these should lead at late times to a population of infinite strings similar to topologically stable strings. However, the strings are very light; scalar gradients dominate the energy density, and the network has thus a global texturelike signature. As a result, the observational constraints, at least from the temperature power spectrum of the cosmic microwave background, on models predicting semilocal strings should be closer to those on global textures or monopoles, rather than on topologically stable gauged cosmic strings.

  15. Effects of altered cytoplasmic domains on transport of the vesicular stomatitis virus glycoprotein are transferable to other proteins.

    PubMed Central

    Guan, J L; Ruusala, A; Cao, H; Rose, J K

    1988-01-01

    Alterations of the cytoplasmic domain of the vesicular stomatitis virus glycoprotein (G protein) were shown previously to affect transport of the protein from the endoplasmic reticulum, and recent studies have shown that this occurs without detectable effects on G protein folding and trimerization (R. W. Doms et al., J. Cell Biol., in press). Deletions within this domain slowed exit of the mutant proteins from the endoplasmic reticulum, and replacement of this domain with a foreign 12-amino-acid sequence blocked all transport out of the endoplasmic reticulum. To extend these studies, we determined whether such effects of cytoplasmic domain changes were transferable to other proteins. Three different assays showed that the effects of the mutations on transport of two membrane-anchored secretory proteins were the same as those observed with vesicular stomatitis virus G protein. In addition, possible effects on oligomerization were examined for both transported and nontransported forms of membrane-anchored human chorionic gonadotropin-alpha. These membrane-anchored forms, like the nonanchored human chorionic gonadotropin-alpha, had sedimentation coefficients consistent with a monomeric structure. Taken together, our results provide strong evidence that these cytoplasmic mutations affect transport by affecting interactions at or near the cytoplasmic side of the membrane. Images PMID:2841589

  16. The Effect of School Counselors' Domain Specialization on Seniors' Milestone Completion and College Access Planning

    ERIC Educational Resources Information Center

    Bond, Nancy J.

    2013-01-01

    The purpose of this study was to determine the effect of senior high school counselors' domain specializations--academic, advanced education, career, and personal/social--from two urban high schools, on alphabetically assigned graduating seniors' with low, mid-range, and high Grade Point Averages documented college and career readiness…

  17. Nineteenth International Cosmic Ray Conference. SH Sessions, Volume 5

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume contains papers addressing cosmic ray gradients in the heliosphere; siderial, diurnal, and long term modulations; geomagnetic and atmospheric effects; cosmogenic nuclides; solar neutrinos; and detection techniques.

  18. Production and distribution of melt in domainal migmatite deciphered by micro-mapping the local effective bulk compositions

    NASA Astrophysics Data System (ADS)

    Lanari, Pierre; Riel, Nicolas; Engi, Martin

    2015-04-01

    Migmatites are fantastic targets to study the evolution of melt compositions, because they represent levels in the crust where partial melting has occurred. However, migmatites commonly have a complex history because they are the products of different transformation processes, such as (i) melt producing reactions, (ii) melt migration, and (iii) retrograde reactions. Evidence of such processes is preserved in the minerals and microstructures of rocks that outcrop in deeply exhumed orogens. The complexity of migmatites is due to their chemical and textural heterogeneity visible in different domains with various mineral assemblages. Partial melting of pelites involves reactions that are predictable using thermodynamic models. However, a forward modeling approach based on rock-specific equilibrium phase diagrams (P-T sections) requires the knowledge of local bulk composition for each equilibrium assemblage. This study demonstrates that suitable local effective bulk (LEB) compositions can be derived by means of standardized microprobe X-ray images, using the program XMAPTOOLS. For chemically heterogeneous samples, such as domanial migmatites, these LEB compositions allow the stable mineral assemblages to be modeled for each domain and to obtain reliable P-T estimates. A metapelite sample studied in detail derived from a metasedimentary xenolith in the Marcabeli pluton, El Oro Complex, Ecuador. This sample shows complex mineral patterns due to local melt redistribution (at mm to cm-scale), involving major changes that affected the local chemical composition observed today. Four domains are identified: A residuum domain made of cordierite + biotite + plagioclase + spinel, which is a metamorphic assemblage stable at P-Tmax conditions of 750 ± 50°C and 2 ± 1 kbar. In the leucosome (plagioclase + Kspar + quartz + biotite + orthopyroxene) three sub-domains show different mineral assemblages. Domain-specific equilibrium assemblages in the P-T sections demonstrate that these

  19. Cosmic Concordance and Quintessence

    NASA Astrophysics Data System (ADS)

    Wang, Limin; Caldwell, R. R.; Ostriker, J. P.; Steinhardt, Paul J.

    2000-02-01

    We present a comprehensive study of the observational constraints on spatially flat cosmological models containing a mixture of matter and quintessence-a time-varying, spatially inhomogeneous component of the energy density of the universe with negative pressure. Our study also includes the limiting case of a cosmological constant. We classify the observational constraints by redshift: low-redshift constraints include the Hubble parameter, baryon fraction, cluster abundance, the age of the universe, bulk velocity and the shape of the mass power spectrum; intermediate-redshift constraints are due to probes of the redshift-luminosity distance based on Type Ia supernovae, gravitational lensing, the Lyα forest, and the evolution of large-scale structure; high-redshift constraints are based on measurements of the cosmic microwave background temperature anisotropy. Mindful of systematic errors, we adopt a conservative approach in applying these observational constraints. We determine that the range of quintessence models in which the ratio of the matter density to the critical density is 0.2<~Ωm<~0.5, and the effective, density-averaged equation of state is -1<=w<~-0.2, is consistent with the most reliable, current low-redshift and microwave background observations at the 2 σ level. Factoring in the constraint due to the recent measurements of Type Ia supernovae, the range for the equation of state is reduced to -1<=w<~-0.4, where this range represents models consistent with each observational constraint at the 2 σ level or better (concordance analysis). A combined maximum likelihood analysis suggests a smaller range, -1<=w<~-0.6. We find that the best-fit and best-motivated quintessence models lie near Ωm~0.33, h~0.65, and spectral index ns=1, with an effective equation of state w~-0.65 for ``tracker'' quintessence and w=-1 for ``creeper'' quintessence.

  20. Dependence of effective internal field of congruent lithium niobate on its domain configuration and stability

    SciTech Connect

    Das, Ranjit E-mail: souvik2cat@gmail.com Ghosh, Souvik E-mail: souvik2cat@gmail.com Chakraborty, Rajib E-mail: souvik2cat@gmail.com

    2014-06-28

    Congruent lithium niobate is characterized by its internal field, which arises due to defect clusters within the crystal. Here, it is shown experimentally that this internal field is a function of the molecular configuration in a particular domain and also on the stability of that particular configuration. The measurements of internal field are done using interferometric technique, while the variation of domain configuration is brought about by room temperature high voltage electric field poling.

  1. Weak cosmic censorship: as strong as ever.

    PubMed

    Hod, Shahar

    2008-03-28

    Spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. This is the essence of the weak cosmic censorship conjecture. The hypothesis, put forward by Penrose 40 years ago, is still one of the most important open questions in general relativity. In this Letter, we reanalyze extreme situations which have been considered as counterexamples to the weak cosmic censorship conjecture. In particular, we consider the absorption of scalar particles with large angular momentum by a black hole. Ignoring back reaction effects may lead one to conclude that the incident wave may overspin the black hole, thereby exposing its inner singularity to distant observers. However, we show that when back reaction effects are properly taken into account, the stability of the black-hole event horizon is irrefutable. We therefore conclude that cosmic censorship is actually respected in this type of gedanken experiments. PMID:18517851

  2. PARSEC: PARametrized Simulation Engine for Cosmic rays

    NASA Astrophysics Data System (ADS)

    Bretz, Hans-Peter; Erdmann, Martin; Schiffer, Peter; Walz, David; Winchen, Tobias

    2015-02-01

    PARSEC (PARametrized Simulation Engine for Cosmic rays) is a simulation engine for fast generation of ultra-high energy cosmic ray data based on parameterizations of common assumptions of UHECR origin and propagation. Implemented are deflections in unstructured turbulent extragalactic fields, energy losses for protons due to photo-pion production and electron-pair production, as well as effects from the expansion of the universe. Additionally, a simple model to estimate propagation effects from iron nuclei is included. Deflections in the Galactic magnetic field are included using a matrix approach with precalculated lenses generated from backtracked cosmic rays. The PARSEC program is based on object oriented programming paradigms enabling users to extend the implemented models and is steerable with a graphical user interface.

  3. Wide-area assessment of topographical and meteorological effects on sound propagation by time-domain modeling.

    PubMed

    Heimann, Dietrich

    2013-05-01

    Noise mapping with a three-dimensional finite-difference time-domain (FDTD) model over larger areas suffers from its high computational demand. This study shows that an FDTD model in combination with a meteorological model can be used for at least qualitative assessments of topographical and meteorological effects on sound propagation in domains of even some kilometers extension. This is achieved by restricting the acoustical simulations to low frequencies which allow the use of a rather large numerical grid spacing. PMID:23656103

  4. On preferred axes in WMAP cosmic microwave background data after subtraction of the integrated Sachs-Wolfe effect

    NASA Astrophysics Data System (ADS)

    Rassat, A.; Starck, J.-L.

    2013-09-01

    There is currently a debate over the existence of claimed statistical anomalies in the cosmic microwave background (CMB), recently confirmed in Planck data. Recent work has focussed on methods for measuring statistical significance, on masks and on secondary anisotropies as potential causes of the anomalies. We investigate simultaneously the method for accounting for masked regions and the foreground integrated Sachs-Wolfe (ISW) signal. We search for trends in different years of WMAP CMB data with different mask treatments. We reconstruct the ISW field due to the 2 Micron All-Sky Survey (2MASS) and the NRAO VLA Sky Survey (NVSS) up to ℓ = 5, and we focus on the Axis of Evil (AoE) statistic and even/odd mirror parity, both of which search for preferred axes in the Universe. We find that removing the ISW reduces the significance of these anomalies in WMAP data, though this does not exclude the possibility of exotic physics. In the spirit of reproducible research, all reconstructed maps and codes will be made available for download at http://www.cosmostat.org/anomaliesCMB.html. Appendices are available in electronic form at http://www.aanda.orgReconstructed maps and codes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/557/L1

  5. Effect of gravity waves on the tropopause temperature, height and water vapor in Tibet from COSMIC GPS Radio Occultation observations

    NASA Astrophysics Data System (ADS)

    Khan, Attaullah; Jin, Shuanggen

    2016-02-01

    The tropopause plays an important role in climate change, particularly in Tibet with complex topography and climate change system. In this paper, the temperature and height of the Cold Point Tropopause (CPT) in Tibet are obtained and investigated from COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) GPS Radio Occultation (RO) during June 2006-Feb 2014, which are compared with Lapse Rate Tropopause (LRT) from Atmospheric Infrared Sounder (AIRS/NASA). Furthermore, the impact of Gravity waves (GW) potential energy (Ep) on the CPT-Temperature, CPT-Height, and the variation of stratospheric water vapor with GW Ep variations are presented. Generally the coldest CPT temperature is in June-July-August (JJA) with -76.5 °C, resulting less water vapor into the stratosphere above the cold points. The temperature of the cold point increases up to -69 °C during the winter over the Tibetan Plateau (25-40°N, 70-100°E) that leads to increase in water vapor above the cold points (10 hPa). Mean vertical fluctuations of temperature are calculated as well as the mean gravity wave potential energy Ep for each month from June 2006 to Feb 2014. Monthly Ep is calculated at 5°×5° grids between 17 km and 24 km in altitude for the Tibetan Plateau. The Ep raises from 1.83 J/Kg to 3.4 J/Kg from summer to winter with mean Ep of 2.5 J/Kg for the year. The results show that the gravity waves affect the CPT temperature and water vapor concentration in the stratosphere. Water vapor, CPT temperature and gravity wave (Ep) have good correlation with each other above the cold points, and water vapor increases with increasing Ep.

  6. Supernova and cosmic rays

    NASA Technical Reports Server (NTRS)

    Wefel, J. P.

    1981-01-01

    A general overview of supernova astronomy is presented, followed by a discussion of the relationship between SN and galactic cosmic rays. Pre-supernova evolution is traced to core collapse, explosion, and mass ejection. The two types of SN light curves are discussed in terms of their causes, and the different nucleosynthetic processes inside SNs are reviewed. Physical events in SN remnants are discussed. The three main connections between cosmic rays and SNs, the energy requirement, the acceleration mechanism, and the detailed composition of CR, are detailed.

  7. Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Blasi, Pasquale

    2015-12-01

    The multi-facet nature of the origin of cosmic rays is such that some of the problems currently met in our path to describing available data are due to oversimplified models of CR acceleration and transport, and others to lack of knowledge of the physical processes at work in certain conditions. On the other hand, the phenomenology of cosmic rays, as arising from better observations, is getting so rich that it makes sense to try to distinguish the problems that derive from too simple views of Nature and those that are challenging the very foundations of the existing paradigms. Here I will briefly discuss some of these issues.

  8. Heterotic cosmic strings

    SciTech Connect

    Becker, Katrin; Becker, Melanie; Krause, Axel

    2006-08-15

    We show that all three conditions for the cosmological relevance of heterotic cosmic strings, the right tension, stability and a production mechanism at the end of inflation, can be met in the strongly coupled M-theory regime. Whereas cosmic strings generated from weakly coupled heterotic strings have the well-known problems posed by Witten in 1985, we show that strings arising from M5-branes wrapped around 4-cycles (divisors) of a Calabi-Yau in heterotic M-theory compactifications solve these problems in an elegant fashion.

  9. Morning Sleep Inertia in Alertness and Performance: Effect of Cognitive Domain and White Light Conditions

    PubMed Central

    Santhi, Nayantara; Groeger, John A.; Archer, Simon N.; Gimenez, Marina; Schlangen, Luc J. M.; Dijk, Derk-Jan

    2013-01-01

    The transition from sleep to wakefulness entails a temporary period of reduced alertness and impaired performance known as sleep inertia. The extent to which its severity varies with task and cognitive processes remains unclear. We examined sleep inertia in alertness, attention, working memory and cognitive throughput with the Karolinska Sleepiness Scale (KSS), the Psychomotor Vigilance Task (PVT), n-back and add tasks, respectively. The tasks were administered 2 hours before bedtime and at regular intervals for four hours, starting immediately after awakening in the morning, in eleven participants, in a four-way cross-over laboratory design. We also investigated whether exposure to Blue-Enhanced or Bright Blue-Enhanced white light would reduce sleep inertia. Alertness and all cognitive processes were impaired immediately upon awakening (p<0.01). However, alertness and sustained attention were more affected than cognitive throughput and working memory. Moreover, speed was more affected than accuracy of responses. The light conditions had no differential effect on performance except in the 3-back task (p<0.01), where response times (RT) at the end of four hours in the two Blue-Enhanced white light conditions were faster (200 ms) than at wake time. We conclude that the effect of sleep inertia varies with cognitive domain and that it’s spectral/intensity response to light is different from that of sleepiness. That is, just increasing blue-wavelength in light may not be sufficient to reduce sleep inertia. These findings have implications for critical professions like medicine, law-enforcement etc., in which, personnel routinely wake up from night-time sleep to respond to emergency situations. PMID:24260280

  10. Distinct neurobehavioural effects of cannabidiol in transmembrane domain neuregulin 1 mutant mice.

    PubMed

    Long, Leonora E; Chesworth, Rose; Huang, Xu-Feng; Wong, Alexander; Spiro, Adena; McGregor, Iain S; Arnold, Jonathon C; Karl, Tim

    2012-01-01

    The cannabis constituent cannabidiol (CBD) possesses anxiolytic and antipsychotic properties. We have previously shown that transmembrane domain neuregulin 1 mutant (Nrg1 TM HET) mice display altered neurobehavioural responses to the main psychoactive constituent of cannabis, Δ(9)-tetrahydrocannabinol. Here we investigated whether Nrg1 TM HET mice respond differently to CBD and whether CBD reverses schizophrenia-related phenotypes expressed by these mice. Adult male Nrg1 TM HET and wild type-like littermates (WT) received vehicle or CBD (1, 50 or 100 mg/kg i.p.) for 21 days. During treatment and 48 h after withdrawal we measured behaviour, whole blood CBD concentrations and autoradiographic receptor binding. Nrg1 HET mice displayed locomotor hyperactivity, PPI deficits and reduced 5-HT(2A) receptor binding density in the substantia nigra, but these phenotypes were not reversed by CBD. However, long-term CBD (50 and 100 mg/kg) selectively enhanced social interaction in Nrg1 TM HET mice. Furthermore, acute CBD (100 mg/kg) selectively increased PPI in Nrg1 TM HET mice, although tolerance to this effect was manifest upon repeated CBD administration. Long-term CBD (50 mg/kg) also selectively increased GABA(A) receptor binding in the granular retrosplenial cortex in Nrg1 TM HET mice and reduced 5-HT(2A) binding in the substantia nigra in WT mice. Nrg1 appears necessary for CBD-induced anxiolysis since only WT mice developed decreased anxiety-related behaviour with repeated CBD treatment. Altered pharmacokinetics in mutant mice could not explain our findings since no genotype differences existed in CBD blood concentrations. Here we demonstrate that Nrg1 modulates acute and long-term neurobehavioural effects of CBD, which does not reverse the schizophrenia-relevant phenotypes. PMID:22509273

  11. On the effective measurement frequency of time domain reflectometry in dispersive and nonconductive dielectric materials

    NASA Astrophysics Data System (ADS)

    Robinson, D. A.; Schaap, M. G.; Or, D.; Jones, S. B.

    2005-02-01

    Time domain reflectometry (TDR) is one of the most commonly used techniques for water content determination in the subsurface. The measurement results in a single bulk permittivity value that corresponds to a particular, but unknown, ``effective'' frequency (feff). Estimating feff using TDR is important, as it allows comparisons with other techniques, such as impedance or capacitance probes, or microwave remote sensing devices. Soils, especially those with high clay and organic matter content, show appreciable dielectric dispersion, i.e., the real permittivity changes as a function of frequency. Consequently, comparison of results obtained with different sensor types must account for measurement frequency in assessing sensor accuracy and performance. In this article we use a transmission line model to examine the impact of dielectric dispersion on the TDR signal, considering lossless materials (negligible electrical conductivity). Permittivity is inferred from the standard tangent line fitting procedure (KaTAN) and by a method of using the apex of the derivative of the TDR waveform (KaDER). The permittivity determined using the tangent line method is considered to correspond to a velocity associated with a maximum passable frequency; whereas we consider the permittivity determined from the derivative method to correspond with the frequency associated with the signal group velocity. The effective frequency was determined from the 10-90% risetime of the reflected signal. On the basis of this definition, feff was found to correspond with the permittivity determined from KaDER and not from KaTAN in dispersive dielectrics. The modeling is corroborated by measurements in bentonite, ethanol and 1-propanol/water mixtures, which demonstrate the same result. Interestingly, for most nonconductive TDR measurements, frequencies are expected to lie in a range from 0.7 to 1 GHz, while in dispersive media, feff is expected to fall below 0.6 GHz.

  12. On the effective measurement frequency of time domain reflectometry in dispersive and nonconductive dielectric materials

    NASA Astrophysics Data System (ADS)

    Robinson, D. A.; Schaap, M. G.; Or, D.; Jones, S. B.

    2005-02-01

    Time domain reflectometry (TDR) is one of the most commonly used techniques for water content determination in the subsurface. The measurement results in a single bulk permittivity value that corresponds to a particular, but unknown, "effective" frequency (feff). Estimating feff using TDR is important, as it allows comparisons with other techniques, such as impedance or capacitance probes, or microwave remote sensing devices. Soils, especially those with high clay and organic matter content, show appreciable dielectric dispersion, i.e., the real permittivity changes as a function of frequency. Consequently, comparison of results obtained with different sensor types must account for measurement frequency in assessing sensor accuracy and performance. In this article we use a transmission line model to examine the impact of dielectric dispersion on the TDR signal, considering lossless materials (negligible electrical conductivity). Permittivity is inferred from the standard tangent line fitting procedure (KaTAN) and by a method of using the apex of the derivative of the TDR waveform (KaDER). The permittivity determined using the tangent line method is considered to correspond to a velocity associated with a maximum passable frequency; whereas we consider the permittivity determined from the derivative method to correspond with the frequency associated with the signal group velocity. The effective frequency was determined from the 10-90% risetime of the reflected signal. On the basis of this definition, feff was found to correspond with the permittivity determined from KaDER and not from KaTAN in dispersive dielectrics. The modeling is corroborated by measurements in bentonite, ethanol and 1-propanol/water mixtures, which demonstrate the same result. Interestingly, for most nonconductive TDR measurements, frequencies are expected to lie in a range from 0.7 to 1 GHz, while in dispersive media, feff is expected to fall below 0.6 GHz.

  13. Modelling of crowded polymers elucidate effects of double-strand breaks in topological domains of bacterial chromosomes

    PubMed Central

    Dorier, Julien; Stasiak, Andrzej

    2013-01-01

    Using numerical simulations of pairs of long polymeric chains confined in microscopic cylinders, we investigate consequences of double-strand DNA breaks occurring in independent topological domains, such as these constituting bacterial chromosomes. Our simulations show a transition between segregated and mixed state upon linearization of one of the modelled topological domains. Our results explain how chromosomal organization into topological domains can fulfil two opposite conditions: (i) effectively repulse various loops from each other thus promoting chromosome separation and (ii) permit local DNA intermingling when one or more loops are broken and need to be repaired in a process that requires homology search between broken ends and their homologous sequences in closely positioned sister chromatid. PMID:23742906

  14. Direct Determination of the Effect of Strain on Domain Morphology in Ferroelectric Superlattices with Scanning Probe Microscopy

    SciTech Connect

    Kathan-Galipeau, Kendra; Wu, Pingping; Li, Yulan; Chen, Long-Qing; Soukiassian, A.; Zhu, Ye; Muller, David A.; Xi, X. X.; Schlom, Darrell G.; Bonnell, D. A.

    2012-09-04

    A variant of piezo force microscopy was used to characterize the effect of strain on polarization in [(BaTiO3)n/(SrTiO3)m]p superlattices. The measurements were compared to theoretical predictions based on phase-field calculations. When polarization is constrained to be perpendicular to the substrate, the measured polarization and domain morphology agree quantitatively with the predictions. This case allows the presence of an internal electric field in the thin film to be identified. The measured trend in piezoelectric response with strain state was in qualitative agreement with predictions and the differences were consistent with the presence of internal electrical fields. Clear differences in domain morphology with strain were observed and in some cases the lateral anisotropic strain appeared to influence the domain morphology. The differences in magnitude and morphology were attributed to the internal electric fields and anisotropic strains.

  15. Mediating effects of the ICF domain of function and the gross motor function measure on the ICF domains of activity, and participation in children with cerebral palsy

    PubMed Central

    Lee, Byoung-Hee; Kim, Yu-Mi; Jeong, Goo-Churl

    2015-01-01

    [Purpose] This study aimed to evaluate the mediating effect of gross motor function, measured using the Gross Motor Function Measure (GMFM) and of general function, measured using the International Classification of Functioning, Disability and Health-Child and Youth Check List (ICF-CY), on the ICF domains of activity and participation in children with cerebral palsy (CP). [Subjects] Ninety-five children with CP, from Seoul, Korea, participated in the study. [Methods] The GMFM was administered in its entirety to patients without orthoses or mobility aids. The ICF-CY was used to evaluate the degree of disability and health of subjects. [Results] GMFM score and ICF-CY function were negatively correlated to ICF-CY activity and participation. ICF-CY partially mediated the effects of the GMFM on activity and participation. [Conclusion] When establishing a treatment plan for a child with CP, limitations in activity and participation, as described by the ICF-CY, should be considered in addition to the child’s physical abilities and development. In addition, the treatment plan should focus on increasing the child’s activity and participation level, as well as his/her physical level. PMID:26644643

  16. Mediating effects of the ICF domain of function and the gross motor function measure on the ICF domains of activity, and participation in children with cerebral palsy.

    PubMed

    Lee, Byoung-Hee; Kim, Yu-Mi; Jeong, Goo-Churl

    2015-10-01

    [Purpose] This study aimed to evaluate the mediating effect of gross motor function, measured using the Gross Motor Function Measure (GMFM) and of general function, measured using the International Classification of Functioning, Disability and Health-Child and Youth Check List (ICF-CY), on the ICF domains of activity and participation in children with cerebral palsy (CP). [Subjects] Ninety-five children with CP, from Seoul, Korea, participated in the study. [Methods] The GMFM was administered in its entirety to patients without orthoses or mobility aids. The ICF-CY was used to evaluate the degree of disability and health of subjects. [Results] GMFM score and ICF-CY function were negatively correlated to ICF-CY activity and participation. ICF-CY partially mediated the effects of the GMFM on activity and participation. [Conclusion] When establishing a treatment plan for a child with CP, limitations in activity and participation, as described by the ICF-CY, should be considered in addition to the child's physical abilities and development. In addition, the treatment plan should focus on increasing the child's activity and participation level, as well as his/her physical level. PMID:26644643

  17. Galactic cosmic rays and nucleosynthesis

    SciTech Connect

    Kiener, Juergen

    2010-03-01

    The nucleosynthesis of the light elements Li, Be and B by galactic cosmic rays is presented. Observations of cosmic rays and the nuclear reactions responsible for Li, Be and B nucleosynthesis are described, followed by some words on propagation. At the end, some open questions concerning galactic cosmic rays are discussed.

  18. Ultra heavy cosmic ray experiment (A0178)

    NASA Technical Reports Server (NTRS)

    Thompson, A.; Osullivan, D.; Bosch, J.; Keegan, R.; Wenzel, K. P.; Jansen, F.; Domingo, C.

    1992-01-01

    The Ultra Heavy Cosmic Ray Experiment (UHCRE) is based on a modular array of 192 side viewing solid state nuclear track detector stacks. These stacks were mounted in sets of four in 48 pressure vessels using 16 peripheral LDEF trays. The geometry factor for high energy cosmic ray nuclei, allowing for Earth shadowing, was 30 sq m sr, giving a total exposure factor of 170 sq m sr y at an orbital inclination of 28.4 degs. Scanning results indicate that about 3000 cosmic ray nuclei in the charge region with Z greater than 65 were collected. This sample is more than ten times the current world data in the field (taken to be the data set from the HEAO-3 mission plus that from the Ariel-6 mission) and is sufficient to provide the world's first statistically significant sample of actinide cosmic rays. Results are presented including a sample of ultra heavy cosmic ray nuclei, analysis of pre-flight and post-flight calibration events and details of track response in the context of detector temperature history. The integrated effect of all temperature and age related latent track variations cause a maximum charge shift of + or - 0.8e for uranium and + or - 0.6e for the platinum-lead group. Astrophysical implications of the UHCRE charge spectrum are discussed.

  19. A Cosmic Magnifying Glass

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Scanning the heavens for the first time since the successful December 1999 servicing mission, NASA's Hubble Space Telescope imaged a giant, cosmic magnifying glass, a massive cluster of galaxies called Abell 2218. This 'hefty' cluster resides in the constellation Draco, some 2 billion light-years from Earth. The cluster is so massive that its enormous gravitational field deflects light rays passing through it, much as an optical lens bends light to form an image. This phenomenon, called gravitational lensing, magnifies, brightens, and distorts images from faraway objects. The cluster's magnifying powers provides a powerful 'zoom lens' for viewing distant galaxies that could not normally be observed with the largest telescopes. The picture is dominated by spiral and elliptical galaxies. Resembling a string of tree lights, the biggest and brightest galaxies are members of the foreground cluster. Researchers are intrigued by a tiny red dot just left of top center. This dot may be an extremely remote object made visible by the cluster's magnifying powers. Further investigation is needed to confirm the object's identity. The color picture already reveals several arc-shaped features that are embedded in the cluster and cannot be easily seen in the black-and- white image. The colors in this picture yield clues to the ages, distances, and temperatures of stars, the stuff of galaxies. Blue pinpoints hot young stars. The yellow-white color of several of the galaxies represents the combined light of many stars. Red identifies cool stars, old stars, and the glow of stars in distant galaxies. This view is only possible by combining Hubble's unique image quality with the rare lensing effect provided by the magnifying cluster.

  20. Assessing the effect of domain size over the Caribbean region using the PRECIS regional climate model

    NASA Astrophysics Data System (ADS)

    Centella-Artola, Abel; Taylor, Michael A.; Bezanilla-Morlot, Arnoldo; Martinez-Castro, Daniel; Campbell, Jayaka D.; Stephenson, Tannecia S.; Vichot, Alejandro

    2015-04-01

    This study investigates the sensitivity of the one-way nested PRECIS regional climate model (RCM) to domain size for the Caribbean region. Simulated regional rainfall patterns from experiments using three domains with horizontal resolution of 50 km are compared with ERA reanalysis and observed datasets to determine if there is an optimal RCM configuration with respect to domain size and the ability to reproduce important observed climate features in the Caribbean. Results are presented for the early wet season (May-July) and late wet season (August-October). There is a relative insensitivity to domain size for simulating some important features of the regional circulation and key rainfall characteristics e.g. the Caribbean low level jet and the mid summer drought (MSD). The downscaled precipitation has a systematically negative precipitation bias, even when the domain was extended to the African coast to better represent circulation associated with easterly waves and tropical cyclones. The implications for optimizing modelling efforts within resource-limited regions like the Caribbean are discussed especially in the context of the region's participation in global initiatives such as CORDEX.

  1. Our Cosmic Connection

    ERIC Educational Resources Information Center

    Young, Donna L.

    2005-01-01

    To help students understand the connection that Earth and the solar system have with the cosmic cycles of stellar evolution, and to give students an appreciation of the beauty and elegance of celestial phenomena, the Chandra X-Ray Center (CXC) educational website contains a stellar evolution module that is available free to teachers. In this…

  2. Heavy cosmic strings

    SciTech Connect

    Donaire, M.; Rajantie, A.

    2006-03-15

    We argue that cosmic strings with high winding numbers generally form in first-order gauge symmetry breaking phase transitions, and we demonstrate this using computer simulations. These strings are heavier than single-winding strings and therefore more easily observable. Their cosmological evolution may also be very different.

  3. [The applicability of discrete composite frequency signals with frequency manipulation to research on the effect of cosmic and geophysical factors on Earth's biosphere].

    PubMed

    Darovskikh, S N

    1992-01-01

    A model consideration was performed of possible mechanism of sonic information compression in neurone network. A prognosis was made on the frequency-temporal structure of Earth electromagnetic field variability, which was influenced by cosmic and geophysics factors. PMID:1583207

  4. Cosmic Rays: "A Thin Rain of Charged Particles."

    ERIC Educational Resources Information Center

    Friedlander, Michael

    1990-01-01

    Discussed are balloons and electroscopes, understanding cosmic rays, cosmic ray paths, isotopes and cosmic-ray travel, sources of cosmic rays, and accelerating cosmic rays. Some of the history of the discovery and study of cosmic rays is presented. (CW)

  5. Cosmic Rays at Earth

    NASA Astrophysics Data System (ADS)

    Grieder, P. K. F.

    In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological

  6. Measuring anisotropies in the cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Lisanti, Mariangela; Safdi, Benjamin R.; Tully, Christopher G.

    2014-10-01

    Neutrino capture on tritium has emerged as a promising method for detecting the cosmic neutrino background (C ν B ). We show that relic neutrinos are captured most readily when their spin vectors are antialigned with the polarization axis of the tritium nuclei and when they approach along the direction of polarization. As a result, C ν B observatories may measure anisotropies in the cosmic neutrino velocity and spin distributions by polarizing the tritium targets. A small dipole anisotropy in the C ν B is expected due to the peculiar velocity of the lab frame with respect to the cosmic frame and due to late-time gravitational effects. The PTOLEMY experiment, a tritium observatory currently under construction, should observe a nearly isotropic background. This would serve as a strong test of the cosmological origin of a potential signal. The polarized-target measurements may also constrain nonstandard neutrino interactions that would induce larger anisotropies and help discriminate between Majorana versus Dirac neutrinos.

  7. THE COSMIC-RAY INTENSITY NEAR THE ARCHEAN EARTH

    SciTech Connect

    Cohen, O.; Drake, J. J.; Kota, J.

    2012-11-20

    We employ three-dimensional state-of-the-art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic-ray transport to investigate the cosmic-ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic-ray spectrum is to changes in the sunspot placement and magnetic field strength, the large-scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic-ray flux than is the case today. The cosmic-ray reduction for the early Sun is mainly due to the shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic-ray flux at 1 AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variations in the dipole field component. The wind ram pressure affects the cosmic-ray flux through its influence on the size of the heliosphere via the pressure balance with the ambient interstellar medium. Variations in the interstellar medium pressure experienced by the solar system in orbit through the Galaxy could lead to order of magnitude changes in the cosmic-ray flux at Earth on timescales of a few million years.

  8. Substrate Clamping Effects on Irreversible Domain Wall Dynamics in Lead Zirconate Titanate Thin Films

    SciTech Connect

    Griggio, Flavio; Jesse, Stephen; Kumar, Amit; Ovchinnikov, Oleg S; Kim, H.; Jackson, T. N.; Damjanovic, Dragan; Kalinin, Sergei V; Trolier-Mckinstry, Susan E

    2012-01-01

    The role of long-range strain interactions on domain wall dynamics is explored through macroscopic and local measurements of nonlinear behavior in mechanically clamped and released polycrystalline lead zirconate-titanate (PZT) films. Released films show a dramatic change in the global dielectric nonlinearity and its frequency dependence as a function of mechanical clamping. Furthermore, we observe a transition from strong clustering of the nonlinear response for the clamped case to almost uniform nonlinearity for the released film. This behavior is ascribed to increased mobility of domain walls. These results suggest the dominant role of collective strain interactions mediated by the local and global mechanical boundary conditions on the domain wall dynamics. The work presented in this Letter demonstrates that measurements on clamped films may considerably underestimate the piezoelectric coefficients and coupling constants of released structures used in microelectromechanical systems, energy harvesting systems, and microrobots.

  9. Wave diffraction by a cosmic string

    NASA Astrophysics Data System (ADS)

    Fernández-Núñez, Isabel; Bulashenko, Oleg

    2016-08-01

    We show that if a cosmic string exists, it may be identified through characteristic diffraction pattern in the energy spectrum of the observed signal. In particular, if the string is on the line of sight, the wave field is shown to fit the Cornu spiral. We suggest a simple procedure, based on Keller's geometrical theory of diffraction, which allows to explain wave effects in conical spacetime of a cosmic string in terms of interference of four characteristic rays. Our results are supposed to be valid for scalar massless waves, including gravitational waves, electromagnetic waves, or even sound in case of condensed matter systems with analogous topological defects.

  10. Insertion of Endocellulase Catalytic Domains into Thermostable Consensus Ankyrin Scaffolds: Effects on Stability and Cellulolytic Activity

    PubMed Central

    Cunha, Eva S.; Hatem, Christine L.

    2013-01-01

    Degradation of cellulose for biofuels production holds promise in solving important environmental and economic problems. However, the low activities (and thus high enzyme-to-substrate ratios needed) of hydrolytic cellulase enzymes, which convert cellulose into simple sugars, remain a major barrier. As a potential strategy to stabilize cellulases and enhance their activities, we have embedded cellulases of extremophiles into hyperstable α-helical consensus ankyrin domain scaffolds. We found the catalytic domains CelA (CA, GH8; Clostridium thermocellum) and Cel12A (C12A, GH12; Thermotoga maritima) to be stable in the context of the ankyrin scaffold and to be active against both soluble and insoluble substrates. The ankyrin repeats in each fusion are folded, although it appears that for the C12A catalytic domain (CD; where the N and C termini are distant in the crystal structure), the two flanking ankyrin domains are independent, whereas for CA (where termini are close), the flanking ankyrin domains stabilize each other. Although the activity of CA is unchanged in the context of the ankyrin scaffold, the activity of C12A is increased between 2- and 6-fold (for regenerated amorphous cellulose and carboxymethyl cellulose substrates) at high temperatures. For C12A, activity increases with the number of flanking ankyrin repeats. These results showed ankyrin arrays to be a promising scaffold for constructing designer cellulosomes, preserving or enhancing enzymatic activity and retaining thermostability. This modular architecture will make it possible to arrange multiple cellulase domains at a precise spacing within a single polypeptide, allowing us to search for spacings that may optimize reactivity toward the repetitive cellulose lattice. PMID:23974146

  11. A search for the Sunyaev-Zel'dovich effect at millimeter wavelengths. [cosmic background photon energy increase due to Compton scattering by high temperature galactic cluster plasma electrons

    NASA Technical Reports Server (NTRS)

    Meyer, S. S.; Jeffries, A. D.; Weiss, R.

    1983-01-01

    It is believed that X-ray emission from clusters of galaxies represents thermal bremsstrahlung from a hot plasma. According to Sunyaev and Zel'dovich (1972), the plasma column density and temperature derived from this model imply a measurable distortion of the cosmic background radiation (CBR) in the cluster direction. This distortion results from the Compton scattering of the CBR photons by the electrons in the plasma, resulting in an average increase of each photon. This process, known as the Sunyaev-Zel'dovich effect, is photon conserving and 'shifts' the CBR spectrum to higher frequencies. The result is a decrease of flux at frequencies below 7.5 per cm (the Rayleigh-Jeans region), and an increase above. The investigation is concerned with measurements of the Sunyaev-Zel'dovich effect at frequencies in the range from 3 to 10 per cm. Attention is given to the employed observing and analysis technique, and an initial null result for the cluster Abell 1795.

  12. 'Discrepant hardenings' in cosmic ray spectra: A first estimate of the effects on secondary antiproton and diffuse gamma-ray yields

    SciTech Connect

    Donato, Fiorenza; Serpico, Pasquale D.

    2011-01-15

    Recent data from CREAM seem to confirm early suggestions that primary cosmic ray spectra at few TeV/nucleon are harder than in the 10-100 GeV range. Also, helium and heavier nuclei spectra appear systematically harder than the proton fluxes at corresponding energies. We note here that if the measurements reflect intrinsic features in the interstellar fluxes (as opposed to local effects) appreciable modifications are expected in the sub-TeV range for the secondary yields, such as antiprotons and diffuse gamma rays. Presently, the ignorance on the origin of the features represents a systematic error in the extraction of astrophysical parameters as well as for background estimates for indirect dark matter searches. We find that the spectral modifications are appreciable above 100 GeV, and can be responsible for {approx}30% effects for antiprotons at energies close to 1 TeV or for gammas at energies close to 300 GeV, compared to currently considered predictions based on simple extrapolation of input fluxes from low-energy data. Alternatively, if the feature originates from local sources, uncorrelated spectral changes might show up in antiproton and high-energy gamma rays, with the latter ones likely dependent from the line of sight.

  13. Centimeter-order view for magnetic domain imaging with local magnetization direction by longitudinal Kerr effect

    NASA Astrophysics Data System (ADS)

    Meguro, Sakae; Akahane, Koichi; Saito, Shin

    2016-05-01

    An observation system of centimeter-order of view of magnetic domain with local magnetization direction was developed by designing a telecentric optical system of finite design through the extension of microscope technology. The field of view realized in the developed system was 1.40 × 1.05 cm as suppressing defocus and distortion. Detection of the local magnetization direction has become possible by longitudinal Kerr observation from the orthogonal two directions. This system can be applied to the domain observation of rough surface samples and time resolved analysis for soft magnetic materials such as amorphous foil strips and soft magnetic thin films.

  14. The effect of local polarized domains of ferroelectric P(VDF/TrFE) copolymer thin film on a carbon nanotube field-effect transistor.

    PubMed

    Nishio, Taichi; Miyato, Yuji; Kobayashi, Kei; Ishida, Kenji; Matsushige, Kazumi; Yamada, Hirofumi

    2008-01-23

    We produced local polarized domains of ferroelectric P(VDF/TrFE) copolymer thin films on a carbon nanotube field-effect transistor (CN-FET) channel by atomic force microscopy (AFM). The drain current versus gate voltage (I(d)-V(g)) curves measured after forming the local polarized domains showed a shift in the threshold voltages. We also found that the amount of the shifts in the threshold voltages gradually decreased during the measurement of this characteristic over 100 h after forming the polarized domains. The mechanisms of the shifts in the threshold voltages and their decreasing behaviour were explained in terms of the excessive charges that were induced upon the formation of the polarized domains. PMID:21817562

  15. Observational probes of cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Weinberg, David H.; Mortonson, Michael J.; Eisenstein, Daniel J.; Hirata, Christopher; Riess, Adam G.; Rozo, Eduardo

    2013-09-01

    The accelerating expansion of the universe is the most surprising cosmological discovery in many decades, implying that the universe is dominated by some form of “dark energy” with exotic physical properties, or that Einstein’s theory of gravity breaks down on cosmological scales. The profound implications of cosmic acceleration have inspired ambitious efforts to understand its origin, with experiments that aim to measure the history of expansion and growth of structure with percent-level precision or higher. We review in detail the four most well established methods for making such measurements: Type Ia supernovae, baryon acoustic oscillations (BAO), weak gravitational lensing, and the abundance of galaxy clusters. We pay particular attention to the systematic uncertainties in these techniques and to strategies for controlling them at the level needed to exploit “Stage IV” dark energy facilities such as BigBOSS, LSST, Euclid, and WFIRST. We briefly review a number of other approaches including redshift-space distortions, the Alcock-Paczynski effect, and direct measurements of the Hubble constant H0. We present extensive forecasts for constraints on the dark energy equation of state and parameterized deviations from General Relativity, achievable with Stage III and Stage IV experimental programs that incorporate supernovae, BAO, weak lensing, and cosmic microwave background data. We also show the level of precision required for clusters or other methods to provide constraints competitive with those of these fiducial programs. We emphasize the value of a balanced program that employs several of the most powerful methods in combination, both to cross-check systematic uncertainties and to take advantage of complementary information. Surveys to probe cosmic acceleration produce data sets that support a wide range of scientific investigations, and they continue the longstanding astronomical tradition of mapping the universe in ever greater detail over ever

  16. The effect of low-temperature demagnetization on paleointensity determinations from samples with different domain states

    NASA Astrophysics Data System (ADS)

    Kulakov, E.; Smirnov, A. V.

    2013-05-01

    It has been recently proposed that incorporation of low-temperature demagnetization (LTD) into the Thellier double-heating method increases the accuracy and success rate of paleointensity experiments by reducing the effects of magnetic remanence carried by large pseudo-singledomain (PSD) and multidomain (MD) grains (e.g., Celino et al., Geophysical Research Letters, 34, L12306, 2007). However, it has been unclear to what degree the LTD affects the remanence carried by single-domain (SD) and small PSD. To investigate this problem, we carried out paleointensity experiments on synthetic magnetite-bearing samples containing nearly SD, PSD, and multidomain MD grains as well as mixtures of MD and SD grains. Before the experiments, a thermal remanent magnetization was imparted to the samples in a known laboratory field. Paleointensities were determined using both the LTD-Thellier and multi-specimen parallel pTRM methods. The samples were subjected to a series of three LTD treatments in liquid nitrogen after each heating. LTD significantly improved the quality of paleointensity determinations from the samples containing large PSD and MD magnetite as well as SD-MD mixtures. In particular, LTD resulted in a significant increase of the paleointensity quality factor, producing more linear Arai plots and reducing data scatter. In addition, field intensities calculated after LTD fell within 2-4% of the known laboratory field. On the other hand, the effect of LTD on paleointensity determinations from samples with nearly SD magnetite is negligible. Paleointensity values based on both pre- and post-LTD data were statistically indistinguishable of the laboratory field. LTD treatment significantly reduced the systematic paleofield overestimation using the multi-specimen method from samples containing PSD and MD grains, as well as SD-MD mixtures. The results of multi-specimen paleointensity experiments performed on the PSD and MD samples using different heating temperatures suggest

  17. Effect of domain size and interface characteristics on the impact resistance of selected polymer composites

    NASA Astrophysics Data System (ADS)

    Viratyaporn, Wantinee

    Nanocomposite technology has advanced considerably in recent years and excellent engineering properties have been achieved in numerous systems. In multiphase materials the enhancement of properties relies heavily on the nature at the interphase region between polymer domains and nanoparticle reinforcements. Strong adhesion between the phases provides excellent load-transfer and good mechanical elastic modulus and strength, whereas weak interaction contributes to crack deflection mechanisms and toughness. Polymer molecules are large and the presence of comparably sized filler particles affects chain gyration, which in turn influences the conformation of the polymer and the properties of the composite. Nanoparticles were incorporated into a poly(methyl methacrylate) matrix by means of in situ free radical (bulk) polymerization. Aluminum oxide and zinc oxide nanoparticles were added to study the effects of particle chemistry and shape on selected mechanical properties such as impact resistance, which showed significant improvement at a certain loading of zinc oxide. The elongated shape of zinc oxide particles appears to promote crack deflection processes and to introduce a pull-out mechanism similar to that observed in fiber composite systems. Moreover, the thermal stability of PMMA was improved with the addition of nanoparticles, apparently by steric hindrance of polymer chain motion and a second mechanism related to the dipole inducing effect of the oxide particles. The sensitivity of infrared spectroscopy to changes in molecular dipoles was used to study the nature of the polymer/particle interface. The results revealed some interesting aspects of the secondary bonds between polymers and oxides. Raman spectroscopy was used to investigate the extent of polymerization and changes in polymer conformation. A degree of polymerization of 93% was achieved in neat PMMA, and even when 5.0 v/o of PGMEA was introduced into the system no monomer was detected. However, when

  18. How domain growth is implemented determines the long-term behavior of a cell population through its effect on spatial correlations

    NASA Astrophysics Data System (ADS)

    Ross, Robert J. H.; Baker, R. E.; Yates, C. A.

    2016-07-01

    Domain growth plays an important role in many biological systems, and so the inclusion of domain growth in models of these biological systems is important to understanding how these systems function. In this work we present methods to include the effects of domain growth on the evolution of spatial correlations in a continuum approximation of a lattice-based model of cell motility and proliferation. We show that, depending on the way in which domain growth is implemented, different steady-state densities are predicted for an agent population. Furthermore, we demonstrate that the way in which domain growth is implemented can result in the evolution of the agent density depending on the size of the domain. Continuum approximations that ignore spatial correlations cannot capture these behaviors, while those that account for spatial correlations do. These results will be of interest to researchers in developmental biology, as they suggest that the nature of domain growth can determine the characteristics of cell populations.

  19. Nexus of the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Cautun, Marius; van de Weygaert, Rien; Jones, Bernard J. T.; Frenk, Carlos S.; Hellwing, Wojciech A.

    2015-01-01

    One of the important unknowns of current cosmology concerns the effects of the large scale distribution of matter on the formation and evolution of dark matter haloes and galaxies. One main difficulty in answering this question lies in the absence of a robust and natural way of identifying the large scale environments and their characteristics. This work summarizes the NEXUS+ formalism which extends and improves our multiscale scale-space MMF method. The new algorithm is very successful in tracing the Cosmic Web components, mainly due to its novel filtering of the density in logarithmic space. The method, due to its multiscale and hierarchical character, has the advantage of detecting all the cosmic structures, either prominent or tenuous, without preference for a certain size or shape. The resulting filamentary and wall networks can easily be characterized by their direction, thickness, mass density and density profile. These additional environmental properties allows to us to investigate not only the effect of environment on haloes, but also how it correlates with the environment characteristics.

  20. Hot Spot Cosmic Accelerators

    NASA Astrophysics Data System (ADS)

    2002-11-01

    length of more than 3 million light-years, or no less than one-and-a-half times the distance from the Milky Way to the Andromeda galaxy, this structure is indeed gigantic. The region where the jets collide with the intergalactic medium are known as " hot spots ". Superposing the intensity contours of the radio emission from the southern "hot spot" on a near-infrared J-band (wavelength 1.25 µm) VLT ISAAC image ("b") shows three distinct emitting areas; they are even better visible on the I-band (0.9 µm) FORS1 image ("c"). This emission is obviously associated with the shock front visible on the radio image. This is one of the first times it has been possible to obtain an optical/near-IR image of synchrotron emission from such an intergalactic shock and, thanks to the sensitivity and image sharpness of the VLT, the most detailed view of its kind so far . The central area (with the strongest emission) is where the plasma jet from the galaxy centre hits the intergalactic medium. The light from the two other "knots", some 10 - 15,000 light-years away from the central "hot spot", is also interpreted as synchrotron emission. However, in view of the large distance, the astronomers are convinced that it must be caused by electrons accelerated in secondary processes at those sites . The new images thus confirm that electrons are being continuously accelerated in these "knots" - hence called "cosmic accelerators" - far from the galaxy and the main jets, and in nearly empty space. The exact physical circumstances of this effect are not well known and will be the subject of further investigations. The present VLT-images of the "hot spots" near 3C 445 may not have the same public appeal as some of those beautiful images that have been produced by the same instruments during the past years. But they are not less valuable - their unusual importance is of a different kind, as they now herald the advent of fundamentally new insights into the mysteries of this class of remote and active

  1. Domain Engineering

    NASA Astrophysics Data System (ADS)

    Bjørner, Dines

    Before software can be designed we must know its requirements. Before requirements can be expressed we must understand the domain. So it follows, from our dogma, that we must first establish precise descriptions of domains; then, from such descriptions, “derive” at least domain and interface requirements; and from those and machine requirements design the software, or, more generally, the computing systems.

  2. Goldstone bosons as fractional cosmic neutrinos.

    PubMed

    Weinberg, Steven

    2013-06-14

    It is suggested that Goldstone bosons may be masquerading as fractional cosmic neutrinos, contributing about 0.39 to what is reported as the effective number of neutrino types in the era before recombination. The broken symmetry associated with these Goldstone bosons is further speculated to be the conservation of the particles of dark matter. PMID:25165907

  3. Development of the Domain Identification Measure: A Tool for Investigating Stereotype Threat Effects.

    ERIC Educational Resources Information Center

    Smith, Jessi L.; White, Paul H.

    2001-01-01

    Examined the psychometric properties of an individual difference measure of identification within the mathematics and English domains. Factor analytic results substantiated the presence of English and Mathematics subscales, which yielded scores that were internally consistent and stable over time. Results for samples of 1,143 and 98 college…

  4. Personal Epistemology across Different Judgement Domains: Effects of Grade Level and School Curriculum

    ERIC Educational Resources Information Center

    Wang, Xinghua; Zhou, Ji; Shen, Jiliang

    2016-01-01

    This article reports a study that is based on the framework of personal epistemology proposed by Kuhn, Cheney, and Weinstock (2000). The instrument developed by Kuhn et al. (2000) for assessing the three positions (absolutist, multiplist and evaluativist) of epistemological understanding across five judgements' domains was translated and…

  5. The effect of creep on magnetic domain structure of heat resistant steels

    NASA Astrophysics Data System (ADS)

    Zhang, S. Z.; Tu, S. T.

    2013-04-01

    The magnetic domain and magnetic properties of heat resistant steels including 10CrMo910, P91 and 23CrMoNiWV88 are investigated in the present work. The magnetic properties characterized by magnetic hysteresis loop of the three materials under 500-600°C are measured by vibrating sample magnetometer (VSM). The magnetic domain structure of as-received and crept specimens is observed by magnetic force microscope (MFM). The magnetic domain of ferrite phase change from initial stripe pattern to maze pattern during creep. The black and white fringes and stripe-like pattern have also been found in the P91 and 23CrMoNiWV88 specimens, respectively. The experimental results reveal that the magnetic domain structure is strongly influenced by microstructures with different distributions of the carbides. It is shown that the coercivity and remanence of each material although has a remarkable decrease at 500-600°C especially for P91 almost 64% decrease, it's still the same magnitude as the one at room temperature. All the short-term crept specimens with different creep damage have a linear increase in coercivity and remanence comparing to the as-received 10CrMo910 specimens. These results indicate that it should be possible to develop an in-situ monitoring technology for creep damage based on magnetism measurement.

  6. The Separate, Relative, and Joint Effects of Employee Job Performance Domains on Supervisors' Willingness to Mentor

    ERIC Educational Resources Information Center

    Lapierre, Laurent M.; Bonaccio, Silvia; Allen, Tammy D.

    2009-01-01

    The purpose of our study was to further elucidate how employees should behave at work to increase their chances of being mentored by their immediate supervisor. To that end, we experimentally tested how three domains of employee performance [task performance (TP), organizational citizenship behavior (OCB) targeting the supervisor, and…

  7. Comprehension of University Texts: Effects of Domain-Knowledge and Summary

    ERIC Educational Resources Information Center

    Pascual, Gema; Goikoetxea, Edurne

    2014-01-01

    Our aim is to evaluate reading comprehension strategies based on empirical evidence and applicable to undergraduate students. Our hypotheses were that domain-knowledge or summary would have more influence on local, global, and inferential questions than rereading-question-answering instruction. Results of Experiment 1 were mixed in terms of…

  8. Cosmic (Super)String Constraints from 21 cm Radiation

    SciTech Connect

    Khatri, Rishi; Wandelt, Benjamin D.

    2008-03-07

    We calculate the contribution of cosmic strings arising from a phase transition in the early Universe, or cosmic superstrings arising from brane inflation, to the cosmic 21 cm power spectrum at redshifts z{>=}30. Future experiments can exploit this effect to constrain the cosmic string tension G{mu} and probe virtually the entire brane inflation model space allowed by current observations. Although current experiments with a collecting area of {approx}1 km{sup 2} will not provide any useful constraints, future experiments with a collecting area of 10{sup 4}-10{sup 6} km{sup 2} covering the cleanest 10% of the sky can, in principle, constrain cosmic strings with tension G{mu} > or approx. 10{sup -10}-10{sup -12} (superstring/phase transition mass scale >10{sup 13} GeV)

  9. Cosmic (Super)String Constraints from 21 cm Radiation.

    PubMed

    Khatri, Rishi; Wandelt, Benjamin D

    2008-03-01

    We calculate the contribution of cosmic strings arising from a phase transition in the early Universe, or cosmic superstrings arising from brane inflation, to the cosmic 21 cm power spectrum at redshifts z > or =30. Future experiments can exploit this effect to constrain the cosmic string tension G mu and probe virtually the entire brane inflation model space allowed by current observations. Although current experiments with a collecting area of approximately 1 km2 will not provide any useful constraints, future experiments with a collecting area of 10(4)-10(6) km2 covering the cleanest 10% of the sky can, in principle, constrain cosmic strings with tension G mu > or = 10(-10)-10(-12) (superstring/phase transition mass scale >10(13) GeV). PMID:18352691

  10. The Cosmic Shoreline

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin J.; Catling, D. C.

    2013-01-01

    Volatile escape is the classic existential problem of planetary atmospheres. The problem has gained new currency now that we can study the cumulative effects of escape from extrasolar planets. Escape itself is likely to be a rapid process, relatively unlikely to be caught in the act, but the cumulative effects of escape in particular, the distinction between planets with and without atmospheres should show up in the statistics of the new planets. The new planets make a moving target. It can be difficult to keep up, and every day the paper boy brings more. Of course most of these will be giant planets loosely resembling Saturn or Neptune albeit hotter and nearer their stars, as big hot fast-orbiting exoplanets are the least exceedingly difficult to discover. But they are still planets, all in all, and although twenty years ago experts could prove on general principles that they did not exist, we have come round rather quickly, and they should be welcome now at LPSC. Here we will discuss the empirical division between planets with and without atmospheres. For most exoplanets the question of whether a planet has or has not an atmosphere is a fuzzy inference based on the planet's bulk density. A probably safe presumption is that a low density planet is one with abundant volatiles, in the general mold of Saturn or Neptune. On the other hand a high density low mass planet could be volatile-poor, in the general mold of Earth or Mercury. We will focus on planets, mostly seen in transit, for which both radius and mass are measured, as these are the planets with measured densities. More could be said: a lot of subtle recent work has been devoted to determining the composition of planets from equations of state or directly observing atmospheres in transit, but we will not go there. What interests us here is that, from the first, the transiting extrasolar planets appear to have fit into a pattern already seen in our own Solar System, as shown in Fig. 1. We first noticed this

  11. Cosmic Rays in the Heliosphere: Requirements for Future Observations

    NASA Astrophysics Data System (ADS)

    Mewaldt, R. A.

    2013-06-01

    Since the publication of Cosmic Rays in the Heliosphere in 1998 there has been great progress in understanding how and why cosmic rays vary in space and time. This paper discusses measurements that are needed to continue advances in relating cosmic ray variations to changes in solar and interplanetary activity and variations in the local interstellar environment. Cosmic ray acceleration and transport is an important discipline in space physics and astrophysics, but it also plays a critical role in defining the radiation environment for humans and hardware in space, and is critical to efforts to unravel the history of solar activity. Cosmic rays are measured directly by balloon-borne and space instruments, and indirectly by ground-based neutron, muon and neutrino detectors, and by measurements of cosmogenic isotopes in ice cores, tree-rings, sediments, and meteorites. The topics covered here include: what we can learn from the deep 2008-2009 solar minimum, when cosmic rays reached the highest intensities of the space era; the implications of 10Be and 14C isotope archives for past and future solar activity; the effects of variations in the size of the heliosphere; opportunities provided by the Voyagers for discovering the origin of anomalous cosmic rays and measuring cosmic-ray spectra in interstellar space; and future space missions that can continue the exciting exploration of the heliosphere that has occurred over the past 50 years.

  12. Effect of maghemization on the magnetic properties of pseudo-single-domain magnetite particles

    NASA Astrophysics Data System (ADS)

    Almeida, T.; Muxworthy, A. R.; Kasama, T.; Williams, W.; Damsgaard, C.; Frandsen, C.; Pennycook, T. J.; Dunin-Borkowski, R.

    2015-12-01

    During formation, magnetic minerals record the direction and intensity of the Earth's magnetic field. Paleomagnetists use this information to investigate, for example, past tectonic plate motion and geodynamo evolution. However, subsequent to formation the constituent magnetic minerals are commonly exposed to a range of weathering conditions and environments. One of the most common weathering processes is maghemization, which is the oxidation of magnetite (Fe3O4) at ambient temperatures, i.e., the slow oxidation of Fe3O4 to maghemite (γ-Fe2O3), and is known to alter the original remanent magnetization. Of the constituent magnetic minerals, particles in the single domain (SD) grain size range (< 100 nm) are regarded as ideal paleomagnetic recorders because of their strong remanence and high magnetic stability, with potential relaxation times greater than that of the age of the Universe. However, magnetic signals from rocks are often dominated by small grains with non-uniform magnetization that exhibit magnetic recording fidelities similar to those of SD grains (termed pseudo-SD (PSD)). In this context, the effect of maghemization on the magnetic properties of Fe3O4 grains in the PSD size range is investigated as a function of annealing temperature. X-ray diffraction and transmission electron microscopy confirms the precursor grains as Fe3O4 ranging from ~ 150 nm to ~ 250 nm in diameter, whilst Mössbauer spectrometry suggests the grains are initially near-stoichiometric. The Fe3O4 grains are heated to increasing reaction temperatures of 120 - 220 ºC to investigate their oxidation to γ-Fe2O3. High-angle annular dark field imaging and localized electron energy-loss spectroscopy reveals slightly oxidized Fe3O4 grains, heated to 140 ºC, exhibit higher oxygen content at the surface. Off-axis electron holography allows for construction of magnetic induction maps of individual Fe3O4 and γ-Fe2O3 grains, revealing their PSD (vortex) nature, which is supported by

  13. Time evolution of a warped cosmic string

    NASA Astrophysics Data System (ADS)

    Slagter, Reinoud Jan

    2014-06-01

    The time evolution of a self-gravitating U(1) cosmic string on a warped five-dimensional (5D) axially symmetric spacetime is numerically investigated. Although cosmic strings are theoretically predicted in four-dimensional (4D) general relativistic models, there is still no observational evidence of their existence. From recent observations of the cosmic microwave background (CMB), it is concluded that these cosmic strings cannot provide a satisfactory explanation for the bulk of density perturbations. They even could not survive inflation. It is conjectured that only in a 5D warped braneworld model there will be observable imprint of these so-called cosmic superstrings on the induced effective 4D brane metric for values of the symmetry breaking scale larger than the grand unified theory (GUT) values. The warp factor makes these strings consistent with the predicted mass per unit length on the brane. However, in a time-dependent setting, it seems that there is a wavelike energy-momentum transfer to infinity on the brane, a high-energy braneworld behavior. This in contrast to earlier results in approximation models. Evidence of this information from the bulk geometry could be found in the gravitational cosmic background radiation via gravitational wave energy-momentum affecting the brane evolution. Fluctuations of the brane when there is a U(1) gauge field present, are comparable with the proposed brane tension fluctuations, or branons, whose relic abundance can be a dark matter candidate. We briefly made a connection with the critical behavior at the threshold of black hole formation found by Choptuik several decades ago in self-gravitating time-dependent scalar field models. The critical distinction between dispersion of the scalar waves and singular behavior fade away when a time-dependent warp factor is present.

  14. Constraints on the early and late integrated Sachs-Wolfe effects from the Planck 2015 cosmic microwave background anisotropies in the angular power spectra

    NASA Astrophysics Data System (ADS)

    Cabass, Giovanni; Gerbino, Martina; Giusarma, Elena; Melchiorri, Alessandro; Pagano, Luca; Salvati, Laura

    2015-09-01

    The integrated Sachs-Wolfe (ISW) effect predicts additional anisotropies in the cosmic microwave background (CMB) due to time variation of the gravitational potential when the expansion of the Universe is not matter dominated. The ISW effect is therefore expected in the early Universe, due to the presence of relativistic particles at recombination, and in the late Universe, when dark energy starts to dominate the expansion. Deviations from the standard picture can be parametrized by Ae ISW and Al ISW , which rescale the overall amplitude of the early and late ISW effects. Analyzing the most recent CMB temperature spectra from the Planck 2015 release, we detect the presence of the early ISW at high significance with Ae ISW=1.06 ±0.04 at 68% C.L. and an upper limit for the late ISW of Al ISW<1.1 at 95% C.L. The inclusion of the recent polarization data from the Planck experiment results in Ae ISW=0.999 ±0.028 at 68% C.L., in better agreement with the value Ae ISW=1 of a standard cosmology. When considering the recent detections of the late ISW coming from correlations between CMB temperature anisotropies and weak lensing, a value of Al ISW=0.85 ±0.21 is predicted at 68% C.L., showing 4 σ evidence. We discuss the stability of our result in the case of an extra relativistic energy component parametrized by the effective neutrino number Neff and of a CMB lensing amplitude AL .

  15. The dynamics of domain walls and strings

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth; Haws, David; Garfinkle, David

    1989-01-01

    The leading order finite-width corrections to the equation of motion describing the motion of a domain wall are derived. The regime in which this equation of motion is invalid is discussed. Spherically and cylindrically symmetric solutions to this equation of motion are found. A misconception that has arisen in recent years regarding the rigidity (or otherwise) of cosmic strings is also clarified.

  16. Role of Ru in electrochromic effect during domain-inversion in LiNbO 3 crystals

    NASA Astrophysics Data System (ADS)

    Liu, De'an; Zhi, Ya'nan; Yan, Aimin; Luan, Zhu; Liu, Liren

    2006-08-01

    Recently, a new phenomenon of eletrochromic effect during domain-inversion has been observed both in doubly doped LiNbO 3:Fe:Ru and singly doped LiNbO 3:Ru crystals. Therefore, it is reasonable to be thought that the dopant of Ru is critical for eletrochromic effect. In this paper, The transmission spectra of different kinds of LiNbO 3 crystals are compared and analyzed for further demonstration that it is the exchange of valence states between Ru 3+ and Ru 4+ which lead to electrochromism effect.

  17. Determination of effective field induced by spin-orbit torque using magnetic domain wall creep in Pt/Co structure

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Chiba, D.

    2015-12-01

    We investigated the effect of electric current on the magnetic-field-driven magnetic domain wall (DW) creep velocity in ultrathin Co with perpendicular magnetic anisotropy deposited on a Pt underlayer. The DW velocity was considerably modulated by the current, and its field dependence deviated from the scaling law with the critical exponent of 1/4, which is generally valid in ferromagnetic metals. This characteristic feature of the DW motion can be explained by considering the perpendicular effective field generated by spin-orbit torque at the Pt/Co interface. From the relation between the injected current and the modified creep velocity, the determination of the effective field was demonstrated.

  18. Stable Charged Cosmic Strings

    SciTech Connect

    Weigel, H.; Quandt, M.; Graham, N.

    2011-03-11

    We study the quantum stabilization of a cosmic string by a heavy fermion doublet in a reduced version of the standard model. We show that charged strings, obtained by populating fermionic bound state levels, become stable if the electroweak bosons are coupled to a fermion that is less than twice as heavy as the top quark. This result suggests that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model. Numerically we find the most favorable string profile to be a simple trough in the Higgs vacuum expectation value of radius {approx_equal}10{sup -18} m. The vacuum remains stable in our model, because neutral strings are not energetically favored.

  19. Stable charged cosmic strings.

    PubMed

    Weigel, H; Quandt, M; Graham, N

    2011-03-11

    We study the quantum stabilization of a cosmic string by a heavy fermion doublet in a reduced version of the standard model. We show that charged strings, obtained by populating fermionic bound state levels, become stable if the electroweak bosons are coupled to a fermion that is less than twice as heavy as the top quark. This result suggests that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model. Numerically we find the most favorable string profile to be a simple trough in the Higgs vacuum expectation value of radius ≈10(-18)  m. The vacuum remains stable in our model, because neutral strings are not energetically favored. PMID:21469786

  20. COSMIC monthly progress report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of April 1994. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are summarized. Five articles were prepared for publication in the NASA Tech Brief Journal. These articles (included in this report) describe the following software items: GAP 1.0 - Groove Analysis Program, Version 1.0; SUBTRANS - Subband/Transform MATLAB Functions for Image Processing; CSDM - COLD-SAT Dynamic Model; CASRE - Computer Aided Software Reliability Estimation; and XOPPS - OEL Project Planner/Scheduler Tool. Activities in the areas of marketing, customer service, benefits identification, maintenance and support, and disseminations are also described along with a budget summary.

  1. Cosmic Plasma Wakefield Acceleration

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Tajima, Toshiki; Takahashi, Yoshiyuki

    2002-10-01

    A cosmic acceleration mechanism is introduced which is based on the wakefields excited by the Alfven shocks in a relativistically flowing plasma. We show that there exists a threshold condition for transparency below which the accelerating particle is collision-free and suffers little energy loss in the plasma medium. The stochastic encounters of the random accelerating-decelerating phases results in a power-law energy spectrum: f([epsilon]) [is proportional to] 1/[epsilon]2. As an example, we discuss the possible production of super-GZK ultra high energy cosmic rays (UHECR) in the atmosphere of gamma ray bursts. The estimated event rate in our model agrees with that from UHECR observations. [copyright] 2002 American Institute of Physics

  2. Speed limit in internal space of domain walls via all-order effective action of moduli motion

    NASA Astrophysics Data System (ADS)

    Eto, Minoru; Hashimoto, Koji

    2016-03-01

    We find that motion in internal moduli spaces of generic domain walls has an upper bound for its velocity. Our finding is based on our generic formula for all-order effective actions of internal moduli parameter of domain wall solitons. It is known that the Nambu-Goldstone mode Z associated with spontaneous breaking of translation symmetry obeys a Nambu-Goto effective Lagrangian √{1 -(∂0Z )2 } detecting the speed of light (|∂0Z |=1 ) in the target spacetime. Solitons can have internal moduli parameters as well, associated with a breaking of internal symmetries such as a phase rotation acting on a field. We obtain, for generic domain walls, an effective Lagrangian of the internal moduli ɛ to all orders in (∂ɛ ). The Lagrangian is given by a function of the Nambu-Goto Lagrangian: L =g (√{1 +(∂μɛ )2 }). This shows generically the existence of an upper bound on ∂0ɛ , i.e., a speed limit in the internal space. The speed limit exists even for solitons in some nonrelativistic field theories, where we find that ɛ is a type I Nambu-Goldstone mode that also obeys a nonlinear dispersion to reach the speed limit. This offers a possibility of detecting the speed limit in condensed matter experiments.

  3. Matter creation and cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Ramos, Rudnei O.; Vargas dos Santos, Marcelo; Waga, Ioav

    2014-04-01

    We investigate the creation of cold dark matter (CCDM) cosmology as an alternative to explain the cosmic acceleration. Particular attention is given to the evolution of density perturbations and constraints coming from recent observations. By assuming negligible effective sound speed we compare CCDM predictions with redshift-space-distortion based f(z)σ8(z) measurements. We identify a subtle issue associated with which contribution in the density contrast should be used in this test and then show that the CCDM results are the same as those obtained with ΛCDM. These results are then contrasted with the ones obtained at the background level. For the background tests we have used type Ia supernovae data (Union 2.1 compilation) in combination with baryonic acoustic oscillations and cosmic microwave background observations and also measurements of the Hubble parameter at different redshifts. As a consequence of the studies we have performed at both the background and perturbation levels, we explicitly show that CCDM is observationally degenerate with respect to ΛCDM (dark degeneracy). The need to overcome the lack of a fundamental microscopic basis for the CCDM is the major challenge for this kind of model.

  4. Galactic cosmic ray composition

    NASA Technical Reports Server (NTRS)

    Meyer, J. P.

    1986-01-01

    An assessment is given of the galactic cosmic ray source (GCRS) elemental composition and its correlation with first ionization potential. The isotopic composition of heavy nuclei; spallation cross sections; energy spectra of primary nuclei; electrons; positrons; local galactic reference abundances; comparison of solar energetic particles and solar coronal compositions; the hydrogen; lead; nitrogen; helium; and germanium deficiency problems; and the excess of elements are among the topics covered.

  5. Carl Sagan's Cosmic Connection

    NASA Astrophysics Data System (ADS)

    Sagan, Carl; Agel, Jerome

    2000-08-01

    Foreword Freeman Dyson; Personal reflections Ann Druyan; Preface; Part I. Cosmic Perspective: 1. A transitional animal; 2. The Unicorn of Cetus; 3. A message from earth; 4. A message to earth; 5. Experiments in utopias; 6. Chauvinism; 7. Space exploration as a human enterprise I. The scientific interest; 8. Space exploration as a human enterprise II. The public interest; 9. Space exploration as a human enterprise III. The historical interest; Part II. The Solar System: 10. On teaching the first grade; 11. 'The ancient and legendary Gods of old'; 12. The Venus detective story; 13. Venus is hell; 14. Science and 'intelligence'; 15. The moons of Barsoom; 16. The mountains of Mars I. Observations from earth; 17. The mountains of Mars II. Observations from space; 18. The canals of Mars; 19. The lost pictures of Mars; 20. The Ice Age and the cauldron; 21. Beginnings and ends of the Earth; 22. Terraforming the plants; 23. The exploration and utlization of the solar system; Part III. Beyond the Solar System: 24. Some of my best friends are dolphins; 25. 'Hello, central casting? Send me twenty extraterrestrials'; 26. The cosmic connection; 27. Extraterrestrial life: an idea whose time has come; 28. Has the Earth been visited?; 29. A search strategy for detecting extraterrestrial intelligence; 30. If we succeed 31. Cables, drums, and seashells; 32. The night freight to the stars; 33. Astroengineering; 34. Twenty questions: a classification of cosmic civilisations; 35. Galactic cultural exchanges; 36. A passage to elsewhere; 37. Starfolk I. A Fable; 38. Starfolk II. A future; 39. Starfolk III. The cosmic Cheshire cats; Epilog David Morrison; Index.

  6. A Warped Cosmic String

    SciTech Connect

    Slagter, R. J.

    2010-06-23

    We present a cosmic string solution in Einstein-Yang-Mills Gauss-Bonnet theory on a warped 5 dimensional space-time conform the Randall-Sundrum-2 theory. In a simplipied model, we find an exact solutions with exponential decreasing or periodic warp function. In a more general setting, where the metric- and Yang-Mills components depend on both scales and one of the YM components resides in the bulk, we find a time dependent numerical solution.

  7. Cosmic Rays in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  8. Cosmic ray modulation

    NASA Astrophysics Data System (ADS)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    2016-07-01

    Propagation of cosmic rays to and inside the heliosphere, encounter an outward moving solar wind with cyclic magnetic field fluctuation and turbulence, causing convection and diffusion in the heliosphere. Cosmic ray counts from the ground ground-based neutron monitors at different cut of rigidity show intensity changes, which are anti-correlated with sunspot numbers. They also lose energy as they propagate towards the Earth and experience various types of modulations due to different solar activity indices. In this work, we study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-2014 for Beijing, Moscow and Tokyo neutron monitoring stations located at different cut off rigidity. The amplitude of first harmonic remains high for low cutoff rigidity as compared to high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station as compared to the high cut off rigidity station on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The amplitude and direction of the anisotropy on quiet days does not show any significant dependence on high-speed solar wind streams for these neutron monitoring stations of different cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics, amplitude, phase.

  9. FORMOSAT-3/COSMIC Mission

    NASA Astrophysics Data System (ADS)

    Cheng, F. C.; Cheng, C.

    2006-12-01

    Six identical micro-satellites of the FORMOSAT-3/COSMIC mission were successfully launched on April 14, 2006 US time. The mission is a Taiwan-US collaborative project jointly carried out by the National Space Organization (NSPO) in Taiwan and the University Corporation for Atmospheric Research (UCAR) in the United States. Each satellite carries three science payloads: a Global Positioning System (GPS) receiver which measures the amplitude and phase of GPS signals, a Tri-Band Beacon (TBB) transmitter which emits three coherent frequencies at 150 MHz, 400 MHz and 1066.7 MHz, and a Tiny Ionospheric Photometer (TIP) which measures photon emission at 135.6 nm wavelength. The FORMOSAT-3/COSMIC mission provides the first satellite constellation to obtain vertical profiles in near-real time of temperature, pressure, and water vapor in the neutral atmosphere and electron density in the ionosphere. Using the GPS radio occultation (RO) technique, the satellite constellation will take at least 2,500 measurements of vertical profiles of atmospheric air density, temperature and water vapor and ionospheric electron density every 24 hours around the globe, filling in current atmospheric data gaps over the oceans and the polar region. Combining the GPS RO data with the data from TIP and ground TBB receivers, the 3D global distribution of electron density and scintillation in the ionosphere can be obtained for space weather monitoring and modeling. Taiwan science teams are conducting an Intensive Observation Period (IOP) campaign to cross validate RO data with other observations (ground based radiosonde, weather satellites, and balloons, radars, ionosondes, etc.), and to assess the impact of FORMOSAT-3/COSMIC observations on predictions of typhoon intensity and track over eastern Asia as well as ionospheric response to storms and substorms. Highlights of early results from the FORMOSAT- 3/COSMIC mission will be presented.

  10. 360° domain walls: stability, magnetic field and electric current effects

    NASA Astrophysics Data System (ADS)

    Zhang, Jinshuo; Siddiqui, Saima A.; Ho, Pin; Currivan-Incorvia, Jean Anne; Tryputen, Larysa; Lage, Enno; Bono, David C.; Baldo, Marc A.; Ross, Caroline A.

    2016-05-01

    The formation of 360° magnetic domain walls (360DWs) in Co and Ni80Fe20 thin film wires was demonstrated experimentally for different wire widths, by successively injecting two 180° domain walls (180DWs) into the wire. For narrow wires (≤50 nm wide for Co), edge roughness prevented the combination of the 180DWs into a 360DW, and for wide wires (200 nm for Co) the 360DW was unstable and annihilated spontaneously, but over an intermediate range of wire widths, reproducible 360DW formation occurred. The annihilation and dissociation of 360DWs was demonstrated by applying a magnetic field parallel to the wire, showing that annihilation fields were several times higher than dissociation fields in agreement with micromagnetic modeling. The annihilation of a 360DW by current pulsing was demonstrated.

  11. The cosmic background explorer

    SciTech Connect

    Gulkis, G. ); Lubin, P.M. ); Meyer, S.S. ); Silverberg, R.F.

    1990-01-01

    Late last year the National Aeronautics and Space Administration launched its first satellite dedicated to the study of phenomena related to the origins of the universe. The satellite, called the Cosmic Background Explorer (COBE), carries three complementary detectors that will make fundamental measurements of the celestial radiation. Part of that radiation is believed to have originated in processes that occurred at the very dawn of the universe. By measuring the remnant radiation at wavelengths from one micrometer to one centimeter across the entire sky, scientists hope to be able to solve many mysteries regarding the origin and evolution of the early universe. Unfortunately, these radiative relics of the early universe are weak and veiled by local astrophysical and terrestrial sources of radiation. The wavelengths of the various cosmic components may also overlap, thereby making the understanding of the diffuse celestial radiation a challenge. Nevertheless, the COBE instruments, with their full-sky coverage, high sensitivity to a wide range of wavelengths and freedom from interference from the earth's atmosphere, will constitute for astrophysicists an observatory of unprecedented sensitivity and scope. The interesting cosmic signals will then be separated from one another and from noncosmic radiation sources by a comprehensive analysis of the data.

  12. Relativistic heavy cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Fernandez, J. I.; Israel, M. H.; Klarmann, J.; Binns, W. R.

    1972-01-01

    During three balloon flights of a 1 sq m sr ionization chamber/Cerenkov counter detector system, measurements were made of the atmospheric attenuation, flux, and charge composition of cosmic ray nuclei with 16 is less than or = Z is less than or = 30 and rigidity greater than 4.5 GV. The attenuation mean free path in air of VH (20 less than or = Z less than or = 30) nuclei is found to be 19.7 + or - 1.6 g/sq cm, a value somewhat greater than the best previous measurement. The attenuation mean free path of iron is found to be 15.6 + or - 2.2 g/sq cm, consistent with predictions of geometric cross-section formulae. An absolute flux of VH nuclei 10 to 20% higher than earlier experiments at similar geomagnetic cutoff and level of solar activity was measured. The relative abundances of even-charged nuclei are found to be in good agreement with results of other recent high resolution counter experiments. The observed cosmic ray chemical composition implies relative abundances at the cosmic ray source of Ca/Fe = 0.12 + or - 0.04 and S/Fe = 0.14 + or - 0.05.

  13. Pegylation of fibronectin and its functional domains: Effect on stability and biological activity

    NASA Astrophysics Data System (ADS)

    Zhang, Chen

    Delayed wound healing in many chronic wounds has been linked to the lack of extracellular matrix (ECM) support and the degradation of fibronectin (FN) by an abnormally high protease level. The ECM provides physical and chemical cues that direct tissue growth and development while FN is a key ECM protein that attracts and binds different molecules and cells. The goal of my study is creating an ECM analogue based on a composite of polyethylene glycol (PEG) hydrogels and FN binding domains and stabilizing FN against proteolytic degradation by conjugating it to PEG. The work presented here shows a two-prong approach by which the problem of ECM degradation and deficiency chronic wound healing can be addressed. The first approach for addressing ECM deficiency is through a scaffold design methodology. The novelty of the scaffold approach is that it uses the cell-binding domains of FN instead of the often-used RGD peptide. I demonstrate that a PEG hydrogel with the cell-binding domain produces a more robust biological response in cells than a PEG hydrogel with the RGD peptide. I also demonstrate that varying different functional domains of FN can be used to controllably stimulate multiple biological responses. The second approach demonstrates a method by which FN, a key ECM protein, is stabilized against proteolytic degradation without perturbing its activity. These studies of creating PEG-FN conjugates are the first of their kind. Collectively, the data that I present in this thesis will lead to novel therapeutic methods for treating chronic wounds.

  14. Domain wall motion effect on the anelastic behavior in lead zirconate titanate piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Bourim, El Mostafa; Tanaka, Hidehiko; Gabbay, Maurice; Fantozzi, Gilbert; Cheng, Bo Lin

    2002-05-01

    Three undoped lead zirconate titanate (PZT) ceramics were prepared with compositions close to the morphotropic phase boundary: Pb(Zr0.50Ti0.50)O3, Pb(Zr0.52Ti0.48)O3, and Pb(Zr0.54Ti0.46)O3. Internal friction Q-1 and shear modulus G were measured versus temperature from 20 °C to 500 °C. Experiments were performed on an inverted torsional pendulum at low frequencies (0.1, 0.3, and 1 Hz). The ferroelectric-paraelectric phase transition results in a peak (P1) of Q-1 correlated with a sharp minimum M1 of G. Moreover the Q-1(T) curves show two relaxation peaks called R1 and R2 respectively, correlated with two shear modulus anomalies called A1 and A2 on the G(T) curves. The main features of the transition P1 peak are studied, they suggest that its behavior is similar to the internal friction peaks associated with martensitic transformation. The relaxation peak, R1 and R2 are both attributed to motion of domain walls (DWs), and can be analyzed by thermal activated process described by Arrhenius law. The R2 peak is demonstrated to be due to the interaction of domain walls and oxygen vacancies because it depends on oxygen vacancy concentration and electrical polarization. However, the R1 peak is more complex; its height is found to be increased as stress amplitude and heating rate increase. It seems that the R1 peak is influenced by three mechanisms: (i) relaxation due to DW-point defects interaction, (ii) variation of domain wall density, and (iii) domain wall depinning from point defect clusters.

  15. Small-scale Anisotropies of Cosmic Rays from Relative Diffusion

    NASA Astrophysics Data System (ADS)

    Ahlers, Markus; Mertsch, Philipp

    2015-12-01

    The arrival directions of multi-TeV cosmic rays show significant anisotropies at small angular scales. It has been argued that this small-scale structure can naturally arise from cosmic ray scattering in local turbulent magnetic fields that distort a global dipole anisotropy set by diffusion. We study this effect in terms of the power spectrum of cosmic ray arrival directions and show that the strength of small-scale anisotropies is related to properties of relative diffusion. We provide a formalism for how these power spectra can be inferred from simulations and motivate a simple analytic extension of the ensemble-averaged diffusion equation that can account for the effect.

  16. Effects of mutation, truncation, and temperature on the folding kinetics of a WW domain.

    PubMed

    Maisuradze, Gia G; Zhou, Rui; Liwo, Adam; Xiao, Yi; Scheraga, Harold A

    2012-07-20

    The purpose of this work is to show how mutation, truncation, and change of temperature can influence the folding kinetics of a protein. This is accomplished by principal component analysis of molecular-dynamics-generated folding trajectories of the triple β-strand WW domain from formin binding protein 28 (FBP28) (Protein Data Bank ID: 1E0L) and its full-size, and singly- and doubly-truncated mutants at temperatures below and very close to the melting point. The reasons for biphasic folding kinetics [i.e., coexistence of slow (three-state) and fast (two-state) phases], including the involvement of a solvent-exposed hydrophobic cluster and another delocalized hydrophobic core in the folding kinetics, are discussed. New folding pathways are identified in free-energy landscapes determined in terms of principal components for full-size mutants. Three-state folding is found to be a main mechanism for folding the FBP28 WW domain and most of the full-size and truncated mutants. The results from the theoretical analysis are compared to those from experiment. Agreements and discrepancies between the theoretical and experimental results are discussed. Because of its importance in understanding protein kinetics and function, the diffusive mechanism by which the FBP28 WW domain and its full-size and truncated mutants explore their conformational space is examined in terms of the mean-square displacement and principal component analysis eigenvalue spectrum analyses. Subdiffusive behavior is observed for all studied systems. PMID:22560992

  17. Searching for Cosmic Strings in the Cosmic Microwave Background:

    NASA Astrophysics Data System (ADS)

    Wu, Jiun-Huei Proty

    The role of cosmic defects in cosmology is entering its new phase—as a test for several fundamental physics, including unification theories and inflation. We discuss how to use the Cosmic Microwave Background (CMB) to detect cosmic strings, a type of cosmic defects, and how to use this result to constrain the underlying physics. In particular, we use the simulations for the Array for Microwave Background Anisotropy (AMiBA) to demonstrate the power of this approach. The required resolution and sensitivity in such a method are discussed, and so is the possible scientific impact.

  18. Cosmic string induced peculiar velocities

    NASA Technical Reports Server (NTRS)

    Van Dalen, Anthony; Schramm, David N.

    1988-01-01

    This paper considers the scenario of a flat universe with a network of heavy cosmic strings as the primordial fluctuation spectrum. The joint probability of finding streaming velocities of at least 600 km/s on large scales and local peculiar velocities of less than 800 km/s is calculated. It is shown how the effects of loops breaking up and being born with a spectrum of sizes can be estimated. It is found that to obtain large-scale streaming velocities of at least 600 km/s, it is necessary that either a large value for beta G mu exist or the effect of loop fissioning and production details be considerable.

  19. Effects of thermally-induced changes of Cu grains on domain structure and electrical performance of CVD-grown graphene

    NASA Astrophysics Data System (ADS)

    Wu, Yaping; Hao, Yufeng; Fu, Mingming; Jiang, Wei; Wu, Qingzhi; Thrower, Peter A.; Piner, Richard D.; Ke, Congming; Wu, Zhiming; Kang, Junyong; Ruoff, Rodney S.

    2015-12-01

    During the chemical vapor deposition (CVD) growth of graphene on Cu foils, evaporation of Cu and changes in the dimensions of Cu grains in directions both parallel and perpendicular to the foils are induced by thermal effects. Such changes in the Cu foil could subsequently change the shape and distribution of individual graphene domains grown on the foil surface, and thus influence the domain structure and electrical properties of the resulting graphene films. Here, a slower cooling rate is used after the CVD process, and the graphene films are found to have an improved electrical performance, which is considered to be associated with the Cu surface evaporation and grain structure changes in the Cu substrate.

  20. Cosmic superstrings and primordial magnetogenesis

    SciTech Connect

    Davis, Anne-Christine; Dimopoulos, Konstantinos

    2005-08-15

    Cosmic superstrings are produced at the end of brane inflation. Their properties are similar to cosmic strings arising in grand unified theories. Like cosmic strings they can give rise to a primordial magnetic field, as a result of vortical motions stirred in the ionized plasma by the gravitational pull of moving string segments. The resulting magnetic field is both strong enough and coherent enough to seed the galactic dynamo and explain the observed magnetic fields of the galaxies.

  1. The Origin of Cosmic Rays

    ScienceCinema

    Blasi, Pasquale [INAF/Arcetri-Italy and Fermilab, Italy

    2010-01-08

    Cosmic Rays reach the Earth from space with energies of up to more than 1020 eV, carrying information on the most powerful particle accelerators that Nature has been able to assemble. Understanding where and how cosmic rays originate has required almost one century of investigations, and, although the last word is not written yet, recent observations and theory seem now to fit together to provide us with a global picture of the origin of cosmic rays of unprecedented clarity. Here we will describe what we learned from recent observations of astrophysical sources (such as supernova remnants and active galaxies) and we will illustrate what these observations tell us about the physics of particle acceleration and transport. We will also discuss the ?end? of the Galactic cosmic ray spectrum, which bridges out attention towards the so called ultra high energy cosmic rays (UHECRs). At ~1020 eV the gyration scale of cosmic rays in cosmic magnetic fields becomes large enough to allow us to point back to their sources, thereby allowing us to perform ?cosmic ray astronomy?, as confirmed by the recent results obtained with the Pierre Auger Observatory. We will discuss the implications of these observations for the understanding of UHECRs, as well as some questions which will likely remain unanswered and will be the target of the next generation of cosmic ray experiments.

  2. Cosmic Rays Across the Universe

    NASA Astrophysics Data System (ADS)

    Gould Zweibel, Ellen

    2016-01-01

    Cosmic rays play an important role in the dynamics, energetics, and chemisry of gas inside and outside galaxies. It has long been recognized that gamma ray astronomy is a powerful probe of cosmic ray acceleration and propagation, and that gamma ray data, combined with other observations of cosmic rays and of the host medium and with modeling, can provide an integrated picture of cosmic rays and their environments. I will discuss the plasma physics underlying this picture, where it has been successful, and where issues remain.

  3. International Cosmic Ray Conference, 13th, University of Denver, Denver, Colo., August 17-30, 1973, Proceedings. Volume 5

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An X-ray observation of the Norma-Lupus region, charge and isotope measurements of heavy cosmic ray nuclei and their role in the determination of cosmic ray age, and the possibility of a contribution to primary cosmic ray spectra from pulsars are among the topics covered in papers concerned with some of the results of recent cosmic ray research. Other topics covered include multiple scattering of charged particles in magnetic fields, absorption of primary cosmic rays in the atmosphere, and phase lag effects on cosmic ray modulation during a recent solar cycle. Individual items are announced in this issue.

  4. Effects of directional migration on prisoner's dilemma game in a square domain

    NASA Astrophysics Data System (ADS)

    Cheng, Hongyan; Dai, Qionglin; Li, Haihong; Qian, Xiaolan; Zhang, Mei; Yang, Junzhong

    2013-04-01

    We introduce a new migration rule, the directional migration, into evolutionary prisoner's dilemma games defined in a square domain with periodic boundary conditions. We find that cooperation can be enhanced to a much higher level than the case in the absence of migration. Additionally, the presence of the directional migration has profound impact on the population structure: the directional migration drives individuals to form a number of dense clusters which resembles social cohesion. The evolutionary game theory incorporating the directional migration can reproduce some real characteristics of populations in human society and may shed light on the problem of social cohesion.

  5. Generation of mice lacking DUF1220 protein domains: effects on fecundity and hyperactivity.

    PubMed

    Keeney, J G; O'Bleness, M S; Anderson, N; Davis, J M; Arevalo, N; Busquet, N; Chick, W; Rozman, J; Hölter, S M; Garrett, L; Horsch, M; Beckers, J; Wurst, W; Klingenspor, M; Restrepo, D; de Angelis, M Hrabě; Sikela, J M

    2015-02-01

    Sequences encoding DUF1220 protein domains show the most extreme human lineage-specific copy number increase of any coding region in the genome and have been linked to human brain evolution. In addition, DUF1220 copy number (dosage) has been implicated in influencing brain size within the human species, both in normal populations and in individuals associated with brain size pathologies (1q21-associated microcephaly and macrocephaly). More recently, increasing dosage of a subtype of DUF1220 has been linked with increasing severity of the primary symptoms of autism. Despite these intriguing associations, a function for these domains has not been described. As a first step in addressing this question, we have developed the first transgenic model of DUF1220 function by removing the single DUF1220 domain (the ancestral form) encoded in the mouse genome. In a hypothesis generating exercise, these mice were evaluated by 197 different phenotype measurements. While resulting DUF1220-minus (KO) mice show no obvious anatomical peculiarities, they exhibit a significantly reduced fecundity (χ(2) = 19.1, df = 2, p = 7.0 × 10(-5)). Further extensive phenotypic analyses suggest hyperactivity (p < 0.05) of DUF1220 mice and changes in gene expression levels of brain associated with distinct neurological functions and disease. Other changes that met statistical significance include an increase in plasma glucose concentration (as measured by area under the curve, AUC 0-30 and AUC 30-120) in male mutants, fasting glucose levels, reduce sodium levels in male mutants, increased levels of the liver functional indicator ALAT/GPT in males, levels of alkaline phosphatase (also an indicator of liver function), mean R and SR amplitude by electrocardiography, elevated IgG3 levels, a reduced ratio of CD4:CD8 cells, and a reduced frequency of T cells; though it should be noted that many of these differences are quite small and require further examination. The linking of DUF1220 loss to a

  6. Generation of mice lacking DUF1220 protein domains: effects on fecundity and hyperactivity

    PubMed Central

    Keeney, JG; O’Bleness, MS; Anderson, N; Davis, JM; Arevalo, N; Busquet, N; Chick, W; Rozman, J; Hölter, SM; Garrett, L; Horsch, M; Beckers, J; Wurst, W; Klingenspor, M; Restrepo, D

    2014-01-01

    Sequences encoding DUF1220 protein domains show the most extreme human lineage-specific copy number increase of any coding region in the genome and have been linked to human brain evolution. In addition, DUF1220 copy number (dosage) has been implicated in influencing brain size within the human species, both in normal populations and in individuals associated with brain size pathologies (1q21-associated microcephaly and macrocephaly). More recently, increasing dosage of a subtype of DUF1220 has been linked with increasing severity of the primary symptoms of autism. Despite these intriguing associations, a function for these domains has not been described. As a first step in addressing this question we have developed the first transgenic model of DUF1220 function by removing the single DUF1220 domain (the ancestral form) encoded in the mouse genome. In a hypothesis generating exercise, these mice were evaluated by 197 different phenotype measurements. While resulting DUF1220-minus (KO) mice show no obvious anatomical peculiarities, they exhibit a significantly reduced fecundity (χ2= 19.1, df = 2, p = 7.0 × 10−5). Further extensive phenotypic analyses suggest hyperactivity (p < 0.05) of DUF1220 mice and changes in gene expression levels of brain associated with distinct neurological functions and disease. Other changes that met statistical significance include an increase in plasma glucose concentration (as measured by Area Under the Curve, AUC 0-30 and AUC 30-120) in male mutants, fasting glucose levels, reduce sodium levels in male mutants, increased levels of the liver functional indicator ALAT/GPT in males, levels of alkaline phosphatase (also an indicator of liver function), mean R and SR amplitude by electrocardiography, elevated IgG3 levels, a reduced ratio of CD4:CD8 cells, and a reduced frequency of T cells; though it should be noted that many of these differences are quite small and require further examination. The linking of DUF1220 loss to a

  7. Chandra Discovers Cosmic Cannonball

    NASA Astrophysics Data System (ADS)

    2007-11-01

    thought to have been ejected by interactions with the supermassive black hole in the Galaxy's center. CTIO Optical Images of Puppis A CTIO Optical Images of Puppis A This neutron star, by contrast, was flung into motion by the supernova that created Puppis A. The data suggest the explosion was lop-sided, kicking the neutron star in one direction and the debris from the explosion in the other. The supernova was precipitated when the core of a massive star imploded to form a neutron star. Computer simulations show that the infall of the outer layers of the star onto a neutron star releases an enormous amount of energy. As this energy propagates outward, it can reverse the infall and eject the outer layers of the star at speeds of millions of miles per hour. Due to the complexity of the flow, the ejection is not symmetric, leading to a rocket effect that propels the neutron star in the opposite direction. ROSAT X-ray ROSAT X-ray The breakneck speed of the Puppis A neutron star, plus an apparent lack of pulsations from it, is not easily explained by even the most sophisticated supernova explosion models. "The problem with discovering this cosmic cannonball is we aren't sure how to make the cannon powerful enough." said Winkler. "The high speed might be explained by an unusually energetic explosion, but the models are complicated and hard to apply to real explosions." Other recent work on RX J0822-4300 was published by C.Y. Hui and Wolfgang Becker, both from the Max Planck Institute for Extraterrestrial Physics in Munich, in the journal Astronomy and Astrophysics in late 2006. Using two of the three Chandra observations reported in the Winkler paper and a different analysis technique, the Hui group found a speed for RX J0822-4300 that is about two-thirds as fast, but with larger reported margins of error. The research by Winkler and Petre was published in the November 20 issue of The Astrophysical Journal. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the

  8. Doppler effect in a solid medium: Spin wave emission by a precessing domain wall drifting in spin current

    NASA Astrophysics Data System (ADS)

    Xia, Hong; Chen, Jie; Zeng, Xiaoyan; Yan, Ming

    2016-04-01

    The Doppler effect is a fundamental physical phenomenon observed for waves propagating in vacuum or various media, commonly gaseous or liquid. Here, we report on the occurrence of a Doppler effect in a solid medium. Instead of a real object, a topological soliton, i.e., a magnetic domain wall (DW) traveling in a current-carrying ferromagnetic nanowire, plays the role of the moving wave source. The Larmor precession of the DW in an external field stimulates emission of monochromatic spin waves (SWs) during its motion, which show a significant Doppler effect, comparable to the acoustic one of a train whistle. This process involves two prominent spin-transfer-torque effects simultaneously, the current-driven DW motion and the current-induced SW Doppler shift. The latter gives rise to an interesting feature, i.e., the observed SW Doppler effect appears resulting from a stationary source and a moving observer, contrary to the laboratory frame.

  9. Cosmic emergy based ecological systems modelling

    NASA Astrophysics Data System (ADS)

    Chen, H.; Chen, G. Q.; Ji, X.

    2010-09-01

    Ecological systems modelling based on the unified biophysical measure of cosmic emergy in terms of embodied cosmic exergy is illustrated in this paper with ecological accounting, simulation and scenario analysis, by a case study for the regional socio-economic ecosystem associated with the municipality of Beijing. An urbanized regional ecosystem model with eight subsystems of natural support, agriculture, urban production, population, finance, land area, potential environmental impact, and culture is representatively presented in exergy circuit language with 12 state variables governing by corresponding ecodynamic equations, and 60 flows and auxiliary variables. To characterize the regional socio-economy as an ecosystem, a series of ecological indicators based on cosmic emergy are devised. For a systematic ecological account, cosmic exergy transformities are provided for various dimensions including climate flows, natural resources, industrial products, cultural products, population with educational hierarchy, and environmental emissions. For the urban ecosystem of Beijing in the period from 1990 to 2005, ecological accounting is carried out and characterized in full details. Taking 2000 as the starting point, systems modelling is realized to predict the urban evolution in a one hundred time horizon. For systems regulation, scenario analyses with essential policy-making implications are made to illustrate the long term systems effects of the expected water diversion and rise in energy price.

  10. Cosmic Ray Transport in the Distant Heliosheath

    NASA Technical Reports Server (NTRS)

    Florinski, V.; Adams, James H.; Washimi, H.

    2011-01-01

    The character of energetic particle transport in the distant heliosheath and especially in the vicinity of the heliopause could be quite distinct from the other regions of the heliosphere. The magnetic field structure is dominated by a tightly wrapped oscillating heliospheric current sheet which is transported to higher latitudes by the nonradial heliosheath flows. Both Voyagers have, or are expected to enter a region dominated by the sectored field formed during the preceding solar maximum. As the plasma flow slows down on approach to the heliopause, the distance between the folds of the current sheet decreases to the point where it becomes comparable to the cyclotron radius of an energetic ion, such as a galactic cosmic ray. Then, a charged particle can effectively drift across a stack of magnetic sectors with a speed comparable with the particle s velocity. Cosmic rays should also be able to efficiently diffuse across the mean magnetic field if the distance between sector boundaries varies. The region of the heliopause could thus be much more permeable to cosmic rays than was previously thought. This new transport proposed mechanism could explain the very high intensities (approaching the model interstellar values) of galactic cosmic rays measured by Voyager 1 during 2010-2011.

  11. Cosmic-Ray Modulation Equations

    NASA Astrophysics Data System (ADS)

    Moraal, H.

    2013-06-01

    The temporal variation of the cosmic-ray intensity in the heliosphere is called cosmic-ray modulation. The main periodicity is the response to the 11-year solar activity cycle. Other variations include a 27-day solar rotation variation, a diurnal variation, and irregular variations such as Forbush decreases. General awareness of the importance of this cosmic-ray modulation has greatly increased in the last two decades, mainly in communities studying cosmogenic nuclides, upper atmospheric physics and climate, helio-climatology, and space weather, where corrections need to be made for these modulation effects. Parameterized descriptions of the modulation are even used in archeology and in planning the flight paths of commercial passenger jets. The qualitative, physical part of the modulation is generally well-understood in these communities. The mathematical formalism that is most often used to quantify it is the so-called Force-Field approach, but the origins of this approach are somewhat obscure and it is not always used correct. This is mainly because the theory was developed over more than 40 years, and all its aspects are not collated in a single document. This paper contains a formal mathematical description intended for these wider communities. It consists of four parts: (1) a description of the relations between four indicators of "energy", namely energy, speed, momentum and rigidity, (2) the various ways of how to count particles, (3) the description of particle motion with transport equations, and (4) the solution of such equations, and what these solutions mean. Part (4) was previously described in Caballero-Lopez and Moraal (J. Geophys. Res, 109: A05105, doi: 10.1029/2003JA010358, 2004). Therefore, the details are not all repeated here. The style of this paper is not to be rigorous. It rather tries to capture the relevant tools to do modulation studies, to show how seemingly unrelated results are, in fact, related to one another, and to point out the

  12. Modeling Protein Domain Function

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth

    2007-01-01

    This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the…

  13. On Becoming a Cosmic Educator. Spotlight: Cosmic Education.

    ERIC Educational Resources Information Center

    Maier, Biff

    2002-01-01

    Discusses Maria Montessori's five pedagogical guidelines for her Cosmic Education concept: starting with the larger context; treating planet Earth as a cosmic organism; stressing similarities among seemingly different groups of people, organisms, or objects; showing chains of interdependence among all things; and examining behavior from a cosmic…

  14. CMB temperature bispectrum induced by cosmic strings

    SciTech Connect

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2009-10-15

    The cosmic microwave background (CMB) bispectrum of the temperature anisotropies induced by a network of cosmic strings is derived for small angular scales, under the assumption that the principal cause of temperature fluctuations is the Gott-Kaiser-Stebbins effect. We provide analytical expressions for all isosceles triangle configurations in Fourier space. Their overall amplitude is amplified as the inverse cube of the angle and diverges for flat triangles. The isosceles configurations generically lead to a negative bispectrum with a power-law decay l{sup -6} for large multipole l. However, collapsed triangles are found to be associated with a positive bispectrum whereas the squeezed triangles still exhibit negative values. We then compare our analytical estimates to a direct computation of the bispectrum from a set of 300 statistically independent temperature maps obtained from Nambu-Goto cosmic string simulations in a Friedmann-Lemaitre-Robertson-Walker universe. We find good agreement for the overall amplitude, the power-law behavior, and the angle dependency of the various triangle configurations. At l{approx}500 the cosmic string Gott-Kaiser-Stebbins effect contributes approximately the same equilateral CMB bispectrum amplitude as an inflationary model with |f{sub NL}{sup loc}|{approx_equal}10{sup 3}, if the strings contribute about 10% of the temperature power spectrum at l=10. Current bounds on f{sub NL} are not derived using cosmic string bispectrum templates, and so our f{sub NL} estimate cannot be used to derive bounds on strings. However it does suggest that string bispectrum templates should be included in the search of CMB non-Gaussianities.

  15. CMB temperature bispectrum induced by cosmic strings

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2009-10-01

    The cosmic microwave background (CMB) bispectrum of the temperature anisotropies induced by a network of cosmic strings is derived for small angular scales, under the assumption that the principal cause of temperature fluctuations is the Gott-Kaiser-Stebbins effect. We provide analytical expressions for all isosceles triangle configurations in Fourier space. Their overall amplitude is amplified as the inverse cube of the angle and diverges for flat triangles. The isosceles configurations generically lead to a negative bispectrum with a power-law decay ℓ-6 for large multipole ℓ. However, collapsed triangles are found to be associated with a positive bispectrum whereas the squeezed triangles still exhibit negative values. We then compare our analytical estimates to a direct computation of the bispectrum from a set of 300 statistically independent temperature maps obtained from Nambu-Goto cosmic string simulations in a Friedmann-Lemaître-Robertson-Walker universe. We find good agreement for the overall amplitude, the power-law behavior, and the angle dependency of the various triangle configurations. At ℓ˜500 the cosmic string Gott-Kaiser-Stebbins effect contributes approximately the same equilateral CMB bispectrum amplitude as an inflationary model with |fNLloc|≃103, if the strings contribute about 10% of the temperature power spectrum at ℓ=10. Current bounds on fNL are not derived using cosmic string bispectrum templates, and so our fNL estimate cannot be used to derive bounds on strings. However it does suggest that string bispectrum templates should be included in the search of CMB non-Gaussianities.

  16. Ndm, a coiled-coil domain protein that suppresses macropinocytosis and has effects on cell migration.

    PubMed

    Kelsey, Jessica S; Fastman, Nathan M; Noratel, Elizabeth F; Blumberg, Daphne D

    2012-09-01

    The ampA gene has a role in cell migration in Dictyostelium discoideum. Cells overexpressing AmpA show an increase in cell migration, forming large plaques on bacterial lawns. A second-site suppressor of this ampA-overexpressing phenotype identified a previously uncharacterized gene, ndm, which is described here. The Ndm protein is predicted to contain a coiled-coil BAR-like domain-a domain involved in endocytosis and membrane bending. ndm-knockout and Ndm-monomeric red fluorescent protein-expressing cell lines were used to establish a role for ndm in suppressing endocytosis. An increase in the rate of endocytosis and in the number of endosomes was detected in ndm(-) cells. During migration ndm(-) cells formed numerous endocytic cups instead of the broad lamellipodia structure characteristic of moving cells. A second lamellipodia-based function-cell spreading-was also defective in the ndm(-) cells. The increase in endocytosis and the defect in lamellipodia formation were associated with reduced chemotaxis in ndm(-) cells. Immunofluorescence results and glutathione S-transferase pull-down assays revealed an association of Ndm with coronin and F-actin. The results establish ndm as a gene important in regulating the balance between formation of endocytic cups and lamellipodia structures. PMID:22809629

  17. Incorporation of quantum effects for selected degrees of freedom into the trajectory-based dynamics using spatial domains.

    PubMed

    Garashchuk, Sophya; Volkov, Mikhail V

    2012-08-21

    The approach of defining quantum corrections on nuclear dynamics of molecular systems incorporated approximately into selected degrees of freedom, is described. The approach is based on the Madelung-de-Broglie-Bohm formulation of time-dependent quantum mechanics which represents a wavefunction in terms of an ensemble of trajectories. The trajectories follow classical laws of motion except that the quantum potential, dependent on the wavefunction amplitude and its derivatives, is added to the external, classical potential. In this framework the quantum potential, determined approximately for practical reasons, is included only into the "quantum" degrees of freedom describing light particles such as protons, while neglecting with the quantum force for the heavy, nearly classical nuclei. The entire system comprised of light and heavy particles is described by a single wavefunction of full dimensionality. The coordinate space of heavy particles is divided into spatial domains or subspaces. The quantum force acting on the light particles is determined for each domain of similar configurations of the heavy nuclei. This approach effectively introduces parametric dependence of the reduced dimensionality quantum force, on classical degrees of freedom. This strategy improves accuracy of the quantum force and does not restrict interaction between the domains. The concept is illustrated for two-dimensional scattering systems, where the quantum force is required to reproduce vibrational energy of the quantum degree of freedom. PMID:22920111

  18. Conductivity Scaling Relationships of Nanostructured Membranes based on Hydrated Protic Polymerized Ionic Liquids: Effect of Domain Spacing

    NASA Astrophysics Data System (ADS)

    Sanoja, Gabriel; Popere, Bhooshan; Beckingham, Bryan; Evans, Christopher; Lynd, Nathaniel; Segalman, Rachel

    Elucidating the relationship between chemical structure, morphology, and ionic conductivity is essential for designing novel materials for electrochemical applications. In this work, the effect of lamellar domain spacing (d) on ionic conductivity (σ) is investigated for a model system of hydrated block copolymer based on a protic polymerized ionic liquid. We present a strategy that allows for the synthesis of a well-defined series of narrowly dispersed PS- b - PIL with constant volume fraction of ionic liquid moieties (fIL ~ 0.39). These materials self-assemble into ordered lamellar morphologies with variable domain spacing (23-59 nm) as demonstrated by SAXS. PS- b - PIL membranes exhibit ionic conductivities above 10-4 S/cm at room temperature, which are independent of domain spacing. The conductivity scaling relationship demonstrated in this work suggests that a mechanically robust membrane can be designed without compromising its ability to transport ions. In addition, PIL-based membranes exhibit lower water uptake (λ = 10) in comparison with many proton-conducting systems reported elsewhere. The low water content of these materials makes them promising candidates for solar-fuels electrochemical devices.

  19. Probing Zn2+-binding effects on the zinc-ribbon domain of human general transcription factor TFIIB.

    PubMed Central

    Ghosh, Mahua; Elsby, Laura M; Mal, Tapas K; Gooding, Jane M; Roberts, Stefan G E; Ikura, Mitsuhiko

    2004-01-01

    The general transcription factor, TFIIB, plays an important role in the assembly of the pre-initiation complex. The N-terminal domain (NTD) of TFIIB contains a zinc-ribbon motif, which is responsible for the recruitment of RNA polymerase II and TFIIF to the core promoter region. Although zinc-ribbon motif structures of eukaryotic and archaeal TFIIBs have been reported previously, the structural role of Zn2 binding to TFIIB remains to be determined. In the present paper, we report NMR and biochemical studies of human TFIIB NTD, which characterize the structure and dynamics of the TFIIB Zn2-binding domain in both Zn2-bound and -free states. The NMR data show that, whereas the backbone fold of NTD is pre-formed in the apo state, Zn2 binding reduces backbone mobility in the b-turn (Arg28-Gly30), induces enhanced structural rigidity of the charged-cluster domain in the central linker region of TFIIB and appends a positive surface charge within the Zn2-binding site. V8 protease-sensitivity assays of full-length TFIIB support the Zn2-dependent structural changes. These structural effects of Zn2 binding on TFIIB may have a critical role in interactions with its binding partners, such as the Rpb1 subunit of RNA polymerase II. PMID:14641108

  20. Cosmic Dawn with WFIRST

    NASA Astrophysics Data System (ADS)

    Rhoads, James

    Central objectives: WFIRST-AFTA has tremendous potential for studying the epoch of "Cosmic Dawn" the period encompassing the formation of the first galaxies and quasars, and their impact on the surrounding universe through cosmological reionization. Our goal is to ensure that this potential is realized through the middle stages of mission planning, culminating in designs for both WFIRST and its core surveys that meet the core objectives in dark energy and exoplanet science, while maximizing the complementary Cosmic Dawn science. Methods: We will consider a combined approach to studying Cosmic Dawn using a judicious mixture of guest investigator data analysis of the primary WFIRST surveys, and a specifically designed Guest Observer program to complement those surveys. The Guest Observer program will serve primarily to obtain deep field observations, with particular attention to the capabilities of WFIRST for spectroscopic deep fields using the WFI grism. We will bring to bear our years of experience with slitless spectroscopy on the Hubble Space Telescope, along with an expectation of JWST slitless grism spectroscopy. We will use this experience to examine the implications of WFIRST’s grism resolution and wavelength coverage for deep field observations, and if appropriate, to suggest potential modifications of these parameters to optimize the science return on WFIRST. We have assembled a team of experts specializing in (1) Lyman Break Galaxies at redshifts higher than 7 (2) Quasars at high redshifts (3) Lyman-alpha galaxies as probes of reionization (4) Theoretical simulations of high-redshift galaxies (5) Simulations of grism observations (6) post-processing analysis to find emission line galaxies and high redshift galaxies (7) JWST observations and calibrations. With this team we intend to do end-to-end simulations starting with halo populations and expected spectra of high redshift galaxies and finally extracting what we can learn about (a) reionization